Science.gov

Sample records for bystander effect observed

  1. MRC5 and QU-DB bystander cells can produce bystander factors and induce radiation bystander effect.

    PubMed

    Toossi, Mohammad Taghi Bahreyni; Mohebbi, Shokoufeh; Samani, Roghayeh Kamran; Soleymanifard, Shokouhozaman

    2014-07-01

    Radiation damages initiated by radiation-induced bystander effect (RIBE) are not limited to the first or immediate neighbors of the irradiated cells, but the effects have been observed in the cells far from the irradiation site. It has been postulated that bystander cells, by producing bystander factors, are actively involved in the propagation of bystander effect in the regions beyond the initial irradiated site. Current study was planned to test the hypothesis. MRC5 and QU-DB cell lines were irradiated, and successive medium transfer technique was performed to induce bystander effects in two bystander cell groups. Conditioned medium extracted from the target cells was transferred to the bystander cells (first bystander cells). After one hour, conditioned medium was substituted by fresh medium. Two hours later, the fresh medium was transferred to a second group of non-irradiated cells (second bystander cells). Micronucleated cells (MC) were counted to quantify damages induced in the first and second bystander cell groups. Radiation effect was observed in the second bystander cells as well as in the first ones. Statistical analyses revealed that the number of MC in second bystander subgroups was significantly more than the corresponding value observed in control groups, but in most cases it was equal to the number of MC observed in the first bystander cells. MRC5 and QU-DB bystander cells can produce and release bystander signals in the culture medium and affect non-irradiated cells. Therefore, they may contribute to the RIBE propagation.

  2. MRC5 and QU-DB bystander cells can produce bystander factors and induce radiation bystander effect

    PubMed Central

    Toossi, Mohammad Taghi Bahreyni; Mohebbi, Shokoufeh; Samani, Roghayeh Kamran; Soleymanifard, Shokouhozaman

    2014-01-01

    Radiation damages initiated by radiation-induced bystander effect (RIBE) are not limited to the first or immediate neighbors of the irradiated cells, but the effects have been observed in the cells far from the irradiation site. It has been postulated that bystander cells, by producing bystander factors, are actively involved in the propagation of bystander effect in the regions beyond the initial irradiated site. Current study was planned to test the hypothesis. MRC5 and QU-DB cell lines were irradiated, and successive medium transfer technique was performed to induce bystander effects in two bystander cell groups. Conditioned medium extracted from the target cells was transferred to the bystander cells (first bystander cells). After one hour, conditioned medium was substituted by fresh medium. Two hours later, the fresh medium was transferred to a second group of non-irradiated cells (second bystander cells). Micronucleated cells (MC) were counted to quantify damages induced in the first and second bystander cell groups. Radiation effect was observed in the second bystander cells as well as in the first ones. Statistical analyses revealed that the number of MC in second bystander subgroups was significantly more than the corresponding value observed in control groups, but in most cases it was equal to the number of MC observed in the first bystander cells. MRC5 and QU-DB bystander cells can produce and release bystander signals in the culture medium and affect non-irradiated cells. Therefore, they may contribute to the RIBE propagation. PMID:25190998

  3. Bystander effects and radiotherapy.

    PubMed

    Marín, Alicia; Martín, Margarita; Liñán, Olga; Alvarenga, Felipe; López, Mario; Fernández, Laura; Büchser, David; Cerezo, Laura

    2015-01-01

    Radiation-induced bystander effects are defined as biological effects expressed after irradiation by cells whose nuclei have not been directly irradiated. These effects include DNA damage, chromosomal instability, mutation, and apoptosis. There is considerable evidence that ionizing radiation affects cells located near the site of irradiation, which respond individually and collectively as part of a large interconnected web. These bystander signals can alter the dynamic equilibrium between proliferation, apoptosis, quiescence or differentiation. The aim of this review is to examine the most important biological effects of this phenomenon with regard to areas of major interest in radiotherapy. Such aspects include radiation-induced bystander effects during the cell cycle under hypoxic conditions when administering fractionated modalities or combined radio-chemotherapy. Other relevant aspects include individual variation and genetics in toxicity of bystander factors and normal tissue collateral damage. In advanced radiotherapy techniques, such as intensity-modulated radiation therapy (IMRT), the high degree of dose conformity to the target volume reduces the dose and, therefore, the risk of complications, to normal tissues. However, significant doses can accumulate out-of-field due to photon scattering and this may impact cellular response in these regions. Protons may offer a solution to reduce out-of-field doses. The bystander effect has numerous associated phenomena, including adaptive response, genomic instability, and abscopal effects. Also, the bystander effect can influence radiation protection and oxidative stress. It is essential that we understand the mechanisms underlying the bystander effect in order to more accurately assess radiation risk and to evaluate protocols for cancer radiotherapy.

  4. Bystander effects and radiotherapy

    PubMed Central

    Marín, Alicia; Martín, Margarita; Liñán, Olga; Alvarenga, Felipe; López, Mario; Fernández, Laura; Büchser, David; Cerezo, Laura

    2014-01-01

    Radiation-induced bystander effects are defined as biological effects expressed after irradiation by cells whose nuclei have not been directly irradiated. These effects include DNA damage, chromosomal instability, mutation, and apoptosis. There is considerable evidence that ionizing radiation affects cells located near the site of irradiation, which respond individually and collectively as part of a large interconnected web. These bystander signals can alter the dynamic equilibrium between proliferation, apoptosis, quiescence or differentiation. The aim of this review is to examine the most important biological effects of this phenomenon with regard to areas of major interest in radiotherapy. Such aspects include radiation-induced bystander effects during the cell cycle under hypoxic conditions when administering fractionated modalities or combined radio-chemotherapy. Other relevant aspects include individual variation and genetics in toxicity of bystander factors and normal tissue collateral damage. In advanced radiotherapy techniques, such as intensity-modulated radiation therapy (IMRT), the high degree of dose conformity to the target volume reduces the dose and, therefore, the risk of complications, to normal tissues. However, significant doses can accumulate out-of-field due to photon scattering and this may impact cellular response in these regions. Protons may offer a solution to reduce out-of-field doses. The bystander effect has numerous associated phenomena, including adaptive response, genomic instability, and abscopal effects. Also, the bystander effect can influence radiation protection and oxidative stress. It is essential that we understand the mechanisms underlying the bystander effect in order to more accurately assess radiation risk and to evaluate protocols for cancer radiotherapy. PMID:25535579

  5. Central Nervous System Injury – A Newly Observed Bystander Effect of Radiation

    PubMed Central

    Feiock, Caitlin; Yagi, Masashi; Maidman, Adam; Rendahl, Aaron; Hui, Susanta; Seelig, Davis

    2016-01-01

    The unintended side effects of cancer treatment are increasing recognized. Among these is a syndrome of long-term neurocognitive dysfunction called cancer/chemotherapy related cognitive impairment. To date, all studies examining the cognitive impact of cancer treatment have emphasized chemotherapy. Radiation-induced bystander effects have been described in cell culture and, to a limited extent, in rodent model systems. The purpose of this study was to examine, for the first time, the impact of non-brain directed radiation therapy on the brain in order to elucidate its potential relationship with cancer/chemotherapy related cognitive impairment. To address this objective, female BALB/c mice received either a single 16 gray fraction of ionizing radiation to the right hind limb or three doses of methotrexate, once per week for three consecutive weeks. Mice were sacrificed either 3 or 30 days post-treatment and brain injury was determined via quantification of activated astrocytes and microglia. To characterize the effects of non-brain directed radiation on brain glucose metabolism, mice were evaluated by fluorodeoxygluocose positron emission tomography. A single fraction of 16 gray radiation resulted in global decreases in brain glucose metabolism, a significant increase in the number of activated astrocytes and microglia, and increased TNF-α expression, all of which lasted up to 30 days post-treatment. This inflammatory response following radiation therapy was statistically indistinguishable from the neuroinflammation observed following methotrexate administration. In conclusion, non-brain directed radiation was sufficient to cause significant brain bystander injury as reflected by multifocal hypometabolism and persistent neuroinflammation. These findings suggest that radiation induces significant brain bystander effects distant from the irradiated cells and tissues. These effects may contribute to the development of cognitive dysfunction in treated human cancer

  6. Mechanisms of the Bystander Effect

    SciTech Connect

    Hall, Eric J.

    2008-07-15

    Generations of students in radiation biology have been taught that heritable biological damage requires direct damage to DNA. We now know that this is not true. The Bystander Effect is the name given to the phenomenon whereby biological effects are observed in cells that are not themselves traversed by a charged particle, but are in close proximity to cells that are. Several research groups have convincingly demonstrated a bystander effect for alpha particle, which are heavy and high LET, because charged particles can be focused into a tiny beam that can be directed onto individual cells. The biological effects seen in adjacent non-hit cells clearly represents a bystander effect. It is not so easy to demonstrate a similar effect for x-rays or for the electrons set in motion by the absorption of x-rays. In this project we used two types of cell that could be recognized one from the other. One cell type was fed radioactive tritiated thymidine, which is incorporated into the DNA, . The tritium emits electrons which have a very short range so that they do not even get out of the cell. These cells were then mixed with a different type of cell which are routinely used to assess mutations. The mixed cells formed a cluster, where the two types of cells were in close contact, and left for some hours. Subsequently, the two types of cells were separated and studied. A substantial fraction of the cells that had incorporated the tritiated thymidine were killed by the radiation. The interesting finding is that the cells that had not incorporated tritiated thymidine, but had been in close contact with cells that had, exhibited a significant incidence of mutations. These experiments clearly demonstrated a bystander effect for low LET electrons. In further experiments, it was possible to show that the bystander effect was greatest when the two cell types were in gap junction communication.

  7. Radiation-induced bystander effects enhanced by elevated sodium chloride through sensitizing cells to bystander factors.

    PubMed

    Zhu, Lingyan; Han, Wei; Chen, Shaopeng; Zhao, Ye; Jiang, Erkang; Bao, Lingzhi; Pei, Bei; Yang, Gen; Zhao, Guoping; Wang, Jun; Xu, An; Wu, Lijun

    2008-09-26

    Radiation-induced bystander effects (RIBE) have been demonstrated to occur widely in various cell lines. However, very little data is available on the genotoxic effects of RIBE combined with other factor(s). We reported previously that with a low dose of alpha-particle irradiation, the fraction of gamma-H2AX foci-positive cells in non-irradiated bystander cells was significantly increased under elevated NaCl culture conditions. In this study, we further investigated the functional role of NaCl in the enhancement of RIBE using a specially designed co-culture system and micronucleus (MN) test. It was shown that the MN frequency was not increased significantly by elevated NaCl (9.0 g/L) alone or by medium exposure. However, with 1.0 cGy alpha-particle irradiation, the induced MN frequency increased significantly in both irradiated and non-irradiated bystander regions. Additional studies showed that elevated NaCl made the non-irradiated bystander cells more vulnerable to bystander factors. Furthermore, it was found that the induced MN frequency in cells both in irradiated and non-irradiated bystander regions was weakened when the hypertonic medium was changed to normotonic medium for 2h before irradiation. Such observations were quite similar to the co-effect of NaCl and hydrogen peroxide (H(2)O(2)), indicating that elevated NaCl might sensitize non-irradiated cells to bystander factors-induced oxidative stress.

  8. A Bystander Effect Observed in Boron Neutron Capture Therapy: A Study of the Induction of Mutations in the HPRT Locus

    SciTech Connect

    Kinashi, Yuko . E-mail: kinashi@rri.kyoto-u.ac.jp; Masunaga, Shinichiro; Nagata, Kenji; Suzuki, Minoru; Takahashi, Sentaro; Ono, Koji

    2007-06-01

    Purpose: To investigate bystander mutagenic effects induced by {alpha}-particles during boron neutron capture therapy, we mixed cells that were electroporated with borocaptate sodium (BSH), which led to the accumulation of {sup 10}B inside the cells, and cells that did not contain the boron compound. The BSH-containing cells were irradiated with {alpha}-particles produced by the {sup 10}B(n,{alpha}){sup 7}Li reaction, whereas cells without boron were affected only by the {sup 1}H(n,{gamma}){sup 2}H and {sup 14}N(n,{rho}){sup 14}C reactions. Methods and Materials: The lethality and mutagenicity measured by the frequency of mutations induced in the hypoxanthine-guanine phosphoribosyltransferase locus were examined in Chinese hamster ovary cells irradiated with neutrons (Kyoto University Research Reactor: 5 MW). Neutron irradiation of 1:1 mixtures of cells with and without BSH resulted in a survival fraction of 0.1, and the cells that did not contain BSH made up 99.4% of the resulting cell population. The molecular structures of the mutations were determined using multiplex polymerase chain reactions. Results: Because of the bystander effect, the frequency of mutations increased in the cells located nearby the BSH-containing cells compared with control cells. Molecular structural analysis indicated that most of the mutations induced by the bystander effect were point mutations and that the frequencies of total and partial deletions induced by the bystander effect were less than those induced by the original neutron irradiation. Conclusion: These results suggested that in boron neutron capture therapy, the mutations caused by the bystander effect and those caused by the original neutron irradiation are induced by different mechanisms.

  9. Neutron induced bystander effect among zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Ng, C. Y. P.; Kong, E. Y.; Kobayashi, A.; Suya, N.; Uchihori, Y.; Cheng, S. H.; Konishi, T.; Yu, K. N.

    2015-12-01

    The present paper reported the first-ever observation of neutron induced bystander effect (NIBE) using zebrafish (Danio rerio) embryos as the in vivo model. The neutron exposure in the present work was provided by the Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility at the National Institute of Radiological Sciences (NIRS), Chiba, Japan. Two different strategies were employed to induce NIBE, namely, through directly partnering and through medium transfer. Both results agreed with a neutron-dose window (20-50 mGy) which could induce NIBE. The lower dose limit corresponded to the threshold amount of neutron-induced damages to trigger significant bystander signals, while the upper limit corresponded to the onset of gamma-ray hormesis which could mitigate the neutron-induced damages and thereby suppress the bystander signals. Failures to observe NIBE in previous studies were due to using neutron doses outside the dose-window. Strategies to enhance the chance of observing NIBE included (1) use of a mono-energetic high-energy (e.g., between 100 keV and 2 MeV) neutron source, and (2) use of a neutron source with a small gamma-ray contamination. It appeared that the NASBEE facility used in the present study fulfilled both conditions, and was thus ideal for triggering NIBE.

  10. An Observed Effect of p53 Status on the Bystander Response to Radiation-Induced Cellular Photon Emission.

    PubMed

    Le, M; Mothersill, C E; Seymour, C B; Rainbow, A J; McNeill, F E

    2017-02-01

    In this study, we investigated the potential influence of p53 on ultraviolet (UV) signal generation and response of bystander cells to the UV signals generated by beta-irradiated cells. Five cell lines of various p53 status (HaCaT, mutated; SW48, wild-type; HT29, mutated; HCT116(+/+), wild-type; HCT116(-/-), null) were irradiated with beta particles from tritium. Signal generation (photon emission at 340 ± 5 nm) was quantified from irradiated cells using a photomultiplier tube. Bystander response (clonogenic survival) was assessed by placing reporter cell flasks directly superior to irradiated signal-emitting cells. All cell lines emitted significant quantities of UV after tritium exposure. The magnitudes of HaCaT and HT29 photon emission at 340 nm were similar to each other while they were significantly different from the stronger signals emitted from SW48, HCT116(+/+) and HCT116(-/-) cells. In regard to the bystander responses, HaCaT, HCT116(+/+) and SW48 cells demonstrated significant reductions in survival as a result of exposure to emission signals. HCT116(-/-) and HT29 cells did not exhibit any changes in survival and thus were considered to be lacking the mechanisms or functions required to elicit a response. The survival response was found not to correlate with the observed signal strength for all experimental permutations; this may be attributed to varying emission spectra from cell line to cell line or differences in response sensitivity. Overall, these results suggest that the UV-mediated bystander response is influenced by the p53 status of the cell line. Wild-type p53 cells (HCT116(+/+) and SW48) demonstrated significant responses to UV signals whereas the p53-null cell line (HCT116(-/-)) lacked any response. The two mutated p53 cell lines exhibited contrasting responses, which may be explained by unique modulation of functions by different point mutations. The reduced response (cell death) exhibited by p53-mutated cells compared to p53 wild

  11. Comparing the level of bystander effect in a couple of tumor and normal cell lines.

    PubMed

    Soleymanifard, Shokouhozaman; Bahreyni, Mohammad T Toossi

    2012-04-01

    Radiation-induced bystander effect refers to radiation responses which occur in non-irradiated cells. The purpose of this study was to compare the level of bystander effect in a couple of tumor and normal cell lines (QU-DB and MRC5). To induce bystander effect, cells were irradiated with 0.5, 2, and 4 Gy of (60)Co gamma rays and their media were transferred to non-irradiated (bystander) cells of the same type. Cells containing micronuclei were counted in bystander subgroups, non-irradiated, and 0.5 Gy irradiated cells. Frequencies of cells containing micronuclei in QU-DB bystander subgroups were higher than in bystander subgroups of MRC5 cells (P < 0.001). The number of micronucleated cells counted in non-irradiated and 0.5 Gy irradiated QU-DB cells was also higher than the corresponding values for MRC5 cells (P < 0.001). Another difference between the two cell lines was that in QU-DB bystander cells, a dose-dependent increase in the number of micronucleated cells was observed as the dose increased, but at all doses the number of micronucleated cells in MRC5 bystander cells was constant. It is concluded that QU-DB cells are more susceptible than MRC5 cells to be affected by bystander effect, and in the two cell lines there is a positive correlation between DNA damages induced directly and those induced due to bystander effect.

  12. RCT Testing Bystander Effectiveness to Reduce Violence.

    PubMed

    Coker, Ann L; Bush, Heather M; Cook-Craig, Patricia G; DeGue, Sarah A; Clear, Emily R; Brancato, Candace J; Fisher, Bonnie S; Recktenwald, Eileen A

    2017-05-01

    Bystander-based programs have shown promise to reduce interpersonal violence at colleges, yet limited rigorous evaluations have addressed bystander intervention effectiveness in high schools. This study evaluated the Green Dot bystander intervention to reduce sexual violence and related forms of interpersonal violence in 26 high schools over 5 years. A cluster RCT was conducted. Kentucky high schools were randomized to intervention or control (wait list) conditions. Green Dot-trained educators conducted schoolwide presentations and recruited student popular opinion leaders to receive bystander training in intervention schools beginning in Year 1. The primary outcome was sexual violence perpetration, and related forms of interpersonal violence victimization and perpetration were also measured using anonymous student surveys collected at baseline and annually from 2010 to 2014. Because the school was the unit of analysis, violence measures were aggregated by school and year and school-level counts were provided. A total of 89,707 students completed surveys. The primary, as randomized, analyses conducted in 2014-2016 included linear mixed models and generalized estimating equations to examine the condition-time interaction on violence outcomes. Slopes of school-level totals of sexual violence perpetration (condition-time, p<0.001) and victimization (condition-time, p<0.001) were different over time. During Years 3-4, when Green Dot was fully implemented, the mean number of sexual violent events prevented by the intervention was 120 in Intervention Year 3 and 88 in Year 4. For Year 3, prevalence rate ratios for sexual violence perpetration in the intervention relative to control schools were 0.83 (95% CI=0.70, 0.99) in Year 3 and 0.79 (95% CI=0.67, 0.94) in Year 4. Similar patterns were observed for sexual violence victimization, sexual harassment, stalking, and dating violence perpetration and victimization. Implementation of Green Dot in Kentucky high schools

  13. The positive bystander effect: passive bystanders increase helping in situations with high expected negative consequences for the helper.

    PubMed

    Fischer, Peter; Greitemeyer, Tobias

    2013-01-01

    The present field study investigated the interplay between the presence of a passive bystander (not present versus present) in a simulated bike theft and expected negative consequences (low versus high) in predicting intervention behavior when no physical victim is present. It was found that an additional bystander increases individual intervention in situations where the expected negative consequences for the helper in case of intervention were high (i.e., when the bike thief looks fierce) compared to situations where the expected negative consequences for the helper were low (i.e., when the bike thief does not look fierce). In contrast, no such effect for high vs. low expected negative consequences was observed when no additional bystander observed the critical situation. The results are discussed in light of previous laboratory findings on expected negative consequences and bystander intervention.

  14. The bystander effect in photodynamic inactivation of cells.

    PubMed

    Dahle, J; Bagdonas, S; Kaalhus, O; Olsen, G; Steen, H B; Moan, J

    2000-07-26

    Treatment of MDCK II cells with the lipophilic photosensitizer tetra(3-hydroxyphenyl)porphyrin and light was found to induce a rapid apoptotic response in a large fraction of the cells. Furthermore, the distribution of apoptotic cells in microcolonies of eight cells was found to be different from the binomial distribution, indicating that the cells are not inactivated independently, but that a bystander effect is involved in cell killing by photodynamic treatment. The observation of a bystander effect disagrees with the common view that cells are inactivated only by direct damage and indicates that communication between cells in a colony plays a role in photosensitized induction of apoptosis. The degree of bystander effect was higher for cells dying by necrosis than for cell dying by apoptosis.

  15. Defining a Possible Low LET Bystander Effect

    SciTech Connect

    Charles R. Geard

    2009-05-04

    Current radiation protection guidelines assume a linear response to ionizing radiations down through doses where epidemiological studies provide very limited to no information as to the propriety of such assumptions. The bystander response is a non-targeted effect which might impact such guidelines. These studies while clearly affirming a bystander response for high LET radiations, do not provide such affirmation for environmentally relevant low dose, low LET radiations. Caution and further study are necessary before making judgements that could impact on current standards.

  16. Time-lapse microscopy studies of bystander effects induced by photosensitization

    NASA Astrophysics Data System (ADS)

    Chen, Yin-Chu; Redmond, Robert W.

    2006-02-01

    Reactive oxygen species (ROS) are involved in the pathogenesis of many critical diseases and are also utilized as cytotoxic agents in a variety of treatments for eradication of diseased tissue, including cancer. Oxidative stress ensues when the level of ROS in a system exceeds the antioxidant capacity. Oxidative stress can have local (direct) and long-range (bystander) effects in cells and tissue and this research was carried out to determine the spatial and temporal nature of the photosensitized bystander effect using time-lapse fluorescence microscopy. By initiating photosensitization in only a portion of the microscopic imaging field it was possible to differentiate direct from bystander effects in EMT-6 murine breast cancer cells in 6-well plates. Elevated ROS levels are seen immediately following photodynamic treatment in direct cells with a delayed increase in oxidative stress observed in bystander cells. Cytotoxicity is also seen at earlier times in direct cells and occurs in bystander cells in a delayed fashion. These studies confirm the existence of a bystander effect following photosensitization and implicate mediators capable of diffusing in an intercellular manner from directly photosensitized cells to bystander cells and also implicate increased oxidative stress as a mechanistic factor in generating damage in bystander cells.

  17. Brief report: The bystander effect in cyberbullying incidents.

    PubMed

    Machackova, Hana; Dedkova, Lenka; Mezulanikova, Katerina

    2015-08-01

    This study examined the bystander effect in cyberbullying. Using self-reported data from 257 Czech respondents who had witnessed a cyberbullying attack, we tested whether provided help decreased with increased number of other bystanders. We controlled for several individual and contextual factors, including empathy, social self-efficacy, empathic response to victimization, and relationship to the victim. Results showed that participants tend to help the victims more in incidents with only one or two other bystanders. We also found that, as in the "offline" realm, bystander effect is not linear: no significant differences were found between incidents with a moderate number (3-10) and a larger number of total bystanders. Our findings, thus, provide support for the presence of the bystander effect in cyberbullying. Copyright © 2015 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  18. Effect of 5-hydroxytryptamine (serotonin) receptor inhibitors on the radiation-induced bystander effect.

    PubMed

    Fazzari, Jennifer; Mersov, Anna; Smith, Richard; Seymour, Colin; Mothersill, Carmel

    2012-10-01

    To test the importance of serotonin as a signaling molecule involved in the production and response of radiation-induced bystander effects. HPV-G human keratinocyte cultures were spiked with various concentrations of Granisetron or Ketanserin and subject to either 0 Gy or 0.5 Gy X-irradiation to observe the inhibitor's effects on bystander signal production. Medium from these cultures was harvested and introduced to non- irradiated cultures of the same cell line to determine the clonogenic bystander response. Separate HPV-G cultures were set up for subsequent calcium measurements in response to irradiated cell conditioned medium (ICCM) in the presence or absence of Granisetron in an attempt to block bystander signal response. Granisetron and Ketanserin produced a dose-dependent propagation of the bystander effect in recipient cultures. Granisetron completely abolished the characteristic calcium pulse observed when non-irradiated cultures are exposed to irradiated cell medium in the presence of this drug. Serotonin-dependent mechanisms appear to be involved in bystander signal production and response to radiation in this system.

  19. Primary Trauma Triage Performed by Bystanders: An Observation Study.

    PubMed

    Nordberg, Martin; Castrén, Maaret; Lindström, Veronica

    2016-08-01

    The aim of this study was to evaluate whether bystanders with no training in triage can correctly prioritize three injured patients by using a triage instrument. An observational study was conducted. Participants performed a primary triage on three paper-based patient cases and answered 11 questions during a public event in the center of Stockholm, Sweden. A total of 69 persons participated in the study. The success rate among all the participants for correct triage of the three patient cases was 52 percent. The female participants and younger participants (<55 years of age) performed correct triage to a greater extent. The over-triage was 12.5 percent and under-triage was 6.3 percent. Participants with no prior knowledge of triage instruments may be capable of triaging injured patients with the help of an easy triage instrument. The over- and under-triage percentages were low, and this may indicate that the developed triage instrument is relatively easy to use. It may also indicate that bystanders can identify a severely injured patient. Nordberg M , Castrén M , Lindström V . Primary trauma triage performed by bystanders: an observation study. Prehosp Disaster Med. 2016;31(4):353-357.

  20. Radiation-induced bystander effect in non-irradiated glioblastoma spheroid cells.

    PubMed

    Faqihi, Fahime; Neshastehriz, Ali; Soleymanifard, Shokouhozaman; Shabani, Robabeh; Eivazzadeh, Nazila

    2015-09-01

    Radiation-induced bystander effects (RIBEs) are detected in cells that are not irradiated but receive signals from treated cells. The present study explored these bystander effects in a U87MG multicellular tumour spheroid model. A medium transfer technique was employed to induce the bystander effect, and colony formation assay was used to evaluate the effect. Relative changes in expression of BAX, BCL2, JNK and ERK genes were analysed using RT-PCR to investigate the RIBE mechanism. A significant decrease in plating efficiency was observed for both bystander and irradiated cells. The survival fraction was calculated for bystander cells to be 69.48% and for irradiated cells to be 34.68%. There was no change in pro-apoptotic BAX relative expression, but anti-apoptotic BCL2 showed downregulation in both irradiated and bystander cells. Pro-apoptotic JNK in bystander samples and ERK in irradiated samples were upregulated. The clonogenic survival data suggests that there was a classic RIBE in U87MG spheroids exposed to 4 Gy of X-rays, using a medium transfer technique. Changes in the expression of pro- and anti-apoptotic genes indicate involvement of both intrinsic apoptotic and MAPK pathways in inducing these effects.

  1. Role of the MAPK pathway in the observed bystander effect in lymphocytes co-cultured with macrophages irradiated with γ-rays or carbon ions.

    PubMed

    Dong, Chen; He, Mingyuan; Ren, Ruiping; Xie, Yuexia; Yuan, Dexiao; Dang, Bingrong; Li, Wenjian; Shao, Chunlin

    2015-04-15

    The radiation-induced bystander effect (RIBE) has potential implications in cancer risks from space particle radiation; however, the mechanisms underlying RIBE are unclear. The role of the MAPK pathway in the RIBEs of different linear energy transfer (LET) was investigated. Human macrophage U937 cells were irradiated with γ-rays or carbon ions and then co-cultured with nonirradiated HMy2.CIR (HMy) lymphocytes for different periods. The activation of MAPK proteins and the generation of intracellular nitric oxide (NO) and reactive oxygen species (ROS) in the irradiated U937 cells were measured. Micronuclei (MN) formation in the HMy cells was applied to evaluate the bystander damage. Some U937 cells were pretreated with different MAPK inhibitors before irradiation. Additional MN formation was induced in the HMy cells after co-culturing with irradiated U937 cells, and the yield of this bystander MN formation was dependent on the co-culture period with γ-ray irradiation but remained high after 1h of co-culture with carbon irradiation. Further investigations disclosed that the time response of the RIBEs had a relationship with LET, where ERK played a different role from JNK and p38 in regulating RIBEs by regulating the generation of the bystander signaling factors NO and ROS. The finding that the RIBE of high-LET radiation could persist for a much longer period than that of γ-rays implies that particle radiation during space flight could have a high risk of long-term harmful effects. An appropriate intervention targeting the MAPK pathway may have significant implications in reducing this risk. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Neutron exposures in human cells: bystander effect and relative biological effectiveness.

    PubMed

    Seth, Isheeta; Schwartz, Jeffrey L; Stewart, Robert D; Emery, Robert; Joiner, Michael C; Tucker, James D

    2014-01-01

    Bystander effects have been observed repeatedly in mammalian cells following photon and alpha particle irradiation. However, few studies have been performed to investigate bystander effects arising from neutron irradiation. Here we asked whether neutrons also induce a bystander effect in two normal human lymphoblastoid cell lines. These cells were exposed to fast neutrons produced by targeting a near-monoenergetic 50.5 MeV proton beam at a Be target (17 MeV average neutron energy), and irradiated-cell conditioned media (ICCM) was transferred to unirradiated cells. The cytokinesis-block micronucleus assay was used to quantify genetic damage in radiation-naïve cells exposed to ICCM from cultures that received 0 (control), 0.5, 1, 1.5, 2, 3 or 4 Gy neutrons. Cells grown in ICCM from irradiated cells showed no significant increase in the frequencies of micronuclei or nucleoplasmic bridges compared to cells grown in ICCM from sham irradiated cells for either cell line. However, the neutron beam has a photon dose-contamination of 5%, which may modulate a neutron-induced bystander effect. To determine whether these low doses of contaminating photons can induce a bystander effect, cells were irradiated with cobalt-60 at doses equivalent to the percent contamination for each neutron dose. No significant increase in the frequencies of micronuclei or bridges was observed at these doses of photons for either cell line when cultured in ICCM. As expected, high doses of photons induced a clear bystander effect in both cell lines for micronuclei and bridges (p<0.0001). These data indicate that neutrons do not induce a bystander effect in these cells. Finally, neutrons had a relative biological effectiveness of 2.0 ± 0.13 for micronuclei and 5.8 ± 2.9 for bridges compared to cobalt-60. These results may be relevant to radiation therapy with fast neutrons and for regulatory agencies setting standards for neutron radiation protection and safety.

  3. The bystander-effect: a meta-analytic review on bystander intervention in dangerous and non-dangerous emergencies.

    PubMed

    Fischer, Peter; Krueger, Joachim I; Greitemeyer, Tobias; Vogrincic, Claudia; Kastenmüller, Andreas; Frey, Dieter; Heene, Moritz; Wicher, Magdalena; Kainbacher, Martina

    2011-07-01

    Research on bystander intervention has produced a great number of studies showing that the presence of other people in a critical situation reduces the likelihood that an individual will help. As the last systematic review of bystander research was published in 1981 and was not a quantitative meta-analysis in the modern sense, the present meta-analysis updates the knowledge about the bystander effect and its potential moderators. The present work (a) integrates the bystander literature from the 1960s to 2010, (b) provides statistical tests of potential moderators, and (c) presents new theoretical and empirical perspectives on the novel finding of non-negative bystander effects in certain dangerous emergencies as well as situations where bystanders are a source of physical support for the potentially intervening individual. In a fixed effects model, data from over 7,700 participants and 105 independent effect sizes revealed an overall effect size of g = -0.35. The bystander effect was attenuated when situations were perceived as dangerous (compared with non-dangerous), perpetrators were present (compared with non-present), and the costs of intervention were physical (compared with non-physical). This pattern of findings is consistent with the arousal-cost-reward model, which proposes that dangerous emergencies are recognized faster and more clearly as real emergencies, thereby inducing higher levels of arousal and hence more helping. We also identified situations where bystanders provide welcome physical support for the potentially intervening individual and thus reduce the bystander effect, such as when the bystanders were exclusively male, when they were naive rather than passive confederates or only virtually present persons, and when the bystanders were not strangers.

  4. Radiation-induced bystander effect in healthy G(o) human lymphocytes: biological and clinical significance.

    PubMed

    Belloni, Paola; Latini, Paolo; Palitti, Fabrizio

    2011-08-01

    To study the bystander effects, G(0) human peripheral blood lymphocytes were X-irradiated with 0.1, 0.5 and 3 Gy. After 24h, cell-free conditioned media from irradiated cultures were transferred to unexposed lymphocytes. Following 48 h of medium transfer, viability, induction of apoptosis, telomere shortening, reactive oxygen species (ROS) levels and micronuclei (after stimulation) were analyzed. A statistically significant decrement in cell viability, concomitant with the loss of mitochondrial membrane potential, telomere shortening, increases in hydrogen peroxide (H(2)O(2)) and superoxide anion (O(2)(-)) with depletion of intracellular glutathione (GSH) level, and higher frequencies of micronuclei, were observed in bystander lymphocytes incubated with medium from 0.5 and 3 Gy irradiated samples, compared to lymphocytes unexposed. Furthermore, no statistically significant difference between the response to 0.5 and 3 Gy of irradiation in bystander lymphocytes, was found. However, when lymphocytes were irradiated with 0.1 Gy, no bystander effect with regard to viability, apoptosis, telomere length, and micronuclei was observed, although a high production of ROS level persisted. Radiation in the presence of the radical scavenger dimethyl sulfoxide (DMSO) suppressed oxidative stress induced by 3 Gy of X-rays with the effective elimination of bystander effects, suggesting a correlation between ROS and bystander signal formation in irradiated cells. The data propose that bystander effect might be mostly due to the reactions of radiation induced free radicals on DNA, with the existence of a threshold at which the bystander signal is not operative (0.1 Gy dose of X-rays). Our results may have clinical implications for health risk associated with radiation exposure.

  5. In Vivo Bystander Effect: Cranial X-Irradiation Leads to Elevated DNA Damage, Altered Cellular Proliferation and Apoptosis, and Increased p53 Levels in Shielded Spleen

    SciTech Connect

    Koturbash, Igor; Loree, Jonathan; Kutanzi, Kristy; Koganow, Clayton; Pogribny, Igor; Kovalchuk, Olga

    2008-02-01

    Purpose: It is well accepted that irradiated cells may 'forward' genome instability to nonirradiated neighboring cells, giving rise to the 'bystander effect' phenomenon. Although bystander effects were well studied by using cell cultures, data for somatic bystander effects in vivo are relatively scarce. Methods and Materials: We set out to analyze the existence and molecular nature of bystander effects in a radiation target-organ spleen by using a mouse model. The animal's head was exposed to X-rays while the remainder of the body was completely protected by a medical-grade shield. Using immunohistochemistry, we addressed levels of DNA damage, cellular proliferation, apoptosis, and p53 protein in the spleen of control animals and completely exposed and head-exposed/body bystander animals. Results: We found that localized head radiation exposure led to the induction of bystander effects in the lead-shielded distant spleen tissue. Namely, cranial irradiation led to increased levels of DNA damage and p53 expression and also altered levels of cellular proliferation and apoptosis in bystander spleen tissue. The observed bystander changes were not caused by radiation scattering and were observed in two different mouse strains; C57BL/6 and BALB/c. Conclusion: Our study proves that bystander effects occur in the distant somatic organs on localized exposures. Additional studies are required to characterize the nature of an enigmatic bystander signal and analyze the long-term persistence of these effects and possible contribution of radiation-induced bystander effects to secondary radiation carcinogenesis.

  6. Bystander effect in glioma suicide gene therapy using bone marrow stromal cells.

    PubMed

    Li, Shaoyi; Gu, Chunyu; Gao, Yun; Amano, Shinji; Koizumi, Shinichiro; Tokuyama, Tsutomu; Namba, Hiroki

    2012-11-01

    An established rat intracranial glioma was successfully treated through the tumoricidal bystander effect generated by intratumoral injection of rat bone marrow stromal cells (BMSCs) transduced with the herpes simplex virus-thymidine kinase gene (BMSCtk cells) followed by systemic ganciclovir administration. In the present study, we tested the bystander effect of this treatment strategy when using human BMSCs as the vector cells. Human BMSCtk cells were mixed with various kinds of brain tumor cell lines (human and rat glioma cells) and examined in vitro and in vivo tumoricidal bystander effects, by co-culture study and co-implantation study in the nude mouse, respectively. A significant in vitro bystander effect was observed between human BMSCtk cells and any of the tumor cells examined in the ganciclovir-containing medium. A potent in vivo bystander effect against human and rat glioma cells was also demonstrated when ganciclovir was administered. Migratory activity of the human BMSCs toward the tumor cells was enhanced by the conditioned media obtained from both human and rat glioma cells compared to the fresh media. The results of this study have demonstrated that the bystander effect generated by BMSCtk cells and ganciclovir is not cell type-specific, suggesting that the strategy would be quite feasible for clinical use. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Exosomes are released by bystander cells exposed to radiation-induced biophoton signals: Reconciling the mechanisms mediating the bystander effect.

    PubMed

    Le, Michelle; Fernandez-Palomo, Cristian; McNeill, Fiona E; Seymour, Colin B; Rainbow, Andrew J; Mothersill, Carmel E

    2017-01-01

    The objective of our study was to explore a possible molecular mechanism by which ultraviolet (UV) biophotons could elicit bystander responses in reporter cells and resolve the problem of seemingly mutually exclusive mechanisms of a physical UV signal & a soluble factor-mediated bystander signal. The human colon carcinoma cell line, HCT116 p53 +/+, was directly irradiated with 0.5 Gy tritium beta particles to induce ultraviolet biophoton emission. Bystander cells were not directly irradiated but were exposed to the emitted UV biophotons. Medium was subsequently harvested from UV-exposed bystander cells. The exosomes extracted from this medium were incubated with reporter cell populations. These reporter cells were then assayed for clonogenic survival and mitochondrial membrane potential with and without prior treatment of the exosomes with RNase. Clonogenic cell survival was significantly reduced in reporter cells incubated with exosomes extracted from cells exposed to secondarily-emitted UV. These exosomes also induced significant mitochondrial membrane depolarization in receiving reporter cells. Conversely, exosomes extracted from non-UV-exposed cells did not produce bystander effects in reporter cells. The treatment of exosomes with RNase prior to their incubation with reporter cells effectively abolished bystander effects in reporter cells and this suggests a role for RNA in mediating the bystander response elicited by UV biophotons and their produced exosomes. This study supports a role for exosomes released from UV biophoton-exposed bystander cells in eliciting bystander responses and also indicates a reconciliation between the UV-mediated bystander effect and the bystander effect which has been suggested in the literature to be mediated by soluble factors.

  8. Exosomes are released by bystander cells exposed to radiation-induced biophoton signals: Reconciling the mechanisms mediating the bystander effect

    PubMed Central

    Fernandez-Palomo, Cristian; McNeill, Fiona E.; Seymour, Colin B.; Rainbow, Andrew J.; Mothersill, Carmel E.

    2017-01-01

    Objective The objective of our study was to explore a possible molecular mechanism by which ultraviolet (UV) biophotons could elicit bystander responses in reporter cells and resolve the problem of seemingly mutually exclusive mechanisms of a physical UV signal & a soluble factor-mediated bystander signal. Methods The human colon carcinoma cell line, HCT116 p53 +/+, was directly irradiated with 0.5 Gy tritium beta particles to induce ultraviolet biophoton emission. Bystander cells were not directly irradiated but were exposed to the emitted UV biophotons. Medium was subsequently harvested from UV-exposed bystander cells. The exosomes extracted from this medium were incubated with reporter cell populations. These reporter cells were then assayed for clonogenic survival and mitochondrial membrane potential with and without prior treatment of the exosomes with RNase. Results Clonogenic cell survival was significantly reduced in reporter cells incubated with exosomes extracted from cells exposed to secondarily-emitted UV. These exosomes also induced significant mitochondrial membrane depolarization in receiving reporter cells. Conversely, exosomes extracted from non-UV-exposed cells did not produce bystander effects in reporter cells. The treatment of exosomes with RNase prior to their incubation with reporter cells effectively abolished bystander effects in reporter cells and this suggests a role for RNA in mediating the bystander response elicited by UV biophotons and their produced exosomes. Conclusion This study supports a role for exosomes released from UV biophoton-exposed bystander cells in eliciting bystander responses and also indicates a reconciliation between the UV-mediated bystander effect and the bystander effect which has been suggested in the literature to be mediated by soluble factors. PMID:28278290

  9. Quantitative characterization of in vitro bystander effect of antibody-drug conjugates.

    PubMed

    Singh, Aman P; Sharma, Sharad; Shah, Dhaval K

    2016-12-01

    Antibody-drug conjugates (ADCs) are designed to target antigen expressing (Ag+) cells in a tumor. Once processed by the Ag+ cells, ADCs can release cytotoxic drug molecules that can diffuse out of Ag+ cells into the neighboring antigen-negative (Ag-) cells to induce their cytotoxicity. This additional efficacy of ADCs on Ag- cells in the presence of Ag+ cells is known as the 'bystander effect'. Although the importance of this phenomena is widely acknowledged for effective killing of a heterogeneous tumor, the rate and extent of the bystander killing in a heterogeneous system is not quantitatively understood yet. Thus, the objectives of this manuscript were to: (1) synthesize and characterize a tool ADC Trastuzumab-vc-MMAE that is capable of exhibiting bystander effect, (2) quantify the time course of the bystander effect for the tool ADC using in vitro co-culture systems created using mixture of various HER2-expressing cell lines, and (3) develop a pharmacodynamic (PD) model that is capable of characterizing the bystander effect of ADCs. Co-culture studies conducted using GFP labelled MCF7 cells as Ag- cells and N87, BT474, and SKBR3 as Ag+ cells revealed that the bystander effect of ADC increases with increasing fraction of Ag+ cells in a co-culture system, and with increased expression level of target on Ag+ cells. A notable lag time after ADC incubation was also observed prior to significant bystander killing of Ag- cells. Based on our results we hypothesize that there may be other determinants apart from the antigen expression level that can also influence the ability of Ag+ cells to demonstrate the bystander effect in a co-culture system. The co-culture analysis also suggested that the bystander effect of the ADC can dissipate over the period of time as the population of Ag+ cells declines. A novel PD model was developed to mathematically characterize the bystander effect of ADCs by combining two different cell distribution models to represent the

  10. Radiation exposure from depleted uranium: The radiation bystander effect.

    PubMed

    Miller, Alexandra C; Rivas, Rafael; Tesoro, Leonard; Kovalenko, Gregor; Kovaric, Nikola; Pavlovic, Peter; Brenner, David

    2017-09-15

    Depleted uranium (DU) is a radioactive heavy metal used primarily in military applications. Published data from our laboratory have demonstrated that DU exposure in vitro to immortalized human osteoblast cells (HOS) is both neoplastically transforming and genotoxic. In vivo studies have also demonstrated that DU is leukemogenic and genotoxic. DU possesses both a radiological (alpha particle) and chemical (metal) component but is generally considered a chemical biohazard. Studies have shown that alpha particle radiation does play a role in DU's toxic effects. Evidence has accumulated that non-irradiated cells in the vicinity of irradiated cells can have a response to ionization events. The purpose of this study was to determine if these "bystander effects" play a role in DU's toxic and neoplastic effects using HOS cells. We investigated the bystander responses between DU-exposed cells and non-exposed cells by co-culturing the two equal populations. Decreased cell survival and increased neoplastic transformation were observed in the non-DU exposed cells following 4 or 24h co-culture. In contrast Ni (II)- or Cr(VI)- exposed cells were unable to alter those biological effects in non-Ni(II) or non-Cr(VI) exposed co-cultured cells. Transfer experiments using medium from the DU-exposed and non-exposed co-cultured cells was able to cause adverse biological responses in cells; these results demonstrated that a factor (s) is secreted into the co-culture medium which is involved in this DU-associated bystander effect. This novel effect of DU exposure could have implications for radiation risk and for health risk assessment associated with DU exposure. Copyright © 2017. Published by Elsevier Inc.

  11. The bystander effect is a novel mechanism of UVA-induced melanogenesis.

    PubMed

    Nishiura, Hideki; Kumagai, Jun; Kashino, Genro; Okada, Takuya; Tano, Keizo; Watanabe, Masami

    2012-01-01

    We successfully identified the bystander effect in B16 murine melanoma cells exposed to UVA irradiation. The effect was identified based on melanogenesis following the medium transfer of the B16 cells, which had been cultured for 24 h after being exposed to UVA irradiation, to nonirradiated cells (bystander cells). Our confirmation study of the functional mechanism of bystander cells confirmed the reduced levels of mitochondrial membrane potential 1-4 h after the medium transfer. In addition, we observed increased levels of intracellular oxidation after 9-12 h, and the generation of melanin radicals, including long-lived radicals, 24 h after medium transfer. Further analysis of bystander factors revealed that the administration of EGTA treatment at the time of medium transfer led to an inhibition of melanogenesis and to neutralization of the mitochondrial membrane potential level, as well as to the restoration of intracellular oxidation levels to those of controls. The results demonstrated that the UVA irradiation bystander effect in B16 cells, as indicated by melanogenesis, was induced by the increase in intracellular oxidation due to the mitochondrial activity of calcium ions, which were among the bystander factors involved in the increase. © 2011 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2011 The American Society of Photobiology.

  12. Caffeine Markedly Enhanced Radiation-Induced Bystander Effects

    NASA Astrophysics Data System (ADS)

    Jiang, Erkang; Wu, Lijun

    2009-04-01

    In this paper it is shown that incubation with 2 mM caffeine enhanced significantly the MN (micronucleus) formation in both the 1 cGy α-particle irradiated and non-irradiated bystander regions. Moreover, caffeine treatment made the non-irradiated bystander cells more sensitive to damage signals. Treated by c-PTIO(2-(4-carboxy-phenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide), a nitric oxide (NO) scavenger, the MN frequencies were effectively inhibited, showing that nitric oxide might be very important in mediating the enhanced damage. These results indicated that caffeine enhanced the low dose α-particle radiation-induced damage in irradiated and non-irradiated bystander regions, and therefore it is important to investigate the relationship between the radiosensitizer and radiation-induced bystander effects (RIBE).

  13. Vincristine-induced bystander effect in human lymphocytes.

    PubMed

    Testi, Serena; Azzarà, Alessia; Giovannini, Caterina; Lombardi, Sara; Piaggi, Simona; Facioni, Maria Sole; Scarpato, Roberto

    2016-07-01

    Bystander effect is a known radiobiological effect, widely described using ionizing radiations and which, more recently, has also been related to chemical mutagens. In this study, we aimed to assess whether or not a bystander response can be induced in cultured human peripheral lymphocytes by vincristine, a chemotherapeutic mutagen acting as spindle poison, and by mitomycin-C, an alkylating agent already known to induce this response in human lymphoblastoid cells. Designing a modified ad hoc protocol for the cytokinesis blocked micronucleus (MN) assay, we detected the presence of a dose-dependent bystander response in untreated cultures receiving the conditioned medium (CM) from mitomycin-C (MMC) or vincristine (VCR) treated cultures. In the case of MMC, MN frequencies, expressed as micronucleated binucleates, were: 13.5±1.41 at 6μM, 22±2.12 at 12μM or 28.25±5.13 at 15μM vs. a control value of 4.75±1.59. MN levels for VCR, expressed as micronucleated mononucleates were: 2.75±0.88 at 0.0μM, 27.25±2.30 at 0.4μM, 46.25±1.94 at 0.8μM, 98.25±7.25 at 1.6μM. To verify that no mutagen residual was transferred to recipient cultures together with the CM, we evaluated MN levels in cultures receiving the medium immediately after three washings following the chemical treatment (unconditioned medium). We further confirmed these results using a cell-mixing approach where untreated lymphocytes were co-cultured with donor cells treated with an effect-inducing dose of MMC or VCR. A distinct production pattern of both reactive oxygen species and soluble mediator proteins by treated cells may account for the differences observed in the manifestation of the bystander effect induced by VCR. In fact, we observed an increased level of ROS, IL-32 and TGF-β in the CM from VCR treated cultures, not present in MMC treated cultures.

  14. Heavy-ion radiation induced bystander effect in mice

    NASA Astrophysics Data System (ADS)

    Liang, Shujian; Sun, Yeqing; Zhang, Meng; Wang, Wei; Cui, Changna

    2012-07-01

    Radiation-induced bystander effect is defined as the induction of damage in neighboring non-hit cells by signals released from directly-irradiated cells. Recently, Low dose of high LET radiation induced bystander effects in vivo have been reported more and more. It has been indicated that radiation induced bystander effect was localized not only in bystander tissues but also in distant organs. Genomic, epigenetic, metabolomics and proteomics play significant roles in regulating heavy-ion radiation stress responses in mice. To identify the molecular mechanism that underlies bystander effects of heavy-ion radiation, the male mice head were exposed to 2000mGy dose of 12C heavy-ion radiation and the distant organ liver was detected on 1h, 6h, 12h and 24h after radiation, respectively. MSAP was used to monitor the level of polymorphic DNA methylation changes. The results show that heavy-ion irradiate mouse head can induce liver DNA methylation changes significantly. The percent of DNA methylation changes are time-dependent and highest at 6h after radiation. We also prove that the hypo-methylation changes on 1h and 6h after irradiation. But the expression level of DNA methyltransferase DNMT3a is not changed. UPLC/Synapt HDMS G2 was employed to detect the proteomics of bystander liver 1h after irradiation. 64 proteins are found significantly different between treatment and control group. GO process show that six of 64 which were unique in irradiation group are associated with apoptosis and DNA damage response. The results suggest that mice head exposed to heavy-ion radiation can induce damage and methylation pattern changed in distant organ liver. Moreover, our findings are important to understand the molecular mechanism of radiation induced bystander effects in vivo.

  15. An extracellular DNA mediated bystander effect produced from low dose irradiated endothelial cells.

    PubMed

    Ermakov, Aleksei V; Konkova, Marina S; Kostyuk, Svetlana V; Smirnova, Tatiana D; Malinovskaya, Elena M; Efremova, Liudmila V; Veiko, Natalya N

    2011-07-01

    The human umbilical vein endothelial cells culture was exposed to X-ray radiation in a low dose of 10cGy. The fragments of extracellular genomic DNA (ecDNA(R)) were isolated from the culture medium after the short-term incubation. A culture medium of unirradiated endothelial cells was then supplemented with ecDNA(R), followed by analysing the cells along the series of parameters (bystander effect). The exposed cells and bystander endotheliocytes showed similar response to low doses: approximation of the 1q12 loci of chromosome 1 and their transposition into the cellular nucleus, change in shape of the endotheliocytic nucleus, activation of the nucleolus organizing regions (NORs), actin polymerization, and an elevated level of DNA double-stranded breaks. Following blockade of TLR9 receptors with oligonucleotide-inhibitor or chloroquine in the bystander cells these effects - except of activation of NORs - on exposure to ecDNA(R) disappeared, with no bystander response thus observed. The presence of the radiation-induced apoptosis in the bystander effect being studied suggests a possibility for radiation-modified ecDNA fragments (i.e., stress signaling factors) to be released into the culture medium, whereas inhibition of TLR9 suggests the binding these ligands to the recipient cells. A similar DNA-signaling pathway in the bystander effect we previously described for human lymphocytes. Integrity of data makes it possible to suppose that a similar signaling mechanism which we demonstrated for lymphocytes (humoral system) might also be mediated in a monolayer culture of cells (cellular tissue) after the development of the bystander effect in them and transfer of stress signaling factors (ecDNA(R)) through the culture medium. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Low doses of gamma-irradiation induce an early bystander effect in zebrafish cells which is sufficient to radioprotect cells.

    PubMed

    Pereira, Sandrine; Malard, Véronique; Ravanat, Jean-Luc; Davin, Anne-Hélène; Armengaud, Jean; Foray, Nicolas; Adam-Guillermin, Christelle

    2014-01-01

    The term "bystander effect" is used to describe an effect in which cells that have not been exposed to radiation are affected by irradiated cells though various intracellular signaling mechanisms. In this study we analyzed the kinetics and mechanisms of bystander effect and radioadaptation in embryonic zebrafish cells (ZF4) exposed to chronic low dose of gamma rays. ZF4 cells were irradiated for 4 hours with total doses of gamma irradiation ranging from 0.01-0.1 Gy. In two experimental conditions, the transfer of irradiated cells or culture medium from irradiated cells results in the occurrence of DNA double strand breaks in non-irradiated cells (assessed by the number of γ-H2AX foci) that are repaired at 24 hours post-irradiation whatever the dose. At low total irradiation doses the bystander effect observed does not affect DNA repair mechanisms in targeted and bystander cells. An increase in global methylation of ZF4 cells was observed in irradiated cells and bystander cells compared to control cells. We observed that pre-irradiated cells which are then irradiated for a second time with the same doses contained significantly less γ-H2AX foci than in 24 h gamma-irradiated control cells. We also showed that bystander cells that have been in contact with the pre-irradiated cells and then irradiated alone present less γ-H2AX foci compared to the control cells. This radioadaptation effect is significantly more pronounced at the highest doses. To determine the factors involved in the early events of the bystander effect, we performed an extensive comparative proteomic study of the ZF4 secretomes upon irradiation. In the experimental conditions assayed here, we showed that the early events of bystander effect are probably not due to the secretion of specific proteins neither the oxidation of these secreted proteins. These results suggest that early bystander effect may be due probably to a combination of multiple factors.

  17. Bystander Effects During Synchrotron Imaging Procedures?

    SciTech Connect

    Schueltke, Elisabeth; Nikkhah, Guido; Bewer, Brian; Wysokinski, Tomasz; Chapman, Dean

    2010-07-23

    Using monochromatic beam and synchrotron phase-contrast technique at the biomedical beamline of the Italian synchrotron facility Elettra (SYRMEP), we have shown in a small animal model of malignant brain tumor that it is possible to obtain high-resolution images of very small tumors when they have developed from implanted tumor cells loaded with colloidal gold nanoparticles (GNP). All previous experiments were conducted in post-mortem samples. We have now designed a cell culture experiment to investigate the effects of synchrotron radiation with an energy and dose profile similar to that expected in our first in vivo imaging studies according to the protocol developed at SYRMEP.Materials and Methods: Culture flasks containing either gold-loaded or naieve C6 glioma cells were exposed to a dose of 0.5 Gy at 24 keV. The irradiated medium was aspirated and replaced with fresh growth medium. Twenty-four hours later this non-irradiated medium exposed to irradiated cells was aspirated, then added to non-irradiated C6 cells in order to investigate whether bystander effects are seen under the conditions of our image acquisition protocol. The irradiated medium was added to a number of other non-irradiated cell cultures. Cell counts were followed until 72 hrs after irradiation. Western blots were conducted with H2AX antibodies. This experiment was one of the first biomedical experiments conducted at BMIT, the new biomedical imaging and therapy beamline of the Canadian Light Source.Results: No significant differences in proliferation were seen between cells that were directly irradiated, exposed to irradiated medium or exposed to the non-irradiated 24-hr-medium from the irradiated cells. However, there was a tendency towards a higher number of double strand breaks in previously irradiated cells when they were exposed to non-irradiated medium that had been in contact with irradiated cells for 24 hrs.

  18. Bystander Effects During Synchrotron Imaging Procedures?

    NASA Astrophysics Data System (ADS)

    Schültke, Elisabeth; Bewer, Brian; Wysokinski, Tomasz; Chapman, Dean; Nikkhah, Guido

    2010-07-01

    Using monochromatic beam and synchrotron phase-contrast technique at the biomedical beamline of the Italian synchrotron facility Elettra (SYRMEP), we have shown in a small animal model of malignant brain tumor that it is possible to obtain high-resolution images of very small tumors when they have developed from implanted tumor cells loaded with colloidal gold nanoparticles (GNP). All previous experiments were conducted in post-mortem samples. We have now designed a cell culture experiment to investigate the effects of synchrotron radiation with an energy and dose profile similar to that expected in our first in vivo imaging studies according to the protocol developed at SYRMEP. Materials and Methods: Culture flasks containing either gold-loaded or naïve C6 glioma cells were exposed to a dose of 0.5 Gy at 24 keV. The irradiated medium was aspirated and replaced with fresh growth medium. Twenty-four hours later this non-irradiated medium exposed to irradiated cells was aspirated, then added to non-irradiated C6 cells in order to investigate whether bystander effects are seen under the conditions of our image acquisition protocol. The irradiated medium was added to a number of other non-irradiated cell cultures. Cell counts were followed until 72 hrs after irradiation. Western blots were conducted with H2AX antibodies. This experiment was one of the first biomedical experiments conducted at BMIT, the new biomedical imaging and therapy beamline of the Canadian Light Source. Results: No significant differences in proliferation were seen between cells that were directly irradiated, exposed to irradiated medium or exposed to the non-irradiated 24-hr-medium from the irradiated cells. However, there was a tendency towards a higher number of double strand breaks in previously irradiated cells when they were exposed to non-irradiated medium that had been in contact with irradiated cells for 24 hrs.

  19. Recursive mentalizing and common knowledge in the bystander effect.

    PubMed

    Thomas, Kyle A; De Freitas, Julian; DeScioli, Peter; Pinker, Steven

    2016-05-01

    The more potential helpers there are, the less likely any individual is to help. A traditional explanation for this bystander effect is that responsibility diffuses across the multiple bystanders, diluting the responsibility of each. We investigate an alternative, which combines the volunteer's dilemma (each bystander is best off if another responds) with recursive theory of mind (each infers what the others know about what he knows) to predict that actors will strategically shirk when they think others feel compelled to help. In 3 experiments, participants responded to a (fictional) person who needed help from at least 1 volunteer. Participants were in groups of 2 or 5 and had varying information about whether other group members knew that help was needed. As predicted, people's decision to help zigzagged with the depth of their asymmetric, recursive knowledge (e.g., "John knows that Michael knows that John knows help is needed"), and replicated the classic bystander effect when they had common knowledge (everyone knowing what everyone knows). The results demonstrate that the bystander effect may result not from a mere diffusion of responsibility but specifically from actors' strategic computations. (c) 2016 APA, all rights reserved).

  20. The Mechanisms of Radiation-Induced Bystander Effect

    PubMed Central

    Najafi, M; Fardid, R; Hadadi, Gh; Fardid, M

    2014-01-01

    The radiation-induced bystander effect is the phenomenon which non-irradiated cells exhibit effects along with their different levels as a result of signals received from nearby irradiated cells. Responses of non-irradiated cells may include changes in process of translation, gene expression, cell proliferation, apoptosis and cells death. These changes are confirmed by results of some In-Vivo studies. Most well-known important factors affecting radiation-induced bystander effect include free radicals, immune system factors, expression changes of some genes involved in inflammation pathway and epigenetic factors. PMID:25599062

  1. Radionuclides in radiation-induced bystander effect; may it share in radionuclide therapy?

    PubMed

    Widel, M

    2017-01-01

    For many years in radiobiology and radiotherapy predominated the conviction that cellular DNA is the main target for ionizing radiation, however, the view has changed in the past 20 years. Nowadays, it is assumed that not only directed (targeted) radiation effect, but also an indirect (non-targeted) effect may contribute to the result of radiation treatment. Non-targeted effect is relatively well recognized after external beam irradiation in vitro and in vivo, and comprises such phenomena like radiation-induced bystander effect (RIBE), genomic instability, adaptive response and abscopal (out of field) effect. These stress-induced and molecular signaling mediated phenomena appear in non-targeted cells as variety responses resembling that observed in directly hit cells. Bystander effects can be both detrimental and beneficial in dependence on dose, dose-rate, cell type, genetic status and experimental condition. Less is known about radionuclide-induced non-targeted effects in radionuclide therapy, although, based on characteristics of the radionuclide radiation, on experiments in vitro utilizing classical and 3-D cell cultures, and preclinical study on animals it seems obvious that exposure to radionuclide is accompanied by various bystander effects, mostly damaging, less often protective. This review summarizes existing data on radionuclide induced bystander effects comprising radionuclides emitting beta- and alpha-particles and Auger electrons used in tumor radiotherapy and diagnostics. So far, separation of the direct effect of radionuclide decay from crossfire and bystander effects in clinical targeted radionuclide therapy is impossible because of the lack of methods to assess whether, and to what extent bystander effect is involved in human organism. Considerations on this topic are also included.

  2. Neutron Exposures in Human Cells: Bystander Effect and Relative Biological Effectiveness

    PubMed Central

    Seth, Isheeta; Schwartz, Jeffrey L.; Stewart, Robert D.; Emery, Robert; Joiner, Michael C.; Tucker, James D.

    2014-01-01

    Bystander effects have been observed repeatedly in mammalian cells following photon and alpha particle irradiation. However, few studies have been performed to investigate bystander effects arising from neutron irradiation. Here we asked whether neutrons also induce a bystander effect in two normal human lymphoblastoid cell lines. These cells were exposed to fast neutrons produced by targeting a near-monoenergetic 50.5 MeV proton beam at a Be target (17 MeV average neutron energy), and irradiated-cell conditioned media (ICCM) was transferred to unirradiated cells. The cytokinesis-block micronucleus assay was used to quantify genetic damage in radiation-naïve cells exposed to ICCM from cultures that received 0 (control), 0.5, 1, 1.5, 2, 3 or 4 Gy neutrons. Cells grown in ICCM from irradiated cells showed no significant increase in the frequencies of micronuclei or nucleoplasmic bridges compared to cells grown in ICCM from sham irradiated cells for either cell line. However, the neutron beam has a photon dose-contamination of 5%, which may modulate a neutron-induced bystander effect. To determine whether these low doses of contaminating photons can induce a bystander effect, cells were irradiated with cobalt-60 at doses equivalent to the percent contamination for each neutron dose. No significant increase in the frequencies of micronuclei or bridges was observed at these doses of photons for either cell line when cultured in ICCM. As expected, high doses of photons induced a clear bystander effect in both cell lines for micronuclei and bridges (p<0.0001). These data indicate that neutrons do not induce a bystander effect in these cells. Finally, neutrons had a relative biological effectiveness of 2.0±0.13 for micronuclei and 5.8±2.9 for bridges compared to cobalt-60. These results may be relevant to radiation therapy with fast neutrons and for regulatory agencies setting standards for neutron radiation protection and safety. PMID:24896095

  3. SR-FTIR Coupled with Principal Component Analysis Shows Evidence for the Cellular Bystander Effect.

    PubMed

    Lipiec, E; Bambery, K R; Lekki, J; Tobin, M J; Vogel, C; Whelan, D R; Wood, B R; Kwiatek, W M

    2015-07-01

    Synchrotron radiation-Fourier transform infrared (SR-FTIR) microscopy coupled with multivariate data analysis was used as an independent modality to monitor the cellular bystander effect. Single, living prostate cancer PC-3 cells were irradiated with various numbers of protons, ranging from 50-2,000, with an energy of either 1 or 2 MeV using a proton microprobe. SR-FTIR spectra of cells, fixed after exposure to protons and nonirradiated neighboring cells (bystander cells), were recorded. Spectral differences were observed in both the directly targeted and bystander cells and included changes in the DNA backbone and nucleic bases, along with changes in the protein secondary structure. Principal component analysis (PCA) was used to investigate the variance in the entire data set. The percentage of bystander cells relative to the applied number of protons with two different energies was calculated. Of all the applied quantities, the dose of 400 protons at 2 MeV was found to be the most effective for causing significant macromolecular perturbation in bystander PC-3 cells.

  4. TGF beta secreted by B16 melanoma antagonizes cancer gene immunotherapy bystander effect.

    PubMed

    Penafuerte, Claudia; Galipeau, Jacques

    2008-08-01

    Tumor-targeted delivery of immune stimulatory genes, such as pro-inflammatory cytokines and suicide genes, has shown to cure mouse models of cancer. Total tumor eradication was also found to occur despite subtotal tumor engineering; a phenomenon coined the "bystander effect". The bystander effect in immune competent animals arises mostly from recruitment of a cancer lytic cell-mediated immune response to local and distant tumor cells which escaped gene modification. We have previously described a Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF) and Interleukin 2 (IL2) fusokine (aka GIFT2) which serves as a potent anticancer cytokine and it here served as a means to understand the mechanistic underpinnings to the immune bystander effect in an immune competent model of B16 melanoma. As expected, we observed that GIFT2 secreted by genetically engineered B16 tumor cells induces a bystander effect on non modified B16 cells, when admixed in a 1:1 ratio. However, despite keeping the 1:1 ratio constant, the immune bystander effect was completely lost as the total B16 cell number was increased from 10(4) to 10(6) which correlated with a sharp reduction in the number of tumor-infiltrating NK cells. We found that B16 secrete biologically active TGFbeta which in turn inhibited GIFT2 dependent immune cell proliferation in vitro and downregulated IL-2R beta expression and IFN gamma secretion by NK cells. In vivo blockade of B16 originating TGFbeta significantly improved the immune bystander effect arising from GIFT2. We propose that cancer gene immunotherapy of pre-established tumors will be enhanced by blockade of tumor-derived TGFbeta.

  5. A Simulation Study of the Radiation-Induced Bystander Effect: Modeling with Stochastically Defined Signal Reemission

    PubMed Central

    Sasaki, Kohei; Wakui, Kosuke; Tsutsumi, Kaori; Itoh, Akio; Date, Hiroyuki

    2012-01-01

    The radiation-induced bystander effect (RIBE) has been experimentally observed for different types of radiation, cell types, and cell culture conditions. However, the behavior of signal transmission between unirradiated and irradiated cells is not well known. In this study, we have developed a new model for RIBE based on the diffusion of soluble factors in cell cultures using a Monte Carlo technique. The model involves the signal emission probability from bystander cells following Poisson statistics. Simulations with this model show that the spatial configuration of the bystander cells agrees well with that of corresponding experiments, where the optimal emission probability is estimated through a large number of simulation runs. It was suggested that the most likely probability falls within 0.63–0.92 for mean number of the emission signals ranging from 1.0 to 2.5. PMID:23197991

  6. The different radiation response and radiation-induced bystander effects in colorectal carcinoma cells differing in p53 status.

    PubMed

    Widel, Maria; Lalik, Anna; Krzywon, Aleksandra; Poleszczuk, Jan; Fujarewicz, Krzysztof; Rzeszowska-Wolny, Joanna

    2015-08-01

    Radiation-induced bystander effect, appearing as different biological changes in cells that are not directly exposed to ionizing radiation but are under the influence of molecular signals secreted by irradiated neighbors, have recently attracted considerable interest due to their possible implication for radiotherapy. However, various cells present diverse radiosensitivity and bystander responses that depend, inter alia, on genetic status including TP53, the gene controlling the cell cycle, DNA repair and apoptosis. Here we compared the ionizing radiation and bystander responses of human colorectal carcinoma HCT116 cells with wild type or knockout TP53 using a transwell co-culture system. The viability of exposed to X-rays (0-8 Gy) and bystander cells of both lines showed a roughly comparable decline with increasing dose. The frequency of micronuclei was also comparable at lower doses but at higher increased considerably, especially in bystander TP53-/- cells. Moreover, the TP53-/- cells showed a significantly elevated frequency of apoptosis, while TP53+/+ counterparts expressed high level of senescence. The cross-matched experiments where irradiated cells of one line were co-cultured with non-irradiated cells of opposite line show that both cell lines were also able to induce bystander effects in their counterparts, however different endpoints revealed with different strength. Potential mediators of bystander effects, IL-6 and IL-8, were also generated differently in both lines. The knockout cells secreted IL-6 at lower doses whereas wild type cells only at higher doses. Secretion of IL-8 by TP53-/- control cells was many times lower than that by TP53+/+ but increased significantly after irradiation. Transcription of the NFκBIA was induced in irradiated TP53+/+ mainly, but in bystanders a higher level was observed in TP53-/- cells, suggesting that TP53 is required for induction of NFκB pathway after irradiation but another mechanism of activation must operate in

  7. Microvesicles Contribute to the Bystander Effect of DNA Damage.

    PubMed

    Lin, Xiaozeng; Wei, Fengxiang; Major, Pierre; Al-Nedawi, Khalid; Al Saleh, Hassan A; Tang, Damu

    2017-04-07

    Genotoxic treatments elicit DNA damage response (DDR) not only in cells that are directly exposed but also in cells that are not in the field of treatment (bystander cells), a phenomenon that is commonly referred to as the bystander effect (BE). However, mechanisms underlying the BE remain elusive. We report here that etoposide and ultraviolet (UV) exposure stimulate the production of microvesicles (MVs) in DU145 prostate cancer cells. MVs isolated from UV-treated DU145 and A431 epidermoid carcinoma cells as well as etoposide-treated DU145 cells induced phosphorylation of ataxia-telangiectasia mutated (ATM) at serine 1981 (indicative of ATM activation) and phosphorylation of histone H2AX at serine 139 (γH2AX) in naïve DU145 cells. Importantly, neutralization of MVs derived from UV-treated cells with annexin V significantly reduced the MV-associated BE activities. Etoposide and UV are known to induce DDR primarily through the ATM and ATM- and Rad3-related (ATR) pathways, respectively. In this regard, MV is likely a common source for the DNA damage-induced bystander effect. However, pre-treatment of DU145 naïve cells with an ATM (KU55933) inhibitor does not affect the BE elicited by MVs isolated from etoposide-treated cells, indicating that the BE is induced upstream of ATM actions. Taken together, we provide evidence supporting that MVs are a source of the DNA damage-induced bystander effect.

  8. Compartmental stress responses correlate with cell survival in bystander effects induced by the DNA damage agent, bleomycin.

    PubMed

    Savu, Diana; Petcu, Ileana; Temelie, Mihaela; Mustaciosu, Cosmin; Moisoi, Nicoleta

    2015-01-01

    Physical or chemical stress applied to a cell system trigger a signal cascade that is transmitted to the neighboring cell population in a process known as bystander effect. Despite its wide occurrence in biological systems this phenomenon is mainly documented in cancer treatments. Thus understanding whether the bystander effect acts as an adaptive priming element for the neighboring cells or a sensitization factor is critical in designing treatment strategies. Here we characterize the bystander effects induced by bleomycin, a DNA-damaging agent, and compartmental stress responses associated with this phenomenon. Mouse fibroblasts were treated with increasing concentrations of bleomycin and assessed for DNA damage, cell death and induction of compartmental stress response (endoplasmic reticulum, mitochondrial and cytoplasmic stress). Preconditioned media were used to analyze bystander damage using the same end-points. Bleomycin induced bystander response was reflected primarily in increased DNA damage. This was dependent on the concentration of bleomycin and time of media conditioning. Interestingly, we found that ROS but not NO are involved in the transmission of the bystander effect. Consistent transcriptional down-regulation of the stress response factors tested (i.e. BiP, mtHsp60, Hsp70) occurred in the direct effect indicating that bleomycin might induce an arrest of transcription correlated with decreased survival. We observed the opposite trend in the bystander effect, with specific stress markers appearing increased and correlated with increased survival. These data shed new light on the potential role of stress pathways activation in bystander effects and their putative impact on the pro-survival pro-death balance.

  9. Inhibition of GSH synthesis potentiates temozolomide-induced bystander effect in glioblastoma.

    PubMed

    Kohsaka, Shinji; Takahashi, Kenta; Wang, Lei; Tanino, Mishie; Kimura, Taichi; Nishihara, Hiroshi; Tanaka, Shinya

    2013-04-30

    Glioblastoma multiforme (GBM) is one of the most aggressive human tumors with poor prognosis. Current standard treatment includes chemotherapy using DNA alkylating agent temozolomide (TMZ) concomitant with surgical resection and/or irradiation. However, GBM patients exhibit various levels of the elevated expression of DNA repair enzyme, due to MGMT causing resistance to TMZ. Determination of the MGMT-positive population of primary tumor is important to evaluate the therapeutic efficacy of TMZ. Here we generated TMZ-resistant GBM cells by introducing MGMT into TMZ-sensitive GBM cell line KMG4, and established a model to assess the TMZ-induced bystander effect on TMZ-resistant cells. By mixing TMZ-resistant and -sensitive cells, GBM tumors with MGMT positivity as 50%, 10%, and 1% were generated in vivo. We could not observe any bystander effect of TMZ-induced cell death in tumor with 50% MGMT positivity. Although the bystander effect was observed within 20 days in the case of tumor with 1% MGMT positivity, final tumor size at day 28 was the same as control without sensitive cells. This bystander effect was observed in vitro using conditioned medium of TMZ-damaged GBM cells, and PCR array analysis indicated that the conditioned medium stimulated stress and toxicity pathway and upregulated anti-oxidants genes expression such as catalase and SOD2 in TMZ-resistant cells. In addition, the reduction of the activity of anti-stress mechanism by using inhibitor of GSH synthesis potentiated TMZ-induced bystander effect. These results suggest that GSH inhibitor might be one of the candidates for combination therapy with TMZ for TMZ-resistant GBM patients. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. Bystander effect induced by UVC radiation in Chinese hamster V79 cells.

    PubMed

    Wu, Shengwen; Jin, Cuihong; Lu, Xiaobo; Yang, Jinghua; Liu, Qiufang; Qi, Ming; Lu, Shuai; Zhang, Lifeng; Cai, Yuan

    2014-01-01

    In past decades, researches on radiation-induced bystander effect mainly focused on ionizing radiation such as α-particle, β-particle, X-ray and γ-ray. But few researches have been conducted on the ability of ultraviolet (UV) radiation-induced bystander effect, and knowledge of UVC-induced bystander effect is far limited. Here, we adopted medium transfer experiment to detect whether UVC could cause bystander effect in Chinese hamster V79 cells. We determined the cell viability, apoptosis rate, chromosome aberration and ultrastructure changes, respectively. Our results showed that: (1) the viability of UVC-irradiated V79 cells declined significantly with the dosage of UVC; (2) similar to the irradiated cells, the main death type of bystander cells cultured in irradiation conditioned medium (ICMs) was also apoptosis; (3) soluble factors secreted by UVC-irradiated cells could induce bystander effect in V79 cells; (4) cells treated with 4 h ICM collected from 90 mJ cm(-2) UVC-irradiated cells displayed the strongest response. Our data revealed that UVC could cause bystander effect through the medium soluble factors excreted from irradiated cells and this bystander effect was a novel quantitative and kinetic response. These findings might provide a foundation to further explore the exact soluble bystander factors and detailed mechanism underlying UVC-induced bystander effect. © 2014 The American Society of Photobiology.

  11. Collective helping and bystander effects in coevolving helping networks

    NASA Astrophysics Data System (ADS)

    Jo, Hang-Hyun; Lee, Hyun Keun; Park, Hyunggyu

    2010-06-01

    We study collective helping behavior and bystander effects in a coevolving helping network model. A node and a link of the network represents an agent who renders or receives help and a friendly relation between agents, respectively. A helping trial of an agent depends on relations with other involved agents and its result (success or failure) updates the relation between the helper and the recipient. We study the network link dynamics and its steady states analytically and numerically. The full phase diagram is presented with various kinds of active and inactive phases and the nature of phase transitions are explored. We find various interesting bystander effects, consistent with the field study results, of which the underlying mechanism is proposed.

  12. Studies of Bystander Effects in 3-D Tissue Systems Using a Low-LET Microbeam

    SciTech Connect

    Brenner, David J.

    2009-07-17

    It is now accepted that biological effects may occur in cells that were not themselves traversed by ionizing radiation but are close to those that were. Little is known about the mechanism underlying such a bystander effect, although cell-to-cell communication is thought to be important. Previous work demonstrated a significant bystander effect for clonogenic survival and oncogenic transformation in C3H 10T(1/2) cells. Additional studies were undertaken to assess the importance of the degree of cell-to-cell contact at the time of irradiation on the magnitude of this bystander effect by varying the cell density. When 10% of cells were exposed to a range of 2-12 alpha particles, a significantly greater number of cells were inactivated when cells were irradiated at high density than at low density. In addition, the oncogenic transformation frequency was significantly higher in high-density cultures. These results suggest that when a cell is hit by radiation, the transmission of the bystander signal through cell-to-cell contact is an important mediator of the effect, implicating the involvement of intracellular communication through gap junctions. Additional studies to address the relationship between the bystander effect and the adaptive response were undertaken. A novel apparatus, where targeted and non-targeted cells were grown in close proximity, was used to investigate these. It was further examined whether a bystander effect or an adaptive response could be induced by a factor(s) present in the supernatants of cells exposed to a high or low dose of X-rays, respectively. When non-hit cells were co-cultured for 24 h with cells irradiated with 5 Gy alpha-particles, a significant increase in both cell killing and oncogenic transformation frequency was observed. If these cells were treated with 2 cGy X-rays 5 h before co-culture with irradiated cells, approximately 95% of the bystander effect was cancelled out. A 2.5-fold decrease in the oncogenic transformation

  13. Role of ROS-mediated autophagy in radiation-induced bystander effect of hepatoma cells.

    PubMed

    Wang, Xiangdong; Zhang, Jianghong; Fu, Jiamei; Wang, Juan; Ye, Shuang; Liu, Weili; Shao, Chunlin

    2015-05-01

    Autophagy plays a crucial role in cellular response to ionizing radiation, but it is unclear whether autophagy can modulate radiation-induced bystander effect (RIBE). Here, we investigated the relationship between bystander damage and autophagy in human hepatoma cells of HepG2. HepG2 cells were treated with conditioned medium (CM) collected from 3 Gy γ-rays irradiated hepatoma HepG2 cells for 4, 12, or 24 h, followed by the measurement of micronuclei (MN), intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and protein expressions of microtubule-associated protein 1 light chain 3 (LC3) and Beclin-1 in the bystander HepG2 cells. In some experiments, the bystander HepG2 cells were respectively transfected with LC3 small interfering RNA (siRNA), Beclin-1 siRNA or treated with 1% dimethyl sulfoxide (DMSO). Additional MN and mitochondrial dysfunction coupled with ROS were induced in the bystander cells. The expressions of protein markers of autophagy, LC3-II/LC3-I and Beclin-1, increased in the bystander cells. The inductions of bystander MN and overexpressions of LC3 and Beclin-1 were significantly diminished by DMSO. However, when the bystander cells were transfected with LC3 siRNA or Beclin-1 siRNA, the yield of bystander MN was significantly enhanced. The elevated ROS have bi-functions in balancing the bystander effects. One is to cause MN and the other is to induce protective autophagy.

  14. The potential impact of bystander effects on radiation risks in a Mars mission

    NASA Technical Reports Server (NTRS)

    Brenner, D. J.; Elliston, C. D.; Hall, E. I. (Principal Investigator)

    2001-01-01

    Densely ionizing (high-LET) galactic cosmic rays (GCR) contribute a significant component of the radiation risk in free space. Over a period of a few months-sufficient for the early stages of radiation carcinogenesis to occur-a significant proportion of cell nuclei will not be traversed. There is convincing evidence, at least in vitro, that irradiated cells can send out signals that can result in damage to nearby unirradiated cells. This observation can hold even when the unirradiated cells have been exposed to low doses of low-LET radiation. We discuss here a quantitative model based on the a formalism, an approach that incorporates radiobiological damage both from a bystander response to signals emitted by irradiated cells, and also from direct traversal of high-LET radiations through cell nuclei. The model produces results that are consistent with those of a series of studies of the bystander phenomenon using a high-LET microbeam, with the end point of in vitro oncogenic transformation. According to this picture, for exposure to high-LET particles such as galactic cosmic rays other than protons, the bystander effect is significant primarily at low fluences, i.e., exposures where there are significant numbers of untraversed cells. If the mechanisms postulated here were applicable in vivo, using a linear extrapolation of risks derived from studies using intermediate doses of high-LET radiation (where the contribution of the bystander effect may be negligible) to estimate risks at very low doses (where the bystander effect may be dominant) could underestimate the true risk from low doses of high-LET radiation. It would be highly premature simply to abandon current risk projections for high-LET, low-dose radiation; however, these considerations would suggest caution in applying results derived from experiments using high-LET radiation at fluences above approximately 1 particle per nucleus to risk estimation for a Mars mission.

  15. The potential impact of bystander effects on radiation risks in a Mars mission

    NASA Technical Reports Server (NTRS)

    Brenner, D. J.; Elliston, C. D.; Hall, E. I. (Principal Investigator)

    2001-01-01

    Densely ionizing (high-LET) galactic cosmic rays (GCR) contribute a significant component of the radiation risk in free space. Over a period of a few months-sufficient for the early stages of radiation carcinogenesis to occur-a significant proportion of cell nuclei will not be traversed. There is convincing evidence, at least in vitro, that irradiated cells can send out signals that can result in damage to nearby unirradiated cells. This observation can hold even when the unirradiated cells have been exposed to low doses of low-LET radiation. We discuss here a quantitative model based on the a formalism, an approach that incorporates radiobiological damage both from a bystander response to signals emitted by irradiated cells, and also from direct traversal of high-LET radiations through cell nuclei. The model produces results that are consistent with those of a series of studies of the bystander phenomenon using a high-LET microbeam, with the end point of in vitro oncogenic transformation. According to this picture, for exposure to high-LET particles such as galactic cosmic rays other than protons, the bystander effect is significant primarily at low fluences, i.e., exposures where there are significant numbers of untraversed cells. If the mechanisms postulated here were applicable in vivo, using a linear extrapolation of risks derived from studies using intermediate doses of high-LET radiation (where the contribution of the bystander effect may be negligible) to estimate risks at very low doses (where the bystander effect may be dominant) could underestimate the true risk from low doses of high-LET radiation. It would be highly premature simply to abandon current risk projections for high-LET, low-dose radiation; however, these considerations would suggest caution in applying results derived from experiments using high-LET radiation at fluences above approximately 1 particle per nucleus to risk estimation for a Mars mission.

  16. Bystander effects as manifestation of intercellular communication of DNA damage and of the cellular oxidative status.

    PubMed

    Klammer, Holger; Mladenov, Emil; Li, Fanghua; Iliakis, George

    2015-01-01

    It is becoming increasingly clear that cells exposed to ionizing radiation (IR) and other genotoxic agents (targeted cells) can communicate their DNA damage response (DDR) status to cells that have not been directly irradiated (bystander cells). The term radiation-induced bystander effects (RIBE) describes facets of this phenomenon, but its molecular underpinnings are incompletely characterized. Consequences of DDR in bystander cells have been extensively studied and include transformation and mutation induction; micronuclei, chromosome aberration and sister chromatid exchange formation; as well as modulations in gene expression, proliferation and differentiation patterns. A fundamental question arising from such observations is why targeted cells induce DNA damage in non-targeted, bystander cells threatening thus their genomic stability and risking the induction of cancer. Here, we review and synthesize available literature to gather support for a model according to which targeted cells modulate as part of DDR their redox status and use it as a source to generate signals for neighboring cells. Such signals can be either small molecules transported to adjacent non-targeted cells via gap-junction intercellular communication (GJIC), or secreted factors that can reach remote, non-targeted cells by diffusion or through the circulation. We review evidence that such signals can induce in the recipient cell modulations of redox status similar to those seen in the originating targeted cell - occasionally though self-amplifying feedback loops. The resulting increase of oxidative stress in bystander cells induces, often in conjunction with DNA replication, the observed DDR-like responses that are at times strong enough to cause apoptosis. We reason that RIBE reflect the function of intercellular communication mechanisms designed to spread within tissues, or the entire organism, information about DNA damage inflicted to individual, constituent cells. Such responses are

  17. Connecting radiation-induced bystander effects and senescence to improve radiation response prediction.

    PubMed

    Poleszczuk, Jan; Krzywon, Aleksandra; Forys, Urszula; Widel, Maria

    2015-05-01

    For the last two decades radiation-induced bystander effects (RIBEs) have attracted significant attention due to their possible implications for radiotherapy. However, despite extensive research, the molecular pathways associated with RIBEs are still not completely known. In the current study we investigated the role of senescence in the bystander response. Irradiated (2, 4, 6 and 8 Gy) human colorectal carcinoma cells (HCT116) with p53(+/+) (wild-type) or p53(-/-) (knockout) gene were co-incubated with nonirradiated cells of the same type. Clonogenic and senescence assays were used for both irradiated and co-incubated bystander cell populations. We also performed additional measurements on the number of remaining cells after the whole co-incubation period. For radiation doses larger than 2 Gy we observed much larger fractions of senescent cells in p53-positive populations compared to their p53-negative counterparts (15.81% vs. 3.63% in the irradiated population; 2.89% vs. 1.05% in the bystander population; 8 Gy; P < 0.05). Statistically significant differences between cell lines in the clonogenic cell surviving fraction were observed for doses higher than 4 Gy (1.61% for p53(+/+) vs. 0.19% for p53(-/-) in irradiated population; 3.57% for +/+ vs. 50.39% for -/- in bystander population; 8 Gy; P < 0.05). Our main finding was that the number of senescent cells in the irradiated population correlated strongly with the clonogenic cell surviving fraction (R = -0.98, P < 0.001) and the number of senescent cells (R = 0.97, P < 0.001) in the bystander population. We also extended the standard linear-quadratic radiation response model by incorporating the influence of the signals released by the senescent cells, which accurately described the radiation response in the bystander population. Our findings suggest that radiation-induced senescence might be a key player in RIBE, i.e., the strength of RIBE depends on the amount of radiation-induced senescence.

  18. MiR-21 is involved in radiation-induced bystander effects.

    PubMed

    Xu, Shuai; Ding, Nan; Pei, Hailong; Hu, Wentao; Wei, Wenjun; Zhang, Xurui; Zhou, Guangming; Wang, Jufang

    2014-01-01

    Radiation-induced bystander effects are well-established phenomena, in which DNA damage responses are induced not only in the directly irradiated cells but also in the non-irradiated bystander cells through intercellular signal transmission. Recent studies hint that bystander effects are possibly mediated via small non-coding RNAs, especially microRNAs. Thus, more details about the roles of microRNA in bystander effects are urgently needed to be elucidated. Here we demonstrated that bystander effects were induced in human fetal lung MRC-5 fibroblasts through medium-mediated way by different types of radiation. We identified a set of differentially expressed microRNAs in the cell culture medium after irradiation, among which the up-regulation of miR-21 was further verified with qRT-PCR. In addition, we found significant upregulation of miR-21 in both directly irradiated cells and bystander cells, which was confirmed by the expression of miR-21 precursor and its target genes. Transfection of miR-21 mimics into non-irradiated MRC-5 cells caused bystander-like effects. Taken together, our data reveals that miR-21 is involved in radiation-induced bystander effects. Elucidation of such a miRNA-mediated bystander effect is of utmost importance in understanding the biological processes related to ionizing radiation and cell-to-cell communication.

  19. MiR-21 is involved in radiation-induced bystander effects

    PubMed Central

    Xu, Shuai; Ding, Nan; Pei, Hailong; Hu, Wentao; Wei, Wenjun; Zhang, Xurui; Zhou, Guangming; Wang, Jufang

    2014-01-01

    Radiation-induced bystander effects are well-established phenomena, in which DNA damage responses are induced not only in the directly irradiated cells but also in the non-irradiated bystander cells through intercellular signal transmission. Recent studies hint that bystander effects are possibly mediated via small non-coding RNAs, especially microRNAs. Thus, more details about the roles of microRNA in bystander effects are urgently needed to be elucidated. Here we demonstrated that bystander effects were induced in human fetal lung MRC-5 fibroblasts through medium-mediated way by different types of radiation. We identified a set of differentially expressed microRNAs in the cell culture medium after irradiation, among which the up-regulation of miR-21 was further verified with qRT-PCR. In addition, we found significant upregulation of miR-21 in both directly irradiated cells and bystander cells, which was confirmed by the expression of miR-21 precursor and its target genes. Transfection of miR-21 mimics into non-irradiated MRC-5 cells caused bystander-like effects. Taken together, our data reveals that miR-21 is involved in radiation-induced bystander effects. Elucidation of such a miRNA-mediated bystander effect is of utmost importance in understanding the biological processes related to ionizing radiation and cell-to-cell communication. PMID:25483031

  20. Bystander effect in human hepatoma HepG2 cells caused by medium transfers at different times after high-LET carbon ion irradiation

    NASA Astrophysics Data System (ADS)

    Wu, Qingfeng; Li, Qiang; Jin, Xiaodong; Liu, Xinguo; Dai, Zhongying

    2011-01-01

    Although radiation-induced bystander effects have been well documented in a variety of biological systems, whether irradiated cells have the ability to generate bystander signaling persistently is still unclear and the clinical relevance of bystander effects in radiotherapy remains to be elucidated. This study examines tumor cellular bystander response to autologous medium from cell culture irradiated with high-linear energy transfer (LET) heavy ions at a therapeutically relevant dose in terms of clonogenic cell survival. In vitro experiments were performed using human hepatoma HepG2 cell line exposed to 100 keV/μm carbon ions at a dose of 2 Gy. Two different periods (2 and 12 h) after irradiation, irradiated cell conditioned medium (ICCM) and replenished fresh medium were harvested and then transferred to unirradiated bystander cells. Cellular bystander responses were measured with the different medium transfer protocols. Significant higher survival fractions of unirradiated cells receiving the media from the irradiated cultures at the different times post-irradiation than those of the control were observed. Even replenishing fresh medium for unirradiated cells which had been exposed to the ICCM for 12 h could not prevent the bystander cells from the increased survival fraction. These results suggest that the irradiated cells could release unidentified signal factor(s), which induced the increase in survival fraction for the unirradiated bystander cells, into the media sustainedly and the carbon ions triggered a cascade of signaling events in the irradiated cells rather than secreting the soluble signal factor(s) just at a short period after irradiation. Based on the observations in this study, the importance of bystander effect in clinical radiotherapy was discussed and incorporating the bystander effect into the current radiobiological models, which are applicable to heavy ion radiotherapy, is needed urgently.

  1. Radiation-Induced Bystander Effects in Cultured Human Stem Cells

    PubMed Central

    Sokolov, Mykyta V.; Neumann, Ronald D.

    2010-01-01

    Background The radiation-induced “bystander effect” (RIBE) was shown to occur in a number of experimental systems both in vitro and in vivo as a result of exposure to ionizing radiation (IR). RIBE manifests itself by intercellular communication from irradiated cells to non-irradiated cells which may cause DNA damage and eventual death in these bystander cells. It is known that human stem cells (hSC) are ultimately involved in numerous crucial biological processes such as embryologic development; maintenance of normal homeostasis; aging; and aging-related pathologies such as cancerogenesis and other diseases. However, very little is known about radiation-induced bystander effect in hSC. To mechanistically interrogate RIBE responses and to gain novel insights into RIBE specifically in hSC compartment, both medium transfer and cell co-culture bystander protocols were employed. Methodology/Principal Findings Human bone-marrow mesenchymal stem cells (hMSC) and embryonic stem cells (hESC) were irradiated with doses 0.2 Gy, 2 Gy and 10 Gy of X-rays, allowed to recover either for 1 hr or 24 hr. Then conditioned medium was collected and transferred to non-irradiated hSC for time course studies. In addition, irradiated hMSC were labeled with a vital CMRA dye and co-cultured with non-irradiated bystander hMSC. The medium transfer data showed no evidence for RIBE either in hMSC and hESC by the criteria of induction of DNA damage and for apoptotic cell death compared to non-irradiated cells (p>0.05). A lack of robust RIBE was also demonstrated in hMSC co-cultured with irradiated cells (p>0.05). Conclusions/Significance These data indicate that hSC might not be susceptible to damaging effects of RIBE signaling compared to differentiated adult human somatic cells as shown previously. This finding could have profound implications in a field of radiation biology/oncology, in evaluating radiation risk of IR exposures, and for the safety and efficacy of hSC regenerative

  2. Preventing Interpersonal Violence on College Campuses: The Effect of One Act Training on Bystander Intervention.

    PubMed

    Alegría-Flores, Kei; Raker, Kelli; Pleasants, Robert K; Weaver, Mark A; Weinberger, Morris

    2015-05-22

    Sexual assault, stalking, dating violence, and intimate partner violence, herein collectively termed interpersonal violence (IV), are public health problems affecting 20% to 25% of female college students. Currently, One Act is one of the few IV prevention training programs at universities that teach students bystander skills to intervene in low- and high-risk IV situations. The objectives of this study were 1) to evaluate One Act's effects on date rape attitudes and behaviors, and bystanders' confidence, willingness to help, and behavior, and 2) to compare the effects on bystander skills between One Act and Helping Advocates for Violence Ending Now (HAVEN), an IV response training program with similar participants. Data were collected over 2 years, before and after One Act and HAVEN trainings. We measured outcomes with four scales: College Date Rape Attitudes and Behaviors, Bystander Confidence, Willingness to Help, and Bystander Behavior. The analysis compared within- and between-group mean differences in scale scores pre- and post-trainings using linear mixed models. One Act showed improvements for date rape attitudes and behaviors (p < .001), bystander's confidence (p < .001), and willingness to help (p < .001). One Act participants' bystander confidence improved more (p = .006), on average, than HAVEN's. The differences in the two trainings' effects on bystander willingness to help and behavior had similar patterns but were not statistically significant. We found a larger positive impact on bystander confidence among students who participated in the bystander prevention training compared with the response training. Further research is needed to improve the measures for bystander behavior and measure the bystander trainings' larger impact on the community.

  3. Radiation Induced Bystander Effects in Human Lymphoblastoid Cells

    DTIC Science & Technology

    2003-12-01

    34 observ6 peut etre caus6 par les interactions cellulaires via les prot~ines s~cr~toires 1ib~r~es par les cellules irradi~es en agissant sur les...l’accident du r~acteur de Chernobyl. Nous avons formulk l’hypoth~se que l’effet "bystander" observ6 pouvait 6tre une consdquence d’interactions cellulaires ...qui seraient indicatifs d’expositions biologiques ou chimiques. 11 est pr~vu que certains de ces marqueurs seront communs aux trois agents stressants

  4. The effect of glucose-coated gold nanoparticles on radiation bystander effect induced in MCF-7 and QUDB cell lines.

    PubMed

    Rostami, Atefeh; Toossi, Mohammad Thaghi Bahreyni; Sazgarnia, Ameneh; Soleymanifard, Shokouhozaman

    2016-11-01

    Due to biocompatibility and relative non-toxic nature, gold nanoparticles (GNPs) have been studied widely to be employed in radiotherapy as radio-sensitizer. On the other hand, they may enhance radiation-induced bystander effect (RIBE), which causes radiation adverse effects in non-irradiated normal cells. The present study was planned to investigate the possibility of augmenting the RIBE consequence of applying glucose-coated gold nanoparticles (Glu-GNPs) to target cells. Glu-GNPs were synthesized and utilized to treat MCF7 and QUDB cells. The treated cells were irradiated with 100 kVp X-rays, and their culture media were transferred to non-irradiated bystander cells. Performing MTT cellular proliferation test and colony formation assay, percentage cell viability and survival fraction of bystander cells were determined, respectively, and were compared to control bystander cells which received culture medium from irradiated cells without Glu-GNPs. Glu-GNPs decreased the cell viability and survival fraction of QUDB bystander cells by as much as 13.2 and 11.5 %, respectively (P < 0.02). However, the same end points were not changed by Glu-GNPs in MCF-7 bystander cells. Different RIBE responses were observed in QUDB and MCF7 loaded with Glu-GNPs. Glu-GNPs increased the RIBE in QUDB cells, while they had no effects on RIBE in MCF7 cells. As opposed to QUDB cells, the RIBE in MCF7 cells did not change in the dose range of 0.5-10 Gy. Therefore, it might be a constant effect and the reason of not being increased by Glu-GNPs.

  5. Low Doses of Gamma-Irradiation Induce an Early Bystander Effect in Zebrafish Cells Which Is Sufficient to Radioprotect Cells

    PubMed Central

    Pereira, Sandrine; Malard, Véronique; Ravanat, Jean-Luc; Davin, Anne-Hélène; Armengaud, Jean; Foray, Nicolas; Adam-Guillermin, Christelle

    2014-01-01

    The term “bystander effect” is used to describe an effect in which cells that have not been exposed to radiation are affected by irradiated cells though various intracellular signaling mechanisms. In this study we analyzed the kinetics and mechanisms of bystander effect and radioadaptation in embryonic zebrafish cells (ZF4) exposed to chronic low dose of gamma rays. ZF4 cells were irradiated for 4 hours with total doses of gamma irradiation ranging from 0.01–0.1 Gy. In two experimental conditions, the transfer of irradiated cells or culture medium from irradiated cells results in the occurrence of DNA double strand breaks in non-irradiated cells (assessed by the number of γ-H2AX foci) that are repaired at 24 hours post-irradiation whatever the dose. At low total irradiation doses the bystander effect observed does not affect DNA repair mechanisms in targeted and bystander cells. An increase in global methylation of ZF4 cells was observed in irradiated cells and bystander cells compared to control cells. We observed that pre-irradiated cells which are then irradiated for a second time with the same doses contained significantly less γ-H2AX foci than in 24 h gamma-irradiated control cells. We also showed that bystander cells that have been in contact with the pre-irradiated cells and then irradiated alone present less γ-H2AX foci compared to the control cells. This radioadaptation effect is significantly more pronounced at the highest doses. To determine the factors involved in the early events of the bystander effect, we performed an extensive comparative proteomic study of the ZF4 secretomes upon irradiation. In the experimental conditions assayed here, we showed that the early events of bystander effect are probably not due to the secretion of specific proteins neither the oxidation of these secreted proteins. These results suggest that early bystander effect may be due probably to a combination of multiple factors. PMID:24667817

  6. Reciprocal bystander effect between α-irradiated macrophage and hepatocyte is mediated by cAMP through a membrane signaling pathway.

    PubMed

    He, Mingyuan; Dong, Chen; Xie, Yuexia; Li, Jitao; Yuan, Dexiao; Bai, Yang; Shao, Chunlin

    2014-01-01

    Irradiated cells can induce biological effects on vicinal non-irradiated bystander cells, meanwhile the bystander cells may rescue the irradiated cells through a feedback signal stress. To elucidate the nature of this reciprocal effect, we examined the interaction between α-irradiated human macrophage cells U937 and its bystander HL-7702 hepatocyte cells using a cell co-culture system. Results showed that after 6h of cell co-culture, mitochondria depolarization corresponding to apoptosis was significantly induced in the HL-7702 cells, but the formation of micronuclei in the irradiated U937 cells was markedly decreased compared to that without cell co-culture treatment. This reciprocal effect was not observed when the cell membrane signaling pathway was blocked by filipin that inhibited cAMP transmission from bystander cells to irradiated cells. After treatment of cells with exogenous cAMP, forskolin (an activator of cAMP) or KH-7 (an inhibitor of cAMP), respectively, it was confirmed that cAMP communication from bystander cells to targeted cells could mitigate radiation damage in U739 cells, and this cAMP insufficiency in the bystander cells contributed to the enhancement of bystander apoptosis. Moreover, the bystander apoptosis in HL-7702 cells was aggravated by cAMP inhibition but it could not be evoked when p53 of HL-7702 cells was knocked down no matter of forskolin and KH-7 treatment. In conclusion, this study disclosed that cAMP could be released from bystander HL-7702 cells and compensated to α-irradiated U937 cells through a membrane signaling pathway and this cAMP communication played a profound role in regulating the reciprocal bystander effects.

  7. Investigation of the Bystander Effect in School Bullying: Comparison of Experiential, Psychological and Situational Factors

    ERIC Educational Resources Information Center

    Song, Jiyeon; Oh, Insoo

    2017-01-01

    The purpose of this study was to investigate whether the "bystander effect" known to occur in emergency situations is effective in bullying situations through examination of the individual experiences of 467 middle- and high-school students. While the bystander effect was not found to be valid in bullying situations, there were…

  8. Theoretical models and simulation codes to investigate bystander effects and cellular communication at low doses

    NASA Astrophysics Data System (ADS)

    Ballarini, F.; Alloni, D.; Facoetti, A.; Mairani, A.; Nano, R.; Ottolenghi, A.

    Astronauts in space are continuously exposed to low doses of ionizing radiation from Galactic Cosmic Rays During the last ten years the effects of low radiation doses have been widely re-discussed following a large number of observations on the so-called non targeted effects in particular bystander effects The latter consist of induction of cytogenetic damage in cells not directly traversed by radiation most likely as a response to molecular messengers released by directly irradiated cells Bystander effects which are observed both for lethal endpoints e g clonogenic inactivation and apoptosis and for non-lethal ones e g mutations and neoplastic transformation tend to show non-linear dose responses This might have significant consequences in terms of low-dose risk which is generally calculated on the basis of the Linear No Threshold hypothesis Although the mechanisms underlying bystander effects are still largely unknown it is now clear that two types of cellular communication i e via gap junctions and or release of molecular messengers into the extracellular environment play a fundamental role Theoretical models and simulation codes can be of help in elucidating such mechanisms In the present paper we will review different available modelling approaches including one that is being developed at the University of Pavia The focus will be on the different assumptions adopted by the various authors and on the implications of such assumptions in terms of non-targeted radiobiological damage and more generally low-dose

  9. PDT-induced in vitro bystander effect

    NASA Astrophysics Data System (ADS)

    Olivier, David; Douilard, Samuel; Patrice, Thierry

    2009-06-01

    The mechanisms of Photodynamic therapy (PDT) include singlet oxygen and reactive oxygen species (ROS) production that damage tumor cells and vasculature. The resulting effect is a balance between photo-oxidations via primary or secondary ROS and scavenging activity. Sensitizers distribute in the extra-cellular space before and during cell sensitization, suggesting that PDT could act directly on cell structures and on extra-cellular compartments, including sera. In this paper we endeavored to determine whether the application of PDT to culture media could have an effect on cell survival. Culture media (RPMI supplemented with Fetal Calf Serum (FCS)) was incubated with Rose Bengal (RB) and irradiated before being added to cells for various times of contact, as a replacement for untreated media. Treatedmedia reduced cell survival by up to 40% after 30 min of contact for 10 μg/mL of RB and 20 J/cm2. This effect was RB or light dose-dependent. The survival reduction observed when adding treated-media was more pronounced when cell doubling time was shorter. Analysis of ROS or peroxide production in treated-media revealed a long-lasting oxidizing activity. Our findings support the hypothesis of a ROS or peroxide-mediated, PDT-induced, delayed cell toxicity

  10. Induction of the bystander effect in Chinese hamster V79 cells by actinomycin D.

    PubMed

    Jin, Cuihong; Wu, Shengwen; Lu, Xiaobo; Liu, Qiufang; Qi, Ming; Lu, Shuai; Xi, Qi; Cai, Yuan

    2011-05-10

    Bystander effect (BE) can be induced by ionizing radiation and chemicals, including alkylating agents. Ionizing radiation mostly induces the bystander effect by causing double-strand DNA breakage in the exposed cells. However, the chemical-induced bystander effect is poorly studied. Here we chose actinomycin D (ACTD), a genotoxic chemotherapeutic drug, to investigate whether it could cause bystander effect in Chinese hamster V79 cells. Results are that (1) ACTD induced apoptosis in V79 cells and an optimal apoptosis model in V79 cells was established with ACTD (4 mg/L, 1h); (2) using apoptosis rate, chromosome aberration, and ultrastructure changes as endpoints of bystander effect, ACTD could induce bystander effect in V79 cells; (3) as in the exposed cells, ACTD mainly induced apoptosis in bystander V79 cells cultured in different period conditioned medium; (4) the strongest bystander effect was induced by 4 h conditioned medium collected from cells treated with ACTD. It suggests that ACTD could cause BE through the medium soluble factors excreted from exposed cells during apoptosis and ACTD-induced BE was a novel quantitative and kinetic response. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. The role of mitochondria in the radiation-induced bystander effect in human lymphoblastoid cells.

    PubMed

    Rajendran, Sountharia; Harrison, Scott H; Thomas, Robert A; Tucker, James D

    2011-02-01

    Cells without intact mitochondrial DNA have been shown to lack the bystander effect, which is an energy-dependent process. We hypothesized that cells harboring mutations in mitochondrial genes responsible for ATP synthesis would show a decreased bystander effect compared to normal cells. Radiation-induced bystander effects were analyzed in two normal and four mitochondrial mutant human lymphoblastoid cells. Medium from previously irradiated cells (conditioned medium) was transferred to unirradiated cells from the respective cell lines and evaluated for the bystander effect using the cytokinesis-block micronucleus assay. Unlike normal cells that were used as a control, mitochondrial mutant cells neither generated nor responded to the bystander signals. The bystander effect was inhibited in normal cells by adding the mitochondrial inhibitors rotenone and oligomycin to the culture medium. Time-controlled blocking of the bystander effect by inhibitors was found to occur either for prolonged exposure to the inhibitor prior to irradiation with an immediate and subsequent removal of the inhibitors or immediate post-application of the inhibitor. Adding the inhibitors just prior to irradiation and removing them immediately after irradiation was uneventful. Fully functional mitochondrial metabolic capability may therefore be essential for the bystander effect.

  12. Reactive oxygen species formation and bystander effects in gradient irradiation on human breast cancer cells

    PubMed Central

    Rong, Yi; Lee, Shin Hee; Wu, Shiyong; Zuo, Li

    2016-01-01

    Ionizing radiation (IR) in cancer radiotherapy can induce damage to neighboring cells via non-targeted effects by irradiated cells. These so-called bystander effects remain an area of interest as it may provide enhanced efficacy in killing carcinomas with minimal radiation. It is well known that reactive oxygen species (ROS) are ubiquitous among most biological activities. However, the role of ROS in bystander effects has not been thoroughly elucidated. We hypothesized that gradient irradiation (GI) has enhanced therapeutic effects via the ROS-mediated bystander pathways as compared to uniform irradiation (UI). We evaluated ROS generation, viability, and apoptosis in breast cancer cells (MCF-7) exposed to UI (5 Gy) or GI (8–2 Gy) in radiation fields at 2, 24 and 48 h after IR. We found that extracellular ROS release induced by GI was higher than that by UI at both 24 h (p < 0.001) and 48 h (p < 0.001). More apoptosis and less viability were observed in GI when compared to UI at either 24 h or 48 h after irradiation. The mean effective doses (ED) of GI were ~130% (24 h) and ~48% (48 h) higher than that of UI, respectively. Our results suggest that GI is superior to UI regarding redox mechanisms, ED, and toxic dosage to surrounding tissues. PMID:27223435

  13. Rescue Effects: Irradiated Cells Helped by Unirradiated Bystander Cells

    PubMed Central

    Lam, R. K. K.; Fung, Y. K.; Han, W.; Yu, K. N.

    2015-01-01

    The rescue effect describes the phenomenon where irradiated cells or organisms derive benefits from the feedback signals sent from the bystander unirradiated cells or organisms. An example of the benefit is the mitigation of radiation-induced DNA damages in the irradiated cells. The rescue effect can compromise the efficacy of radioimmunotherapy (RIT) (and actually all radiotherapy). In this paper, the discovery and subsequent confirmation studies on the rescue effect were reviewed. The mechanisms and the chemical messengers responsible for the rescue effect studied to date were summarized. The rescue effect between irradiated and bystander unirradiated zebrafish embryos in vivo sharing the same medium was also described. In the discussion section, the mechanism proposed for the rescue effect involving activation of the nuclear factor κB (NF-κB) pathway was scrutinized. This mechanism could explain the promotion of cellular survival and correct repair of DNA damage, dependence on cyclic adenosine monophosphate (cAMP) and modulation of intracellular reactive oxygen species (ROS) level in irradiated cells. Exploitation of the NF-κB pathway to improve the effectiveness of RIT was proposed. Finally, the possibility of using zebrafish embryos as the model to study the efficacy of RIT in treating solid tumors was also discussed. PMID:25625514

  14. Liver irradiation causes distal bystander effects in the rat brain and affects animal behaviour.

    PubMed

    Kovalchuk, Anna; Mychasiuk, Richelle; Muhammad, Arif; Hossain, Shakhawat; Ilnytskyy, Slava; Ghose, Abhijit; Kirkby, Charles; Ghasroddashti, Esmaeel; Kovalchuk, Olga; Kolb, Bryan

    2016-01-26

    Radiation therapy can not only produce effects on targeted organs, but can also influence shielded bystander organs, such as the brain in targeted liver irradiation. The brain is sensitive to radiation exposure, and irradiation causes significant neuro-cognitive deficits, including deficits in attention, concentration, memory, and executive and visuospatial functions. The mechanisms of their occurrence are not understood, although they may be related to the bystander effects.We analyzed the induction, mechanisms, and behavioural repercussions of bystander effects in the brain upon liver irradiation in a well-established rat model.Here, we show for the first time that bystander effects occur in the prefrontal cortex and hippocampus regions upon liver irradiation, where they manifest as altered gene expression and somewhat increased levels of γH2AX. We also report that bystander effects in the brain are associated with neuroanatomical and behavioural changes, and are more pronounced in females than in males.

  15. Liver irradiation causes distal bystander effects in the rat brain and affects animal behaviour

    PubMed Central

    Kovalchuk, Anna; Mychasiuk, Richelle; Muhammad, Arif; Hossain, Shakhawat; Ilnytskyy, Slava; Ghose, Abhijit; Kirkby, Charles; Ghasroddashti, Esmaeel; Kovalchuk, Olga; Kolb, Bryan

    2016-01-01

    Radiation therapy can not only produce effects on targeted organs, but can also influence shielded bystander organs, such as the brain in targeted liver irradiation. The brain is sensitive to radiation exposure, and irradiation causes significant neuro-cognitive deficits, including deficits in attention, concentration, memory, and executive and visuospatial functions. The mechanisms of their occurrence are not understood, although they may be related to the bystander effects. We analyzed the induction, mechanisms, and behavioural repercussions of bystander effects in the brain upon liver irradiation in a well-established rat model. Here, we show for the first time that bystander effects occur in the prefrontal cortex and hippocampus regions upon liver irradiation, where they manifest as altered gene expression and somewhat increased levels of γH2AX. We also report that bystander effects in the brain are associated with neuroanatomical and behavioural changes, and are more pronounced in females than in males. PMID:26678032

  16. Radiation-induced bystander effects: are they good, bad or both?

    PubMed

    Mothersill, Carmel; Seymour, Colin

    2005-01-01

    Our current knowledge of the mechanisms underlying the induction of bystander effects by low dose-low linear-energy-transfer ionising radiation is reviewed, and the question of how bystander effects may be related to observed adaptive responses, systemic genomic instability or other effects of low doses exposures is considered. Bystander effects appear to be the result of a generalised stress response in tissues or cells. The signals may be produced by all exposed cells but the response may require a quoram in order to be expressed. The major response involving low LET radiation exposure discussed in the existing literature is a death response, which has many characteristics of apoptosis but may be detected in cell lines without p53 expression. While a death response might appear to be adverse, it can in fact be protective and remove damaged cells from the population. Since many cell populations carry damaged cells without being exposed to radiation ('background damage') low doses exposures might cause removal of cells damaged by agents other than the test dose of radiation, which would lead to the production of 'u- or n-shaped' dose-response curves. The level of harmful or beneficial response would then be related to the background damage carried by the cell population and the genetic programme determining response to damage. This model may be important when attempting to predict the consequences of mixed exposures involving radiation and other environmental stressors.

  17. The use of radiation microbeams to investigate the bystander effect in cells and tissues

    NASA Astrophysics Data System (ADS)

    Folkard, M.; Prise, K. M.; Michette, A. G.; Vojnovic, B.

    2007-09-01

    Microbeams are ideally suited to the study of so-called 'non-targeted' phenomena that are now known to occur when living cells and tissues are irradiated. Non-targeted effects are those where cells are seen to respond to ionising radiation through pathways other than direct damage to the DNA. One such phenomenon is the 'bystander effect'; the observation that unirradiated cells can be damaged through signalling pathways initiated by a nearby irradiated cell. The effect leads to a highly non-linear dose-response at low doses and is forcing a rethink of established models used to estimate low-dose radiation risk, which are largely based on linear extrapolations from epidemiological data at much higher doses. The bystander effect may also provide an opportunity for improvements in the treatment of cancer by radiotherapy, as it may be possible to chemically influence the bystander response in such a way as to enhance cell killing in tumour cells or to protect healthy tissue.

  18. Investigation of the bystander effect in MRC5 cells after acute and fractionated irradiation in vitro.

    PubMed

    Soleymanifard, Shokouhozaman; Toossi, Mohammad Taghi Bahreyni; Samani, Roghayeh Kamran; Mohebbi, Shokoufeh

    2014-04-01

    Radiation-induced bystander effect (RIBE) has been defined as radiation responses observed in nonirradiated cells. It has been the focus of investigators worldwide due to the deleterious effects it induces in nonirradiated cells. The present study was performed to investigate whether acute or fractionated irradiation will evoke a differential bystander response in MRC5 cells. A normal human cell line (MRC5), and a human lung tumor cell line (QU-DB) were exposed to 0, 1, 2, and 4Gy of single acute or fractionated irradiation of equal fractions with a gap of 6 h. The MRC5 cells were supplemented with the media of irradiated cells and their micronucleus frequency was determined. The micronucleus frequency after single and fractionated irradiation did not vary significantly in the MRC5 cells conditioned with autologous or QU-DB cell-irradiated media, except for 4Gy where the frequency of micronucleated cells was lower in those MRC5 cells cultured in the media of QU-DB-exposed with a single dose of 4Gy. Our study demonstrates that the radiation-induced bystander effect was almost similar after single acute and fractionated exposure in MRC5 cells.

  19. Assessment and Implications of Scattered Microbeam and Broadbeam Synchrotron Radiation for Bystander Effect Studies.

    PubMed

    Lobachevsky, Pavel; Ivashkevich, Alesia; Forrester, Helen B; Stevenson, Andrew W; Hall, Chris J; Sprung, Carl N; Martin, Olga A

    2015-12-01

    Synchrotron radiation is an excellent tool for investigating bystander effects in cell and animal models because of the well-defined and controllable configuration of the beam. Although synchrotron radiation has many advantages for such studies compared to conventional radiation, the contribution of dose exposure from scattered radiation nevertheless remains a source of concern. Therefore, the influence of scattered radiation on the detection of bystander effects induced by synchrotron radiation in biological in vitro models was evaluated. Radiochromic XRQA2 film-based dosimetry was employed to measure the absorbed dose of scattered radiation in cultured cells at various distances from a field exposed to microbeam radiotherapy and broadbeam X-ray radiation. The level of scattered radiation was dependent on the distance, dose in the target zone and beam mode. The number of γ-H2AX foci in cells positioned at the same target distances was measured and used as a biodosimeter to evaluate the absorbed dose. A correlation of absorbed dose values measured by the physical and biological methods was identified. The γ-H2AX assay successfully quantitated the scattered radiation in the range starting from 10 mGy and its contribution to the observed radiation-induced bystander effect.

  20. Bystander effects in radiation-induced genomic instability

    NASA Technical Reports Server (NTRS)

    Morgan, William F.; Hartmann, Andreas; Limoli, Charles L.; Nagar, Shruti; Ponnaiya, Brian

    2002-01-01

    Exposure of GM10115 hamster-human hybrid cells to X-rays can result in the induction of chromosomal instability in the progeny of surviving cells. This instability manifests as the dynamic production of novel sub-populations of cells with unique cytogenetic rearrangements involving the "marker" human chromosome. We have used the comet assay to investigate whether there was an elevated level of endogenous DNA breaks in chromosomally unstable clones that could provide a source for the chromosomal rearrangements and thus account for the persistent instability observed. Our results indicate no significant difference in comet tail measurement between non-irradiated and radiation-induced chromosomally unstable clones. Using two-color fluorescence in situ hybridization we also investigated whether recombinational events involving the interstitial telomere repeat-like sequences in GM10115 cells were involved at frequencies higher than random processes would otherwise predict. Nine of 11 clones demonstrated a significantly higher than expected involvement of these interstitial telomere repeat-like sequences at the recombination junction between the human and hamster chromosomes. Since elevated levels of endogenous breaks were not detected in unstable clones we propose that epigenetic or bystander effects (BSEs) lead to the activation of recombinational pathways that perpetuate the unstable phenotype. Specifically, we expand upon the hypothesis that radiation induces conditions and/or factors that stimulate the production of reactive oxygen species (ROS). These reactive intermediates then contribute to a chronic pro-oxidant environment that cycles over multiple generations, promoting chromosomal recombination and other phenotypes associated with genomic instability.

  1. Bystander effects in radiation-induced genomic instability

    NASA Technical Reports Server (NTRS)

    Morgan, William F.; Hartmann, Andreas; Limoli, Charles L.; Nagar, Shruti; Ponnaiya, Brian

    2002-01-01

    Exposure of GM10115 hamster-human hybrid cells to X-rays can result in the induction of chromosomal instability in the progeny of surviving cells. This instability manifests as the dynamic production of novel sub-populations of cells with unique cytogenetic rearrangements involving the "marker" human chromosome. We have used the comet assay to investigate whether there was an elevated level of endogenous DNA breaks in chromosomally unstable clones that could provide a source for the chromosomal rearrangements and thus account for the persistent instability observed. Our results indicate no significant difference in comet tail measurement between non-irradiated and radiation-induced chromosomally unstable clones. Using two-color fluorescence in situ hybridization we also investigated whether recombinational events involving the interstitial telomere repeat-like sequences in GM10115 cells were involved at frequencies higher than random processes would otherwise predict. Nine of 11 clones demonstrated a significantly higher than expected involvement of these interstitial telomere repeat-like sequences at the recombination junction between the human and hamster chromosomes. Since elevated levels of endogenous breaks were not detected in unstable clones we propose that epigenetic or bystander effects (BSEs) lead to the activation of recombinational pathways that perpetuate the unstable phenotype. Specifically, we expand upon the hypothesis that radiation induces conditions and/or factors that stimulate the production of reactive oxygen species (ROS). These reactive intermediates then contribute to a chronic pro-oxidant environment that cycles over multiple generations, promoting chromosomal recombination and other phenotypes associated with genomic instability.

  2. A role for bioelectric effects in the induction of bystander signals by ionizing radiation?

    PubMed

    Mothersill, C; Moran, G; McNeill, F; Gow, M D; Denbeigh, J; Prestwich, W; Seymour, C B

    2007-04-03

    The induction of "bystander effects" i.e. effects in cells which have not received an ionizing radiation track, is now accepted but the mechanisms are not completely clear. Bystander effects following high and low LET radiation exposure are accepted but mechanisms are still not understood. There is some evidence for a physical component to the signal. This paper tests the hypothesis that bioelectric or biomagnetic phenomena are involved. Human immortalized skin keratinocytes and primary explants of mouse bladder and fish skin, were exposed directly to ionizing radiation or treated in a variety of bystander protocols. Exposure of cells was conducted by shielding one group of flasks using lead, to reduce the dose below the threshold of 2mGy (60)Cobalt gamma rays established for the bystander effect. The endpoint for the bystander effect in the reporter system used was reduction in cloning efficiency (RCE). The magnitude of the RCE was similar in shielded and unshielded flasks. When cells were placed in a Faraday cage the magnitude of the RCE was less but not eliminated. The results suggest that liquid media or cell-cell contact transmission of bystander factors may be only part of the bystander mechanism. Bioelectric or bio magnetic fields may have a role to play. To test this further, cells were placed in a Magnetic Resonance Imaging (MRI) machine for 10 min using a typical head scan protocol. This treatment also induced a bystander response. Apart from the obvious clinical relevance, the MRI results further suggest that bystander effects may be produced by non-ionizing exposures. It is concluded that bioelectric or magnetic effects may be involved in producing bystander signaling cascades commonly seen following ionizing radiation exposure.

  3. Photon hormesis deactivates alpha-particle induced bystander effects between zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Ng, C. Y. P.; Cheng, S. H.; Yu, K. N.

    2017-04-01

    In the present work, we studied the effects of low-dose X-ray photons on the alpha-particle induced bystander effects between embryos of the zebrafish, Danio rerio. The effects on the naive whole embryos were studied through quantification of apoptotic signals (amounts of cells undergoing apoptosis) at 24 h post fertilization (hpf) using vital dye acridine orange staining, followed by counting the stained cells under a fluorescent microscope. We report data showing that embryos at 5 hpf subjected to a 4.4 mGy alpha-particle irradiation could release a stress signal into the medium, which could induce bystander effect in partnered naive embryos sharing the same medium. We also report that the bystander effect was deactivated when the irradiated embryos were subjected to a concomitant irradiation of 10 or 14 mGy of X-rays, but no such deactivation was achieved if the concomitant X-ray dose dropped to 2.5 or 5 mGy. In the present study, the significant drop in the amount of apoptotic signals on the embryos having received 4.4 mGy alpha particles together X-rays irradiation from 2.5 or 5 mGy to 10 or 14 mGy, together with the deactivation of RIBE with concomitant irradiation of 10 or 14 mGy of X-rays supported the participation of photon hormesis with an onset dose between 5 and 10 mGy, which might lead to removal of aberrant cells through early apoptosis or induction of high-fidelity DNA repair. As we found that photons and alpha particles could have opposite biological effects when these were simultaneously irradiated onto living organisms, these ionizing radiations could be viewed as two different environmental stressors, and the resultant effects could be regarded as multiple stressor effects. The present work presented the first study on a multiple stressor effect which occurred on bystander organisms. In other words, this was a non-targeted multiple stressor effect. The photon hormesis could also explain some failed attempts to observe neutron-induced bystander

  4. Collaborative effects of bystander-initiated cardiopulmonary resuscitation and prehospital advanced cardiac life support by physicians on survival of out-of-hospital cardiac arrest: a nationwide population-based observational study

    PubMed Central

    2010-01-01

    Introduction There are inconsistent data about the effectiveness of prehospital physician-staffed advanced cardiac life support (ACLS) on the outcomes of out-of-hospital cardiac arrest (OHCA). Furthermore, the relative importance of bystander-initiated cardiopulmonary resuscitation (BCPR) and ACLS and the effectiveness of their combination have not been clearly demonstrated. Methods Using a prospective, nationwide, population-based registry of all OHCA patients in Japan, we enrolled 95,072 patients whose arrests were witnessed by bystanders and 23,127 patients witnessed by emergency medical service providers between 2005 and 2007. We divided the bystander-witnessed arrest patients into Group A (ACLS by emergency life-saving technicians without BCPR), Group B (ACLS by emergency life-saving technicians with BCPR), Group C (ACLS by physicians without BCPR) and Group D (ACLS by physicians with BCPR). The outcome data included 1-month survival and neurological outcomes determined by the cerebral performance category. Results Among the 95,072 bystander-witnessed arrest patients, 7,722 (8.1%) were alive at 1 month, including 2,754 (2.9%) with good performance and 3,171 (3.3%) with vegetative status or worse. BCPR occurred in 42% of bystander-witnessed arrests. In comparison with Group A, the rates of good-performance survival were significantly higher in Group B (odds ratio (OR), 2.23; 95% confidence interval, 2.05 to 2.42; P < 0.01) and Group D (OR, 2.80; 95% confidence interval, 2.28 to 3.43; P < 0.01), while no significant difference was seen for Group C (OR, 1.18; 95% confidence interval, 0.86 to 1.61; P = 0.32). The occurrence of vegetative status or worse at 1 month was highest in Group C (OR, 1.92; 95% confidence interval, 1.55 to 2.37; P < 0.01). Conclusions In this registry-based study, BCPR significantly improved the survival of OHCA with good cerebral outcome. The groups with BCPR and ACLS by physicians had the best outcomes. However, receiving ACLS by

  5. Collaborative effects of bystander-initiated cardiopulmonary resuscitation and prehospital advanced cardiac life support by physicians on survival of out-of-hospital cardiac arrest: a nationwide population-based observational study.

    PubMed

    Yasunaga, Hideo; Horiguchi, Hiromasa; Tanabe, Seizan; Akahane, Manabu; Ogawa, Toshio; Koike, Soichi; Imamura, Tomoaki

    2010-01-01

    There are inconsistent data about the effectiveness of prehospital physician-staffed advanced cardiac life support (ACLS) on the outcomes of out-of-hospital cardiac arrest (OHCA). Furthermore, the relative importance of bystander-initiated cardiopulmonary resuscitation (BCPR) and ACLS and the effectiveness of their combination have not been clearly demonstrated. Using a prospective, nationwide, population-based registry of all OHCA patients in Japan, we enrolled 95,072 patients whose arrests were witnessed by bystanders and 23,127 patients witnessed by emergency medical service providers between 2005 and 2007. We divided the bystander-witnessed arrest patients into Group A (ACLS by emergency life-saving technicians without BCPR), Group B (ACLS by emergency life-saving technicians with BCPR), Group C (ACLS by physicians without BCPR) and Group D (ACLS by physicians with BCPR). The outcome data included 1-month survival and neurological outcomes determined by the cerebral performance category. Among the 95,072 bystander-witnessed arrest patients, 7,722 (8.1%) were alive at 1 month, including 2,754 (2.9%) with good performance and 3,171 (3.3%) with vegetative status or worse. BCPR occurred in 42% of bystander-witnessed arrests. In comparison with Group A, the rates of good-performance survival were significantly higher in Group B (odds ratio (OR), 2.23; 95% confidence interval, 2.05 to 2.42; P < 0.01) and Group D (OR, 2.80; 95% confidence interval, 2.28 to 3.43; P < 0.01), while no significant difference was seen for Group C (OR, 1.18; 95% confidence interval, 0.86 to 1.61; P = 0.32). The occurrence of vegetative status or worse at 1 month was highest in Group C (OR, 1.92; 95% confidence interval, 1.55 to 2.37; P < 0.01). In this registry-based study, BCPR significantly improved the survival of OHCA with good cerebral outcome. The groups with BCPR and ACLS by physicians had the best outcomes. However, receiving ACLS by physicians without preceding BCPR significantly

  6. Effects of pepper grenade explosions on non-combatant bystanders.

    PubMed

    Koul, Parvaiz A; Mir, Hyder; Shah, Tajamul H; Bagdadi, Farhana; Khan, Umar Hafiz

    2014-11-01

    Pepper gas is used for riot control in many parts of the world. Yet, its effects on bystanders are largely unreported. We fielded a questionnaire-based survey of 500 bystanders exposed to gas when police used pepper grenades against belligerent 'stone-pelters' in the northern Indian state of Jammu & Kashmir. Of 294 non-combatants who consented to participate in our survey, 97 per cent developed cough and irritation of the throat within few seconds of breathing the pungent smelling gas. They reported respiratory problems, dermatologic symptoms, sleep disturbances, and mood changes with varying frequency. Sixteen reported exacerbations of underlying respiratory disorders, with one temporally related to death. Symptoms led 51 to get medical attention. Nearly all respondents reported that symptoms recurred on re-exposure. We conclude that use of pepper grenades can cause serious acute symptoms in non-combatants accidentally exposed. We recommend alternate methods of riot control - water cannons, baton charges, tasers, plastic or rubber bullets, and so on - that have no collateral side effects on non-combatants be considered for routine use.

  7. Radiation-induced bystander effect: early process and rapid assessment.

    PubMed

    Wang, Hongzhi; Yu, K N; Hou, Jue; Liu, Qian; Han, Wei

    2015-01-01

    Radiation-induced bystander effect (RIBE) is a biological process that has received attention over the past two decades. RIBE refers to a plethora of biological effects in non-irradiated cells, including induction of genetic damages, gene expression, cell transformation, proliferation and cell death, which are initiated by receiving bystander signals released from irradiated cells. RIBE brings potential hazards to normal tissues in radiotherapy, and imparts a higher risk from low-dose radiation than we previously thought. Detection with proteins related to DNA damage and repair, cell cycle control, proliferation, etc. have enabled rapid assessment of RIBE in a number of research systems such as cultured cells, three-dimensional tissue models and animal models. Accumulated experimental data have suggested that RIBE may be initiated rapidly within a time frame as short as several minutes after radiation. These have led to the requirement of techniques capable of rapidly assessing RIBE itself as well as assessing the early processes involved. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Bystander Effects Induced by Medium From Irradiated Cells: Similar Transcriptome Responses in Irradiated and Bystander K562 Cells

    SciTech Connect

    Herok, Robert; Konopacka, Maria; Polanska, Joanna; Swierniak, Andrzej; Rogolinski, Jacek; Jaksik, Roman; Hancock, Ronald; Rzeszowska-Wolny, Joanna

    2010-05-01

    Purpose: Cells exposed to ionizing radiation release factors that induce deoxyribonucleic acid damage, chromosomal instability, apoptosis, and changes in the proliferation rate of neighboring unexposed cells, phenomena known as bystander effects. This work analyzes and compares changes in global transcript levels induced by direct irradiation and by bystander effects in K562 (human erythroleukemia) cells. Methods and Materials: Cells were X-irradiated with 4 Gy or transferred into culture medium collected from cells 1 h after irradiation (irradiation-conditioned medium). Global transcript profiles were assessed after 36 h of growth by use of Affymetrix microarrays (Affymetrix, Santa Clara, CA) and the kinetics of change of selected transcripts by quantitative reverse transcriptase-polymerase chain reaction. Results: The level of the majority (72%) of transcripts changed similarly (increase, decrease, or no change) in cells grown in irradiation-conditioned medium or irradiated, whereas only 0.6% showed an opposite response. Transcript level changes in bystander and irradiated cells were significantly different from those in untreated cells grown for the same amount of time and were confirmed by quantitative reverse transcriptase-polymerase chain reaction for selected genes. Signaling pathways in which the highest number of transcripts changed in both conditions were found in the following groups: neuroactive ligand-receptor, cytokine-cytokine receptor interaction, Janus Kinase-Signal Transducers and Activators of Transcription (JAK-STAT) and Mitogen-Activated Protein Kinase (MAPK) In control cells more transcripts were downregulated than in irradiated and bystander cells with transcription factors YBX1 and STAT5B, heat shock protein HSPA1A, and ribonucleic acid helicase DDX3X as examples. Conclusions: The transcriptomes of cells grown in medium from X-irradiated cells or directly irradiated show very similar changes. Signals released by irradiated cells may cause

  9. Membrane-Dependent Bystander Effect Contributes to Amplification of the Response to Alpha-Particle Irradiation in Targeted and Nontargeted Cells

    SciTech Connect

    Hanot, Maite; Hoarau, Jim; Carriere, Marie; Angulo, Jaime F.; Khodja, Hicham

    2009-11-15

    Purpose: Free radicals are believed to play an active role in the bystander response. This study investigated their origin as well as their temporal and spatial impacts in the bystander effect. Methods and Materials: We employed a precise alpha-particle microbeam to target a small fraction of subconfluent osteoblastic cells (MC3T3-E1). gammaH2AX-53BP1 foci, oxidative metabolism changes, and micronuclei induction in targeted and bystander cells were assessed. Results: Cellular membranes and mitochondria were identified as two distinct reactive oxygen species producers. The global oxidative stress observed after irradiation was significantly attenuated after cells were treated with filipin, evidence for the primal role of membrane in the bystander effect. To determine the membrane's impact at a cellular level, micronuclei yield was measured when various fractions of the cell population were individually targeted while the dose per cell remained constant. Induction of micronuclei increased in bystander cells as well as in targeted cells and was attenuated by filipin treatment, demonstrating a role for bystander signals between irradiated cells in an autocrine/paracrine manner. Conclusions: A complex interaction of direct irradiation and bystander signals leads to a membrane-dependent amplification of cell responses that could influence therapeutic outcomes in tissues exposed to low doses or to environmental exposure.

  10. Influence of ultraviolet C bystander effect on inflammatory response in A375 cell on subsequent exposure to ultraviolet C or hydrogen peroxide.

    PubMed

    Guha, Dipanjan; Bhowmik, Sudipta; Ghosh, Rita

    2014-12-01

    Ultraviolet C (UVC) irradiation (λ: 200-280 nm) causes release of several secretory cytokines responsible for inflammation. Our objective was to investigate whether inflammatory response was also induced in bystander cells. For this purpose, the conditioned medium containing the released factors from UVC irradiated A375 cells was used in this study to evaluate the expression of inflammatory markers, such as tumour necrosis factor alpha (TNFα), nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) and p38 mitogen-activated protein kinase (p38 MAPK) in its bystander cells. Inflammatory responses in bystander cells subjected to further irradiation by UVC or other damaging agent like H2O2 were also examined. It was observed that TNFα, NFκB and p38 MAPK were not induced in UVC-bystander cells, but their expression was suppressed in the UVC-bystander cells treated with UVC or H2O2. This lowering in inflammatory response might be due to smaller depletion in the reduced glutathione (GSH) content present in these treated bystander cells. The study indicated that UVC-induced bystander effect was an intrinsic protective response in cells, capable of suppressing inflammation induced in cells on exposure to damaging agents.

  11. Bystander effect induced by UV radiation; why should we be interested?

    PubMed

    Widel, Maria

    2012-11-14

    The bystander effect, whose essence is an interaction of cells directly subjected to radiation with adjacent non-subjected cells, via molecular signals, is an important component of ionizing radiation action. However, knowledge of the bystander effect in the case of ultraviolet (UV) radiation is quite limited. Reactive oxygen and nitrogen species generated by UV in exposed cells induce bystander effects in non-exposed cells, such as reduction in clonogenic cell survival and delayed cell death, oxidative DNA damage and gene mutations, induction of micronuclei, lipid peroxidation and apoptosis. Although the bystander effect after UV radiation has been recognized in cell culture systems, its occurrence in vivo has not been studied. However, solar UV radiation, which is the main source of UV in the environment, may induce in human dermal tissue an inflammatory response and immune suppression, events which can be considered as bystander effects of UV radiation. The oxidative damage to DNA, genomic instability and the inflammatory response may lead to carcinogenesis. UV radiation is considered one of the important etiologic factors for skin cancers, basal- and squamous-cell carcinomas and malignant melanoma. Based on the mechanisms of actions it seems that the UV-induced bystander effect can have some impact on skin damage (carcinogenesis?), and probably on cells of other tissues. The paper reviews the existing data about the UV-induced bystander effect and discusses a possible implication of this phenomenon for health risk. 

  12. Exosome-mediated microRNA transfer plays a role in radiation-induced bystander effect

    PubMed Central

    Xu, Shuai; Wang, Jufang; Ding, Nan; Hu, Wentao; Zhang, Xurui; Wang, Bing; Hua, Junrui; Wei, Wenjun; Zhu, Qiyun

    2015-01-01

    Bystander effects can be induced through cellular communication between irradiated cells and non-irradiated cells. The signals that mediate this cellular communication, such as cytokines, reactive oxygen species, nitric oxide and even microRNAs, can be transferred between cells via gap junctions or extracellular medium. We have previously reported that miR-21, a well described DDR (DNA damage response) microRNA, is involved in radiation-induced bystander effects through a medium-mediated way. However, the mechanisms of the microRNA transfer have not been elucidated in details. In the present study, it was found that exosomes isolated from irradiated conditioned medium could induce bystander effects. Furthermore, we demonstrated plenty of evidences that miR-21, which is up-regulated as a result of mimic transfection or irradiation, can be transferred from donor or irradiated cells into extracellular medium and subsequently get access to the recipient or bystander cells through exosomes to induce bystander effects. Inhibiting the miR-21 expression in advance can offset the bystander effects to some extent. From all of these results, it can be concluded that the exosome-mediated microRNA transfer plays an important role in the radiation-induced bystander effects. These findings provide new insights into the functions of microRNAs and the cellular communication between the directly irradiated cells and the non-irradiated cells. PMID:26488306

  13. Exosome-mediated microRNA transfer plays a role in radiation-induced bystander effect.

    PubMed

    Xu, Shuai; Wang, Jufang; Ding, Nan; Hu, Wentao; Zhang, Xurui; Wang, Bing; Hua, Junrui; Wei, Wenjun; Zhu, Qiyun

    2015-01-01

    Bystander effects can be induced through cellular communication between irradiated cells and non-irradiated cells. The signals that mediate this cellular communication, such as cytokines, reactive oxygen species, nitric oxide and even microRNAs, can be transferred between cells via gap junctions or extracellular medium. We have previously reported that miR-21, a well described DDR (DNA damage response) microRNA, is involved in radiation-induced bystander effects through a medium-mediated way. However, the mechanisms of the microRNA transfer have not been elucidated in details. In the present study, it was found that exosomes isolated from irradiated conditioned medium could induce bystander effects. Furthermore, we demonstrated plenty of evidences that miR-21, which is up-regulated as a result of mimic transfection or irradiation, can be transferred from donor or irradiated cells into extracellular medium and subsequently get access to the recipient or bystander cells through exosomes to induce bystander effects. Inhibiting the miR-21 expression in advance can offset the bystander effects to some extent. From all of these results, it can be concluded that the exosome-mediated microRNA transfer plays an important role in the radiation-induced bystander effects. These findings provide new insights into the functions of microRNAs and the cellular communication between the directly irradiated cells and the non-irradiated cells.

  14. Connexins and cyclooxygenase-2 crosstalk in the expression of radiation-induced bystander effects

    PubMed Central

    Zhao, Y; de Toledo, S M; Hu, G; Hei, T K; Azzam, E I

    2014-01-01

    Background: Signalling events mediated by connexins and cyclooxygenase-2 (COX-2) have important roles in bystander effects induced by ionising radiation. However, whether these proteins mediate bystander effects independently or cooperatively has not been investigated. Methods: Bystander normal human fibroblasts were cocultured with irradiated adenocarcinoma HeLa cells in which specific connexins (Cx) are expressed in the absence of endogenous Cx, before and after COX-2 knockdown, to investigate DNA damage in bystander cells and their progeny. Results: Inducible expression of gap junctions composed of connexin26 (Cx26) in irradiated HeLa cells enhanced the induction of micronuclei in bystander cells (P<0.01) and reduced the coculture time necessary for manifestation of the effect. In contrast, expression of connexin32 (Cx32) conferred protective effects. COX-2 knockdown in irradiated HeLa Cx26 cells attenuated the bystander response due to connexin expression. However, COX-2 knockdown resulted in enhanced micronucleus formation in the progeny of the bystander cells (P<0.001). COX-2 knockdown delayed junctional communication in HeLa Cx26 cells, and reduced, in the plasma membrane, the physical interaction of Cx26 with MAPKKK, a controller of the MAPK pathway that regulates COX-2 and connexin. Conclusions: Junctional communication and COX-2 cooperatively mediate the propagation of radiation-induced non-targeted effects. Characterising the mediating events affected by both mechanisms may lead to new approaches that mitigate secondary debilitating effects of cancer radiotherapy. PMID:24867691

  15. Does the number of irradiated cells influence the spatial distribution of bystander effects?

    PubMed

    Belchior, A; Balásházy, I; Monteiro Gil, O; Vaz, P; Almeida, P

    2014-12-01

    There is growing evidence that the radiation effects at low doses are not adequately described by a simple linear extrapolation from high doses, due, among others, to bystander effects. Though several studies have been published on this topic, the explanation of the mechanisms describing the bystander effects remains unclear. This study aims at understanding how the bystander signals are or can be propagated in the cell culture, namely if the number of irradiated cells influences the bystander response. An A549 cell line was exposed to several doses of α-particles, being the bystander response quantified in two non-irradiated areas. The radius of irradiated areas differs by a factor of 2, and the non-irradiated areas were optimally designed to have the same number of cells. Our results show evidence for bystander effects occurring in cells far away from the irradiated ones, meaning that bystander signals can easily spread throughout the cell culture. Additionally, our study highlights that the damage caused by radiation on the surrounding of irradiated areas could be different according to the number of irradiated cells, i.e., for the same dose value; the overall cellular damage could be different.

  16. The role of protein kinase C alpha translocation in radiation-induced bystander effect.

    PubMed

    Fang, Zihui; Xu, An; Wu, Lijun; Hei, Tom K; Hong, Mei

    2016-05-11

    Ionizing radiation is a well known human carcinogen. Evidence accumulated over the past decade suggested that extranuclear/extracellular targets and events may also play a critical role in modulating biological responses to ionizing radiation. However, the underlying mechanism(s) of radiation-induced bystander effect is still unclear. In the current study, AL cells were irradiated with alpha particles and responses of bystander cells were investigated. We found out that in bystander AL cells, protein kinase C alpha (PKCα) translocated from cytosol to membrane fraction. Pre-treatment of cells with PKC translocation inhibitor chelerythrine chloride suppressed the induced extracellular signal-regulated kinases (ERK) activity and the increased cyclooxygenase 2 (COX-2) expression as well as the mutagenic effect in bystander cells. Furthermore, tumor necrosis factor alpha (TNFα) was elevated in directly irradiated but not bystander cells; while TNFα receptor 1 (TNFR1) increased in the membrane fraction of bystander cells. Further analysis revealed that PKC activation caused accelerated internalization and recycling of TNFR1. Our data suggested that PKCα translocation may occur as an early event in radiation-induced bystander responses and mediate TNFα-induced signaling pathways that lead to the activation of ERK and up-regulation of COX-2.

  17. The role of protein kinase C alpha translocation in radiation-induced bystander effect

    PubMed Central

    Fang, Zihui; Xu, An; Wu, Lijun; Hei, Tom K.; Hong, Mei

    2016-01-01

    Ionizing radiation is a well known human carcinogen. Evidence accumulated over the past decade suggested that extranuclear/extracellular targets and events may also play a critical role in modulating biological responses to ionizing radiation. However, the underlying mechanism(s) of radiation-induced bystander effect is still unclear. In the current study, AL cells were irradiated with alpha particles and responses of bystander cells were investigated. We found out that in bystander AL cells, protein kinase C alpha (PKCα) translocated from cytosol to membrane fraction. Pre-treatment of cells with PKC translocation inhibitor chelerythrine chloride suppressed the induced extracellular signal-regulated kinases (ERK) activity and the increased cyclooxygenase 2 (COX-2) expression as well as the mutagenic effect in bystander cells. Furthermore, tumor necrosis factor alpha (TNFα) was elevated in directly irradiated but not bystander cells; while TNFα receptor 1 (TNFR1) increased in the membrane fraction of bystander cells. Further analysis revealed that PKC activation caused accelerated internalization and recycling of TNFR1. Our data suggested that PKCα translocation may occur as an early event in radiation-induced bystander responses and mediate TNFα-induced signaling pathways that lead to the activation of ERK and up-regulation of COX-2. PMID:27165942

  18. An observed effect of ultraviolet radiation emitted from beta-irradiated HaCaT cells upon non-beta-irradiated bystander cells.

    PubMed

    Le, Michelle; McNeill, Fiona E; Seymour, Colin; Rainbow, Andrew J; Mothersill, Carmel E

    2015-03-01

    Previous research has shown that beta radiation can induce ultraviolet (UV) photon emission in human keratinocyte cells. Spectral analysis using a filter-based method in the ultraviolet range demonstrated that the strongest externally measureable photon emission was induced by beta radiation in the UVA range. In the current study, the potential biological implications of this UV photon emission from beta-irradiated cells were investigated. HaCaT human keratinocyte cells were irradiated with tritium ((3)H) and the photon emission induced was concurrently measured at the strongest externally measurable wavelength, 340 ± 5 nm, using a combination filter-photomultiplier tube system. Unirradiated reporter HaCaT cell cultures were also placed directly above (3)H-irradiated cells so that they would receive the induced secondary photons emitted from beta-irradiated cells, and the clonogenic survival in reporter cells was then assessed. Maximum photon emission (1207.04 ± 107.65 counts per second) was observed during irradiation of 2,000 cells/cm(2) with (3)H and the maximum reporter cell death (23.2 ± 0.9% reduction in survival) was observed under the same conditions. The measured photon emission from beta-irradiated cells and reporter cell death were strongly correlated (r = 0.977, P < 0.01). Placement of a polyethylene terephthalate filter, designed to eliminate >90% of UV wavelengths below 390 nm, between the directly irradiated and reporter cell layers was effective in nearly abolishing both 340 nm photon detection and reporter cell death in treated groups. Concurrent treatment of reporter cells with lomefloxacin during exposure to the secondary photons resulted in significantly increased cell killing, indicating a potential synergistic effect, while melanin treatment resulted in decreased reporter cell killing regardless of irradiation. These results suggest that secondary photons in the UV spectral range induced by beta irradiation play a role in inducing a

  19. Ion beam induced luminescence: Relevance to radiation induced bystander effects

    NASA Astrophysics Data System (ADS)

    Ahmad, S. B.; McNeill, F. E.; Byun, S. H.; Prestwich, W. V.; Seymour, C.; Mothersill, C. E.

    2012-10-01

    The aim of this work is quantify the light emitted as a result of charged particle interaction in materials which may be of relevance to radiation induced "bystander effects" studies. We have developed a system which employs single photon counting to measure the light emitted from samples irradiated under vacuum by a charged particle beam. The system uses a fast photomultiplier tube with a peak cathode response at 420 nm. It has been tested in a proof-of-principle experiment using polystyrene targets. Light output, as a result of irradiation, was measured. The luminescence yield appears to have a non-linear behavior with the incident ion fluence: it rises exponentially to an asymptotic value. The target was irradiated with beam energies varying from 1 to 2 MeV and showed saturation at or before an incident fluence rate of 3 × 1013 H+/cm2 s. The average saturation value for the photon output was found to be 40 × 106 cps. Some measurements were performed using filters to study the emission at specific wavelengths. In the case of filtered light measurements, the photon output was found to saturate at 28 × 103, 10 × 106, and 35 × 106 cps for wavelengths of 280 ± 5 nm, 320 ± 5 nm and 340 ± 5 nm respectively. The light output reaches a maximum value because of damage induced in the polymer. Our measurements indicate a "damage cross section" of the order of 10-14 cm2. The average radiant intensity was found to increase at wavelengths of 280 and 320 nm when the proton energy was increased. This was not found to occur at 340 nm. In conclusion, the light emission at specific wavelengths was found to depend upon the incident proton fluence and the proton energy. The wavelengths of the emitted light measured in this study have significance for the understanding of radiation induced bystander effects.

  20. The Role of Target and Bystander Cells in Dose-Response Relationship of Radiation-Induced Bystander Effects in Two Cell Lines

    PubMed Central

    Soleymanifard, Shokouhozaman; Bahreyni Toossi, Mohammad Taghi; Sazgarnia, Ameneh; Mohebbi, Shokoufe

    2013-01-01

    Objective(s): Radiation effect induced in nonirradiated cells which are adjacent or far from irradiated cells is termed radiation-induced bystander effect (RIBE). Published data on dose-response relationship of RIBE is controversial. In the present study the role of targeted and bystander cells in RIBE dose-response relationship of two cell lines have been investigated. Materials and Methods: Two cell lines (QU-DB and MRC5) which had previously exhibited different dose-response relationship were selected. In the previous study the two cell lines received medium from autologous irradiated cells and the results showed that the magnitude of damages induced in QU-DB cells was dependent on dose unlike MRC5 cells. In the present study, the same cells irradiated with 0.5, 2 and 4 Gy gamma rays and their conditioned media were transferred to nonautologous bystander cells; such that the bystander effects due to cross-interaction between them were studied. Micronucleus assay was performed to measure the magnitude of damages induced in bystander cells (RIBE level). Results: QU-DB cells exhibited a dose-dependent response. RIBE level in MRC5 cells which received medium from 0.5 and 2 Gy QU-DB irradiated cells was not statistically different, but surprisingly when they received medium from 4Gy irradiated QU-DB cells, RIBE was abrogated. Conclusion: Results pertaining to QU-DB and MRC5 cells indicated that both target and bystander cells determined the outcome. Triggering the bystander effect depended on the radiation dose and the target cell-type, but when RIBE was triggered, dose-response relationship was predominantly determined by the bystander cell type. PMID:24298387

  1. Mechanism of protection of bystander cells by exogenous carbon monoxide: impaired response to damage signal of radiation-induced bystander effect.

    PubMed

    Han, W; Yu, K N; Wu, L J; Wu, Y C; Wang, H Z

    2011-05-10

    A protective effect of exogenous carbon monoxide (CO), generated by CO releasing molecule ticarbonyldichlororuthenium (II) dimer (CORM-2), on the bystander cells from the toxicity of radiation-induced bystander effect (RIBE) was revealed in our previous study. In the present work, a possible mechanism of this CO effect was investigated. The results from medium transfer experiments showed that α-particle irradiated Chinese hamster ovary (CHO) cells would release nitric oxide (NO), which was detected with specific NO fluorescence probe, to induce p53 binding protein 1 (BP1) formation in the cell population receiving the medium, and the release peak was found to be at 1h post irradiation. Treating the irradiated or bystander cells separately with CO (CORM-2) demonstrated that CO was effective in the bystander cells but not the irradiated cells. Measurements of NO production and release with a specific NO fluorescence probe also showed that CO treatment did not affect the production and release of NO by irradiated cells. Protection of CO on cells to peroxynitrite, an oxidizing free radical from NO, suggested that CO might protect bystander cells via impaired response of bystander cells to NO, a RIBE signal in our research system. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. A correlation of long term effects and radiation quality in the progeny of bystander cells after microbeam radiations: The experimental study of radiotherapy for cancer risk mitigation

    NASA Astrophysics Data System (ADS)

    Autsavapromporn, N.; Konishi, T.; Liu, C.; Plante, I.; Funayama, T.; Usami, N.; Azzam, EI; Suzuki, M.

    2017-06-01

    The goal of this study is to investigate the role of radiation quality and gap junction intercellular communication (GJIC) in the propagation of delayed stressful effects in the progeny of bystander human skin fibroblasts cultures (NB1RGB). Briefly, confluent NB1RGB cells in the presence and absence of gap junction inhibitor (AGA) were exposed to ionizing radiation (IR) with a different linear energy transfer (LET) either 5.35 keV X rays (LET ∼6 keV/μm) or 18.3 MeV/u carbon (LET ∼103 keV/μm) microbeam radiations. Following 20 populations post-irradiation, the progeny of bystander NB1RGB cells were harvested and assayed for several of biological endpoints. Our results showed that expression of stressful effects in the progeny of bystander cells is dependent on LET. The progeny of bystander cells exposed to low-LET X rays showed the persistence of oxidative stress and it was correlated with the increased mutant fraction. Such effect were not observed after high-LET carbon ions. Interestingly, inhibition of GJIC mitigated the toxic effects in the progeny of bystander cells. Together, the results contribute to the understanding of the fundamental radiation biology relating to the high-LET carbon ions to mitigate cancer risk after radiotherapy. Furthermore, GJIC be considered as a critical mediator in the bystander mutagenic effect.

  3. The role of oxidative DNA damage in radiation induced bystander effect.

    PubMed

    Havaki, Sophia; Kotsinas, Athanassios; Chronopoulos, Efstathios; Kletsas, Dimitris; Georgakilas, Alexandros; Gorgoulis, Vassilis G

    2015-01-01

    Ionizing radiation (IR) has been described as a double-edged sword, since it is used for diagnostic and therapeutic medical applications, and at the same time it is a well known human mutagen and carcinogen, causing wide-ranging chromosomal aberrations. It is nowadays accepted that the detrimental effects of IR are not restricted only in the irradiated cells, but also to non-irradiated bystander or even distant cells manifesting various biological effects. This review presents the role of oxidative stress in the induction of bystander effects referring to the types of the implicated oxidative DNA lesions, the contributing intercellular and intracellular stress mediators, the way they are transmitted from irradiated to bystander cells and finally, the complex role of the bystander effect in the therapeutic efficacy of radiation treatment of cancer. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Bystander effect between zebrafish embryos in vivo induced by high-dose X-rays.

    PubMed

    Choi, V W Y; Ng, C Y P; Kobayashi, A; Konishi, T; Suya, N; Ishikawa, T; Cheng, S H; Yu, K N

    2013-06-18

    We employed embryos of the zebrafish, Danio rerio, for our studies on the in vivo bystander effect between embryos irradiated with high-dose X-rays and naive unirradiated embryos. The effects on the naive whole embryos were studied through quantification of apoptotic signals at 25 h post fertilization (hpf) through the terminal dUTP transferase-mediated nick end-labeling (TUNEL) assay followed by counting the stained cells under a microscope. We report data showing that embryos at 5 hpf subjected to a 4-Gy X-ray irradiation could release a stress signal into the medium, which could induce a bystander effect in partnered naive embryos sharing the same medium. We further demonstrated that this bystander effect (induced through partnering) could be successfully suppressed through the addition of the nitric oxide (NO) scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) into the medium but not through the addition of the CO liberator tricarbonylchloro(glycinato)ruthenium(II) (CORM-3). This shows that NO was involved in the bystander response between zebrafish embryos induced through X-ray irradiation. We also report data showing that the bystander effect could be successfully induced in naive embryos by introducing them into the irradiated embryo conditioned medium (IECM) alone, i.e., without partnering with the irradiated embryos. The IECM was harvested from the medium that had conditioned the zebrafish embryos irradiated at 5 hpf with 4-Gy X-ray until the irradiated embryos developed into 29 hpf. NO released from the irradiated embryos was unlikely to be involved in the bystander effect induced through the IECM because of the short life of NO. We further revealed that this bystander effect (induced through IECM) was rapidly abolished through diluting the IECM by a factor of 2× or greater, which agreed with the proposal that the bystander effect was an on/off response with a threshold.

  5. The bystander cell-killing effect mediated by nitric oxide in normal human fibroblasts varies with irradiation dose but not with radiation quality.

    PubMed

    Yokota, Yuichiro; Funayama, Tomoo; Mutou-Yoshihara, Yasuko; Ikeda, Hiroko; Kobayashi, Yasuhiko

    2015-05-01

    To investigate the dependence of the bystander cell-killing effect on radiation dose and quality, and to elucidate related molecular mechanisms. Normal human fibroblast WI-38 cells were irradiated with 0.125 - 2 Gy of γ-rays or carbon ions and were co-cultured with non-irradiated cells. Survival rates of bystander cells were investigated using the colony formation assays, and nitrite concentrations in the medium were measured using the modified Saltzman method. Survival rates of bystander cells decreased with doses of γ-rays and carbon ions of ≤ 0.5 Gy. Treatment of the specific nitric oxide (NO) radical scavenger prevented reductions in survival rates of bystander cells. Moreover, nitrite concentrations increased with doses of less than 0.25 Gy (γ-rays) and 1 Gy (carbon ions). The dose responses of increased nitrite concentrations as well as survival reduction were similar between γ-rays and carbon ions. In addition, negative relationships were observed between survival rates and nitrite concentrations. The bystander cell-killing effect mediated by NO radicals in normal human fibroblasts depends on irradiation doses of up to 0.5 Gy, but not on radiation quality. NO radical production appears to be an important determinant of γ-ray- and carbon-ion-induced bystander effects.

  6. Lack of Bystander Effects From High LET Radiation For Early Cytogenetic Endpoints.

    SciTech Connect

    Groesser, Torsten; Cooper, Brian; Rydberg, Bjorn

    2008-05-07

    The aim of this work was to study radiation-induced bystander effects for early cytogenetic end points in various cell lines using the medium transfer technique after exposure to high- and low-LET radiation. Cells were exposed to 20 MeV/ nucleon nitrogen ions, 968 MeV/nucleon iron ions, or 575 MeV/nucleon iron ions followed by transfer of the conditioned medium from the irradiated cells to unirradiated test cells. The effects studied included DNA double-strand break induction, {gamma}-H2AX focus formation, induction of chromatid breaks in prematurely condensed chromosomes, and micronucleus formation using DNA repair-proficient and -deficient hamster and human cell lines (xrs6, V79, SW48, MO59K and MO59J). Cell survival was also measured in SW48 bystander cells using X rays. Although it was occasionally possible to detect an increase in chromatid break levels using nitrogen ions and to see a higher number of {gamma}-H2AX foci using nitrogen and iron ions in xrs6 bystander cells in single experiments, the results were not reproducible. After we pooled all the data, we could not verify a significant bystander effect for any of these end points. Also, we did not detect a significant bystander effect for DSB induction or micronucleus formation in these cell lines or for clonogenic survival in SW48 cells. The data suggest that DNA damage and cytogenetic changes are not induced in bystander cells. In contrast, data in the literature show pronounced bystander effects in a variety of cell lines, including clonogenic survival in SW48 cells and induction of chromatid breaks and micronuclei in hamster cells. To reconcile these conflicting data, it is possible that the epigenetic status of the specific cell line or the precise culture conditions and medium supplements, such as serum, may be critical for inducing bystander effects.

  7. Autophagy promotes radiation-induced senescence but inhibits bystander effects in human breast cancer cells.

    PubMed

    Huang, Yao-Huei; Yang, Pei-Ming; Chuah, Qiu-Yu; Lee, Yi-Jang; Hsieh, Yi-Fen; Peng, Chih-Wen; Chiu, Shu-Jun

    2014-07-01

    Ionizing radiation induces cellular senescence to suppress cancer cell proliferation. However, it also induces deleterious bystander effects in the unirradiated neighboring cells through the release of senescence-associated secretory phenotypes (SASPs) that promote tumor progression. Although autophagy has been reported to promote senescence, its role is still unclear. We previously showed that radiation induces senescence in PTTG1-depleted cancer cells. In this study, we found that autophagy was required for the radiation-induced senescence in PTTG1-depleted breast cancer cells. Inhibition of autophagy caused the cells to switch from radiation-induced senescence to apoptosis. Senescent cancer cells exerted bystander effects by promoting the invasion and migration of unirradiated cells through the release of CSF2 and the subsequently activation of the JAK2-STAT3 and AKT pathways. However, the radiation-induced bystander effects were correlated with the inhibition of endogenous autophagy in bystander cells, which also resulted from the activation of the CSF2-JAK2 pathway. The induction of autophagy by rapamycin reduced the radiation-induced bystander effects. This study reveals, for the first time, the dual role of autophagy in radiation-induced senescence and bystander effects.

  8. Tunneling nanotubes: an alternate route for propagation of the bystander effect following oncolytic viral infection

    PubMed Central

    Ady, Justin; Thayanithy, Venugopal; Mojica, Kelly; Wong, Phillip; Carson, Joshua; Rao, Prassanna; Fong, Yuman; Lou, Emil

    2016-01-01

    Tunneling nanotubes (TNTs) are ultrafine, filamentous actin-based cytoplasmic extensions which form spontaneously to connect cells at short and long-range distances. We have previously described long-range intercellular communication via TNTs connecting mesothelioma cells in vitro and demonstrated TNTs in intact tumors from patients with mesothelioma. Here, we investigate the ability of TNTs to mediate a viral thymidine kinase based bystander effect after oncolytic viral infection and administration of the nucleoside analog ganciclovir. Using confocal microscopy we assessed the ability of TNTs to propagate enhanced green fluorescent protein (eGFP), which is encoded by the herpes simplex virus NV1066, from infected to uninfected recipient cells. Using time-lapse imaging, we observed eGFP expressed in infected cells being transferred via TNTs to noninfected cells; additionally, increasing fluorescent activity in recipient cells indicated cell-to-cell transmission of the eGFP-expressing NV1066 virus had also occurred. TNTs mediated cell death as a form of direct cell-to-cell transfer following viral thymidine kinase mediated activation of ganciclovir, inducing a unique long-range form of the bystander effect through transmission of activated ganciclovir to nonvirus-infected cells. Thus, we provide proof-of-principle demonstration of a previously unknown and alternative mechanism for inducing apoptosis in noninfected recipient cells. The conceptual advance of this work is that TNTs can be harnessed for delivery of oncolytic viruses and of viral thymidine kinase activated drugs to amplify the bystander effect between cancer cells over long distances in stroma-rich tumor microenvironments. PMID:27933314

  9. [Non-targeted effects (bystander, abscopal) of external beam radiation therapy: an overview for the clinician].

    PubMed

    Sun, R; Sbai, A; Ganem, G; Boudabous, M; Collin, F; Marcy, P-Y; Doglio, A; Thariat, J

    2014-12-01

    Radiotherapy is advocated in the treatment of cancer of over 50 % of patients. It has long been considered as a focal treatment only. However, the observation of effects, such as fatigue and lymphopenia, suggests that systemic effects may also occur. The description of bystander and abscopal effects suggests that irradiated cells may exert an action on nearby or distant unirradiated cells, respectively. A third type of effect that involves feedback interactions between irradiated cells was more recently described (cohort effect). This new field of radiation therapy is yet poorly understood and the definitions suffer from a lack of reproducibility in part due to the variety of experimental models. The bystander effect might induce genomic instability in non-irradiated cells and is thus extensively studied for a potential risk of radiation-induced cancer. From a therapeutic perspective, reproducing an abscopal effect by using a synergy between ionizing radiation and immunomodulatory agents to elicit or boost anticancer immune responses is an interesting area of research. Many applications are being developed in particular in the field of hypofractionated stereotactic irradiation of metastatic disease. Copyright © 2014 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  10. Molecular Understanding of Growth Inhibitory Effect from Irradiated to Bystander Tumor Cells in Mouse Fibrosarcoma Tumor Model

    PubMed Central

    Desai, Sejal; Srambikkal, Nishad; Yadav, Hansa D.; Shetake, Neena; Balla, Murali M. S.; Kumar, Amit; Ray, Pritha; Ghosh, Anu

    2016-01-01

    Even though bystander effects pertaining to radiation risk assessment has been extensively studied, the molecular players of radiation induced bystander effect (RIBE) in the context of cancer radiotherapy are poorly known. In this regard, the present study is aimed to investigate the effect of irradiated tumor cells on the bystander counterparts in mouse fibrosarcoma (WEHI 164 cells) tumor model. Mice co-implanted with WEHI 164 cells γ-irradiated with a lethal dose of 15 Gy and unirradiated (bystander) WEHI 164 cells showed inhibited tumor growth, which was measured in terms of tumor volume and Luc+WEHI 164 cells based bioluminescence in vivo imaging. Histopathological analysis and other assays revealed decreased mitotic index, increased apoptosis and senescence in these tumor tissues. In addition, poor angiogenesis was observed in these tumor tissues, which was further confirmed by fluorescence imaging of tumor vascularisation and CD31 expression by immuno-histochemistry. Interestingly, the growth inhibitory bystander effect was exerted more prominently by soluble factors obtained from the irradiated tumor cells than the cellular fraction. Cytokine profiling of the supernatants obtained from the irradiated tumor cells showed increased levels of VEGF, Rantes, PDGF, GMCSF and IL-2 and decreased levels of IL-6 and SCF. Comparative proteomic analysis of the supernatants from the irradiated tumor cells showed differential expression of total 24 protein spots (21 up- and 3 down-regulated) when compared with the supernatant from the unirradiated control cells. The proteins which showed substantially higher level in the supernatant from the irradiated cells included diphosphate kinase B, heat shock cognate, annexin A1, angiopoietin-2, actin (cytoplasmic 1/2) and stress induced phosphoprotein 1. However, the levels of proteins like annexin A2, protein S100 A4 and cofilin was found to be lower in this supernatant. In conclusion, our results provided deeper insight about

  11. Molecular Understanding of Growth Inhibitory Effect from Irradiated to Bystander Tumor Cells in Mouse Fibrosarcoma Tumor Model.

    PubMed

    Desai, Sejal; Srambikkal, Nishad; Yadav, Hansa D; Shetake, Neena; Balla, Murali M S; Kumar, Amit; Ray, Pritha; Ghosh, Anu; Pandey, B N

    2016-01-01

    Even though bystander effects pertaining to radiation risk assessment has been extensively studied, the molecular players of radiation induced bystander effect (RIBE) in the context of cancer radiotherapy are poorly known. In this regard, the present study is aimed to investigate the effect of irradiated tumor cells on the bystander counterparts in mouse fibrosarcoma (WEHI 164 cells) tumor model. Mice co-implanted with WEHI 164 cells γ-irradiated with a lethal dose of 15 Gy and unirradiated (bystander) WEHI 164 cells showed inhibited tumor growth, which was measured in terms of tumor volume and Luc+WEHI 164 cells based bioluminescence in vivo imaging. Histopathological analysis and other assays revealed decreased mitotic index, increased apoptosis and senescence in these tumor tissues. In addition, poor angiogenesis was observed in these tumor tissues, which was further confirmed by fluorescence imaging of tumor vascularisation and CD31 expression by immuno-histochemistry. Interestingly, the growth inhibitory bystander effect was exerted more prominently by soluble factors obtained from the irradiated tumor cells than the cellular fraction. Cytokine profiling of the supernatants obtained from the irradiated tumor cells showed increased levels of VEGF, Rantes, PDGF, GMCSF and IL-2 and decreased levels of IL-6 and SCF. Comparative proteomic analysis of the supernatants from the irradiated tumor cells showed differential expression of total 24 protein spots (21 up- and 3 down-regulated) when compared with the supernatant from the unirradiated control cells. The proteins which showed substantially higher level in the supernatant from the irradiated cells included diphosphate kinase B, heat shock cognate, annexin A1, angiopoietin-2, actin (cytoplasmic 1/2) and stress induced phosphoprotein 1. However, the levels of proteins like annexin A2, protein S100 A4 and cofilin was found to be lower in this supernatant. In conclusion, our results provided deeper insight about

  12. Stochastic models of the bystander effect and of transmissible genomic instability: implications for mechanisms and low dose risks

    NASA Astrophysics Data System (ADS)

    Little, M. P.

    Bystander effects following exposure to α -particles have been observed in C3H 10T cells and in other experimental systems, and imply that linearly extrapolating low dose risks from high-dose data might materially underestimate risk. In many experimental systems there is evidence of saturation of dose response that would be expected from the bystander effect. The ratio of lung cancer risk among persons exposed to low and high doses of radon daughters is 2.4 -- 4.0, with an upper 95% confidence limit of about 14. Assuming the bystander effect observed in the C3H 10T data applies to human lung cells in vivo, the epidemiological data imply that the number of neighbouring cells that can contribute to the bystander effect is between 0 and 1, with an upper 95% confidence limit of about 7. As a consequence, the bystander effect observed in the C3H 10T system probably does not play a large part in the process of radon-induced lung carcinogenesis in humans. Other experimental data relating to the bystander effect after α -particle exposure are surveyed; some of these data are more compatible with the epidemiological data. Three models of genomic instability recently developed by Little and Wright (Math. Biosci. 2003;183:111-34), with two, three and five stages, are compared with the four-stage model proposed by Luebeck and Moolgavkar (PNAS 2002;99:15095-100) and the two-stage model of Nowak et al. (PNAS 2002;99:16226-31). All models are fitted to SEER colon cancer data. Although the five-stage model of Little and Wright (2003) provides the best fit, it is not much superior to that of the model of Nowak et al. (2002) or the two- and three-stage models of Little and Wright (2003). The fit of the model of Luebeck and Moolgavkar (2002) is somewhat worse than these three, particularly for females under the age of 40. Comparison of the predictions of the two-stage models of Little and Wright (2003) and Nowak (2002) with patterns of excess risk in the Japanese atomic bomb

  13. The Bystander-Effect: A Meta-Analytic Review on Bystander Intervention in Dangerous and Non-Dangerous Emergencies

    ERIC Educational Resources Information Center

    Fischer, Peter; Krueger, Joachim I.; Greitemeyer, Tobias; Vogrincic, Claudia; Kastenmuller, Andreas; Frey, Dieter; Heene, Moritz; Wicher, Magdalena; Kainbacher, Martina

    2011-01-01

    Research on bystander intervention has produced a great number of studies showing that the presence of other people in a critical situation reduces the likelihood that an individual will help. As the last systematic review of bystander research was published in 1981 and was not a quantitative meta-analysis in the modern sense, the present…

  14. The Bystander-Effect: A Meta-Analytic Review on Bystander Intervention in Dangerous and Non-Dangerous Emergencies

    ERIC Educational Resources Information Center

    Fischer, Peter; Krueger, Joachim I.; Greitemeyer, Tobias; Vogrincic, Claudia; Kastenmuller, Andreas; Frey, Dieter; Heene, Moritz; Wicher, Magdalena; Kainbacher, Martina

    2011-01-01

    Research on bystander intervention has produced a great number of studies showing that the presence of other people in a critical situation reduces the likelihood that an individual will help. As the last systematic review of bystander research was published in 1981 and was not a quantitative meta-analysis in the modern sense, the present…

  15. New techniques required to understand the by-stander effect in situ.

    NASA Astrophysics Data System (ADS)

    Britten, Richard

    2008-03-01

    The by-stander effect has been known for nearly a century under various names, of which the abscopal effect is probably the most well known. More recently the by-stander effect has received a lot of attention, and various models have been developed to assess the relative importance of the bystander effect in radiation treatment. It is clear that irradiated cells release factors that lead to alterations in the physiology of adjacent irradiated cells, both via inter-cellular junctions and through systemic factors. Most studies that have sought to identify the systemic factors and the cellular mechanisms that are responsible for the bystander effect have by necessity used in vitro systems. The purpose of this presentation is to alert the audience to the various techniques that are available to study the proteomic changes related to the bystander effect in situ. We shall pay attention to the use of MALDI-imaging to track spatial proteomic changes in tissue that have been exposed to microbeams.

  16. Caspase-3-independent pathways proceeding in bystander effect of HSV-tk/GCV system

    NASA Astrophysics Data System (ADS)

    Lin, Juqiang; Ma, Yan; Zeng, Shaoqun; Zhang, Zhihong

    2008-02-01

    HSV-tk/GCV system, which is the virus-directed enzyme/prodrug therapy of herpes simplex virus (HSV) thymidine kinase (tk) gene / the anti-viral reagent ganciclovir (GCV), is one of the promising approaches in the rapidly growing area of gene therapy. As gene therapy of cancer such as suicide gene therapy has entered the clinic, another therapy effect which is called 'bystander effect' was reported. Bystander effect can lead to killing of non-transduced tumor cells in the immediate vicinity of GCV-treated HSV-TK-positive cells. Now the magnitude of 'bystander effect' is an essential factor for this anti-tumor approach in vivo. However, the mechanism which HSV-tk/ACV brings "bystander effect" is poorly understood. In this study, we monitor the activation of caspase-3 in HSV-tk/GCV system by a FRET probe CD3, a FRET-based indicator for activity of caspase3, which is composed of an enhanced cyan fluorescent protein, a caspase-sensitive linker, and a red fluorescent protein from Discosoma with efficient maturation property. Through application of CD3 we have visualized the activation of caspase-3 in tk gene positive human adenoid cystic carcinoma (ACC-M) cells but not in bystander effect of HSV-tk/GCV system induced by GCV. This finding provides needed information for understanding the mechanisms by which suicide gene approaches actually kill cancer cells, and may prove to be helpful for the clinical treatment of cancers.

  17. Bystander effects and compartmental stress response to X-ray irradiation in L929 cells.

    PubMed

    Temelie, Mihaela; Stroe, Daniela; Petcu, Ileana; Mustaciosu, Cosmin; Moisoi, Nicoleta; Savu, Diana

    2016-08-01

    Bystander effects are indirect consequences of radiation and many other stress factors. They occur in cells that are not directly exposed to these factors, but receive signals from affected cells either by gap junctions or by molecules released in the medium. Characterizing these effects and deciphering the underlying mechanisms involved in radiation-induced bystander effects are relevant for cancer radiotherapy and radioprotection. At doses of X-ray radiation 0.5 and 1 Gy, we detected bystander effects as increased numbers of micronuclei shortly after the treatment, through medium transfer and by co-cultures. Interestingly, bystander cells did not exhibit long-term adverse changes in viability. Evaluation of several compartmental stress markers (CHOP, BiP, mtHsp60, cytHsp70) by qRT-PCR did not reveal expression changes at transcriptional level. We investigated the involvement of ROS and NO in this process by addition of specific scavengers of these molecules, DMSO or c-PTIO in the transferred medium. This approach proved that ROS but not NO is involved in the induction of lesions in the acceptor cells. These results indicate that L929 cells are susceptible to stress effects of radiation-induced bystander signaling.

  18. Extracellular vesicles released following heat stress induce bystander effect in unstressed populations.

    PubMed

    Bewicke-Copley, Findlay; Mulcahy, Laura Ann; Jacobs, Laura Ann; Samuel, Priya; Akbar, Naveed; Pink, Ryan Charles; Carter, David Raul Francisco

    2017-01-01

    Cells naïve to stress can display the effects of stress, such as DNA damage and apoptosis, when they are exposed to signals from stressed cells; this phenomenon is known as the bystander effect. We previously showed that bystander effect induced by ionising radiation are mediated by extracellular vesicles (EVs). Bystander effect can also be induced by other types of stress, including heat shock, but it is unclear whether EVs are involved. Here we show that EVs released from heat shocked cells are also able to induce bystander damage in unstressed populations. Naïve cells treated with media conditioned by heat shocked cells showed higher levels of DNA damage and apoptosis than cells treated with media from control cells. Treating naïve cells with EVs derived from media conditioned by heat shocked cells also induced a bystander effect when compared to control, with DNA damage and apoptosis increasing whilst the level of cell viability was reduced. We demonstrate that treatment of naïve cells with heat shocked cell-derived EVs leads to greater invasiveness in a trans-well Matrigel assay. Finally, we show that naïve cells treated with EVs from heat-shocked cells are more likely to survive a subsequent heat shock, suggesting that these EVs mediate an adaptive response. We propose that EVs released following stress mediate an intercellular response that leads to apparent stress in neighbouring cells but also greater robustness in the face of a subsequent insult.

  19. Target irradiation induced bystander effects between stem-like and non stem-like cancer cells.

    PubMed

    Liu, Yu; Kobayashi, Alisa; Maeda, Takeshi; Fu, Qibin; Oikawa, Masakazu; Yang, Gen; Konishi, Teruaki; Uchihori, Yukio; Hei, Tom K; Wang, Yugang

    2015-03-01

    Tumors are heterogeneous in nature and consist of multiple cell types. Among them, cancer stem-like cells (CSCs) are suggested to be the principal cause of tumor metastasis, resistance and recurrence. Therefore, understanding the behavior of CSCs in direct and indirect irradiations is crucial for clinical radiotherapy. Here, the CSCs and their counterpart non stem-like cancer cells (NSCCs) in human HT1080 fibrosarcoma cell line were sorted and labeled, then the two cell subtypes were mixed together and chosen separately to be irradiated via a proton microbeam. The radiation-induced bystander effect (RIBE) between the CSCs and NSCCs was measured by imaging 53BP1 foci, a widely used indicator for DNA double strand break (DSB). CSCs were found to be less active than NSCCs in both the generation and the response of bystander signals. Moreover, the nitric oxide (NO) scavenger c-PTIO can effectively alleviate the bystander effect in bystander NSCCs but not in bystander CSCs, indicating a difference of the two cell subtypes in NO signal response. To our knowledge, this is the first report shedding light on the RIBE between CSCs and NSCCs, which might contribute to a further understanding of the out-of-field effect in cancer radiotherapy.

  20. Investigation of modification X-ray induced bystander effect in vitro.

    PubMed

    Shemetun, O V; Talan, O O

    2014-09-01

    Objective - to investigate the modification of bystander effect induced by X-irradiation of human peripheral blood in vitro by application of antioxidant vitamin medication. Material and methods. Modeling of radiation-induced bystander effect in vitro in mixed lymphocyte cultures exposed to dose of 1 Gy and non-irradiated blood lymphocytes of persons of different sexes, GTG-staining of metaphase chromosomes and their cytogenetic analysis; application of antioxidant preparation (soluble forms of vitamins E, C and A) in concentration 40 μg/ml. Results. Under the introduction of antioxidant preparation into mixed culture before lymphocytes cultivation frequency of chromosomal aberrations in bystander cells did not significantly different from the control (p > 0.05). application of antioxidant preparation modifies the radiation-induced bystander effect in unirradiated human peripheral blood lymphocytes under their joint cultivation with lymphocytes irradiated in dose of 1 Gy. Antioxidant prevents the development of secondary oxidative stress in unirradiated cells, eliminates the development in them of radiation-induced bystander effect and ensures the preservation of stability of their chromosome apparatus. O. V. Shemetun, O. O. Talan.

  1. Protective effect of mild endoplasmic reticulum stress on radiation-induced bystander effects in hepatocyte cells.

    PubMed

    Xie, Yuexia; Ye, Shuang; Zhang, Jianghong; He, Mingyuan; Dong, Chen; Tu, Wenzhi; Liu, Peifeng; Shao, Chunlin

    2016-12-13

    Radiation-induced bystander effect (RIBE) has important implications for secondary cancer risk assessment during cancer radiotherapy, but the defense and self-protective mechanisms of bystander normal cells are still largely unclear. The present study found that micronuclei (MN) formation could be induced in the non-irradiated HL-7702 hepatocyte cells after being treated with the conditioned medium from irradiated hepatoma HepG2 cells under either normoxia or hypoxia, where the ratio of the yield of bystander MN induction to the yield of radiation-induced MN formation under hypoxia was much higher than that of normoxia. Nonetheless, thapsigargin induced endoplasmic reticulum (ER) stress and dramatically suppressed this bystander response manifested as the decrease of MN and apoptosis inductions. Meanwhile, the interference of BiP gene, a major ER chaperone, amplified the detrimental RIBE. More precisely, thapsigargin provoked ER sensor of PERK to initiate an instantaneous and moderate ER stress thus defensed the hazard form RIBE, while BiP depletion lead to persistently destroyed homeostasis of ER and exacerbated cell injury. These findings provide new insights that the mild ER stress through BiP-PERK-p-eIF2α signaling pathway has a profound role in protecting cellular damage from RIBE and hence may decrease the potential secondary cancer risk after cancer radiotherapy.

  2. Protective effect of mild endoplasmic reticulum stress on radiation-induced bystander effects in hepatocyte cells

    PubMed Central

    Xie, Yuexia; Ye, Shuang; Zhang, Jianghong; He, Mingyuan; Dong, Chen; Tu, Wenzhi; Liu, Peifeng; Shao, Chunlin

    2016-01-01

    Radiation-induced bystander effect (RIBE) has important implications for secondary cancer risk assessment during cancer radiotherapy, but the defense and self-protective mechanisms of bystander normal cells are still largely unclear. The present study found that micronuclei (MN) formation could be induced in the non-irradiated HL-7702 hepatocyte cells after being treated with the conditioned medium from irradiated hepatoma HepG2 cells under either normoxia or hypoxia, where the ratio of the yield of bystander MN induction to the yield of radiation-induced MN formation under hypoxia was much higher than that of normoxia. Nonetheless, thapsigargin induced endoplasmic reticulum (ER) stress and dramatically suppressed this bystander response manifested as the decrease of MN and apoptosis inductions. Meanwhile, the interference of BiP gene, a major ER chaperone, amplified the detrimental RIBE. More precisely, thapsigargin provoked ER sensor of PERK to initiate an instantaneous and moderate ER stress thus defensed the hazard form RIBE, while BiP depletion lead to persistently destroyed homeostasis of ER and exacerbated cell injury. These findings provide new insights that the mild ER stress through BiP-PERK-p-eIF2α signaling pathway has a profound role in protecting cellular damage from RIBE and hence may decrease the potential secondary cancer risk after cancer radiotherapy. PMID:27958308

  3. Bystander Host Cell Killing Effects of Clostridium perfringens Enterotoxin

    PubMed Central

    Shrestha, Archana; Hendricks, Matthew R.; Bomberger, Jennifer M.

    2016-01-01

    ABSTRACT Clostridium perfringens enterotoxin (CPE) binds to claudin receptors, e.g., claudin-4, and then forms a pore that triggers cell death. Pure cultures of host cells that do not express claudin receptors, e.g., fibroblasts, are unaffected by pathophysiologically relevant CPE concentrations in vitro. However, both CPE-insensitive and CPE-sensitive host cells are present in vivo. Therefore, this study tested whether CPE treatment might affect fibroblasts when cocultured with CPE-sensitive claudin-4 fibroblast transfectants or Caco-2 cells. Under these conditions, immunofluorescence microscopy detected increased death of fibroblasts. This cytotoxic effect involved release of a toxic factor from the dying CPE-sensitive cells, since it could be reproduced using culture supernatants from CPE-treated sensitive cells. Supernatants from CPE-treated sensitive cells, particularly Caco-2 cells, were found to contain high levels of membrane vesicles, often containing a CPE species. However, most cytotoxic activity remained in those supernatants even after membrane vesicle depletion, and CPE was not detected in fibroblasts treated with supernatants from CPE-treated sensitive cells. Instead, characterization studies suggest that a major cytotoxic factor present in supernatants from CPE-treated sensitive cells may be a 10- to 30-kDa host serine protease or require the action of that host serine protease. Induction of caspase-3-mediated apoptosis was found to be important for triggering release of the cytotoxic factor(s) from CPE-treated sensitive host cells. Furthermore, the cytotoxic factor(s) in these supernatants was shown to induce a caspase-3-mediated killing of fibroblasts. This bystander killing effect due to release of cytotoxic factors from CPE-treated sensitive cells could contribute to CPE-mediated disease. PMID:27965452

  4. Role of nitric oxide in the radiation-induced bystander effect.

    PubMed

    Yakovlev, Vasily A

    2015-12-01

    Cells that are not irradiated but are affected by "stress signal factors" released from irradiated cells are called bystander cells. These cells, as well as directly irradiated ones, express DNA damage-related proteins and display excess DNA damage, chromosome aberrations, mutations, and malignant transformation. This phenomenon has been studied widely in the past 20 years, since its first description by Nagasawa and Little in 1992, and is known as the radiation-induced bystander effect (RIBE). Several factors have been identified as playing a role in the bystander response. This review will focus on one of them, nitric oxide (NO), and its role in the stimulation and propagation of RIBE. The hydrophobic properties of NO, which permit its diffusion through the cytoplasm and plasma membranes, allow this signaling molecule to easily spread from irradiated cells to bystander cells without the involvement of gap junction intercellular communication. NO produced in irradiated tissues mediates cellular regulation through posttranslational modification of a number of regulatory proteins. The best studied of these modifications are S-nitrosylation (reversible oxidation of cysteine) and tyrosine nitration. These modifications can up- or down-regulate the functions of many proteins modulating different NO-dependent effects. These NO-dependent effects include the stimulation of genomic instability (GI) and the accumulation of DNA errors in bystander cells without direct DNA damage.

  5. Bystander Effect Induced by Electroporation is Possibly Mediated by Microvesicles and Dependent on Pulse Amplitude, Repetition Frequency and Cell Type.

    PubMed

    Prevc, Ajda; Bedina Zavec, Apolonija; Cemazar, Maja; Kloboves-Prevodnik, Veronika; Stimac, Monika; Todorovic, Vesna; Strojan, Primoz; Sersa, Gregor

    2016-10-01

    Bystander effect, a known phenomenon in radiation biology, where irradiated cells release signals which cause damage to nearby, unirradiated cells, has not been explored in electroporated cells yet. Therefore, our aim was to determine whether bystander effect is present in electroporated melanoma cells in vitro, by determining viability of non-electroporated cells exposed to medium from electroporated cells and by the release of microvesicles as potential indicators of the bystander effect. Here, we demonstrated that electroporation of cells induces bystander effect: Cells exposed to electric pulses mediated their damage to the non-electroporated cells, thus decreasing cell viability. We have shown that shedding microvesicles may be one of the ways used by the cells to mediate the death signals to the neighboring cells. The murine melanoma B16F1 cell line was found to be more electrosensitive and thus more prone to bystander effect than the canine melanoma CMeC-1 cell line. In B16F1 cell line, bystander effect was present above the level of electropermeabilization of the cells, with the threshold at 800 V/cm. Furthermore, with increasing electric field intensities and the number of pulses, the bystander effect also increased. In conclusion, electroporation can induce bystander effect which may be mediated by microvesicles, and depends on pulse amplitude, repetition frequency and cell type.

  6. A reaction-diffusion model for radiation-induced bystander effects.

    PubMed

    Olobatuyi, Oluwole; de Vries, Gerda; Hillen, Thomas

    2017-08-01

    We develop and analyze a reaction-diffusion model to investigate the dynamics of the lifespan of a bystander signal emitted when cells are exposed to radiation. Experimental studies by Mothersill and Seymour 1997, using malignant epithelial cell lines, found that an emitted bystander signal can still cause bystander effects in cells even 60 h after its emission. Several other experiments have also shown that the signal can persist for months and even years. Also, bystander effects have been hypothesized as one of the factors responsible for the phenomenon of low-dose hyper-radiosensitivity and increased radioresistance (HRS/IRR). Here, we confirm this hypothesis with a mathematical model, which we fit to Joiner's data on HRS/IRR in a T98G glioma cell line. Furthermore, we use phase plane analysis to understand the full dynamics of the signal's lifespan. We find that both single and multiple radiation exposure can lead to bystander signals that either persist temporarily or permanently. We also found that, in an heterogeneous environment, the size of the domain exposed to radiation and the number of radiation exposures can determine whether a signal will persist temporarily or permanently. Finally, we use sensitivity analysis to identify those cell parameters that affect the signal's lifespan and the signal-induced cell death the most.

  7. Modeling of radiation-induced bystander effect using Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Xia, Junchao; Liu, Liteng; Xue, Jianming; Wang, Yugang; Wu, Lijun

    2009-03-01

    Experiments showed that the radiation-induced bystander effect exists in cells, or tissues, or even biological organisms when irradiated with energetic ions or X-rays. In this paper, a Monte Carlo model is developed to study the mechanisms of bystander effect under the cells sparsely populated conditions. This model, based on our previous experiment which made the cells sparsely located in a round dish, focuses mainly on the spatial characteristics. The simulation results successfully reach the agreement with the experimental data. Moreover, other bystander effect experiment is also computed by this model and finally the model succeeds in predicting the results. The comparison of simulations with the experimental results indicates the feasibility of the model and the validity of some vital mechanisms assumed.

  8. Genomic instability and bystander effects: a paradigm shift in radiation biology?

    NASA Technical Reports Server (NTRS)

    Morgan, William F.

    2002-01-01

    A basic paradigm in radiobiology is that, following exposure to ionizing radiation, the deposition of energy in the cell nucleus and the resulting damage to DNA, the principal target, are responsible for the radiation's deleterious biological effects. Findings in two rapidly expanding fields of research--radiation-induced genomic instability and bystander effects--have caused us to reevaluate these central tenets. In this article, the potential influence of induced genomic instability and bystander effects on cellular injury after exposure to low-level radiation will be reviewed.

  9. Genomic instability and bystander effects: a paradigm shift in radiation biology?

    NASA Technical Reports Server (NTRS)

    Morgan, William F.

    2002-01-01

    A basic paradigm in radiobiology is that, following exposure to ionizing radiation, the deposition of energy in the cell nucleus and the resulting damage to DNA, the principal target, are responsible for the radiation's deleterious biological effects. Findings in two rapidly expanding fields of research--radiation-induced genomic instability and bystander effects--have caused us to reevaluate these central tenets. In this article, the potential influence of induced genomic instability and bystander effects on cellular injury after exposure to low-level radiation will be reviewed.

  10. Induction of bystander effects by UVA, UVB, and UVC radiation in human fibroblasts and the implication of reactive oxygen species.

    PubMed

    Widel, Maria; Krzywon, Aleksandra; Gajda, Karolina; Skonieczna, Magdalena; Rzeszowska-Wolny, Joanna

    2014-03-01

    Radiation-induced bystander effects are various types of responses displayed by nonirradiated cells induced by signals transmitted from neighboring irradiated cells. This phenomenon has been well studied after ionizing radiation, but data on bystander effects after UV radiation are limited and so far have been reported mainly after UVA and UVB radiation. The studies described here were aimed at comparing the responses of human dermal fibroblasts exposed directly to UV (A, B, or C wavelength range) and searching for bystander effects induced in unexposed cells using a transwell co-incubation system. Cell survival and apoptosis were used as a measure of radiation effects. Additionally, induction of senescence in UV-exposed and bystander cells was evaluated. Reactive oxygen species (ROS), superoxide radical anions, and nitric oxide inside the cells and secretion of interleukins 6 and 8 (IL-6 and IL-8) into the medium were assayed and evaluated as potential mediators of bystander effects. All three regions of ultraviolet radiation induced bystander effects in unexposed cells, as shown by a diminution of survival and an increase in apoptosis, but the pattern of response to direct exposure and the bystander effects differed depending on the UV spectrum. Although UVA and UVB were more effective than UVC in generation of apoptosis in bystander cells, UVC induced senescence both in irradiated cells and in neighbors. The level of cellular ROS increased significantly shortly after UVA and UVB exposure, suggesting that the bystander effects may be mediated by ROS generated in cells by UV radiation. Interestingly, UVC was more effective at generation of ROS in bystanders than in directly exposed cells and induced a high yield of superoxide in exposed and bystander cells, which, however, was only weakly associated with impairment of mitochondrial membrane potential. Increasing concentration of IL-6 but not IL-8 after exposure to each of the three bands of UV points to its role

  11. Proteasomal inhibition sensitizes cervical cancer cells to mitomycin C-induced bystander effect: the role of tumor microenvironment.

    PubMed

    Singh, S V; Ajay, A K; Mohammad, N; Malvi, P; Chaube, B; Meena, A S; Bhat, M K

    2015-10-22

    Inaccessibility of drugs to poorly vascularized strata of tumor is one of the limiting factors in cancer therapy. With the advent of bystander effect (BE), it is possible to perpetuate the cellular damage from drug-exposed cells to the unexposed ones. However, the role of infiltrating tumor-associated macrophages (TAMs), an integral part of the tumor microenvironment, in further intensifying BE remains obscure. In the present study, we evaluated the effect of mitomycin C (MMC), a chemotherapeutic drug, to induce BE in cervical carcinoma. By using cervical cancer cells and differentiated macrophages, we demonstrate that MMC induces the expression of FasL via upregulation of PPARγ in both cell types (effector cells) in vitro, but it failed to induce bystander killing in cervical cancer cells. This effect was primarily owing to the proteasomal degradation of death receptors in the cervical cancer cells. Pre-treatment of cervical cancer cells with MG132, a proteasomal inhibitor, facilitates MMC-mediated bystander killing in co-culture and condition medium transfer experiments. In NOD/SCID mice bearing xenografted HeLa tumors administered with the combination of MMC and MG132, tumor progression was significantly reduced in comparison with those treated with either agent alone. FasL expression was increased in TAMs, and the enhanced level of Fas was observed in these tumor sections, thereby causing increased apoptosis. These findings suggest that restoration of death receptor-mediated apoptotic pathway in tumor cells with concomitant activation of TAMs could effectively restrict tumor growth.

  12. Neutrons do not produce a bystander effect in zebrafish irradiated in vivo.

    PubMed

    Wang, Chu; Smith, Richard W; Duhig, John; Prestwich, William V; Byun, Soo H; McNeill, Fiona E; Seymour, Colin B; Mothersill, Carmel E

    2011-09-01

    Neutron irradiations at the McMaster Tandetron Accelerator were performed to study direct and bystander effects of neutrons in a live organism. The neutrons were produced through (7)Li(p,n)(7)Be reaction. Although the gamma contamination of the neutron beam cannot be completely eliminated, it was designed to be as low as possible and remain below a threshold already established for bystander effects. Microdosimetric methods using a tissue-equivalent proportional counter have been used to measure the neutron and gamma doses for the cell irradiation. Previous data for a cell line exposed in vitro suggested that neutrons did not produce bystander effects at doses below 300 mGy. The current experiments sought to confirm this using a live whole organism (zebrafish) where tissue samples harvested 2 h after exposure were examined for direct evidence of apoptosis and tested for secretion of bystander factors using an established bioassay. Fish were either exposed directly to the beam or were allowed to swim with or in water previously occupied by irradiated fish. Using the zebrafish model it was found that there was significant direct cell death seen both by apoptosis scores and clonogenic assay when the neutron dose was approximately 100 mGy. An equivalent dose of gamma rays produced a more toxic effect. It was further found that neutrons did not induce a bystander effect in fish receiving signals from irradiated fish. The results confirm in vitro experiments which suggest neutrons do not induce bystander signaling. In fact they may suppress gamma induced signaling suggesting a possible intriguing new and as yet unclear mechanism.

  13. Potential implications of the bystander effect on TCP and EUD when considering target volume dose heterogeneity.

    PubMed

    Balderson, Michael J; Kirkby, Charles

    2015-01-01

    In light of in vitro evidence suggesting that radiation-induced bystander effects may enhance non-local cell killing, there is potential for impact on radiotherapy treatment planning paradigms such as the goal of delivering a uniform dose throughout the clinical target volume (CTV). This work applies a bystander effect model to calculate equivalent uniform dose (EUD) and tumor control probability (TCP) for external beam prostate treatment and compares the results with a more common model where local response is dictated exclusively by local absorbed dose. The broad assumptions applied in the bystander effect model are intended to place an upper limit on the extent of the results in a clinical context. EUD and TCP of a prostate cancer target volume under conditions of increasing dose heterogeneity were calculated using two models: One incorporating bystander effects derived from previously published in vitro bystander data ( McMahon et al. 2012 , 2013a); and one using a common linear-quadratic (LQ) response that relies exclusively on local absorbed dose. Dose through the CTV was modelled as a normal distribution, where the degree of heterogeneity was then dictated by changing the standard deviation (SD). Also, a representative clinical dose distribution was examined as cold (low dose) sub-volumes were systematically introduced. The bystander model suggests a moderate degree of dose heterogeneity throughout a target volume will yield as good or better outcome compared to a uniform dose in terms of EUD and TCP. For a typical intermediate risk prostate prescription of 78 Gy over 39 fractions maxima in EUD and TCP as a function of increasing SD occurred at SD ∼ 5 Gy. The plots only dropped below the uniform dose values for SD ∼ 10 Gy, almost 13% of the prescribed dose. Small, but potentially significant differences in the outcome metrics between the models were identified in the clinically-derived dose distribution as cold sub-volumes were introduced. In terms of

  14. Direct and bystander radiation effects: a biophysical model and clinical perspectives.

    PubMed

    Lara, Pedro Carlos; López-Peñalver, Jesús Joaquín; Farias, Virgínea de Araújo; Ruiz-Ruiz, M Carmen; Oliver, Francisco Javier; Ruiz de Almodóvar, José Mariano

    2015-01-01

    In planning treatment for each new patient, radiation oncologists pay attention to the aspects that they control. Thus their attention is usually focused on volume and dose. The dilemma for the physician is how to protract the treatment in a way that maximizes control of the tumor and minimizes normal tissue injury. The initial radiation-induced damage to DNA may be a biological indicator of the quantity of energy transferred to the DNA. However, until now the biophysical models proposed cannot explain either the early or the late adverse effects of radiation, and a more general theory appears to be required. The bystander component of tumor cell death after radiotherapy measured in many experimental works highlights the importance of confirming these observations in a clinical situation.

  15. Signaling pathways underpinning the manifestations of ionizing radiation-induced bystander effects.

    PubMed

    Hamada, Nobuyuki; Maeda, Munetoshi; Otsuka, Kensuke; Tomita, Masanori

    2011-06-01

    For nearly a century, ionizing radiation has been indispensable to medical diagnosis. Furthermore, various types of electromagnetic and particulate radiation have also been used in cancer therapy. However, the biological mechanism of radiation action remains incompletely understood. In this regard, a rapidly growing body of experimental evidence indicates that radiation exposure induces biological effects in cells whose nucleus has not been irradiated. This phenomenon termed the 'non-targeted effects' challenges the long-held tenet that radiation traversal through the cell nucleus is a prerequisite to elicit genetic damage and biological responses. The non-targeted effects include biological effects in cytoplasm-irradiated cells, bystander effects that arise in non-irradiated cells having received signals from irradiated cells, and genomic instability occurring in the progeny of irradiated cells. Such non-targeted responses are interrelated, and the bystander effect is further related with an adaptive response that manifests itself as the attenuated stressful biological effects of acute high-dose irradiation in cells that have been pre-exposed to low-dose or low-dose-rate radiation. This paper reviews the current body of knowledge about the bystander effect with emphasis on experimental approaches, in vitro and in vivo manifestations, radiation quality dependence, temporal and spatial dependence, proposed mechanisms, and clinical implications. Relations of bystander responses with the effects in cytoplasm-irradiated cells, genomic instability and adaptive response will also be briefly discussed.

  16. Influence of Exercise on Inflammation in Cancer: Direct Effect or Innocent Bystander?

    PubMed

    Murphy, E Angela; Enos, Reilly T; Velázquez, Kandy T

    2015-07-01

    We propose the hypothesis that the benefits of exercise on inflammation in cancer are a result of a direct effect on inflammatory cytokines, including interleukin-6, tumor necrosis factor-α, and monocyte chemoattractant protein 1, that are critical for cancer growth as well as a bystander effect of the established relationship between exercise and cancer.

  17. Radiation-Induced Bystander Effects in A549 Cells Exposed to 6 MV X-rays.

    PubMed

    Yang, Shuning; Xu, Jing; Shao, Weixian; Geng, Chong; Li, Jia; Guo, Feng; Miao, Hui; Shen, Wenbin; Ye, Tao; Liu, Yazhou; Xu, Haiting; Zhang, Xuguang

    2015-07-01

    The aim of the study is to explore the bystander effects in A549 cells that have been exposed to 6MV X-ray. Control group, irradiated group, irradiated conditioned medium (ICM)-received group, and fresh medium group were designed in this study. A549 cells in the logarithmic growth phase were irradiated with 6MV X-ray at 0, 0.5, 1, 1.5, and 2. In ICM-received group, post-irradiation A549 cells were cultured for 3 h and were transferred into non-irradiated A549 cells for further cultivation. Clone forming test was applied to detect the survival fraction of cells. Annexin V-FITC/PI double-staining assay was used to detect the apoptosis of A549 cells 24, 48, 72, and 96 h after 2-Gy 6MV X-ray irradiation, and the curves of apoptosis were drawn. The changes in the cell cycles 4, 48, 72, and 96 h after 2-Gy 6MV X-ray irradiation were detected using PI staining flow cytometry. With the increase of irradiation dose, the survival fraction of A549 cells after the application of 0.5 Gy irradiation was decreasing continuously. In comparison to the control group, the apoptosis rate of the ICM-received group was increased in a time-dependent pattern, with the highest apoptosis rate observed at 72 h (p < 0.05). Cell count in G2/M stages was obviously increased compared with that of the control group (p < 0.05), with the highest count observed at 72 h, after which G2/M stage arrest was diminished. ICM can cause apparent A549 cell damage, indicating that 6MV X-ray irradiation can induce bystander effect on A549 cells, which reaches a peak at 72 h.

  18. An acute negative bystander effect of γ-irradiated recipients on transplanted hematopoietic stem cells.

    PubMed

    Shen, Hongmei; Yu, Hui; Liang, Paulina H; Cheng, Haizi; XuFeng, Richard; Yuan, Youzhong; Zhang, Peng; Smith, Clayton A; Cheng, Tao

    2012-04-12

    Ultimate success of hematopoietic stem cell transplantation (HSCT) depends not only on donor HSCs themselves but also on the host environment. Total body irradiation is a component in various host conditioning regimens for HSCT. It is known that ionizing radiation exerts "bystander effects" on nontargeted cells and that HSCs transplanted into irradiated recipients undergo proliferative exhaustion. However, whether irradiated recipients pose a proliferation-independent bystander effect on transplanted HSCs is unclear. In this study, we found that irradiated mouse recipients significantly impaired the long-term repopulating ability of transplanted mouse HSCs shortly (∼ 17 hours) after exposure to irradiated hosts and before the cells began to divide. There was an increase of acute cell death associated with accelerated proliferation of the bystander hematopoietic cells. This effect was marked by dramatic down-regulation of c-Kit, apparently because of elevated reactive oxygen species. Administration of an antioxidant chemical, N-acetylcysteine, or ectopically overexpressing a reactive oxygen species scavenging enzyme, catalase, improved the function of transplanted HSCs in irradiated hosts. Together, this study provides evidence for an acute negative, yet proliferation-independent, bystander effect of irradiated recipients on transplanted HSCs, thereby having implications for HSCT in both experimental and clinical scenarios in which total body irradiation is involved.

  19. A Meta-Analysis of School-Based Bullying Prevention Programs' Effects on Bystander Intervention Behavior

    ERIC Educational Resources Information Center

    Polanin, Joshua R.; Espelage, Dorothy L.; Pigott, Therese D.

    2012-01-01

    This meta-analysis synthesized bullying prevention programs' effectiveness at increasing bystander intervention in bullying situations. Evidence from 12 school-based programs, involving 12,874 students, indicated that overall the programs were successful (Hedges's g = 0.20, 95% confidence interval [CI] = 0.11 to 0.29, p = 0.001), with larger…

  20. BYSTANDER EFFECTS GENOMIC INSTABILITY, ADAPTIVE RESPONSE AND CANCER RISK ASSESSMENT FOR RADIAION AND CHEMICAL EXPOSURES

    EPA Science Inventory

    BYSTANDER EFFECTS, GENOMIC INSTABILITY, ADAPTIVE RESPONSE AND CANCER RISK ASSESSMENT FOR RADIATION AND CHEMICAL EXPOSURES

    R. Julian Preston
    Environmental Carcinogenesis Division, U.S. Environmental Protection Agency, Research Triangle Park, N.C. 27711, USA

    There ...

  1. BYSTANDER EFFECTS GENOMIC INSTABILITY, ADAPTIVE RESPONSE AND CANCER RISK ASSESSMENT FOR RADIAION AND CHEMICAL EXPOSURES

    EPA Science Inventory

    BYSTANDER EFFECTS, GENOMIC INSTABILITY, ADAPTIVE RESPONSE AND CANCER RISK ASSESSMENT FOR RADIATION AND CHEMICAL EXPOSURES

    R. Julian Preston
    Environmental Carcinogenesis Division, U.S. Environmental Protection Agency, Research Triangle Park, N.C. 27711, USA

    There ...

  2. Bystander effects and their implications for clinical radiation therapy: Insights from multiscale in silico experiments.

    PubMed

    Powathil, Gibin G; Munro, Alastair J; Chaplain, Mark A J; Swat, Maciej

    2016-07-21

    Radiotherapy is a commonly used treatment for cancer and is usually given in varying doses. At low radiation doses relatively few cells die as a direct response to radiation but secondary radiation effects, such as DNA mutation or bystander phenomena, may affect many cells. Consequently it is at low radiation levels where an understanding of bystander effects is essential in designing novel therapies with superior clinical outcomes. In this paper, we use a hybrid multiscale mathematical model to study the direct effects of radiation as well as radiation-induced bystander effects on both tumour cells and normal cells. We show that bystander responses play a major role in mediating radiation damage to cells at low-doses of radiotherapy, doing more damage than that due to direct radiation. The survival curves derived from our computational simulations showed an area of hyper-radiosensitivity at low-doses that are not obtained using a traditional radiobiological model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. A Meta-Analysis of School-Based Bullying Prevention Programs' Effects on Bystander Intervention Behavior

    ERIC Educational Resources Information Center

    Polanin, Joshua R.; Espelage, Dorothy L.; Pigott, Therese D.

    2012-01-01

    This meta-analysis synthesized bullying prevention programs' effectiveness at increasing bystander intervention in bullying situations. Evidence from 12 school-based programs, involving 12,874 students, indicated that overall the programs were successful (Hedges's g = 0.20, 95% confidence interval [CI] = 0.11 to 0.29, p = 0.001), with larger…

  4. The induction of a radiation-induced bystander effect in fish transcends taxonomic group and trophic level.

    PubMed

    Smith, Richard W; Seymour, Colin B; Moccia, Richard D; Hinton, Thomas G; Mothersill, Carmel E

    2013-04-01

    To extend the investigations of bystander effect induction in fish of the same species as the irradiated fish, to bystander effect induction between fish species and between trophic levels. To investigate interspecies bystander effect induction, zebrafish and medaka were irradiated with a 0.5 Gy X-ray dose and then swum with non-irradiated fish of the same and opposite species. To investigate trophic level bystander effect induction, California blackworms were irradiated with the same X-ray dose and then fed to non-irradiated rainbow trout. Reductions in clonogenic survival of the HPV-G (non-transformed human keratinocytes, immortalized with the human papilloma virus) reporter cell line, treated with tissue explant media, revealed that zebrafish and medaka induced a pro-apoptotic bystander effect in the other species and that, in trout, the normally anti-apoptotic effect caused by the consumption of non-irradiated blackworms was significantly reduced or lost if the blackworms had been irradiated. These results are the first to show that a radiation- induced bystander effect can transcend taxonomic group and trophic level in fish. This provides further evidence that bystander signals are widespread and conserved and may be transmitted through an ecosystem, as well as between individuals of the same species.

  5. The Role of DNA Methylation Changes in Radiation-Induced Bystander Effects in cranial irradiated Mice

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Sun, Yeqing; Xue, Bei; Wang, Xinwen; Wang, Jiawen

    2016-07-01

    Heavy-ion radiation could lead to bystander effect in neighboring non-hit cells by signals released from directly-irradiated cells. The exact mechanisms of radiation-induced bystander effect in distant organ remain obscure, yet accumulating evidence points to the role of DNA methylation changes in bystander effect. To identify the molecular mechanism that underlies bystander effects of heavy-ion radiation, the male Balb/c and C57BL mice were cranial exposed to 40, 200, 2000mGy dose of carbon heavy-ion radiation, while the rest of the animal body was shielded. The γH2AX foci as the DNA damage biomarker in directly irradiation organ ear and the distant organ liver were detected on 0, 1, 2, 6, 12 and 24h after radiation, respectively. Methylation-sensitive amplifcation polymorphism (MSAP) was used to monitor the level of polymorphic genomic DNA methylation changed with dose and time effects. The results show that cranial irradiated mice could induce the γH2AX foci and genomic DNA methylation changes significantly in both the directly irradiation organ ear and the distant organ liver. The percent of DNA methylation changes were time-dependent and tissue-specific. Demethylation polymorphism rate were highest separately at 1 h in 200 mGy and 6 h in 2000 mGy after irradiation in ear. The global DNA methylation changes tended to occur in the CG sites. We also found that the numbers of γH2AX foci and the genomic methylation changes of heavy-ion radiation-induced bystander effect in liver could be obvious 1 h after radiation and achieved the maximum at 6 h, while the changes could recover gradually at 12 h. The results suggest that mice head exposed to heavy-ion radiation can induce damage and methylation pattern changed in both directly radiation organ ear and distant organ liver. Moreover, our findings are important to understand the molecular mechanism of radiation induced bystander effects in vivo. Keywords: Heavy-ion radiation; Bystander effect; DNA methylation; γH2

  6. All-trans retinoic acid enhances bystander effect of suicide-gene therapy against medulloblastomas.

    PubMed

    Li, Shaoyi; Gao, Yun; Pu, Ke; Ma, Li; Song, Xiaofu; Liu, Yunhui

    2011-10-03

    In our previous study we evaluated the antitumor effect of herpes simplex virus-thymidine kinase gene (HSV-tk) on human medulloblastomas (MBs) in a therapeutic delivery system using the immortalized neural stem cell (NSC) line C17.2. However, our findings indicated that the bystander effect between C17.2tk and Daoy MB cells was weak compared to the bystander effect between NSCtk and C6 glioma cells. Gap junction intercellular communication (GJIC) is the main mechanism mediating the bystander effect in HSV-tk gene therapy. All-trans retinoic acid (ATRA) has been shown to up-regulate the expression of Connexin43 and GJIC. In this study we investigated the synergistic effect of ATRA and HSV-tk gene therapy in the treatment of MBs. We found that the expression of Connexin43 in Daoy cells was significantly increased when cells were exposed to 3μmol/l of ATRA (P<0.05). After co-culturing C17.2tk cells with Daoy cells at different ratios ranging from 1:1 to 1:16, ATRA significantly increased the bystander anti-tumor effect compared to ATRA-untreated cells (P<0.05). In intracranial co-implantation experiments, mice co-implanted with C17.2tk/Daoy cells and treated with a combination of ATRA and GCV had significantly smaller tumors compared to the animals treated with GCV alone (P<0.05). Together, our results show that ATRA enhanced the tumoricidal effect in HSVtk/GCV suicide gene therapy against Daoy MB cells by strengthening the bystander effect in vitro and in vivo.

  7. Comparison of Radiation-Induced Bystander Effect in QU-DB Cells after Acute and Fractionated Irradiation: An In Vitro Study.

    PubMed

    Soleymanifard, Shokouhozaman; Bahreyni Toossi, Mohammad Taghi; Kamran Samani, Roghayeh; Mohebbi, Shokoufeh

    2016-01-01

    Radiation effects induced in non-irradiated cells are termed radiation-induced bystander effects (RIBE). The present study intends to examine the RIBE response of QU-DB bystander cells to first, second and third radiation fractions and compare their cumulative outcome with an equal, single acute dose. This experimental study irradiated three groups of target cells for one, two and three times with(60)Co gamma rays. One hour after irradiation, we transferred their culture media to non-irradiated (bystander) cells. We used the cytokinesis block micronucleus assay to evaluate RIBE response in the bystander cells. The numbers of micronuclei generated in bystander cells were determined. RIBE response to single acute doses increased up to 4 Gy, then decreased, and finally at the 8 Gy dose disappeared. The second and third fractions induced RIBE in bystander cells, except when RIBE reached to the maximum level at the first fraction. We split the 4 Gy acute dose into two fractions, which decreased the RIBE response. However, fractionation of 6 Gy (into two fractions of 3 Gy or three fractions of 2 Gy) had no effect on RIBE response. When we split the 8 Gy acute dose into two fractions we observed RIBE, which had disappeared following the single 8 Gy dose. The impact of dose fractionation on RIBE induced in QU-DB cells de- pended on the RIBE dose-response relationship. Where RIBE increased proportion- ally with the dose, fractionation reduced the RIBE response. In contrast, at high dos- es where RIBE decreased proportionally with the dose, fractionation either did not change RIBE (at 6 Gy) or increased it (at 8 Gy).

  8. Epigenetic Analysis of Heavy-ion Radiation Induced Bystander Effects in Mice

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Sun, Yeqing; Cui, Changna; Xue, Bei

    Abstract: Radiation-induced bystander effect was defined as the induction of damage in neighboring non-hit cells by signals released from directly-irradiated cells. Recently, low dose of high LET radiation induced bystander effects in vivo have been reported more and more. It has been indicated that radiation induced bystander effect was localized not only in bystander tissues but also in distant organs. Genomic, epigenetic and proteomics plays significant roles in regulating heavy-ion radiation stress responses in mice. To identify the molecular mechanism that underlies bystander effects of heavy-ion radiation, the male Balb/c and C57BL mice were exposed head-only to 40, 200, 2000mGy dose of (12) C heavy-ion radiation, while the rest of the animal body was shielded. Directly radiation organ ear and the distant organ liver were detected on 1h, 6h, 12h and 24h after radiation, respectively. Methylation-sensitive amplification polymorphism (MSAP) was used to monitor the level of polymorphic genomic DNA methylation changed with dose and time effects. The results show that heavy-ion irradiated mouse head could induce genomic DNA methylation changes significantly in both the directly radiation organ ear and the distant organ liver. The percent of DNA methylation changes were time-dependent and tissue-specific. Demethylation polymorphism rate was highest separately at 1 h in 200 mGy and 6 h in 2000 mGy after irradiation. The global DNA methylation changes tended to occur in the CG sites. The results illustrated that genomic methylation changes of heavy ion radiation-induced bystander effect in liver could be obvious 1 h after radiation and achieved the maximum at 6 h, while the changes could recover gradually at 12 h. The results suggest that mice head exposed to heavy-ion radiation can induce damage and methylation pattern changed in both directly radiation organ ear and distant organ liver. Moreover, our findings are important to understand the molecular mechanism of

  9. Bystander effects of ionizing radiation can be modulated by signaling amines

    SciTech Connect

    Poon, R.C.C.; Agnihotri, N.; Seymour, C.; Mothersill, C.

    2007-10-15

    Actual risk and risk management of exposure to ionizing radiation are among the most controversial areas in environmental health protection. Recent developments in radiobiology especially characterization of bystander effects have called into question established dogmas and are thought to cast doubt on the scientific basis of the risk assessment framework, leading to uncertainty for regulators and concern among affected populations. In this paper we test the hypothesis that small signaling molecules widely used throughout the animal kingdom for signaling stress or environmental change, such as 5-Hydroxytryptamine (5-HT, serotonin), L-DOPA, glycine or nicotine are involved in bystander signaling processes following ionizing radiation exposure. We report data which suggest that nano to micromolar concentrations of these agents can modulate bystander-induced cell death. Depletion of 5-HT present in tissue culture medium, occurred following irradiation of cells. This suggested that 5-HT might be bound by membrane receptors after irradiation. Expression of 5-HT type 3 receptors which are Ca{sup 2+} ion channels was confirmed in the cells using immunocytochemistry and receptor expression could be increased using radiation or 5-HT exposure. Zofran and Kitryl, inhibitors of 5-HT type 3 receptors, and reserpine a generic serotonin antagonist block the bystander effect induced by radiation or by serotonin. The results may be important for the mechanistic understanding of how low doses of radiation interact with cells to produce biological effects.

  10. Induction of a bystander mutagenic effect of alpha particles in mammalian cells

    NASA Technical Reports Server (NTRS)

    Zhou, H.; Randers-Pehrson, G.; Waldren, C. A.; Vannais, D.; Hall, E. J.; Hei, T. K.; Chatterjee, A. (Principal Investigator)

    2000-01-01

    Ever since the discovery of X-rays was made by Rontgen more than a hundred years ago, it has always been accepted that the deleterious effects of ionizing radiation such as mutation and carcinogenesis are attributable mainly to direct damage to DNA. Although evidence based on microdosimetric estimation in support of a bystander effect appears to be consistent, direct proof of such extranuclear/extracellular effects are limited. Using a precision charged particle microbeam, we show here that irradiation of 20% of randomly selected A(L) cells with 20 alpha particles each results in a mutant fraction that is 3-fold higher than expected, assuming no bystander modulation effect. Furthermore, analysis by multiplex PCR shows that the types of mutants induced are significantly different from those of spontaneous origin. Pretreatment of cells with the radical scavenger DMSO had no effect on the mutagenic incidence. In contrast, cells pretreated with a 40 microM dose of lindane, which inhibits cell-cell communication, significantly decreased the mutant yield. The doses of DMSO and lindane used in these experiments are nontoxic and nonmutagenic. We further examined the mutagenic yield when 5-10% of randomly selected cells were irradiated with 20 alpha particles each. Results showed, likewise, a higher mutant yield than expected assuming no bystander effects. Our studies provide clear evidence that irradiated cells can induce a bystander mutagenic response in neighboring cells not directly traversed by alpha particles and that cell-cell communication process play a critical role in mediating the bystander phenomenon.

  11. Induction of a bystander mutagenic effect of alpha particles in mammalian cells

    NASA Technical Reports Server (NTRS)

    Zhou, H.; Randers-Pehrson, G.; Waldren, C. A.; Vannais, D.; Hall, E. J.; Hei, T. K.; Chatterjee, A. (Principal Investigator)

    2000-01-01

    Ever since the discovery of X-rays was made by Rontgen more than a hundred years ago, it has always been accepted that the deleterious effects of ionizing radiation such as mutation and carcinogenesis are attributable mainly to direct damage to DNA. Although evidence based on microdosimetric estimation in support of a bystander effect appears to be consistent, direct proof of such extranuclear/extracellular effects are limited. Using a precision charged particle microbeam, we show here that irradiation of 20% of randomly selected A(L) cells with 20 alpha particles each results in a mutant fraction that is 3-fold higher than expected, assuming no bystander modulation effect. Furthermore, analysis by multiplex PCR shows that the types of mutants induced are significantly different from those of spontaneous origin. Pretreatment of cells with the radical scavenger DMSO had no effect on the mutagenic incidence. In contrast, cells pretreated with a 40 microM dose of lindane, which inhibits cell-cell communication, significantly decreased the mutant yield. The doses of DMSO and lindane used in these experiments are nontoxic and nonmutagenic. We further examined the mutagenic yield when 5-10% of randomly selected cells were irradiated with 20 alpha particles each. Results showed, likewise, a higher mutant yield than expected assuming no bystander effects. Our studies provide clear evidence that irradiated cells can induce a bystander mutagenic response in neighboring cells not directly traversed by alpha particles and that cell-cell communication process play a critical role in mediating the bystander phenomenon.

  12. The senescent bystander effect is caused by ROS-activated NF-κB signalling.

    PubMed

    Nelson, Glyn; Kucheryavenko, Olena; Wordsworth, James; von Zglinicki, Thomas

    2017-08-25

    Cell senescence is an important driver of the ageing process. The accumulation of senescent cells in tissues is accelerated by stress signals from senescent cells that induce DNA damage and ultimately senescence in bystander cells. We examine here the interplay of senescence-associated mitochondrial dysfunction (SAMD)-driven production of reactive oxygen species (ROS) and senescence-associated secretory phenotype (SASP) in causing the bystander effect. We show that in various modes of fibroblast senescence ROS are necessary and sufficient to activate the transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), which facilitates a large part of the SASP. This ROS-NF-κB axis causes the DNA damage response in bystander cells. Cytokines IL-6 and IL-8 are major components of the pro-inflammatory SASP in senescent fibroblasts. However, their activation in senescence is only partially controlled by NF-κB, and they are thus not strong candidates as intercellular mediators of the bystander effect as mediated by the ROS-NF-κB axis. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. The role of serotonin and p53 status in the radiation-induced bystander effect.

    PubMed

    Kalanxhi, Erta; Dahle, Jostein

    2012-10-01

    The aim of this study was to investigate the role of serotonin and protein 53 (p53) status of the cells in the radiation-induced bystander effects (RIBE). The radiation-induced bystander response was investigated in human MCF-7 breast cancer cells and human HCT116 colorectal cancer cells employing medium-transfer experiments and micronuclei (MN) induction as an end-point. Irradiated cell conditioned medium (ICCM) from cells exposed to α-particle or γ-radiation was filtered and transferred to unirradiated cells 2 h following irradiation. MCF-7 cells were irradiated with 0.5 Gy α-particles, while HCT116 p53(+/+) and HCT116 p53(-/-) cells were irradiated with 0.5 Gy γ-radiation. Bystander MCF-7 cells, recipient of ICCM from 0.5 Gy α-particle irradiated MCF-7 cells grown in high serotonin conditions showed a modest but significant increase in MN, while MCF-7 cells receiving ICCM with low serotonin levels did not show any bystander effect. Added serotonin (100 ng/ml) led to a bystander effectin HCT116 p53(-/-) cells recipient of ICCM from 0.5 Gy γ-irradiated HCT116 p53(+/+) cells, but had no effect when the ICCM was from γ-irradiated HCT116 P53(-/-) cells. The results indicate that serotonin levels in the medium play a role in the RIBE and that there may be an interaction between the role of serotonin and the p53 status of the irradiated cells.

  14. [Manifestation of the adaptive response and bystander-effect of C3H10T1/2 fibroblasts irradiated by protons and gamma-rays].

    PubMed

    Voskanian, K Sh; Mitsyn, G V; Gaevskiĭ, V N

    2009-01-01

    Adaptive response and bystander-effect were studied in mice fibroblasts irradiated by gamma-rays and protons with the energy of 150 MeV Monolayer of fibroblasts cultivated on the wall of a plastic vial first were exposed to 2 and 4 cGy of ionizing radiation (presumably adaptive doses) and later, after 40-min. or 16-hr. period at 37 degrees C, to damaging 4 Gy. To study the bystander-effect, either the whole vial surface (25 cm2) or central area (1 cm2) were irradiated by a beam of protons. The results showed that the preliminary gamma-irradiation 40-min. or 16-hr. before exposure to the damaging dose equally alleviates the harmful effect of protons on fibroblasts. The adaptive response was observed as in the cells subjected to the direct irradiation by protons at 4 Gy, so in bystander-cells. When protons were used for adaptive irradiation, the response was visible only to the dose of 4 cGy in fibroblasts exposed to gamma-radiation 16 hrs. later. In all the rest cases, proton- and gamma-induced damages added together. Besides, the experiments showed that the adaptive effect of protons is passed on to bystander-cells. Adaptive and damaging gamma-irradiation evoked the response invariably.

  15. Contribution of the immune system to bystander and non-targeted effects of ionizing radiation.

    PubMed

    Rödel, Franz; Frey, Benjamin; Multhoff, Gabriele; Gaipl, Udo

    2015-01-01

    Considerable progress has recently been achieved in the understanding of molecular mechanisms involved in cellular radiation responses and radiation mediated microenvironmental communication. In line with that, it has become more and more obvious that X-irradiation causes distinct immunological effects ranging from anti-inflammatory activities if applied at low (<1 Gy) doses to harmful inflammatory side effects, radiation-induced immune modulation or induction of anti-tumour immune responses at higher doses. Moreover, experimental and clinical evidences indicate that these effects not only originate from direct nuclear damage but also include non-(DNA) targeted mechanisms including bystander, out of field distant bystander (abscopal) effects and genomic instability. The purpose of the present review is to elucidate immune responses that are initiated or affected by ionizing radiation, with a special emphasis on anti-inflammatory and abscopal effects and the induction of stress-induced anti-tumour immunity.

  16. Bystander education training for campus sexual assault prevention: an initial meta-analysis.

    PubMed

    Katz, Jennifer; Moore, Jessica

    2013-01-01

    The present meta-analysis evaluated the effectiveness of bystander education programs for preventing sexual assault in college communities. Undergraduates trained in bystander education for sexual assault were expected to report more favorable attitudes, behavioral proclivities, and actual behaviors relative to untrained controls. Data from 12 studies of college students (N = 2,926) were used to calculate 32 effect sizes. Results suggested moderate effects of bystander education on both bystander efficacy and intentions to help others at risk. Smaller but significant effects were observed regarding self-reported bystander helping behaviors, (lower) rape-supportive attitudes, and (lower) rape proclivity, but not perpetration. These results provide initial support for the effectiveness of in-person bystander education training. Nonetheless, future longitudinal research evaluating behavioral outcomes and sexual assault incidence is needed.

  17. Are sociodemographic characteristics associated with spatial variation in the incidence of OHCA and bystander CPR rates? A population-based observational study in Victoria, Australia.

    PubMed

    Straney, Lahn D; Bray, Janet E; Beck, Ben; Bernard, Stephen; Lijovic, Marijana; Smith, Karen

    2016-11-07

    Rates of out-of-hospital cardiac arrest (OHCA) and bystander cardiopulmonary resuscitation (CPR) have been shown to vary considerably in Victoria. We examined the extent to which this variation could be explained by the sociodemographic and population health characteristics of the region. Using the Victorian Ambulance Cardiac Arrest Registry, we extracted OHCA cases occurring between 2011 and 2013. We restricted the calculation of bystander CPR rates to those arrests that were witnessed by a bystander. To estimate the level of variation between Victorian local government areas (LGAs), we used a two-stage modelling approach using random-effects modelling. Between 2011 and 2013, there were 15 830 adult OHCA in Victoria. Incidence rates varied across the state between 41.9 to 104.0 cases/100 000 population. The proportion of the population over 65, socioeconomic status, smoking prevalence and education level were significant predictors of incidence in the multivariable model, explaining 93.9% of the variation in incidence among LGAs. Estimates of bystander CPR rates for bystander witnessed arrests varied from 62.7% to 73.2%. Only population density was a significant predictor of rates in a multivariable model, explaining 73% of the variation in the odds of receiving bystander CPR among LGAs. Our results show that the regional characteristics which underlie the variation seen in rates of bystander CPR may be region specific and may require study in smaller areas. However, characteristics associated with high incidence and low bystander CPR rates can be identified and will help to target regions and inform local interventions to increase bystander CPR rates. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  18. Are sociodemographic characteristics associated with spatial variation in the incidence of OHCA and bystander CPR rates? A population-based observational study in Victoria, Australia

    PubMed Central

    Bray, Janet E; Lijovic, Marijana; Smith, Karen

    2016-01-01

    Background Rates of out-of-hospital cardiac arrest (OHCA) and bystander cardiopulmonary resuscitation (CPR) have been shown to vary considerably in Victoria. We examined the extent to which this variation could be explained by the sociodemographic and population health characteristics of the region. Methods Using the Victorian Ambulance Cardiac Arrest Registry, we extracted OHCA cases occurring between 2011 and 2013. We restricted the calculation of bystander CPR rates to those arrests that were witnessed by a bystander. To estimate the level of variation between Victorian local government areas (LGAs), we used a two-stage modelling approach using random-effects modelling. Results Between 2011 and 2013, there were 15 830 adult OHCA in Victoria. Incidence rates varied across the state between 41.9 to 104.0 cases/100 000 population. The proportion of the population over 65, socioeconomic status, smoking prevalence and education level were significant predictors of incidence in the multivariable model, explaining 93.9% of the variation in incidence among LGAs. Estimates of bystander CPR rates for bystander witnessed arrests varied from 62.7% to 73.2%. Only population density was a significant predictor of rates in a multivariable model, explaining 73% of the variation in the odds of receiving bystander CPR among LGAs. Conclusions Our results show that the regional characteristics which underlie the variation seen in rates of bystander CPR may be region specific and may require study in smaller areas. However, characteristics associated with high incidence and low bystander CPR rates can be identified and will help to target regions and inform local interventions to increase bystander CPR rates. PMID:27821597

  19. Radiation induced bystander effect by GAP junction channels in human fibroblast cell

    NASA Astrophysics Data System (ADS)

    Furusawa, Y.; Shao, C.; Aoki, M.; Kobayashi, Y.; Funayama, T.; Ando, K.

    The chemical factor involved in bystander effect and its transfer pathway were investigated in a confluent human fibroblast cell (AG1522) population. Micronuclei (MN) and G1-phase arrest were detected in cells irradiated by carbon (~100 keV/μm) ions at HIMAC. A very low dose irradiation showed a high effectiveness in producing MN, suggesting a bystander effect. This effectiveness was enhanced by 8-Br-cAMP treatment that increases gap junctional intercellular communication (GJIC). On the other hand, the effect was reduced by 5% DMSO treatment, which reduce the reactive oxygen species (ROS), and suppressed by 100 μM lindane treatment, an inhibitor of GJIC. In addition, the radiation-induced G1-phase arrest was also enhanced by cAMP, and reduced or suppressed by DMSO or lindane. A microbeam device (JAERI) was also used for these studies. It was found that exposing one single cell in a confluent cell population to exactly one argon (~1260 keV/μm) or neon (~430 keV/ μm) ion, additional MN could be detected in many other unirradiated cells. The yield of MN increased with the number of irradiated cells. However, there was no significant difference in the MN induction when the cells were irradiated by increasing number of particles. MN induction by bystander effect was partly reduced by DMSO, and effectively suppressed by lindane. Our results obtained from both random irradiation and precise numbered irradiation indicate that both GJIC and ROS contributed to the radiation-induced bystander effect, but the cell gap junction channels likely play an essential role in the release and transfer of radiation-induced chemical factors.

  20. Radiation-induced bystander effect and adaptive response in mammalian cells

    NASA Technical Reports Server (NTRS)

    Zhou, H.; Randers-Pehrson, G.; Waldren, C. A.; Hei, T. K.

    2004-01-01

    Two conflicting phenomena, bystander effect and adaptive response, are important in determining the biological responses at low doses of radiation and have the potential to impact the shape of the dose-response relationship. Using the Columbia University charged-particle microbeam and the highly sensitive AL cell mutagenic assay, we show here that non-irradiated cells acquire mutagenesis through direct contact with cells whose nuclei have been traversed with a single alpha particle each. Pretreatment of cells with a low dose of X-rays four hours before alpha particle irradiation significantly decreased this bystander mutagenic response. Results from the present study address some of the fundamental issues regarding both the actual target and radiation dose effect and can contribute to our current understanding in radiation risk assessment. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  1. Radiation-induced bystander effect and adaptive response in mammalian cells

    NASA Technical Reports Server (NTRS)

    Zhou, H.; Randers-Pehrson, G.; Waldren, C. A.; Hei, T. K.

    2004-01-01

    Two conflicting phenomena, bystander effect and adaptive response, are important in determining the biological responses at low doses of radiation and have the potential to impact the shape of the dose-response relationship. Using the Columbia University charged-particle microbeam and the highly sensitive AL cell mutagenic assay, we show here that non-irradiated cells acquire mutagenesis through direct contact with cells whose nuclei have been traversed with a single alpha particle each. Pretreatment of cells with a low dose of X-rays four hours before alpha particle irradiation significantly decreased this bystander mutagenic response. Results from the present study address some of the fundamental issues regarding both the actual target and radiation dose effect and can contribute to our current understanding in radiation risk assessment. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  2. A chemotherapy-associated senescence bystander effect in breast cancer cells.

    PubMed

    Di, Xu; Bright, Andrew Taylor; Bellott, Ricardo; Gaskins, Elizabeth; Robert, Jacques; Holt, Shawn; Gewirtz, David; Elmore, Lynne

    2008-06-01

    A bystander effect typically refers to the death, altered growth or damage of cells that have not directly received chemotherapy or irradiation. Cancer cells derived from solid tumors readily undergo senescence in response to chemotherapeutic agents, prompting us to test for the existence of a senescence bystander effect. MCF-7 breast cancer cells were acutely exposed to Adriamycin to trigger senescence. Naïve MCF-7 cells, when cultured in conditioned media from senescent breast cancer cells, growth arrested despite mitogenic stimulation and exhibited SA-beta-galactosidase activity, an enlarged cell size and stable upregulation of p21(WAF1) protein, collectively indicating a senescent state. In contrast, HCT-116 colon cancer cells, which also undergo p53-mediated senescence in response to acute AdR, did not undergo growth inhibition or senescence when cultured with conditioned media from senescent HCT-116 cells. Reciprocal experiments indicated that naïve HCT-116 cells, like MCF-7 cells, are susceptible to the growth inhibitory effects of a breast cancer-derived mediator, which is independent of residual drug in conditioned media. Our study reveals a novel action of Adriamycin, which may contribute to its potent anti-breast cancer activity and lead to the discovery of additional therapeutic targets for the exploitation of a senescence bystander effect.

  3. Free Radical-Initiated and Gap Junction-Mediated Bystander Effect due to Nonuniform Distribution of Incorporated Radioactivity in a Three-Dimensional Tissue Culture Model

    PubMed Central

    Bishayee, Anupam; Hill, Helene Z.; Stein, Dana; Rao, Dandamudi V.; Howell, Roger W.

    2012-01-01

    To investigate the biological effects of nonuniform distribution of radioactivity in mammalian cells, we have developed a novel three-dimensional tissue culture model. Chinese hamster V79 cells were labeled with tritiated thymidine and mixed with unlabeled cells, and multicellular clusters (~1.6 mm in diameter) were formed by gentle centrifugation. The short-range β particles emitted by 3H impart only self-irradiation of labeled cells without significant cross-irradiation of unlabeled bystander cells. The clusters were assembled in the absence or presence of 10% dimethyl sulfoxide (DMSO) and/or 100 µM lindane. DMSO is a hydroxyl radical scavenger, whereas lindane is an inhibitor of gap junctional intercellular communication. The clusters were maintained at 10.5°C for 72 h to allow 3H decays to accumulate and then dismantled, and the cells were plated for colony formation. When 100% of the cells were labeled, the surviving fraction was exponentially dependent on the mean level of radioactivity per labeled cell. A two-component exponential response was observed when either 50 or 10% of the cells were labeled. Though both DMSO and lindane significantly protected the unlabeled or bystander cells when 50 or 10% of the cells were labeled, the effect of lindane was greater than that of DMSO. In both cases, the combined treatment (DMSO + lindane) elicited maximum protection of the bystander cells. These results suggest that the bystander effects caused by nonuniform distributions of radioactivity are affected by the fraction of cells that are labeled. Furthermore, at least a part of these bystander effects are initiated by free radicals and are likely to be mediated by gap junctional intercellular communication. PMID:11175669

  4. Distant Bystander Effect of REIC/DKK3 Gene Therapy Through Immune System Stimulation in Thoracic Malignancies.

    PubMed

    Suzawa, Ken; Shien, Kazuhiko; Peng, Huang; Sakaguchi, Masakiyo; Watanabe, Masami; Hashida, Shinsuke; Maki, Yuho; Yamamoto, Hiromasa; Tomida, Shuta; Soh, Junichi; Asano, Hiroaki; Tsukuda, Kazunori; Nasu, Yasutomo; Kumon, Hiromi; Miyoshi, Shinichiro; Toyooka, Shinichi

    2017-01-01

    Reduced expression in immortalized cell (REIC)/Dickkoph-3 (DKK3) is a tumor-suppressor gene, and its overexpression by adenovirus vector (Ad-REIC) exhibits a remarkable therapeutic effect on various human cancer types through a mechanism triggered by endoplasmic reticulum stress. We examined the direct anti-tumor effect of Ad-REIC gene therapy on lung cancer and malignant mesothelioma cell lines in vitro, and the distant bystander effect using immunocompetent mouse allograft models with bilateral flank tumors. Ad-REIC treatment showed antitumor effect in many lung cancer and malignant mesothelioma cell lines in vitro. In an in vivo model, Ad-REIC treatment inhibited the growth not only of directly treated tumors but also of distant untreated tumors. By immunohistochemical analysis, infiltration of T-cells and natural killer (NK) cells and expression of the major histocompatibility complex (MHC) class I molecules were observed in bilateral tumors. Ad-REIC treatment not only had a direct antitumor effect but also an indirect bystander effect through stimulation of the immune system. Copyright© 2017 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  5. Cyclic-AMP induction of gap junctional intercellular communication increases bystander effect in suicide gene therapy.

    PubMed

    Carystinos, G D; Katabi, M M; Laird, D W; Galipeau, J; Chan, H; Alaoui-Jamali, M A; Batist, G

    1999-01-01

    The phenomenon of the "bystander effect" (BE) observed in suicide gene therapy studies leads to the intriguing possibility that cytotoxicity can be achieved even in tumor cells that have not themselves been targeted with novel genetic material. There is considerable data suggesting the role of gap junction-mediated intercellular communication (GJIC) in the BE. Transfer of connexin (Cx)-encoding genes, the building blocks of GJIC, has been shown both in vitro and in vivo to increase the BE. Since the loss of GJIC is a common feature of cancer cells, we examined the consequence of GJIC up-regulation on the BE in suicide gene therapy. We used 8-bromo-cyclic-AMP to induce Cx43 and GJIC. In mixing assays, using various proportions of cells containing viral thymidine kinase delivered by an adenoviral delivery system or stably transduced by a retrovirus vector, 8-bromo-cyclic-AMP enhanced the BE of cell killing using ganciclovir. The induction in cell killing was more significant when a low percentage of the cell population was infected, which is the relevant clinical situation. We have demonstrated that this is not due to an effect on infectivity or suicide gene expression. Since decreased GJIC is part of the transformed phenotype, induction of Cxs provides an element of selectivity to suicide gene therapy. Our study adds strength to the rationale to develop clinically tolerable GJ inducers to potentiate the effect of suicide gene therapy via the BE.

  6. Role of ATM in bystander signaling between human monocytes and lung adenocarcinoma cells.

    PubMed

    Ghosh, Somnath; Ghosh, Anu; Krishna, Malini

    2015-12-01

    The response of a cell or tissue to ionizing radiation is mediated by direct damage to cellular components and indirect damage mediated by radiolysis of water. Radiation affects both irradiated cells and the surrounding cells and tissues. The radiation-induced bystander effect is defined by the presence of biological effects in cells that were not themselves in the field of irradiation. To establish the contribution of the bystander effect in the survival of the neighboring cells, lung carcinoma A549 cells were exposed to gamma-irradiation, 2Gy. The medium from the irradiated cells was transferred to non-irradiated A549 cells. Irradiated A549 cells as well as non-irradiated A549 cells cultured in the presence of medium from irradiated cells showed decrease in survival and increase in γ-H2AX and p-ATM foci, indicating a bystander effect. Bystander signaling was also observed between different cell types. Phorbol-12-myristate-13-acetate (PMA)-stimulated and gamma-irradiated U937 (human monocyte) cells induced a bystander response in non-irradiated A549 (lung carcinoma) cells as shown by decreased survival and increased γ-H2AX and p-ATM foci. Non-stimulated and/or irradiated U937 cells did not induce such effects in non-irradiated A549 cells. Since ATM protein was activated in irradiated cells as well as bystander cells, it was of interest to understand its role in bystander effect. Suppression of ATM with siRNA in A549 cells completely inhibited bystander effect in bystander A549 cells. On the other hand suppression of ATM with siRNA in PMA stimulated U937 cells caused only a partial inhibition of bystander effect in bystander A549 cells. These results indicate that apart from ATM, some additional factor may be involved in bystander effect between different cell types. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Human Lung Cancer Risks from Radon – Part I - Influence from Bystander Effects - A Microdose Analysis

    PubMed Central

    Leonard, Bobby E.; Thompson, Richard E.; Beecher, Georgia C.

    2010-01-01

    Since the publication of the BEIR VI report in 1999 on health risks from radon, a significant amount of new data has been published showing various mechanisms that may affect the ultimate assessment of radon as a carcinogen, at low domestic and workplace radon levels, in particular the Bystander Effect (BE) and the Adaptive Response radio-protection (AR). We analyzed the microbeam and broadbeam alpha particle data of Miller et al. (1995, 1999), Zhou et al. (2001, 2003, 2004), Nagasawa and Little (1999, 2002), Hei et al. (1999), Sawant et al. (2001a) and found that the shape of the cellular response to alphas is relatively independent of cell species and LET of the alphas. The same alpha particle traversal dose response behavior should be true for human lung tissue exposure to radon progeny alpha particles. In the Bystander Damage Region of the alpha particle response, there is a variation of RBE from about 10 to 35. There is a transition region between the Bystander Damage Region and Direct Damage Region of between one and two microdose alpha particle traversals indicating that perhaps two alpha particle “hits” are necessary to produce the direct damage. Extrapolation of underground miners lung cancer risks to human risks at domestic and workplace levels may not be valid. PMID:21731539

  8. Differential effects of p53 on bystander phenotypes induced by gamma ray and high LET heavy ion radiation

    NASA Astrophysics Data System (ADS)

    He, Mingyuan; Dong, Chen; Konishi, Teruaki; Tu, Wenzhi; Liu, Weili; Shiomi, Naoko; Kobayashi, Alisa; Uchihori, Yukio; Furusawa, Yoshiya; Hei, Tom K.; Dang, Bingrong; Shao, Chunlin

    2014-04-01

    High LET particle irradiation has several potential advantages over γ-rays such as p53-independent response. The purpose of this work is to disclose the effect of p53 on the bystander effect induced by different LET irradiations and underlying mechanism. Lymphocyte cells of TK6 (wild type p53) and HMy2.CIR (mutated p53) were exposed to either low or high LET irradiation, then their mitochondrial dysfunction and ROS generation were detected. The micronuclei (MN) induction in HL-7702 hepatocytes co-cultured with irradiated lymphocytes was also measured. It was found that the mitochondrial dysfunction, p66Shc activation, and intracellular ROS were enhanced in TK6 but not in HMy2.CIR cells after γ-ray irradiation, but all of them were increased in both cell lines after carbon and iron irradiation. Consistently, the bystander effect of MN formation in HL-7702 cells was only triggered by γ-irradiated TK6 cells but not by γ-irradiated HMy2.CIR cells. But this bystander effect was induced by both lymphocyte cell lines after heavy ion irradiation. PFT-μ, an inhibitor of p53, only partly inhibited ROS generation and bystander effect induced by 30 keV/μm carbon-irradiated TK6 cells but failed to suppress the bystander effect induced by the TK6 cells irradiated with either 70 keV/μm carbon or 180 keV/μm iron. The mitochondrial inhibitors of rotenone and oligomycin eliminated heavy ion induced ROS generation in TK6 and HMy2.CIR cells and hence diminished the bystander effect on HL-7702 cells. These results clearly demonstrate that the bystander effect is p53-dependent for low LET irradiation, but it is p53-independent for high LET irradiation which may be because of p53-independent ROS generation due to mitochondrial dysfunction.

  9. Differential effects of p53 on bystander phenotypes induced by gamma ray and high LET heavy ion radiation.

    PubMed

    He, Mingyuan; Dong, Chen; Konishi, Teruaki; Tu, Wenzhi; Liu, Weili; Shiomi, Naoko; Kobayashi, Alisa; Uchihori, Yukio; Furusawa, Yoshiya; Hei, Tom K; Dang, Bingrong; Shao, Chunlin

    2014-04-01

    High LET particle irradiation has several potential advantages over γ-rays such as p53-independent response. The purpose of this work is to disclose the effect of p53 on the bystander effect induced by different LET irradiations and underlying mechanism. Lymphocyte cells of TK6 (wild type p53) and HMy2.CIR (mutated p53) were exposed to either low or high LET irradiation, then their mitochondrial dysfunction and ROS generation were detected. The micronuclei (MN) induction in HL-7702 hepatocytes co-cultured with irradiated lymphocytes was also measured. It was found that the mitochondrial dysfunction, p66(Shc) activation, and intracellular ROS were enhanced in TK6 but not in HMy2.CIR cells after γ-ray irradiation, but all of them were increased in both cell lines after carbon and iron irradiation. Consistently, the bystander effect of MN formation in HL-7702 cells was only triggered by γ-irradiated TK6 cells but not by γ-irradiated HMy2.CIR cells. But this bystander effect was induced by both lymphocyte cell lines after heavy ion irradiation. PFT-μ, an inhibitor of p53, only partly inhibited ROS generation and bystander effect induced by 30 keV/μm carbon-irradiated TK6 cells but failed to suppress the bystander effect induced by the TK6 cells irradiated with either 70 keV/μm carbon or 180 keV/μm iron. The mitochondrial inhibitors of rotenone and oligomycin eliminated heavy ion induced ROS generation in TK6 and HMy2.CIR cells and hence diminished the bystander effect on HL-7702 cells. These results clearly demonstrate that the bystander effect is p53-dependent for low LET irradiation, but it is p53-independent for high LET irradiation which may be because of p53-independent ROS generation due to mitochondrial dysfunction.

  10. The time course of long-distance signaling in radiation-induced bystander effect in vivo in Arabidopsis thaliana demonstrated using root micro-grafting.

    PubMed

    Wang, Ting; Li, Fanghua; Xu, Shuyan; Bian, Po; Wu, Yuejin; Wu, Lijun; Yu, Zengliang

    2011-08-01

    The radiation-induced bystander effect has been demonstrated in whole organisms as well as in multicellular tissues in vitro and single-cell culture systems in vitro. However, the time course of bystander signaling, especially in whole organisms, is not clear. Long-distance bystander/abscopal effects in vivo in plants have been demonstrated by our group. Plant grafting is a useful experimental tool for studying the root-shoot signaling of plants. In the present study, we developed a root micro-grafting technique with young seedlings of Arabidopsis thaliana in which the bystander signaling communication of root-to-shoot could easily be stopped or started at specific times after root irradiation. Using this methodology, we demonstrated the time course of long-distance signaling in radiation-induced bystander effects at the level of the organism using the expression level of the AtRAD54 gene as a biological end point. Briefly, an 8-h accumulation of damage signals in bystander parts after irradiation was essential for eliciting a bystander response. The protraction of signal accumulation was not related to the transmission speed of signaling molecules in plants and did not result from the delayed initiation of bystander signals in targeted root cells. It was suggested that the bystander effect might be induced jointly by multiple bystander signals initiated at different stages after irradiation. Moreover, reactive oxygen species (ROS) were shown to be implicated in the response process of bystander cells to radiation damage signals rather than in the generation of bystander signals in targeted cells.

  11. The Significance of the Bystander Effect: Modeling, Experiments, and More Modeling

    SciTech Connect

    Brenner, David J.

    2009-07-22

    Non-targeted (bystander) effects of ionizing radiation are caused by intercellular signaling; they include production of DNA damage and alterations in cell fate (i.e. apoptosis, differentiation, senescence or proliferation). Biophysical models capable of quantifying these effects may improve cancer risk estimation at radiation doses below the epidemiological detection threshold. Understanding the spatial patterns of bystander responses is important, because it provides estimates of how many bystander cells are affected per irradiated cell. In a first approach to modeling of bystander spatial effects in a three-dimensional artificial tissue, we assumed the following: (1) The bystander phenomenon results from signaling molecules (S) that rapidly propagate from irradiated cells and decrease in concentration (exponentially in the case of planar symmetry) as distance increases. (2) These signals can convert cells to a long-lived epigenetically activated state, e.g. a state of oxidative stress; cells in this state are more prone to DNA damage and behavior alterations than normal and therefore exhibit an increased response (R) for many end points (e.g. apoptosis, differentiation, micronucleation). These assumptions were implemented by a mathematical formalism and computational algorithms. The model adequately described data on bystander responses in the 3D system using a small number of adjustable parameters. Mathematical models of radiation carcinogenesis are important for understanding mechanisms and for interpreting or extrapolating risk. There are two classes of such models: (1) long-term formalisms that track pre-malignant cell numbers throughout an entire lifetime but treat initial radiation dose-response simplistically and (2) short-term formalisms that provide a detailed initial dose-response even for complicated radiation protocols, but address its modulation during the subsequent cancer latency period only indirectly. We argue that integrating short- and long

  12. The Role of DNA Methylation Changes in Radiation-Induced Transgenerational Genomic Instability and Bystander Effects in cranial irradiated Mice

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Sun, Yeqing; Gao, Yinglong; Zhang, Baodong

    Heavy-ion radiation could lead to genome instability in the germline, and therefore to transgenerational genome and epigenome instability in offspring of exposed males. The exact mechanisms of radiation-induced genome instability in directly exposed and in bystander organ remain obscure, yet accumulating evidence points to the role of DNA methylation changes in genome instability development. The potential of localized body-part exposures to affect the germline and thus induce genome and epigenome changes in the progeny has not been studied. To investigate whether or not the paternal cranial irradiation can exert deleterious changes in the protected germline and the offsprings, we studied the alteration of DNA methylation in the shielded testes tissue. Here we report that the localized paternal cranial irradiation results in a significant altered DNA methylation in sperm cells and leads to a profound epigenetic dysregulation in the unexposed progeny conceived 3 months after paternal exposure. The possible molecular mechanisms and biological consequences of the observed changes are discussed. Keywords: Heavy-ion radiation; Transgenerational effect; Genomic Instability Bystander Effects; DNA methylation.

  13. Antioxidant enzymes and the mechanism of the bystander effect induced by ultraviolet C irradiation of A375 human melanoma cells.

    PubMed

    Ghosh, Rita; Guha, Dipanjan; Bhowmik, Sudipta; Karmakar, Sayantani

    2013-09-18

    Irradiated cells generate dynamic responses in non-irradiated cells; this signaling phenomenon is known as the bystander effect (BE). Factors secreted by the irradiated cells communicate some of these signals. Conditioned medium from UVC-irradiated A375 human melanoma cells was used to study the BE. Exposure of cells to conditioned medium induce cell-cycle arrest at the G2/M transition. Although conditioned medium treatment, by itself, did not alter cell viability, treated cells were more resistant to the lethal action of UVC or H2O2. This protective effect of conditioned medium was lost within 8h. Apoptotic or autophagic cell death was not involved in this resistance. Exposure to conditioned medium did not influence the rate of DNA repair, as measured by NAD(+) depletion. The activities of catalase and superoxide dismutase were elevated in cells exposed to conditioned medium, but returned to normal levels by 8h post-treatment. These results indicate a close correlation between BE-stimulated antioxidant activity and cellular sensitivity. Cell-cycle arrest and stimulation of antioxidant activity may account for the resistance to killing that was observed in bystander cells exposed to UVC or H2O2 treatment and are consistent with the role of the BE as a natural defense function triggered by UVC irradiation. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Effects of bystander CPR following out-of-hospital cardiac arrest on hospital costs and long-term survival.

    PubMed

    Geri, Guillaume; Fahrenbruch, Carol; Meischke, Hendrika; Painter, Ian; White, Lindsay; Rea, Thomas D; Weaver, Marcia R

    2017-06-01

    Bystander cardiopulmonary resuscitation (CPR) is associated with a greater likelihood of survival to hospital discharge after out-of-hospital cardiac arrest (OHCA). However the long-term survival benefits in relationship to cost have not been well-studied. We evaluated bystander CPR, hospital-based costs, and long-term survival following OHCA in order to assess the potential cost-effectiveness of bystander CPR. We conducted a retrospective cohort study of consecutive EMS-treated OHCA patients >=12years who arrested prior to EMS arrival and outside a nursing facility between 2001 and 2010 in greater King County, WA. Utstein-style information was obtained from the EMS registry, including 5-year survival. Costs from the OHCA hospitalization were obtained from the Washington State Comprehensive Hospital Abstract Reporting System. Cost effectiveness was based on hospital costs divided by quality-adjusted life years (QALYs) for a 5-year follow-up window. Of the 4448 eligible patients, 18.5% (n=824) were discharged alive from hospital and 12.1% (n=539) were alive at 5 years. Five-year survival was higher in patients who received bystander CPR (14.3% vs. 8.7%, p<0.001) translating to an average 0.09 QALYs associated with bystander CPR. The average (SD) total cost of the initial acute care hospitalization was USD 19,961 (40,498) for all admitted patients and USD 75,175 (52,276) for patients alive at year 5. The incremental cost-effectiveness ratio associated with bystander CPR was USD 48,044 per QALY. Based on this population-based investigation, bystander CPR was positively associated with long-term survival and appears cost-effective. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Non-targeted and delayed effects of exposure to ionizing radiation: I. Radiation-induced genomic instability and bystander effects in vitro

    NASA Technical Reports Server (NTRS)

    Morgan, William F.

    2003-01-01

    A long-standing dogma in the radiation sciences is that energy from radiation must be deposited in the cell nucleus to elicit a biological effect. A number of non-targeted, delayed effects of ionizing radiation have been described that challenge this dogma and pose new challenges to evaluating potential hazards associated with radiation exposure. These effects include induced genomic instability and non-targeted bystander effects. The in vitro evidence for non-targeted effects in radiation biology will be reviewed, but the question as to how one extrapolates from these in vitro observations to the risk of radiation-induced adverse health effects such as cancer remains open.

  16. Non-targeted and delayed effects of exposure to ionizing radiation: I. Radiation-induced genomic instability and bystander effects in vitro

    NASA Technical Reports Server (NTRS)

    Morgan, William F.

    2003-01-01

    A long-standing dogma in the radiation sciences is that energy from radiation must be deposited in the cell nucleus to elicit a biological effect. A number of non-targeted, delayed effects of ionizing radiation have been described that challenge this dogma and pose new challenges to evaluating potential hazards associated with radiation exposure. These effects include induced genomic instability and non-targeted bystander effects. The in vitro evidence for non-targeted effects in radiation biology will be reviewed, but the question as to how one extrapolates from these in vitro observations to the risk of radiation-induced adverse health effects such as cancer remains open.

  17. Use of synchrotron medical microbeam irradiation to investigate radiation-induced bystander and abscopal effects in vivo.

    PubMed

    Fernandez-Palomo, Cristian; Bräuer-Krisch, Elke; Laissue, Jean; Vukmirovic, Dusan; Blattmann, Hans; Seymour, Colin; Schültke, Elisabeth; Mothersill, Carmel

    2015-09-01

    The question of whether bystander and abscopal effects are the same is unclear. Our experimental system enables us to address this question by allowing irradiated organisms to partner with unexposed individuals. Organs from both animals and appropriate sham and scatter dose controls are tested for expression of several endpoints such as calcium flux, role of 5HT, reporter assay cell death and proteomic profile. The results show that membrane related functions of calcium and 5HT are critical for true bystander effect expression. Our original inter-animal experiments used fish species whole body irradiated with low doses of X-rays, which prevented us from addressing the abscopal effect question. Data which are much more relevant in radiotherapy are now available for rats which received high dose local irradiation to the implanted right brain glioma. The data were generated using quasi-parallel microbeams at the biomedical beamline at the European Synchrotron Radiation Facility in Grenoble France. This means we can directly compare abscopal and "true" bystander effects in a rodent tumour model. Analysis of right brain hemisphere, left brain and urinary bladder in the directly irradiated animals and their unirradiated partners strongly suggests that bystander effects (in partner animals) are not the same as abscopal effects (in the irradiated animal). Furthermore, the presence of a tumour in the right brain alters the magnitude of both abscopal and bystander effects in the tissues from the directly irradiated animal and in the unirradiated partners which did not contain tumours, meaning the type of signal was different.

  18. Changes in vocal parameters with social context in humpback whales: considering the effect of bystanders.

    PubMed

    Dunlop, Rebecca A

    Many theories and communication models developed from terrestrial studies focus on a simple dyadic exchange between a sender and receiver. During social interactions, the "frequency code" hypothesis suggests that frequency characteristics of vocal signals can simultaneously encode for static signaler attributes (size or sex) and dynamic information, such as motivation or emotional state. However, the additional presence of a bystander may result in a change of signaling behavior if the costs and benefits associated with the presence of this bystander are different from that of a simple dyad. In this study, two common humpback whale social calls ("wops" and "grumbles") were tested for differences related to group social behavior and the presence of bystanders. "Wop" parameters were stable with group social behavior, but were emitted at lower (14 dB) levels in the presence of a nearby singing whale compared to when a singing whale was not in the area. "Grumbles" were emitted at lower (30-39 Hz) fundamental frequencies in affiliative compared to non-affiliative groups and, in the presence of a nearby singing whale, were also emitted at lower (14 dB) levels. Vocal rates did not significantly change. The results suggest that, in humpbacks, the frequency in certain sound types relates to the social behavior of the vocalizing group, implying a frequency code system. The presence of a nearby audible bystander (a singing whale) had no effect on this frequency code, but by reducing their acoustic level, the signal-to-noise ratio at the singer would have been below 0, making it difficult for the singer to audibly detect the group. The frequency, duration, and amplitude parameters of humpback whale social vocalizations were tested between different social contexts: group social behavior (affiliating versus non-affiliating), the presence of a nearby singing whale, and the presence of a nearby non-singing group. "Grumbles" (commonly heard low-frequency unmodulated sounds

  19. MiR-663 inhibits radiation-induced bystander effects by targeting TGFB1 in a feedback mode

    PubMed Central

    Hu, Wentao; Xu, Shuai; Yao, Bin; Hong, Mei; Wu, Xin; Pei, Hailong; Chang, Lei; Ding, Nan; Gao, Xiaofei; Ye, Caiyong; Wang, Jufang; Hei, Tom K; Zhou, Guangming

    2014-01-01

    The mechanisms of radiation-induced bystander effects (RIBE) have been investigated intensively over the past two decades. Although quite a few reports demonstrated that cytokines such as TGF-β1 are induced within the directly irradiated cells and play critical roles in mediating the bystander effects, little is known about the signaling pathways that occur in bystander cells. The crucial question as to why RIBE signals cannot be infinitely transmitted, therefore, remains unclear. In the present study, we showed that miR-663, a radiosensitive microRNA, participates in the regulation of biological effects in both directly irradiated and bystander cells via its targeting of TGF-β1. MiR-663 was downregulated, while TGFB1 was upregulated in directly irradiated cells. The regulation profile of miR-663 and TGFB1, on the other hand, was reversed in bystander cells, in which an elevated miR-663 expression was exhibited and led to downregulation of TGF-β1. Further studies revealed that miR-663 interacts with TGFB1 directly and that through its binding to the core regulation sequence, miR-663 suppresses the expression of TGFB1. Based on the results, we propose that miR-663 inhibits the propagation of RIBE in a feedback mode, in which the induction of TGF-β1 by reduced miR-663 in directly irradiated cells leads to increased level of miR-663 in bystander cells. The upregulation of miR-663 in turn suppresses the expression of TGF-β1 and limits further transmission of the bystander signals. PMID:25483041

  20. Actinobaculum schaalii - invasive pathogen or innocent bystander? A retrospective observational study

    PubMed Central

    2011-01-01

    Background Actinobaculum schaalii is a Gram-positive, facultative anaerobic coccoid rod, classified as a new genus in 1997. It grows slowly and therefore is easily overgrown by other pathogens, which are often found concomitantly. Since 1999, Actinobaculum schaalii is routinely investigated at our hospital, whenever its presence is suspected due to the detection of minute grey colonies on blood agar plates and negative reactions for catalase. The objective of this study was to determine the clinical significance of Actinobaculum schaalii, identified in our microbiology laboratory over the last 11 years. Methods All consecutive isolates with Actinobaculum schaalii were obtained from the computerized database of the clinical microbiology laboratory and patients whose cultures from any body site yielded this pathogen were analyzed. Observation of tiny colonies of Gram-positive, catalase-negative coccoid rods triggered molecular identification based on 16S rRNA gene sequencing. Results 40 isolates were obtained from 27 patients during the last 11 years. The patient's median age was 81 (19-101) years, 25 (92.6%) had underlying diseases and 12 (44.4%) had a genitourinary tract pathology. Actinobaculum schaalii was isolated in 12 urine cultures, 21 blood cultures, and 7 deep tissue biopsies. Twenty-five (62.5%) specimens were monobacterial, the remaining 15 (37.5%) were polybacterial 7/7 deep tissue samples (three bloodcultures and five urine cultures). Recovery from urine was interpreted as colonization in 5 (18.6%) cases (41.6% of all urine samples). Six (22.2%) suffered from urinary tract infections, six (22.2%) from abscesses (skin, intraabdominal, genitourinary tract, and surgical site infections) and 10 (37.0%) from bacteremia. Conclusions In this largest case series so far, detection of Actinobaculum schaalii was associated with an infection - primarily sepsis and abscesses - in 81.5% of our patients. Since this pathogen is frequently part of polymicrobial cultures

  1. Sulfasalazine unveils a contact-independent HSV-TK/ganciclovir gene therapy bystander effect in malignant gliomas.

    PubMed

    Robe, Pierre A; Nguyen-Khac, Minh-Tuan; Lambert, Frederic; Lechanteur, Chantal; Jolois, Olivier; Ernst-Gengoux, Patricia; Rogister, Bernard; Bours, Vincent

    2007-01-01

    The efficacy of HSV-TK/ganciclovir-based gene therapy on malignant gliomas largely relies on the amplitude of the bystander effect. In these experiments, the anti-inflammatory drug Sulfasalazine increased the HSV-TK/ganciclovir bystander effect in C6, 9L and LN18 cells but not in U87 glioma cells. Using bi-compartmental culture devices and conditioned medium transfer experiments, we showed that in C6, 9L and LN18 cells but not in U87 cells, Sulfasalazine also unveiled a new, contact-independent mechanism of HSV-TK/ganciclovir bystander effect. Upon treatment with ganciclovir, human LN18-TK but not U87-TK cells synthetized and released TNF-alpha in the culture medium. Sulfasalazine sensitized glioma cells to the toxic effect of TNF-alpha and enhanced its secretion in LN18-TK cells in response to GCV treatment. The caspase-8 inhibitor Z-IETD-FMK and a blocking antibody to TNF-alpha both inhibited the contact-independent bystander effect in LN18 cells. Taken together, these results suggest that TNF-alpha mediates the contact-independent bystander effect in LN18 cells. The treatment with GCV and/or Sulfasalazine of tumor xenografts consisting of a mix of 98% C6 and 2% C6-TK cells shows that Sulfasalazine is also a potent adjunct to the in vivo treatment of gliomas.

  2. Tissue-Sparing Effect of X-ray Microplanar Beams Particulary in the CNS: Is a Bystander Effect Involved?

    SciTech Connect

    Dilmanian,A.; Qu, Y.; Feinendegen, L.; Pena, L.; Bacarian, T.; Henn, F.; Kalef-Ezra, J.; Liu, S.; Zhong, Z.; McDonald, J.

    2007-01-01

    Normal tissues, including the central nervous system, tolerate single exposures to narrow planes of synchrotron-generated x-rays (microplanar beams; microbeams) up to several hundred Gy. The repairs apparently involve the microvasculature and the glial system. We evaluate a hypothesis on the involvement of bystander effects in these repairs.

  3. Low concentration of exogenous carbon monoxide protects mammalian cells against proliferation induced by radiation-induced bystander effect.

    PubMed

    Tong, Liping; Yu, K N; Bao, Lingzhi; Wu, Wenqing; Wang, Hongzhi; Han, Wei

    2014-01-01

    Radiation-induced bystander effect (RIBE) has been proposed to have tight relationship with the irradiation-caused secondary cancers beyond the irradiation-treated area after radiotherapy. Our previous studies demonstrated a protective effect of low concentration carbon monoxide (CO) on the genotoxicity of RIBE after α-particle irradiation. In the present work, a significant inhibitory effect of low-dose exogenous CO, generated by tricarbonyldichlororuthenium (II) dimer [CO-releasing molecule (CORM-2)], on both RIBE-induced proliferation and chromosome aberration was observed. Further studies on the mechanism revealed that the transforming growth factor β1/nitric oxide (NO) signaling pathway, which mediated RIBE signaling transduction, could be modulated by CO involved in the protective effects. Considering the potential of exogenous CO in clinical applications and its protective effect on RIBE, the present work aims to provide a foundation for potential application of CO in radiotherapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. The differential role of human macrophage in triggering secondary bystander effects after either gamma-ray or carbon beam irradiation

    PubMed Central

    Dong, Chen; He, Mingyuan; Tu, Wenzhi; Konishi, Teruaki; Liu, Weili; Xie, Yuexia; Dang, Bingrong; Li, Wenjian; Uchihori, Yukio; Hei, Tom K.; Shao, Chunlin

    2015-01-01

    The abscopal effect could be an underlying factor in evaluating prognosis of radiotherapy. This study established an in vitro system to examine whether tumor-generated bystander signals could be transmitted by macrophages to further trigger secondary cellular responses after different irradiations, where human lung cancer NCI-H446 cells were irradiated with either γ-rays or carbon ions and co-cultured with human macrophage U937 cells, then these U937 cells were used as a bystander signal transmitter and co-cultured with human bronchial epithelial cells BEAS-2B. Results showed that U937 cells were only activated by γ-irradiated NCI-H446 cells so that the secondary injuries in BEAS-2B cells under carbon ion irradiation were weaker than γ-rays. Both TNF-α and IL-1α were involved in γ-irradiation induced secondary bystander effect but only TNF-α contributed to the carbon ion induced response. Further assay disclosed that IL-1α but not TNF-α was largely responsible for the activation of macrophages and the formation of micronucleus in BEAS-2B cells. These data suggest that macrophages could transfer secondary bystander signals and play a key role in the secondary bystander effect of photon irradiation while carbon ion irradiation has conspicuous advantage due to its reduced secondary injury. PMID:25896631

  5. The differential role of human macrophage in triggering secondary bystander effects after either gamma-ray or carbon beam irradiation.

    PubMed

    Dong, Chen; He, Mingyuan; Tu, Wenzhi; Konishi, Teruaki; Liu, Weili; Xie, Yuexia; Dang, Bingrong; Li, Wenjian; Uchihori, Yukio; Hei, Tom K; Shao, Chunlin

    2015-07-10

    The abscopal effect could be an underlying factor in evaluating prognosis of radiotherapy. This study established an in vitro system to examine whether tumor-generated bystander signals could be transmitted by macrophages to further trigger secondary cellular responses after different irradiations, where human lung cancer NCI-H446 cells were irradiated with either γ-rays or carbon ions and co-cultured with human macrophage U937 cells, then these U937 cells were used as a bystander signal transmitter and co-cultured with human bronchial epithelial cells BEAS-2B. Results showed that U937 cells were only activated by γ-irradiated NCI-H446 cells so that the secondary injuries in BEAS-2B cells under carbon ion irradiation were weaker than γ-rays. Both TNF-α and IL-1α were involved in the γ-irradiation induced secondary bystander effect but only TNF-α contributed to the carbon ion induced response. Further assay disclosed that IL-1α but not TNF-α was largely responsible for the activation of macrophages and the formation of micronucleus in BEAS-2B cells. These data suggest that macrophages could transfer secondary bystander signals and play a key role in the secondary bystander effect of photon irradiation, while carbon ion irradiation has conspicuous advantage due to its reduced secondary injury. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Genome-wide microarray analysis of human fibroblasts in response to γ radiation and the radiation-induced bystander effect.

    PubMed

    Kalanxhi, Erta; Dahle, Jostein

    2012-01-01

    Radiation-induced bystander effects have been studied extensively due to their potential implications for cancer therapy and radiation protection; however, a complete understanding of the molecular mechanisms remains to be elucidated. In this study, we monitored transcriptional responses to γ radiation in irradiated and bystander fibroblasts simultaneously employing a genome-wide microarray approach to determine factors that may be modulated in the generation or propagation of the bystander effect. For the microarray data we employed analysis at both the single-gene and gene-set level to place the findings in a biological context. Unirradiated bystander fibroblasts that were recipients of growth medium harvested from irradiated cultures 2 h after exposure to 2 Gy displayed transient enrichment in gene sets belonging to ribosome, oxidative phosphorylation and neurodegenerative disease pathways associated with mitochondrial dysfunctions. The response to direct irradiation was characterized by induction of signaling and apoptosis genes and the gradual formation of a cellular immune response. A set of 14 genes, many of which were regulated by p53, were found to be induced early after irradiation (prior to medium transfer) and may be important in the generation or propagation of the bystander effect.

  7. Dependence of the bystander effect for micronucleus formation on dose of heavy-ion radiation in normal human fibroblasts.

    PubMed

    Matsumoto, Yoshitaka; Hamada, Nobuyuki; Aoki-Nakano, Mizuho; Funayama, Tomoo; Sakashita, Tetsuya; Wada, Seiichi; Kakizaki, Takehiko; Kobayashi, Yasuhiko; Furusawa, Yoshiya

    2015-09-01

    Ionising radiation-induced bystander effects are well recognised, but its dependence on dose or linear energy transfer (LET) is still a matter of debate. To test this, 49 sites in confluent cultures of AG01522D normal human fibroblasts were targeted with microbeams of carbon (103 keV µm(-1)), neon (375 keV µm(-1)) and argon ions (1260 keV µm(-1)) and evaluated for the bystander-induced formation of micronucleus that is a kind of a chromosome aberration. Targeted exposure to neon and argon ions significantly increased the micronucleus frequency in bystander cells to the similar extent irrespective of the particle numbers per site of 1-6. In contrast, the bystander micronucleus frequency increased with increasing the number of carbon-ion particles in a range between 1 and 3 particles per site and was similar in a range between 3 and 8 particles per site. These results suggest that the bystander effect of heavy ions for micronucleus formation depends on dose. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Improved Anticancer Photothermal Therapy Using the Bystander Effect Enhanced by Antiarrhythmic Peptide Conjugated Dopamine-Modified Reduced Graphene Oxide Nanocomposite.

    PubMed

    Yu, Jiantao; Lin, Yu-Hsin; Yang, Lingyan; Huang, Chih-Ching; Chen, Liliang; Wang, Wen-Cheng; Chen, Guan-Wen; Yan, Junyan; Sawettanun, Saranta; Lin, Chia-Hua

    2017-01-01

    Despite tremendous efforts toward developing novel near-infrared (NIR)-absorbing nanomaterials, improvement in therapeutic efficiency remains a formidable challenge in photothermal cancer therapy. This study aims to synthesize a specific peptide conjugated polydopamine-modified reduced graphene oxide (pDA/rGO) nanocomposite that promotes the bystander effect to facilitate cancer treatment using NIR-activated photothermal therapy. To prepare a nanoplatform capable of promoting the bystander effect in cancer cells, we immobilized antiarrhythmic peptide 10 (AAP10) on the surface of dopamine-modified rGO (AAP10-pDA/rGO). Our AAP10-pDA/rGO could promote the bystander effect by increasing the expression of connexin 43 protein in MCF-7 breast-cancer cells. Because of its tremendous ability to absorb NIR absorption, AAP10-pDA/rGO offers a high photothermal effect under NIR irradiation. This leads to a massive death of MCF-7 cells via the bystander effect. Using tumor-bearing mice as the model, it is found that NIR radiation effectively ablates breast tumor in the presence of AAP10-pDA/rGO and inhibits tumor growth by ≈100%. Therefore, this research integrates the bystander and photothermal effects into a single nanoplatform in order to facilitate an efficient photothermal therapy. Furthermore, our AAP10-pDA/rGO, which exhibits both hyperthermia and the bystander effect, can prevent breast-cancer recurrence and, therefore, has great potential for future clinical and research applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. [Effect of radiation-induced bystander chemosignals of mice on the humoral immune response in spleen and lymph nodes of intact recipients].

    PubMed

    Sharetskiĭ, A N; Kharlamov, V A; Surinov, B P

    2012-01-01

    The ability of post-radiation (4 Gy) bystander chemosignals (the volatile components of mouse urine) to distantly modulate the humoral immune response to the sheep red blood cells in the spleen and popliteal lymph nodes of intact recipients has been investigated. It was shown that the exposure of animals to chemosignals before antigen injection resulted in the decrease and increase of the immune response in the spleen and lymph nodes, respectively. When animals were exposed to chemosignals after the antigenic stimulus, an increased immune response was observed in both spleen and lymph nodes. The contribution of radiation-induced bystander signaling in the response of socially organized animals to the effect of ionizing irradiation is discussed.

  10. Is there a common mechanism underlying genomic instability, bystander effects and other nontargeted effects of exposure to ionizing radiation?

    NASA Technical Reports Server (NTRS)

    Morgan, William F.

    2003-01-01

    A number of nontargeted and delayed effects associated with radiation exposure have now been described. These include radiation-induced genomic instability, death-inducing and bystander effects, clastogenic factors and transgenerational effects. It is unlikely that these nontargeted effects are directly induced by cellular irradiation. Instead, it is proposed that some as yet to be identified secreted factor can be produced by irradiated cells that can stimulate effects in nonirradiated cells (death-inducing and bystander effects, clastogenic factors) and perpetuate genomic instability in the clonally expanded progeny of an irradiated cell. The proposed factor must be soluble and capable of being transported between cells by cell-to-cell gap junction communication channels. Furthermore, it must have the potential to stimulate cellular cytokines and/or reactive oxygen species. While it is difficult to imagine a role for such a secreted factor in contributing to transgenerational effects, the other nontargeted effects of radiation may all share a common mechanism.

  11. Is there a common mechanism underlying genomic instability, bystander effects and other nontargeted effects of exposure to ionizing radiation?

    NASA Technical Reports Server (NTRS)

    Morgan, William F.

    2003-01-01

    A number of nontargeted and delayed effects associated with radiation exposure have now been described. These include radiation-induced genomic instability, death-inducing and bystander effects, clastogenic factors and transgenerational effects. It is unlikely that these nontargeted effects are directly induced by cellular irradiation. Instead, it is proposed that some as yet to be identified secreted factor can be produced by irradiated cells that can stimulate effects in nonirradiated cells (death-inducing and bystander effects, clastogenic factors) and perpetuate genomic instability in the clonally expanded progeny of an irradiated cell. The proposed factor must be soluble and capable of being transported between cells by cell-to-cell gap junction communication channels. Furthermore, it must have the potential to stimulate cellular cytokines and/or reactive oxygen species. While it is difficult to imagine a role for such a secreted factor in contributing to transgenerational effects, the other nontargeted effects of radiation may all share a common mechanism.

  12. Potential implications on TCP for external beam prostate cancer treatment when considering the bystander effect in partial exposure scenarios.

    PubMed

    Balderson, Michael John; Kirkby, Charles

    2014-02-01

    This work investigated the potential implications on tumour control probability (TCP) for external beam prostate cancer treatment when considering the bystander effect in partial exposure scenarios. The biological response of a prostate cancer target volume under conditions where a sub-volume of the target volume was not directly irradiated was modelled in terms of surviving fraction (SF) and Poisson-based TCP. A direct comparison was made between the linear-quadratic (LQ) response model, and a response model that incorporates bystander effects as derived from published in vitro data by McMahon et al. in 2012 and 2013. Scenarios of random and systematic misses were considered. Our results suggested the potential for the bystander effect to deviate from LQ predictions when even very small (< 1%) sub-volumes of the target volume were directly irradiated. Under conditions of random misses for each fraction, the bystander model predicts a 3% and 1% improvement in tumour control compared to that predicted by an LQ model when only 90% and 95% of the prostate cells randomly receive the intended dose. Under conditions of systematic miss, if even a small portion of the target volume is not directly exposed, the LQ model predicts a TCP approaching zero, whereas the bystander model suggests TCP will improve starting at exposed volumes of around 85%. The bystander model, when applied to clinically relevant scenarios, demonstrates the potential to deviate from the TCP predictions of the common local LQ model when sub-volumes of a target volume are randomly or systematically missed over a course of fractionated radiation therapy.

  13. Characteristics and mechanisms of the bystander response in monolayer cell cultures exposed to very low fluences of alpha particles

    NASA Astrophysics Data System (ADS)

    Little, John B.; Azzam, Edouard I.; de Toledo, Sonia M.; Nagasawa, Hatsumi

    2005-02-01

    When confluent cultures of mammalian cells are irradiated with very low fluences of alpha particles whereby only occasional cells receive any radiation exposure, genetic changes are observed in the non-irradiated ("bystander") cells. Upregulation of the p53 damage-response pathway as well as activation of proteins in the MAPK family occurred in bystander cells; p53 was phosphorylated on the serine 15 residue suggesting that the upregulation of p53 was a consequence of DNA damage. Damage signals were transmitted to bystander cells through gap junctions, as confirmed by the use of genetically manipulated cells including connexin43 knockouts. Expression of connexin43 was markedly enhanced by irradiation. A moderate bystander effect was observed for specific gene mutations and chromosomal aberrations. This effect was markedly enhanced in cells defective in the non-homologous end joining DNA repair pathway. Finally, an upregulation of oxidative metabolism occurred in bystander cells; the increased levels of reactive oxygen species appeared to be derived from flavine-containing oxidase enzymes. We hypothesize that genetic effects observed in non-irradiated bystander cells are a consequence of oxidative base damage; >90% of mutations in bystander cells were point mutations. When bystander cells cannot repair DNA double strand breaks, they become much more sensitive to the induction of chromosomal aberrations and mutations, the latter consisting primarily of deletion mutants. While we propose that the genetic effects occurring in bystander cells are a consequence of oxidative stress, the nature of the signal that initiates this process remains to be determined.

  14. Extracellular signaling through the microenvironment: a hypothesis relating carcinogenesis, bystander effects, and genomic instability

    NASA Technical Reports Server (NTRS)

    Barcellos-Hoff, M. H.; Brooks, A. L.; Chatterjee, A. (Principal Investigator)

    2001-01-01

    Cell growth, differentiation and death are directed in large part by extracellular signaling through the interactions of cells with other cells and with the extracellular matrix; these interactions are in turn modulated by cytokines and growth factors, i.e. the microenvironment. Here we discuss the idea that extracellular signaling integrates multicellular damage responses that are important deterrents to the development of cancer through mechanisms that eliminate abnormal cells and inhibit neoplastic behavior. As an example, we discuss the action of transforming growth factor beta (TGFB1) as an extracellular sensor of damage. We propose that radiation-induced bystander effects and genomic instability are, respectively, positive and negative manifestations of this homeostatic process. Bystander effects exhibited predominantly after a low-dose or a nonhomogeneous radiation exposure are extracellular signaling pathways that modulate cellular repair and death programs. Persistent disruption of extracellular signaling after exposure to relatively high doses of ionizing radiation may lead to the accumulation of aberrant cells that are genomically unstable. Understanding radiation effects in terms of coordinated multicellular responses that affect decisions regarding the fate of a cell may necessitate re-evaluation of radiation dose and risk concepts and provide avenues for intervention.

  15. Extracellular signaling through the microenvironment: a hypothesis relating carcinogenesis, bystander effects, and genomic instability

    NASA Technical Reports Server (NTRS)

    Barcellos-Hoff, M. H.; Brooks, A. L.; Chatterjee, A. (Principal Investigator)

    2001-01-01

    Cell growth, differentiation and death are directed in large part by extracellular signaling through the interactions of cells with other cells and with the extracellular matrix; these interactions are in turn modulated by cytokines and growth factors, i.e. the microenvironment. Here we discuss the idea that extracellular signaling integrates multicellular damage responses that are important deterrents to the development of cancer through mechanisms that eliminate abnormal cells and inhibit neoplastic behavior. As an example, we discuss the action of transforming growth factor beta (TGFB1) as an extracellular sensor of damage. We propose that radiation-induced bystander effects and genomic instability are, respectively, positive and negative manifestations of this homeostatic process. Bystander effects exhibited predominantly after a low-dose or a nonhomogeneous radiation exposure are extracellular signaling pathways that modulate cellular repair and death programs. Persistent disruption of extracellular signaling after exposure to relatively high doses of ionizing radiation may lead to the accumulation of aberrant cells that are genomically unstable. Understanding radiation effects in terms of coordinated multicellular responses that affect decisions regarding the fate of a cell may necessitate re-evaluation of radiation dose and risk concepts and provide avenues for intervention.

  16. Damaging and protective bystander cross-talk between human lung cancer and normal cells after proton microbeam irradiation.

    PubMed

    Desai, Sejal; Kobayashi, Alisa; Konishi, Teruaki; Oikawa, Masakazu; Pandey, Badri N

    2014-01-01

    Most of the studies of radiation-induced bystander effects (RIBE) have been focused on understanding the radiobiological changes observed in bystander cells in response to the signals from irradiated cells in a normal cell population with implications to radiation risk assessment. However, reports on RIBE with relevance to cancer radiotherapy especially investigating the bidirectional and criss-cross bystander communications between cancer and normal cells are limited. Hence, in present study employing co-culture approach, we have investigated the bystander cross-talk between lung cancer (A549) and normal (WI38) cells after proton-microbeam irradiation using γ-H2AX foci fluorescence as a measure of DNA double-strand breaks (DSBs). We observed that in A549-A549 co-cultures, irradiated A549 cells exert damaging effects in bystander A549 cells, which were found to be mediated through gap junctional intercellular communication (GJIC). However, in A549-WI38 co-cultures, irradiated A549 did not affect bystander WI38 cells. Rather, bystander WI38 cells induced inverse protective signalling (rescue effect) in irradiated A549 cells, which was independent of GJIC. On the other hand, in response to irradiated WI38 cells neither of the bystander cells (A549 or WI38) showed significant increase in γ-H2AX foci. The observed bystander signalling between tumour and normal cells may have potential implications in therapeutic outcome of cancer radiotherapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Evidence for a physical component to the radiation-induced bystander effect?

    PubMed

    Mothersill, Carmel; Smith, Richard W; Fazzari, Jennifer; McNeill, Fiona; Prestwich, William; Seymour, Colin B

    2012-08-01

    The nature of the transferrable factor which goes from irradiated objects to bystander objects remains undefined. Most agree that a chemical entity is the likely 'factor' although some authors have produced in vitro evidence for the involvement of a physical component or a very potent volatile capable of traveling through air distances. In this paper we test the hypothesis that the communicated signal may be physical at least in part. The in vivo fish model was used to allow signal production and response to occur in organisms in vivo without any shared blood or central nervous system (CNS) connections. A reporter assay and calcium flux measurements were used to detect signal production when irradiated fish were separated from unirradiated fish by (a) a plastic container, and (b) a foil-wrapped plastic container. The unirradiated fish showed bystander effects in both cases. The use of foil excludes the possibility of a light signal and although a highly active volatile could travel from one tank to another, the arrangement of sham and irradiated tanks makes it highly unlikely that this could explain our result. We conclude that there must be a physical component in the mechanism such as a weak acoustic or electromagnetic signal.

  18. Selective replication of oncolytic virus M1 results in a bystander killing effect that is potentiated by Smac mimetics.

    PubMed

    Cai, Jing; Lin, Yuan; Zhang, Haipeng; Liang, Jiankai; Tan, Yaqian; Cavenee, Webster K; Yan, Guangmei

    2017-06-27

    Oncolytic virotherapy is a treatment modality that uses native or genetically modified viruses that selectively replicate in and kill tumor cells. Viruses represent a type of pathogen-associated molecular pattern and thereby induce the up-regulation of dozens of cytokines via activating the host innate immune system. Second mitochondria-derived activator of caspases (Smac) mimetic compounds (SMCs), which antagonize the function of inhibitor of apoptosis proteins (IAPs) and induce apoptosis, sensitize tumor cells to multiple cytokines. Therefore, we sought to determine whether SMCs sensitize tumor cells to cytokines induced by the oncolytic M1 virus, thus enhancing a bystander killing effect. Here, we report that SMCs potentiate the oncolytic effect of M1 in vitro, in vivo, and ex vivo. This strengthened oncolytic efficacy resulted from the enhanced bystander killing effect caused by the M1 virus via cytokine induction. Through a microarray analysis and subsequent validation using recombinant cytokines, we identified IL-8, IL-1A, and TRAIL as the key cytokines in the bystander killing effect. Furthermore, SMCs increased the replication of M1, and the accumulation of virus protein induced irreversible endoplasmic reticulum stress- and c-Jun N-terminal kinase-mediated apoptosis. Nevertheless, the combined treatment with M1 and SMCs had little effect on normal and human primary cells. Because SMCs selectively and significantly enhance the bystander killing effect and the replication of oncolytic virus M1 specifically in cancer cells, this combined treatment may represent a promising therapeutic strategy.

  19. Expression profiles are different in carbon ion-irradiated normal human fibroblasts and their bystander cells.

    PubMed

    Iwakawa, Mayumi; Hamada, Nobuyuki; Imadome, Kaori; Funayama, Tomoo; Sakashita, Testuya; Kobayashi, Yasuhiko; Imai, Takashi

    2008-07-03

    Evidence has accumulated that ionizing radiation induces biological effects in non-irradiated bystander cells having received signals from directly irradiated cells; however, energetic heavy ion-induced bystander response is incompletely characterized. Here we performed microarray analysis of irradiated and bystander fibroblasts in confluent cultures. To see the effects in bystander cells, each of 1, 5 and 25 sites was targeted with 10 particles of carbon ions (18.3 MeV/u, 103 keV/microm) using microbeams, where particles traversed 0.00026, 0.0013 and 0.0066% of cells, respectively. diated cells, cultures were exposed to 10% survival dose (D), 0.1D and 0.01D of corresponding broadbeams (108 keV/microm). Irrespective of the target numbers (1, 5 or 25 sites) and the time (2 or 6h postirradiation), similar expression changes were observed in bystander cells. Among 874 probes that showed more than 1.5-fold changes in bystander cells, 25% were upregulated and the remainder downregulated. These included genes related to cell communication (PIK3C2A, GNA13, FN1, ANXA1 and IL1RAP), stress response (RAD23B, ATF4 and EIF2AK4) and cell cycle (MYCN, RBBP4 and NEUROG1). Pathway analysis revealed serial bystander activation of G protein/PI-3 kinase pathways. Instead, genes related to cell cycle or death (CDKN1A, GADD45A, NOTCH1 and BCL2L1), and cell communication (IL1B, TCF7 and ID1) were upregulated in irradiated cells, but not in bystander cells. Our results indicate different expression profiles in irradiated and bystander cells, and imply that intercellular signaling between irradiated and bystander cells activate intracellular signaling, leading to the transcriptional stress response in bystander cells.

  20. Tissue-specific effects of acute aluminium exposure on the radiation-induced bystander effect in rainbow trout (Oncorhynchus mykiss, Walbaum).

    PubMed

    Smith, Richard W; Seymour, Colin B; Moccia, Richard D; Mothersill, Carmel E

    2015-01-01

    To investigate if aluminium (Al) modifies the rainbow trout response to radiation exposure and/or the induction of a radiation-induced bystander effect. Rainbow trout were exposed to 100 or 200 μg l(-1) Al (for 3 h), a 0.5 Gy X-ray dose or Al followed immediately by irradiation. The exposed fish were then swum with completely untreated bystander fish. A human reporter cell clonogenic assay was used to determine whether Al exposure modified the effects of irradiation on the skin and gills from directly exposed fish and also the radiation-induced bystander effect in untreated fish. Al exposure did not modify the response to direct irradiation by the skin, or the gill. Al did not modify the bystander effect in the skin. However Al did modify the bystander effect in the gill. Gills of bystander fish swum with fish exposed to 200 μg l(-1) Al, followed by irradiation, caused a greater reduction in HPV-G cell survival than was caused by irradiation only. Interestingly Al exposure only also caused a bystander effect (reduced HPV-G survival) in the gill. This study shows that, in a multiple stressor scenario, the communication of radiation-induced stress signals is modified on a tissue-specific basis by acute Al exposure. Aside from the implications this has for radiological protection this response may also have potential for environmental monitoring where detection of the bystander effect could act as an indicator of radiation exposure when direct exposure responses are not evident.

  1. Bystander Effects Induced by Continuous Low-Dose-Rate {sup 125}I Seeds Potentiate the Killing Action of Irradiation on Human Lung Cancer Cells In Vitro

    SciTech Connect

    Chen, H.H. Jia, R.F.; Yu, L.; Zhao, M.J.; Shao, C.L.; Cheng, W.Y.

    2008-12-01

    Purpose: To investigate bystander effects of low-dose-rate (LDR) {sup 125}I seed irradiation on human lung cancer cells in vitro. Methods and Materials: A549 and NCI-H446 cell lines of differing radiosensitivity were directly exposed to LDR {sup 125}I seeds irradiation for 2 or 4 Gy and then cocultured with nonirradiated cells for 24 hours. Induction of micronucleus (MN), {gamma}H2AX foci, and apoptosis were assayed. Results: After 2 and 4 Gy irradiation, micronucleus formation rate (MFR) and apoptotic rate of A549 and NCI-H446 cells were increased, and the MFR and apoptotic rate of NCI-H446 cells was 2.1-2.8 times higher than that of A549 cells. After coculturing nonirradiated bystander cells with {sup 125}I seed irradiated cells for 24 hours, MFR and the mean number of {gamma}H2AX foci/cells of bystander A549 and NCI-H446 cells were similar and significantly higher than those of control (p <0.05), although they did not increase with irradiation dose. However, the proportion of bystander NCI-H446 cells with MN numbers {>=}3 and {gamma}H2AX foci numbers 15-19 and 20-24 was higher than that of bystander A549 cells. In addition, dimethyl sulfoxide (DMSO) treatment could completely suppress the bystander MN of NCI-H446 cells, but it suppressed only partly the bystander MN of A549 cells, indicating that reactive oxygen species are involved in the bystander response to NCI-H446 cells, but other signaling factors may contribute to the bystander response of A549 cells. Conclusions: Continuous LDR irradiation of {sup 125}I seeds could induce bystander effects, which potentiate the killing action on tumor cells and compensate for the influence of nonuniform distribution of radiation dosage on therapeutic outcomes.

  2. Propagation Distance of the α-Particle-Induced Bystander Effect: The Role of Nuclear Traversal and Gap Junction Communication

    PubMed Central

    Gaillard, Sylvain; Pusset, David; de Toledo, Sonia M.; Fromm, Michel; Azzam, Edouard I.

    2009-01-01

    When cell populations are exposed to low-dose α-particle radiation, a significant fraction of the cells will not be traversed by a radiation track. However, stressful effects occur in both irradiated and bystander cells in the population. Characterizing these effects, and investigating their underlying mechanism(s), is critical to understanding human health risks associated with exposure to α particles. To this end, confluent normal human fibroblast cultures were grown on polyethylene terephthalate foil grafted to an ultrathin solid-state nuclear track detector and exposed under non-perturbing conditions to low-fluence α particles from a broadbeam irradiator. Irradiated and affected bystander cells were localized with micrometer precision. The stress-responsive protein p21Waf1 (also known as CDKN1A) was induced in bystander cells within a 100-µm radius from an irradiated cell. The mean propagation distance ranged from 20 to 40 µm around the intranuclear α-particle impact point, which corresponds to a set of ∼30 cells. Nuclear traversal, induced DNA damage, and gap junction communication were critical contributors to propagation of this stressful effect The strategy described here may be ideal to investigate the size of radiation-affected target and the relative contribution of different cellular organelles to bystander effects induced by energetic particles, which is relevant to radioprotection and cancer radiotherapy. PMID:19580486

  3. Replication-competent, oncolytic herpes simplex virus type 1 mutants induce a bystander effect following ganciclovir treatment.

    PubMed

    Luo, Chenhong; Mori, Isamu; Goshima, Fumi; Ushijima, Yoko; Nawa, Akihiro; Kimura, Hiroshi; Nishiyama, Yukihiro

    2007-10-01

    Cells expressing herpes simplex virus (HSV) thymidine kinase (tk) are killed by ganciclovir (GCV). Adjacent cells without HSV-tk also die, a phenomenon known as the 'bystander effect'. However, there is no evidence that replication-competent HSV induces a bystander effect in the presence of GCV. Therefore, we investigated the bystander effect in HEp-2 cells infected with replication-competent, oncolytic HSV-1 mutants, hrR3 and HF10. In cells infected at a multiplicity of infection (MOI) of 3, GCV did not induce apoptosis. At low MOIs of 0.3 and 0.03, however, a number of adjacent, uninfected cells apoptosed following GCV treatment. Irrespective of GCV treatment, HEp-2 cells expressed minimal levels of connexin 43 (Cx43). However, Cx43 expression was enhanced by GCV in response to infection with HF10 at an MOI of 0.3, but not at an MOI of 3. Expression of other proteins involved in gap junctions, including Cx26 and Cx40, was not augmented under these conditions. The PKA and PI3K signal transduction pathways are likely involved in enhanced Cx43 expression as inhibitors of these pathways prevented Cx43 upregulation. These results suggest that infection with replication-competent HSV-1 induces the bystander effect in cells treated with GCV because of efficient intercellular transport of active GCV through abundant gap junctions. Copyright 2007 John Wiley & Sons, Ltd.

  4. High dose bystander effects in spatially fractionated radiation therapy

    PubMed Central

    Asur, Rajalakshmi; Butterworth, Karl T.; Penagaricano, Jose A.; Prise, Kevin M.; Griffin, Robert J.

    2014-01-01

    Traditional radiotherapy of bulky tumors has certain limitations. Spatially fractionated radiation therapy (GRID) and intensity modulated radiotherapy (IMRT) are examples of advanced modulated beam therapies that help in significant reductions in normal tissue damage. GRID refers to the delivery of a single high dose of radiation to a large treatment area that is divided into several smaller fields, while IMRT allows improved dose conformity to the tumor target compared to conventional three-dimensional conformal radiotherapy. In this review, we consider spatially fractionated radiotherapy approaches focusing on GRID and IMRT, and present complementary evidence from different studies which support the role of radiation induced signaling effects in the overall radiobiological rationale for these treatments. PMID:24246848

  5. Effects of a Rape Awareness Program on College Women: Increasing Bystander Efficacy and Willingness to Intervene

    ERIC Educational Resources Information Center

    Foubert, John D.; Langhinrichsen-Rohling, Jennifer; Brasfield, Hope; Hill, Brent

    2010-01-01

    An experimental study evaluated the efficacy of a sexual assault risk-reduction program on 279 college women that focused on learning characteristics of male perpetrators and teaching bystander intervention techniques. After seeing The Women's Program, participants reported significantly greater bystander efficacy and significantly greater…

  6. Effects of a Rape Awareness Program on College Women: Increasing Bystander Efficacy and Willingness to Intervene

    ERIC Educational Resources Information Center

    Foubert, John D.; Langhinrichsen-Rohling, Jennifer; Brasfield, Hope; Hill, Brent

    2010-01-01

    An experimental study evaluated the efficacy of a sexual assault risk-reduction program on 279 college women that focused on learning characteristics of male perpetrators and teaching bystander intervention techniques. After seeing The Women's Program, participants reported significantly greater bystander efficacy and significantly greater…

  7. Paying for someone else's mistake: the effect of bystander negligence on perpetrator blame.

    PubMed

    Critcher, Clayton R; Pizarro, David A

    2008-10-01

    The success of criminal acts can sometimes depend critically on the oversight or negligence of uninvolved bystanders (e.g., someone leaving a first-floor window open). Four studies examined how the contribution of a negligent bystander affects blame for the perpetrator of a crime. Although participants stated that discounting blame for the perpetrator was normatively inappropriate in this context, they expected that others would make this very "error." Instead, across all four studies, bystander negligence amplified ascriptions of perpetrator blame. This amplification occurred because the bad action of the bystander provided an implicit standard of comparison for the perpetrator's act, framing it as more blameworthy. A variety of alternative mechanisms--that bystander negligence altered perceived crime avoidability, prompted spontaneous counterfactualizing, or increased victim empathy--were tested and ruled out. Implications for legal contexts are discussed.

  8. Radiation-Induced Bystander Response: Mechanism and Clinical Implications

    PubMed Central

    Suzuki, Keiji; Yamashita, Shunichi

    2014-01-01

    Significance: Absorption of energy from ionizing radiation (IR) to the genetic material in the cell gives rise to damage to DNA in a dose-dependent manner. There are two types of DNA damage; by a high dose (causing acute or deterministic effects) and by a low dose (related to chronic or stochastic effects), both of which induce different health effects. Among radiation effects, acute cutaneous radiation syndrome results from cell killing as a consequence of high-dose exposure. Recent advances: Recent advances in radiation biology and oncology have demonstrated that bystander effects, which are emerged in cells that have never been exposed, but neighboring irradiated cells, are also involved in radiation effects. Bystander effects are now recognized as an indispensable component of tissue response related to deleterious effects of IR. Critical issues: Evidence has indicated that nonapoptotic premature senescence is commonly observed in various tissues and organs. Senesced cells were found to secrete various proteins, including cytokines, chemokines, and growth factors, most of which are equivalent to those identified as bystander factors. Secreted factors could trigger cell proliferation, angiogenesis, cell migration, inflammatory response, etc., which provide a tissue microenvironment assisting tissue repair and remodeling. Future directions: Understandings of the mechanisms and physiological relevance of radiation-induced bystander effects are quite essential for the beneficial control of wound healing and care. Further studies should extend our knowledge of the mechanisms of bystander effects and mode of cell death in response to IR. PMID:24761341

  9. Effect of bystander CPR initiation prior to the emergency call on ROSC and 30day survival-An evaluation of 548 emergency calls.

    PubMed

    Viereck, Søren; Palsgaard Møller, Thea; Kjær Ersbøll, Annette; Folke, Fredrik; Lippert, Freddy

    2017-02-01

    This study aimed at evaluating if time for initiation of bystander cardiopulmonary resuscitation (CPR) - prior to the emergency call (CPRprior) versus during the emergency call following dispatcher-assisted CPR (CPRduring) - was associated with return of spontaneous circulation (ROSC) and 30-day survival. The secondary aim was to identify predictors of CPRprior. This observational study evaluated out-of-hospital cardiac arrests (OHCA) occurring in the Capital Region of Denmark from 01.01.2013 to 31.12.2013. OHCAs were linked to emergency medical dispatch centre records and corresponding emergency calls were evaluated. Multivariable logistic regression analyses were applied to evaluate the association between time for initiation of bystander CPR, ROSC, and 30-day survival. Univariable logistic regression analyses were applied to identify predictors of CPRprior. The study included 548 emergency calls for OHCA patients receiving bystander CPR, 34.9% (n=191) in the CPRprior group and 65.1% (n=357) in the CPRduring group. Multivariable analyses showed no difference in ROSC (OR=0.88, 95% CI: 0.56-1.38) or 30-day survival (OR=1.14, 95% CI: 0.68-1.92) between CPRprior and CPRduring. Predictors positively associated with CPRprior included witnessed OHCA and healthcare professional bystanders. Predictors negatively associated with CPRprior included residential location, solitary bystanders, and bystanders related to the patient. The majority of bystander CPR (65%) was initiated during the emergency call, following dispatcher-assisted CPR instructions. Whether bystander CPR was initiated prior to emergency call versus during the emergency call following dispatcher-assisted CPR was not associated with ROSC or 30-day survival. Dispatcher-assisted CPR was especially beneficial for the initiation of bystander CPR in residential areas. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  10. Personal distress and the influence of bystanders on responding to an emergency.

    PubMed

    Hortensius, Ruud; Schutter, Dennis J L G; de Gelder, Beatrice

    2016-08-01

    Spontaneous helping behavior during an emergency is influenced by the personality of the onlooker and by social situational factors such as the presence of bystanders. Here, we sought to determine the influences of sympathy, an other-oriented response, and personal distress, a self-oriented response, on the effect of bystanders during an emergency. In four experiments, we investigated whether trait levels of sympathy and personal distress predicted responses to an emergency in the presence of bystanders by using behavioral measures and single-pulse transcranial magnetic stimulation. Sympathy and personal distress were expected to be associated with faster responses to an emergency without bystanders present, but only personal distress would predict slower responses to an emergency with bystanders present. The results of a cued reaction time task showed that people who reported higher levels of personal distress and sympathy responded faster to an emergency without bystanders (Exp. 1). In contrast to our predictions, perspective taking but not personal distress was associated with slower reaction times as the number of bystanders increased during an emergency (Exp. 2). However, the decrease in motor corticospinal excitability, a direct physiological measure of action preparation, with the increase in the number of bystanders was solely predicted by personal distress (Exp. 3). Incorporating cognitive load manipulations during the observation of an emergency suggested that personal distress is linked to an effect of bystanders on reflexive responding to an emergency (Exp. 4). Taken together, these results indicate that the presence of bystanders during an emergency reduces action preparation in people with a disposition to experience personal distress.

  11. Radioprotection of targeted and bystander cells by methylproamine.

    PubMed

    Burdak-Rothkamm, Susanne; Smith, Andrea; Lobachevsky, Pavel; Martin, Roger; Prise, Kevin M

    2015-03-01

    Radioprotective agents are of interest for application in radiotherapy for cancer and in public health medicine in the context of accidental radiation exposure. Methylproamine is the lead compound of a class of radioprotectors which act as DNA binding anti-oxidants, enabling the repair of transient radiation-induced oxidative DNA lesions. This study tested methylproamine for the radioprotection of both directly targeted and bystander cells. T98G glioma cells were treated with 15 μM methylproamine and exposed to (137)Cs γ-ray/X-ray irradiation and He(2+) microbeam irradiation. Radioprotection of directly targeted cells and bystander cells was measured by clonogenic survival or γH2AX assay. Radioprotection of directly targeted T98G cells by methylproamine was observed for (137)Cs γ-rays and X-rays but not for He(2+) charged particle irradiation. The effect of methylproamine on the bystander cell population was tested for both X-ray irradiation and He(2+) ion microbeam irradiation. The X-ray bystander experiments were carried out by medium transfer from irradiated to non-irradiated cultures and three experimental designs were tested. Radioprotection was only observed when recipient cells were pretreated with the drug prior to exposure to the conditioned medium. In microbeam bystander experiments targeted and nontargeted cells were co-cultured with continuous methylproamine treatment during irradiation and postradiation incubation; radioprotection of bystander cells was observed. Methylproamine protected targeted cells from DNA damage caused by γ-ray or X-ray radiation but not He(2+) ion radiation. Protection of bystander cells was independent of the type of radiation which the donor population received.

  12. Quantifying the bystander-effect of 2.5G mobile telephones on the speech perception of digital hearing aid users.

    PubMed

    Vlastarakos, P V; Nikolopoulos, T P; Manolopoulos, L; Stamou, A; Halkiotis, K K; Ferekidis, E; Georgiou, E

    2012-01-01

    To quantify the bystander-effect of 2.5G mobile telephones (2.5G-MTs) on the speech perception of digital hearing-aid (dHA) users. Differences in the susceptibility of behind-the-ear (BTE) compared to in-to-the-ear (ITE) dHAs were also assessed. Prospective-comparative study conducted at a tertiary referral centre (ENT Department) and a HA-fitting laboratory. Key-word recognition scores from open-sentence lists were calculated. Power-analysis determined that a minimum of 60 subjects with SNHL (30 in each group), using either BTE or ITE dHAs, were required for reliable study outcomes. Sixty-four adults were tested with a functioning 2.5G-MT at almost physical contact with their ear; thirty subjects used BTE and 34 ITE dHAs. Aided word recognition score differences between studied groups and within each group, while a 2.5G-MT was activated. Cut-off inclusion criterion regarding baseline aided word recognition score was 75%. Baseline aided word recognition scores for ITE dHAs were better compared to BTE ones (p < 0.01). Following the 2.5G-MT activation, this difference disappeared. No statistically significant difference in word recognition was observed between the examined groups, or within the BTE group, from the bystander-effect of the 2.5G-MT. ITE dHAs proved more susceptible to electromagnetic interference (p < 0.05). The bystander-effect of 2.5G-MTs on the speech perception of dHA users is either minimal, or not significant. The observed compatibility has a positive impact on the lives of millions of people worldwide. The long-standing theory of more interference in BTE compared to ITE HAs is not confirmed by the results of the present study. EBM level of evidence: 2c.

  13. Exposures involving perturbations of the EM field have non-linear effects on radiation response and can alter the expression of radiation induced bystander effects

    NASA Astrophysics Data System (ADS)

    Mothersill, Carmel; Seymour, Colin

    2012-07-01

    Our recent data suggest there is a physical component to the bystander signal induced by radiation exposure and that alternative medicine techniques such as Reiki and acupuncture or exposures to weak EM fields alter the response of cells to direct irradiation and either altered bystander signal production or altered the response of cells receiving bystander signals. Our proposed mechanism to explain these findings is that perturbation of electromagnetic (EM) fields is central to the induction of low radiation dose responses especially non-targeted bystander effects. In this presentation we review the alternative medicine data and other data sets from our laboratory which test our hypothesis that perturbation of bio-fields will modulate radiation response in the low dose region. The other data sets include exposure to MRI, shielding using lead and or Faraday cages, the use of physical barriers to bystander signal transmission and the use of membrane channel blockers. The data taken together strongly suggest that EM field perturbation can modulate low dose response and that in fact the EM field rather than the targeted deposition of ionizing energy in the DNA may be the key determinant of dose response in a cell or organism The results also lead us to suspect that at least when chemical transmission is blocked, bystander signals can be transmitted by other means. Our recent experiments suggest light signals and volatiles are not likely. We conclude that alternative medicine and other techniques involving electromagnetic perturbations can modify the response of cells to low doses of ionizing radiation and can induce bystander effects similar to those seen in medium transfer experiments. In addition to the obvious implications for mechanistic studies of low dose effects, this could perhaps provide a novel target to exploit in space radiation protection and in optimizing therapeutic gain during radiotherapy.

  14. Fish adjust aggressive behavior to audience size with limited information on bystanders' fighting ability.

    PubMed

    Falsarella, Ludmilla do Nascimento; Brandão, Manuela Lombardi; Gonçalves-de-Freitas, Eliane

    2017-09-01

    In a social environment, individual behavior is modulated by surrounding observers (a phenomenon known as the audience effect). Here, we used mirrors to test the effect of two audience sizes (one virtual bystander vs. three virtual bystanders) on the aggressive behavior of a focal fish when bystander's fighting ability was not clear (i.e., information about the ability of virtual conspecifics limited by their mirror images). We found that the Nile tilapia, a cichlid fish, responds to its image as an audience by reducing overt aggression in the presence of larger audience. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. [Radiation-induced "bystander effect" revealed by means of adaptive response in cocultured lymphocytes from humans of different genders].

    PubMed

    Kolesnikova, I S; Vorobtsova, I E

    2011-01-01

    The "bystander effect" was investigated in mixed cultures of lymphocytes from humans of opposite genders. Development of the adaptive response (AR) in non-irradiated female/male cells was estimated after adaptive pretreatment of opposite gender lymphocytes, chromosome aberrations being evaluated. Experiments were performed using two schedules of adaptive (0.05 Gy) and challenging (1 Gy) irradiations: G0-G1 and G1-G1. The results obtained indicate the development of a mediated adaptive response ("bystander effect") in the lymphocytes neighboring pre-irradiated cells, as well as the influence of a time scheme of adapting and challenging irradiations on the amount of induced chromosome aberrations in mixed cultures and a possible dependence of the adaptive response intensity on the donor gender.

  16. The Role of Bystander Effects in the Antitumor Activity of the Hypoxia-Activated Prodrug PR-104.

    PubMed

    Foehrenbacher, Annika; Patel, Kashyap; Abbattista, Maria R; Guise, Chris P; Secomb, Timothy W; Wilson, William R; Hicks, Kevin O

    2013-01-01

    Activation of prodrugs in tumors (e.g., by bioreduction in hypoxic zones) has the potential to generate active metabolites that can diffuse within the tumor microenvironment. Such "bystander effects" may offset spatial heterogeneity in prodrug activation but the relative importance of this effect is not understood. Here, we quantify the contribution of bystander effects to antitumor activity for the first time, by developing a spatially resolved pharmacokinetic/pharmacodynamic (SR-PK/PD) model for PR-104, a phosphate ester pre-prodrug that is converted systemically to the hypoxia-activated prodrug PR-104A. Using Green's function methods we calculated concentrations of oxygen, PR-104A and its active metabolites, and resultant cell killing, at each point of a mapped three-dimensional tumor microregion. Model parameters were determined in vitro, using single cell suspensions to determine relationships between PR-104A metabolism and clonogenic cell killing, and multicellular layer (MCL) cultures to measure tissue diffusion coefficients. LC-MS/MS detection of active metabolites in the extracellular medium following exposure of anoxic single cell suspensions and MCLs to PR-104A confirmed that metabolites can diffuse out of cells and through a tissue-like environment. The SR-PK/PD model estimated that bystander effects contribute 30 and 50% of PR-104 activity in SiHa and HCT116 tumors, respectively. Testing the model by modulating PR-104A-activating reductases and hypoxia in tumor xenografts showed overall clonogenic killing broadly consistent with model predictions. Overall, our data suggest that bystander effects are important in PR-104 antitumor activity, although their reach may be limited by macroregional heterogeneity in hypoxia and reductase expression in tumors. The reported computational and experimental techniques are broadly applicable to all targeted anticancer prodrugs and could be used to identify strategies for rational prodrug optimization.

  17. The Role of Bystander Effects in the Antitumor Activity of the Hypoxia-Activated Prodrug PR-104

    PubMed Central

    Foehrenbacher, Annika; Patel, Kashyap; Abbattista, Maria R.; Guise, Chris P.; Secomb, Timothy W.; Wilson, William R.; Hicks, Kevin O.

    2013-01-01

    Activation of prodrugs in tumors (e.g., by bioreduction in hypoxic zones) has the potential to generate active metabolites that can diffuse within the tumor microenvironment. Such “bystander effects” may offset spatial heterogeneity in prodrug activation but the relative importance of this effect is not understood. Here, we quantify the contribution of bystander effects to antitumor activity for the first time, by developing a spatially resolved pharmacokinetic/pharmacodynamic (SR-PK/PD) model for PR-104, a phosphate ester pre-prodrug that is converted systemically to the hypoxia-activated prodrug PR-104A. Using Green’s function methods we calculated concentrations of oxygen, PR-104A and its active metabolites, and resultant cell killing, at each point of a mapped three-dimensional tumor microregion. Model parameters were determined in vitro, using single cell suspensions to determine relationships between PR-104A metabolism and clonogenic cell killing, and multicellular layer (MCL) cultures to measure tissue diffusion coefficients. LC-MS/MS detection of active metabolites in the extracellular medium following exposure of anoxic single cell suspensions and MCLs to PR-104A confirmed that metabolites can diffuse out of cells and through a tissue-like environment. The SR-PK/PD model estimated that bystander effects contribute 30 and 50% of PR-104 activity in SiHa and HCT116 tumors, respectively. Testing the model by modulating PR-104A-activating reductases and hypoxia in tumor xenografts showed overall clonogenic killing broadly consistent with model predictions. Overall, our data suggest that bystander effects are important in PR-104 antitumor activity, although their reach may be limited by macroregional heterogeneity in hypoxia and reductase expression in tumors. The reported computational and experimental techniques are broadly applicable to all targeted anticancer prodrugs and could be used to identify strategies for rational prodrug optimization. PMID

  18. Monitoring of bystander effect of herpes simplex virus thymidine kinase/acyclovir system using fluorescence resonance energy transfer technique.

    PubMed

    Xiong, Tao; Li, Yongjun; Ni, Fenge; Zhang, Feng

    2012-02-01

    Cytotoxic gene therapy mediated by gene transfer of the herpes simplex virus thymidine kinase (HSV-tk) gene followed by acyclovir (ACV) treatment has been reported to inhibit malignant tumor growth in a variety of studies. The magnitude of "bystander effect" is an essential factor for this anti-tumor approach in vivo. However, the mechanism by which HSV-tk/ACV brings "bystander effect" is poorly understood. In this report, the plasmid CD3 (ECFP-CRS-DsRed) and TK-GFP were transferred to the human adenoid cystic carcinoma line ACC-M cell line. The CD3-expressing cells apoptosis was monitored using fluorescence resonance energy transfer (FRET) technique. First, CD3 and TK-GFP co-expressing ACC-M cells apoptosis was monitored using FRET technique. The apoptosis was induced by ACV and initiated by caspase3. The FRET efficient was remarkably decreased and then disappeared during cellular apoptosis, which indicated that the TK-GFP expressing ACC-M cells apoptosis, induced by ACV, was via a caspase3-dependent pathway. Secondly, CD3 and TK-GFP mixed expressing ACC-M cells apoptosis, induced by ACV, were monitored using FRET technique. The apoptotic phenomena appeared in the CD3-expressing ACC-M cells. The results show that HSV-tk/ACV system killed ACC-M cells using its bystander effect. These results confirm that HSV-tk/ACV system is potential for cancer gene therapy.

  19. Interferon-β gene transfer induces a strong cytotoxic bystander effect on melanoma cells.

    PubMed

    Rossi, Úrsula A; Gil-Cardeza, María L; Villaverde, Marcela S; Finocchiaro, Liliana M E; Glikin, Gerardo C

    2015-05-01

    A local gene therapy scheme for the delivery of type I interferons could be an alternative for the treatment of melanoma. We evaluated the cytotoxic effects of interferon-β (IFNβ) gene lipofection on tumor cell lines derived from three human cutaneous and four canine mucosal melanomas. The cytotoxicity of human IFNβ gene lipofection resulted higher or equivalent to that of the corresponding addition of the recombinant protein (rhIFNβ) to human cells. IFNβ gene lipofection was not cytotoxic for only one canine melanoma cell line. When cultured as monolayers, three human and three canine IFNβ-lipofected melanoma cell lines displayed a remarkable bystander effect. As spheroids, the same six cell lines were sensitive to IFNβ gene transfer, two displaying a significant multicell resistance phenotype. The effects of conditioned IFNβ-lipofected canine melanoma cell culture media suggested the release of at least one soluble thermolabile cytotoxic factor that could not be detected in human melanoma cells. By using a secretion signal-free truncated human IFNβ, we showed that its intracellular expression was enough to induce cytotoxicity in two human melanoma cell lines. The lower cytoplasmatic levels of reactive oxygen species detected after intracellular IFNβ expression could be related to the resistance displayed by one human melanoma cell line. As IFNβ gene transfer was effective against most of the assayed melanomas in a way not limited by relatively low lipofection efficiencies, the clinical potential of this approach is strongly supported. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  20. Overexpression of SKP2 Inhibits the Radiation-Induced Bystander Effects of Esophageal Carcinoma

    PubMed Central

    Wang, Xiao-Chun; Zhang, Tie-Jun; Guo, Zi-Jian; Xiao, Chang-Yan; Ding, Xiao-Wen; Fang, Fang; Sheng, Wen-Tao; Shu, Xu; Li, Jue

    2017-01-01

    Background: To investigate the effects of S-phase kinase protein 2 (SKP2) expression on the radiation induced bystander effect (RIBE) in esophageal cancer (EC) cells. Materials and Methods: Western blot was used to detect the levels of SKP2, Rad51, and Ku70 in EC cells. Positive transfection, RNAi, micronucleus (MN), and γ-H2AX focus formation assay were used to investigate the effects of SKP2 on RIBE induced by irradiated cells. Results: We found a significant negative correlation between SKP2 expression and MN frequency (p < 0.05) induced by RIBE. The results were further confirmed by positive transfection, RNAi, and rescue experiments.γ-H2AX focus formation assay results indicated that overexpression of SKP2 in the irradiated cells inhibited the DNA damage of RIBE cells. However, when SKP2 expression decreased in irradiated cells, the DNA damage of RIBE cells increased. Increased or decreased expression levels of SKP2 had effects on Rad51 expression under the conditions of RIBE. Conclusions: These results showed, for the first time, that SKP2 expression can inhibit RIBE of EC cells. The mechanism may function, at least partly, through the regulation of Rad51 in the ability to repair DNA damage. PMID:28178195

  1. Mitomycin C induces bystander killing in homogeneous and heterogeneous hepatoma cellular models

    PubMed Central

    Kumari, Ratna; Sharma, Aanchal; Ajay, Amrendra Kumar; Bhat, Manoj Kumar

    2009-01-01

    Background Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide that is particularly refractory to chemotherapy. Several studies have proposed combination chemotherapy regimen for HCC treatment. However, these therapies are not effective in regressing tumor and prolonging survival of patient's suffering from HCC. Therefore, the development of more effective therapeutic tools and new strategies for the treatment of HCC are urgently needed. Over the last decade much attention has been focused on "bystander effect" as a possible therapeutic strategy for the treatment of certain human tumors. Interest in this therapeutic approach originated from numerous reports describing the radiation induced bystander effect. However, the knowledge about chemotherapy induced bystander effect is still limited. Hence, chemotherapy induced bystander phenomenon in hepatoma cells was explored by utilizing Mitomycin C (MMC). Results MMC induced bystander killing was observed only in hepatoma cells and it did not occur in cervical cancer cells. MMC induced bystander killing was transferable via medium. It occurred in co-cultured cells indicating the involvement of secreted as well as membrane bound factors. FasL and TRAIL were detected in the conditioned medium from treated cells. In medium transfer experiment, pre-treatment with EDTA (a broad range protease inhibitor) diminished MMC induced bystander killing. Following drug exposure, expression of Fas and TRAIL receptors increased and treatment with neutralizing antibodies against FasL and TRAIL inhibited bystander killing. Conclusion Our results highlight the therapeutic importance of MMC in the treatment of HCC and implicate role of membrane bound and secreted forms of FasL and TRAIL in MMC induced bystander killing. PMID:19845939

  2. Gap Junction Communication and the Propagation of Bystander Effects Induced by Microbeam Irradiation in Human Fibroblast Cultures: The Impact of Radiation Quality

    PubMed Central

    Autsavapromporn, Narongchai; Suzuki, Masao; Funayama, Tomoo; Usami, Noriko; Plante, Ianik; Yokota, Yuichiro; Mutou, Yasuko; Ikeda, Hiroko; Kobayashi, Katsumi; Kobayashi, Yasuhiko; Uchihori, Yukio; Hei, Tom K.; Azzam, Edouard I.; Murakami, Takeshi

    2014-01-01

    Understanding the mechanisms underlying the bystander effects of low doses/low fluences of low- or high-linear energy transfer (LET) radiation is relevant to radiotherapy and radiation protection. Here, we investigated the role of gap-junction intercellular communication (GJIC) in the propagation of stressful effects in confluent normal human fibroblast cultures wherein only 0.036–0.144% of cells in the population were traversed by primary radiation tracks. Confluent cells were exposed to graded doses from monochromatic 5.35 keV X ray (LET ~6 keV/μm), 18.3 MeV/u carbon ion (LET ~103 keV/μm), 13 MeV/u neon ion (LET ~380 keV/μm) or 11.5 MeV/u argon ion (LET ~1,260 keV/μm) microbeams in the presence or absence of 18-α-glycyrrhetinic acid (AGA), an inhibitor of GJIC. After 4 h incubation at 37°C, the cells were subcultured and assayed for micronucleus (MN) formation. Micronuclei were induced in a greater fraction of cells than expected based on the fraction of cells targeted by primary radiation, and the effect occurred in a dose-dependent manner with any of the radiation sources. Interestingly, MN formation for the heavy-ion microbeam irradiation in the absence of AGA was higher than in its presence at high mean absorbed doses. In contrast, there were no significant differences in cell cultures exposed to X-ray microbeam irradiation in presence or absence of AGA. This showed that the inhibition of GJIC depressed the enhancement of MN formation in bystander cells from cultures exposed to high-LET radiation but not low-LET radiation. Bystander cells recipient of growth medium harvested from 5.35 keV X-irradiated cultures experienced stress manifested in the form of excess micronucleus formation. Together, the results support the involvement of both junctional communication and secreted factor(s) in the propagation of radiation-induced stress to bystander cells. They highlight the important role of radiation quality and dose in the observed effects. PMID:23987132

  3. Involvement of gap junctional intercellular communication in the bystander effect induced by broad-beam or microbeam heavy ions

    NASA Astrophysics Data System (ADS)

    Shao, Chunlin; Furusawa, Yoshiya; Kobayashi, Yasuhiko; Funayama, Tomoo

    2006-09-01

    Most of the reported bystander responses were studied by using low dose irradiation of γ-rays and light ions such as alpha-particles. In this study, primary human fibroblasts AG1522 in confluent cultures were irradiated with either broad-beam of 100 keV/μm 12C or microbeams of 380 keV/μm 20Ne and 1260 keV/μm 40Ar. When cells were irradiated with 12C ions, the induction of micronucleus (MN) had a low-dose sensitive effect, i.e. a lower dose of irradiation gave a higher yield of MN per cell-traversal. This phenomenon was further reinforced by using a microbeam to irradiate a fraction of cells within a population. Even when only a single cell was targeted with one particle of 40Ar or 20Ne, the MN yield was increased to 1.4-fold of the non-irradiated control. When the number of microbeam targeted cells increased, the MN yield per targeted-cell decreased drastically. In addition, the bystander MN induction did not vary significantly with the number and the linear energy transfer (LET) of microbeam particles. When the culture was treated with PMA, an inhibitor of gap junctional intercellular communication (GJIC), MN induction was decreased for both microbeam and broad-beam irradiations even at high-doses where all cells were hit. The present findings indicate that a GJIC-mediated signaling amplification mechanism was involved in the high-LET heavy ion irradiation induced bystander effect. Moreover, at high-doses of radiation, the bystander signals could perform a complex interaction with direct irradiation.

  4. Investigation of Adaptive Responses in Bystander Cells in 3D Cultures Containing Tritium-Labeled and Unlabeled Normal Human Fibroblasts

    PubMed Central

    Pinto, Massimo; Azzam, Edouard I.; Howell, Roger W.

    2010-01-01

    The study of radiation-induced bystander effects in normal human cells maintained in three-dimensional (3D) architecture provides more in vivo-like conditions and is relevant to human risk assessment. Linear energy transfer, dose and dose rate have been considered as critical factors in propagating radiation-induced effects. This investigation uses an in vitro 3D tissue culture model in which normal AG1522 human fibroblasts are grown in a carbon scaffold to investigate induction of a G1 arrest in bystander cells that neighbor radiolabeled cells. Cell cultures were co-pulse-labeled with [3H]deoxycytidine (3HdC) to selectively irradiate a minor fraction of cells with 1–5 keV/μm β particles and bromodeoxyuridine (BrdU) to identify the radiolabeled cells using immunofluorescence. The induction of a G1 arrest was measured specifically in unlabeled cells (i.e. bystander cells) using a flow cytometry-based version of the cumulative labeling index assay. To investigate the relationship between bystander effects and adaptive responses, cells were challenged with an acute 4 Gy γ-radiation dose after they had been kept under the bystander conditions described above for several hours, and the regulation of the radiation-induced G1 arrest was measured selectively in bystander cells. When the average dose rate in 3HdC-labeled cells (<16% of population) was 0.04–0.37 Gy/h (average accumulated dose 0.14–10 Gy), no statistically significant stressful bystander effects or adaptive bystander effects were observed as measured by magnitude of the G1 arrest, micronucleus formation, or changes in mitochondrial membrane potential. Higher dose rates and/or higher LET may be required to observe stressful bystander effects in this experimental system, whereas lower dose rates and challenge doses may be required to detect adaptive bystander responses. PMID:20681788

  5. Differential modulation of a radiation-induced bystander effect in glioblastoma cells by pifithrin-α and wortmannin

    NASA Astrophysics Data System (ADS)

    Shao, Chunlin; Zhang, Jianghong; Prise, Kevin M.

    2010-03-01

    The implication of radiation-induced bystander effect (RIBE) for both radiation protection and radiotherapy has attracted significant attention, but a key question is how to modulate the RIBE. The present study found that, when a fraction of glioblastoma cells in T98G population were individually targeted with precise helium particles through their nucleus, micronucleus (MN) were induced and its yield increased non-linearly with radiation dose. After co-culturing with irradiated cells, additional MN could be induced in the non-irradiated bystander cells and its yield was independent of irradiation dose, giving direct evidence of a RIBE. Further results showed that the RIBE could be eliminated by pifithrin-α (p53 inhibitor) but enhanced by wortmannin (PI3K inhibitor). Moreover, it was found that nitric oxide (NO) contributed to this RIBE, and the levels of NO of both irradiated cells and bystander cells could be extensively diminished by pifithrin-α but insignificantly reduced by wortmannin. Our results indicate that RIBE can be modulated by p53 and PI3K through a NO-dependent and NO-independent pathway, respectively.

  6. A tumor vessel-targeting fusion protein elicits a chemotherapeutic bystander effect in pancreatic ductal adenocarcinoma

    PubMed Central

    Chen, Chun-Te; Chen, Yi-Chun; Du, Yi; Han, Zhenbo; Ying, Haoqiang; Bouchard, Richard R; Hsu, Jennifer L; Hsu, Jung-Mao; Mitcham, Trevor M; Chen, Mei-Kuang; Sun, Hui-Lung; Chang, Shih-Shin; Li, Donghui; Chang, Ping; DePinho, Ronald A; Hung, Mien-Chie

    2017-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease characterized by a prominent desmoplastic stroma that may constrain tumor progression but also limit the access of therapeutic drugs. In this study, we explored a tumor-targeting strategy that enlists an engineered anti-angiogenic protein consisting of endostatin and cytosine deaminase linked to uracil phosphoribosyltransferase (EndoCD). This protein selectively binds to tumor vessels to compromise tumor angiogenesis and converts the non-toxic 5-fluorocytosine (5-FC) to the cytotoxic 5-fluorouracil to produce a chemotherapeutic bystander effect at the pancreatic tumor site. We found that resveratrol increased the protein stability of EndoCD through suppression of chymotrypsin-like proteinase activity and synergistically enhances EndoCD-mediated 5-FC-induced cell killing. In various PDAC mouse models, the EndoCD/5-FC/resveratrol regimen decreased intratumoral vascular density and stroma formation and enhances apoptosis in tumors cells as well as in surrounding endothelial, pancreatic stellate, and immune cells, leading to reduced tumor growth and extended survival. Thus, the EndoCD/5-FC/resveratrol combination may be an effective treatment option for PDAC. PMID:28401019

  7. The development of bystander intentions and social-moral reasoning about intergroup verbal aggression.

    PubMed

    Palmer, Sally B; Rutland, Adam; Cameron, Lindsey

    2015-11-01

    A developmental intergroup approach was taken to examine the development of prosocial bystander intentions among children and adolescents. Participants as bystanders (N = 260) aged 8-10 and 13-15 years were presented with scenarios of direct aggression between individuals from different social groups (i.e., intergroup verbal aggression). These situations involved either an ingroup aggressor and an outgroup victim or an outgroup aggressor and an ingroup victim. This study focussed on the role of intergroup factors (group membership, ingroup identification, group norms, and social-moral reasoning) in the development of prosocial bystander intentions. Findings showed that prosocial bystander intentions declined with age. This effect was partially mediated by the ingroup norm to intervene and perceived severity of the verbal aggression. However, a moderated mediation analysis showed that only when the victim was an ingroup member and the aggressor an outgroup member did participants become more likely with age to report prosocial bystander intentions due to increased ingroup identification. Results also showed that younger children focussed on moral concerns and adolescents focussed more on psychological concerns when reasoning about their bystander intention. These novel findings help explain the developmental decline in prosocial bystander intentions from middle childhood into early adolescence when observing direct intergroup aggression.

  8. X-ray-induced bystander responses reduce spontaneous mutations in V79 cells

    PubMed Central

    Maeda, Munetoshi; Kobayashi, Katsumi; Matsumoto, Hideki; Usami, Noriko; Tomita, Masanori

    2013-01-01

    The potential for carcinogenic risks is increased by radiation-induced bystander responses; these responses are the biological effects in unirradiated cells that receive signals from the neighboring irradiated cells. Bystander responses have attracted attention in modern radiobiology because they are characterized by non-linear responses to low-dose radiation. We used a synchrotron X-ray microbeam irradiation system developed at the Photon Factory, High Energy Accelerator Research Organization, KEK, and showed that nitric oxide (NO)-mediated bystander cell death increased biphasically in a dose-dependent manner. Here, we irradiated five cell nuclei using 10 × 10 µm2 5.35 keV X-ray beams and then measured the mutation frequency at the hypoxanthine-guanosine phosphoribosyl transferase (HPRT) locus in bystander cells. The mutation frequency with the null radiation dose was 2.6 × 10–5 (background level), and the frequency decreased to 5.3 × 10–6 with a dose of approximately 1 Gy (absorbed dose in the nucleus of irradiated cells). At high doses, the mutation frequency returned to the background level. A similar biphasic dose-response effect was observed for bystander cell death. Furthermore, we found that incubation with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (carboxy-PTIO), a specific scavenger of NO, suppressed not only the biphasic increase in bystander cell death but also the biphasic reduction in mutation frequency of bystander cells. These results indicate that the increase in bystander cell death involves mechanisms that suppress mutagenesis. This study has thus shown that radiation-induced bystander responses could affect processes that protect the cell against naturally occurring alterations such as mutations. PMID:23660275

  9. A pivotal role of the jasmonic acid signal pathway in mediating radiation-induced bystander effects in Arabidopsis thaliana.

    PubMed

    Wang, Ting; Xu, Wei; Deng, Chenguang; Xu, Shaoxin; Li, Fanghua; Wu, Yuejin; Wu, Lijun; Bian, Po

    Although radiation-induced bystander effects (RIBE) in Arabidopsis thaliana have been well demonstrated in vivo, little is known about their underlying mechanisms, particularly with regard to the participating signaling molecules and signaling pathways. In higher plants, jasmonic acid (JA) and its bioactive derivatives are well accepted as systemic signal transducers that are produced in response to various environmental stresses. It is therefore speculated that the JA signal pathway might play a potential role in mediating radiation-induced bystander signaling of root-to-shoot. In the present study, pretreatment of seedlings with Salicylhydroxamic acid, an inhibitor of lipoxigenase (LOX) in JA biosynthesis, significantly suppressed RIBE-mediated expression of the AtRAD54 gene. After root irradiation, the aerial parts of A. thaliana mutants deficient in JA biosynthesis (aos) and signaling cascades (jar1-1) showed suppressed induction of the AtRAD54 and AtRAD51 genes and TSI and 180-bp repeats, which have been extensively used as endpoints of bystander genetic and epigenetic effects in plants. These results suggest an involvement of the JA signal pathway in the RIBE of plants. Using the root micro-grafting technique, the JA signal pathway was shown to participate in both the generation of bystander signals in irradiated root cells and radiation responses in the bystander aerial parts of plants. The over-accumulation of endogenous JA in mutant fatty acid oxygenation up-regulated 2 (fou2), in which mutation of the Two Pore Channel 1 (TPC1) gene up-regulates expression of the LOX and allene oxide synthase (AOS) genes, inhibited RIBE-mediated expression of the AtRAD54 gene, but up-regulated expression of the AtKU70 and AtLIG4 genes in the non-homologous end joining (NHEJ) pathway. Considering that NHEJ is employed by plants with increased DNA damage, the switch from HR to NHEJ suggests that over-accumulation of endogenous JA might enhance the radiosensitivity of plants

  10. Bystander signaling via oxidative metabolism.

    PubMed

    Sawal, Humaira Aziz; Asghar, Kashif; Bureik, Matthias; Jalal, Nasir

    2017-01-01

    The radiation-induced bystander effect (RIBE) is the initiation of biological end points in cells (bystander cells) that are not directly traversed by an incident-radiation track, but are in close proximity to cells that are receiving the radiation. RIBE has been indicted of causing DNA damage via oxidative stress, besides causing direct damage, inducing tumorigenesis, producing micronuclei, and causing apoptosis. RIBE is regulated by signaling proteins that are either endogenous or secreted by cells as a means of communication between cells, and can activate intracellular or intercellular oxidative metabolism that can further trigger signaling pathways of inflammation. Bystander signals can pass through gap junctions in attached cell lines, while the suspended cell lines transmit these signals via hormones and soluble proteins. This review provides the background information on how reactive oxygen species (ROS) act as bystander signals. Although ROS have a very short half-life and have a nanometer-scale sphere of influence, the wide variety of ROS produced via various sources can exert a cumulative effect, not only in forming DNA adducts but also setting up signaling pathways of inflammation, apoptosis, cell-cycle arrest, aging, and even tumorigenesis. This review outlines the sources of the bystander effect linked to ROS in a cell, and provides methods of investigation for researchers who would like to pursue this field of science.

  11. Bystander signaling via oxidative metabolism

    PubMed Central

    Sawal, Humaira Aziz; Asghar, Kashif; Bureik, Matthias; Jalal, Nasir

    2017-01-01

    The radiation-induced bystander effect (RIBE) is the initiation of biological end points in cells (bystander cells) that are not directly traversed by an incident-radiation track, but are in close proximity to cells that are receiving the radiation. RIBE has been indicted of causing DNA damage via oxidative stress, besides causing direct damage, inducing tumorigenesis, producing micronuclei, and causing apoptosis. RIBE is regulated by signaling proteins that are either endogenous or secreted by cells as a means of communication between cells, and can activate intracellular or intercellular oxidative metabolism that can further trigger signaling pathways of inflammation. Bystander signals can pass through gap junctions in attached cell lines, while the suspended cell lines transmit these signals via hormones and soluble proteins. This review provides the background information on how reactive oxygen species (ROS) act as bystander signals. Although ROS have a very short half-life and have a nanometer-scale sphere of influence, the wide variety of ROS produced via various sources can exert a cumulative effect, not only in forming DNA adducts but also setting up signaling pathways of inflammation, apoptosis, cell-cycle arrest, aging, and even tumorigenesis. This review outlines the sources of the bystander effect linked to ROS in a cell, and provides methods of investigation for researchers who would like to pursue this field of science. PMID:28831267

  12. Rescue model for the bystanders' intervention in emergencies

    NASA Astrophysics Data System (ADS)

    Jo, H.-H.; Jung, W.-S.; Moon, H.-T.

    2006-01-01

    To investigate the effect of social interaction on the bystanders' intervention in emergency situations we introduce a rescue model which includes the effects of the victim's acquaintance with bystanders and those among bystanders. This model reproduces the surprising experimental result that the helping rate tends to decrease although the number of bystanders k increases. The model also shows that given the coupling effect among bystanders, for a certain range of small k the helping rate increases according to k and that coupling effect plays both positive and negative roles in emergencies.

  13. Proteomic changes in the rat brain induced by homogenous irradiation and by the bystander effect resulting from high energy synchrotron X-ray microbeams.

    PubMed

    Smith, Richard W; Wang, Jiaxi; Schültke, Elisabeth; Seymour, Colin B; Bräuer-Krisch, Elke; Laissue, Jean A; Blattmann, Hans; Mothersill, Carmel E

    2013-02-01

    To further evaluate the use of microbeam irradiation (MBI) as a potential means of non-invasive brain tumor treatment by investigating the induction of a bystander effect in non-irradiated tissue. Adult rats were irradiated with 35 or 350 Gy at the European Synchotron Research Facility (ESRF), using homogenous (broad beam) irradiation (HI) or a high energy microbeam delivered to the right brain hemisphere only. The proteome of the frontal lobes were then analyzed using two-dimensional electrophoresis (2-DE) and mass spectrometry. HI resulted in proteomic responses indicative of tumourigenesis; increased albumin, aconitase and triosphosphate isomerase (TPI), and decreased dihydrolipoyldehydrogenase (DLD). The MBI bystander effect proteomic changes were indicative of reactive oxygen species mediated apoptosis; reduced TPI, prohibitin and tubulin and increased glial fibrillary acidic protein (GFAP). These potentially anti-tumourigenic apoptotic proteomic changes are also associated with neurodegeneration. However the bystander effect also increased heat shock protein (HSP) 71 turnover. HSP 71 is known to protect against all of the neurological disorders characterized by the bystander effect proteome changes. These results indicate that the collective interaction of these MBI-induced bystander effect proteins and their mediation by HSP 71, may confer a protective effect which now warrants additional experimental attention.

  14. H2AX phosphorylation in response to DNA double-strand break formation during bystander signalling: effect of microRNA knockdown.

    PubMed

    Dickey, Jennifer S; Zemp, Franz J; Altamirano, Alvin; Sedelnikova, Olga A; Bonner, William M; Kovalchuk, Olga

    2011-02-01

    Upon DNA double-strand break (DSB) formation, hundreds of H2AX molecules in the chromatin flanking the break site are phosphorylated on serine residue 139, termed gamma-H2AX, so that virtually every DSB site in a nucleus can be visualised within 10 min of its formation using an antibody to gamma-H2AX. One application of this sensitive assay is to examine the induction of DNA double-strand damage in subtle non-targeted cellular effects such as the bystander effect. Here whether microRNA (miRNA) serve as a primary signalling mechanism for bystander effect propagation by comparing matched human colon carcinoma cell lines with wild-type or depleted levels of mature miRNAs was investigated. No major differences were found in the levels of induced gamma-H2AX foci in the tested cell lines, indicating that though miRNAs play a role in bystander effect manifestation, they appear not to be the primary bystander signalling molecules in the formation of bystander effect-induced DSBs.

  15. Observed Reductions in School Bullying, Nonbullying Aggression, and Destructive Bystander Behavior: A Longitudinal Evaluation

    ERIC Educational Resources Information Center

    Frey, Karin S.; Hirschstein, Miriam K.; Edstrom, Leihua V.; Snell, Jennie L.

    2009-01-01

    This study was a longitudinal extension of a random control trial of the Steps to Respect antibullying program. Students in Grades 3-5 were surveyed (n = 624) and observed on the playground (n = 360). Growth curve models of intervention students showed 2-year declines in playground bullying, victimization, nonbullying aggression, destructive…

  16. Vulnerable Children in Varying Classroom Contexts: Bystanders' Behaviors Moderate the Effects of Risk Factors on Victimization

    ERIC Educational Resources Information Center

    Karna, Antti; Voeten, Marinus; Poskiparta, Elisa; Salmivalli, Christina

    2010-01-01

    We examined whether the bystanders' behaviors in bullying situations influence vulnerable students' risk for victimization. The sample consisted of 6,980 primary school children from Grades 3-5, who were nested within 378 classrooms in 77 schools. These students filled out Internet-based questionnaires in their schools' computer labs. The results…

  17. Vulnerable Children in Varying Classroom Contexts: Bystanders' Behaviors Moderate the Effects of Risk Factors on Victimization

    ERIC Educational Resources Information Center

    Karna, Antti; Voeten, Marinus; Poskiparta, Elisa; Salmivalli, Christina

    2010-01-01

    We examined whether the bystanders' behaviors in bullying situations influence vulnerable students' risk for victimization. The sample consisted of 6,980 primary school children from Grades 3-5, who were nested within 378 classrooms in 77 schools. These students filled out Internet-based questionnaires in their schools' computer labs. The results…

  18. Genomic instability, bystander effect, cytoplasmic irradiation and other phenomena that may achieve fame without fortune.

    PubMed

    Hall, E J

    2001-01-01

    The possible risk of induced malignancies in astronauts, as a consequence of the radiation environment in space, is a factor of concern for long term missions. Cancer risk estimates for high doses of low LET radiation are available from the epidemiological studies of the A-bomb survivors. Cancer risks at lower doses cannot be detected in epidemiological studies and must be inferred by extrapolation from the high dose risks. The standard setting bodies, such as the ICRP recommend a linear, no-threshold extrapolation of risks from high to low doses, but this is controversial. A study of mechanisms of carcinogenesis may shed some light on the validity of a linear extrapolation. The multi-step nature of carcinogenesis suggests that the role of radiation may be to induce a mutation leading to a mutator phenotype. High energy Fe ions, such as those encountered in space are highly effective in inducing genomic instability. Experiments involving the single particle microbeam have demonstrated a "bystander effect", ie a biological effect in cells not themselves hit, but in close proximity to those that are, as well as the induction of mutations in cells where only the cytoplasm, and not the nucleus, have been traversed by a charged particle. These recent experiments cast doubt on the validity of a simple linear extrapolation, but the data are so far fragmentary and conflicting. More studies are necessary. While mechanistic studies cannot replace epidemiology as a source of quantitative risk estimates, they may shed some light on the shape of the dose response relationship and therefore on the limitations of a linear extrapolation to low doses.

  19. Genomic instability, bystander effect, cytoplasmic irradiation and other phenomena that may achieve fame without fortune

    NASA Technical Reports Server (NTRS)

    Hall, E. J.

    2001-01-01

    The possible risk of induced malignancies in astronauts, as a consequence of the radiation environment in space, is a factor of concern for long term missions. Cancer risk estimates for high doses of low LET radiation are available from the epidemiological studies of the A-bomb survivors. Cancer risks at lower doses cannot be detected in epidemiological studies and must be inferred by extrapolation from the high dose risks. The standard setting bodies, such as the ICRP recommend a linear, no-threshold extrapolation of risks from high to low doses, but this is controversial. A study of mechanisms of carcinogenesis may shed some light on the validity of a linear extrapolation. The multi-step nature of carcinogenesis suggests that the role of radiation may be to induce a mutation leading to a mutator phenotype. High energy Fe ions, such as those encountered in space are highly effective in inducing genomic instability. Experiments involving the single particle microbeam have demonstrated a "bystander effect", ie a biological effect in cells not themselves hit, but in close proximity to those that are, as well as the induction of mutations in cells where only the cytoplasm, and not the nucleus, have been traversed by a charged particle. These recent experiments cast doubt on the validity of a simple linear extrapolation, but the data are so far fragmentary and conflicting. More studies are necessary. While mechanistic studies cannot replace epidemiology as a source of quantitative risk estimates, they may shed some light on the shape of the dose response relationship and therefore on the limitations of a linear extrapolation to low doses.

  20. Genomic instability, bystander effect, cytoplasmic irradiation and other phenomena that may achieve fame without fortune

    NASA Technical Reports Server (NTRS)

    Hall, E. J.

    2001-01-01

    The possible risk of induced malignancies in astronauts, as a consequence of the radiation environment in space, is a factor of concern for long term missions. Cancer risk estimates for high doses of low LET radiation are available from the epidemiological studies of the A-bomb survivors. Cancer risks at lower doses cannot be detected in epidemiological studies and must be inferred by extrapolation from the high dose risks. The standard setting bodies, such as the ICRP recommend a linear, no-threshold extrapolation of risks from high to low doses, but this is controversial. A study of mechanisms of carcinogenesis may shed some light on the validity of a linear extrapolation. The multi-step nature of carcinogenesis suggests that the role of radiation may be to induce a mutation leading to a mutator phenotype. High energy Fe ions, such as those encountered in space are highly effective in inducing genomic instability. Experiments involving the single particle microbeam have demonstrated a "bystander effect", ie a biological effect in cells not themselves hit, but in close proximity to those that are, as well as the induction of mutations in cells where only the cytoplasm, and not the nucleus, have been traversed by a charged particle. These recent experiments cast doubt on the validity of a simple linear extrapolation, but the data are so far fragmentary and conflicting. More studies are necessary. While mechanistic studies cannot replace epidemiology as a source of quantitative risk estimates, they may shed some light on the shape of the dose response relationship and therefore on the limitations of a linear extrapolation to low doses.

  1. Spatially Fractionated Radiation Induces Cytotoxicity and Changes in Gene Expression in Bystander and Radiation Adjacent Murine Carcinoma Cells

    PubMed Central

    Asur, Rajalakshmi S.; Sharma, Sunil; Chang, Ching-Wei; Penagaricano, Jose; Kommuru, Indira M.; Moros, Eduardo G.; Corry, Peter M.; Griffin, Robert J.

    2012-01-01

    Radiation-induced bystander effects have been extensively studied at low doses, since evidence of bystander induced cell killing and other effects on unirradiated cells were found to be predominant at doses up to 0.5 Gy. Therefore, few studies have examined bystander effects induced by exposure to higher doses of radiation, such as spatially fractionated radiation (GRID) treatment. In the present study, we evaluate the ability of GRID treatment to induce changes in GRID adjacent (bystander) regions, in two different murine carcinoma cell lines following exposure to a single irradiation dose of 10 Gy. Murine SCK mammary carcinoma cells and SCCVII squamous carcinoma cells were irradiated using a brass collimator to create a GRID pattern of nine circular fields 12 mm in diameter with a center-to-center distance of 18 mm. Similar to the typical clinical implementation of GRID, this is approximately a 50:50 ratio of direct and bystander exposure. We also performed experiments by irradiating separate cultures and transferring the medium to unirradiated bystander cultures. Clonogenic survival was evaluated in both cell lines to determine the occurrence of radiation-induced bystander effects. For the purpose of our study, we have defined bystander cells as GRID adjacent cells that received approximately 1 Gy scatter dose or unirradiated cells receiving conditioned medium from irradiated cells. We observed significant bystander killing of cells adjacent to the GRID irradiated regions compared to sham treated controls. We also observed bystander killing of SCK and SCCVII cells cultured in conditioned medium obtained from cells irradiated with 10 Gy. Therefore, our results confirm the occurrence of bystander effects following exposure to a high-dose of radiation and suggest that cell-to-cell contact is not required for these effects. In addition, the gene expression profile for DNA damage and cellular stress response signaling in SCCVII cells after GRID exposure was studied

  2. Cytosine Deaminase/5-Fluorocytosine Exposure Induces Bystander and Radiosensitization Effects in Hypoxic Glioblastoma Cells in vitro

    SciTech Connect

    Chen, Jennifer K.; Hu, Lily J.; Wang Dongfang; Lamborn, Kathleen R.; Deen, Dennis F. . E-mail: dennisdeen@juno.com

    2007-04-01

    Purpose: Treatment of glioblastoma (GBM) is limited by therapeutic ratio; therefore, successful therapy must be specifically cytotoxic to cancer cells. Hypoxic cells are ubiquitous in GBM, and resistant to radiation and chemotherapy, and, thus, are logical targets for gene therapy. In this study, we investigated whether cytosine deaminase (CD)/5-fluorocytosine (5-FC) enzyme/prodrug treatment induced a bystander effect (BE) and/or radiosensitization in hypoxic GBM cells. Methods and Materials: We stably transfected cells with a gene construct consisting of the SV40 minimal promoter, nine copies of a hypoxia-responsive element, and the yeast CD gene. During hypoxia, a hypoxia-responsive element regulates expression of the CD gene and facilitates the conversion of 5-FC to 5-fluorouracil, a highly toxic antimetabolite. We used colony-forming efficiency (CFE) and immunofluorescence assays to assess for BE in co-cultures of CD-expressing clone cells and parent, pNeo- or green fluorescent protein-stably transfected GBM cells. We also investigated the radiosensitivity of CD clone cells treated with 5-FC under hypoxic conditions, and we used flow cytometry to investigate treatment-induced cell cycle changes. Results: Both a large BE and radiosensitization occurred in GBM cells under hypoxic conditions. The magnitude of the BE depended on the number of transfected cells producing CD, the functionality of the CD, the administered concentration of 5-FC, and the sensitivity of cell type to 5-fluorouracil. Conclusion: Hypoxia-inducible CD/5-FC therapy in combination with radiation therapy shows both a pronounced BE and a radiosensitizing effect under hypoxic conditions.

  3. Radiation quality-dependence of bystander effect in unirradiated fibroblasts is associated with TGF-β1-Smad2 pathway and miR-21 in irradiated keratinocytes

    PubMed Central

    Yin, Xiaoming; Tian, Wenqian; Wang, Longxiao; Wang, Jingdong; Zhang, Shuyu; Cao, Jianping; Yang, Hongying

    2015-01-01

    Traditional radiation biology states that radiation causes damage only in cells traversed by ionizing radiation. But radiation-induced bystander effect (RIBE), which refers to the biological responses in unirradiated cells when the neighboring cells are exposed to radiation, challenged this old dogma and has become a new paradigm of this field. By nature, RIBEs are the consequences of intercellular communication between irradiated and unirradiated cells. However, there are still some important questions remain unanswered such as whether RIBE is dependent on radiation quality, what are the determining factors if so, etc. Using a transwell co-culture system, we found that HaCaT keratinocytes irradiated with α-particles but not X-rays could induce bystander micronucleus formation in unirradiated WS1 fibroblasts after co-culture. More importantly, the activation of TGF-β1-Smad2 pathway and the consistent decrease of miR-21 level in α-irradiated HaCaT cells were essential to the micronucleus induction in bystander WS1 cells. On the other hand, X-irradiation did not induce bystander effect in unirradiated WS1 cells, accompanied by lack of Smad2 activation and consistent decrease of miR-21 in X-irradiated HaCaT cells. Taken together, these results suggest that the radiation quality-dependence of bystander effect may be associated with the TGF-β1-Smad2 pathway and miR-21 in irradiated cells. PMID:26080011

  4. Radiation quality-dependence of bystander effect in unirradiated fibroblasts is associated with TGF-β1-Smad2 pathway and miR-21 in irradiated keratinocytes.

    PubMed

    Yin, Xiaoming; Tian, Wenqian; Wang, Longxiao; Wang, Jingdong; Zhang, Shuyu; Cao, Jianping; Yang, Hongying

    2015-06-16

    Traditional radiation biology states that radiation causes damage only in cells traversed by ionizing radiation. But radiation-induced bystander effect (RIBE), which refers to the biological responses in unirradiated cells when the neighboring cells are exposed to radiation, challenged this old dogma and has become a new paradigm of this field. By nature, RIBEs are the consequences of intercellular communication between irradiated and unirradiated cells. However, there are still some important questions remain unanswered such as whether RIBE is dependent on radiation quality, what are the determining factors if so, etc. Using a transwell co-culture system, we found that HaCaT keratinocytes irradiated with α-particles but not X-rays could induce bystander micronucleus formation in unirradiated WS1 fibroblasts after co-culture. More importantly, the activation of TGF-β1-Smad2 pathway and the consistent decrease of miR-21 level in α-irradiated HaCaT cells were essential to the micronucleus induction in bystander WS1 cells. On the other hand, X-irradiation did not induce bystander effect in unirradiated WS1 cells, accompanied by lack of Smad2 activation and consistent decrease of miR-21 in X-irradiated HaCaT cells. Taken together, these results suggest that the radiation quality-dependence of bystander effect may be associated with the TGF-β1-Smad2 pathway and miR-21 in irradiated cells.

  5. Genomic instability induced in distant progeny of bystander cells depends on the connexins expressed in the irradiated cells.

    PubMed

    de Toledo, Sonia M; Buonanno, Manuela; Harris, Andrew L; Azzam, Edouard I

    2017-06-15

    To examine the time window during which intercellular signaling though gap junctions mediates non-targeted (bystander) effects induced by moderate doses of ionizing radiation; and to investigate the impact of gap junction communication on genomic instability in distant progeny of bystander cells. A layered cell culture system was developed to investigate the propagation of harmful effects from irradiated normal or tumor cells that express specific connexins to contiguous bystander normal human fibroblasts. Irradiated cells were exposed to moderate mean absorbed doses from 3.7 MeV α particle, 1000 MeV/u iron ions, 600 MeV/u silicon ions, or (137)Cs γ rays. Following 5 h of co-culture, pure populations of bystander cells, unexposed to secondary radiation, were isolated and DNA damage and oxidative stress was assessed in them and in their distant progeny (20-25 population doublings). Increased frequency of micronucleus formation and enhanced oxidative changes were observed in bystander cells co-cultured with confluent cells exposed to either sparsely ionizing ((137)Cs γ rays) or densely ionizing (α particles, energetic iron or silicon ions) radiations. The irradiated cells propagated signals leading to biological changes in bystander cells within 1 h of irradiation, and the effect required cellular coupling by gap junctions. Notably, the distant progeny of isolated bystander cells also exhibited increased levels of spontaneous micronuclei. This effect was dependent on the type of junctional channels that coupled the irradiated donor cells with the bystander cells. Previous work showed that gap junctions composed of connexin26 (Cx26) or connexin43 (Cx43) mediate toxic bystander effects within 5 h of co-culture, whereas gap junctions composed of connexin32 (Cx32) mediate protective effects. In contrast, the long-term progeny of bystander cells expressing Cx26 or Cx43 did not display elevated DNA damage, whereas those coupled by Cx32 had enhanced DNA

  6. Irradiation of rainbow trout at early life stages results in trans-generational effects including the induction of a bystander effect in non-irradiated fish.

    PubMed

    Smith, Richard W; Seymour, Colin B; Moccia, Richard D; Mothersill, Carmel E

    2016-02-01

    The bystander effect, a non-targeted effect (NTE) of radiation, which describes the response by non-irradiated organisms to signals emitted by irradiated organisms, has been documented in a number of fish species. However transgenerational effects of radiation (including NTE) have yet to be studied in fish. Therefore rainbow trout, which were irradiated as eggs at 48h after fertilisation, eyed eggs, yolk sac larvae or first feeders, were bred to generate a F1 generation and these F1 fish were bred to generate a F2 generation. F1 and F2 fish were swam with non-irradiated bystander fish. Media from explants of F1 eyed eggs, F1 one year old fish gill and F1 two year old fish gill and spleen samples, and F2 two year old gill and spleen samples, as well as from bystander eggs/fish, was used to treat a reporter cell line, which was then assayed for changes in cellular survival/growth. The results were complex and dependent on irradiation history, age (in the case of the F1 generation), and were tissue specific. For example, irradiation of one parent often resulted in effects not seen with irradiation of both parents. This suggests that, unlike mammals, in certain circumstances maternal and paternal irradiation may be equally important. This study also showed that trout can induce a bystander effect 2 generations after irradiation, which further emphasises the importance of the bystander effect in aquatic radiobiology. Given the complex community structure in aquatic ecosystems, these results may have significant implications for environmental radiological protection.

  7. Heavy-ion microbeams and bystander effect studies at JAEA-Takasaki

    NASA Astrophysics Data System (ADS)

    Kobayashi, Y.; Funayama, T.; Sakashita, T.; Furusawa, Y.; Wada, S.; Yokota, Y.; Kakizaki, T.; Hamada, N.; Ni, M.

    During a long-term space mission astronauts are constantly exposed to space radiation especially of various kinds of heavy charged particles energetic heavy ions at low dose and low dose rate Heavy charged particles transfer their energy to biological organisms through high-density ionization along the particle trajectories The population of cells exposed to a very low dose of high-LET heavy particles contains a few cells hit by a particle while the majority of the cells receive no radiation damage At somewhat higher doses some of the cells receive two or more events according to the Poisson distribution of ion injections This fluctuation of particle trajectories through individual cells makes interpretation of radiological effects of heavy ions difficult Therefore we have established a single cell irradiation system which allows selected cells to be individually hit with defined number of heavy charged particles using a collimated heavy-ion microbeam apparatus at JAEA-Takasaki This system has been developed to study radiobiological processes in hit cells and bystander cells exposed to low dose and low dose-rate high-LET radiations in ways that cannot be achieved using conventional broad-field exposures Individual cultured cells grown in special dishes were irradiated in the atmosphere with a single or defined numbers of 18 3 MeV amu 12 C 13 0 or 17 5 MeV amu 20 Ne and 11 5 MeV amu 40 Ar ions Targeting and irradiation of the cells were performed automatically according to the positional data of the target cells

  8. Molecular mechanisms of low dose ionizing radiation-induced hormesis, adaptive responses, radioresistance, bystander effects, and genomic instability.

    PubMed

    Tang, Feng Ru; Loke, Weng Keong

    2015-01-01

    To review research progress on the molecular mechanisms of low dose ionizing radiation (LDIR)-induced hormesis, adaptive responses, radioresistance, bystander effects, and genomic instability in order to provide clues for therapeutic approaches to enhance biopositive effects (defined as radiation-induced beneficial effects to the organism), and control bionegative effects (defined as radiation-induced harmful effects to the organism) and related human diseases. Experimental studies have indicated that Ataxia telangiectasia-mutated (ATM), extracellular signal-related kinase (ERK), mitogen-activated protein kinase (MAPK), phospho-c-Jun NH(2)-terminal kinase (JNK) and protein 53 (P53)-related signal transduction pathways may be involved in LDIR-induced hormesis; MAPK, P53 may be important for adaptive response; ATM, cyclooxygenase-2 (COX-2), ERK, JNK, reactive oxygen species (ROS), P53 for radioresistance; COX-2, ERK, MAPK, ROS, tumor necrosis factor receptor alpha (TNFα) for LDIR-induced bystander effect; whereas ATM, ERK, MAPK, P53, ROS, TNFα-related signal transduction pathways are involved in LDIR-induced genomic instability. These results suggest that different manifestations of LDIR-induced cellular responses may have different signal transduction pathways. On the other hand, LDIR-induced different responses may also share the same signal transduction pathways. For instance, P53 has been involved in LDIR-induced hormesis, adaptive response, radioresistance and genomic instability. Current data therefore suggest that caution should be taken when designing therapeutic approaches using LDIR to induce beneficial effects in humans.

  9. Short and long term bystander effect induction by fathead minnows (Pimephales promelas, Rafinesque, 1820) injected with environmentally relevant whole body doses of 226Ra.

    PubMed

    Smith, Richard W; Seymour, Colin B; Mothersill, Carmel E

    2013-12-01

    Bystander effect induction by fathead minnows injected with environmentally relevant doses of (226)Ra was investigated. Twenty four h and 6 months after injection with a single dose of 21, 210 or 2100 μBq, fin tissue samples emitted a pro-apoptotic signal, which reduced the clonogenic survival of an apoptosis sensitive reporter cell line. Twenty four h and 10 weeks after injection explants from non-injected bystander fish, swum with the injected fish, also emitted a pro-apoptotic signal. However 6 months after injection the bystander fish to 21 and 210 μBq injected fish emitted an anti-apoptotic signal. This demonstrates that extremely low dose irradiation can have effects outside of the irradiated fish. This has implications for population and ecosystem responses to contamination. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Human neural stem cells transduced with IFN-beta and cytosine deaminase genes intensify bystander effect in experimental glioma.

    PubMed

    Ito, S; Natsume, A; Shimato, S; Ohno, M; Kato, T; Chansakul, P; Wakabayashi, T; Kim, S U

    2010-05-01

    Previously, we have shown that the genetically modified human neural stem cells (NSCs) show remarkable migratory and tumor-tropic capability to track down brain tumor cells and deliver therapeutic agents with significant therapeutic benefit. Human NSCs that were retrovirally transduced with cytosine deaminase (CD) gene showed remarkable 'bystander killer effect' on the glioma cells after application of the prodrug, 5-fluorocytosine (5-FC). Interferon-beta (IFN-beta) is known for its antiproliferative effects in a variety of cancers. In our pilot clinical trial in glioma, the IFN-beta gene has shown potent antitumor activity in patients with malignant glioma. In the present study, we sought to examine whether human NSCs genetically modified to express both CD and IFN-beta genes intensified antitumor effect on experimental glioma. In vitro studies showed that CD/IFN-beta-expressing NSCs exerted a remarkable bystander effect on human glioma cells after the application of 5-FC, as compared with parental NSCs and CD-expressing NSCs. In animal models with human glioma orthotopic xenograft, intravenously infused CD/IFN-beta-expressing NSCs produced striking antitumor effect after administration of the prodrug 5-FC. Furthermore, the same gene therapy regimen prolonged survival periods significantly in the experimental animals. The results of the present study indicate that the multimodal NSC-based treatment strategy might have therapeutic potential against gliomas.

  11. The effect of victims' responses to overt bullying on same-sex peer bystander reactions.

    PubMed

    Sokol, Nicole; Bussey, Kay; Rapee, Ronald M

    2015-10-01

    This study investigated the impact of victims' responses to overt bullying on peer bystanders' attitudes and reactions. Fifth- and seventh-grade students (N = 206; M(age) = 11.13 and 13.18 years, respectively) completed online questionnaires about gender-consistent videotaped hypothetical bullying scenarios in which the victims' responses (angry, sad, confident, ignoring) were experimentally manipulated. Victims' responses significantly influenced bystanders' attitudes towards the victim, perceptions of the victimization, emotional reactions, and behavioral intentions. In general, angry victims elicited more negative reactions, sad victims elicited greater intentions to act, while incidents involving confident victims were perceived as less serious. Several variations depending on the bullying type and students' grade, gender, and personal experiences with bullying were evident. Implications for individual-level and peer-level anti-bullying interventions are discussed.

  12. Low Concentration of Exogenous Carbon Monoxide Modulates Radiation-Induced Bystander Effect in Mammalian Cell Cluster Model.

    PubMed

    Wu, Wenqing; Nie, Lili; Yu, K N; Wu, Lijun; Kong, Peizhong; Bao, Lingzhi; Chen, Guodong; Yang, Haoran; Han, Wei

    2016-12-08

    During radiotherapy procedures, radiation-induced bystander effect (RIBE) can potentially lead to genetic hazards to normal tissues surrounding the targeted regions. Previous studies showed that RIBE intensities in cell cluster models were much higher than those in monolayer cultured cell models. On the other hand, low-concentration carbon monoxide (CO) was previously shown to exert biological functions via binding to the heme domain of proteins and then modulating various signaling pathways. In relation, our previous studies showed that exogenous CO generated by the CO releasing molecule, tricarbonyldichlororuthenium (CORM-2), at a relatively low concentration (20 µM), effectively attenuated the formation of RIBE-induced DNA double-strand breaks (DSB) and micronucleus (MN). In the present work, we further investigated the capability of a low concentration of exogenous CO (CORM-2) of attenuating or inhibiting RIBE in a mixed-cell cluster model. Our results showed that CO (CORM-2) with a low concentration of 30 µM could effectively suppress RIBE-induced DSB (p53 binding protein 1, p53BP1), MN formation and cell proliferation in bystander cells but not irradiated cells via modulating the inducible nitric oxide synthase (iNOS) andcyclooxygenase-2 (COX-2). The results can help mitigate RIBE-induced hazards during radiotherapy procedures.

  13. Low Concentration of Exogenous Carbon Monoxide Modulates Radiation-Induced Bystander Effect in Mammalian Cell Cluster Model

    PubMed Central

    Wu, Wenqing; Nie, Lili; Yu, K. N.; Wu, Lijun; Kong, Peizhong; Bao, Lingzhi; Chen, Guodong; Yang, Haoran; Han, Wei

    2016-01-01

    During radiotherapy procedures, radiation-induced bystander effect (RIBE) can potentially lead to genetic hazards to normal tissues surrounding the targeted regions. Previous studies showed that RIBE intensities in cell cluster models were much higher than those in monolayer cultured cell models. On the other hand, low-concentration carbon monoxide (CO) was previously shown to exert biological functions via binding to the heme domain of proteins and then modulating various signaling pathways. In relation, our previous studies showed that exogenous CO generated by the CO releasing molecule, tricarbonyldichlororuthenium (CORM-2), at a relatively low concentration (20 µM), effectively attenuated the formation of RIBE-induced DNA double-strand breaks (DSB) and micronucleus (MN). In the present work, we further investigated the capability of a low concentration of exogenous CO (CORM-2) of attenuating or inhibiting RIBE in a mixed-cell cluster model. Our results showed that CO (CORM-2) with a low concentration of 30 µM could effectively suppress RIBE-induced DSB (p53 binding protein 1, p53BP1), MN formation and cell proliferation in bystander cells but not irradiated cells via modulating the inducible nitric oxide synthase (iNOS) andcyclooxygenase-2 (COX-2). The results can help mitigate RIBE-induced hazards during radiotherapy procedures. PMID:27941646

  14. The impact of onlooking and including bystander behaviour on judgments and emotions regarding peer exclusion.

    PubMed

    Malti, Tina; Strohmeier, Dagmar; Killen, Melanie

    2015-09-01

    We investigated judgments and emotions in contexts of social exclusion that varied as a function of bystander behaviour (N = 173, 12- and 16-year-olds). Adolescents responded to film vignettes depicting a target excluded by a group with no bystanders, onlooking bystanders, or bystanders who included the target. Adolescents were asked to judge the behaviour and attribute emotions to the excluding group, the excluded target, and the bystanders. Younger adolescents judged the behaviour of the excluding group as more wrong than older adolescents when there were no bystanders present, indicating that the presence of bystanders was viewed as lessening the negative outcome of exclusion by the younger group. Yet, bystanders play a positive role only when they are includers, not when they are silent observers. This distinction was revealed by the findings that adolescents rated the behaviour of onlooking bystanders as more wrong compared with the behaviour of including bystanders. Moreover, all adolescents justified the inclusive behaviour more frequently with empathy than the onlooking behaviour. Adolescents also anticipated more empathy to including bystanders than to onlooking bystanders, as well as anticipated more guilt to onlooking bystanders than including bystanders. The findings are discussed in light of the role of group norms and group processes regarding bystanders' roles in social exclusion peer encounters. © 2015 The British Psychological Society.

  15. Contribution of radiation-induced, nitric oxide-mediated bystander effect to radiation-induced adaptive response.

    NASA Astrophysics Data System (ADS)

    Matsumoto, H.; Ohnishi, T.

    There has been a recent upsurge of interest in radiation-induced adaptive response and bystander effect which are specific modes in stress response to low-dose low-dose rate radiation Recently we found that the accumulation of inducible nitric oxide NO synthase iNOS in wt p53 cells was induced by chronic irradiation with gamma rays followed by acute irradiation with X-rays but not by each one resulting in an increase in nitrite concentrations of medium It is suggested that the accumulation of iNOS may be due to the depression of acute irradiation-induced p53 functions by pre-chronic irradiation In addition we found that the radiosensitivity of wt p53 cells against acute irradiation with X-rays was reduced after chronic irradiation with gamma rays This reduction of radiosensitivity of wt p53 cells was nearly completely suppressed by the addition of NO scavenger carboxy-PTIO to the medium This reduction of radiosensitivity of wt p53 cells is just radiation-induced adaptive response suggesting that NO-mediated bystander effect may considerably contribute to adaptive response induced by radiation

  16. Assessment of The Dose-Response Relationship of Radiation-Induced Bystander Effect in Two Cell Lines Exposed to High Doses of Ionizing Radiation (6 and 8 Gy)

    PubMed Central

    Bahreyni Toossi, Mohammad Taghi; Khademi, Sara; Azimian, Hosein; Mohebbi, Shokoufeh; Soleymanifard, Shokouhozaman

    2017-01-01

    Objective The dose-response relationship of radiation-induced bystander effect (RIBE) is controversial at high dose levels. The aim of the present study is to assess RIBE at high dose levels by examination of different endpoints. Materials and Methods This experimental study used the medium transfer technique to induce RIBE. The cells were divided into two main groups: QU-DB cells which received medium from autologous irradiated cells and MRC5 cells which received medium from irradiated QU-DB cells. Colony, MTT, and micronucleus assays were performed to quantify bystander responses. The medium was diluted and transferred to bystander cells to investigate whether medium dilution could revive the RIBE response that disappeared at a high dose. Results The RIBE level in QU-DB bystander cells increased in the dose range of 0.5 to 4 Gy, but decreased at 6 and 8 Gy. The Micronucleated cells per 1000 binucleated cells (MNBN) frequency of QU-DB bystander cells which received the most diluted medium from 6 and 8 Gy QU-DB irradiated cells reached the maximum level compared to the MNBN frequency of the cells that received complete medium (P<0.0001). MNBN frequency of MRC5 cells which received the most diluted medium from 4 Gy QU-DB irradiated cells reached the maximum level compared to MNBN frequency of cells that received complete medium (P<0.0001). Conclusion Our results showed that RIBE levels decreased at doses above 4 Gy; however, RIBE increased when diluted conditioned medium was transferred to bystander cells. This finding confirmed that a negative feedback mechanism was responsible for the decrease in RIBE response at high doses. Decrease of RIBE at high doses might be used to predict that in radiosurgery, brachytherapy and grid therapy, in which high dose per fraction is applied, normal tissue damage owing to RIBE may decrease. PMID:28836405

  17. Assessment of The Dose-Response Relationship of Radiation-Induced Bystander Effect in Two Cell Lines Exposed to High Doses of Ionizing Radiation (6 and 8 Gy).

    PubMed

    Bahreyni Toossi, Mohammad Taghi; Khademi, Sara; Azimian, Hosein; Mohebbi, Shokoufeh; Soleymanifard, Shokouhozaman

    2017-10-01

    The dose-response relationship of radiation-induced bystander effect (RIBE) is controversial at high dose levels. The aim of the present study is to assess RIBE at high dose levels by examination of different endpoints. This experimental study used the medium transfer technique to induce RIBE. The cells were divided into two main groups: QU-DB cells which received medium from autologous irradiated cells and MRC5 cells which received medium from irradiated QU-DB cells. Colony, MTT, and micronucleus assays were performed to quantify bystander responses. The medium was diluted and transferred to bystander cells to investigate whether medium dilution could revive the RIBE response that disappeared at a high dose. The RIBE level in QU-DB bystander cells increased in the dose range of 0.5 to 4 Gy, but decreased at 6 and 8 Gy. The Micronucleated cells per 1000 binucleated cells (MNBN) frequency of QU-DB bystander cells which received the most diluted medium from 6 and 8 Gy QU-DB irradiated cells reached the maximum level compared to the MNBN frequency of the cells that received complete medium (P<0.0001). MNBN frequency of MRC5 cells which received the most diluted medium from 4 Gy QU-DB irradiated cells reached the maximum level compared to MNBN frequency of cells that received complete medium (P<0.0001). Our results showed that RIBE levels decreased at doses above 4 Gy; however, RIBE increased when diluted conditioned medium was transferred to bystander cells. This finding confirmed that a negative feedback mechanism was responsible for the decrease in RIBE response at high doses. Decrease of RIBE at high doses might be used to predict that in radiosurgery, brachytherapy and grid therapy, in which high dose per fraction is applied, normal tissue damage owing to RIBE may decrease.

  18. Manipulation of radiation-induced bystander effect in prostate adenocarcinoma by dose and tumor differentiation grade: in vitro study.

    PubMed

    Tubin, Slavisa; Valeriani, Maurizio; Salerno, Gerardo; Bracci, Stefano; Stoppacciaro, Antonella; Cardelli, Patrizia; Osti, Mattia Falchetto; De Sanctis, Vitaliana; Minniti, Giuseppe; Maurizi Enrici, Riccardo

    2015-02-01

    This in vitro study evaluated the ability of prostate adenocarcinoma (ADC) cells to induce radiation-induced bystander effect (RIBE) exploring the factors that may be responsible and affect its intensity. The idea was to mimic a strong, clinically applicable RIBE that could lead to the development of innovative approaches in modern radiotherapy of prostate cancer, especially for those patients with hormone-refractory ADC in which radiotherapy might have a limited role. Two human prostate cancer cell lines of different differentiation, PC-3 and DU-145, have been irradiated using wide range of doses to obtain radiation-conditioned medium (RCM), which was used to treat the unirradiated cells and to evaluate the cytokines level. Using a trypan blue dye exclusion method, cell growth was assessed. Prostate ADC cells were able to induce RIBE; intensity depended on dose and cell differentiation. RIBE intensity of DU-145 was not correlated with the cytokines level, while for PC-3 Interleukin-6 (IL-6) correlates with strongest RIBE induced by 20 Gy. RIBE can be manipulated by modifying radiation dose and depends on cell differentiation status. IL-6 correlates with RIBE after exposure of PC-3 to a very high dose of radiation, thus indicates its possible involvement in bystander signaling.

  19. Dosimetry of a 238Pu-based alpha-particle irradiator and its biological application in a study of the bystander effect.

    PubMed

    Dahle, Jostein; Kalanxhi, Erta; Tisnek, Nikolai

    2011-06-01

    A better understanding of the non-targeted (bystander) effects of radiation may have important implications with regards to radiation risk assessment, radiation protection, and targeted cancer therapy. In the present study, the direct and bystander effects of α-particle irradiation in immortalized human fibroblasts (F11hTERT) and breast cancer cells (MCF-7) was investigated. To ensure a more accurate dose delivery to these different cell lines, an existing 238Pu α-particle irradiator was improved by the addition of a collimator and the development of an analytical equation for calculation of the radiation dose to cells. The mean dose rate and α-particle fluence were calculated for each cell line by taking into consideration the size of their nuclei. Bystander effect experiments were performed by transferring medium from irradiated to unirradiated cells and by measuring micronucleus formation in the cells. Both the immortalized human fibroblasts and the breast cancer cells displayed a bystander effect. In conclusion, the broad-beam α-particle irradiator improved in this study represents a useful tool in the investigation of direct and non-targeted effects of α-particle radiation.

  20. Tanshinone IIA increases the bystander effect of herpes simplex virus thymidine kinase/ganciclovir gene therapy via enhanced gap junctional intercellular communication.

    PubMed

    Xiao, Jianyong; Zhang, Guangxian; Qiu, Pengxiang; Liu, Xijuan; Wu, Yingya; Du, Biaoyan; Li, Jiefen; Zhou, Jing; Li, Jingjing; Tan, Yuhui

    2013-01-01

    The bystander effect is an intriguing phenomenon by which adjacent cells become sensitized to drug treatment during gene therapy with herpes simplex virus thymidine kinase/ganciclovir (HSV-tk/GCV). This effect is reported to be mediated by gap junctional intercellular communication (GJIC), and therefore, we postulated that upregulation of genes that facilitate GJIC may enhance the HSV-tk/GCV bystander effect. Previous findings have shown Tanshinone IIA (Tan IIA), a chemical substance derived from a Chinese medicine herb, promotes the upregulation of the connexins Cx26 and Cx43 in B16 cells. Because gap junctions are formed by connexins, we hypothesized that Tan IIA might increase GJIC. Our results show that Tan IIA increased GJIC in B16 melanoma cells, leading to more efficient GCV-induced bystander killing in cells stably expressing HSV-tk. Additionally, in vivo experiments demonstrated that tumors in mice with 10% HSV-tk positive B16 cells and 90% wild-type B16 cells became smaller following treatment with the combination of GCV and Tan IIA as compared to GCV or Tan IIA alone. These data demonstrate that Tan IIA can augment the bystander effect of HSV-tk/GCV system through increased gap junction coupling, which adds strength to the promising strategy that develops connexins inducer to potentiate the effects of suicide gene therapy.

  1. Virtual bystanders in a language lesson: examining the effect of social evaluation, vicarious experience, cognitive consistency and praising on students' beliefs, self-efficacy and anxiety in a virtual reality environment.

    PubMed

    Qu, Chao; Ling, Yun; Heynderickx, Ingrid; Brinkman, Willem-Paul

    2015-01-01

    Bystanders in a real world's social setting have the ability to influence people's beliefs and behavior. This study examines whether this effect can be recreated in a virtual environment, by exposing people to virtual bystanders in a classroom setting. Participants (n = 26) first witnessed virtual students answering questions from an English teacher, after which they were also asked to answer questions from the teacher as part of a simulated training for spoken English. During the experiment the attitudes of the other virtual students in the classroom was manipulated; they could whisper either positive or negative remarks to each other when a virtual student was talking or when a participant was talking. The results show that the expressed attitude of virtual bystanders towards the participants affected their self-efficacy, and their avoidance behavior. Furthermore, the experience of witnessing bystanders commenting negatively on the performance of other students raised the participants' heart rate when it was their turn to speak. Two-way interaction effects were also found on self-reported anxiety and self-efficacy. After witnessing bystanders' positive attitude towards peer students, participants' self-efficacy when answering questions received a boost when bystanders were also positive towards them, and a blow when bystanders reversed their attitude by being negative towards them. Still, inconsistency, instead of consistency, between the bystanders' attitudes towards virtual peers and the participants was not found to result in a larger change in the participants' beliefs. Finally the results also reveal that virtual flattering or destructive criticizing affected the participants' beliefs not only about the virtual bystanders, but also about the neutral teacher. Together these findings show that virtual bystanders in a classroom can affect people's beliefs, anxiety and behavior.

  2. All-trans retinoic acid enhances bystander effect of suicide gene therapy in the treatment of breast cancer.

    PubMed

    Kong, Heng; Liu, Xia; Yang, Liucheng; Qi, Ke; Zhang, Haoyun; Zhang, Jingwen; Huang, Zonghai; Wang, Hongxian

    2016-03-01

    All-trans retinoic acid (ATRA) has been shown to enhance the expression of connexin 43 (Cx43) and the bystander effect (BSE) in suicide gene therapy. These in turn improve effects of suicide gene therapies for several tumor types. However, whether ATRA can improve BSE remains unclear in suicide gene therapy for breast cancer. In the present study, MCF-7, human breast cancer cells were treated with ATRA in combination with a VEGFP-TK/CD gene suicide system developed by our group. We found that this combination enhances the efficiency of cell killing and apoptosis of breast cancer by strengthening the BSE in vitro. ATRA also promotes gap junction intercellular communication (GJIC) in MCF-7 cells by upregulation of the connexin 43 mRNA and protein in MCF-7 cells. These results indicate that enhancement of GJIC by ATRA in suicide gene system might serve as an attractive and cost-effective strategy of therapy for breast cancer cells.

  3. SirT1 knockdown potentiates radiation-induced bystander effect through promoting c-Myc activity and thus facilitating ROS accumulation.

    PubMed

    Xie, Yuexia; Tu, Wenzhi; Zhang, Jianghong; He, Mingyuan; Ye, Shuang; Dong, Chen; Shao, Chunlin

    2015-02-01

    Radiation-induced bystander effect (RIBE) has important implications for secondary cancer risk assessment during cancer radiotherapy, but the bystander signaling processes, especially under hypoxic condition, are still largely unclear. The present study found that micronuclei (MN) formation could be induced in the non-irradiated HL-7702 hepatocyte cells after being treated with the conditioned medium from irradiated hepatoma HepG2 and SK-Hep-1 cells under either normoxia or hypoxia. This bystander response was dramatically diminished or enhanced when the SirT1 gene of irradiated hepatoma cells was overexpressed or knocked down, respectively, especially under hypoxia. Meanwhile, SirT1 knockdown promoted transcriptional activity for c-Myc and facilitated ROS accumulation. But both of the increased bystander responses and ROS generation due to SirT1-knockdown were almost completely suppressed by c-Myc interference. Moreover, ROS scavenger effectively abolished the RIBE triggered by irradiated hepatoma cells even with SirT1 depletion. These findings provide new insights that SirT1 has a profound role in regulating RIBE where a c-Myc-dependent release of ROS may be involved. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Novel mechanism for the radiation-induced bystander effect: nitric oxide and ethylene determine the response in sponge cells.

    PubMed

    Müller, Werner E G; Ushijima, Hiroshi; Batel, Renato; Krasko, Anatoli; Borejko, Alexandra; Müller, Isabel M; Schröder, Heinz-C

    2006-05-11

    Until now the bystander effect had only been described in vertebrates. In the present study the existence of this effect has been demonstrated for the phylogenetically oldest metazoan phylum, the Porifera. We used the demosponge Suberites domuncula for the experiments in the two-chamber-system. The lower dish contained irradiated "donor" cells (single cells) and the upper dish the primmorphs ("recipient" primmorphs). The "donor" cells were treated with UV-B light (40 mJ/cm2) and 100 microM hydrogen peroxide (H2O2), factors that exist also in the natural marine aquatic environment of sponges; these factors caused a high level of DNA strand breaks followed by a reduced viability of the cells. If these cells were added to the "recipient" primmorphs these 3D-cell cultures started to undergo apoptosis. This effect could be abolished by the NO-specific scavenger PTIO and ethylene. The conclusion that NO is synthesized by the UV-B/H2O2-treated cells was supported analytically. The cDNA encoding the enzyme dimethylarginine dimethylaminohydrolase (DDAH) was isolated from the "donor" cells. High levels of DDAH transcripts were measured in UV-B/H2O2-treated "donor" cells while after ethylene treatment the steady-state level of expression drops drastically. We conclude that in the absence of ethylene the concentration of the physiological inhibitor for the NO synthase ADMA is low, due to the high level of DDAH. In consequence, high amounts of NO are released from "donor" cells which cause apoptosis in "recipient" primmorphs. In contrast, ethylene reduces the DDAH expression with the consequence of higher levels of ADMA which prevent the formation of larger amounts of NO. This study describes the radiation-induced bystander effect also for the most basal metazoans and demonstrates that this effect is controlled by the two gases NO and ethylene.

  5. Alpha particle-induced bystander effect is mediated by ROS via a p53-dependent SCO2 pathway in hepatoma cells.

    PubMed

    Li, Jitao; He, Mingyuan; Shen, Bo; Yuan, Dexiao; Shao, Chunlin

    2013-12-01

    The radiation-induced bystander effect (RIBE) has important implications for the efficiency of radiotherapy but the underlying role of cellular metabolism is widely unknown. The roles of synthesis of cytochrome c oxidase 2 (SCO2), a key effector for respiratory chain, and related signaling factors in α-particle-induced bystander damage were currently investigated in a liver cell co-culture system. Human hepatoma cells of HepG2 with wild-type p53 (wtp53) and Hep3B (p53 null) were irradiated with 0.4 Gy of α-particles and co-cultured with non-irradiated normal liver cells HL-7702 for 6 h, then the incidence of micronucleus (MN) in the bystander HL-7702 cells was analyzed. The expressions of total P53, phospho-P53 (p-P53), SCO2, and reactive oxygen species (ROS) in the irradiated hepatoma cells were detected. In some experiments, the hepatoma cells were respectively treated with p53 siRNA, SCO2 siRNA, or dimethyl sulfoxide (DMSO) before irradiation. Bystander damage in HL-7702 cells was induced by α-irradiated HepG2 cells but not by α-irradiated Hep3B cells, and this bystander effect was diminished when the irradiated HepG2 cells were pretreated with p53 siRNA, SCO2 siRNA, or DMSO. Meanwhile, the expressions of p-P53 protein and SCO2 mRNA, the activity of SCO2 protein, and intracellular ROS were all increased in the irradiated HepG2 cells but not Hep3B cells and these expressions were eliminated by p53 siRNA treatment. Moreover, the radiation-enhanced expressions of SCO2 and ROS were inhibited by SCO2 siRNA. α-particle-induced bystander effect was regulated by p53 and its downstream SCO2 in the irradiated hepatoma cells, and ROS generation could be an early event for triggering this bystander response.

  6. BRCA1, FANCD2 and Chk1 are potential molecular targets for the modulation of a radiation-induced DNA damage response in bystander cells.

    PubMed

    Burdak-Rothkamm, Susanne; Rothkamm, Kai; McClelland, Keeva; Al Rashid, Shahnaz T; Prise, Kevin M

    2015-01-28

    Radiotherapy is an important treatment option for many human cancers. Current research is investigating the use of molecular targeted drugs in order to improve responses to radiotherapy in various cancers. The cellular response to irradiation is driven by both direct DNA damage in the targeted cell and intercellular signalling leading to a broad range of bystander effects. This study aims to elucidate radiation-induced DNA damage response signalling in bystander cells and to identify potential molecular targets to modulate the radiation induced bystander response in a therapeutic setting. Stalled replication forks in T98G bystander cells were visualised via bromodeoxyuridine (BrdU) nuclear foci detection at sites of single stranded DNA. γH2AX co-localised with these BrdU foci. BRCA1 and FANCD2 foci formed in T98G bystander cells. Using ATR mutant F02-98 hTERT and ATM deficient GM05849 fibroblasts it could be shown that ATR but not ATM was required for the recruitment of FANCD2 to sites of replication associated DNA damage in bystander cells whereas BRCA1 bystander foci were ATM-dependent. Phospho-Chk1 foci formation was observed in T98G bystander cells. Clonogenic survival assays showed moderate radiosensitisation of directly irradiated cells by the Chk1 inhibitor UCN-01 but increased radioresistance of bystander cells. This study identifies BRCA1, FANCD2 and Chk1 as potential targets for the modulation of radiation response in bystander cells. It adds to our understanding of the key molecular events propagating out-of-field effects of radiation and provides a rationale for the development of novel molecular targeted drugs for radiotherapy optimisation.

  7. BRCA1, FANCD2 and Chk1 are potential molecular targets for the modulation of a radiation-induced DNA damage response in bystander cells

    PubMed Central

    Burdak-Rothkamm, Susanne; Rothkamm, Kai; McClelland, Keeva; Al Rashid, Shahnaz T.; Prise, Kevin M.

    2014-01-01

    Radiotherapy is an important treatment option for many human cancers. Current research is investigating the use of molecular targeted drugs in order to improve responses to radiotherapy in various cancers. The cellular response to irradiation is driven by both direct DNA damage in the targeted cell and intercellular signalling leading to a broad range of bystander effects. This study aims to elucidate radiation-induced DNA damage response signalling in bystander cells and to identify potential molecular targets to modulate the radiation induced bystander response in a therapeutic setting. Stalled replication forks in T98G bystander cells were visualised via bromodeoxyuridine (BrdU) nuclear foci detection at sites of single stranded DNA. γH2AX co-localised with these BrdU foci. BRCA1 and FANCD2 foci formed in T98G bystander cells. Using ATR mutant F02-98 hTERT and ATM deficient GM05849 fibroblasts it could be shown that ATR but not ATM was required for the recruitment of FANCD2 to sites of replication associated DNA damage in bystander cells whereas BRCA1 bystander foci were ATM-dependent. Phospho-Chk1 foci formation was observed in T98G bystander cells. Clonogenic survival assays showed moderate radiosensitisation of directly irradiated cells by the Chk1 inhibitor UCN-01 but increased radioresistance of bystander cells. This study identifies BRCA1, FANCD2 and Chk1 as potential targets for the modulation of radiation response in bystander cells. It adds to our understanding of the key molecular events propagating out-of-field effects of radiation and provides a rationale for the development of novel molecular targeted drugs for radiotherapy optimisation. PMID:25304378

  8. Elderly out-of-hospital cardiac arrest has worse outcomes with a family bystander than a non-family bystander

    PubMed Central

    2012-01-01

    Background A growing elderly population along with advances in equipment and approaches for pre-hospital resuscitation necessitates up-to-date information when developing policies to improve elderly out-of-hospital cardiac arrest (OHCA) outcomes. We examined the effects of bystander type (family or non-family) intervention on 1-month outcomes of witnessed elderly OHCA patients. Methods Data from a total of 85,588 witnessed OHCA events in patients aged ≥65 years, which occurred from 2005 to 2008, were obtained from a nationwide population-based database. Patients were stratified into three age categories (65–74, 75–84, ≥85 years), and the effects of bystander type (family or non-family) on initial cardiac rhythm, rate of bystander cardiopulmonary resuscitation (CPR), and 1-month outcomes were assessed. Results The overall survival rate was 6.9% (65–74 years: 9.8%, 75–84 years: 6.9%, ≥85 years: 4.6%). Initial VF/VT was recorded in 11.1% of cases with a family bystander and 12.9% of cases with a non-family bystander. The rate of bystander CPR was constant across the age categories in patients with a family bystander and increased with advancing age categories in patients with a non-family bystander. Patients having a non-family bystander were associated with significantly higher 1-month rates of survival (OR: 1.26; 95% CI: 1.19–1.33) and favorable neurological status (OR: 1.47; 95% CI: 1.34–1.60). Conclusions Elderly patient OHCA events witnessed by a family bystander were associated with worse 1-month outcomes than those witnessed by a non-family bystander. Healthcare providers should consider targeting potential family bystanders for CPR education to increase the rate and quality of bystander CPR. PMID:23137233

  9. A GM-CSF and CD40L bystander vaccine is effective in a murine breast cancer model

    PubMed Central

    Soliman, Hatem; Mediavilla-Varela, Melanie; Antonia, Scott J

    2015-01-01

    Background There is increasing interest in using cancer vaccines to treat breast cancer patients in the adjuvant setting to prevent recurrence in high risk situations or in combination with other immunomodulators in the advanced setting. Current peptide vaccines are limited by immunologic compatibility issues, and engineered autologous cellular vaccines are difficult to produce on a large scale. Using standardized bystander cell lines modified to secrete immune stimulating adjuvant substances can greatly enhance the ability to produce immunogenic cellular vaccines using unmodified autologous cells or allogeneic medical grade tumor cell lines as targets. We investigated the efficacy of a cellular vaccine using B78H1 bystander cell lines engineered to secrete granulocyte macrophage-colony stimulating factor and CD40 ligand (BCG) in a murine model of breast cancer. Methods Five-week-old female BALB/c mice were injected orthotopically in the mammary fat pad with 4T1 tumor cells. Treatment consisted of irradiated 4T1 ± BCG cells given subcutaneously every 4 days and was repeated three times per mouse when tumors became palpable. Tumors were measured two to three times per week for 25 days. The vaccine’s activity was confirmed in a second experiment using Lewis lung carcinoma (LLC) cells in C57BL/6 mice to exclude a model specific effect. Interferon-γ (IFN-γ) and interleukin-2 (IL-2) enzyme-linked immunospots (ELISPOTS) were performed on splenic lymphocytes incubated with 4T1 lysates along with immunohistochemistry for CD3 on tumor sections. Results Tumor growth was significantly inhibited in the 4T1-BCG and LLC-BCG treatment groups when compared to 4T1 and LLC treatment groups. There were higher levels of IL-2 and IFN-γ secreting T-cells on ELISPOT for BCG treated groups, and a trend for higher numbers of tumor infiltrating CD3+ lymphocytes. Some tumors in the 4T1-BCG demonstrated organized lymphoid structures within the tumor microenvironment as well. Conclusion

  10. The Bystander Approach to Sexual Assault Risk Reduction: Effects on Risk Recognition, Perceived Self-Efficacy, and Protective Behavior.

    PubMed

    Bannon, R Sean; Foubert, John D

    2017-02-01

    Several characteristics of sexual assault awareness programs for women are associated with meeting the goals of risk reduction. To date, the literature lacks an exploration of how single-sex programs affect women, particularly when they take a bystander intervention focus using women's risk recognition and avoidance as outcome measures. The purpose of this study was to investigate the effectiveness of The Women's Program (Foubert, 2011), a sexual assault awareness program geared toward women. Participants consisted of 103 undergraduate women attending a large, public university in the Midwest United States. Women in the treatment group viewed a presentation of The Women's Program, whereas the control group received no intervention. Consistent with hypotheses, program participants reported a greater ability to recognize risk cues, a greater willingness to engage in self-protective behaviors, and a greater level of perceived self-efficacy in handling threatening dating situations compared to the control group.

  11. Novel features of radiation-induced bystander signaling in Arabidopsis thaliana demonstrated using root micro-grafting

    PubMed Central

    Wang, Ting; Li, Fanghua; Xu, Wei; Bian, Po; Wu, Yuejin; Wu, Lijun

    2012-01-01

    Radiation-induced bystander effects (RIBE) have been well demonstrated in whole organisms, as well as in single-cell culture models in vitro and multi-cellular tissues models in vitro, however, the underlying mechanisms remain unclear, including the temporal and spatial course of bystander signaling. The RIBE in vivo has been shown to exist in the model plant Arabidopsis thaliana (A. thaliana). Importantly, the unique plant grafting provides a delicate approach for studying the temporal and spatial course of bystander signaling in the context of whole plants. In our previous study, the time course of bystander signaling in plants has been well demonstrated using the root micro-grafting technique. In this study, we further investigated the temporal cooperation pattern of multiple bystander signals, the directionality of bystander signaling, and the effect of bystander tissues on the bystander signaling. The results showed that the bystander response could also be induced efficiently when the asynchronously generated bystander signals reached the bystander tissues in the same period, but not when they entered into the bystander tissues in an inversed sequence. The absence of bystander response in root-inversed grafting indicated that the bystander signaling along roots might be of directionality. The bystander signaling was shown to be independent of the bystander tissues. PMID:23072991

  12. Interaction effects between highly-educated neighborhoods and dispatcher-provided instructions on provision of bystander cardiopulmonary resuscitation.

    PubMed

    Lee, Sun Young; Ro, Young Sun; Shin, Sang Do; Song, Kyoung Jun; Ahn, Ki Ok; Kim, Min Jung; Hong, Sung Ok; Kim, Young Taek

    2016-02-01

    Socioeconomic factors of a community are associated with bystander cardiopulmonary resuscitation (BCPR) rates and outcomes of out-of-hospital cardiac arrest (OHCA). This study aimed to test whether dispatcher-provided CPR instruction modifies the association between education level of a community and provision of BCPR. A population-based observational study was conducted with OHCAs of cardiac etiology who were witnessed by laypersons between 2012 and 2013. Exposure variable was the proportion of highly-educated residents (high school graduates and higher) in a community categorized into quartile groups. Endpoints were provision of BCPR and early chest compression (≤4min of collapse, ECC). Multivariable logistic regression analysis was performed. A final model with an interaction term was evaluated to test interactive effects of community education level with dispatcher-provided CPR instruction. A total of 10,694 OHCAs were analyzed. BCPR was performed in 5112 (47.8%), and early CPR was done in 3080 (28.8%). Compared with the highest educated communities, AORs (95%CIs) for BCPR were 0.84 (0.74-0.95) in higher, 0.78 (0.66-0.92) in lower, and 0.71 (0.60-0.85) in the lowest educated communities. For ECC, AORs (95%CIs) were 0.81 (0.66-0.99) in lower and 0.62 (0.50-0.76) in the lowest. In an interaction model of 4122 OHCA patients who received dispatcher-provided CPR instruction, OHCAs occurring in higher (AOR: 0.80 (0.67-0.96)), lower (AOR: 0.67 (0.52-0.87)), and the lowest (AOR: 0.59 (0.43-0.82)) were less likely to receive BCPR compared with the highest educated communities. OHCA patients in communities with a higher proportion of highly-educated residents were more likely to receive BCPR, and the disparity was more prominent in the group that received dispatcher-provided CPR instruction. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Lack of evidence for low-LET radiation induced bystander response in normal human fibroblasts and colon carcinoma cells

    SciTech Connect

    Marianne B. Sowa; Wilfried Goetz; Janet E. Baulch; Dinah N. Pyles; Jaroslaw Dziegielewski; Susannah Yovino; Andrew R. Snyder; Sonia M. de Toledo; Edouard I. Azzam; William F. Morgan

    2008-06-30

    Purpose: To investigate radiation induced bystander responses and to determine the role of gap junction intercellular communication and the radiation environment in propagating this response. Materials and Methods: We use medium transfer and targeted irradiation to examine radiation induced bystander effects in primary human fibroblast (AG1522) and human colon carcinoma (RKO36) cells. We examined the effect of variables such as gap junction intercellular communication, linear energy transfer (LET), and the role of the radiation environment in non-targeted responses. Endpoints included clonogenic survival, micronucleus formation and foci formation at histone 2AX over doses ranging from 10 to 100 cGy. Results: The results show no evidence of a low-LET radiation induced bystander response for the endpoints of clonogenic survival and induction of DNA damage. Nor do we see evidence of a high-LET, Fe ion radiation (1 GeV/n) induced bystander effect. However, direct comparison for 3.2 MeV α-particle exposures showed a statistically significant medium transfer bystander effect for this high-LET radiation. Conclusions: From our results, it is evident that there are many confounding factors influencing bystander responses as reported in the literature. Our observations reflect the inherent variability in biological systems and the difficulties in extrapolating from in vitro models to radiation risks in humans.

  14. Ultra-Violet Light Emission from HPV-G Cells Irradiated with Low Let Radiation From (90)Y; Consequences for Radiation Induced Bystander Effects.

    PubMed

    Ahmad, Syed Bilal; McNeill, Fiona E; Byun, Soo Hyun; Prestwich, William V; Mothersill, Carmel; Seymour, Colin; Armstrong, Andrea; Fernandez, Cristian

    2013-01-01

    In this study, we aimed to establish the emission of UV photons when HPV-G cells and associated materials (such as the cell substrate and cell growth media) are exposed to low LET radiation. The potential role of UV photons in the secondary triggering of biological processes led us to hypothesize that the emission and absorption of photons at this wavelength explain some radiation induced "bystander effects" that have previously been thought to be chemically mediated. Cells were plated in Petri-dishes of two different sizes, having different thicknesses of polystyrene (PS) substrate, and were exposed to β-radiation from (90)Y produced by the McMaster Nuclear Reactor. UV measurements were performed using a single photon counting system employing an interference-type filter for selection of a narrow wavelength range, 340±5 nm, of photons. Exposure of the cell substrates (which were made of polystyrene) determined that UV photons were being emitted as a consequence of β particle irradiation of the Petri-dishes. For a tightly collimated β-particle beam exposure, we observed 167 photons in the detector per unit μCi in the shielded source for a 1.76 mm thick substrate and 158 photons/μCi for a 0.878 mm thick substrate. A unit μCi source activity was equivalent to an exposure to the substrate of 18 β-particles/cm(2) in this case. The presence of cells and medium in a Petri-dish was found to significantly increase (up to a maximum of 250%) the measured number of photons in a narrow band of wavelengths of 340±5 nm (i.e. UVA) as compared to the signal from an empty control Petri-dish. When coloured growth medium was added to the cells, it reduced the measured count rate, while the addition of transparent medium in equal volume increased the count rate, compared to cells alone. We attribute this to the fact that emission, scattering and absorption of light by cells and media are all variables in the experiment. Under collimated irradiation conditions, it was observed

  15. The influence of smoking on radiation-induced bystander signal production in esophageal cancer patients.

    PubMed

    Hanu, C; Timotin, E; Wong, R; Sur, R K; Hayward, J E; Seymour, C B; Mothersill, C E

    2016-05-01

    The relevance of radiation-induced bystander effects in humans is unclear. Much of the existing data relate to cell lines but the effect of bystander signals in complex human tissues is unclear. A phase II clinical study was untaken, where blood sera from 60 patients along with 15 cancer-free volunteers were used to detect whether measurable bystander factor(s) could be found in the blood following high dose rate (HDR) brachytherapy. Overall, there was no significant change in bystander signal production (measured in a human keratinocyte reporter system) before and after one treatment fraction of HDR brachytherapy (p>0.05). Further assessment of patient characteristics and environmental modifiable factors including smoking were also analyzed. Similar to previously published data, samples taken from smokers produced weaker signals compared to non-smokers (p<0.05). Although the number of non-smoking subjects was low, there was a clear decrease in cloning efficiency observed in keratinocyte cultures for these patients that requires further study. This study found that samples taken from smokers do not produce bystander signals, whereas samples taken from non-smokers can produce such signals following HDR brachytherapy. These findings highlight the importance of studying the interactions of multiple stressors including environmental modifiers with radiation, since some factors such as smoking may elicit protection in tumor cells which could counteract the effectiveness of radiation therapy.

  16. Regions of High Out-Of-Hospital Cardiac Arrest Incidence and Low Bystander CPR Rates in Victoria, Australia

    PubMed Central

    Straney, Lahn D.; Bray, Janet E.; Beck, Ben; Finn, Judith; Bernard, Stephen; Dyson, Kylie; Lijovic, Marijana; Smith, Karen

    2015-01-01

    Background Out-of-hospital cardiac arrest (OHCA) remains a major public health issue and research has shown that large regional variation in outcomes exists. Of the interventions associated with survival, the provision of bystander CPR is one of the most important modifiable factors. The aim of this study is to identify census areas with high incidence of OHCA and low rates of bystander CPR in Victoria, Australia Methods We conducted an observational study using prospectively collected population-based OHCA data from the state of Victoria in Australia. Using ArcGIS (ArcMap 10.0), we linked the location of the arrest using the dispatch coordinates (longitude and latitude) to Victorian Local Government Areas (LGAs). We used Bayesian hierarchical models with random effects on each LGA to provide shrunken estimates of the rates of bystander CPR and the incidence rates. Results Over the study period there were 31,019 adult OHCA attended, of which 21,436 (69.1%) cases were of presumed cardiac etiology. Significant variation in the incidence of OHCA among LGAs was observed. There was a 3 fold difference in the incidence rate between the lowest and highest LGAs, ranging from 38.5 to 115.1 cases per 100,000 person-years. The overall rate of bystander CPR for bystander witnessed OHCAs was 62.4%, with the rate increasing from 56.4% in 2008–2010 to 68.6% in 2010–2013. There was a 25.1% absolute difference in bystander CPR rates between the highest and lowest LGAs. Conclusion Significant regional variation in OHCA incidence and bystander CPR rates exists throughout Victoria. Regions with high incidence and low bystander CPR participation can be identified and would make suitable targets for interventions to improve CPR participation rates. PMID:26447844

  17. Regions of High Out-Of-Hospital Cardiac Arrest Incidence and Low Bystander CPR Rates in Victoria, Australia.

    PubMed

    Straney, Lahn D; Bray, Janet E; Beck, Ben; Finn, Judith; Bernard, Stephen; Dyson, Kylie; Lijovic, Marijana; Smith, Karen

    2015-01-01

    Out-of-hospital cardiac arrest (OHCA) remains a major public health issue and research has shown that large regional variation in outcomes exists. Of the interventions associated with survival, the provision of bystander CPR is one of the most important modifiable factors. The aim of this study is to identify census areas with high incidence of OHCA and low rates of bystander CPR in Victoria, Australia. We conducted an observational study using prospectively collected population-based OHCA data from the state of Victoria in Australia. Using ArcGIS (ArcMap 10.0), we linked the location of the arrest using the dispatch coordinates (longitude and latitude) to Victorian Local Government Areas (LGAs). We used Bayesian hierarchical models with random effects on each LGA to provide shrunken estimates of the rates of bystander CPR and the incidence rates. Over the study period there were 31,019 adult OHCA attended, of which 21,436 (69.1%) cases were of presumed cardiac etiology. Significant variation in the incidence of OHCA among LGAs was observed. There was a 3 fold difference in the incidence rate between the lowest and highest LGAs, ranging from 38.5 to 115.1 cases per 100,000 person-years. The overall rate of bystander CPR for bystander witnessed OHCAs was 62.4%, with the rate increasing from 56.4% in 2008-2010 to 68.6% in 2010-2013. There was a 25.1% absolute difference in bystander CPR rates between the highest and lowest LGAs. Significant regional variation in OHCA incidence and bystander CPR rates exists throughout Victoria. Regions with high incidence and low bystander CPR participation can be identified and would make suitable targets for interventions to improve CPR participation rates.

  18. Ultra-Violet Light Emission from HPV-G Cells Irradiated with Low Let Radiation From 90Y; Consequences for Radiation Induced Bystander Effects

    PubMed Central

    Ahmad, Syed Bilal; McNeill, Fiona E.; Byun, Soo Hyun; Prestwich, William V.; Mothersill, Carmel; Seymour, Colin; Armstrong, Andrea; Fernandez, Cristian

    2013-01-01

    that increasing cell density in medium of fixed volume resulted in a decrease in the observed light output. This followed a roughly exponential decline. We suggest that this may be due to increased scattering at the cell boundary and absorption of the UV in the cells. We conclude that we have measured UVA emitted by cells, cell medium and cell substrates as a consequence of their irradiation by low LET β-particle radiation. We suggest that these secondary UV photons could lead to effects in non-targetted cells. Some effects that had previously been attributed to a chemically mediated “bystander effect” may in fact be due to secondary UV emission. Some radiation bystander effect studies may require re-interpretation as this phenomenon of UV emission is further investigated. PMID:24298227

  19. Vitamin C Transporters, Recycling and the Bystander Effect in the Nervous System: SVCT2 versus Gluts

    PubMed Central

    Nualart, Francisco; Mack, Lauren; García, Andrea; Cisternas, Pedro; Bongarzone, Ernesto R.; Heitzer, Marjet; Jara, Nery; Martínez, Fernando; Ferrada, Luciano; Espinoza, Francisca; Baeza, Victor; Salazar, Katterine

    2014-01-01

    Vitamin C is an essential micronutrient in the human diet; its deficiency leads to a number of symptoms and ultimately death. After entry into cells within the central nervous system (CNS) through sodium vitamin C transporters (SVCTs) and facilitative glucose transporters (GLUTs), vitamin C functions as a neuromodulator, enzymatic cofactor, and reactive oxygen species (ROS) scavenger; it also stimulates differentiation. In this review, we will compare the molecular and structural aspects of vitamin C and glucose transporters and their expression in endothelial or choroid plexus cells, which form part of the blood-brain barrier and blood-cerebrospinal fluid (CSF) barrier, respectively. Additionally, we will describe SVCT and GLUT expression in different cells of the brain as well as SVCT2 distribution in tanycytes and astrocytes of the hypothalamic region. Finally, we will describe vitamin C recycling in the brain, which is mediated by a metabolic interaction between astrocytes and neurons, and the role of the “bystander effect” in the recycling mechanism of vitamin C in both normal and pathological conditions. PMID:25110615

  20. Inter-Relationship between Low-Dose Hyper-Radiosensitivity and Radiation-Induced Bystander Effects in the Human T98G Glioma and the Epithelial HaCaT Cell Line.

    PubMed

    Fernandez-Palomo, Cristian; Seymour, Colin; Mothersill, Carmel

    2016-02-01

    Over the past several years, investigations in both low-dose hyper-radiosensitivity and increased radioresistance have been a focus of radiation oncology and biology research, since both conditions occur primarily in tumor cell lines. There has been significant progress in elucidating their signaling pathways, however uncertainties exist when they are studied together with radiation-induced bystander effects. Therefore, the aim of this work was to further investigate this relationship using the T98G glioma and HaCaT cell lines. T98G glioma cells have demonstrated a strong transition from hyper-radiosensitivity to induced radioresistance, and HaCaT cells do not show low-dose hypersensitivity. Both cell lines were paired using a mix-and-match protocol, which involved growing nonirradiated cells in culture media from irradiated cells and covering all possible combinations between them. The end points analyzed were clonogenic cell survival and live calcium measurements through the cellular membrane. Our data demonstrated that T98G cells produced bystander signals that decreased the survival of both reporter T98G and HaCaT cells. The bystander effect occurred only when T98G cells were exposed to doses below 1 Gy, which was corroborated by the induction of calcium fluxes. However, when bystander signals originated from HaCaT cells, the survival fraction increased in reporter T98G cells while it decreased in HaCaT cells. Moreover, the corresponding calcium data showed no calcium fluxes in T98G cells, while HaCaT cells displayed a biphasic calcium profile. In conclusion, our findings indicate a possible link between low-dose hyper-radiosensitivity and bystander effects. This relationship varies depending on which cell line functions as the source of bystander signals. This further suggests that the bystander mechanisms are more complex than previously expected and caution should be taken when extrapolating bystander results across all cell lines and all radiation doses.

  1. Sci—Fri PM: Topics — 04: What if bystander effects influence cell kill within a target volume? Potential consequences of dose heterogeneity on TCP and EUD on intermediate risk prostate patients

    SciTech Connect

    Balderson, M.J.; Kirkby, C.

    2014-08-15

    In vitro evidence has suggested that radiation induced bystander effects may enhance non-local cell killing which may influence radiotherapy treatment planning paradigms. This work applies a bystander effect model, which has been derived from published in vitro data, to calculate equivalent uniform dose (EUD) and tumour control probability (TCP) and compare them with predictions from standard linear quadratic (LQ) models that assume a response due only to local absorbed dose. Comparisons between the models were made under increasing dose heterogeneity scenarios. Dose throughout the CTV was modeled with normal distributions, where the degree of heterogeneity was then dictated by changing the standard deviation (SD). The broad assumptions applied in the bystander effect model are intended to place an upper limit on the extent of the results in a clinical context. The bystander model suggests a moderate degree of dose heterogeneity yields as good or better outcome compared to a uniform dose in terms of EUD and TCP. Intermediate risk prostate prescriptions of 78 Gy over 39 fractions had maximum EUD and TCP values at SD of around 5Gy. The plots only dropped below the uniform dose values for SD ∼ 10 Gy, almost 13% of the prescribed dose. The bystander model demonstrates the potential to deviate from the common local LQ model predictions as dose heterogeneity through a prostate CTV is varies. The results suggest the potential for allowing some degree of dose heterogeneity within a CTV, although further investigations of the assumptions of the bystander model are warranted.

  2. Non-targeted and delayed effects of exposure to ionizing radiation: II. Radiation-induced genomic instability and bystander effects in vivo, clastogenic factors and transgenerational effects

    NASA Technical Reports Server (NTRS)

    Morgan, William F.

    2003-01-01

    The goal of this review is to summarize the evidence for non-targeted and delayed effects of exposure to ionizing radiation in vivo. Currently, human health risks associated with radiation exposures are based primarily on the assumption that the detrimental effects of radiation occur in irradiated cells. Over the years a number of non-targeted effects of radiation exposure in vivo have been described that challenge this concept. These include radiation-induced genomic instability, bystander effects, clastogenic factors produced in plasma from irradiated individuals that can cause chromosomal damage when cultured with nonirradiated cells, and transgenerational effects of parental irradiation that can manifest in the progeny. These effects pose new challenges to evaluating the risk(s) associated with radiation exposure and understanding radiation-induced carcinogenesis.

  3. Virtual Bystanders in a Language Lesson: Examining the Effect of Social Evaluation, Vicarious Experience, Cognitive Consistency and Praising on Students' Beliefs, Self-Efficacy and Anxiety in a Virtual Reality Environment

    PubMed Central

    Qu, Chao; Ling, Yun; Heynderickx, Ingrid; Brinkman, Willem-Paul

    2015-01-01

    Bystanders in a real world's social setting have the ability to influence people’s beliefs and behavior. This study examines whether this effect can be recreated in a virtual environment, by exposing people to virtual bystanders in a classroom setting. Participants (n = 26) first witnessed virtual students answering questions from an English teacher, after which they were also asked to answer questions from the teacher as part of a simulated training for spoken English. During the experiment the attitudes of the other virtual students in the classroom was manipulated; they could whisper either positive or negative remarks to each other when a virtual student was talking or when a participant was talking. The results show that the expressed attitude of virtual bystanders towards the participants affected their self-efficacy, and their avoidance behavior. Furthermore, the experience of witnessing bystanders commenting negatively on the performance of other students raised the participants’ heart rate when it was their turn to speak. Two-way interaction effects were also found on self-reported anxiety and self-efficacy. After witnessing bystanders’ positive attitude towards peer students, participants’ self-efficacy when answering questions received a boost when bystanders were also positive towards them, and a blow when bystanders reversed their attitude by being negative towards them. Still, inconsistency, instead of consistency, between the bystanders’ attitudes towards virtual peers and the participants was not found to result in a larger change in the participants’ beliefs. Finally the results also reveal that virtual flattering or destructive criticizing affected the participants’ beliefs not only about the virtual bystanders, but also about the neutral teacher. Together these findings show that virtual bystanders in a classroom can affect people’s beliefs, anxiety and behavior. PMID:25884211

  4. Human Lung Cancer Risks from Radon – Part III - Evidence of Influence of Combined Bystander and Adaptive Response Effects on Radon Case-Control Studies - A Microdose Analysis

    PubMed Central

    Leonard, Bobby E.; Thompson, Richard E.; Beecher, Georgia C.

    2012-01-01

    Since the publication of the BEIR VI (1999) report on health risks from radon, a significant amount of new data has been published showing various mechanisms that may affect the ultimate assessment of radon as a carcinogen, in particular the potentially deleterious Bystander Effect (BE) and the potentially beneficial Adaptive Response radio-protection (AR). The case-control radon lung cancer risk data of the pooled 13 European countries radon study (Darby et al 2005, 2006) and the 8 North American pooled study (Krewski et al 2005, 2006) have been evaluated. The large variation in the odds ratios of lung cancer from radon risk is reconciled, based on the large variation in geological and ecological conditions and variation in the degree of adaptive response radio-protection against the bystander effect induced lung damage. The analysis clearly shows Bystander Effect radon lung cancer induction and Adaptive Response reduction in lung cancer in some geographical regions. It is estimated that for radon levels up to about 400 Bq m−3 there is about a 30% probability that no human lung cancer risk from radon will be experienced and a 20% probability that the risk is below the zero-radon, endogenic spontaneous or perhaps even genetically inheritable lung cancer risk rate. The BEIR VI (1999) and EPA (2003) estimates of human lung cancer deaths from radon are most likely significantly excessive. The assumption of linearity of risk, by the Linear No-Threshold Model, with increasing radon exposure is invalid. PMID:22942874

  5. Potential association of bystander-patient relationship with bystander response and patient survival in daytime out-of-hospital cardiac arrest.

    PubMed

    Tanaka, Yoshio; Maeda, Tetsuo; Kamikura, Takahisa; Nishi, Taiki; Omi, Wataru; Hashimoto, Masaaki; Sakagami, Satoru; Inaba, Hideo

    2015-01-01

    To investigate whether the bystander-patient relationship affects bystander response to out-of-hospital cardiac arrest (OHCA) and patient outcomes depending on the time of day. This population-based observational study in Japan involving 139,265 bystander-witnessed OHCAs (90,426 family members, 10,479 friends/colleagues, and 38,360 others) without prehospital physician involvement was conducted from 2005 to 2009. Factors associated with better bystander response [early emergency call and bystander cardiopulmonary resuscitation (BCPR)] and 1-month neurologically favourable survival were assessed. The rates of dispatcher-assisted CPR during daytime (7:00-18:59) and nighttime (19:00-6:59) were highest in family members (45.6% and 46.1%, respectively, for family members; 28.7% and 29.2%, respectively, for friends/colleagues; and 28.1% and 25.3%, respectively, for others). However, the BCPR rates were lowest in family members (35.5% and 37.8%, respectively, for family members; 43.7% and 37.8%, respectively, for friends/colleagues; and 59.3% and 50.0%, respectively, for others). Large delays (≥ 5 min) in placing emergency calls and initiating BCPR were most frequent in family members. The overall survival rate was lowest (2.7%) for family members and highest (9.1%) for friends/colleagues during daytime. Logistic regression analysis revealed that the effect of bystander relationship on survival was significant only during daytime [adjusted odds ratios (95% CI) for survival from daytime OHCAs with family as reference were 1.51 (1.36-1.68) for friends/colleagues and 1.23 (1.13-1.34) for others]. Family members are least likely to perform BCPR and OHCAs witnessed by family members are least likely to survive during daytime. Different strategies are required for family-witnessed OHCAs. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Human Lung Cancer Risks from Radon – Part II – Influence from Combined Adaptive Response and Bystander Effects – A Microdose Analysis

    PubMed Central

    Leonard, Bobby E.; Thompson, Richard E.; Beecher, Georgia C.

    2010-01-01

    In the prior Part I, the potential influence of the low level alpha radiation induced bystander effect (BE) on human lung cancer risks was examined. Recent analysis of adaptive response (AR) research results with a Microdose Model has shown that single low LET radiation induced charged particles traversals through the cell nucleus activates AR. We have here conducted an analysis based on what is presently known about adaptive response and the bystander effect (BE) and what new research is needed that can assist in the further evaluation human cancer risks from radon. We find that, at the UNSCEAR (2000) worldwide average human exposures from natural background and man-made radiations, the human lung receives about a 25% adaptive response protection against the radon alpha bystander damage. At the UNSCEAR (2000) minimum range of background exposure levels, the lung receives minimal AR protection but at higher background levels, in the high UNSCEAR (2000) range, the lung receives essentially 100% protection from both the radon alpha damage and also the endogenic, spontaneously occurring, potentially carcinogenic, lung cellular damage. PMID:22461760

  7. An evaluation of novel real-time technology as a tool for measurement of radiobiological and radiation-induced bystander effects.

    PubMed

    Ibahim, Mohammad Johari; Crosbie, Jeffrey C; Paiva, Premila; Yang, Yuqing; Zaitseva, Marina; Rogers, Peter A W

    2016-05-01

    The xCELLigence real-time cell impedance system uses a non-invasive and label-free method to create a cell index that is a composite measure of cell proliferation. The aim of this study was to evaluate xCELLigence against clonogenic assay (gold standard) for measuring radiobiological effects and radiation-induced bystander effects (RIBE). A radiobiological study was conducted by irradiating EMT6.5, 4T1.2 and NMUMG cell lines with different radiation doses, while a RIBE study was done using transfer of conditioned media (CM) harvested from donor to the same type of recipient cell (EMT6.5, 4T1.2, NMUMG, HACAT and SW48). CM was harvested using two protocols which differed in the dose chosen and the exposure to the recipient cells. Results showed that xCELLigence measured a radiobiological effect which correlated with the clonogenic assay. For the RIBE study, no statistically significant differences were observed between xCELLigence or clonogenic survival in control or recipient cells incubated with CM in protocol one. However, there was a significant increase in cell index slope using CM from EMT-6.5 cells irradiated at 7.5 Gy compared with the control group under the second protocol. No other evidence of RIBE was detected by either xCELLigence or clonogenic assay. In conclusion, xCELLigence methods can measure radiobiological effects and the results correlate with clonogenic assay. We observed a lack of RIBE in all tested cell lines with the clonogenic assay; however, we observed a RIBE effect in EMT6.5 cells under one particular protocol that showed RIBE is cell type dependent, is not universally observed and can be detected in different assays.

  8. A Variable-Energy Soft X-Ray Microprobe to Investigate Mechanisms of the Radiation-Induced Bystander Effect.

    SciTech Connect

    Folkard, Melvyn; Vojnovic, Borivoj; Schettino, Giuseppe; Atkinson, Kirk; Prise, Kevin, M.; Michael, Barry, D.

    2007-01-23

    The Gray Cancer Institute has pioneered the use of X ray focussing techniques to develop systems for micro irradiating individual cells and sub cellular targets in vitro. Cellular micro irradiation is now recognised as a highly versatile technique for understanding how ionising radiation interacts with living cells and tissues. The strength of the technique lies in its ability to deliver precise doses of radiation to selected individual cells (or sub cellular targets). The application of this technique in the field of radiation biology continues to be of great interest for investigating a number of phenomena currently of concern to the radiobiological community. One important phenomenon is the so called ‘bystander effect’ where it is observed that unirradiated cells can also respond to signals transmitted by irradiated neighbours. Clearly, the ability of a microbeam to irradiate just a single cell or selected cells within a population is well suited to studying this effect. Our prototype ‘tabletop’ X-ray microprobe was optimised for focusing 278 eV C-K X rays and has been used successfully for a number of years. However, we have sought to develop a new variable energy soft X-ray microprobe capable of delivering focused CK (0.28 keV), Al-K (1.48 keV) and notably, Ti-K (4.5 keV) X rays. Ti-K X rays are capable of penetrating several cell layers and are therefore much better suited to studies involving tissues and multi cellular layers. In our new design, X-rays are generated by the focussed electron bombardment of a material whose characteristic-K radiation is required. The source is mounted on a 1.5 x 1.0 metre optical table. Electrons are generated by a custom built gun, designed to operate up to 15 kV. The electrons are focused using a permanent neodymium iron boron magnet assembly. Focusing is achieved by adjusting the accelerating voltage and by fine tuning the target position via a vacuum position feedthrough. To analyze the electron beam properties, a

  9. Evaluation of Bystander Cell Killing Effects in Suicide Gene Therapy of Cancer: Engineered Thymidylate Kinase (TMPK)/AZT Enzyme-Prodrug Axis.

    PubMed

    Sato, Takeya; Neschadim, Anton; Nakagawa, Ryo; Yanagisawa, Teruyuki; Medin, Jeffrey A

    2015-01-01

    Suicide gene therapy of cancer (SGTC) entails the introduction of a cDNA sequence into tumor cells whose polypeptide product is capable of either directly activating apoptotic pathways itself or facilitating the activation of pharmacologic agents that do so. The latter class of SGTC approaches is of the greater utility in cancer therapy owing to the ability of some small, activated cytotoxic compounds to diffuse from their site of activation into neighboring malignant cells, where they can also mediate destruction. This phenomenon, termed "bystander killing", can be highly advantageous in driving significant tumor regression in vivo without the requirement of transduction of each and every tumor cell with the suicide gene. We have developed a robust suicide gene therapy enzyme/prodrug system based on an engineered variant of the human thymidylate kinase (TMPK), which has been endowed with the ability to drive azidothymidine (AZT) activation. Delivery of this suicide gene sequence into tumors by means of recombinant lentivirus-mediated transduction embodies an SGTC strategy that successfully employs bystander cell killing as a mechanism to achieve significant ablation of solid tumors in vivo. Thus, this engineered TMPK/AZT suicide gene therapy axis holds great promise for clinical application in the treatment of inoperable solid tumors in the neoadjuvant setting. Here we present detailed procedures for the preparation of recombinant TMPK-based lentivirus, transduction of target cells, and various approaches for the evaluation of bystander cell killing effects in SGCT in both in vitro and in vivo models.

  10. Tumor-Selective, Futile Redox Cycle-Induced Bystander Effects Elicited by NQO1 Bioactivatable Radiosensitizing Drugs in Triple-Negative Breast Cancers

    PubMed Central

    Cao, Lifen; Li, Long Shan; Spruell, Christopher; Xiao, Ling; Chakrabarti, Gaurab; Bey, Erik A.; Reinicke, Kathryn E.; Srougi, Melissa C.; Moore, Zachary; Dong, Ying; Vo, Peggy; Kabbani, Wareef; Yang, Chin-Rang; Wang, Xiaoyu; Fattah, Farjana; Morales, Julio C.; Motea, Edward A.; Bornmann, William G.

    2014-01-01

    Abstract Aims: β-Lapachone (β-lap), a novel radiosensitizer with potent antitumor efficacy alone, selectively kills solid cancers that over-express NAD(P)H:quinone oxidoreductase 1 (NQO1). Since breast or other solid cancers have heterogeneous NQO1 expression, therapies that reduce the resistance (e.g., NQO1low) of tumor cells will have significant clinical advantages. We tested whether NQO1-proficient (NQO1+) cells generated sufficient hydrogen peroxide (H2O2) after β-lap treatment to elicit bystander effects, DNA damage, and cell death in neighboring NQO1low cells. Results: β-Lap showed NQO1-dependent efficacy against two triple-negative breast cancer (TNBC) xenografts. NQO1 expression variations in human breast cancer patient samples were noted, where ∼60% cancers over-expressed NQO1, with little or no expression in associated normal tissue. Differential DNA damage and lethality were noted in NQO1+ versus NQO1-deficient (NQO1−) TNBC cells and xenografts after β-lap treatment. β-Lap-treated NQO1+ cells died by programmed necrosis, whereas co-cultured NQO1− TNBC cells exhibited DNA damage and caspase-dependent apoptosis. NQO1 inhibition (dicoumarol) or H2O2 scavenging (catalase [CAT]) blocked all responses. Only NQO1− cells neighboring NQO1+ TNBC cells responded to β-lap in vitro, and bystander effects correlated well with H2O2 diffusion. Bystander effects in NQO1− cells in vivo within mixed 50:50 co-cultured xenografts were dramatic and depended on NQO1+ cells. However, normal human cells in vitro or in vivo did not show bystander effects, due to elevated endogenous CAT levels. Innovation and Conclusions: NQO1-dependent bystander effects elicited by NQO1 bioactivatable drugs (β-lap or deoxynyboquinone [DNQ]) likely contribute to their efficacies, killing NQO1+ solid cancer cells and eliminating surrounding heterogeneous NQO1low cancer cells. Normal cells/tissue are protected by low NQO1:CAT ratios. Antioxid. Redox Signal. 21, 237–250. PMID

  11. Bystander effects elicited by single-cell photo-oxidative blue-light stimulation in retinal pigment epithelium cell networks

    PubMed Central

    Ishii, Masaaki; Rohrer, Bärbel

    2017-01-01

    Bystander effect’ refers to the induction of biological effects in cells not directly targeted. The retinal pigment epithelium consists of hexagonal cells, forming a monolayer interconnected by gap junctions (GJs). Oxidative stress initiated in an individual cell by photostimulation (488 nm) triggered changes in reactive oxygen species (ROS), Ca2+ and mitochondrial membrane potential (ψm). The Ca2+ signal was transmitted to neighboring cells slowly and non-uniformly; the ROS signal spread fast and radially. Increased Ca2+ levels were associated with a loss in ψm. GJ blockers prevented the spreading of the Ca2+, but not the ROS-related signal. The GJ-mediated Ca2+ wave was associated with cell death by 24 h, requiring endoplasmic reticulum–mitochondria Ca2+ transfer. Ensuing cell death was correlated with baseline Ca2+ levels, and baseline Ca2+ levels were correlated with pigmentation. Hence, local oxidative stress in a donor cell can trigger changes in certain connected recipient cells, a signal that required GJ communication and an ROS-Ca2+ dual-hit. Finally, damage apparently occurred in susceptible cells, which correlated with baseline Ca2+ levels. PMID:28179989

  12. Evaluation of a bystander education program.

    PubMed

    Amar, Angela Frederick; Sutherland, Melissa; Kesler, Erin

    2012-12-01

    Sexual and partner violence are widespread problems on college campuses. By changing attitudes, beliefs, and behavior, bystander education programs have been found to prevent sexual and partner violence and improve the responses of peers to survivors. The purpose of this study is to evaluate the effectiveness and feasibility of a bystander education program that was adapted to a specific university setting. A convenience sample of 202, full-time undergraduate students aged 18-22 years participated in the bystander education program and completed pre- and post-test measures of attitudes related to sexual and partner violence and willingness to help. Paired sample t-tests were used to examine changes in scores between pre- and post-test conditions. After the program, participants' reported decreased rape myth acceptance and denial of interpersonal violence, and increased intention to act as a bystander and an increased sense of responsibility to intervene. Mental health nurses can use principles of bystander education in violence prevention programs and in providing support to survivors.

  13. Microbeam Studies of the Bystander Response

    PubMed Central

    PRISE, Kevin M.; SCHETTINO, Giuseppe; VOJNOVIC, Boris; BELYAKOV, Oleg; SHAO, Chunlin

    2010-01-01

    Microbeams have undergone a renaissance since their introduction and early use in the mid 60s. Recent advances in imaging, software and beam delivery have allowed rapid technological developments in microbeams for use in a range of experimental studies. The resurgence in the use of microbeams since the mid 90s has coincided with major changes in our understanding of how radiation interacts with cells. In particular, the evidence that bystander responses occur, where cells not directly irradiated can respond to irradiated neighbours, has brought about the evolution of new models of radiation response. Although these processes have been studied using a range of experimental approaches, microbeams offer a unique route by which bystander responses can be elucidated. Without exception, all of the microbeams currently active internationally have studied bystander responses in a range of cell and tissue models. Together these studies have considerably advanced our knowledge of bystander responses and the underpinning mechanisms. Much of this has come from charged particle microbeam studies, but increasingly, X-ray and electron microbeams are starting to contribute quantitative and mechanistic information on bystander effects. A recent development has been the move from studies with 2-D cell culture models to more complex 3-D systems where the possibilities of utilizing the unique characteristics of microbeams in terms of their spatial and temporal delivery will make a major impact. PMID:19346680

  14. Alternative medicine techniques have non-linear effects on radiation response and can alter the expression of radiation induced bystander effects.

    PubMed

    Mothersill, Carmel; Smith, Richard; Henry, Matthew; Seymour, Colin; Wong, Raimond

    2013-01-01

    Many so-called "alternative medicine" techniques such as Reiki and acupuncture produce very good outcomes for intractable pain and other chronic illnesses but the efficacy is often dismissed as being psychosomatic. However a plausible mechanism does exist i.e. that the treatments alter the electromagnetic fields in living organisms and thereby prevent or reduce activity of neurons which lead to the pain. Low doses of ionising radiation have similar effects on electromagnetic fields and are known to induce signaling cascades in tissues due to ion gradients. To test this hypothesis cell cultures were exposed to Reiki - like and to acupuncture - like treatments, both performed by qualified practitioners. The cells were exposed either before or after the treatment to x-rays and were monitored for production of direct damage or bystander signals. The data suggest that the alternative techniques altered the response of cells to direct irradiation and altered bystander signal mechanisms. We conclude that alternative medicine techniques involving electromagnetic perturbations may modify the response of cells to ionizing radiation. In addition to the obvious implications for mechanistic studies of low dose effects, this could provide a novel target to exploit in radiation protection and in optimizing therapeutic gain during radiotherapy.

  15. Alternative Medicine Techniques Have Non-Linear Effects on Radiation Response and Can Alter the Expression of Radiation Induced Bystander Effects

    PubMed Central

    Mothersill, Carmel; Smith, Richard; Henry, Matthew; Seymour, Colin; Wong, Raimond

    2013-01-01

    Many so-called “alternative medicine” techniques such as Reiki and acupuncture produce very good outcomes for intractable pain and other chronic illnesses but the efficacy is often dismissed as being psychosomatic. However a plausible mechanism does exist i.e. that the treatments alter the electromagnetic fields in living organisms and thereby prevent or reduce activity of neurons which lead to the pain. Low doses of ionising radiation have similar effects on electromagnetic fields and are known to induce signaling cascades in tissues due to ion gradients. To test this hypothesis cell cultures were exposed to Reiki – like and to acupuncture – like treatments, both performed by qualified practitioners. The cells were exposed either before or after the treatment to x-rays and were monitored for production of direct damage or bystander signals. The data suggest that the alternative techniques altered the response of cells to direct irradiation and altered bystander signal mechanisms. We conclude that alternative medicine techniques involving electromagnetic perturbations may modify the response of cells to ionizing radiation. In addition to the obvious implications for mechanistic studies of low dose effects, this could provide a novel target to exploit in radiation protection and in optimizing therapeutic gain during radiotherapy. PMID:23550268

  16. Enhanced aggressiveness of bystander cells in an anti-tumor photodynamic therapy model: Role of nitric oxide produced by targeted cells.

    PubMed

    Bazak, Jerzy; Fahey, Jonathan M; Wawak, Katarzyna; Korytowski, Witold; Girotti, Albert W

    2017-01-01

    The bystander effects of anti-cancer ionizing radiation have been widely studied, but far less is known about such effects in the case of non-ionizing photodynamic therapy (PDT). In the present study, we tested the hypothesis that photodynamically-stressed prostate cancer PC3 cells can elicit nitric oxide (NO)-mediated pro-growth/migration responses in non-stressed bystander cells. A novel approach was used whereby both cell populations existed on a culture dish, but made no physical contact with one other. Visible light irradiation of target cells sensitized with 5-aminolevulinic acid-induced protoporphyrin IX resulted in a striking upregulation of inducible nitric oxide synthase (iNOS) along with NO, the level of which increased after irradiation. Slower and less pronounced iNOS/NO upregulation was also observed in bystander cells. Activation of transcription factor NF-κB was implicated in iNOS induction in both targeted and bystander cells. Like surviving targeted cells, bystanders exhibited a significant increase in growth and migration rate, both responses being strongly attenuated by an iNOS inhibitor (1400W), a NO scavenger (cPTIO), or iNOS knockdown. Incubating bystander cells with conditioned medium from targeted cells failed to stimulate growth/migration, ruling out involvement of relatively long-lived stimulants. The following post-irradiation changes in pro-survival/pro-growth proteins were observed in bystander cells: upregulation of COX-2 and activation of protein kinases Akt and ERK1/2, NO again playing a key role. This is the first reported evidence for NO-enhanced bystander aggressiveness in the context of PDT. In the clinical setting, such effects could be averted through pharmacologic use of iNOS inhibitors as PDT adjuvants. Copyright © 2016. Published by Elsevier Inc.

  17. Do dispatcher instructions facilitate bystander-initiated cardiopulmonary resuscitation and improve outcomes in patients with out-of-hospital cardiac arrest? A comparison of family and non-family bystanders.

    PubMed

    Fujie, Keiko; Nakata, Yoshio; Yasuda, Susumu; Mizutani, Taro; Hashimoto, Koichi

    2014-03-01

    Bystander-initiated cardiopulmonary resuscitation (CPR) has been reported to increase the possibility of survival in patients with out-of-hospital cardiopulmonary arrest (OHCA). We evaluated the effects of CPR instructions by emergency medical dispatchers on the frequency of bystander CPR and outcomes, and whether these effects differed between family and non-family bystanders. We conducted a retrospective cohort study, using Utstein-style records of OHCA taken in a rural area of Japan between January 2004 and December 2009. Of the 559 patients with non-traumatic OHCA witnessed by laypeople, 231 (41.3%) were given bystander CPR. More OHCA patients received resuscitation when the OHCA was witnessed by non-family bystanders than when it was witnessed by family members (61.4% vs. 34.2%). The patients with non-family-witnessed OHCA were more likely to be given conventional CPR (chest compression plus rescue breathing) or defibrillation with an AED than were those with family-witnessed OHCA. Dispatcher instructions significantly increased the provision of bystander CPR regardless of who the witnesses were. Neurologically favorable survival was increased by CPR in non-family-witnessed, but not in family-witnessed, OHCA patients. No difference in survival rate was observed between the cases provided with dispatcher instructions and those not provided with the instructions. Dispatcher instructions increased the frequency of bystander CPR, but did not improve the rate of neurologically favorable survival in patients with witnessed OHCA. Efforts to enhance the frequency and quality of resuscitation, especially by family members, are required for dispatcher-assisted CPR. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. A Mouse Ear Model for Bystander Studies Induced by Microbeam Irradiation

    PubMed Central

    Buonanno, M.; Randers-Pehrson, G.; Smilenov, L. B.; Kleiman, N. J.; Young, E.; Ponnayia, B.; Brenner, D. J.

    2015-01-01

    Radiation-induced bystander effects have been observed in vitro and in cell and tissue culture models, however, there are few reported studies showing these effects in vivo. To our knowledge, this is the first reported study on bystander effects induced by microbeam irradiation in an intact living mammal. The mouse ear was used to investigate radiation-induced bystander effects in keratinocytes, utilizing a 3 MeV proton microbeam (LET 13.1 keV/µm) with a range in skin of about 135 µm. Using a custom-designed holder, the ear of an anesthetized C57BL/6J mouse was flattened by gentle suction and placed over the microbeam port to irradiate cells along a 35 µm wide, 6 mm long path. Immunohistochemical analysis of γ-H2AX foci formation in tissue sections revealed, compared to control tissue, proton-induced γ-H2AX foci formation in one of the two epidermal layers of the mouse ear. Strikingly, a higher number of cells than expected showed foci from direct irradiation effects. Although the proton-irradiated line was ~35 µm wide, the average width spanned by γ-H2AX-positive cells exceeded 150 µm. Cells adjacent to or in the epidermal layer opposite the γ-H2AX-positive region did not exhibit foci. These findings validate this mammalian model as a viable system for investigating radiation-induced bystander effects in an intact living organism. PMID:26207682

  19. Effect of music therapy on oncologic staff bystanders: a substantive grounded theory.

    PubMed

    O'Callaghan, Clare; Magill, Lucanne

    2009-06-01

    Oncologic work can be satisfying but also stressful, as staff support patients and families through harsh treatment effects, uncertain illness trajectories, and occasional death. Although formal support programs are available, no research on the effects of staff witnessing patients' supportive therapies exists. This research examines staff responses to witnessing patient-focused music therapy (MT) programs in two comprehensive cancer centers. In Study 1, staff were invited to anonymously complete an open-ended questionnaire asking about the relevance of a music therapy program for patients and visitors (what it does; whether it helps). In Study 2, staff were theoretically sampled and interviewed regarding the personal effects of witnessing patient-centered music therapy. Data from each study were comparatively analyzed according to grounded theory procedures. Positive and negative cases were evident and data saturation arguably achieved. In Study 1, 38 staff unexpectedly described personally helpful emotional, cognitive, and team effects and consequent improved patient care. In Study 2, 62 staff described 197 multiple personal benefits and elicited patient care improvements. Respondents were mostly nursing (57) and medical (13) staff. Only three intrusive effects were reported: audibility, initial suspicion, and relaxation causing slowing of work pace. A substantive grounded theory emerged applicable to the two cancer centers: Staff witnessing MT can experience personally helpful emotions, moods, self-awarenesses, and teamwork and thus perceive improved patient care. Intrusive effects are uncommon. Music therapy's benefits for staff are attributed to the presence of live music, the human presence of the music therapist, and the observed positive effects in patients and families. Patient-centered oncologic music therapy in two cancer centers is an incidental supportive care modality for staff, which can reduce their stress and improve work environments and perceived

  20. Low-dose energetic protons induce adaptive and bystander effects that protect human cells against DNA damage caused by a subsequent exposure to energetic iron ions.

    PubMed

    Buonanno, Manuela; De Toledo, Sonia M; Howell, Roger W; Azzam, Edouard I

    2015-05-01

    During interplanetary missions, astronauts are exposed to mixed types of ionizing radiation. The low 'flux' of the high atomic number and high energy (HZE) radiations relative to the higher 'flux' of low linear energy transfer (LET) protons makes it highly probable that for any given cell in the body, proton events will precede any HZE event. Whereas progress has been made in our understanding of the biological effects of low-LET protons and high-LET HZE particles, the interplay between the biochemical processes modulated by these radiations is unclear. Here we show that exposure of normal human fibroblasts to a low mean absorbed dose of 20 cGy of 0.05 or 1-GeV protons (LET ∼ 1.25 or 0.2 keV/μm, respectively) protects the irradiated cells (P < 0.0001) against chromosomal damage induced by a subsequent exposure to a mean absorbed dose of 50 cGy from 1 GeV/u iron ions (LET ∼ 151 keV/μm). Surprisingly, unirradiated (i.e. bystander) cells with which the proton-irradiated cells were co-cultured were also significantly protected from the DNA-damaging effects of the challenge dose. The mitigating effect persisted for at least 24 h. These results highlight the interactions of biological effects due to direct cellular traversal by radiation with those due to bystander effects in cell populations exposed to mixed radiation fields. They show that protective adaptive responses can spread from cells targeted by low-LET space radiation to bystander cells in their vicinity. The findings are relevant to understanding the health hazards of space travel.

  1. Low-dose energetic protons induce adaptive and bystander effects that protect human cells against DNA damage caused by a subsequent exposure to energetic iron ions

    PubMed Central

    Buonanno, Manuela; De Toledo, Sonia M.; Howell, Roger W.; Azzam, Edouard I.

    2015-01-01

    During interplanetary missions, astronauts are exposed to mixed types of ionizing radiation. The low ‘flux’ of the high atomic number and high energy (HZE) radiations relative to the higher ‘flux’ of low linear energy transfer (LET) protons makes it highly probable that for any given cell in the body, proton events will precede any HZE event. Whereas progress has been made in our understanding of the biological effects of low-LET protons and high-LET HZE particles, the interplay between the biochemical processes modulated by these radiations is unclear. Here we show that exposure of normal human fibroblasts to a low mean absorbed dose of 20 cGy of 0.05 or 1-GeV protons (LET ∼ 1.25 or 0.2 keV/μm, respectively) protects the irradiated cells (P < 0.0001) against chromosomal damage induced by a subsequent exposure to a mean absorbed dose of 50 cGy from 1 GeV/u iron ions (LET ∼ 151 keV/μm). Surprisingly, unirradiated (i.e. bystander) cells with which the proton-irradiated cells were co-cultured were also significantly protected from the DNA-damaging effects of the challenge dose. The mitigating effect persisted for at least 24 h. These results highlight the interactions of biological effects due to direct cellular traversal by radiation with those due to bystander effects in cell populations exposed to mixed radiation fields. They show that protective adaptive responses can spread from cells targeted by low-LET space radiation to bystander cells in their vicinity. The findings are relevant to understanding the health hazards of space travel. PMID:25805407

  2. Predicting Improvement After a Bystander Program for the Prevention of Sexual and Dating Violence.

    PubMed

    Hines, Denise A; Palm Reed, Kathleen M

    2015-07-01

    Although evidence suggests that bystander prevention programs are promising interventions for decreasing sexual violence and dating violence on college campuses, there have been no studies to date evaluating moderators of bystander program effectiveness. The current study evaluates whether different demographic characteristics, attitudes, knowledge, and behaviors at pretest predict change over a 6-month follow-up for students who participated in a bystander prevention program. Participants in the three assessments (pretest, posttest, 6-month follow-up) included 296 college students who were mandated to attend a bystander program during their first year orientation. Analyses showed that with few exceptions, the bystander program worked best for students who were most at risk given their pretest demographics and levels of attitudes condoning dating violence and sexual violence, bystander efficacy, and bystander behaviors. Results are discussed in terms of suggestions for future research.

  3. SU-D-16A-03: A Radiation Pneumonitis Dose-Response Model Incorporating Non- Local Radiation-Induced Bystander Effect

    SciTech Connect

    Gordon, J; Snyder, K; Zhong, H; Chetty, I

    2014-06-01

    Purpose: Dose-response models that can reliably predict radiation pneumonitis (RP) to guide radiation therapy (RT) for lung cancer presently do not exist. A model is proposed that incorporates non-local radiationinduced bystander effect (RIBE). Methods: A single sigmoid response function, derived from published data for whole lung irradiation, relates RP probability to cumulative lung damage, regardless of fractionation scheme. Lung damage is assumed to be caused by direct local radiation damage, quantified via the linear-quadratic (LQ) model, and RIBE. Based on published data, RIBE is assumed to be activated when per-fraction dose rises above ∼0.6 Gy, but is constant with dose above that threshold. Integral RIBE damage is assumed proportional to lung volume irradiated above ∼0.6 Gy per fraction. Key model parameters include LQ α and β, and two RIBE parameters: the single-fraction probability δ of damage, and a proportionality parameter κ that relates the potential for RIBE damage to irradiated lung volume. All parameters are tentatively fitted from published data, the RIBE parameters from published RP rates for conventionally fractionated RT (CFRT) and stereotactic body RT (SBRT). Results: The model predicts dose-response curves that are consistent with clinical experience. It provides a tentative explanation for why V20 (33 fractions), V13 (20 fractions) and V5 (<10 fractions) are observed to be correlated with RP. It also provides a plausible explanation for the success of SBRT — RIBE damage increases with the number of fractions, so penalizes CFRT relative to SBRT. Conclusion: The proposed model is relatively simple, extrapolates from published data, plausibly explains several clinical observations, and produces dose-response curves that are consistent with clinical experience. While capable of elaboration, its ability to explain doseresponse experience with different fractionation schemes using a small number of assumptions and parameters is an

  4. Predicting High-School Students’ Bystander Behavior in Simulated Dating Violence Situations

    PubMed Central

    Jouriles, Ernest N.; Rosenfield, David; Yule, Kristen; Sargent, Kelli S.; McDonald, Renee

    2016-01-01

    Purpose Dating violence among adolescents is associated with a variety of negative health consequences for victims. Bystander programs are being developed and implemented with the intention of preventing such violence, but determinants of high school students’ responsive bystander behavior remain unclear. The present study examines hypothesized determinants of high school students’ bystander behavior in simulated situations of dating violence. Methods Participants were 80 high-school students who completed self-reports of hypothesized determinants of bystander behavior (responsibility, efficacy, and perceived benefits for intervening) at a baseline assessment. A virtual reality paradigm was used to observationally assess bystander behavior at 1-week and 6-month assessments after baseline. Results Efficacy for intervening was positively associated with observed bystander behavior at the 1-week and 6-month assessments. Moreover, efficacy predicted bystander behavior over and above feelings of responsibility and perceived benefits for intervening. Contrary to our predictions, neither responsibility nor perceived benefits for intervening were associated with observed bystander behavior. Conclusions This research advances our understanding of determinants of bystander behavior for high school students, and can inform prevention programming for adolescents. The study also introduces an innovative way to assess high school students’ bystander behavior. PMID:26794432

  5. Predicting High-School Students' Bystander Behavior in Simulated Dating Violence Situations.

    PubMed

    Jouriles, Ernest N; Rosenfield, David; Yule, Kristen; Sargent, Kelli S; McDonald, Renee

    2016-03-01

    Dating violence among adolescents is associated with a variety of negative health consequences for victims. Bystander programs are being developed and implemented with the intention of preventing such violence, but determinants of high-school students' responsive bystander behavior remain unclear. The present study examines hypothesized determinants of high-school students' bystander behavior in simulated situations of dating violence. Participants were 80 high-school students who completed self-reports of hypothesized determinants of bystander behavior (responsibility, efficacy, and perceived benefits for intervening) at a baseline assessment. A virtual-reality paradigm was used to observationally assess bystander behavior at 1-week and 6-month assessments after baseline. Efficacy for intervening was positively associated with observed bystander behavior at the 1-week and 6-month assessments. Moreover, efficacy predicted bystander behavior over and above feelings of responsibility and perceived benefits for intervening. Contrary to our predictions, neither responsibility nor perceived benefits for intervening were associated with observed bystander behavior. This research advances our understanding of determinants of bystander behavior for high-school students and can inform prevention programming for adolescents. The study also introduces an innovative way to assess high-school students' bystander behavior. Copyright © 2016 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  6. Bystander responses in low dose irradiated cells treated with plasma from gamma irradiated blood

    NASA Astrophysics Data System (ADS)

    Acheva, A.; Georgieva, R.; Rupova, I.; Boteva, R.; Lyng, F.

    2008-02-01

    There are two specific low-dose radiation-induced responses that have been the focus of radiobiologists' interest in recent years. These are the bystander effect in non-irradiated cells and the adaptive response to a challenge dose after prior low dose irradiation. In the present study we have investigated if plasma from irradiated blood can act as a 'challenge dose' on low dose irradiated reporter epithelial cells (HaCaT cell line). The main aim was to evaluate the overall effect of low dose irradiation (0.05 Gy) of reporter cells and the influence of bystander factors in plasma from 0.5 Gy gamma irradiated blood on these cells. The effects were estimated by clonogenic survival of the reporter cells. We also investigated the involvement of reactive oxygen species (ROS) as potential factors involved in the bystander signaling. Calcium fluxes and mitochondrial membrane potential (MMP) depolarization were also examined as a marker for initiation of apoptosis in the reporter cells. The results show that there are large individual differences in the production of bystander effects and adaptive responses between different donors. These may be due to the specific composition of the donor plasma. The observed effects generally could be divided into two groups: adaptive responses and additive effects. ROS appeared to be involved in the responses of the low dose pretreated reporter cells. In all cases there was a significant decrease in MMP which may be an early event in the apoptotic process. Calcium signaling also appeared to be involved in triggering apoptosis in the low dose pretreated reporter cells. The heterogeneity of the bystander responses makes them difficult to be modulated for medical uses. Specific plasma characteristics that cause these large differences in the responses would need to be identified to make them useful for radiotherapy.

  7. Bystander killing effect of DS-8201a, a novel anti-human epidermal growth factor receptor 2 antibody-drug conjugate, in tumors with human epidermal growth factor receptor 2 heterogeneity.

    PubMed

    Ogitani, Yusuke; Hagihara, Katsunobu; Oitate, Masataka; Naito, Hiroyuki; Agatsuma, Toshinori

    2016-07-01

    Antibody-drug conjugates deliver anticancer agents selectively and efficiently to tumor tissue and have significant antitumor efficacy with a wide therapeutic window. DS-8201a is a human epidermal growth factor receptor 2 (HER2)-targeting antibody-drug conjugate prepared using a novel linker-payload system with a potent topoisomerase I inhibitor, exatecan derivative (DX-8951 derivative, DXd). It was effective against trastuzumab emtansine (T-DM1)-insensitive patient-derived xenograft models with both high and low HER2 expression. In this study, the bystander killing effect of DS-8201a was evaluated and compared with that of T-DM1. We confirmed that the payload of DS-8201a, DXd (1), was highly membrane-permeable whereas that of T-DM1, Lys-SMCC-DM1, had a low level of permeability. Under a coculture condition of HER2-positive KPL-4 cells and negative MDA-MB-468 cells in vitro, DS-8201a killed both cells, whereas T-DM1 and an antibody-drug conjugate with a low permeable payload, anti-HER2-DXd (2), did not. In vivo evaluation was carried out using mice inoculated with a mixture of HER2-positive NCI-N87 cells and HER2-negative MDA-MB-468-Luc cells by using an in vivo imaging system. In vivo, DS-8201a reduced the luciferase signal of the mice, indicating suppression of the MDA-MB-468-Luc population; however, T-DM1 and anti-HER2-DXd (2) did not. Furthermore, it was confirmed that DS-8201a was not effective against MDA-MB-468-Luc tumors inoculated at the opposite side of the NCI-N87 tumor, suggesting that the bystander killing effect of DS-8201a is observed only in cells neighboring HER2-positive cells, indicating low concern in terms of systemic toxicity. These results indicated that DS-8201a has a potent bystander effect due to a highly membrane-permeable payload and is beneficial in treating tumors with HER2 heterogeneity that are unresponsive to T-DM1.

  8. A model of the radiation-induced bystander effect based on an analogy with ferromagnets. Application to modelling tissue response in a uniform field

    NASA Astrophysics Data System (ADS)

    Vassiliev, O. N.

    2014-12-01

    We propose a model of the radiation-induced bystander effect based on an analogy with magnetic systems. The main benefit of this approach is that it allowed us to apply powerful methods of statistical mechanics. The model exploits the similarity between how spin-spin interactions result in correlations of spin states in ferromagnets, and how signalling from a damaged cell reduces chances of survival of neighbour cells, resulting in correlated cell states. At the root of the model is a classical Hamiltonian, similar to that of an Ising ferromagnet with long-range interactions. The formalism is developed in the framework of the Mean Field Theory. It is applied to modelling tissue response in a uniform radiation field. In this case the results are remarkably simple and at the same time nontrivial. They include cell survival curves, expressions for the tumour control probability and effects of fractionation. The model extends beyond of what is normally considered as bystander effects. It offers an insight into low-dose hypersensitivity and into mechanisms behind threshold doses for deterministic effects.

  9. Radiation induced genomic instability in bystander cells

    NASA Astrophysics Data System (ADS)

    Zhou, H.; Gu, S.; Randers-Pehrson, G.; Hei, T.

    There is considerable evidence that exposure to ionizing radiation may induce a heritable genomic instability that leads to a persisting increased frequency of genetic and functional changes in the non-irradiated progeny of a wide variety of irradiated cells Genomic instability is measured as delayed expressions in chromosomal alterations micronucleus formation gene mutations and decreased plating efficiency During the last decade numerous studies have shown that radiation could induce bystander effect in non-irradiated neighboring cells similar endpoints have also been used in genomic instability studies Both genomic instability and the bystander effect are phenomena that result in a paradigm shift in our understanding of radiation biology In the past it seemed reasonable to assume that the production of single- and double-strand DNA breaks are due to direct energy deposition of energy by a charged particle to the nucleus It turns out that biology is not quite that simple Using the Columbia University charged particle microbeam and the highly sensitive human hamster hybrid AL cell mutagenic assay we irradiated 10 of the cells with a lethal dose of 30 alpha particles through the nucleus After overnight incubation the remaining viable bystander cells were replated in dishes for colony formation Clonal isolates were expanded and cultured for 6 consecutive weeks to assess plating efficiency and mutation frequency Preliminary results indicated that there was no significant decrease in plating efficiency among the bystander colonies when compared with

  10. Student Voices: What Can Bystanders Do to Prevent Bullying of Students Who Are Different (or Perceived as Different) from Others?

    ERIC Educational Resources Information Center

    Nordseth, Anna; Vepachedu, Vikas; Shipman, Grant; Alayachew, David

    2012-01-01

    In this article, four students share their ideas on what bystanders can do to prevent bullying of students who are different or perceived as different from others. Anna Nordseth says what bystanders need to realize is how to recognize bullying and what a lasting effect it can have on the individuals involved. One bold, compassionate bystander can…

  11. Student Voices: What Can Bystanders Do to Prevent Bullying of Students Who Are Different (or Perceived as Different) from Others?

    ERIC Educational Resources Information Center

    Nordseth, Anna; Vepachedu, Vikas; Shipman, Grant; Alayachew, David

    2012-01-01

    In this article, four students share their ideas on what bystanders can do to prevent bullying of students who are different or perceived as different from others. Anna Nordseth says what bystanders need to realize is how to recognize bullying and what a lasting effect it can have on the individuals involved. One bold, compassionate bystander can…

  12. New Directions for Gifted Black Males Suffering from Bystander Effects: A Call for Upstanders

    ERIC Educational Resources Information Center

    Grantham, Tarek C.

    2011-01-01

    An educational crisis in Black male representation in gifted programs exists, requiring a new lens through which to view problems and find solutions. Though many people observe that Black males face extraordinary barriers to successful participation in gifted programs, many stand by, watching as they are overlooked for or drop out of gifted…

  13. New Directions for Gifted Black Males Suffering from Bystander Effects: A Call for Upstanders

    ERIC Educational Resources Information Center

    Grantham, Tarek C.

    2011-01-01

    An educational crisis in Black male representation in gifted programs exists, requiring a new lens through which to view problems and find solutions. Though many people observe that Black males face extraordinary barriers to successful participation in gifted programs, many stand by, watching as they are overlooked for or drop out of gifted…

  14. Self-protective function of post-conflict bystander affiliation in mandrills.

    PubMed

    Schino, Gabriele; Marini, Claudia

    2012-01-01

    Affiliative interactions exchanged between victims of aggression and individuals not involved in the original aggression (bystanders) have been observed in various species. Three hypothetical functions have been proposed for these interactions: consolation, self-protection and substitute reconciliation, but data to test them are scanty. We conducted post-conflict and matched control observations on a captive group of mandrills (Mandrillus sphinx). We found that victims often redirected aggression to bystanders, that they received most affiliation from those bystanders that were frequently the target of redirection, and that bystander affiliation reduced the likelihood of redirection. Bystander affiliation did not reduce the victim's distress (as measured by its scratching rates) and was not received primarily from kin/friends. Finally, bystander affiliation did not reduce the likelihood of renewed aggression from the original aggressor. These results provide support for the self-protection hypothesis but not for the consolation and substitute reconciliation hypotheses.

  15. Self-Protective Function of Post-Conflict Bystander Affiliation in Mandrills

    PubMed Central

    Schino, Gabriele; Marini, Claudia

    2012-01-01

    Background Affiliative interactions exchanged between victims of aggression and individuals not involved in the original aggression (bystanders) have been observed in various species. Three hypothetical functions have been proposed for these interactions: consolation, self-protection and substitute reconciliation, but data to test them are scanty. Methodology/Principal Findings We conducted post-conflict and matched control observations on a captive group of mandrills (Mandrillus sphinx). We found that victims often redirected aggression to bystanders, that they received most affiliation from those bystanders that were frequently the target of redirection, and that bystander affiliation reduced the likelihood of redirection. Bystander affiliation did not reduce the victim's distress (as measured by its scratching rates) and was not received primarily from kin/friends. Finally, bystander affiliation did not reduce the likelihood of renewed aggression from the original aggressor. Conclusions/Significance These results provide support for the self-protection hypothesis but not for the consolation and substitute reconciliation hypotheses. PMID:22715420

  16. Radiation quality dependence of signal transmission and bystander induced cell killing

    NASA Astrophysics Data System (ADS)

    Esposito, Giuseppe; Bertolotti, Alessia; Facoetti, Angelica; Grande, Sveva; Mariotti, Luca; Ottolenghi, Andrea; Ranza, Elena; Simone, Giustina; Sorrentino, Eugenio; Antonella Tabocchini, Maria

    Low dose radiobiological studies have shown effects, observable in cells that are in the vicinity of irradiated cells, which are due to the release by irradiated cells of several cellular mediators among which Reactive Oxygen and Nitrogen Species (ROS, NRS), and cytokines are likely to play a key role. Despite the large number in the literature of studies on bystander effects induced by ionizing radiation the results are still conflicting, and further studies are therefore needed on the possible underlying mechanisms. The dependence on radiation quality deserve particular attention because bystander mechanisms are probably more important with high-LET irradi-ations, where many cells are not hit (bystander). Moreover, due to the different patterns of energy deposition, the cellular response to low LET and high LET radiation can be different. Understanding whether these cells can contribute to the adverse effects of low radiation doses in a radiation quality-dependent fashion might have important implications in risk estimates for both cancer induction and non-cancer diseases. In this context, we addressed to the study of the bystander induced cell killing after incubation with "conditioned medium" from primary human fibroblasts irradiated with 0.1 and 0.5 Gy of α-particles or γ-rays. Medium transfer was performed after 1h incubation from irradiation. The results have confirmed a reduction in clonogenic survival after incubation with medium from α-irradiated cells, independently of the dose; similar results were obtained after γ-irradiation, although in this case a slight dose depen-dence could be envisaged. Interleukin-6 (IL-6) and Interleukin-8 (IL-8) levels were measured in the conditioned medium collected up to 20 hours after irradiation with α-particles and γ-rays in the dose-range of 0.1-1.0 Gy, in parallel with evaluation of their receptor expression in irradi-ated and bystander cells. Concerning IL-6, we observed the strongest modulation of its release

  17. Teachers as Bystanders: The Effect of Teachers' Perceptions on Reporting Bullying Behavior

    ERIC Educational Resources Information Center

    Uale, Beth P.

    2010-01-01

    This paper examines the role of educators as it relates to the reporting process of bullying incidents. Since bullying behaviors have negative effects on student health and educators have regular contact with students, this study looks at teacher perceptions of bullying behaviors and how these perceptions influence the reporting process. Using the…

  18. Teachers as Bystanders: The Effect of Teachers' Perceptions on Reporting Bullying Behavior

    ERIC Educational Resources Information Center

    Uale, Beth P.

    2010-01-01

    This paper examines the role of educators as it relates to the reporting process of bullying incidents. Since bullying behaviors have negative effects on student health and educators have regular contact with students, this study looks at teacher perceptions of bullying behaviors and how these perceptions influence the reporting process. Using the…

  19. [Involvement of ATP in radiation-induced bystander effect as a signaling molecule].

    PubMed

    Kojima, Shuji

    2014-01-01

    We previously reported that low doses (0.25-0.5 Gy) of γ-rays induce intracellular antioxidant, radioresistant, DNA damage repair, and so on. Meanwhile, we have recently reported that ATP is released from the cells exposed to low-dose γ-rays. Here, it was investigated whether or not γ-radiation-induced release of extracellular ATP contributes to various radiation effects, in paricular, focusing on the inductions of intracellular antioxidant and DNA damage repair. Irradiation with γ-rays or exogenously added ATP increased expression of intracellular antioxidants such as thioredoxin and the increases were blocked by pretreatment with an ecto-nucleotidase in both cases. Moreover, release of ATP and autocrine/paracrine positive feedback through P2Y receptors serve to amplify the cellular repair response to radiation-induced DNA damage. To sum up, it would be suggested that ATP signaling is important for the effective induction of radiation stress response, such as protection of the body from the radiation and DNA damage repair. In addition, the possibility that this signaling is involved in the radiation resistance of cancer cells and beneficial effect on the organism of low-dose radiation and radiation adaptive response, would be further suggested.

  20. Bystanders Are the Key to Stopping Bullying

    ERIC Educational Resources Information Center

    Padgett, Sharon; Notar, Charles E.

    2013-01-01

    Bullying is the dominance over another. Bullying occurs when there is an audience. Peer bystanders provide an audience 85% of instances of bullying. If you remove the audience bullying should stop. The article is a review of literature (2002-2013) on the role of bystanders; importance of bystanders; why bystanders behave as they do; resources to…

  1. Site Specific Microbeam Irradiation: Defining a Bystander Effect. Final Technical Report

    SciTech Connect

    Brenner, David J.

    2003-10-22

    There is evidence that low-energy x-rays as used in mammography have an increased biological effectiveness relative to higher-energy photons. However, the RBE values are not large, probably less than 2. Thus it is unlikely that the radiation risk alone could prove to be a ''show stopper'' regarding screening mammography because, for older women, the benefit is likely to considerably outweigh the radiation risk. Nevertheless, the RBE for low-energy x-rays might reasonably be taken into account when assessing the recommended age to commence such annual screening.

  2. The Effect of Cognitive Behavioral Therapy and Cognitive Behavioral Therapy Plus Media on the Reduction of Bullying and Victimization and the Increase of Empathy and Bystander Response in a Bully Prevention Program for Urban Sixth-Grade Students

    ERIC Educational Resources Information Center

    McLaughlin, Laura Pierce

    2009-01-01

    The purpose of this study was to investigate the effect of cognitive behavioral therapy and cognitive behavioral therapy plus media on the reduction of bullying and victimization and the increase in empathy and bystander response in a bully prevention program for urban sixth-graders. Sixty-eight students participated. Because one of the…

  3. The Effect of Cognitive Behavioral Therapy and Cognitive Behavioral Therapy Plus Media on the Reduction of Bullying and Victimization and the Increase of Empathy and Bystander Response in a Bully Prevention Program for Urban Sixth-Grade Students

    ERIC Educational Resources Information Center

    McLaughlin, Laura Pierce

    2009-01-01

    The purpose of this study was to investigate the effect of cognitive behavioral therapy and cognitive behavioral therapy plus media on the reduction of bullying and victimization and the increase in empathy and bystander response in a bully prevention program for urban sixth-graders. Sixty-eight students participated. Because one of the…

  4. Effects of very low fluences of high-energy protons or iron ions on irradiated and bystander cells.

    PubMed

    Yang, H; Magpayo, N; Rusek, A; Chiang, I-H; Sivertz, M; Held, K D

    2011-12-01

    In space, astronauts are exposed to radiation fields consisting of energetic protons and high atomic number, high-energy (HZE) particles at very low dose rates or fluences. Under these conditions, it is likely that, in addition to cells in an astronaut's body being traversed by ionizing radiation particles, unirradiated cells can also receive intercellular bystander signals from irradiated cells. Thus this study was designed to determine the dependence of DNA damage induction on dose at very low fluences of charged particles. Novel techniques to quantify particle fluence have been developed at the NASA Space Radiation Biology Laboratory (NSRL) at Brookhaven National Laboratory (BNL). The approach uses a large ionization chamber to visualize the radiation beam coupled with a scintillation counter to measure fluence. This development has allowed us to irradiate cells with 1 GeV/nucleon protons and iron ions at particle fluences as low as 200 particles/cm(2) and quantify biological responses. Our results show an increased fraction of cells with DNA damage in both the irradiated population and bystander cells sharing medium with irradiated cells after low fluences. The fraction of cells with damage, manifest as micronucleus formation and 53BP1 focus induction, is about 2-fold higher than background at doses as low as ∼0.47 mGy iron ions (∼0.02 iron ions/cell) or ∼70 μGy protons (∼2 protons/cell). In the irradiated population, irrespective of radiation type, the fraction of damaged cells is constant from the lowest damaging fluence to about 1 cGy, above which the fraction of damaged cells increases with dose. In the bystander population, the level of damage is the same as in the irradiated population up to 1 cGy, but it does not increase above that plateau level with increasing dose. The data suggest that at fluences of high-energy protons or iron ions less than about 5 cGy, the response in irradiated cell populations may be dominated by the bystander response.

  5. Bystander intervention and fear of crime: evidence from two Chinese communities.

    PubMed

    Zhong, Lena Y

    2010-04-01

    From the perspective of prosocial behavior, bystander intervention is conditioned by situational factors; from an informal social control perspective, bystander intervention has been demonstrated to be associated with level of crime and violence at the community level. By drawing on findings in two contrasting communities within a Chinese city, this study investigates the effects of fear of crime and type of community on bystander intervention. It shows that fear of crime and type of community have robust and consistent effects on bystander intervention, controlling for demographic characteristics including sex, age, and education. The implications of the findings are discussed in terms of bystander intervention as both prosocial behavior and informal social control. The findings also question the usefulness of simply casting bystander nonintervention as corrupted morality in China.

  6. A Review: Development of a Microdose Model for Analysis of Adaptive Response and Bystander Dose Response Behavior

    PubMed Central

    Leonard, Bobby E.

    2008-01-01

    Prior work has provided incremental phases to a microdosimetry modeling program to describe the dose response behavior of the radio-protective adaptive response effect. We have here consolidated these prior works (Leonard 2000, 2005, 2007a, 2007b, 2007c) to provide a composite, comprehensive Microdose Model that is also herein modified to include the bystander effect. The nomenclature for the model is also standardized for the benefit of the experimental cellular radio-biologist. It extends the prior work to explicitly encompass separately the analysis of experimental data that is 1.) only dose dependent and reflecting only adaptive response radio-protection, 2.) both dose and dose-rate dependent data and reflecting only adaptive response radio-protection for spontaneous and challenge dose damage, 3.) only dose dependent data and reflecting both bystander deleterious damage and adaptive response radio-protection (AR-BE model). The Appendix cites the various applications of the model. Here we have used the Microdose Model to analyze the, much more human risk significant, Elmore et al (2006) data for the dose and dose rate influence on the adaptive response radio-protective behavior of HeLa x Skin cells for naturally occurring, spontaneous chromosome damage from a Brachytherapy type 125I photon radiation source. We have also applied the AR-BE Microdose Model to the Chromosome inversion data of Hooker et al (2004) reflecting both low LET bystander and adaptive response effects. The micro-beam facility data of Miller et al (1999), Nagasawa and Little (1999) and Zhou et al (2003) is also examined. For the Zhou et al (2003) data, we use the AR-BE model to estimate the threshold for adaptive response reduction of the bystander effect. The mammogram and diagnostic X-ray induction of AR and protective BE are observed. We show that bystander damage is reduced in the similar manner as spontaneous and challenge dose damage as shown by the Azzam et al (1996) data. We cite

  7. Imaging effects of radiation therapy in the abdomen and pelvis: evaluating "innocent bystander" tissues.

    PubMed

    Maturen, Katherine E; Feng, Mary U; Wasnik, Ashish P; Azar, Shadi F; Appelman, Henry D; Francis, Isaac R; Platt, Joel F

    2013-01-01

    Accurate interpretation of posttherapeutic images obtained in radiation oncology patients requires familiarity with modern radiation therapy techniques and their expected effects on normal tissues. Three-dimensional conformal external-beam radiation therapy techniques (eg, intensity-modulated radiation therapy, stereotactic body radiation therapy), although they are designed to reduce the amount of normal tissue exposed to high-dose radiation, inevitably increase the amount of normal tissue that is exposed to low-dose radiation, with the potential for resultant changes that may evolve over time. Currently available internal radiation therapy techniques (eg, arterial radioembolization for hepatic malignancies, brachytherapy for prostate cancer and gynecologic cancers) also carry risks of possible injury to adjacent nontargeted tissues. The sensitivity of tissues to radiation exposure varies according to the tissue type but is generally proportional to the rate of cellular division, with rapidly regenerating tissues such as intestinal mucosa being the most radiosensitive. The characteristic response to radiation-induced injury likewise varies according to tissue type, with atrophy predominating in epithelial tissue whereas fibrosis predominates in stromal tissue. Moreover, changes in irradiated tissues evolve over time: In the liver, decreased attenuation at computed tomography and increased signal intensity at T2-weighted magnetic resonance imaging reflect hyperemia and edema in the early posttherapeutic period; later, veno-occlusive changes alter the hepatic enhancement pattern; and finally, fibrosis develops in some patients. In the small bowel, wall thickening and mucosal hyperenhancement predominate initially, whereas luminal narrowing is the most prominent feature of chronic enteropathy. Correlation of posttherapeutic images with images used for treatment planning may be helpful when interpreting complex cases.

  8. Lack of evidence for low-LET radiation induced bystander response in normal human fibroblasts and colon carcinoma cells

    SciTech Connect

    Sowa, Marianne B.; Goetz, Wilfried; Baulch, Janet E.; Pyles, Dinah N.; Dziegielewski, J.; Yovino, Susannah; Snyder, Andrew R.; de Toledo, S. M.; Azzam, Edouard I.; Morgan, William F.

    2010-02-01

    The conventional paradigm in radiation biology has been that DNA is the primary target for energy deposition following exposure to ionizing radiation. However, studies focusing on the non-target effects of radiation, i.e. effects occurring in cells not directly exposed to radiation, imply that the target of exposure is larger than what has traditionally been assumed and could have significant implications for radiation health risks. We have conducted an extensive study of the low-LET bystander effect including multiple cell lines and endpoints and various radiation sources and exposure scenarios. In no instance do we see evidence of a low-LET induced bystander effect. However, direct comparison for alpha particle exposure showed a statistically significant media transfer bystander effect for high-LET but not for low-LET radiation. From our results it is evident that there are many confounding factors mitigating bystander responses as reported in the literature and for the cell lines we studied that there is a LET dependence for the observed responses. Our observations reflect the inherent variability in biological systems and the difficulties in extrapolating from in vitro models to radiation risks in humans.

  9. Systemic mechanisms and effects of ionizing radiation: A new 'old' paradigm of how the bystanders and distant can become the players.

    PubMed

    Nikitaki, Zacharenia; Mavragani, Ifigeneia V; Laskaratou, Danae A; Gika, Violeta; Moskvin, Vadim P; Theofilatos, Konstantinos; Vougas, Konstantinos; Stewart, Robert D; Georgakilas, Alexandros G

    2016-06-01

    Exposure of cells to any form of ionizing radiation (IR) is expected to induce a variety of DNA lesions, including double strand breaks (DSBs), single strand breaks (SSBs) and oxidized bases, as well as loss of bases, i.e., abasic sites. The damaging potential of IR is primarily related to the generation of electrons, which through their interaction with water produce free radicals. In their turn, free radicals attack DNA, proteins and lipids. Damage is induced also through direct deposition of energy. These types of IR interactions with biological materials are collectively called 'targeted effects', since they refer only to the irradiated cells. Earlier and sometimes 'anecdotal' findings were pointing to the possibility of IR actions unrelated to the irradiated cells or area, i.e., a type of systemic response with unknown mechanistic basis. Over the last years, significant experimental evidence has accumulated, showing a variety of radiation effects for 'out-of-field' areas (non-targeted effects-NTE). The NTE involve the release of chemical and biological mediators from the 'in-field' area and thus the communication of the radiation insult via the so called 'danger' signals. The NTE can be separated in two major groups: bystander and distant (systemic). In this review, we have collected a detailed list of proteins implicated in either bystander or systemic effects, including the clinically relevant abscopal phenomenon, using improved text-mining and bioinformatics tools from the literature. We have identified which of these genes belong to the DNA damage response and repair pathway (DDR/R) and made protein-protein interaction (PPi) networks. Our analysis supports that the apoptosis, TLR-like and NOD-like receptor signaling pathways are the main pathways participating in NTE. Based on this analysis, we formulate a biophysical hypothesis for the regulation of NTE, based on DNA damage and apoptosis gradients between the irradiation point and various distances

  10. Significance and nature of bystander responses induced by various agents.

    PubMed

    Verma, Neha; Tiku, Ashu Bhan

    2017-07-01

    Bystander effects in a biological system are the responses shown by non-targeted neighbouring cells/tissues/organisms. These responses are triggered by factors released from targeted cells when exposed to a stress inducing agent. The biological response to stress inducing agents is complex, owing to the diversity of mechanisms and pathways activated in directly targeted and bystander cells. These responses are highly variable and can be either beneficial or hazardous depending on the cell lines tested, dose of agent used, experimental end points and time course selected. Recently non-targeted cells have even been reported to rescue the directly exposed cells by releasing protective signals that might be induced by non-targeted bystander responses. The nature of bystander signal/s is not yet clear. However, there are evidences suggesting involvement of ROS, RNS, protein factors and even DNA molecules leading to the activation of a number of signaling pathways. These can act independently or in a cascade, to induce events leading to changes in gene expression patterns that could elicit detrimental or beneficial effects. Many review articles on radiation induced bystander responses have been published. However, to the best of our knowledge, a comprehensive review on bystander responses induced by other genotoxic chemicals and stress inducing agents has not been published so far. Therefore, the aim of the present review is to give an overview of the literature on different aspects of bystander responses: agents that induce these responses, factors that can modulate bystander responses and the mechanisms involved. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Cytokine profile of conditioned medium from human tumor cell lines after acute and fractionated doses of gamma radiation and its effect on survival of bystander tumor cells.

    PubMed

    Desai, Sejal; Kumar, Amit; Laskar, S; Pandey, B N

    2013-01-01

    Cytokines are known to play pivotal roles in cancer initiation, progression and pathogenesis. Accumulating evidences suggest differences in basal and stress-induced cytokine profiles of cancers with diverse origin. However, a comprehensive investigation characterising the cytokine profile of various tumor types after acute and fractionated doses of gamma-irradiation, and its effect on survival of bystander cells is not well known in literature. In the present study, we have evaluated the cytokine secretion profile of human tumor cell lines (HT1080, U373MG, HT29, A549 and MCF-7) either before (basal) or after acute (2, 6 Gy) and fractionated doses (3×2 Gy) of gamma-irradiation in culture medium obtained from these cells by multiplex bead array/ELISA. Moreover, clonogenic assays were performed to evaluate the effect of conditioned medium (CM) on the survival and growth of respective cells. Based on the screening of 28 analytes, our results showed that the basal profiles of these cell lines varied considerably in terms of the number and magnitude of secreted factors, which was minimum in MCF-7. Interestingly, TNF-α, IL-1β, PDGF-AA, TGF-β1, fractalkine, IL-8, VEGF and GCSF were found in CM of all the cell lines. However, secretion of certain cytokines was cell line-specific. Moreover, CM caused increase in clonogenic survival of respective tumor cells (in the order HT1080>U373MG>HT29>A549>MCF-7), which was correlated with the levels of IL-1β, IL-6, IL-8, GMCSF and VEGF in their CM. After irradiation, the levels of most of the cytokines increased markedly in a dose dependent manner. The fold change in cytokine levels was lower in irradiated conditioned medium (ICM) of tumor cells collected after fractionated than respective acute dose, except in MCF-7. Interestingly, amongst these cell lines, the radiation-induced fold increase in cytokine levels was maximum in ICM of A549 cells. Moreover, bystander A549 cells treated with respective ICM showed dose dependent

  12. Real-time Molecular Study of Bystander Effects of Low dose Low LET radiation Using Living Cell Imaging and Nanoparticale Optics

    SciTech Connect

    Natarajan, Mohan; Xu, Nancy R; Mohan, Sumathy

    2013-06-03

    In this study two novel approaches are proposed to investigate precisely the low dose low LET radiation damage and its effect on bystander cells in real time. First, a flow shear model system, which would provide us a near in vivo situation where endothelial cells in the presence of extra cellular matrix experiencing continuous flow shear stress, will be used. Endothelial cells on matri-gel (simulated extra cellular matrix) will be subjected to physiological flow shear (that occurs in normal blood vessels). Second, a unique tool (Single nano particle/single live cell/single molecule microscopy and spectroscopy; Figure A) will be used to track the molecular trafficking by single live cell imaging. Single molecule chemical microscopy allows one to single out and study rare events that otherwise might be lost in assembled average measurement, and monitor many target single molecules simultaneously in real-time. Multi color single novel metal nanoparticle probes allow one to prepare multicolor probes (Figure B) to monitor many single components (events) simultaneously and perform multi-complex analysis in real-time. These nano-particles resist to photo bleaching and hence serve as probes for unlimited timeframe of analysis. Single live cell microscopy allows one to image many single cells simultaneously in real-time. With the combination of these unique tools, we will be able to study under near-physiological conditions the cellular and sub-cellular responses (even subtle changes at one molecule level) to low and very low doses of low LET radiation in real time (milli-second or nano-second) at sub-10 nanometer spatial resolution. This would allow us to precisely identify, at least in part, the molecular mediators that are responsible of radiation damage in the irradiated cells and the mediators that are responsible for initiating the signaling in the neighboring cells. Endothelial cells subjected to flow shear (2 dynes/cm2 or 16 dynes/cm2) and exposed to 0.1, 1 and 10

  13. Testing for a Gap Junction-Mediated Bystander Effect in Retinitis Pigmentosa: Secondary Cone Death Is Not Altered by Deletion of Connexin36 from Cones

    PubMed Central

    Kranz, Katharina; Paquet-Durand, François; Weiler, Reto

    2013-01-01

    Retinitis pigmentosa (RP) relates to a group of hereditary neurodegenerative diseases of the retina. On the cellular level, RP results in the primary death of rod photoreceptors, caused by rod-specific mutations, followed by a secondary degeneration of genetically normal cones. Different mechanisms may influence the spread of cell death from one photoreceptor type to the other. As one of these mechanisms a gap junction-mediated bystander effect was proposed, i.e., toxic molecules generated in dying rods and propagating through gap junctions induce the death of healthy cone photoreceptors. We investigated whether disruption of rod-cone coupling can prevent secondary cone death and reduce the spread of degeneration. We tested this hypothesis in two different mouse models for retinal degeneration (rhodopsin knockout and rd1) by crossbreeding them with connexin36-deficient mice as connexin36 represents the gap junction protein on the cone side and lack thereof most likely disrupts rod-cone coupling. Using immunohistochemistry, we compared the progress of cone degeneration between connexin36-deficient mouse mutants and their connexin36-expressing littermates at different ages and assessed the accompanied morphological changes during the onset (rhodopsin knockout) and later stages of secondary cone death (rd1 mutants). Connexin36-deficient mouse mutants showed the same time course of cone degeneration and the same morphological changes in second order neurons as their connexin36-expressing littermates. Thus, our results indicate that disruption of connexin36-mediated rod-cone coupling does not stop, delay or spatially restrict secondary cone degeneration and suggest that the gap junction-mediated bystander effect does not contribute to the progression of RP. PMID:23468924

  14. Group vs. Individual Bystander Response to a Violent Assault: A Field Experiment.

    ERIC Educational Resources Information Center

    Harari, Herbert; And Others

    Research studies on group versus individual bystander responses either have involved nonviolent emergencies or laboratory simulations. To investigate group versus individual bystander response to a violent assualt in a natural setting, 80 male college students (from an original pool of 393 white, male students) were observed either individually or…

  15. Group vs. Individual Bystander Response to a Violent Assault: A Field Experiment.

    ERIC Educational Resources Information Center

    Harari, Herbert; And Others

    Research studies on group versus individual bystander responses either have involved nonviolent emergencies or laboratory simulations. To investigate group versus individual bystander response to a violent assualt in a natural setting, 80 male college students (from an original pool of 393 white, male students) were observed either individually or…

  16. Hepatitis C Virus Infection of Cultured Human Hepatoma Cells Causes Apoptosis and Pyroptosis in Both Infected and Bystander Cells

    PubMed Central

    Kofahi, H. M.; Taylor, N. G. A.; Hirasawa, K.; Grant, M. D.; Russell, R. S.

    2016-01-01

    Individuals infected with hepatitis C virus (HCV) are at high risk of developing progressive liver disease, including cirrhosis and hepatocellular carcinoma (HCC). How HCV infection causes liver destruction has been of significant interest for many years, and apoptosis has been proposed as one operative mechanism. In this study, we employed a tissue culture-adapted strain of HCV (JFH1T) to test effects of HCV infection on induction of programmed cell death (PCD) in Huh-7.5 cells. We found that HCV infection reduced the proliferation rate and induced caspase-3-mediated apoptosis in the infected cell population. However, in addition to apoptosis, we also observed infected cells undergoing caspase-1-mediated pyroptosis, which was induced by NLRP3 inflammasome activation. By co-culturing HCV-infected Huh-7.5 cells with an HCV-non-permissive cell line, we also demonstrated induction of both apoptosis and pyroptosis in uninfected cells. Bystander apoptosis, but not bystander pyroptosis, required cell-cell contact between infected and bystander cells. In summary, these findings provide new information on mechanisms of cell death in response to HCV infection. The observation that both apoptosis and pyroptosis can be induced in bystander cells extends our understanding of HCV-induced pathogenesis in the liver. PMID:27974850

  17. A Mouse Ear Model for Bystander Studies Induced by Microbeam Irradiation.

    PubMed

    Buonanno, M; Randers-Pehrson, G; Smilenov, L B; Kleiman, N J; Young, E; Ponnayia, B; Brenner, D J

    2015-08-01

    Radiation-induced bystander effects have been observed in vitro and in cell and tissue culture models, however, there are few reported studies showing these effects in vivo. To our knowledge, this is the first reported study on bystander effects induced by microbeam irradiation in an intact living mammal. The mouse ear was used to investigate radiation-induced bystander effects in keratinocytes, utilizing a 3 MeV proton microbeam (LET 13.1 keV/μm) with a range in skin of about 135 μm. Using a custom-designed holder, the ear of an anesthetized C57BL/6J mouse was flattened by gentle suction and placed over the microbeam port to irradiate cells along a 35 μm wide, 6 mm long path. Immunohistochemical analysis of γ-H2AX foci formation in tissue sections revealed, compared to control tissue, proton-induced γ-H2AX foci formation in one of the two epidermal layers of the mouse ear. Strikingly, a higher number of cells than expected showed foci from direct irradiation effects. Although the proton-irradiated line was ~35 μm wide, the average width spanned by γ-H2AX-positive cells exceeded 150 μm. Cells adjacent to or in the epidermal layer opposite the γ-H2AX-positive region did not exhibit foci. These findings validate this mammalian model as a viable system for investigating radiation-induced bystander effects in an intact living organism.

  18. Small nucleolar RNA host genes and long non-coding RNA responses in directly irradiated and bystander cells.

    PubMed

    Chaudhry, M Ahmad

    2014-04-01

    The irradiated cells communicate with unirradiated cells and induce changes in them through a phenomenon known as the bystander effect. The nature of the bystander signal and how it impacts unirradiated cells remains to be discovered. Examination of molecular changes could lead to the identification of pathways underlying the bystander effect. Apart from microRNAs, little is known about the regulation of other non-coding RNAs (ncRNA) in irradiated or bystander cells. In this study we monitored the transcriptional changes of several small nucleolar RNAs (snoRNAs) host genes and long non-coding RNAs (lncRNAs) that are known to participate in a variety of cellular functions, in irradiated and bystander cells to gain insight into the molecular pathways affected in these cells. We used human lymphoblasts TK6 cells in a medium exchanged bystander effect model system to examine ncRNA expression alterations. The snoRNA host genes SNHG1 and SNHG4 were upregulated in irradiated TK6 cells but were repressed in bystander cells. The SNHG5 and SNHG11 were downregulated in irradiated and bystander cells and the expression levels of these ncRNA were significantly lower in bystander cells. The lncRNA MALAT1, MATR3, SRA1, and SOX2OT were induced in irradiated TK6 cells and their expression levels were repressed in bystander cells. The lncRNA RMST was induced in both irradiated and bystander cells. Taken together, these results indicate that expression levels of ncRNA are modulated in irradiated and bystander cells and these transcriptional changes could be associated with the bystander effect.

  19. Action Research Evaluation of Bystander Intervention Training Created by Munche, Stern, and O'Brien

    ERIC Educational Resources Information Center

    Shiflet, Jacqueline H.

    2013-01-01

    This qualitative, appreciative inquiry study was an examination of bystander intervention as related to sexual assault in the military. The purpose of the study was to examine how military personnel and Department of Defense civilian employees reflecting diverse backgrounds perceived the effectiveness of bystander intervention training and sexual…

  20. Action Research Evaluation of Bystander Intervention Training Created by Munche, Stern, and O'Brien

    ERIC Educational Resources Information Center

    Shiflet, Jacqueline H.

    2013-01-01

    This qualitative, appreciative inquiry study was an examination of bystander intervention as related to sexual assault in the military. The purpose of the study was to examine how military personnel and Department of Defense civilian employees reflecting diverse backgrounds perceived the effectiveness of bystander intervention training and sexual…

  1. Genetic changes in progeny of bystander human fibroblasts after microbeam irradiation with X-rays, protons or carbon ions: the relevance to cancer risk.

    PubMed

    Autsavapromporn, Narongchai; Plante, Ianik; Liu, Cuihua; Konishi, Teruaki; Usami, Noriko; Funayama, Tomoo; Azzam, Edouard I; Murakami, Takeshi; Suzuki, Masao

    2015-01-01

    Radiation-induced bystander effects have important implications in radiotherapy. Their persistence in normal cells may contribute to risk of health hazards, including cancer. This study investigates the role of radiation quality and gap junction intercellular communication (GJIC) in the propagation of harmful effects in progeny of bystander cells. Confluent human skin fibroblasts were exposed to microbeam radiations with different linear energy transfer (LET) at mean absorbed doses of 0.4 Gy by which 0.036-0.4% of the cells were directly targeted by radiation. Following 20 population doublings, the cells were harvested and assayed for micronucleus formation, gene mutation and protein oxidation. Our results showed that expression of stressful effects in the progeny of bystander cells is dependent on LET. The progeny of bystander cells exposed to X-rays (LET ∼6 keV/μm) or protons (LET ∼11 keV/μm) showed persistent oxidative stress, which correlated with increased micronucleus formation and mutation at the hypoxanthine-guanine phosphoribosyl-transferase (HPRT) locus. Such effects were not observed after irradiation by carbon ions (LET ∼103 keV/μm). Interestingly, progeny of bystander cells from cultures exposed to protons or carbon ions under conditions where GJIC was inhibited harbored reduced oxidative and genetic damage. This mitigating effect was not detected when the cultures were exposed to X-rays. These findings suggest that cellular exposure to proton and heavy charged particle with LET properties similar to those used here can reduce the risk of lesions associated with cancer. The ability of cells to communicate via gap junctions at the time of irradiation appears to impact residual damage in progeny of bystander cells.

  2. Susceptibility to bystander DNA damage is influenced by replication and transcriptional activity.

    PubMed

    Dickey, Jennifer S; Baird, Brandon J; Redon, Christophe E; Avdoshina, Valeriya; Palchik, Guillermo; Wu, Junfang; Kondratyev, Alexei; Bonner, William M; Martin, Olga A

    2012-11-01

    Direct cellular DNA damage may lead to genome destabilization in unexposed, bystander, cells sharing the same milieu with directly damaged cells by means of the bystander effect. One proposed mechanism involves double strand break (DSB) formation in S phase cells at sites of single strand lesions in the DNA of replication complexes, which has a more open structure compared with neighboring DNA. The DNA in transcription complexes also has a more open structure, and hence may be susceptible to bystander DSB formation from single strand lesions. To examine whether transcription predisposes non-replicating cells to bystander effect-induced DNA DSBs, we examined two types of primary cells that exhibit high levels of transcription in the absence of replication, rat neurons and human lymphocytes. We found that non-replicating bystander cells with high transcription rates exhibited substantial levels of DNA DSBs, as monitored by γ-H2AX foci formation. Additionally, as reported in proliferating cells, TGF-β and NO were found to mimic bystander effects in cell populations lacking DNA synthesis. These results indicate that cell vulnerability to bystander DSB damage may result from transcription as well as replication. The findings offer insights into which tissues may be vulnerable to bystander genomic destabilization in vivo.

  3. Susceptibility to bystander DNA damage is influenced by replication and transcriptional activity

    PubMed Central

    Dickey, Jennifer S.; Baird, Brandon J.; Redon, Christophe E.; Avdoshina, Valeriya; Palchik, Guillermo; Wu, Junfang; Kondratyev, Alexei; Bonner, William M.; Martin, Olga A.

    2012-01-01

    Direct cellular DNA damage may lead to genome destabilization in unexposed, bystander, cells sharing the same milieu with directly damaged cells by means of the bystander effect. One proposed mechanism involves double strand break (DSB) formation in S phase cells at sites of single strand lesions in the DNA of replication complexes, which has a more open structure compared with neighboring DNA. The DNA in transcription complexes also has a more open structure, and hence may be susceptible to bystander DSB formation from single strand lesions. To examine whether transcription predisposes non-replicating cells to bystander effect-induced DNA DSBs, we examined two types of primary cells that exhibit high levels of transcription in the absence of replication, rat neurons and human lymphocytes. We found that non-replicating bystander cells with high transcription rates exhibited substantial levels of DNA DSBs, as monitored by γ-H2AX foci formation. Additionally, as reported in proliferating cells, TGF-β and NO were found to mimic bystander effects in cell populations lacking DNA synthesis. These results indicate that cell vulnerability to bystander DSB damage may result from transcription as well as replication. The findings offer insights into which tissues may be vulnerable to bystander genomic destabilization in vivo. PMID:22941641

  4. Observed Workplace Incivility toward Women, Perceptions of Interpersonal Injustice, and Observer Occupational Well-Being: Differential Effects for Gender of the Observer

    PubMed Central

    Miner, Kathi N.; Cortina, Lilia M.

    2016-01-01

    The present study examined perceptions of interpersonal injustice as a mediator of the relationship between observed incivility toward women at work and employees' occupational well-being. We also examined gender of the observer as a moderator of these mediational relationships. Using online survey data from 1702 (51% women; 92% White) employees, results showed that perceptions of injustice partially mediated the relationship between observed incivility toward women and job satisfaction, turnover intentions, and organizational trust. Men reported greater perceptions of injustice than did women the more they observed the uncivil treatment of women at work, and the indirect effects of observed incivility toward women on well-being were stronger for men compared to women. Observed incivility toward women also had direct relationships with the occupational well-being outcomes over and above the impact mediated through injustice, particularly for women. Specifically, observing incivility toward female coworkers directly related to lowered job satisfaction and perceptions of safety for female bystanders. In addition, although both male and female bystanders reported heightened turnover intentions and lowered trust in the organization with higher levels of observed incivility toward women, these relationships were stronger for female than male observers. Our findings both replicate and extend past research on vicarious workplace incivility toward women. PMID:27242558

  5. Observed Workplace Incivility toward Women, Perceptions of Interpersonal Injustice, and Observer Occupational Well-Being: Differential Effects for Gender of the Observer.

    PubMed

    Miner, Kathi N; Cortina, Lilia M

    2016-01-01

    The present study examined perceptions of interpersonal injustice as a mediator of the relationship between observed incivility toward women at work and employees' occupational well-being. We also examined gender of the observer as a moderator of these mediational relationships. Using online survey data from 1702 (51% women; 92% White) employees, results showed that perceptions of injustice partially mediated the relationship between observed incivility toward women and job satisfaction, turnover intentions, and organizational trust. Men reported greater perceptions of injustice than did women the more they observed the uncivil treatment of women at work, and the indirect effects of observed incivility toward women on well-being were stronger for men compared to women. Observed incivility toward women also had direct relationships with the occupational well-being outcomes over and above the impact mediated through injustice, particularly for women. Specifically, observing incivility toward female coworkers directly related to lowered job satisfaction and perceptions of safety for female bystanders. In addition, although both male and female bystanders reported heightened turnover intentions and lowered trust in the organization with higher levels of observed incivility toward women, these relationships were stronger for female than male observers. Our findings both replicate and extend past research on vicarious workplace incivility toward women.

  6. Role of iNOS in Bystander Signaling Between Macrophages and Lymphoma Cells

    SciTech Connect

    Ghosh, Somnath; Maurya, Dharmendra Kumar; Krishna, Malini

    2008-12-01

    Purpose: The present report describes the bystander effects of radiation between similar and dissimilar cells and the role of iNOS in such communication. Materials and Methods: EL-4 and RAW 264.7 cells were exposed to 5 Gy {gamma}-irradiation. The medium from irradiated cells was transferred to unirradiated cells. Results: Irradiated EL-4 cells as well as those cultured in the presence of medium from {gamma}-irradiated EL-4 cells showed an upregulation of NF-{kappa}B, iNOS, p53, and p21/waf1 genes. The directly irradiated and the bystander EL-4 cells showed an increase in DNA damage, apoptosis, and NO production. Bystander signaling was also found to exist between RAW 264.7 (macrophage) and EL-4 (lymphoma) cells. Unstimulated or irradiated RAW 264.7 cells did not induce bystander effect in unirradiated EL-4 cells, but LPS stimulated and irradiated RAW 264.7 cells induced an upregulation of NF-{kappa}B and iNOS genes and increased the DNA damage in bystander EL-4 cells. Treatment of EL-4 or RAW 264.7 cells with L-NAME significantly reduced the induction of gene expression and DNA damage in the bystander EL-4 cells, whereas treatment with cPTIO only partially reduced the induction of gene expression and DNA damage in the bystander EL-4 cells. Conclusions: It was concluded that active iNOS in the irradiated cells was essential for bystander response.

  7. Getting angry matters: Going beyond perspective taking and empathic concern to understand bystanders' behavior in bullying.

    PubMed

    Pozzoli, Tiziana; Gini, Gianluca; Thornberg, Robert

    2017-09-30

    The present study examined the relations between different empathic dimensions and bystanders' behavior in bullying. Specifically, the indirect effects of empathic concern and perspective taking via empathic anger on defending and passive bystanding were tested in a sample of Italian young adolescents (N = 398; Mage = 12 years, 3 months, 47.2% girls). Path analysis confirmed the direct and indirect effects, via empathic anger, of empathic concern and perspective taking on bystanders' behavior, with the exception of the direct association between perspective taking and passive bystanding that was not significant. Our findings suggest that considering empathic anger together with empathic concern and perspective taking could help researchers to better understand the links between empathic dispositions and bystanders' behavior in bullying. Copyright © 2017. Published by Elsevier Ltd.

  8. Studies on the cellular bystander response after exposure to high LET irradiation

    NASA Astrophysics Data System (ADS)

    Fournier, C.; Becker, D.; Heiss, M.; Barberet, P.; Topsch, J.; Winter, M.; Ritter, S.; Taucher-Scholz, G.

    In this study various cellular responses of non-targeted cells following heavy ion exposure of human fibroblasts were investigated Heavy ions are an excellent tool to elucidate the impact of ionisation density on the occurrence of bystander effects An improved understanding of bystander responses is important with respect to risk estimation for accidental or therapeutical radiation exposure Human fibroblasts were exposed to low fluences of heavy ions C Ar and U with LETs in the range of 170 to 15000 keV 956 m traversing only a few cells by a particle For selected endpoints targeted irradiation of single cells was performed using a heavy ion microbeam A medium transfer technique was applied to study the transmission of signals limited to soluble factors At several time intervals after exposure the cell cycle progression FACS the expression of CDKN1A and other cycle regulators Western blot immuno-fluorescence and the amount of intracellular reactive oxygen species ROS DCF fluorescence were assessed In addition the frequencies of sister chromatid exchanges SCE and the number of cells containing micronuclei MN were determined 3 days after exposure as indicators for changes or damage on chromosomal level in bystander cells An overall induction of CDKN1A but no distinct clusters of cells bearing an elevated expression level in the direct neighbourhood of the hit cells were observed several hours after exposure This effect was accompanied by a transient delay in the initial G1 phase after exposure The question was addressed whether the cell

  9. Radiation effects on the cell-cell communication of mammalian cells

    NASA Astrophysics Data System (ADS)

    Depriest, Kendall Russell

    Recent observations of bystander effects in unirradiated cell populations have focused attention on cell-cell communication, particularly gap junction intercellular communication (GJIC), as a means through which the bystander effect may be transmitted. The bystander expression of CDKN1A in unirradiated AG1522 human fibroblast cells observed in another laboratory was verified. The dose response of the bystander effect in the AG1522 cells showed that the effect had reached its maximum at the lowest alpha-particle fluence tested, 0.013 alpha/nuclei. To test potential mechanisms for communication to bystander cells, the fluorescence recovery after photobleaching technique was used. Only the rat liver epithelial cell line (Clone 9) exhibited GJIC based upon a fluorescence recovery after photobleaching assay, and there was no change in the rate constant for GJIC following exposure to low LET or high LET radiation. The fibroblast cell lines (AG1521, AG1522, and GM5758) showed no evidence of GJIC in three separate assays including immunohistochemistry. Lindane, an inhibitor of GJIC, eliminated the bystander expression of CDKN1A in AG1522 cells while octanol, another inhibitor of GJIC, did not change the bystander expression of the protein. The two chemicals act in different ways to disrupt GJIC and each one may alter other functions as well, so the elimination of the bystander effect by lindane apparently indicates that lindane is interfering with a bystander signaling mechanism that is not mediated by gap junctions. The lack of connexin localization in the cell membrane of the fibroblast cell lines and the elimination of the bystander expression by lindane, but not octanol, indicates that the bystander effect must be mediated by a non-GJIC mechanism. The experimental evidence suggests that the mediator of the bystander expression of CDKN1A in human diploid fibroblasts is most likely an extracellular signal, such as a cytokine, that acts in a calcium-dependent signal

  10. Bystanders' Behavior in Cyberbullying Episodes: Active and Passive Patterns in the Context of Personal-Socio-Emotional Factors.

    PubMed

    Olenik-Shemesh, Dorit; Heiman, Tali; Eden, Sigal

    2017-01-01

    The present study explored bystanders' behavior in cyberbullying (CB) episodes among children and youth, focusing on active and passive behavior patterns. The study examined prevalence and characteristics of bystanders' behavior following CB episodes, and their active-passive intervention patterns in relation to personal (age, gender) and socio-emotional (self-efficacy, social support, sense of loneliness) factors. Of the 1,094 participants (ages 9-18), 497 (46.4%) reported they were bystanders to CB episodes. Of the bystanders, 55.4% were identified as having a passive pattern of behavior-they did not provide any help to cyber-victims, whereas 44.6% were identified as having an active pattern-helping the cyber-victim. In line with the "bystanders' effect," only 35.6% of the bystanders offered direct help to cyber-victims after witnessing CB. When studying the personal-socio-emotional differences between active and passive bystanders, it was found that the "active bystanders" are more often girls, older, have more social support from significant others, and have lower levels of emotional loneliness than bystanders in the passive group. Differences within the passive and active patterns were studied as well. A logistic regression revealed the unique contribution of each predictor to the probability of being an active bystander. It was found that gender and age predicted the probability of being an active bystander: Girls are more likely than boys, and older bystanders are more likely than younger ones, to choose an active pattern and provide help to cyber-victims. In addition, implications for CB prevention and intervention involvement programs to encourage bystanders to help cyber-victims are discussed.

  11. Low-Dose Ionizing Radiation Affects Mesenchymal Stem Cells via Extracellular Oxidized Cell-Free DNA: A Possible Mediator of Bystander Effect and Adaptive Response.

    PubMed

    Sergeeva, V A; Ershova, E S; Veiko, N N; Malinovskaya, E M; Kalyanov, A A; Kameneva, L V; Stukalov, S V; Dolgikh, O A; Konkova, M S; Ermakov, A V; Veiko, V P; Izhevskaya, V L; Kutsev, S I; Kostyuk, S V

    2017-01-01

    We have hypothesized that the adaptive response to low doses of ionizing radiation (IR) is mediated by oxidized cell-free DNA (cfDNA) fragments. Here, we summarize our experimental evidence for this model. Studies involving measurements of ROS, expression of the NOX (superoxide radical production), induction of apoptosis and DNA double-strand breaks, antiapoptotic gene expression and cell cycle inhibition confirm this hypothesis. We have demonstrated that treatment of mesenchymal stem cells (MSCs) with low doses of IR (10 cGy) leads to cell death of part of cell population and release of oxidized cfDNA. cfDNA has the ability to penetrate into the cytoplasm of other cells. Oxidized cfDNA, like low doses of IR, induces oxidative stress, ROS production, ROS-induced oxidative modifications of nuclear DNA, DNA breaks, arrest of the cell cycle, activation of DNA reparation and antioxidant response, and inhibition of apoptosis. The MSCs pretreated with low dose of irradiation or oxidized cfDNA were equally effective in induction of adaptive response to challenge further dose of radiation. Our studies suggest that oxidized cfDNA is a signaling molecule in the stress signaling that mediates radiation-induced bystander effects and that it is an important component of the development of radioadaptive responses to low doses of IR.

  12. Bystander's willingness to report theft, physical assault, and sexual assault: the impact of gender, anonymity, and relationship with the offender.

    PubMed

    Nicksa, Sarah C

    2014-01-01

    This research examines bystander willingness to report three different crimes to the police or campus authorities among a college student sample (n = 295). Twelve original vignettes varied anonymity when reporting, bystander's relationship with the offender (friend or stranger), and crime type. A factorial analysis of variance showed that main effects were found for crime type, bystander's gender, and bystander's relationship with the offender; anonymity was not significant. The physical assault was the most likely to be reported (4.47), followed by theft (3.26), and sexual assault (2.36). Women were more likely than men to report each crime type, and bystanders who were good friends of the offender were less likely to report than strangers. No two- or three-way interactions were significant, but a significant four-way interaction indicated that anonymity, relationship with the offender, and bystander's gender predicted willingness to report for the sexual assault scenario.

  13. Critical role of gap junction communication, calcium and nitric oxide signaling in bystander responses to focal photodynamic injury.

    PubMed

    Calì, Bianca; Ceolin, Stefano; Ceriani, Federico; Bortolozzi, Mario; Agnellini, Andrielly H R; Zorzi, Veronica; Predonzani, Andrea; Bronte, Vincenzo; Molon, Barbara; Mammano, Fabio

    2015-04-30

    Ionizing and nonionizing radiation affect not only directly targeted cells but also surrounding "bystander" cells. The underlying mechanisms and therapeutic role of bystander responses remain incompletely defined. Here we show that photosentizer activation in a single cell triggers apoptosis in bystander cancer cells, which are electrically coupled by gap junction channels and support the propagation of a Ca2+ wave initiated in the irradiated cell. The latter also acts as source of nitric oxide (NO) that diffuses to bystander cells, in which NO levels are further increased by a mechanism compatible with Ca(2+)-dependent enzymatic production. We detected similar signals in tumors grown in dorsal skinfold chambers applied to live mice. Pharmacological blockade of connexin channels significantly reduced the extent of apoptosis in bystander cells, consistent with a critical role played by intercellular communication, Ca2+ and NO in the bystander effects triggered by photodynamic therapy.

  14. SOD1 Mutations Causing Familial Amyotrophic Lateral Sclerosis Induce Toxicity in Astrocytes: Evidence for Bystander Effects in a Continuum of Astrogliosis.

    PubMed

    Wallis, Nicole; Lau, Chew L; Farg, Manal A; Atkin, Julie D; Beart, Philip M; O'Shea, Ross D

    2017-08-31

    Astrocytes contribute to the death of motor neurons via non-cell autonomous mechanisms of injury in amyotrophic lateral sclerosis (ALS). Since mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1) underlie the neuropathology of some forms of familial ALS, we explored how expression of mutant SOD1 protein A4V SOD1-EGFP affected the biology of secondary murine astrocytes. A4V SOD1-EGFP expressing astrocytes (72 h after transfection) displayed decreased mitochondrial activity (~45%) and L-glutamate transport (~25%), relative to cells expressing wild-type SOD1-EGFP. A4V SOD1-EGFP altered F-actin and Hoechst staining, indicative of cytoskeletal and nuclear changes, and altered GM130 labelling suggesting fragmentation of Golgi apparatus. SOD1 inclusion formation shifted from discrete to "punctate" over 72 h with A4V SOD1-EGFP more rapidly producing inclusions than G85R SOD1-EGFP, and forming more punctate aggregates. A4V, not wild-type SOD1-EGFP, exerted a substantial, time-dependent effect on GFAP expression, and ~60% of astrocytes became stellate and hypertrophic at 72 h. Spreading toxicity was inferred since at 72 h ~80% of bystander cells exhibited hypertrophy and stellation. This evidence favours mutant SOD1-containing astrocytes releasing destructive species that alter the biology of adjacent astrocytes. This panoply of mutant SOD1-induced destructive events favours recruitment of astrocytes to non-cell autonomous injury in ALS.

  15. Radiation-induced bystander signaling from somatic cells to germ cells in Caenorhabditis elegans.

    PubMed

    Guo, Xiaoying; Sun, Jie; Bian, Po; Chen, Lianyun; Zhan, Furu; Wang, Jun; Xu, An; Wang, Yugang; Hei, Tom K; Wu, Lijun

    2013-09-01

    Recently, radiation-induced bystander effects (RIBE) have been studied in mouse models in vivo, which clearly demonstrated bystander effects among somatic cells. However, there is currently no evidence for RIBE between somatic cells and germ cells in animal models in vivo. In the current study, the model animal Caenorhabditis elegans was used to investigate the bystander signaling from somatic cells to germ cells, as well as underlying mechanisms. C. elegans body size allows for precise microbeam irradiation and the abundant mutant strains for genetic dissection relative to currently adopted mouse models make it ideal for such analysis. Our results showed that irradiation of posterior pharynx bulbs and tails of C. elegans enhanced the level of germ cell apoptosis in bystander gonads. The irradiation of posterior pharynx bulbs also increased the level of DNA damage in bystander germ cells and genomic instability in the F1 progeny of irradiated worms, suggesting a potential carcinogenic risk in progeny even only somatic cells of parents are exposed to ionizing radiation (IR). It was also shown that DNA damage-induced germ cell death machinery and MAPK signaling pathways were both involved in the induction of germ cell apoptosis by microbeam induced bystander signaling, indicating a complex cooperation among multiple signaling pathways for bystander effects from somatic cells to germ cells.

  16. Bystander Macrophage Apoptosis after Mycobacterium tuberculosis H37Ra Infection▿

    PubMed Central

    Kelly, Deirdre M.; ten Bokum, Annemieke M. C.; O'Leary, Seonadh M.; O'Sullivan, Mary P.; Keane, Joseph

    2008-01-01

    Human macrophages infected with Mycobacterium tuberculosis may undergo apoptosis. Macrophage apoptosis contributes to the innate immune response against M. tuberculosis by containing and limiting the growth of mycobacteria and also by depriving the bacillus of its niche cell. Apoptosis of infected macrophages is well documented; however, bystander apoptosis of uninfected macrophages has not been described in the setting of M. tuberculosis. We observed that uninfected human macrophages underwent significant bystander apoptosis 48 and 96 h after they came into contact with macrophages infected with avirulent M. tuberculosis. The bystander apoptosis was significantly greater than the background apoptosis observed in uninfected control cells cultured for the same length of time. There was no evidence of the involvement of tumor necrosis factor alpha, Fas, tumor necrosis factor-related apoptosis-inducing ligand, transforming growth factor β, Toll-like receptor 2, or MyD88 in contact-mediated bystander apoptosis. This newly described phenomenon may further limit the spread of M. tuberculosis by eliminating the niche cells on which the bacillus relies. PMID:17954721

  17. Prosocial Bystander Behavior in Bullying Dynamics: Assessing the Impact of Social Capital.

    PubMed

    Evans, Caroline B R; Smokowski, Paul R

    2015-12-01

    Individuals who observe a bullying event, but are not directly involved as a bully or victim, are referred to as bystanders. Prosocial bystanders are those individuals who actively intervene in bullying dynamics to support the victim and this prosocial behavior often ends the bullying. The current study examines how social capital in the form of social support, community engagement, mental health functioning, and positive school experiences and characteristics is associated with the likelihood of engaging in prosocial bystander behavior in a large sample (N = 5752; 51.03% female) of racially/ethnically diverse rural youth. It was hypothesized that social capital would be associated with an increased likelihood of engaging in prosocial bystander behavior. Following multiple imputation, an ordered logistic regression with robust standard errors was run. The hypothesis was partially supported and results indicated that social capital in the form of friend and teacher support, ethnic identity, religious orientation, and future optimism were significantly associated with an increased likelihood of engaging in prosocial bystander behavior. Contrary to the hypothesis, a decreased rate of self-esteem was significantly associated with an increased likelihood of engaging in prosocial bystander behavior. The findings highlight the importance of positive social relationships and community engagement in increasing prosocial bystander behavior and ultimately decreasing school bullying. Implications were discussed.

  18. Bystander effect in suicide gene therapy using immortalized neural stem cells transduced with herpes simplex virus thymidine kinase gene on medulloblastoma regression.

    PubMed

    Pu, Ke; Li, Shao-Yi; Gao, Yun; Ma, Li; Ma, Weining; Liu, Yunhui

    2011-01-19

    Medulloblastomas (MBs) are the most common malignant brain tumor in children. The current therapeutic strategies are ineffective against the infiltrative and disseminative nature of MBs in about one-third of patients. Based on studies which have revealed the tumor-tropic characteristic of neural stem cells (NSCs), we used an immortalized neural stem cell line C17.2 as a cellular therapeutic delivery system to evaluate the antitumor effect of herpes simplex virus thymidine kinase gene (HSVtk) on MBs. We first stably transfected the HSVtk gene into C17.2 cells to produce C17.2tk cells, and then mixed C17.2tk with the human MB cell line Daoy at various ratios supplemented with ganciclovir (GCV). Both in vitro and in vivo experiments yielded promising results. Even at a C17.2tk: Daoy ratio as low as 1:16, more than 25% cells were killed in vitro. In vivo co-implantation study showed that when C17.2tk: Daoy ratio was 1:8, tumor growth inhibition was still evident and the mice had significantly prolonged survival. These results might partially be explained by the inherent tumor-tropic properties of NSCs and the bystander effect coupled with expression of connexin-43 (Cx43) between C17.2tk and Daoy cells. Our study clearly showed for the first time that immortalized neural stem cells used as vectors to deliver HSVtk gene therapy have a strong tumoricidal effect on MBs. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Increased cytotoxicity and bystander effect of 5-fluorouracil and 5′-deoxy-5-fluorouridine in human colorectal cancer cells transfected with thymidine phosphorylase

    PubMed Central

    Evrard, A; Cuq, P; Ciccolini, J; Vian, L; Cano, J-P

    1999-01-01

    5-Fluorouracil (5-FU) and 5′-deoxy-5-fluorouridine (5′-DFUR), a prodrug of 5-FU, are anticancer agents activated by thymidine phosphorylase (TP). Transfecting the human TP cDNA into cancer cells in order to sensitize them to these pyrimidine antimetabolites may be an important approach in human cancer gene therapy research. In this study, an expression vector containing the human TP cDNA (pcTP5) was transfected into LS174T human colon carcinoma cells. Eight stable transfectants were randomly selected and analysed. The cytotoxic effects of 5-FU and 5′-DFUR were higher in TP-transfected cells as compared to wild-type cells. The maximal decreases in the IC50 were 80-fold for 5-FU and 40-fold for 5′-DFUR. The increase in sensitivity to these pyrimidines of TP-transfected cells significantly correlated with the increase in both TP activity and TP expression. Transfected clone LS174T-c2 but not wild-type cells exhibited formation of [3H]FdUMP from [3H]5-FU. In addition the LS174T-c2 clone enhanced the cytotoxic effect of 5′-DFUR, but also that of 5-FU, towards co-cultured parental cells. For both anti-cancer agents, this bystander effect did not require cell–cell contact. These results show that both 5-FU or 5′-DFUR could be used together with a TP-suicide vector in cancer gene therapy. © 1999 Cancer Research Campaign PMID:10468288

  20. IL1- and TGFβ-Nox4 signaling, oxidative stress and DNA damage response are shared features of replicative, oncogene-induced, and drug-induced paracrine ‘Bystander senescence’

    PubMed Central

    Hubackova, Sona; Krejcikova, Katerina; Bartek, Jiri; Hodny, Zdenek

    2012-01-01

    Many cancers arise at sites of infection and inflammation. Cellular senescence, a permanent state of cell cycle arrest that provides a barrier against tumorigenesis, is accompanied by elevated proinflammatory cytokines such as IL1, IL6, IL8 and TNFα. Here we demonstrate that media conditioned by cells undergoing any of the three main forms of senescence, i.e. replicative, oncogene- and drug-induced, contain high levels of IL1, IL6, and TGFb capable of inducing reactive oxygen species (ROS)-mediated DNA damage response (DDR). Persistent cytokine signaling and activated DDR evoke senescence in normal bystander cells, accompanied by activation of the JAK/STAT, TGFβ/SMAD and IL1/NFκB signaling pathways. Whereas inhibition of IL6/STAT signaling had no effect on DDR induction in bystander cells, inhibition of either TGFβ/SMAD or IL1/NFκB pathway resulted in decreased ROS production and reduced DDR in bystander cells. Simultaneous inhibition of both TGFβ/SMAD and IL1/NFκB pathways completely suppressed DDR indicating that IL1 and TGFβ cooperate to induce and/or maintain bystander senescence. Furthermore, the observed IL1- and TGFβ-induced expression of NAPDH oxidase Nox4 indicates a mechanistic link between the senescence-associated secretory phenotype (SASP) and DNA damage signaling as a feature shared by development of all major forms of paracrine bystander senescence. PMID:23385065

  1. Impact of Co-Culturing with Fractionated Carbon-Ion-Irradiated Cancer Cells on Bystander Normal Cells and Their Progeny.

    PubMed

    Autsavapromporn, Narongchai; Liu, Cuihua; Konishi, Teruaki

    2017-09-01

    The purpose of this study was to compare the biological effects of fractionated doses versus a single dose of high-LET carbon ions in bystander normal cells, and determine the effect on their progeny using the layered tissue co-culture system. Briefly, confluent human glioblastoma (T98G) cells received a single dose of 6 Gy or three daily doses of 2 Gy carbon ions, which were then seeded on top of an insert with bystander normal skin fibroblasts (NB1RGB) growing underneath. Cells were co-cultured for 6 h or allowed to grow for 20 population doublings, then harvested and assayed for different end points. A single dose of carbon ions resulted in less damage in bystander normal NB1RGB cells than the fractionated doses. In contrast, the progeny of bystander NB1RGB cells co-cultured with T98G cells exposed to fractionated doses showed less damage than progeny from bystander cells co-cultured with single dose glioblastoma cells. Furthermore, inhibition of gap junction communication demonstrated its involvement in the stressful effects in bystander cells and their progeny. These results indicate that dose fractionation reduced the late effect of carbon-ion exposure in the progeny of bystander cells compared to the effect in the initial bystander cells.

  2. Variations in Involvement: Motivating Bystanders to Care for Senior Citizens.

    PubMed

    Keller, Sarah N; Wilkinson, Tim

    2017-01-01

    The purpose of this study was to determine the impact of a senior service advertising campaign designed to increase volunteerism and financial donations among bystanders. A cross-sectional mail survey was administered to 2,500 adults; 384 usable responses were obtained. Survey responses were analyzed by level of exposure and involvement in senior care. High involvement individuals viewed the ads more favorably and exhibited stronger senior caretaking intentions. Low-involvement consumers were less likely to see their own potential contributions to senior care services as effective. It is argued that nonparticipants in prosocial helping may fail to notice the need (low awareness), fail to view the cause as urgent (low perceived susceptibility), or have low prior experience with the issue. A typology of involvement could be developed that can be used for audience segmentation in marketing health behaviors to bystanders. With limited theoretical and practical guidance on how to motivate bystanders to engage in prosocial behaviors, health communicators and marketers are challenged to tap into the vital resource that bystanders potentially could provide. The research reviewed and presented here indicates hope for engaging the public to become active players in making the nation a safer and healthier place.

  3. Nitric oxide-mediated bystander signal transduction induced by heavy-ion microbeam irradiation

    NASA Astrophysics Data System (ADS)

    Tomita, Masanori; Matsumoto, Hideki; Funayama, Tomoo; Yokota, Yuichiro; Otsuka, Kensuke; Maeda, Munetoshi; Kobayashi, Yasuhiko

    2015-07-01

    In general, a radiation-induced bystander response is known to be a cellular response induced in non-irradiated cells after receiving bystander signaling factors released from directly irradiated cells within a cell population. Bystander responses induced by high-linear energy transfer (LET) heavy ions at low fluence are an important health problem for astronauts in space. Bystander responses are mediated via physical cell-cell contact, such as gap-junction intercellular communication (GJIC) and/or diffusive factors released into the medium in cell culture conditions. Nitric oxide (NO) is a well-known major initiator/mediator of intercellular signaling within culture medium during bystander responses. In this study, we investigated the NO-mediated bystander signal transduction induced by high-LET argon (Ar)-ion microbeam irradiation of normal human fibroblasts. Foci formation by DNA double-strand break repair proteins was induced in non-irradiated cells, which were co-cultured with those irradiated by high-LET Ar-ion microbeams in the same culture plate. Foci formation was suppressed significantly by pretreatment with an NO scavenger. Furthermore, NO-mediated reproductive cell death was also induced in bystander cells. Phosphorylation of NF-κB and Akt were induced during NO-mediated bystander signaling in the irradiated and bystander cells. However, the activation of these proteins depended on the incubation time after irradiation. The accumulation of cyclooxygenase-2 (COX-2), a downstream target of NO and NF-κB, was observed in the bystander cells 6 h after irradiation but not in the directly irradiated cells. Our findings suggest that Akt- and NF-κB-dependent signaling pathways involving COX-2 play important roles in NO-mediated high-LET heavy-ion-induced bystander responses. In addition, COX-2 may be used as a molecular marker of high-LET heavy-ion-induced bystander cells to distinguish them from directly irradiated cells, although this may depend on the time

  4. Nitric oxide-mediated bystander signal transduction induced by heavy-ion microbeam irradiation.

    PubMed

    Tomita, Masanori; Matsumoto, Hideki; Funayama, Tomoo; Yokota, Yuichiro; Otsuka, Kensuke; Maeda, Munetoshi; Kobayashi, Yasuhiko

    2015-07-01

    In general, a radiation-induced bystander response is known to be a cellular response induced in non-irradiated cells after receiving bystander signaling factors released from directly irradiated cells within a cell population. Bystander responses induced by high-linear energy transfer (LET) heavy ions at low fluence are an important health problem for astronauts in space. Bystander responses are mediated via physical cell-cell contact, such as gap-junction intercellular communication (GJIC) and/or diffusive factors released into the medium in cell culture conditions. Nitric oxide (NO) is a well-known major initiator/mediator of intercellular signaling within culture medium during bystander responses. In this study, we investigated the NO-mediated bystander signal transduction induced by high-LET argon (Ar)-ion microbeam irradiation of normal human fibroblasts. Foci formation by DNA double-strand break repair proteins was induced in non-irradiated cells, which were co-cultured with those irradiated by high-LET Ar-ion microbeams in the same culture plate. Foci formation was suppressed significantly by pretreatment with an NO scavenger. Furthermore, NO-mediated reproductive cell death was also induced in bystander cells. Phosphorylation of NF-κB and Akt were induced during NO-mediated bystander signaling in the irradiated and bystander cells. However, the activation of these proteins depended on the incubation time after irradiation. The accumulation of cyclooxygenase-2 (COX-2), a downstream target of NO and NF-κB, was observed in the bystander cells 6 h after irradiation but not in the directly irradiated cells. Our findings suggest that Akt- and NF-κB-dependent signaling pathways involving COX-2 play important roles in NO-mediated high-LET heavy-ion-induced bystander responses. In addition, COX-2 may be used as a molecular marker of high-LET heavy-ion-induced bystander cells to distinguish them from directly irradiated cells, although this may depend on the time

  5. Timely bystander CPR improves outcomes despite longer EMS times.

    PubMed

    Park, Gwan Jin; Song, Kyoung Jun; Shin, Sang Do; Lee, Kyung Won; Ahn, Ki Ok; Lee, Eui Jung; Hong, Ki Jeong; Ro, Young Sun

    2017-08-01

    This study aimed to determine the impact of bystander CPR on clinical outcomes in patients with increasing response time from collapse to EMS response. A population-based observational study was conducted in patients with witnessed out-of-hospital cardiac arrest (OHCA) of presumed cardiac etiology from 2012 to 2014. The time interval from collapse to CPR by EMS providers was categorized into quartile groups: fastest group (<4min), fast group (4 to <8min), late group (8 to <15min), and latest group (15 to <30min). The primary outcome was hospital discharge and the secondary outcome was survival with good neurological outcome. Multivariable logistic regression analysis was performed to evaluate the interaction between bystander CPR and the time interval from collapse to CPR by EMS providers. A total of 15,354 OHCAs were analyzed. Bystander CPR was performed in 8591 (56.0%). Survival to hospital discharge occurred in 1632 (10.6%) and favorable neurological outcome in 996 (6.5%). In an interaction model of bystander CPR, compared to the fastest group, adjusted odds ratios (AORs) (95% CIs) for survival to discharge were 0.89 (0.66-1.20) in the fast group, 0.76 (0.57-1.02) in the late group, and 0.52 (0.37-0.73) in the latest group. For favorable neurological outcome, AORs were 1.12 (0.77-1.62) in the fast group, 0.90 (0.62-1.30) in the late group, 0.59 (0.38-0.91) in the latest group. The survival from OHCA decreases as the ambulance response time increases. The increase in mortality and worsening neurologic outcomes appear to be mitigated in those patients who receive bystander CPR. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Differential Bystander Signaling Between Radioresistant Chondrosarcoma Cells and Fibroblasts After X-Ray, Proton, Iron Ion and Carbon Ion Exposures

    SciTech Connect

    Wakatsuki, Masaru

    2012-09-01

    Purpose: Chondrosarcoma is well known as a radioresistant tumor, but the mechanisms underlying that resistance are still unclear. The bystander effect is well documented in the field of radiation biology. We investigated the bystander response induced by X-rays, protons, carbon ions, and iron ions in chondrosarcoma cells using a transwell insert co-culture system that precludes physical contact between targeted and bystander cells. Methods and Materials: Human chondrosarcoma cells were irradiated with 0.1-, 0.5-, 1-, and 2-Gy X-rays, protons, carbon ions or iron ions using a transwell insert co-culture system. Formation of micronuclei and p53 binding protein 1 staining in bystander and irradiated cells were analyzed and bystander signaling between mixed cultures of chondrosarcoma cells, and normal human skin fibroblasts was investigated. Results: In this study, we show that the fraction of cells with DNA damages in irradiated chondrosarcoma cells showed dose-dependent increases with all beams. However, the fraction of cells with DNA damages in all bystander chondrosarcoma cells did not show any change from the levels in control cells. In the bystander signaling between mixed cultures of chondrosarcoma cells and fibroblasts, the amount of micronucleus formation in all bystander chondrosarcoma cells co-cultured with irradiated fibroblasts were the same as the levels for control cells. However, all bystander fibroblasts co-cultured with irradiated chondrosarcoma cells showed significant increases in the fraction of micronucleated cells compared to the rate of control cells. Conclusions: We conclude that chondrosarcoma cells in the transwell insert co-culture system could release bystander stimulations but could not develop bystander responses.

  7. Cell cycle tracking for irradiated and unirradiated bystander cells in a single colony with exposure to a soft X-ray microbeam.

    PubMed

    Kaminaga, Kiichi; Noguchi, Miho; Narita, Ayumi; Hattori, Yuya; Usami, Noriko; Yokoya, Akinari

    2016-11-01

    To establish a new experimental technique to explore the photoelectric and subsequent Auger effects on the cell cycles of soft X-ray microbeam-irradiated cells and unirradiated bystander cells in a single colony. Several cells located in the center of a microcolony of HeLa-Fucci cells consisting of 20-80 cells were irradiated with soft X-ray (5.35 keV) microbeam using synchrotron radiation as a light source. All cells in the colony were tracked for 72 h by time-lapse microscopy imaging. Cell cycle progression, division, and death of each cell in the movies obtained were analyzed by pedigree assay. The number of cell divisions in the microcolony was also determined. The fates of these cells were clarified by tracking both irradiated and unirradiated bystander cells. Irradiated cells showed significant cell cycle retardation, explosive cell death, or cell fusion after a few divisions. These serious effects were also observed in 15 and 26% of the bystander cells for 10 and 20 Gy irradiation, respectively, and frequently appeared in at least two daughter or granddaughter cells from a single-parent cell. We successfully tracked the fates of microbeam-irradiated cells and unirradiated bystander cells with live cell recordings, which have revealed the dynamics of soft X-ray irradiated and unirradiated bystander cells for the first time. Notably, cell deaths or cell cycle arrests frequently arose in closely related cells. These details would not have been revealed by a conventional immunostaining imaging method. Our approach promises to reveal the dynamic cellular effects of soft X-ray microbeam irradiation and subsequent Auger processes from various endpoints in future studies.

  8. Bystander Effect Fuels Human Induced Pluripotent Stem Cell-Derived Neural Stem Cells to Quickly Attenuate Early Stage Neurological Deficits After Stroke

    PubMed Central

    Eckert, Auston; Huang, Lei; Gonzalez, Rodolfo; Kim, Hye-Sun; Hamblin, Milton H.

    2015-01-01

    Present therapies for stroke rest with tissue plasminogen activator (tPA), the sole licensed antithrombotic on the market; however, tPA’s effectiveness is limited in that the drug not only must be administered less than 3–5 hours after stroke but often exacerbates blood-brain barrier (BBB) leakage and increases hemorrhagic incidence. A potentially promising therapy for stroke is transplantation of human induced pluripotent stem cell-derived neural stem cells (hiPSC-NSCs). To date, the effects of iPSCs on injuries that take place during early stage ischemic stroke have not been well studied. Consequently, we engrafted iPSC-NSCs into the ipsilesional hippocampus, a natural niche of NSCs, at 24 hours after stroke (prior to secondary BBB opening and when inflammatory signature is abundant). At 48 hours after stroke (24 hours after transplant), hiPSC-NSCs had migrated to the stroke lesion and quickly improved neurological function. Transplanted mice showed reduced expression of proinflammatory factors (tumor necrosis factor-α, interleukin 6 [IL-6], IL-1β, monocyte chemotactic protein 1, macrophage inflammatory protein 1α), microglial activation, and adhesion molecules (intercellular adhesion molecule 1, vascular cell adhesion molecule 1) and attenuated BBB damage. We are the first to report that engrafted hiPSC-NSCs rapidly improved neurological function (less than 24 hours after transplant). Rapid hiPSC-NSC therapeutic activity is mainly due to a bystander effect that elicits reduced inflammation and BBB damage. Significance Clinically, cerebral vessel occlusion is rarely permanent because of spontaneous or thrombolytic therapy-mediated reperfusion. These results have clinical implications indicating a much extended therapeutic window for transplantation of human induced pluripotent stem cell-derived neural stem cells (hiPSC-NSCs; 24 hours after stroke as opposed to the 5-hour window with tissue plasminogen activator [tPA]). In addition, there is potential for a

  9. Bystander Effect Fuels Human Induced Pluripotent Stem Cell-Derived Neural Stem Cells to Quickly Attenuate Early Stage Neurological Deficits After Stroke.

    PubMed

    Eckert, Auston; Huang, Lei; Gonzalez, Rodolfo; Kim, Hye-Sun; Hamblin, Milton H; Lee, Jean-Pyo

    2015-07-01

    : Present therapies for stroke rest with tissue plasminogen activator (tPA), the sole licensed antithrombotic on the market; however, tPA's effectiveness is limited in that the drug not only must be administered less than 3-5 hours after stroke but often exacerbates blood-brain barrier (BBB) leakage and increases hemorrhagic incidence. A potentially promising therapy for stroke is transplantation of human induced pluripotent stem cell-derived neural stem cells (hiPSC-NSCs). To date, the effects of iPSCs on injuries that take place during early stage ischemic stroke have not been well studied. Consequently, we engrafted iPSC-NSCs into the ipsilesional hippocampus, a natural niche of NSCs, at 24 hours after stroke (prior to secondary BBB opening and when inflammatory signature is abundant). At 48 hours after stroke (24 hours after transplant), hiPSC-NSCs had migrated to the stroke lesion and quickly improved neurological function. Transplanted mice showed reduced expression of proinflammatory factors (tumor necrosis factor-α, interleukin 6 [IL-6], IL-1β, monocyte chemotactic protein 1, macrophage inflammatory protein 1α), microglial activation, and adhesion molecules (intercellular adhesion molecule 1, vascular cell adhesion molecule 1) and attenuated BBB damage. We are the first to report that engrafted hiPSC-NSCs rapidly improved neurological function (less than 24 hours after transplant). Rapid hiPSC-NSC therapeutic activity is mainly due to a bystander effect that elicits reduced inflammation and BBB damage. Clinically, cerebral vessel occlusion is rarely permanent because of spontaneous or thrombolytic therapy-mediated reperfusion. These results have clinical implications indicating a much extended therapeutic window for transplantation of human induced pluripotent stem cell-derived neural stem cells (hiPSC-NSCs; 24 hours after stroke as opposed to the 5-hour window with tissue plasminogen activator [tPA]). In addition, there is potential for a synergistic

  10. Bystander chronic infection negatively impacts development of CD8+ T cell memory

    PubMed Central

    Stelekati, Erietta; Shin, Haina; Doering, Travis A.; Dolfi, Douglas V.; Ziegler, Carly G.; Beiting, Daniel P.; Dawson, Lucas; Liboon, Jennifer; Wolski, David; Ali, Mohammed-Alkhatim A.; Katsikis, Peter D.; Shen, Hao; Roos, David S.; Haining, W. Nicholas; Lauer, Georg M.; Wherry, E. John

    2014-01-01

    Summary Epidemiological evidence suggests that chronic infections impair immune responses to unrelated pathogens and vaccines. The underlying mechanisms, however, are unclear and distinguishing effects on priming versus development of immunological memory has been challenging. We investigated whether bystander chronic infections impact differentiation of memory CD8+ T cells, the hallmark of protective immunity against intracellular pathogens. Chronic bystander infections impaired development of memory CD8+ T cells in several mouse models and humans. These effects were independent of initial priming and were associated with chronic inflammatory signatures. Chronic inflammation negatively impacted the number of bystander CD8+ T cells and their memory development. Distinct underlying mechanisms of altered survival and differentiation were revealed with the latter regulated by the transcription factors T-bet and Blimp-1. Thus, exposure to prolonged bystander inflammation impairs the effector to memory transition. These data have relevance for immunity and vaccination during persisting infections and chronic inflammation. PMID:24837104

  11. Moral Disengagement among Bystanders to School Bullying

    ERIC Educational Resources Information Center

    Obermann, Marie-Louise

    2011-01-01

    This study examined the use of moral disengagement among children indirectly involved in bullying (bystanders). A sample of Danish adolescents (N = 660, M age 12.6 years) were divided into four groups depending on their bystander status: (a) outsiders, who did not experience bullying among their peers; (b) defenders, who were likely to help the…

  12. Moral Disengagement among Bystanders to School Bullying

    ERIC Educational Resources Information Center

    Obermann, Marie-Louise

    2011-01-01

    This study examined the use of moral disengagement among children indirectly involved in bullying (bystanders). A sample of Danish adolescents (N = 660, M age 12.6 years) were divided into four groups depending on their bystander status: (a) outsiders, who did not experience bullying among their peers; (b) defenders, who were likely to help the…

  13. Effects of Low-Dose Alpha-Particle Irradiation in Human Cells: The Role of Induced Genes and the Bystander Effect. Final Technical Report (9/15/1998-5/31/2005)

    SciTech Connect

    Little, John B.

    2013-09-17

    This grant was designed to examine the cellular and molecular mechanisms for the bystander effect of radiation (initially described in this laboratory) whereby damage signals are passed from irradiated to non-irradiated cells in a population. These signals induce genetic effects including DNA damage, mutations and chromosomal aberrations in the nonirradiated cells. Experiments were carried out in cultured mammalian cells, primarily human diploid cells, irradiated with alpha particles. This research resulted in 17 publications in the refereed literature and is described in the Progress Report where it is keyed to the publication list. This project was initiated at the Harvard School of Public Health (HSPH) and continued in collaboration with students/fellows at Colorado State University (CSU) and the New Jersey Medical School (NJMS).

  14. Morbidity among bystanders of bullying behavior at school: concepts, concerns, and clinical/research issues.

    PubMed

    Rivers, Ian

    2011-11-04

    The role of the bystander is not one that is easily understood in the anti-bullying literature. Roles within the unofficial hierarchy of the school-yard and playground overlap considerably, and each role has its own social dynamic that brings with it a shifting behavioral landscape that affects every student. In this article, the mental health correlates of three categories of bystander are explored: the co-victim, the isolate, and the confederate. Each category of bystander has its own characterizations and mental health correlates. Reports of post-traumatic stress, internalized hostility, substance use, and suicide ideation are discussed with reference to studies involving witnesses of family abuse, community and school violence as well as bullying. It is argued that bystanders are the key to challenging bullying in schools, and their mental health and well-being is pivotal to the effectiveness of anti-bullying interventions.

  15. Junín Virus Infection of Human Hematopoietic Progenitors Impairs In Vitro Proplatelet Formation and Platelet Release via a Bystander Effect Involving Type I IFN Signaling

    PubMed Central

    Pozner, Roberto G.; Ure, Agustín E.; Jaquenod de Giusti, Carolina; D'Atri, Lina P.; Italiano, Joseph E.; Torres, Oscar; Romanowski, Victor; Schattner, Mirta; Gómez, Ricardo M.

    2010-01-01

    Argentine hemorrhagic fever (AHF) is an endemo-epidemic disease caused by Junín virus (JUNV), a member of the arenaviridae family. Although a recently introduced live attenuated vaccine has proven to be effective, AHF remains a potentially lethal infection. Like in other viral hemorrhagic fevers (VHF), AHF patients present with fever and hemorrhagic complications. Although the causes of the bleeding are poorly understood, impaired hemostasis, endothelial cell dysfunction and low platelet counts have been described. Thrombocytopenia is a common feature in VHF syndromes, and it is a major sign for its diagnosis. However, the underlying pathogenic mechanism has not yet been elucidated. We hypothesized that thrombocytopenia results from a viral-triggered alteration of the megakaryo/thrombopoiesis process. Therefore, we evaluated the impact of JUNV on megakaryopoiesis using an in vitro model of human CD34+ cells stimulated with thrombopoietin. Our results showed that CD34+ cells are infected with JUNV in a restricted fashion. Infection was transferrin receptor 1 (TfR1)-dependent and the surface expression of TfR1 was higher in infected cultures, suggesting a novel arenaviral dissemination strategy in hematopoietic progenitor cells. Although proliferation, survival, and commitment in JUNV-infected cultures were normal, viral infection impaired thrombopoiesis by decreasing in vitro proplatelet formation, platelet release, and P-selectin externalization via a bystander effect. The decrease in platelet release was also TfR1-dependent, mimicked by poly(I:C), and type I interferon (IFN α/β) was implicated as a key paracrine mediator. Among the relevant molecules studied, only the transcription factor NF-E2 showed a moderate decrease in expression in megakaryocytes from either infected cultures or after type I IFN treatment. Moreover, type I IFN-treated megakaryocytes presented ultrastructural abnormalities resembling the reported thrombocytopenic NF-E2−/− mouse

  16. Critical role of gap junction communication, calcium and nitric oxide signaling in bystander responses to focal photodynamic injury

    PubMed Central

    Calì, Bianca; Ceolin, Stefano; Ceriani, Federico; Bortolozzi, Mario; Agnellini, Andrielly H.R.; Zorzi, Veronica; Predonzani, Andrea; Bronte, Vincenzo

    2015-01-01

    Ionizing and nonionizing radiation affect not only directly targeted cells but also surrounding “bystander” cells. The underlying mechanisms and therapeutic role of bystander responses remain incompletely defined. Here we show that photosentizer activation in a single cell triggers apoptosis in bystander cancer cells, which are electrically coupled by gap junction channels and support the propagation of a Ca2+ wave initiated in the irradiated cell. The latter also acts as source of nitric oxide (NO) that diffuses to bystander cells, in which NO levels are further increased by a mechanism compatible with Ca2+-dependent enzymatic production. We detected similar signals in tumors grown in dorsal skinfold chambers applied to live mice. Pharmacological blockade of connexin channels significantly reduced the extent of apoptosis in bystander cells, consistent with a critical role played by intercellular communication, Ca2+ and NO in the bystander effects triggered by photodynamic therapy. PMID:25868859

  17. Speculations about Bystander and Biophotons

    PubMed Central

    Sanders, Charles L.

    2014-01-01

    Mothersill and many others during the last hundred years have shown that cells and now whole animals may communicate with each other by electromagnetic waves called biophotons. This would explain the source of the bystander phenomena. These ultra-weak photons are coherent, appear to originate and concentrate in DNA of the cell nucleus and rapidly carry large amounts of data to each cell and to the trillions of other cells in the human body. The implications of such a possibility can be wonderfully important. PMID:25552952

  18. Increased Frequency of Spontaneous Neoplastic Transformation in Progeny of Bystander Cells from Cultures Exposed to Densely Ionizing Radiation

    PubMed Central

    Buonanno, Manuela; de Toledo, Sonia M.; Azzam, Edouard I.

    2011-01-01

    An increased risk of carcinogenesis caused by exposure to space radiation during prolonged space travel is a limiting factor for human space exploration. Typically, astronauts are exposed to low fluences of ionizing particles that target only a few cells in a tissue at any one time. The propagation of stressful effects from irradiated to neighboring bystander cells and their transmission to progeny cells would be of importance in estimates of the health risks of exposure to space radiation. With relevance to the risk of carcinogenesis, we investigated, in model C3H 10T½ mouse embryo fibroblasts (MEFs), modulation of the spontaneous frequency of neoplastic transformation in the progeny of bystander MEFs that had been in co-culture 10 population doublings earlier with MEFs exposed to moderate doses of densely ionizing iron ions (1 GeV/nucleon) or sparsely ionizing protons (1 GeV). An increase (P<0.05) in neoplastic transformation frequency, likely mediated by intercellular communication through gap junctions, was observed in the progeny of bystander cells that had been in co-culture with cells irradiated with iron ions, but not with protons. PMID:21738697

  19. Hijacking microglial glutathione by inorganic arsenic impels bystander death of immature neurons through extracellular cystine/glutamate imbalance

    PubMed Central

    Singh, Vikas; Gera, Ruchi; Kushwaha, Rajesh; Sharma, Anuj Kumar; Patnaik, Satyakam; Ghosh, Debabrata

    2016-01-01

    Arsenic-induced altered microglial activity leads to neuronal death, but the causative mechanism remains unclear. The present study showed, arsenic-exposed (10 μM) microglial (N9) culture supernatant induced bystander death of neuro-2a (N2a), which was further validated with primary microglia and immature neuronal cultures. Results indicated that arsenic-induced GSH synthesis by N9 unfavorably modified the extracellular milieu for N2a by lowering cystine and increasing glutamate concentration. Similar result was observed in N9-N2a co-culture. Co-exposure of arsenic and 250 μM glutamate, less than the level (265 μM) detected in arsenic-exposed N9 culture supernatant, compromised N2a viability which was rescued by cystine supplementation. Therefore, microglia executes bystander N2a death by competitive inhibition of system Xc- (xCT) through extracellular cystine/glutamate imbalance. We confirmed the role of xCT in mediating bystander N2a death by siRNA inhibition studies. Ex-vivo primary microglia culture supernatant from gestationally exposed mice measured to contain lower cystine and higher glutamate compared to control and N-acetyl cysteine co-treated group. Immunofluorescence staining of brain cryosections from treated group showed more dead immature neurons with no such effect on microglia. Collectively, we showed, in presence of arsenic microglia alters cystine/glutamate balance through xCT in extracellular milieu leading to bystander death of immature neurons. PMID:27477106

  20. Bystander Intervention Prior to The Arrival of Emergency Medical Services: Comparing Assistance across Types of Medical Emergencies.

    PubMed

    Faul, Mark; Aikman, Shelley N; Sasser, Scott M

    2016-01-01

    situational factors and the type of medical emergency. A higher risk of patient death is likely to prompt bystander action. These novel study results can lead to more effective first aid training programs. bystander; EMS; rural; cardiac distress; trauma.

  1. An Online Bystander Intervention Program for the Prevention of Sexual Violence

    PubMed Central

    Kleinsasser, Anne; Jouriles, Ernest N.; McDonald, Renee; Rosenfield, David

    2014-01-01

    Objective Because of its high prevalence and serious consequences for victims, sexual violence is a significant problem on college campuses. Sexual assault prevention programs based on the bystander intervention model have been shown to be effective; however, current programs are limited in terms of ease of distribution. To address this issue, we developed and evaluated “Take Care,” an online bystander intervention program. To our knowledge, this is the first empirical evaluation of an online bystander intervention program designed to prevent sexual violence. Method Ninety-three participants (80.6% female, 19.4% male) recruited from social psychology classes at a mid-size university were randomly assigned to view one of two online programs: Take Care or a control program on study skills. Before viewing the programs, participants completed measures of bystander behaviors and feelings of efficacy for performing such behaviors. Measures were administered again post-intervention and at a two-month follow-up assessment. Results Participants who viewed Take Care reported greater efficacy for engaging in bystander behaviors at post-treatment and two months following treatment, compared to those who viewed the control program. In addition, participants who viewed Take Care reported performing relatively more bystander behaviors for friends at the two-month follow-up assessment, compared to participants who viewed the control program. Conclusions These results suggest that sexual violence prevention programs may be effectively adapted to an online format. PMID:26240776

  2. An Online Bystander Intervention Program for the Prevention of Sexual Violence.

    PubMed

    Kleinsasser, Anne; Jouriles, Ernest N; McDonald, Renee; Rosenfield, David

    2015-07-01

    Because of its high prevalence and serious consequences for victims, sexual violence is a significant problem on college campuses. Sexual assault prevention programs based on the bystander intervention model have been shown to be effective; however, current programs are limited in terms of ease of distribution. To address this issue, we developed and evaluated "Take Care," an online bystander intervention program. To our knowledge, this is the first empirical evaluation of an online bystander intervention program designed to prevent sexual violence. Ninety-three participants (80.6% female, 19.4% male) recruited from social psychology classes at a mid-size university were randomly assigned to view one of two online programs: Take Care or a control program on study skills. Before viewing the programs, participants completed measures of bystander behaviors and feelings of efficacy for performing such behaviors. Measures were administered again post-intervention and at a two-month follow-up assessment. Participants who viewed Take Care reported greater efficacy for engaging in bystander behaviors at post-treatment and two months following treatment, compared to those who viewed the control program. In addition, participants who viewed Take Care reported performing relatively more bystander behaviors for friends at the two-month follow-up assessment, compared to participants who viewed the control program. These results suggest that sexual violence prevention programs may be effectively adapted to an online format.

  3. Bystander Efforts and 1-Year Outcomes in Out-of-Hospital Cardiac Arrest.

    PubMed

    Kragholm, Kristian; Wissenberg, Mads; Mortensen, Rikke N; Hansen, Steen M; Malta Hansen, Carolina; Thorsteinsson, Kristinn; Rajan, Shahzleen; Lippert, Freddy; Folke, Fredrik; Gislason, Gunnar; Køber, Lars; Fonager, Kirsten; Jensen, Svend E; Gerds, Thomas A; Torp-Pedersen, Christian; Rasmussen, Bodil S

    2017-05-04

    The effect of bystander interventions on long-term functional outcomes among survivors of out-of-hospital cardiac arrest has not been extensively studied. We linked nationwide data on out-of-hospital cardiac arrests in Denmark to functional outcome data and reported the 1-year risks of anoxic brain damage or nursing home admission and of death from any cause among patients who survived to day 30 after an out-of-hospital cardiac arrest. We analyzed risks according to whether bystander cardiopulmonary resuscitation (CPR) or defibrillation was performed and evaluated temporal changes in bystander interventions and outcomes. Among the 2855 patients who were 30-day survivors of an out-of-hospital cardiac arrest during the period from 2001 through 2012, a total of 10.5% had brain damage or were admitted to a nursing home and 9.7% died during the 1-year follow-up period. During the study period, among the 2084 patients who had cardiac arrests that were not witnessed by emergency medical services (EMS) personnel, the rate of bystander CPR increased from 66.7% to 80.6% (P<0.001), the rate of bystander defibrillation increased from 2.1% to 16.8% (P<0.001), the rate of brain damage or nursing home admission decreased from 10.0% to 7.6% (P<0.001), and all-cause mortality decreased from 18.0% to 7.9% (P=0.002). In adjusted analyses, bystander CPR was associated with a risk of brain damage or nursing home admission that was significantly lower than that associated with no bystander resuscitation (hazard ratio, 0.62; 95% confidence interval [CI], 0.47 to 0.82), as well as a lower risk of death from any cause (hazard ratio, 0.70; 95% CI, 0.50 to 0.99) and a lower risk of the composite end point of brain damage, nursing home admission, or death (hazard ratio, 0.67; 95% CI, 0.53 to 0.84). The risks of these outcomes were even lower among patients who received bystander defibrillation as compared with no bystander resuscitation. In our study, we found that bystander CPR and

  4. Effects of Grading Leniency and Low Workload on Students' Evaluations of Teaching: Popular Myth, Bias, Validity, or Innocent Bystanders?

    ERIC Educational Resources Information Center

    Marsh, Herbert W.; Roche, Lawrence A.

    2000-01-01

    Discusses two studies that debunk the popular myths that student evaluations of teaching (SETs) are substantially biased by low workload and grading leniency. Results imply teaching effects were related to SETs. Contrary to predictions workload, expected grades, and their relations to SETs were stable over 12 years. (Author/MKA)

  5. Effects of Grading Leniency and Low Workload on Students' Evaluations of Teaching: Popular Myth, Bias, Validity, or Innocent Bystanders?

    ERIC Educational Resources Information Center

    Marsh, Herbert W.; Roche, Lawrence A.

    2000-01-01

    Discusses two studies that debunk the popular myths that student evaluations of teaching (SETs) are substantially biased by low workload and grading leniency. Results imply teaching effects were related to SETs. Contrary to predictions workload, expected grades, and their relations to SETs were stable over 12 years. (Author/MKA)

  6. Identifiable images of bystanders extracted from corneal reflections.

    PubMed

    Jenkins, Rob; Kerr, Christie

    2013-01-01

    Criminal investigations often use photographic evidence to identify suspects. Here we combined robust face perception and high-resolution photography to mine face photographs for hidden information. By zooming in on high-resolution face photographs, we were able to recover images of unseen bystanders from reflections in the subjects' eyes. To establish whether these bystanders could be identified from the reflection images, we presented them as stimuli in a face matching task (Experiment 1). Accuracy in the face matching task was well above chance (50%), despite the unpromising source of the stimuli. Participants who were unfamiliar with the bystanders' faces (n = 16) performed at 71% accuracy [t(15) = 7.64, p<.0001, d = 1.91], and participants who were familiar with the faces (n = 16) performed at 84% accuracy [t(15) = 11.15, p<.0001, d = 2.79]. In a test of spontaneous recognition (Experiment 2), observers could reliably name a familiar face from an eye reflection image. For crimes in which the victims are photographed (e.g., hostage taking, child sex abuse), reflections in the eyes of the photographic subject could help to identify perpetrators.

  7. Do Sexual Assault Bystander Interventions Change Men's Intentions? Applying the Theory of Normative Social Behavior to Predicting Bystander Outcomes.

    PubMed

    Mabry, Amanda; Turner, Monique Mitchell

    2016-01-01

    The high prevalence of sexual assault on college campuses has led to the implementation of health communication programs to prevent sexual assault. A few novel programs focus on primary prevention by targeting social norms related to gender and masculinity among men through bystander intervention. Guided by the theory of normative social behavior, this study sought to examine the relative effect of campaigns communicating positive versus negative injunctive norms and the interaction between exposure to such campaign messages and perceived descriptive norms and relevant cognitive moderators (e.g., outcome expectations, injunctive norms, group identity, ego involvement) among men. A 2 (high/low descriptive norms) × 2 (high/low moderator) × 3 (public service announcement) independent groups quasi-experimental design (N = 332) was used. Results indicated that messages communicating positive injunctive norms were most effective among men who were least likely to engage in bystander intervention. Furthermore, descriptive norms played a significant role in behavioral intentions, such that those with stronger norms were more likely to report intentions to engage in bystander behaviors in the future. Similarly, the moderators of aspiration, injunctive norms, social approval, and ego involvement had a significant positive effect on behavioral intentions. These findings have important implications for future message design strategy and audience segmentation.

  8. Radioimmunotherapy of Cryptococcus neoformans spares bystander mammalian cells

    PubMed Central

    Bryan, Ruth A; Jiang, Zewei; Morgenstern, Alfred; Bruchertseifer, Frank; Casadevall, Arturo; Dadachova, Ekaterina

    2013-01-01

    Aim Previously, we showed that radioimmunotherapy (RIT) for cryptococcal infections using radioactively labeled antibodies recognizing the cryptococcal capsule reduced fungal burden and prolonged survival of mice infected with Cryptococcus neoformans. Here, we investigate the effects of RIT on bystander mammalian cells. Materials & methods Heat-killed C. neoformans bound to anticapsular antibodies, unlabeled or labeled with the β-emitter rhenium-188 (16.9-h half-life) or the α-emitter bismuth-213 (46-min half-life), was incubated with macrophage-like J774.16 cells or epithelial-like Chinese hamster ovary cells. Lactate dehydrogenase activity, crystal violet uptake, reduction of tetrazolium dye (2,3)-bis-(2-methoxy-4-nitro-5-sulfenyl)-(2H)-terazolium-5-carboxanilide and nitric oxide production were measured. Results The J774.16 and Chinese hamster ovary cells maintained membrane integrity, viability and metabolic activity following exposure to radiolabeled C. neoformans. Conclusion RIT of C. neoformans is a selective therapy with minimal effects on host cells and these results are consistent with observations that RIT-treated mice with cryptococcal infection lacked RIT-related pathological changes in lungs and brain tissues. PMID:24020737

  9. Bystander Sexual Violence Prevention Program: Outcomes for High- and Low-Risk University Men.

    PubMed

    Elias-Lambert, Nada; Black, Beverly M

    2015-05-05

    This research reports the findings of an evaluation of a peer-facilitated, bystander sexual violence prevention program to determine its effectiveness at changing attitudes and behaviors related to sexual violence with university males who are at low- and high-risk of using sexually coercive behavior. Bystander interventions focus on men and women as bystanders to change social norms in a peer culture that supports abusive behaviors. Few studies have examined the effectiveness of these interventions with high-risk populations, which is the focus of this study. A bystander sexual violence prevention program was presented to 142 fraternity members. A quasi-experimental design utilizing pre-, post-, and follow-up surveys was used to compare the effectiveness of this prevention program with university males who are at low- and high-risk of using sexually coercive behavior in intervention and comparison groups. Participants' risk status was measured prior to the intervention using the Modified-Sexual Experiences Survey. The measures evaluated changes in attitudes (rape myth acceptance and bystander attitudes) and behaviors (sexually coercive behaviors, sexually coercive behavioral intentions, and bystander behaviors). Data analyses included Repeated-Measures Analysis of Covariances. The findings suggest that a bystander sexual violence prevention program has a positive impact on attitudes and behaviors related to sexual violence among fraternity members, however, the program had less impact on high-risk males. The results of this study will expand our ability to design programs that can have an impact on reducing sexual violence on campus by ensuring the programs are having the desired impact on the target audience.

  10. A High School-Based Evaluation of TakeCARE, a Video Bystander Program to Prevent Adolescent Relationship Violence.

    PubMed

    Sargent, Kelli S; Jouriles, Ernest N; Rosenfield, David; McDonald, Renee

    2017-03-01

    Although bystander programs to prevent relationship and sexual violence have been evaluated with college students, few evaluations have been conducted with high school students. This study evaluated the effectiveness of TakeCARE, a brief video bystander program designed to promote helpful bystander behavior in situations involving relationship violence among high school students. Students (N = 1295; 52.5% female; 72.3% Hispanic) reported their bystander behavior at a baseline assessment. Classrooms (N = 66) were randomized to view TakeCARE or to a control condition, and high school counselors administered the video in the classrooms assigned to view TakeCARE. Students again reported their bystander behavior at a follow-up assessment approximately 3 months afterward. Results indicate that students who viewed TakeCARE reported more helpful bystander behavior at the follow-up assessment than students in the control condition. Results of exploratory analyses of the likelihood of encountering and intervening upon specific situations calling for bystander behavior are also reported. TakeCARE is efficacious when implemented in an urban high school by high school counselors.

  11. Raising a Red Flag on Dating Violence: Evaluation of a Low-Resource, College-Based Bystander Behavior Intervention Program.

    PubMed

    Borsky, Amanda E; McDonnell, Karen; Turner, Monique Mitchell; Rimal, Rajiv

    2016-03-09

    Encouraging bystanders to intervene safely and effectively in situations that could escalate to violence-known as bystander behavior programs-is a growing yet largely untested strategy to prevent dating violence. Using a quasi-experimental design, we evaluate a low-resource, low-intensity intervention aimed at preventing dating violence among college students. The integrated behavioral model (IBM) was used to guide the evaluation. We also assess which IBM variables were most strongly associated with bystander behaviors. Participants were drawn from two Virginia colleges that predominantly train females in the health profession sciences. The intervention group (n = 329) participated in a university-wide bystander behavior intervention consisting of a 30-min presentation on dating violence at new-student orientation and a week-long "red flag" social marketing campaign on campus to raise awareness of dating violence. Controlling for changes at the comparison university, results showed an increase in bystander behaviors, such as encouraging a friend who may be in an abusive relationship to get help, after the intervention and adjusting for potential confounders (increase of 1.41 bystander behaviors, p = .04). However, no significant changes were found for bystander intentions, self-efficacy, social norms, or attitudes related to dating violence from pre- to post-intervention. Self-efficacy had a direct relationship with bystander behaviors. Results suggest that low-resource interventions have a modest effect on increasing bystander behaviors. However, higher resource interventions likely are needed for a larger impact, especially among students who already demonstrate strong baseline intentions to intervene and prevent dating violence.

  12. An exploration of attitudes toward bystander cardiopulmonary resuscitation in university students in Tianjin, China: A survey.

    PubMed

    Lu, Cui; Jin, Yinghui; Meng, Fanjie; Wang, Yunyun; Shi, Xiaotong; Ma, Wenjing; Chen, Juan; Zhang, Yao; Wang, Wei; Xing, Qing

    2016-01-01

    Despite the importance of early effective bystander cardiopulmonary resuscitation (CPR) to improve survival rates from out-of-hospital cardiac arrest, the attitudes toward performing, learning and disseminating CPR in university students of China are still unclear. To assess the attitudes regarding performing, learning and disseminating bystander CPR in university students of China. The results indicated that except for the scenario where the victim was their own family member or close friend, all other scenarios showed a relatively dismally lower rate of positive response. Besides, it showed a greater willingness to perform chest compression only CPR (CC) than chest compression with mouth-to-mouth ventilation (CCMV) (P < 0.05). Females were more willing to perform CC across seven of the hypothetic scenarios than males. University students of medical-related specialties (45.3%) than university students of non-medical specialties (29.9%) were more willing to perform bystander CPR (P < 0.05). The top four reasons for being unwilling to perform bystander CPR were lack of confidence (32.9%), fear of legal disputes (17.2%), fear of disease transmission (16.0%) and feeling embarrassed (14.0%). 92.6% of respondents wanted to learn CPR and 80.3% of respondents were willing to disseminate CPR. CPR technique, victim's status, respondent's specialty and respondent's gender affected the attitudes of respondents toward performing bystander CPR. The top four reasons for being unwilling to perform bystander CPR were lack of confidence, fear of legal disputes, fear of disease transmission and feeling embarrassed. However, the key reason for being unwilling to perform bystander CPR differed in different specialties and particularly 'feeling embarrassment' might be a cultural phenomenon. The attitudes toward learning and disseminating CPR were positive and affected by respondent's gender and specialty. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Dispatcher instruction of chest compression-only CPR increases actual provision of bystander CPR.

    PubMed

    Shimamoto, Tomonari; Iwami, Taku; Kitamura, Tetsuhisa; Nishiyama, Chika; Sakai, Tomohiko; Nishiuchi, Tatsuya; Hayashi, Yasuyuki; Kawamura, Takashi

    2015-11-01

    A preceding randomized controlled trial demonstrated that chest compression-only cardiopulmonary resuscitation (CPR) instruction by dispatcher was more effective to increase bystander CPR than conventional CPR instruction. However, the actual condition of implementation of each type of dispatcher instruction (chest compression-only CPR [CCCPR] or conventional CPR with rescue breathing) and provision of bystander CPR in real prehospital settings has not been sufficiently investigated. This registry prospectively enrolled patients aged =>18 years suffering an out-of-hospital cardiac arrest (OHCA) of non-traumatic causes before emergency-medical-service (EMS) arrival, who were considered as target subjects of dispatcher instruction, resuscitated by EMS personnel, and transported to medical institutions in Osaka, Japan from January 2005 through December 2012. The primary outcome measure was provision of CPR by a bystander. Multiple logistic regression analysis was used to assess factors that were potentially associated with provision of bystander CPR. Among 37,283 target subjects of dispatcher instruction, 5743 received CCCPR instruction and 13,926 received conventional CPR instruction. The proportion of CCCPR instruction increased from 5.7% in 2005 to 25.6% in 2012 (p for trend <0.001). The CCCPR instruction group received bystander CPR more frequently than conventional CPR instruction group (70.0% versus 62.1%, p<0.001). In the multivariable analysis, CCCPR dispatcher instruction was significantly associated with provision of bystander CPR compared with conventional CPR instruction (adjusted odds ratio 1.44, 95% CI 1.34-1.55). CCCPR dispatcher instruction among adult OHCA patients significantly increased the actual provision of bystander CPR. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Bystander CPR Helps Save Brain Function After Near-Drowning

    MedlinePlus

    ... fullstory_165984.html Bystander CPR Helps Save Brain Function After Near-Drowning Heart compressions were even more ... are more likely to recover with good brain function if bystanders immediately begin chest compressions rather than ...

  15. Analysis of out-of-hospital cardiac arrest in Croatia – survival, bystander cardiopulmonary resuscitation, and impact of physician’s experience on cardiac arrest management: a single center observational study

    PubMed Central

    Lukić, Anita; Lulić, Ileana; Lulić, Dinka; Ognjanović, Zoran; Cerovečki, Davorin; Telebar, Siniša; Mašić, Ivica

    2016-01-01

    Aim To analyze the initial rhythm, bystander cardiopulmonary resuscitation (CPR) rate, and survival after out-of-hospital cardiac arrests (OHCA) in Varaždin County (Croatia), and to investigate whether physician’s inexperience in emergency medical services (EMS) has an impact on resuscitation management. Methods We reviewed clinical records and Revised Utstein cardiac arrest forms of all out-of-hospital resuscitations performed by EMS Varaždin (EMSVz), Croatia, from 2007-2013. To analyze the impact of physician’s inexperience in EMS (<1 year in EMS) on resuscitation management, we assessed physician’s turnover in EMSVz, as well as OHCA survival, airway management, and adherence to resuscitation guidelines in regard to physician’s EMS experience. Results Of 276 patients (median age 68 years, interquartile range [IQR] 16; 198 male; 37% ventricular fibrillation/ventricular tachycardia, bystander CPR rate 25%), 80 were transferred to hospital and 39 were discharged (median survival after discharge 23 months, IQR 46 months). During the 7-year study period, 29 newly graduated physicians inexperienced in EMS started to work in EMSVz (performing 77 resuscitations), while 48% of them stayed for less than one year. Airway management depended on physician’s EMS experience (P = 0.018): inexperienced physicians performed bag-valve-mask ventilation (BMV) more than the experienced, with no impact on survival rate. Physician’s EMS experience did not influence adherence to resuscitation guidelines (P = 0.668), survival to hospital discharge (P = 0.791), or survival time (P = 0.405). Conclusion OHCA survival rate of EMSVz resuscitations was higher than in Europe, but bystander CPR needs to be improved. Compared to experienced physicians, inexperienced physicians preferred BMV over intubation, but with similar adherence to resuscitation guidelines and survival after OHCA. PMID:28051284

  16. Booze, Bars, and Bystander Behavior: People Who Consumed Alcohol Help Faster in the Presence of Others

    PubMed Central

    van Bommel, Marco; van Prooijen, Jan-Willem; Elffers, Henk; Van Lange, Paul A. M.

    2016-01-01

    People help each other less often and less quickly when bystanders are present. In this paper, we propose that alcohol consumption could attenuate or reverse this so-called bystander effect. Alcohol impairs people cognitively and perceptually, leading them to think less about the presence of others and behave less inhibited. Moreover, alcohol makes people more prone to see the benefits of helping and not the costs. To provide an initial test of these lines of reasoning, we invited visitors of bars in Amsterdam to join our study at a secluded spot at the bar. We manipulated bystander presence, and at the end of the study, we measured alcohol consumption. When participants took their seats, the experimenter dropped some items. We measured how many items were picked up and how quickly participants engaged in helping. Results revealed that alcohol did not influence the bystander effect in terms of the amount of help given. But importantly, it did influence the bystander effect in terms of response times: people who consumed alcohol actually came to aid faster in the presence of others. PMID:26903929

  17. Booze, Bars, and Bystander Behavior: People Who Consumed Alcohol Help Faster in the Presence of Others.

    PubMed

    van Bommel, Marco; van Prooijen, Jan-Willem; Elffers, Henk; Van Lange, Paul A M

    2016-01-01

    People help each other less often and less quickly when bystanders are present. In this paper, we propose that alcohol consumption could attenuate or reverse this so-called bystander effect. Alcohol impairs people cognitively and perceptually, leading them to think less about the presence of others and behave less inhibited. Moreover, alcohol makes people more prone to see the benefits of helping and not the costs. To provide an initial test of these lines of reasoning, we invited visitors of bars in Amsterdam to join our study at a secluded spot at the bar. We manipulated bystander presence, and at the end of the study, we measured alcohol consumption. When participants took their seats, the experimenter dropped some items. We measured how many items were picked up and how quickly participants engaged in helping. Results revealed that alcohol did not influence the bystander effect in terms of the amount of help given. But importantly, it did influence the bystander effect in terms of response times: people who consumed alcohol actually came to aid faster in the presence of others.

  18. Bispecific T cell engager (BiTE®) antibody constructs can mediate bystander tumor cell killing

    PubMed Central

    Ross, Sandra L.; Sherman, Marika; McElroy, Patricia L.; Lofgren, Julie A.; Moody, Gordon; Baeuerle, Patrick A.; Coxon, Angela

    2017-01-01

    For targets that are homogenously expressed, such as CD19 on cells of the B lymphocyte lineage, immunotherapies can be highly effective. Targeting CD19 with blinatumomab, a CD19/CD3 bispecific antibody construct (BiTE®), or with chimeric antigen receptor T cells (CAR-T) has shown great promise for treating certain CD19-positive hematological malignancies. In contrast, solid tumors with heterogeneous expression of the tumor-associated antigen (TAA) may present a challenge for targeted therapies. To prevent escape of TAA-negative cancer cells, immunotherapies with a local bystander effect would be beneficial. As a model to investigate BiTE®-mediated bystander killing in the solid tumor setting, we used epidermal growth factor receptor (EGFR) as a target. We measured lysis of EGFR-negative populations in vitro and in vivo when co-cultured with EGFR-positive cells, human T cells and an EGFR/CD3 BiTE® antibody construct. Bystander EGFR-negative cells were efficiently lysed by BiTE®-activated T cells only when proximal to EGFR-positive cells. Our mechanistic analysis suggests that cytokines released by BiTE®-activated T-cells induced upregulation of ICAM-1 and FAS on EGFR-negative bystander cells, contributing to T cell-induced bystander cell lysis. PMID:28837681

  19. Human brain glioblastoma cells do not induce but do respond to the bleomycin-induced bystander response from lung adenocarcinoma cells.

    PubMed

    Basheerudeen, Safa Abdul Syed; Mani, Chinnadurai; Kulkarni, Megha Anil Kumar; Pillai, Karthika; Rajan, Anila; Venkatachalam, Perumal

    2013-10-09

    To determine whether the bleomycin (BLM)-induced bystander response occurs in human brain glioblastoma (BMG-1) cells, the BMG-1 cells were exposed to two different concentrations of BLM. The co-culture methodology was adopted to study the in vitro bystander effects. DNA damage was measured using the micronucleus (MN) and γ-H2AX assays. Cytotoxicity was measured using the trypan blue assay. Cell cycle kinetics was analyzed using flow cytometry. The overall results did not show any significant increase in either genotoxicity or cytotoxicity or a delay in the cell cycle kinetics in BMG-1 bystander cells co-cultured with BLM-exposed cells, suggesting that BLM did not induce a bystander response in the BMG-1 cells. Furthermore, the MN results of the BLM-exposed BMG-1 cells co-cultured with unexposed bystander human lung adenocarcinoma (A549 and NCI-H460) cells and vice versa suggested that the BMG-1 cells do not secrete bystander signals but do respond to those signals. Analyzing the underlying mechanism and pathways involved in preventing the cells from secreting bystander signals will provide new insights that can be applied to inhibit these mechanisms in other cell types, thereby preventing and controlling the bystander response and genomic instability and increasing the therapeutic gain in chemotherapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Bystander Attitudes to Prevent Sexual Assault: A Study of College Students in the United States, Japan, India, Vietnam, and China.

    PubMed

    Kamimura, Akiko; Trinh, Ha Ngoc; Nguyen, Hanh; Yamawaki, Niwako; Bhattacharya, Haimanti; Mo, Wenjing; Birkholz, Ryan; Makomenaw, Angie; Olson, Lenora M

    2016-01-01

    College women are at a high risk of sexual assault. Although programs that aim to change bystander behaviors have been shown to be potentially effective in preventing sexual assault on campuses in the United States, little is known about bystander behaviors outside of the United States. The purpose of this study was to explore and compare factors affecting bystander behaviors regarding sexual assault intervention and prevention among undergraduate students in the United States, Japan, India, Vietnam, and China. A total of 1,136 students participated in a self-reported survey. Results demonstrate substantial variations across countries. Bystander behaviors are associated with multilevel factors, including gender, knowledge of individuals who have experienced a sexual assault, and knowledge about campus or community organizations.

  1. Predicting Bystander Behavior to Prevent Sexual Assault on College Campuses: The Role of Self-Efficacy and Intent.

    PubMed

    McMahon, Sarah; Peterson, N Andrew; Winter, Samantha C; Palmer, Jane E; Postmus, Judy L; Koenick, Ruth Anne

    2015-09-01

    Bystander intervention has been increasingly applied to prevent sexual violence on college campuses. Its underlying theory assumes unidirectional relationships between variables, predicting that bystander behaviors (i.e., actions taken to intervene in sexual violence situations) will be influenced by bystander intentions (BI; i.e., likelihood to intervene in the future), which in turn will be affected by bystander efficacy (BE; i.e., confidence to intervene). One question for theory is whether a reciprocal relationship exists between BI and BE. We used structural equation modeling (SEM) with longitudinal data to test unidirectional and reciprocal causal relations between BI and BE. Participants (n = 1390) were students at a northeastern US university. Four models were examined using SEM: (1) a baseline model with autoregressive paths; (2) a model with autoregressive effects and BI predicting future BE; (3) a model with autoregressive effects and BE predicting future BI; and, (4) a fully cross-lagged model. Results indicated that reciprocal causality was found to occur between BI and BE. In addition, a final model demonstrated indirect effects of a bystander intervention program on bystander behaviors through both BI and BE at different time points. Implications for theory and practice are described, and directions for future research discussed.

  2. Rethinking the bystander role in school violence prevention.

    PubMed

    Stueve, Ann; Dash, Kimberly; O'Donnell, Lydia; Tehranifar, Parisa; Wilson-Simmons, Renée; Slaby, Ronald G; Link, Bruce G

    2006-01-01

    Public concerns about school shootings and safety draw attention to the role bystanders can play in preventing school violence. Although school violence prevention plans are often required, there is little guidance about whether these should address the roles of bystanders and what actions bystanders should take in different circumstances, from more common instances of bullying and fighting to rare, but potentially lethal, threats and use of weapons. Literature pertaining to bystanders is reviewed and applied to the school setting. The definition of bystander is expanded, including parents, teachers, and other school staff as well as youths and those who have information about potential violence as well as those who witness its occurrence. Barriers preventing bystanders from taking positive actions are discussed. The authors call on health promotion researchers and practitioners to work with school communities to identify norms, attitudes, and outcome expectancies that shape bystander behaviors to inform prevention efforts.

  3. Mutations in Succinate Dehydrogenase Subunit C Increase Radiosensitivity and Bystander Responses

    NASA Astrophysics Data System (ADS)

    Zhou, Hongning; Hei, Tom K.

    Although radiation-induced bystander effect is well studied in the past decade, the precise mech-anisms are still unclear. It is likely that a combination of pathways involving both primary and secondary signaling processes is involved in producing a bystander effect. There is recent evidence that mitochondria play a critical role in bystander responses. Recently studies found that a mutation in succinate dehydrogenese subunit C (SDHC), an integral membrane protein in complex II of the electron transport chain, resulted in increased superoxide, oxidative stress, apoptosis, tumorigenesis, and genomic instability, indicating that SDHC play a critical role in maintaining mitochondrial function. In the present study, using Chinese hamster fibroblasts (B1 cells) and the mutants (B9 cells) containing a single base substitution that produced a premature stop codon resulting in a 33-amino acid COOH-terminal truncation of the SDHC protein, we found that B9 cells had an increase in intracellular superoxide content, nitric oxide species, and mitochondrial membrane potential when compared with wild type cells. After irradiated with a grade of doses of gamma rays, B9 cells show an increased radiosensitivity, especially at high doses. The HPRT- mutant yield after gamma-ray irradiation in B9 cells was significantly higher than that of B1 cells. A single, 3Gy dose of gamma-rays increased the background mutant level by more than 4 fold. In contrast, the mutant induction was less than 2 fold in B1 cells. In addition, B9 cells produced a higher bystander mutagenesis after alpha particle irradiation than the B1 cells. Furthermore, pretreated with carboxy-2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO), a nitric oxide scavenger, significantly decreased the bystander effect. Our findings demonstrate that a mutation in SDHC increases radiosensitivity in both directly irradiated cells and in neighboring bystander cells, and mito-chondrial function play an essential role in

  4. That's What Friends Are For: Bystander Responses to Friends or Strangers at Risk for Party Rape Victimization.

    PubMed

    Katz, Jennifer; Pazienza, Rena; Olin, Rachel; Rich, Hillary

    2015-10-01

    The present research examined bystander responses to potential party rape scenarios involving either a friend or a stranger at risk. Undergraduate students (N = 151) imagined attending a party and seeing a man lead an intoxicated woman (friend or stranger) into a bedroom. After random assignment to conditions, participants reported on intentions to help, barriers to helping, victim blame, and empathic concern. As expected, based on their shared social group membership, bystanders intended to offer more help to friends than to strangers. Bystanders also reported more personal responsibility to help and more empathic concern when the potential victim was a friend rather than stranger. Observing a friend versus stranger at risk did not affect audience inhibition or perceived victim blame. Compared with women, men reported more blame and less empathic concern for potential victims. However, there were no gender differences in bystander intent to help or barriers to helping. In multivariate analyses, both responsibility to help and empathic concern for the potential victim uniquely predicted bystanders' intent to help a woman at risk for party rape. Results suggest that promoting social identification with peers at risk could increase bystander intervention. © The Author(s) 2014.

  5. Recognising out-of-hospital cardiac arrest during emergency calls increases bystander cardiopulmonary resuscitation and survival.

    PubMed

    Viereck, Søren; Møller, Thea Palsgaard; Ersbøll, Annette Kjær; Bækgaard, Josefine Stokholm; Claesson, Andreas; Hollenberg, Jacob; Folke, Fredrik; Lippert, Freddy K

    2017-06-01

    Initiation of early bystander cardiopulmonary resuscitation (CPR) depends on bystanders' or medical dispatchers' recognition of out-of-hospital cardiac arrest (OHCA). The primary aim of our study was to investigate if OHCA recognition during the emergency call was associated with bystander CPR, return of spontaneous circulation (ROSC), and 30-day survival. Our secondary aim was to identify patient-, setting-, and dispatcher-related predictors of OHCA recognition. We performed an observational study of all OHCA patients' emergency calls in the Capital Region of Denmark from 01/01/2013-31/12/2013. OHCAs were collected from the Danish Cardiac Arrest Registry and the Mobile Critical Care Unit database. Emergency call recordings were identified and evaluated. Multivariable logistic regression analyses were applied to all OHCAs and witnessed OHCAs only to analyse the association between OHCA recognition and bystander CPR, ROSC, and 30-day survival. Univariable logistic regression analyses were applied to identify predictors of OHCA recognition. We included 779 emergency calls in the analyses. During the emergency calls, 70.1% (n=534) of OHCAs were recognised; OHCA recognition was positively associated with bystander CPR (odds ratio [OR]=7.84, 95% confidence interval [CI]: 5.10-12.05) in all OHCAs; and ROSC (OR=1.86, 95% CI: 1.13-3.06) and 30-day survival (OR=2.80, 95% CI: 1.58-4.96) in witnessed OHCA. Predictors of OHCA recognition were addressing breathing (OR=1.76, 95% CI: 1.17-2.66) and callers located by the patient's side (OR=2.16, 95% CI: 1.46-3.19). Recognition of OHCA during emergency calls was positively associated with the provision of bystander CPR, ROSC, and 30-day survival in witnessed OHCA. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Bystander Cardiopulmonary Resuscitation Is Clustered and Associated With Neighborhood Socioeconomic Characteristics: A Geospatial Analysis of Kent County, Michigan.

    PubMed

    Uber, Amy; Sadler, Richard C; Chassee, Todd; Reynolds, Joshua C

    2017-08-01

    Geographic clustering of bystander cardiopulmonary resuscitation (CPR) is associated with demographic and socioeconomic features of the community where out-of-hospital cardiac arrest (OHCA) occurred, although this association remains largely untested in rural areas. With a significant rural component and relative racial homogeneity, Kent County, Michigan, provides a unique setting to externally validate or identify new community features associated with bystander CPR. Using a large, countywide data set, we tested for geographic clustering of bystander CPR and its associations with community socioeconomic features. Secondary analysis of adult OHCA subjects (2010-2015) in the Cardiac Arrest Registry to Enhance Survival (CARES) data set for Kent County, Michigan. After linking geocoded OHCA cases to U.S. census data, we used Moran's I-test to assess for spatial autocorrelation of population-weighted cardiac arrest rate by census block group. Getis-Ord Gi statistic assessed for spatial clustering of bystander CPR and mixed-effects hierarchical logistic regression estimated adjusted associations between community features and bystander CPR. Of 1,592 subjects, 1,465 met inclusion criteria. Geospatial analysis revealed significant clustering of OHCA in more populated/urban areas. Conversely, bystander CPR was less likely in these areas (99% confidence) and more likely in suburban and rural areas (99% confidence). Adjusting for clinical, demographic, and socioeconomic covariates, bystander CPR was associated with public location (odds ratio [OR] = 1.19; 95% confidence interval [CI] = 1.03-1.39), initially shockable rhythms (OR = 1.48; 95% CI = 1.12-1.96), and those in urban neighborhoods (OR = 0.54; 95% CI = 0.38-0.77). Out-of-hospital cardiac arrest and bystander CPR are geographically clustered in Kent County, Michigan, but bystander CPR is inversely associated with urban designation. These results offer new insight into bystander CPR patterns in mixed urban and rural

  7. No significant level of inheritable interchromosomal aberrations in the progeny of bystander primary human fibroblasts after alpha particle irradiation

    NASA Astrophysics Data System (ADS)

    Hu, Burong; Zhu, Jiayun; Zhou, Hongning; Hei, Tom K.

    2013-02-01

    A major concern for bystander effects is the probability that normal healthy cells adjacent to the irradiated cells become genomically unstable and undergo further carcinogenesis after therapeutic irradiation or space mission where astronauts are exposed to low dose of heavy ions. Genomic instability is a hallmark of cancer cells. In the present study, two irradiation protocols were performed in order to ensure pure populations of bystander cells and the genomic instability in their progeny were investigated. After irradiation, chromosomal aberrations of cells were analyzed at designated time points using G2 phase premature chromosome condensation (G2-PCC) coupled with Giemsa staining and with multiplex fluorescent in situ hybridization (mFISH). Our Giemsa staining assay demonstrated that elevated yields of chromatid breaks were induced in the progeny of pure bystander primary fibroblasts up to 20 days after irradiation. mFISH assay showed no significant level of inheritable interchromosomal aberrations were induced in the progeny of the bystander cell groups, while the fractions of gross aberrations (chromatid breaks or chromosomal breaks) significantly increased in some bystander cell groups. These results suggest that genomic instability occurred in the progeny of the irradiation associated bystander normal fibroblasts exclude the inheritable interchromosomal aberration.

  8. No significant level of inheritable interchromosomal aberrations in the progeny of bystander primary human fibroblast after alpha particle irradiation

    PubMed Central

    Hu, Burong; Zhu, Jiayun; Zhou, Hongning; Hei, Tom K.

    2012-01-01

    A major concern for bystander effects is the probability that normal healthy cells adjacent to the irradiated cells become genomically unstable and undergo further carcinogenesis after therapeutic irradiation or space mission where astronauts are exposed to low dose of heavy ions. Genomic instability is a hallmark of cancer cells. In the present study, two irradiation protocols were performed in order to ensure pure populations of bystander cells and the genomic instability in their progeny were investigated. After irradiation, chromosomal aberrations of cells were analyzed at designated time points using G2 phase premature chromosome condensation (G2-PCC) coupled with Giemsa staining and with multiplex fluorescent in situ hybridization (mFISH). Our Giemsa staining assay demonstrated that elevated yields of chromatid breaks were induced in the progeny of pure bystander primary fibroblasts up to 20 days after irradiation. MFISH assay showed no significant level of inheritable interchromosomal aberrations were induced in the progeny of the bystander cell groups, while the fractions of gross aberrations (chromatid breaks or chromosomal breaks) significantly increased in some bystander cell groups. These results suggest that genomic instability occurred in the progeny of the irradiation associated bystander normal fibroblasts exclude the inheritable interchromosomal aberration. PMID:23503090

  9. Modifiers of Neighbors' Bystander Intervention in Intimate Partner Violence: A Concept Mapping Study

    PubMed Central

    Wee, Sara; Todd, Mary-Justine; Oshiro, Michael; Greene, Emily

    2016-01-01

    Abstract Encouraging bystander intervention in intimate partner violence (IPV) against women is potentially an important method of reducing the prevalence of such violence in urban communities. Most existing research has been conducted on campuses and in relation to sexual violence among teens or young adults. Our understanding of which bystander behaviors are feasible is nascent, and our knowledge of which situational factors influence neighbors' self-reported willingness to intervene is underdeveloped. We conducted a concept mapping study to identify potential bystander intervention behaviors in IPV among neighbors in urban settings; we also assessed whether perceived feasibility and effectiveness of those behaviors varied by situational characteristics. Using data collected from 41 residents of a low-income New York City neighborhood in late 2011, concept mapping was used to create a conceptual map of the 74 behaviors identified by participants. We examined participant differences in mean feasibility (i.e., that the participants “could” or “would” enact a behavior), feasibility given two situational characteristics (if the couple was perceived to have a history of IPV, and if children were believed to be involved or present), and perceived effectiveness of bystander behaviors. Differences across select sociodemographic factors of participants were also analyzed. A 13-cluster solution emerged, with clusters of bystander behaviors grouped into four larger cluster areas: victim focused, parenting/education focused, perpetrator focused, and community involvement focused. Bivariate analyses revealed that participants rated the four cluster areas as more feasible when a child was believed to be involved. Male participants rated intervention as less feasible when the couple was believed to have a history of IPV. Participants who reported a history of IPV victimization rated all four cluster areas as less effective on average, as compared with participants

  10. Modifiers of Neighbors' Bystander Intervention in Intimate Partner Violence: A Concept Mapping Study.

    PubMed

    Wee, Sara; Todd, Mary-Justine; Oshiro, Michael; Greene, Emily; Frye, Victoria

    2016-03-01

    Encouraging bystander intervention in intimate partner violence (IPV) against women is potentially an important method of reducing the prevalence of such violence in urban communities. Most existing research has been conducted on campuses and in relation to sexual violence among teens or young adults. Our understanding of which bystander behaviors are feasible is nascent, and our knowledge of which situational factors influence neighbors' self-reported willingness to intervene is underdeveloped. We conducted a concept mapping study to identify potential bystander intervention behaviors in IPV among neighbors in urban settings; we also assessed whether perceived feasibility and effectiveness of those behaviors varied by situational characteristics. Using data collected from 41 residents of a low-income New York City neighborhood in late 2011, concept mapping was used to create a conceptual map of the 74 behaviors identified by participants. We examined participant differences in mean feasibility (i.e., that the participants "could" or "would" enact a behavior), feasibility given two situational characteristics (if the couple was perceived to have a history of IPV, and if children were believed to be involved or present), and perceived effectiveness of bystander behaviors. Differences across select sociodemographic factors of participants were also analyzed. A 13-cluster solution emerged, with clusters of bystander behaviors grouped into four larger cluster areas: victim focused, parenting/education focused, perpetrator focused, and community involvement focused. Bivariate analyses revealed that participants rated the four cluster areas as more feasible when a child was believed to be involved. Male participants rated intervention as less feasible when the couple was believed to have a history of IPV. Participants who reported a history of IPV victimization rated all four cluster areas as less effective on average, as compared with participants without a history of

  11. Crime, Commitment and the Responsive Bystander.

    ERIC Educational Resources Information Center

    Moriarty, Thomas

    The paper describes a field experiment conducted at Jones Beach, New York, to determine (1) how responsive are individuals who witness a crime, and (2) under what conditions will bystanders take action to prevent a crime. The major independent variable in this study was the degree of prior commitment to the victim; whether or not the subject had…

  12. Low dose IR-induced IGF-1-sCLU expression: a p53-repressed expression cascade that interferes with TGFβ1 signaling to confer a pro-survival bystander effect.

    PubMed

    Klokov, D; Leskov, K; Araki, S; Zou, Y; Goetz, E M; Luo, X; Willson, D; Boothman, D A

    2013-01-24

    Inadvertent mammalian tissue exposures to low doses of ionizing radiation (IR) after radiation accidents, remediation of radioactive-contaminated areas, space travel or a dirty bomb represent an interesting trauma to an organism. Possible low-dose IR-induced bystander effects could impact our evaluation of human health effects, as cells within tissue are not equally damaged after doses of IR ≤10 cGy. To understand tissue responses after low IR doses, we generated a reporter system using the human clusterin promoter fused to firefly luciferase (hCLUp-Luc). Secretory clusterin (sCLU), an extracellular molecular chaperone, induced by low doses of cytotoxic agents, clears cell debris. Low-dose IR (≥2 cGy) exposure induced hCLUp-Luc activity with peak levels at 96 h, consistent with endogenous sCLU levels. As doses increased (≥1 Gy), sCLU induction amplitudes increased and time-to-peak response decreased. sCLU expression was stimulated by insulin-like growth factor-1, but suppressed by p53. Responses in transgenic hCLUp-Luc reporter mice after low IR doses showed that specific tissues (that is, colon, spleen, mammary, thymus and bone marrow) of female mice induced hCLUp-Luc activity more than male mice after whole body (≥10 cGy) irradiation. Tissue-specific, non-linear dose- and time-responses of hCLUp-Luc and endogenous sCLU levels were noted. Colon maintained homeostatic balance after 10 cGy. Bone marrow responded with delayed, but prolonged and elevated expression. Intraperitoneal administration of α-transforming growth factor (TGF)β1 (1D11), but not control (13C4) antibodies, immediately following IR exposure abrogated CLU induction responses. Induction in vivo also correlated with Smad signaling by activated TGFβ1 after IR. Mechanistically, media with elevated sCLU levels suppressed signaling, blocked apoptosis and increased survival of TGFβ1-exposed tumor or normal cells. Thus, sCLU is a pro-survival bystander factor that abrogates TGFβ1

  13. The effect of growth architecture on the induction and decay of bleomycin and X-ray-induced bystander response and genomic instability in lung adenocarcinoma cells and blood lymphocytes.

    PubMed

    Chinnadurai, Mani; Paul, Solomon F D; Venkatachalam, Perumal

    2013-02-01

    Cancer patients treated with radiomimetic drug bleomycin (BLM) have shown incidence of 7% second malignancy. Studies regarding BLM-induced genomic instability in bystander cells are scarce, and experiments with cells grown on three-dimensional (3D) cultures to mimic the in-vivo condition have never been attempted. A549 and NCI-H23 (human lung adenocarcinoma) cells were grown as 3D cultures using Cytomatrix(™), exposed to BLM or X-radiation and co-cultured with their respective unexposed cells. The DNA damage in direct and bystander cells were assessed by the induction of micronuclei (MN) or phosphorylated serine-15 residue in protein 53 (p53(ser-15)), a reflection of DNA damage, and by up-regulation of protein 21 (p21Waf1). The persistence of DNA damage was measured using MN assay and fluorescence in situ hybridization (FISH) in cancer cells and human peripheral blood lymphocytes (PBL) respectively. BLM or X-irradiation induced DNA damage in both A549 and NCI-H23 cells and their respective bystander cells grown in 2D or 3D cultures. Further persistence of these damages in bystander PBL at delayed times indicated genomic instability in these cells. BLM-induced genomic instability in the progeny of bystander cells and their significance in therapy-induced second malignancy may not be eliminated completely.

  14. A Bystander Bullying Psychoeducation Program with Middle School Students: A Preliminary Report

    ERIC Educational Resources Information Center

    Midgett, Aida; Doumas, Diana; Sears, Dara; Lundquist, Amanda; Hausheer, Robin

    2015-01-01

    This study evaluated the effectiveness of a brief, stand-alone bystander bullying psychoeducation program for middle school students. The purpose of the program was to train students to take action as peer advocates. Pre- and post-tests indicated that after completing the 90-minute psychoeducation program, students reported an increase in their…

  15. TakeCARE, a Video Bystander Program to Help Prevent Sexual Violence on College Campuses: Results of Two Randomized, Controlled Trials

    PubMed Central

    Jouriles, Ernest N.; McDonald, Renee; Rosenfield, David; Levy, Nicole; Sargent, Kelli; Caiozzo, Christina; Grych, John H.

    2015-01-01

    Objective The present research reports on two randomized controlled trials evaluating TakeCARE, a video bystander program designed to help prevent sexual violence on college campuses. Method In Study 1, students were recruited from psychology courses at two universities. In Study 2, first-year students were recruited from a required course at one university. In both studies, students were randomly assigned to view one of two videos: TakeCARE or a control video on study skills. Just before viewing the videos, students completed measures of bystander behavior toward friends and ratings of self-efficacy for performing such behaviors. The efficacy measure was administered again after the video, and both the bystander behavior measure and the efficacy measure were administered at either one (Study 1) or two (Study 2) months later. Results In both studies, students who viewed TakeCARE, compared to students who viewed the control video, reported engaging in more bystander behavior toward friends and greater feelings of efficacy for performing such behavior. In Study 1, feelings of efficacy mediated effects of TakeCARE on bystander behavior; this result did not emerge in Study 2. Conclusions This research demonstrates that TakeCARE, a video bystander program, can positively influence bystander behavior toward friends. Given its potential to be easily distributed to an entire campus community, TakeCARE might be an effective addition to campus efforts to prevent sexual violence. PMID:27867694

  16. TakeCARE, a Video Bystander Program to Help Prevent Sexual Violence on College Campuses: Results of Two Randomized, Controlled Trials.

    PubMed

    Jouriles, Ernest N; McDonald, Renee; Rosenfield, David; Levy, Nicole; Sargent, Kelli; Caiozzo, Christina; Grych, John H

    2016-07-01

    The present research reports on two randomized controlled trials evaluating TakeCARE, a video bystander program designed to help prevent sexual violence on college campuses. In Study 1, students were recruited from psychology courses at two universities. In Study 2, first-year students were recruited from a required course at one university. In both studies, students were randomly assigned to view one of two videos: TakeCARE or a control video on study skills. Just before viewing the videos, students completed measures of bystander behavior toward friends and ratings of self-efficacy for performing such behaviors. The efficacy measure was administered again after the video, and both the bystander behavior measure and the efficacy measure were administered at either one (Study 1) or two (Study 2) months later. In both studies, students who viewed TakeCARE, compared to students who viewed the control video, reported engaging in more bystander behavior toward friends and greater feelings of efficacy for performing such behavior. In Study 1, feelings of efficacy mediated effects of TakeCARE on bystander behavior; this result did not emerge in Study 2. This research demonstrates that TakeCARE, a video bystander program, can positively influence bystander behavior toward friends. Given its potential to be easily distributed to an entire campus community, TakeCARE might be an effective addition to campus efforts to prevent sexual violence.

  17. DNA damage and the bystander response in tumor and normal cells exposed to X-rays.

    PubMed

    Subhashree, M; Venkateswarlu, R; Karthik, K; Shangamithra, V; Venkatachalam, P

    2017-09-01

    Monolayer and suspension cultures of tumor (BMG-1, CCRF-CEM), normal (AG1522, HADF, lymphocytes) and ATM-mutant (GM4405) human cells were exposed to X-rays at doses used in radiotherapy (high dose and high dose-rate) or radiological imaging (low dose and low dose-rate). Radiation-induced DNA damage, its persistence, and possible bystander effects were evaluated, based on DNA damage markers (γ-H2AX, p53(ser15)) and cell-cycle-specific cyclins (cyclin B1 and cyclin D1). Dose-dependent DNA damage and a dose-independent bystander response were seen after exposure to high dose and high dose-rate radiation. The level of induced damage (expression of p53(ser15), γ-H2AX) depended on ATM status. However, low dose and dose-rate exposures neither increased expression of marker proteins nor induced a bystander response, except in the CCRF-CEM cells. Bystander effects after high-dose irradiation may contribute to stochastic and deterministic effects. Precautions to protect unexposed regions or to inhibit transmission of DNA damage signaling might reduce radiation risks. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Role of HIV Vpr as a regulator of apoptosis and an effector on bystander cells.

    PubMed

    Moon, Ho Suck; Yang, Joo-Sung

    2006-02-28

    The major event in human immunodeficiency virus type 1 (HIV-1) infection is the death of many cells related to host immune response. The demise of these cells is normally explained by cell suicide mechanism, apoptosis. Interestingly, the decrease in the number of immune cells, such as non-CD4(+) cells as well as CD4(+) T cells, in HIV infection usually occurs in uninfected bystander cells, not in directly infected cells. It has, therefore, been suggested that several soluble factors, including viral protein R (Vpr), are released from the infected cells and induce the death of bystander cells. Some studies show that Vpr interacts directly with adenine nucleotide translocator (ANT) to induce mitochondrial membrane permeabilization (MMP). The MMP results in release of some apoptogenic factors such as cytochrome-c (cyt-c) and apoptosis-inducing factor (AIF). Vpr also has indirect effect on mitochondria through enhancing the level of caspase-9 transcription and suppressing nuclear factor-kappa B (NF-kB). The involvement of p53 in Vpr-induced apoptosis remains to be studied. On the other hand, low level of Vpr expression has anti-apoptotic effect, whereas it's high level of expression induces apoptosis. Extracellular Vpr also exhibits cytotoxicity to uninfected bystander cells through apoptotic or necrotic mechanism. The facts that Vpr has cytotoxic effect on both infected cells and bystander cells, and that it exhibits both pro- and anti-apoptotic activity may explain its role in viral survival and disease progression.

  19. Caregivers' Advice and Children's Bystander Behaviors During Bullying Incidents.

    PubMed

    Grassetti, Stevie N; Hubbard, Julie A; Smith, Marissa A; Bookhout, Megan K; Swift, Lauren E; Gawrysiak, Michael J

    2017-03-20

    Many bullying prevention programs take a bystander approach, which encourages children to intervene when they are bystanders to bullying incidents. Little is known about how caregivers' advice to children might promote or undermine the positive bystander behaviors targeted by these programs. Accordingly, the aim of the current study was to investigate relations between caregivers' advice and children's bystander behavior during bullying situations. Participants were 106 racially/ethnically diverse 4th- and 5th-grade students (M age = 10.5 years, SD = .71 years), their classmates, and their caregivers. During classroom visits, peers reported on children's bystander behaviors. During home visits, caregivers and children completed a coded interaction task in which caregivers advised children about how to respond to bullying situations at school. Results suggested that (a) bystander intervention was positively predicted by caregivers' advice to help/comfort the victim, (b) bystander passivity was positively predicted by caregivers' advice to not intervene and negatively predicted by caregivers' advice to help/comfort the victim, and (c) bystander reinforcement/assistance of the bully was positively predicted by caregivers' advice not to intervene and not to tell adults. Results support a link between caregivers' advice at home and children's corresponding behavior when they are bystanders to bullying situations at school. These results emphasize the importance of collaboration between families and schools to reduce school bullying. Implications and directions for future research are discussed.

  20. The key role of miR-21-regulated SOD2 in the medium-mediated bystander responses in human fibroblasts induced by α-irradiated keratinocytes.

    PubMed

    Tian, Wenqian; Yin, Xiaoming; Wang, Longxiao; Wang, Jingdong; Zhu, Wei; Cao, Jianping; Yang, Hongying

    2015-10-01

    Radiation-induced bystander effect (RIBE) is well accepted in the radiation research field by now, but the underlying molecular mechanisms for better understanding this phenomenon caused by intercellular communication and intracellular signal transduction are still incomplete. Although our previous study has demonstrated an important role of miR-21 of unirradiated bystander cells in RIBEs, the direct evidence for the hypothesis that RIBE is epigenetically regulated is still limited and how miR-21 mediates RIBEs is unknown. Reactive oxygen species (ROS) have been demonstrated to be involved in RIBEs, however, the roles of anti-oxidative stress system of cells in RIBEs are unclear. Using transwell insert co-culture system, we investigated medium-mediated bystander responses in WS1 human fibroblasts after co-culture with HaCaT keratinocytes traversed by α-particles. Results showed that the ROS levels in unirradiated bystander WS1 cells were significantly elevated after 30min of co-culture, and 53BP1 foci, a surrogate marker of DNA damage, were obviously induced after 3h of co-culture. This indicates the occurrence of oxidative stress and DNA damage in bystander WS1 cells after co-culture with irradiated keratinocytes. Furthermore, the expression of miR-21 was increased in bystander WS1 cells, downregulation of miR-21 eliminated the bystander responses, overexpression of miR-21 alone could induce bystander-like oxidative stress and DNA damage in WS1 cells. These data indicate an important mediating role of miR-21 in RIBEs. In addition, MnSOD or SOD2 in WS1 cells was involved in the bystander effects, overexpression of SOD2 abolished the bystander oxidative stress and DNA damage, indicating that SOD2 was critical to the induction of RIBEs. Moreover, we found that miR-21 regulated SOD2, suggesting that miR-21 might mediate bystander responses through its regulation on SOD2. In conclusion, this study revealed a profound role of miR-21-regulated SOD2 of unirradiated WS1

  1. It's Your Place: Development and Evaluation of an Evidence-Based Bystander Intervention Campaign.

    PubMed

    Sundstrom, Beth; Ferrara, Merissa; DeMaria, Andrea L; Gabel, Colby; Booth, Kathleen; Cabot, Jeri

    2017-06-28

    Preventing sexual assault on college campuses is a national priority. Bystander intervention offers a promising approach to change social norms and prevent sexual misconduct. This study presents the implementation and evaluation of a theory-based campaign to promote active bystander intervention. The theory of planned behavior (TPB) served as a conceptual framework throughout campaign development and evaluation. Formative research published elsewhere was used to develop campaign strategies, communication channels, and messages, including "It is your place to prevent sexual assault: You're not ruining a good time." The It's Your Place multi-media campaign fosters a culture of bystander intervention through peer-to-peer facilitation and training, as well as traditional and new media platforms. A cross-sectional post-test only web-based survey was designed to evaluate the campaign and test the TPB's ability to accurately predict intention to intervene. Survey data were collected from 1,505 currently enrolled students. The TPB model predicted intention to intervene. There was a significant effect of campaign exposure on attitude, subjective norms, and perceived behavioral intention. This theory-based communication campaign offers implications for promoting active bystander intervention and reducing sexual assault.

  2. Bystanders, parcelling, and an absence of trust in the grooming interactions of wild male chimpanzees

    PubMed Central

    Kaburu, Stefano S. K.; Newton-Fisher, Nicholas E.

    2016-01-01

    The evolution of cooperation remains a central issue in socio-biology with the fundamental problem of how individuals minimize the risks of being short-changed (‘cheated’) should their behavioural investment in another not be returned. Economic decisions that individuals make during interactions may depend upon the presence of potential partners nearby, which offers co operators a temptation to defect from the current partner. The parcelling model posits that donors subdivide services into parcels to force cooperation, and that this is contingent on opportunities for defection; that is, the presence of bystanders. Here we test this model and the effect of bystander presence using grooming interactions of wild chimpanzees. We found that with more bystanders, initiators gave less grooming at the beginning of the bout and were more likely to abandon a grooming bout, while bouts were less likely to be reciprocated. We also found that the groomer’s initial investment was not higher among frequent groomers or stronger reciprocators, suggesting that contrary to current assumptions, grooming decisions are not based on trust, or bonds, within dyads. Our work highlights the importance of considering immediate social context and the influence of bystanders for understanding the evolution of the behavioural strategies that produce cooperation. PMID:26856371

  3. Participation in High School Sports and Bystander Intentions, Efficacy to Intervene, and Rape Myth Beliefs.

    PubMed

    McMahon, Sarah

    2015-10-01

    Debate exists as to whether male athletes are more prone to commit acts of sexual violence and maintain problematic attitudes about sexual assault. To contribute to the literature on this relationship, this study posed the following research questions: (1) Do those students who participated in high school sports and those who did not differ significantly in their attitudes about sexual violence and willingness to intervene as a bystander? Do these differ among types of rape myths and bystander intervention situations? (2) Within a group of athletes, are there significant differences by gender or type of sport (contact sport vs. non-contact?) To answer these questions, surveys were analyzed with a sample of recent high school graduates the summer before entering college (N = 3,588). Results indicate that there were only minor differences between those students who participated in high school varsity sports and those who did not. Students who participated in sports had greater acceptance of three out of five types of rape myths, and less willingness to intervene with perpetrators after an assault; however, the effect sizes were small. There were no significant differences for bystander efficacy. The interaction between sport and gender was significant, but contact sport was not. The findings suggest that there may be aspects of male athletic participation in sports that needs to be addressed, yet there also exists the potential for engaging athletes as leaders who can act as prosocial bystanders.

  4. Complications of bystander cardiopulmonary resuscitation for unconscious patients without cardiopulmonary arrest

    PubMed Central

    Moriwaki, Yoshihiro; Sugiyama, Mitsugi; Tahara, Yoshio; Iwashita, Masayuki; Kosuge, Takayuki; Harunari, Nobuyuki; Arata, Shinju; Suzuki, Noriyuki

    2012-01-01

    Background: Insufficient knowledge of the risks and complications of cardiopulmonary resuscitation (CPR) may be an obstructive factor for CPR, however, particularly for patients who are not clearly suffering out of hospital cardiopulmonary arrest (OH-CPA). The object of this study was to clarify the potential complication, the safety of bystander CPR in such cases. Materials and Methods: This study was a population-based observational case series. To be enrolled, patients had to have undergone CPR with chest compressions performed by lay persons, had to be confirmed not to have suffered OHCPA. Complications of bystander CPR were identified from the patients’ medical records and included rib fracture, lung injury, abdominal organ injury, and chest and/or abdominal pain requiring analgesics. In our emergency department, one doctor gathered information while others performed X-ray and blood examinations, electrocardiograms, and chest and abdominal ultrasonography. Results: A total of 26 cases were the subjects. The mean duration of bystander CPR was 6.5 minutes (ranging from 1 to 26). Nine patients died of a causative pathological condition and pneumonia, and the remaining 17 survived to discharge. Three patients suffered from complications (tracheal bleeding, minor gastric mucosal laceration, and chest pain), all of which were minimal and easily treated. No case required special exami