Science.gov

Sample records for bzip scf5 transcription

  1. Functional characterization of the Arabidopsis transcription factor bZIP29 reveals its role in leaf and root development

    PubMed Central

    Van Leene, Jelle; Blomme, Jonas; Kulkarni, Shubhada R; Cannoot, Bernard; De Winne, Nancy; Eeckhout, Dominique; Persiau, Geert; Van De Slijke, Eveline; Vercruysse, Leen; Vanden Bossche, Robin; Heyndrickx, Ken S; Vanneste, Steffen; Goossens, Alain; Gevaert, Kris; Vandepoele, Klaas; Gonzalez, Nathalie; Inzé, Dirk; De Jaeger, Geert

    2016-01-01

    Plant bZIP group I transcription factors have been reported mainly for their role during vascular development and osmosensory responses. Interestingly, bZIP29 has been identified in a cell cycle interactome, indicating additional functions of bZIP29 in plant development. Here, bZIP29 was functionally characterized to study its role during plant development. It is not present in vascular tissue but is specifically expressed in proliferative tissues. Genome-wide mapping of bZIP29 target genes confirmed its role in stress and osmosensory responses, but also identified specific binding to several core cell cycle genes and to genes involved in cell wall organization. bZIP29 protein complex analyses validated interaction with other bZIP group I members and provided insight into regulatory mechanisms acting on bZIP dimers. In agreement with bZIP29 expression in proliferative tissues and with its binding to promoters of cell cycle regulators, dominant-negative repression of bZIP29 altered the cell number in leaves and in the root meristem. A transcriptome analysis on the root meristem, however, indicated that bZIP29 might regulate cell number through control of cell wall organization. Finally, ectopic dominant-negative repression of bZIP29 and redundant factors led to a seedling-lethal phenotype, pointing to essential roles for bZIP group I factors early in plant development. PMID:27660483

  2. Abscisic-acid-dependent basic leucine zipper (bZIP) transcription factors in plant abiotic stress.

    PubMed

    Banerjee, Aditya; Roychoudhury, Aryadeep

    2017-01-01

    One of the major causes of significant crop loss throughout the world is the myriad of environmental stresses including drought, salinity, cold, heavy metal toxicity, and ultraviolet-B (UV-B) rays. Plants as sessile organisms have evolved various effective mechanism which enable them to withstand this plethora of stresses. Most of such regulatory mechanisms usually follow the abscisic-acid (ABA)-dependent pathway. In this review, we have primarily focussed on the basic leucine zipper (bZIP) transcription factors (TFs) activated by the ABA-mediated signalosome. Upon perception of ABA by specialized receptors, the signal is transduced via various groups of Ser/Thr kinases, which phosphorylate the bZIP TFs. Following such post-translational modification of TFs, they are activated so that they bind to specific cis-acting sequences called abscisic-acid-responsive elements (ABREs) or GC-rich coupling elements (CE), thereby influencing the expression of their target downstream genes. Several in silico techniques have been adopted so far to predict the structural features, recognize the regulatory modification sites, undergo phylogenetic analyses, and facilitate genome-wide survey of TF under multiple stresses. Current investigations on the epigenetic regulation that controls greater accessibility of the inducible regions of DNA of the target gene to the bZIP TFs exclusively under stress situations, along with the evolved stress memory responses via genomic imprinting mechanism, have been highlighted. The potentiality of overexpression of bZIP TFs, either in a homologous or in a heterologous background, in generating transgenic plants tolerant to various abiotic stressors have also been addressed by various groups. The present review will provide a coherent documentation on the functional characterization and regulation of bZIP TFs under multiple environmental stresses, with the major goal of generating multiple-stress-tolerant plant cultivars in near future.

  3. The loss of circadian PAR bZip transcription factors results in epilepsy

    PubMed Central

    Gachon, Frédéric; Fonjallaz, Philippe; Damiola, Francesca; Gos, Pascal; Kodama, Tohru; Zakany, Jozsef; Duboule, Denis; Petit, Brice; Tafti, Mehdi; Schibler, Ueli

    2004-01-01

    DBP (albumin D-site-binding protein), HLF (hepatic leukemia factor), and TEF (thyrotroph embryonic factor) are the three members of the PAR bZip (proline and acidic amino acid-rich basic leucine zipper) transcription factor family. All three of these transcriptional regulatory proteins accumulate with robust circadian rhythms in tissues with high amplitudes of clock gene expression, such as the suprachiasmatic nucleus (SCN) and the liver. However, they are expressed at nearly invariable levels in most brain regions, in which clock gene expression only cycles with low amplitude. Here we show that mice deficient for all three PAR bZip proteins are highly susceptible to generalized spontaneous and audiogenic epilepsies that frequently are lethal. Transcriptome profiling revealed pyridoxal kinase (Pdxk) as a target gene of PAR bZip proteins in both liver and brain. Pyridoxal kinase converts vitamin B6 derivatives into pyridoxal phosphate (PLP), the coenzyme of many enzymes involved in amino acid and neurotransmitter metabolism. PAR bZip-deficient mice show decreased brain levels of PLP, serotonin, and dopamine, and such changes have previously been reported to cause epilepsies in other systems. Hence, the expression of some clock-controlled genes, such as Pdxk, may have to remain within narrow limits in the brain. This could explain why the circadian oscillator has evolved to generate only low-amplitude cycles in most brain regions. PMID:15175240

  4. The Role of bZIP Transcription Factors in Green Plant Evolution: Adaptive Features Emerging from Four Founder Genes

    PubMed Central

    Schrago, Carlos Guerra; dos Santos, Renato Vicentini; Mueller-Roeber, Bernd; Vincentz, Michel

    2008-01-01

    Background Transcription factors of the basic leucine zipper (bZIP) family control important processes in all eukaryotes. In plants, bZIPs are regulators of many central developmental and physiological processes including photomorphogenesis, leaf and seed formation, energy homeostasis, and abiotic and biotic stress responses. Here we performed a comprehensive phylogenetic analysis of bZIP genes from algae, mosses, ferns, gymnosperms and angiosperms. Methodology/Principal Findings We identified 13 groups of bZIP homologues in angiosperms, three more than known before, that represent 34 Possible Groups of Orthologues (PoGOs). The 34 PoGOs may correspond to the complete set of ancestral angiosperm bZIP genes that participated in the diversification of flowering plants. Homologous genes dedicated to seed-related processes and ABA-mediated stress responses originated in the common ancestor of seed plants, and three groups of homologues emerged in the angiosperm lineage, of which one group plays a role in optimizing the use of energy. Conclusions/Significance Our data suggest that the ancestor of green plants possessed four bZIP genes functionally involved in oxidative stress and unfolded protein responses that are bZIP-mediated processes in all eukaryotes, but also in light-dependent regulations. The four founder genes amplified and diverged significantly, generating traits that benefited the colonization of new environments. PMID:18698409

  5. Expression analysis of bZIP transcription factor encoding genes in response to water deficit stress in rice.

    PubMed

    Ali, Kishwar; Rai, R D; Tyagi, Aruna

    2016-05-01

    In plants, basic region/leucine zipper motif (bZIP) transcription factors regulate several developmental processes and activate genes in response to biotic and abiotic stresses. Role of stress responsive bZIP transcription factors was studied in paddy in relation to different stages of development and water deficit stress (WDS) in a drought tolerant cultivar N22 and susceptible IR 64. Further, relative water content (RWC), membrane stability index (MSI) and abscisic acid (ABA) content were measured as indices of WDS at different stages of development and levels of stress. Expression of stress responsive bZIP transcription factors was directly correlated to developmental stage and WDS and indirectly to RWC, MSI and ABA content.

  6. The phylogeny of C/S1 bZIP transcription factors reveals a shared algal ancestry and the pre-angiosperm translational regulation of S1 transcripts

    PubMed Central

    Peviani, Alessia; Lastdrager, Jeroen; Hanson, Johannes; Snel, Berend

    2016-01-01

    Basic leucine zippers (bZIPs) form a large plant transcription factor family. C and S1 bZIP groups can heterodimerize, fulfilling crucial roles in seed development and stress response. S1 sequences also harbor a unique regulatory mechanism, termed Sucrose-Induced Repression of Translation (SIRT). The conservation of both C/S1 bZIP interactions and SIRT remains poorly characterized in non-model species, leaving their evolutionary origin uncertain and limiting crop research. In this work, we explored recently published plant sequencing data to establish a detailed phylogeny of C and S1 bZIPs, investigating their intertwined role in plant evolution, and the origin of SIRT. Our analyses clarified C and S1 bZIP orthology relationships in angiosperms, and identified S1 sequences in gymnosperms. We experimentally showed that the gymnosperm orthologs are regulated by SIRT, tracing back the origin of this unique regulatory mechanism to the ancestor of seed plants. Additionally, we discovered an earlier S ortholog in the charophyte algae Klebsormidium flaccidum, together with a C ortholog. This suggests that C and S groups originated by duplication from a single algal proto-C/S ancestor. Based on our observations, we propose a model wherein the C/S1 bZIP dimer network evolved in seed plants from pre-existing C/S bZIP interactions. PMID:27457880

  7. Arabidopsis bZIP16 Transcription Factor Integrates Light and Hormone Signaling Pathways to Regulate Early Seedling Development[C][W][OA

    PubMed Central

    Hsieh, Wen-Ping; Hsieh, Hsu-Liang; Wu, Shu-Hsing

    2012-01-01

    Transcriptomic adjustment plays an important role in Arabidopsis thaliana seed germination and deetiolation in response to environmental light signals. The G-box cis-element is commonly present in promoters of genes that respond positively or negatively to the light signal. In pursuing additional transcriptional regulators that modulate light-mediated transcriptome changes, we identified bZIP16, a basic region/Leu zipper motif transcription factor, by G-box DNA affinity chromatography. We confirmed that bZIP16 has G-box–specific binding activity. Analysis of bzip16 mutants revealed that bZIP16 is a negative regulator in light-mediated inhibition of cell elongation but a positive regulator in light-regulated seed germination. Transcriptome analysis supported that bZIP16 is primarily a transcriptional repressor regulating light-, gibberellic acid (GA)–, and abscisic acid (ABA)–responsive genes. Chromatin immunoprecipitation analysis revealed that bZIP16 could directly target ABA-responsive genes and RGA-LIKE2, a DELLA gene in the GA signaling pathway. bZIP16 could also indirectly repress the expression of PHYTOCHROME INTERACTING FACTOR3-LIKE5, which encodes a basic helix-loop-helix protein coordinating hormone responses during seed germination. By repressing the expression of these genes, bZIP16 functions to promote seed germination and hypocotyl elongation during the early stages of Arabidopsis seedling development. PMID:23104829

  8. The rice bZIP transcriptional activator RITA-1 is highly expressed during seed development.

    PubMed Central

    Izawa, T; Foster, R; Nakajima, M; Shimamoto, K; Chua, N H

    1994-01-01

    Systematic protein-DNA binding studies have shown that plant basic leucine zipper (bZIP) proteins exhibit a differential binding specificity for ACGT motifs. Here, we show that the rice transcription activator-1 (RITA-1) displays a broad binding specificity for palindromic ACGT elements, being able to bind A-, C-, and G-box but not T-box elements. By using gel mobility shift assays with probes differing in sequences flanking the hexameric core, we identified high-affinity A-, C-, and G-box binding sites. Quantitative and competition DNA binding studies confirmed RITA-1 specificity for these sites. Using rice protoplasts as a transient expression system, we demonstrated that RITA-1 can transactivate reporter genes possessing high-affinity but not low-affinity RITA-1 binding sites. Our results established a direct relationship between in vivo transactivation and in vitro binding activity. Transient expression assays that demonstrated the ability of RITA-1 to transactivate a construct containing rita-1 5' flanking sequences suggest that the factor may be autoregulated. Histochemical analysis of transgenic rice plants showed that a rita-1-beta-glucuronidase transgene is expressed in aleurone and endosperm cells of developing rice seeds. We propose that RITA-1 plays a role in the regulation of rice genes expressed in developing rice seeds. PMID:7919992

  9. Genome-wide characterization and analysis of bZIP transcription factor gene family related to abiotic stress in cassava

    PubMed Central

    Hu, Wei; Yang, Hubiao; Yan, Yan; Wei, Yunxie; Tie, Weiwei; Ding, Zehong; Zuo, Jiao; Peng, Ming; Li, Kaimian

    2016-01-01

    The basic leucine zipper (bZIP) transcription factor family plays crucial roles in various aspects of biological processes. Currently, no information is available regarding the bZIP family in the important tropical crop cassava. Herein, 77 bZIP genes were identified from cassava. Evolutionary analysis indicated that MebZIPs could be divided into 10 subfamilies, which was further supported by conserved motif and gene structure analyses. Global expression analysis suggested that MebZIPs showed similar or distinct expression patterns in different tissues between cultivated variety and wild subspecies. Transcriptome analysis of three cassava genotypes revealed that many MebZIP genes were activated by drought in the root of W14 subspecies, indicating the involvement of these genes in the strong resistance of cassava to drought. Expression analysis of selected MebZIP genes in response to osmotic, salt, cold, ABA, and H2O2 suggested that they might participate in distinct signaling pathways. Our systematic analysis of MebZIPs reveals constitutive, tissue-specific and abiotic stress-responsive candidate MebZIP genes for further functional characterization in planta, yields new insights into transcriptional regulation of MebZIP genes, and lays a foundation for understanding of bZIP-mediated abiotic stress response. PMID:26947924

  10. Genome-Wide Identification and Characterization of bZIP Transcription Factors in Brassica oleracea under Cold Stress

    PubMed Central

    Hwang, Indeok; Manoharan, Ranjith Kumar; Kang, Jong-Goo; Chung, Mi-Young; Kim, Young-Wook; Nou, Ill-Sup

    2016-01-01

    Cabbages (Brassica oleracea L.) are an important vegetable crop around world, and cold temperature is among the most significant abiotic stresses causing agricultural losses, especially in cabbage crops. Plant bZIP transcription factors play diverse roles in biotic/abiotic stress responses. In this study, 119 putative BolbZIP transcription factors were identified using amino acid sequences from several bZIP domain consensus sequences. The BolbZIP members were classified into 63 categories based on amino acid sequence similarity and were also compared with BrbZIP and AtbZIP transcription factors. Based on this BolbZIP identification and classification, cold stress-responsive BolbZIP genes were screened in inbred lines, BN106 and BN107, using RNA sequencing data and qRT-PCR. The expression level of the 3 genes, Bol008071, Bol033132, and Bol042729, was significantly increased in BN107 under cold conditions and was unchanged in BN106. The upregulation of these genes in BN107, a cold-susceptible inbred line, suggests that they might be significant components in the cold response. Among three identified genes, Bol033132 has 97% sequence similarity to Bra020735, which was identified in a screen for cold-related genes in B. rapa and a protein containing N-rich regions in LCRs. The results obtained in this study provide valuable information for understanding the potential function of BolbZIP transcription factors in cold stress responses. PMID:27314020

  11. Phosphorylation Affects DNA-Binding of the Senescence-Regulating bZIP Transcription Factor GBF1

    PubMed Central

    Smykowski, Anja; Fischer, Stefan M.; Zentgraf, Ulrike

    2015-01-01

    Massive changes in the transcriptome of Arabidopsis thaliana during onset and progression of leaf senescence imply a central role for transcription factors. While many transcription factors are themselves up- or down-regulated during senescence, the bZIP transcription factor G-box-binding factor 1 (GBF1/bZIP41) is constitutively expressed in Arabidopsis leaf tissue but at the same time triggers the onset of leaf senescence, suggesting posttranscriptional mechanisms for senescence-specific GBF1 activation. Here we show that GBF1 is phosphorylated by the threonine/serine CASEIN KINASE II (CKII) in vitro and that CKII phosphorylation had a negative effect on GBF1 DNA-binding to G-boxes of two direct target genes, CATALASE2 and RBSCS1a. Phosphorylation mimicry at three serine positions in the basic region of GBF1 also had a negative effect on DNA-binding. Kinase assays revealed that CKII phosphorylates at least one serine in the basic domain but has additional phosphorylation sites outside this domain. Two different ckII α subunit1 and one α subunit2 T-DNA insertion lines showed no visible senescence phenotype, but in all lines the expression of the senescence marker gene SAG12 was remarkably diminished. A model is presented suggesting that senescence-specific GBF1 activation might be achieved by lowering the phosphorylation of GBF1 by CKII. PMID:27135347

  12. A novel wheat bZIP transcription factor, TabZIP60, confers multiple abiotic stress tolerances in transgenic Arabidopsis.

    PubMed

    Zhang, Lina; Zhang, Lichao; Xia, Chuan; Zhao, Guangyao; Liu, Ji; Jia, Jizeng; Kong, Xiuying

    2015-04-01

    The basic region/leucine zipper (bZIP) transcription factors (TFs) play vital roles in the response to abiotic stress. However, little is known about the function of bZIP genes in wheat abiotic stress. In this study, we report the isolation and functional characterization of the TabZIP60 gene. Three homologous genome sequences of TabZIP60 were isolated from hexaploid wheat and mapped to the wheat homoeologous group 6. A subcellular localization analysis indicated that TabZIP60 is a nuclear-localized protein that activates transcription. Furthermore, TabZIP60 gene transcripts were strongly induced by polyethylene glycol, salt, cold and exogenous abscisic acid (ABA) treatments. Further analysis showed that the overexpression of TabZIP60 in Arabidopsis resulted in significantly improved tolerances to drought, salt, freezing stresses and increased plant sensitivity to ABA in seedling growth. Meanwhile, the TabZIP60 was capable of binding ABA-responsive cis-elements that are present in promoters of many known ABA-responsive genes. A subsequent analysis showed that the overexpression of TabZIP60 led to enhanced expression levels of some stress-responsive genes and changes in several physiological parameters. Taken together, these results suggest that TabZIP60 enhances multiple abiotic stresses through the ABA signaling pathway and that modifications of its expression may improve multiple stress tolerances in crop plants.

  13. bZIP Transcription Factors in the Oomycete Phytophthora infestans with Novel DNA-Binding Domains Are Involved in Defense against Oxidative Stress

    PubMed Central

    Gamboa-Meléndez, Heber; Huerta, Apolonio I.

    2013-01-01

    Transcription factors of the basic leucine zipper (bZIP) family control development and stress responses in eukaryotes. To date, only one bZIP has been described in any oomycete; oomycetes are members of the stramenopile kingdom. In this study, we describe the identification of 38 bZIPs from the Phytophthora infestans genome. Half contain novel substitutions in the DNA-binding domain at a site that in other eukaryotes is reported to always be Asn. Interspecific comparisons indicated that the novel substitutions (usually Cys, but also Val and Tyr) arose after oomycetes diverged from other stramenopiles. About two-thirds of P. infestans bZIPs show dynamic changes in mRNA levels during the life cycle, with many of the genes being upregulated in sporangia, zoospores, or germinated zoospore cysts. One bZIP with the novel Cys substitution was shown to reside in the nucleus throughout growth and development. Using stable gene silencing, the functions of eight bZIPs with the Cys substitution were tested. All but one were found to play roles in protecting P. infestans from hydrogen peroxide-induced injury, and it is proposed that the novel Cys substitution serves as a redox sensor. A ninth bZIP lacking the novel Asn-to-Cys substitution, but having Cys nearby, was also shown through silencing to contribute to defense against peroxide. Little effect on asexual development, plant pathogenesis, or resistance to osmotic stress was observed in transformants silenced for any of the nine bZIPs. PMID:23975888

  14. bZIP transcription factors in the oomycete phytophthora infestans with novel DNA-binding domains are involved in defense against oxidative stress.

    PubMed

    Gamboa-Meléndez, Heber; Huerta, Apolonio I; Judelson, Howard S

    2013-10-01

    Transcription factors of the basic leucine zipper (bZIP) family control development and stress responses in eukaryotes. To date, only one bZIP has been described in any oomycete; oomycetes are members of the stramenopile kingdom. In this study, we describe the identification of 38 bZIPs from the Phytophthora infestans genome. Half contain novel substitutions in the DNA-binding domain at a site that in other eukaryotes is reported to always be Asn. Interspecific comparisons indicated that the novel substitutions (usually Cys, but also Val and Tyr) arose after oomycetes diverged from other stramenopiles. About two-thirds of P. infestans bZIPs show dynamic changes in mRNA levels during the life cycle, with many of the genes being upregulated in sporangia, zoospores, or germinated zoospore cysts. One bZIP with the novel Cys substitution was shown to reside in the nucleus throughout growth and development. Using stable gene silencing, the functions of eight bZIPs with the Cys substitution were tested. All but one were found to play roles in protecting P. infestans from hydrogen peroxide-induced injury, and it is proposed that the novel Cys substitution serves as a redox sensor. A ninth bZIP lacking the novel Asn-to-Cys substitution, but having Cys nearby, was also shown through silencing to contribute to defense against peroxide. Little effect on asexual development, plant pathogenesis, or resistance to osmotic stress was observed in transformants silenced for any of the nine bZIPs.

  15. GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.)

    PubMed Central

    Liang, Chengzhen; Meng, Zhaohong; Meng, Zhigang; Malik, Waqas; Yan, Rong; Lwin, Khin Myat; Lin, Fazhuang; Wang, Yuan; Sun, Guoqing; Zhou, Tao; Zhu, Tao; Li, Jianying; Jin, Shuangxia; Guo, Sandui; Zhang, Rui

    2016-01-01

    The bZIP transcription factor (TF) act as an important regulator for the abscisic acid (ABA) mediated abiotic stresses signaling pathways in plants. Here, we reported the cloning and characterization of GhABF2, encoding for typical cotton bZIP TF. Overexpression of GhABF2 significantly improved drought and salt stress tolerance both in Arabidopsis and cotton. However, silencing of GhABF2 made transgenic cotton sensitive to PEG osmotic and salt stress. Expression of GhABF2 was induced by drought and ABA treatments but repressed by high salinity. Transcriptome analysis indicated that GhABF2 increases drought and salt tolerance by regulating genes related to ABA, drought and salt response. The proline contents, activity of superoxide dismutase (SOD) and catalase (CAT) were also significantly increased in GhABF2-overexpression cottons in comparison to wild type after drought and salt treatment. Further, an increase in fiber yield under drought and saline-alkali wetland exhibited the important role of GhABF2 in enhancing the drought and salt tolerance in transgenic lines. In conclusion, manipulation of GhABF2 by biotechnological tools could be a sustainable strategy to deploy drought and salt tolerance in cotton. PMID:27713524

  16. Altered expression of the bZIP transcription factor DRINK ME affects growth and reproductive development in Arabidopsis thaliana.

    PubMed

    Lozano-Sotomayor, Paulina; Chávez Montes, Ricardo A; Silvestre-Vañó, Marina; Herrera-Ubaldo, Humberto; Greco, Raffaella; Pablo-Villa, Jeanneth; Galliani, Bianca M; Diaz-Ramirez, David; Weemen, Mieke; Boutilier, Kim; Pereira, Andy; Colombo, Lucia; Madueño, Francisco; Marsch-Martínez, Nayelli; de Folter, Stefan

    2016-11-01

    Here we describe an uncharacterized gene that negatively influences Arabidopsis growth and reproductive development. DRINK ME (DKM; bZIP30) is a member of the bZIP transcription factor family, and is expressed in meristematic tissues such as the inflorescence meristem (IM), floral meristem (FM), and carpel margin meristem (CMM). Altered DKM expression affects meristematic tissues and reproductive organ development, including the gynoecium, which is the female reproductive structure and is determinant for fertility and sexual reproduction. A microarray analysis indicates that DKM overexpression affects the expression of cell cycle, cell wall, organ initiation, cell elongation, hormone homeostasis, and meristem activity genes. Furthermore, DKM can interact in yeast and in planta with proteins involved in shoot apical meristem maintenance such as WUSCHEL, KNAT1/BP, KNAT2 and JAIBA, and with proteins involved in medial tissue development in the gynoecium such as HECATE, BELL1 and NGATHA1. Taken together, our results highlight the relevance of DKM as a negative modulator of Arabidopsis growth and reproductive development.

  17. A Ramie bZIP Transcription Factor BnbZIP2 Is Involved in Drought, Salt, and Heavy Metal Stress Response.

    PubMed

    Huang, Chengjian; Zhou, Jinghua; Jie, Yucheng; Xing, Hucheng; Zhong, Yingli; Yu, Weilin; She, Wei; Ma, Yushen; Liu, Zehang; Zhang, Ying

    2016-12-01

    bZIP transcription factors play key roles in plant growth, development, and stress signaling. A bZIP gene BnbZIP2 (GenBank accession number: KP642148) was cloned from ramie. BnbZIP2 has a 1416 base pair open reading frame, encoding a 471 amino acid protein containing a characteristic bZIP domain and a leucine zipper. BnbZIP2 shares high sequence similarity with bZIP factors from other plants. The BnbZIP2 protein is localized to both nuclei and cytoplasm. Transcripts of BnbZIP2 were found in various tissues in ramie, with significantly higher levels in female and male flowers. Its expression was induced by drought, high salinity, and abscisic acid treatments. Analysis of the cis-elements in promoters of BnbZIP2 identified cis-acting elements involved in growth, developmental processes, and a variety of stress responses. Transgenic Arabidopsis plants' overexpression of BnbZIP2 exhibited more sensitivity to drought and heavy metal Cd stress during seed germination, whereas more tolerance to high-salinity stress than the wild type during both seed germination and plant development. Thus, BnbZIP2 may act as a positive regulator in plants' response to high-salinity stress and be an important candidate gene for molecular breeding of salt-tolerant plants.

  18. The Arabidopsis bZIP11 transcription factor links low-energy signalling to auxin-mediated control of primary root growth.

    PubMed

    Weiste, Christoph; Pedrotti, Lorenzo; Selvanayagam, Jebasingh; Muralidhara, Prathibha; Fröschel, Christian; Novák, Ondřej; Ljung, Karin; Hanson, Johannes; Dröge-Laser, Wolfgang

    2017-02-01

    Plants have to tightly control their energy homeostasis to ensure survival and fitness under constantly changing environmental conditions. Thus, it is stringently required that energy-consuming stress-adaptation and growth-related processes are dynamically tuned according to the prevailing energy availability. The evolutionary conserved SUCROSE NON-FERMENTING1 RELATED KINASES1 (SnRK1) and the downstream group C/S1 basic leucine zipper (bZIP) transcription factors (TFs) are well-characterised central players in plants' low-energy management. Nevertheless, mechanistic insights into plant growth control under energy deprived conditions remains largely elusive. In this work, we disclose the novel function of the low-energy activated group S1 bZIP11-related TFs as regulators of auxin-mediated primary root growth. Whereas transgenic gain-of-function approaches of these bZIPs interfere with the activity of the root apical meristem and result in root growth repression, root growth of loss-of-function plants show a pronounced insensitivity to low-energy conditions. Based on ensuing molecular and biochemical analyses, we propose a mechanistic model, in which bZIP11-related TFs gain control over the root meristem by directly activating IAA3/SHY2 transcription. IAA3/SHY2 is a pivotal negative regulator of root growth, which has been demonstrated to efficiently repress transcription of major auxin transport facilitators of the PIN-FORMED (PIN) gene family, thereby restricting polar auxin transport to the root tip and in consequence auxin-driven primary root growth. Taken together, our results disclose the central low-energy activated SnRK1-C/S1-bZIP signalling module as gateway to integrate information on the plant's energy status into root meristem control, thereby balancing plant growth and cellular energy resources.

  19. The Arabidopsis bZIP11 transcription factor links low-energy signalling to auxin-mediated control of primary root growth

    PubMed Central

    Weiste, Christoph; Pedrotti, Lorenzo; Muralidhara, Prathibha; Ljung, Karin; Dröge-Laser, Wolfgang

    2017-01-01

    Plants have to tightly control their energy homeostasis to ensure survival and fitness under constantly changing environmental conditions. Thus, it is stringently required that energy-consuming stress-adaptation and growth-related processes are dynamically tuned according to the prevailing energy availability. The evolutionary conserved SUCROSE NON-FERMENTING1 RELATED KINASES1 (SnRK1) and the downstream group C/S1 basic leucine zipper (bZIP) transcription factors (TFs) are well-characterised central players in plants’ low-energy management. Nevertheless, mechanistic insights into plant growth control under energy deprived conditions remains largely elusive. In this work, we disclose the novel function of the low-energy activated group S1 bZIP11-related TFs as regulators of auxin-mediated primary root growth. Whereas transgenic gain-of-function approaches of these bZIPs interfere with the activity of the root apical meristem and result in root growth repression, root growth of loss-of-function plants show a pronounced insensitivity to low-energy conditions. Based on ensuing molecular and biochemical analyses, we propose a mechanistic model, in which bZIP11-related TFs gain control over the root meristem by directly activating IAA3/SHY2 transcription. IAA3/SHY2 is a pivotal negative regulator of root growth, which has been demonstrated to efficiently repress transcription of major auxin transport facilitators of the PIN-FORMED (PIN) gene family, thereby restricting polar auxin transport to the root tip and in consequence auxin-driven primary root growth. Taken together, our results disclose the central low-energy activated SnRK1-C/S1-bZIP signalling module as gateway to integrate information on the plant’s energy status into root meristem control, thereby balancing plant growth and cellular energy resources. PMID:28158182

  20. Identification of Two bZIP Transcription Factors Interacting with the Promoter of Soybean Rubisco Activase Gene (GmRCAα)

    PubMed Central

    Zhang, Jinyu; Du, Hongyang; Chao, Maoni; Yin, Zhitong; Yang, Hui; Li, Yakai; Huang, Fang; Yu, Deyue

    2016-01-01

    Rubisco activase (RCA), a key photosynthetic protein, catalyses the activation of Rubisco and thus plays an important role in photosynthesis. Although the RCA gene has been characterized in a variety of species, the molecular mechanism regulating its transcription remains unclear. Our previous studies on RCA gene expression in soybean suggested that expression of this gene is regulated by trans-acting factors. In the present study, we verified activity of the GmRCAα promoter in both soybean and Arabidopsis and used a yeast one-hybrid (Y1H) system for screening a leaf cDNA expression library to identify transcription factors (TFs) interacting with the GmRCAα promoter. Four basic leucine zipper (bZIP) TFs, GmbZIP04g, GmbZIP07g, GmbZIP1, and GmbZIP71, were isolated, and GmbZIP04g and GmbZIP07g were confirmed as able to bind to a 21-nt G-box-containing sequence. Additionally, the expression patterns of GmbZIP04g, GmbZIp07g, and GmRCAα were analyzed in response to abiotic stresses and during a 24-h period. Our study will help to advance elucidation of the network regulating GmRCAα transcription. PMID:27242832

  1. The yapA Encodes bZIP Transcription Factor Involved in Stress Tolerance in Pathogenic Fungus Talaromyces marneffei

    PubMed Central

    Dankai, Wiyada; Pongpom, Monsicha; Youngchim, Sirida; Cooper, Chester R.; Vanittanakom, Nongnuch

    2016-01-01

    Talaromyces marneffei, formerly Penicillium marneffei, is a thermally dimorphic fungus. It causes a fatal disseminated disease in patients infected with the human immunodeficiency virus (HIV). Studies on the stress defense mechanism of T. marneffei can lead to a better understanding of the pathogenicity and the progression of the disease due to this fungus. The basic leucine-zipper (bZip) transcription factor gene in Saccharomyces cerevisiae, named yap1 (yeast activating protein-1), is known as a crucial central regulator of stress responses including those caused by oxidative agents, cadmium, and drugs. An ortholog of yap1, designated yapA, was identified in T. marneffei. We found that the yapA gene was involved in growth and fungal cell development. The yapA deletion mutant exhibited delays in the rate of growth, germination, and conidiation. Surprisingly, the yapA gene was also involved in the pigmentation of T. marneffei. Moreover, the mutant was sensitive to oxidative stressors such as H2O2 and menadione, similar to S. cerevisiae yap1 mutant, as well as the nitrosative stressor NaNO2. In addition, the yapA mutant demonstrated significantly decreased survival in human macrophage THP-1 compared to wild-type and complemented strains. This study reveals the role of yapA in fungal growth, cell development, stress response, and potential virulence in T. marneffei. PMID:27706212

  2. High-Yield Expression in E. coli and Refolding of the bZIP Domain of Activating Transcription Factor 5

    PubMed Central

    Ciaccio, Natalie A.; Moreno, Matthew L.; Bauer, Rachel L.; Laurence, Jennifer S.

    2008-01-01

    Activating Transcription Factor 5 (ATF5) recently has been demonstrated to play a critical role in promoting the survival of human glioblastoma cells. Interference with the function of ATF5 in an in vivo rat model caused glioma cell death in primary tumors but did not affect the status of normal cells surrounding the tumor, suggesting ATF5 may prove an ideal target for anti-cancer therapy. In order to examine ATF5 as a pharmaceutical target, the protein must be produced and purified to sufficient quantity to begin analyses. Here, a procedure for expressing and refolding the bZIP domain of ATF5 in sufficient yield and final concentration to permit assay development and structural characterization of this target using solution NMR is reported. Two-dimensional NMR and circular dichrosim analyses indicate the protein exists in the partially α-helical, monomeric x-form conformation with only a small fraction of ATF5 participating in formation of higher-order structure, presumably coiled-coil homodimerization. Despite the persistence of monomers in solution even at high concentration, an electrophoretic mobility shift assay showed that ATF5 is able to bind to the cAMP response element (CRE) DNA motif. Polyacrylamide gel electrophoresis and mass spectrometry were used to confirm that ATF5 can participate in homodimer formation and that this dimerization is mediated by disulfide bond formation. PMID:18718539

  3. The bZIP transcription factor PfZipA regulates secondary metabolism and oxidative stress response in the plant endophytic fungus Pestalotiopsis fici.

    PubMed

    Wang, Xiuna; Wu, Fan; Liu, Ling; Liu, Xingzhong; Che, Yongsheng; Keller, Nancy P; Guo, Liyun; Yin, Wen-Bing

    2015-08-01

    The bZIP transcription factors are conserved in all eukaryotes and play critical roles in organismal responses to environmental challenges. In filamentous fungi, several lines of evidence indicate that secondary metabolism (SM) is associated with oxidative stress mediated by bZIP proteins. Here we uncover a connection with a bZIP protein and oxidative stress induction of SM in the plant endophytic fungus Pestalotiopsis fici. A homology search of the P. fici genome with the bZIP protein RsmA, involved in SM and the oxidative stress response in Aspergillus nidulans, identified PfZipA. Deletion of PfzipA resulted in a strain that displayed resistant to the oxidative reagents tert-butylhydroperoxide (tBOOH), diamide, and menadione sodium bisulfite (MSB), but increased sensitivity to H2O2 as compared to wild type (WT). Secondary metabolite production presented a complex pattern dependent on PfzipA and oxidative reagents. Without oxidative treatment, the ΔPfzipA strain produced less isosulochrin and ficipyroneA than WT; addition of tBOOH further decreased production of iso-A82775C and pestaloficiol M in ΔPfzipA; diamide treatment resulted in equivalent production of isosulochrin and ficipyroneA in the two strains; MSB treatment further decreased production of RES1214-1 and iso-A82775C but increased pestaloficiol M production in the mutant; and H2O2 treatment resulted in enhanced production of isosulochrin, RES1214-1 and pestheic acid but decreased ficipyroneA and pestaloficiol M in ΔPfzipA compared to WT. Our results suggest that PfZipA regulation of SM is modified by oxidative stress pathways and provide insights into a possible role of PfZipA in mediating SM synthesis in the endophytic lifestyle of P. fici.

  4. Isolation and characterization of a gene from Medicago sativa L., encoding a bZIP transcription factor.

    PubMed

    Li, Yan; Sun, Yan; Yang, Qingchuan; Fang, Feng; Kang, Junmei; Zhang, Tiejun

    2013-02-01

    A full-length cDNA of 1,537 nucleotides was cloned from Medicago sativa L. cv. "Zhongmu No. 1" by rapid amplification of cDNA ends. It was designated as MsZIP, encoding a protein of 340 amino acids. The protein molecular weight was 36.43 kDa, and the theoretical isoelectric point was 5.72. The MsZIP preferentially localized in nucleus and have signal peptide. Blast analysis revealed that MsZIP shared the highest homology with some bZIP proteins of M. truncatula. The transcript of MsZIP was strongly enriched in leaf compared with root and stem of mature alfalfa plants. MsZIP was strongly induced by 15 % PEG6000 (polyethylene glycol), 50 μM abscisic acid, 200 mM NaCl, 70 μM gibberellic acid, 5 mM salicylic acid and 200 μM methyl jasmonate. Physiological resistance parameters were measured in the transgenic tobacco. Malondialdehyde content, relative water content, soluble sugar content, soluble protein content and proline content in transgenic tobacco increased compared with non-transgenic tobacco under salt stress or drought stress. The results showed that accumulation of the MsZIP protein in the vegetative tissues of transgenic plants enhanced their tolerance to osmotic pressure stress. These results demonstrate a role for the MsZIP protein in stress protection and suggest the potential of the MsZIP gene for genetic engineering of salt tolerance and drought tolerance.

  5. In vivo binding of hot pepper bZIP transcription factor CabZIP1 to the G-box region of pathogenesis-related protein 1 promoter

    SciTech Connect

    Lee, Boo-Ja; Park, Chang-Jin; Kim, Sung-Kyu; Kim, Ki-Jeong; Paek, Kyung-Hee . E-mail: khpaek95@korea.ac.kr

    2006-05-26

    We find that salicylic acid and ethephon treatment in hot pepper increases the expression of a putative basic/leucine zipper (bZIP) transcription factor gene, CabZIP1. CabZIP1 mRNA is expressed ubiquitously in various organs. The green fluorescent protein-fused transcription factor, CabZIP1::GFP, can be specifically localized to the nucleus, an action that is consistent with the presence of a nuclear localization signal in its protein sequence. Transient overexpression of the CabZIP1 transcription factor results in an increase in PR-1 transcripts level in Nicotiana benthamiana leaves. Using chromatin immunoprecipitation, we demonstrate that CabZIP1 binds to the G-box elements in native promoter of the hot pepper pathogenesis-related protein 1 (CaPR-1) gene in vivo. Taken together, our results suggest that CabZIP1 plays a role as a transcriptional regulator of the CaPR-1 gene.

  6. The transcriptional integrator CREB-binding protein mediates positive cross talk between nuclear hormone receptors and the hematopoietic bZip protein p45/NF-E2.

    PubMed Central

    Cheng, X; Reginato, M J; Andrews, N C; Lazar, M A

    1997-01-01

    Thyroid hormone (T3) and retinoic acid (RA) play important roles in erythropoiesis. We found that the hematopoietic cell-specific bZip protein p45/NF-E2 interacts with T3 receptor (TR) and RA receptor (RAR) but not retinoid X receptor. The interaction is between the DNA-binding domain of the nuclear receptor and the leucine zipper region of p45/NF-E2 but is markedly enhanced by cognate ligand. Remarkably, ligand-dependent transactivation by TR and RAR is markedly potentiated by p45/NF-E2. This effect of p45/NF-E2 is prevented by maf-like protein p18, which functions positively as a heterodimer with p45/NF-E2 on DNA. Potentiation of hormone action by p45/NF-E2 requires its activation domain, which interacts strongly with the multifaceted coactivator cyclic AMP response element protein-binding protein (CBP). The region of CBP which interacts with p45/NF-E2 is the same interaction domain that mediates inhibition of hormone-stimulated transcription by AP1 transcription factors. Overexpression of the bZip interaction domain of CBP specifically abolishes the positive cross talk between TR and p45/NF-E2. Thus, positive cross talk between p45/NF-E2 and nuclear hormone receptors requires direct protein-protein interactions between these factors and with CBP, whose integration of positive signals from two transactivation domains provides a novel mechanism for potentiation of hormone action in hematopoietic cells. PMID:9032267

  7. Genome-Wide Analysis of the bZIP Gene Family Identifies Two ABI5-Like bZIP Transcription Factors, BrABI5a and BrABI5b, as Positive Modulators of ABA Signalling in Chinese Cabbage

    PubMed Central

    Hu, Xiaochen; Sun, Congcong; Li, Yanlin; Wang, Dandan; Wang, Qinhu; Pei, Guoliang; Zhang, Yanfeng; Guo, Aiguang; Zhao, Huixian; Lu, Haibin; Mu, Xiaoqian; Hu, Jingjiang; Zhou, Xiaona; Xie, Chang Gen

    2016-01-01

    bZIP (basic leucine zipper) transcription factors coordinate plant growth and development and control responses to environmental stimuli. The genome of Chinese cabbage (Brassica rapa) encodes 136 putative bZIP transcription factors. The bZIP transcription factors in Brassica rapa (BrbZIP) are classified into 10 subfamilies. Phylogenetic relationship analysis reveals that subfamily A consists of 23 BrbZIPs. Two BrbZIPs within subfamily A, Bra005287 and Bra017251, display high similarity to ABI5 (ABA Insensitive 5). Expression of subfamily A BrbZIPs, like BrABI5a (Bra005287/BrbZIP14) and BrABI5b (Bra017251/BrbZIP13), are significantly induced by the plant hormone ABA. Subcellular localization assay reveal that both BrABI5a and BrABI5b have a nuclear localization. BrABI5a and BrABI5b could directly stimulate ABA Responsive Element-driven HIS (a HIS3 reporter gene, which confers His prototrophy) or LUC (LUCIFERASE) expression in yeast and Arabidopsis protoplast. Deletion of the bZIP motif abolished BrABI5a and BrABI5b transcriptional activity. The ABA insensitive phenotype of Arabidopsis abi5-1 is completely suppressed in transgenic lines expressing BrABI5a or BrABI5b. Overall, these results suggest that ABI5 orthologs, BrABI5a and BrABI5b, have key roles in ABA signalling in Chinese cabbage. PMID:27414644

  8. Microarray hybridization analysis of light-dependent gene expression in Penicillium chrysogenum identifies bZIP transcription factor PcAtfA.

    PubMed

    Wolfers, Simon; Kamerewerd, Jens; Nowrousian, Minou; Sigl, Claudia; Zadra, Ivo; Kürnsteiner, Hubert; Kück, Ulrich; Bloemendal, Sandra

    2015-04-01

    The fungal velvet complex is a light-dependent master regulator of secondary metabolism and development in the major penicillin producer, Penicillium chrysogenum. However, the light-dependent mechanism is unclear. To identify velvet-dependent transcriptional regulators that show light-regulated expression, we performed microarray hybridizations with RNA isolated from P. chrysogenum ΔPcku70 cultures grown under 13 different long-term, light-dependent growth conditions. We compared these expression data to data from two velvet complex deletion mutants; one lacked a subunit of the velvet complex (ΔPcvelA), and the other lacked a velvet-associated protein (ΔPclaeA). We sought to identify genes that were up-regulated in light, but down-regulated in ΔPcvelA and ΔPclaeA. We identified 148 co-regulated genes that displayed this regulatory pattern. In silico analyses of the co-regulated genes identified six proteins with fungal-specific transcription factor domains. Among these, we selected the bZIP transcription factor, PcAtfA, for functional characterization in deletion and complementation strains. Our data clearly indicates that PcAtfA governs spore germination. This comparative analysis of different microarray hybridization data sets provided results that may be useful for identifying genes for future functional analyses.

  9. A novel bZIP transcription factor ClrC positively regulates multiple stress responses, conidiation and cellulase expression in Penicillium oxalicum.

    PubMed

    Lei, Yunfeng; Liu, Guodong; Yao, Guangshan; Li, Zhonghai; Qin, Yuqi; Qu, Yinbo

    2016-06-01

    Cellulase production in filamentous fungi is largely regulated at the transcriptional level, and several transcription factors have been reported to be involved in this process. In this study, we identified ClrC, a novel transcription factor in cellulase production in Penicillium oxalicum. ClrC and its orthologs have a highly conserved basic leucine zipper (bZIP) DNA binding domain, and their biological functions have not been explored. Deletion of clrC resulted in pleiotropic effects, including altered growth, reduced conidiation and increased sensitivity to oxidative and cell wall stresses. In particular, the clrC deletion mutant ΔclrC showed 46.1% ± 8.1% and 58.0% ± 8.7% decreases in production of filter paper enzyme and xylanase activities in cellulose medium, respectively. In contrast, 57.4% ± 10.0% and 70.9% ± 19.4% increased production of filter paper enzyme, and xylanase was observed in the clrC overexpressing strain, respectively. The transcription levels of major cellulase genes, as well as two cellulase transcriptional activator genes, clrB and xlnR, were significantly downregulated in ΔclrC, but substantially upregulated in clrC overexpressing strains. Furthermore, we observed that the absence of ClrC reduced full induction of cellulase expression even in the clrB overexpressing strain. These results indicated that ClrC is a novel and efficient engineering target for improving cellulolytic enzyme production in filamentous fungi.

  10. Basic Leucine Zipper (bZIP) Domain Transcription Factor MBZ1 Regulates Cell Wall Integrity, Spore Adherence, and Virulence in Metarhizium robertsii *

    PubMed Central

    Huang, Wei; Shang, Yanfang; Chen, Peilin; Cen, Kai; Wang, Chengshu

    2015-01-01

    Transcription factors (TFs) containing the basic leucine zipper (bZIP) domain are widely distributed in eukaryotes and display an array of distinct functions. In this study, a bZIP-type TF gene (MBZ1) was deleted and functionally characterized in the insect pathogenic fungus Metarhizium robertsii. The deletion mutant (ΔMBZ1) showed defects in cell wall integrity, adhesion to hydrophobic surfaces, and topical infection of insects. Relative to the WT, ΔMBZ1 was also impaired in growth and conidiogenesis. Examination of putative target gene expression indicated that the genes involved in chitin biosynthesis were differentially transcribed in ΔMBZ1 compared with the WT, which led to the accumulation of a higher level of chitin in mutant cell walls. MBZ1 exhibited negative regulation of subtilisin proteases, but positive control of an adhesin gene, which is consistent with the observation of effects on cell autolysis and a reduction in spore adherence to hydrophobic surfaces in ΔMBZ1. Promoter binding assays indicated that MBZ1 can bind to different target genes and suggested the possibility of heterodimer formation to increase the diversity of the MBZ1 regulatory network. The results of this study advance our understanding of the divergence of bZIP-type TFs at both intra- and interspecific levels. PMID:25673695

  11. AtTGA4, a bZIP transcription factor, confers drought resistance by enhancing nitrate transport and assimilation in Arabidopsis thaliana.

    PubMed

    Zhong, Li; Chen, Dandan; Min, Donghong; Li, Weiwei; Xu, Zhaoshi; Zhou, Yongbin; Li, Liancheng; Chen, Ming; Ma, Youzhi

    2015-02-13

    To cope with environmental stress caused by global climate change and excessive nitrogen application, it is important to improve water and nitrogen use efficiencies in crop plants. It has been reported that higher nitrogen uptake could alleviate the damaging impact of drought stress. However, there is scant evidence to explain how nitrogen uptake affects drought resistance. In this study we observed that bZIP transcription factor AtTGA4 (TGACG motif-binding factor 4) was induced by both drought and low nitrogen stresses, and that overexpression of AtTGA4 simultaneously improved drought resistance and reduced nitrogen starvation in Arabidopsis. Following drought stress there were higher nitrogen and proline contents in transgenic AtTGA4 plants than in wild type controls, and activity of the key enzyme nitrite reductase (NIR) involved in nitrate assimilation processes was also higher. Expressions of the high-affinity nitrate transporter genes NRT2.1 and NRT2.2 and nitrate reductase genes NIA1 and NIA2 in transgenic plants were all higher than in wild type indicating that higher levels of nitrate transport and assimilation activity contributed to enhanced drought resistance of AtTGA4 transgenic plants. Thus genetic transformation with AtTGA4 may provide a new approach to simultaneously improve crop tolerance to drought and low nitrogen stresses.

  12. Basic leucine zipper (bZIP) domain transcription factor MBZ1 regulates cell wall integrity, spore adherence, and virulence in Metarhizium robertsii.

    PubMed

    Huang, Wei; Shang, Yanfang; Chen, Peilin; Cen, Kai; Wang, Chengshu

    2015-03-27

    Transcription factors (TFs) containing the basic leucine zipper (bZIP) domain are widely distributed in eukaryotes and display an array of distinct functions. In this study, a bZIP-type TF gene (MBZ1) was deleted and functionally characterized in the insect pathogenic fungus Metarhizium robertsii. The deletion mutant (ΔMBZ1) showed defects in cell wall integrity, adhesion to hydrophobic surfaces, and topical infection of insects. Relative to the WT, ΔMBZ1 was also impaired in growth and conidiogenesis. Examination of putative target gene expression indicated that the genes involved in chitin biosynthesis were differentially transcribed in ΔMBZ1 compared with the WT, which led to the accumulation of a higher level of chitin in mutant cell walls. MBZ1 exhibited negative regulation of subtilisin proteases, but positive control of an adhesin gene, which is consistent with the observation of effects on cell autolysis and a reduction in spore adherence to hydrophobic surfaces in ΔMBZ1. Promoter binding assays indicated that MBZ1 can bind to different target genes and suggested the possibility of heterodimer formation to increase the diversity of the MBZ1 regulatory network. The results of this study advance our understanding of the divergence of bZIP-type TFs at both intra- and interspecific levels.

  13. Bioinformatic Analyses of Subgroup-A Members of the Wheat bZIP Transcription Factor Family and Functional Identification of TabZIP174 Involved in Drought Stress Response

    PubMed Central

    Li, Xueyin; Feng, Biane; Zhang, Fengjie; Tang, Yimiao; Zhang, Liping; Ma, Lingjian; Zhao, Changping; Gao, Shiqing

    2016-01-01

    Extensive studies in Arabidopsis and rice have demonstrated that Subgroup-A members of the bZIP transcription factor family play important roles in plant responses to multiple abiotic stresses. Although common wheat (Triticum aestivum) is one of the most widely cultivated and consumed food crops in the world, there are limited investigations into Subgroup A of the bZIP family in wheat. In this study, we performed bioinformatic analyses of the 41 Subgroup-A members of the wheat bZIP family. Phylogenetic and conserved motif analyses showed that most of the Subgroup-A bZIP proteins involved in abiotic stress responses of wheat, Arabidopsis, and rice clustered in Clade A1 of the phylogenetic tree, and shared a majority of conserved motifs, suggesting the potential importance of Clade-A1 members in abiotic stress responses. Gene structure analysis showed that TabZIP genes with close phylogenetic relationships tended to possess similar exon–intron compositions, and the positions of introns in the hinge regions of the bZIP domains were highly conserved, whereas introns in the leucine zipper regions were at variable positions. Additionally, eleven groups of homologs and two groups of tandem paralogs were also identified in Subgroup A of the wheat bZIP family. Expression profiling analysis indicated that most Subgroup-A TabZIP genes were responsive to abscisic acid and various abiotic stress treatments. TabZIP27, TabZIP74, TabZIP138, and TabZIP174 proteins were localized in the nucleus of wheat protoplasts, whereas TabZIP9-GFP fusion protein was simultaneously present in the nucleus, cytoplasm, and cell membrane. Transgenic Arabidopsis overexpressing TabZIP174 displayed increased seed germination rates and primary root lengths under drought treatments. Overexpression of TabZIP174 in transgenic Arabidopsis conferred enhanced drought tolerance, and transgenic plants exhibited lower water loss rates, higher survival rates, higher proline, soluble sugar, and leaf chlorophyll

  14. Bioinformatic Analyses of Subgroup-A Members of the Wheat bZIP Transcription Factor Family and Functional Identification of TabZIP174 Involved in Drought Stress Response.

    PubMed

    Li, Xueyin; Feng, Biane; Zhang, Fengjie; Tang, Yimiao; Zhang, Liping; Ma, Lingjian; Zhao, Changping; Gao, Shiqing

    2016-01-01

    Extensive studies in Arabidopsis and rice have demonstrated that Subgroup-A members of the bZIP transcription factor family play important roles in plant responses to multiple abiotic stresses. Although common wheat (Triticum aestivum) is one of the most widely cultivated and consumed food crops in the world, there are limited investigations into Subgroup A of the bZIP family in wheat. In this study, we performed bioinformatic analyses of the 41 Subgroup-A members of the wheat bZIP family. Phylogenetic and conserved motif analyses showed that most of the Subgroup-A bZIP proteins involved in abiotic stress responses of wheat, Arabidopsis, and rice clustered in Clade A1 of the phylogenetic tree, and shared a majority of conserved motifs, suggesting the potential importance of Clade-A1 members in abiotic stress responses. Gene structure analysis showed that TabZIP genes with close phylogenetic relationships tended to possess similar exon-intron compositions, and the positions of introns in the hinge regions of the bZIP domains were highly conserved, whereas introns in the leucine zipper regions were at variable positions. Additionally, eleven groups of homologs and two groups of tandem paralogs were also identified in Subgroup A of the wheat bZIP family. Expression profiling analysis indicated that most Subgroup-A TabZIP genes were responsive to abscisic acid and various abiotic stress treatments. TabZIP27, TabZIP74, TabZIP138, and TabZIP174 proteins were localized in the nucleus of wheat protoplasts, whereas TabZIP9-GFP fusion protein was simultaneously present in the nucleus, cytoplasm, and cell membrane. Transgenic Arabidopsis overexpressing TabZIP174 displayed increased seed germination rates and primary root lengths under drought treatments. Overexpression of TabZIP174 in transgenic Arabidopsis conferred enhanced drought tolerance, and transgenic plants exhibited lower water loss rates, higher survival rates, higher proline, soluble sugar, and leaf chlorophyll

  15. A novel strategy to produce sweeter tomato fruits with high sugar contents by fruit-specific expression of a single bZIP transcription factor gene.

    PubMed

    Sagor, G H M; Berberich, Thomas; Tanaka, Shun; Nishiyama, Manabu; Kanayama, Yoshinori; Kojima, Seiji; Muramoto, Koji; Kusano, Tomonobu

    2016-04-01

    Enhancement of sugar content and sweetness is desirable in some vegetables and in almost all fruits; however, biotechnological methods to increase sugar content are limited. Here, a completely novel methodological approach is presented that produces sweeter tomato fruits but does not have any negative effects on plant growth. Sucrose-induced repression of translation (SIRT), which is mediated by upstream open reading frames (uORFs), was initially reported in Arabidopsis AtbZIP11, a class S basic region leucine zipper (bZIP) transcription factor gene. Here, two AtbZIP11 orthologous genes, SlbZIP1 and SlbZIP2, were identified in tomato (Solanum lycopersicum). SlbZIP1 and SlbZIP2 contained four and three uORFs, respectively, in the cDNA 5'-leader regions. The second uORFs from the 5' cDNA end were conserved and involved in SIRT. Tomato plants were transformed with binary vectors in which only the main open reading frames (ORFs) of SlbZIP1 and SlbZIP2, without the SIRT-responsive uORFs, were placed under the control of the fruit-specific E8 promoter. Growth and morphology of the resulting transgenic tomato plants were comparable to those of wild-type plants. Transgenic fruits were approximately 1.5-fold higher in sugar content (sucrose/glucose/fructose) than nontransgenic tomato fruits. In addition, the levels of several amino acids, such as asparagine and glutamine, were higher in transgenic fruits than in wild-type fruits. This was expected because SlbZIP transactivates the asparagine synthase and proline dehydrogenase genes. This 'sweetening' technology is broadly applicable to other plants that utilize sucrose as a major translocation sugar.

  16. Nuclear localization of a putative Phytophthora sojae bZIP1 transcription factor is mediated by multiple targeting motifs.

    PubMed

    Fang, Yufeng; Tyler, Brett M

    2017-02-18

    Oomycetes are fungal-like eukaryotic microbes in the kingdom Stramenopila. We recently found that the oomycete plant pathogen Phytophthora sojae uses nuclear localization signals (NLSs) for translocation of proteins into the nucleus that differ from conventional well-characterized NLSs from mammals and yeast. Here we have characterized in depth the nuclear localization signals of a P. sojae basic leucine zipper transcription factor, PsbZIP1. Nuclear localization of PsbZIP1 was determined by a central conserved region overlapping the DNA binding domain. Mutational analysis of this region identified four distinct elements that contributed multiplicatively to nuclear localization, but the conserved DNA binding residues were not required. Three of the elements showed autonomous NLS activity and the fourth served as a nuclear localization enhancer. Sequences within two of the nuclear localization elements defined a new form of bipartite NLS consisting of a triplet of basic residues followed by a tail of scattered basic amino acids. This article is protected by copyright. All rights reserved.

  17. A tomato bZIP transcription factor, SlAREB, is involved in water deficit and salt stress response.

    PubMed

    Hsieh, Tsai-Hung; Li, Chia-Wen; Su, Ruey-Chih; Cheng, Chiu-Ping; Sanjaya; Tsai, Yi-Chien; Chan, Ming-Tsair

    2010-05-01

    Abiotic stresses such as cold, water deficit, and salt stresses severely reduce crop productivity. Tomato (Solanum lycopersicum) is an important economic crop; however, not much is known about its stress responses. To gain insight into stress-responsive gene regulation in tomato plants, we identified transcription factors from a tomato cDNA microarray. An ABA-responsive element binding protein (AREB) was identified and named SlAREB. In tomato protoplasts, SlAREB transiently transactivated luciferase reporter gene expression driven by AtRD29A (responsive to dehydration) and SlLAP (leucine aminopeptidase) promoters with exogenous ABA application, which was suppressed by the kinase inhibitor staurosporine, indicating that an ABA-dependent post-translational modification is required for the transactivation ability of SlAREB protein. Electrophoretic mobility shift assays showed that the recombinant DNA-binding domain of SlAREB protein is able to bind AtRD29A and SlLAP promoter regions. Constitutively expressed SlAREB increased tolerance to water deficit and high salinity stresses in both Arabidopsis and tomato plants, which maintained PSII and membrane integrities as well as water content in plant bodies. Overproduction of SlAREB in Arabidopsis thaliana and tomato plants regulated stress-related genes AtRD29A, AtCOR47, and SlCI7-like dehydrin under ABA and abiotic stress treatments. Taken together, these results show that SlAREB functions to regulate some stress-responsive genes and that its overproduction improves plant tolerance to water deficit and salt stress.

  18. Purification, crystallization and preliminary X-ray analysis of OsAREB8 from rice, a member of the AREB/ABF family of bZIP transcription factors, in complex with its cognate DNA.

    PubMed

    Miyazono, Ken-ichi; Koura, Tsubasa; Kubota, Keiko; Yoshida, Takuya; Fujita, Yasunari; Yamaguchi-Shinozaki, Kazuko; Tanokura, Masaru

    2012-04-01

    The AREB/ABF family of bZIP transcription factors play a key role in drought stress response and tolerance during the vegetative stage in plants. To reveal the DNA-recognition mechanism of the AREB/ABF family of proteins, the bZIP domain of OsAREB8, an AREB/ABF-family protein from Oryza sativa, was expressed in Escherichia coli, purified and crystallized with its cognate DNA. Crystals of the OsAREB8-DNA complex were obtained by the sitting-drop vapour-diffusion method at 277 K with a reservoir solution consisting of 50 mM MES pH 6.4, 29% MPD, 2 mM spermidine, 20 mM magnesium acetate and 100 mM sodium chloride. A crystal diffracted X-rays to 3.65 Å resolution and belonged to space group C222, with unit-cell parameters a = 155.1, b = 206.7, c = 38.5 Å. The crystal contained one OsAREB8-DNA complex in the asymmetric unit.

  19. HTLV-1 Tax Protein Stimulation of DNA Binding of bZIP Proteins by Enhancing Dimerization

    NASA Astrophysics Data System (ADS)

    Wagner, Susanne; Green, Michael R.

    1993-10-01

    The Tax protein of human T cell leukemia virus type-1 (HTLV-I) transcriptionally activates the HTLV-I promoter. This activation requires binding sites for activating transcription factor (ATF) proteins, a family of cellular proteins that contain basic region-leucine zipper (bZIP) DNA binding domains. Data are presented showing that Tax increases the in vitro DNA binding activity of multiple ATF proteins. Tax also stimulated DNA binding by other bZIP proteins, but did not affect DNA binding proteins that lack a bZIP domain. The increase in DNA binding occurred because Tax promotes dimerization of the bZIP domain in the absence of DNA, and the elevated concentration of the bZIP homodimer then facilitates the DNA binding reaction. These results help explain how Tax activates viral transcription and transforms cells.

  20. bZIP17 and bZIP60 Regulate the Expression of BiP3 and Other Salt Stress Responsive Genes in an UPR-Independent Manner in Arabidopsis thaliana.

    PubMed

    Henriquez-Valencia, Carlos; Moreno, Adrian A; Sandoval-Ibañez, Omar; Mitina, Irina; Blanco-Herrera, Francisca; Cifuentes-Esquivel, Nicolas; Orellana, Ariel

    2015-08-01

    Plants can be severely affected by salt stress. Since these are sessile organisms, they have developed different cellular responses to cope with this problem. Recently, it has been described that bZIP17 and bZIP60, two ER-located transcription factors, are involved in the cellular response to salt stress. On the other hand, bZIP60 is also involved in the unfolded protein response (UPR), a signaling pathway that up-regulates the expression of ER-chaperones. Coincidentally, salt stress produces the up-regulation of BiP, one of the main chaperones located in this organelle. Then, it has been proposed that UPR is associated to salt stress. Here, by using insertional mutant plants on bZIP17 and bZIP60, we show that bZIP17 regulate the accumulation of the transcript for the chaperone BiP3 under salt stress conditions, but does not lead to the accumulation of UPR-responding genes such as the chaperones Calnexin, Calreticulin, and PDIL under salt treatments. In contrast, DTT, a known inducer of UPR, leads to the up-regulation of all these chaperones. On the other hand, we found that bZIP60 regulates the expression of some bZIP17 target genes under conditions were splicing of bZIP60 does not occur, suggesting that the spliced and unspliced forms of bZIP60 play different roles in the physiological response of the plant. Our results indicate that the ER-located transcription factors bZIP17 and bZIP60 play a role in salt stress but this response goes through a signaling pathway that is different to that triggered by the unfolded protein response.

  1. The alpha-helical D1 domain of the tobacco bZIP transcription factor BZI-1 interacts with the ankyrin-repeat protein ANK1 and is important for BZI-1 function, both in auxin signaling and pathogen response.

    PubMed

    Kuhlmann, Markus; Horvay, Katja; Strathmann, Anne; Heinekamp, Thorsten; Fischer, Ute; Böttner, Stefan; Dröge-Laser, Wolfgang

    2003-03-07

    The tobacco (Nicotiana tabacum) bZIP transcription factor BZI-1 is involved in auxin-mediated growth responses and in establishing pathogen defenses. Transgenic plants expressing a dominant-negative BZI-1-DeltaN derivative, which lacks the N-terminal activation domain, showed altered vegetative growth. In particular auxin-induced rooting and formation of tobacco mosaic virus-induced hypersensitive response lesions are affected. BZI-1-related proteins described in various plant species share the conserved domains D1, D2, BD, and D4. To define those BZI-1 domains involved in transcription factor function, BZI-1 deletion derivatives were expressed in transgenic plants. The domains D1 or BD are crucial for BZI-1-DeltaN function in planta. The basic BD domain is mediating DNA binding of BZI-1. Yeast two-hybrid and in vitro binding studies reveal the ankyrin-repeat protein ANK1, which specifically interacts with a part of the BZI-1 protein (amino acids 73-222) encoding the D1 domain. ANK1 does not bind DNA or act as a co-activator of BZI-1-mediated transcription. Moreover, green fluorescence protein localization studies propose that ANK1 is acting mainly inside the cytosol. Transcription analysis reveals that ANK1 is ubiquitously expressed, but after pathogen attack transcription is transiently down-regulated. Along these lines, ANK1 homologous proteins in Arabidopsis thaliana have been reported to function in pathogen defense. We therefore propose that the D1 domain serves as an interaction surface for ANK1, which appears to regulate BZI-1 function in auxin signaling as well as pathogen response.

  2. HTLV-I Tax protein stimulation of DNA binding of bZIP proteins by enhancing dimerization.

    PubMed

    Wagner, S; Green, M R

    1993-10-15

    The Tax protein of human T cell leukemia virus type-1 (HTLV-I) transcriptionally activates the HTLV-I promoter. This activation requires binding sites for activating transcription factor (ATF) proteins, a family of cellular proteins that contain basic region-leucine zipper (bZIP) DNA binding domains. Data are presented showing that Tax increases the in vitro DNA binding activity of multiple ATF proteins. Tax also stimulated DNA binding by other bZIP proteins, but did not affect DNA binding proteins that lack a bZIP domain. The increase in DNA binding occurred because Tax promotes dimerization of the bZIP domain in the absence of DNA, and the elevated concentration of the bZIP homodimer then facilitates the DNA binding reaction. These results help explain how Tax activates viral transcription and transforms cells.

  3. Role of the bZIP transcription factor IREBF1 in the NGF induction of stromelysin-1 (transin) gene expression in PC12 cells.

    PubMed

    deSouza, S; Nordstrom, L A; Ciment, G

    1997-06-01

    Stromelysin-1 (ST-1) is one of the most nerve growth factor-(NGF) responsive gene products expressed in PC12 cells. In previous work, we identified a novel NGF-responsive element in the proximal promoter region of the ST-1 gene that participates in this induction, and showed that it bound a protein present in the nuclei of PC12 cells. Here, we identify a transcription factor that specifically recognizes this regulatory element-the interferon-response element binding factor-1 (IREBF1), a member of the basic leucine zipper gene family. We show that IREBF1 is constitutively expressed in PC12 cells and that overexpression of IREBF1 augments NGF-responsive ST-1 gene regulation, but does not affect basal levels of expression. On the other hand, expression of a mutated form of this transcription factor lacking the DNA binding domain attenuated NGF responsiveness, without affecting basal levels of expression. These data suggest that IREBF1 is part of the NGF-responsive transcriptional machinery necessary for the expression of ST-1 in PC12 cells.

  4. Compound mouse mutants of bZIP transcription factors Mafg and Mafk reveal a regulatory network of non-crystallin genes associated with cataract

    PubMed Central

    Agrawal, Smriti A.; Anand, Deepti; Siddam, Archana D.; Kakrana, Atul; Dash, Soma; Scheiblin, David A.; Dang, Christine A.; Terrell, Anne M.; Waters, Stephanie M.; Singh, Abhyudai; Motohashi, Hozumi; Yamamoto, Masayuki; Lachke, Salil A.

    2015-01-01

    Although majority of the genes linked to early-onset cataract exhibit lens fiber cell-enriched expression, our understanding of gene regulation in these cells is limited to function of just eight transcription factors and largely in the context of crystallins. We report on small Maf transcription factors Mafg and Mafk as regulators of several non-crystallin human cataract-associated genes in fiber cells and establish their significance to this disease. We applied a bioinformatics tool for cataract gene discovery iSyTE to identify Mafg and its co-regulators in the lens, and generated various null-allelic combinations of Mafg:Mafk mouse mutants for phenotypic and molecular analysis. By age 4-months, Mafg−/−:Mafk+/− mutants exhibit lens defects that progressively develop into cataract. High-resolution phenotypic characterization of Mafg−/−:Mafk+/− mouse lens reveals severely disorganized fiber cells, while microarrays-based expression profiling identifies 97 differentially regulated genes (DRGs). Integrative analysis of Mafg−/−:Mafk+/− lens-DRGs with 1) binding-motifs and genomic targets of small Mafs and their regulatory partners, 2) iSyTE lens-expression data, and 3) interactions between DRGs in the String database, unravels a detailed small Maf regulatory network in the lens, several nodes of which are linked to cataract. This approach identifies 36 high-priority candidates from the original 97 DRGs. Significantly, 8/36 (22%) DRGs are associated with cataracts in human (GSTO1, MGST1, SC4MOL, UCHL1) or mouse (Aldh3a1, Crygf, Hspb1, Pcbd1), suggesting a multifactorial etiology that includes oxidative stress and mis-regulation of sterol synthesis. These data identify Mafg and Mafk as new cataract-associated candidates and define their function in regulating largely non-crystallin genes linked to human cataract. PMID:25896808

  5. The bZIP Transcription Factor HAC-1 Is Involved in the Unfolded Protein Response and Is Necessary for Growth on Cellulose in Neurospora crassa

    PubMed Central

    Larrondo, Luis F.

    2015-01-01

    High protein secretion capacity in filamentous fungi requires an extremely efficient system for protein synthesis, folding and transport. When the folding capacity of the endoplasmic reticulum (ER) is exceeded, a pathway known as the unfolded protein response (UPR) is triggered, allowing cells to mitigate and cope with this stress. In yeast, this pathway relies on the transcription factor Hac1, which mediates the up-regulation of several genes required under these stressful conditions. In this work, we identified and characterized the ortholog of the yeast HAC1 gene in the filamentous fungus Neurospora crassa. We show that its mRNA undergoes an ER stress-dependent splicing reaction, which in N. crassa removes a 23 nt intron and leads to a change in the open reading frame. By disrupting the N. crassa hac-1 gene, we determined it to be crucial for activating UPR and for proper growth in the presence of ER stress-inducing chemical agents. Neurospora is naturally found growing on dead plant material, composed primarily by lignocellulose, and is a model organism for the study of plant cell wall deconstruction. Notably, we found that growth on cellulose, a substrate that requires secretion of numerous enzymes, imposes major demands on ER function and is dramatically impaired in the absence of hac-1, thus broadening the range of physiological functions of the UPR in filamentous fungi. Growth on hemicellulose however, another carbon source that necessitates the secretion of various enzymes for its deconstruction, is not impaired in the mutant nor is the amount of proteins secreted on this substrate, suggesting that secretion, as a whole, is unaltered in the absence of hac-1. The characterization of this signaling pathway in N. crassa will help in the study of plant cell wall deconstruction by fungi and its manipulation may result in important industrial biotechnological applications. PMID:26132395

  6. Differential expression of four soybean bZIP genes during Phakopsora pachyrhizi infection.

    PubMed

    Alves, Murilo S; Soares, Zamira G; Vidigal, Pedro M P; Barros, Everaldo G; Poddanosqui, Adriana M P; Aoyagi, Luciano N; Abdelnoor, Ricardo V; Marcelino-Guimarães, Francismar C; Fietto, Luciano G

    2015-11-01

    Asian soybean rust (ASR), caused by the obligate biotrophic fungus Phakopsora pachyrhizi, is one of most important diseases in the soybean (Glycine max (L.) Merr.) agribusiness. The identification and characterization of genes related to plant defense responses to fungal infection are essential to develop ASR-resistant plants. In this work, we describe four soybean genes, GmbZIP62, GmbZIP105, GmbZIPE1, and GmbZIPE2, which encode transcription factors containing a basic leucine zipper (bZIP) domain from two divergent classes, and that are responsive to P. pachyrhizi infection. Molecular phylogenetic analyses demonstrated that these genes encode proteins similar to bZIP factors responsive to pathogens. Yeast transactivation assays showed that only GmbZIP62 has strong transactivation activity in yeast. In addition, three of the bZIP transcription factors analyzed were also differentially expressed by plant defense hormones, and all were differentially expressed by fungal attack, indicating that these proteins might participate in response to ASR infection. The results suggested that these bZIP proteins are part of the plant defense response to P. pachyrhizi infection, by regulating the gene expression related to ASR infection responses. These bZIP genes are potential targets to obtain new soybean genotypes resistant to ASR.

  7. The Elucidation of the Interactome of 16 Arabidopsis bZIP Factors Reveals Three Independent Functional Networks

    PubMed Central

    Llorca, Carles Marco; Berendzen, Kenneth Wayne; Malik, Waqas Ahmed; Mahn, Stefan; Piepho, Hans-Peter; Zentgraf, Ulrike

    2015-01-01

    The function of the bZIP transcription factors is strictly dependent on their ability to dimerize. Heterodimerization has proven to be highly specific and is postulated to operate as a combinatorial mechanism allowing the generation of a large variety of dimers with unique qualities by specifically combining a small set of monomers; an assumption that has not yet been tested systematically. Here, the interaction pattern and the transactivation properties of 16 Arabidopsis thaliana bZIPs are examined in transiently transformed Arabidopsis protoplasts to deliver a perspective on the relationship between bZIP dimerization and function. An interaction matrix of bZIPs belonging to the C, G, H, and S1 bZIP groups was resolved by Bimolecular Fluorescent Complementation (BiFC) coupled to quantitative flow cytometric analysis, while an extensive GUS reporter gene assay was carried out to determine the effect of different bZIP pairs on the expression of four different known bZIP-targeted promoters. Statistical data treatment and complementary bioinformatic analysis were performed to substantiate the biological findings. According to these results, the 16 bZIPs interact in three isolated networks, within which their members dimerize non-specifically and exhibit a significant level of functional redundancy. A coherent explanation for these results is supported by in silico analysis of differences in the length, structure and composition of their leucine zippers and appears to explain their dimerization specificity and dynamics observed in vivo quite well. A model in which the bZIP networks act as functional units is proposed. PMID:26452049

  8. Recognition of bZIP proteins by the human T-cell leukaemia virus transactivator Tax.

    PubMed

    Perini, G; Wagner, S; Green, M R

    1995-08-17

    Human T-cell leukaemia virus type I (HTLV-I) Tax protein increases the DNA binding of many cellular transcription factors that contain a basic region-leucine zipper (bZIP) DNA-binding domain. bZIP domains comprise a leucine-rich dimerization motif and a basic region that mediates DNA contact. How Tax recognizes diverse bZIPs is not understood. Here we show that no specific sequence of the leucine zipper is required for a Tax response. In contrast, the basic region is essential for the Tax-mediated DNA-binding increase, which can be eliminated by single substitutions of several conserved amino acids. Surprisingly, Tax alters the relative affinity of a bZIP for different DNA binding sites. Thus, through recognition of the conserved basic region. Tax increases DNA binding and modifies DNA site selection. Tax provides a model for how a single auxiliary factor can regulate multiple sequence-specific DNA-binding proteins.

  9. Combinatorial bZIP dimers display complex DNA-binding specificity landscapes

    PubMed Central

    Rodríguez-Martínez, José A; Reinke, Aaron W; Bhimsaria, Devesh; Keating, Amy E; Ansari, Aseem Z

    2017-01-01

    How transcription factor dimerization impacts DNA-binding specificity is poorly understood. Guided by protein dimerization properties, we examined DNA binding specificities of 270 human bZIP pairs. DNA interactomes of 80 heterodimers and 22 homodimers revealed that 72% of heterodimer motifs correspond to conjoined half-sites preferred by partnering monomers. Remarkably, the remaining motifs are composed of variably-spaced half-sites (12%) or ‘emergent’ sites (16%) that cannot be readily inferred from half-site preferences of partnering monomers. These binding sites were biochemically validated by EMSA-FRET analysis and validated in vivo by ChIP-seq data from human cell lines. Focusing on ATF3, we observed distinct cognate site preferences conferred by different bZIP partners, and demonstrated that genome-wide binding of ATF3 is best explained by considering many dimers in which it participates. Importantly, our compendium of bZIP-DNA interactomes predicted bZIP binding to 156 disease associated SNPs, of which only 20 were previously annotated with known bZIP motifs. DOI: http://dx.doi.org/10.7554/eLife.19272.001 PMID:28186491

  10. Data-Driven Prediction and Design of bZIP Coiled-Coil Interactions

    PubMed Central

    Potapov, Vladimir; Kaplan, Jenifer B.; Keating, Amy E.

    2015-01-01

    Selective dimerization of the basic-region leucine-zipper (bZIP) transcription factors presents a vivid example of how a high degree of interaction specificity can be achieved within a family of structurally similar proteins. The coiled-coil motif that mediates homo- or hetero-dimerization of the bZIP proteins has been intensively studied, and a variety of methods have been proposed to predict these interactions from sequence data. In this work, we used a large quantitative set of 4,549 bZIP coiled-coil interactions to develop a predictive model that exploits knowledge of structurally conserved residue-residue interactions in the coiled-coil motif. Our model, which expresses interaction energies as a sum of interpretable residue-pair and triplet terms, achieves a correlation with experimental binding free energies of R = 0.68 and significantly out-performs other scoring functions. To use our model in protein design applications, we devised a strategy in which synthetic peptides are built by assembling 7-residue native-protein heptad modules into new combinations. An integer linear program was used to find the optimal combination of heptads to bind selectively to a target human bZIP coiled coil, but not to target paralogs. Using this approach, we designed peptides to interact with the bZIP domains from human JUN, XBP1, ATF4 and ATF5. Testing more than 132 candidate protein complexes using a fluorescence resonance energy transfer assay confirmed the formation of tight and selective heterodimers between the designed peptides and their targets. This approach can be used to make inhibitors of native proteins, or to develop novel peptides for applications in synthetic biology or nanotechnology. PMID:25695764

  11. An Aspergillus nidulans bZIP response pathway hardwired for defensive secondary metabolism operates through aflR

    PubMed Central

    Yin, Wenbing; Amaike, Saori; Wohlbach, Dana J.; Gasch, Audrey P.; Chiang, Yi-Ming; Wang, Clay C.; Bok, JinWoo; Rohlfs, Marko; Keller, Nancy P.

    2012-01-01

    Summary The eukaryotic bZIP transcription factors are critical players in organismal response to environmental challenges. In fungi, the production of secondary metabolites (SMs) is hypothesized as one of the responses to environmental insults, e.g. attack by fungivorous insects, yet little data to support this hypothesis exists. Here we establish a mechanism of bZIP regulation of SMs through RsmA, a recently discovered YAP-like bZIP protein. RsmA greatly increases SM production by binding to two sites in the A. nidulans AflR promoter region, a C6 transcription factor known for activating production of the carcinogenic and anti-predation SM, sterigmatocystin (ST). Deletion of aflR in an overexpression rsmA (OE::rsmA) background not only eliminates ST production but also significantly reduces asperthecin synthesis. Furthermore, the fungivore, Folsomia candida, exhibited a distinct preference for feeding on wild type rather than an OE::rsmA strain. RsmA may thus have a critical function in mediating direct chemical resistance against predation. Taken together, these results suggest RsmA represents a bZIP pathway hardwired for defensive SM production. PMID:22283524

  12. SnRK1-triggered switch of bZIP63 dimerization mediates the low-energy response in plants

    PubMed Central

    Mair, Andrea; Pedrotti, Lorenzo; Wurzinger, Bernhard; Anrather, Dorothea; Simeunovic, Andrea; Weiste, Christoph; Valerio, Concetta; Dietrich, Katrin; Kirchler, Tobias; Nägele, Thomas; Vicente Carbajosa, Jesús; Hanson, Johannes; Baena-González, Elena; Chaban, Christina; Weckwerth, Wolfram; Dröge-Laser, Wolfgang; Teige, Markus

    2015-01-01

    Metabolic adjustment to changing environmental conditions, particularly balancing of growth and defense responses, is crucial for all organisms to survive. The evolutionary conserved AMPK/Snf1/SnRK1 kinases are well-known metabolic master regulators in the low-energy response in animals, yeast and plants. They act at two different levels: by modulating the activity of key metabolic enzymes, and by massive transcriptional reprogramming. While the first part is well established, the latter function is only partially understood in animals and not at all in plants. Here we identified the Arabidopsis transcription factor bZIP63 as key regulator of the starvation response and direct target of the SnRK1 kinase. Phosphorylation of bZIP63 by SnRK1 changed its dimerization preference, thereby affecting target gene expression and ultimately primary metabolism. A bzip63 knock-out mutant exhibited starvation-related phenotypes, which could be functionally complemented by wild type bZIP63, but not by a version harboring point mutations in the identified SnRK1 target sites. DOI: http://dx.doi.org/10.7554/eLife.05828.001 PMID:26263501

  13. The interaction of the Arabidopsis response regulator ARR18 with bZIP63 mediates the regulation of PROLINE DEHYDROGENASE expression.

    PubMed

    Veerabagu, Manikandan; Kirchler, Tobias; Elgass, Kirstin; Stadelhofer, Bettina; Stahl, Mark; Harter, Klaus; Mira-Rodado, Virtudes; Chaban, Christina

    2014-10-01

    As the first and rate-limiting enzyme of proline degradation, PROLINE DEHYDROGENASE1 (PDH1) is tightly regulated during plant stress responses, including induction under hypoosmolarity and repression under water deficit. The plant receptor histidine kinases AHKs, elements of the two-component system (TCS) in Arabidopsis thaliana, are proposed to function in water stress responses by regulating different stress-responsive genes. However, little information is available concerning AHK phosphorelay-mediated downstream signaling. Here we show that the Arabidopsis type-B response regulator 18 (ARR18) functions as a positive osmotic stress response regulator in Arabidopsis seeds and affects the activity of the PDH1 promoter, known to be controlled by C-group bZIP transcription factors. Moreover, direct physical interaction of ARR18 with bZIP63 was identified and shown to be dependent on phosphorylation of the conserved aspartate residue in the ARR18 receiver domain. We further show that bZIP63 itself functions as a negative regulator of seed germination upon osmotic stress. Using reporter gene assays in protoplasts, we demonstrated that ARR18 interaction negatively interferes with the transcriptional activity of bZIP63 on the PDH1 promoter. Our findings provide new insight into the function of ARR18 and bZIP63 as antagonistic regulators of gene expression in Arabidopsis.

  14. IRE1/bZIP60-Mediated Unfolded Protein Response Plays Distinct Roles in Plant Immunity and Abiotic Stress Responses

    PubMed Central

    Blanco, Francisca; Boatwright, Jon Lucas; Moreno, Ignacio; Jordan, Melissa R.; Chen, Yani; Brandizzi, Federica; Dong, Xinnian

    2012-01-01

    Endoplasmic reticulum (ER)-mediated protein secretion and quality control have been shown to play an important role in immune responses in both animals and plants. In mammals, the ER membrane-located IRE1 kinase/endoribonuclease, a key regulator of unfolded protein response (UPR), is required for plasma cell development to accommodate massive secretion of immunoglobulins. Plant cells can secrete the so-called pathogenesis-related (PR) proteins with antimicrobial activities upon pathogen challenge. However, whether IRE1 plays any role in plant immunity is not known. Arabidopsis thaliana has two copies of IRE1, IRE1a and IRE1b. Here, we show that both IRE1a and IRE1b are transcriptionally induced during chemically-induced ER stress, bacterial pathogen infection and treatment with the immune signal salicylic acid (SA). However, we found that IRE1a plays a predominant role in the secretion of PR proteins upon SA treatment. Consequently, the ire1a mutant plants show enhanced susceptibility to a bacterial pathogen and are deficient in establishing systemic acquired resistance (SAR), whereas ire1b is unaffected in these responses. We further demonstrate that the immune deficiency in ire1a is due to a defect in SA- and pathogen-triggered, IRE1-mediated cytoplasmic splicing of the bZIP60 mRNA, which encodes a transcription factor involved in the expression of UPR-responsive genes. Consistently, IRE1a is preferentially required for bZIP60 splicing upon pathogen infection, while IRE1b plays a major role in bZIP60 processing upon Tunicamycin (Tm)-induced stress. We also show that SA-dependent induction of UPR-responsive genes is altered in the bzip60 mutant resulting in a moderate susceptibility to a bacterial pathogen. These results indicate that the IRE1/bZIP60 branch of UPR is a part of the plant response to pathogens for which the two Arabidopsis IRE1 isoforms play only partially overlapping roles and that IRE1 has both bZIP60-dependent and bZIP60-independent functions in

  15. The IRE1/bZIP60 pathway and Bax inhibitor 1 suppress systemic accumulation of potyviruses and potexviruses in Arabidopsis and Nicotiana benthamiana plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The inositol requiring enzyme (IRE1) is an endoplasmic reticulum (ER) stress sensor and when activated it splices the bZIP60 mRNA producing a truncated transcription factor that upregulates expression of genes involved in the unfolded protein response (UPR). Bax inhibitor 1 (BI-1) is another ER stre...

  16. The dynamic of the splicing of bZIP60 and the proteins encoded by the spliced and unspliced mRNAs reveals some unique features during the activation of UPR in Arabidopsis thaliana.

    PubMed

    Parra-Rojas, Juan; Moreno, Adrian A; Mitina, Irina; Orellana, Ariel

    2015-01-01

    The unfolded protein response (UPR) is a signaling pathway that is activated when the workload of the endoplasmic reticulum (ER) is surpassed. IRE1 is a sensor involved in triggering the UPR and plays a key role in the unconventional splicing of an mRNA leading to the formation of a transcription factor that up-regulates the transcription of genes that play a role in restoring the homeostasis in the ER. In plants, bZIP60 is the substrate for IRE1; however, questions such as what is the dynamics of the splicing of bZIP60 and the fate of the proteins encoded by the spliced and unspliced forms of the mRNA, remain unanswered. In the present work, we analyzed the processing of bZIP60 by determining the levels of the spliced form mRNA in plants exposed to different conditions that trigger UPR. The results show that induction of ER stress increases the content of the spliced form of bZIP60 (bZIP60s) reaching a maximum, that depending on the stimuli, varied between 30 min or 2 hrs. In most cases, this was followed by a decrease in the content. In contrast to other eukaryotes, the splicing never occurred to full extent. The content of bZIP60s changed among different organs upon induction of the UPR suggesting that splicing is regulated differentially throughout the plant. In addition, we analyzed the distribution of a GFP-tagged version of bZIP60 when UPR was activated. A good correlation between splicing of bZIP60 and localization of the protein in the nucleus was observed. No fluorescence was observed under basal conditions, but interestingly, the fluorescence was recovered and found to co-localize with an ER marker upon treatment with an inhibitor of the proteasome. Our results indicate that the dynamics of bZIP60, both the mRNA and the protein, are highly dynamic processes which are tissue-specific and stimulus-dependent.

  17. Genome-wide analyses of the bZIP family reveal their involvement in the development, ripening and abiotic stress response in banana

    PubMed Central

    Hu, Wei; Wang, Lianzhe; Tie, Weiwei; Yan, Yan; Ding, Zehong; Liu, Juhua; Li, Meiying; Peng, Ming; Xu, Biyu; Jin, Zhiqiang

    2016-01-01

    The leucine zipper (bZIP) transcription factors play important roles in multiple biological processes. However, less information is available regarding the bZIP family in the important fruit crop banana. In this study, 121 bZIP transcription factor genes were identified in the banana genome. Phylogenetic analysis showed that MabZIPs were classified into 11 subfamilies. The majority of MabZIP genes in the same subfamily shared similar gene structures and conserved motifs. The comprehensive transcriptome analysis of two banana genotypes revealed the differential expression patterns of MabZIP genes in different organs, in various stages of fruit development and ripening, and in responses to abiotic stresses, including drought, cold, and salt. Interaction networks and co-expression assays showed that group A MabZIP-mediated networks participated in various stress signaling, which was strongly activated in Musa ABB Pisang Awak. This study provided new insights into the complicated transcriptional control of MabZIP genes and provided robust tissue-specific, development-dependent, and abiotic stress-responsive candidate MabZIP genes for potential applications in the genetic improvement of banana cultivars. PMID:27445085

  18. HTLV-1 bZIP factor enhances TGF-β signaling through p300 coactivator.

    PubMed

    Zhao, Tiejun; Satou, Yorifumi; Sugata, Kenji; Miyazato, Paola; Green, Patrick L; Imamura, Takeshi; Matsuoka, Masao

    2011-08-18

    Human T-cell leukemia virus type 1 (HTLV-1) is an oncogenic retrovirus that is etiologically associated with adult T-cell leukemia. The HTLV-1 bZIP factor (HBZ), which is encoded by the minus strand of the provirus, is involved in both regulation of viral gene transcription and T-cell proliferation. We showed in this report that HBZ interacted with Smad2/3, and enhanced transforming growth factor-β (TGF-β)/Smad transcriptional responses in a p300-dependent manner. The N-terminal LXXLL motif of HBZ was responsible for HBZ-mediated TGF-β signaling activation. In a serial immunoprecipitation assay, HBZ, Smad3, and p300 formed a ternary complex, and the association between Smad3 and p300 was markedly enhanced in the presence of HBZ. In addition, HBZ could overcome the repression of the TGF-β response by Tax. Finally, HBZ expression resulted in enhanced transcription of Pdgfb, Sox4, Ctgf, Foxp3, Runx1, and Tsc22d1 genes and suppression of the Id2 gene; such effects were similar to those by TGF-β. In particular, HBZ induced Foxp3 expression in naive T cells through Smad3-dependent TGF-β signaling. Our results suggest that HBZ, by enhancing TGF-β signaling and Foxp3 expression, enables HTLV-1 to convert infected T cells into regulatory T cells, which is thought to be a critical strategy for virus persistence.

  19. Biophysical and Mutational Analysis of the Putative bZIP Domain of Epstein-Barr Virus EBNA 3C

    PubMed Central

    West, Michelle J.; Webb, Helen M.; Sinclair, Alison J.; Woolfson, Derek N.

    2004-01-01

    Epstein-Barr virus nuclear antigen 3C (EBNA 3C) is essential for B-cell immortalization and functions as a regulator of viral and cellular transcription. EBNA 3C contains glutamine-rich and proline-rich domains and a region in the N terminus consisting of a stretch of basic residues followed by a run of leucine residues spaced seven amino acids apart. This N-terminal domain is widely believed to represent a leucine zipper dimerization motif (bZIP). We have performed the first structural and functional analysis of this motif and demonstrated that this domain is not capable of forming stable homodimers. Peptides encompassing the EBNA 3C zipper domain are approximately 54 to 67% α-helical in solution but cannot form dimers at physiologically relevant concentrations. Moreover, the EBNA 3C leucine zipper cannot functionally substitute for another homodimerizing zipper domain in domain-swapping experiments. Our data indicate, however, that the EBNA 3C zipper domain behaves as an atypical bZIP domain and is capable of self-associating to form higher-order α-helical oligomers. Using directed mutagenesis, we also identified a new role for the bZIP domain in maintaining the interaction between EBNA 3C and RBP-Jκ in vivo. Disruption of the helical nature of the zipper domain by the introduction of proline residues reduces the ability of EBNA 3C to inhibit EBNA 2 activation and interact with RBP-Jκ in vivo by 50%, and perturbation of the charge on the basic region completely abolishes this function of EBNA 3C. PMID:15308737

  20. A novel bZIP gene from Tamarix hispida mediates physiological responses to salt stress in tobacco plants.

    PubMed

    Wang, Yucheng; Gao, Caiqiu; Liang, Yenan; Wang, Chao; Yang, Chuanping; Liu, Guifeng

    2010-02-15

    Basic leucine zipper proteins (bZIPs) are transcription factors that bind abscisic acid (ABA)-responsive elements (ABREs) and enable plants to withstand adverse environmental conditions. In the present study, a novel bZIP gene, ThbZIP1 was cloned from Tamarix hispida. Expression studies in T. hispida showed differential regulation of ThbZIP1 in response to treatment with NaCl, polyethylene glycol (PEG) 6000, NaHCO(3), and CdCl(2), suggesting that ThbZIP1 is involved in abiotic stress responses. To identify the physiological responses mediated by ThbZIP1, transgenic tobacco plants overexpressing exogenous ThbZIP1 were generated. Various physiological parameters related to salt stress were measured and compared between transgenic and wild type (WT) plants. Our results indicate that overexpression of ThbZIP1 can enhance the activity of both peroxidase (POD) and superoxide dismutase (SOD), and increase the content of soluble sugars and soluble proteins under salt stress conditions. These results suggest that ThbZIP1 contributes to salt tolerance by mediating signaling through multiple physiological pathways. Furthermore, ThbZIP1 confers stress tolerance to plants by enhancing reactive oxygen species (ROS) scavenging, facilitating the accumulation of compatible osmolytes, and inducing and/or enhancing the biosynthesis of soluble proteins.

  1. Characterization of pollen-expressed bZIP protein interactions and the role of ATbZIP18 in the male gametophyte.

    PubMed

    Gibalová, Antónia; Steinbachová, Lenka; Hafidh, Said; Bláhová, Veronika; Gadiou, Zuzana; Michailidis, Christos; Műller, Karel; Pleskot, Roman; Dupľáková, Nikoleta; Honys, David

    2017-03-01

    KEY MESSAGE : bZIP TF network in pollen. Transcriptional control of gene expression represents an important mechanism guiding organisms through developmental processes and providing plasticity towards environmental stimuli. Because of their sessile nature, plants require effective gene regulation for rapid response to variation in environmental and developmental conditions. Transcription factors (TFs) provide such control ensuring correct gene expression in spatial and temporal manner. Our work reports the interaction network of six bZIP TFs expressed in Arabidopsis thaliana pollen and highlights the potential functional role for AtbZIP18 in pollen. AtbZIP18 was shown to interact with three other pollen-expressed bZIP TFs-AtbZIP34, AtbZIP52, and AtbZIP61 in yeast two-hybrid assays. AtbZIP18 transcripts are highly expressed in pollen, and at the subcellular level, an AtbZIP18-GFP fusion protein was located in the nucleus and cytoplasm/ER. To address the role of AtbZIP18 in the male gametophyte, we performed phenotypic analysis of a T-DNA knockout allele, which showed slightly reduced transmission through the male gametophyte. Some of the phenotype defects in atbzip18 pollen, although observed at low penetrance, were similar to those seen at higher frequency in the T-DNA knockout of the interacting partner, AtbZIP34. To gain deeper insight into the regulatory role of AtbZIP18, we analysed atbzip18/- pollen microarray data. Our results point towards a potential repressive role for AtbZIP18 and its functional redundancy with AtbZIP34 in pollen.

  2. An arginine to lysine substitution in the bZIP domain of an opaque-2 mutant in maize abolishes specific DNA binding.

    PubMed

    Aukerman, M J; Schmidt, R J; Burr, B; Burr, F A

    1991-02-01

    The opaque-2 (o2) locus in maize encodes a transcription factor involved in the regulation of zein storage proteins. We have shown previously that the O2 protein contains a leucine zipper domain that binds to promoters of 22-kD zein genes. In this paper we characterize an EMS-induced o2 allele, o2-676, that causes a 50% reduction in zein. We have found that the o2-676 mutant protein does not show specific recognition of zein promoter fragments because of the substitution of a lysine residue for an arginine residue within the bZIP domain of o2-676. This particular arginine is conserved within the bZIP domains of all mammalian, fungal, and plant DNA binding proteins of this class. The correlation between this mutation in o2 and the altered pattern of zein expression strongly suggests that O2 regulates transcription of certain members of the zein multigene family through direct interaction with the zein promoters and not through the transcriptional activation of some other regulator of zein gene expression.

  3. Determinants of half-site spacing preferences that distinguish AP-1 and ATF/CREB bZIP domains.

    PubMed Central

    Kim, J; Struhl, K

    1995-01-01

    The AP-1 and ATF/CREB families of eukaryotic transcription factors are dimeric DNA-binding proteins that contain the bZIP structural motif. The AP-1 and ATF/CREB proteins are structurally related and recognize identical half-sites (TGAC), but they differ in their requirements for half-site spacing. AP-1 proteins such as yeast GCN4 preferentially bind to sequences with overlapping half-sites, whereas ATF/CREB proteins bind exclusively to sequences with adjacent half-sites. Here we investigate the distinctions between AP-1 and ATF/CREB proteins by determining the DNA-binding properties of mutant and hybrid proteins. First, analysis of GCN4-ATF1 hybrid proteins indicates that a short surface spanning the basic and fork regions of the bZIP domain is the major determinant of half-site spacing. Replacement of two GCN4 residues on this surface (Ala244 and Leu247) by their ATF1 counterparts largely converts GCN4 into a protein with ATF/CREB specificity. Secondly, analysis of a Fos derivative containing the GCN4 leucine zipper indicates that Fos represents a novel intermediate between AP-1 and ATF/CREB proteins. Thirdly, we examine the effects of mutations in the invariant arginine residue of GCN4 (Arg243) that contacts the central base pair(s) of the target sites. While most mutations abolish DNA binding, substitution of a histidine residue results in a GCN4 derivative with ATF/CREB binding specificity. These results suggest that the AP-1 and ATF/CREB proteins differ in positioning a short surface that includes the invariant arginine and that AP-1 proteins may represent a subclass (and perhaps evolutionary offshoot) of ATF/CREB proteins that can tolerate overlapping half-sites. Images PMID:7630732

  4. Evolutionary and Expression Analyses of the Apple Basic Leucine Zipper Transcription Factor Family

    PubMed Central

    Zhao, Jiao; Guo, Rongrong; Guo, Chunlei; Hou, Hongmin; Wang, Xiping; Gao, Hua

    2016-01-01

    Transcription factors (TFs) play essential roles in the regulatory networks controlling many developmental processes in plants. Members of the basic leucine (Leu) zipper (bZIP) TF family, which is unique to eukaryotes, are involved in regulating diverse processes, including flower and vascular development, seed maturation, stress signaling, and defense responses to pathogens. The bZIP proteins have a characteristic bZIP domain composed of a DNA-binding basic region and a Leu zipper dimerization region. In this study, we identified 112 apple (Malus domestica Borkh) bZIP TF-encoding genes, termed MdbZIP genes. Synteny analysis indicated that segmental and tandem duplication events, as well as whole genome duplication, have contributed to the expansion of the apple bZIP family. The family could be divided into 11 groups based on structural features of the encoded proteins, as well as on the phylogenetic relationship of the apple bZIP proteins to those of the model plant Arabidopsis thaliana (AtbZIP genes). Synteny analysis revealed that several paired MdbZIP genes and AtbZIP gene homologs were located in syntenic genomic regions. Furthermore, expression analyses of group A MdbZIP genes showed distinct expression levels in 10 different organs. Moreover, changes in these expression profiles in response to abiotic stress conditions and various hormone treatments identified MdbZIP genes that were responsive to high salinity and drought, as well as to different phytohormones. PMID:27066030

  5. The role of a basic amino acid cluster in target site selection and non-specific binding of bZIP peptides to DNA.

    PubMed Central

    Metallo, S J; Paolella, D N; Schepartz, A

    1997-01-01

    The ability of a transcription factor to locate and bind its cognate DNA site in the presence of closely related sites and a vast array of non-specific DNA is crucial for cell survival. The CREB/ATF family of transcription factors is an important group of basic region leucine zipper (bZIP) proteins that display high affinity for the CRE site and low affinity for the closely related AP-1 site. Members of the CREB/ATF family share in common a cluster of basic amino acids at the N-terminus of their bZIP element. This basic cluster is necessary and sufficient to cause the CRE site to bend upon binding of a CREB/ATF protein. The possibility that DNA bending and CRE/AP-1 specificity were linked in CREB/ATF proteins was investigated using chimeric peptides derived from human CRE-BP1 (a member of the CREB/ATF family) and yeast GCN4, which lacks both a basic cluster and CRE/AP-1 specificity. Gain of function and loss of function experiments demonstrated that the basic cluster was not responsible for the CRE/AP-1 specificity displayed by all characterized CREB/ATF proteins. The basic cluster was, however, responsible for inducing very high affinity for non- specific DNA. It was further shown that basic cluster-containing peptides bind non-specific DNA in a random coil conformation. We postulate that the high non- specific DNA affinities of basic cluster-containing peptides result from cooperative electrostatic interactions with the phosphate backbone that do not require peptide organization. PMID:9224594

  6. Molecular cloning and characterization of a tomato cDNA encoding a systemically wound-inducible bZIP DNA-binding protein

    NASA Technical Reports Server (NTRS)

    Stankovic, B.; Vian, A.; Henry-Vian, C.; Davies, E.

    2000-01-01

    Localized wounding of one leaf in intact tomato (Lycopersicon esculentum Mill.) plants triggers rapid systemic transcriptional responses that might be involved in defense. To better understand the mechanism(s) of intercellular signal transmission in wounded tomatoes, and to identify the array of genes systemically up-regulated by wounding, a subtractive cDNA library for wounded tomato leaves was constructed. A novel cDNA clone (designated LebZIP1) encoding a DNA-binding protein was isolated and identified. This clone appears to be encoded by a single gene, and belongs to the family of basic leucine zipper domain (bZIP) transcription factors shown to be up-regulated by cold and dark treatments. Analysis of the mRNA levels suggests that the transcript for LebZIP1 is both organ-specific and up-regulated by wounding. In wounded wild-type tomatoes, the LebZIP1 mRNA levels in distant tissue were maximally up-regulated within only 5 min following localized wounding. Exogenous abscisic acid (ABA) prevented the rapid wound-induced increase in LebZIP1 mRNA levels, while the basal levels of LebZIP1 transcripts were higher in the ABA mutants notabilis (not), sitiens (sit), and flacca (flc), and wound-induced increases were greater in the ABA-deficient mutants. Together, these results suggest that ABA acts to curtail the wound-induced synthesis of LebZIP1 mRNA.

  7. Transcription factor interaction with COMPASS-like complex regulates histone H3K4 trimethylation for specific gene expression in plants.

    PubMed

    Song, Ze-Ting; Sun, Le; Lu, Sun-Jie; Tian, Yongke; Ding, Yong; Liu, Jian-Xiang

    2015-03-03

    Accumulation of unfolded or misfolded proteins causes endoplasmic reticulum (ER) stress, which activates a set of ER membrane-associated transcription factors for protein homeostasis regulation. Previous genome-wide chromatin immunoprecipitation analysis shows a strong correlation between histone H3K4 trimethylation (H3K4me3) and active gene expression. However, how the histone modification complex is specifically and timely recruited to the active promoters remains unknown. Using ER stress responsive gene expression as a model system, we demonstrate that sequence-specific transcription factors interact with COMPASS-like components and affect H3K4me3 formation at specific target sites in Arabidopsis. Gene profiling analysis reveals that membrane-associated basic leucine zipper (bZIP) transcription factors bZIP28 and bZIP60 regulate most of the ER stress responsive genes. Loss-of-functions of bZIP28 and bZIP60 impair the occupancy of H3K4me3 on promoter regions of ER stress responsive genes. Further, in vitro pull-down assays and in vivo bimolecular fluorescence complementation (BiFC) experiments show that bZIP28 and bZIP60 interact with Ash2 and WDR5a, both of which are core COMPASS-like components. Knockdown expression of either Ash2 or WDR5a decreased the expression of several ER stress responsive genes. The COMPASS-like complex is known to interact with histone methyltransferase to facilitate preinitiation complex (PIC) assembly and generate H3K4me3 during transcription elongation. Thus, our data shows that the ER stress stimulus causes the formation of PIC and deposition of H3K4me3 mark at specific promoters through the interaction between transcription factor and COMPASS-like components.

  8. An active Mitochondrial Complex II Present in Mature Seeds Contains an Embryo-Specific Iron–Sulfur Subunit Regulated by ABA and bZIP53 and Is Involved in Germination and Seedling Establishment

    PubMed Central

    Restovic, Franko; Espinoza-Corral, Roberto; Gómez, Isabel; Vicente-Carbajosa, Jesús; Jordana, Xavier

    2017-01-01

    Complex II (succinate dehydrogenase) is an essential mitochondrial enzyme involved in both the tricarboxylic acid cycle and the respiratory chain. In Arabidopsis thaliana, its iron–sulfur subunit (SDH2) is encoded by three genes, one of them (SDH2.3) being specifically expressed during seed maturation in the embryo. Here we show that seed SDH2.3 expression is regulated by abscisic acid (ABA) and we define the promoter region (-114 to +49) possessing all the cis-elements necessary and sufficient for high expression in seeds. This region includes between -114 and -32 three ABRE (ABA-responsive) elements and one RY-enhancer like element, and we demonstrate that these elements, although necessary, are not sufficient for seed expression, our results supporting a role for the region encoding the 5’ untranslated region (+1 to +49). The SDH2.3 promoter is activated in leaf protoplasts by heterodimers between the basic leucine zipper transcription factors bZIP53 (group S1) and bZIP10 (group C) acting through the ABRE elements, and by the B3 domain transcription factor ABA insensitive 3 (ABI3). The in vivo role of bZIP53 is further supported by decreased SDH2.3 expression in a knockdown bzip53 mutant. By using the protein synthesis inhibitor cycloheximide and sdh2 mutants we have been able to conclusively show that complex II is already present in mature embryos before imbibition, and contains mainly SDH2.3 as iron–sulfur subunit. This complex plays a role during seed germination sensu-stricto since we have previously shown that seeds lacking SDH2.3 show retarded germination and now we demonstrate that low concentrations of thenoyltrifluoroacetone, a complex II inhibitor, also delay germination. Furthermore, complex II inhibitors completely block hypocotyl elongation in the dark and seedling establishment in the light, highlighting an essential role of complex II in the acquisition of photosynthetic competence and the transition from heterotrophy to autotrophy. PMID

  9. An active Mitochondrial Complex II Present in Mature Seeds Contains an Embryo-Specific Iron-Sulfur Subunit Regulated by ABA and bZIP53 and Is Involved in Germination and Seedling Establishment.

    PubMed

    Restovic, Franko; Espinoza-Corral, Roberto; Gómez, Isabel; Vicente-Carbajosa, Jesús; Jordana, Xavier

    2017-01-01

    Complex II (succinate dehydrogenase) is an essential mitochondrial enzyme involved in both the tricarboxylic acid cycle and the respiratory chain. In Arabidopsis thaliana, its iron-sulfur subunit (SDH2) is encoded by three genes, one of them (SDH2.3) being specifically expressed during seed maturation in the embryo. Here we show that seed SDH2.3 expression is regulated by abscisic acid (ABA) and we define the promoter region (-114 to +49) possessing all the cis-elements necessary and sufficient for high expression in seeds. This region includes between -114 and -32 three ABRE (ABA-responsive) elements and one RY-enhancer like element, and we demonstrate that these elements, although necessary, are not sufficient for seed expression, our results supporting a role for the region encoding the 5' untranslated region (+1 to +49). The SDH2.3 promoter is activated in leaf protoplasts by heterodimers between the basic leucine zipper transcription factors bZIP53 (group S1) and bZIP10 (group C) acting through the ABRE elements, and by the B3 domain transcription factor ABA insensitive 3 (ABI3). The in vivo role of bZIP53 is further supported by decreased SDH2.3 expression in a knockdown bzip53 mutant. By using the protein synthesis inhibitor cycloheximide and sdh2 mutants we have been able to conclusively show that complex II is already present in mature embryos before imbibition, and contains mainly SDH2.3 as iron-sulfur subunit. This complex plays a role during seed germination sensu-stricto since we have previously shown that seeds lacking SDH2.3 show retarded germination and now we demonstrate that low concentrations of thenoyltrifluoroacetone, a complex II inhibitor, also delay germination. Furthermore, complex II inhibitors completely block hypocotyl elongation in the dark and seedling establishment in the light, highlighting an essential role of complex II in the acquisition of photosynthetic competence and the transition from heterotrophy to autotrophy.

  10. HTLV-1 bZIP Factor RNA and Protein Impart Distinct Functions on T-cell Proliferation and Survival.

    PubMed

    Mitobe, Yuichi; Yasunaga, Jun-ichirou; Furuta, Rie; Matsuoka, Masao

    2015-10-01

    Infection of T cells with human T-cell leukemia virus type-1 (HTLV-1) induces clonal proliferation and is closely associated with the onset of adult T-cell leukemia-lymphoma (ATL) and inflammatory diseases. Although Tax expression is frequently suppressed in HTLV-1-infected cells, the accessory gene, HTLV-1 bZIP factor (HBZ), is continuously expressed and has been implicated in HTLV-1 pathogenesis. Here, we report that transduction of mouse T cells with specific mutants of HBZ that distinguish between its RNA and protein activity results in differential effects on T-cell proliferation and survival. HBZ RNA increased cell number by attenuating apoptosis, whereas HBZ protein induced apoptosis. However, both HBZ RNA and protein promoted S-phase entry of T cells. We further identified that the first 50 bp of the HBZ coding sequence are required for RNA-mediated cell survival. Transcriptional profiling of T cells expressing wild-type HBZ, RNA, or protein revealed that HBZ RNA is associated with genes involved in cell cycle, proliferation, and survival, while HBZ protein is more closely related to immunological properties of T cells. Specifically, HBZ RNA enhances the promoter activity of survivin, an inhibitor of apoptosis, to upregulate its expression. Inhibition of survivin using YM155 resulted in impaired proliferation of several ATL cell lines as well as a T-cell line expressing HBZ RNA. The distinct functions of HBZ RNA and protein may have several implications for the development of strategies to control the proliferation and survival mechanisms associated with HTLV-1 infection and ATL.

  11. [HTLV-1 bZIP Factor (HBZ): Roles in HTLV-1 Oncogenesis].

    PubMed

    Wu, Wencai; Cheng, Wenzhao; Chen, Mengyun; Xu, Lingling; Zhao, Tiejun

    2016-03-01

    Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus demonstrated to be associated with human disease. Infection by the HTLV-1 can cause T-cell leukemia (ATL) in adults. HTLV-1 bZIP factor (HBZ) is a viral protein encoded by the minus strand of the HTLV-1 provirus. Among the regulatory and accessory genes of HTLV-1, HBZ is the only gene that remains intact and which is expressed consistently in all patients with ATL. Moreover, HBZ has a critical role in the leukemogenesis of ATL. Here, we review the function of HBZ in the oncogenesis of HTLV-1 and its molecular mechanism of action.

  12. DNA binding of Jun and Fos bZip domains: homodimers and heterodimers induce a DNA conformational change in solution.

    PubMed Central

    John, M; Leppik, R; Busch, S J; Granger-Schnarr, M; Schnarr, M

    1996-01-01

    We constructed plasmids encoding the sequences for the bZip modules of c-Jun and c-Fos which could then be expressed as soluble proteins in Escherichia coli. The purified bZip modules were tested for their binding capacities of synthetic oligonucleotides containing either TRE or CRE recognition sites in electrophoretic mobility shift assays and circular dichroism (CD). Electrophoretic mobility shift assays showed that bZip Jun homodimers and bZip Jun/Fos heterodimers bind a collagenase-like TRE (CTGACTCAT) with dissociation constants of respectively 1.4 x 10(-7) M and 5 x 10(-8) M. As reported earlier [Patel et al. (1990) Nature 347, 572-575], DNA binding induces a marked change of the protein structure. However, we found that the DNA also undergoes a conformational change. This is most clearly seen with small oligonucleotides of 13 or 14 bp harboring respectively a TRE (TGACTCA) or a CRE (TGACGTCA) sequence. In this case, the positive DNA CD signal at 280 nm increases almost two-fold with a concomitant blue-shift of 3-4 nm. Within experimental error the same spectral changes are observed for TRE and CRE containing DNA fragments. The spectral changes observed with a non-specific DNA fragment are weaker and the signal of free DNA is recovered upon addition of much smaller salt concentrations than required for a specific DNA fragment. Surprisingly the spectral changes induced by Jun/Jun homodimers are not identical to those induced by Jun/Fos heterodimers. However, in both cases the increase of the positive CD band and the concomitant blue shift would be compatible with a B to A-transition of part of the binding site or a DNA conformation intermediate between the canonical A and B structures. PMID:8948639

  13. Divergence and Conservation of the Major UPR Branch IRE1-bZIP Signaling Pathway across Eukaryotes

    PubMed Central

    Zhang, Lingrui; Zhang, Changwei; Wang, Aiming

    2016-01-01

    The unfolded protein response (UPR) is crucial to life by regulating the cellular response to the stress in the endoplasmic reticulum (ER) imposed by abiotic and biotic cues such as heat shock and viral infection. The inositol requiring enzyme 1 (IRE1) signaling pathway activated by the IRE1-mediated unconventional splicing of HAC1 in yeast, bZIP60 in plants and XBP1 in metazoans, is the most ancient branch of the UPR. In this study, we systematically examined yeast IRE1p-HAC1, plant IRE1A/IRE1B-bZIP60 and human hIRE1-XBP1 pairs. We found that, unlike bZIP60, XBP1 is unable to functionally swap HAC1p in yeast, and that the inter-species heterotypic interactions among HAC1p, bZIP60 and XBP1 are not permitted. These data demonstrate evolutionary divergence of the downstream signaling of IRE1-bZIP. We also discovered that the dual cytosolic domains of plant IRE1s act in vivo in a mechanism consistent with IRE1p and hIRE1, and that plant IRE1B not only interacts with IRE1p but also forms typical IRE1 dynamic foci in yeast. Thus, the upstream components of the IRE1 signaling branch including IRE1 activation and action mechanisms are highly conserved. Taken together these data advance the molecular understanding of evolutionary divergence and conservation of the IRE1 signaling pathway across kingdoms. PMID:27256815

  14. Hydrothermal scandium fluoride chemistry: syntheses and crystal structures of [C 2N 2H 10][ScF 5], [NH 4] 2[Sc 3F 11] and [H 3O][C 6N 2H 16][ScF 6]ṡH 2O

    NASA Astrophysics Data System (ADS)

    Stephens, Nicholas F.; Lightfoot, Philip

    2006-02-01

    The hydrothermal syntheses and crystal structures of three new scandium fluorides are reported. [enH 2][ScF 5] 1 exhibits continuous chains of vertex linked ScF 6 octahedra, which adopt two differing conformations (eclipsed and staggered). [NH 4] 2[Sc 3F 11] 2, displays a three-dimensional framework structure composed of edge and corner-shared ScF 7 pentagonal bipyramids interlinked via octahedral scandium centres. This structure encloses 'butterfly'-shaped channels, and may be regarded as an 'expanded' version of the KSc 2F 7 structure, derived by insertion of the additional octahedral unit between neighbouring pentagonal bipyramidal chains. [H 3O][C 6N 2H 16][ScF 6]ṡH 2O 3 is composed of isolated ScF 6 octahedra hydrogen-bonded to trans-1,4-diaminocyclohexane cations and water molecules/hydronium cations. Crystal data for 1: tetragonal, space group P4/ncc, a=13.035(2) Å, c=8.142(2) Å; for 2: orthorhombic, space group Cmmm, a=18.501(12) Å, b=6.613(5) Å, c=4.025(3) Å; for 3: monoclinic, space group P2 1/n, a=9.543(2) Å, b=6.704(1) Å, c=9.873(2) Å, β=90.349(5)°.

  15. Production and Testing of Transgenic Cotton that Expresses Transcription Factors for Enhanced Seed and Fiber Traits and Productivity Under Drought Stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abscisic acid (ABA) is a plant hormone involved in abiotic and biotic stress adaptation and seed development. We have previously shown that Basic3 (B3) domain and basic leucine zipper (b-ZIP) transcription factors from the model plant species maize and Arabidopsis thaliana can transactivate monocot...

  16. Characterization of the bZip-type transcription factor NapA with reference to oxidative stress response in Aspergillus nidulans.

    PubMed

    Asano, Yoshihiro; Hagiwara, Daisuke; Yamashino, Takafumi; Mizuno, Takeshi

    2007-07-01

    Microorganisms growing in natural habitats are constantly confronted with a wide variety of external stresses. Here we provide several lines of experimental evidence for the thesis that the filamentous fungus Aspergillus nidulans has a homolog of the AP-1-like bZip transcription factor, which is known to play general roles in oxidative responses in many types of yeast.

  17. The contribution of the methyl groups on thymine bases to binding specificity and affinity by alanine-rich mutants of the bZIP motif.

    PubMed

    Kise, K J; Shin, J A

    2001-09-01

    We have used fluorescence anisotropy to measure in situ the thermodynamics of binding of alanine-rich mutants of the GCN4 basic region/leucine zipper (bZIP) to short DNA duplexes, in which thymines were replaced with uracils, in order to quantify the contributions of the C5 methyl group on thymines with alanine methyl side chains. We simplified the alpha-helical GCN4 bZIP by alanine substitution: 4A, 11A, and 18A contain four, 11, and 18 alanine mutations in their DNA-binding basic regions, respectively. Titration of fluorescein-labeled duplexes with increasing amounts of protein yielded dissociation constants in the low-to-mid nanomolar range for all bZIP mutants in complex with the AP-1 target site (5'-TGACTCA-3'); binding to the nonspecific control duplex was >1000-fold weaker. Small changes of <1 kcal/mol in binding free energies were observed for wild-type bZIP and 4A mutant to uracil-containing AP-1, whereas 11A and 18A bound almost equally well to native AP-1 and uracil-containing AP-1. These modest changes in binding affinities may reflect the multivalent nature of protein-DNA interactions, as our highly mutated proteins still exhibit native-like behavior. These protein mutations may compensate for changes in enthalpic and entropic contributions toward DNA-binding in order to maintain binding free energies similar to that of the native protein-DNA complex.

  18. The AP-1 transcription factor homolog Pf-AP-1 activates transcription of multiple biomineral proteins and potentially participates in Pinctada fucata biomineralization.

    PubMed

    Zheng, Xiangnan; Cheng, Minzhang; Xiang, Liang; Liang, Jian; Xie, Liping; Zhang, Rongqing

    2015-09-25

    Activator protein-1 (AP-1) is an important bZIP transcription factor that regulates a series of physiological processes by specifically activating transcription of several genes, and one of its well-chartered functions in mammals is participating in bone mineralization. We isolated and cloned the complete cDNA of a Jun/AP-1 homolog from Pinctada fucata and called it Pf-AP-1. Pf-AP-1 had a highly conserved bZIP region and phosphorylation sites compared with those from mammals. A tissue distribution analysis showed that Pf-AP-1 was ubiquitously expressed in P. fucata and the mRNA level of Pf-AP-1 is extremely high in mantle. Pf-AP-1 expression was positively associated with multiple biomineral proteins in the mantle. The luciferase reporter assay in a mammalian cell line showed that Pf-AP-1 significantly up-regulates the transcriptional activity of the promoters of KRMP, Pearlin, and Prisilkin39. Inhibiting the activity of Pf-AP-1 depressed the expression of multiple matrix proteins. Pf-AP-1 showed a unique expression pattern during shell regeneration and pearl sac development, which was similar to the pattern observed for biomineral proteins. These results suggest that the Pf-AP-1 AP-1 homolog is an important transcription factor that regulates transcription of several biomineral proteins simultaneously and plays a role in P. fucata biomineralization, particularly during pearl and shell formation.

  19. Regulating expression of cell and tissue-specific genes by modifying transcription

    SciTech Connect

    Beachy, Roger N; Dai, Shunhong

    2010-06-14

    Transcriptional regulation is the primary step to control gene expression, therefore function. Such regulation is achieved primarily via a combination of the activities of the promoter cis regulatory DNA elements and trans regulatory proteins that function through binding to these DNA elements. Rice bZIP transcription factors RF2a, RF2b and RLP1 play key roles in regulating the activity of a vascular tissue specific promoter isolated from Rice Tungro Bacilliform Virus (RTBV), through their interactions with the Box II essential cis element located in the promoter (Dai et al., 2006., Dai et al., 2004., Yin et al., 1997). RF2a, RF2b and RLP1 possess multiple regulatory domains. Functional characterization reveals that those domains can activate or repress the activity of the RTBV promoter. It is equally as important to recognize that these proteins control plant development by regulating differentiation and/or function of the vascular tissues. Studies of transcriptional regulation of the RTBV promoter by this group of bZIP proteins will not only provide insights about gene expression in the vascular tissue, but also insights about general mechanisms of transcription activation and repression. The knowledge gained from this research will also enable us to develop a well-described set of tools that can be used to control expression of multiple genes in transgenic plants. We have proposed characterize the function domains of RF2a, RF2b and RLP1 and explore the biological function of the transcription repressor RLP1.

  20. Development of T cell lymphoma in HTLV-1 bZIP factor and Tax double transgenic mice.

    PubMed

    Zhao, Tiejun; Satou, Yorifumi; Matsuoka, Masao

    2014-07-01

    Adult T-cell leukemia (ATL) is an aggressive T-cell malignancy caused by human T-cell leukemia virus type 1 (HTLV-1). ATL cells possess a CD4+ CD25+ phenotype, similar to that of regulatory T cells (Tregs). Tax has been reported to play a crucial role in the leukemogenesis of HTLV-1. The HTLV-1 bZIP factor (HBZ), which is encoded by the minus strand of the viral genomic RNA, is expressed in all ATL cases and induces neoplastic and inflammatory disease in vivo. To test whether HBZ and Tax are both required for T cell malignancy, we generated HBZ/Tax double transgenic mice in which HBZ and Tax are expressed exclusively in CD4+ T cells. Survival was much reduced in HBZ/Tax double-transgenic mice compared with wild type littermates. Transgenic expression of HBZ and Tax induced skin lesions and T-cell lymphoma in mice, resembling diseases observed in HTLV-1 infected individuals. However, Tax single transgenic mice did not develop major health problems. In addition, memory CD4+ T cells and Foxp3+ Treg cells counts were increased in HBZ/Tax double transgenic mice, and their proliferation was enhanced. There was very little difference between HBZ single and HBZ/Tax double transgenic mice. Taken together, these results show that HBZ, in addition to Tax, plays a critical role in T-cell lymphoma arising from HTLV-1 infection.

  1. Regulating expressin of cell and tissue-specific genes by modifying transcription

    SciTech Connect

    Beachy, R N; Dai, Shunhong

    2009-12-15

    Transcriptional regulation is the primary step to control gene expression, therefore function. Such regulation is achieved primarily via a combination of the activities of the promoter cis regulatory DNA elements and trans regulatory proteins that function through binding to these DNA elements. Our research supported by this program has led to the identification of rice bZIP transcription factors RF2a, RF2b and RLP1 that play key roles in regulating the activity of a vascular tissue specific promoter isolated from Rice Tungro Bacilliform Virus (RTBV) through their interactions with the Box II essential cis element located in the promoter. RF2a, RF2b and RLP1 possess multiple regulatory domains. Functional characterization reveals that those domains can activate or repress the activity of the RTBV promoter. Studies of transcriptional regulation of the RTBV promoter by this group of bZIP proteins not only provide insights about gene expression in the vascular tissue, but also insights about general mechanisms of transcription activation and repression. The knowledge gained from this research will also enable us to develop a well-described set of tools that can be used to control expression of multiple genes in transgenic plants and to improve biofuel feedstock.

  2. Unraveling transcription factor interactions with heterochromatin protein 1 using fluorescence lifetime imaging microscopy and fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Siegel, Amanda P.; Hays, Nicole M.; Day, Richard N.

    2013-02-01

    The epigenetic control of heterochromatin deposition is achieved through a network of protein interactions mediated by the heterochromatin protein 1 (HP1). In earlier studies, we showed that the CCAAT/enhancer-binding protein alpha (C/EBPα), a transcription factor that controls cell differentiation, localizes to heterochromatin, and interacts with HP1α. Here, deletion and mutagenesis are combined with live-cell imaging approaches to characterize these protein interactions. The results demonstrate that the basic region and leucine zipper (BZip) domain of C/EBPα is sufficient for the interaction with HP1α in regions of heterochromatin. Fluorescence correlation spectroscopy and cross-correlation (FCS and FCCS) revealed very different diffusion profiles for HP1α and the BZip protein, and co-expression studies indicated that the mobile fractions of these nuclear proteins diffuse independently of one another. The steady-state interactions of these proteins in regions of heterochromatin were monitored using Förster resonance energy transfer (FRET). A point mutation in HP1α, W174A, which disrupts the interactions with proteins containing the common PxVxL motif did not affect the interaction with the BZip protein. In contrast, the HP1α W41A mutation, which prevents binding to methylated histones, exhibited greatly reduced FRET efficiency when compared to the wild type HP1α or HP1αW174A. The functional significance of these interactions is discussed.

  3. The HTLV-1 HBZ protein inhibits cyclin D1 expression through interacting with the cellular transcription factor CREB.

    PubMed

    Ma, Yunyun; Zheng, Shangen; Wang, Yuanyuan; Zang, Wenqiao; Li, Min; Wang, Na; Li, Ping; Jin, Jing; Dong, Ziming; Zhao, Guoqiang

    2013-10-01

    Human T cell leukemia virus type 1 (HTLV-1) is an oncogenic retrovirus that can cause adult T-cell leukemia (ATL) and other diseases. The HTLV-1 bZIP factor (HBZ), which is encoded by an mRNA of the opposite polarity of the viral genomic RNA, interacts with several transcription factors and is involved in T cell proliferation, viral gene transcription and cellular transformation. Cyclin D1 is a pivotal regulatory protein involved in cell cycle progression, and its depressed expression correlates with cell cycle prolongation or arrested at the G1/S transition. In our present study, we observed that HBZ expression suppressed cyclin D1 level. To investigate the role of HBZ on cyclin D1 depression, we transduced HBZ with lentivirus vector into 293T cells, CEM cells and Jurkat cells. The results of Western blot, RT-PCR and luciferase assays showed that transcriptional activity of the cyclin D1 promoter was suppressed by the bZIP domain of HBZ (HBZ-bZIP) through cyclic AMP response element (CRE) site. Immunoprecipitation and GST pull-down assays showed the binding of HBZ-bZIP to CRE-binding protein (CREB), which confirmed that the cyclin D1 promoter activity inhibition via the CRE-site was mediated by HBZ-bZIP. The results suggested that HBZ suppressed cyclin D1 transcription through interactions with CREB and along with other viral protein, HBZ may play a causal role for leukemogenesis.

  4. The Importance of Being Flexible: The Case of Basic Region Leucine Zipper Transcriptional Regulators

    PubMed Central

    Miller, Maria

    2009-01-01

    Large volumes of protein sequence and structure data acquired by proteomic studies led to the development of computational bioinformatic techniques that made possible the functional annotation and structural characterization of proteins based on their primary structure. It has become evident from genome-wide analyses that many proteins in eukaryotic cells are either completely disordered or contain long unstructured regions that are crucial for their biological functions. The content of disorder increases with evolution indicating a possibly important role of disorder in the regulation of cellular systems. Transcription factors are no exception and several proteins of this class have recently been characterized as premolten/molten globules. Yet, mammalian cells rely on these proteins to control expression of their 30,000 or so genes. Basic region:leucine zipper (bZIP) DNA-binding proteins constitute a major class of eukaryotic transcriptional regulators. This review discusses how conformational flexibility “built” into the amino acid sequence allows bZIP proteins to interact with a large number of diverse molecular partners and to accomplish their manifold cellular tasks in a strictly regulated and coordinated manner. PMID:19519454

  5. Deregulation of Sucrose-Controlled Translation of a bZIP-Type Transcription Factor Results in Sucrose Accumulation in Leaves

    PubMed Central

    Lee, Sung Shin; Yang, Seung Hwan; Zhu, XuJun; Imai, Ryozo; Takahashi, Yoshihiro; Kusano, Tomonobu

    2012-01-01

    Sucrose is known to repress the translation of Arabidopsis thaliana AtbZIP11 transcript which encodes a protein belonging to the group of S (S - stands for small) basic region-leucine zipper (bZIP)-type transcription factor. This repression is called sucrose-induced repression of translation (SIRT). It is mediated through the sucrose-controlled upstream open reading frame (SC-uORF) found in the AtbZIP11 transcript. The SIRT is reported for 4 other genes belonging to the group of S bZIP in Arabidopsis. Tobacco tbz17 is phylogenetically closely related to AtbZIP11 and carries a putative SC-uORF in its 5′-leader region. Here we demonstrate that tbz17 exhibits SIRT mediated by its SC-uORF in a manner similar to genes belonging to the S bZIP group of the Arabidopsis genus. Furthermore, constitutive transgenic expression of tbz17 lacking its 5′-leader region containing the SC-uORF leads to production of tobacco plants with thicker leaves composed of enlarged cells with 3–4 times higher sucrose content compared to wild type plants. Our finding provides a novel strategy to generate plants with high sucrose content. PMID:22457737

  6. Transcription factors that directly regulate the expression of CSLA9 encoding mannan synthase in Arabidopsis thaliana.

    PubMed

    Kim, Won-Chan; Reca, Ida-Barbara; Kim, Yongsig; Park, Sunchung; Thomashow, Michael F; Keegstra, Kenneth; Han, Kyung-Hwan

    2014-03-01

    Mannans are hemicellulosic polysaccharides that have a structural role and serve as storage reserves during plant growth and development. Previous studies led to the conclusion that mannan synthase enzymes in several plant species are encoded by members of the cellulose synthase-like A (CSLA) gene family. Arabidopsis has nine members of the CSLA gene family. Earlier work has shown that CSLA9 is responsible for the majority of glucomannan synthesis in both primary and secondary cell walls of Arabidopsis inflorescence stems. Little is known about how expression of the CLSA9 gene is regulated. Sequence analysis of the CSLA9 promoter region revealed the presence of multiple copies of a cis-regulatory motif (M46RE) recognized by transcription factor MYB46, leading to the hypothesis that MYB46 (At5g12870) is a direct regulator of the mannan synthase CLSA9. We obtained several lines of experimental evidence in support of this hypothesis. First, the expression of CSLA9 was substantially upregulated by MYB46 overexpression. Second, electrophoretic mobility shift assay (EMSA) was used to demonstrate the direct binding of MYB46 to the promoter of CSLA9 in vitro. This interaction was further confirmed in vivo by a chromatin immunoprecipitation assay. Finally, over-expression of MYB46 resulted in a significant increase in mannan content. Considering the multifaceted nature of MYB46-mediated transcriptional regulation of secondary wall biosynthesis, we reasoned that additional transcription factors are involved in the CSLA9 regulation. This hypothesis was tested by carrying out yeast-one hybrid screening, which identified ANAC041 and bZIP1 as direct regulators of CSLA9. Transcriptional activation assays and EMSA were used to confirm the yeast-one hybrid results. Taken together, we report that transcription factors ANAC041, bZIP1 and MYB46 directly regulate the expression of CSLA9.

  7. Cloning and molecular analysis of HlbZip1 and HlbZip2 transcription factors putatively involved in the regulation of the lupulin metabolome in hop (Humulus lupulus L.).

    PubMed

    Matousek, Jaroslav; Kocábek, Tomás; Patzak, Josef; Stehlík, Jan; Füssy, Zoltan; Krofta, Karel; Heyerick, Arne; Roldán-Ruiz, Isabel; Maloukh, Lina; De Keukeleire, Denis

    2010-01-27

    Hop (Humulus lupulus L.), the essential source of beer flavor is of interest from a medicinal perspective in view of its high content in health-beneficial terpenophenolics including prenylflavonoids. The dissection of biosynthetic pathway(s) of these compounds in lupulin glands, as well as its regulation by transcription factors (TFs), is important for efficient biotechnological manipulation of the hop metabolome. TFs of the bZIP class were preselected from the hop transcriptome using a cDNA-AFLP approach and cloned from a cDNA library based on glandular tissue-enriched hop cones. The cloned TFs HlbZIP1A and HlbZIP2 have predicted molecular masses of 27.4 and 34.2 kDa, respectively, and both are similar to the group A3 bZIP TFs according to the composition of characteristic domains. While HlbZIP1A is rather neutral (pI 6.42), HlbZIP2 is strongly basic (pI 8.51). A truncated variant of HlbZIP1 (HlbZIP1B), which is strongly basic but lacks the leucine zipper domain, has also been cloned from hop. Similar to the previously cloned HlMyb3 from hop, both bZIP TFs show a highly specific expression in lupulin glands, although low expression was observed also in other tissues including roots and immature pollen. Comparative functional analyses of HlbZip1A, HlbZip2, and subvariants of HlMyb3 were performed in a transient expression system using Nicotiana benthamiana leaf coinfiltration with Agrobacterium tumefaciens strains bearing hop TFs and selected promoters fused to the GUS reference gene. Both hop bZIP TFs and HlMyb3 mainly activated the promoters of chalcone synthase chs_H1 and the newly cloned O-methyl transferase 1 genes, while the response of the valerophenone synthase promoter to the cloned hop TFs was very low. These analyses also showed that the cloned bZIP TFs are not strictly G-box-specific. HPLC analysis of secondary metabolites in infiltrated Petunia hybrida showed that both hop bZIP TFs interfere with the accumulation and the composition of flavonol

  8. Temporal kinetics of the transcriptional response to carbon depletion and sucrose readdition in Arabidopsis seedlings.

    PubMed

    Cookson, Sarah Jane; Yadav, Umesh Prasad; Klie, Sebastian; Morcuende, Rosa; Usadel, Björn; Lunn, John Edward; Stitt, Mark

    2016-04-01

    To investigate whether the transcriptional response to carbon (C) depletion and sucrose resupply depends on the duration and severity of the C depletion, Arabidopsis seedlings were grown in liquid culture and harvested 3, 6, 12, 24, 48 and 72 h after removing sucrose from the medium and 30 min after resupplying sucrose at each time. Expression profiling revealed early transcriptional inhibition of cell wall synthesis and remodelling of signalling, followed by induction of C recycling and photosynthesis and general inhibition of growth. The temporal sequence differed from the published response to progressive exhaustion of C during a night and extended night in vegetatively growing plants. The response to sucrose readdition was conserved across the C-depletion time course. Intriguingly, the vast majority of rapidly responding transcripts decreased rather than increased. The majority of transcripts that respond rapidly to sucrose and many transcripts that respond during C depletion also decrease after treating seedlings with the transcriptional inhibitor cordycepin A. Comparison with published responses to overexpression of otsA, AKIN10 and bZIP11 revealed that many genes that respond to C depletion, and especially sucrose resupply, respond to one or more of these C-signalling components. Thus, multiple factors contribute to C responsiveness, including many signalling components, transcriptional regulation and transcript turnover.

  9. Identification and characterization a novel transcription factor activator protein-1 in the sea cucumber Apostichopus japonicus.

    PubMed

    Yang, Limeng; Li, Chenghua; Chang, Yaqing; Gao, Yinxue; Wang, Yi; Wei, Jing; Song, Jian; Sun, Ping

    2015-08-01

    The transcription factor activator protein-1 (AP-1) is an important gene expression regulator with typical Jun and region-leucine zipper (bZIP) domains and can respond to a plethora of physiological and pathological stimulus. In this study, we identified a novel AP-1 gene in Apostichopus japonicus by transcriptome sequencing and RACE approaches (designated as AjAP-1). The full-length of AjAP-1 was of 2944 bp including a 5' untranslated region (UTR) of 201 bp, a 3' UTR of 1753 bp and a putative open reading frame of 990 bp encoding a polypeptide of 329 amino acid residues. Two representative domains of Jun and bZIP as well as two nuclear localization signals (NLSs) were also detected in deduced amino acid of AjAP-1. Spatial distribution expression indicated that AjAP-1 was ubiquitously expressed in all examined tissues with predominant expression in the body wall, moderate in the tube feet, respiratory tree and colemocytes and slightly weak in the intestine and longitudinal muscle. Time-course expression analysis in intestine and coelomocytes revealed that AjAP-1 both reached its peak expression at 4 h after Vibrio splendidus challenge with a 2.6 and 8.2-fold increase compared to their control groups, respectively. Taken together, all these results suggested that AjAP-1 was a novel immune factor and might be involved in the processes of anti-bacteria response in sea cucumber.

  10. Expression analysis of transcription factors from the interaction between cacao and Moniliophthora perniciosa (Tricholomataceae).

    PubMed

    Lopes, M A; Hora, B T; Dias, C V; Santos, G C; Gramacho, K P; Cascardo, J C M; Gesteira, A S; Micheli, F

    2010-07-06

    Cacao (Theobroma cacao) is one of the most important tropical crops; however, production is threatened by numerous pathogens, including the hemibiotrophic fungus Moniliophthora perniciosa, which causes witches' broom disease. To understand the mechanisms that lead to the development of this disease in cacao, we focused our attention on cacao transcription factors (TFs), which act as master regulators of cellular processes and are important for the fine-tuning of plant defense responses. We developed a macroarray with 88 TF cDNA from previously obtained cacao-M. perniciosa interaction libraries. Seventy-two TFs were found differentially expressed between the susceptible (Catongo) and resistant (TSH1188) genotypes and/or during the disease time course--from 24 h to 30 days after infection. Most of the differentially expressed TFs belonged to the bZIP, MYB and WRKY families and presented opposite expression patterns in susceptible and resistant cacao-M. perniciosa interactions (i.e., up-regulated in Catongo and down-regulated in TSH1188). The results of the macroarray were confirmed for bZIP and WRKY TFs by real-time PCR. These differentially expressed TFs are good candidates for subsequent functional analysis as well as for plant engineering. Some of these TFs could also be localized on the cacao reference map related to witches' broom resistance, facilitating the breeding and selection of resistant cacao trees.

  11. Neuronal expression of nuclear transcription factor MafG in the rat medulla oblongata after baroreceptor stimulation.

    PubMed

    Kumaki, Iku; Yang, Dawei; Koibuchi, Noriyuki; Takayama, Kiyoshige

    2006-03-06

    The medulla oblongata is the site of central baroreceptive neurons in mammals. These neurons express specific basic-leucine zipper transcription factors (bZIP) after baroreceptor stimulation. Previously we showed that activation of baroreceptors induced expression of nuclear transcription factors c-Fos and FosB in central baroreceptive neurons. Here we studied the effects of baroreceptor stimulation on induction of MafG, a member of small Maf protein family that functions as dimeric partners for various bZIP transcription factors by forming transcription-regulating complexes, in the rat medulla oblongata. To determine whether gene expression of MafG is induced by stimulation of arterial baroreceptors, we examined the expression of its mRNA by semi-quantitative reverse transcription-PCR method and its gene product by immunohistochemistry. We found that the number of MafG transcripts increased significantly in the medulla oblongata after baroreceptor stimulation. MafG-immunoreactive neurons were distributed in the nucleus tractus solitarii, the dorsal motor nucleus of the vagus nerve, the ambiguous nucleus and the ventrolateral medulla. The numbers of MafG-immunoreactive neurons in these nuclei were significantly greater in test rats than in saline-injected control rats. We also found approximately 20% of MafG-immunoreactive neurons coexpress FosB after baroreceptor stimulation. Our results suggest that MafG cooperates with FosB to play critical roles as an immediate early gene in the signal transduction of cardiovascular regulation mediated by baroreceptive signals in the medulla oblongata.

  12. Transcription Factor Functional Protein-Protein Interactions in Plant Defense Responses

    PubMed Central

    Alves, Murilo S.; Dadalto, Silvana P.; Gonçalves, Amanda B.; de Souza, Gilza B.; Barros, Vanessa A.; Fietto, Luciano G.

    2014-01-01

    Responses to biotic stress in plants lead to dramatic reprogramming of gene expression, favoring stress responses at the expense of normal cellular functions. Transcription factors are master regulators of gene expression at the transcriptional level, and controlling the activity of these factors alters the transcriptome of the plant, leading to metabolic and phenotypic changes in response to stress. The functional analysis of interactions between transcription factors and other proteins is very important for elucidating the role of these transcriptional regulators in different signaling cascades. In this review, we present an overview of protein-protein interactions for the six major families of transcription factors involved in plant defense: basic leucine zipper containing domain proteins (bZIP), amino-acid sequence WRKYGQK (WRKY), myelocytomatosis related proteins (MYC), myeloblastosis related proteins (MYB), APETALA2/ ETHYLENE-RESPONSIVE ELEMENT BINDING FACTORS (AP2/EREBP) and no apical meristem (NAM), Arabidopsis transcription activation factor (ATAF), and cup-shaped cotyledon (CUC) (NAC). We describe the interaction partners of these transcription factors as molecular responses during pathogen attack and the key components of signal transduction pathways that take place during plant defense responses. These interactions determine the activation or repression of response pathways and are crucial to understanding the regulatory networks that modulate plant defense responses. PMID:28250372

  13. Transcriptional regulatory network triggered by oxidative signals configures the early response mechanisms of japonica rice to chilling stress

    PubMed Central

    2010-01-01

    Background The transcriptional regulatory network involved in low temperature response leading to acclimation has been established in Arabidopsis. In japonica rice, which can only withstand transient exposure to milder cold stress (10°C), an oxidative-mediated network has been proposed to play a key role in configuring early responses and short-term defenses. The components, hierarchical organization and physiological consequences of this network were further dissected by a systems-level approach. Results Regulatory clusters responding directly to oxidative signals were prominent during the initial 6 to 12 hours at 10°C. Early events mirrored a typical oxidative response based on striking similarities of the transcriptome to disease, elicitor and wounding induced processes. Targets of oxidative-mediated mechanisms are likely regulated by several classes of bZIP factors acting on as1/ocs/TGA-like element enriched clusters, ERF factors acting on GCC-box/JAre-like element enriched clusters and R2R3-MYB factors acting on MYB2-like element enriched clusters. Temporal induction of several H2O2-induced bZIP, ERF and MYB genes coincided with the transient H2O2 spikes within the initial 6 to 12 hours. Oxidative-independent responses involve DREB/CBF, RAP2 and RAV1 factors acting on DRE/CRT/rav1-like enriched clusters and bZIP factors acting on ABRE-like enriched clusters. Oxidative-mediated clusters were activated earlier than ABA-mediated clusters. Conclusion Genome-wide, physiological and whole-plant level analyses established a holistic view of chilling stress response mechanism of japonica rice. Early response regulatory network triggered by oxidative signals is critical for prolonged survival under sub-optimal temperature. Integration of stress and developmental responses leads to modulated growth and vigor maintenance contributing to a delay of plastic injuries. PMID:20100339

  14. The soybean GmbZIP1 transcription factor enhances multiple abiotic stress tolerances in transgenic plants.

    PubMed

    Gao, Shi-Qing; Chen, Ming; Xu, Zhao-Shi; Zhao, Chang-Ping; Li, Liancheng; Xu, Hui-jun; Tang, Yi-miao; Zhao, Xin; Ma, You-Zhi

    2011-04-01

    Abscisic acid (ABA)-responsive element binding proteins (AREBs) are basic domain/leucine zipper transcription factors that bind to the ABA-responsive element (ABRE) in the promoter regions of ABA-inducible genes in plants. A novel bZIP transcription factor gene, GmbZIP1, encoding 438 amino acids with a conserved bZIP domain composed of 60 amino acids was isolated from salt-tolerant soybean cv. Tiefeng 8. Southern blotting showed that only one copy was present in the soybean genome. Phylogenetic analyses showed that GmbZIP1 belonged to the AREB subfamily of the bZIP family and was most closely related to AtABF2 and OsTRAB1. The expression of GmbZIP1 was highly induced by ABA, drought, high salt and low temperature; and GmbZIP1 was expressed in soybean roots, stems and leaves under different stress conditions. GmbZIP1 was localized inside the nuclei of transformed onion epidermal cells. Overexpression of GmbZIP1 enhanced the responses of transgenic plants to ABA and triggered stomatal closure under stresses, potentially leading to improved tolerances to several abiotic stresses such as high salt, low temperature and drought in transgenic plants. Furthermore, overexpression of GmbZIP1 affected the expression of some ABA or stress-related genes involved in regulating stomatal closure in Arabidopsis under ABA, drought and high salt stress conditions. A few AREB elements were detected in the promoter region of those ABA or stress-related genes, suggesting that GmbZIP1 regulates the ABA response or stomatal closure mediated by those downstream genes in transgenic Arabidopsis. Moreover, GmbZIP1 was used to improve the drought tolerance trait of Chinese wheat varieties BS93. Functional analysis showed that overexpression of GmbZIP1 enhanced the drought tolerance of transgenic wheat, and transcripts of GmbZIP1 were detected in transgenic wheat using RT-PCR. In addition, GmbZIP1 overexpression did not result in growth retardation in all transgenic plants, suggesting that Gmb

  15. Transcription factors regulating the progression of monocot and dicot seed development.

    PubMed

    Agarwal, Pinky; Kapoor, Sanjay; Tyagi, Akhilesh K

    2011-03-01

    Seed development in this paper has been classified into the three landmark stages of cell division, organ initiation and maturation, based on morphological changes, and the available literature. The entire process proceeds at the behest of an interplay of various specific and general transcription factors (TFs). Monocots and dicots utilize overlapping, as well as distinct, TF networks during the process of seed development. The known TFs in rice and Arabidopsis have been chronologically categorized into the three stages. The main regulators of seed development contain B3 or HAP3 domains. These interact with bZIP and AP2 TFs. Other TFs that play an indispensable role during the process contain homeobox-, NAC-, MYB-, or ARF-domains. This paper is a comprehensive analysis of the TFs essential for seed development and their interactions. An understanding of this interplay will not only help unravel an integrated developmental process, but will also pave the way for biotechnological applications.

  16. HTLV-1 bZIP Factor Enhances T-Cell Proliferation by Impeding the Suppressive Signaling of Co-inhibitory Receptors

    PubMed Central

    Shimura, Kazuya; Onishi, Chiho; Iyoda, Tomonori; Inaba, Kayo

    2017-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia-lymphoma (ATL) and inflammatory diseases. To enhance cell-to-cell transmission of HTLV-1, the virus increases the number of infected cells in vivo. HTLV-1 bZIP factor (HBZ) is constitutively expressed in HTLV-1 infected cells and ATL cells and promotes T-cell proliferation. However, the detailed mechanism by which it does so remains unknown. Here, we show that HBZ enhances the proliferation of expressing T cells after stimulation via the T-cell receptor. HBZ promotes this proliferation by influencing the expression and function of multiple co-inhibitory receptors. HBZ suppresses the expression of BTLA and LAIR-1 in HBZ expressing T cells and ATL cells. Expression of T cell immunoglobulin and ITIM domain (TIGIT) and Programmed cell death 1 (PD-1) was enhanced, but their suppressive effect on T-cell proliferation was functionally impaired. HBZ inhibits the co-localization of SHP-2 and PD-1 in T cells, thereby leading to impaired inhibition of T-cell proliferation and suppressed dephosphorylation of ZAP-70 and CD3ζ. HBZ does this by interacting with THEMIS, which associates with Grb2 and SHP-2. Thus, HBZ interacts with the SHP containing complex, impedes the suppressive signal from PD-1 and TIGIT, and enhances the proliferation of T cells. Although HBZ was present in both the nucleus and the cytoplasm of T cells, HBZ was localized largely in the nucleus by suppressed expression of THEMIS by shRNA. This indicates that THEMIS is responsible for cytoplasmic localization of HBZ in T cells. Since THEMIS is expressed only in T-lineage cells, HBZ mediated inhibition of the suppressive effects of co-inhibitory receptors accounts for how HTLV-1 induces proliferation only of T cells in vivo. This study reveals that HBZ targets co-inhibitory receptors to cause the proliferation of infected cells. PMID:28046066

  17. Ectopic expression of a hot pepper bZIP-like transcription factor in potato enhances drought tolerance without decreasing tuber yield.

    PubMed

    Moon, Seok-Jun; Han, Se-Youn; Kim, Dool-Yi; Yoon, In Sun; Shin, Dongjin; Byun, Myung-Ok; Kwon, Hawk-Bin; Kim, Beom-Gi

    2015-11-01

    Over-expression of group A bZIP transcription factor genes in plants improves abiotic stress tolerance but usually reduces yields. Thus, there have been several efforts to overcome yield penalty in transgenic plants. In this study, we characterized that expression of the hot pepper (Capsicum annuum) gene CaBZ1, which encodes a group S bZIP transcription factor, was induced by salt and osmotic stress as well as abscisic acid (ABA). Transgenic potato (Solanum tuberosum) plants over-expressing CaBZ1 exhibited reduced rates of water loss and faster stomatal closure than non transgenic potato plants under drought and ABA treatment conditions. CaBZ1 over-expression in transgenic potato increased the expression of ABA- and stress-related genes (such as CYP707A1, CBF and NAC-like genes) and improved drought stress tolerance. Interestingly, over-expression of CaBZ1 in potato did not produce undesirable growth phenotypes in major agricultural traits such as plant height, leaf size and tuber formation under normal growth conditions. The transgenic potato plants also had higher tuber yields than non transgenic potato plants under drought stress conditions. Thus, CaBZ1 may be useful for improving drought tolerance in tuber crops. This might be the first report of the production of transgenic potato with improved tuber yields under drought conditions.

  18. The grapevine VvibZIPC22 transcription factor is involved in the regulation of flavonoid biosynthesis

    PubMed Central

    Malacarne, Giulia; Coller, Emanuela; Czemmel, Stefan; Vrhovsek, Urska; Engelen, Kristof; Goremykin, Vadim; Bogs, Jochen; Moser, Claudio

    2016-01-01

    In grapevine, flavonoids constitute one of the most abundant subgroups of secondary metabolites, influencing the quality, health value, and typicity of wines. Their synthesis in many plant species is mainly regulated at the transcriptional level by modulation of flavonoid pathway genes either by single regulators or by complexes of different regulators. In particular, bZIP and MYB factors interact synergistically in the recognition of light response units present in the promoter of some genes of the pathway, thus mediating light-dependent flavonoid biosynthesis. We recently identified VvibZIPC22, a member of clade C of the grapevine bZIP family, in a quantitative trait locus (QTL) specifically associated with kaemperol content in mature berries. Here, to validate the involvement of this candidate gene in the fine regulation of flavonol biosynthesis, we characterized its function by in vitro and in vivo experiments. A role for this gene in the control of flavonol biosynthesis was indeed confirmed by its highest expression at flowering and during UV light-mediated induction, paralleled by accumulation of the flavonol synthase 1 transcript and flavonol compounds. The overexpression of VvibZIPC22 in tobacco caused a significant increase in several flavonoids in the flower, via induction of general and specific genes of the pathway. In agreement with this evidence, VvibZIPC22 was able to activate the promoters of specific genes of the flavonoid pathway, alone or together with other factors, as revealed by transient reporter assays. These findings, supported by in silico indications, allowed us to propose VvibZIPC22 as a new regulator of flavonoid biosynthesis in grapevine. PMID:27194742

  19. HTLV-1 bZIP Factor Impairs Anti-viral Immunity by Inducing Co-inhibitory Molecule, T Cell Immunoglobulin and ITIM Domain (TIGIT).

    PubMed

    Yasuma, Keiko; Yasunaga, Jun-ichirou; Takemoto, Keiko; Sugata, Kenji; Mitobe, Yuichi; Takenouchi, Norihiro; Nakagawa, Masanori; Suzuki, Yutaka; Matsuoka, Masao

    2016-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) infects CD4+ T cells and induces proliferation of infected cells in vivo, which leads to the onset of adult T-cell leukemia (ATL) in some infected individuals. The HTLV-1 bZIP factor (HBZ) gene, which is encoded in the minus strand of HTLV-1, plays critical roles in pathogenesis. In this study, RNA-seq and ChIP-seq analyses using HBZ transduced T cells revealed that HBZ upregulates the expression and promoter acetylation levels of a co-inhibitory molecule, T cell immunoglobulin and ITIM domain (TIGIT), in addition to those of regulatory T cells related genes, Foxp3 and Ccr4. TIGIT was expressed on CD4+ T cells from HBZ-transgenic (HBZ-Tg) mice, and on ATL cells and HTLV-1 infected CD4+ T cells of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) in vivo. Expression of Blimp1 and IL-10 was upregulated in TIGIT+CD4+ cells of HBZ-Tg mice compared with TIGIT-CD4+ T cells, suggesting the correlation between TIGIT expression and IL-10 production. When CD4+ T cells from HBZ-Tg mice were stimulated with TIGIT's ligand, CD155, their production of the inhibitory cytokine IL-10 was enhanced. Furthermore, dendritic cells from HBZ-Tg mice produced high levels of IL-10 after stimulation. These data suggest that HBZ alters immune system to suppressive state via TIGIT and IL-10. Importantly, TIGIT suppressed T-cell responses to another HTLV-1 virus protein, Tax, in vitro. Blocking of TIGIT and PD-1 slightly increased anti-Tax T-cell activity in some HAM/TSP patients. These results suggest that HBZ-induced TIGIT on HTLV-1 infected cells impairs T-cell responses to viral antigens. This study shows that HBZ-induced TIGIT plays a pivotal role in attenuating host immune responses and shaping a microenvironment favorable to HTLV-1.

  20. A systems biology perspective on the role of WRKY transcription factors in drought responses in plants.

    PubMed

    Tripathi, Prateek; Rabara, Roel C; Rushton, Paul J

    2014-02-01

    Drought is one of the major challenges affecting crop productivity and yield. However, water stress responses are notoriously multigenic and quantitative with strong environmental effects on phenotypes. It is also clear that water stress often does not occur alone under field conditions but rather in conjunction with other abiotic stresses such as high temperature and high light intensities. A multidisciplinary approach with successful integration of a whole range of -omics technologies will not only define the system, but also provide new gene targets for both transgenic approaches and marker-assisted selection. Transcription factors are major players in water stress signaling and some constitute major hubs in the signaling webs. The main transcription factors in this network include MYB, bHLH, bZIP, ERF, NAC, and WRKY transcription factors. The role of WRKY transcription factors in abiotic stress signaling networks is just becoming apparent and systems biology approaches are starting to define their places in the signaling network. Using systems biology approaches, there are now many transcriptomic analyses and promoter analyses that concern WRKY transcription factors. In addition, reports on nuclear proteomics have identified WRKY proteins that are up-regulated at the protein level by water stress. Interactomics has started to identify different classes of WRKY-interacting proteins. What are often lacking are connections between metabolomics, WRKY transcription factors, promoters, biosynthetic pathways, fluxes and downstream responses. As more levels of the system are characterized, a more detailed understanding of the roles of WRKY transcription factors in drought responses in crops will be obtained.

  1. The HY5-PIF Regulatory Module Coordinates Light and Temperature Control of Photosynthetic Gene Transcription

    PubMed Central

    Toledo-Ortiz, Gabriela; Johansson, Henrik; Lee, Keun Pyo; Bou-Torrent, Jordi; Stewart, Kelly; Steel, Gavin; Rodríguez-Concepción, Manuel; Halliday, Karen J.

    2014-01-01

    The ability to interpret daily and seasonal alterations in light and temperature signals is essential for plant survival. This is particularly important during seedling establishment when the phytochrome photoreceptors activate photosynthetic pigment production for photoautotrophic growth. Phytochromes accomplish this partly through the suppression of PHYTOCHROME INTERACTING FACTORS (PIFs), negative regulators of chlorophyll and carotenoid biosynthesis. While the bZIP transcription factor LONG HYPOCOTYL 5 (HY5), a potent PIF antagonist, promotes photosynthetic pigment accumulation in response to light. Here we demonstrate that by directly targeting a common promoter cis-element (G-box), HY5 and PIFs form a dynamic activation-suppression transcriptional module responsive to light and temperature cues. This antagonistic regulatory module provides a simple, direct mechanism through which environmental change can redirect transcriptional control of genes required for photosynthesis and photoprotection. In the regulation of photopigment biosynthesis genes, HY5 and PIFs do not operate alone, but with the circadian clock. However, sudden changes in light or temperature conditions can trigger changes in HY5 and PIFs abundance that adjust the expression of common target genes to optimise photosynthetic performance and growth. PMID:24922306

  2. The transcription factor SlAREB1 confers drought, salt stress tolerance and regulates biotic and abiotic stress-related genes in tomato.

    PubMed

    Orellana, Sandra; Yañez, Mónica; Espinoza, Analía; Verdugo, Isabel; González, Enrique; Ruiz-Lara, Simón; Casaretto, José A

    2010-12-01

    Members of the abscisic acid-responsive element binding protein (AREB)/abscisic acid-responsive element binding factor (ABF) subfamily of basic leucine zipper (bZIP) transcription factors have been implicated in abscisic acid (ABA) and abiotic stress responses in plants. Here we describe two members identified in cultivated tomato (Solanum lycopersicum), named SlAREB1 and SlAREB2. Expression of SlAREB1 and SlAREB2 is induced by drought and salinity in both leaves and root tissues, although that of SlAREB1 was more affected. In stress assays, SlAREB1-overexpressing transgenic tomato plants showed increased tolerance to salt and water stress compared to wild-type and SlAREB1-down-regulating transgenic plants, as assessed by physiological parameters such as relative water content (RWC), chlorophyll fluorescence and damage by lipoperoxidation. In order to identify SlAREB1 target genes responsible for the enhanced tolerance, microarray and cDNA-amplified fragment length polymorphism (AFLP) analyses were performed. Genes encoding oxidative stress-related proteins, lipid transfer proteins (LTPs), transcription regulators and late embryogenesis abundant proteins were found among the up-regulated genes in SlAREB1-overexpressing lines, especially in aerial tissue. Notably, several genes encoding defence proteins associated with responses to biotic stress (e.g. pathogenesis-related proteins, protease inhibitors, and catabolic enzymes) were also up-regulated by SlAREB1 overexpression, suggesting that this bZIP transcription factor is involved in ABA signals that participate in abiotic stress and possibly in response to pathogens.

  3. NUCLEAR FACTOR Y, Subunit C (NF-YC) Transcription Factors Are Positive Regulators of Photomorphogenesis in Arabidopsis thaliana

    PubMed Central

    Siriwardana, Chamindika L.; Holt III, Ben F.

    2016-01-01

    Recent reports suggest that NF-Y transcription factors are positive regulators of skotomorphogenesis in Arabidopsis thaliana. Three NF-YC genes (NF-YC3, NF-YC4, and NF-YC9) are known to have overlapping functions in photoperiod dependent flowering and previous studies demonstrated that they interact with basic leucine zipper (bZIP) transcription factors. This included ELONGATED HYPOCOTYL 5 (HY5), which has well-demonstrated roles in photomorphogenesis. Similar to hy5 mutants, we report that nf-yc3 nf-yc4 nf-yc9 triple mutants failed to inhibit hypocotyl elongation in all tested light wavelengths. Surprisingly, nf-yc3 nf-yc4 nf-yc9 hy5 mutants had synergistic defects in light perception, suggesting that NF-Ys represent a parallel light signaling pathway. As with other photomorphogenic transcription factors, nf-yc3 nf-yc4 nf-yc9 triple mutants also partially suppressed the short hypocotyl and dwarf rosette phenotypes of CONSTITUTIVE PHOTOMORPHOGENIC 1 (cop1) mutants. Thus, our data strongly suggest that NF-Y transcription factors have important roles as positive regulators of photomorphogenesis, and in conjunction with other recent reports, implies that the NF-Y are multifaceted regulators of early seedling development. PMID:27685091

  4. Transcript analysis in two alfalfa salt tolerance selected breeding populations relative to a non-tolerant population.

    PubMed

    Gruber, M Y; Xia, J; Yu, M; Steppuhn, H; Wall, K; Messer, D; Sharpe, A G; Acharya, S N; Wishart, D S; Johnson, D; Miller, D R; Taheri, A

    2017-02-01

    With the growing limitations on arable land, alfalfa (a widely cultivated, low-input forage) is now being selected to extend cultivation into saline lands for low-cost biofeedstock purposes. Here, minerals and transcriptome profiles were compared between two new salinity-tolerant North American alfalfa breeding populations and a more salinity-sensitive western Canadian alfalfa population grown under hydroponic saline conditions. All three populations accumulated two-fold higher sodium in roots than shoots as a function of increased electrical conductivity. At least 50% of differentially expressed genes (p < 0.05) were down-regulated in the salt-sensitive population growing under high salinity, while expression remained unchanged in the saline-tolerant populations. In particular, most reduction in transcript levels in the salt-sensitive population was observed in genes specifying cell wall structural components, lipids, secondary metabolism, auxin and ethylene hormones, development, transport, signalling, heat shock, proteolysis, pathogenesis-response, abiotic stress, RNA processing, and protein metabolism. Transcript diversity for transcription factors, protein modification, and protein degradation genes was also more strongly affected in salt-tolerant CW064027 than in salt-tolerant Bridgeview and salt-sensitive Rangelander, while both saline-tolerant populations showed more substantial up-regulation in redox-related genes and B-ZIP transcripts. The report highlights the first use of bulked genotypes as replicated samples to compare the transcriptomes of obligate out-cross breeding populations in alfalfa.

  5. Fungal Morphology, Iron Homeostasis, and Lipid Metabolism Regulated by a GATA Transcription Factor in Blastomyces dermatitidis

    PubMed Central

    Marty, Amber J.; Broman, Aimee T.; Zarnowski, Robert; Dwyer, Teigan G.; Bond, Laura M.; Lounes-Hadj Sahraoui, Anissa; Fontaine, Joël; Ntambi, James M.; Keleş, Sündüz; Kendziorski, Christina; Gauthier, Gregory M.

    2015-01-01

    In response to temperature, Blastomyces dermatitidis converts between yeast and mold forms. Knowledge of the mechanism(s) underlying this response to temperature remains limited. In B. dermatitidis, we identified a GATA transcription factor, SREB, important for the transition to mold. Null mutants (SREBΔ) fail to fully complete the conversion to mold and cannot properly regulate siderophore biosynthesis. To capture the transcriptional response regulated by SREB early in the phase transition (0–48 hours), gene expression microarrays were used to compare SREB∆ to an isogenic wild type isolate. Analysis of the time course microarray data demonstrated SREB functioned as a transcriptional regulator at 37°C and 22°C. Bioinformatic and biochemical analyses indicated SREB was involved in diverse biological processes including iron homeostasis, biosynthesis of triacylglycerol and ergosterol, and lipid droplet formation. Integration of microarray data, bioinformatics, and chromatin immunoprecipitation identified a subset of genes directly bound and regulated by SREB in vivo in yeast (37°C) and during the phase transition to mold (22°C). This included genes involved with siderophore biosynthesis and uptake, iron homeostasis, and genes unrelated to iron assimilation. Functional analysis suggested that lipid droplets were actively metabolized during the phase transition and lipid metabolism may contribute to filamentous growth at 22°C. Chromatin immunoprecipitation, RNA interference, and overexpression analyses suggested that SREB was in a negative regulatory circuit with the bZIP transcription factor encoded by HAPX. Both SREB and HAPX affected morphogenesis at 22°C; however, large changes in transcript abundance by gene deletion for SREB or strong overexpression for HAPX were required to alter the phase transition. PMID:26114571

  6. FOS-1 functions as a transcriptional activator downstream of the C. elegans JNK homolog KGB-1.

    PubMed

    Zhang, Zhe; Liu, Limeng; Twumasi-Boateng, Kwame; Block, Dena H S; Shapira, Michael

    2017-01-01

    JNK proteins are conserved stress-activated MAP kinases. In C. elegans, the JNK-homolog KGB-1 plays essential roles in protection from heavy metals and protein folding stress. However, the contributions of KGB-1 are age-dependent, providing protection in larvae, but reducing stress resistance and shortening lifespan in adults. Attenuation of DAF-16 was linked to the detrimental contributions of KGB-1 in adults, but its involvement in KGB-1-dependent protection in larvae remains unclear. To characterize age-dependent contributions of KGB-1, we used microarray analysis to measure gene expression following KGB-1 activation either in developing larvae or in adults, achieved by knocking down its negative phosphatase regulator vhp-1. This revealed a robust KGB-1 regulon, most of which consisting of genes induced following KGB-1 activation regardless of age; a smaller number of genes was regulated in an age-dependent manner. We found that the bZIP transcription factor FOS-1 was essential for age-invariant KGB-1-dependent gene induction, but not for age-dependent expression. The latter was more affected by DAF-16, which was further found to be required for KGB-1-dependent cadmium resistance in larvae. Our results identify FOS-1 as a transcriptional activator mediating age-invariant contributions of KGB-1, including a regulatory loop of KGB-1 signaling, but also stress the importance of DAF-16 as a mediator of age-dependent contributions.

  7. ABA-mediated transcriptional regulation in response to osmotic stress in plants.

    PubMed

    Fujita, Yasunari; Fujita, Miki; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2011-07-01

    The plant hormone abscisic acid (ABA) plays a pivotal role in a variety of developmental processes and adaptive stress responses to environmental stimuli in plants. Cellular dehydration during the seed maturation and vegetative growth stages induces an increase in endogenous ABA levels, which control many dehydration-responsive genes. In Arabidopsis plants, ABA regulates nearly 10% of the protein-coding genes, a much higher percentage than other plant hormones. Expression of the genes is mainly regulated by two different families of bZIP transcription factors (TFs), ABI5 in the seeds and AREB/ABFs in the vegetative stage, in an ABA-responsive-element (ABRE) dependent manner. The SnRK2-AREB/ABF pathway governs the majority of ABA-mediated ABRE-dependent gene expression in response to osmotic stress during the vegetative stage. In addition to osmotic stress, the circadian clock and light conditions also appear to participate in the regulation of ABA-mediated gene expression, likely conferring versatile tolerance and repressing growth under stress conditions. Moreover, various other TFs belonging to several classes, including AP2/ERF, MYB, NAC, and HD-ZF, have been reported to engage in ABA-mediated gene expression. This review mainly focuses on the transcriptional regulation of ABA-mediated gene expression in response to osmotic stress during the vegetative growth stage in Arabidopsis.

  8. Transcriptional enhancers: Transcription, function and flexibility.

    PubMed

    Melamed, Philippa; Yosefzon, Yahav; Rudnizky, Sergei; Pnueli, Lilach

    2016-01-01

    Active transcriptional enhancers are often transcribed to eRNAs, whose changing levels mirror those of the target gene mRNA. We discuss some of the reported functions of these eRNAs and their likely diversity to allow utilization of distinct cis regulatory regions to enhance transcription in diverse developmental and cellular contexts.

  9. Transcription in archaea

    NASA Technical Reports Server (NTRS)

    Kyrpides, N. C.; Ouzounis, C. A.; Woese, C. R. (Principal Investigator)

    1999-01-01

    Using the sequences of all the known transcription-associated proteins from Bacteria and Eucarya (a total of 4,147), we have identified their homologous counterparts in the four complete archaeal genomes. Through extensive sequence comparisons, we establish the presence of 280 predicted transcription factors or transcription-associated proteins in the four archaeal genomes, of which 168 have homologs only in Bacteria, 51 have homologs only in Eucarya, and the remaining 61 have homologs in both phylogenetic domains. Although bacterial and eukaryotic transcription have very few factors in common, each exclusively shares a significantly greater number with the Archaea, especially the Bacteria. This last fact contrasts with the obvious close relationship between the archaeal and eukaryotic transcription mechanisms per se, and in particular, basic transcription initiation. We interpret these results to mean that the archaeal transcription system has retained more ancestral characteristics than have the transcription mechanisms in either of the other two domains.

  10. Enhancement by lithium of cAMP-induced CRE/CREB-directed gene transcription conferred by TORC on the CREB basic leucine zipper domain

    PubMed Central

    Böer, Ulrike; Eglins, Julia; Krause, Doris; Schnell, Susanne; Schöfl, Christof; Knepel, Willhart

    2007-01-01

    The molecular mechanism of the action of lithium salts in the treatment of bipolar disorder is not well understood. As their therapeutic action requires chronic treatment, adaptive neuronal processes are suggested to be involved. The molecular basis of this are changes in gene expression regulated by transcription factors such as CREB (cAMP-response-element-binding protein). CREB contains a transactivation domain, in which Ser119 is phosphorylated upon activation, and a bZip (basic leucine zipper domain). The bZip is involved in CREB dimerization and DNA-binding, but also contributes to CREB transactivation by recruiting the coactivator TORC (transducer of regulated CREB). In the present study, the effect of lithium on CRE (cAMP response element)/CREB-directed gene transcription was investigated. Electrically excitable cells were transfected with CRE/CREB-driven luciferase reporter genes. LiCl (6 mM or higher) induced an up to 4.7-fold increase in 8-bromo-cAMP-stimulated CRE/CREB-directed transcription. This increase was not due to enhanced Ser119 phosphorylation or DNA-binding of CREB. Also, the known targets inositol monophosphatase and GSK3β (glycogen-synthase-kinase 3β) were not involved as specific GSK3β inhibitors and inositol replenishment did not mimic and abolish respectively the effect of lithium. However, lithium no longer enhanced CREB activity when the CREB-bZip was deleted or the TORC-binding site inside the CREB-bZip was specifically mutated (CREB-R300A). Otherwise, TORC overexpression conferred lithium responsiveness on CREB-bZip or the CRE-containing truncated rat somatostatin promoter. This indicates that lithium enhances cAMP-induced CRE/CREB-directed transcription, conferred by TORC on the CREB-bZip. We thus support the hypothesis that lithium salts modulate CRE/CREB-dependent gene transcription and suggest the CREB coactivator TORC as a new molecular target of lithium. PMID:17696880

  11. Recent Advances in Utilizing Transcription Factors to Improve Plant Abiotic Stress Tolerance by Transgenic Technology

    PubMed Central

    Wang, Hongyan; Wang, Honglei; Shao, Hongbo; Tang, Xiaoli

    2016-01-01

    Agricultural production and quality are adversely affected by various abiotic stresses worldwide and this will be exacerbated by the deterioration of global climate. To feed a growing world population, it is very urgent to breed stress-tolerant crops with higher yields and improved qualities against multiple environmental stresses. Since conventional breeding approaches had marginal success due to the complexity of stress tolerance traits, the transgenic approach is now being popularly used to breed stress-tolerant crops. So identifying and characterizing the critical genes involved in plant stress responses is an essential prerequisite for engineering stress-tolerant crops. Far beyond the manipulation of single functional gene, engineering certain regulatory genes has emerged as an effective strategy now for controlling the expression of many stress-responsive genes. Transcription factors (TFs) are good candidates for genetic engineering to breed stress-tolerant crop because of their role as master regulators of many stress-responsive genes. Many TFs belonging to families AP2/EREBP, MYB, WRKY, NAC, bZIP have been found to be involved in various abiotic stresses and some TF genes have also been engineered to improve stress tolerance in model and crop plants. In this review, we take five large families of TFs as examples and review the recent progress of TFs involved in plant abiotic stress responses and their potential utilization to improve multiple stress tolerance of crops in the field conditions. PMID:26904044

  12. Differential expression of the two Drosophila fos/kayak transcripts during oogenesis and embryogenesis.

    PubMed

    Souid, Sami; Yanicostas, Constantin

    2003-05-01

    The Dfos/kayak gene encodes a bZIP protein, DFos, required in a large variety of differentiation and morphogenetic processes throughout Drosophila development. The recent availability of an expressed sequence tag (EST) sequence led us to identify a novel kay mRNA encoding a deduced DFos isoform showing a specific NH(2)-terminal region. To gain further insight into the function and the regulation of this gene, we have investigated the expression pattern of the two kay mRNA isoforms, kay-RA and kay-RB, during oogenesis and embryogenesis by whole-mount in situ hybridization. Results show that, although the two kay RNA isoforms display fully distinct patterns of transcription during oogenesis, they show partially overlapping expression profiles in embryos. These data reveal a previously unsuspected level of complexity in the regulation of the expression of the kay gene. In addition, they suggest a possible requirement for this gene in the invagination processes during early gastrula stages.

  13. Transcription factors as potential participants in the signal transduction pathway of boron deficiency

    PubMed Central

    González-Fontes, Agustín; Rexach, Jesús; Quiles-Pando, Carlos; Herrera-Rodríguez, M Begoña; Camacho-Cristóbal, Juan J; Navarro-Gochicoa, M Teresa

    2013-01-01

    Boron (B) plays a well-known structural role in the cell wall, however the way of perceiving B deficiency by roots and transmitting this environmental signal to the nucleus to elicit a response is not well established. It is known that the direct interaction between Ca2+ sensors and transcription factors (TFs) is a necessary step to regulate the expression of downstream target genes in some signaling pathways. Interestingly, B deprivation affected gene expressions of several TFs belonging to MYB, WRKY, and bZIP families, as well as expressions of Ca2+-related genes such as several CML (calmodulin-like protein) and CPK (Ca2+-dependent protein kinase) genes. Taken together, these results suggest that B deficiency could affect the expression of downstream target genes by alteration of a calcium signaling pathway in which the interaction between CMLs and/or CPKs with TFs (activator or repressor) would be a crucial step, which would explain why some genes are upregulated whereas others are repressed upon B deprivation. PMID:23989264

  14. Shoot-to-Root Mobile Transcription Factor HY5 Coordinates Plant Carbon and Nitrogen Acquisition.

    PubMed

    Chen, Xiangbin; Yao, Qinfang; Gao, Xiuhua; Jiang, Caifu; Harberd, Nicholas P; Fu, Xiangdong

    2016-03-07

    Coordination of shoot photosynthetic carbon fixation with root inorganic nitrogen uptake optimizes plant performance in a fluctuating environment [1]. However, the molecular basis of this long-distance shoot-root coordination is little understood. Here we show that Arabidopsis ELONGATED HYPOCOTYL5 (HY5), a bZIP transcription factor that regulates growth in response to light [2, 3], is a shoot-to-root mobile signal that mediates light promotion of root growth and nitrate uptake. Shoot-derived HY5 auto-activates root HY5 and also promotes root nitrate uptake by activating NRT2.1, a gene encoding a high-affinity nitrate transporter [4]. In the shoot, HY5 promotes carbon assimilation and translocation, whereas in the root, HY5 activation of NRT2.1 expression and nitrate uptake is potentiated by increased carbon photoassimilate (sucrose) levels. We further show that HY5 function is fluence-rate modulated and enables homeostatic maintenance of carbon-nitrogen balance in different light environments. Thus, mobile HY5 coordinates light-responsive carbon and nitrogen metabolism, and hence shoot and root growth, in a whole-organismal response to ambient light fluctuations.

  15. Identification of transcriptional regulatory nodes in soybean defense networks using transient co-transactivation assays

    PubMed Central

    Wang, Yongli; Wang, Hui; Ma, Yujie; Du, Haiping; Yang, Qing; Yu, Deyue

    2015-01-01

    Plant responses to major environmental stressors, such as insect feeding, not only occur via the functions of defense genes but also involve a series of regulatory factors. Our previous transcriptome studies proposed that, in addition to two defense-related genes, GmVSPβ and GmN:IFR, a high proportion of transcription factors (TFs) participate in the incompatible soybean-common cutworm interaction networks. However, the regulatory mechanisms and effects of these TFs on those induced defense-related genes remain unknown. In the present work, we isolated and identified 12 genes encoding MYB, WRKY, NAC, bZIP, and DREB TFs from a common cutworm-induced cDNA library of a resistant soybean line. Sequence analysis of the promoters of three co-expressed genes, including GmVSPα, GmVSPβ, and GmN:IFR, revealed the enrichment of various TF-binding sites for defense and stress responses. To further identify the regulatory nodes composed of these TFs and defense gene promoters, we performed extensive transient co-transactivation assays to directly test the transcriptional activity of the 12 TFs binding at different levels to the three co-expressed gene promoters. The results showed that all 12 TFs were able to transactivate the GmVSPβ and GmN:IFR promoters. GmbZIP110 and GmMYB75 functioned as distinct regulators of GmVSPα/β and GmN:IFR expression, respectively, while GmWRKY39 acted as a common central regulator of GmVSPα/β and GmN:IFR expression. These corresponding TFs play crucial roles in coordinated plant defense regulation, which provides valuable information for understanding the molecular mechanisms involved in insect-induced transcriptional regulation in soybean. More importantly, the identified TFs and suitable promoters can be used to engineer insect-resistant plants in molecular breeding studies. PMID:26579162

  16. Identification of transcriptional regulatory nodes in soybean defense networks using transient co-transactivation assays.

    PubMed

    Wang, Yongli; Wang, Hui; Ma, Yujie; Du, Haiping; Yang, Qing; Yu, Deyue

    2015-01-01

    Plant responses to major environmental stressors, such as insect feeding, not only occur via the functions of defense genes but also involve a series of regulatory factors. Our previous transcriptome studies proposed that, in addition to two defense-related genes, GmVSPβ and GmN:IFR, a high proportion of transcription factors (TFs) participate in the incompatible soybean-common cutworm interaction networks. However, the regulatory mechanisms and effects of these TFs on those induced defense-related genes remain unknown. In the present work, we isolated and identified 12 genes encoding MYB, WRKY, NAC, bZIP, and DREB TFs from a common cutworm-induced cDNA library of a resistant soybean line. Sequence analysis of the promoters of three co-expressed genes, including GmVSPα, GmVSPβ, and GmN:IFR, revealed the enrichment of various TF-binding sites for defense and stress responses. To further identify the regulatory nodes composed of these TFs and defense gene promoters, we performed extensive transient co-transactivation assays to directly test the transcriptional activity of the 12 TFs binding at different levels to the three co-expressed gene promoters. The results showed that all 12 TFs were able to transactivate the GmVSPβ and GmN:IFR promoters. GmbZIP110 and GmMYB75 functioned as distinct regulators of GmVSPα/β and GmN:IFR expression, respectively, while GmWRKY39 acted as a common central regulator of GmVSPα/β and GmN:IFR expression. These corresponding TFs play crucial roles in coordinated plant defense regulation, which provides valuable information for understanding the molecular mechanisms involved in insect-induced transcriptional regulation in soybean. More importantly, the identified TFs and suitable promoters can be used to engineer insect-resistant plants in molecular breeding studies.

  17. Genome-Wide Targets Regulated by the OsMADS1 Transcription Factor Reveals Its DNA Recognition Properties1[OPEN

    PubMed Central

    Khanday, Imtiyaz; Das, Sanjukta; Chongloi, Grace L; Vijayraghavan, Usha

    2016-01-01

    OsMADS1 controls rice (Oryza sativa) floral fate and organ development. Yet, its genome-wide targets and the mechanisms underlying its role as a transcription regulator controlling developmental gene expression are unknown. We identify 3112 gene-associated OsMADS1-bound sites in the floret genome. These occur in the vicinity of transcription start sites, within gene bodies, and in intergenic regions. Majority of the bound DNA contained CArG motif variants or, in several cases, only A-tracts. Sequences flanking the binding peak had a higher AT nucleotide content, implying that broader DNA structural features may define in planta binding. Sequences for binding by other transcription factor families like MYC, AP2/ERF, bZIP, etc. are enriched in OsMADS1-bound DNAs. Target genes implicated in transcription, chromatin remodeling, cellular processes, and hormone metabolism were enriched. Combining expression data from OsMADS1 knockdown florets with these DNA binding data, a snapshot of a gene regulatory network was deduced where targets, such as AP2/ERF and bHLH transcription factors and chromatin remodelers form nodes. We show that the expression status of these nodal factors can be altered by inducing the OsMADS1-GR fusion protein and present a model for a regulatory cascade where the direct targets of OsMADS1, OsbHLH108/SPT, OsERF034, and OsHSF24, in turn control genes such as OsMADS32 and OsYABBY5. This cascade, with other similar relationships, cumulatively contributes to floral organ development. Overall, OsMADS1 binds to several regulatory genes and, probably in combination with other factors, controls a gene regulatory network that ensures rice floret development. PMID:27457124

  18. “Related to ABA-Insensitive3(ABI3)/Viviparous1 and AtABI5 transcription factor co-expression in cotton enhances drought stress adaptation”

    PubMed Central

    Mittal, Amandeep; Gampala, Srinivas S. L.; Ritchie, Glen L.; Payton, Paxton; Burke, John J.; Rock, Christopher D.

    2014-01-01

    Drought tolerance is an important trait being pursued by the agbiotech industry. Abscisic acid (ABA) is a stress hormone that mediates a multitude of processes in growth and development, water use efficiency (WUE), and gene expression during seed development and in response to environmental stresses. Arabidopsis B3-domain transcription factor Related to ABA-Insensitive3 (ABI3)/Viviparous1 (namely, AtRAV2) and basic leucine zipper (bZIPs) AtABI5 or AtABF3 transactivated ABA- inducible promoter: GUS reporter expression in a maize mesophyll protoplast transient assay and showed synergies in reporter transactivation when co-expressed. Transgenic cotton (Gossypium hirsutum) expressing AtRAV1/2 and/or AtABI5 showed resistance to imposed drought stress under field and greenhouse conditions and exhibited improved photosynthetic and WUEs associated with absorption through larger root system and greater leaf area. We observed synergy for root biomass accumulation in the greenhouse, intrinsic WUE in the field, and drought tolerance in stacked AtRAV and AtABI5 double-transgenic cotton. We assessed AtABI5 and AtRAV1/2 involvement in drought stress adaptations though reactive oxygen species scavenging and osmotic adjustment by marker gene expression in cotton. Deficit irrigation-grown AtRAV1/2 and AtABI5 transgenics had “less stressed” molecular and physiological phenotypes under drought, likely due to improved photoassimilation and root and shoot sink strengths and enhanced expression of endogenous GhRAV and genes for antioxidant and osmolyte biosynthesis. Over-expression of bZIP and RAV TFs could impact sustainable cotton agriculture and potentially other crops under limited irrigation conditions. PMID:24483851

  19. Epstein–Barr virus transcription factor Zta acts through distal regulatory elements to directly control cellular gene expression

    PubMed Central

    Ramasubramanyan, Sharada; Osborn, Kay; Al-Mohammad, Rajaei; Naranjo Perez-Fernandez, Ijiel B.; Zuo, Jianmin; Balan, Nicolae; Godfrey, Anja; Patel, Harshil; Peters, Gordon; Rowe, Martin; Jenner, Richard G.; Sinclair, Alison J.

    2015-01-01

    Lytic replication of the human gamma herpes virus Epstein-Barr virus (EBV) is an essential prerequisite for the spread of the virus. Differential regulation of a limited number of cellular genes has been reported in B-cells during the viral lytic replication cycle. We asked whether a viral bZIP transcription factor, Zta (BZLF1, ZEBRA, EB1), drives some of these changes. Using genome-wide chromatin immunoprecipitation coupled to next-generation DNA sequencing (ChIP-seq) we established a map of Zta interactions across the human genome. Using sensitive transcriptome analyses we identified 2263 cellular genes whose expression is significantly changed during the EBV lytic replication cycle. Zta binds 278 of the regulated genes and the distribution of binding sites shows that Zta binds mostly to sites that are distal to transcription start sites. This differs from the prevailing view that Zta activates viral genes by binding exclusively at promoter elements. We show that a synthetic Zta binding element confers Zta regulation at a distance and that distal Zta binding sites from cellular genes can confer Zta-mediated regulation on a heterologous promoter. This leads us to propose that Zta directly reprograms the expression of cellular genes through distal elements. PMID:25779048

  20. Transcription Regulation in Archaea

    PubMed Central

    Gehring, Alexandra M.; Walker, Julie E.

    2016-01-01

    The known diversity of metabolic strategies and physiological adaptations of archaeal species to extreme environments is extraordinary. Accurate and responsive mechanisms to ensure that gene expression patterns match the needs of the cell necessitate regulatory strategies that control the activities and output of the archaeal transcription apparatus. Archaea are reliant on a single RNA polymerase for all transcription, and many of the known regulatory mechanisms employed for archaeal transcription mimic strategies also employed for eukaryotic and bacterial species. Novel mechanisms of transcription regulation have become apparent by increasingly sophisticated in vivo and in vitro investigations of archaeal species. This review emphasizes recent progress in understanding archaeal transcription regulatory mechanisms and highlights insights gained from studies of the influence of archaeal chromatin on transcription. PMID:27137495

  1. Pregnenolone sulfate activates basic region leucine zipper transcription factors in insulinoma cells: role of voltage-gated Ca2+ channels and transient receptor potential melastatin 3 channels.

    PubMed

    Müller, Isabelle; Rössler, Oliver G; Thiel, Gerald

    2011-12-01

    The neurosteroid pregnenolone sulfate activates a signaling cascade in insulinoma cells involving activation of extracellular signal-regulated protein kinase and enhanced expression of the transcription factor Egr-1. Here, we show that pregnenolone sulfate stimulation leads to a significant elevation of activator protein-1 (AP-1) activity in insulinoma cells. Expression of the basic region leucine zipper (bZIP) transcription factors c-Jun and c-Fos is up-regulated in insulinoma cells and pancreatic β-cells in primary culture after pregnenolone sulfate stimulation. Up-regulation of a chromatin-embedded c-Jun promoter/luciferase reporter gene transcription in pregnenolone sulfate-stimulated insulinoma cells was impaired when the AP-1 binding sites were mutated, indicating that these motifs function as pregnenolone sulfate response elements. In addition, phosphorylation of cAMP response element (CRE)-binding protein is induced and transcription of a CRE-controlled reporter gene is stimulated after pregnenolone sulfate treatment, indicating that the CRE functions as a pregnenolone sulfate response element as well. Pharmacological and genetic experiments revealed that both L-type Ca(2+) channels and transient receptor potential melastatin 3 (TRPM3) channels are essential for connecting pregnenolone sulfate stimulation with enhanced AP-1 activity and bZIP-mediated transcription in insulinoma cells. In contrast, pregnenolone sulfate stimulation did not enhance AP-1 activity or c-Jun and c-Fos expression in pituitary corticotrophs that express functional L-type Ca(2+) channels but only trace amounts of TRPM3. We conclude that expression of L-type Ca(2+) channels is not sufficient to activate bZIP-mediated gene transcription by pregnenolone sulfate. Rather, additional expression of TRPM3 or depolarization of the cells is required to connect pregnenolone sulfate stimulation with enhanced gene transcription.

  2. CO2-cAMP-Responsive cis-Elements Targeted by a Transcription Factor with CREB/ATF-Like Basic Zipper Domain in the Marine Diatom Phaeodactylum tricornutum1[W][OA

    PubMed Central

    Ohno, Naoki; Inoue, Takuya; Yamashiki, Ryosuke; Nakajima, Kensuke; Kitahara, Yuhei; Ishibashi, Mikiko; Matsuda, Yusuke

    2012-01-01

    Expression controls of the carbon acquisition system in marine diatoms in response to environmental factors are an essential issue to understand the changes in marine primary productivity. A pyrenoidal β-carbonic anhydrase, PtCA1, is one of the most important candidates to investigate the control mechanisms of the CO2 acquisition system in the marine diatom Phaeodactylum tricornutum. A detailed functional assay was carried out on the putative core regulatory region of the ptca1 promoter using a β-glucuronidase reporter in P. tricornutum cells under changing CO2 conditions. A set of loss-of-function assays led to the identification of three CO2-responsive elements, TGACGT, ACGTCA, and TGACGC, at a region −86 to −42 relative to the transcription start site. Treatment with a cyclic (c)AMP analog, dibutyryl cAMP, revealed these three elements to be under the control of cAMP; thus, we designated them, from 5′ to 3′, as CO2-cAMP-Responsive Element1 (CCRE1), CCRE2, and CCRE3. Because the sequence TGACGT is known to be a typical target of human Activating Transcription Factor6 (ATF6), we searched for genes containing a basic zipper (bZIP) region homologous to that of ATF6 in the genome of P. tricornutum. Gel-shift assays using CCRE pentamers as labeled probes showed that at least one candidate of bZIP proteins, PtbZIP11, bound specifically to CCREs. A series of gain-of-function assays with CCREs fused to a minimal promoter strongly suggested that the alternative combination of CCRE1/2 or CCRE2/3 at proper distances from the minimal promoter is required as a potential target of PtbZIP11 for an effective CO2 response of the ptca1 gene. PMID:22095044

  3. Induction of metallothionein I by phenolic antioxidants requires metal-activated transcription factor 1 (MTF-1) and zinc.

    PubMed Central

    Bi, Yongyi; Palmiter, Richard D; Wood, Kristi M; Ma, Qiang

    2004-01-01

    Phenolic antioxidants, such as tBHQ [2,5-di-(t-butyl)-1,4-hydroquinone], induce Mt1 (metallothionein 1) gene expression and accumulation of MT protein. Induction of Mt1 mRNA does not depend on protein synthesis, and correlates with oxidation-reduction functions of the antioxidants. In the present study, we analysed the biochemical pathway of the induction. Induction depends on the presence of MTF-1 (metal-activated transcription factor 1), a transcription factor that is required for metal-induced transcription of Mt1, but does not require nuclear factor erythroid 2-related factor 2, a tBHQ-activated CNC bZip (cap 'n' collar basic leucine zipper) protein, that is responsible for regulating genes encoding phase II drug-metabolizing enzymes. Moreover, tBHQ induces the expression of MRE-beta Geo, a reporter gene driven by five metal response elements that constitute an optimal MTF-1 binding site. Reconstitution of Mtf1 -null cells with MTF-1 restores induction by both zinc and tBHQ. Unlike activation of phase II genes by tBHQ, induction of Mt1 expression does not occur in the presence of EDTA, when cells are cultured in zinc-depleted medium, or in cells with reduced intracellular 'free' zinc due to overexpression of ZnT1, a zinc-efflux transporter, indicating that induction requires zinc. In addition, fluorescence imaging reveals that tBHQ increases cytoplasmic free zinc concentration by mobilizing intracellular zinc pools. These findings establish that phenolic antioxidants activate Mt1 transcription by a zinc-dependent mechanism, which involves MTF-1 binding to metal regulator elements in the Mt1 gene promoter. PMID:14998373

  4. In silico cloning and characterization of the TGA (TGACG MOTIF-BINDING FACTOR) transcription factors subfamily in Carica papaya.

    PubMed

    Idrovo Espín, Fabio Marcelo; Peraza-Echeverria, Santy; Fuentes, Gabriela; Santamaría, Jorge M

    2012-05-01

    The TGA transcription factors belong to the subfamily of bZIP group D that play a major role in disease resistance and development. Most of the TGA identified in Arabidopsis interact with the master regulator of SAR, NPR1 that controls the expression of PR genes. As a first approach to determine the possible involvement of these transcription factors in papaya defense, we characterized Arabidopsis TGA orthologs from the genome of Carica papaya cv. SunUp. Six orthologs CpTGA1 to CpTGA6, were identified. The predicted CpTGA proteins were highly similar to AtTGA sequences and probably share the same DNA binding properties and transcriptional regulation features. The protein sequences alignment evidenced the presence of conserved domains, characteristic of this group of transcription factors. The phylogeny showed that CpTGA evolved into three different subclades associated with defense and floral development. This is the first report of basal expression patterns assessed by RT-PCR, from the whole subfamily of CpTGA members in different tissues from papaya cv. Maradol mature plants. Overall, CpTGA1, CpTGA3 CpTGA6 and CpTGA4 showed a basal expression in all tissues tested; CpTGA2 expressed strongly in all tissues except in petioles while CpTGA5 expressed only in petals and to a lower extent in petioles. Although more detailed studies in anthers and other floral structures are required, we suggest that CpTGA5 might be tissue-specific, and it might be involved in papaya floral development. On the other hand, we report here for the first time, the expression of the whole family of CpTGA in response to salicylic acid (SA). The expression of CpTGA3, CpTGA4 and CpTGA6 increased in response to SA, what would suggest its involvement in the SAR response in papaya.

  5. StCDPK3 Phosphorylates In Vitro Two Transcription Factors Involved in GA and ABA Signaling in Potato: StRSG1 and StABF1

    PubMed Central

    Grandellis, Carolina; Fantino, Elisa; Muñiz García, María Noelia; Bialer, Magalí Graciela; Santin, Franco; Capiati, Daniela Andrea; Ulloa, Rita María

    2016-01-01

    Calcium-dependent protein kinases, CDPKs, decode calcium (Ca2+) transients and initiate downstream responses in plants. In order to understand how CDPKs affect plant physiology, their specific target proteins must be identified. In tobacco, the bZIP transcription factor Repression of Shoot Growth (NtRSG) that modulates gibberellin (GA) content is a specific target of NtCDPK1. StCDPK3 from potato is homologous (88% identical) to NtCDPK1 even in its N-terminal variable domain. In this work, we observe that NtRSG is also phosphorylated by StCDPK3. The potato RSG family of transcription factors is composed of three members that share similar features. The closest homologue to NtRSG, which was named StRSG1, was amplified and sequenced. qRT-PCR data indicate that StRSG1 is mainly expressed in petioles, stems, lateral buds, and roots. In addition, GA treatment affected StRSG1 expression. StCDPK3 transcripts were detected in leaves, petioles, stolons, roots, and dormant tubers, and transcript levels were modified in response to GA. The recombinant StRSG1-GST protein was produced and tested as a substrate for StCDPK3 and StCDPK1. 6xHisStCDPK3 was able to phosphorylate the potato StRSG1 in a Ca2+-dependent way, while 6xHisStCDPK1 could not. StCDPK3 also interacts and phosphorylates the transcription factor StABF1 (ABRE binding factor 1) involved in ABA signaling, as shown by EMSA and phosphorylation assays. StABF1 transcripts were mainly detected in roots, stems, and stolons. Our data suggest that StCDPK3 could be involved in the cross-talk between ABA and GA signaling at the onset of tuber development. PMID:27907086

  6. c-Maf Transcription Factor Regulates ADAMTS-12 Expression in Human Chondrogenic Cells

    PubMed Central

    Hong, Eunmee; Yik, Jasper; Amanatullah, Derek F.; Di Cesare, Paul E.

    2013-01-01

    Objective: ADAMTS (a disintegrin and metalloproteinase with thrombospondin type-1 motif) zinc metalloproteinases are important during the synthesis and breakdown of cartilage extracellular matrix. ADAMTS-12 is up-regulated during in vitro chondrogenesis and embryonic limb development; however, the regulation of ADAMTS-12 expression in cartilage remains unknown. The transcription factor c-Maf is a member of Maf family of basic ZIP (bZIP) transcription factors. Expression of c-Maf is highest in hypertrophic chondrocytes during embryonic development and postnatal growth. We hypothesize that c-Maf and ADAMTS-12 are co-expressed during chondrocyte differentiation and that c-Maf regulates ADAMTS-12 expression during chondrogenesis. Design: Promoter analysis and species alignments identified potential c-Maf binding sites in the ADAMTS-12 promoter. c-Maf and ADAMTS-12 co-expression was monitored during chondrogenesis of stem cell pellet cultures. Luciferase expression driven by ADAMTS-12 promoter segments was measured in the presence and absence of c-Maf, and synthetic oligonucleotides were used to confirm specific binding of c-Maf to ADAMTS-12 promoter sequences. Results: In vitro chondrogenesis from human mesenchymal stem cells revealed co-expression of ADAMTS-12 and c-Maf during differentiation. Truncation and point mutations of the ADAMTS-12 promoter evaluated in reporter assays localized the response to the proximal 315 bp of the ADAMTS-12 promoter, which contained a predicted c-Maf recognition element (MARE) at position -61. Electorphoretic mobility shift assay confirmed that c-Maf directly interacted with the MARE at position -61. Conclusions: These data suggest that c-Maf is involved in chondrocyte differentiation and hypertrophy, at least in part, through the regulation of ADAMTS-12 expression at a newly identified MARE in its proximal promoter. PMID:26069660

  7. ASTP Onboard Voice Transcription

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The transcription is presented of the Apollo-Soyuz Test Project voice communications as recorded on the command module data storage equipment. Data from this recorder are telemetered (dumped) to Space Tracking and Data Network sites for retransmission to the Johnson Space Center. The transcript is divided into three columns -- time, speaker, and text. The Greenwich mean time column consists of three two-digit numbers representing hours, minutes, and seconds (e.g., 22 34 14) for the Julian dates shown at the top of the page on which a new day begins. The speaker column indicates the source of a transmission; the text column contains the verbatim transcript of the communications.

  8. DNA supercoiling during transcription

    PubMed Central

    Ma, Jie; Wang, Michelle D.

    2017-01-01

    The twin-supercoiled-domain model describes how transcription can drive DNA supercoiling, and how DNA supercoiling, in turn plays an important role in regulating gene transcription. In vivo and in vitro experiments have disclosed many details of the complex interactions in this relationship, and recently new insights have been gained with the help of genome-wide DNA supercoiling mapping techniques and single molecule methods. This review summarizes the general mechanisms of the interplay between DNA supercoiling and transcription, considers the biological implications, and focuses on recent important discoveries and technical advances in this field. We highlight the significant impact of DNA supercoiling in transcription, but also more broadly in all processes operating on DNA.

  9. Transcription and cancer.

    PubMed Central

    Cox, P. M.; Goding, C. R.

    1991-01-01

    The normal growth, development and function of an organism requires precise and co-ordinated control of gene expression. A major part of this control is exerted by regulating messenger RNA (mRNA) production and involves complex interactions between an array of transcriptionally active proteins and specific regulatory DNA sequences. The combination of such proteins and DNA sequences is specific for given gene or group of genes in a particular cell type and the proteins regulating the same gene may vary between cell types. In addition the expression or activity of these regulatory proteins may be modified depending on the state of differentiation of a cell or in response to an external stimulus. Thus, the differentiation of embryonic cells into diverse tissues is achieved and the mature structure and function of the organism is maintained. This review focusses on the role of perturbations of these transcriptional controls in neoplasia. Deregulation of transcription may result in the failure to express genes responsible for cellular differentiation, or alternatively, in the transcription of genes involved in cell division, through the inappropriate expression or activation of positively acting transcription factors and nuclear oncogenes. Whether the biochemical abnormalities that lead to the disordered growth and differentiation of a malignant tumour affect cell surface receptors, membrane or cytoplasmic signalling proteins or nuclear transcription factors, the end result is the inappropriate expression of some genes and failure to express others. Current research is starting to elucidate which of the elements of this complicated system are important in neoplasia. PMID:1645561

  10. Supra-optimal expression of the cold-regulated OsMyb4 transcription factor in transgenic rice changes the complexity of transcriptional network with major effects on stress tolerance and panicle development.

    PubMed

    Park, Myoung-Ryoul; Yun, Kil-Young; Mohanty, Bijayalaxmi; Herath, Venura; Xu, Fuyu; Wijaya, Edward; Bajic, Vladimir B; Yun, Song-Joong; De Los Reyes, Benildo G

    2010-12-01

    The R2R3-type OsMyb4 transcription factor of rice has been shown to play a role in the regulation of osmotic adjustment in heterologous overexpression studies. However, the exact composition and organization of its underlying transcriptional network has not been established to be a robust tool for stress tolerance enhancement by regulon engineering. OsMyb4 network was dissected based on commonalities between the global chilling stress transcriptome and the transcriptome configured by OsMyb4 overexpression. OsMyb4 controls a hierarchical network comprised of several regulatory sub-clusters associated with cellular defense and rescue, metabolism and development. It regulates target genes either directly or indirectly through intermediary MYB, ERF, bZIP, NAC, ARF and CCAAT-HAP transcription factors. Regulatory sub-clusters have different combinations of MYB-like, GCC-box-like, ERD1-box-like, ABRE-like, G-box-like, as1/ocs/TGA-like, AuxRE-like, gibberellic acid response element (GARE)-like and JAre-like cis-elements. Cold-dependent network activity enhanced cellular antioxidant capacity through radical scavenging mechanisms and increased activities of phenylpropanoid and isoprenoid metabolic processes involving various abscisic acid (ABA), jasmonic acid (JA), salicylic acid (SA), ethylene and reactive oxygen species (ROS) responsive genes. OsMyb4 network is independent of drought response element binding protein/C-repeat binding factor (DREB/CBF) and its sub-regulons operate with possible co-regulators including nuclear factor-Y. Because of its upstream position in the network hierarchy, OsMyb4 functions quantitatively and pleiotrophically. Supra-optimal expression causes misexpression of alternative targets with costly trade-offs to panicle development.

  11. Characterization of Citrus sinensis transcription factors closely associated with the non-host response to Xanthomonas campestris pv. vesicatoria.

    PubMed

    Daurelio, Lucas D; Romero, María S; Petrocelli, Silvana; Merelo, Paz; Cortadi, Adriana A; Talón, Manuel; Tadeo, Francisco R; Orellano, Elena G

    2013-07-01

    Plants, when exposed to certain pathogens, may display a form of genotype-independent resistance, known as non-host response. In this study, the response of Citrus sinensis (sweet orange) leaves to Xanthomonas campestris pv. vesicatoria (Xcv), a pepper and tomato pathogenic bacterium, was analyzed through biochemical assays and cDNA microarray hybridization and compared with Asiatic citrus canker infection caused by Xanthomonas citri subsp. citri. Citrus leaves exposed to the non-host bacterium Xcv showed hypersensitive response (HR) symptoms (cell death), a defense mechanism common in plants but poorly understood in citrus. The HR response was accompanied by differentially expressed genes that are associated with biotic stress and cell death. Moreover, 58 transcription factors (TFs) were differentially regulated by Xcv in citrus leaves, including 26 TFs from the stress-associated families AP2-EREBP, bZip, Myb and WRKY. Remarkably, in silico analysis of the distribution of expressed sequence tags revealed that 10 of the 58 TFs, belonging to C2C2-GATA, C2H2, CCAAT, HSF, NAC and WRKY gene families, were specifically over-represented in citrus stress cDNA libraries. This study identified candidate TF genes for the regulation of key steps during the citrus non-host HR. Furthermore, these TFs might be useful in future strategies of molecular breeding for citrus disease resistance.

  12. Wild soybean roots depend on specific transcription factors and oxidation reduction related genesin response to alkaline stress.

    PubMed

    DuanMu, Huizi; Wang, Yang; Bai, Xi; Cheng, Shufei; Deyholos, Michael K; Wong, Gane Ka-Shu; Li, Dan; Zhu, Dan; Li, Ran; Yu, Yang; Cao, Lei; Chen, Chao; Zhu, Yanming

    2015-11-01

    Soil alkalinity is an important environmental problem limiting agricultural productivity. Wild soybean (Glycine soja) shows strong alkaline stress tolerance, so it is an ideal plant candidate for studying the molecular mechanisms of alkaline tolerance and identifying alkaline stress-responsive genes. However, limited information is available about G. soja responses to alkaline stress on a genomic scale. Therefore, in the present study, we used RNA sequencing to compare transcript profiles of G. soja root responses to sodium bicarbonate (NaHCO3) at six time points, and a total of 68,138,478 pairs of clean reads were obtained using the Illumina GAIIX. Expression patterns of 46,404 G. soja genes were profiled in all six samples based on RNA-seq data using Cufflinks software. Then, t12 transcription factors from MYB, WRKY, NAC, bZIP, C2H2, HB, and TIFY families and 12 oxidation reduction related genes were chosen and verified to be induced in response to alkaline stress by using quantitative real-time polymerase chain reaction (qRT-PCR). The GO functional annotation analysis showed that besides "transcriptional regulation" and "oxidation reduction," these genes were involved in a variety of processes, such as "binding" and "response to stress." This is the first comprehensive transcriptome profiling analysis of wild soybean root under alkaline stress by RNA sequencing. Our results highlight changes in the gene expression patterns and identify a set of genes induced by NaHCO3 stress. These findings provide a base for the global analyses of G. soja alkaline stress tolerance mechanisms.

  13. An activating transcription factor of Litopenaeus vannamei involved in WSSV genes Wsv059 and Wsv166 regulation.

    PubMed

    Li, Xiao-Yun; Yue, Hai-Tao; Zhang, Ze-Zhi; Bi, Hai-Tao; Chen, Yong-Gui; Weng, Shao-Ping; Chan, Siuming; He, Jian-Guo; Chen, Yi-Hong

    2014-12-01

    Members of activating transcription factor/cyclic adenosine 3', 5'-monophosphate response element binding protein (ATF/CREB) family are induced by various stress signals and function as effector molecules. Consequently, cellular changes occur in response to discrete sets of instructions. In this work, we found an ATF transcription factor in Litopenaeus vannamei designated as LvATFβ. The full-length cDNA of LvATFβ was 1388 bp long with an open reading frame of 939 bp that encoded a putative 313 amino acid protein. The protein contained a basic region-leucine zipper (bZip) domain that was a common feature among ATF/CREB transcription factors. LvATFβ was highly expressed in intestines, gills, and heart. LvATFβ expression was dramatically upregulated by white spot syndrome virus (WSSV) infection. Pull-down assay revealed that LvATFβ had strong affinity to promoters of WSSV genes, namely, wsv059 and wsv166. Dual-luciferase reporter assay showed that LvATFβ could upregulate the expression of wsv059 and wsv166. Knocked down LvATFβ resulted in decreased expression of wsv059 and wsv166 in WSSV-challenged L. vannamei. Knocked down expression of wsv059 and wsv166 by RNA interference inhibited the replication and reduce the mortality of L. vannamei during WSSV challenge inoculation. The copy numbers of WSSV in wsv059 and wsv166 knocked down group were significant lower than in the control. These results suggested that LvATFβ may be involved in WSSV replication by regulating the expression of wsv059 and wsv166.

  14. First molluscan transcription factor activator protein-1 (Ap-1) member from disk abalone and its expression profiling against immune challenge and tissue injury.

    PubMed

    De Zoysa, Mahanama; Nikapitiya, Chamilani; Lee, Youngdeuk; Lee, Sukkyoung; Oh, Chulhong; Whang, Ilson; Yeo, Sang-Yeop; Choi, Cheol Young; Lee, Jehee

    2010-12-01

    The regulation of transcriptional activation is an essential and critical point in gene expression. In this study, we describe a novel transcription factor activator protein-1 (Ap-1) gene from disk abalone Haliotis discus discus (AbAp-1) for the first time in mollusk. It was identified by homology screening of an abalone normalized cDNA library. The cloned AbAp-1 consists of a 945 bp coding region that encodes a putative protein containing 315 amino acids. The AbAp-1 gene is composed of a characteristic Jun transcription factor domain and a highly conserved basic leucine zipper (bZIP) signature similar to known Ap-1 genes. The AbAp-1 shares 46, 43 and, 40% amino acid identities with fish (Takifugu rubripes), human and insect (Ixodes scapularis) Ap-1, respectively. Quantitative real time RT-PCR analysis confirmed that AbAp-1 gene expression is constitutive in all selected tissues. AbAp-1 was upregulated in gills after bacteria (Vibrio alginolyticus, Vibrio parahemolyticus and Lysteria monocytogenes) challenge; and, upregulated in hemocytes and gills by viral hemorrhagic septicemia virus (VHSV) challenge. Shell damage and tissue injury also increased the transcriptional level of Ap-1 in mantle together with other transcription factors (NF-kB, LITAF) and pro-inflammatory TNF-α. All results considered, identification and gene expression data demonstrate that abalone Ap-1 is an important regulator in innate immune response against bacteria and virus, as well as in the inflammatory response during tissue injury. In addition, stimulation of Ap-1 under different external stimuli could be useful to understand the Ap-1 biology and its downstream target genes, especially in abalone-like mollusks.

  15. Mechanism of metabolic control. Target of rapamycin signaling links nitrogen quality to the activity of the Rtg1 and Rtg3 transcription factors.

    PubMed

    Komeili, A; Wedaman, K P; O'Shea, E K; Powers, T

    2000-11-13

    De novo biosynthesis of amino acids uses intermediates provided by the TCA cycle that must be replenished by anaplerotic reactions to maintain the respiratory competency of the cell. Genome-wide expression analyses in Saccharomyces cerevisiae reveal that many of the genes involved in these reactions are repressed in the presence of the preferred nitrogen sources glutamine or glutamate. Expression of these genes in media containing urea or ammonia as a sole nitrogen source requires the heterodimeric bZip transcription factors Rtg1 and Rtg3 and correlates with a redistribution of the Rtg1p/Rtg3 complex from a predominantly cytoplasmic to a predominantly nuclear location. Nuclear import of the complex requires the cytoplasmic protein Rtg2, a previously identified upstream regulator of Rtg1 and Rtg3, whereas export requires the importin-beta-family member Msn5. Remarkably, nuclear accumulation of Rtg1/Rtg3, as well as expression of their target genes, is induced by addition of rapamycin, a specific inhibitor of the target of rapamycin (TOR) kinases. We demonstrate further that Rtg3 is a phosphoprotein and that its phosphorylation state changes after rapamycin treatment. Taken together, these results demonstrate that target of rapamycin signaling regulates specific anaplerotic reactions by coupling nitrogen quality to the activity and subcellular localization of distinct transcription factors.

  16. Two residues in the basic region of the yeast transcription factor Yap8 are crucial for its DNA-binding specificity.

    PubMed

    Amaral, Catarina; Pimentel, Catarina; Matos, Rute G; Arraiano, Cecília M; Matzapetakis, Manolis; Rodrigues-Pousada, Claudina

    2013-01-01

    In Saccharomyces cerevisiae, the transcription factor Yap8 is a key determinant in arsenic stress response. Contrary to Yap1, another basic region-leucine zipper (bZIP) yeast regulator, Yap8 has a very restricted DNA-binding specificity and only orchestrates the expression of ACR2 and ACR3 genes. In the DNA-binding basic region, Yap8 has three distinct amino acids residues, Leu26, Ser29 and Asn31, at sites of highly conserved positions in the other Yap family of transcriptional regulators and Pap1 of Schizosaccharomyces pombe. To evaluate whether these residues are relevant to Yap8 specificity, we first built a homology model of the complex Yap8bZIP-DNA based on Pap1-DNA crystal structure. Several Yap8 mutants were then generated in order to confirm the contribution of the residues predicted to interact with DNA. Using bioinformatics analysis together with in vivo and in vitro approaches, we have identified several conserved residues critical for Yap8-DNA binding. Moreover, our data suggest that Leu26 is required for Yap8 binding to DNA and that this residue together with Asn31, hinder Yap1 response element recognition by Yap8, thus narrowing its DNA-binding specificity. Furthermore our results point to a role of these two amino acids in the stability of the Yap8-DNA complex.

  17. Regulation of Transcript Elongation

    PubMed Central

    Belogurov, Georgiy A.; Artsimovitch, Irina

    2015-01-01

    Bacteria lack subcellular compartments and harbor a single RNA polymerase that synthesizes both structural and protein-coding RNAs, which are cotranscriptionally processed by distinct pathways. Nascent rRNAs fold into elaborate secondary structures and associate with ribosomal proteins, whereas nascent mRNAs are translated by ribosomes. During elongation, nucleic acid signals and regulatory proteins modulate concurrent RNA-processing events, instruct RNA polymerase where to pause and terminate transcription, or act as roadblocks to the moving enzyme. Communications among complexes that carry out transcription, translation, repair, and other cellular processes ensure timely execution of the gene expression program and survival under conditions of stress. This network is maintained by auxiliary proteins that act as bridges between RNA polymerase, ribosome, and repair enzymes, blurring boundaries between separate information-processing steps and making assignments of unique regulatory functions meaningless. Understanding the regulation of transcript elongation thus requires genome-wide approaches, which confirm known and reveal new regulatory connections. PMID:26132790

  18. The transcription factor encyclopedia.

    PubMed

    Yusuf, Dimas; Butland, Stefanie L; Swanson, Magdalena I; Bolotin, Eugene; Ticoll, Amy; Cheung, Warren A; Zhang, Xiao Yu Cindy; Dickman, Christopher T D; Fulton, Debra L; Lim, Jonathan S; Schnabl, Jake M; Ramos, Oscar H P; Vasseur-Cognet, Mireille; de Leeuw, Charles N; Simpson, Elizabeth M; Ryffel, Gerhart U; Lam, Eric W-F; Kist, Ralf; Wilson, Miranda S C; Marco-Ferreres, Raquel; Brosens, Jan J; Beccari, Leonardo L; Bovolenta, Paola; Benayoun, Bérénice A; Monteiro, Lara J; Schwenen, Helma D C; Grontved, Lars; Wederell, Elizabeth; Mandrup, Susanne; Veitia, Reiner A; Chakravarthy, Harini; Hoodless, Pamela A; Mancarelli, M Michela; Torbett, Bruce E; Banham, Alison H; Reddy, Sekhar P; Cullum, Rebecca L; Liedtke, Michaela; Tschan, Mario P; Vaz, Michelle; Rizzino, Angie; Zannini, Mariastella; Frietze, Seth; Farnham, Peggy J; Eijkelenboom, Astrid; Brown, Philip J; Laperrière, David; Leprince, Dominique; de Cristofaro, Tiziana; Prince, Kelly L; Putker, Marrit; del Peso, Luis; Camenisch, Gieri; Wenger, Roland H; Mikula, Michal; Rozendaal, Marieke; Mader, Sylvie; Ostrowski, Jerzy; Rhodes, Simon J; Van Rechem, Capucine; Boulay, Gaylor; Olechnowicz, Sam W Z; Breslin, Mary B; Lan, Michael S; Nanan, Kyster K; Wegner, Michael; Hou, Juan; Mullen, Rachel D; Colvin, Stephanie C; Noy, Peter John; Webb, Carol F; Witek, Matthew E; Ferrell, Scott; Daniel, Juliet M; Park, Jason; Waldman, Scott A; Peet, Daniel J; Taggart, Michael; Jayaraman, Padma-Sheela; Karrich, Julien J; Blom, Bianca; Vesuna, Farhad; O'Geen, Henriette; Sun, Yunfu; Gronostajski, Richard M; Woodcroft, Mark W; Hough, Margaret R; Chen, Edwin; Europe-Finner, G Nicholas; Karolczak-Bayatti, Magdalena; Bailey, Jarrod; Hankinson, Oliver; Raman, Venu; LeBrun, David P; Biswal, Shyam; Harvey, Christopher J; DeBruyne, Jason P; Hogenesch, John B; Hevner, Robert F; Héligon, Christophe; Luo, Xin M; Blank, Marissa Cathleen; Millen, Kathleen Joyce; Sharlin, David S; Forrest, Douglas; Dahlman-Wright, Karin; Zhao, Chunyan; Mishima, Yuriko; Sinha, Satrajit; Chakrabarti, Rumela; Portales-Casamar, Elodie; Sladek, Frances M; Bradley, Philip H; Wasserman, Wyeth W

    2012-01-01

    Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130 mini review articles on pertinent human, mouse and rat TFs. Notable features of the TFe website include a high-quality PDF generator and web API for programmatic data retrieval. TFe aims to rapidly educate scientists about the TFs they encounter through the delivery of succinct summaries written and vetted by experts in the field. TFe is available at http://www.cisreg.ca/tfe.

  19. The Transcription Factor Encyclopedia

    PubMed Central

    2012-01-01

    Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130 mini review articles on pertinent human, mouse and rat TFs. Notable features of the TFe website include a high-quality PDF generator and web API for programmatic data retrieval. TFe aims to rapidly educate scientists about the TFs they encounter through the delivery of succinct summaries written and vetted by experts in the field. TFe is available at http://www.cisreg.ca/tfe. PMID:22458515

  20. Mapping yeast transcriptional networks.

    PubMed

    Hughes, Timothy R; de Boer, Carl G

    2013-09-01

    The term "transcriptional network" refers to the mechanism(s) that underlies coordinated expression of genes, typically involving transcription factors (TFs) binding to the promoters of multiple genes, and individual genes controlled by multiple TFs. A multitude of studies in the last two decades have aimed to map and characterize transcriptional networks in the yeast Saccharomyces cerevisiae. We review the methodologies and accomplishments of these studies, as well as challenges we now face. For most yeast TFs, data have been collected on their sequence preferences, in vivo promoter occupancy, and gene expression profiles in deletion mutants. These systematic studies have led to the identification of new regulators of numerous cellular functions and shed light on the overall organization of yeast gene regulation. However, many yeast TFs appear to be inactive under standard laboratory growth conditions, and many of the available data were collected using techniques that have since been improved. Perhaps as a consequence, comprehensive and accurate mapping among TF sequence preferences, promoter binding, and gene expression remains an open challenge. We propose that the time is ripe for renewed systematic efforts toward a complete mapping of yeast transcriptional regulatory mechanisms.

  1. Transcription of mitochondrial DNA.

    PubMed

    Tabak, H F; Grivell, L A; Borst, P

    1983-01-01

    While mitochondrial DNA (mtDNA) is the simplest DNA in nature, coding for rRNAs and tRNAs, results of DNA sequence, and transcript analysis have demonstrated that both the synthesis and processing of mitochondrial RNAs involve remarkably intricate events. At one extreme, genes in animal mtDNAs are tightly packed, both DNA strands are completely transcribed (symmetric transcription), and the appearance of specific mRNAs is entirely dependent on processing at sites signalled by the sequences of the tRNAs, which abut virtually every gene. At the other extreme, gene organization in yeast (Saccharomyces) is anything but compact, with long stretches of AT-rich DNA interspaced between coding sequences and no obvious logic to the order of genes. Transcription is asymmetric and several RNAs are initiated de novo. Nevertheless, extensive RNA processing occurs due largely to the presence of split genes. RNA splicing is complex, is controlled by both mitochondrial and nuclear genes, and in some cases is accompanied by the formation of RNAs that behave as covalently closed circles. The present article reviews current knowledge of mitochondrial transcription and RNA processing in relation to possible mechanisms for the regulation of mitochondrial gene expression.

  2. Fungal CSL transcription factors

    PubMed Central

    Převorovský, Martin; Půta, František; Folk, Petr

    2007-01-01

    Background The CSL (CBF1/RBP-Jκ/Suppressor of Hairless/LAG-1) transcription factor family members are well-known components of the transmembrane receptor Notch signaling pathway, which plays a critical role in metazoan development. They function as context-dependent activators or repressors of transcription of their responsive genes, the promoters of which harbor the GTG(G/A)GAA consensus elements. Recently, several studies described Notch-independent activities of the CSL proteins. Results We have identified putative CSL genes in several fungal species, showing that this family is not confined to metazoans. We have analyzed their sequence conservation and identified the presence of well-defined domains typical of genuine CSL proteins. Furthermore, we have shown that the candidate fungal protein sequences contain highly conserved regions known to be required for sequence-specific DNA binding in their metazoan counterparts. The phylogenetic analysis of the newly identified fungal CSL proteins revealed the existence of two distinct classes, both of which are present in all the species studied. Conclusion Our findings support the evolutionary origin of the CSL transcription factor family in the last common ancestor of fungi and metazoans. We hypothesize that the ancestral CSL function involved DNA binding and Notch-independent regulation of transcription and that this function may still be shared, to a certain degree, by the present CSL family members from both fungi and metazoans. PMID:17629904

  3. Focus on Refugees. Transcript.

    ERIC Educational Resources Information Center

    Brandel, Sarah; And Others

    This is the transcript of the "Focus on Refugees," proqram conducted by the Overseas Development Council. Remarks from the following participants are included: (1) Sarah Brandel, Associate Fellow at the Overseas Development Council; (2) Gary Perkins, Chief of Mission of the Washington Office of the United Nations High Commissioner for Refugees…

  4. The Potential of Transcription Factor-Based Genetic Engineering in Improving Crop Tolerance to Drought

    PubMed Central

    Tripathi, Prateek

    2014-01-01

    Abstract Drought is one of the major constraints in crop production and has an effect on a global scale. In order to improve crop production, it is necessary to understand how plants respond to stress. A good understanding of regulatory mechanisms involved in plant responses during drought will enable researchers to explore and manipulate key regulatory points in order to enhance stress tolerance in crops. Transcription factors (TFs) have played an important role in crop improvement from the dawn of agriculture. TFs are therefore good candidates for genetic engineering to improve crop tolerance to drought because of their role as master regulators of clusters of genes. Many families of TFs, such as CCAAT, homeodomain, bHLH, NAC, AP2/ERF, bZIP, and WRKY have members that may have the potential to be tools for improving crop tolerance to drought. In this review, the roles of TFs as tools to improve drought tolerance in crops are discussed. The review also focuses on current strategies in the use of TFs, with emphasis on several major TF families in improving drought tolerance of major crops. Finally, many promising transgenic lines that may have improved drought responses have been poorly characterized and consequently their usefulness in the field is uncertain. New advances in high-throughput phenotyping, both greenhouse and field based, should facilitate improved phenomics of transgenic lines. Systems biology approaches should then define the underlying changes that result in higher yields under water stress conditions. These new technologies should help show whether manipulating TFs can have effects on yield under field conditions. PMID:25118806

  5. The Bphi008a gene interacts with the ethylene pathway and transcriptionally regulates MAPK genes in the response of rice to brown planthopper feeding.

    PubMed

    Hu, Jing; Zhou, Jiangbo; Peng, Xinxin; Xu, Henghao; Liu, Caixiang; Du, Bo; Yuan, Hongyu; Zhu, Lili; He, Guangcun

    2011-06-01

    We examined ways in which the Brown planthopper induced008a (Bphi008a; AY256682) gene of rice (Oryza sativa) enhances the plant's resistance to a specialist herbivore, the brown planthopper (BPH; Nilaparvata lugens). Measurement of the expression levels of ethylene synthases and of ethylene emissions showed that BPH feeding rapidly initiated the ethylene signaling pathway and up-regulated Bphi008a transcript levels after 6 to 96 h of feeding. In contrast, blocking ethylene transduction (using 1-methylcyclopropene) reduced Bphi008a transcript levels in wild-type plants fed upon by BPH. In vitro kinase assays showed that Bphi008a can be phosphorylated by rice Mitogen-activated Protein Kinase5 (OsMPK5), and yeast two-hybrid assays demonstrated that the carboxyl-terminal proline-rich region of Bphi008a interacts directly with this kinase. Furthermore, bimolecular fluorescence complementation assays showed that this interaction occurs in the nucleus. Subsequently, we found that Bphi008a up-regulation and down-regulation were accompanied by different changes in transcription levels of OsMPK5, OsMPK12, OsMPK13, and OsMPK17 in transgenic plants. Immunoblot analysis also showed that the OsMPK5 protein level increased in overexpressing plants and decreased in RNA interference plants after BPH feeding. In transgenic lines, changes in the expression levels of several enzymes that are important components of the defenses against the BPH were also observed. Finally, yeast two-hybrid screening results showed that Bphi008a is able to interact with a b-ZIP transcription factor (OsbZIP60) and a RNA polymerase polypeptide (SDRP).

  6. β-TrCP-mediated ubiquitination and degradation of liver-enriched transcription factor CREB-H

    PubMed Central

    Cheng, Yun; Gao, Wei-Wei; Tang, Hei-Man Vincent; Deng, Jian-Jun; Wong, Chi-Ming; Chan, Chi-Ping; Jin, Dong-Yan

    2016-01-01

    CREB-H is an endoplasmic reticulum-resident bZIP transcription factor which critically regulates lipid homeostasis and gluconeogenesis in the liver. CREB-H is proteolytically activated by regulated intramembrane proteolysis to generate a C-terminally truncated form known as CREB-H-ΔTC, which translocates to the nucleus to activate target gene expression. CREB-H-ΔTC is a fast turnover protein but the mechanism governing its destruction was not well understood. In this study, we report on β-TrCP-dependent ubiquitination and proteasomal degradation of CREB-H-ΔTC. The degradation of CREB-H-ΔTC was mediated by lysine 48-linked polyubiquitination and could be inhibited by proteasome inhibitor. CREB-H-ΔTC physically interacted with β-TrCP, a substrate recognition subunit of the SCFβ-TrCP E3 ubiquitin ligase. Forced expression of β-TrCP increased the polyubiquitination and decreased the stability of CREB-H-ΔTC, whereas knockdown of β-TrCP had the opposite effect. An evolutionarily conserved sequence, SDSGIS, was identified in CREB-H-ΔTC, which functioned as the β-TrCP-binding motif. CREB-H-ΔTC lacking this motif was stabilized and resistant to β-TrCP-induced polyubiquitination. This motif was a phosphodegron and its phosphorylation was required for β-TrCP recognition. Furthermore, two inhibitory phosphorylation sites close to the phosphodegron were identified. Taken together, our work revealed a new intracellular signaling pathway that controls ubiquitination and degradation of the active form of CREB-H transcription factor. PMID:27029215

  7. Zea mays Taxilin protein negatively regulates opaque-2 transcriptional activity by causing a change in its sub-cellular distribution.

    PubMed

    Zhang, Nan; Qiao, Zhenyi; Liang, Zheng; Mei, Bing; Xu, Zhengkai; Song, Rentao

    2012-01-01

    Zea mays (maize) Opaque-2 (ZmO2) protein is an important bZIP transcription factor that regulates the expression of major storage proteins (22-kD zeins) and other important genes during maize seed development. ZmO2 is subject to functional regulation through protein-protein interactions. To unveil the potential regulatory network associated with ZmO2, a protein-protein interaction study was carried out using the truncated version of ZmO2 (O2-2) as bait in a yeast two-hybrid screen with a maize seed cDNA library. A protein with homology to Taxilin was found to have stable interaction with ZmO2 in yeast and was designated as ZmTaxilin. Sequence analysis indicated that ZmTaxilin has a long coiled-coil domain containing three conserved zipper motifs. Each of the three zipper motifs is individually able to interact with ZmO2 in yeast. A GST pull-down assay demonstrated the interaction between GST-fused ZmTaxilin and ZmO2 extracted from developing maize seeds. Using onion epidermal cells as in vivo assay system, we found that ZmTaxilin could change the sub-cellular distribution of ZmO2. We also demonstrated that this change significantly repressed the transcriptional activity of ZmO2 on the 22-kD zein promoter. Our study suggests that a Taxilin-mediated change in sub-cellular distribution of ZmO2 may have important functional consequences for ZmO2 activity.

  8. Machine Transcription--Practically Speaking.

    ERIC Educational Resources Information Center

    Clippinger, Dorinda A.

    1984-01-01

    Draws transcription teaching principles from Gagne's theories about learning. Recommends 12-16 weeks of instruction, pre-transcription development of related skills, frequent feedback, and use of teaching materials that are arranged to take advantage of learning cycles. (SK)

  9. Non-transcriptional regulatory processes shape transcriptional network dynamics.

    PubMed

    Ray, J Christian J; Tabor, Jeffrey J; Igoshin, Oleg A

    2011-10-11

    Information about the extra- or intracellular environment is often captured as biochemical signals that propagate through regulatory networks. These signals eventually drive phenotypic changes, typically by altering gene expression programmes in the cell. Reconstruction of transcriptional regulatory networks has given a compelling picture of bacterial physiology, but transcriptional network maps alone often fail to describe phenotypes. Cellular response dynamics are ultimately determined by interactions between transcriptional and non-transcriptional networks, with dramatic implications for physiology and evolution. Here, we provide an overview of non-transcriptional interactions that can affect the performance of natural and synthetic bacterial regulatory networks.

  10. Simulated herbivory in chickpea causes rapid changes in defense pathways and hormonal transcription networks of JA/ethylene/GA/auxin within minutes of wounding

    PubMed Central

    Pandey, Saurabh Prakash; Srivastava, Shruti; Goel, Ridhi; Lakhwani, Deepika; Singh, Priya; Asif, Mehar Hasan; Sane, Aniruddha P.

    2017-01-01

    Chickpea (C. arietinum L.) is an important pulse crop in Asian and African countries that suffers significant yield losses due to attacks by insects like H. armigera. To obtain insights into early responses of chickpea to insect attack, a transcriptomic analysis of chickpea leaves just 20 minutes after simulated herbivory was performed, using oral secretions of H. armigera coupled with mechanical wounding. Expression profiles revealed differential regulation of 8.4% of the total leaf transcriptome with 1334 genes up-regulated and 501 down-regulated upon wounding at log2-fold change (|FC| ≤ −1 and ≥1) and FDR value ≤ 0.05. In silico analysis showed the activation of defenses through up-regulation of genes of the phenylpropanoid pathway, pathogenesis, oxidases and CYTP450 besides differential regulation of kinases, phosphatases and transcription factors of the WRKY, MYB, ERFs, bZIP families. A substantial change in the regulation of hormonal networks was observed with up-regulation of JA and ethylene pathways and suppression of growth associated hormone pathways like GA and auxin within 20 minutes of wounding. Secondary qPCR comparison of selected genes showed that oral secretions often increased differential expression relative to mechanical damage alone. The studies provide new insights into early wound responses in chickpea. PMID:28300183

  11. Simulated herbivory in chickpea causes rapid changes in defense pathways and hormonal transcription networks of JA/ethylene/GA/auxin within minutes of wounding.

    PubMed

    Pandey, Saurabh Prakash; Srivastava, Shruti; Goel, Ridhi; Lakhwani, Deepika; Singh, Priya; Asif, Mehar Hasan; Sane, Aniruddha P

    2017-03-16

    Chickpea (C. arietinum L.) is an important pulse crop in Asian and African countries that suffers significant yield losses due to attacks by insects like H. armigera. To obtain insights into early responses of chickpea to insect attack, a transcriptomic analysis of chickpea leaves just 20 minutes after simulated herbivory was performed, using oral secretions of H. armigera coupled with mechanical wounding. Expression profiles revealed differential regulation of 8.4% of the total leaf transcriptome with 1334 genes up-regulated and 501 down-regulated upon wounding at log2-fold change (|FC| ≤ -1 and ≥1) and FDR value ≤ 0.05. In silico analysis showed the activation of defenses through up-regulation of genes of the phenylpropanoid pathway, pathogenesis, oxidases and CYTP450 besides differential regulation of kinases, phosphatases and transcription factors of the WRKY, MYB, ERFs, bZIP families. A substantial change in the regulation of hormonal networks was observed with up-regulation of JA and ethylene pathways and suppression of growth associated hormone pathways like GA and auxin within 20 minutes of wounding. Secondary qPCR comparison of selected genes showed that oral secretions often increased differential expression relative to mechanical damage alone. The studies provide new insights into early wound responses in chickpea.

  12. Opaque-2 is a transcriptional activator that recognizes a specific target site in 22-kD zein genes.

    PubMed

    Schmidt, R J; Ketudat, M; Aukerman, M J; Hoschek, G

    1992-06-01

    opaque-2 (o2) is a regulatory locus in maize that plays an essential role in controlling the expression of genes encoding the 22-kD zein proteins. Through DNase I footprinting and DNA binding analyses, we have identified the binding site for the O2 protein (O2) in the promoter of 22-kD zein genes. The sequence in the 22-kD zein gene promoter that is recognized by O2 is similar to the target site recognized by other "basic/leucine zipper" (bZIP) proteins in that it contains an ACGT core that is necessary for DNA binding. The site is located in the -300 region relative to the translation start and lies about 20 bp downstream of the highly conserved zein gene sequence motif known as the "prolamin box." Employing gel mobility shift assays, we used O2 antibodies and nuclear extracts from an o2 null mutant to demonstrate that the O2 protein in maize endosperm nuclei recognizes the target site in the zein gene promoter. Mobility shift assays using nuclear proteins from an o2 null mutant indicated that other endosperm proteins in addition to O2 can bind the O2 target site and that O2 may be associated with one of these proteins. We also demonstrated that in yeast cells the O2 protein can activate expression of a lacZ gene containing a multimer of the O2 target sequence as part of its promoter, thus confirming its role as a transcriptional activator. A computer-assisted search indicated that the O2 target site is not present in the promoters of zein genes other than those of the 22-kD class. These data suggest a likely explanation at the molecular level for the differential effect of o2 mutations on expression of certain members of the zein gene family.

  13. The Bphi008a Gene Interacts with the Ethylene Pathway and Transcriptionally Regulates MAPK Genes in the Response of Rice to Brown Planthopper Feeding1[C][W][OA

    PubMed Central

    Hu, Jing; Zhou, Jiangbo; Peng, Xinxin; Xu, Henghao; Liu, Caixiang; Du, Bo; Yuan, Hongyu; Zhu, Lili; He, Guangcun

    2011-01-01

    We examined ways in which the Brown planthopper induced008a (Bphi008a; AY256682) gene of rice (Oryza sativa) enhances the plant’s resistance to a specialist herbivore, the brown planthopper (BPH; Nilaparvata lugens). Measurement of the expression levels of ethylene synthases and of ethylene emissions showed that BPH feeding rapidly initiated the ethylene signaling pathway and up-regulated Bphi008a transcript levels after 6 to 96 h of feeding. In contrast, blocking ethylene transduction (using 1-methylcyclopropene) reduced Bphi008a transcript levels in wild-type plants fed upon by BPH. In vitro kinase assays showed that Bphi008a can be phosphorylated by rice Mitogen-activated Protein Kinase5 (OsMPK5), and yeast two-hybrid assays demonstrated that the carboxyl-terminal proline-rich region of Bphi008a interacts directly with this kinase. Furthermore, bimolecular fluorescence complementation assays showed that this interaction occurs in the nucleus. Subsequently, we found that Bphi008a up-regulation and down-regulation were accompanied by different changes in transcription levels of OsMPK5, OsMPK12, OsMPK13, and OsMPK17 in transgenic plants. Immunoblot analysis also showed that the OsMPK5 protein level increased in overexpressing plants and decreased in RNA interference plants after BPH feeding. In transgenic lines, changes in the expression levels of several enzymes that are important components of the defenses against the BPH were also observed. Finally, yeast two-hybrid screening results showed that Bphi008a is able to interact with a b-ZIP transcription factor (OsbZIP60) and a RNA polymerase polypeptide (SDRP). PMID:21487048

  14. Adaptation with transcriptional regulation

    NASA Astrophysics Data System (ADS)

    Shi, Wenjia; Ma, Wenzhe; Xiong, Liyang; Zhang, Mingyue; Tang, Chao

    2017-02-01

    Biochemical adaptation is one of the basic functions that are widely implemented in biological systems for a variety of purposes such as signal sensing, stress response and homeostasis. The adaptation time scales span from milliseconds to days, involving different regulatory machineries in different processes. The adaptive networks with enzymatic regulation (ERNs) have been investigated in detail. But it remains unclear if and how other forms of regulation will impact the network topology and other features of the function. Here, we systematically studied three-node transcriptional regulatory networks (TRNs), with three different types of gene regulation logics. We found that the topologies of adaptive gene regulatory networks can still be grouped into two general classes: negative feedback loop (NFBL) and incoherent feed-forward loop (IFFL), but with some distinct topological features comparing to the enzymatic networks. Specifically, an auto-activation loop on the buffer node is necessary for the NFBL class. For IFFL class, the control node can be either a proportional node or an inversely-proportional node. Furthermore, the tunability of adaptive behavior differs between TRNs and ERNs. Our findings highlight the role of regulation forms in network topology, implementation and dynamics.

  15. Adaptation with transcriptional regulation.

    PubMed

    Shi, Wenjia; Ma, Wenzhe; Xiong, Liyang; Zhang, Mingyue; Tang, Chao

    2017-02-24

    Biochemical adaptation is one of the basic functions that are widely implemented in biological systems for a variety of purposes such as signal sensing, stress response and homeostasis. The adaptation time scales span from milliseconds to days, involving different regulatory machineries in different processes. The adaptive networks with enzymatic regulation (ERNs) have been investigated in detail. But it remains unclear if and how other forms of regulation will impact the network topology and other features of the function. Here, we systematically studied three-node transcriptional regulatory networks (TRNs), with three different types of gene regulation logics. We found that the topologies of adaptive gene regulatory networks can still be grouped into two general classes: negative feedback loop (NFBL) and incoherent feed-forward loop (IFFL), but with some distinct topological features comparing to the enzymatic networks. Specifically, an auto-activation loop on the buffer node is necessary for the NFBL class. For IFFL class, the control node can be either a proportional node or an inversely-proportional node. Furthermore, the tunability of adaptive behavior differs between TRNs and ERNs. Our findings highlight the role of regulation forms in network topology, implementation and dynamics.

  16. Adaptation with transcriptional regulation

    PubMed Central

    Shi, Wenjia; Ma, Wenzhe; Xiong, Liyang; Zhang, Mingyue; Tang, Chao

    2017-01-01

    Biochemical adaptation is one of the basic functions that are widely implemented in biological systems for a variety of purposes such as signal sensing, stress response and homeostasis. The adaptation time scales span from milliseconds to days, involving different regulatory machineries in different processes. The adaptive networks with enzymatic regulation (ERNs) have been investigated in detail. But it remains unclear if and how other forms of regulation will impact the network topology and other features of the function. Here, we systematically studied three-node transcriptional regulatory networks (TRNs), with three different types of gene regulation logics. We found that the topologies of adaptive gene regulatory networks can still be grouped into two general classes: negative feedback loop (NFBL) and incoherent feed-forward loop (IFFL), but with some distinct topological features comparing to the enzymatic networks. Specifically, an auto-activation loop on the buffer node is necessary for the NFBL class. For IFFL class, the control node can be either a proportional node or an inversely-proportional node. Furthermore, the tunability of adaptive behavior differs between TRNs and ERNs. Our findings highlight the role of regulation forms in network topology, implementation and dynamics. PMID:28233824

  17. Transcription of Trypanosoma brucei maxicircles

    SciTech Connect

    Michelotti, E.F.; Hajduk, S.L.

    1987-05-01

    Trypanosoma brucei is a protozoan parasite which developmentally regulates mitochondrial activity. In the mammal T. brucei produces ATP entirely by glycolysis while cytochrome mediated respiration resumes in the life-stage in the midgut of the insect vector. Using quantitative S1 nuclease protection assays two types of regulation of the steady state levels of the mitochondrial transcripts were found. Transcription of cytochrome b, cytochrome oxidase, and the rRNA genes is repressed in early bloodstream developmental stages, undergoes dramatic activation in later bloodstream stages, and finally a lesser activation in the insect developmental stage. Transcription of NADH dehydrogenase genes, however, is unregulated. Mitochondrial transcripts with a 5' triphosphate terminus, representing the site of transcription initiation, were capped using guanylyl transferase. The in vitro capped RNA hybridized to only one of eight mitochondrial restriction fragments on a Southern blot, however, hybridization of Southern blots with RNA from ..cap alpha..-/sup 32/P-UTP pulsed mitochondria labelled all restriction fragments equally. These results suggest that each DNA strand has a single promoter which directs the transcription of a full-length RNA which is subsequently processed. Different mitochondrial genes, despite being expressed on the same precursor RNA molecule, are independently regulated by both transcription initiation and RNA processing.

  18. AthaMap, integrating transcriptional and post-transcriptional data

    PubMed Central

    Bülow, Lorenz; Engelmann, Stefan; Schindler, Martin; Hehl, Reinhard

    2009-01-01

    The AthaMap database generates a map of predicted transcription factor binding sites (TFBS) for the whole Arabidopsis thaliana genome. AthaMap has now been extended to include data on post-transcriptional regulation. A total of 403 173 genomic positions of small RNAs have been mapped in the A. thaliana genome. These identify 5772 putative post-transcriptionally regulated target genes. AthaMap tools have been modified to improve the identification of common TFBS in co-regulated genes by subtracting post-transcriptionally regulated genes from such analyses. Furthermore, AthaMap was updated to the TAIR7 genome annotation, a graphic display of gene analysis results was implemented, and the TFBS data content was increased. AthaMap is freely available at http://www.athamap.de/. PMID:18842622

  19. Transcription regulation mechanisms of bacteriophages

    PubMed Central

    Yang, Haiquan; Ma, Yingfang; Wang, Yitian; Yang, Haixia; Shen, Wei; Chen, Xianzhong

    2014-01-01

    Phage diversity significantly contributes to ecology and evolution of new bacterial species through horizontal gene transfer. Therefore, it is essential to understand the mechanisms underlying phage-host interactions. After initial infection, the phage utilizes the transcriptional machinery of the host to direct the expression of its own genes. This review presents a view on the transcriptional regulation mechanisms of bacteriophages, and its contribution to phage diversity and classification. Through this review, we aim to broaden the understanding of phage-host interactions while providing a reference source for researchers studying the regulation of phage transcription. PMID:25482231

  20. Coupling transcription and alternative splicing.

    PubMed

    Kornblihtt, Alberto R

    2007-01-01

    Alternative splicing regulation not only depends on the interaction of splicing factors with splicing enhancers and silencers in the pre-mRNA, but also on the coupling between transcription and splicing. This coupling is possible because splicing is often cotranscriptional and promoter identity and occupation may affect alternative splicing. We discuss here the different mechanisms by which transcription regulates alternative splicing. These include the recruitment of splicing factors to the transcribing polymerase and "kinetic coupling", which involves changes in the rate of transcriptional elongation that in turn affect the timing in which splice sites are presented to the splicing machinery. The recruitment mechanism may depend on the particular features of the carboxyl terminal domain of RNA polymerase II, whereas kinetic coupling seems to be linked to how changes in chromatin structure and other factors affect transcription elongation.

  1. RNA-guided transcriptional regulation

    DOEpatents

    Church, George M.; Mali, Prashant G.; Esvelt, Kevin M.

    2016-02-23

    Methods of modulating expression of a target nucleic acid in a cell are provided including introducing into the cell a first foreign nucleic acid encoding one or more RNAs complementary to DNA, wherein the DNA includes the target nucleic acid, introducing into the cell a second foreign nucleic acid encoding a nuclease-null Cas9 protein that binds to the DNA and is guided by the one or more RNAs, introducing into the cell a third foreign nucleic acid encoding a transcriptional regulator protein or domain, wherein the one or more RNAs, the nuclease-null Cas9 protein, and the transcriptional regulator protein or domain are expressed, wherein the one or more RNAs, the nuclease-null Cas9 protein and the transcriptional regulator protein or domain co-localize to the DNA and wherein the transcriptional regulator protein or domain regulates expression of the target nucleic acid.

  2. Nucleolar localization of myc transcripts.

    PubMed Central

    Bond, V C; Wold, B

    1993-01-01

    In situ hybridization has revealed a striking subnuclear distribution of c-myc RNA transcripts. A major fraction of the sense-strand nuclear c-myc transcripts was localized to the nucleoli. myc intron 1-containing RNAs were noticeably absent from nucleoli, accumulating instead in the nucleoplasm. The localization of myc RNA to nucleoli was shown to be common to a number of diverse cell types, including primary Sertoli cells and several cell lines. Furthermore, nucleolar localization was not restricted to c-myc and N-myc and myoD transcripts also displayed this phenomenon. In contrast, gamma-actin or lactate dehydrogenase transcripts did not display nucleolar localization. These observations suggest a new role for the nucleolus in transport and/or turnover of potential mRNAs. Images PMID:7684491

  3. Repressors and Upstream Repressing Sequences of the Stress-Regulated ENA1 Gene in Saccharomyces cerevisiae: bZIP Protein Sko1p Confers HOG-Dependent Osmotic Regulation

    PubMed Central

    Proft, Markus; Serrano, Ramón

    1999-01-01

    The yeast ENA1/PMR2A gene encodes a cation extrusion ATPase in Saccharomyces cerevisiae which is essential for survival under salt stress conditions. One important mechanism of ENA1 transcriptional regulation is based on repression under normal growth conditions, which is relieved by either osmotic induction or glucose starvation. Analysis of the ENA1 promoter revealed a Mig1p-binding motif (−533 to −544) which was characterized as an upstream repressing sequence (URSMIG-ENA1) regulated by carbon source. Its function was abolished in a mig1 mig2 double-deletion strain as well as in either ssn6 or tup1 single mutants. A second URS at −502 to −513 is responsible for transcriptional repression regulated by osmotic stress and is similar to mammalian cyclic AMP response elements (CREs) that are recognized by CREB proteins. This URSCRE-ENA1 element requires for its repression function the yeast CREB homolog Sko1p (Acr1p) as well as the integrity of the Ssn6p-Tup1p corepressor complex. When targeted to the GAL1 promoter by fusing with the Gal4p DNA-binding domain, Sko1p acts as an Ssn6/Tup1p-dependent repressor regulated by osmotic stress. A glutathione S-transferase–Sko1 fusion protein binds specifically to the URSCRE-ENA1 element. Furthermore, a hog1 mitogen-activated protein kinase deletion strain could not counteract repression on URSCRE-ENA1 during osmotic shock. The loss of SKO1 completely restored ENA1 expression in a hog1 mutant and partially suppressed the osmotic stress sensitivity, qualifying Sko1p as a downstream effector of the HOG pathway. Our results indicate that different signalling pathways (HOG osmotic pathway and glucose repression pathway) use distinct promoter elements of ENA1 (URSCRE-ENA1 and URSMIG-ENA1) via specific transcriptional repressors (Sko1p and Mig1/2p) and via the general Ssn6p-Tup1p complex. The physiological importance of the relief from repression during salt stress was also demonstrated by the increased tolerance of sko1 or

  4. The transcriptional landscape of the mammalian genome.

    PubMed

    Carninci, P; Kasukawa, T; Katayama, S; Gough, J; Frith, M C; Maeda, N; Oyama, R; Ravasi, T; Lenhard, B; Wells, C; Kodzius, R; Shimokawa, K; Bajic, V B; Brenner, S E; Batalov, S; Forrest, A R R; Zavolan, M; Davis, M J; Wilming, L G; Aidinis, V; Allen, J E; Ambesi-Impiombato, A; Apweiler, R; Aturaliya, R N; Bailey, T L; Bansal, M; Baxter, L; Beisel, K W; Bersano, T; Bono, H; Chalk, A M; Chiu, K P; Choudhary, V; Christoffels, A; Clutterbuck, D R; Crowe, M L; Dalla, E; Dalrymple, B P; de Bono, B; Della Gatta, G; di Bernardo, D; Down, T; Engstrom, P; Fagiolini, M; Faulkner, G; Fletcher, C F; Fukushima, T; Furuno, M; Futaki, S; Gariboldi, M; Georgii-Hemming, P; Gingeras, T R; Gojobori, T; Green, R E; Gustincich, S; Harbers, M; Hayashi, Y; Hensch, T K; Hirokawa, N; Hill, D; Huminiecki, L; Iacono, M; Ikeo, K; Iwama, A; Ishikawa, T; Jakt, M; Kanapin, A; Katoh, M; Kawasawa, Y; Kelso, J; Kitamura, H; Kitano, H; Kollias, G; Krishnan, S P T; Kruger, A; Kummerfeld, S K; Kurochkin, I V; Lareau, L F; Lazarevic, D; Lipovich, L; Liu, J; Liuni, S; McWilliam, S; Madan Babu, M; Madera, M; Marchionni, L; Matsuda, H; Matsuzawa, S; Miki, H; Mignone, F; Miyake, S; Morris, K; Mottagui-Tabar, S; Mulder, N; Nakano, N; Nakauchi, H; Ng, P; Nilsson, R; Nishiguchi, S; Nishikawa, S; Nori, F; Ohara, O; Okazaki, Y; Orlando, V; Pang, K C; Pavan, W J; Pavesi, G; Pesole, G; Petrovsky, N; Piazza, S; Reed, J; Reid, J F; Ring, B Z; Ringwald, M; Rost, B; Ruan, Y; Salzberg, S L; Sandelin, A; Schneider, C; Schönbach, C; Sekiguchi, K; Semple, C A M; Seno, S; Sessa, L; Sheng, Y; Shibata, Y; Shimada, H; Shimada, K; Silva, D; Sinclair, B; Sperling, S; Stupka, E; Sugiura, K; Sultana, R; Takenaka, Y; Taki, K; Tammoja, K; Tan, S L; Tang, S; Taylor, M S; Tegner, J; Teichmann, S A; Ueda, H R; van Nimwegen, E; Verardo, R; Wei, C L; Yagi, K; Yamanishi, H; Zabarovsky, E; Zhu, S; Zimmer, A; Hide, W; Bult, C; Grimmond, S M; Teasdale, R D; Liu, E T; Brusic, V; Quackenbush, J; Wahlestedt, C; Mattick, J S; Hume, D A; Kai, C; Sasaki, D; Tomaru, Y; Fukuda, S; Kanamori-Katayama, M; Suzuki, M; Aoki, J; Arakawa, T; Iida, J; Imamura, K; Itoh, M; Kato, T; Kawaji, H; Kawagashira, N; Kawashima, T; Kojima, M; Kondo, S; Konno, H; Nakano, K; Ninomiya, N; Nishio, T; Okada, M; Plessy, C; Shibata, K; Shiraki, T; Suzuki, S; Tagami, M; Waki, K; Watahiki, A; Okamura-Oho, Y; Suzuki, H; Kawai, J; Hayashizaki, Y

    2005-09-02

    This study describes comprehensive polling of transcription start and termination sites and analysis of previously unidentified full-length complementary DNAs derived from the mouse genome. We identify the 5' and 3' boundaries of 181,047 transcripts with extensive variation in transcripts arising from alternative promoter usage, splicing, and polyadenylation. There are 16,247 new mouse protein-coding transcripts, including 5154 encoding previously unidentified proteins. Genomic mapping of the transcriptome reveals transcriptional forests, with overlapping transcription on both strands, separated by deserts in which few transcripts are observed. The data provide a comprehensive platform for the comparative analysis of mammalian transcriptional regulation in differentiation and development.

  5. Transcriptional regulation by post-transcriptional modification--role of phosphorylation in Sp1 transcriptional activity.

    PubMed

    Chu, Shijian

    2012-10-15

    Sp1 is a ubiquitously expressed transcription factor involved in the regulation of a large number of genes including housekeeping genes as well as actively regulated genes. Although Sp1 was discovered nearly three decades ago, its functional diversity is still not completely understood. One of the ways that make Sp1 versatile in transcriptional regulation is its post-transcriptional modification, which alters Sp1 structure in different cells and at different times. Compared to other types of modifications of the Sp1 protein, phosphorylation has been studied far more extensively. This review focuses on the inducers, pathways, enzymes, and biological effects of Sp1 phosphorylation. Recent data are beginning to reveal the biological significance and universal presence of Sp1 phosphorylation-related cell/molecular responses. Studies in this field provide a quick glance at how a simple chemical modification of a transcription factor could produce significant functional diversity of the protein.

  6. Transcriptional Signatures in Huntington's Disease

    PubMed Central

    2007-01-01

    While selective neuronal death has been an influential theme in Huntington's disease (HD), there is now a preponderance of evidence that significant neuronal dysfunction precedes frank neuronal death. The best evidence for neuronal dysfunction is the observation that gene expression is altered in HD brain, suggesting that transcriptional dysregulation is a central mechanism. Studies of altered gene expression began with careful observations of post-mortem human HD brain and subsequently were accelerated by the development of transgenic mouse models. The application of DNA microarray technology has spurred tremendous progress with respect to the altered transcriptional processes that occur in HD, through gene expression studies of both transgenic mouse models as well as cellular models of HD. Gene expression profiles are remarkably comparable across these models, bolstering the idea that transcriptional signatures reflect an essential feature of disease pathogenesis. Finally, gene expression studies have been applied to human HD, thus not only validating the approach of using model systems, but also solidifying the idea that altered transcription is a key mechanism in HD pathogenesis. In the future, gene expression profiling will be used as a readout in clinical trials aimed at correcting transcriptional dysregulation in Huntington's disease. PMID:17467140

  7. Kinetic Modelling of Transcription Elongation

    NASA Astrophysics Data System (ADS)

    O'Maoileidigh, Daibhid; Tadigotla, Vasisht; Sengupta, Anirvan; Epshtein, Vitaly; Ebright, Richard; Nudler, Evgeny; Ruckenstein, Andrei

    2006-03-01

    Transcription is the first step in gene expression and it is at this stage that most of genetic regulation occurs. The enzyme RNA polymerase (RNAP) walks along DNA creating an RNA transcript at a highly non-uniform rate. We discuss how many non-intuitive features of the system may be experimentally and physically motivated and present first a model, which agrees qualitatively with a host of experimental evidence. We also examine intrinsic pauses where it is thought that the RNAP will move backwards along the DNA template without changing the length of the RNA transcript. We describe a simplified kinetic scheme for the recovery of intrinsic pauses with the same degree of predictive power as our thermodynamic model (presented separately). The separation of timescales between the movement of the RNAP and global changes in the RNA secondary structure is seen to be crucial for the function of RNAP. This is essentially a model of a Brownian ratchet where RNAP executes a 1D random walk in a sequence dependent potential over a range determined by the co-transcriptional RNA fold for each transcript length

  8. Transcriptional gene silencing in humans

    PubMed Central

    Weinberg, Marc S.; Morris, Kevin V.

    2016-01-01

    It has been over a decade since the first observation that small non-coding RNAs can functionally modulate epigenetic states in human cells to achieve functional transcriptional gene silencing (TGS). TGS is mechanistically distinct from the RNA interference (RNAi) gene-silencing pathway. TGS can result in long-term stable epigenetic modifications to gene expression that can be passed on to daughter cells during cell division, whereas RNAi does not. Early studies of TGS have been largely overlooked, overshadowed by subsequent discoveries of small RNA-directed post-TGS and RNAi. A reappraisal of early work has been brought about by recent findings in human cells where endogenous long non-coding RNAs function to regulate the epigenome. There are distinct and common overlaps between the proteins involved in small and long non-coding RNA transcriptional regulatory mechanisms, suggesting that the early studies using small non-coding RNAs to modulate transcription were making use of a previously unrecognized endogenous mechanism of RNA-directed gene regulation. Here we review how non-coding RNA plays a role in regulation of transcription and epigenetic gene silencing in human cells by revisiting these earlier studies and the mechanistic insights gained to date. We also provide a list of mammalian genes that have been shown to be transcriptionally regulated by non-coding RNAs. Lastly, we explore how TGS may serve as the basis for development of future therapeutic agents. PMID:27060137

  9. 46 CFR 502.165 - Official transcript.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... incremental cost of transcription above the regular copy transcription cost borne by the Commission, in... full cost of transcription being borne by the Commission. (B) In the event a request for daily copy is... of transcription over and above that borne by the Commission, i.e., the incremental cost between...

  10. 46 CFR 502.165 - Official transcript.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... incremental cost of transcription above the regular copy transcription cost borne by the Commission, in... full cost of transcription being borne by the Commission. (B) In the event a request for daily copy is... of transcription over and above that borne by the Commission, i.e., the incremental cost between...

  11. 46 CFR 502.165 - Official transcript.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... incremental cost of transcription above the regular copy transcription cost borne by the Commission, in... full cost of transcription being borne by the Commission. (B) In the event a request for daily copy is... of transcription over and above that borne by the Commission, i.e., the incremental cost between...

  12. 46 CFR 502.165 - Official transcript.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... incremental cost of transcription above the regular copy transcription cost borne by the Commission, in... full cost of transcription being borne by the Commission. (B) In the event a request for daily copy is... of transcription over and above that borne by the Commission, i.e., the incremental cost between...

  13. 46 CFR 502.165 - Official transcript.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... incremental cost of transcription above the regular copy transcription cost borne by the Commission, in... full cost of transcription being borne by the Commission. (B) In the event a request for daily copy is... of transcription over and above that borne by the Commission, i.e., the incremental cost between...

  14. Transcription and splicing: when the twain meet.

    PubMed

    Brody, Yehuda; Shav-Tal, Yaron

    2011-01-01

    Splicing can occur co-transcriptionally. What happens when the splicing reaction lags after the completed transcriptional process? We found that elongation rates are independent of ongoing splicing on the examined genes and suggest that when transcription has completed but splicing has not, the splicing machinery is retained at the site of transcription, independently of the polymerase.

  15. Pervasive transcription: detecting functional RNAs in bacteria.

    PubMed

    Lybecker, Meghan; Bilusic, Ivana; Raghavan, Rahul

    2014-01-01

    Pervasive, or genome-wide, transcription has been reported in all domains of life. In bacteria, most pervasive transcription occurs antisense to protein-coding transcripts, although recently a new class of pervasive RNAs was identified that originates from within annotated genes. Initially considered to be non-functional transcriptional noise, pervasive transcription is increasingly being recognized as important in regulating gene expression. The function of pervasive transcription is an extensively debated question in the field of transcriptomics and regulatory RNA biology. Here, we highlight the most recent contributions addressing the purpose of pervasive transcription in bacteria and discuss their implications.

  16. Redox regulation of an AP-1-like transcription factor, YapA, in the fungal symbiont Epichloe festucae.

    PubMed

    Cartwright, Gemma M; Scott, Barry

    2013-10-01

    One of the central regulators of oxidative stress in Saccharomyces cerevisiae is Yap1, a bZIP transcription factor of the AP-1 family. In unstressed cells, Yap1 is reduced and cytoplasmic, but in response to oxidative stress, it becomes oxidized and accumulates in the nucleus. To date, there have been no reports on the role of AP-1-like transcription factors in symbiotic fungi. An ortholog of Yap1, named YapA, was identified in the genome of the grass symbiont Epichloë festucae and shown to complement an S. cerevisiae Δyap1 mutant. Hyphae of the E. festucae ΔyapA strain were sensitive to menadione and diamide but resistant to H2O2, KO2, and tert-butyl hydroperoxide (t-BOOH). In contrast, conidia of the ΔyapA strain were very sensitive to H2O2 and failed to germinate. Using a PcatA-eGFP degron-tagged reporter, YapA was shown to be required for expression of a spore-specific catalase gene, catA. Although YapA-EGFP localized to the nucleus in response to host reactive oxygen species during seedling infection, there was no difference in whole-plant and cellular phenotypes of plants infected with the ΔyapA strain compared to the wild-type strain. Homologs of the S. cerevisiae and Schizosaccharomyces pombe redox-sensing proteins (Gpx3 and Tpx1, respectively) did not act as redox sensors for YapA in E. festucae. In response to oxidative stress, YapA-EGFP localized to the nuclei of E. festucae ΔgpxC, ΔtpxA, and ΔgpxC ΔtpxA cells to the same degree as that in wild-type cells. These results show that E. festucae has a robust system for countering oxidative stress in culture and in planta but that Gpx3- or Tpx1-like thiol peroxidases are dispensable for activation of YapA.

  17. Interplay among Drosophila transcription factors Ets21c, Fos and Ftz-F1 drives JNK-mediated tumor malignancy

    PubMed Central

    Külshammer, Eva; Mundorf, Juliane; Kilinc, Merve; Frommolt, Peter; Wagle, Prerana; Uhlirova, Mirka

    2015-01-01

    ABSTRACT Cancer initiation and maintenance of the transformed cell state depend on altered cellular signaling and aberrant activities of transcription factors (TFs) that drive pathological gene expression in response to cooperating genetic lesions. Deciphering the roles of interacting TFs is therefore central to understanding carcinogenesis and for designing cancer therapies. Here, we use an unbiased genomic approach to define a TF network that triggers an abnormal gene expression program promoting malignancy of clonal tumors, generated in Drosophila imaginal disc epithelium by gain of oncogenic Ras (RasV12) and loss of the tumor suppressor Scribble (scrib1). We show that malignant transformation of the rasV12scrib1 tumors requires TFs of distinct families, namely the bZIP protein Fos, the ETS-domain factor Ets21c and the nuclear receptor Ftz-F1, all acting downstream of Jun-N-terminal kinase (JNK). Depleting any of the three TFs improves viability of tumor-bearing larvae, and this positive effect can be enhanced further by their combined removal. Although both Fos and Ftz-F1 synergistically contribute to rasV12scrib1 tumor invasiveness, only Fos is required for JNK-induced differentiation defects and Matrix metalloprotease (MMP1) upregulation. In contrast, the Fos-dimerizing partner Jun is dispensable for JNK to exert its effects in rasV12scrib1 tumors. Interestingly, Ets21c and Ftz-F1 are transcriptionally induced in these tumors in a JNK- and Fos-dependent manner, thereby demonstrating a hierarchy within the tripartite TF network, with Fos acting as the most upstream JNK effector. Of the three TFs, only Ets21c can efficiently substitute for loss of polarity and cooperate with RasV12 in inducing malignant clones that, like rasV12scrib1 tumors, invade other tissues and overexpress MMP1 and the Drosophila insulin-like peptide 8 (Dilp8). While rasV12ets21c tumors require JNK for invasiveness, the JNK activity is dispensable for their growth. In conclusion, our study

  18. Subventricular zone microglia transcriptional networks.

    PubMed

    Starossom, Sarah C; Imitola, Jaime; Wang, Yue; Cao, Li; Khoury, Samia J

    2011-07-01

    Microglia play an important role in inflammatory diseases of the central nervous system. There is evidence of microglial diversity with distinct phenotypes exhibiting either neuroprotection and repair or neurotoxicity. However the precise molecular mechanisms underlying this diversity are still unknown. Using a model of experimental autoimmune encephalomyelitis (EAE) we performed transcriptional profiling of isolated subventricular zone microglia from the acute and chronic disease phases of EAE. We found that microglia exhibit disease phase specific gene expression signatures, that correspond to unique gene ontology functions and genomic networks. Our data demonstrate for the first time, distinct transcriptional networks of microglia activation in vivo, that suggests a role as mediators of injury or repair.

  19. Chromatin and Transcription in Yeast

    PubMed Central

    Rando, Oliver J.; Winston, Fred

    2012-01-01

    Understanding the mechanisms by which chromatin structure controls eukaryotic transcription has been an intense area of investigation for the past 25 years. Many of the key discoveries that created the foundation for this field came from studies of Saccharomyces cerevisiae, including the discovery of the role of chromatin in transcriptional silencing, as well as the discovery of chromatin-remodeling factors and histone modification activities. Since that time, studies in yeast have continued to contribute in leading ways. This review article summarizes the large body of yeast studies in this field. PMID:22345607

  20. Transcription factor-based biosensor

    DOEpatents

    Dietrich, Jeffrey A; Keasling, Jay D

    2013-10-08

    The present invention provides for a system comprising a BmoR transcription factor, a .sigma..sup.54-RNA polymerase, and a pBMO promoter operatively linked to a reporter gene, wherein the pBMO promoter is capable of expression of the reporter gene with an activated form of the BmoR and the .sigma..sup.54-RNA polymerase.

  1. Transcriptional networks in plant immunity.

    PubMed

    Tsuda, Kenichi; Somssich, Imre E

    2015-05-01

    Next to numerous abiotic stresses, plants are constantly exposed to a variety of pathogens within their environment. Thus, their ability to survive and prosper during the course of evolution was strongly dependent on adapting efficient strategies to perceive and to respond to such potential threats. It is therefore not surprising that modern plants have a highly sophisticated immune repertoire consisting of diverse signal perception and intracellular signaling pathways. This signaling network is intricate and deeply interconnected, probably reflecting the diverse lifestyles and infection strategies used by the multitude of invading phytopathogens. Moreover it allows signal communication between developmental and defense programs thereby ensuring that plant growth and fitness are not significantly retarded. How plants integrate and prioritize the incoming signals and how this information is transduced to enable appropriate immune responses is currently a major research area. An important finding has been that pathogen-triggered cellular responses involve massive transcriptional reprogramming within the host. Additional key observations emerging from such studies are that transcription factors (TFs) are often sites of signal convergence and that signal-regulated TFs act in concert with other context-specific TFs and transcriptional co-regulators to establish sensory transcription regulatory networks required for plant immunity.

  2. Regulating transcription traffic around DSBs.

    PubMed

    Plosky, Brian S

    2015-05-07

    If a double-strand break (DSB) occurs and either a DNA polymerase or RNA polymerase is coming along, how do we save the train? In this issue of Molecular Cell, Ui et al. (2015) describe a connection between an elongation factor and a repressive complex to prevent transcription in proximity to a DSB.

  3. Transcription factors in alkaloid biosynthesis.

    PubMed

    Yamada, Yasuyuki; Sato, Fumihiko

    2013-01-01

    Higher plants produce a large variety of low-molecular weight secondary compounds. Among them, nitrogen-containing alkaloids are the most biologically active and are often used pharmaceutically. Whereas alkaloid chemistry has been intensively investigated, alkaloid biosynthesis, including the relevant biosynthetic enzymes, genes and their regulation, and especially transcription factors, is largely unknown, as only a limited number of plant species produce certain types of alkaloids and they are difficult to study. Recently, however, several groups have succeeded in isolating the transcription factors that are involved in the biosynthesis of several types of alkaloids, including bHLH, ERF, and WRKY. Most of them show Jasmonate (JA) responsiveness, which suggests that the JA signaling cascade plays an important role in alkaloid biosynthesis. Here, we summarize the types and functions of transcription factors that have been isolated in alkaloid biosynthesis, and characterize their similarities and differences compared to those in other secondary metabolite pathways, such as phenylpropanoid and terpenoid biosyntheses. The evolution of this biosynthetic pathway and regulatory network, as well as the application of these transcription factors to metabolic engineering, is discussed.

  4. Seasonal abscisic acid signal and a basic leucine zipper transcription factor, DkbZIP5, regulate proanthocyanidin biosynthesis in persimmon fruit.

    PubMed

    Akagi, Takashi; Katayama-Ikegami, Ayako; Kobayashi, Shozo; Sato, Akihiko; Kono, Atsushi; Yonemori, Keizo

    2012-02-01

    Proanthocyanidins (PAs) are secondary metabolites that contribute to plant protection and crop quality. Persimmon (Diospyros kaki) has a unique characteristic of accumulating large amounts of PAs, particularly in its fruit. Normal astringent-type and mutant nonastringent-type fruits show different PA accumulation patterns depending on the seasonal expression patterns of DkMyb4, which is a Myb transcription factor (TF) regulating many PA pathway genes in persimmon. In this study, attempts were made to identify the factors involved in DkMyb4 expression and the resultant PA accumulation in persimmon fruit. Treatment with abscisic acid (ABA) and an ABA biosynthesis inhibitor resulted in differential changes in the expression patterns of DkMyb4 and PA biosynthesis in astringent-type and nonastringent-type fruits depending on the development stage. To obtain an ABA-signaling TF, we isolated a full-length basic leucine zipper (bZIP) TF, DkbZIP5, which is highly expressed in persimmon fruit. We also showed that ectopic DkbZIP5 overexpression in persimmon calluses induced the up-regulation of DkMyb4 and the resultant PA biosynthesis. In addition, a detailed molecular characterization using the electrophoretic mobility shift assay and transient reporter assay indicated that DkbZIP5 recognized ABA-responsive elements in the promoter region of DkMyb4 and acted as a direct regulator of DkMyb4 in an ABA-dependent manner. These results suggest that ABA signals may be involved in PA biosynthesis in persimmon fruit via DkMyb4 activation by DkbZIP5.

  5. Investigating transcription reinitiation through in vitro approaches.

    PubMed

    Dieci, Giorgio; Fermi, Beatrice; Bosio, Maria Cristina

    2014-01-01

    By influencing the number of RNA molecules repeatedly synthesized from the same gene, the control of transcription reinitiation has the potential to shape the transcriptome. Transcription reinitiation mechanisms have been mainly addressed in vitro, through approaches based on both crude and reconstituted systems. These studies support the notion that transcription reinitiation and its regulation rely on dedicated networks of molecular interactions within transcription machineries. At the same time, comparison with in vivo transcription rates suggests that additional mechanisms, factors and conditions must exist in the nucleus, whose biochemical elucidation is a fascinating challenge for future in vitro transcription studies.

  6. RNA polymerase II transcription: structure and mechanism.

    PubMed

    Liu, Xin; Bushnell, David A; Kornberg, Roger D

    2013-01-01

    A minimal RNA polymerase II (pol II) transcription system comprises the polymerase and five general transcription factors (GTFs) TFIIB, -D, -E, -F, and -H. The addition of Mediator enables a response to regulatory factors. The GTFs are required for promoter recognition and the initiation of transcription. Following initiation, pol II alone is capable of RNA transcript elongation and of proofreading. Structural studies reviewed here reveal roles of GTFs in the initiation process and shed light on the transcription elongation mechanism. This article is part of a Special Issue entitled: RNA Polymerase II Transcript Elongation.

  7. Rethinking transcription coupled DNA repair.

    PubMed

    Kamarthapu, Venu; Nudler, Evgeny

    2015-04-01

    Nucleotide excision repair (NER) is an evolutionarily conserved, multistep process that can detect a wide variety of DNA lesions. Transcription coupled repair (TCR) is a subpathway of NER that repairs the transcribed DNA strand faster than the rest of the genome. RNA polymerase (RNAP) stalled at DNA lesions mediates the recruitment of NER enzymes to the damage site. In this review we focus on a newly identified bacterial TCR pathway in which the NER enzyme UvrD, in conjunction with NusA, plays a major role in initiating the repair process. We discuss the tradeoff between the new and conventional models of TCR, how and when each pathway operates to repair DNA damage, and the necessity of pervasive transcription in maintaining genome integrity.

  8. Chromatin Dynamics of Circadian Transcription

    PubMed Central

    Aguilar-Arnal, Lorena; Sassone-Corsi, Paolo

    2015-01-01

    The molecular circadian clock orchestrates the daily cyclical expression of thousands of genes. Disruption of this transcriptional program leads to a variety of pathologies, including insomnia, depression and metabolic disorders. Circadian rhythms in gene expression rely on specific chromatin transitions which are ultimately coordinated by the molecular clock. As a consequence, a highly plastic and dynamic circadian epigenome can be delineated across different tissues and cell types. Intriguingly, genome topology appears to coordinate cyclic transcription at circadian interactomes, in which circadian genes are in physical contact within the cell nucleus in a time-specific manner. Moreover, the clock machinery shows functional interplays with key metabolic regulators, thereby connecting the circadian epigenome to cellular metabolism. Unraveling the molecular aspects of such interplays is likely to reveal new therapeutic strategies towards the treatment of metabolic disorders. PMID:27014564

  9. Drugging the Undruggable: Transcription Therapy for Cancer

    PubMed Central

    Yan, Chunhong; Higgins, Paul J.

    2012-01-01

    Transcriptional regulation is often the convergence point of oncogenic signaling. It is not surprising, therefore, that aberrant gene expression is a hallmark of cancer. Transformed cells often develop a dependency on such a reprogramming highlighting the therapeutic potential of rectifying cancer-associated transcriptional abnormalities in malignant cells. Although transcription is traditionally considered as undruggable, agents have been developed that target various levels of transcriptional regulation including DNA binding by transcription factors, protein-protein interactions, and epigenetic alterations. Some of these agents have been approved for clinical use or entered clinical trials. While artificial transcription factors have been developed that can theoretically modulate expression of any given gene, the emergence of reliable reporter assays greatly facilitate the search for transcription-targeted agents. This review provides a comprehensive overview of these developments, and discusses various strategies applicable for developing transcription-targeted therapeutic agents. PMID:23147197

  10. Improved Methods for Teaching Machine Transcription.

    ERIC Educational Resources Information Center

    Smith, Clara J.

    1980-01-01

    The increased use of machine transcription in business and industry demands that business educators attract and train more highly skilled machine transcriptionists. Realistic production measurement and appropriate vocabulary should be taught to link machine transcription to word processing. (Author)

  11. Sry is a transcriptional activator.

    PubMed

    Dubin, R A; Ostrer, H

    1994-09-01

    The SRY gene functions as a genetic switch in gonadal ridge initiating testis determination. The mouse Sry and human SRY open reading frames (ORFs) share a conserved DNA-binding domain (the HMG-box) yet exhibit no additional homology outside this region. As judged by the accumulation of lacZ-SRY hybrid proteins in the nucleus, both the human and mouse SRY ORFs contain a nuclear localization signal. The mouse Sry HMG-box domain selectively binds the sequence NACAAT in vitro when challenged with a random pool of oligonucleotides and binds AACAAT with the highest affinity. When put under the control of a heterologous promotor, the mouse Sry gene activated transcription of a reporter gene containing multiple copies of the AACAAT binding site. Activation was likewise observed for a GAL4-responsive reporter gene, when the mouse Sry gene was linked to the DNA-binding domain of GAL4. Using this system, the activation function was mapped to a glutamine/histidine-rich domain. In addition, LexA-mouse Sry fusion genes activated a LexA-responsive reporter gene in yeast. In contrast, a GAL4-human SRY fusion gene did not cause transcriptional activation. These studies suggest that both the human and the mouse SRY ORFs encode nuclear, DNA-binding proteins and that the mouse Sry ORF can function as a transcriptional activator with separable DNA-binding and activator domains.

  12. Transcription termination maintains chromosome integrity.

    PubMed

    Washburn, Robert S; Gottesman, Max E

    2011-01-11

    DNA replication fork movement is impeded by collisions with transcription elongation complexes (TEC). We propose that a critical function of transcription termination factors is to prevent TEC from blocking DNA replication and inducing replication fork arrest, one consequence of which is DNA double-strand breaks. We show that inhibition of Rho-dependent transcription termination by bicyclomycin in Escherichia coli induced double-strand breaks. Cells deleted for Rho-cofactors nusA and nusG were hypersensitive to bicyclomycin, and had extensive chromosome fragmentation even in the absence of the drug. An RNA polymerase mutation that destabilizes TEC (rpoB*35) increased bicyclomycin resistance >40-fold. Double-strand break formation depended on DNA replication, and can be explained by replication fork collapse. Deleting recombination genes required for replication fork repair (recB and ruvC) increased sensitivity to bicyclomycin, as did loss of the replication fork reloading helicases rep and priA. We propose that Rho responds to a translocating replisome by releasing obstructing TEC.

  13. Linking Smads and transcriptional activation.

    PubMed

    Inman, Gareth J

    2005-02-15

    TGF-beta1 (transforming growth factor-beta1) is the prototypical member of a large family of pleiotropic cytokines that regulate diverse biological processes during development and adult tissue homoeostasis. TGF-beta signals via membrane bound serine/threonine kinase receptors which transmit their signals via the intracellular signalling molecules Smad2, Smad3 and Smad4. These Smads contain conserved MH1 and MH2 domains separated by a flexible linker domain. Smad2 and Smad3 act as kinase substrates for the receptors, and, following phosphorylation, they form complexes with Smad4 and translocate to the nucleus. These Smad complexes regulate gene expression and ultimately determine the biological response to TGF-beta. In this issue of the Biochemical Journal, Wang et al. have shown that, like Smad4, the linker domain of Smad3 contains a Smad transcriptional activation domain. This is capable of recruiting the p300 transcriptional co-activator and is required for Smad3-dependent transcriptional activation. This study raises interesting questions about the nature and regulation of Smad-regulated gene activation and elevates the status of the linker domain to rival that of the much-lauded MH1 and MH2 domains.

  14. Production of the 2400 kb Duchenne muscular dystrophy (DMD) gene transcript; transcription time and cotranscriptional splicing

    SciTech Connect

    Tennyson, C.N.; Worton, R.G.

    1994-09-01

    The largest known gene in any organism is the human DMD gene which has 79 exons that span 2400 kb. The extreme nature of the DMD gene raises questions concerning the time required for transcription and whether splicing begins before transcription is complete. DMD gene transcription is induced as cultured human myoblasts differentiate to form multinucleated myotubes, providing a system for studying the kinetics of transcription and splicing. Using quantitative RT-PCR, transcript accumulation was monitored from four different regions within the gene following induction of expression. By comparing the accumulation of transcripts from the 5{prime} and 3{prime} ends of the gene we have shown that approximately 12 hours are required to transcribe 1770 kb of the gene, extrapolating to a time of 16 hours for the transcription unit expressed in muscle. Comparison of accumulation profiles for spliced and total transcript demonstrated that transcripts are spliced at the 5{prime} end before transcription is complete, providing strong evidence for cotranscriptional splicing of DMD gene transcripts. Finally, the rate of transcript accumulation was reduced at the 3{prime} end of the gene relative to the 5{prime} end, perhaps due to premature termination of transcription complexes as they traverse this enormous transcription unit. The lag between transcription initiation and the appearance of complete transcripts could be important in limiting transcript production in dividing cells and to the timing of mRNA appearance in differentiating muscle.

  15. Mutual interdependence of splicing and transcription elongation.

    PubMed

    Brzyżek, Grzegorz; Świeżewski, Szymon

    2015-01-01

    Transcription and splicing are intrinsically linked, as splicing needs a pre-mRNA substrate to commence. The more nuanced view is that the rate of transcription contributes to splicing regulation. On the other hand there is accumulating evidence that splicing has an active role in controlling transcription elongation by DNA-dependent RNA polymerase II (RNAP II). We briefly review those mechanisms and propose a unifying model where splicing controls transcription elongation to provide an optimal timing for successive rounds of splicing.

  16. Transcriptional Regulation by Hypoxia Inducible Factors

    PubMed Central

    Espinosa, Joaquín M.

    2015-01-01

    The cellular response to oxygen deprivation is governed largely by a family of transcription factors known as Hypoxia Inducible Factors (HIFs). This review focuses on the molecular mechanisms by which HIFs regulate the transcriptional apparatus to enable the cellular and organismal response to hypoxia. We discuss here how the various HIF polypeptides, their post-translational modifications, binding partners and transcriptional cofactors affect RNA polymerase II activity to drive context-dependent transcriptional programs during hypoxia. PMID:24099156

  17. Interplay between DNA supercoiling and transcription elongation.

    PubMed

    Ma, Jie; Wang, Michelle

    2014-01-01

    Transcription-coupled DNA supercoiling has been shown to be an important regulator of transcription that is broadly present in the cell. Here we review experimental work which shows that RNA polymerase is a powerful torsional motor that can alter DNA topology and structure, and DNA supercoiling in turn directly affects transcription elongation.

  18. The great repression: chromatin and cryptic transcription.

    PubMed

    Hennig, Bianca P; Fischer, Tamás

    2013-01-01

    The eukaryotic chromatin structure is essential in correctly defining transcription units. Impairing this structure can activate cryptic promoters, and lead to the accumulation of aberrant RNA transcripts. Here we discuss critical pathways that are responsible for the repression of cryptic transcription and the maintenance of genome integrity.

  19. 40 CFR 1610.4 - Deposition Transcripts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Deposition Transcripts. 1610.4 Section 1610.4 Protection of Environment CHEMICAL SAFETY AND HAZARD INVESTIGATION BOARD ADMINISTRATIVE INVESTIGATIONS § 1610.4 Deposition Transcripts. (a) Transcripts of depositions of witnesses compelled by...

  20. 18 CFR 1b.12 - Transcripts.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Transcripts. 1b.12 Section 1b.12 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.12 Transcripts. Transcripts, if any,...

  1. 18 CFR 1b.12 - Transcripts.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Transcripts. 1b.12 Section 1b.12 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.12 Transcripts. Transcripts, if any,...

  2. 18 CFR 1b.12 - Transcripts.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Transcripts. 1b.12 Section 1b.12 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.12 Transcripts. Transcripts, if any,...

  3. 18 CFR 1b.12 - Transcripts.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Transcripts. 1b.12 Section 1b.12 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.12 Transcripts. Transcripts, if any,...

  4. 18 CFR 1b.12 - Transcripts.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Transcripts. 1b.12 Section 1b.12 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.12 Transcripts. Transcripts, if any,...

  5. A unified model for yeast transcript definition.

    PubMed

    de Boer, Carl G; van Bakel, Harm; Tsui, Kyle; Li, Joyce; Morris, Quaid D; Nislow, Corey; Greenblatt, Jack F; Hughes, Timothy R

    2014-01-01

    Identifying genes in the genomic context is central to a cell's ability to interpret the genome. Yet, in general, the signals used to define eukaryotic genes are poorly described. Here, we derived simple classifiers that identify where transcription will initiate and terminate using nucleic acid sequence features detectable by the yeast cell, which we integrate into a Unified Model (UM) that models transcription as a whole. The cis-elements that denote where transcription initiates function primarily through nucleosome depletion, and, using a synthetic promoter system, we show that most of these elements are sufficient to initiate transcription in vivo. Hrp1 binding sites are the major characteristic of terminators; these binding sites are often clustered in terminator regions and can terminate transcription bidirectionally. The UM predicts global transcript structure by modeling transcription of the genome using a hidden Markov model whose emissions are the outputs of the initiation and termination classifiers. We validated the novel predictions of the UM with available RNA-seq data and tested it further by directly comparing the transcript structure predicted by the model to the transcription generated by the cell for synthetic DNA segments of random design. We show that the UM identifies transcription start sites more accurately than the initiation classifier alone, indicating that the relative arrangement of promoter and terminator elements influences their function. Our model presents a concrete description of how the cell defines transcript units, explains the existence of nongenic transcripts, and provides insight into genome evolution.

  6. A unified model for yeast transcript definition

    PubMed Central

    de Boer, Carl G.; van Bakel, Harm; Tsui, Kyle; Li, Joyce; Morris, Quaid D.; Nislow, Corey; Greenblatt, Jack F.; Hughes, Timothy R.

    2014-01-01

    Identifying genes in the genomic context is central to a cell's ability to interpret the genome. Yet, in general, the signals used to define eukaryotic genes are poorly described. Here, we derived simple classifiers that identify where transcription will initiate and terminate using nucleic acid sequence features detectable by the yeast cell, which we integrate into a Unified Model (UM) that models transcription as a whole. The cis-elements that denote where transcription initiates function primarily through nucleosome depletion, and, using a synthetic promoter system, we show that most of these elements are sufficient to initiate transcription in vivo. Hrp1 binding sites are the major characteristic of terminators; these binding sites are often clustered in terminator regions and can terminate transcription bidirectionally. The UM predicts global transcript structure by modeling transcription of the genome using a hidden Markov model whose emissions are the outputs of the initiation and termination classifiers. We validated the novel predictions of the UM with available RNA-seq data and tested it further by directly comparing the transcript structure predicted by the model to the transcription generated by the cell for synthetic DNA segments of random design. We show that the UM identifies transcription start sites more accurately than the initiation classifier alone, indicating that the relative arrangement of promoter and terminator elements influences their function. Our model presents a concrete description of how the cell defines transcript units, explains the existence of nongenic transcripts, and provides insight into genome evolution. PMID:24170600

  7. Contributions of in vitro transcription to the understanding of human RNA polymerase III transcription.

    PubMed

    Dumay-Odelot, Hélène; Durrieu-Gaillard, Stéphanie; El Ayoubi, Leyla; Parrot, Camila; Teichmann, Martin

    2014-01-01

    Human RNA polymerase III transcribes small untranslated RNAs that contribute to the regulation of essential cellular processes, including transcription, RNA processing and translation. Analysis of this transcription system by in vitro transcription techniques has largely contributed to the discovery of its transcription factors and to the understanding of the regulation of human RNA polymerase III transcription. Here we review some of the key steps that led to the identification of transcription factors and to the definition of minimal promoter sequences for human RNA polymerase III transcription.

  8. Contribution of transcription to animal early development.

    PubMed

    Wang, Jianbin; Davis, Richard E

    2014-01-01

    In mature gametes and during the oocyte-to-embryo transition, transcription is generally silenced and gene expression is post-transcriptionally regulated. However, we recently discovered that major transcription can occur immediately after fertilization, prior to pronuclear fusion, and in the first cell division of the oocyte-to-embryo transition in the nematode Ascaris suum. We postulate that the balance between transcriptional and post-transcriptional regulation during the oocyte-to-embryo transition may largely be determined by cell cycle length and thus the time available for the genome to be transcribed.

  9. Switch Transcripts in Immunoglobulin Class Switching

    NASA Astrophysics Data System (ADS)

    Lorenz, Matthias; Jung, Steffen; Radbruch, Andreas

    1995-03-01

    B cells can exchange gene segments for the constant region of the immunoglobulin heavy chain, altering the class and effector function of the antibodies that they produce. Class switching is directed to distinct classes by cytokines, which induce transcription of the targeted DNA sequences. These transcripts are processed, resulting in spliced "switch" transcripts. Switch recombination can be directed to immunoglobulin G1 (IgG1) by the heterologous human metallothionein II_A promoter in mutant mice. Induction of the structurally conserved, spliced switch transcripts is sufficient to target switch recombination to IgG1, whereas transcription alone is not.

  10. The N-Terminus of the Floral Arabidopsis TGA Transcription Factor PERIANTHIA Mediates Redox-Sensitive DNA-Binding

    PubMed Central

    Gutsche, Nora; Zachgo, Sabine

    2016-01-01

    The Arabidopsis TGA transcription factor (TF) PERIANTHIA (PAN) regulates the formation of the floral organ primordia as revealed by the pan mutant forming an abnormal pentamerous arrangement of the outer three floral whorls. The Arabidopsis TGA bZIP TF family comprises 10 members, of which PAN and TGA9/10 control flower developmental processes and TGA1/2/5/6 participate in stress-responses. For the TGA1 protein it was shown that several cysteines can be redox-dependently modified. TGA proteins interact in the nucleus with land plant-specific glutaredoxins, which may alter their activities posttranslationally. Here, we investigated the DNA-binding of PAN to the AAGAAT motif under different redox-conditions. The AAGAAT motif is localized in the second intron of the floral homeotic regulator AGAMOUS (AG), which controls stamen and carpel development as well as floral determinacy. Whereas PAN protein binds to this regulatory cis-element under reducing conditions, the interaction is strongly reduced under oxidizing conditions in EMSA studies. The redox-sensitive DNA-binding is mediated via a special PAN N-terminus, which is not present in other Arabidopsis TGA TFs and comprises five cysteines. Two N-terminal PAN cysteines, Cys68 and Cys87, were shown to form a disulfide bridge and Cys340, localized in a C-terminal putative transactivation domain, can be S-glutathionylated. Comparative land plant analyses revealed that the AAGAAT motif exists in asterid and rosid plant species. TGA TFs with N-terminal extensions of variable length were identified in all analyzed seed plants. However, a PAN-like N-terminus exists only in the rosids and exclusively Brassicaceae homologs comprise four to five of the PAN N-terminal cysteines. Redox-dependent modifications of TGA cysteines are known to regulate the activity of stress-related TGA TFs. Here, we show that the N-terminal PAN cysteines participate in a redox-dependent control of the PAN interaction with a highly conserved

  11. Isolation and characterization of transcription fidelity mutants.

    PubMed

    Strathern, Jeffrey N; Jin, Ding Jun; Court, Donald L; Kashlev, Mikhail

    2012-07-01

    Accurate transcription is an essential step in maintaining genetic information. Error-prone transcription has been proposed to contribute to cancer, aging, adaptive mutagenesis, and mutagenic evolution of retroviruses and retrotransposons. The mechanisms controlling transcription fidelity and the biological consequences of transcription errors are poorly understood. Because of the transient nature of mRNAs and the lack of reliable experimental systems, the identification and characterization of defects that increase transcription errors have been particularly challenging. In this review we describe novel genetic screens for the isolation of fidelity mutants in both Saccharomyces cerevisiae and Escherichia coli RNA polymerases. We obtained and characterized two distinct classes of mutants altering NTP misincorporation and transcription slippage both in vivo and in vitro. Our study not only validates the genetic schemes for the isolation of RNA polymerase mutants that alter fidelity, but also sheds light on the mechanism of transcription accuracy. This article is part of a Special Issue entitled: Chromatin in time and space.

  12. Mammalian transcription-coupled excision repair.

    PubMed

    Vermeulen, Wim; Fousteri, Maria

    2013-08-01

    Transcriptional arrest caused by DNA damage is detrimental for cells and organisms as it impinges on gene expression and thereby on cell growth and survival. To alleviate transcriptional arrest, cells trigger a transcription-dependent genome surveillance pathway, termed transcription-coupled nucleotide excision repair (TC-NER) that ensures rapid removal of such transcription-impeding DNA lesions and prevents persistent stalling of transcription. Defective TC-NER is causatively linked to Cockayne syndrome, a rare severe genetic disorder with multisystem abnormalities that results in patients' death in early adulthood. Here we review recent data on how damage-arrested transcription is actively coupled to TC-NER in mammals and discuss new emerging models concerning the role of TC-NER-specific factors in this process.

  13. Effects of elongation delay in transcription dynamics.

    PubMed

    Zhang, Xuan; Jin, Huiqin; Yang, Zhuoqin; Lei, Jinzhi

    2014-12-01

    In the transcription process, elongation delay is induced by the movement of RNA polymerases (RNAP) along the DNA sequence, and can result in changes in the transcription dynamics. This paper studies the transcription dynamics that involved the elongation delay and effects of cell division and DNA replication. The stochastic process of gene expression is modeled with delay chemical master equation with periodic coefficients, and is studied numerically through the stochastic simulation algorithm with delay. We show that the average transcription level approaches to a periodic dynamics over cell cycles at homeostasis, and the elongation delay can reduce the transcription level and increase the transcription noise. Moreover, the transcription elongation can induce bimodal distribution of mRNA levels that can be measured by the techniques of flow cytometry.

  14. Transcriptional Memory in the Drosophila Embryo.

    PubMed

    Ferraro, Teresa; Esposito, Emilia; Mancini, Laure; Ng, Sam; Lucas, Tanguy; Coppey, Mathieu; Dostatni, Nathalie; Walczak, Aleksandra M; Levine, Michael; Lagha, Mounia

    2016-01-25

    Transmission of active transcriptional states from mother to daughter cells has the potential to foster precision in the gene expression programs underlying development. Such transcriptional memory has been specifically proposed to promote rapid reactivation of complex gene expression profiles after successive mitoses in Drosophila development [1]. By monitoring transcription in living Drosophila embryos, we provide the first evidence for transcriptional memory in animal development. We specifically monitored the activities of stochastically expressed transgenes in order to distinguish active and inactive mother cells and the behaviors of their daughter nuclei after mitosis. Quantitative analyses reveal that there is a 4-fold higher probability for rapid reactivation after mitosis when the mother experienced transcription. Moreover, memory nuclei activate transcription twice as fast as neighboring inactive mothers, thus leading to augmented levels of gene expression. We propose that transcriptional memory is a mechanism of precision, which helps coordinate gene activity during embryogenesis.

  15. Transcriptional networks in leaf senescence.

    PubMed

    Schippers, Jos H M

    2015-10-01

    Plant senescence is a natural phenomenon known for the appearance of beautiful autumn colors and the ripening of cereals in the field. Senescence is a controlled process that plants utilize to remobilize nutrients from source leaves to developing tissues. While during the past decades, molecular components underlying the onset of senescence have been intensively studied, knowledge remains scarce on the age-dependent mechanisms that control the onset of senescence. Recent advances have uncovered transcriptional networks regulating the competence to senesce. Here, gene regulatory networks acting as internal timing mechanisms for the onset of senescence are highlighted, illustrating that early and late leaf developmental phases are highly connected.

  16. Targeting Transcription Factors in Cancer

    PubMed Central

    Bhagwat, Anand S.; Vakoc, Christopher R.

    2015-01-01

    Transcription factors (TFs) are commonly deregulated in the pathogenesis of human cancer and are a major class of cancer cell dependencies. Consequently, targeting of TFs can be highly effective in treating particular malignancies, as highlighted by the clinical efficacy of agents that target nuclear hormone receptors. In this review we discuss recent advances in our understanding of TFs as drug targets in oncology, with an emphasis on the emerging chemical approaches to modulate TF function. The remarkable diversity and potency of TFs as drivers of cell transformation justifies a continued pursuit of TFs as therapeutic targets for drug discovery. PMID:26645049

  17. 10 CFR 9.108 - Certification, transcripts, recordings and minutes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...). Copies of such transcript, or minutes, or a transcription of such recording disclosing the identity of... transcription as provided in § 9.14. The Secretary shall maintain a complete verbatim copy of the transcript,...

  18. Informational Requirements for Transcriptional Regulation

    PubMed Central

    O'Neill, Patrick K.; Forder, Robert

    2014-01-01

    Abstract Transcription factors (TFs) regulate transcription by binding to specific sites in promoter regions. Information theory provides a useful mathematical framework to analyze the binding motifs associated with TFs but imposes several assumptions that limit their applicability to specific regulatory scenarios. Explicit simulations of the co-evolution of TFs and their binding motifs allow the study of the evolution of regulatory networks with a high degree of realism. In this work we analyze the impact of differential regulatory demands on the information content of TF-binding motifs by means of evolutionary simulations. We generalize a predictive index based on information theory, and we validate its applicability to regulatory scenarios in which the TF binds significantly to the genomic background. Our results show a logarithmic dependence of the evolved information content on the occupancy of target sites and indicate that TFs may actively exploit pseudo-sites to modulate their occupancy of target sites. In regulatory networks with differentially regulated targets, we observe that information content in TF-binding motifs is dictated primarily by the fraction of total probability mass that the TF assigns to its target sites, and we provide a predictive index to estimate the amount of information associated with arbitrarily complex regulatory systems. We observe that complex regulatory patterns can exert additional demands on evolved information content, but, given a total occupancy for target sites, we do not find conclusive evidence that this effect is because of the range of required binding affinities. PMID:24689750

  19. Gene transcription and electromagnetic fields

    SciTech Connect

    Henderson, A.S.

    1992-01-01

    Our overall aim is to obtain sufficient information to allow us to ultimately determine whether ELF EM field exposure is an initiating factor in neoplastic transformation and/or if exposure can mimic characteristics of the second-step counterpart in neoplastic disease. This aim is based on our previous findings that levels of some transcripts are increased in cells exposed to EM fields. While the research is basic in nature, the ramifications have bearing on the general safety of exposure to EM fields in industrial and everyday life. A large array of diverse biological effects are reported to occur as the result of exposure to elf EM fields, suggesting that the cell response to EM fields is at a basic level, presumably initiated by molecular and/or biophysical events at the cell membrane. The hypothesized route is a signal transduction pathway involving membrane calcium fluxes. Information flow resulting from signal transduction can mediate the induction of regulatory factors in the cell, and directly affect how transcription is regulated.

  20. DBD: a transcription factor prediction database.

    PubMed

    Kummerfeld, Sarah K; Teichmann, Sarah A

    2006-01-01

    Regulation of gene expression influences almost all biological processes in an organism; sequence-specific DNA-binding transcription factors are critical to this control. For most genomes, the repertoire of transcription factors is only partially known. Hitherto transcription factor identification has been largely based on genome annotation pipelines that use pairwise sequence comparisons, which detect only those factors similar to known genes, or on functional classification schemes that amalgamate many types of proteins into the category of 'transcription factor'. Using a novel transcription factor identification method, the DBD transcription factor database fills this void, providing genome-wide transcription factor predictions for organisms from across the tree of life. The prediction method behind DBD identifies sequence-specific DNA-binding transcription factors through homology using profile hidden Markov models (HMMs) of domains. Thus, it is limited to factors that are homologus to those HMMs. The collection of HMMs is taken from two existing databases (Pfam and SUPERFAMILY), and is limited to models that exclusively detect transcription factors that specifically recognize DNA sequences. It does not include basal transcription factors or chromatin-associated proteins, for instance. Based on comparison with experimentally verified annotation, the prediction procedure is between 95% and 99% accurate. Between one quarter and one-half of our genome-wide predicted transcription factors represent previously uncharacterized proteins. The DBD (www.transcriptionfactor.org) consists of predicted transcription factor repertoires for 150 completely sequenced genomes, their domain assignments and the hand curated list of DNA-binding domain HMMs. Users can browse, search or download the predictions by genome, domain family or sequence identifier, view families of transcription factors based on domain architecture and receive predictions for a protein sequence.

  1. Mitotic Transcriptional Activation: Clearance of Actively Engaged Pol II via Transcriptional Elongation Control in Mitosis.

    PubMed

    Liang, Kaiwei; Woodfin, Ashley R; Slaughter, Brian D; Unruh, Jay R; Box, Andrew C; Rickels, Ryan A; Gao, Xin; Haug, Jeffrey S; Jaspersen, Sue L; Shilatifard, Ali

    2015-11-05

    Although it is established that some general transcription factors are inactivated at mitosis, many details of mitotic transcription inhibition (MTI) and its underlying mechanisms are largely unknown. We have identified mitotic transcriptional activation (MTA) as a key regulatory step to control transcription in mitosis for genes with transcriptionally engaged RNA polymerase II (Pol II) to activate and transcribe until the end of the gene to clear Pol II from mitotic chromatin, followed by global impairment of transcription reinitiation through MTI. Global nascent RNA sequencing and RNA fluorescence in situ hybridization demonstrate the existence of transcriptionally engaged Pol II in early mitosis. Both genetic and chemical inhibition of P-TEFb in mitosis lead to delays in the progression of cell division. Together, our study reveals a mechanism for MTA and MTI whereby transcriptionally engaged Pol II can progress into productive elongation and finish transcription to allow proper cellular division.

  2. Catching transcriptional regulation by thermostatistical modeling

    NASA Astrophysics Data System (ADS)

    Frank, Till D.; Cheong, Alex; Okada-Hatakeyama, Mariko; Kholodenko, Boris N.

    2012-08-01

    Gene expression is frequently regulated by multiple transcription factors (TFs). Thermostatistical methods allow for a quantitative description of interactions between TFs, RNA polymerase and DNA, and their impact on the transcription rates. We illustrate three different scales of the thermostatistical approach: the microscale of TF molecules, the mesoscale of promoter energy levels and the macroscale of transcriptionally active and inactive cells in a cell population. We demonstrate versatility of combinatorial transcriptional activation by exemplifying logic functions, such as AND and OR gates. We discuss a metric for cell-to-cell transcriptional activation variability known as Fermi entropy. Suitability of thermostatistical modeling is illustrated by describing the experimental data on transcriptional induction of NFκB and the c-Fos protein.

  3. INSIGHTS FROM GENOMIC PROFILING OF TRANSCRIPTION FACTORS

    PubMed Central

    Farnham, Peggy

    2010-01-01

    A crucial question in the field of gene regulation is whether the location at which a transcription factor binds influences its effectiveness or the mechanism by which it regulates transcription. Comprehensive transcription factor binding maps are needed to address these issues, and genome-wide mapping is now possible thanks to the technological advances of ChIP-chip and ChIP-Seq. This review discusses how recent genomic profiling of transcription factors gives insight into how binding specificity is achieved and what features of chromatin influence the ability of transcription factors to interact with the genome, and also suggests future experiments to further our understanding of the causes and consequences of transcription factor-genome interactions. PMID:19668247

  4. Transcriptional control of plant defence responses.

    PubMed

    Buscaill, Pierre; Rivas, Susana

    2014-08-01

    Mounting of efficient plant defence responses depends on the ability to trigger a rapid defence reaction after recognition of the invading microbe. Activation of plant resistance is achieved by modulation of the activity of multiple transcriptional regulators, both DNA-binding transcription factors and their regulatory proteins, that are able to reprogram transcription in the plant cell towards the activation of defence signalling. Here we provide an overview of recent developments on the transcriptional control of plant defence responses and discuss defence-related hormone signalling, the role of WRKY transcription factors during the regulation of plant responses to pathogens, nuclear functions of plant immune receptor proteins, as well as varied ways by which microbial effectors subvert plant transcriptional reprogramming to promote disease.

  5. Widespread Inducible Transcription Downstream of Human Genes

    PubMed Central

    Vilborg, Anna; Passarelli, Maria C.; Yario, Therese A.; Tycowski, Kazimierz T.; Steitz, Joan A.

    2015-01-01

    Summary Pervasive transcription of the human genome generates RNAs whose mode of formation and functions are largely uncharacterized. Here, we combine RNA-Seq with detailed mechanistic studies to describe a transcript type derived from protein-coding genes. The resulting RNAs, which we call DoGs for downstream of gene containing transcripts, possess long non-coding regions (often >45 kb) and remain chromatin bound. DoGs are inducible by osmotic stress through an IP3 receptor signaling-dependent pathway, indicating active regulation. DoG levels are increased by decreased termination of the upstream transcript, a previously undescribed mechanism for rapid transcript induction. Relative depletion of polyA signals in DoG regions correlates with increased levels of DoGs after osmotic stress. We detect DoG transcription in several human cell lines and provide evidence for thousands of DoGs genome-wide. PMID:26190259

  6. Mechanisms of mutational robustness in transcriptional regulation

    PubMed Central

    Payne, Joshua L.; Wagner, Andreas

    2015-01-01

    Robustness is the invariance of a phenotype in the face of environmental or genetic change. The phenotypes produced by transcriptional regulatory circuits are gene expression patterns that are to some extent robust to mutations. Here we review several causes of this robustness. They include robustness of individual transcription factor binding sites, homotypic clusters of such sites, redundant enhancers, transcription factors, redundant transcription factors, and the wiring of transcriptional regulatory circuits. Such robustness can either be an adaptation by itself, a byproduct of other adaptations, or the result of biophysical principles and non-adaptive forces of genome evolution. The potential consequences of such robustness include complex regulatory network topologies that arise through neutral evolution, as well as cryptic variation, i.e., genotypic divergence without phenotypic divergence. On the longest evolutionary timescales, the robustness of transcriptional regulation has helped shape life as we know it, by facilitating evolutionary innovations that helped organisms such as flowering plants and vertebrates diversify. PMID:26579194

  7. Systematic genetic analysis of transcription factors to map the fission yeast transcription-regulatory network.

    PubMed

    Chua, Gordon

    2013-12-01

    Mapping transcriptional-regulatory networks requires the identification of target genes, binding specificities and signalling pathways of transcription factors. However, the characterization of each transcription factor sufficiently for deciphering such networks remains laborious. The recent availability of overexpression and deletion strains for almost all of the transcription factor genes in the fission yeast Schizosaccharomyces pombe provides a valuable resource to better investigate transcription factors using systematic genetics. In the present paper, I review and discuss the utility of these strain collections combined with transcriptome profiling and genome-wide chromatin immunoprecipitation to identify the target genes of transcription factors.

  8. Transcription in Archaea: in vitro transcription assays for mjRNAP.

    PubMed

    Smollett, Katherine; Blombach, Fabian; Werner, Finn

    2015-01-01

    The fully recombinant Methanocaldococcus jannaschii RNA polymerase allows for a detailed dissection of the different stages of the transcription. In the previous chapter, we discussed how to purify the different components of the M. jannaschii transcription system, the RNA polymerase subunits, and general transcription factors and how to assemble a functional M. jannaschii enzyme. Standard in vitro transcription assays can be used to examine the different stages of transcription. In this chapter, we describe how some of these assays have been optimized for M. jannaschii RNA polymerase, which transcribes at much higher temperatures than many other transcription complexes.

  9. Balanced Branching in Transcription Termination

    NASA Technical Reports Server (NTRS)

    Harrington, K. J.; Laughlin, R. B.; Liang, S.

    2000-01-01

    The theory of stochastic transcription termination based on free-energy competition requires two or more reaction rates to be delicately balanced over a wide range of physical conditions. A large body of work on glasses and large molecules suggests that this should be impossible in such a large system in the absence of a new organizing principle of matter. We review the experimental literature of termination and find no evidence for such a principle but many troubling inconsistencies, most notably anomalous memory effects. These suggest that term ination has a deterministic component and may conceivably be not stochastic at all. We find that a key experiment by Wilson and von Hippel allegedly refuting deterministic termination was an incorrectly analyzed regulatory effect of Mg(2+) binding.

  10. Balanced Branching in Transcription Termination

    NASA Technical Reports Server (NTRS)

    Harrington, K. J.; Laughlin, R. B.; Liang, S.

    2001-01-01

    The theory of stochastic transcription termination based on free-energy competition requires two or more reaction rates to be delicately balanced over a wide range of physical conditions. A large body of work on glasses and large molecules suggests that this should be impossible in such a large system in the absence of a new organizing principle of matter. We review the experimental literature of termination and find no evidence for such a principle but many troubling inconsistencies, most notably anomalous memory effects. These suggest that termination has a deterministic component and may conceivably be not stochastic at all. We find that a key experiment by Wilson and von Hippel allegedly refuting deterministic termination was an incorrectly analyzed regulatory effect of Mg(2+) binding.

  11. Transcriptional Regulation and Macrophage Differentiation.

    PubMed

    Hume, David A; Summers, Kim M; Rehli, Michael

    2016-06-01

    Monocytes and macrophages are professional phagocytes that occupy specific niches in every tissue of the body. Their survival, proliferation, and differentiation are controlled by signals from the macrophage colony-stimulating factor receptor (CSF-1R) and its two ligands, CSF-1 and interleukin-34. In this review, we address the developmental and transcriptional relationships between hematopoietic progenitor cells, blood monocytes, and tissue macrophages as well as the distinctions from dendritic cells. A huge repertoire of receptors allows monocytes, tissue-resident macrophages, or pathology-associated macrophages to adapt to specific microenvironments. These processes create a broad spectrum of macrophages with different functions and individual effector capacities. The production of large transcriptomic data sets in mouse, human, and other species provides new insights into the mechanisms that underlie macrophage functional plasticity.

  12. Transcriptional regulation of cuticle biosynthesis.

    PubMed

    Borisjuk, Nikolai; Hrmova, Maria; Lopato, Sergiy

    2014-01-01

    Plant cuticle is the hydrophobic protection layer that covers aerial plant organs and plays a pivotal role during plant development and interactions of plants with the environment. The mechanical structure and chemical composition of cuticle lipids and other secondary metabolites vary considerably between plant species, and in response to environmental stimuli and stresses. As the cuticle plays an important role in responses of plants to major abiotic stresses such as drought and high salinity, close attention has been paid to molecular processes underlying the stress-induced biosynthesis of cuticle components. This review addresses the genetic networks responsible for cuticle formation and in particular highlights the role of transcription factors that regulate cuticle formation in response to abiotic stresses.

  13. Learning, memory, and transcription factors.

    PubMed

    Johnston, Michael V; Alemi, Lily; Harum, Karen H

    2003-03-01

    Cognitive disorders in children have traditionally been described in terms of clinical phenotypes or syndromes, chromosomal lesions, metabolic disorders, or neuropathology. Relatively little is known about how these disorders affect the chemical reactions involved in learning and memory. Experiments in fruit flies, snails, and mice have revealed some highly conserved pathways that are involved in learning, memory, and synaptic plasticity, which is the primary substrate for memory storage. These can be divided into short-term memory storage through local changes in synapses, and long-term storage mediated by activation of transcription to translate new proteins that modify synaptic function. This review summarizes evidence that disruptions in these pathways are involved in human cognitive disorders, including neurofibromatosis type I, Coffin-Lowry syndrome, Rubinstein-Taybi syndrome, Rett syndrome, tuberous sclerosis-2, Down syndrome, X-linked alpha-thalassemia/mental retardation, cretinism, Huntington disease, and lead poisoning.

  14. Topography of the euryarchaeal transcription initiation complex.

    PubMed

    Bartlett, Michael S; Thomm, Michael; Geiduschek, E Peter

    2004-02-13

    Transcription in the Archaea is carried out by RNA polymerases and transcription factors that are highly homologous to their eukaryotic counterparts, but little is known about the structural organization of the archaeal transcription complex. To address this, transcription initiation complexes have been formed with Pyrococcus furiosus transcription factors (TBP and TFB1), RNA polymerase, and a linear DNA fragment containing a strong promoter. The arrangement of proteins from base pair -35 to +20 (relative to the transcriptional start site) has been analyzed by photochemical protein-DNA cross-linking. TBP cross-links to the TATA box and TFB1 cross-links both upstream and downstream of the TATA box, as expected, but the sites of most prominent TFB1 cross-linking are located well downstream of the TATA box, reaching as far as the start site of transcription, suggesting a role for TFB1 in initiation of transcription that extends beyond polymerase recruitment. These cross-links indicate the transcription factor orientation in the initiation complex. The pattern of cross-linking of four RNA polymerase subunits (B, A', A", and H) to the promoter suggests a path for promoter DNA relative to the RNA polymerase surface in this archaeal transcription initiation complex. In addition, an unidentified protein approximately the size of TBP cross-links to the non-transcribed DNA strand near the upstream edge of the transcription bubble. Cross-linking is specific to the polymerase-containing initiation complex and requires the gdh promoter TATA box. The location of this protein suggests that it, like TFB1, could also have a role in transcription initiation following RNA polymerase recruitment.

  15. Fox transcription factors: from development to disease.

    PubMed

    Golson, Maria L; Kaestner, Klaus H

    2016-12-15

    Forkhead box (Fox) transcription factors are evolutionarily conserved in organisms ranging from yeast to humans. They regulate diverse biological processes both during development and throughout adult life. Mutations in many Fox genes are associated with human disease and, as such, various animal models have been generated to study the function of these transcription factors in mechanistic detail. In many cases, the absence of even a single Fox transcription factor is lethal. In this Primer, we provide an overview of the Fox family, highlighting several key Fox transcription factor families that are important for mammalian development.

  16. Swinger RNAs with sharp switches between regular transcription and transcription systematically exchanging ribonucleotides: Case studies.

    PubMed

    Seligmann, Hervé

    2015-09-01

    During RNA transcription, DNA nucleotides A,C,G, T are usually matched by ribonucleotides A, C, G and U. However occasionally, this rule does not apply: transcript-DNA homologies are detectable only assuming systematic exchanges between ribonucleotides. Nine symmetric (X ↔ Y, e.g. A ↔ C) and fourteen asymmetric (X ↔ Y ↔ Z, e.g. A ↔ C ↔ G) exchanges exist, called swinger transcriptions. Putatively, polymerases occasionally stabilize in unspecified swinger conformations, possibly similar to transient conformations causing punctual misinsertions. This predicts chimeric transcripts, part regular, part swinger-transformed, reflecting polymerases switching to swinger polymerization conformation(s). Four chimeric Genbank transcripts (three from human mitochondrion and one murine cytosolic) are described here: (a) the 5' and 3' extremities reflect regular polymerization, the intervening sequence exchanges systematically between ribonucleotides (swinger rule G ↔ U, transcript (1), with sharp switches between regular and swinger sequences; (b) the 5' half is 'normal', the 3' half systematically exchanges ribonucleotides (swinger rule C ↔ G, transcript (2), with an intercalated sequence lacking homology; (c) the 3' extremity fits A ↔ G exchanges (10% of transcript length), the 5' half follows regular transcription; the intervening region seems a mix of regular and A ↔ G transcriptions (transcript 3); (d) murine cytosolic transcript 4 switches to A ↔ U + C ↔ G, and is fused with A ↔ U + C ↔ G swinger transformed precursor rRNA. In (c), each concomitant transcript 5' and 3' extremities match opposite genome strands. Transcripts 3 and 4 combine transcript fusions with partial swinger transcriptions. Occasional (usually sharp) switches between regular and swinger transcriptions reveal greater coding potential than detected until now, suggest stable polymerase swinger conformations.

  17. Recruitment of Transcription Complexes to Enhancers and the Role of Enhancer Transcription

    PubMed Central

    Stees, Jared S.; Varn, Fred; Huang, Suming; Strouboulis, John; Bungert, Jörg

    2012-01-01

    Enhancer elements regulate the tissue- and developmental-stage-specific expression of genes. Recent estimates suggest that there are more than 50,000 enhancers in mammalian cells. At least a subset of enhancers has been shown to recruit RNA polymerase II transcription complexes and to generate enhancer transcripts. Here, we provide an overview of enhancer function and discuss how transcription of enhancers or enhancer-generated transcripts could contribute to the regulation of gene expression during development and differentiation. PMID:23919179

  18. Transcriptional interference by RNA polymerase pausing and dislodgement of transcription factors.

    PubMed

    Palmer, Adam C; Egan, J Barry; Shearwin, Keith E

    2011-01-01

    Transcriptional interference is the in cis suppression of one transcriptional process by another. Mathematical modeling shows that promoter occlusion by elongating RNA polymerases cannot produce strong interference. Interference may instead be generated by (1) dislodgement of slow-to-assemble pre-initiation complexes and transcription factors and (2) prolonged occlusion by paused RNA polymerases.

  19. Transcription-coupled changes to chromatin underpin gene silencing by transcriptional interference.

    PubMed

    Ard, Ryan; Allshire, Robin C

    2016-12-15

    Long non-coding RNA (lncRNA) transcription into a downstream promoter frequently results in transcriptional interference. However, the mechanism of this repression is not fully understood. We recently showed that drug tolerance in fission yeast Schizosaccharomyces pombe is controlled by lncRNA transcription upstream of the tgp1(+) permease gene. Here we demonstrate that transcriptional interference of tgp1(+) involves several transcription-coupled chromatin changes mediated by conserved elongation factors Set2, Clr6CII, Spt6 and FACT. These factors are known to travel with RNAPII and establish repressive chromatin in order to limit aberrant transcription initiation from cryptic promoters present in gene bodies. We therefore conclude that conserved RNAPII-associated mechanisms exist to both suppress intragenic cryptic promoters during genic transcription and to repress gene promoters by transcriptional interference. Our analyses also demonstrate that key mechanistic features of transcriptional interference are shared between S. pombe and the highly divergent budding yeast Saccharomyces cerevisiae Thus, transcriptional interference is an ancient, conserved mechanism for tightly controlling gene expression. Our mechanistic insights allowed us to predict and validate a second example of transcriptional interference involving the S. pombe pho1(+) gene. Given that eukaryotic genomes are pervasively transcribed, transcriptional interference likely represents a more general feature of gene regulation than is currently appreciated.

  20. Exploiting Transcriptions of Identical Subject Content Lessons

    ERIC Educational Resources Information Center

    Harfitt, Gary James

    2008-01-01

    This article describes a strategy employed on a teacher training course in Hong Kong involving the use of lesson transcriptions. Transcriptions from two course participants' English lessons were used to arouse greater classroom language awareness and promote reflection in one of the teachers, who was initially very reluctant to accept comments and…

  1. Transcripts, like Shadows on a Wall

    ERIC Educational Resources Information Center

    Duranti, Alessandro

    2006-01-01

    Over the last 50 years the process of producing transcripts of all kinds of interactions has become an important practice for researchers in a wide range of disciplines. Only rarely, however, has transcription been analyzed as a cultural practice. It is here argued that it is precisely the lack of understanding of what is involved in transcribing…

  2. Examining Transcription: A Theory-Laden Methodology.

    ERIC Educational Resources Information Center

    Lapadat, Judith C.; Lindsay, Anne C.

    Transcription is an integral process in the qualitative analysis of language data, and is widely employed in basic and applied research across a number of disciplines and in professional practice fields. Yet methodological and theoretical issues associated with the transcription process have received scant attention in the research literature. The…

  3. 39 CFR 959.21 - Transcript.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... therefor. (b) Changes in the official transcript may be made only when they involve errors affecting substance, and then only in the manner herein provided. No physical changes shall be made in or upon the... corrections to be made in the transcript with prompt notice to the parties of the proceeding. Any...

  4. 39 CFR 959.21 - Transcript.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... therefor. (b) Changes in the official transcript may be made only when they involve errors affecting substance, and then only in the manner herein provided. No physical changes shall be made in or upon the... corrections to be made in the transcript with prompt notice to the parties of the proceeding. Any...

  5. 39 CFR 957.19 - Transcript.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... librarian of the Postal Service or the Recorder. (b) Changes in the official transcript may be made only when they involve errors affecting substance and then only in the manner herein provided. No physical changes shall be made in or upon the official transcript, or copies thereof, which have been filed...

  6. 39 CFR 959.21 - Transcript.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... therefor. (b) Changes in the official transcript may be made only when they involve errors affecting substance, and then only in the manner herein provided. No physical changes shall be made in or upon the... corrections to be made in the transcript with prompt notice to the parties of the proceeding. Any...

  7. 39 CFR 957.19 - Transcript.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... librarian of the Postal Service or the Recorder. (b) Changes in the official transcript may be made only when they involve errors affecting substance and then only in the manner herein provided. No physical changes shall be made in or upon the official transcript, or copies thereof, which have been filed...

  8. 39 CFR 957.19 - Transcript.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... librarian of the Postal Service or the Recorder. (b) Changes in the official transcript may be made only when they involve errors affecting substance and then only in the manner herein provided. No physical changes shall be made in or upon the official transcript, or copies thereof, which have been filed...

  9. 39 CFR 959.21 - Transcript.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... therefor. (b) Changes in the official transcript may be made only when they involve errors affecting substance, and then only in the manner herein provided. No physical changes shall be made in or upon the... corrections to be made in the transcript with prompt notice to the parties of the proceeding. Any...

  10. 39 CFR 959.21 - Transcript.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... therefor. (b) Changes in the official transcript may be made only when they involve errors affecting substance, and then only in the manner herein provided. No physical changes shall be made in or upon the... corrections to be made in the transcript with prompt notice to the parties of the proceeding. Any...

  11. 39 CFR 957.19 - Transcript.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... librarian of the Postal Service or the Recorder. (b) Changes in the official transcript may be made only when they involve errors affecting substance and then only in the manner herein provided. No physical changes shall be made in or upon the official transcript, or copies thereof, which have been filed...

  12. 39 CFR 957.19 - Transcript.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... librarian of the Postal Service or the Recorder. (b) Changes in the official transcript may be made only when they involve errors affecting substance and then only in the manner herein provided. No physical changes shall be made in or upon the official transcript, or copies thereof, which have been filed...

  13. DNA dynamically directs its own transcription initiation

    SciTech Connect

    Rasmussen, K. O.; Kalosakas, G.; Bishop, A. R.; Choi, C. H.; Usheva, A.

    2004-01-01

    Initiation of DNA gene transcription requires a transient opening in the double helix at the transcriptional start site. It is generally assumed that the location of this 'transcriptional bubble' is determined by sequence-specific protein binding, and that the energy required for unwinding the double helix comes from torsional strain. Physical twisting should cause DNA to open consistently in weakly bonded A/T rich stretches, however, simple base-pairing energetics alone can not account for the variety of observed transcriptional start sites. Applying the Peyrard-Bishop nonlinear cooperativity model to DNA, we are able to predict that thermally-induced DNA bubbles, similar in size to transcription bubbles, form at specific locations on DNA promoters. These predicted openings agree remarkably well with experiment, and that they correlate exactly with known transcription start sites and important regulatory sites on three different promoters. We propose that the sequence-specific location of the transcriptional start site is predetermined by the inherent opening patterns of specific DNA sequences. As DNA bubble formation is independent of protein binding, it appears that DNA is not only a passive carrier of information, but its dynamics plays an important role in directing the transcription and regulation of the genes it contains.

  14. Team Tune-Up: Examining Team Transcripts

    ERIC Educational Resources Information Center

    Journal of Staff Development, 2010

    2010-01-01

    This article presents a worksheet that can be used to examine documentation of team meetings in light of goals the team has established. Materials for this worksheet include copies of team transcripts, yellow and pink highlighters, and pencils. Directions for examining team transcripts are presented.

  15. Using Virtual Reference Transcripts for Staff Training.

    ERIC Educational Resources Information Center

    Ward, David

    2003-01-01

    Describes a method of library staff training based on chat transcript analysis in which graduate student workers at a university reference desk examined transcripts of actual virtual reference desk transactions to analyze reference interviews. Discusses reference interview standards, reference desk behavior, and reference interview skills in…

  16. 42 CFR 430.94 - Official transcript.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Official transcript. 430.94 Section 430.94 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... official transcripts of testimony, together with any stipulations, briefs, or memoranda of law, are...

  17. 42 CFR 430.94 - Official transcript.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 4 2014-10-01 2014-10-01 false Official transcript. 430.94 Section 430.94 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... official transcripts of testimony, together with any stipulations, briefs, or memoranda of law, are...

  18. 29 CFR 1912a.11 - Minutes; transcript.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Minutes; transcript. 1912a.11 Section 1912a.11 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) NATIONAL ADVISORY COMMITTEE ON OCCUPATIONAL SAFETY AND HEALTH § 1912a.11 Minutes; transcript....

  19. A Weighted Reliability Measure for Phonetic Transcription

    ERIC Educational Resources Information Center

    Oller, D. Kimbrough; Ramsdell, Heather L.

    2006-01-01

    Purpose: The purpose of the present work is to describe and illustrate the utility of a new tool for assessment of transcription agreement. Traditional measures have not characterized overall transcription agreement with sufficient resolution, specifically because they have often treated all phonetic differences between segments in transcriptions…

  20. 39 CFR 963.16 - Transcript.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 39 Postal Service 1 2010-07-01 2010-07-01 false Transcript. 963.16 Section 963.16 Postal Service UNITED STATES POSTAL SERVICE PROCEDURES RULES OF PRACTICE IN PROCEEDINGS RELATIVE TO VIOLATIONS OF THE PANDERING ADVERTISEMENTS STATUTE, 39 U.S.C. 3008 § 963.16 Transcript. Testimony and argument at...

  1. Transcriptional firing helps to drive NETosis

    PubMed Central

    Khan, Meraj A.; Palaniyar, Nades

    2017-01-01

    Neutrophils are short-lived innate immune cells. These cells respond quickly to stimuli, and die within minutes to hours; the relevance of DNA transcription in dying neutrophils remains an enigma for several decades. Here we show that the transcriptional activity reflects the degree of DNA decondensation occurring in both NADPH oxidase 2 (Nox)-dependent and Nox-independent neutrophil extracellular trap (NET) formation or NETosis. Transcriptomics analyses show that transcription starts at multiple loci in all chromosomes earlier in the rapid Nox-independent NETosis (induced by calcium ionophore A23187) than Nox-dependent NETosis (induced by PMA). NETosis-specific kinase cascades differentially activate transcription of different sets of genes. Inhibitors of transcription, but not translation, suppress both types of NETosis. In particular, promoter melting step is important to drive NETosis (induced by PMA, E. coli LPS, A23187, Streptomyces conglobatus ionomycin). Extensive citrullination of histones in multiple loci occurs only during calcium-mediated NETosis, suggesting that citrullination of histone contributes to the rapid DNA decondensation seen in Nox-independent NETosis. Furthermore, blocking transcription suppresses both types of NETosis, without affecting the reactive oxygen species production that is necessary for antimicrobial functions. Therefore, we assign a new function for transcription in neutrophils: Transcriptional firing, regulated by NETosis-specific kinases, helps to drive NETosis. PMID:28176807

  2. 45 CFR 99.27 - Official transcript.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Official transcript. 99.27 Section 99.27 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION PROCEDURE FOR HEARINGS FOR THE CHILD CARE AND DEVELOPMENT FUND Hearing Procedures § 99.27 Official transcript. The Department...

  3. Transcript Fraud and Handling Fraudulent Documents

    ERIC Educational Resources Information Center

    Ezell, Allen

    2005-01-01

    Transcript fraud is a common problem for colleges and universities, businesses, employers, governmental licensing boards, and other agencies, with some experiencing it more so than others. The only difference between a large and small institution is the volume of degree and transcript fraud it experiences. This article discusses the types and…

  4. On schemes of combinatorial transcription logic.

    PubMed

    Buchler, Nicolas E; Gerland, Ulrich; Hwa, Terence

    2003-04-29

    Cells receive a wide variety of cellular and environmental signals, which are often processed combinatorially to generate specific genetic responses. Here we explore theoretically the potentials and limitations of combinatorial signal integration at the level of cis-regulatory transcription control. Our analysis suggests that many complex transcription-control functions of the type encountered in higher eukaryotes are already implementable within the much simpler bacterial transcription system. Using a quantitative model of bacterial transcription and invoking only specific protein-DNA interaction and weak glue-like interaction between regulatory proteins, we show explicit schemes to implement regulatory logic functions of increasing complexity by appropriately selecting the strengths and arranging the relative positions of the relevant protein-binding DNA sequences in the cis-regulatory region. The architectures that emerge are naturally modular and evolvable. Our results suggest that the transcription regulatory apparatus is a "programmable" computing machine, belonging formally to the class of Boltzmann machines. Crucial to our results is the ability to regulate gene expression at a distance. In bacteria, this can be achieved for isolated genes via DNA looping controlled by the dimerization of DNA-bound proteins. However, if adopted extensively in the genome, long-distance interaction can cause unintentional intergenic cross talk, a detrimental side effect difficult to overcome by the known bacterial transcription-regulation systems. This may be a key factor limiting the genome-wide adoption of complex transcription control in bacteria. Implications of our findings for combinatorial transcription control in eukaryotes are discussed.

  5. Histone variants in plant transcriptional regulation.

    PubMed

    Jiang, Danhua; Berger, Frédéric

    2017-01-01

    Chromatin based organization of eukaryotic genome plays a profound role in regulating gene transcription. Nucleosomes form the basic subunits of chromatin by packaging DNA with histone proteins, impeding the access of DNA to transcription factors and RNA polymerases. Exchange of histone variants in nucleosomes alters the properties of nucleosomes and thus modulates DNA exposure during transcriptional regulation. Growing evidence indicates the important function of histone variants in programming transcription during developmental transitions and stress response. Here we review how histone variants and their deposition machineries regulate the nucleosome stability and dynamics, and discuss the link between histone variants and transcriptional regulation in plants. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.

  6. Stochastic Model of Supercoiling-Dependent Transcription

    NASA Astrophysics Data System (ADS)

    Brackley, C. A.; Johnson, J.; Bentivoglio, A.; Corless, S.; Gilbert, N.; Gonnella, G.; Marenduzzo, D.

    2016-07-01

    We propose a stochastic model for gene transcription coupled to DNA supercoiling, where we incorporate the experimental observation that polymerases create supercoiling as they unwind the DNA helix and that these enzymes bind more favorably to regions where the genome is unwound. Within this model, we show that when the transcriptionally induced flux of supercoiling increases, there is a sharp crossover from a regime where torsional stresses relax quickly and gene transcription is random, to one where gene expression is highly correlated and tightly regulated by supercoiling. In the latter regime, the model displays transcriptional bursts, waves of supercoiling, and up regulation of divergent or bidirectional genes. It also predicts that topological enzymes which relax twist and writhe should provide a pathway to down regulate transcription.

  7. Transcription and Recombination: When RNA Meets DNA

    PubMed Central

    Aguilera, Andrés; Gaillard, Hélène

    2014-01-01

    A particularly relevant phenomenon in cell physiology and proliferation is the fact that spontaneous mitotic recombination is strongly enhanced by transcription. The most accepted view is that transcription increases the occurrence of double-strand breaks and/or single-stranded DNA gaps that are repaired by recombination. Most breaks would arise as a consequence of the impact that transcription has on replication fork progression, provoking its stalling and/or breakage. Here, we discuss the mechanisms responsible for the cross talk between transcription and recombination, with emphasis on (1) the transcription–replication conflicts as the main source of recombinogenic DNA breaks, and (2) the formation of cotranscriptional R-loops as a major cause of such breaks. The new emerging questions and perspectives are discussed on the basis of the interference between transcription and replication, as well as the way RNA influences genome dynamics. PMID:25085910

  8. Yeast Gal4: a transcriptional paradigm revisited

    PubMed Central

    Traven, Ana; Jelicic, Branka; Sopta, Mary

    2006-01-01

    During the past two decades, the yeast Gal4 protein has been used as a model for studying transcriptional activation in eukaryotes. Many of the properties of transcriptional regulation first demonstrated for Gal4 have since been shown to be reiterated in the function of several other eukaryotic transcriptional regulators. Technological advances based on the transcriptional properties of this factor—such as the two-hybrid technology and Gal4-inducible systems for controlled gene expression—have had far-reaching influences in fields beyond transcription. In this review, we provide an updated account of Gal4 function, including data from new technologies that have been recently applied to the study of the GAL network. PMID:16670683

  9. Combinatorial Regulation in Yeast Transcription Networks

    NASA Astrophysics Data System (ADS)

    Li, Hao

    2006-03-01

    Yeast has evolved a complex network to regulate its transcriptional program in response to changes in environment. It is quite common that in response to an external stimulus, several transcription factors will be activated and they work in combinations to control different subsets of genes in the genome. We are interested in how the promoters of genes are designed to integrate signals from multiple transcription factors and what are the functional and evolutionary constraints. To answer how, we have developed a number of computational algorithms to systematically map the binding sites and target genes of transcription factors using sequence and gene expression data. To analyze the functional constraints, we have employed mechanistic models to study the dynamic behavior of genes regulated by multiple factors. We have also developed methods to trace the evolution of transcriptional networks via comparative analysis of multiple species.

  10. Balanced Branching in Transcription Termination

    NASA Technical Reports Server (NTRS)

    Harrington, K. J.; Laughlin, R. B.; Liang, S.

    2000-01-01

    The theory of stochastic transcription termination based on free-energy competition [von Hippel, P. H. & Yager, T. D. (1992) Science 255,809-812 and van Hippel, P. H. & Yager, T. D. (1991) Proc. Natl. Acad. Sci. USA 88, 2307-2311] requires two or more reaction rates to be delicately balanced over a wide range of physical conditions. A large body of work on glasses and large molecules suggests that this balancing should be impossible in such a large system in the absence of a new organizing principle of matter. We review the experimental literature of termination and find no evidence for such a principle, but do find many troubling Inconsistencies, most notably, anomalous memory effects. These effects suggest that termination has a deterministic component and may conceivably not be stochastic at all. We find that a key experiment by Wilson and von Hippel [Wilson, K. S. & von Hippel, P. H. (1994) J. Mol. Biol. 244,36-51] thought to demonstrate stochastic termination was an incorrectly analyzed regulatory effect of Mg(2+) binding.

  11. Nickel-responsive transcriptional regulators.

    PubMed

    Musiani, Francesco; Zambelli, Barbara; Bazzani, Micaela; Mazzei, Luca; Ciurli, Stefano

    2015-09-01

    Nickel is an essential micronutrient for a large number of living organisms, but it is also a toxic metal ion when it accumulates beyond the sustainable level as it may result if and when its cellular trafficking is not properly governed. Therefore, the homeostasis and metabolism of nickel is tightly regulated through metal-specific protein networks that respond to the available Ni(II) concentration. These are directed by specific nickel sensors, able to couple Ni(II) binding to a change in their DNA binding affinity and/or specificity, thus translating the cellular level of Ni(II) into a modification of the expression of the proteins devoted to modulating nickel uptake, efflux and cellular utilization. This review describes the Ni(II)-dependent transcriptional regulators discovered so far, focusing on their structural features, metal coordination modes and metal binding thermodynamics. Understanding these properties is essential to comprehend how these sensors correlate nickel availability to metal coordination and functional responses. A broad and comparative study, described here, reveals some general traits that characterize the binding stoichiometry and Ni(II) affinity of these metallo-sensors.

  12. Transcriptional profiling of epidermal differentiation.

    PubMed

    Radoja, Nada; Gazel, Alix; Banno, Tomohiro; Yano, Shoichiro; Blumenberg, Miroslav

    2006-10-03

    In epidermal differentiation basal keratinocytes detach from the basement membrane, stop proliferating, and express a new set of structural proteins and enzymes, which results in an impermeable protein/lipid barrier that protects us. To define the transcriptional changes essential for this process, we purified large quantities of basal and suprabasal cells from human epidermis, using the expression of beta4 integrin as the discriminating factor. The expected expression differences in cytoskeletal, cell cycle, and adhesion genes confirmed the effective separation of the cell populations. Using DNA microarray chips, we comprehensively identify the differences in genes expressed in basal and differentiating layers of the epidermis, including the ECM components produced by the basal cells, the proteases in both the basal and suprabasal cells, and the lipid and steroid metabolism enzymes in suprabasal cells responsible for the permeability barrier. We identified the signaling pathways specific for the two populations and found two previously unknown paracrine and one juxtacrine signaling pathway operating between the basal and suprabasal cells. Furthermore, using specific expression signatures, we identified a new set of late differentiation markers and mapped their chromosomal loci, as well as a new set of melanocyte-specific markers. The data represent a quantum jump in understanding the mechanisms of epidermal differentiation.

  13. Agouti regulates adipocyte transcription factors.

    PubMed

    Mynatt, R L; Stephens, J M

    2001-04-01

    Agouti is a secreted paracrine factor that regulates pigmentation in hair follicle melanocytes. Several dominant mutations cause ectopic expression of agouti, resulting in a phenotype characterized by yellow fur, adult-onset obesity and diabetes, increased linear growth and skeletal mass, and increased susceptibility to tumors. Humans also produce agouti protein, but the highest levels of agouti in humans are found in adipose tissue. To mimic the human agouti expression pattern in mice, transgenic mice (aP2-agouti) that express agouti in adipose tissue were generated. The transgenic mice develop a mild form of obesity, and they are sensitized to the action of insulin. We correlated the levels of specific regulators of insulin signaling and adipocyte differentiation with these phenotypic changes in adipose tissue. Signal transducers and activators of transcription (STAT)1, STAT3, and peroxisome proliferator-activated receptor (PPAR)-gamma protein levels were elevated in the transgenic mice. Treatment of mature 3T3-L1 adipocytes recapitulated these effects. These data demonstrate that agouti has potent effects on adipose tissue. We hypothesize that agouti increases adiposity and promotes insulin sensitivity by acting directly on adipocytes via PPAR-gamma.

  14. Purification & Characterization of Transcription Factors

    PubMed Central

    Nagore, LI; Nadeau, RJ; Guo, Q; Jadhav, YLA; Jarrett, HW; Haskins, WE

    2013-01-01

    Transcription factors (TFs) are essential for the expression of all proteins, including those involved in human health and disease. However, TFs are resistant to proteomic characterization because they are frequently masked by more abundant proteins due to the limited dynamic range of capillary liquid chromatography-tandem mass spectrometry and protein database searching. Purification methods, particularly strategies that exploit the high affinity of TFs for DNA response elements on gene promoters, can enrich TFs prior to proteomic analysis to improve dynamic range and penetrance of the TF proteome. For example, trapping of TF complexes specific for particular response elements has been achieved by recovering the element DNA-protein complex on solid supports. Additional methods for improving dynamic range include two- and three-dimensional gel electrophoresis incorporating electrophoretic mobility shift assays and Southwestern blotting for detection. Here we review methods for TF purification and characterization. We fully expect that future investigations will apply these and other methods to illuminate this important but challenging proteome. PMID:23832591

  15. Gene expression in plant mitochondria: transcriptional and post-transcriptional control.

    PubMed Central

    Binder, Stefan; Brennicke, Axel

    2003-01-01

    The informational content of the mitochondrial genome in plants is, although small, essential for each cell. Gene expression in these organelles involves a number of distinct transcriptional and post-transcriptional steps. The complex post-transcriptional processes of plant mitochondria such as 5' and 3' RNA processing, intron splicing, RNA editing and controlled RNA stability extensively modify individual steady-state RNA levels and influence the mRNA quantities available for translation. In this overview of the processes in mitochondrial gene expression, we focus on confirmed and potential sites of regulatory interference and discuss the evolutionary origins of the transcriptional and post-transcriptional processes. PMID:12594926

  16. Phanerochaete chrysosporium Cellobiohydrolase and Cellobiose Dehydrogenase Transcripts in Wood

    PubMed Central

    Vallim, Marcelo A.; Janse, Bernard J. H.; Gaskell, Jill; Pizzirani-Kleiner, Aline A.; Cullen, Daniel

    1998-01-01

    The transcripts of structurally related cellobiohydrolase genes in Phanerochaete chrysosporium-colonized wood chips were quantified. The transcript patterns obtained were dramatically different from the transcript patterns obtained previously in defined media. Cellobiose dehydrogenase transcripts were also detected, which is consistent with the hypothesis that such transcripts play an important role in cellulose degradation. PMID:9572973

  17. 12 CFR 261b.11 - Transcripts, recordings, and minutes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... minutes. (a) The agency will maintain a complete transcript or electronic recording or transcription... § 261b.5 of this part. Transcriptions of recordings will disclose the identity of each speaker. (b) The agency will maintain either such a transcript, recording or transcription thereof, or a set of...

  18. 5 CFR 1632.10 - Transcripts, recordings, and minutes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... maintain a complete transcript or electronic recording or transcription thereof adequate to record fully.... Transcriptions of recordings will disclose the identity of each speaker. (b) The Board will maintain either such a transcript, recording or transcription thereof, or a set of minutes that will fully and...

  19. 5 CFR 1632.10 - Transcripts, recordings, and minutes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... maintain a complete transcript or electronic recording or transcription thereof adequate to record fully.... Transcriptions of recordings will disclose the identity of each speaker. (b) The Board will maintain either such a transcript, recording or transcription thereof, or a set of minutes that will fully and...

  20. 12 CFR 261b.11 - Transcripts, recordings, and minutes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... minutes. (a) The agency will maintain a complete transcript or electronic recording or transcription... § 261b.5 of this part. Transcriptions of recordings will disclose the identity of each speaker. (b) The agency will maintain either such a transcript, recording or transcription thereof, or a set of...

  1. Prunus transcription factors: breeding perspectives

    PubMed Central

    Bianchi, Valmor J.; Rubio, Manuel; Trainotti, Livio; Verde, Ignazio; Bonghi, Claudio; Martínez-Gómez, Pedro

    2015-01-01

    Many plant processes depend on differential gene expression, which is generally controlled by complex proteins called transcription factors (TFs). In peach, 1533 TFs have been identified, accounting for about 5.5% of the 27,852 protein-coding genes. These TFs are the reference for the rest of the Prunus species. TF studies in Prunus have been performed on the gene expression analysis of different agronomic traits, including control of the flowering process, fruit quality, and biotic and abiotic stress resistance. These studies, using quantitative RT-PCR, have mainly been performed in peach, and to a lesser extent in other species, including almond, apricot, black cherry, Fuji cherry, Japanese apricot, plum, and sour and sweet cherry. Other tools have also been used in TF studies, including cDNA-AFLP, LC-ESI-MS, RNA, and DNA blotting or mapping. More recently, new tools assayed include microarray and high-throughput DNA sequencing (DNA-Seq) and RNA sequencing (RNA-Seq). New functional genomics opportunities include genome resequencing and the well-known synteny among Prunus genomes and transcriptomes. These new functional studies should be applied in breeding programs in the development of molecular markers. With the genome sequences available, some strategies that have been used in model systems (such as SNP genotyping assays and genotyping-by-sequencing) may be applicable in the functional analysis of Prunus TFs as well. In addition, the knowledge of the gene functions and position in the peach reference genome of the TFs represents an additional advantage. These facts could greatly facilitate the isolation of genes via QTL (quantitative trait loci) map-based cloning in the different Prunus species, following the association of these TFs with the identified QTLs using the peach reference genome. PMID:26124770

  2. Nuclear Actin in Development and Transcriptional Reprogramming.

    PubMed

    Misu, Shinji; Takebayashi, Marina; Miyamoto, Kei

    2017-01-01

    Actin is a highly abundant protein in eukaryotic cells and dynamically changes its polymerized states with the help of actin-binding proteins. Its critical function as a constituent of cytoskeleton has been well-documented. Growing evidence demonstrates that actin is also present in nuclei, referred to as nuclear actin, and is involved in a number of nuclear processes, including transcriptional regulation and chromatin remodeling. The contribution of nuclear actin to transcriptional regulation can be explained by its direct interaction with transcription machineries and chromatin remodeling factors and by controlling the activities of transcription factors. In both cases, polymerized states of nuclear actin affect the transcriptional outcome. Nuclear actin also plays an important role in activating strongly silenced genes in somatic cells for transcriptional reprogramming. When these nuclear functions of actin are considered, it is plausible to speculate that nuclear actin is also implicated in embryonic development, in which numerous genes need to be activated in a well-coordinated manner. In this review, we especially focus on nuclear actin's roles in transcriptional activation, reprogramming and development, including stem cell differentiation and we discuss how nuclear actin can be an important player in development and cell differentiation.

  3. Nuclear Actin in Development and Transcriptional Reprogramming

    PubMed Central

    Misu, Shinji; Takebayashi, Marina; Miyamoto, Kei

    2017-01-01

    Actin is a highly abundant protein in eukaryotic cells and dynamically changes its polymerized states with the help of actin-binding proteins. Its critical function as a constituent of cytoskeleton has been well-documented. Growing evidence demonstrates that actin is also present in nuclei, referred to as nuclear actin, and is involved in a number of nuclear processes, including transcriptional regulation and chromatin remodeling. The contribution of nuclear actin to transcriptional regulation can be explained by its direct interaction with transcription machineries and chromatin remodeling factors and by controlling the activities of transcription factors. In both cases, polymerized states of nuclear actin affect the transcriptional outcome. Nuclear actin also plays an important role in activating strongly silenced genes in somatic cells for transcriptional reprogramming. When these nuclear functions of actin are considered, it is plausible to speculate that nuclear actin is also implicated in embryonic development, in which numerous genes need to be activated in a well-coordinated manner. In this review, we especially focus on nuclear actin’s roles in transcriptional activation, reprogramming and development, including stem cell differentiation and we discuss how nuclear actin can be an important player in development and cell differentiation. PMID:28326098

  4. Imaging Transcription: Past, Present, and Future

    PubMed Central

    Coleman, Robert A.; Liu, Zhe; Darzacq, Xavier; Tjian, Robert; Singer, Robert H.; Lionnet, Timothée

    2016-01-01

    Transcription, the first step of gene expression, is exquisitely regulated in higher eukaryotes to ensure correct development and homeostasis. Traditional biochemical, genetic, and genomic approaches have proved successful at identifying factors, regulatory sequences, and potential pathways that modulate transcription. However, they typically only provide snapshots or population averages of the highly dynamic, stochastic biochemical processes involved in transcriptional regulation. Single molecule live-cell imaging has, therefore, emerged as a complementary approach capable of circumventing these limitations. By observing sequences of molecular events in real time as they occur in their native context, imaging has the power to derive cause-and-effect relationships and quantitative kinetics to build predictive models of transcription. Ongoing progress in fluorescence imaging technology has brought new microscopes and labeling technologies that now make it possible to visualize and quantify the transcription process with single-molecule resolution in living cells and animals. Here we provide an overview of the evolution and current state of transcription imaging technologies. We discuss some of the important concepts they uncovered and present possible future developments that might solve long-standing questions in transcriptional regulation. PMID:26763984

  5. Thyrotropin controls transcription of the thyroglobulin gene.

    PubMed

    Van Heuverswyn, B; Streydio, C; Brocas, H; Refetoff, S; Dumont, J; Vassart, G

    1984-10-01

    The availability of rat thyroglobulin cDNA clones was exploited to study the regulation of thyroglobulin gene transcription by thyrotropin (TSH). Groups of rats were subjected to treatments leading to reduction or increase in the rat serum TSH (rTSH) levels. Thyroid gland nuclei were isolated, incubated in vitro in the presence of 32P-labeled uridine triphosphate, and thyroglobulin transcripts were quantitated by hybridization to immobilized rat thyroglobulin cDNA clones. Transcription of the thyroglobulin gene was found to be very active in thyroid nuclei from control animals. It represented about 10% of total RNA polymerase II activity. Chronic hyperstimulation of the thyroid glands with endogenous rTSH was achieved in rats treated with the goitrogen propylthiouracil. No significant increase of thyroglobulin gene transcription could be measured in thyroid nuclei from these animals. On the contrary, a dramatic decrease in thyroglobulin gene transcription was observed in those animals in which endogenous rTSH levels had been suppressed by hypophysectomy or by the administration of triiodothyronine. Injection of exogenous bovine TSH in such animals readily restored transcriptional activity of the gene. Our results identify transcription as an important regulatory step involved in TSH action. They suggest that normal TSH levels induce close to maximal expression of the thyroglobulin gene but that continuous presence of TSH is required in order to maintain the gene in an activated state.

  6. Overlapping Antisense Transcription in the Human Genome

    PubMed Central

    Fahey, M. E.; Moore, T. F.

    2002-01-01

    Accumulating evidence indicates an important role for non-coding RNA molecules in eukaryotic cell regulation. A small number of coding and non-coding overlapping antisense transcripts (OATs) in eukaryotes have been reported, some of which regulate expression of the corresponding sense transcript. The prevalence of this phenomenon is unknown, but there may be an enrichment of such transcripts at imprinted gene loci. Taking a bioinformatics approach, we systematically searched a human mRNA database (RefSeq) for complementary regions that might facilitate pairing with other transcripts. We report 56 pairs of overlapping transcripts, in which each member of the pair is transcribed from the same locus. This allows us to make an estimate of 1000 for the minimum number of such transcript pairs in the entire human genome. This is a surprisingly large number of overlapping gene pairs and, clearly, some of the overlaps may not be functionally significant. Nonetheless, this may indicate an important general role for overlapping antisense control in gene regulation. EST databases were also investigated in order to address the prevalence of cases of imprinted genes with associated non-coding overlapping, antisense transcripts. However, EST databases were found to be completely inappropriate for this purpose. PMID:18628857

  7. Transcriptional control of spermatogonial maintenance and differentiation.

    PubMed

    Song, Hye-Won; Wilkinson, Miles F

    2014-06-01

    Spermatogenesis is a multistep process that generates millions of spermatozoa per day in mammals. A key to this process is the spermatogonial stem cell (SSC), which has the dual property of continually renewing and undergoing differentiation into a spermatogonial progenitor that expands and further differentiates. In this review, we will focus on how these proliferative and early differentiation steps in mammalian male germ cells are controlled by transcription factors. Most of the transcription factors that have so far been identified as promoting SSC self-renewal (BCL6B, BRACHYURY, ETV5, ID4, LHX1, and POU3F1) are upregulated by glial cell line-derived neurotrophic factor (GDNF). Since GDNF is crucial for promoting SSC self-renewal, this suggests that these transcription factors are responsible for coordinating the action of GDNF in SSCs. Other transcription factors that promote SSC self-renewal are expressed independently of GDNF (FOXO1, PLZF, POU5F1, and TAF4B) and thus may act in non-GDNF pathways to promote SSC cell growth or survival. Several transcription factors have been identified that promote spermatogonial differentiation (DMRT1, NGN3, SOHLH1, SOHLH2, SOX3, and STAT3); some of these may influence the decision of an SSC to commit to differentiate while others may promote later spermatogonial differentiation steps. Many of these transcription factors regulate each other and act on common targets, suggesting they integrate to form complex transcriptional networks in self-renewing and differentiating spermatogonia.

  8. CHD chromatin remodelers and the transcription cycle.

    PubMed

    Murawska, Magdalena; Brehm, Alexander

    2011-01-01

    It is well established that ATP-dependent chromatin remodelers modulate DNA access of transcription factors and RNA polymerases by "opening" or "closing" chromatin structure. However, this view is far too simplistic. Recent findings have demonstrated that these enzymes not only set the stage for the transcription machinery to act but are actively involved at every step of the transcription process. As a consequence, they affect initiation, elongation, termination and RNA processing. In this review we will use the CHD family as a paradigm to illustrate the progress that has been made in revealing these new concepts.

  9. Our evolving knowledge of the transcriptional landscape.

    PubMed

    Hume, David A

    2008-01-01

    The development of a genome-scale approach to identification of the 5' ends of capped mRNAs (CAGE) has given new insights into many aspects of mammalian RNApolII transcription control. They include the identification of the minimal initiator motif, the different types of proximal promoter architecture, the promoters of noncoding RNAs, the transcription of retrotransposons, and the extensive impact of alternative promoters on the proteome. CAGE also offers applications as a form of expression profiling that measures promoter use, allowing more precise development of transcriptional network models.

  10. Creating cellular diversity through transcription factor competition

    PubMed Central

    Göttgens, Berthold

    2015-01-01

    The development of blood cells has long served as a model system to study the generation of diverse mature cells from multipotent progenitors. The article by Org et al (2015) reveals how transcription factor competition on primed DNA templates may contribute to embryonic blood cell specification during the early stages of mesoderm development. The study not only provides new insights into the functionality of the key haematopoietic transcription factor Scl/Tal1, but also provides a potentially widely applicable framework for transcription factor-mediated cell fate specification. PMID:25680687

  11. Cell-free transcription at 95 degrees: thermostability of transcriptional components and DNA topology requirements of Pyrococcus transcription.

    PubMed Central

    Hethke, C; Bergerat, A; Hausner, W; Forterre, P; Thomm, M

    1999-01-01

    Cell-free transcription of archaeal promoters is mediated by two archaeal transcription factors, aTBP and TFB, which are orthologues of the eukaryotic transcription factors TBP and TFIIB. Using the cell-free transcription system described for the hyperthermophilic Archaeon Pyrococcus furiosus by Hethke et al., the temperature limits and template topology requirements of archaeal transcription were investigated. aTBP activity was not affected after incubation for 1 hr at 100 degrees. In contrast, the half-life of RNA polymerase activity was 23 min and that of TFB activity was 3 min. The half-life of a 328-nt RNA product was 10 min at 100 degrees. Best stability of RNA was observed at pH 6, at 400 mm K-glutamate in the absence of Mg(2+) ions. Physiological concentrations of K-glutamate were found to stabilize protein components in addition, indicating that salt is an important extrinsic factor contributing to thermostability. Both RNA and proteins were stabilized by the osmolyte betaine at a concentration of 1 m. The highest activity for RNA synthesis at 95 degrees was obtained in the presence of 1 m betaine and 400 mm K-glutamate. Positively supercoiled DNA, which was found to exist in Pyrococcus cells, can be transcribed in vitro both at 70 degrees and 90 degrees. However, negatively supercoiled DNA was the preferred template at all temperatures tested. Analyses of transcripts from plasmid topoisomers harboring the glutamate dehydrogenase promoter and of transcription reactions conducted in the presence of reverse gyrase indicate that positive supercoiling of DNA inhibits transcription from this promoter. PMID:10430563

  12. 22 CFR 1500.9 - Transcripts, recording of closed meetings.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... contain information which may be withheld under § 1500.5. Copies of such transcript, or a transcription of... cost of duplication or transcription. The Foundation shall maintain a complete verbatim copy of...

  13. 22 CFR 1500.9 - Transcripts, recording of closed meetings.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... contain information which may be withheld under § 1500.5. Copies of such transcript, or a transcription of... cost of duplication or transcription. The Foundation shall maintain a complete verbatim copy of...

  14. 22 CFR 1500.9 - Transcripts, recording of closed meetings.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... contain information which may be withheld under § 1500.5. Copies of such transcript, or a transcription of... cost of duplication or transcription. The Foundation shall maintain a complete verbatim copy of...

  15. 22 CFR 1500.9 - Transcripts, recording of closed meetings.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... contain information which may be withheld under § 1500.5. Copies of such transcript, or a transcription of... cost of duplication or transcription. The Foundation shall maintain a complete verbatim copy of...

  16. 22 CFR 1500.9 - Transcripts, recording of closed meetings.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... contain information which may be withheld under § 1500.5. Copies of such transcript, or a transcription of... cost of duplication or transcription. The Foundation shall maintain a complete verbatim copy of...

  17. 45 CFR 213.28 - Official transcript.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... law filed therewith shall be filed with the Department. Transcripts of testimony in hearings may be obtained from the official reporter by the parties and the public at rates not to exceed the maximum...

  18. 36 CFR 1150.92 - Official transcript.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... official transcripts of testimony, and any exhibits, briefs, or memoranda of law filed with them, shall be... the parties and the public at rates not to exceed the maximum rates fixed by the contract between...

  19. Transcription of nucleosomes from human chromatin.

    PubMed Central

    Shaw, P A; Sahasrabuddhe, C G; Hodo, H G; Saunders, G F

    1978-01-01

    Nucleosomes (chromatin subunits) prepared by micrococcal nuclease digestion of human nuclei are similar in histone content but substantially reduced in non-histone proteins as compared to undigested chromatin. Chromatin transcription experiments indicate that the DNA in the nucleosomes is accessible to DNA-dependent RNA polymerase in vitro. The template capacities of chromatin and nucleosomes are 1.5 and 10%, respectively, relative to high molecular weight DNA, with intermediate values for oligonucleosomes. Three distinct sizes of transcripts, 150, 120 and 95 nucleotides in length, are obtained when nucleosomes are used as templates. However, when nucleosomal DNA is used as a template, the predominant size of transcripts is 150 nucleotides. When oligonucleosomes are used as templates longer transcripts are obtained. This indicates that RNA polymerase can transcribe the DNA contained in the nucleosomes. PMID:693325

  20. Dynamics of transcription-translation networks

    NASA Astrophysics Data System (ADS)

    Hudson, D.; Edwards, R.

    2016-09-01

    A theory for qualitative models of gene regulatory networks has been developed over several decades, generally considering transcription factors to regulate directly the expression of other transcription factors, without any intermediate variables. Here we explore a class of models that explicitly includes both transcription and translation, keeping track of both mRNA and protein concentrations. We mainly deal with transcription regulation functions that are steep sigmoids or step functions, as is often done in protein-only models, though translation is governed by a linear term. We extend many aspects of the protein-only theory to this new context, including properties of fixed points, description of trajectories by mappings between switching points, qualitative analysis via a state-transition diagram, and a result on periodic orbits for negative feedback loops. We find that while singular behaviour in switching domains is largely avoided, non-uniqueness of solutions can still occur in the step-function limit.

  1. Transcriptional Control of Stem and Progenitor Potential

    PubMed Central

    Muench, David E.

    2015-01-01

    Hematopoiesis is characterized by a lifelong balance between hematopoietic stem cell (HSC) self-renewal and differentiation into mature blood populations. Proper instruction of cell fate decisions requires tight homeostatic regulation of transcriptional programs through a combination of epigenetic modifications, management of cis-regulatory elements, and transcription factor activity. Recent work has focused on integrating biochemical, genetic, and evolutionary data sets to gain further insight into these regulatory components. Long noncoding RNA (lncRNA), post-translational modifications of transcription factors, and circadian rhythm add additional layers of complexity. These analyses have provided a wealth of information, much of which has been made available through public databases. Elucidating the regulatory processes that govern hematopoietic transcriptional programs is expected to provide useful insights into hematopoiesis that may be applied broadly across tissue types while enabling the discovery and implementation of therapeutics to treat human disease. PMID:26509110

  2. Transcriptional regulation at the yeast nuclear envelope

    PubMed Central

    Steglich, Babett; Sazer, Shelley; Ekwall, Karl

    2013-01-01

    The spatial organization of the genome inside the nucleus affects many nuclear processes, such as DNA replication, DNA repair, and gene transcription. In metazoans, the nuclear periphery harbors mainly repressed genes that associate with the nuclear lamina. This review discusses how peripheral positioning is connected to transcriptional regulation in yeasts. Tethering of reporter genes to the nuclear envelope was found to result in transcriptional silencing. Similarly, repression of the silent mating type loci and subtelomeric genes is influenced by their position close to the nuclear envelope. In contrast, active genes are bound by nucleoporins and inducible genes associate with the nuclear pore complex upon activation. Taken together, these results portray the nuclear envelope as a platform for transcriptional regulation, both through activation at nuclear pores and silencing at the nuclear envelope. PMID:24021962

  3. Transcriptional mapping of the bacteriophage Mu DNA.

    PubMed

    Barron, C; Bade, E G

    1988-02-01

    The transcription of temperate phage Mu throughout lytic development was analysed quantitatively by hybridization of pulse-labelled RNA to full-length Mu DNA and to plasmids that define Mu DNA segments covering the whole phage genome. The transcription rate (i.e. binding data corrected for the incorporation rate of the radioactive precursor, for the size of the DNA template, and for the number of phage genomes present in the bacterium at the time of analysis) revealed three defined phases of Mu transcription: early (0 to 9 min), intermediate (between 9 and the interval 14 to 17 min) and late (from the interval 14 to 17 min onward). The analysis also revealed that the region comprising the genes involved in phage morphogenesis was organized into two independent 'late' transcription units.

  4. Interactions of transcription factors with chromatin.

    PubMed

    van Bakel, Harm

    2011-01-01

    Sequence-specific transcription factors (TFs) play a central role in regulating transcription initiation by directing the recruitment and activity of the general transcription machinery and accessory factors. It is now well established that many of the effects exerted by TFs in eukaryotes are mediated through interactions with a host of coregulators that modify the chromatin state, resulting in a more open (in case of activation) or closed conformation (in case of repression). The relationship between TFs and chromatin is a two-way street, however, as chromatin can in turn influence the recognition and binding of target sequences by TFs. The aim of this chapter is to highlight how this dynamic interplay between TF-directed remodelling of chromatin and chromatin-adjusted targeting of TF binding determines where and how transcription is initiated, and to what degree it is productive.

  5. Transcriptional Networks in Liver and Intestinal Development

    PubMed Central

    Sheaffer, Karyn L.; Kaestner, Klaus H.

    2012-01-01

    SUMMARY The development of the gastrointestinal tract is a complex process that integrates signaling processes with downstream transcriptional responses. Here, we discuss the regionalization of the primitive gut and formation of the intestine and liver. Anterior–posterior position in the primitive gut is important for establishing regions that will become functional organs. Coordination of signaling between the epithelium and mesenchyme and downstream transcriptional responses is required for intestinal development and homeostasis. Liver development uses a complex transcriptional network that controls the establishment of organ domains, cell differentiation, and adult function. Discussion of these transcriptional mechanisms gives us insight into how the primitive gut, composed of simple endodermal cells, develops into multiple diverse cell types that are organized into complex mature organs. PMID:22952394

  6. Topologies for perfect adaptation in gene transcription

    NASA Astrophysics Data System (ADS)

    Shi, Wenjia; Tang, Chao

    2014-03-01

    Adaptation is commonly used in sensory systems and signaling networks to allow the detection of further stimuli. Despite enzymatic network topologies for adaptation have been investigated systematically, the topology of transcriptional network that could perform adaptation still remains unclear, due to the complexity of transcriptional regulation. Here, we systematically investigated all three-node transcriptional networks, and found the topologies of transcriptional networks for adaptation are different from that of enzymatic ones. While both negative feedback loop (NFBL) and incoherent feed forward loop (IFFL) are capable of performing adaptation analytically, a positive self-regulation on buffer node is necessary for NFBL topology and more flexible structures emerge for IFFL than that of enzymatic networks. Most of the simulation results agree with analytical predictions. This study may explain the mechanism of adapted gene regulation behavior and supply a design table for gene regulatory adaptation.

  7. Biophysical models of transcription in cells

    NASA Astrophysics Data System (ADS)

    Choubey, Sandeep

    Cells constantly face environmental challenges and deal with them by changing their gene expression patterns. They make decisions regarding which genes to express and which genes not to express based on intra-cellular and environmental cues. These decisions are often made by regulating the process of transcription. While the identities of the different molecules that take part in regulating transcription have been determined for a number of different genes, their dynamics inside the cell are still poorly understood. One key feature of these regulatory dynamics is that the numbers of the bio-molecules involved is typically small, resulting in large temporal fluctuations in transcriptional outputs (mRNA and protein). In this thesis I show that measurements of the cell-to-cell variability of the distribution of transcribing RNA polymerases along a gene provide a previously unexplored method for deciphering the mechanism of its transcription in vivo. First, I propose a simple kinetic model of transcription initiation and elongation from which I calculate transcribing RNA polymerase copy-number fluctuations. I test my theory against published data obtained for yeast genes and propose a novel mechanism of transcription. Rather than transcription being initiated through a single rate-limiting step, as was previously proposed, my single-cell analysis reveals the presence of at least two rate limiting steps. Second, I compute the distribution of inter-polymerase distance distribution along a gene and propose a method for analyzing inter-polymerase distance distributions acquired in experiments. By applying this method to images of polymerases transcribing ribosomal genes in E.coli I show that one model of regulation of these genes is consistent with inter-polymerase distance data while a number of other models are not. The analytical framework described in this thesis can be used to extract quantitative information about the dynamics of transcription from single

  8. Transcription termination by nuclear RNA polymerases

    PubMed Central

    Richard, Patricia; Manley, James L.

    2009-01-01

    Gene transcription in the cell nucleus is a complex and highly regulated process. Transcription in eukaryotes requires three distinct RNA polymerases, each of which employs its own mechanisms for initiation, elongation, and termination. Termination mechanisms vary considerably, ranging from relatively simple to exceptionally complex. In this review, we describe the present state of knowledge on how each of the three RNA polymerases terminates and how mechanisms are conserved, or vary, from yeast to human. PMID:19487567

  9. Transcriptional Regulation: It Takes a Village

    PubMed Central

    Panning, Barbara; Taatjes, Dylan J.

    2015-01-01

    A FASEB conference on “Transcriptional Regulation during Cell Growth, Differentiation and Development” met in June, 2008, just outside of Aspen in Snowmass Village, Colorado. The meeting covered a broad range of topics, including the structure of transcription factors (TFs), Preinitiation Complex (PIC) assembly, RNA polymerase II (Pol II) pausing, genome-wide patterns of histone modifications, and the role of TFs in development. PMID:18775322

  10. Highly efficient Cas9-mediated transcriptional programming.

    PubMed

    Chavez, Alejandro; Scheiman, Jonathan; Vora, Suhani; Pruitt, Benjamin W; Tuttle, Marcelle; P R Iyer, Eswar; Lin, Shuailiang; Kiani, Samira; Guzman, Christopher D; Wiegand, Daniel J; Ter-Ovanesyan, Dmitry; Braff, Jonathan L; Davidsohn, Noah; Housden, Benjamin E; Perrimon, Norbert; Weiss, Ron; Aach, John; Collins, James J; Church, George M

    2015-04-01

    The RNA-guided nuclease Cas9 can be reengineered as a programmable transcription factor. However, modest levels of gene activation have limited potential applications. We describe an improved transcriptional regulator obtained through the rational design of a tripartite activator, VP64-p65-Rta (VPR), fused to nuclease-null Cas9. We demonstrate its utility in activating endogenous coding and noncoding genes, targeting several genes simultaneously and stimulating neuronal differentiation of human induced pluripotent stem cells (iPSCs).

  11. Transcription Factors in Xylem Development. Final report

    SciTech Connect

    Sederoff, Ronald; Whetten, Ross; O'Malley, David; Campbell, Malcolm

    1999-07-01

    Answers to the following questions are answered in this report. do the two pine Byb proteins previously identified as candidate transcription factors bind to DNA and activate transcription? In what cell types are tehse Myb proteins expressed? Are these proteins localized to the nucleus? Do other proteins in pine xylem interact with these Myb proteins? Does altered expression of these genes have an impact on xylogenesis, specifically the expression of monolignol biosynthetic genes?

  12. Transcriptional response of Enterococcus faecalis to sunlight.

    PubMed

    Sassoubre, Lauren M; Ramsey, Matthew M; Gilmore, Michael S; Boehm, Alexandria B

    2014-01-05

    Microarrays were used to investigate the transcriptional response of Enterococcus faecalis to photostress. E. faecalis are Gram-positive bacteria used as indicators of water quality and have been shown to vary diurnally in response to sunlight. E. faecalis in filtered seawater microcosms were exposed to artificial sunlight for 12h and then placed in the dark for 12h. Transcript abundance was measured at 0, 2, 6, 12, and 24h in the sunlit microcosm and a dark control using microarrays. Culturable E. faecalis concentrations decreased 6-7 orders of magnitude within the first 6h of light exposure. After 12h in the dark, no evidence of dark-repair was observed. Expression data collected after 12h of sunlight exposure revealed a difference in transcript abundance in the light relative to dark microcosms for 35 unique ORFs, 33 ORFs showed increased transcript abundance and 2 ORFs showed reduced transcript abundance. A majority (51%) of the ORFs with increased transcript abundance in the sunlit relative to dark microcosms encoded hypothetical proteins; others were associated with protein synthesis, oxidative stress and DNA repair. Results suggest that E. faecalis exposed to sunlight actively transcribe RNA in response to photostress.

  13. The regulation of transcriptional repression in hypoxia.

    PubMed

    Cavadas, Miguel A S; Cheong, Alex; Taylor, Cormac T

    2017-02-20

    A sufficient supply molecular oxygen is essential for the maintenance of physiologic metabolism and bioenergetic homeostasis for most metazoans. For this reason, mechanisms have evolved for eukaryotic cells to adapt to conditions where oxygen demand exceeds supply (hypoxia). These mechanisms rely on the modification of pre-existing proteins, translational arrest and transcriptional changes. The hypoxia inducible factor (HIF; a master regulator of gene induction in response to hypoxia) is responsible for the majority of induced gene expression in hypoxia. However, much less is known about the mechanism(s) responsible for gene repression, an essential part of the adaptive transcriptional response. Hypoxia-induced gene repression leads to a reduction in energy demanding processes and the redirection of limited energetic resources to essential housekeeping functions. Recent developments have underscored the importance of transcriptional repressors in cellular adaptation to hypoxia. To date, at least ten distinct transcriptional repressors have been reported to demonstrate sensitivity to hypoxia. Central among these is the Repressor Element-1 Silencing Transcription factor (REST), which regulates over 200 genes. In this review, written to honor the memory and outstanding scientific legacy of Lorenz Poellinger, we provide an overview of our existing knowledge with respect to transcriptional repressors and their target genes in hypoxia.

  14. Proofreading of misincorporated nucleotides in DNA transcription

    NASA Astrophysics Data System (ADS)

    Voliotis, Margaritis; Cohen, Netta; Molina-París, Carmen; Liverpool, Tanniemola B.

    2012-06-01

    The accuracy of DNA transcription is crucial for the proper functioning of the cell. Although RNA polymerases demonstrate selectivity for correct nucleotides, additional active mechanisms of transcriptional error correction are required to achieve observed levels of fidelity. Recent experimental findings have shed light on a particular mechanism of transcriptional error correction involving: (i) diffusive translocation of the RNA polymerase along the DNA (backtracking) and (ii) irreversible RNA cleavage. This mechanism achieves preferential cleavage of misincorporated nucleotides by biasing the local rates of translocation. Here, we study how misincorporated nucleotides affect backtracking dynamics and how this effect determines the level of transcriptional fidelity. We consider backtracking as a diffusive process in a periodic, one-dimensional energy landscape, which at a coarse-grained level gives rise to a hopping process between neighboring local minima. We propose a model for how misincorporated nucleotides deform this energy landscape and hence affect the hopping rates. In particular, we show that this model can be used to derive both the theoretical limit on the fidelity (i.e. the minimum fraction of misincorporated nucleotides) and the actual fidelity relative to this optimum, achieved for specific combinations of the cleavage and polymerization rates. Finally, we study how external factors influencing backtracking dynamics affect transcriptional fidelity. We show that biologically relevant loads, similar to those exerted by nucleosomes or other transcriptional barriers, increase error correction.

  15. Proofreading of misincorporated nucleotides in DNA transcription

    NASA Astrophysics Data System (ADS)

    Voliotis, Margaritis; Cohen, Netta; Molina-París, Carmen; Liverpool, Tanniemola B.

    2012-06-01

    The accuracy of DNA transcription is crucial for the proper functioning of the cell. Although RNA polymerases demonstrate selectivity for correct nucleotides, additional active mechanisms of transcriptional error correction are required to achieve observed levels of fidelity. Recent experimental findings have shed light on a particular mechanism of transcriptional error correction involving: (i) diffusive translocation of the RNA polymerase along the DNA (backtracking) and (ii) irreversible RNA cleavage. This mechanism achieves preferential cleavage of misincorporated nucleotides by biasing the local rates of translocation. Here, we study how misincorporated nucleotides affect backtracking dynamics and how this effect determines the level of transcriptional fidelity. We consider backtracking as a diffusive process in a periodic, one-dimensional energy landscape, which at a coarse-grained level gives rise to a hopping process between neighbouring local minima. We propose a model for how misincorporated nucleotides deform this energy landscape and hence affect the hopping rates. In particular, we show that this model can be used to derive both the theoretical limit on the fidelity (i.e. the minimum fraction of misincorporated nucleotides) and the actual fidelity relative to this optimum, achieved for specific combinations of the cleavage and polymerization rates. Finally, we study how external factors influencing backtracking dynamics affect transcriptional fidelity. We show that biologically relevant loads, similar to those exerted by nucleosomes or other transcriptional barriers, increase error correction.

  16. Transcriptional proofreading in dense RNA polymerase traffic

    NASA Astrophysics Data System (ADS)

    Sahoo, Mamata; Klumpp, Stefan

    2011-12-01

    The correction of errors during transcription involves the diffusive backward translocation (backtracking) of RNA polymerases (RNAPs) on the DNA. A trailing RNAP on the same template can interfere with backtracking as it progressively restricts the space that is available for backward translocation and thereby ratchets the backtracked RNAP forward. We analyze the resulting negative impact on proofreading theoretically using a driven lattice gas model of transcription under conditions of dense RNAP traffic. The fraction of errors that are corrected is calculated exactly for the case of a single RNAP; for multi-RNAP transcription, we use simulations and an analytical approximation and find a decrease with increasing traffic density. Moreover, we ask how the parameters of the system have to be set to keep down the impact of the interference of a trailing RNAP. Our analysis uncovers a surprisingly simple picture of the design of the error correction system: its efficiency is essentially determined by the rate for the initial backtracking step, while the value of the cleavage rate ensures that the correction mechanism remains efficient at high transcription rates. Finally, we argue that our analysis can also be applied to cases with transcription-translation coupling where the leading ribosome on the transcript assumes the role of the trailing RNAP.

  17. Linking Core Promoter Classes to Circadian Transcription

    PubMed Central

    Westermark, Pål O.

    2016-01-01

    Circadian rhythms in transcription are generated by rhythmic abundances and DNA binding activities of transcription factors. Propagation of rhythms to transcriptional initiation involves the core promoter, its chromatin state, and the basal transcription machinery. Here, I characterize core promoters and chromatin states of genes transcribed in a circadian manner in mouse liver and in Drosophila. It is shown that the core promoter is a critical determinant of circadian mRNA expression in both species. A distinct core promoter class, strong circadian promoters (SCPs), is identified in mouse liver but not Drosophila. SCPs are defined by specific core promoter features, and are shown to drive circadian transcriptional activities with both high averages and high amplitudes. Data analysis and mathematical modeling further provided evidence for rhythmic regulation of both polymerase II recruitment and pause release at SCPs. The analysis provides a comprehensive and systematic view of core promoters and their link to circadian mRNA expression in mouse and Drosophila, and thus reveals a crucial role for the core promoter in regulated, dynamic transcription. PMID:27504829

  18. The transcriptional control of the perforin locus

    PubMed Central

    Pipkin, Matthew E.; Rao, Anjana; Lichtenheld, Mathias G.

    2013-01-01

    Summary Natural killer (NK) cells and cytotoxic T lymphocytes (CTL) use cytotoxic granules containing perforin and granzymes to lyse infected or malignant host cells and provide immunity to intracellular microbes and tumors. Perforin is essential for cytotoxic granule-mediated killing. Perforin expression is regulated transcriptionally and correlates tightly with the development of cells that can exhibit cytotoxic activity. Although a number of genes transcribed by T cells and NK cells have been studied, the cell-specificity of perforin gene expression makes it an ideal model system in which to clarify the transcriptional mechanisms that guide the development and activation of cytotoxic lymphocytes. In this review, we discuss what is known about perforin expression and its regulation, then elaborate on recent studies that utilized chromosome transfer and bacterial artificial chromosome (BAC) transgenics to define a comprehensive set of cis-regulatory regions that control transcription of the human PRF1 gene in a near-physiological context. In addition, we compare the human and murine Prf1 loci and discuss how transcription factors known to be important for driving CTL differentiation might also directly regulate the cis-acting domains that control Prf1. Our review emphasizes how studies of PRF1/Prf1 gene transcription can illuminate not only the mechanisms of cytotoxic lymphocyte differentiation but also some basic principles of transcriptional regulation. PMID:20536555

  19. The Regulation of Transcription in Memory Consolidation

    PubMed Central

    Alberini, Cristina M.; Kandel, Eric R.

    2015-01-01

    De novo transcription of DNA is a fundamental requirement for the formation of long-term memory. It is required during both consolidation and reconsolidation, the posttraining and postreactivation phases that change the state of the memory from a fragile into a stable and long-lasting form. Transcription generates both mRNAs that are translated into proteins, which are necessary for the growth of new synaptic connections, as well as noncoding RNA transcripts that have regulatory or effector roles in gene expression. The result is a cascade of events that ultimately leads to structural changes in the neurons that mediate long-term memory storage. The de novo transcription, critical for synaptic plasticity and memory formation, is orchestrated by chromatin and epigenetic modifications. The complexity of transcription regulation, its temporal progression, and the effectors produced all contribute to the flexibility and persistence of long-term memory formation. In this article, we provide an overview of the mechanisms contributing to this transcriptional regulation underlying long-term memory formation. PMID:25475090

  20. The regulation of transcription in memory consolidation.

    PubMed

    Alberini, Cristina M; Kandel, Eric R

    2014-12-04

    De novo transcription of DNA is a fundamental requirement for the formation of long-term memory. It is required during both consolidation and reconsolidation, the posttraining and postreactivation phases that change the state of the memory from a fragile into a stable and long-lasting form. Transcription generates both mRNAs that are translated into proteins, which are necessary for the growth of new synaptic connections, as well as noncoding RNA transcripts that have regulatory or effector roles in gene expression. The result is a cascade of events that ultimately leads to structural changes in the neurons that mediate long-term memory storage. The de novo transcription, critical for synaptic plasticity and memory formation, is orchestrated by chromatin and epigenetic modifications. The complexity of transcription regulation, its temporal progression, and the effectors produced all contribute to the flexibility and persistence of long-term memory formation. In this article, we provide an overview of the mechanisms contributing to this transcriptional regulation underlying long-term memory formation.

  1. DMD transcript imbalance determines dystrophin levels.

    PubMed

    Spitali, Pietro; van den Bergen, Janneke C; Verhaart, Ingrid E C; Wokke, Beatrijs; Janson, Anneke A M; van den Eijnde, Rani; den Dunnen, Johan T; Laros, Jeroen F J; Verschuuren, Jan J G M; 't Hoen, Peter A C; Aartsma-Rus, Annemieke

    2013-12-01

    Duchenne and Becker muscular dystrophies are caused by out-of-frame and in-frame mutations, respectively, in the dystrophin encoding DMD gene. Molecular therapies targeting the precursor-mRNA are in clinical trials and show promising results. These approaches will depend on the stability and expression levels of dystrophin mRNA in skeletal muscles and heart. We report that the DMD gene is more highly expressed in heart than in skeletal muscles, in mice and humans. The transcript mutated in the mdx mouse model shows a 5' to 3' imbalance compared with that of its wild-type counterpart and reading frame restoration via antisense-mediated exon skipping does not correct this event. We also report significant transcript instability in 22 patients with Becker dystrophy, clarifying the fact that transcript imbalance is not caused by premature nonsense mutations. Finally, we demonstrate that transcript stability, rather than transcriptional rate, is an important determinant of dystrophin protein levels in patients with Becker dystrophy. We suggest that the availability of the complete transcript is a key factor to determine protein abundance and thus will influence the outcome of mRNA-targeting therapies.

  2. Transcriptional elongation factor ENL phosphorylated by ATM recruits polycomb and switches off transcription for DSB repair.

    PubMed

    Ui, Ayako; Nagaura, Yuko; Yasui, Akira

    2015-05-07

    Transcription is repressed if a DNA double-strand break (DSB) is introduced in close proximity to a transcriptional activation site at least in part by H2A-ubiquitination. While ATM signaling is involved, how it controls H2A-ubiquitination remains unclear. Here, we identify that, in response to DSBs, a transcriptional elongation factor, ENL (MLLT1), is phosphorylated by ATM at conserved SQ sites. This phosphorylation increases the interaction between ENL and the E3-ubiquitin-ligase complex of Polycomb Repressive Complex 1 (PRC1) via BMI1. This interaction promotes enrichment of PRC1 at transcription elongation sites near DSBs to ubiquitinate H2A leading to transcriptional repression. ENL SQ sites and BMI1 are necessary for KU70 accumulation at DSBs near active transcription sites and cellular resistance to DSBs. Our data suggest that ATM-dependent phosphorylation of ENL functions as switch from elongation to Polycomb-mediated repression to preserve genome integrity.

  3. Full-Length Isoform Sequencing Reveals Novel Transcripts and Substantial Transcriptional Overlaps in a Herpesvirus

    PubMed Central

    Tombácz, Dóra; Csabai, Zsolt; Oláh, Péter; Balázs, Zsolt; Likó, István; Zsigmond, Laura; Sharon, Donald; Snyder, Michael; Boldogkői, Zsolt

    2016-01-01

    Whole transcriptome studies have become essential for understanding the complexity of genetic regulation. However, the conventionally applied short-read sequencing platforms cannot be used to reliably distinguish between many transcript isoforms. The Pacific Biosciences (PacBio) RS II platform is capable of reading long nucleic acid stretches in a single sequencing run. The pseudorabies virus (PRV) is an excellent system to study herpesvirus gene expression and potential interactions between the transcriptional units. In this work, non-amplified and amplified isoform sequencing protocols were used to characterize the poly(A+) fraction of the lytic transcriptome of PRV, with the aim of a complete transcriptional annotation of the viral genes. The analyses revealed a previously unrecognized complexity of the PRV transcriptome including the discovery of novel protein-coding and non-coding genes, novel mono- and polycistronic transcription units, as well as extensive transcriptional overlaps between neighboring and distal genes. This study identified non-coding transcripts overlapping all three replication origins of the PRV, which might play a role in the control of DNA synthesis. We additionally established the relative expression levels of gene products. Our investigations revealed that the whole PRV genome is utilized for transcription, including both DNA strands in all coding and intergenic regions. The genome-wide occurrence of transcript overlaps suggests a crosstalk between genes through a network formed by interacting transcriptional machineries with a potential function in the control of gene expression. PMID:27685795

  4. Antisense-mediated FLC transcriptional repression requires the P-TEFb transcription elongation factor

    PubMed Central

    Wang, Zhi-Wei; Wu, Zhe; Raitskin, Oleg; Sun, Qianwen; Dean, Caroline

    2014-01-01

    The functional significance of noncoding transcripts is currently a major question in biology. We have been studying the function of a set of antisense transcripts called COOLAIR that encompass the whole transcription unit of the Arabidopsis floral repressor FLOWERING LOCUS C (FLC). Alternative polyadenylation of COOLAIR transcripts correlates with different FLC sense expression states. Suppressor mutagenesis aimed at understanding the importance of this sense–antisense transcriptional circuitry has identified a role for Arabidopsis cyclin-dependent kinase C (CDKC;2) in FLC repression. CDKC;2 functions in an Arabidopsis positive transcription elongation factor b (P-TEFb) complex and influences global RNA polymerase II (Pol II) Ser2 phosphorylation levels. CDKC;2 activity directly promotes COOLAIR transcription but does not affect an FLC transgene missing the COOLAIR promoter. In the endogenous gene context, however, the reduction of COOLAIR transcription by cdkc;2 disrupts a COOLAIR-mediated repression mechanism that increases FLC expression. This disruption then feeds back to indirectly increase COOLAIR expression. This tight interconnection between sense and antisense transcription, together with differential promoter sensitivity to P-TEFb, is central to quantitative regulation of this important floral repressor gene. PMID:24799695

  5. Microprocessor mediates transcriptional termination of long noncoding RNA transcripts hosting microRNAs.

    PubMed

    Dhir, Ashish; Dhir, Somdutta; Proudfoot, Nick J; Jopling, Catherine L

    2015-04-01

    MicroRNAs (miRNAs) play a major part in the post-transcriptional regulation of gene expression. Mammalian miRNA biogenesis begins with cotranscriptional cleavage of RNA polymerase II (Pol II) transcripts by the Microprocessor complex. Although most miRNAs are located within introns of protein-coding transcripts, a substantial minority of miRNAs originate from long noncoding (lnc) RNAs, for which transcript processing is largely uncharacterized. We show, by detailed characterization of liver-specific lnc-pri-miR-122 and genome-wide analysis in human cell lines, that most lncRNA transcripts containing miRNAs (lnc-pri-miRNAs) do not use the canonical cleavage-and-polyadenylation pathway but instead use Microprocessor cleavage to terminate transcription. Microprocessor inactivation leads to extensive transcriptional readthrough of lnc-pri-miRNA and transcriptional interference with downstream genes. Consequently we define a new RNase III-mediated, polyadenylation-independent mechanism of Pol II transcription termination in mammalian cells.

  6. An overview on transcriptional regulators in Streptomyces.

    PubMed

    Romero-Rodríguez, Alba; Robledo-Casados, Ivonne; Sánchez, Sergio

    2015-08-01

    Streptomyces are Gram-positive microorganisms able to adapt and respond to different environmental conditions. It is the largest genus of Actinobacteria comprising over 900 species. During their lifetime, these microorganisms are able to differentiate, produce aerial mycelia and secondary metabolites. All of these processes are controlled by subtle and precise regulatory systems. Regulation at the transcriptional initiation level is probably the most common for metabolic adaptation in bacteria. In this mechanism, the major players are proteins named transcription factors (TFs), capable of binding DNA in order to repress or activate the transcription of specific genes. Some of the TFs exert their action just like activators or repressors, whereas others can function in both manners, depending on the target promoter. Generally, TFs achieve their effects by using one- or two-component systems, linking a specific type of environmental stimulus to a transcriptional response. After DNA sequencing, many streptomycetes have been found to have chromosomes ranging between 6 and 12Mb in size, with high GC content (around 70%). They encode for approximately 7000 to 10,000 genes, 50 to 100 pseudogenes and a large set (around 12% of the total chromosome) of regulatory genes, organized in networks, controlling gene expression in these bacteria. Among the sequenced streptomycetes reported up to now, the number of transcription factors ranges from 471 to 1101. Among these, 315 to 691 correspond to transcriptional regulators and 31 to 76 are sigma factors. The aim of this work is to give a state of the art overview on transcription factors in the genus Streptomyces.

  7. Transcriptional Control of the TNF Gene

    PubMed Central

    Falvo, James V.; Tsytsykova, Alla V.; Goldfeld, Anne E.

    2016-01-01

    The cytokine TNF is a critical mediator of immune and inflammatory responses. The TNF gene is an immediate early gene, rapidly transcribed in a variety of cell types following exposure to a broad range of pathogens and signals of inflammation and stress. Regulation of TNF gene expression at the transcriptional level is cell type- and stimulus-specific, involving the recruitment of distinct sets of transcription factors to a compact and modular promoter region. In this review, we describe our current understanding of the mechanisms through which TNF transcription is specifically activated by a variety of extracellular stimuli in multiple cell types, including T cells, B cells, macrophages, mast cells, dendritic cells, and fibroblasts. We discuss the role of nuclear factor of activated T cells and other transcription factors and coactivators in enhanceosome formation, as well as the contradictory evidence for a role for nuclear factor κB as a classical activator of the TNF gene. We describe the impact of evolutionarily conserved cis-regulatory DNA motifs in the TNF locus upon TNF gene transcription, in contrast to the neutral effect of single nucleotide polymorphisms. We also assess the regulatory role of chromatin organization, epigenetic modifications, and long-range chromosomal interactions at the TNF locus. PMID:20173386

  8. Characterization of Novel Transcripts in Pseudorabies Virus

    PubMed Central

    Tombácz, Dóra; Csabai, Zsolt; Oláh, Péter; Havelda, Zoltán; Sharon, Donald; Snyder, Michael; Boldogkői, Zsolt

    2015-01-01

    In this study we identified two 3′-coterminal RNA molecules in the pseudorabies virus. The highly abundant short transcript (CTO-S) proved to be encoded between the ul21 and ul22 genes in close vicinity of the replication origin (OriL) of the virus. The less abundant long RNA molecule (CTO-L) is a transcriptional readthrough product of the ul21 gene and overlaps OriL. These polyadenylated RNAs were characterized by ascertaining their nucleotide sequences with the Illumina HiScanSQ and Pacific Biosciences Real-Time (PacBio RSII) sequencing platforms and by analyzing their transcription kinetics through use of multi-time-point Real-Time RT-PCR and the PacBio RSII system. It emerged that transcription of the CTOs is fully dependent on the viral transactivator protein IE180 and CTO-S is not a microRNA precursor. We propose an interaction between the transcription and replication machineries at this genomic location, which might play an important role in the regulation of DNA synthesis. PMID:26008709

  9. Transcription of foreign DNA in Escherichia coli.

    PubMed

    Warren, René L; Freeman, John D; Levesque, Roger C; Smailus, Duane E; Flibotte, Stephane; Holt, Robert A

    2008-11-01

    Propagation of heterologous DNA in E. coli host cells is central to molecular biology. DNA constructs are often engineered for expression of recombinant protein in E. coli, but the extent of incidental transcription arising from natural regulatory sequences in cloned DNA remains underexplored. Here, we have used programmable microarrays and RT-PCR to measure, comprehensively, the transcription of H. influenzae, P. aeruginosa, and human DNA propagating in E. coli as bacterial artificial chromosomes. We find evidence that at least half of all H. influenzae genes are transcribed in E. coli. Highly transcribed genes are principally involved in energy metabolism, and their proximal promoter regions are significantly enriched with E. coli sigma(70) (also known as RpoD) binding sites. H. influenzae genes acquired from an ancient bacteriophage Mu insertion are also highly transcribed. Compared with H. influenzae, a smaller proportion of P. aeruginosa genes are transcribed in E. coli, and in E. coli there is punctuated transcription of human DNA. The presence of foreign DNA in E. coli disturbs the host transcriptional profile, with expression of the E. coli phage shock protein operon and the flagellar gene cluster being particularly strongly up-regulated. While cross-species transcriptional activation is expected to be enabling for horizontal gene transfer in bacteria, incidental expression of toxic genes can be problematic for DNA cloning. Ongoing characterization of cross-expression will help inform the design of biosynthetic gene clusters and synthetic microbial genomes.

  10. Transcription factors make a turn into migration

    PubMed Central

    2009-01-01

    The formation of the brain depends on a tightly regulated process of proliferation, neuronal fate specification and migration which eventually leads to the final architecture of the cerebral cortex. The specification of different neuronal subtypes depends on a complex developmental program mastered by several transcription factors. Besides, it was shown that the same transcription factors can subsequently control neural migration. However, the mechanisms of this regulation are still unclear. Two papers recently published by Heng et al.1 and Nóbrega-Pereira et al.2 confirm that these transcription factors are involved in controlling neural migration. In addition, these studies show that these transcription factors can control neural migration via different molecular mechanisms: Heng and coworkers show that Neurogenin 2 controls neural migration by directly regulating the expression of the small GTPase Rnd2 (a modulator of cytoskeletal dynamics); whereas Nóbrega-Pereira and colleagues demonstrate that Nkx2-1 establishes the response to guidance cues, in migrating interneurons, by directly regulating the expression of the semaphorin receptor Neuropilin 2. Taken together, these findings support the idea that transcription factors are reused during development to control neural migration and they shed light on the molecular mechanisms underlying this regulation. PMID:19262164

  11. Identifying Novel Transcriptional Regulators with Circadian Expression

    PubMed Central

    Schick, Sandra; Thakurela, Sudhir; Fournier, David; Hampel, Mareike Hildegard

    2015-01-01

    Organisms adapt their physiology and behavior to the 24-h day-night cycle to which they are exposed. On a cellular level, this is regulated by intrinsic transcriptional-translational feedback loops that are important for maintaining the circadian rhythm. These loops are organized by members of the core clock network, which further regulate transcription of downstream genes, resulting in their circadian expression. Despite progress in understanding circadian gene expression, only a few players involved in circadian transcriptional regulation, including transcription factors, epigenetic regulators, and long noncoding RNAs, are known. Aiming to discover such genes, we performed a high-coverage transcriptome analysis of a circadian time course in murine fibroblast cells. In combination with a newly developed algorithm, we identified many transcription factors, epigenetic regulators, and long intergenic noncoding RNAs that are cyclically expressed. In addition, a number of these genes also showed circadian expression in mouse tissues. Furthermore, the knockdown of one such factor, Zfp28, influenced the core clock network. Mathematical modeling was able to predict putative regulator-effector interactions between the identified circadian genes and may help for investigations into the gene regulatory networks underlying circadian rhythms. PMID:26644408

  12. Multiple links between transcription and splicing.

    PubMed

    Kornblihtt, Alberto R; de la Mata, Manuel; Fededa, Juan Pablo; Munoz, Manuel J; Nogues, Guadalupe

    2004-10-01

    Transcription and pre-mRNA splicing are extremely complex multimolecular processes that involve protein-DNA, protein-RNA, and protein-protein interactions. Splicing occurs in the close vicinity of genes and is frequently cotranscriptional. This is consistent with evidence that both processes are coordinated and, in some cases, functionally coupled. This review focuses on the roles of cis- and trans-acting factors that regulate transcription, on constitutive and alternative splicing. We also discuss possible functions in splicing of the C-terminal domain (CTD) of the RNA polymerase II (pol II) largest subunit, whose participation in other key pre-mRNA processing reactions (capping and cleavage/polyadenylation) is well documented. Recent evidence indicates that transcriptional elongation and splicing can be influenced reciprocally: Elongation rates control alternative splicing and splicing factors can, in turn, modulate pol II elongation. The presence of transcription factors in the spliceosome and the existence of proteins, such as the coactivator PGC-1, with dual activities in splicing and transcription can explain the links between both processes and add a new level of complexity to the regulation of gene expression in eukaryotes.

  13. Chromatin insulation by a transcriptional activator

    PubMed Central

    Sutter, Nathan B.; Scalzo, David; Fiering, Steven; Groudine, Mark; Martin, David I. K.

    2003-01-01

    In eukaryotic genomes, transcriptionally active regions are interspersed with silent chromatin that may repress genes in its vicinity. Chromatin insulators are elements that can shield a locus from repressive effects of flanking chromatin. Few such elements have been characterized in higher eukaryotes, but transcriptional activating elements are an invariant feature of active loci and have been shown to suppress transgene silencing. Hence, we have assessed the ability of a transcriptional activator to cause chromatin insulation, i.e., to relieve position effects at transgene integration sites in cultured cells. The transgene contained a series of binding sites for the metal-inducible transcriptional activator MTF, linked to a GFP reporter. Clones carrying single integrated transgenes were derived without selection for expression, and in most clones the transgene was silent. Induction of MTF resulted in transition of the transgene from the silent to the active state, prolongation of the active state, and a marked narrowing of the range of expression levels at different genomic sites. At one genomic site, prolonged induction of MTF resulted in suppression of transgene silencing that persisted after withdrawal of the induction stimulus. These results are consistent with MTF acting as a chromatin insulator and imply that transcriptional activating elements can insulate active loci against chromatin repression. PMID:12547916

  14. The evolution of transcriptional regulation in eukaryotes

    NASA Technical Reports Server (NTRS)

    Wray, Gregory A.; Hahn, Matthew W.; Abouheif, Ehab; Balhoff, James P.; Pizer, Margaret; Rockman, Matthew V.; Romano, Laura A.

    2003-01-01

    Gene expression is central to the genotype-phenotype relationship in all organisms, and it is an important component of the genetic basis for evolutionary change in diverse aspects of phenotype. However, the evolution of transcriptional regulation remains understudied and poorly understood. Here we review the evolutionary dynamics of promoter, or cis-regulatory, sequences and the evolutionary mechanisms that shape them. Existing evidence indicates that populations harbor extensive genetic variation in promoter sequences, that a substantial fraction of this variation has consequences for both biochemical and organismal phenotype, and that some of this functional variation is sorted by selection. As with protein-coding sequences, rates and patterns of promoter sequence evolution differ considerably among loci and among clades for reasons that are not well understood. Studying the evolution of transcriptional regulation poses empirical and conceptual challenges beyond those typically encountered in analyses of coding sequence evolution: promoter organization is much less regular than that of coding sequences, and sequences required for the transcription of each locus reside at multiple other loci in the genome. Because of the strong context-dependence of transcriptional regulation, sequence inspection alone provides limited information about promoter function. Understanding the functional consequences of sequence differences among promoters generally requires biochemical and in vivo functional assays. Despite these challenges, important insights have already been gained into the evolution of transcriptional regulation, and the pace of discovery is accelerating.

  15. Epigenetic regulation of transcription in intermediate heterochromatin.

    PubMed

    Habu, Yoshiki; Mathieu, Olivier; Tariq, Muhammad; Probst, Aline V; Smathajitt, Chotika; Zhu, Tong; Paszkowski, Jerzy

    2006-12-01

    Constitutive heterochromatin is a compact, transcriptionally inert structure formed in gene-poor and repeat- and transposon-rich regions. In Arabidopsis, constitutive heterochromatin is characterized by hypermethylated DNA and histone H3 dimethylated at lysine (K) 9 (H3K9me2) together with depletion of histone H3 dimethylated at lysine 4 (H3K4me2). Here, we describe loci with intermediate properties of heterochromatin in which transcription downregulation is inherited in a manner similar to constitutive heterochromatin, although the loci are associated with opposing histone marks--H3K4me2 and H3K9me2. In the ddm1 (decrease in DNA methylation 1) mutants, their transcriptional activation is accompanied by the expected shift in the H3 modifications--depletion of H3K9me2 and enrichment in H3K4me2. In mom1 (Morpheus' molecule 1) mutants, however, a marked increase in transcription is not accompanied by detectable changes in the levels of H3K4me2 and H3K9me2. Therefore, transcriptional regulation in the intermediate heterochromatin involves two distinct epigenetic mechanisms. Interestingly, silent transgenic inserts seem to acquire properties characteristic of the intermediate heterochromatin.

  16. Beyond Transcription Factors: The Role of Chromatin Modifying Enzymes in Regulating Transcription Required for Memory

    ERIC Educational Resources Information Center

    Barrett, Ruth M.; Wood, Marcelo A.

    2008-01-01

    One of the alluring aspects of examining chromatin modifications in the role of modulating transcription required for long-term memory processes is that these modifications may provide transient and potentially stable epigenetic marks in the service of activating and/or maintaining transcriptional processes. These, in turn, may ultimately…

  17. Falling for the dark side of transcription: Nab2 fosters RNA polymerase III transcription

    PubMed Central

    Reuter, L. Maximilian; Sträßer, Katja

    2016-01-01

    ABSTRACT RNA polymerase III (RNAPIII) synthesizes diverse, small, non-coding RNAs with many important roles in the cellular metabolism. One of the open questions of RNAPIII transcription is whether and how additional factors are involved. Recently, Nab2 was identified as the first messenger ribonucleoprotein particle (mRNP) biogenesis factor with a function in RNAPIII transcription. PMID:27049816

  18. Identification of the Transformational Properties and Transcriptional Targets of the Oncogenic SRY Transcription Factor SOX4

    DTIC Science & Technology

    2008-01-01

    Scharer, C.D. McCabe, M. Ali-Seyed, M.F. Berger, M.L. Bulyk, and C.S. Moreno. Genome-wide Location Analysis of the SOX4 Transcriptional Network in...analysis showing the biological function of SOX4 target genes. (B) Ingenuity Pathway Assist analysis showing SOX4�s transcriptional network . Christopher

  19. 12 CFR 261b.11 - Transcripts, recordings, and minutes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... transcription thereof adequate to record fully the proceedings of each meeting or portion of a meeting closed to...)(ii) of § 261b.5 of this part. Transcriptions of recordings will disclose the identity of each speaker. (b) The agency will maintain either such a transcript, recording or transcription thereof, or a...

  20. 12 CFR 261b.11 - Transcripts, recordings, and minutes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... transcription thereof adequate to record fully the proceedings of each meeting or portion of a meeting closed to...)(ii) of § 261b.5 of this part. Transcriptions of recordings will disclose the identity of each speaker. (b) The agency will maintain either such a transcript, recording or transcription thereof, or a...

  1. 12 CFR 261b.11 - Transcripts, recordings, and minutes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... transcription thereof adequate to record fully the proceedings of each meeting or portion of a meeting closed to...)(ii) of § 261b.5 of this part. Transcriptions of recordings will disclose the identity of each speaker. (b) The agency will maintain either such a transcript, recording or transcription thereof, or a...

  2. 5 CFR 1632.10 - Transcripts, recordings, and minutes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 3 2013-01-01 2013-01-01 false Transcripts, recordings, and minutes... REGARDING PUBLIC OBSERVATION OF MEETINGS § 1632.10 Transcripts, recordings, and minutes. (a) The Board will maintain a complete transcript or electronic recording or transcription thereof adequate to record...

  3. A non-bacterial transcription factor inhibits bacterial transcription by a multipronged mechanism.

    PubMed

    Sheppard, Carol; James, Ellen; Barton, Geraint; Matthews, Stephen; Severinov, Konstantin; Wigneshweraraj, Sivaramesh

    2013-04-01

    The process of transcription initiation is the major target for regulation of gene expression in bacteria and is performed by a multi-subunit RNA polymerase enzyme (RNAp). A complex network of regulatory elements controls the activity of the RNAp to fine-tune transcriptional output. Thus, RNAp is a nexus for controlling bacterial gene expression at the transcription level. Many bacteriophages, viruses that infect bacteria, encode transcription factors that specifically target and modulate the activity of the host RNAp and, thereby, facilitate the acquisition of the host bacteria by the phage. Here, we describe the modus operandi of a T7 bacteriophage-encoded small protein called Gp2 and define Gp2 as a non-bacterial regulator of bacterial transcription.

  4. Transcriptional repression of BODENLOS by HD-ZIP transcription factor HB5 in Arabidopsis thaliana

    PubMed Central

    De Smet, Ive; Lau, Steffen; Ehrismann, Jasmin S.; Axiotis, Ioannis; Kolb, Martina; Kientz, Marika; Weijers, Dolf; Jürgens, Gerd

    2013-01-01

    In Arabidopsis thaliana, the phytohormone auxin is an important patterning agent during embryogenesis and post-embryonic development, exerting effects through transcriptional regulation. The main determinants of the transcriptional auxin response machinery are AUXIN RESPONSE FACTOR (ARF) transcription factors and AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) inhibitors. Although members of these two protein families are major developmental regulators, the transcriptional regulation of the genes encoding them has not been well explored. For example, apart from auxin-linked regulatory inputs, factors regulating the expression of the AUX/IAA BODENLOS (BDL)/IAA12 are not known. Here, it was shown that the HOMEODOMAIN-LEUCINE ZIPPER (HD-ZIP) transcription factor HOMEOBOX PROTEIN 5 (HB5) negatively regulates BDL expression, which may contribute to the spatial control of BDL expression. As such, HB5 and probably other class I HD-ZIP proteins, appear to modulate BDL-dependent auxin response. PMID:23682118

  5. Quantitatively predictable control of Drosophila transcriptional enhancers in vivo with engineered transcription factors.

    PubMed

    Crocker, Justin; Ilsley, Garth R; Stern, David L

    2016-03-01

    Genes are regulated by transcription factors that bind to regions of genomic DNA called enhancers. Considerable effort is focused on identifying transcription factor binding sites, with the goal of predicting gene expression from DNA sequence. Despite this effort, general, predictive models of enhancer function are currently lacking. Here we combine quantitative models of enhancer function with manipulations using engineered transcription factors to examine the extent to which enhancer function can be controlled in a quantitatively predictable manner. Our models, which incorporate few free parameters, can accurately predict the contributions of ectopic transcription factor inputs. These models allow the predictable 'tuning' of enhancers, providing a framework for the quantitative control of enhancers with engineered transcription factors.

  6. The transcriptional repressor Hes1 attenuates inflammation via regulating transcriptional elongation

    PubMed Central

    Shang, Yingli; Coppo, Maddalena; He, Teng; Ning, Fei; Yu, Li; Kang, Lan; Zhang, Bin; Ju, Chanyang; Qiao, Yu; Zhao, Baohong; Gessler, Manfred; Rogatsky, Inez; Hu, Xiaoyu

    2016-01-01

    Most of the known regulatory mechanisms that curb inflammatory gene expression target pre-transcription initiation steps and evidence for regulation of inflammatory gene expression post initiation remains scarce. Here we show that transcription repressor hairy and enhancer of split 1 (Hes1) suppresses production of CXCL1, a chemokine crucial for recruiting neutrophils. Hes1 negatively regulates neutrophil recruitment in vivo in a manner that is dependent on macrophage-produced CXCL1 and attenuates severity of inflammatory arthritis. Mechanistically, inhibition of Cxcl1 expression by Hes1 does not involve modification of transcription initiation. Instead, Hes1 inhibits signal-induced recruitment of positive transcription elongation complex P-TEFb, thereby preventing phosphorylation of RNA polymerase II on serine-2 and productive elongation. Thus, our results identify Hes1 as a homeostatic suppressor of inflammatory responses which exerts its suppressive function by regulating transcription elongation. PMID:27322654

  7. Widespread anti-sense transcription in apple is correlated with siRNA production and indicates a large potential for transcriptional and/or post-transcriptional control.

    PubMed

    Celton, Jean-Marc; Gaillard, Sylvain; Bruneau, Maryline; Pelletier, Sandra; Aubourg, Sébastien; Martin-Magniette, Marie-Laure; Navarro, Lionel; Laurens, François; Renou, Jean-Pierre

    2014-07-01

    Characterizing the transcriptome of eukaryotic organisms is essential for studying gene regulation and its impact on phenotype. The realization that anti-sense (AS) and noncoding RNA transcription is pervasive in many genomes has emphasized our limited understanding of gene transcription and post-transcriptional regulation. Numerous mechanisms including convergent transcription, anti-correlated expression of sense and AS transcripts, and RNAi remain ill-defined. Here, we have combined microarray analysis and high-throughput sequencing of small RNAs (sRNAs) to unravel the complexity of transcriptional and potential post-transcriptional regulation in eight organs of apple (Malus × domestica). The percentage of AS transcript expression is higher than that identified in annual plants such as rice and Arabidopsis thaliana. Furthermore, we show that a majority of AS transcripts are transcribed beyond 3'UTR regions, and may cover a significant portion of the predicted sense transcripts. Finally we demonstrate at a genome-wide scale that anti-sense transcript expression is correlated with the presence of both short (21-23 nt) and long (> 30 nt) siRNAs, and that the sRNA coverage depth varies with the level of AS transcript expression. Our study provides a new insight on the functional role of anti-sense transcripts at the genome-wide level, and a new basis for the understanding of sRNA biogenesis in plants.

  8. Hey bHLH transcription factors.

    PubMed

    Weber, David; Wiese, Cornelia; Gessler, Manfred

    2014-01-01

    Hey bHLH transcription factors are direct targets of canonical Notch signaling. The three mammalian Hey proteins are closely related to Hes proteins and they primarily repress target genes by either directly binding to core promoters or by inhibiting other transcriptional activators. Individual candidate gene approaches and systematic screens identified a number of Hey target genes, which often encode other transcription factors involved in various developmental processes. Here, we review data on interaction partners and target genes and conclude with a model for Hey target gene regulation. Furthermore, we discuss how expression of Hey proteins affects processes like cell fate decisions and differentiation, e.g., in cardiovascular, skeletal, and neural development or oncogenesis and how this relates to the observed developmental defects and phenotypes observed in various knockout mice.

  9. Switching on cilia: transcriptional networks regulating ciliogenesis.

    PubMed

    Choksi, Semil P; Lauter, Gilbert; Swoboda, Peter; Roy, Sudipto

    2014-04-01

    Cilia play many essential roles in fluid transport and cellular locomotion, and as sensory hubs for a variety of signal transduction pathways. Despite having a conserved basic morphology, cilia vary extensively in their shapes and sizes, ultrastructural details, numbers per cell, motility patterns and sensory capabilities. Emerging evidence indicates that this diversity, which is intimately linked to the different functions that cilia perform, is in large part programmed at the transcriptional level. Here, we review our understanding of the transcriptional control of ciliary biogenesis, highlighting the activities of FOXJ1 and the RFX family of transcriptional regulators. In addition, we examine how a number of signaling pathways, and lineage and cell fate determinants can induce and modulate ciliogenic programs to bring about the differentiation of distinct cilia types.

  10. A continuum model of transcriptional bursting

    PubMed Central

    Corrigan, Adam M; Tunnacliffe, Edward; Cannon, Danielle; Chubb, Jonathan R

    2016-01-01

    Transcription occurs in stochastic bursts. Early models based upon RNA hybridisation studies suggest bursting dynamics arise from alternating inactive and permissive states. Here we investigate bursting mechanism in live cells by quantitative imaging of actin gene transcription, combined with molecular genetics, stochastic simulation and probabilistic modelling. In contrast to early models, our data indicate a continuum of transcriptional states, with a slowly fluctuating initiation rate converting the gene between different levels of activity, interspersed with extended periods of inactivity. We place an upper limit of 40 s on the lifetime of fluctuations in elongation rate, with initiation rate variations persisting an order of magnitude longer. TATA mutations reduce the accessibility of high activity states, leaving the lifetime of on- and off-states unchanged. A continuum or spectrum of gene states potentially enables a wide dynamic range for cell responses to stimuli. DOI: http://dx.doi.org/10.7554/eLife.13051.001 PMID:26896676

  11. Transcription as a Threat to Genome Integrity.

    PubMed

    Gaillard, Hélène; Aguilera, Andrés

    2016-06-02

    Genomes undergo different types of sporadic alterations, including DNA damage, point mutations, and genome rearrangements, that constitute the basis for evolution. However, these changes may occur at high levels as a result of cell pathology and trigger genome instability, a hallmark of cancer and a number of genetic diseases. In the last two decades, evidence has accumulated that transcription constitutes an important natural source of DNA metabolic errors that can compromise the integrity of the genome. Transcription can create the conditions for high levels of mutations and recombination by its ability to open the DNA structure and remodel chromatin, making it more accessible to DNA insulting agents, and by its ability to become a barrier to DNA replication. Here we review the molecular basis of such events from a mechanistic perspective with particular emphasis on the role of transcription as a genome instability determinant.

  12. Transcriptional Regulatory Elements in Fungal Secondary Metabolism

    PubMed Central

    Yin, Wenbing; Keller, Nancy P.

    2013-01-01

    Filamentous fungi produce a variety of secondary metabolites of diverse beneficial and detrimental activities to humankind. The genes encoding the enzymatic machinery required to make these metabolites are typically clustered in fungal genomes. There is considerable evidence that secondary metabolite gene regulation is, in part, by transcriptional control through hierarchical levels of transcriptional regulatory elements involved in secondary metabolite cluster regulation. Identification of secondary metabolism regulatory elements could potentially provide a means of increasing production of beneficial metabolites, decreasing production of detrimental metabolites, aid in the identification of ‘silent’ natural products and also contribute to a broader understanding of molecular mechanisms by which secondary metabolites are produced. This review summarizes regulation of secondary metabolism associated on transcriptional regulatory elements from a broad view as well as tremendous advances in discovery of cryptic or novel secondary metabolites by genomic mining in the basis of this knowledge. PMID:21717315

  13. Full transcription of the chloroplast genome in photosynthetic eukaryotes

    PubMed Central

    Shi, Chao; Wang, Shuo; Xia, En-Hua; Jiang, Jian-Jun; Zeng, Fan-Chun; Gao, Li-Zhi

    2016-01-01

    Prokaryotes possess a simple genome transcription system that is different from that of eukaryotes. In chloroplasts (plastids), it is believed that the prokaryotic gene transcription features govern genome transcription. However, the polycistronic operon transcription model cannot account for all the chloroplast genome (plastome) transcription products at whole-genome level, especially regarding various RNA isoforms. By systematically analyzing transcriptomes of plastids of algae and higher plants, and cyanobacteria, we find that the entire plastome is transcribed in photosynthetic green plants, and that this pattern originated from prokaryotic cyanobacteria — ancestor of the chloroplast genomes that diverged about 1 billion years ago. We propose a multiple arrangement transcription model that multiple transcription initiations and terminations combine haphazardly to accomplish the genome transcription followed by subsequent RNA processing events, which explains the full chloroplast genome transcription phenomenon and numerous functional and/or aberrant pre-RNAs. Our findings indicate a complex prokaryotic genome regulation when processing primary transcripts. PMID:27456469

  14. Transcriptional Control of Somatic Cell Reprogramming.

    PubMed

    Xu, Yan; Zhang, Meng; Li, Wenjuan; Zhu, Xihua; Bao, Xichen; Qin, Baoming; Hutchins, Andrew P; Esteban, Miguel A

    2016-04-01

    Somatic cells and pluripotent cells display remarkable differences in most aspects of cell function. Accordingly, somatic cell reprogramming by exogenous factors requires comprehensive changes in gene transcription to induce a forced pluripotent state, which is encompassed by a simultaneous transformation of the epigenome. Nevertheless, how the reprogramming factors and other endogenous regulators coordinate to suppress the somatic cell gene program and activate the pluripotency gene network, and why the conversion is multi-phased and lengthy, remain enigmatic. We summarize the current knowledge of transcriptional regulation in somatic cell reprogramming, and highlight new perspectives that may help to reshape existing paradigms.

  15. Transcriptional networks leading to symbiotic nodule organogenesis.

    PubMed

    Soyano, Takashi; Hayashi, Makoto

    2014-08-01

    The symbiosis with nitrogen-fixing bacteria leading to root nodules is a relatively recent evolutionary innovation and limited to a distinct order of land plants. It has long been a mystery how plants have invented this complex trait. However, recent advances in molecular genetics of model legumes has elucidated genes involved in the development of root nodules, providing insights into this process. Here we discuss how the de novo assembly of transcriptional networks may account for the predisposition to nodulate. Transcriptional networks and modes of gene regulation from the arbuscular mycorrhizal symbiosis, nitrate responses and aspects of lateral root development have likely all contributed to the emergence and development of root nodules.

  16. Transcription, translation and fragile X syndrome.

    PubMed

    Garber, Kathryn; Smith, Karen T; Reines, Danny; Warren, Stephen T

    2006-06-01

    The fragile X mental retardation protein (FMRP) plays a role in the control of local protein synthesis in the dendrites. Loss of its production in fragile X syndrome is associated with transcriptional dysregulation of the gene. Recent work demonstrates that Sp1 and NRF1 transcriptionally control this gene. Other studies reveal how the microRNA pathway and signaling are related to FMRP function through the metabotropic glutamate receptor. These studies provide new insights through which we can better understand the inactivation of the FMR1 gene and, in turn, the consequence of FMRP loss.

  17. Transcription by RNA polymerases I and III

    PubMed Central

    Paule, Marvin R.; White, Robert J.

    2000-01-01

    The task of transcribing nuclear genes is shared between three RNA polymerases in eukaryotes: RNA polymerase (pol) I synthesises the large rRNA, pol II synthesises mRNA and pol III synthesises tRNA and 5S rRNA. Although pol II has received most attention, pol I and pol III are together responsible for the bulk of transcriptional activity. This survey will summarise what is known about the process of transcription by pol I and pol III, how it happens and the proteins involved. Attention will be drawn to the similarities between the three nuclear RNA polymerase systems and also to their differences. PMID:10684922

  18. Intron Delays and Transcriptional Timing during Development

    PubMed Central

    Swinburne, Ian A.; Silver, Pamela A.

    2010-01-01

    The time taken to transcribe most metazoan genes is significant because of the substantial length of introns. Developmentally regulated gene networks, where timing and dynamic patterns of expression are critical, may be particularly sensitive to intron delays. We revisit and comment on a perspective last presented by Thummel 16 years ago: transcriptional delays may contribute to timing mechanisms during development. We discuss the presence of intron delays in genetic networks. We consider how delays can impact particular moments during development, which mechanistic attributes of transcription can influence them, how they can be modeled, and how they can be studied using recent technological advances as well as classical genetics. PMID:18331713

  19. SWItching on the transcriptional circuitry in melanoma.

    PubMed

    Vinod Saladi, Srinivas; Marathe, Himangi; de la Serna, Ivana L

    2010-08-16

    Melanoma is an aggressive malignancy that is resistant to current therapy, and the most lethal of all human skin cancers. It is characterized by several genetic alterations that lead to changes in gene expression and tumorigenesis by triggering alterations in the normal transcriptional circuitry. Transformation and tumor progression are thought to be promoted by a complex interplay between the accumulation of genetic alterations and epigenetic changes. In this review, we discuss recent studies that have implicated SWI/SNF chromatin remodeling enzymes as epigenetic regulators of a transcriptional circuit that operates within the context the genetic alterations that frequently occur in melanoma.

  20. Characteristics of post-transcriptional gene silencing.

    PubMed

    Chicas, A; Macino, G

    2001-11-01

    A number of gene silencing phenomena that inactivate genes at the post-transcriptional level have been identified. Due to its potential for studying gene function, post-transcriptional gene silencing (PTGS) has become an intense area of research. In this review we describe the different means of inducing PTGS and discuss the possible biological roles of these artificially induced phenomena. We also discuss other features of PTGS such as the mechanism of mRNA degradation, the nature of the silencing signal and the mechanism of PTGS inhibition by viral proteins.

  1. Characteristics of post-transcriptional gene silencing

    PubMed Central

    Chicas, Agustin; Macino, Giuseppe

    2001-01-01

    A number of gene silencing phenomena that inactivate genes at the post-transcriptional level have been identified. Due to its potential for studying gene function, post-transcriptional gene silencing (PTGS) has become an intense area of research. In this review we describe the different means of inducing PTGS and discuss the possible biological roles of these artificially induced phenomena. We also discuss other features of PTGS such as the mechanism of mRNA degradation, the nature of the silencing signal and the mechanism of PTGS inhibition by viral proteins. PMID:11713190

  2. HIV transcription is induced with cell killing

    SciTech Connect

    Woloschak, G.E.; Schreck, S.; Chang-Liu, Chin-Mei; Panozzo, J.; Libertin, C.R.

    1993-11-01

    In this report, we demonstrate that this induction of HIV-LTR transcription occurs when stably transfected HeLa cells are exposed to agents which mediate cell killing, such as UV radiation, electroporation of sucrose buffer, prolonged heating, and low and high pH. Cells cultured following UV exposure demonstrated a peak in CAT expression that is evident in viable (but not necessarily cell division-competent) cells 24 h after exposure; this inductive response continued until at least 72 h after exposure. HIV-LTR induction was dose-dependent, and the amount of CAT transcription induced was correlated with the amount of cell killing that occurred in the culture.

  3. reSETting chromatin during transcription elongation

    PubMed Central

    Smolle, Michaela; Workman, Jerry L.; Venkatesh, Swaminathan

    2013-01-01

    Maintenance of ordered chromatin structure over the body of genes is vital for the regulation of transcription. Increased access to the underlying DNA sequence results in the recruitment of RNA polymerase II to inappropriate, promoter-like sites within genes, resulting in unfettered transcription. Two new papers show how the Set2-mediated methylation of histone H3 on Lys36 (H3K36me) maintains chromatin structure by limiting histone dynamics over gene bodies, either by recruiting chromatin remodelers that preserve ordered nucleosomal distribution or by lowering the binding affinity of histone chaperones for histones, preventing their removal. PMID:23257840

  4. Investigating the transcriptional control of cardiovascular development

    PubMed Central

    Kathiriya, Irfan S.; Nora, Elphege P.; Bruneau, Benoit G.

    2015-01-01

    Transcriptional regulation of thousands of genes instructs complex morphogenetic and molecular events for heart development. Cardiac transcription factors (TFs) choreograph gene expression at each stage of differentiation by interacting with co-factors, including chromatin-modifying enzymes, and by binding to a constellation of regulatory DNA elements. Here, we present salient examples relevant to cardiovascular development and heart disease and review techniques that can sharpen our understanding of cardiovascular biology. We discuss the interplay between cardiac TFs, cis-regulatory elements and chromatin as dynamic regulatory networks, to orchestrate sequential deployment of the cardiac gene expression program. PMID:25677518

  5. Highly efficient Cas9-mediated transcriptional programming

    DOE PAGES

    Chavez, Alejandro; Scheiman, Jonathan; Vora, Suhani; ...

    2015-03-02

    The RNA-guided nuclease Cas9 can be reengineered as a programmable transcription factor. However, modest levels of gene activation have limited potential applications. Here we describe an improved transcriptional regulator through the rational design of a tripartite activator, VP64-p65-Rta (VPR), fused to nuclease-null Cas9. Here, we demonstrate its utility in activating endogenous coding and non-coding genes, targeting several genes simultaneously and stimulating neuronal differentiation of human induced pluripotent stem cells (iPSCs).

  6. Transcriptional and Epigenetic Mechanisms of Addiction

    PubMed Central

    Robison, Alfred J.; Nestler, Eric J.

    2012-01-01

    Preface Investigations of long-term changes in brain structure and function that accompany chronic exposure to drugs of abuse suggest that alterations in gene regulation contribute importantly to the addictive phenotype. We review multiple mechanisms by which drugs alter the transcriptional potential of genes, from the mobilization or repression of the transcriptional machinery to epigenetics — including alterations in the accessibility of genes within their native chromatin structure and the regulation of gene expression by non-coding RNAs. Increasing evidence implicates these various mechanisms of gene regulation in the lasting changes that drugs of abuse induce in brain, and offer novel inroads for addiction therapy. PMID:21989194

  7. Inactivation of transcription by UV irradiation of T. brucei provides evidence for a multicistronic transcription unit including a VSG gene

    SciTech Connect

    Johnson, P.J.; Kooter, J.M.; Borst, P.

    1987-10-23

    We have used inactivation of transcription by UV irradiation to map transcription units in trypanosomes. The relative inactivation rate of the transcription of mini-exon, 5S, and rRNA genes was inversely proportional to the previously estimated lengths of these transcription units. The telomeric transcription unit containing the gene for variant-specific surface glycoprotein (VSG) 221 was inactivated as a single unit of 60 kb. This long transcription unit comprises at least one other protein-coding gene and yields seven other stable mRNAs. These data thus provide evidence for a multicistronic transcription unit for cellular genes in a eukaryote.

  8. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis.

    PubMed

    Roczniak-Ferguson, Agnes; Petit, Constance S; Froehlich, Florian; Qian, Sharon; Ky, Jennifer; Angarola, Brittany; Walther, Tobias C; Ferguson, Shawn M

    2012-06-12

    Lysosomes are the major cellular site for clearance of defective organelles and digestion of internalized material. Demand on lysosomal capacity can vary greatly, and lysosomal function must be adjusted to maintain cellular homeostasis. Here, we identified an interaction between the lysosome-localized mechanistic target of rapamycin complex 1 (mTORC1) and the transcription factor TFEB (transcription factor EB), which promotes lysosome biogenesis. When lysosomal activity was adequate, mTOR-dependent phosphorylation of TFEB on Ser(211) triggered the binding of 14-3-3 proteins to TFEB, resulting in retention of the transcription factor in the cytoplasm. Inhibition of lysosomal function reduced the mTOR-dependent phosphorylation of TFEB, resulting in diminished interactions between TFEB and 14-3-3 proteins and the translocation of TFEB into the nucleus, where it could stimulate genes involved in lysosomal biogenesis. These results identify TFEB as a target of mTOR and suggest a mechanism for matching the transcriptional regulation of genes encoding proteins of autophagosomes and lysosomes to cellular need. The closely related transcription factors MITF (microphthalmia transcription factor) and TFE3 (transcription factor E3) also localized to lysosomes and accumulated in the nucleus when lysosome function was inhibited, thus broadening the range of physiological contexts under which this regulatory mechanism may prove important.

  9. Theoretical analysis of transcription process with polymerase stalling

    NASA Astrophysics Data System (ADS)

    Li, Jingwei; Zhang, Yunxin

    2015-05-01

    Experimental evidence shows that in gene transcription RNA polymerase has the possibility to be stalled at a certain position of the transcription template. This may be due to the template damage or protein barriers. Once stalled, polymerase may backtrack along the template to the previous nucleotide to wait for the repair of the damaged site, simply bypass the barrier or damaged site and consequently synthesize an incorrect messenger RNA, or degrade and detach from the template. Thus, the effective transcription rate (the rate to synthesize correct product mRNA) and the transcription effectiveness (the ratio of the effective transcription rate to the effective transcription initiation rate) are both influenced by polymerase stalling events. So far, no theoretical model has been given to discuss the gene transcription process including polymerase stalling. In this study, based on the totally asymmetric simple exclusion process, the transcription process including polymerase stalling is analyzed theoretically. The dependence of the effective transcription rate, effective transcription initiation rate, and transcription effectiveness on the transcription initiation rate, termination rate, as well as the backtracking rate, bypass rate, and detachment (degradation) rate when stalling, are discussed in detail. The results showed that backtracking restart after polymerase stalling is an ideal mechanism to increase both the effective transcription rate and the transcription effectiveness. Without backtracking, detachment of stalled polymerase can also help to increase the effective transcription rate and transcription effectiveness. Generally, the increase of the bypass rate of the stalled polymerase will lead to the decrease of the effective transcription rate and transcription effectiveness. However, when both detachment rate and backtracking rate of the stalled polymerase vanish, the effective transcription rate may also be increased by the bypass mechanism.

  10. Theoretical analysis of transcription process with polymerase stalling.

    PubMed

    Li, Jingwei; Zhang, Yunxin

    2015-05-01

    Experimental evidence shows that in gene transcription RNA polymerase has the possibility to be stalled at a certain position of the transcription template. This may be due to the template damage or protein barriers. Once stalled, polymerase may backtrack along the template to the previous nucleotide to wait for the repair of the damaged site, simply bypass the barrier or damaged site and consequently synthesize an incorrect messenger RNA, or degrade and detach from the template. Thus, the effective transcription rate (the rate to synthesize correct product mRNA) and the transcription effectiveness (the ratio of the effective transcription rate to the effective transcription initiation rate) are both influenced by polymerase stalling events. So far, no theoretical model has been given to discuss the gene transcription process including polymerase stalling. In this study, based on the totally asymmetric simple exclusion process, the transcription process including polymerase stalling is analyzed theoretically. The dependence of the effective transcription rate, effective transcription initiation rate, and transcription effectiveness on the transcription initiation rate, termination rate, as well as the backtracking rate, bypass rate, and detachment (degradation) rate when stalling, are discussed in detail. The results showed that backtracking restart after polymerase stalling is an ideal mechanism to increase both the effective transcription rate and the transcription effectiveness. Without backtracking, detachment of stalled polymerase can also help to increase the effective transcription rate and transcription effectiveness. Generally, the increase of the bypass rate of the stalled polymerase will lead to the decrease of the effective transcription rate and transcription effectiveness. However, when both detachment rate and backtracking rate of the stalled polymerase vanish, the effective transcription rate may also be increased by the bypass mechanism.

  11. Cooperative activation of Xenopus rhodopsin transcription by paired-like transcription factors

    PubMed Central

    2014-01-01

    Background In vertebrates, rod photoreceptor-specific gene expression is regulated by the large Maf and Pax-like transcription factors, Nrl/LNrl and Crx/Otx5. The ubiquitous occurrence of their target DNA binding sites throughout rod-specific gene promoters suggests that multiple transcription factor interactions within the promoter are functionally important. Cooperative action by these transcription factors activates rod-specific genes such as rhodopsin. However, a quantitative mechanistic explanation of transcriptional rate determinants is lacking. Results We investigated the contributions of various paired-like transcription factors and their cognate cis-elements to rhodopsin gene activation using cultured cells to quantify activity. The Xenopus rhodopsin promoter (XOP) has a bipartite structure, with ~200 bp proximal to the start site (RPP) coordinating cooperative activation by Nrl/LNrl-Crx/Otx5 and the adjacent 5300 bp upstream sequence increasing the overall expression level. The synergistic activation by Nrl/LNrl-Crx/Otx5 also occurred when XOP was stably integrated into the genome. We determined that Crx/Otx5 synergistically activated transcription independently and additively through the two Pax-like cis-elements, BAT1 and Ret4, but not through Ret1. Other Pax-like family members, Rax1 and Rax2, do not synergistically activate XOP transcription with Nrl/LNrl and/or Crx/Otx5; rather they act as co-activators via the Ret1 cis-element. Conclusions We have provided a quantitative model of cooperative transcriptional activation of the rhodopsin promoter through interaction of Crx/Otx5 with Nrl/LNrl at two paired-like cis-elements proximal to the NRE and TATA binding site. Further, we have shown that Rax genes act in cooperation with Crx/Otx5 with Nrl/LNrl as co-activators of rhodopsin transcription. PMID:24499263

  12. Homeodomain transcription factors regulate BMP-2-induced osteoactivin transcription in osteoblasts.

    PubMed

    Singh, Maneet; Del Carpio-Cano, Fabiola E; Monroy, M Alexandra; Popoff, Steven N; Safadi, Fayez F

    2012-01-01

    Osteoactivin (OA) is required for the differentiation of osteoblast cells. OA expression is stimulated by bone morphogenetic protein-2 (BMP-2). BMP-2 recruits homeodomain transcription factors Dlx3, Dlx5, and Msx2 to selectively activate or repress transcription of osteogenic genes and hence tightly regulate their transcription during osteoblast differentiation. Considering the key roles of Dlx3, Dlx5, and Msx2 in osteoblast differentiation, here we hypothesize that homeodomain proteins regulate BMP-2-induced OA transcription during osteoblast differentiation. Four classical homeodomain binding sites were identified in the proximal 0.96 kb region of rat OA promoter. Deletions and mutagenesis studies of the OA promoter region indicated that all four homeodomain binding sites are crucial for BMP-2-induced OA promoter activity. Simultaneous disruption of homeodomain binding sites at -852 and -843 of the transcription start site of OA gene significantly decreased the BMP-2-induced OA transcription and inhibited binding of Dlx3, Dlx5, and Msx2 proteins to the OA promoter. Dlx3 and Dlx5 proteins were found to activate the OA transcription, whereas, Msx2 suppressed BMP-2-induced OA transcription. Using chromatin immunoprecipitation assays, we demonstrated that the OA promoter is predominantly occupied by Dlx3 and Dlx5 during the proliferation and matrix maturation stages of osteoblast differentiation, respectively. During the matrix mineralization stage, BMP-2 robustly enhanced the recruitment of Dlx5 and to a lesser extent of Dlx3 and Msx2 to the OA promoter region. Collectively, our results show that the BMP-2-induced OA transcription is differentially regulated by Dlx3, Dlx5, and Msx2 during osteoblast differentiation.

  13. A compendium of nucleosome and transcript profiles reveals determinants of chromatin architecture and transcription.

    PubMed

    van Bakel, Harm; Tsui, Kyle; Gebbia, Marinella; Mnaimneh, Sanie; Hughes, Timothy R; Nislow, Corey

    2013-05-01

    Nucleosomes in all eukaryotes examined to date adopt a characteristic architecture within genes and play fundamental roles in regulating transcription, yet the identity and precise roles of many of the trans-acting factors responsible for the establishment and maintenance of this organization remain to be identified. We profiled a compendium of 50 yeast strains carrying conditional alleles or complete deletions of genes involved in transcriptional regulation, histone biology, and chromatin remodeling, as well as compounds that target transcription and histone deacetylases, to assess their respective roles in nucleosome positioning and transcription. We find that nucleosome patterning in genes is affected by many factors, including the CAF-1 complex, Spt10, and Spt21, in addition to previously reported remodeler ATPases and histone chaperones. Disruption of these factors or reductions in histone levels led genic nucleosomes to assume positions more consistent with their intrinsic sequence preferences, with pronounced and specific shifts of the +1 nucleosome relative to the transcription start site. These shifts of +1 nucleosomes appear to have functional consequences, as several affected genes in Ino80 mutants exhibited altered expression responses. Our parallel expression profiling compendium revealed extensive transcription changes in intergenic and antisense regions, most of which occur in regions with altered nucleosome occupancy and positioning. We show that the nucleosome-excluding transcription factors Reb1, Abf1, Tbf1, and Rsc3 suppress cryptic transcripts at their target promoters, while a combined analysis of nucleosome and expression profiles identified 36 novel transcripts that are normally repressed by Tup1/Cyc8. Our data confirm and extend the roles of chromatin remodelers and chaperones as major determinants of genic nucleosome positioning, and these data provide a valuable resource for future studies.

  14. A Compendium of Nucleosome and Transcript Profiles Reveals Determinants of Chromatin Architecture and Transcription

    PubMed Central

    van Bakel, Harm; Tsui, Kyle; Gebbia, Marinella; Mnaimneh, Sanie; Hughes, Timothy R.; Nislow, Corey

    2013-01-01

    Nucleosomes in all eukaryotes examined to date adopt a characteristic architecture within genes and play fundamental roles in regulating transcription, yet the identity and precise roles of many of the trans-acting factors responsible for the establishment and maintenance of this organization remain to be identified. We profiled a compendium of 50 yeast strains carrying conditional alleles or complete deletions of genes involved in transcriptional regulation, histone biology, and chromatin remodeling, as well as compounds that target transcription and histone deacetylases, to assess their respective roles in nucleosome positioning and transcription. We find that nucleosome patterning in genes is affected by many factors, including the CAF-1 complex, Spt10, and Spt21, in addition to previously reported remodeler ATPases and histone chaperones. Disruption of these factors or reductions in histone levels led genic nucleosomes to assume positions more consistent with their intrinsic sequence preferences, with pronounced and specific shifts of the +1 nucleosome relative to the transcription start site. These shifts of +1 nucleosomes appear to have functional consequences, as several affected genes in Ino80 mutants exhibited altered expression responses. Our parallel expression profiling compendium revealed extensive transcription changes in intergenic and antisense regions, most of which occur in regions with altered nucleosome occupancy and positioning. We show that the nucleosome-excluding transcription factors Reb1, Abf1, Tbf1, and Rsc3 suppress cryptic transcripts at their target promoters, while a combined analysis of nucleosome and expression profiles identified 36 novel transcripts that are normally repressed by Tup1/Cyc8. Our data confirm and extend the roles of chromatin remodelers and chaperones as major determinants of genic nucleosome positioning, and these data provide a valuable resource for future studies. PMID:23658529

  15. The physical size of transcription factors is key to transcriptional regulation in chromatin domains

    NASA Astrophysics Data System (ADS)

    Maeshima, Kazuhiro; Kaizu, Kazunari; Tamura, Sachiko; Nozaki, Tadasu; Kokubo, Tetsuro; Takahashi, Koichi

    2015-02-01

    Genetic information, which is stored in the long strand of genomic DNA as chromatin, must be scanned and read out by various transcription factors. First, gene-specific transcription factors, which are relatively small (˜50 kDa), scan the genome and bind regulatory elements. Such factors then recruit general transcription factors, Mediators, RNA polymerases, nucleosome remodellers, and histone modifiers, most of which are large protein complexes of 1-3 MDa in size. Here, we propose a new model for the functional significance of the size of transcription factors (or complexes) for gene regulation of chromatin domains. Recent findings suggest that chromatin consists of irregularly folded nucleosome fibres (10 nm fibres) and forms numerous condensed domains (e.g., topologically associating domains). Although the flexibility and dynamics of chromatin allow repositioning of genes within the condensed domains, the size exclusion effect of the domain may limit accessibility of DNA sequences by transcription factors. We used Monte Carlo computer simulations to determine the physical size limit of transcription factors that can enter condensed chromatin domains. Small gene-specific transcription factors can penetrate into the chromatin domains and search their target sequences, whereas large transcription complexes cannot enter the domain. Due to this property, once a large complex binds its target site via gene-specific factors it can act as a ‘buoy’ to keep the target region on the surface of the condensed domain and maintain transcriptional competency. This size-dependent specialization of target-scanning and surface-tethering functions could provide novel insight into the mechanisms of various DNA transactions, such as DNA replication and repair/recombination.

  16. 29 CFR 1209.08 - Transcripts, recordings or minutes of closed meetings; retention; public availability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... provisions of 5 U.S.C. 552b(c), copies of transcripts or minutes, or transcriptions of electronic recordings... transcription. Requests for copies of transcripts or minutes, or transcriptions of electronic recordings...

  17. 29 CFR 1209.08 - Transcripts, recordings or minutes of closed meetings; retention; public availability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... provisions of 5 U.S.C. 552b(c), copies of transcripts or minutes, or transcriptions of electronic recordings... transcription. Requests for copies of transcripts or minutes, or transcriptions of electronic recordings...

  18. 29 CFR 1209.08 - Transcripts, recordings or minutes of closed meetings; retention; public availability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... provisions of 5 U.S.C. 552b(c), copies of transcripts or minutes, or transcriptions of electronic recordings... transcription. Requests for copies of transcripts or minutes, or transcriptions of electronic recordings...

  19. 29 CFR 1209.08 - Transcripts, recordings or minutes of closed meetings; retention; public availability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... provisions of 5 U.S.C. 552b(c), copies of transcripts or minutes, or transcriptions of electronic recordings... transcription. Requests for copies of transcripts or minutes, or transcriptions of electronic recordings...

  20. 29 CFR 1209.08 - Transcripts, recordings or minutes of closed meetings; retention; public availability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... provisions of 5 U.S.C. 552b(c), copies of transcripts or minutes, or transcriptions of electronic recordings... transcription. Requests for copies of transcripts or minutes, or transcriptions of electronic recordings...

  1. Projector Center: Replication, Transcription, and Translation.

    ERIC Educational Resources Information Center

    Ruth, Edward B.

    1984-01-01

    Describes the use of a chart that systematically summarizes three basic steps that involve DNA and its decoding in both eukaryotic and prokaryotic cells: replication; transcription, and translation. Indicates that the chart (mounted on a tranparency) does an adequate job of conveying basic information about nucleic acids to students. (DH)

  2. 4 CFR 28.58 - Transcript.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 4 Accounts 1 2010-01-01 2010-01-01 false Transcript. 28.58 Section 28.58 Accounts GOVERNMENT ACCOUNTABILITY OFFICE GENERAL PROCEDURES GOVERNMENT ACCOUNTABILITY OFFICE PERSONNEL APPEALS BOARD; PROCEDURES APPLICABLE TO CLAIMS CONCERNING EMPLOYMENT PRACTICES AT THE GOVERNMENT ACCOUNTABILITY OFFICE...

  3. Transcription profiling of sparkling wine second fermentation.

    PubMed

    Penacho, Vanessa; Valero, Eva; Gonzalez, Ramon

    2012-02-01

    There is a specific set of stress factors that yeast cells must overcome under second fermentation conditions, during the production of sparkling wines by the traditional (Champenoise) method. Some of them are the same as those of the primary fermentation of still wines, although perhaps with a different intensity (high ethanol concentration, low pH, nitrogen starvation) while others are more specific to second fermentation (low temperature, CO(2) overpressure). The transcription profile of Saccharomyces cerevisiae during primary wine fermentation has been studied by several research groups, but this is the first report on yeast transcriptome under second fermentation conditions. Our results indicate that the main pathways affected by these particular conditions are related to aerobic respiration, but genes related to vacuolar and peroxisomal functions were also highlighted in this study. A parallelism between the transcription profile of wine yeast during primary and second fermentation is appreciated, with ethanol appearing as the main factor driving gene transcription during second fermentation. Low temperature seems to also influence yeast transcription profile under these particular winemaking conditions.

  4. 45 CFR 81.91 - Official transcript.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., briefs, or memoranda of law filed therewith shall be filed with the Department. Transcripts of testimony in hearings may be obtained from the official reporter by the parties and the public at rates not to exceed the maximum rates fixed by the contract between the Department and the reporter. Upon notice...

  5. 43 CFR 4.841 - Official transcript.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... and argument taken, together with any exhibits, briefs, or memoranda of law filed therewith, shall be filed with the administrative law judge. Transcripts may be obtained by the parties and the public from the official reporter at rates not to exceed the applicable rates fixed by the contract with...

  6. 45 CFR 1386.108 - Official transcript.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., briefs, or memoranda of law filed with them is filed with the Department Transcripts of testimony in hearings may be obtained from the official reporter by the parties and the public at rates not to exceed the maximum rates fixed by the contract between the Department and the reporter. Upon notice to...

  7. Mitochondrial transcription: how does it end?

    PubMed

    Byrnes, James; Garcia-Diaz, Miguel

    2011-01-01

    The structure of the mitochondrial transcription termination factor (MTERF1) provides novel insight into the mechanism of binding, recognition of the termination sequence and the conformational changes involved in mediating termination. Besides its functional implications, this structure provides a framework to understand the consequences of numerous diseases associated with mitochondrial DNA mutations.

  8. Genetic and epigenetic control of RKIP transcription.

    PubMed

    Datar, Ila; Tegegne, Hanna; Qin, Kevin; Al-Mulla, Fahd; Bitar, Milad S; Trumbly, Robert J; Yeung, Kam C

    2014-01-01

    Raf kinase inhibitory protein (RKIP) is known to modulate key signaling cascades and regulate normal physiological processes such as cellular proliferation, differentiation, and apoptosis. The expression of RKIP is found to be downregulated in several cancer metastases and the repressed RKIP expression can be reactivated on treatment with chemotherapeutic agents. RKIP is a proven tumor metastasis suppressor gene and investigating the mechanisms of transcriptional regulation of RKIP is therefore of immense clinical importance. In this review, we discuss the basal expression of RKIP in various tissues and the genetic aspects of the RKIP chromosomal locus including the structure of the RKIP promoter as well as gene regulatory elements such as enhancers. We also review the genetic and epigenetic modulation of RKIP transcription through EZH2, a component of the polycomb repressive complex 2 (PRC2) and sequence specific transcription factors (TFs) BACH1 and Snail. Emerging experimental evidence supports a unifying model in which both these TFs repress RKIP transcription in cancers by recruiting the EZH2 containing repressive complex to the proximal RKIP promoter. Finally, we review the known mechanisms employed by different types of chemotherapeutic agents to activate RKIP expression in cancer cells.

  9. 39 CFR 952.22 - Transcript.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Changes in the official transcript may be made only when they involve errors affecting substance and then only in the manner herein provided. No physical changes shall be made in or upon the official... with prompt notice to the parties of the proceeding. Any changes ordered by the presiding officer...

  10. 39 CFR 952.22 - Transcript.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... manner herein provided. No physical changes shall be made in or upon the official transcript, or copies... reasonably be photocopied may be photographed and furnished in that form to Respondent. (b) Changes in the... parties of the proceeding. Any changes ordered by the presiding officer other than by agreement of...

  11. Aromatase Inhibition in a Transcriptional Network Context

    EPA Science Inventory

    A variety of chemicals in the environment have the potential to inhibit aromatase, an enzyme critical to estrogen synthesis. We examined the responses of female fathead minnow ovaries (FHM, Pimephales promelas) to a model aromatase inhibitor, fadrozole, using a transcriptional ne...

  12. Transcriptional control of cardiac fibroblast plasticity.

    PubMed

    Lighthouse, Janet K; Small, Eric M

    2016-02-01

    Cardiac fibroblasts help maintain the normal architecture of the healthy heart and are responsible for scar formation and the healing response to pathological insults. Various genetic, biomechanical, or humoral factors stimulate fibroblasts to become contractile smooth muscle-like cells called myofibroblasts that secrete large amounts of extracellular matrix. Unfortunately, unchecked myofibroblast activation in heart disease leads to pathological fibrosis, which is a major risk factor for the development of cardiac arrhythmias and heart failure. A better understanding of the molecular mechanisms that control fibroblast plasticity and myofibroblast activation is essential to develop novel strategies to specifically target pathological cardiac fibrosis without disrupting the adaptive healing response. This review highlights the major transcriptional mediators of fibroblast origin and function in development and disease. The contribution of the fetal epicardial gene program will be discussed in the context of fibroblast origin in development and following injury, primarily focusing on Tcf21 and C/EBP. We will also highlight the major transcriptional regulatory axes that control fibroblast plasticity in the adult heart, including transforming growth factor β (TGFβ)/Smad signaling, the Rho/myocardin-related transcription factor (MRTF)/serum response factor (SRF) axis, and Calcineurin/transient receptor potential channel (TRP)/nuclear factor of activated T-Cell (NFAT) signaling. Finally, we will discuss recent strategies to divert the fibroblast transcriptional program in an effort to promote cardiomyocyte regeneration. This article is a part of a Special Issue entitled "Fibrosis and Myocardial Remodeling".

  13. A movie of RNA polymerase II transcription.

    PubMed

    Cheung, Alan C M; Cramer, Patrick

    2012-06-22

    We provide here a molecular movie that captures key aspects of RNA polymerase II initiation and elongation. To create the movie, we combined structural snapshots of the initiation-elongation transition and of elongation, including nucleotide addition, translocation, pausing, proofreading, backtracking, arrest, reactivation, and inhibition. The movie reveals open questions about the mechanism of transcription and provides a useful teaching tool.

  14. 45 CFR 1386.108 - Official transcript.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 4 2011-10-01 2011-10-01 false Official transcript. 1386.108 Section 1386.108 Public Welfare Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION ON DEVELOPMENTAL DISABILITIES,...

  15. 45 CFR 213.28 - Official transcript.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 2 2011-10-01 2011-10-01 false Official transcript. 213.28 Section 213.28 Public Welfare Regulations Relating to Public Welfare OFFICE OF FAMILY ASSISTANCE (ASSISTANCE PROGRAMS), ADMINISTRATION FOR CHILDREN AND FAMILIES, DEPARTMENT OF HEALTH AND HUMAN SERVICES PRACTICE AND PROCEDURE...

  16. Why Not Simplify Our Phonetic Transcription?

    ERIC Educational Resources Information Center

    Mepham, Roy

    1978-01-01

    Finds three faults, from the teacher's viewpoint, in the phonetic transcription in English textbooks used in German People's Universities: many unfamiliar symbols, many irrelevant distinctions, and failure to mention important variations. Suggests improvements in vowel treatment based on Hornby, "Oxford Progressive English" (London,…

  17. TRANSFAC: transcriptional regulation, from patterns to profiles.

    PubMed

    Matys, V; Fricke, E; Geffers, R; Gössling, E; Haubrock, M; Hehl, R; Hornischer, K; Karas, D; Kel, A E; Kel-Margoulis, O V; Kloos, D-U; Land, S; Lewicki-Potapov, B; Michael, H; Münch, R; Reuter, I; Rotert, S; Saxel, H; Scheer, M; Thiele, S; Wingender, E

    2003-01-01

    The TRANSFAC database on eukaryotic transcriptional regulation, comprising data on transcription factors, their target genes and regulatory binding sites, has been extended and further developed, both in number of entries and in the scope and structure of the collected data. Structured fields for expression patterns have been introduced for transcription factors from human and mouse, using the CYTOMER database on anatomical structures and developmental stages. The functionality of Match, a tool for matrix-based search of transcription factor binding sites, has been enhanced. For instance, the program now comes along with a number of tissue-(or state-)specific profiles and new profiles can be created and modified with Match Profiler. The GENE table was extended and gained in importance, containing amongst others links to LocusLink, RefSeq and OMIM now. Further, (direct) links between factor and target gene on one hand and between gene and encoded factor on the other hand were introduced. The TRANSFAC public release is available at http://www.gene-regulation.com. For yeast an additional release including the latest data was made available separately as TRANSFAC Saccharomyces Module (TSM) at http://transfac.gbf.de. For CYTOMER free download versions are available at http://www.biobase.de:8080/index.html.

  18. TCP transcription factors: architectures of plant form.

    PubMed

    Manassero, Nora G Uberti; Viola, Ivana L; Welchen, Elina; Gonzalez, Daniel H

    2013-04-01

    After its initial definition in 1999, the TCP family of transcription factors has become the focus of a multiplicity of studies related with plant development at the cellular, organ, and tissue levels. Evidence has accumulated indicating that TCP transcription factors are the main regulators of plant form and architecture and constitute a tool through which evolution shapes plant diversity. The TCP transcription factors act in a multiplicity of pathways related with cell proliferation and hormone responses. In recent years, the molecular pathways of TCP protein action and biochemical studies on their mode of interaction with DNA have begun to shed light on their mechanism of action. However, the available information is fragmented and a unifying view of TCP protein action is lacking, as well as detailed structural studies of the TCP-DNA complex. Also important, the possible role of TCP proteins as integrators of plant developmental responses to the environment has deserved little attention. In this review, we summarize the current knowledge about the structure and functions of TCP transcription factors and analyze future perspectives for the study of the role of these proteins and their use to modify plant development.

  19. Mapping transcription mechanisms from multimodal genomic data

    PubMed Central

    2010-01-01

    Background Identification of expression quantitative trait loci (eQTLs) is an emerging area in genomic study. The task requires an integrated analysis of genome-wide single nucleotide polymorphism (SNP) data and gene expression data, raising a new computational challenge due to the tremendous size of data. Results We develop a method to identify eQTLs. The method represents eQTLs as information flux between genetic variants and transcripts. We use information theory to simultaneously interrogate SNP and gene expression data, resulting in a Transcriptional Information Map (TIM) which captures the network of transcriptional information that links genetic variations, gene expression and regulatory mechanisms. These maps are able to identify both cis- and trans- regulating eQTLs. The application on a dataset of leukemia patients identifies eQTLs in the regions of the GART, PCP4, DSCAM, and RIPK4 genes that regulate ADAMTS1, a known leukemia correlate. Conclusions The information theory approach presented in this paper is able to infer the dependence networks between SNPs and transcripts, which in turn can identify cis- and trans-eQTLs. The application of our method to the leukemia study explains how genetic variants and gene expression are linked to leukemia. PMID:21044360

  20. Pioneer transcription factors in cell reprogramming.

    PubMed

    Iwafuchi-Doi, Makiko; Zaret, Kenneth S

    2014-12-15

    A subset of eukaryotic transcription factors possesses the remarkable ability to reprogram one type of cell into another. The transcription factors that reprogram cell fate are invariably those that are crucial for the initial cell programming in embryonic development. To elicit cell programming or reprogramming, transcription factors must be able to engage genes that are developmentally silenced and inappropriate for expression in the original cell. Developmentally silenced genes are typically embedded in "closed" chromatin that is covered by nucleosomes and not hypersensitive to nuclease probes such as DNase I. Biochemical and genomic studies have shown that transcription factors with the highest reprogramming activity often have the special ability to engage their target sites on nucleosomal DNA, thus behaving as "pioneer factors" to initiate events in closed chromatin. Other reprogramming factors appear dependent on pioneer factors for engaging nucleosomes and closed chromatin. However, certain genomic domains in which nucleosomes are occluded by higher-order chromatin structures, such as in heterochromatin, are resistant to pioneer factor binding. Understanding the means by which pioneer factors can engage closed chromatin and how heterochromatin can prevent such binding promises to advance our ability to reprogram cell fates at will and is the topic of this review.

  1. The Career Transcript System for Lifelong Learning.

    ERIC Educational Resources Information Center

    Packer, Arnold H.

    2001-01-01

    Describes the Career Transcript System (CTS), which keeps up-to-date and verifiable records of students' accomplishments. Asserts that CTS facilitates information exchange among schools, employers, and colleagues. States that the system was implemented after the Secretary of Labors' Commission on Achieving Necessary Skills (SCANS) defined what…

  2. Transcript CONTU Meeting #9. Volume One.

    ERIC Educational Resources Information Center

    National Commission on New Technological Uses of Copyrighted Works, Washington, DC.

    Photocopying and other topics are presented in Vols. 1 and 2 of the transcript of the Ninth Commission Meeting held in Arlington, Virginia in 1976. Topics in Vol. 1 include: (1) implications for the commission's work of the final provisions of the copyright bill; (2) study of a national periodical bank(s) for the U.S.; (3) the provision of…

  3. Teaching Shorthand and Transcription. An Instructional Guide.

    ERIC Educational Resources Information Center

    Shell, Walter L.

    Written as a reference for teachers of shorthand and transcription, this instructional guide is organized into three sections. The first section discusses the administration of the stenographic program and focuses on the needs, objectives, and organization of the program. Characteristics of occupational preparation programs are also noted. Section…

  4. 29 CFR 417.7 - Transcript.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 2 2010-07-01 2010-07-01 false Transcript. 417.7 Section 417.7 Labor Regulations Relating to Labor OFFICE OF LABOR-MANAGEMENT STANDARDS, DEPARTMENT OF LABOR LABOR-MANAGEMENT STANDARDS PROCEDURE FOR REMOVAL OF LOCAL LABOR ORGANIZATION OFFICERS Procedures To Determine Adequacy of...

  5. Mitochondrial transcription: How does it end

    SciTech Connect

    J Byrnes; M Garcia-Diaz

    2011-12-31

    The structure of the mitochondrial transcription termination factor (MTERF1) provides novel insight into the mechanism of binding, recognition of the termination sequence and the conformational changes involved in mediating termination. Besides its functional implications, this structure provides a framework to understand the consequences of numerous diseases associated with mitochondrial DNA mutations.

  6. Transcriptional enhancer from milk protein genes

    DOEpatents

    Casperson, Gerald F.; Schmidhauser, Christian T.; Bissell, Mina J.

    1999-01-01

    The invention relates to novel enhancer nucleotide sequences which stimulate transcription of heterologous DNA in cells in culture. The enhancers are derived from major milk protein genes by the process of deletion mapping and functional analysis. The invention also relates to expression vectors containing the novel enhancers.

  7. Virtual Reference Transcript Analysis: A Few Models.

    ERIC Educational Resources Information Center

    Smyth, Joanne

    2003-01-01

    Describes the introduction of virtual, or digital, reference service at the University of New Brunswick libraries. Highlights include analyzing transcripts from LIVE (Library Information in a Virtual Environment); reference question types; ACRL (Association of College and Research Libraries) information literacy competency standards; and the Big 6…

  8. Specificity mechanisms in the control of transcription.

    PubMed

    von Hippel, P H; Rees, W A; Rippe, K; Wilson, K S

    1996-04-16

    In this overview we analyze and illustrate the principles underlying some of the specificity mechanisms that control the initiation, elongation, and termination phases of transcription. Thermodynamic mechanisms dominate in the first steps of initiation, where promoters at various levels of activation can be considered to be in competition for a limiting supply of core RNA polymerase. In the later stages of initiation, as well as in elongation and termination, the regulatory mechanisms that control specificity are largely kinetic, involving rate competition between branching reaction pathways where the outcome depends on the rates (and equilibria) of reaction and interconversion of different forms of the transcription complex. Elongation complexes are very stable at most positions along the DNA template, meaning that only RNA chain elongation (and editing) can occur at these positions. However, the stability of transcription complexes decreases abruptly when termination sequences are encountered, and here the outcome can be easily switched between elongation and termination (RNA release) by minor changes in the relative rates of these competing processes. Cis effectors, defined as sites at which regulatory proteins bind to upstream activation loci on either the DNA or the nascent RNA, play important roles in the control of both initiation and of the elongation-termination decision. Examples, drawn from studies of phage lambda N-dependent antitermination and E. coli rho-dependent termination processes, illustrate the flexibility and additivity of regulatory components within control mechanisms in transcription that involve multiple determinants. The generality of such regulatory principles are stressed.

  9. Insights into centromeric transcription in mitosis.

    PubMed

    Liu, Hong

    2016-01-01

    The major role of RNA polymerase II (RNAP II) is to generate mRNAs. I recently uncovered a novel function of RNAP II in chromosome segregation in mitosis, installing the cohesin protector, Shugoshin, at centromeres. Here I will discuss the current understanding of RNAP II-dependent centromeric transcription in mitosis.

  10. 40 CFR 164.82 - Transcripts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Transcripts. 164.82 Section 164.82 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS RULES OF PRACTICE GOVERNING HEARINGS, UNDER THE FEDERAL INSECTICIDE, FUNGICIDE, AND RODENTICIDE ACT, ARISING FROM REFUSALS...

  11. 40 CFR 164.82 - Transcripts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Transcripts. 164.82 Section 164.82 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS RULES OF PRACTICE GOVERNING HEARINGS, UNDER THE FEDERAL INSECTICIDE, FUNGICIDE, AND RODENTICIDE ACT, ARISING FROM REFUSALS...

  12. 40 CFR 164.82 - Transcripts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Transcripts. 164.82 Section 164.82 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS RULES OF PRACTICE GOVERNING HEARINGS, UNDER THE FEDERAL INSECTICIDE, FUNGICIDE, AND RODENTICIDE ACT, ARISING FROM REFUSALS...

  13. 40 CFR 164.82 - Transcripts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Transcripts. 164.82 Section 164.82 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS RULES OF PRACTICE GOVERNING HEARINGS, UNDER THE FEDERAL INSECTICIDE, FUNGICIDE, AND RODENTICIDE ACT, ARISING FROM REFUSALS...

  14. 40 CFR 164.82 - Transcripts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Transcripts. 164.82 Section 164.82 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS RULES OF PRACTICE GOVERNING HEARINGS, UNDER THE FEDERAL INSECTICIDE, FUNGICIDE, AND RODENTICIDE ACT, ARISING FROM REFUSALS...

  15. HIV-1 transcription and latency: an update

    PubMed Central

    2013-01-01

    Combination antiretroviral therapy, despite being potent and life-prolonging, is not curative and does not eradicate HIV-1 infection since interruption of treatment inevitably results in a rapid rebound of viremia. Reactivation of latently infected cells harboring transcriptionally silent but replication-competent proviruses is a potential source of persistent residual viremia in cART-treated patients. Although multiple reservoirs may exist, the persistence of resting CD4+ T cells carrying a latent infection represents a major barrier to eradication. In this review, we will discuss the latest reports on the molecular mechanisms that may regulate HIV-1 latency at the transcriptional level, including transcriptional interference, the role of cellular factors, chromatin organization and epigenetic modifications, the viral Tat trans-activator and its cellular cofactors. Since latency mechanisms may also operate at the post-transcriptional level, we will consider inhibition of nuclear RNA export and inhibition of translation by microRNAs as potential barriers to HIV-1 gene expression. Finally, we will review the therapeutic approaches and clinical studies aimed at achieving either a sterilizing cure or a functional cure of HIV-1 infection, with a special emphasis on the most recent pharmacological strategies to reactivate the latent viruses and decrease the pool of viral reservoirs. PMID:23803414

  16. 20 CFR 901.47 - Transcript.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Transcript. 901.47 Section 901.47 Employees' Benefits JOINT BOARD FOR THE ENROLLMENT OF ACTUARIES REGULATIONS GOVERNING THE PERFORMANCE OF ACTUARIAL SERVICES UNDER THE EMPLOYEE RETIREMENT INCOME SECURITY ACT OF 1974 Suspension or Termination of...

  17. Polyphenol Compound as a Transcription Factor Inhibitor

    PubMed Central

    Park, Seyeon

    2015-01-01

    A target-based approach has been used to develop novel drugs in many therapeutic fields. In the final stage of intracellular signaling, transcription factor–DNA interactions are central to most biological processes and therefore represent a large and important class of targets for human therapeutics. Thus, we focused on the idea that the disruption of protein dimers and cognate DNA complexes could impair the transcriptional activation and cell transformation regulated by these proteins. Historically, natural products have been regarded as providing the primary leading compounds capable of modulating protein–protein or protein-DNA interactions. Although their mechanism of action is not fully defined, polyphenols including flavonoids were found to act mostly as site-directed small molecule inhibitors on signaling. There are many reports in the literature of screening initiatives suggesting improved drugs that can modulate the transcription factor interactions responsible for disease. In this review, we focus on polyphenol compound inhibitors against dimeric forms of transcription factor components of intracellular signaling pathways (for instance, c-jun/c-fos (Activator Protein-1; AP-1), c-myc/max, Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and β-catenin/T cell factor (Tcf)). PMID:26529010

  18. Onecut transcription factors in development and disease

    PubMed Central

    Kropp, Peter A.; Gannon, Maureen

    2016-01-01

    Developmental processes are remarkably well conserved among species, and among the most highly conserved developmental regulators are transcription factor families. The Onecut transcription factor family consists of three members known for their single “cut” DNA-binding domain and an aberrant homeodomain. The three members of the Onecut family are highly conserved from Drosophila to humans and have significant roles in regulating the development of diverse tissues derived from the ectoderm or endoderm, where they activate a number of gene families. Of note, the genetic interaction between Onecut family members and Neurogenin genes appears to be essential in multiple tissues for proper specification and development of unique cell types. This review highlights the importance of the Onecut factors in cell fate specification and organogenesis, highlighting their role in vertebrates, and discusses their role in the maintenance of cell fate and prevention of disease. We cover the essential spatial and temporal control of Onecut factor expression and how this tight regulation is required for proper specification and subsequent terminal differentiation of multiple tissue types including those within the retina, central nervous system, liver and pancreas. Beyond development, Onecut factors perform necessary functions in mature cell types; their misregulation can contribute to diseases such as pancreatic cancer. Given the importance of this family of transcription factors in development and disease, their consideration in essential transcription factor networks is underappreciated. PMID:28018056

  19. Effect of selenium deficiency on gene transcription

    SciTech Connect

    Christensen, M.J.; Burgener, K.W. )

    1991-03-11

    To investigate the general effects of dietary selenium (Se) deficiency on gene transcription, weanling male Sprague-Dawley rats were fed a basal Se-deficient Torula yeast-based diet or the same diet supplemented with 0.5 ppm Se as sodium selenite for 40 days. At that time three rats in each dietary group were sacrificed. Livers were excised and divided into two portions for isolation of nuclei and for assay of cytosolic Se-glutathione peroxidase (Se-GPX) activity. Se-GPX activity was 279 {plus minus} 4 (mean {plus minus} SEM) mUnits/mg protein in Se-adequate livers, and 10 {plus minus} 2 mUnits/mg protein in Se-deficient livers. One aliquot of nuclei from each dietary group was used in a run-on transcription assay, employing {alpha}-{sup 32}P-UTP to label nascent transcripts. Equal quantities of radioactivity from these nuclei were hybridized with cDNA probes bound to nitrocellulose. Message bound to each probe was quantitated by laser densitometry of autoradiographs, and by scintillation counting of dot blotted nitrocellulose. Transcription of most genes tested, including Se-GPX, was not significantly affected by dietary Se intake. However, the amount of hybridization to a murine oncogene probe (v-fos) was increased in Se deficiency.

  20. Transcriptional enhancer from milk protein genes

    SciTech Connect

    Casperson, G.F.; Schmidhauser, C.T.; Bissell, M.J.

    1999-12-21

    The invention relates to novel enhancer nucleotide sequences which stimulate transcription of heterologous DNA in cells in culture. The enhancers are derived from major milk protein genes by the process of deletion mapping and functional analysis. The invention also relates to expression vectors containing the novel enhancers.

  1. Transcriptional profiling: is it worth the money?

    PubMed

    Hoheisel, J D; Vingron, M

    2000-03-01

    Transcriptional profiling on DNA arrays has become a synonym for the type of analyses that aim to understand cellular functioning in a comprehensive manner. In this review, the status of the technology is briefly discussed, with emphasis on some inherent weaknesses and problems.

  2. Transcriptional profiling of fetal hypothalamic TRH neurons

    PubMed Central

    2011-01-01

    Background During murine hypothalamic development, different neuroendocrine cell phenotypes are generated in overlapping periods; this suggests that cell-type specific developmental programs operate to achieve complete maturation. A balance between programs that include cell proliferation, cell cycle withdrawal as well as epigenetic regulation of gene expression characterizes neurogenesis. Thyrotropin releasing hormone (TRH) is a peptide that regulates energy homeostasis and autonomic responses. To better understand the molecular mechanisms underlying TRH neuron development, we performed a genome wide study of its transcriptome during fetal hypothalamic development. Results In primary cultures, TRH cells constitute 2% of the total fetal hypothalamic cell population. To purify these cells, we took advantage of the fact that the segment spanning -774 to +84 bp of the Trh gene regulatory region confers specific expression of the green fluorescent protein (GFP) in the TRH cells. Transfected TRH cells were purified by fluorescence activated cell sorting, various cell preparations pooled, and their transcriptome compared to that of GFP- hypothalamic cells. TRH cells undergoing the terminal phase of differentiation, expressed genes implicated in protein biosynthesis, intracellular signaling and transcriptional control. Among the transcription-associated transcripts, we identified the transcription factors Klf4, Klf10 and Atf3, which were previously uncharacterized within the hypothalamus. Conclusion To our knowledge, this is one of the first reports identifying transcripts with a potentially important role during the development of a specific hypothalamic neuronal phenotype. This genome-scale study forms a rational foundation for identifying genes that might participate in the development and function of hypothalamic TRH neurons. PMID:21569245

  3. Specificity in ROS Signaling and Transcript Signatures

    PubMed Central

    Vaahtera, Lauri; Brosché, Mikael; Wrzaczek, Michael

    2014-01-01

    Abstract Significance: Reactive oxygen species (ROS), important signaling molecules in plants, are involved in developmental control and stress adaptation. ROS production can trigger broad transcriptional changes; however, it is not clear how specificity in transcriptional regulation is achieved. Recent Advances: A large collection of public transcriptome data from the model plant Arabidopsis thaliana is available for analysis. These data can be used for the analysis of biological processes that are associated with ROS signaling and for the identification of suitable transcriptional indicators. Several online tools, such as Genevestigator and Expression Angler, have simplified the task to analyze, interpret, and visualize this wealth of data. Critical Issues: The analysis of the exact transcriptional responses to ROS requires the production of specific ROS in distinct subcellular compartments with precise timing, which is experimentally difficult. Analyses are further complicated by the effect of ROS production in one subcellular location on the ROS accumulation in other compartments. In addition, even subtle differences in the method of ROS production or treatment can lead to significantly different outcomes when various stimuli are compared. Future Directions: Due to the difficulty of inducing ROS production specifically with regard to ROS type, subcellular localization, and timing, we propose that the concept of a “ROS marker gene” should be re-evaluated. We suggest guidelines for the analysis of transcriptional data in ROS signaling. The use of “ROS signatures,” which consist of a set of genes that together can show characteristic and indicative responses, should be preferred over the use of individual marker genes. Antioxid. Redox Signal. 21, 1422–1441. PMID:24180661

  4. Transcription-dependent and transcription-independent nucleosome disruption induced by dioxin

    SciTech Connect

    Morgan, J.E.; Whitlock, J.P. Jr. )

    1992-12-01

    In mouse hepatoma cells, both the regulatory and the transcribed regions of the cyp1a1 gene assume a nucleosomal configuration when the gene is silent; two nucleosomes occupy specific sites at the transcriptional promoter. Activation of transcription by 2,3,7,8-tetrachlorodibenzo-p-dioxin is accompanied by changes in chromatin structure, which depend upon a functional aromatic hydrocarbon (Ah) receptor. In the transcribed region of the gene, nucleosome disruption occurs as a consequence of RNA elongation. In contrast, at the promoter, loss of positioned nucleosomes is independent of transcription and represents an event in the mechanism by which the liganded Ah receptor enhances transcriptional initiation. 38 refs., 5 figs.

  5. Transcriptional Control of Synaptic Plasticity by Transcription Factor NF-κB.

    PubMed

    Engelmann, Christian; Haenold, Ronny

    2016-01-01

    Activation of nuclear factor kappa B (NF-κB) transcription factors is required for the induction of synaptic plasticity and memory formation. All components of this signaling pathway are localized at synapses, and transcriptionally active NF-κB dimers move to the nucleus to translate synaptic signals into altered gene expression. Neuron-specific inhibition results in altered connectivity of excitatory and inhibitory synapses and functionally in selective learning deficits. Recent research on transgenic mice with impaired or hyperactivated NF-κB gave important insights into plasticity-related target gene expression that is regulated by NF-κB. In this minireview, we update the available data on the role of this transcription factor for learning and memory formation and comment on cross-sectional activation of NF-κB in the aged and diseased brain that may directly or indirectly affect κB-dependent transcription of synaptic genes.

  6. Depleting Mycobacterium tuberculosis of the transcription termination factor Rho causes pervasive transcription and rapid death.

    PubMed

    Botella, Laure; Vaubourgeix, Julien; Livny, Jonathan; Schnappinger, Dirk

    2017-03-28

    Rifampicin, which inhibits bacterial RNA polymerase, provides one of the most effective treatments for tuberculosis. Inhibition of the transcription termination factor Rho is used to treat some bacterial infections, but its importance varies across bacteria. Here we show that Rho of Mycobacterium tuberculosis functions to both define the 3' ends of mRNAs and silence substantial fragments of the genome. Brief inactivation of Rho affects over 500 transcripts enriched for genes of foreign DNA elements and bacterial virulence factors. Prolonged inactivation of Rho causes extensive pervasive transcription, a genome-wide increase in antisense transcripts, and a rapid loss of viability of replicating and non-replicating M. tuberculosis in vitro and during acute and chronic infection in mice. Collectively, these data suggest that inhibition of Rho may provide an alternative strategy to treat tuberculosis with an efficacy similar to inhibition of RNA polymerase.

  7. Depleting Mycobacterium tuberculosis of the transcription termination factor Rho causes pervasive transcription and rapid death

    PubMed Central

    Botella, Laure; Vaubourgeix, Julien; Livny, Jonathan; Schnappinger, Dirk

    2017-01-01

    Rifampicin, which inhibits bacterial RNA polymerase, provides one of the most effective treatments for tuberculosis. Inhibition of the transcription termination factor Rho is used to treat some bacterial infections, but its importance varies across bacteria. Here we show that Rho of Mycobacterium tuberculosis functions to both define the 3′ ends of mRNAs and silence substantial fragments of the genome. Brief inactivation of Rho affects over 500 transcripts enriched for genes of foreign DNA elements and bacterial virulence factors. Prolonged inactivation of Rho causes extensive pervasive transcription, a genome-wide increase in antisense transcripts, and a rapid loss of viability of replicating and non-replicating M. tuberculosis in vitro and during acute and chronic infection in mice. Collectively, these data suggest that inhibition of Rho may provide an alternative strategy to treat tuberculosis with an efficacy similar to inhibition of RNA polymerase. PMID:28348398

  8. Transcriptional and post-transcriptional regulation of Drosophila germline stem cells and their differentiating progeny.

    PubMed

    White-Cooper, Helen; Caporilli, Simona

    2013-01-01

    In this chapter we will concentrate on the transcriptional and translational regulations that govern the development and differentiation of male germline cells. Our focus will be on the processes that occur during differentiation, that distinguish the differentiating population of cells from their stem cell parents. We discuss how these defining features are established as cells transit from a stem cell character to that of a fully committed differentiating cell. The focus will be on how GSCs differentiate, via spermatogonia, to spermatocytes. We will achieve this by first describing the transcriptional activity in the differentiating spermatocytes, cataloguing the known transcriptional regulators in these cells and then investigating how the transcription programme is set up by processes in the progentior cells. This process is particularly interesting to study from a stem cell perspective as the male GSCs are unipotent, so lineage decisions in differentiating progeny of stem cells, which occurs in many other stem cell systems, do not impinge on the behaviour of these cells.

  9. Method to determine transcriptional regulation pathways in organisms

    DOEpatents

    Gardner, Timothy S.; Collins, James J.; Hayete, Boris; Faith, Jeremiah

    2012-11-06

    The invention relates to computer-implemented methods and systems for identifying regulatory relationships between expressed regulating polypeptides and targets of the regulatory activities of such regulating polypeptides. More specifically, the invention provides a new method for identifying regulatory dependencies between biochemical species in a cell. In particular embodiments, provided are computer-implemented methods for identifying a regulatory interaction between a transcription factor and a gene target of the transcription factor, or between a transcription factor and a set of gene targets of the transcription factor. Further provided are genome-scale methods for predicting regulatory interactions between a set of transcription factors and a corresponding set of transcriptional target substrates thereof.

  10. Optical tweezers studies of transcription by eukaryotic RNA polymerases.

    PubMed

    Lisica, Ana; Grill, Stephan W

    2017-02-21

    Transcription is the first step in the expression of genetic information and it is carried out by large macromolecular enzymes called RNA polymerases. Transcription has been studied for many years and with a myriad of experimental techniques, ranging from bulk studies to high-resolution transcript sequencing. In this review, we emphasise the advantages of using single-molecule techniques, particularly optical tweezers, to study transcription dynamics. We give an overview of the latest results in the single-molecule transcription field, focusing on transcription by eukaryotic RNA polymerases. Finally, we evaluate recent quantitative models that describe the biophysics of RNA polymerase translocation and backtracking dynamics.

  11. Functional Integration of Transcriptional and RNA Processing Machineries

    PubMed Central

    Pandit, Shatakshi; Wang, Dong; Fu, Xiang-Dong

    2009-01-01

    Co-transcriptional RNA processing not only permits temporal RNA processing before the completion of transcription, but also allows sequential recognition of RNA processing signals on nascent transcripts threading out from the elongating RNAPII complex. Rapid progress in recent years has established multiple contacts that physically connect the transcription and RNA processing machineries, which centers on the C-terminal domain (CTD) of the largest subunit of RNAPII. While co-transcriptional RNA processing has been substantiated, the evidence for “reciprocal” coupling starts to emerge, which emphasizes functional integration of transcription and RNA processing machineries in a mutually beneficial manner for efficient and regulated gene expression. PMID:18436438

  12. Opposing Transcriptional Mechanisms Regulate Toxoplasma Development

    PubMed Central

    Hong, Dong-Pyo; Radke, Joshua B.

    2017-01-01

    ABSTRACT The Toxoplasma biology that underlies human chronic infection is developmental conversion of the acute tachyzoite stage into the latent bradyzoite stage. We investigated the roles of two alkaline-stress-induced ApiAP2 transcription factors, AP2IV-3 and AP2IX-9, in bradyzoite development. These factors were expressed in two overlapping waves during bradyzoite development, with AP2IX-9 increasing expression earlier than AP2IV-3, which peaked as AP2IX-9 expression was declining. Disruption of the AP2IX-9 gene enhanced, while deletion of AP2IV-3 gene decreased, tissue cyst formation, demonstrating that these factors have opposite functions in bradyzoite development. Conversely, conditional overexpression of FKBP-modified AP2IX-9 or AP2IV-3 with the small molecule Shield 1 had a reciprocal effect on tissue cyst formation, confirming the conclusions of the knockout experiments. The AP2IX-9 repressor and AP2IV-3 activator tissue cyst phenotypes were borne out in gene expression studies that determined that many of the same bradyzoite genes were regulated in an opposite manner by these transcription factors. A common gene target was the canonical bradyzoite marker BAG1, and mechanistic experiments determined that, like AP2IX-9, AP2IV-3 regulates a BAG1 promoter-luciferase reporter and specifically binds the BAG1 promoter in parasite chromatin. Altogether, these results suggest that the AP2IX-9 transcriptional repressor and the AP2IV-3 transcriptional activator likely compete to control bradyzoite gene expression, which may permit Toxoplasma to better adapt to different tissue environments and select a suitable host cell for long-term survival of the dormant tissue cyst. IMPORTANCE Toxoplasma infections are lifelong because of the development of the bradyzoite tissue cyst, which is effectively invisible to the immune system. Despite the important clinical consequences of this developmental pathway, the molecular basis of the switch mechanisms that control tissue

  13. Nucleotide excision repair in Trypanosoma brucei: specialization of transcription-coupled repair due to multigenic transcription

    PubMed Central

    Machado, Carlos R; Vieira-da-Rocha, João P; Mendes, Isabela Cecilia; Rajão, Matheus A; Marcello, Lucio; Bitar, Mainá; Drummond, Marcela G; Grynberg, Priscila; Oliveira, Denise A A; Marques, Catarina; Van Houten, Ben; McCulloch, Richard

    2014-01-01

    Nucleotide excision repair (NER) is a highly conserved genome repair pathway acting on helix distorting DNA lesions. NER is divided into two subpathways: global genome NER (GG-NER), which is responsible for repair throughout genomes, and transcription-coupled NER (TC-NER), which acts on lesions that impede transcription. The extent of the Trypanosoma brucei genome that is transcribed is highly unusual, since most genes are organized in multigene transcription units, each transcribed from a single promoter. Given this transcription organization, we have addressed the importance of NER to T. brucei genome maintenance by performing RNAi against all predicted contributing factors. Our results indicate that TC-NER is the main pathway of NER repair, but only CSB, XPBz and XPG contribute. Moreover, we show that UV lesions are inefficiently repaired in T. brucei, perhaps due to preferential use of RNA polymerase translesion synthesis. RNAi of XPC and DDB was found to be lethal, and we show that these factors act in inter-strand cross-link repair. XPD and XPB appear only to act in transcription, not repair. This work indicates that the predominance of multigenic transcription in T. brucei has resulted in pronounced adaptation of NER relative to the host and may be an attractive drug target. PMID:24661334

  14. Transcription Start Site Scanning and the Requirement for ATP during Transcription Initiation by RNA Polymerase II.

    PubMed

    Fishburn, James; Galburt, Eric; Hahn, Steven

    2016-06-17

    Saccharomyces cerevisiae RNA polymerase (Pol) II locates transcription start sites (TSS) at TATA-containing promoters by scanning sequences downstream from the site of preinitiation complex formation, a process that involves the translocation of downstream promoter DNA toward Pol II. To investigate a potential role of yeast Pol II transcription in TSS scanning, HIS4 promoter derivatives were generated that limited transcripts in the 30-bp scanned region to two nucleotides in length. Although we found that TSS scanning does not require RNA synthesis, our results revealed that transcription in the purified yeast basal system is largely ATP-independent despite a requirement for the TFIIH DNA translocase subunit Ssl2. This result is rationalized by our finding that, although they are poorer substrates, UTP and GTP can also be utilized by Ssl2. ATPγS is a strong inhibitor of rNTP-fueled translocation, and high concentrations of ATPγS make transcription completely dependent on added dATP. Limiting Pol II function with low ATP concentrations shifted the TSS position downstream. Combined with prior work, our results show that Pol II transcription plays an important role in TSS selection but is not required for the scanning reaction.

  15. Identification of Transcriptional Targets of the Dual Function Transcription Factor/Phosphatase Eyes Absent

    PubMed Central

    Jemc, Jennifer; Rebay, Ilaria

    2007-01-01

    Drosophila eye specification and development relies on a collection of transcription factors termed the retinal determination gene network (RDGN). Two members of this network, Eyes absent (EYA) and Sine oculis (SO), form a transcriptional complex in which EYA provides the transactivation function while SO provides the DNA binding activity. EYA also functions as a protein tyrosine phosphatase, raising the question of whether transcriptional output is dependent or independent of phosphatase activity. To explore this, we used microarrays together with binding site analysis, quantitative real-time PCR, chromatin immunoprecipitation, genetics and in vivo expression analysis to identify new EYA-SO targets. In parallel, we examined the expression profiles of tissue expressing phosphatase mutant eya and found that reducing phosphatase activity did not globally impair transcriptional output. Among the targets identified by our analysis was the cell cycle regulatory gene, string (stg), suggesting that EYA and SO may influence cell proliferation through transcriptional regulation of stg. Future investigation into the regulation of stg and other EYA-SO targets identified in this study will help elucidate the transcriptional circuitries whereby output from the RDGN integrates with other signaling inputs to coordinate retinal development. PMID:17714699

  16. Global analysis of transcriptionally engaged yeast RNA polymerase III reveals extended tRNA transcripts

    PubMed Central

    Turowski, Tomasz W.; Leśniewska, Ewa; Delan-Forino, Clementine; Sayou, Camille; Boguta, Magdalena; Tollervey, David

    2016-01-01

    RNA polymerase III (RNAPIII) synthesizes a range of highly abundant small stable RNAs, principally pre-tRNAs. Here we report the genome-wide analysis of nascent transcripts attached to RNAPIII under permissive and restrictive growth conditions. This revealed strikingly uneven polymerase distributions across transcription units, generally with a predominant 5′ peak. This peak was higher for more heavily transcribed genes, suggesting that initiation site clearance is rate-limiting during RNAPIII transcription. Down-regulation of RNAPIII transcription under stress conditions was found to be uneven; a subset of tRNA genes showed low response to nutrient shift or loss of the major transcription regulator Maf1, suggesting potential “housekeeping” roles. Many tRNA genes were found to generate long, 3′-extended forms due to read-through of the canonical poly(U) terminators. The degree of read-through was anti-correlated with the density of U-residues in the nascent tRNA, and multiple, functional terminators can be located far downstream. The steady-state levels of 3′-extended pre-tRNA transcripts are low, apparently due to targeting by the nuclear surveillance machinery, especially the RNA binding protein Nab2, cofactors for the nuclear exosome, and the 5′-exonuclease Rat1. PMID:27206856

  17. CRTR-1, a developmentally regulated transcriptional repressor related to the CP2 family of transcription factors.

    PubMed

    Rodda, S; Sharma, S; Scherer, M; Chapman, G; Rathjen, P

    2001-02-02

    CP2-related proteins comprise a family of DNA-binding transcription factors that are generally activators of transcription and expressed ubiquitously. We reported a differential display polymerase chain reaction fragment, Psc2, which was expressed in a regulated fashion in mouse pluripotent cells in vitro and in vivo. Here, we report further characterization of the Psc2 cDNA and function. The Psc2 cDNA contained an open reading frame homologous to CP2 family proteins. Regions implicated in DNA binding and oligomeric complex formation, but not transcription activation, were conserved. Psc2 expression in vivo during embryogenesis and in the adult mouse demonstrated tight spatial and temporal regulation, with the highest levels of expression in the epithelial lining of distal convoluted tubules in embryonic and adult kidneys. Functional analysis demonstrated that PSC2 repressed transcription 2.5-15-fold when bound to a heterologous promoter in ES, 293T, and COS-1 cells. The N-terminal 52 amino acids of PSC2 were shown to be necessary and sufficient for this activity and did not share obvious homology with reported repressor motifs. These results represent the first report of a CP2 family member that is expressed in a developmentally regulated fashion in vivo and that acts as a direct repressor of transcription. Accordingly, the protein has been named CP2-Related Transcriptional Repressor-1 (CRTR-1).

  18. The "fourth dimension" of gene transcription.

    PubMed

    O'Malley, Bert W

    2009-05-01

    The three dimensions of space provide our relationship to position on the earth, but the fourth dimension of time has an equally profound influence on our lives. Everything from light and sound to weather and biology operate on the principle of measurable temporal periodicity. Consequently, a wide variety of time clocks affect all aspects of our existence. The annual (and biannual) cycles of activity, metabolism, and mating, the monthly physiological clocks of women and men, and the 24-h diurnal rhythms of humans are prime examples. Should it be surprising to us that the fourth dimension also impinges upon gene expression and that the genome itself is regulated by the fastest running of all biological clocks? Recent evidence substantiates the existence of such a ubiquitin-dependent transcriptional clock that is based upon the activation and destruction of transcriptional coactivators.

  19. Transcriptional regulation of epithelial-mesenchymal transition.

    PubMed

    Teng, Yingqi; Zeisberg, Michael; Kalluri, Raghu

    2007-02-01

    It has become increasingly obvious that the notion of a terminally differentiated cell is likely a simplified concept. Epithelial-mesenchymal transition (EMT), during which epithelial cells assume a mesenchymal phenotype, is a key event occurring during normal development and pathological processes. Multiple extracellular stimuli and transcriptional regulators can trigger EMT, but how such distinct signaling pathways orchestrate the complex cellular events that facilitate EMT is not well understood. In this issue of the JCI, Venkov et al. report on their examination of fibroblasts resulting from EMT and describe a novel protein-DNA complex that is essential for transcription of fibroblast-specific protein 1 (FSP1) and sufficient to induce early EMT events (see the related article beginning on page 482). Collectively, their results suggest that this complex is an important regulator of the EMT transcriptome.

  20. Transcriptional regulation of epithelial-mesenchymal transition

    PubMed Central

    Teng, Yingqi; Zeisberg, Michael; Kalluri, Raghu

    2007-01-01

    It has become increasingly obvious that the notion of a terminally differentiated cell is likely a simplified concept. Epithelial-mesenchymal transition (EMT), during which epithelial cells assume a mesenchymal phenotype, is a key event occurring during normal development and pathological processes. Multiple extracellular stimuli and transcriptional regulators can trigger EMT, but how such distinct signaling pathways orchestrate the complex cellular events that facilitate EMT is not well understood. In this issue of the JCI, Venkov et al. report on their examination of fibroblasts resulting from EMT and describe a novel protein-DNA complex that is essential for transcription of fibroblast-specific protein 1 (FSP1) and sufficient to induce early EMT events (see the related article beginning on page 482). Collectively, their results suggest that this complex is an important regulator of the EMT transcriptome. PMID:17273552

  1. Transcriptional Control of Dendritic Cell Development

    PubMed Central

    Murphy, Theresa L.; Grajales-Reyes, Gary E.; Wu, Xiaodi; Tussiwand, Roxane; Briseño, Carlos G.; Iwata, Arifumi; Kretzer, Nicole M.; Durai, Vivek; Murphy, Kenneth M.

    2016-01-01

    The dendritic cells (DCs) of the immune system function in innate and adaptive responses by directing activity of various effector cells rather than serving as effectors themselves. DCs and closely related myeloid lineages share expression of many surface receptors, presenting a challenge in distinguishing their unique in vivo functions. Recent work has taken advantage of unique transcriptional programs to identify and manipulate murine DCs in vivo. This work has assigned several nonredundant in vivo functions to distinct DC lineages, consisting of plasmacytoid DCs and several subsets of classical DCs that promote different immune effector modules in response to pathogens. In parallel, a correspondence between human and murine DC subsets has emerged, underlying structural similarities for the DC lineages between these species. Recent work has begun to unravel the transcriptional circuitry that controls the development and diversification of DCs from common progenitors in the bone marrow. PMID:26735697

  2. Jade data transcription system final report

    SciTech Connect

    Eaton, R.; Iskra, M.; McLean, J. . Advanced Technology Div.)

    1990-07-25

    The OWL sensor, which is used in conjunction with the Jade program, generates a tremendous volume of data during normal field operations. Historically, the dissemination of this data to analysts has been slowed by difficulties in transcribing to a widely readable media and format. TRW, under contract from Lawrence Livermore National Laboratory, was tasked by Defense Advanced Research Projects Agency (DARPA) with finding an improved method of transcribing the Jade experimental data. During the period of performance on this contract TRW helped to guide the development and operation of an improved transcription system. This final report summarizes the work performed, and provides a written record of information which may be helpful to future users of the newly developed data transcription system. 4 figs.

  3. HIV transcription is induced in dying cells

    SciTech Connect

    Woloschak, G.E.; Chang-Liu, Chin-Mei; Schreck, S. |; Panozzo, J.; Libertin, C.R.

    1996-02-01

    Using HeLa cells stably transfected with an HIV-LTR-CAT construct, we demonstrated a peak in CAT induction that occurs in viable (but not necessarily cell-division-competent) cells 24 h following exposure to some cell-killing agents. {gamma} rays were the only cell-killing agent which did not induce HIV transcription; this can be attributed to the fact that {gamma}-ray-induced apoptotic death requires functional p53, which is not present in HeLa cells. For all other agents, HIV-LTR induction was dose-dependent and correlated with the amount of cell killing that occurred in the culture. Doses which caused over 99% cell killing induced HIV-LTR transcription maximally, demonstrating that cells that will go on to die by 14 days are the cells expressing HIV-LTR-CAT.

  4. GOLDEN 2-LIKE Transcription Factors of Plants

    PubMed Central

    Chen, Min; Ji, Meiling; Wen, Binbin; Liu, Li; Li, Shaoxuan; Chen, Xiude; Gao, Dongsheng; Li, Ling

    2016-01-01

    Golden2-like (GLK) transcription factors are members of the GARP family of Myb transcription factors with an established relationship to chloroplast development in the plant kingdom. In the last century, Golden2 was proposed as a second golden producing factor and identified as controlling cellular differentiation in maize leaves. Then, GLKs were also found to play roles in disease defense and their function is conserved in regulating chloroplast development. Recently, research on GLKs has rapidly increased and shown that GLKs control chloroplast development in green and non-green tissues. Moreover, links between phytohormones and GLKs were verified. In this mini-review, we summarize the history, conservation, function, potential targets and degradation of GLKs. PMID:27757121

  5. Transcriptional Targeting in Cancer Gene Therapy

    PubMed Central

    2003-01-01

    Cancer gene therapy has been one of the most exciting areas of therapeutic research in the past decade. In this review, we discuss strategies to restrict transcription of transgenes to tumour cells. A range of promoters which are tissue-specific, tumour-specific, or inducible by exogenous agents are presented. Transcriptional targeting should prevent normal tissue toxicities associated with other cancer treatments, such as radiation and chemotherapy. In addition, the specificity of these strategies should provide improved targeting of metastatic tumours following systemic gene delivery. Rapid progress in the ability to specifically control transgenes will allow systemic gene delivery for cancer therapy to become a real possibility in the near future. PMID:12721516

  6. Information flow and optimization in transcriptional regulation.

    PubMed

    Tkacik, Gasper; Callan, Curtis G; Bialek, William

    2008-08-26

    In the simplest view of transcriptional regulation, the expression of a gene is turned on or off by changes in the concentration of a transcription factor (TF). We use recent data on noise levels in gene expression to show that it should be possible to transmit much more than just one regulatory bit. Realizing this optimal information capacity would require that the dynamic range of TF concentrations used by the cell, the input/output relation of the regulatory module, and the noise in gene expression satisfy certain matching relations, which we derive. These results provide parameter-free, quantitative predictions connecting independently measurable quantities. Although we have considered only the simplified problem of a single gene responding to a single TF, we find that these predictions are in surprisingly good agreement with recent experiments on the Bicoid/Hunchback system in the early Drosophila embryo and that this system achieves approximately 90% of its theoretical maximum information transmission.

  7. Epigenetic regulation of transcription in Drosophila.

    PubMed

    Swaminathan, Aishwarya; Gajan, Ambikai; Pile, Lori A

    2012-01-01

    Post-translational modification of histones is a major mechanism of epigenetic regulation of eukaryotic transcription. Drosophila has proven to be an important model system for the study of histone modifying enzymes and the cross talk that occurs between the various modifications. Polytene chromosome analysis and genome-wide chromatin immunoprecipitation (ChIP) studies have provided much insight into the location of marks and many of the enzymes that perform the catalytic reactions. Gene specific effects have been determined through study of flies carrying mutations in histone modifying enzymes. This review will highlight classic studies and present recent progress on both the localization data and mutant analyses. This information has been used to assign function to the marks and to the enzymes that place or remove them, critical for the process of transcriptional regulation.

  8. Deconstructing transcriptional heterogeneity in pluripotent stem cells.

    PubMed

    Kumar, Roshan M; Cahan, Patrick; Shalek, Alex K; Satija, Rahul; DaleyKeyser, A Jay; Li, Hu; Zhang, Jin; Pardee, Keith; Gennert, David; Trombetta, John J; Ferrante, Thomas C; Regev, Aviv; Daley, George Q; Collins, James J

    2014-12-04

    Pluripotent stem cells (PSCs) are capable of dynamic interconversion between distinct substates; however, the regulatory circuits specifying these states and enabling transitions between them are not well understood. Here we set out to characterize transcriptional heterogeneity in mouse PSCs by single-cell expression profiling under different chemical and genetic perturbations. Signalling factors and developmental regulators show highly variable expression, with expression states for some variable genes heritable through multiple cell divisions. Expression variability and population heterogeneity can be influenced by perturbation of signalling pathways and chromatin regulators. Notably, either removal of mature microRNAs or pharmacological blockage of signalling pathways drives PSCs into a low-noise ground state characterized by a reconfigured pluripotency network, enhanced self-renewal and a distinct chromatin state, an effect mediated by opposing microRNA families acting on the Myc/Lin28/let-7 axis. These data provide insight into the nature of transcriptional heterogeneity in PSCs.

  9. Deconstructing transcriptional heterogeneity in pluripotent stem cells

    PubMed Central

    Shalek, Alex K.; Satija, Rahul; DaleyKeyser, AJay; Li, Hu; Zhang, Jin; Pardee, Keith; Gennert, David; Trombetta, John J.; Ferrante, Thomas C.; Regev, Aviv; Daley, George Q.; Collins, James J.

    2014-01-01

    SUMMARY Pluripotent stem cells (PSCs) are capable of dynamic interconversion between distinct substates, but the regulatory circuits specifying these states and enabling transitions between them are not well understood. We set out to characterize transcriptional heterogeneity in PSCs by single-cell expression profiling under different chemical and genetic perturbations. Signaling factors and developmental regulators show highly variable expression, with expression states for some variable genes heritable through multiple cell divisions. Expression variability and population heterogeneity can be influenced by perturbation of signaling pathways and chromatin regulators. Strikingly, either removal of mature miRNAs or pharmacologic blockage of signaling pathways drives PSCs into a low-noise ground state characterized by a reconfigured pluripotency network, enhanced self-renewal, and a distinct chromatin state, an effect mediated by opposing miRNA families acting on the c-myc / Lin28 / let-7 axis. These data illuminate the nature of transcriptional heterogeneity in PSCs. PMID:25471879

  10. Crowding, dynamics and transcription (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Szleifer, Igal

    2016-03-01

    Biophotonic studies based on partial wave spectroscopy have shown that early carcinogenesis is characterized by a change in the nanoscale molecular organization of the cell nuclii. These finding suggest that cancer is associated with change in macromolecular crowding. In this presentation we will discuss a recent approach that we have developed to incorporate molecular scale information into a systems based approach to study the role of macromolecular crowding on different phenomena ranging from protein diffusion to gene transcription. Macromolecular crowding affects both dynamics and equilibrium properties. We will show that transcription is a non-monotonic function of crowders concentration in the cell nuclei. Furthermore, we will show how changes in macromolecular crowding in the nuclei and in the cytoplasm lead to different changes in the oscillatory behavior on NF-κB upon stimuli. Our results show the important regulatory role that non-specific interactions play in biological systems.

  11. Negative autoregulation of c-myc transcription.

    PubMed Central

    Penn, L J; Brooks, M W; Laufer, E M; Land, H

    1990-01-01

    The introduction of activated c-myc and v-myc genes into a variety of non-established and established cells results in the suppression of endogenous c-myc expression. As measured in Rat-1 fibroblasts, the suppression occurs at the level of transcriptional initiation. Moreover, the extent of the down-regulation is proportional to the cellular concentration of c-myc protein, and the critical concentration range in which the endogenous c-myc RNA is effectively suppressed corresponds to that found in non-transformed cells. In addition, the autoregulatory mechanism is not only dependent on c-myc protein, but also requires additional trans-acting factors. These results support a role for c-myc in the regulation of cellular gene transcription and suggest that a negative feedback mechanism can act as a homeostatic regulator of c-myc expression in vivo. Images Fig. 1. Fig. 2. Fig. 4. Fig. 5. PMID:2182320

  12. Comprehensive transcriptional map of primate brain development

    PubMed Central

    Bakken, Trygve E.; Miller, Jeremy A.; Ding, Song-Lin; Sunkin, Susan M.; Smith, Kimberly A.; Ng, Lydia; Szafer, Aaron; Dalley, Rachel A.; Royall, Joshua J.; Lemon, Tracy; Shapouri, Sheila; Aiona, Kaylynn; Arnold, James; Bennett, Jeffrey L.; Bertagnolli, Darren; Bickley, Kristopher; Boe, Andrew; Brouner, Krissy; Butler, Stephanie; Byrnes, Emi; Caldejon, Shiella; Carey, Anita; Cate, Shelby; Chapin, Mike; Chen, Jefferey; Dee, Nick; Desta, Tsega; Dolbeare, Tim A.; Dotson, Nadia; Ebbert, Amanda; Fulfs, Erich; Gee, Garrett; Gilbert, Terri L.; Goldy, Jeff; Gourley, Lindsey; Gregor, Ben; Gu, Guangyu; Hall, Jon; Haradon, Zeb; Haynor, David R.; Hejazinia, Nika; Hoerder-Suabedissen, Anna; Howard, Robert; Jochim, Jay; Kinnunen, Marty; Kriedberg, Ali; Kuan, Chihchau L.; Lau, Christopher; Lee, Chang-Kyu; Lee, Felix; Luong, Lon; Mastan, Naveed; May, Ryan; Melchor, Jose; Mosqueda, Nerick; Mott, Erika; Ngo, Kiet; Nyhus, Julie; Oldre, Aaron; Olson, Eric; Parente, Jody; Parker, Patrick D.; Parry, Sheana; Pendergraft, Julie; Potekhina, Lydia; Reding, Melissa; Riley, Zackery L.; Roberts, Tyson; Rogers, Brandon; Roll, Kate; Rosen, David; Sandman, David; Sarreal, Melaine; Shapovalova, Nadiya; Shi, Shu; Sjoquist, Nathan; Sodt, Andy J.; Townsend, Robbie; Velasquez, Lissette; Wagley, Udi; Wakeman, Wayne B.; White, Cassandra; Bennett, Crissa; Wu, Jennifer; Young, Rob; Youngstrom, Brian L.; Wohnoutka, Paul; Gibbs, Richard A.; Rogers, Jeffrey; Hohmann, John G.; Hawrylycz, Michael J.; Hevner, Robert F.; Molnár, Zoltán; Phillips, John W.; Dang, Chinh; Jones, Allan R.; Amaral, David G.; Bernard, Amy; Lein, Ed S.

    2017-01-01

    The transcriptional underpinnings of brain development remain poorly understood, particularly in humans and closely related non-human primates. We describe a high resolution transcriptional atlas of rhesus monkey brain development that combines dense temporal sampling of prenatal and postnatal periods with fine anatomical parcellation of cortical and subcortical regions associated with human neuropsychiatric disease. Gene expression changes more rapidly before birth, both in progenitor cells and maturing neurons, and cortical layers and areas acquire adult-like molecular profiles surprisingly late postnatally. Disparate cell populations exhibit distinct developmental timing but also unexpected synchrony of processes underlying neural circuit construction including cell projection and adhesion. Candidate risk genes for neurodevelopmental disorders including primary microcephaly, autism spectrum disorder, intellectual disability, and schizophrenia show disease-specific spatiotemporal enrichment within developing neocortex. Human developmental expression trajectories are more similar to monkey than rodent, and approximately 9% of genes show human-specific regulation with evidence for prolonged maturation or neoteny. PMID:27409810

  13. Transcriptional regulation of cranial sensory placode development

    PubMed Central

    Moody, Sally A.; LaMantia, Anthony-Samuel

    2015-01-01

    Cranial sensory placodes derive from discrete patches of the head ectoderm, and give rise to numerous sensory structures. During gastrulation, a specialized “neural border zone” forms around the neural plate in response to interactions between the neural and non-neural ectoderm and signals from adjacent mesodermal and/or endodermal tissues. This zone subsequently gives rise to two distinct precursor populations of the peripheral nervous system: the neural crest and the pre-placodal ectoderm (PPE). The PPE is a common field from which all cranial sensory placodes arise (adenohypophyseal, olfactory, lens, trigeminal, epibranchial, otic). Members of the Six family of transcription factors are major regulators of PPE specification, in partnership with co-factor proteins such as Eya. Six gene activity also maintains tissue boundaries between the PPE, neural crest and epidermis by repressing genes that specify the fates of those adjacent ectodermally-derived domains. As the embryo acquires anterior-posterior identity, the PPE becomes transcriptionally regionalized, and it subsequently subdivides into specific placodes with distinct developmental fates in response to signaling from adjacent tissues. Each placode is characterized by a unique transcriptional program that leads to the differentiation of highly specialized cells, such as neurosecretory cells, somatic sensory receptor cells, chemosensory neurons, peripheral glia and supporting cells. In this review, we summarize the transcriptional and signaling factors that regulate key steps of placode development, influence subsequent sensory neuron specification, and discuss what is known about mutations in some of the essential PPE genes that underlie human congenital syndromes. PMID:25662264

  14. Rad51 activates polyomavirus JC early transcription.

    PubMed

    White, Martyn K; Kaminski, Rafal; Khalili, Kamel; Wollebo, Hassen S

    2014-01-01

    The human neurotropic polyomavirus JC (JCV) causes the fatal CNS demyelinating disease progressive multifocal leukoencephalopathy (PML). JCV infection is very common and after primary infection, the virus is able to persist in an asymptomatic state. Rarely, and usually only under conditions of immune impairment, JCV re-emerges to actively replicate in the astrocytes and oligodendrocytes of the brain causing PML. The regulatory events involved in the reactivation of active viral replication in PML are not well understood but previous studies have implicated the transcription factor NF-κB acting at a well-characterized site in the JCV noncoding control region (NCCR). NF-κB in turn is regulated in a number of ways including activation by cytokines such as TNF-α, interactions with other transcription factors and epigenetic events involving protein acetylation--all of which can regulate the transcriptional activity of JCV. Active JCV infection is marked by the occurrence of rapid and extensive DNA damage in the host cell and the induction of the expression of cellular proteins involved in DNA repair including Rad51, a major component of the homologous recombination-directed double-strand break DNA repair machinery. Here we show that increased Rad51 expression activates the JCV early promoter. This activation is co-operative with the stimulation caused by NF-κB p65, abrogated by mutation of the NF-κB binding site or siRNA to NFκB p65 and enhanced by the histone deacetylase inhibitor sodium butyrate. These data indicate that the induction of Rad51 resulting from infection with JCV acts through NF-κB via its binding site to stimulate JCV early transcription. We suggest that this provides a novel positive feedback mechanism to enhance viral gene expression during the early stage of JCV infection.

  15. Transcript of Interview: Mark K. Craig

    NASA Technical Reports Server (NTRS)

    McCurdy, Howard E.

    1992-01-01

    This document is a transcript of an interview given by Howard E. McCurdy to Mark K. Craig. Craig gives details on his background including information on his family, education, and career path, his reaction to the news that America was planning to put a man on the Moon, why he thinks we should go to Mars, and the political speeches made at the time of early human space exploration planning.

  16. 22 CFR 1004.8 - Transcripts, recording of closed meetings.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... shall maintain either such a transcript or recording, or a set of minutes. Such records shall fully and... public, the transcript or electronic recording or minutes of the discussion of any time on the agenda,...

  17. 45 CFR 1802.7 - Transcripts, recordings, minutes of meetings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... transcription of such recording disclosing the identify of each speaker, shall be available at the actual cost of duplication or transcription. (3) The determination of the General Counsel to withhold...

  18. A synthetic biology framework for programming eukaryotic transcription functions.

    PubMed

    Khalil, Ahmad S; Lu, Timothy K; Bashor, Caleb J; Ramirez, Cherie L; Pyenson, Nora C; Joung, J Keith; Collins, James J

    2012-08-03

    Eukaryotic transcription factors (TFs) perform complex and combinatorial functions within transcriptional networks. Here, we present a synthetic framework for systematically constructing eukaryotic transcription functions using artificial zinc fingers, modular DNA-binding domains found within many eukaryotic TFs. Utilizing this platform, we construct a library of orthogonal synthetic transcription factors (sTFs) and use these to wire synthetic transcriptional circuits in yeast. We engineer complex functions, such as tunable output strength and transcriptional cooperativity, by rationally adjusting a decomposed set of key component properties, e.g., DNA specificity, affinity, promoter design, protein-protein interactions. We show that subtle perturbations to these properties can transform an individual sTF between distinct roles (activator, cooperative factor, inhibitory factor) within a transcriptional complex, thus drastically altering the signal processing behavior of multi-input systems. This platform provides new genetic components for synthetic biology and enables bottom-up approaches to understanding the design principles of eukaryotic transcriptional complexes and networks.

  19. Mitochondrial run-on transcription assay using biotin labeling.

    PubMed

    Kühn, Kristina

    2015-01-01

    RNA synthesis and different posttranscriptional processes shape the transcriptome of plant mitochondria. It is believed that mitochondrial transcription in plants is not stringently controlled, and that RNA degradation has a major impact on mitochondrial steady-state transcript levels. Nevertheless, the presence of two RNA polymerases with different gene specificities in mitochondria of dicotyledonous species indicates that transcriptional mechanisms may provide a means to control mitochondrial steady-state RNA pools and gene expression. To experimentally assess transcriptional activities in mitochondria, run-on transcription assays have been developed. These assays measure elongation rates for endogenous transcripts in freshly prepared mitochondrial extracts. The mitochondrial run-on transcription protocol described here has been optimized for the model plant Arabidopsis (Arabidopsis thaliana). It uses mitochondria prepared from soil-grown Arabidopsis plants and employs nonradioactive labeling for the subsequent detection of run-on transcripts.

  20. 14 CFR 147.35 - Transcripts and graduation certificates.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... shall authenticate the transcript. The transcript must state the curriculum in which the student was enrolled, whether the student satisfactorily completed that curriculum, and the final grades the student... show the date of graduation and the approved curriculum title....

  1. To Your Health: NLM Update transcript - Superbug in space

    MedlinePlus

    ... transcript031317.html To Your Health: NLM Update Transcript Superbug in space : 03/13/2017 To use the ... was memorable, its cargo includes an antibiotic-resistant superbug to be studied on the International Space Station ( ...

  2. Transcriptional Regulation of the Pancreatic Islet: Implications for Islet Function

    PubMed Central

    Stitzel, Michael L.; Kycia, Ina; Kursawe, Romy; Ucar, Duygu

    2015-01-01

    Islets of Langerhans contain multiple hormone-producing endocrine cells controlling glucose homeostasis. Transcription establishes and maintains islet cellular fates and identities. Genetic and environmental disruption of islet transcription triggers cellular dysfunction and disease. Early transcriptional regulation studies of specific islet genes, including insulin (INS) and the transcription factor PDX1, identified the first cis-regulatory DNA sequences and trans-acting factors governing islet function. Here, we review how human islet “omics” studies are reshaping our understanding of transcriptional regulation in islet (dys)function and diabetes. First, we highlight the expansion of islet transcript number, form, and function and of DNA transcriptional regulatory elements controlling their production. Next, we cover islet transcriptional effects of genetic and environmental perturbation. Finally, we discuss how these studies’ emerging insights should empower our diabetes research community to build mechanistic understanding of diabetes pathophysiology and to equip clinicians with tailored, precision medicine options to prevent and treat islet dysfunction and diabetes. PMID:26272056

  3. Drosophilia alpha-tubulin genes and their transcription patterns.

    PubMed

    Kalfayan, L; Loewenberg, J; Wensink, P C

    1982-01-01

    There are four different alpha-tubulin genes in D. melanogaster DNA; three of them appear as single copies and the other is present as either one or two copies in the haploid genome. The transcripts of three of these genes were examined. Each of them is complementary to a transcript of different length, implying that each is transcribed. Since these transcripts are found on polysomes, it is likely that they are translated. At least two of the genes are complementary to several transcripts, indicating that each of them has more than one transcription start or stop site or perhaps that there are alternative paths of posttranscriptional processing. There is a different developmental pattern of concentrations for transcripts from each of these genes, and different RNAs from the same gene also have different patterns. We conclude that the concentration of transcripts from each gene appears to be independently controlled and that even different transcription products from the same gene appear to independently controlled.

  4. Tunable protein synthesis by transcript isoforms in human cells.

    PubMed

    Floor, Stephen N; Doudna, Jennifer A

    2016-01-06

    Eukaryotic genes generate multiple RNA transcript isoforms though alternative transcription, splicing, and polyadenylation. However, the relationship between human transcript diversity and protein production is complex as each isoform can be translated differently. We fractionated a polysome profile and reconstructed transcript isoforms from each fraction, which we term Transcript Isoforms in Polysomes sequencing (TrIP-seq). Analysis of these data revealed regulatory features that control ribosome occupancy and translational output of each transcript isoform. We extracted a panel of 5' and 3' untranslated regions that control protein production from an unrelated gene in cells over a 100-fold range. Select 5' untranslated regions exert robust translational control between cell lines, while 3' untranslated regions can confer cell type-specific expression. These results expose the large dynamic range of transcript-isoform-specific translational control, identify isoform-specific sequences that control protein output in human cells, and demonstrate that transcript isoform diversity must be considered when relating RNA and protein levels.

  5. Repetitive Elements in Mycoplasma hyopneumoniae Transcriptional Regulation

    PubMed Central

    Cattani, Amanda Malvessi; Siqueira, Franciele Maboni; Guedes, Rafael Lucas Muniz; Schrank, Irene Silveira

    2016-01-01

    Transcriptional regulation, a multiple-step process, is still poorly understood in the important pig pathogen Mycoplasma hyopneumoniae. Basic motifs like promoters and terminators have already been described, but no other cis-regulatory elements have been found. DNA repeat sequences have been shown to be an interesting potential source of cis-regulatory elements. In this work, a genome-wide search for tandem and palindromic repetitive elements was performed in the intergenic regions of all coding sequences from M. hyopneumoniae strain 7448. Computational analysis demonstrated the presence of 144 tandem repeats and 1,171 palindromic elements. The DNA repeat sequences were distributed within the 5’ upstream regions of 86% of transcriptional units of M. hyopneumoniae strain 7448. Comparative analysis between distinct repetitive sequences found in related mycoplasma genomes demonstrated different percentages of conservation among pathogenic and nonpathogenic strains. qPCR assays revealed differential expression among genes showing variable numbers of repetitive elements. In addition, repeats found in 206 genes already described to be differentially regulated under different culture conditions of M. hyopneumoniae strain 232 showed almost 80% conservation in relation to M. hyopneumoniae strain 7448 repeats. Altogether, these findings suggest a potential regulatory role of tandem and palindromic DNA repeats in the M. hyopneumoniae transcriptional profile. PMID:28005945

  6. The TIGR Plant Transcript Assemblies database.

    PubMed

    Childs, Kevin L; Hamilton, John P; Zhu, Wei; Ly, Eugene; Cheung, Foo; Wu, Hank; Rabinowicz, Pablo D; Town, Chris D; Buell, C Robin; Chan, Agnes P

    2007-01-01

    The TIGR Plant Transcript Assemblies (TA) database (http://plantta.tigr.org) uses expressed sequences collected from the NCBI GenBank Nucleotide database for the construction of transcript assemblies. The sequences collected include expressed sequence tags (ESTs) and full-length and partial cDNAs, but exclude computationally predicted gene sequences. The TA database includes all plant species for which more than 1000 EST or cDNA sequences are publicly available. The EST and cDNA sequences are first clustered based on an all-versus-all pairwise sequence comparison, followed by the generation of consensus sequences (TAs) from individual clusters. The clustering and assembly procedures use the TGICL tool, Megablast and the CAP3 assembler. The UniProt Reference Clusters (UniRef100) protein database is used as the reference database for the functional annotation of the assemblies. The transcription orientation of each TA is determined based on the orientation of the alignment with the best protein hit. The TA sequences and annotation are available via web interfaces and FTP downloads. Assemblies can be retrieved by a text-based keyword search or a sequence-based BLAST search. The current version of the TA database is Release 2 (July 17, 2006) and includes a total of 215 plant species.

  7. A model for genesis of transcription systems.

    PubMed

    Burton, Zachary F; Opron, Kristopher; Wei, Guowei; Geiger, James H

    2016-01-01

    Repeating sequences generated from RNA gene fusions/ligations dominate ancient life, indicating central importance of building structural complexity in evolving biological systems. A simple and coherent story of life on earth is told from tracking repeating motifs that generate α/β proteins, 2-double-Ψ-β-barrel (DPBB) type RNA polymerases (RNAPs), general transcription factors (GTFs), and promoters. A general rule that emerges is that biological complexity that arises through generation of repeats is often bounded by solubility and closure (i.e., to form a pseudo-dimer or a barrel). Because the first DNA genomes were replicated by DNA template-dependent RNA synthesis followed by RNA template-dependent DNA synthesis via reverse transcriptase, the first DNA replication origins were initially 2-DPBB type RNAP promoters. A simplifying model for evolution of promoters/replication origins via repetition of core promoter elements is proposed. The model can explain why Pribnow boxes in bacterial transcription (i.e., (-12)TATAATG(-6)) so closely resemble TATA boxes (i.e., (-31)TATAAAAG(-24)) in archaeal/eukaryotic transcription. The evolution of anchor DNA sequences in bacterial (i.e., (-35)TTGACA(-30)) and archaeal (BRE(up); BRE for TFB recognition element) promoters is potentially explained. The evolution of BRE(down) elements of archaeal promoters is potentially explained.

  8. Transcriptional regulation of plant phosphate transporters

    PubMed Central

    Muchhal, Umesh S.; Raghothama, K. G.

    1999-01-01

    Phosphorus is acquired by plant roots primarily via the high-affinity inorganic phosphate (Pi) transporters. The transcripts for Pi transporters are highly inducible upon Pi starvation, which also results in enhanced Pi uptake when Pi is resupplied. Using antibodies specific to one of the tomato Pi transporters (encoded by LePT1), we show that an increase in the LePT1 transcript under Pi starvation leads to a concurrent increase in the transporter protein, suggesting a transcriptional regulation for Pi acquisition. LePT1 protein accumulates rapidly in tomato roots in response to Pi starvation. The level of transporter protein accumulation depends on the Pi concentration in the medium, and it is reversible upon resupply of Pi. LePT1 protein accumulates all along the roots under Pi starvation and is localized primarily in the plasma membranes. These results clearly demonstrate that plants increase their capacity for Pi uptake during Pi starvation by synthesis of additional transporter molecules. PMID:10318976

  9. A model for genesis of transcription systems

    PubMed Central

    Burton, Zachary F.; Opron, Kristopher; Wei, Guowei; Geiger, James H.

    2016-01-01

    ABSTRACT Repeating sequences generated from RNA gene fusions/ligations dominate ancient life, indicating central importance of building structural complexity in evolving biological systems. A simple and coherent story of life on earth is told from tracking repeating motifs that generate α/β proteins, 2-double-Ψ−β-barrel (DPBB) type RNA polymerases (RNAPs), general transcription factors (GTFs), and promoters. A general rule that emerges is that biological complexity that arises through generation of repeats is often bounded by solubility and closure (i.e., to form a pseudo-dimer or a barrel). Because the first DNA genomes were replicated by DNA template-dependent RNA synthesis followed by RNA template-dependent DNA synthesis via reverse transcriptase, the first DNA replication origins were initially 2-DPBB type RNAP promoters. A simplifying model for evolution of promoters/replication origins via repetition of core promoter elements is proposed. The model can explain why Pribnow boxes in bacterial transcription (i.e., −12TATAATG−6) so closely resemble TATA boxes (i.e., −31TATAAAAG−24) in archaeal/eukaryotic transcription. The evolution of anchor DNA sequences in bacterial (i.e., −35TTGACA−30) and archaeal (BREup; BRE for TFB recognition element) promoters is potentially explained. The evolution of BREdown elements of archaeal promoters is potentially explained. PMID:26735411

  10. Cockayne syndrome: defective repair of transcription?

    PubMed Central

    van Gool, A J; van der Horst, G T; Citterio, E; Hoeijmakers, J H

    1997-01-01

    In the past years, it has become increasingly evident that basal metabolic processes within the cell are intimately linked and influenced by one another. One such link that recently has attracted much attention is the close interplay between nucleotide excision DNA repair and transcription. This is illustrated both by the preferential repair of the transcribed strand of active genes (a phenomenon known as transcription-coupled repair, TCR) as well as by the distinct dual involvement of proteins in both processes. The mechanism of TCR in eukaryotes is still largely unknown. It was first discovered in mammals by the pioneering studies of Hanawalt and colleagues, and subsequently identified in yeast and Escherichia coli. In the latter case, one protein, the transcription repair-coupling factor, was found to accomplish this function in vitro, and a plausible model for its activity was proposed. While the E. coli model still functions as a paradigm for TCR in eukaryotes, recent observations prompt us to believe that the situation in eukaryotes is much more complex, involving dual functionality of multiple proteins. PMID:9250659

  11. The Mediator complex and transcription regulation.

    PubMed

    Poss, Zachary C; Ebmeier, Christopher C; Taatjes, Dylan J

    2013-01-01

    The Mediator complex is a multi-subunit assembly that appears to be required for regulating expression of most RNA polymerase II (pol II) transcripts, which include protein-coding and most non-coding RNA genes. Mediator and pol II function within the pre-initiation complex (PIC), which consists of Mediator, pol II, TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH and is approximately 4.0 MDa in size. Mediator serves as a central scaffold within the PIC and helps regulate pol II activity in ways that remain poorly understood. Mediator is also generally targeted by sequence-specific, DNA-binding transcription factors (TFs) that work to control gene expression programs in response to developmental or environmental cues. At a basic level, Mediator functions by relaying signals from TFs directly to the pol II enzyme, thereby facilitating TF-dependent regulation of gene expression. Thus, Mediator is essential for converting biological inputs (communicated by TFs) to physiological responses (via changes in gene expression). In this review, we summarize an expansive body of research on the Mediator complex, with an emphasis on yeast and mammalian complexes. We focus on the basics that underlie Mediator function, such as its structure and subunit composition, and describe its broad regulatory influence on gene expression, ranging from chromatin architecture to transcription initiation and elongation, to mRNA processing. We also describe factors that influence Mediator structure and activity, including TFs, non-coding RNAs and the CDK8 module.

  12. Transcriptional effects of gene dose reduction

    PubMed Central

    2014-01-01

    Large-scale gene dose reductions usually lead to abnormal phenotypes or death. However, male mammals, Drosophila, and Caenorhabditis elegans have only one X chromosome and thus can be considered as monosomic for a major chromosome. Despite the deleterious effects brought about by such gene dose reduction in the case of an autosome, X chromosome monosomy in males is natural and innocuous. This is because of the nearly full transcriptional compensation for X chromosome genes in males, as opposed to no or partial transcriptional compensation for autosomal one-dose genes arising due to deletions. Buffering, the passive absorption of disturbance due to enzyme kinetics, and feedback responses triggered by expression change contribute to partial compensation. Feed-forward mechanisms, which are active responses to genes being located on the X, rather than actual gene dose are important contributors to full X chromosome compensation. In the last decade, high-throughput techniques have provided us with the tools to effectively and quantitatively measure the small-fold transcriptional effects of dose reduction. This is leading to a better understanding of compensatory mechanisms. PMID:24581086

  13. Evolution of transcriptional enhancers and animal diversity

    PubMed Central

    Rubinstein, Marcelo; de Souza, Flávio S. J.

    2013-01-01

    Deciphering the genetic bases that drive animal diversity is one of the major challenges of modern biology. Although four decades ago it was proposed that animal evolution was mainly driven by changes in cis-regulatory DNA elements controlling gene expression rather than in protein-coding sequences, only now are powerful bioinformatics and experimental approaches available to accelerate studies into how the evolution of transcriptional enhancers contributes to novel forms and functions. In the introduction to this Theme Issue, we start by defining the general properties of transcriptional enhancers, such as modularity and the coexistence of tight sequence conservation with transcription factor-binding site shuffling as different mechanisms that maintain the enhancer grammar over evolutionary time. We discuss past and current methods used to identify cell-type-specific enhancers and provide examples of how enhancers originate de novo, change and are lost in particular lineages. We then focus in the central part of this Theme Issue on analysing examples of how the molecular evolution of enhancers may change form and function. Throughout this introduction, we present the main findings of the articles, reviews and perspectives contributed to this Theme Issue that together illustrate some of the great advances and current frontiers in the field. PMID:24218630

  14. Stress-Induced Activation of Heterochromatic Transcription

    PubMed Central

    Tittel-Elmer, Mireille; Bucher, Etienne; Broger, Larissa; Mathieu, Olivier; Paszkowski, Jerzy; Vaillant, Isabelle

    2010-01-01

    Constitutive heterochromatin comprising the centromeric and telomeric parts of chromosomes includes DNA marked by high levels of methylation associated with histones modified by repressive marks. These epigenetic modifications silence transcription and ensure stable inheritance of this inert state. Although environmental cues can alter epigenetic marks and lead to modulation of the transcription of genes located in euchromatic parts of the chromosomes, there is no evidence that external stimuli can globally destabilize silencing of constitutive heterochromatin. We have found that heterochromatin-associated silencing in Arabidopsis plants subjected to a particular temperature regime is released in a genome-wide manner. This occurs without alteration of repressive epigenetic modifications and does not involve common epigenetic mechanisms. Such induced release of silencing is mostly transient, and rapid restoration of the silent state occurs without the involvement of factors known to be required for silencing initiation. Thus, our results reveal new regulatory aspects of transcriptional repression in constitutive heterochromatin and open up possibilities to identify the molecular mechanisms involved. PMID:21060865

  15. Repetitive Elements in Mycoplasma hyopneumoniae Transcriptional Regulation.

    PubMed

    Cattani, Amanda Malvessi; Siqueira, Franciele Maboni; Guedes, Rafael Lucas Muniz; Schrank, Irene Silveira

    2016-01-01

    Transcriptional regulation, a multiple-step process, is still poorly understood in the important pig pathogen Mycoplasma hyopneumoniae. Basic motifs like promoters and terminators have already been described, but no other cis-regulatory elements have been found. DNA repeat sequences have been shown to be an interesting potential source of cis-regulatory elements. In this work, a genome-wide search for tandem and palindromic repetitive elements was performed in the intergenic regions of all coding sequences from M. hyopneumoniae strain 7448. Computational analysis demonstrated the presence of 144 tandem repeats and 1,171 palindromic elements. The DNA repeat sequences were distributed within the 5' upstream regions of 86% of transcriptional units of M. hyopneumoniae strain 7448. Comparative analysis between distinct repetitive sequences found in related mycoplasma genomes demonstrated different percentages of conservation among pathogenic and nonpathogenic strains. qPCR assays revealed differential expression among genes showing variable numbers of repetitive elements. In addition, repeats found in 206 genes already described to be differentially regulated under different culture conditions of M. hyopneumoniae strain 232 showed almost 80% conservation in relation to M. hyopneumoniae strain 7448 repeats. Altogether, these findings suggest a potential regulatory role of tandem and palindromic DNA repeats in the M. hyopneumoniae transcriptional profile.

  16. Post-transcriptional regulation of ornithine decarboxylase

    PubMed Central

    Nowotarski, Shannon L.; Origanti, Sofia; Shantz, Lisa M.

    2013-01-01

    Activity of the polyamine biosynthetic enzyme ornithine decarboxylase (ODC), and intracellular levels of ODC protein are controlled very tightly. Numerous studies have described ODC regulation at the levels of transcription, translation and protein degradation in normal cells, and dysregulation of these processes in response to oncogenic stimuli. Although post-transcriptional regulation of ODC has been well-documented, the RNA binding proteins (RBPs) that interact with ODC mRNA and control synthesis of the ODC protein have not been defined. Using Ras-transformed rat intestinal epithelial cells (Ras12V cells) as a model, we have begun identifying the RBPs that associate with the ODC transcript. Binding of RBPs could potentially regulate ODC synthesis by either changing mRNA stability or rate of mRNA translation. Techniques for measuring RBP binding and translation initiation are described here. Targeting control of ODC translation or mRNA decay could be a valuable method of limiting polyamine accumulation and subsequent tumor development in a variety of cancers. PMID:21318880

  17. Epigenetics, fragile X syndrome and transcriptional therapy.

    PubMed

    Tabolacci, Elisabetta; Chiurazzi, Pietro

    2013-11-01

    Epigenetics refers to the study of heritable changes in gene expression that occur without a change in DNA sequence. Epigenetic mechanisms therefore include all transcriptional controls that determine how genes are expressed during development and differentiation, but also in individual cells responding to environmental stimuli. The purpose of this review is to examine the basic principles of epigenetic mechanisms and their contribution to human disorders with a particular focus on fragile X syndrome (FXS), the most common monogenic form of developmental cognitive impairment. FXS represents a prototype of the so-called repeat expansion disorders due to "dynamic" mutations, namely the expansion (known as "full mutation") of a CGG repeat in the 5'UTR of the FMR1 gene. This genetic anomaly is accompanied by epigenetic modifications (mainly DNA methylation and histone deacetylation), resulting in the inactivation of the FMR1 gene. The presence of an intact FMR1 coding sequence allowed pharmacological reactivation of gene transcription, particularly through the use of the DNA demethylating agent 5'-aza-2'-deoxycytydine and/or inhibitors of histone deacetylases. These treatments suggested that DNA methylation is dominant over histone acetylation in silencing the FMR1 gene. The importance of DNA methylation in repressing FMR1 transcription is confirmed by the existence of rare unaffected males carrying unmethylated full mutations. Finally, we address the potential use of epigenetic approaches to targeted treatment of other genetic conditions.

  18. Evolution of transcriptional enhancers and animal diversity.

    PubMed

    Rubinstein, Marcelo; de Souza, Flávio S J

    2013-12-19

    Deciphering the genetic bases that drive animal diversity is one of the major challenges of modern biology. Although four decades ago it was proposed that animal evolution was mainly driven by changes in cis-regulatory DNA elements controlling gene expression rather than in protein-coding sequences, only now are powerful bioinformatics and experimental approaches available to accelerate studies into how the evolution of transcriptional enhancers contributes to novel forms and functions. In the introduction to this Theme Issue, we start by defining the general properties of transcriptional enhancers, such as modularity and the coexistence of tight sequence conservation with transcription factor-binding site shuffling as different mechanisms that maintain the enhancer grammar over evolutionary time. We discuss past and current methods used to identify cell-type-specific enhancers and provide examples of how enhancers originate de novo, change and are lost in particular lineages. We then focus in the central part of this Theme Issue on analysing examples of how the molecular evolution of enhancers may change form and function. Throughout this introduction, we present the main findings of the articles, reviews and perspectives contributed to this Theme Issue that together illustrate some of the great advances and current frontiers in the field.

  19. Supercoiling of the DNA Template during Transcription

    NASA Astrophysics Data System (ADS)

    Liu, Leroy F.; Wang, James C.

    1987-10-01

    Transcription of a right-handed double-helical DNA requires a relative rotation of the RNA polymerase and its nascent RNA around the DNA. We describe conditions under which the resistance to the rotational motion of the transcription ensemble around the DNA can be large. In such cases, the advancing polymerase generates positive supercoils in the DNA template ahead of it and negative supercoils behind it. Mutual annihilation of the positively and negatively supercoiled regions may be prevented by anchoring points on the DNA to a large structure, or, in the case of an unanchored plasmid, by the presence of two oppositely oriented transcription units. In prokaryotes, DNA topoisomerase I preferentially removes negative supercoils and DNA gyrase (topoisomerase II) removes positive ones. Our model thus provides an explanation for the experimentally observed high degree of negative or positive supercoiling of intracellular pBR322 DNA when DNA topoisomerase I or gyrase is respectively inhibited. We discuss the implications of our model in terms of supercoiling regulation, DNA conformational transitions, and gene regulation in both prokaryotes and eukaryotes.

  20. HIV transcription is induced with cell killing

    SciTech Connect

    Woloschak, G.E.; Schreck, S.; Chang-Liu, Chin Mei; Panozzo, J.; Libertin, C.R.

    1994-01-01

    Previous work has shown that HeLa cells stably transfected with an HIV-LTR-CAT construct are induced to express chloramphenicol acetyl transferase (CAT) following exposure to DNA-damaging agents such as ultraviolet radiation, {gamma} rays, neutrons, and others. In this report, the authors demonstrate that this induction of HIV-LTR transcription occurs when stably transfected HeLa cells are exposed to agents which mediate cell killing, such as UV radiation, electroporation of sucrose buffer, prolonged heating, and low and high pH. Cells cultured following UV exposure demonstrated a peak in CAT expression that is evidence in viable (but not necessarily cell division-competent) cells 24 h after exposure; this inductive response continued until at least 72 h after exposure. HIV-LTR induction was dose-dependent, and the amount of CAT transcription induced was correlated with the amount of cell killing that occurred in the culture. Other agents which caused no cell killing (such as heat-shock for up to 2 h, treatment with metronidazole, exposure to sunlight, vitamin C treatment, and others) had no effect on HIV-LTR induction. These results suggest that HIV transcription is induced as a consequence of the turn on of a cellular death or apoptotic pathway.

  1. Homocysteine induces inflammatory transcriptional signaling in monocytes.

    PubMed

    Meng, Shu; Ciment, Stephen; Jan, Michael; Tran, Tran; Pham, Hung; Cueto, Ramon; Yang, Xiao-Feng; Wang, Hong

    2013-01-01

    Hyperhomocysteinemia (HHcy) is an independent risk factor for cardiovascular disease. Here, we studied transcriptional regulation in homocysteine (Hcy)-induced gene expression in monocytes (MC). We identified 11 Hcy-induced genes, 17 anti-inflammatory cytokine interleukin 10-induced, 8 pro-inflammatory cytokine interferon gamma (IFN gamma)-induced and 8 pro-inflammatory cytokine tumor necrosis factor alpha (TNF alpha)-induced genes through literature search. Binding frequency of 36 transcription factors (TFs) implicated in inflammation and MC differentiation were analyzed within core promoter regions of identified genes, and classified into 3 classes based on the significant binding frequency to the promoter of Hcy-induced genes. Class 1 TFs exert high significant binding frequency in Hcy-induced genes. Class 2 and 3 TFs have low and no significant binding frequency, respectively. Class 1 TF binding occurrence in Hcy-induced genes is similar to that in IFN gamma -induced genes, but not that in TNF alpha -induced. We conclude that Hcy is a pro-inflammatory amino acid and induces inflammatory transcriptional signal pathways mediated by class 1 TF. We term class 1 TF as putative Hcy-responsive TFs.

  2. Homocysteine induces inflammatory transcriptional signaling in monocytes

    PubMed Central

    Meng, Shu; Ciment, Stephen; Jan, Michael; Tran, Tran; Pham, Hung; Cueto, Ramón; Yang, Xiao-Feng; Wang, Hong

    2013-01-01

    Hyperhomocysteinemia (HHcy) is an independent risk factor for cardiovascular disease. This study is to investigate transcriptional mechanism underlying homocysteine (Hcy)-induced and monocytes (MC)-derived inflammatory response. We identified 11 Hcy-induced genes, 17 anti-inflammatory cytokine interleukin 10-induced, 8 pro-inflammatory cytokine interferon γ (IFNγ)-induced and 8 pro-inflammatory cytokine tumor necrosis factor α (TNFα)-induced genes through literature search. Binding frequency of 36 transcription factors (TFs) implicated in inflammation and MC differentiation were analyzed within core promoter regions of identified genes, and classified into 3 classes based on the significant binding frequency to the promoter of Hcy-induced genes. Class 1 TFs exert high significant binding frequency in Hcy-induced genes. Class 2 and 3 TFs have low and no significant binding frequency, respectively. Class 1 TF binding occurrence in Hcy-induced genes is similar to that in IFNγ-induced genes, but not that in TNFα-induced. We conclude that Hcy is a pro-inflammatory amino acid and induces inflammatory transcriptional signal pathways mediated by class 1 TF. We term class 1 TF, which includes heat shock factor, MC enhancer factor-2, nuclear factor of activated T-cells, nuclear factor kappa light chain enhancer of activated B cells and Krueppel-like factor 4, as putative Hcy-responsive TFs. PMID:23276953

  3. Semantic integration of data on transcriptional regulation

    PubMed Central

    Baitaluk, Michael; Ponomarenko, Julia

    2010-01-01

    Motivation: Experimental and predicted data concerning gene transcriptional regulation are distributed among many heterogeneous sources. However, there are no resources to integrate these data automatically or to provide a ‘one-stop shop’ experience for users seeking information essential for deciphering and modeling gene regulatory networks. Results: IntegromeDB, a semantic graph-based ‘deep-web’ data integration system that automatically captures, integrates and manages publicly available data concerning transcriptional regulation, as well as other relevant biological information, is proposed in this article. The problems associated with data integration are addressed by ontology-driven data mapping, multiple data annotation and heterogeneous data querying, also enabling integration of the user's data. IntegromeDB integrates over 100 experimental and computational data sources relating to genomics, transcriptomics, genetics, and functional and interaction data concerning gene transcriptional regulation in eukaryotes and prokaryotes. Availability: IntegromeDB is accessible through the integrated research environment BiologicalNetworks at http://www.BiologicalNetworks.org Contact: baitaluk@sdsc.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20427517

  4. Predicting tissue specific transcription factor binding sites

    PubMed Central

    2013-01-01

    Background Studies of gene regulation often utilize genome-wide predictions of transcription factor (TF) binding sites. Most existing prediction methods are based on sequence information alone, ignoring biological contexts such as developmental stages and tissue types. Experimental methods to study in vivo binding, including ChIP-chip and ChIP-seq, can only study one transcription factor in a single cell type and under a specific condition in each experiment, and therefore cannot scale to determine the full set of regulatory interactions in mammalian transcriptional regulatory networks. Results We developed a new computational approach, PIPES, for predicting tissue-specific TF binding. PIPES integrates in vitro protein binding microarrays (PBMs), sequence conservation and tissue-specific epigenetic (DNase I hypersensitivity) information. We demonstrate that PIPES improves over existing methods on distinguishing between in vivo bound and unbound sequences using ChIP-seq data for 11 mouse TFs. In addition, our predictions are in good agreement with current knowledge of tissue-specific TF regulation. Conclusions We provide a systematic map of computationally predicted tissue-specific binding targets for 284 mouse TFs across 55 tissue/cell types. Such comprehensive resource is useful for researchers studying gene regulation. PMID:24238150

  5. Innate immunity and inflammation: a transcriptional paradigm.

    PubMed

    Hawiger, J

    2001-01-01

    The innate immune response and the process of inflammation are interwoven. Excessive and continuing cytokine production in response to bacterial lipopolysacharides (LPS) or superantigens is a hallmark of the systemic inflammatory response (IR), which can be life-threatening. Dissemination of these bacterial products induces waves of proinflammatory cytokines that cause vascular injury and multiple organ dysfunction. Both LPS and superantigens induce signaling to the nucleus in mononuclear phagocytes and T cells, respectively. These signaling pathways are mediated by NF-kappaB and other stress-responsive transcription factors (SRTFs), which play a critical role in reprogramming gene expression. The nuclear import of NF-kappaB allows transcriptional activation of over 100 genes that encode mediators of inflammatory and immune responses. We have developed a novel method to block nuclear import of NF-kappaB through cell-permeable peptide transduction in monocytes, macrophages, T lymphocytes, and endothelial cells. Strikingly, a cell-permeable peptide that antagonizes nuclear import of NF-kappaB and other SRTFs, suppressed the systemic production of proinflammatory cytokines (TNFalpha and interferon gamma) in mice challenged with a lethal dose of LPS, and increased their survival by at least 90%. Thus, systemic inflammatory responses are critically dependent on the transcriptional activation ofcytokine genes that are controlled by NF-kappaB and other SRTFs.

  6. Modulation of transcription factors by curcumin.

    PubMed

    Shishodia, Shishir; Singh, Tulika; Chaturvedi, Madan M

    2007-01-01

    Curcumin is the active ingredient of turmeric that has been consumed as a dietary spice for ages. Turmeric is widely used in traditional Indian medicine to cure biliary disorders, anorexia, cough, diabetic wounds, hepatic disorders, rheumatism, and sinusitis. Extensive investigation over the last five decades has indicated that curcumin reduces blood cholesterol, prevents low-density lipoprotein oxidation, inhibits platelet aggregation, suppresses thrombosis and myocardial infarction, suppresses symptoms associated with type II diabetes, rheumatoid arthritis, multiple sclerosis, and Alzheimer's disease, inhibits HIV replication, enhances wound healing, protects from liver injury, increases bile secretion, protects from cataract formation, and protects from pulmonary toxicity and fibrosis. Evidence indicates that the divergent effects of curcumin are dependent on its pleiotropic molecular effects. These include the regulation of signal transduction pathways and direct modulation of several enzymatic activities. Most of these signaling cascades lead to the activation of transcription factors. Curcumin has been found to modulate the activity of several key transcription factors and, in turn, the cellular expression profiles. Curcumin has been shown to elicit vital cellular responses such as cell cycle arrest, apoptosis, and differentiation by activating a cascade of molecular events. In this chapter, we briefly review the effects of curcumin on transcription factors NF-KB, AP-1, Egr-1, STATs, PPAR-gamma, beta-catenin, nrf2, EpRE, p53, CBP, and androgen receptor (AR) and AR-related cofactors giving major emphasis to the molecular mechanisms of its action.

  7. BEND3 mediates transcriptional repression and heterochromatin organization.

    PubMed

    Khan, Abid; Prasanth, Supriya G

    2015-01-01

    Transcription repression plays a central role in gene regulation. Transcription repressors utilize diverse strategies to mediate transcriptional repression. We have recently demonstrated that BEND3 (BANP, E5R and Nac1 domain) protein represses rDNA transcription by stabilizing a NoRC component. We discuss the role of BEND3 as a global regulator of gene expression and propose a model whereby BEND3 associates with chromatin remodeling complexes to modulate gene expression and heterochromatin organization.

  8. BEND3 mediates transcriptional repression and heterochromatin organization

    PubMed Central

    Khan, Abid; Prasanth, Supriya G

    2015-01-01

    Transcription repression plays a central role in gene regulation. Transcription repressors utilize diverse strategies to mediate transcriptional repression. We have recently demonstrated that BEND3 (BANP, E5R and Nac1 domain) protein represses rDNA transcription by stabilizing a NoRC component. We discuss the role of BEND3 as a global regulator of gene expression and propose a model whereby BEND3 associates with chromatin remodeling complexes to modulate gene expression and heterochromatin organization. PMID:26507581

  9. Theory on the dynamic memory in the transcription-factor-mediated transcription activation

    NASA Astrophysics Data System (ADS)

    Murugan, R.

    2011-04-01

    We develop a theory to explain the origin of the static and dynamical memory effects in transcription-factor-mediated transcription activation. Our results suggest that the following inequality conditions should be satisfied to observe such memory effects: (a) τL≫max(τR,τE), (b) τLT≫τT, and (c) τI⩾(τEL+τTR) where τL is the average time required for the looping-mediated spatial interactions of enhancer—transcription-factor complex with the corresponding promoter—RNA-polymerase or eukaryotic RNA polymerase type II (PolII in eukaryotes) complex that is located L base pairs away from the cis-acting element, (τR,τE) are respectively the search times required for the site-specific binding of the RNA polymerase and the transcription factor with the respective promoter and the cis-regulatory module, τLT is the time associated with the relaxation of the looped-out segment of DNA that connects the cis-acting site and promoter, τT is the time required to generate a complete transcript, τI is the transcription initiation time, τEL is the elongation time, and τTR is the termination time. We have theoretically derived the expressions for the various searching, looping, and loop-relaxation time components. Using the experimentally determined values of various time components we further show that the dynamical memory effects cannot be experimentally observed whenever the segment of DNA that connects the cis-regulatory element with the promoter is not loaded with bulky histone bodies. Our analysis suggests that the presence of histone-mediated compaction of the connecting segment of DNA can result in higher values of looping and loop-relaxation times, which is the origin of the static memory in the transcription activation that is mediated by the memory gene loops in eukaryotes.

  10. Theory on the dynamic memory in the transcription-factor-mediated transcription activation.

    PubMed

    Murugan, R

    2011-04-01

    We develop a theory to explain the origin of the static and dynamical memory effects in transcription-factor-mediated transcription activation. Our results suggest that the following inequality conditions should be satisfied to observe such memory effects: (a) τ(L)≫max(τ(R),τ(E)), (b) τ(LT)≫τ(T), and (c) τ(I)≥(τ(EL)+τ(TR)) where τ(L) is the average time required for the looping-mediated spatial interactions of enhancer-transcription-factor complex with the corresponding promoter--RNA-polymerase or eukaryotic RNA polymerase type II (PolII in eukaryotes) complex that is located L base pairs away from the cis-acting element, (τ(R),τ(E)) are respectively the search times required for the site-specific binding of the RNA polymerase and the transcription factor with the respective promoter and the cis-regulatory module, τ(LT) is the time associated with the relaxation of the looped-out segment of DNA that connects the cis-acting site and promoter, τ(T) is the time required to generate a complete transcript, τ(I) is the transcription initiation time, τ(EL) is the elongation time, and τ(TR) is the termination time. We have theoretically derived the expressions for the various searching, looping, and loop-relaxation time components. Using the experimentally determined values of various time components we further show that the dynamical memory effects cannot be experimentally observed whenever the segment of DNA that connects the cis-regulatory element with the promoter is not loaded with bulky histone bodies. Our analysis suggests that the presence of histone-mediated compaction of the connecting segment of DNA can result in higher values of looping and loop-relaxation times, which is the origin of the static memory in the transcription activation that is mediated by the memory gene loops in eukaryotes.

  11. 29 CFR 1627.7 - Transcriptions and reports.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 4 2014-07-01 2014-07-01 false Transcriptions and reports. 1627.7 Section 1627.7 Labor... § 1627.7 Transcriptions and reports. Every person required to maintain records under the Act shall make such extension, recomputation or transcriptions of his records and shall submit such reports...

  12. 45 CFR 1703.404 - Copying and transcription charges.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 4 2012-10-01 2012-10-01 false Copying and transcription charges. 1703.404... Copying and transcription charges. (a) The Commission will charge fees for furnishing records at the rate of ten cents per page for photocopies and at the actual cost of transcription. When the...

  13. Transcription Tales or Let Not Love's Labour Be Lost

    ERIC Educational Resources Information Center

    Downs, Yvonne

    2010-01-01

    Drawing heavily on my MA dissertation but influenced by subsequent transcription experience, I relate how a technical problem in the recording of an interview necessitated deliberations on the nature and purpose of transcription that continue to have repercussions for my transcription practice and, furthermore, for my understanding of research as…

  14. Role of transcription at centromeres in budding yeast.

    PubMed

    Ohkuni, Kentaro; Kitagawa, Katsumi

    2012-01-01

    Centromeres are specialized chromosomal loci that are essential for proper chromosome segregation. Recent data show that a certain level of active transcription, regulated by transcription factors Cbf1 and Ste12, makes a direct contribution to centromere function in Saccharomyces cerevisiae. Here, we discuss the requirement and function of transcription at centromeres.

  15. 29 CFR 1627.7 - Transcriptions and reports.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 4 2010-07-01 2010-07-01 false Transcriptions and reports. 1627.7 Section 1627.7 Labor... § 1627.7 Transcriptions and reports. Every person required to maintain records under the Act shall make such extension, recomputation or transcriptions of his records and shall submit such reports...

  16. Friedreich's ataxia--a case of aberrant transcription termination?

    PubMed

    Butler, Jill Sergesketter; Napierala, Marek

    2015-01-01

    Reduced expression of the mitochondrial protein Frataxin (FXN) is the underlying cause of Friedreich's ataxia. We propose a model of premature termination of FXN transcription induced by pathogenic expanded GAA repeats that links R-loop structures, antisense transcription, and heterochromatin formation as a novel mechanism of transcriptional repression in Friedreich's ataxia.

  17. 29 CFR 1627.7 - Transcriptions and reports.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 4 2013-07-01 2013-07-01 false Transcriptions and reports. 1627.7 Section 1627.7 Labor... § 1627.7 Transcriptions and reports. Every person required to maintain records under the Act shall make such extension, recomputation or transcriptions of his records and shall submit such reports...

  18. 29 CFR 1627.7 - Transcriptions and reports.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 4 2011-07-01 2011-07-01 false Transcriptions and reports. 1627.7 Section 1627.7 Labor... § 1627.7 Transcriptions and reports. Every person required to maintain records under the Act shall make such extension, recomputation or transcriptions of his records and shall submit such reports...

  19. Predicting Phonetic Transcription Agreement: Insights from Research in Infant Vocalizations

    ERIC Educational Resources Information Center

    Ramsdell, Heather L.; Oller, D. Kimbrough; Ethington, Corinna A.

    2007-01-01

    The purpose of this study is to provide new perspectives on correlates of phonetic transcription agreement. Our research focuses on phonetic transcription and coding of infant vocalizations. The findings are presumed to be broadly applicable to other difficult cases of transcription, such as found in severe disorders of speech, which similarly…

  20. 29 CFR 1627.7 - Transcriptions and reports.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 4 2012-07-01 2012-07-01 false Transcriptions and reports. 1627.7 Section 1627.7 Labor... § 1627.7 Transcriptions and reports. Every person required to maintain records under the Act shall make such extension, recomputation or transcriptions of his records and shall submit such reports...