Nielsen, H B; Mladenovska, Z; Westermann, P; Ahring, B K
2004-05-05
A two-stage 68 degrees C/55 degrees C anaerobic degradation process for treatment of cattle manure was studied. In batch experiments, an increase of the specific methane yield, ranging from 24% to 56%, was obtained when cattle manure and its fractions (fibers and liquid) were pretreated at 68 degrees C for periods of 36, 108, and 168 h, and subsequently digested at 55 degrees C. In a lab-scale experiment, the performance of a two-stage reactor system, consisting of a digester operating at 68 degrees C with a hydraulic retention time (HRT) of 3 days, connected to a 55 degrees C reactor with 12-day HRT, was compared with a conventional single-stage reactor running at 55 degrees C with 15-days HRT. When an organic loading of 3 g volatile solids (VS) per liter per day was applied, the two-stage setup had a 6% to 8% higher specific methane yield and a 9% more effective VS-removal than the conventional single-stage reactor. The 68 degrees C reactor generated 7% to 9% of the total amount of methane of the two-stage system and maintained a volatile fatty acids (VFA) concentration of 4.0 to 4.4 g acetate per liter. Population size and activity of aceticlastic methanogens, syntrophic bacteria, and hydrolytic/fermentative bacteria were significantly lower in the 68 degrees C reactor than in the 55 degrees C reactors. The density levels of methanogens utilizing H2/CO2 or formate were, however, in the same range for all reactors, although the degradation of these substrates was significantly lower in the 68 degrees C reactor than in the 55 degrees C reactors. Temporal temperature gradient electrophoresis profiles (TTGE) of the 68 degrees C reactor demonstrated a stable bacterial community along with a less divergent community of archaeal species. Copyright 2004 Wiley Periodicals, Inc.
Code of Federal Regulations, 2011 CFR
2011-01-01
... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Provisions § 72.1 Purpose. The... receive, transfer, and possess power reactor spent fuel, power reactor-related Greater than Class C (GTCC... reactor spent fuel, high-level radioactive waste, power reactor-related GTCC waste, and other radioactive...
Code of Federal Regulations, 2010 CFR
2010-01-01
... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Provisions § 72.1 Purpose. The... receive, transfer, and possess power reactor spent fuel, power reactor-related Greater than Class C (GTCC... reactor spent fuel, high-level radioactive waste, power reactor-related GTCC waste, and other radioactive...
Code of Federal Regulations, 2010 CFR
2010-01-01
..., reactor-related greater than Class C waste, and other radioactive waste storage and handling. 72.128... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design Criteria § 72.128 Criteria for spent fuel, high-level radioactive waste, reactor...
Code of Federal Regulations, 2011 CFR
2011-01-01
..., reactor-related greater than Class C waste, and other radioactive waste storage and handling. 72.128... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design Criteria § 72.128 Criteria for spent fuel, high-level radioactive waste, reactor...
Performance of intermittent aeration reactor on NH4-N removal from groundwater resources.
Khanitchaidecha, W; Nakamura, T; Sumino, T; Kazama, F
2010-01-01
To study the effect of intermittent aeration period on ammonium-nitrogen (NH4-N) removal from groundwater resources, synthetic groundwater was prepared and three reactors were operated under different conditions--"reactor A" under continuous aeration, "reactor B" under 6 h intermittent aeration, and "reactor C" under 2 h intermittent aeration. To facilitate denitrification simultaneously with nitrification, "acetate" was added as an external carbon source with step-wise increase from 0.5 to 1.5 C/N ratio, where C stands for total carbon content in the system, and N for NH4-N concentration in the synthetic groundwater. Results show that complete NH4-N removal was obtained in "reactor B" and "reactor C" at 1.3 and 1.5 C/N ratio respectively; and partial NH4-N removal in "reactor A". These results suggest that intermittent aeration at longer interval could enhance the reactor performance on NH4-N removal in terms of efficiency and low external carbon requirement. Because of consumption of internal carbon by the process, less amount of external carbon is required. Further increase in carbon in a form of acetate (1.5 to 2.5 C/N ratios) increases removal rate (represented by reaction rate coefficient (k) of kinetic equation) as well as occurrence of free cells. It suggests that the operating condition at reactor B with 1.3 C/N ratio is more appropriate for long-term operation at a pilot-scale.
Power monitoring in space nuclear reactors using silicon carbide radiation detectors
NASA Technical Reports Server (NTRS)
Ruddy, Frank H.; Patel, Jagdish U.; Williams, John G.
2005-01-01
Space reactor power monitors based on silicon carbide (SiC) semiconductor neutron detectors are proposed. Detection of fast leakage neutrons using SiC detectors in ex-core locations could be used to determine reactor power: Neutron fluxes, gamma-ray dose rates and ambient temperatures have been calculated as a function of distance from the reactor core, and the feasibility of power monitoring with SiC detectors has been evaluated at several ex-core locations. Arrays of SiC diodes can be configured to provide the required count rates to monitor reactor power from startup to full power Due to their resistance to temperature and the effects of neutron and gamma-ray exposure, SiC detectors can be expected to provide power monitoring information for the fill mission of a space reactor.
Chemical compatibility issues associated with use of SiC/SiC in advanced reactor concepts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, Dane F.
2015-09-01
Silicon carbide/silicon carbide (SiC/SiC) composites are of interest for components that will experience high radiation fields in the High Temperature Gas Cooled Reactor (HTGR), the Very High Temperature Reactor (VHTR), the Sodium Fast Reactor (SFR), or the Fluoride-cooled High-temperature Reactor (FHR). In all of the reactor systems considered, reactions of SiC/SiC composites with the constituents of the coolant determine suitability of materials of construction. The material of interest is nuclear grade SiC/SiC composites, which consist of a SiC matrix [high-purity, chemical vapor deposition (CVD) SiC or liquid phase-sintered SiC that is crystalline beta-phase SiC containing small amounts of alumina-yttria impurity],more » a pyrolytic carbon interphase, and somewhat impure yet crystalline beta-phase SiC fibers. The interphase and fiber components may or may not be exposed, at least initially, to the reactor coolant. The chemical compatibility of SiC/SiC composites in the three reactor environments is highly dependent on thermodynamic stability with the pure coolant, and on reactions with impurities present in the environment including any ingress of oxygen and moisture. In general, there is a dearth of information on the performance of SiC in these environments. While there is little to no excess Si present in the new SiC/SiC composites, the reaction of Si with O 2 cannot be ignored, especially for the FHR, in which environment the product, SiO 2, can be readily removed by the fluoride salt. In all systems, reaction of the carbon interphase layer with oxygen is possible especially under abnormal conditions such as loss of coolant (resulting in increased temperature), and air and/ or steam ingress. A global outline of an approach to resolving SiC/SiC chemical compatibility concerns with the environments of the three reactors is presented along with ideas to quickly determine the baseline compatibility performance of SiC/SiC.« less
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Spent fuel, high-level radioactive waste, or reactor... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Siting Evaluation Factors § 72.108 Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste transportation. The...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Spent fuel, high-level radioactive waste, or reactor... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Siting Evaluation Factors § 72.108 Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste transportation. The...
Grey water treatment in upflow anaerobic sludge blanket (UASB) reactor at different temperatures.
Elmitwalli, Tarek; Otterpohl, Ralf
2011-01-01
The treatment of grey water in two upflow anaerobic sludge blanket (UASB) reactors, operated at different hydraulic retention times (HRTs) and temperatures, was investigated. The first reactor (UASB-A) was operated at ambient temperature (14-25 degrees C) and HRT of 20, 12 and 8 h, while the second reactor (UASB-30) was operated at controlled temperature of 30 degrees C and HRT of 16, 10 and 6 h. The two reactors were fed with grey water from 'Flintenbreite' settlement in Luebeck, Germany. When the grey water was treated in the UASB reactor at 30 degrees C, total chemical oxygen demand (CODt) removal of 52-64% was achieved at HRT between 6 and 16 h, while at lower temperature lower removal (31-41%) was obtained at HRT between 8 and 20 h. Total nitrogen and phosphorous removal in the UASB reactors were limited (22-36 and 10-24%, respectively) at all operational conditions. The results showed that at increasing temperature or decreasing HRT of the reactors, maximum specific methanogenic activity of the sludge in the reactors improved. As the UASB reactor showed a significantly higher COD removal (31-64%) than the septic tank (11-14%) even at low temperature, it is recommended to use UASB reactor instead of septic tank (the most common system) for grey water pre-treatment. Based on the achieved results and due to high peak flow factor, a HRT between 8 and 12 h can be considered the suitable HRT for the UASB reactor treating grey water at temperature 20-30 degrees C, while a HRT of 12-24 h can be applied at temperature lower than 20 degrees C.
Pawar, Sudhanshu S; Vongkumpeang, Thitiwut; Grey, Carl; van Niel, Ed Wj
2015-01-01
Caldicellulosiruptor species have gained a reputation as being among the best microorganisms to produce hydrogen (H2) due to possession of a combination of appropriate features. However, due to their low volumetric H2 productivities (Q H2), Caldicellulosiruptor species cannot be considered for any viable biohydrogen production process yet. In this study, we evaluate biofilm forming potential of pure and co-cultures of Caldicellulosiruptor saccharolyticus and Caldicellulosiruptor owensensis in continuously stirred tank reactors (CSTR) and up-flow anaerobic (UA) reactors. We also evaluate biofilms as a means to retain biomass in the reactor and its influence on Q H2. Moreover, we explore the factors influencing the formation of biofilm. Co-cultures of C. saccharolyticus and C. owensensis form substantially more biofilm than formed by C. owensensis alone. Biofilms improved substrate conversion in both of the reactor systems, but improved the Q H2 only in the UA reactor. When grown in the presence of each other's culture supernatant, both C. saccharolyticus and C. owensensis were positively influenced on their individual growth and H2 production. Unlike the CSTR, UA reactors allowed retention of C. saccharolyticus and C. owensensis when subjected to very high substrate loading rates. In the UA reactor, maximum Q H2 (approximately 20 mmol · L(-1) · h(-1)) was obtained only with granular sludge as the carrier material. In the CSTR, stirring negatively affected biofilm formation. Whereas, a clear correlation was observed between elevated (>40 μM) intracellular levels of the secondary messenger bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) and biofilm formation. In co-cultures C. saccharolyticus fortified the trade of biofilm formation by C. owensensis, which was mediated by elevated levels of c-di-GMP in C. owensensis. These biofilms were effective in retaining biomass of both species in the reactor and improving Q H2 in a UA reactor using granular sludge as the carrier material. This concept forms a basis for further optimizing the Q H2 at laboratory scale and beyond.
NASA Astrophysics Data System (ADS)
Nguyen, Luan; Tang, Yu; Li, Yuting; Zhang, Xiaoyan; Wang, Ding; Tao, Franklin Feng
2018-05-01
Transition metal elements are the most important elements of heterogeneous catalysts used for chemical and energy transformations. Many of these catalysts are active at a temperature higher than 400 °C. For a catalyst containing a 3d or 5d metal element with a low concentration, typically their released fluorescence upon the K-edge or L-edge adsorption of X-rays is collected for the analysis of chemical and coordination environments of these elements. However, it is challenging to perform in situ/operando X-ray absorption spectroscopy (XAS) studies of elements of low-energy absorption edges at a low concentration in a catalyst during catalysis at a temperature higher than about 450 °C. Here a unique reaction system consisting two reactors, called a dual reactor system, was designed for performing in situ or operando XAS studies of these elements of low-energy absorption edges in a catalyst at a low concentration during catalysis at a temperature higher than 450 °C in a fluorescent mode. This dual-reactor system contains a quartz reactor for preforming high-temperature catalysis up to 950 °C and a Kapton reactor remaining at a temperature up to 450 °C for collecting data in the same gas of catalysis. With this dual reactor, chemical and coordination environments of low-concentration metal elements with low-energy absorption edges such as the K-edge of 3d metals including Ti, V, Cr, Mn, Fe, Co, Ni, and Cu and L edge of 5d metals including W, Re, Os, Ir, Pt, and Au can be examined through first performing catalysis at a temperature higher than 450 °C in the quartz reactor and then immediately flipping the catalyst in the same gas flow to the Kapton reactor remained up to 450 °C to collect data. The capability of this dual reactor was demonstrated by tracking the Mn K-edge of the MnOx/Na2WO4 catalyst during activation in the temperature range of 300-900 °C and catalysis at 850 °C.
Top shield temperatures, C and K Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agar, J.D.
1964-12-28
A modification program is now in progress at the C and K Reactors consisting of an extensive renovation of the graphite channels in the vertical safety rod ststems. The present VSR channels are being enlarged by a graphite coring operation and channel sleeves will be installed in the larger channels. One problem associated with the coring operation is the danger of damaging top thermal shield cooling tubes located close to the VSR channels to such an extent that these tubes will have to be removed from service. If such a condition should exist at one or a number of locationsmore » in the top shield of the reactors after reactor startup, the question remains -- what would the resulting temperatures be of the various components of the top shields? This study was initiated to determine temperature distributions in the top shield complex at the C and K Reactors for various top thermal shield coolant system conditions. Since the top thermal shield cooling system at C Reactor is different than those at the K Reactors, the study was conducted separately for the two different systems.« less
Nuclear design of a vapor core reactor for space nuclear propulsion
NASA Astrophysics Data System (ADS)
Dugan, Edward T.; Watanabe, Yoichi; Kuras, Stephen A.; Maya, Isaac; Diaz, Nils J.
1993-01-01
Neutronic analysis methodology and results are presented for the nuclear design of a vapor core reactor for space nuclear propulsion. The Nuclear Vapor Thermal Reactor (NVTR) Rocket Engine uses modified NERVA geometry and systems which the solid fuel replaced by uranium tetrafluoride vapor. The NVTR is an intermediate term gas core thermal rocket engine with specific impulse in the range of 1000-1200 seconds; a thrust of 75,000 lbs for a hydrogen flow rate of 30 kg/s; average core exit temperatures of 3100 K to 3400 K; and reactor thermal powers of 1400 to 1800 MW. Initial calculations were performed on epithermal NVTRs using ZrC fuel elements. Studies are now directed at thermal NVTRs that use fuel elements made of C-C composite. The large ZrC-moderated reactors resulted in thrust-to-weight ratios of only 1 to 2; the compact C-C composite systems yield thrust-to-weight ratios of 3 to 5.
Strange bedfellows: The curious case of STAR and Moata
NASA Astrophysics Data System (ADS)
Smith, A. M.; Levchenko, V. A.; Malone, G.
2013-01-01
The 2 MV tandem accelerator named ‘STAR’ was installed at ANSTO in 2003 and commissioned in 2004. It is used for ion beam analysis (IBA) and for radiocarbon measurements by accelerator mass spectrometry (AMS). Convenient space for the accelerator was found in the same building occupied by the decommissioned Argonaut-class nuclear reactor ‘Moata’; the name derives from the aboriginal word for ‘fire stick’ or ‘gentle fire’, appropriate for a 100 kW research reactor. This reactor operated between 1961 and 1995. In 2007 ANSTO’s Engineering Division assembled a team to dismantle and remove the reactor structure, along with its 12.1 tonnes of graphite reflector. The removal and remediation was completed in November 2010 and has won the team a number of prestigious awards. The entire operation was conducted inside a negatively-pressurised double-walled vinyl tent. An air curtain was positioned around the reactor core. The exhaust air from the tent passed through 2-stage HEPA filters before venting through an external stack. Neither ANSTO staff nor contractors received any significant radiation dose during the operation. Given the sensitivity of STAR for detection of 14C/12C (∼10-16) and the numerous routes for production of 14C in the reactor such as 13C(n, γ)14C, 14N(n, p)14C and 17O(n, α)14C there was the potential to directly contaminate the STAR environment with 14C. Furthermore, there was concern that reactor-14C could find its way from this building into the building where the radiocarbon sample preparation laboratories are located. This necessitated restrictions on staff movement between the buildings. We report on 14C control measurements made during and after the operation. These involved direct measurements on the reactor graphite and concrete bioshield, blank targets that were exposed in the building, swipe samples taken inside the tent and around the building and aerosol samples that were collected inside the building throughout the operation.
Station Blackout Analysis of HTGR-Type Experimental Power Reactor
NASA Astrophysics Data System (ADS)
Syarip; Zuhdi, Aliq; Falah, Sabilul
2018-01-01
The National Nuclear Energy Agency of Indonesia has decided to build an experimental power reactor of high-temperature gas-cooled reactor (HTGR) type located at Puspiptek Complex. The purpose of this project is to demonstrate a small modular nuclear power plant that can be operated safely. One of the reactor safety characteristics is the reliability of the reactor to the station blackout (SBO) event. The event was observed due to relatively high disturbance frequency of electricity network in Indonesia. The PCTRAN-HTR functional simulator code was used to observe fuel and coolant temperature, and coolant pressure during the SBO event. The reactor simulated at 10 MW for 7200 s then the SBO occurred for 1-3 minutes. The analysis result shows that the reactor power decreases automatically as the temperature increase during SBO accident without operator’s active action. The fuel temperature increased by 36.57 °C every minute during SBO and the power decreased by 0.069 MW every °C fuel temperature rise at the condition of anticipated transient without reactor scram. Whilst, the maximum coolant (helium) temperature and pressure are 1004 °C and 9.2 MPa respectively. The maximum fuel temperature is 1282 °C, this value still far below the fuel temperature limiting condition i.e. 1600 °C, its mean that the HTGR has a very good inherent safety system.
Design, Operation, and Modeling of a Vertical APCVD Reactor for Silicon Carbide Film Growth
NASA Technical Reports Server (NTRS)
DeAnna, Russell G.; Fleischman, Aaron J.; Zorman, Christian A.; Mehregany, Mehran
1998-01-01
An atmospheric pressure chemical vapor deposition (APCVD) reactor utilizing a unique vertical geometry which enables 3C-SiC films to be grown on two, 4-inch diameter Si wafers has been constructed. Contrary to expectations, 3C-SiC films grown in this reactor are thickest at the downstream end of the substrates. To better understand the reason for the thickness distribution on the wafers, an axisymmetric finite-element model of the gas flow in the reactor was constructed. The model uses the ANSYS53 Flowtran package and includes compressible and temperature-dependent fluid properties in laminar or turbulent flow. It does not include reaction chemistry or unsteady flow. The ANSYS53 results predict that the cool, inlet fluid falls through the inlet pipe and the warm, diffuser region like a jet. This jet impinges on top of the susceptor and gets diverted to the reactor side walls, where it flows to the bottom of the reactor, turns, and slowly rises along the face of the susceptor. This may explain why the SiC films are thickest at the downstream side of the wafers, as gas containing fresh reactants first passes over this region. Modeling results are presented for both one atmosphere and one half atmosphere reactor pressure.
Biological production of ethanol from coal. Task 4 report, Continuous reactor studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The production of ethanol from synthesis gas by the anaerobic bacterium C. ljungdahlii has been demonstrated in continuous stirred tank reactors (CSTRs), CSTRs with cell recycle and trickle bed reactors. Various liquid media were utilized in these studies including basal medium, basal media with 1/2 B-vitamins and no yeast extract and a medium specifically designed for the growth of C. ljungdahlii in the CSTR. Ethanol production was successful in each of the three reactor types, although trickle bed operation with C. ljungdahlii was not as good as with the stirred tank reactors. Operation in the CSTR with cell recycle wasmore » particularly promising, producing 47 g/L ethanol with only minor concentrations of the by-product acetate.« less
NASA Astrophysics Data System (ADS)
Yang, Yong; Chen, Yiren; Huang, Yina; Allen, Todd; Rao, Appajosula
Reactor internal components are subjected to neutron irradiation in light water reactors, and with the aging of nuclear power plants around the world, irradiation-induced material degradations are of concern for reactor internals. Irradiation-induced defects resulting from displacement damage are critical for understanding degradation in structural materials. In the present work, microstructural changes due to irradiation in austenitic stainless steels and cast steels were characterized using transmission electron microscopy. The specimens were irradiated in the BOR-60 reactor, a fast breeder reactor, up to 40 dpa at 320°C. The dose rate was approximately 9.4x10-7 dpa/s. Void swelling and irradiation defects were analyzed for these specimens. A high density of faulted loops dominated the irradiated-altered microstructures. Along with previous TEM results, a dose dependence of the defect structure was established at 320°C.
Gaby, John Christian; Zamanzadeh, Mirzaman; Horn, Svein Jarle
2017-01-01
Food waste is a large bio-resource that may be converted to biogas that can be used for heat and power production, or as transport fuel. We studied the anaerobic digestion of food waste in a staged digestion system consisting of separate acidogenic and methanogenic reactor vessels. Two anaerobic digestion parameters were investigated. First, we tested the effect of 55 vs. 65 °C acidogenic reactor temperature, and second, we examined the effect of reducing the hydraulic retention time (HRT) from 17 to 10 days in the methanogenic reactor. Process parameters including biogas production were monitored, and the microbial community composition was characterized by 16S amplicon sequencing. Neither organic matter removal nor methane production were significantly different for the 55 and 65 °C systems, despite the higher acetate and butyrate concentrations observed in the 65 °C acidogenic reactor. Ammonium levels in the methanogenic reactors were about 950 mg/L NH 4 + when HRT was 17 days but were reduced to 550 mg/L NH 4 + at 10 days HRT. Methane production increased from ~ 3600 mL/day to ~ 7800 when the HRT was decreased. Each reactor had unique environmental parameters and a correspondingly unique microbial community. In fact, the distinct values in each reactor for just two parameters, pH and ammonium concentration, recapitulate the separation seen in microbial community composition. The thermophilic and mesophilic digesters were particularly distinct from one another. The 55 °C acidogenic reactor was mainly dominated by Thermoanaerobacterium and Ruminococcus , whereas the 65 °C acidogenic reactor was initially dominated by Thermoanaerobacterium but later was overtaken by Coprothermobacter . The acidogenic reactors were lower in diversity (34-101 observed OTU 0.97 , 1.3-2.5 Shannon) compared to the methanogenic reactors (472-513 observed OTU 0.97 , 5.1-5.6 Shannon). The microbial communities in the acidogenic reactors were > 90% Firmicutes, and the Euryarchaeota were higher in relative abundance in the methanogenic reactors. The digestion systems had similar biogas production and COD removal rates, and hence differences in temperature, NH 4 + concentration, and pH in the reactors resulted in distinct but similarly functioning microbial communities over this range of operating parameters. Consequently, one could reduce operational costs by lowering both the hydrolysis temperature from 65 to 55 °C and the HRT from 17 to 10 days.
Ryan, P; Forbes, C; McHugh, S; O'Reilly, C; Fleming, G T A; Colleran, E
2010-07-01
The objective of the current study was to expand the knowledge of the role of acetogenic Bacteria in high rate anaerobic digesters. To this end, acetogens were enriched by supplying a variety of acetogenic growth supportive substrates to two laboratory scale high rate upflow anaerobic sludge bed (UASB) reactors operated at 37 degrees C (R1) and 55 degrees C (R2). The reactors were initially fed a glucose/acetate influent. Having achieved high operational performance and granular sludge development and activity, both reactors were changed to homoacetogenic bacterial substrates on day 373 of the trial. The reactors were initially fed with sodium vanillate as a sole substrate. Although % COD removal indicated that the 55 degrees C reactor out performed the 37 degrees C reactor, effluent acetate levels from R2 were generally higher than from R1, reaching values as high as 5023 mg l(-1). Homoacetogenic activity in both reactors was confirmed on day 419 by specific acetogenic activity (SAA) measurement, with higher values obtained for R2 than R1. Sodium formate was introduced as sole substrate to both reactors on day 464. It was found that formate supported acetogenic activity at both temperatures. By the end of the trial, no specific methanogenic activity (SMA) was observed against acetate and propionate indicating that the methane produced was solely by hydrogenotrophic Archaea. Higher SMA and SAA values against H(2)/CO(2) suggested development of a formate utilising acetogenic population growing in syntrophy with hydrogenotrophic methanogens. Throughout the formate trial, the mesophilic reactor performed better overall than the thermophilic reactor. Copyright 2010 Elsevier Ltd. All rights reserved.
Cooling Performance Analysis of ThePrimary Cooling System ReactorTRIGA-2000Bandung
NASA Astrophysics Data System (ADS)
Irianto, I. D.; Dibyo, S.; Bakhri, S.; Sunaryo, G. R.
2018-02-01
The conversion of reactor fuel type will affect the heat transfer process resulting from the reactor core to the cooling system. This conversion resulted in changes to the cooling system performance and parameters of operation and design of key components of the reactor coolant system, especially the primary cooling system. The calculation of the operating parameters of the primary cooling system of the reactor TRIGA 2000 Bandung is done using ChemCad Package 6.1.4. The calculation of the operating parameters of the cooling system is based on mass and energy balance in each coolant flow path and unit components. Output calculation is the temperature, pressure and flow rate of the coolant used in the cooling process. The results of a simulation of the performance of the primary cooling system indicate that if the primary cooling system operates with a single pump or coolant mass flow rate of 60 kg/s, it will obtain the reactor inlet and outlet temperature respectively 32.2 °C and 40.2 °C. But if it operates with two pumps with a capacity of 75% or coolant mass flow rate of 90 kg/s, the obtained reactor inlet, and outlet temperature respectively 32.9 °C and 38.2 °C. Both models are qualified as a primary coolant for the primary coolant temperature is still below the permitted limit is 49.0 °C.
Composting of 4-nonylphenol-contaminated river sediment with inocula of Phanerochaete chrysosporium.
Huang, Danlian; Qin, Xingmeng; Xu, Piao; Zeng, Guangming; Peng, Zhiwei; Wang, Rongzhong; Wan, Jia; Gong, Xiaomin; Xue, Wenjing
2016-12-01
A composting study was performed to investigate the degradation of 4-nonylphenol (4-NP) in river sediment by inoculating Phanerochaete chrysosporium (Pc). Pc was inoculated into composting Reactor A, C and D, while Reactor B without inocula was used as control. The results showed that composting with Pc accelerated the degradation of 4-NP, increased the catalase and polyphenol oxidase enzyme activities in contaminated sediment. The dissipation half-life (t 1/2 ) of 4-NP in Reactor A, C and D with inocula of Pc were 2.079, 2.558, 2.424days, while in Reactor B without inocula of Pc it was 3.239days, respectively. Correlation analysis showed that the contents of 4-NP in sediment in Reactor A and D were negatively correlated with the actives of laccase, whereas no obvious correlation was observed in Reactor B and C. All these findings also indicated that Pc enhanced the maturity of compost, and the best composting C/N ratio was 25.46:1. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dynamics of heat-pipe reactors
NASA Technical Reports Server (NTRS)
Niederauer, G. F.
1971-01-01
A split-core heat pipe reactor, fueled with either U(233)C or U(235)C in a tungsten cermet and cooled by 7-Li-W heat pipes, was examined for the effects of the heat pipes on reactor while trying to safely absorb large reactivity inputs through inherent shutdown mechanisms. Limits on ramp reactivity inputs due to fuel melting temperature and heat pipe wall heat flux were mapped for the reactor in both startup and at-power operating modes.
Si impurity concentration in nominally undoped Al0.7Ga0.3N grown in a planetary MOVPE reactor
NASA Astrophysics Data System (ADS)
Jeschke, J.; Knauer, A.; Weyers, M.
2018-02-01
The unintentional silicon incorporation during the metalorganic vapor phase epitaxy (MOVPE) of nominally undoped Al0.7Ga0.3N in a Planetary Reactor under various growth conditions was investigated. Dependent on growth temperature, pressure and V/III ratio, Si concentrations of below 1 × 1016 up to 4 × 1017 cm-3 were measured. Potential Si sources are discussed and, by comparing samples grown in a SiC coated reactor setup and in a TaC coated setup, the SiC coatings in the reactor are identified as the most likely source for the unintentional Si doping at elevated temperatures above 1080 °C. Under identical growth conditions the background Si concentration can be reduced by up to an order of magnitude when using TaC coatings.
Preliminary Comparison of Radioactive Waste Disposal Cost for Fusion and Fission Reactors
NASA Astrophysics Data System (ADS)
Seki, Yasushi; Aoki, Isao; Yamano, Naoki; Tabara, Takashi
1997-09-01
The environmental and economic impact of radioactive waste (radwaste) generated from fusion power reactors using five types of structural materials and a fission reactor has been evaluated and compared. Possible radwaste disposal scenario of fusion radwaste in Japan is considered. The exposure doses were evaluated for the skyshine of gamma-ray during the disposal operation, groundwater migration scenario during the institutional control period of 300 years and future site use scenario after the institutional period. The radwaste generated from a typical light water fission reactor was evaluated using the same methodology as for the fusion reactors. It is found that radwaste from the fusion reactors using F82H and SiC/SiC composites without impurities could be disposed by the shallow land disposal presently applied to the low level waste in Japan. The disposal cost of radwaste from five fusion power reactors and a typical light water reactor were roughly evaluated and compared.
10 CFR 72.120 - General considerations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design... reactor-related GTCC waste in an ISFSI or to store spent fuel, high-level radioactive waste, or reactor... be designed to store spent fuel and/or solid reactor-related GTCC waste. (1) Reactor-related GTCC...
An induction reactor for studying crude-oil oxidation relevant to in situ combustion.
Bazargan, Mohammad; Lapene, Alexandre; Chen, Bo; Castanier, Louis M; Kovscek, Anthony R
2013-07-01
In a conventional ramped temperature oxidation kinetics cell experiment, an electrical furnace is used to ramp temperature at a prescribed rate. Thus, the heating rate of a kinetics cell experiment is limited by furnace performance to heating rates of about 0.5-3 °C/min. A new reactor has been designed to overcome this limit. It uses an induction heating method to ramp temperature. Induction heating is fast and easily controlled. The new reactor covers heating rates from 1 to 30 °C/min. This is the first time that the oxidation profiles of a crude oil are available over such a wide range of heating rate. The results from an induction reactor and a conventional kinetics cell at roughly 2 °C/min are compared to illustrate consistency between the two reactors. The results at low heating rate are the same as the conventional kinetics cell. As presented in the paper, the new reactor couples well with the isoconversional method for interpretation of reaction kinetics.
Five Lectures on Nuclear Reactors Presented at Cal Tech
DOE R&D Accomplishments Database
Weinberg, Alvin M.
1956-02-10
The basic issues involved in the physics and engineering of nuclear reactors are summarized. Topics discussed include theory of reactor design, technical problems in power reactors, physical problems in nuclear power production, and future developments in nuclear power. (C.H.)
2016-08-02
epitaxy platform, it is essential that malignant defects, such as in-grown stacking faults (IGSFs) and basal plane dislocations (BPDs), be...crystal quality. (5) Even though the inlet C/Si ratio is kept fixed , the C/Si ratio at the growth surface varies depending on the different gas...morphology, and quality (generation of additional defects). Two CVD reactor types, a chimney reactor and an inverted chimney reactor, are assembled; the
Off-design temperature effects on nuclear fuel pins for an advanced space-power-reactor concept
NASA Technical Reports Server (NTRS)
Bowles, K. J.
1974-01-01
An exploratory out-of-reactor investigation was made of the effects of short-time temperature excursions above the nominal operating temperature of 990 C on the compatibility of advanced nuclear space-power reactor fuel pin materials. This information is required for formulating a reliable reactor safety analysis and designing an emergency core cooling system. Simulated uranium mononitride (UN) fuel pins, clad with tungsten-lined T-111 (Ta-8W-2Hf) showed no compatibility problems after heating for 8 hours at 2400 C. At 2520 C and above, reactions occurred in 1 hour or less. Under these conditions free uranium formed, redistributed, and attacked the cladding.
Cleanup Verification Package for the 118-C-1, 105-C Solid Waste Burial Ground
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. J. Appel and J. M. Capron
2007-07-25
This cleanup verification package documents completion of remedial action for the 118-C-1, 105-C Solid Waste Burial Ground. This waste site was the primary burial ground for general wastes from the operation of the 105-C Reactor and received process tubes, aluminum fuel spacers, control rods, reactor hardware, spent nuclear fuel and soft wastes.
Reactor for exothermic reactions
Smith, Jr., Lawrence A.; Hearn, Dennis; Jones, Jr., Edward M.
1993-01-01
A liquid phase process for oligomerization of C.sub.4 and C.sub.5 isoolefins or the etherification thereof with C.sub.1 to C.sub.6 alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120.degree. to 300.degree. F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.
Reactor for exothermic reactions
Smith, L.A. Jr.; Hearn, D.; Jones, E.M. Jr.
1993-03-02
A liquid phase process is described for oligomerization of C[sub 4] and C[sub 5] isoolefins or the etherification thereof with C[sub 1] to C[sub 6] alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300 F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.
Kim, Jaai; Lee, Changsoo
2016-02-01
Temperature is a crucial factor that significantly influences the microbial activity and so the methanation performance of an anaerobic digestion (AD) process. Therefore, how to control the operating temperature for optimal activity of the microbes involved is a key to stable AD. This study examined the response of a continuous anaerobic reactor to a series of temperature shifts over a wide range of 35-65 °C using a dairy-processing byproduct as model wastewater. During the long-term experiment for approximately 16 months, the reactor was subjected to stepwise temperature increases by 5 °C at a fixed HRT of 15 days. The reactor showed stable performance within the temperature range of 35-45 °C, with the methane production rate and yield being maximum at 45 °C (18% and 26% greater, respectively, than at 35 °C). However, the subsequent increase to 50 °C induced a sudden performance deterioration with a complete cessation of methane recovery, indicating that the temperature range between 45 °C and 50 °C had a critical impact on the transition of the reactor's methanogenic activity from mesophilic to thermophilic. This serious process perturbation was associated with a severe restructuring of the reactor microbial community structure, particularly of methanogens, quantitatively as well as qualitatively. Once restored by interrupted feeding for about two months, the reactor maintained fairly stable performance under thermophilic conditions until it was upset again at 65 °C. Interestingly, in contrast to most previous reports, hydrogenotrophs largely dominated the methanogen community at mesophilic temperatures while acetotrophs emerged as a major group at thermophilic temperature. This implies that the primary methanogenesis route of the reactor shifted from hydrogen- to acetate-utilizing pathways with the temperature shifts from mesophilic to thermophilic temperatures. Our observations suggest that a mesophilic digester may not need to be cooled at up to 45 °C in case of undesired temperature rise, for example, by excessive self-heating, which offers a possibility to reduce operating costs. Copyright © 2015 Elsevier Ltd. All rights reserved.
COATED CARBON ELEMENT FOR USE IN NUCLEAR REACTORS AND THE PROCESS OF MAKING THE ELEMENT
Pyle, R.J.; Allen, G.L.
1963-01-15
S>This patent relates to a carbide-nitride-carbide coating for carbon bodies that are to be subjected to a high temperature nuclear reactor atmosphere, and a method of applying the same. This coating is a highly efficient diffusion barrier and protects the C body from corrosion and erosion by the reactor atmosphere. Preferably, the innermost coating is Zr carbide, the middle coatlng is Zr nitride, and the outermost coating is a mixture of Zr and Nb carbide. The nitride coating acts as a diffusion barrier, while the innermost carbide bonds the nitride to the C body and prevents deleterious reaction between the nitride and C body. The outermost carbide coating protects the nitride coating from the reactor atmosphere. (AEC)
Code of Federal Regulations, 2012 CFR
2012-01-01
... Director of the Office of New Reactors or the Director of the Office of Nuclear Reactor Regulation, as...) The Director of the Office of New Reactors or the Director of the Office of Nuclear Reactor Regulation... of Nuclear Reactor Regulation, as appropriate, that they are complete. (c) If part one of the...
Payne, Liam; Heard, Peter J; Scott, Thomas B
2016-01-01
Pile Grade A graphite was used as a moderator and reflector material in the first generation of UK Magnox nuclear power reactors. As all of these reactors are now shut down there is a need to examine the concentration and distribution of long lived radioisotopes, such as 14C, to aid in understanding their behaviour in a geological disposal facility. A selection of irradiated graphite samples from Oldbury reactor one were examined where it was observed that Raman spectroscopy can distinguish between underlying graphite and a surface deposit found on exposed channel wall surfaces. The concentration of 14C in this deposit was examined by sequentially oxidising the graphite samples in air at low temperatures (450°C and 600°C) to remove the deposit and then the underlying graphite. The gases produced were captured in a series of bubbler solutions that were analysed using liquid scintillation counting. It was observed that the surface deposit was relatively enriched with 14C, with samples originating lower in the reactor exhibiting a higher concentration of 14C. Oxidation at 600°C showed that the remaining graphite material consisted of two fractions of 14C, a surface associated fraction and a graphite lattice associated fraction. The results presented correlate well with previous studies on irradiated graphite that suggest there are up to three fractions of 14C; a readily releasable fraction (corresponding to that removed by oxidation at 450°C in this study), a slowly releasable fraction (removed early at 600°C in this study), and an unreleasable fraction (removed later at 600°C in this study).
Payne, Liam; Heard, Peter J.; Scott, Thomas B.
2016-01-01
Pile Grade A graphite was used as a moderator and reflector material in the first generation of UK Magnox nuclear power reactors. As all of these reactors are now shut down there is a need to examine the concentration and distribution of long lived radioisotopes, such as 14C, to aid in understanding their behaviour in a geological disposal facility. A selection of irradiated graphite samples from Oldbury reactor one were examined where it was observed that Raman spectroscopy can distinguish between underlying graphite and a surface deposit found on exposed channel wall surfaces. The concentration of 14C in this deposit was examined by sequentially oxidising the graphite samples in air at low temperatures (450°C and 600°C) to remove the deposit and then the underlying graphite. The gases produced were captured in a series of bubbler solutions that were analysed using liquid scintillation counting. It was observed that the surface deposit was relatively enriched with 14C, with samples originating lower in the reactor exhibiting a higher concentration of 14C. Oxidation at 600°C showed that the remaining graphite material consisted of two fractions of 14C, a surface associated fraction and a graphite lattice associated fraction. The results presented correlate well with previous studies on irradiated graphite that suggest there are up to three fractions of 14C; a readily releasable fraction (corresponding to that removed by oxidation at 450°C in this study), a slowly releasable fraction (removed early at 600°C in this study), and an unreleasable fraction (removed later at 600°C in this study). PMID:27706228
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerczak, Tyler J.; Smith, Kurt R.; Petrie, Christian M.
Tristructural-isotropic (TRISO)–coated particle fuel is a promising advanced fuel concept consisting of a spherical fuel kernel made of uranium oxide and uranium carbide, surrounded by a porous carbonaceous buffer layer and successive layers of dense inner pyrolytic carbon (IPyC), silicon carbide (SiC) deposited by chemical vapor , and dense outer pyrolytic carbon (OPyC). This fuel concept is being considered for advanced reactor applications such as high temperature gas-cooled reactors (HTGRs) and molten salt reactors (MSRs), as well as for accident-tolerant fuel for light water reactors (LWRs). Development and implementation of TRISO fuel for these reactor concepts support the US Departmentmore » of Energy (DOE) Office of Nuclear Energy mission to promote safe, reliable nuclear energy that is sustainable and environmentally friendly. During operation, the SiC layer serves as the primary barrier to metallic fission products and actinides not retained in the kernel. It has been observed that certain fission products are released from TRISO fuel during operation, notably, Ag, Eu, and Sr [1]. Release of these radioisotopes causes safety and maintenance concerns.« less
Fate of LCFA in the co-digestion of cow manure, food waste and discontinuous addition of oil.
Neves, L; Oliveira, R; Alves, M M
2009-12-01
Different concentrations of oily waste were added in a discontinuous mode and recurrently to anaerobic continuous stirred tank reactors fed with cow manure and food waste. Four continuous stirred tank reactors were run in parallel. A control reactor (R1) received no additional oil and R2, R3 and R4 received increasing concentrations of oil in two different experimental approaches. First, the lipids composition was forced to change suddenly, in three moments, without changing the total chemical oxygen demand (COD) fed to the reactors. The only long chain fatty acid (LCFA) detected onto the R1 solid matrix was palmitic acid (C16:0). Nevertheless in the solid matrix of R2, R3 and R4C16:0 and stearic acid were detected. For occasional increase in the oil concentration up to 7.7gCOD(oil)/L(reactor) (55% Oil(COD)/Total(COD)) no statistical differences were detected between the reactors, in terms of methane production, effluent soluble COD, effluent volatile fatty acids and total and volatile solids removal. Therefore this experiment allowed to conclude that cow manure-food waste co-digestion presents sufficient buffer capacity to endure solid-associated LCFA concentration up to 20-25gCOD-LCFA/kgTS. In a second experiment higher concentrations of oil were added, raising occasionally the concentration in the reactors to 9, 12, 15 and 18gCOD(oil)/L(reactor). All pulses had a positive effect in methane production, with the exception of the highest oil pulse concentration, that persistently impaired the reactor performance. This experiment demonstrates that threshold values for LCFA and C16:0 accumulation onto the solid matrix, of about 180-220gCOD-LCFA/kgTS and 120-150gCOD-C16:0/kgTS, should not be surpassed in order to prevent persistent reactor failure, as occurs in some full scale co-digestion plants.
Two-stage dehydration of sugars
Holladay, Johnathan E [Kennewick, WA; Hu, Jianli [Kennewick, WA; Wang, Yong [Richland, WA; Werpy, Todd A [West Richland, WA
2009-11-10
The invention includes methods for producing dianhydrosugar alcohol by providing an acid catalyst within a reactor and passing a starting material through the reactor at a first temperature. At least a portion of the staring material is converted to a monoanhydrosugar isomer during the passing through the column. The monoanhydrosugar is subjected to a second temperature which is greater than the first to produce a dianhydrosugar. The invention includes a method of producing isosorbide. An initial feed stream containing sorbitol is fed into a continuous reactor containing an acid catalyst at a temperature of less than 120.degree. C. The residence time for the reactor is less than or equal to about 30 minutes. Sorbitol converted to 1,4-sorbitan in the continuous reactor is subsequently provided to a second reactor and is dehydrated at a temperature of at least 120.degree. C. to produce isosorbide.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-20
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Digital I&C Systems The ACRS Subcommittee on Digital Instrumentation and Controls (I&C) Systems...: Wednesday, September 8, 2010--8:30 a.m. until 12 p.m. The Subcommittee will review Digital I&C Interim Staff...
NASA Astrophysics Data System (ADS)
Buckingham, Grant T.; Porterfield, Jessica P.; Kostko, Oleg; Troy, Tyler P.; Ahmed, Musahid; Robichaud, David J.; Nimlos, Mark R.; Daily, John W.; Ellison, G. Barney
2016-07-01
Cycloheptatrienyl (tropyl) radical, C7H7, was cleanly produced in the gas-phase, entrained in He or Ne carrier gas, and subjected to a set of flash-pyrolysis micro-reactors. The pyrolysis products resulting from C7H7 were detected and identified by vacuum ultraviolet photoionization mass spectrometry. Complementary product identification was provided by infrared absorption spectroscopy. Pyrolysis pressures in the micro-reactor were roughly 200 Torr and residence times were approximately 100 μs. Thermal cracking of tropyl radical begins at 1100 K and the products from pyrolysis of C7H7 are only acetylene and cyclopentadienyl radicals. Tropyl radicals do not isomerize to benzyl radicals at reactor temperatures up to 1600 K. Heating samples of either cycloheptatriene or norbornadiene never produced tropyl (C7H7) radicals but rather only benzyl (C6H5CH2). The thermal decomposition of benzyl radicals has been reconsidered without participation of tropyl radicals. There are at least three distinct pathways for pyrolysis of benzyl radical: the Benson fragmentation, the methyl-phenyl radical, and the bridgehead norbornadienyl radical. These three pathways account for the majority of the products detected following pyrolysis of all of the isotopomers: C6H5CH2, C6H5CD2, C6D5CH2, and C6H513CH2. Analysis of the temperature dependence for the pyrolysis of the isotopic species (C6H5CD2, C6D5CH2, and C6H513CH2) suggests the Benson fragmentation and the norbornadienyl pathways open at reactor temperatures of 1300 K while the methyl-phenyl radical channel becomes active at slightly higher temperatures (1500 K).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buckingham, Grant T.; Porterfield, Jessica P.; Kostko, Oleg
2016-07-05
Cycloheptatrienyl (tropyl) radical, C7H7, was cleanly produced in the gas-phase, entrained in He or Ne carrier gas, and subjected to a set of flash-pyrolysis micro-reactors. The pyrolysis products resulting from C7H7 were detected and identified by vacuum ultraviolet photoionization mass spectrometry. Complementary product identification was provided by infrared absorption spectroscopy. Pyrolysis pressures in the micro-reactor were roughly 200 Torr and residence times were approximately 100 us. Thermal cracking of tropyl radical begins at 1100 K and the products from pyrolysis of C7H7 are only acetylene and cyclopentadienyl radicals. Tropyl radicals do not isomerize to benzyl radicals at reactor temperatures upmore » to 1600 K. Heating samples of either cycloheptatriene or norbornadiene never produced tropyl (C7H7) radicals but rather only benzyl (C6H5CH2). The thermal decomposition of benzyl radicals has been reconsidered without participation of tropyl radicals. There are at least three distinct pathways for pyrolysis of benzyl radical: the Benson fragmentation, the methyl-phenyl radical, and the bridgehead norbornadienyl radical. These three pathways account for the majority of the products detected following pyrolysis of all of the isotopomers: C6H5CH2, C6H5CD2, C6D5CH2, and C6H5 13CH2. Analysis of the temperature dependence for the pyrolysis of the isotopic species (C6H5CD2, C6D5CH2, and C6H5 13CH2) suggests the Benson fragmentation and the norbornadienyl pathways open at reactor temperatures of 1300 K while the methyl-phenyl radical channel becomes active at slightly higher temperatures (1500 K).« less
Split-core heat-pipe reactors for out-of-pile thermionic power systems.
NASA Technical Reports Server (NTRS)
Niederauer, G.; Lantz, E.; Breitweiser, R.
1971-01-01
Description of the concept of splitting a heat-pipe reactor for out-of-core thermionics into two identical halves and using the resulting center gap for reactivity control. Short Li-W reactor heat pipes penetrate the axial reflectors and form a heat exchanger with long heat pipes which wind through the shield to the thermionic diodes. With one reactor half anchored to the shield, the other is attached to a long arm with a pivot behind the shield and swings through a small arc for reactivity control. A safety shim prevents large reactivity inputs, and a fueled control arm drive shaft acts as a power stabilizer. Reactors fueled with U-235C and with U-233C have been studied.-
Ebrahimi, Sirous; Gabus, Sébastien; Rohrbach-Brandt, Emmanuelle; Hosseini, Maryam; Rossi, Pierre; Maillard, Julien; Holliger, Christof
2010-07-01
Two bubble column sequencing batch reactors fed with an artificial wastewater were operated at 20 degrees C, 30 degrees C, and 35 degrees C. In a first stage, stable granules were obtained at 20 degrees C, whereas fluffy structures were observed at 30 degrees C. Molecular analysis revealed high abundance of the operational taxonomic unit 208 (OTU 208) affiliating with filamentous bacteria Leptothrix spp. at 30 degrees C, an OTU much less abundant at 20 degrees C. The granular sludge obtained at 20 degrees C was used for the second stage during which one reactor was maintained at 20 degrees C and the second operated at 30 degrees C and 35 degrees C after prior gradual increase of temperature. Aerobic granular sludge with similar physical properties developed in both reactors but it had different nutrient elimination performances and microbial communities. At 20 degrees C, acetate was consumed during anaerobic feeding, and biological phosphorous removal was observed when Rhodocyclaceae-affiliating OTU 214 was present. At 30 degrees C and 35 degrees C, acetate was mainly consumed during aeration and phosphorous removal was insignificant. OTU 214 was almost absent but the Gammaproteobacteria-affiliating OTU 239 was more abundant than at 20 degrees C. Aerobic granular sludge at all temperatures contained abundantly the OTUs 224 and 289 affiliating with Sphingomonadaceae indicating that this bacterial family played an important role in maintaining stable granular structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalifa, Hesham
Advanced ceramic materials exhibit properties that enable safety and fuel cycle efficiency improvements in advanced nuclear reactors. In order to fully exploit these desirable properties, new processing techniques are required to produce the complex geometries inherent to nuclear fuel assemblies and support structures. Through this project, the state of complex SiC-SiC composite fabrication for nuclear components has advanced significantly. New methods to produce complex SiC-SiC composite structures have been demonstrated in the form factors needed for in-core structural components in advanced high temperature nuclear reactors. Advanced characterization techniques have been employed to demonstrate that these complex SiC-SiC composite structures providemore » the strength, toughness and hermeticity required for service in harsh reactor conditions. The complex structures produced in this project represent a significant step forward in leveraging the excellent high temperature strength, resistance to neutron induced damage, and low neutron cross section of silicon carbide in nuclear applications.« less
A thermodynamic approach for advanced fuels of gas-cooled reactors
NASA Astrophysics Data System (ADS)
Guéneau, C.; Chatain, S.; Gossé, S.; Rado, C.; Rapaud, O.; Lechelle, J.; Dumas, J. C.; Chatillon, C.
2005-09-01
For both high temperature reactor (HTR) and gas cooled fast reactor (GFR) systems, the high operating temperature in normal and accidental conditions necessitates the assessment of the thermodynamic data and associated phase diagrams for the complex system constituted of the fuel kernel, the inert materials and the fission products. A classical CALPHAD approach, coupling experiments and thermodynamic calculations, is proposed. Some examples of studies are presented leading with the CO and CO 2 gas formation during the chemical interaction of [UO 2± x/C] in the HTR particle, and the chemical compatibility of the couples [UN/SiC], [(U, Pu)N/SiC], [(U, Pu)N/TiN] for the GFR system. A project of constitution of a thermodynamic database for advanced fuels of gas-cooled reactors is proposed.
Pyrolysis of furan in a microreactor
NASA Astrophysics Data System (ADS)
Urness, Kimberly N.; Guan, Qi; Golan, Amir; Daily, John W.; Nimlos, Mark R.; Stanton, John F.; Ahmed, Musahid; Ellison, G. Barney
2013-09-01
A silicon carbide microtubular reactor has been used to measure branching ratios in the thermal decomposition of furan, C4H4O. The pyrolysis experiments are carried out by passing a dilute mixture of furan (approximately 0.01%) entrained in a stream of helium through the heated reactor. The SiC reactor (0.66 mm i.d., 2 mm o.d., 2.5 cm long) operates with continuous flow. Experiments were performed with a reactor inlet pressure of 100-300 Torr and a wall temperature between 1200 and 1600 K; characteristic residence times in the reactor are 60-150 μs. The unimolecular decomposition pathway of furan is confirmed to be: furan (+ M) rightleftharpoons α-carbene or β-carbene. The α-carbene fragments to CH2=C=O + HC≡CH while the β-carbene isomerizes to CH2=C=CHCHO. The formyl allene can isomerize to CO + CH3C≡CH or it can fragment to H + CO + HCCCH2. Tunable synchrotron radiation photoionization mass spectrometry is used to monitor the products and to measure the branching ratio of the two carbenes as well as the ratio of [HCCCH2]/[CH3C≡CH]. The results of these pyrolysis experiments demonstrate a preference for 80%-90% of furan decomposition to occur via the β-carbene. For reactor temperatures of 1200-1400 K, no propargyl radicals are formed. As the temperature rises to 1500-1600 K, at most 10% of the decomposition of CH2=C=CHCHO produces H + CO + HCCCH2 radicals. Thermodynamic conditions in the reactor have been modeled by computational fluid dynamics and the experimental results are compared to the predictions of three furan pyrolysis mechanisms. Uncertainty in the pressure-dependency of the initiation reaction rates is a possible a source of discrepancy between experimental results and theoretical predictions.
10 CFR 72.210 - General license issued.
Code of Federal Regulations, 2010 CFR
2010-01-01
... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General License for Storage of Spent Fuel at Power Reactor Sites § 72.210 General license issued. A general license is... reactor sites to persons authorized to possess or operate nuclear power reactors under 10 CFR part 50 or...
10 CFR 72.210 - General license issued.
Code of Federal Regulations, 2011 CFR
2011-01-01
... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General License for Storage of Spent Fuel at Power Reactor Sites § 72.210 General license issued. A general license is... reactor sites to persons authorized to possess or operate nuclear power reactors under 10 CFR part 50 or...
Krishna Mohan, Tulasi Venkata; Renu, Kadali; Nancharaiah, Yarlagadda Venkata; Satya Sai, Pedapati Murali; Venugopalan, Vayalam Purath
2016-02-01
A 6-L sequencing batch reactor (SBR) was operated for development of granular sludge capable of denitrification of high strength nitrates. Complete and stable denitrification of up to 5420 mg L(-1) nitrate-N (2710 mg L(-1) nitrate-N in reactor) was achieved by feeding simulated nitrate waste at a C/N ratio of 3. Compact and dense denitrifying granular sludge with relatively stable microbial community was developed during reactor operation. Accumulation of large amounts of nitrite due to incomplete denitrification occurred when the SBR was fed with 5420 mg L(-1) NO3-N at a C/N ratio of 2. Complete denitrification could not be achieved at this C/N ratio, even after one week of reactor operation as the nitrite levels continued to accumulate. In order to improve denitrification performance, the reactor was fed with nitrate concentrations of 1354 mg L(-1), while keeping C/N ratio at 2. Subsequently, nitrate concentration in the feed was increased in a step-wise manner to establish complete denitrification of 5420 mg L(-1) NO3-N at a C/N ratio of 2. The results show that substrate concentration plays an important role in denitrification of high strength nitrate by influencing nitrite accumulation. Complete denitrification of high strength nitrates can be achieved at lower substrate concentrations, by an appropriate acclimatization strategy. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Faisal, M.
2018-03-01
In order to understand the influence of reactor materials on the catalytic effect for a particular reaction, the decomposition of cysteic acid from Ni/Fe-based alloy reactors under subcritical water conditions was examined. Experiments were carried out in three batch reactors made of Inconel 625, Hastelloy C-22 and SUS 316 over temperatures of 200 to 300 °C. The highest amount of eluted metals was found for SUS 316. The results demonstrated that reactor materials contribute to the resulting product. Under the tested conditions, cysteic acid decomposes readily with SUS 316. However, the Ni-based materials (Inconel 625 and Hastelloy C-22) show better resistance to metal elution. It was found that among the materials used in this work, SUS 316 gave the highest reaction rate constant of 0.1934 s‑1. The same results were obtained at temperatures of 260 and 300 °C. Investigation of the Arrhenius activation energy revealed that the highest activation energy was for Hastelloy C-22 (109 kJ/mol), followed by Inconel 625 (90 kJ/mol) and SUS 316 (70 kJ/mol). The decomposition rate of cysteic acid was found to follow the results for the trend of the eluted metals. Therefore, it can be concluded that the decomposition of cysteic acid was catalyzed by the elution of heavy metals from the surface of the reactor. The highest amount of taurine from the decarboxylation of cysteic acid was obtained from SUS 316.
Regional groundwater flow model for C, K. L. and P reactor areas, Savannah River Site, Aiken, SC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flach, G.P.
2000-02-11
A regional groundwater flow model encompassing approximately 100 mi2 surrounding the C, K, L, and P reactor areas has been developed. The reactor flow model is designed to meet the planning objectives outlined in the General Groundwater Strategy for Reactor Area Projects by providing a common framework for analyzing groundwater flow, contaminant migration and remedial alternatives within the Reactor Projects team of the Environmental Restoration Department. The model provides a quantitative understanding of groundwater flow on a regional scale within the near surface aquifers and deeper semi-confined to confined aquifers. The model incorporates historical and current field characterization data upmore » through Spring 1999. Model preprocessing is automated so that future updates and modifications can be performed quickly and efficiently. The CKLP regional reactor model can be used to guide characterization, perform scoping analyses of contaminant transport, and serve as a common base for subsequent finer-scale transport and remedial/feasibility models for each reactor area.« less
Solar Power Satellites - A Review of the Space Transportation Options.
1980-03-01
already exists with such systems, gained mainly through liquid-metal breeder reactor programmes. 0 For example, inlet temperatures of 970 C can be handled...alternatives exist. In addition, there would be extreme reluctance on the part of most governments to allow large C- reactors , producing gigawatts of power, to...antenna. The reactors employed are high-temperature gas- cooled breeders , which convert U238 into fissile plutonium. Each of the modules includes a
Reticulated Vitreous Carbon Electrodes for Gas Phase Pulsed Corona Reactors.
1999-01-01
AFRL-ML-TY-TP-1999-4546 RETICULATED VITREOUS CARBON ELECTRODES FOR GAS PHASE PULSED CORONA REACTORS B.R. LOCKE M. KIRKPATRICK H. HANSON W.C...SUBTITLE Reticulated Vitreous Carbon Electrodes for Gas Phase Pulsed Corona Reactors 6. AUTHOR(S) B.R. Locke, M. Kirkpatrick, H. Hanson, and W.C. Finney...incorporating reticulated vitreous carbon electrodes is demonstrated to be effective for the removal of nitrogen oxides from synthetic air mixtures
14C content in vegetation in the vicinities of Brazilian nuclear power reactors.
Dias, Cíntia Melazo; Santos, Roberto Ventura; Stenström, Kristina; Nícoli, Iêda Gomes; Skog, Göran; da Silveira Corrêa, Rosangela
2008-07-01
(14)C specific activities were measured in grass samples collected around Brazilian nuclear power reactors. The specific activity values varied between 227 and 299 Bq/kg C. Except for two samples which showed (14)C specific activities 22% above background values, half of the samples showed background specific activities, and the other half had a (14)C excess of 1-18%. The highest specific activities were found close to the nuclear power plants and along the main wind directions (NE and NNE). The activity values were found to decrease with increasing distance from the reactors. The unexpectedly high (14)C excess values found in two samples were related to the local topography, which favors (14)C accumulation and limits the dispersion of the plume. The results indicate a clear (14)C anthropogenic signal within 5 km around the nuclear power plants which is most prominent along northeastwards, the prevailing wind direction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1963-07-01
This second edition is based on data available on March 15, 1961. Sections on constants necessary for the interpretation of experimental data and on digital computer programs for reactor design and reactor physics have been added. 1344 references. (D.C.W.)
El-Mashad, Hamed M; Zeeman, Grietje; van Loon, Wilko K P; Bot, Gerard P A; Lettinga, Gatze
2004-11-01
The influence of temperature, 50 and 60 degrees C, at hydraulic retention times (HRTs) of 20 and 10 days, on the performance of anaerobic digestion of cow manure has been investigated in completely stirred tank reactors (CSTRs). Furthermore, the effect of both daily downward and daily upward temperature fluctuations has been studied. In the daily downward temperature fluctuation regime the temperatures of each reactor was reduced by 10 degrees C for 10 h while in the daily upward fluctuation regime the temperature of each reactor was increased 10 degrees C for 5 h. The results show that the methane production rate at 60 degrees C is lower than that at 50 degrees C at all experimental conditions of imposed HRT except when downward temperature fluctuations were applied at an HRT of 10 days. It also was found that the free ammonia concentration not only affects the acetate-utilising bacteria but also the hydrolysis and acidification process. The upward temperature fluctuation affects the maximum specific methanogenesis activity more severely as compared to imposed downward temperature fluctuations. The results clearly reveal the possibility of using available solar energy at daytime to heat up the reactor(s) without the need of heat storage during nights, especially at an operational temperature of 50 degrees C and at a 20 days HRT, and without the jeopardising of the overheating.
Marques, Joana Montezano; de Almeida, Fernando Pereira; Lins, Ulysses; Seldin, Lucy; Korenblum, Elisa
2012-06-01
To better understand the impact of nitrate in Brazilian oil reservoirs under souring processes and corrosion, the goal of this study was to analyse the effect of nitrate on bacterial biofilms formed on carbon steel coupons using reactors containing produced water from a Brazilian oil platform. Three independent experiments were carried out (E1, E2 and E3) using the same experimental conditions and different incubation times (5, 45 and 80 days, respectively). In every experiment, two biofilm-reactors were operated: one was treated with continuous nitrate flow (N reactor), and the other was a control reactor without nitrate (C reactor). A Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis approach using the 16S rRNA gene was performed to compare the bacterial groups involved in biofilm formation in the N and C reactors. DGGE profiles showed remarkable changes in community structure only in experiments E2 and E3. Five bands extracted from the gel that represented the predominant bacterial groups were identified as Bacillus aquimaris, B. licheniformis, Marinobacter sp., Stenotrophomonas maltophilia and Thioclava sp. A reduction in the sulfate-reducing bacteria (SRB) most probable number counts was observed only during the longer nitrate treatment (E3). Carbon steel coupons used for biofilm formation had a slightly higher weight loss in N reactors in all experiments. When the coupon surfaces were analysed by scanning electron microscopy, an increase in corrosion was observed in the N reactors compared with the C reactors. In conclusion, nitrate reduced the viable SRB counts. Nevertheless, the nitrate dosing increased the pitting of coupons.
Modeling of displacement damage in silicon carbide detectors resulting from neutron irradiation
NASA Astrophysics Data System (ADS)
Khorsandi, Behrooz
There is considerable interest in developing a power monitor system for Generation IV reactors (for instance GT-MHR). A new type of semiconductor radiation detector is under development based on silicon carbide (SiC) technology for these reactors. SiC has been selected as the semiconductor material due to its superior thermal-electrical-neutronic properties. Compared to Si, SiC is a radiation hard material; however, like Si, the properties of SiC are changed by irradiation by a large fluence of energetic neutrons, as a consequence of displacement damage, and that irradiation decreases the life-time of detectors. Predictions of displacement damage and the concomitant radiation effects are important for deciding where the SiC detectors should be placed. The purpose of this dissertation is to develop computer simulation methods to estimate the number of various defects created in SiC detectors, because of neutron irradiation, and predict at what positions of a reactor, SiC detectors could monitor the neutron flux with high reliability. The simulation modeling includes several well-known---and commercial---codes (MCNP5, TRIM, MARLOWE and VASP), and two kinetic Monte Carlo codes written by the author (MCASIC and DCRSIC). My dissertation will highlight the displacement damage that may happen in SiC detectors located in available positions in the OSURR, GT-MHR and IRIS. As extra modeling output data, the count rates of SiC for the specified locations are calculated. A conclusion of this thesis is SiC detectors that are placed in the thermal neutron region of a graphite moderator-reflector reactor have a chance to survive at least one reactor refueling cycle, while their count rates are acceptably high.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-11
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Digital I&C Systems The ACRS Subcommittee on Digital Instrumentation & Control (DI&C) Systems will hold a meeting on February 23, 2011, Room T-2B3, 11545 Rockville Pike, Rockville, Maryland. The...
10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Advance notification of shipment of irradiated reactor... notification of shipment of irradiated reactor fuel and nuclear waste. (a) As specified in paragraphs (b), (c... required under this section for shipments of irradiated reactor fuel in quantities less than that subject...
10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Advance notification of shipment of irradiated reactor... notification of shipment of irradiated reactor fuel and nuclear waste. (a) As specified in paragraphs (b), (c... required under this section for shipments of irradiated reactor fuel in quantities less than that subject...
40 CFR 63.107 - Identification of process vents subject to this subpart.
Code of Federal Regulations, 2012 CFR
2012-07-01
... process vents associated with an air oxidation reactor, distillation unit, or reactor that is in a source.... (b) Some, or all, of the gas stream originates as a continuous flow from an air oxidation reactor... specified in paragraphs (c)(1) through (3) of this section. (1) Is directly from an air oxidation reactor...
10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.
Code of Federal Regulations, 2012 CFR
2012-01-01
... notification of shipment of irradiated reactor fuel and nuclear waste. (a) As specified in paragraphs (b), (c... of the shipper, carrier, and receiver of the irradiated reactor fuel or nuclear waste shipment; (2) A description of the irradiated reactor fuel or nuclear waste contained in the shipment, as specified in the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwin A. Harvego; Michael G. McKellar
2011-11-01
There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO2) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550 C and 750 C. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550 C. The particular power cycle investigated in this paper is a supercritical CO2 Recompression Brayton Cycle. The CO2 Recompression Brayton Cycle can bemore » used as either a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton cycle is the lower required operating temperature; 550 C versus 850 C. However, the supercritical CO2 Recompression Brayton Cycle requires an operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle operating pressure of 8 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of both a direct and indirect supercritical CO2 Brayton Recompression cycle for different reactor outlet temperatures. The direct supercritical CO2 cycle transferred heat directly from a 600 MWt reactor to the supercritical CO2 working fluid supplied to the turbine generator at approximately 20 MPa. The indirect supercritical CO2 cycle assumed a helium-cooled Very High Temperature Reactor (VHTR), operating at a primary system pressure of approximately 7.0 MPa, delivered heat through an intermediate heat exchanger to the secondary indirect supercritical CO2 Brayton Recompression cycle, again operating at a pressure of about 20 MPa. For both the direct and indirect cycles, sensitivity calculations were performed for reactor outlet temperature between 550 C and 850 C. The UniSim models used realistic component parameters and operating conditions to model the complete reactor and power conversion systems. CO2 properties were evaluated, and the operating ranges of the cycles were adjusted to take advantage of the rapidly changing properties of CO2 near the critical point. The results of the analyses showed that, for the direct supercritical CO2 power cycle, thermal efficiencies in the range of 40 to 50% can be achieved. For the indirect supercritical CO2 power cycle, thermal efficiencies were approximately 10% lower than those obtained for the direct cycle over the same reactor outlet temperature range.« less
Advance High Temperature Inspection Capabilities for Small Modular Reactors: Part 1 - Ultrasonics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bond, Leonard J.; Bowler, John R.
The project objective was to investigate the development non-destructive evaluation techniques for advanced small modular reactors (aSMR), where the research sought to provide key enabling inspection technologies needed to support the design and maintenance of reactor component performance. The project tasks for the development of inspection techniques to be applied to small modular reactor are being addressed through two related activities. The first is focused on high temperature ultrasonic transducers development (this report Part 1) and the second is focused on an advanced eddy current inspection capability (Part 2). For both inspection techniques the primary aim is to develop in-servicemore » inspection techniques that can be carried out under standby condition in a fast reactor at a temperature of approximately 250°C in the presence of liquid sodium. The piezoelectric material and the bonding between layers have been recognized as key factors fundamental for development of robust ultrasonic transducers. Dielectric constant characterization of bismuth scantanate-lead titanate ((1-x)BiScO 3-xPbTiO 3) (BS-PT) has shown a high Curie temperature in excess of 450°C , suitable for hot stand-by inspection in liquid metal reactors. High temperature pulse-echo contact measurements have been performed with BS-PT bonded to 12.5 mm thick 1018-low carbon steel plate from 20C up to 260 C. High temperature air-backed immersion transducers have been developed with BS-PT, high temperature epoxy and quarter wavlength nickel plate, needed for wetting ability in liquid sodium. Ultrasonic immersion measurements have been performed in water up to 92C and in silicone oil up to 140C. Physics based models have been validated with room temperature experimental data with benchmark artifical defects.« less
Code of Federal Regulations, 2012 CFR
2012-01-01
... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Siting Evaluation Factors § 72.108 Spent... proposed ISFSI or MRS must be evaluated with respect to the potential impact on the environment of the...
Graphite distortion ``C`` Reactor. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, N.H.
1962-02-08
This report covers the efforts of the Laboratory in an investigation of the graphite distortion in the ``C`` reactor at Hanford. The particular aspects of the problem to be covered by the Laboratory were possible ``fixes`` to the control rod sticking problem caused by VSR channel distortion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rashkeev, Sergey N.; Glazoff, Michael V.; Tokuhiro, Akira
2014-01-01
Stability of materials under extreme conditions is an important issue for safety of nuclear reactors. Presently, silicon carbide (SiC) is being studied as a cladding material candidate for fuel rods in boiling-water and pressurized water-cooled reactors (BWRs and PWRs) that would substitute or modify traditional zircaloy materials. The rate of corrosion of the SiC ceramics in hot vapor environment (up to 2200 degrees C) simulating emergency conditions of light water reactor (LWR) depends on many environmental factors such as pressure, temperature, viscosity, and surface quality. Using the paralinear oxidation theory developed for ceramics in the combustion reactor environment, we estimatedmore » the corrosion rate of SiC ceramics under the conditions representing a significant power excursion in a LWR. It was established that a significant time – at least 100 h – is required for a typical SiC braiding to significantly degrade even in the most aggressive vapor environment (with temperatures up to 2200 °C) which is possible in a LWR at emergency condition. This provides evidence in favor of using the SiC coatings/braidings for additional protection of nuclear reactor rods against off-normal material degradation during power excursions or LOCA incidents. Additionally, we discuss possibilities of using other silica based ceramics in order to find materials with even higher corrosion resistance than SiC. In particular, we found that zircon (ZrSiO4) is also a very promising material for nuclear applications. Thermodynamic and first-principles atomic-scale calculations provide evidence of zircon thermodynamic stability in aggressive environments at least up to 1535 degrees C.« less
Pender, Seán; Toomey, Margaret; Carton, Micheál; Eardly, Dónal; Patching, John W; Colleran, Emer; O'Flaherty, Vincent
2004-02-01
The diversity, population dynamics, and activity profiles of methanogens in anaerobic granular sludges from two anaerobic hybrid reactors treating a molasses wastewater both mesophilically (37 degrees C) and thermophilically (55 degrees C) during a 1081 day trial were determined. The influent to one of the reactors was supplemented with sulphate, after an acclimation period of 112 days, to determine the effect of competition with sulphate-reducing bacteria on the methanogenic community structure. Sludge samples were removed from the reactors at intervals throughout the operational period and examined by amplified ribosomal DNA (rDNA) restriction analysis (ARDRA) and partial sequencing of 16S rRNA genes. In total, 18 operational taxonomic units (OTUs) were identified, 12 of which were sequenced. The methanogenic communities in both reactors changed during the operational period. The seed sludge and the reactor biomass sampled during mesophilic operation, both in the presence and absence of sulphate, was characterised by a predominance of Methanosaeta spp. Following temperature elevation, the dominant methanogenic sequences detected in the non-sulphate supplemented reactor were closely related to Methanocorpusculum parvum. By contrast, the dominant OTUs detected in the sulphate-supplemented reactor upon temperature increase were related to the hydrogen-utilising methanogen, Methanobacterium thermoautotrophicum. The observed methanogenic community structure in the reactors correlated with the operational performance of the reactors during the trial and with physiological measurements of the reactor biomass. Both reactors achieved chemical oxygen demand (COD) removal efficiencies of over 90% during mesophilic operation, with or without sulphate supplementation. During thermophilic operation, the presence of sulphate resulted in decreased reactor performance (effluent acetate concentrations of >3000 mg/l and biogas methane content of <25%). It was demonstrated that methanogenic conversion of acetate at 55 degrees C was extremely sensitive to inhibition by sulphide (50% inhibition at 8-17 mg/l unionised sulphide at pH 7.6-8.0), while the conversion of H(2)/CO(2) methanogenically was favoured. The combination of experiments carried out demonstrated the presence of specific methanogenic populations during periods of successful operational performance.
Comparison of operating strategies for increased biogas production from thin stillage.
Moestedt, Jan; Nordell, Erik; Schnürer, Anna
2014-04-10
The effect of increasing organic loading rate (OLR) and simultaneously decreasing hydraulic retention time (HRT) during anaerobic digestion of sulphur- and nitrogen-rich thin stillage was investigated during operation of continuously stirred tank laboratory reactors at two different temperatures. The operating strategies and substrate were set in order to mimic an existing full-scale commercial biogas plant in Sweden. The reactors were operated for 554-570 days with a substrate mixture of thin stillage and milled grain, resulting in high ammonium concentrations (>4.5gL(-1)). Initially, one reactor was operated at 38°C, as in the full-scale plant, while in the experimental reactor the temperature was raised to 44°C. Both reactors were then subjected to increasing OLR (from 3.2 to 6.0gVSL(-1)d(-1)) and simultaneously decreasing HRT (from 45 to 24 days) to evaluate the effects of these operational strategies on process stability, hydrogen sulphide levels and microbial composition. The results showed that operation at 44°C was the most successful strategy, resulting in up to 22% higher methane yield compared with the mesophilic reactor, despite higher free ammonia concentration. Furthermore, kinetic studies revealed higher biogas production rate at 44°C compared with 38°C, while the level of hydrogen sulphide was not affected. Quantitative PCR analysis of the microbiological population showed that methanogenic archaea and syntrophic acetate-oxidising bacteria had responded to the new process temperature while sulphate-reducing bacteria were only marginally affected by the temperature-change. Copyright © 2014 Elsevier B.V. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-13
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Digital I&C; Notice of Meeting The ACRS Subcommittee on Digital I&C will hold a meeting on November 16, 2012, Room T-2B1, 11545 Rockville Pike, Rockville, Maryland. The entire meeting will be open...
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
BS> The dynamics of a power reactor is treated in some detail. Although the reactor is described by a nonlinear differential equation of the seventh order, a two-group approximstion with prompt neutrons and one averaged group of delayed neutrons may be used. When the reactor is in equilibrium, the reactor equation may be linearized in two ways. The effects of positive and negative coefficients of tins of the reactor are discussed. The nonlinear character of the control rods is trested. (D.L.C.)
Prevention of clogging in a biological trickle-bed reactor removing toluene from contaminated air.
Weber, F J; Hartmans, S
1996-04-05
Removal of organic compounds like toluene from waste gases with a trickle-bed reactor can result in clogging of the reactor due to the formation of an excessive amount of biomass. We therefore limited the amount of nutrients available for growth, to prevent clogging of the reactor. As a consequence of this nutrient limitation a lower removal rate was observed. However, when a fungal culture was used to inoculate the reactor, the toluene removal rate under nutrient limiting conditions was higher. Over a period of 375 days, an average removal rate of 27 g C/(m(3) h) was obtained with the reactor inoculated with the fungal culture. From the carbon balance over the reactor and the nitrogen availability it was concluded that, under these nutrient-limited conditions, large amounts of carbohydrates are probably formed. We also studied the application of a NaOH wash to remove excess biomass, as a method to prevent clogging. Under these conditions an average toluene removal rate of 35 g C/(m(3) h) was obtained. After about 50 days there was no net increase in the biomass content of the reactor. The amount of biomass which was formed in the reactor equaled the amount removed by the NaOH wash.
Effect of temperature on selenium removal from wastewater by UASB reactors.
Dessì, Paolo; Jain, Rohan; Singh, Satyendra; Seder-Colomina, Marina; van Hullebusch, Eric D; Rene, Eldon R; Ahammad, Shaikh Ziauddin; Carucci, Alessandra; Lens, Piet N L
2016-05-01
The effect of temperature on selenium (Se) removal by upflow anaerobic sludge blanket (UASB) reactors treating selenate and nitrate containing wastewater was investigated by comparing the performance of a thermophilic (55 °C) versus a mesophilic (30 °C) UASB reactor. When only selenate (50 μM) was fed to the UASB reactors (pH 7.3; hydraulic retention time 8 h) with excess electron donor (lactate at 1.38 mM corresponding to an organic loading rate of 0.5 g COD L(-1) d(-1)), the thermophilic UASB reactor achieved a higher total Se removal efficiency (94.4 ± 2.4%) than the mesophilic UASB reactor (82.0 ± 3.8%). When 5000 μM nitrate was further added to the influent, total Se removal was again better under thermophilic (70.1 ± 6.6%) when compared to mesophilic (43.6 ± 8.8%) conditions. The higher total effluent Se concentration in the mesophilic UASB reactor was due to the higher concentrations of biogenic elemental Se nanoparticles (BioSeNPs). The shape of the BioSeNPs observed in both UASB reactors was different: nanospheres and nanorods, respectively, in the mesophilic and thermophilic UASB reactors. Microbial community analysis showed the presence of selenate respirers as well as denitrifying microorganisms. Copyright © 2016 Elsevier Ltd. All rights reserved.
Park, Jungyu; Lee, Beom; Shin, Wonbeom; Jo, Sangyeol; Jun, Hangbae
2018-07-01
In this study, a practical bioelectrochemical anaerobic digestion (BEAD) reactor equipped with a rotating STS304 impeller was tested to verify its methane production performance. Methane production in the BEAD reactor was possible without accumulation of volatile fatty acids (VFAs) and decreases in pH at high organic loading rates (OLRs) up to 6 kg-COD/m 3 ·d (COD: chemical oxygen demand). Methane production in a BEAD-O (open circuit) reactor was inhibited at OLRs above 4 kg-COD/m 3 ·d; however, the performance could be recovered bioelectrochemically by supplying voltage. The population density of hydrogenotrophic methanogens increased to 73.3% in the BEAD-C (closed circuit) reactor, even at high OLRs, through the removal of VFAs and conversion of hydrogen to methane. The energy efficiency in the BEAD-C reactor was 85.6%, indicating that the commercialization of BEAD reactors equipped with rotating STS304 impeller electrodes is possible. Copyright © 2018 Elsevier Ltd. All rights reserved.
TURBULENT FLAME REACTOR STUDIES OF CHLORINATED HYDROCARBON DESTRUCTION EFFICIENCY
Four mixtures of C1 and C2 chlorinated hydrocarbons, diluted in heptane, were burned in a Turbulent Flame Reactor (TFR) under high and low oxygen conditions. Emissions of undestroyed feed, stable organic by-products, carbon monoxide, carbon dioxide and oxyg...
Effect of microstructure on the corrosion of CVD-SiC exposed to supercritical water
NASA Astrophysics Data System (ADS)
Tan, L.; Allen, T. R.; Barringer, E.
2009-10-01
Silicon carbide (SiC) is an important engineering material being studied for potential use in multiple nuclear energy systems including high-temperature gas-cooled reactors and water-cooled reactors. The corrosion behavior of SiC exposed to supercritical water (SCW) is critical for examining its applications in nuclear reactors. Although the hydrothermal corrosion of SiC has been the subject of many investigations, the study on the microstructural effects on the corrosion is limited. This paper presents the effect of residual strain, grain size, grain boundary types, and surface orientations on the corrosion of chemical vapor deposited (CVD) β-SiC exposed to SCW at 500 °C and 25 MPa. Weight loss occurred on all the samples due to localized corrosion. Residual strains associated with small grains showed the most significant effect on the corrosion compared to the other factors.
Buckingham, Grant T.; Porterfield, Jessica P.; Kostko, Oleg; ...
2016-07-05
Cycloheptatrienyl (tropyl) radical, C 7H 7, was cleanly produced in the gas-phase, entrained in He or Ne carrier gas, and subjected to a set of flash-pyrolysis micro-reactors. In this study, the pyrolysis products resulting from C 7H 7 were detected and identified by vacuum ultraviolet photoionization mass spectrometry. Complementary product identification was provided by infrared absorption spectroscopy. Pyrolysis pressures in the micro-reactor were roughly 200 Torr and residence times were approximately 100 μs. Thermal cracking of tropyl radical begins at 1100 K and the products from pyrolysis of C 7H 7 are only acetylene and cyclopentadienyl radicals. Tropyl radicals domore » not isomerize to benzyl radicals at reactor temperatures up to 1600 K. Heating samples of either cycloheptatriene or norbornadiene never produced tropyl (C 7H 7) radicals but rather only benzyl (C 6H 5CH 2). The thermal decomposition of benzyl radicals has been reconsidered without participation of tropyl radicals. There are at least three distinct pathways for pyrolysis of benzyl radical: the Benson fragmentation, the methyl-phenyl radical, and the bridgehead norbornadienyl radical. These three pathways account for the majority of the products detected following pyrolysis of all of the isotopomers: C 6H 5CH 2, C 6H 5CD 2, C 6D 5CH 2, and C 6H 5 13CH 2. Finally, analysis of the temperature dependence for the pyrolysis of the isotopic species (C 6H 5CD 2, C 6D 5CH 2, and C 6H 5 13CH 2) suggests the Benson fragmentation and the norbornadienyl pathways open at reactor temperatures of 1300 K while the methyl-phenyl radical channel becomes active at slightly higher temperatures (1500 K).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buckingham, Grant T.; National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden Colorado 80401; Porterfield, Jessica P.
2016-07-07
Cycloheptatrienyl (tropyl) radical, C{sub 7}H{sub 7}, was cleanly produced in the gas-phase, entrained in He or Ne carrier gas, and subjected to a set of flash-pyrolysis micro-reactors. The pyrolysis products resulting from C{sub 7}H{sub 7} were detected and identified by vacuum ultraviolet photoionization mass spectrometry. Complementary product identification was provided by infrared absorption spectroscopy. Pyrolysis pressures in the micro-reactor were roughly 200 Torr and residence times were approximately 100 μs. Thermal cracking of tropyl radical begins at 1100 K and the products from pyrolysis of C{sub 7}H{sub 7} are only acetylene and cyclopentadienyl radicals. Tropyl radicals do not isomerize tomore » benzyl radicals at reactor temperatures up to 1600 K. Heating samples of either cycloheptatriene or norbornadiene never produced tropyl (C{sub 7}H{sub 7}) radicals but rather only benzyl (C{sub 6}H{sub 5}CH{sub 2}). The thermal decomposition of benzyl radicals has been reconsidered without participation of tropyl radicals. There are at least three distinct pathways for pyrolysis of benzyl radical: the Benson fragmentation, the methyl-phenyl radical, and the bridgehead norbornadienyl radical. These three pathways account for the majority of the products detected following pyrolysis of all of the isotopomers: C{sub 6}H{sub 5}CH{sub 2}, C{sub 6}H{sub 5}CD{sub 2}, C{sub 6}D{sub 5}CH{sub 2}, and C{sub 6}H{sub 5}{sup 13}CH{sub 2}. Analysis of the temperature dependence for the pyrolysis of the isotopic species (C{sub 6}H{sub 5}CD{sub 2}, C{sub 6}D{sub 5}CH{sub 2}, and C{sub 6}H{sub 5}{sup 13}CH{sub 2}) suggests the Benson fragmentation and the norbornadienyl pathways open at reactor temperatures of 1300 K while the methyl-phenyl radical channel becomes active at slightly higher temperatures (1500 K).« less
Hughes, D; Mahony, T; Cysneiros, D; Ijaz, U Z; Smith, C J; O'Flaherty, V
2018-01-01
ABSTRACT The development and activity of a cold-adapting microbial community was monitored during low-temperature anaerobic digestion (LtAD) treatment of wastewater. Two replicate hybrid anaerobic sludge bed-fixed-film reactors treated a synthetic sewage wastewater at 12°C, at organic loading rates of 0.25–1.0 kg chemical oxygen demand (COD) m−3 d−1, over 889 days. The inoculum was obtained from a full-scale anaerobic digestion reactor, which was operated at 37°C. Both LtAD reactors readily degraded the influent with COD removal efficiencies regularly exceeding 78% for both the total and soluble COD fractions. The biomass from both reactors was sampled temporally and tested for activity against hydrolytic and methanogenic substrates at 12°C and 37°C. Data indicated that significantly enhanced low-temperature hydrolytic and methanogenic activity developed in both systems. For example, the hydrolysis rate constant (k) at 12°C had increased 20–30-fold by comparison to the inoculum by day 500. Substrate affinity also increased for hydrolytic substrates at low temperature. Next generation sequencing demonstrated that a shift in a community structure occurred over the trial, involving a 1-log-fold change in 25 SEQS (OTU-free approach) from the inoculum. Microbial community structure changes and process performance were replicable in the LtAD reactors. PMID:29846574
Keating, C; Hughes, D; Mahony, T; Cysneiros, D; Ijaz, U Z; Smith, C J; O'Flaherty, V
2018-07-01
The development and activity of a cold-adapting microbial community was monitored during low-temperature anaerobic digestion (LtAD) treatment of wastewater. Two replicate hybrid anaerobic sludge bed-fixed-film reactors treated a synthetic sewage wastewater at 12°C, at organic loading rates of 0.25-1.0 kg chemical oxygen demand (COD) m-3 d-1, over 889 days. The inoculum was obtained from a full-scale anaerobic digestion reactor, which was operated at 37°C. Both LtAD reactors readily degraded the influent with COD removal efficiencies regularly exceeding 78% for both the total and soluble COD fractions. The biomass from both reactors was sampled temporally and tested for activity against hydrolytic and methanogenic substrates at 12°C and 37°C. Data indicated that significantly enhanced low-temperature hydrolytic and methanogenic activity developed in both systems. For example, the hydrolysis rate constant (k) at 12°C had increased 20-30-fold by comparison to the inoculum by day 500. Substrate affinity also increased for hydrolytic substrates at low temperature. Next generation sequencing demonstrated that a shift in a community structure occurred over the trial, involving a 1-log-fold change in 25 SEQS (OTU-free approach) from the inoculum. Microbial community structure changes and process performance were replicable in the LtAD reactors.
U.S. Department of Energy Accident Resistant SiC Clad Nuclear Fuel Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
George W. Griffith
2011-10-01
A significant effort is being placed on silicon carbide ceramic matrix composite (SiC CMC) nuclear fuel cladding by Light Water Reactor Sustainability (LWRS) Advanced Light Water Reactor Nuclear Fuels Pathway. The intent of this work is to invest in a high-risk, high-reward technology that can be introduced in a relatively short time. The LWRS goal is to demonstrate successful advanced fuels technology that suitable for commercial development to support nuclear relicensing. Ceramic matrix composites are an established non-nuclear technology that utilizes ceramic fibers embedded in a ceramic matrix. A thin interfacial layer between the fibers and the matrix allows formore » ductile behavior. The SiC CMC has relatively high strength at high reactor accident temperatures when compared to metallic cladding. SiC also has a very low chemical reactivity and doesn't react exothermically with the reactor cooling water. The radiation behavior of SiC has also been studied extensively as structural fusion system components. The SiC CMC technology is in the early stages of development and will need to mature before confidence in the developed designs can created. The advanced SiC CMC materials do offer the potential for greatly improved safety because of their high temperature strength, chemical stability and reduced hydrogen generation.« less
Prajapati, Kalp Bhusan; Singh, Rajesh
2018-05-10
In present study batch tests were performed to investigate the enhancement in methane production under bio-electrolysis anaerobic co-digestion of sewage sludge and food waste. The bio-electrolysis reactor system (B-EL) yield more methane 148.5 ml/g COD in comparison to reactor system without bio-electrolysis (B-CONT) 125.1 ml/g COD. Whereas bio-electrolysis reactor system (C-EL) Iron Scraps amended yield lesser methane (51.2 ml/g COD) in comparison to control bio-electrolysis reactor system without Iron scraps (C-CONT - 114.4 ml/g COD). Richard and Exponential model were best fitted for cumulative methane production and biogas production rates respectively as revealed modelling study. The best model fit for the different reactors was compared by Akaike's Information Criterion (AIC) and Bayesian Information Criterion (BIC). The bioelectrolysis process seems to be an emerging technology with lesser the loss in cellulase specific activity with increasing temperature from 50 to 80 °C. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Arevidson, A. N.; Sawyer, D. H.; Muller, D. M.
1983-01-01
Dichlorosilane (DCS) was used as the feedstock for an advanced decomposition reactor for silicon production. The advanced reactor had a cool bell jar wall temperature, 300 C, when compared to Siemen's reactors previously used for DCS decomposition. Previous reactors had bell jar wall temperatures of approximately 750 C. The cooler wall temperature allows higher DCS flow rates and concentrations. A silicon deposition rate of 2.28 gm/hr-cm was achieved with power consumption of 59 kWh/kg. Interpretation of data suggests that a 2.8 gm/hr-cm deposition rate is possible. Screening of lower cost materials of construction was done as a separate program segment. Stainless Steel (304 and 316), Hastalloy B, Monel 400 and 1010-Carbon Steel were placed individually in an experimental scale reactor. Silicon was deposited from trichlorosilane feedstock. The resultant silicon was analyzed for electrically active and metallic impurities as well as carbon. No material contributed significant amounts of electrically active or metallic impurities, but all contributed carbon.
Vlaeminck, Siegfried E.; Terada, Akihiko; Smets, Barth F.; De Clippeleir, Haydée; Schaubroeck, Thomas; Bolca, Selin; Demeestere, Lien; Mast, Jan; Boon, Nico; Carballa, Marta; Verstraete, Willy
2010-01-01
Aerobic ammonium-oxidizing bacteria (AerAOB) and anoxic ammonium-oxidizing bacteria (AnAOB) cooperate in partial nitritation/anammox systems to remove ammonium from wastewater. In this process, large granular microbial aggregates enhance the performance, but little is known about granulation so far. In this study, three suspended-growth oxygen-limited autotrophic nitrification-denitrification (OLAND) reactors with different inoculation and operation (mixing and aeration) conditions, designated reactors A, B, and C, were used. The test objectives were (i) to quantify the AerAOB and AnAOB abundance and the activity balance for the different aggregate sizes and (ii) to relate aggregate morphology, size distribution, and architecture putatively to the inoculation and operation of the three reactors. A nitrite accumulation rate ratio (NARR) was defined as the net aerobic nitrite production rate divided by the anoxic nitrite consumption rate. The smallest reactor A, B, and C aggregates were nitrite sources (NARR, >1.7). Large reactor A and C aggregates were granules capable of autonomous nitrogen removal (NARR, 0.6 to 1.1) with internal AnAOB zones surrounded by an AerAOB rim. Around 50% of the autotrophic space in these granules consisted of AerAOB- and AnAOB-specific extracellular polymeric substances. Large reactor B aggregates were thin film-like nitrite sinks (NARR, <0.5) in which AnAOB were not shielded by an AerAOB layer. Voids and channels occupied 13 to 17% of the anoxic zone of AnAOB-rich aggregates (reactors B and C). The hypothesized granulation pathways include granule replication by division and budding and are driven by growth and/or decay based on species-specific physiology and by hydrodynamic shear and mixing. PMID:19948857
Design and Analysis of Embedded I&C for a Fully Submerged Magnetically Suspended Impeller Pump
Melin, Alexander M.; Kisner, Roger A.
2018-04-03
Improving nuclear reactor power system designs and fuel-processing technologies for safer and more efficient operation requires the development of new component designs. In particular, many of the advanced reactor designs such as the molten salt reactors and high-temperature gas-cooled reactors have operating environments beyond the capability of most currently available commercial components. To address this gap, new cross-cutting technologies need to be developed that will enable design, fabrication, and reliable operation of new classes of reactor components. The Advanced Sensor Initiative of the Nuclear Energy Enabling Technologies initiative is investigating advanced sensor and control designs that are capable of operatingmore » in these extreme environments. Under this initiative, Oak Ridge National Laboratory (ORNL) has been developing embedded instrumentation and control (I&C) for extreme environments. To develop, test, and validate these new sensing and control techniques, ORNL is building a pump test bed that utilizes submerged magnetic bearings to levitate the shaft. The eventual goal is to apply these techniques to a high-temperature (700°C) canned rotor pump that utilizes active magnetic bearings to eliminate the need for mechanical bearings and seals. The technologies will benefit the Next Generation Power Plant, Advanced Reactor Concepts, and Small Modular Reactor programs. In this paper, we will detail the design and analysis of the embedded I&C test bed with submerged magnetic bearings, focusing on the interplay between the different major systems. Then we will analyze the forces on the shaft and their role in the magnetic bearing design. Next, we will develop the radial and thrust bearing geometries needed to meet the operational requirements of the test bed. In conclusion, we will present some initial system identification results to validate the theoretical models of the test bed dynamics.« less
Design and Analysis of Embedded I&C for a Fully Submerged Magnetically Suspended Impeller Pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melin, Alexander M.; Kisner, Roger A.
Improving nuclear reactor power system designs and fuel-processing technologies for safer and more efficient operation requires the development of new component designs. In particular, many of the advanced reactor designs such as the molten salt reactors and high-temperature gas-cooled reactors have operating environments beyond the capability of most currently available commercial components. To address this gap, new cross-cutting technologies need to be developed that will enable design, fabrication, and reliable operation of new classes of reactor components. The Advanced Sensor Initiative of the Nuclear Energy Enabling Technologies initiative is investigating advanced sensor and control designs that are capable of operatingmore » in these extreme environments. Under this initiative, Oak Ridge National Laboratory (ORNL) has been developing embedded instrumentation and control (I&C) for extreme environments. To develop, test, and validate these new sensing and control techniques, ORNL is building a pump test bed that utilizes submerged magnetic bearings to levitate the shaft. The eventual goal is to apply these techniques to a high-temperature (700°C) canned rotor pump that utilizes active magnetic bearings to eliminate the need for mechanical bearings and seals. The technologies will benefit the Next Generation Power Plant, Advanced Reactor Concepts, and Small Modular Reactor programs. In this paper, we will detail the design and analysis of the embedded I&C test bed with submerged magnetic bearings, focusing on the interplay between the different major systems. Then we will analyze the forces on the shaft and their role in the magnetic bearing design. Next, we will develop the radial and thrust bearing geometries needed to meet the operational requirements of the test bed. In conclusion, we will present some initial system identification results to validate the theoretical models of the test bed dynamics.« less
Code of Federal Regulations, 2012 CFR
2012-01-01
... processing, the Director of the Office of New Reactors or the Director of the Office of Nuclear Reactor... days. (b)(1) The Director of the Office of New Reactors or the Director of the Office of Nuclear... Nuclear Reactor Regulation, as appropriate, that they are complete. (c) If part one of the application is...
Nag, Mitali; Shimaoka, Takayuki; Komiya, Teppei
2016-09-01
The aerobic-anaerobic landfill method (AALM) is a novel approach in solid waste management that could shorten the landfill post-closure period and minimize the environmental loads. In this study, the aerobic-anaerobic landfill method was evaluated by using intermittent aeration. In addition, the nitrification-denitrification process was assessed as a means of reducing the emission of greenhouse gases (GHGs) and improving the leachate quality during the degradation of the organic solid waste. The leachate quality and the gas composition in each of the reactors were measured during the experimental period (408days). The aeration process entailed the injection of air into plexiglass cylinders (200cm height×10 cm diameter), filled with fresh organic solid waste collected from a composting plant. Different aeration routines were applied, namely, continuous aeration (aerobic reactor A), aeration for three days/week (aerobic-anaerobic reactor B), aeration for 6h/day (aerobic-anaerobic reactor C), and no aeration (non-aerated reactor D). It was found that aerobic reactor A produced the best results in terms of reduction of GHGs and improvement of the leachate quality. The aerobic-anaerobic reactor C was found to be more effective than reactor B in respect of both the emission of GHGs and the leachate quality; moreover, compared with aerobic reactor A, energy costs were reduced by operating this reactor. The transition period phenomenon was investigated during an intensive seven-day experiment conducted on the discharged leachate obtained from aerobic-anaerobic reactors B and C. The experiment concerned the differences in the composition of the gas during the aeration and the non-aeration periods. It was found that the transition period between the aeration and non-aeration cycles, which followed the simultaneous nitrification-denitrification had a considerable effect on the leachate quality of both the reactors. The results indicated that AALM has the potential to reduce leachate pollutants and the emission of GHGs. Furthermore, the occurrence of simultaneous nitrification-denitrification presents the prospect that intermittent aeration could reduce landfill aftercare and energy costs. Copyright © 2015 Elsevier Ltd. All rights reserved.
Assessment of Sensor Technologies for Advanced Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korsah, Kofi; Kisner, R. A.; Britton Jr., C. L.
This paper provides an assessment of sensor technologies and a determination of measurement needs for advanced reactors (AdvRx). It is a summary of a study performed to provide the technical basis for identifying and prioritizing research targets within the instrumentation and control (I&C) Technology Area under the Department of Energy’s (DOE’s) Advanced Reactor Technology (ART) program. The study covered two broad reactor technology categories: High Temperature Reactors and Fast Reactors. The scope of “High temperature reactors” included Gen IV reactors whose coolant exit temperatures exceed ≈650 °C and are moderated (as opposed to fast reactors). To bound the scope formore » fast reactors, this report reviewed relevant operating experience from US-operated Sodium Fast Reactor (SFR) and relevant test experience from the Fast Flux Test Facility (FFTF). For high temperature reactors the study showed that in many cases instrumentation have performed reasonably well in research and demonstration reactors. However, even in cases where the technology is “mature” (such as thermocouples), HTGRs can benefit from improved technologies. Current HTGR instrumentation is generally based on decades-old technology and adapting newer technologies could provide significant advantages. For sodium fast reactors, the study found that several key research needs arise around (1) radiation-tolerant sensor design for in-vessel or in-core applications, where possible non-invasive sensing approaches for key parameters that minimize the need to deploy sensors in-vessel, (2) approaches to exfiltrating data from in-vessel sensors while minimizing penetrations, (3) calibration of sensors in-situ, and (4) optimizing sensor placements to maximize the information content while minimizing the number of sensors needed.« less
Optimization of bio-ethanol autothermal reforming and carbon monoxide removal processes
NASA Astrophysics Data System (ADS)
Markova, D.; Bazbauers, G.; Valters, K.; Alhucema Arias, R.; Weuffen, C.; Rochlitz, L.
Experimental investigation of bio-ethanol autothermal reforming (ATR) and water-gas shift (WGS) processes for hydrogen production and regression analysis of the data is performed in the study. The main goal was to obtain regression relations between the most critical dependent variables such as hydrogen, carbon monoxide and methane content in the reformate gas and independent factors such as air-to-fuel ratio (λ), steam-to-carbon ratio (S/C), inlet temperature of reactants into reforming process (T ATRin), pressure (p) and temperature (T ATR) in the ATR reactor from the experimental data. Purpose of the regression models is to provide optimum values of the process factors that give the maximum amount of hydrogen. The experimental ATR system consisted of an evaporator, an ATR reactor and a one-stage WGS reactor. Empirical relations between hydrogen, carbon monoxide, methane content and the controlling parameters downstream of the ATR reactor are shown in the work. The optimization results show that within the considered range of the process factors the maximum hydrogen concentration of 42 dry vol. % and yield of 3.8 mol mol -1 of ethanol downstream of the ATR reactor can be achieved at S/C = 2.5, λ = 0.20-0.23, p = 0.4 bar, T ATRin = 230 °C, T ATR = 640 °C.
Smith, Jr., Lawrence A.; Hearn, Dennis; Jones, Jr., Edward M.
1990-01-01
A liquid phase process for oligomerization of C.sub.4 and C.sub.5 isoolefins or the etherification thereof with C.sub.1 to C.sub.6 alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120.degree. to 300.degree. F. wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.
Smith, Jr., Lawrence A.; hearn, Dennis; Jones, Jr., Edward M.
1991-01-01
A liquid phase process for oligomerization of C.sub.4 and C.sub.5 isoolefins or the etherification thereof with C.sub.1 to C.sub.6 alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300.degree. F. wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.
Lee, M Y; Cheon, J H; Hidaka, T; Tsuno, H
2008-01-01
The objective of this study was to evaluate the performances and microbial diversities for development of the effective hyperthermophilic digester system that consists of a hyperthermophilic reactor and hyperthermophilic or thermophilic reactor in series. Lab-scale reactors were operated continuously fed with artificial kitchen garbage. The effect of temperature on the acidification step was firstly investigated. Results indicated that 20.8% of COD solubilization was achieved at 70 degrees C, with 12.6% at 80 degrees C. The average protein solubilization reached 31% at 80 degrees C. Methane conversion efficiency following the acidification was around 85% on average at 55 degrees C, but decreased with increasing temperature and methane gas was not produced over 73 degrees C. As well, bacteria affiliated with the methanogens dominated the population below 65 degrees C, while those affiliated with acidogens were predominant over 73 degrees C. These results indicated that the hyperthermophilic process has considerable benefits to treat wastewater or waste containing high concentration of protein.
Evaluation of ilmenite serpentine concrete and ordinary concrete as nuclear reactor shielding
NASA Astrophysics Data System (ADS)
Abulfaraj, Waleed H.; Kamal, Salah M.
1994-07-01
The present study involves adapting a formal decision methodology to the selection of alternative nuclear reactor concretes shielding. Multiattribute utility theory is selected to accommodate decision makers' preferences. Multiattribute utility theory (MAU) is here employed to evaluate two appropriate nuclear reactor shielding concretes in terms of effectiveness to determine the optimal choice in order to meet the radiation protection regulations. These concretes are Ordinary concrete (O.C.) and Ilmenite Serpentile concrete (I.S.C.). These are normal weight concrete and heavy heat resistive concrete, respectively. The effectiveness objective of the nuclear reactor shielding is defined and structured into definite attributes and subattributes to evaluate the best alternative. Factors affecting the decision are dose received by reactor's workers, the material properties as well as cost of concrete shield. A computer program is employed to assist in performing utility analysis. Based upon data, the result shows the superiority of Ordinary concrete over Ilmenite Serpentine concrete.
10 CFR 72.24 - Contents of application: Technical information.
Code of Federal Regulations, 2011 CFR
2011-01-01
... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C... radioactive waste, and/or reactor-related GTCC waste as appropriate, including how the ISFSI or MRS will be... of spent fuel, high-level radioactive waste, and/or reactor-related GTCC waste as appropriate for...
10 CFR 72.6 - License required; types of licenses.
Code of Federal Regulations, 2011 CFR
2011-01-01
... SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General... the receipt, handling, storage, and transfer of reactor-related GTCC are specific licenses. Any... hereby issued to receive title to and own spent fuel, high-level radioactive waste, or reactor-related...
Code of Federal Regulations, 2011 CFR
2011-01-01
... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Provisions § 72.2 Scope. (a) Except..., packaging, and possession of: (1) Power reactor spent fuel to be stored in a complex that is designed and constructed specifically for storage of power reactor spent fuel aged for at least one year, other radioactive...
75 FR 3501 - Advisory Committee on Reactor Safeguards
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-21
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards In accordance with the purposes of Sections 29 and 182b of the Atomic Energy Act (42 U.S.C. 2039, 2232b), the Advisory Committee on Reactor Safeguards (ACRS) will hold a meeting on February 4-6, 2010, 11545 Rockville Pike...
10 CFR 72.6 - License required; types of licenses.
Code of Federal Regulations, 2010 CFR
2010-01-01
... SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General... the receipt, handling, storage, and transfer of reactor-related GTCC are specific licenses. Any... hereby issued to receive title to and own spent fuel, high-level radioactive waste, or reactor-related...
Code of Federal Regulations, 2010 CFR
2010-01-01
... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Provisions § 72.2 Scope. (a) Except..., packaging, and possession of: (1) Power reactor spent fuel to be stored in a complex that is designed and constructed specifically for storage of power reactor spent fuel aged for at least one year, other radioactive...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-12
... Applications for Instrumentation and Control Upgrades for Non-Power Reactors AGENCY: Nuclear Regulatory... (NRC or the Commission) is requesting public comment on Chapter 7, Section 7.3, Reactor Control System...-Power Reactors: Format and Content,'' for instrumentation and control (I&C) upgrades and NUREG-1537...
10 CFR 72.120 - General considerations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... waste, and/or high level waste including possible reaction with water during wet loading and unloading... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design... reactor-related GTCC waste in an ISFSI or to store spent fuel, high-level radioactive waste, or reactor...
10 CFR 72.120 - General considerations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... waste, and/or high level waste including possible reaction with water during wet loading and unloading... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design... reactor-related GTCC waste in an ISFSI or to store spent fuel, high-level radioactive waste, or reactor...
10 CFR 72.120 - General considerations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design... reactor-related GTCC waste in an ISFSI or to store spent fuel, high-level radioactive waste, or reactor-related GTCC waste in an MRS must include the design criteria for the proposed storage installation. These...
10 CFR 72.120 - General considerations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design... reactor-related GTCC waste in an ISFSI or to store spent fuel, high-level radioactive waste, or reactor-related GTCC waste in an MRS must include the design criteria for the proposed storage installation. These...
10 CFR 725.15 - Requirements for approval of applications.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Secret Restricted Data in C-91, Nuclear Reactors for Rocket Propulsion, will be approved only if the... capable of making a contribution to research and development in the field of nuclear reactors for rocket... the field of nuclear reactors for rocket propulsion preparatory to the submission of a research and...
10 CFR 725.15 - Requirements for approval of applications.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Secret Restricted Data in C-91, Nuclear Reactors for Rocket Propulsion, will be approved only if the... capable of making a contribution to research and development in the field of nuclear reactors for rocket... the field of nuclear reactors for rocket propulsion preparatory to the submission of a research and...
10 CFR 725.15 - Requirements for approval of applications.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Secret Restricted Data in C-91, Nuclear Reactors for Rocket Propulsion, will be approved only if the... capable of making a contribution to research and development in the field of nuclear reactors for rocket... the field of nuclear reactors for rocket propulsion preparatory to the submission of a research and...
REVIEW OF POWER AND HEAT REACTOR DESIGNS. Domestic and Foreign
DOE Office of Scientific and Technical Information (OSTI.GOV)
Appleby, E.R., comp
1963-10-01
Unclassified information from domestic and foreign literature from January 1952 through September 1963 is compiled. Design characteristics and current information on the status of the individual designs are given, along with references for the associated literature. SNAP systems, proposed reactors, and chemonuclear and test reactors with characteristics similar to power reactors are included. The designs are indexed by name, location, type, and some special characteristics. (D.C.W.)
Two types of external lamp reactors were investigated for the titania catalyzed photodegradation of 1,2-dichlorobenzene (DCB) from a dilute water stream. The first one was a batch mixed slurry reactor and the second one was a semi-batch reactor with continuous feed recycle wit...
Synthesis of MgB2 at Low Temperature and Autogenous Pressure
Mackinnon, Ian D. R.; Winnett, Abigail; Alarco, Jose A.; Talbot, Peter C.
2014-01-01
High quality, micron-sized interpenetrating grains of MgB2, with high density, are produced at low temperatures (~420 °C < T < ~500 °C) under autogenous pressure by pre-mixing Mg powder and NaBH4 and heating in an Inconel 601 alloy reactor for 5–15 h. Optimum production of MgB2, with yields greater than 75%, occurs for autogenous pressure in the range 1.0 MPa to 2.0 MPa, with the reactor at ~500 °C. Autogenous pressure is induced by the decomposition of NaBH4 in the presence of Mg and/or other Mg-based compounds. The morphology, transition temperature and magnetic properties of MgB2 are dependent on the heating regime. Significant improvement in physical properties accrues when the reactor temperature is held at 250 °C for >20 min prior to a hold at 500 °C. PMID:28788656
USDA-ARS?s Scientific Manuscript database
Corn stover (CS) adjusted to 50%, 66% and 70% moisture was pretreated by the low moisture anhydrous ammonia (LMAA) process in a pilot-scale ammoniation reactor. After ammoniation, the 70% moisture CS was treated at 90 degree C and 100 degree C whereas the others were treated at 90 degree C only. The...
Gaurh, Pramendra; Pramanik, Hiralal
2018-01-01
A new and innovative approach was adopted to increase the yield of aromatics like, benzene, toluene and xylene (BTX) in the catalytic pyrolysis of waste polyethylene (PE). The BTX content was significantly increased due to effective interaction between catalystZSM-5 and target molecules i.e., lower paraffins within the reactor. The thermal and catalytic pyrolysis both were performed in a specially designed semi-batch reactor at the temperature range of 500 °C-800 °C. Catalytic pyrolysis were performed in three different phases within the reactor batch by batch systematically, keeping the catalyst in A type- vapor phase, B type- liquid phase and C type- vapor and liquid phase (multiphase), respectively. Total aromatics (BTX) of 6.54 wt% was obtained for thermal pyrolysis at a temperature of 700 °C. In contrary, for the catalytic pyrolysis A, B and C types reactor arrangement, the aromatic (BTX) contents were progressively increased, nearly 6 times from 6.54 wt% (thermal pyrolysis) to 35.06 wt% for C-type/multiphase (liquid and vapor phase). The pyrolysis oil were characterized using GC-FID, FT-IR, ASTM distillation and carbon residue test to evaluate its end use and aromatic content. Copyright © 2017 Elsevier Ltd. All rights reserved.
) US 2,947,472 CENTRIFUGE APPARATUS - Urey, H. C.; Skarstrom, C; Cohen, K; August 2, 1960 (to U. S Commission) This patent is concerned with a heavy water enriched uranium power reactor capable of producing reactor where the stream from both reaction zone and absorber zone is separated from the liquid and solid
Reactor performance and microbial community of an EGSB reactor operated at 20 and 15 degrees C.
Xing, W; Zuo, J-E; Dai, N; Cheng, J; Li, J
2009-09-01
To investigate the effects of low temperatures on the performance and microbial community of anaerobic wastewater treatment. An expanded granular sludge bed (EGSB) reactor was employed to treat synthetic brewery wastewater at 20 and 15 degrees C. Reactor performance was represented by chemical oxygen demand (COD) removal efficiency, while the microbial community was analysed using denaturing gradient gel electrophoresis (DGGE) and clone technology. When the hydraulic retention time (HRT) was maintained at 18 h, COD removal efficiencies above 85% were obtained at both 20 and 15 degrees C, with influent COD concentrations up to 7300 and 4100 mg l(-1), respectively. At 15 degrees C, the COD removal efficiency was more easily manipulated by increasing the influent COD concentration. DGGE and clone results for both temperatures revealed that Methanosaeta and Methanobacterium were two dominant methanogens, and that the majority of the eubacterial clones were represented by Firmicutes. When the temperature decreased from 20 to 15 degrees C, both archaeal and eubacterial communities had higher diversity, and the proportion of Methanosaeta (acetate-utilizing methanogens) decreased markedly from 60.0% to 49.3%, together with an increase in proportions of hydrogen-utilizing methanogens (especially Methanospirillum). The feasibility of psychrophilic anaerobic treatment of low and medium strength organic wastewaters was demonstrated, although lower temperature could significantly affect both reactor performance and the anaerobic microbial community. The findings enrich the theory involving the microbial community and the application of anaerobic treatment in a psychrophilic environment.
Chakraborty, Bhaswati; Indra, Suvendu; Hazra, Ditipriya; Betai, Rupal; Ray, Lalitagauri; Basu, Srabanti
2013-01-01
Organic pollutants, like phenol, along with heavy metals, like chromium, are present in various industrial effluents that pose serious health hazard to humans. The present study looked at removal of chromium (VI) in presence of phenol in a counter-current continuous packed bed reactor packed with E. coli cells immobilized on clay chips. The cells removed 85% of 500 mg/L of chromium (VI) from MS media containing glucose. Glucose was then replaced by 500 mg/L phenol. Temperature and pH of the MS media prior to addition of phenol were 30°C and 7, respectively. Hydraulic retention times of phenol- and chromium (VI)-containing synthetic media and air flow rates were varied to study the removal efficiency of the reactor system. Then temperature conditions of the reactor system were varied from 10°C to 50°C, the optimum being 30°C. The pH of the media was varied from pH 1 to pH 12, and the optimum pH was found to be 7. The maximum removal efficiency of 77.7% was achieved for synthetic media containing phenol and chromium (VI) in the continuous reactor system at optimized conditions, namely, hydraulic retention time at 4.44 hr, air flow rate at 2.5 lpm, temperature at 30°C, and pH at 7. PMID:24073400
Emulation of reactor irradiation damage using ion beams
Was, G. S.; Jiao, Z.; Getto, E.; ...
2014-06-14
The continued operation of existing light water nuclear reactors and the development of advanced nuclear reactor depend heavily on understanding how damage by radiation to levels degrades materials that serve as the structural components in reactor cores. The first high dose ion irradiation experiments on a ferritic-martensitic steel showing that ion irradiation closely emulates the full radiation damage microstructure created in-reactor are described. Ferritic-martensitic alloy HT9 (heat 84425) in the form of a hexagonal fuel bundle duct (ACO-3) accumulated 155 dpa at an average temperature of 443°C in the Fast Flux Test Facility (FFTF). Using invariance theory as a guide,more » irradiation of the same heat was conducted using self-ions (Fe++) at 5 MeV at a temperature of 460°C and to a dose of 188 displacements per atom. The void swelling was nearly identical between the two irradiation and the size and density of precipitates and loops following ion irradiation are within a factor of two of those for neutron irradiation. The level of agreement across all of the principal microstructure changes between ion and reactor irradiation establishes the capability of tailoring ion irradiation to emulate the reactor-irradiated microstructure.« less
An easily regenerable enzyme reactor prepared from polymerized high internal phase emulsions.
Ruan, Guihua; Wu, Zhenwei; Huang, Yipeng; Wei, Meiping; Su, Rihui; Du, Fuyou
2016-04-22
A large-scale high-efficient enzyme reactor based on polymerized high internal phase emulsion monolith (polyHIPE) was prepared. First, a porous cross-linked polyHIPE monolith was prepared by in-situ thermal polymerization of a high internal phase emulsion containing styrene, divinylbenzene and polyglutaraldehyde. The enzyme of TPCK-Trypsin was then immobilized on the monolithic polyHIPE. The performance of the resultant enzyme reactor was assessed according to the conversion ability of Nα-benzoyl-l-arginine ethyl ester to Nα-benzoyl-l-arginine, and the protein digestibility of bovine serum albumin (BSA) and cytochrome (Cyt-C). The results showed that the prepared enzyme reactor exhibited high enzyme immobilization efficiency and fast and easy-control protein digestibility. BSA and Cyt-C could be digested in 10 min with sequence coverage of 59% and 78%, respectively. The peptides and residual protein could be easily rinsed out from reactor and the reactor could be regenerated easily with 4 M HCl without any structure destruction. Properties of multiple interconnected chambers with good permeability, fast digestion facility and easily reproducibility indicated that the polyHIPE enzyme reactor was a good selector potentially applied in proteomics and catalysis areas. Copyright © 2016 Elsevier Inc. All rights reserved.
Silica-Immobilized Enzyme Reactors; Application to Cholinesterase-Inhibition Studies
2006-03-01
a i a i e v b c a m p l 1 d Journal of Chromatography B, 843 (2006) 310–316 Silica-immobilized enzyme reactors; application to...however, have specific omat d t t i w i h c u C p R n t o t fl p f o l p d v t o s fl t t c t a b f c i h a t s m i b 2 2 ≈ c s 0 c A R I H l 2 b p a y ε c...b r T p d ( m 2 w
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Jianbin, E-mail: jianbinguo@gmail.com; Dong, Renjie; Clemens, Joachim
Highlights: • The biogas process can run stably at 20 °C at extremely low OLR after long-term acclimation of bacteria. • A biogas plant running at 28 °C seems as efficient as that operated at 38 °C at low OLR of 1.3 g ODM L{sup −1} d{sup −1}. • Lower temperature operation is inadvisable for the commercial biogas plant running at rather high OLR. • The estimated sludge yield at 28 °C is higher than that at 38 °C. - Abstract: Many Chinese biogas plants run in the lower range of mesophilic conditions. This study evaluated the performance of amore » completely stirred anaerobic reactor treating pig manure at different temperatures (20, 28 and 38 °C). The start-up phase of the reactor at 20 °C was very long and extremely poor performance was observed with increasing organic loading rate (OLR). At an OLR of 4.3 g ODM L{sup −1} d{sup −1}, methane production at 28 °C was comparable (3% less) with that at 38 °C, but the risk of acidification was high at 28 °C. At low OLR (1.3 g ODM L{sup −1} d{sup −1}), the biogas process appeared stable at 28 °C and gave same methane yields as compared to the reactor operating at 38 °C. The estimated sludge yield at 28 °C was 0.065 g VSS g{sup −1} COD{sub removed,} which was higher than that at 38 °C (0.016 g VSS g{sup −1} COD{sub removed})« less
Assessment of Silicon Carbide Composites for Advanced Salt-Cooled Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katoh, Yutai; Wilson, Dane F; Forsberg, Charles W
2007-09-01
The Advanced High-Temperature Reactor (AHTR) is a new reactor concept that uses a liquid fluoride salt coolant and a solid high-temperature fuel. Several alternative fuel types are being considered for this reactor. One set of fuel options is the use of pin-type fuel assemblies with silicon carbide (SiC) cladding. This report provides (1) an initial viability assessment of using SiC as fuel cladding and other in-core components of the AHTR, (2) the current status of SiC technology, and (3) recommendations on the path forward. Based on the analysis of requirements, continuous SiC fiber-reinforced, chemically vapor-infiltrated SiC matrix (CVI SiC/SiC) compositesmore » are recommended as the primary option for further study on AHTR fuel cladding among various industrially available forms of SiC. Critical feasibility issues for the SiC-based AHTR fuel cladding are identified to be (1) corrosion of SiC in the candidate liquid salts, (2) high dose neutron radiation effects, (3) static fatigue failure of SiC/SiC, (4) long-term radiation effects including irradiation creep and radiation-enhanced static fatigue, and (5) fabrication technology of hermetic wall and sealing end caps. Considering the results of the issues analysis and the prospects of ongoing SiC research and development in other nuclear programs, recommendations on the path forward is provided in the order or priority as: (1) thermodynamic analysis and experimental examination of SiC corrosion in the candidate liquid salts, (2) assessment of long-term mechanical integrity issues using prototypical component sections, and (3) assessment of high dose radiation effects relevant to the anticipated operating condition.« less
Substrate composition and moisture in composting source-separated human faeces and food waste.
Niwagaba, C; Nalubega, M; Vinnerås, B; Sundberg, C; Jönsson, H
2009-04-14
The composting of a faeces/ash mixture and food waste in relative proportions of 1:0, 1:1 and 1:3 was studied in three successive experiments conducted in Kampala, Uganda in 216 L reactors insulated with 75 mm styrofoam or not insulated. The faeces/ash mixture alone exceeded 50 degrees C for < or = 12 days in insulated reactors, but did not reach or maintain 50 degrees C in non-insulated reactors. Inclusion of food waste kept temperatures above 50 degrees C for over two weeks in insulated reactors except when the substrate was too wet. Escherichia coli and total coliform concentrations decreased below detection in material that exceeded 50 degrees C for at least six days. Enterococcus spp. decreased below detection in material that exceeded 50 degrees C for at least two weeks, but remained detectable after 1.5 months in material that exceeded 50 degrees C for less than two weeks, suggesting that a period of at least two weeks above 50 degrees C, combined with mixing, is needed to achieve sanitation. Initially substrates that were too wet proved a challenge to composting and ways of decreasing substrate moisture should be investigated. The results obtained are applicable to the management of small- to medium-scale composting of faeces/ash and food waste at household and institution levels, e.g. schools and restaurants.
Influence of temperature on the single-stage ATAD process predicted by a thermal equilibrium model.
Cheng, Jiehong; Zhu, Jun; Kong, Feng; Zhang, Chunyong
2015-06-01
Autothermal thermophilic aerobic digestion (ATAD) is a promising biological process that will produce an effluent satisfying the Class A requirements on pathogen control and land application. The thermophilic temperature in an ATAD reactor is one of the critical factors that can affect the satisfactory operation of the ATAD process. This paper established a thermal equilibrium model to predict the effect of variables on the auto-rising temperature in an ATAD system. The reactors with volumes smaller than 10 m(3) could not achieve temperatures higher than 45 °C under ambient temperature of -5 °C. The results showed that for small reactors, the reactor volume played a key role in promoting auto-rising temperature in the winter. Thermophilic temperature achieved in small ATAD reactors did not entirely depend on the heat release from biological activities during degrading organic matters in sludges, but was related to the ambient temperature. The ratios of surface area-to-effective volume less than 2.0 had less impact on the auto-rising temperature of an ATAD reactor. The influence of ambient temperature on the auto-rising reactor temperature decreased with increasing reactor volumes. High oxygen transfer efficiency had a significant influence on the internal temperature rise in an ATAD system, indicating that improving the oxygen transfer efficiency of aeration devices was a key factor to achieve a higher removal rate of volatile solids (VS) during the ATAD process operation. Compared with aeration using cold air, hot air demonstrated a significant effect on maintaining the internal temperature (usually 4-5 °C higher). Copyright © 2015 Elsevier Ltd. All rights reserved.
Aslett, Denise; Haas, Joseph; Hyman, Michael
2011-09-01
Biodegradation of the gasoline oxygenates methyl tertiary-butyl ether (MTBE) and ethyl tertiary-butyl ether (ETBE) can cause tertiary butyl alcohol (TBA) to accumulate in gasoline-impacted environments. One remediation option for TBA-contaminated groundwater involves oxygenated granulated activated carbon (GAC) reactors that have been self-inoculated by indigenous TBA-degrading microorganisms in ground water extracted from contaminated aquifers. Identification of these organisms is important for understanding the range of TBA-metabolizing organisms in nature and for determining whether self-inoculation of similar reactors is likely to occur at other sites. In this study (13)C-DNA-stable isotope probing (SIP) was used to identify TBA-utilizing organisms in samples of self-inoculated BioGAC reactors operated at sites in New York and California. Based on 16S rRNA nucleotide sequences, all TBA-utilizing organisms identified were members of the Burkholderiales order of the β-proteobacteria. Organisms similar to Cupriavidus and Methylibium were observed in both reactor samples while organisms similar to Polaromonas and Rhodoferax were unique to the reactor sample from New York. Organisms similar to Hydrogenophaga and Paucibacter strains were only detected in the reactor sample from California. We also analyzed our samples for the presence of several genes previously implicated in TBA oxidation by pure cultures of bacteria. Genes Mpe_B0532, B0541, B0555, and B0561 were all detected in (13)C-metagenomic DNA from both reactors and deduced amino acid sequences suggested these genes all encode highly conserved enzymes. One gene (Mpe_B0555) encodes a putative phthalate dioxygenase-like enzyme that may be particularly appropriate for determining the potential for TBA oxidation in contaminated environmental samples.
U-PuO2, U-PuC, U-PuN cermet fuel for fast reactor
NASA Astrophysics Data System (ADS)
Mishra, Sudhir; Kaity, Santu; Banerjee, Joydipta; Nandi, Chiranjeet; Dey, G. K.; Khan, K. B.
2018-02-01
Cermet fuel combines beneficial properties of both ceramic and metal and attracts global interest for research as a candidate fuel for nuclear reactors. In the present study, U matrix PuC/PuN/PuO2 cermet for fast reactor have been fabricated on laboratory scale by the powder metallurgy route. Characterization of the fuel has been carried out using Dilatometer, Differential Thermal analysis (DTA), X-ray diffractometer and Optical microscope. X ray diffraction study of the fuel reveals presence of different phases. The PuN dispersed cermet was observed to have high solidus temperature as compared to PuC and PuO2 dispersed cermet. Swelling was observed in U matrix PuO2 cermet which also showed higher thermal expansion. Among the three cermets studied, U matrix PuC cermet showed maximum thermal conductivity.
Smith, L.A. Jr.; Hearn, D.; Jones, E.M. Jr.
1990-08-21
A liquid phase process is described for oligomerization of C[sub 4] and C[sub 5] isoolefins or the etherification thereof with C[sub 1] to C[sub 6] alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300 F wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled. 2 figs.
Method for conducting exothermic reactions
Smith, L. Jr.; Hearn, D.; Jones, E.M. Jr.
1993-01-05
A liquid phase process for oligomerization of C[sub 4] and C[sub 5] isoolefins or the etherification thereof with C[sub 1] to C[sub 6] alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300 F. wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.
Method for conducting exothermic reactions
Smith, Jr., Lawrence; Hearn, Dennis; Jones, Jr., Edward M.
1993-01-01
A liquid phase process for oligomerization of C.sub.4 and C.sub.5 isoolefins or the etherification thereof with C.sub.1 to C.sub.6 alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120.degree. to 300.degree. F. wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.
Smith, L.A. Jr.; Hearn, D.; Jones, E.M. Jr.
1991-03-26
A liquid phase process is described for oligomerization of C[sub 4] and C[sub 5] isoolefins or the etherification thereof with C[sub 1] to C[sub 6] alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300 F wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled. 2 figures.
Li, Jin-hui; Sun, Xiao-fei; Yao, Zhi-tong; Zhao, Xiang-yang
2014-02-01
A combined thermal desorption (TD)-molten salt oxidation (MSO) reactor system was applied to remediate the 1,2,3-trichlorobenzene (1,2,3-TCB) contaminated soil. The TD reactor was used to enrich the contaminant from soil, and its dechlorination of the contaminant was achieved in the MSO reactor. The optimum operating conditions of TD, and the effects of MSO reactor temperatures, additive amounts of the TCB on destruction and removal efficiency (DRE) of TCB and chlorine retention efficiency (CRE) were investigated. The reaction mechanism and pathway were proposed as well. The combined system could remediate the contaminated soil at a large scale of concentration from 5 to 25gkg(-1), and the DRE and CRE reached more than 99% and 95%, respectively, at temperatures above 850°C. The reaction emissions included C6H6, CH4, CO and CO2, and chlorinated species were not detected. It was found that a little increase in the temperature can considerably reduce the emission of C6H6, CH4, and CO, while the CO2 level increased. Copyright © 2014. Published by Elsevier Ltd.
Effect of carbon ion irradiation on Ag diffusion in SiC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leng, Bin; Ko, Hyunseok; Gerczak, Tyler J.
Transport of Ag fission product through the silicon-carbide (SiC) diffusion barrier layer in TRISO fuel particles is of considerable interest given the application of this fuel type in high temperature gas-cooled reactor (HTGR) and other future reactor concepts. The reactor experiments indicate that radiation may play an important role in release of Ag; however so far the isolated effect of radiation on Ag diffusion has not been investigated in controlled laboratory experiments. In this study, we investigate the diffusion couples of Ag and polycrystalline 3C–SiC, as well as Ag and single crystalline 4H–SiC samples before and after irradiation with Cmore » 2+ ions. The diffusion couple samples were exposed to temperatures of 1500 °C, 1535 °C, and 1569 °C, and the ensuing diffusion profiles were analyzed by secondary ion mass spectrometry (SIMS). We found that diffusion coefficients calculated from these measurements indicate that Ag diffusion was greatly enhanced by carbon irradiation due to a combined effect of radiation damage on diffusion and the presence of grain boundaries in polycrystalline SiC samples.« less
Effect of carbon ion irradiation on Ag diffusion in SiC
Leng, Bin; Ko, Hyunseok; Gerczak, Tyler J.; ...
2015-11-14
Transport of Ag fission product through the silicon-carbide (SiC) diffusion barrier layer in TRISO fuel particles is of considerable interest given the application of this fuel type in high temperature gas-cooled reactor (HTGR) and other future reactor concepts. The reactor experiments indicate that radiation may play an important role in release of Ag; however so far the isolated effect of radiation on Ag diffusion has not been investigated in controlled laboratory experiments. In this study, we investigate the diffusion couples of Ag and polycrystalline 3C–SiC, as well as Ag and single crystalline 4H–SiC samples before and after irradiation with Cmore » 2+ ions. The diffusion couple samples were exposed to temperatures of 1500 °C, 1535 °C, and 1569 °C, and the ensuing diffusion profiles were analyzed by secondary ion mass spectrometry (SIMS). We found that diffusion coefficients calculated from these measurements indicate that Ag diffusion was greatly enhanced by carbon irradiation due to a combined effect of radiation damage on diffusion and the presence of grain boundaries in polycrystalline SiC samples.« less
Exploratory development of a glass ceramic automobile thermal reactor. [anti-pollution devices
NASA Technical Reports Server (NTRS)
Gould, R. E.; Petticrew, R. W.
1973-01-01
This report summarizes the design, fabrication and test results obtained for glass-ceramic (CER-VIT) automotive thermal reactors. Several reactor designs were evaluated using both engine-dynamometer and vehicle road tests. A maximum reactor life of about 330 hours was achieved in engine-dynamometer tests with peak gas temperatures of about 1065 C (1950 F). Reactor failures were mechanically induced. No evidence of chemical degradation was observed. It was concluded that to be useful for longer times, the CER-VIT parts would require a mounting system that was an improvement over those tested in this program. A reactor employing such a system was designed and fabricated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-07-01
Volume 4 contains the following appendices: nuclear reactors at educational institutions in the United States; data sheets for nuclear reactors at educational institutions in the United States(operational reactors and shut-down reactors); supplemental data for Fort St. Vrain spent fuel; supplemental data for Peach Bottom 1 spent fuel; and supplemental data for Fast Flux Test Facility.
10 CFR 72.8 - Denial of licensing by Agreement States.
Code of Federal Regulations, 2010 CFR
2010-01-01
... SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General... the storage of spent fuel and reactor-related GTCC waste in an ISFSI or the storage of spent fuel, high-level radioactive waste, and reactor-related GTCC waste in an MRS. [66 FR 51839, Oct. 11, 2001] ...
10 CFR 72.218 - Termination of licenses.
Code of Federal Regulations, 2011 CFR
2011-01-01
... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General License for Storage of Spent Fuel at Power Reactor Sites § 72.218 Termination of licenses. (a) The notification regarding the program for the management of spent fuel at the reactor required by § 50.54(bb) of...
10 CFR 72.8 - Denial of licensing by Agreement States.
Code of Federal Regulations, 2011 CFR
2011-01-01
... SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General... the storage of spent fuel and reactor-related GTCC waste in an ISFSI or the storage of spent fuel, high-level radioactive waste, and reactor-related GTCC waste in an MRS. [66 FR 51839, Oct. 11, 2001] ...
10 CFR 72.218 - Termination of licenses.
Code of Federal Regulations, 2010 CFR
2010-01-01
... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General License for Storage of Spent Fuel at Power Reactor Sites § 72.218 Termination of licenses. (a) The notification regarding the program for the management of spent fuel at the reactor required by § 50.54(bb) of...
10 CFR 50.63 - Loss of all alternating current power.
Code of Federal Regulations, 2014 CFR
2014-01-01
... information defined below to the Director of the Office of Nuclear Reactor Regulation by April 17, 1989. For... Office of Nuclear Reactor Regulation, by 270 days after the date of license issuance. For each light... accordance with paragraph (c)(3) of this section, submit to the Director of the Office of Nuclear Reactor...
10 CFR 50.63 - Loss of all alternating current power.
Code of Federal Regulations, 2012 CFR
2012-01-01
... information defined below to the Director of the Office of Nuclear Reactor Regulation by April 17, 1989. For... Office of Nuclear Reactor Regulation, by 270 days after the date of license issuance. For each light... accordance with paragraph (c)(3) of this section, submit to the Director of the Office of Nuclear Reactor...
10 CFR 50.63 - Loss of all alternating current power.
Code of Federal Regulations, 2013 CFR
2013-01-01
... information defined below to the Director of the Office of Nuclear Reactor Regulation by April 17, 1989. For... Office of Nuclear Reactor Regulation, by 270 days after the date of license issuance. For each light... accordance with paragraph (c)(3) of this section, submit to the Director of the Office of Nuclear Reactor...
10 CFR 50.63 - Loss of all alternating current power.
Code of Federal Regulations, 2011 CFR
2011-01-01
... information defined below to the Director of the Office of Nuclear Reactor Regulation by April 17, 1989. For... Office of Nuclear Reactor Regulation, by 270 days after the date of license issuance. For each light... accordance with paragraph (c)(3) of this section, submit to the Director of the Office of Nuclear Reactor...
Code of Federal Regulations, 2014 CFR
2014-01-01
... air test pressure and to assure they will be subjected to the post accident differential pressure... Table of Contents I. Introduction. II. Explanation of terms. III. Leakage test requirements. A. Type A test. B. Type B test. C. Type C test. D. Periodic retest schedule. IV. Special test requirements. A...
Code of Federal Regulations, 2012 CFR
2012-01-01
... air test pressure and to assure they will be subjected to the post accident differential pressure... Table of Contents I. Introduction. II. Explanation of terms. III. Leakage test requirements. A. Type A test. B. Type B test. C. Type C test. D. Periodic retest schedule. IV. Special test requirements. A...
Code of Federal Regulations, 2010 CFR
2010-01-01
... air test pressure and to assure they will be subjected to the post accident differential pressure... Table of Contents I. Introduction. II. Explanation of terms. III. Leakage test requirements. A. Type A test. B. Type B test. C. Type C test. D. Periodic retest schedule. IV. Special test requirements. A...
Code of Federal Regulations, 2013 CFR
2013-01-01
... air test pressure and to assure they will be subjected to the post accident differential pressure... Table of Contents I. Introduction. II. Explanation of terms. III. Leakage test requirements. A. Type A test. B. Type B test. C. Type C test. D. Periodic retest schedule. IV. Special test requirements. A...
Giustinianovich, Elisa A; Aspé, Estrella R; Huiliñir, César E; Roeckel, Marlene D
2014-01-01
Salmon processing generates saline effluents with high protein load. To treat these effluents, three compact tubular filter reactors were installed and an integrated anoxic/anaerobic/aerobic process was developed with recycling flow from the reactor's exit to the inlet stream in order to save organic matter (OM) for denitrification. The reactors were aerated in the upper section with recycle ratios (RR) of 0, 2, and 10, respectively, at 30°C. A tubular reactor behave as a plug flow reactor when RR = 0, and as a mixed flow reactor when recycle increases, thus, different RR values were used to evaluate how it affects the product distribution and the global performance. Diluted salmon process effluent was prepared as substrate. Using loads of 1.0 kg COD m(-3)d(-1) and 0.15 kg total Kjeldahl nitrogen (TKN) m(-3)d(-1) at HRT of 2 d, 100% removal efficiencies for nitrite and nitrate were achieved in the anoxic-denitrifying section without effect of the dissolved oxygen in the recycled flow on denitrification. Removals >98% for total organic carbon (TOC) was achieved in the three reactors. The RR had no effect on the TOC removal; nevertheless a higher efficiency in total nitrogen removal in the reactor with the highest recycle ratio was observed: 94.3% for RR = 10 and 46.6% for RR = 2. Results showed that the proposed layout with an alternative distribution in a compact reactor can efficiently treat high organic carbon and nitrogen concentrations from a saline fish effluent with OM savings in denitrification.
Design Rules for High Temperature Microchemical Systems
2006-10-25
as expected for a CSTR , while the conversion in the channel reactor is as expected for a PFR. Flow visualization using smoke to image the flow...that according to the standard Taylor-Aris analysis all reactors should show CSTR behavior in the limit of rapid diffusion of all of the reactants...0.4 0.5 0.6 0.7 0.8 C on ve rs io n CSTR PFR Data Posted Reactor PFR CSTR 0 0.1 0.2 0.3 0.4 0.5 0.6 Residence Time, Sec 0 0.2 0.4 0.6 0.8 1 C on ve
Core plasma design of the compact helical reactor with a consideration of the equipartition effect
NASA Astrophysics Data System (ADS)
Goto, T.; Miyazawa, J.; Yanagi, N.; Tamura, H.; Tanaka, T.; Sakamoto, R.; Suzuki, C.; Seki, R.; Satake, S.; Nunami, M.; Yokoyama, M.; Sagara, A.; the FFHR Design Group
2018-07-01
Integrated physics analysis of plasma operation scenario of the compact helical reactor FFHR-c1 has been conducted. The DPE method, which predicts radial profiles in a reactor by direct extrapolation from the reference experimental data, has been extended to implement the equipartition effect. Close investigation of the plasma operation regime has been conducted and a candidate plasma operation point of FFHR-c1 has been identified within the parameter regime that has already been confirmed in LHD experiment in view of MHD equilibrium, MHD stability and neoclassical transport.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwin A. Harvego; Michael G. McKellar
2011-05-01
There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO2) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550°C and 750°C. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550°C. The particular power cycle investigated in this paper is a supercritical CO2 Recompression Brayton Cycle. The CO2 Recompression Brayton Cycle can be used as eithermore » a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton Cycle is the lower required operating temperature; 550°C versus 850°C. However, the supercritical CO2 Recompression Brayton Cycle requires an operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle operating pressure of 8 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of the supercritical CO2 Brayton Recompression Cycle for different reactor outlet temperatures. The UniSim model assumed a 600 MWt reactor power source, which provides heat to the power cycle at a maximum temperature of between 550°C and 750°C. The UniSim model used realistic component parameters and operating conditions to model the complete power conversion system. CO2 properties were evaluated, and the operating range for the cycle was adjusted to take advantage of the rapidly changing conditions near the critical point. The UniSim model was then optimized to maximize the power cycle thermal efficiency at the different maximum power cycle operating temperatures. The results of the analyses showed that power cycle thermal efficiencies in the range of 40 to 50% can be achieved.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldston, W.T.; Hiergesell, R.A.; Kaplan, D.I.
2006-07-01
At the Savannah River Site (SRS), nuclear production reactors used de-ionizers to control the chemistry of the reactor moderator during their operation to produce nuclear materials primarily for the weapons program. These de-ionizers were removed from the reactors and stored as a legacy waste and due to the relatively high carbon-14 (C-14) contamination (i.e., on the order of 740 giga becquerel (GBq) (20 curies) per de-ionizer) were considered a legacy 'waste with no path to disposal'. Considerable progress has been made in consideration of a disposal path for the legacy reactor de-ionizers. Presently, 48 - 50 de-ionizers being stored atmore » SRS have 'no path to disposal' because the disposal limit for C-14 in the SRS's low-level waste disposal facility's Intermediate Level Vault (ILV) is only 160 GBq (4.2 curies) per vault. The current C-14 ILV disposal limit is based on a very conservative analysis of the air pathway. The paper will describe the alternatives that were investigated that resulted in the selection of a route to pursue. This paper will then describe SRS's efforts to reduce the conservatism in the analysis, which resulted in a significantly larger C-14 disposal limit. The work consisted of refining the gas-phase analysis to simulate the migration of C-14 from the waste to the ground surface and evaluated the efficacy of carbonate chemistry in cementitious environment of the ILV for suppressing the volatilization of C-14. During the past year, a Special Analysis was prepared for Department of Energy approval to incorporate the results of these activities that increased the C-14 disposal limits for the ILV, thus allowing for disposal of the Reactor Moderator De-ionizers. Once the Special Analysis is approved by DOE, the actual disposal would be dependent on priority and funding, but the de-ionizers will be removed from the 'waste with no path to disposal list'. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolzonella, David, E-mail: david.bolzonella@univr.it; Cavinato, Cristina, E-mail: cavinato@unive.it; Fatone, Francesco, E-mail: francesco.fatone@univr.it
2012-06-15
Highlights: Black-Right-Pointing-Pointer High temperatures were tested in single and two-stage anaerobic digestion of waste activated sludge. Black-Right-Pointing-Pointer The increased temperature demonstrated the possibility of improving typical yields of the conventional mesophilic process. Black-Right-Pointing-Pointer The temperature phased anaerobic digestion process (65 + 55 Degree-Sign C) showed the best performances with yields of 0.49 m{sup 3}/kgVS{sub fed}. Black-Right-Pointing-Pointer Ammonia and phosphate released from solids destruction determined the precipitation of struvite in the reactor. - Abstract: The paper reports the findings of a two-year pilot scale experimental trial for the mesophilic (35 Degree-Sign C), thermophilic (55 Degree-Sign C) and temperature phased (65 +more » 55 Degree-Sign C) anaerobic digestion of waste activated sludge. During the mesophilic and thermophilic runs, the reactor operated at an organic loading rate of 2.2 kgVS/m{sup 3}d and a hydraulic retention time of 20 days. In the temperature phased run, the first reactor operated at an organic loading rate of 15 kgVS/m{sup 3}d and a hydraulic retention time of 2 days while the second reactor operated at an organic loading rate of 2.2 kgVS/m{sup 3}d and a hydraulic retention time of 18 days (20 days for the whole temperature phased system). The performance of the reactor improved with increases in temperature. The COD removal increased from 35% in mesophilic conditions, to 45% in thermophilic conditions, and 55% in the two stage temperature phased system. As a consequence, the specific biogas production increased from 0.33 to 0.45 and to 0.49 m{sup 3}/kgVS{sub fed} at 35, 55, and 65 + 55 Degree-Sign C, respectively. The extreme thermophilic reactor working at 65 Degree-Sign C showed a high hydrolytic capability and a specific yield of 0.33 gCOD (soluble) per gVS{sub fed}. The effluent of the extreme thermophilic reactor showed an average concentration of soluble COD and volatile fatty acids of 20 and 9 g/l, respectively. Acetic and propionic acids were the main compounds found in the acids mixture. Because of the improved digestion efficiency, organic nitrogen and phosphorus were solubilised in the bulk. Their concentration, however, did not increase as expected because of the formation of salts of hydroxyapatite and struvite inside the reactor.« less
Management of fresh water weeds (macrophytes) by vermicomposting using Eisenia fetida.
Najar, Ishtiyaq Ahmed; Khan, Anisa B
2013-09-01
In the present study, potential of Eisenia fetida to recycle the different types of fresh water weeds (macrophytes) used as substrate in different reactors (Azolla pinnata reactor, Trapa natans reactor, Ceratophyllum demersum reactor, free-floating macrophytes mixture reactor, and submerged macrophytes mixture reactor) during 2 months experiment is investigated. E. fetida showed significant variation in number and weight among the reactors and during the different fortnights (P <0.05) with maximum in A. pinnata reactor (number 343.3 ± 10.23 %; weight 98.62 ± 4.23 % ) and minimum in submerged macrophytes mixture reactor (number 105 ± 5.77 %; weight 41.07 ± 3.97 % ). ANOVA showed significant variation in cocoon production (F4 = 15.67, P <0.05) and mean body weight (F4 = 13.49, P <0.05) among different reactors whereas growth rate (F3 = 23.62, P <0.05) and relative growth rate (F3 = 4.91, P <0.05) exhibited significant variation during different fortnights. Reactors showed significant variation (P <0.05) in pH, Electrical conductivity (EC), Organic carbon (OC), Organic nitrogen (ON), and C/N ratio during different fortnights with increase in pH, EC, N, and K whereas decrease in OC and C/N ratio. Hierarchical cluster analysis grouped five substrates (weeds) into three clusters-poor vermicompost substrates, moderate vermicompost substrate, and excellent vermicompost substrate. Two principal components (PCs) have been identified by factor analysis with a cumulative variance of 90.43 %. PC1 accounts for 47.17 % of the total variance represents "reproduction factor" and PC2 explaining 43.26 % variance representing "growth factor." Thus, the nature of macrophyte affects the growth and reproduction pattern of E. fetida among the different reactors, further the addition of A. pinnata in other macrophytes reactors can improve their recycling by E. fetida.
Reactivity Coefficient Calculation for AP1000 Reactor Using the NODAL3 Code
NASA Astrophysics Data System (ADS)
Pinem, Surian; Malem Sembiring, Tagor; Tukiran; Deswandri; Sunaryo, Geni Rina
2018-02-01
The reactivity coefficient is a very important parameter for inherent safety and stability of nuclear reactors operation. To provide the safety analysis of the reactor, the calculation of changes in reactivity caused by temperature is necessary because it is related to the reactor operation. In this paper, the temperature reactivity coefficients of fuel and moderator of the AP1000 core are calculated, as well as the moderator density and boron concentration. All of these coefficients are calculated at the hot full power condition (HFP). All neutron diffusion constant as a function of temperature, water density and boron concentration were generated by the SRAC2006 code. The core calculations for determination of the reactivity coefficient parameter are done by using NODAL3 code. The calculation results show that the fuel temperature, moderator temperature and boron reactivity coefficients are in the range between -2.613 pcm/°C to -4.657pcm/°C, -1.00518 pcm/°C to 1.00649 pcm/°C and -9.11361 pcm/ppm to -8.0751 pcm/ppm, respectively. For the water density reactivity coefficients, the positive reactivity occurs at the water temperature less than 190 °C. The calculation results show that the reactivity coefficients are accurate because the results have a very good agreement with the design value.
NASA Astrophysics Data System (ADS)
Scheer, Adam M.; Mukarakate, Calvin; Robichaud, David J.; Nimlos, Mark R.; Carstensen, Hans-Heinrich; Barney Ellison, G.
2012-01-01
The pyrolyses of phenol and d5-phenol (C6H5OH and C6D5OH) have been studied using a high temperature, microtubular (μtubular) SiC reactor. Product detection is via both photon ionization (10.487 eV) time-of-flight mass spectrometry and matrix isolation infrared spectroscopy. Gas exiting the heated reactor (375 K-1575 K) is subject to a free expansion after a residence time in the μtubular reactor of approximately 50-100 μs. The expansion from the reactor into vacuum rapidly cools the gas mixture and allows the detection of radicals and other highly reactive intermediates. We find that the initial decomposition steps at the onset of phenol pyrolysis are enol/keto tautomerization to form cyclohexadienone followed by decarbonylation to produce cyclopentadiene; C6H5OH → c-C6H6 = O → c-C5H6 + CO. The cyclopentadiene loses a H atom to generate the cyclopentadienyl radical which further decomposes to acetylene and propargyl radical; c-C5H6 → c-C5H5 + H → HC≡CH + HCCCH2. At higher temperatures, hydrogen loss from the PhO-H group to form phenoxy radical followed by CO ejection to generate the cyclopentadienyl radical likely contributes to the product distribution; C6H5O-H → C6H5O + H → c-C5H5 + CO. The direct decarbonylation reaction remains an important channel in the thermal decomposition mechanisms of the dihydroxybenzenes. Both catechol (o-HO-C6H4-OH) and hydroquinone (p-HO-C6H4-OH) are shown to undergo decarbonylation at the onset of pyrolysis to form hydroxycyclopentadiene. In the case of catechol, we observe that water loss is also an important decomposition channel at the onset of pyrolysis.
Biomass pyrolysis: Thermal decomposition mechanisms of furfural and benzaldehyde
NASA Astrophysics Data System (ADS)
Vasiliou, AnGayle K.; Kim, Jong Hyun; Ormond, Thomas K.; Piech, Krzysztof M.; Urness, Kimberly N.; Scheer, Adam M.; Robichaud, David J.; Mukarakate, Calvin; Nimlos, Mark R.; Daily, John W.; Guan, Qi; Carstensen, Hans-Heinrich; Ellison, G. Barney
2013-09-01
The thermal decompositions of furfural and benzaldehyde have been studied in a heated microtubular flow reactor. The pyrolysis experiments were carried out by passing a dilute mixture of the aromatic aldehydes (roughly 0.1%-1%) entrained in a stream of buffer gas (either He or Ar) through a pulsed, heated SiC reactor that is 2-3 cm long and 1 mm in diameter. Typical pressures in the reactor are 75-150 Torr with the SiC tube wall temperature in the range of 1200-1800 K. Characteristic residence times in the reactor are 100-200 μsec after which the gas mixture emerges as a skimmed molecular beam at a pressure of approximately 10 μTorr. Products were detected using matrix infrared absorption spectroscopy, 118.2 nm (10.487 eV) photoionization mass spectroscopy and resonance enhanced multiphoton ionization. The initial steps in the thermal decomposition of furfural and benzaldehyde have been identified. Furfural undergoes unimolecular decomposition to furan + CO: C4H3O-CHO (+ M) → CO + C4H4O. Sequential decomposition of furan leads to the production of HC≡CH, CH2CO, CH3C≡CH, CO, HCCCH2, and H atoms. In contrast, benzaldehyde resists decomposition until higher temperatures when it fragments to phenyl radical plus H atoms and CO: C6H5CHO (+ M) → C6H5CO + H → C6H5 + CO + H. The H atoms trigger a chain reaction by attacking C6H5CHO: H + C6H5CHO → [C6H6CHO]* → C6H6 + CO + H. The net result is the decomposition of benzaldehyde to produce benzene and CO.
Liu, Xiao-min; Yan, Pen; Xie, Yin-Yin; Yang, Hui; Shen, Xiao-dong; Ma, Zi-Feng
2013-06-14
LiFePO4/C nanocomposites with excellent electrochemical performance is synthesized from nano-FePO4, generated by a novel method using a confined area impinging jet reactor (CIJR). When discharged at 80 C (13.6 Ag(-1)), the LiFePO4/C delivers a discharge capacity of 95 mA h g(-1), an energy density of 227 W h kg(-1) and a power density of 34 kW kg(-1).
78 FR 32279 - Advisory Committee On Reactor Safeguards; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-29
... NUCLEAR REGULATORY COMMISSION Advisory Committee On Reactor Safeguards; Notice of Meeting In accordance with the purposes of Sections 29 and 182b of the Atomic Energy Act (42 U.S.C. 2039, 2232b), the Advisory Committee on Reactor Safeguards (ACRS) will hold a meeting on June 5-7, 2013, 11545 Rockville Pike...
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1964-10-31
Thirty papers and 3 reviews of papers and panel discussions presented at the Symposium on Radiation Damage in Solids and Reactor Materials are given. Eighteen papers were previously abstracted for NSA. Separate abstracts were prepared for the remaining 15 papers. (M.C.G.)
Guven, Huseyin; Akca, Mehmet Sadik; Iren, Erol; Keles, Fatih; Ozturk, Izzet; Altinbas, Mahmut
2018-01-01
The main aim of the study was to evaluate the co-digestion performance of OFMSW with different wastes. Leachate, reverse osmosis (RO) concentrate collected from a leachate treatment facility and dewatered sewage sludge taken from a wastewater treatment plant (WWTP) were used for co-digestion in this paper. An extra effort was made to observe the effect of leachate inclusion in the co-digestion. In the study, the mono-digestion of OFMSW, leachate, RO concentrate and sewage sludge as well as digestion of 7 different waste mixtures were carried out for this objective. The experiments were carried out for approximately 50days under mesophilic conditions. The highest methane yield was 785L CH 4 /kg VS added in the reactor, which had only OFMSW. While the methane yield derived from OFMSW was found higher than previous studies, methane yield of leachate was found to be 110L CH 4 /kg VS added , which was lower than findings in the literature. The mono-substrate of OFMSW was followed by the reactor of having waste mixture of leachate+sewage sludge+OFMSW+water (C7) with 391L CH 4 /kg VS added , which was the only combination included water. In order to understand the effect of leachate and water inclusions on co-digestion, two separate waste combinations; leachate+sewage sludge+OFMSW+water (C7) and leachate+sewage sludge+OFMSW (C1) were prepared that had different amounts of leachate but same amounts of other wastes. The methane yield of leachate+sewage sludge+OFMSW+water (C7) indicated that addition of some water instead of leachate could stimulate biogas production. Methane yield of this reactor was found to be 71% higher than the waste combination of leachate+sewage sludge+OFMSW (C1). It could be thought that the high amount of non-biodegradable matters in leachate could be responsible for lower methane yield in leachate+sewage sludge+OFMSW (C1) reactor. Methane yields of the reactors showed that co-digestion of OFMSW and leachate could be a solution not only for treatment of leachate and but also increasing the biogas potential of leachate. Leachate addition could also adjust optimum total solids (TS) content in anaerobic digestion. It was also understood that RO concentrate did not affect the methane yield in a negative way. The similar characterization of leachate and RO concentrate in this study could offer the utilization of RO concentrate instead of leachate. The findings showed that volatile solids (VS) removals were changed from 32% to 61% in the reactors. While the reactor of leachate+RO concentrate+OFMSW (C6) had the highest VS removal, the reactor of the sole substrate leachate had the lowest VS removal. Copyright © 2017 Elsevier Ltd. All rights reserved.
DESIGN AND HAZARDS SUMMARY REPORT, BOILING REACTOR EXPERIMENT V (BORAX V)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1961-05-01
Design data for BORAX V are presented along with results of hazards evaluation studies. Considcration of the hazards associated with the operation of BORAX V was based on the following conditions: For normal steady-state power and experimental operation, the reactor and plant are adequately shielded and ventilated to allow personnel to be safely stationed in the turbine building and on the main floor of the reactor building. The control building is located one- half mile distant from the reactor building. For special, hazardous experiments, personnel are withdrawn from the reactor area. (M.C.G.)
An evaluation of alloys and coatings for use in automobile thermal reactors
NASA Technical Reports Server (NTRS)
Blankenship, C. P.; Oldrieve, R. E.
1974-01-01
Several candidate alloys and coatings were evaluated for use in automobile thermal reactors. Full-size reactors of the candidate materials were analyzed in cyclic engine dynamometer tests with peak temperature of 1900 F (1040 C). Two developmental ferritic iron alloys GE1541 and NASA-18T - exhibited the best overall performance lasting at least 60% of the life of the test engine. Four of the alloys evaluated warrant consideration for reactor use. They include GE1541, Armco 18 SR, NASA-18T, and Inconel 601. None of the commercial coating substrate combinations evaluated warrant consideration for reactor use.-
Evaluation of alloys and coatings for use in automobile thermal reactors
NASA Technical Reports Server (NTRS)
Blankenship, C. P.; Oldrieve, R. E.
1974-01-01
Several candidate alloys and coatings were evaluated for use in automobile thermal reactors. Full-size reactors of the candidate materials were evaluated in cyclic engine dynamometer tests with a peak temperature of 1040 C (1900 F). Two developmental ferritic-iron alloys, GE-1541 and NASA-18T, exhibited the best overall performance by lasting at least 60 percent of the life of test engine. Four of the alloys evaluated warrant consideration for reactor use. They are GE-1541, Armco 18 SR, NASA-18T, and Inconel 601. None of the commercial coating substrate combinations evaluated warrant consideration for reactor use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Labrousse, M.; Lerouge, B.; Dupuy, G.
1978-04-01
THERMOS is a water reactor designed to provide hot water up to 120/sup 0/C for district heating or for desalination applications. It is a 100-MW reactor based on proven technology: oxide fuel plate elements, integrated primary circuit, and reactor vessel located in the bottom of a pool. As in swimming pool reactors, the pool is used for biological shielding, emergency core cooling, and fission product filtering (in case of an accident). Before economics, safety is the main characteristic of the concept: no fuel failure admitted, core under water in any accidental configuration, inspection of every ''nuclear'' component, and double-wall containment.
Zhao, Yingxin; Feng, Chuanping; Wang, Qinghong; Yang, Yingnan; Zhang, Zhenya; Sugiura, Norio
2011-09-15
An intensified biofilm-electrode reactor (IBER) combining heterotrophic and autotrophic denitrification was developed for treatment of nitrate contaminated groundwater. The reactor was evaluated with synthetic groundwater (NO(3)(-)-N50 mg L(-1)) under different hydraulic retention times (HRTs), carbon to nitrogen ratios (C/N) and electric currents (I). The experimental results demonstrate that high nitrate and nitrite removal efficiency (100%) were achieved at C/N = 1, HRT = 8h, and I = 10 mA. C/N ratios were reduced from 1 to 0.5 and the applied electric current was changed from 10 to 100 mA, showing that the optimum running condition was C/N = 0.75 and I = 40 mA, under which over 97% of NO(3)(-)-N was removed and organic carbon (methanol) was completely consumed in treated water. Simultaneously, the denitrification mechanism in this system was analyzed through pH variation in effluent. The CO(2) produced from the anode acted as a good pH buffer, automatically controlling pH in the reaction zone. The intensified biofilm-electrode reactor developed in the study was effective for the treatment of groundwater polluted by nitrate. Copyright © 2011 Elsevier B.V. All rights reserved.
Nuclear propulsion apparatus with alternate reactor segments
Szekely, Thomas
1979-04-03
1. Nuclear propulsion apparatus comprising: A. means for compressing incoming air; B. nuclear fission reactor means for heating said air; C. means for expanding a portion of the heated air to drive said compressing means; D. said nuclear fission reactor means being divided into a plurality of radially extending segments; E. means for directing a portion of the compressed air for heating through alternate segments of said reactor means and another portion of the compressed air for heating through the remaining segments of said reactor means; and F. means for further expanding the heated air from said drive means and the remaining heated air from said reactor means through nozzle means to effect reactive thrust on said apparatus.
Splechtna, Barbara; Petzelbauer, Inge; Kuhn, Bernhard; Kulbe, Klaus D; Nidetzky, Bernd
2002-01-01
Recombinant beta-glycosidase CelB from the hyperthermophilic archaeon Pyrococcusfuriosus was produced through expression of the plasmid-encoded gene in Escherichia coli. Bioreactor cultivations of E. coli in the presence of the inductor isopropyl-1-thio-beta-D-galactoside (0.1 mM) gave approx 100,000 U of enzyme activity/L of culture medium after 8 h of growth. A technical-grade enzyme for the hydrolysis of lactose was prepared by precipitating the mesophilic protein at 80 degrees C. A hollow-fiber membrane reactor was developed, and its performance during continuous processing of ultrahigh temperature-treated (UHT) skim milk at 70 degrees C was analyzed regarding long-term stability, productivity, and diffusional limitation thereof. CelB was covalently attached onto Eupergit C in yields of 80%, and a packed-bed immobilized enzyme reactor was used for the continuous hydrolysis of lactose in UHT skim milk at 70 degrees C. The packed-bed reactor was approximately 10-fold more stable and gave about the same productivity at 80% substrate conversion as the hollow-fiber reactor at 60% substrate conversion. The marked difference in the stability of free and immobilized CelB seems to reflect mainly binding of the soluble enzyme to the membrane surface of the hollow-fiber module. Under these bound conditions, CelB is essentially inactive. CelB is essentially inactive. Microbial contamination of the reactors did not occur during reaction times of up to 39 d, given that UHT skim milk and not pasteurized skim milk was used as the substrate.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General License for Storage of Spent Fuel at Power Reactor Sites § 72.220 Violations. This general license is subject to the...
Code of Federal Regulations, 2010 CFR
2010-01-01
..., HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General License for Storage of Spent Fuel at Power Reactor Sites § 72.220 Violations. This general license is subject to the...
Neutrino parameters from reactor and accelerator neutrino experiments
NASA Astrophysics Data System (ADS)
Lindner, Manfred; Rodejohann, Werner; Xu, Xun-Jie
2018-04-01
We revisit correlations of neutrino oscillation parameters in reactor and long-baseline neutrino oscillation experiments. A framework based on an effective value of θ13 is presented, which can be used to analytically study the correlations and explain some questions including why and when δC P has the best fit value of -π /2 , why current and future long-baseline experiments will have less precision of δC P around ±π /2 than that around zero, etc. Recent hints on the C P phase are then considered from the point of view that different reactor and long-baseline neutrino experiments provide currently different best-fit values of θ13 and θ23. We point out that the significance of the hints changes for the different available best-fit values.
Styrene recovery from polystyrene by flash pyrolysis in a conical spouted bed reactor.
Artetxe, Maite; Lopez, Gartzen; Amutio, Maider; Barbarias, Itsaso; Arregi, Aitor; Aguado, Roberto; Bilbao, Javier; Olazar, Martin
2015-11-01
Continuous pyrolysis of polystyrene has been studied in a conical spouted bed reactor with the main aim of enhancing styrene monomer recovery. Thermal degradation in a thermogravimetric analyser was conducted as a preliminary study in order to apply this information in the pyrolysis in the conical spouted bed reactor. The effects of temperature and gas flow rate in the conical spouted bed reactor on product yield and composition have been determined in the 450-600°C range by using a spouting velocity from 1.25 to 3.5 times the minimum one. Styrene yield is strongly influenced by both temperature and gas flow rate, with the maximum yield being 70.6 wt% at 500°C and a gas velocity twice the minimum one. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effect of reactor temperature on direct growth of carbon nanomaterials on stainless steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edzatty, A. N., E-mail: nuredzatty@gmail.com; Syazwan, S. M., E-mail: mdsyazwan.sanusi@gmail.com; Norzilah, A. H., E-mail: norzilah@unimap.edu.my
Currently, carbon nanomaterials (CNMs) are widely used for various applications due to their extraordinary electrical, thermal and mechanical properties. In this work, CNMs were directly grown on the stainless steel (SS316) via chemical vapor deposition (CVD). Acetone was used as a carbon source and argon was used as carrier gas, to transport the acetone vapor into the reactor when the reaction occurred. Different reactor temperature such as 700, 750, 800, 850 and 900 °C were used to study their effect on CNMs growth. The growth time and argon flow rate were fixed at 30 minutes and 200 ml/min, respectively. Characterizationmore » of the morphology of the SS316 surface after CNMs growth using Scanning Electron Microscopy (SEM) showed that the diameter of grown-CNMs increased with the reactor temperature. Energy Dispersive X-ray (EDX) was used to analyze the chemical composition of the SS316 before and after CNMs growth, where the results showed that reduction of catalyst elements such as iron (Fe) and nickel (Ni) at high temperature (700 – 900 °C). Atomic Force Microscopy (AFM) analysis showed that the nano-sized hills were in the range from 21 to 80 nm. The best reactor temperature to produce CNMs was at 800 °C.« less
Code of Federal Regulations, 2014 CFR
2014-01-01
... mycoplasma reactors by in vivo bio-assay (enrichment). 147.16 Section 147.16 Animals and Animal Products... the evaluation of mycoplasma reactors by in vivo bio-assay (enrichment). This procedure has been shown... publications: (a) Bigland, C. H. and A. J. DaMassa, “A Bio-Assay for Mycoplasma Gallisepticum.” In: United...
Code of Federal Regulations, 2012 CFR
2012-01-01
... mycoplasma reactors by in vivo bio-assay (enrichment). 147.16 Section 147.16 Animals and Animal Products... the evaluation of mycoplasma reactors by in vivo bio-assay (enrichment). This procedure has been shown... publications: (a) Bigland, C. H. and A. J. DaMassa, “A Bio-Assay for Mycoplasma Gallisepticum.” In: United...
Code of Federal Regulations, 2013 CFR
2013-01-01
... mycoplasma reactors by in vivo bio-assay (enrichment). 147.16 Section 147.16 Animals and Animal Products... the evaluation of mycoplasma reactors by in vivo bio-assay (enrichment). This procedure has been shown... publications: (a) Bigland, C. H. and A. J. DaMassa, “A Bio-Assay for Mycoplasma Gallisepticum.” In: United...
Code of Federal Regulations, 2010 CFR
2010-01-01
... mycoplasma reactors by in vivo bio-assay (enrichment). 147.16 Section 147.16 Animals and Animal Products... the evaluation of mycoplasma reactors by in vivo bio-assay (enrichment). This procedure has been shown... publications: (a) Bigland, C. H. and A. J. DaMassa, “A Bio-Assay for Mycoplasma Gallisepticum.” In: United...
Method for reducing iron losses in an iron smelting process
Sarma, B.; Downing, K.B.
1999-03-23
A process of smelting iron that comprises the steps of: (a) introducing a source of iron oxide, oxygen, nitrogen, and a source of carbonaceous fuel to a smelting reactor, at least some of said oxygen being continuously introduced through an overhead lance; (b) maintaining conditions in said reactor to cause (1) at least some of the iron oxide to be chemically reduced, (2) a bath of molten iron to be created and stirred in the bottom of the reactor, surmounted by a layer of slag, and (3) carbon monoxide gas to rise through the slag; (c) causing at least some of said carbon monoxide to react in the reactor with the incoming oxygen, thereby generating heat for reactions taking place in the reactor; and (d) releasing from the reactor an offgas effluent, is run in a way that keeps iron losses in the offgas relatively low. After start-up of the process is complete, steps (a) and (b) are controlled so as to: (1) keep the temperature of the molten iron at or below about 1550 C and (2) keep the slag weight at or above about 0.8 ton per square meter. 13 figs.
Method for reducing iron losses in an iron smelting process
Sarma, Balu; Downing, Kenneth B.
1999-01-01
A process of smelting iron that comprises the steps of: a) introducing a source of iron oxide, oxygen, nitrogen, and a source of carbonaceous fuel to a smelting reactor, at least some of said oxygen being continuously introduced through an overhead lance; b) maintaining conditions in said reactor to cause (i) at least some of the iron oxide to be chemically reduced, (ii) a bath of molten iron to be created and stirred in the bottom of the reactor, surmounted by a layer of slag, and (iii) carbon monoxide gas to rise through the slag; c) causing at least some of said carbon monoxide to react in the reactor with the incoming oxygen, thereby generating heat for reactions taking place in the reactor; and d) releasing from the reactor an offgas effluent, is run in a way that keeps iron losses in the offgas relatively low. After start-up of the process is complete, steps (a) and (b) are controlled so as to: e) keep the temperature of the molten iron at or below about 1550.degree. C. and f) keep the slag weight at or above about 0.8 tonne per square meter.
1988-01-01
the reactor Duties: The Process Engineers rotate with the Lead Operator to monitor the process at the top of the reactor through the site glass...pant cuffs and coverhoods of coveralls, will be attached to gloves, boots and coveralls, using duct tape. * IF AMBIENT WORK STATIONS TEMPERATURE IS...L of the sample fortification solution (Section ýý8) containing 1C 12-2,3,7,8-TCDD at a concentration of 0.5 ng/1,Land C14-2,3,7,8-TCDD at a
Mesophilic and thermophilic activated sludge post-treatment of paper mill process water.
Vogelaar, J C T; Bouwhuis, E; Klapwijk, A; Spanjers, H; van Lier, J B
2002-04-01
Increasing system closure in paper mills and higher process water temperatures make the applicability of thermophilic treatment systems increasingly important. The use of activated sludge as a suitable thermophilic post-treatment system for anaerobically pre-treated paper process water from a paper mill using recycled wastepaper was studied. Two lab-scale plug flow activated sludge reactors were run in parallel for 6 months; a thermophilic reactor at 55 degrees C and a reference reactor at 30 degrees C. Both reactors were operated simultaneously at 20, 15 and 10 days SRT. The effects of temperature and SRT on sludge settleability and chemical oxygen demand (COD) removal efficiencies of different fractions were studied. Total COD removal percentages over the whole experimental period were 58+/-5% at 30 degrees C and 48 +/- 10% at 55 degrees C. The effect of the SRT on the total COD removal was negligible. Differences in total COD removal between both systems were due to a lesser removal of soluble and colloidal COD at 55 degrees C compared to the reference system. At 30 degrees C, colloidal COD removal percentages were 65+/-25%, 75+/-17% and 86+/-22% at 20, 15 and 10 days SRT, respectively. At 55 degrees C, these percentages were 48+/-34%, 40+/-28% and 70+/-25%, respectively. The effluent concentrations of colloidal COD in both systems were related to the influent concentration of colloidal material. The thermophilic sludge was not able to retain influent colloidal material as well as the mesophilic sludge causing a higher thermophilic effluent turbidity. Sludge settling properties were excellent in both reactor systems. These were neither temperature nor SRT dependent but were rather caused by extensive calcium precipitation in the aeration tanks creating a very dense sludge. For application in the board industry, a thermophilic in line treatment system seems feasible. The higher effluent turbidity is most likely offset by the energy gains of treatment under thermophilic conditions.
Utilization of useless pesticides in a plasma reactor
NASA Astrophysics Data System (ADS)
Lozhechnik, A. V.; Mossé, A. L.; Savchin, V. V.; Skomorokhov, D. S.; Khvedchin, I. V.
2011-09-01
Investigations on destruction of isophene C14H18O7N2 and the butyl ether of 2,4-dichlorophenoxyacetic acid (Cl2C6H3OCH2COOCH2CH(CH3)2) are performed. The plasma treatment of toxic waste is implemented in a plasma reactor with a three-jet mixing chamber. Air is used as the plasma-forming gas.
Continuous flow synthesis of ZSM-5 zeolite on the order of seconds
Liu, Zhendong; Okabe, Kotatsu; Anand, Chokkalingam; Yonezawa, Yasuo; Zhu, Jie; Yamada, Hiroki; Endo, Akira; Yanaba, Yutaka; Yoshikawa, Takeshi; Ohara, Koji; Okubo, Tatsuya; Wakihara, Toru
2016-01-01
The hydrothermal synthesis of zeolites carried out in batch reactors takes a time so long (typically, on the order of days) that the crystallization of zeolites has long been believed to be very slow in nature. We herein present a synthetic process for ZSM-5, an industrially important zeolite, on the order of seconds in a continuous flow reactor using pressurized hot water as a heating medium. Direct mixing of a well-tuned precursor (90 °C) with the pressurized water preheated to extremely high temperature (370 °C) in the millimeter-sized continuous flow reactor resulted in immediate heating to high temperatures (240–300 °C); consequently, the crystallization of ZSM-5 in a seed-free system proceeded to completion within tens of or even several seconds. These results indicate that the crystallization of zeolites can complete in a period on the order of seconds. The subtle design combining a continuous flow reactor with pressurized hot water can greatly facilitate the mass production of zeolites in the future. PMID:27911823
Wang, Bo; Peng, Yongzhen; Guo, Yuanyuan; Yuan, Yue; Zhao, Mengyue; Wang, Shuying
2016-11-01
This study presents a novel process (i.e. PN/SFDA) to remove nitrogen from low C/N domestic wastewater. The process mainly involves two reactors, a pre-Sequencing Batch Reactor for partial nitritation (termed as PN-SBR) and an anoxic reactor for integrated Denitrification and Anammox with carbon sources produced from Sludge Fermentation (termed as SFDA). During long-term Runs, NO2(-)/NH4(+) ratio (i.e. NO2(-)-N/NH4(+)-N calculated by mole) in the PN-SBR effluent was gradually increased from 0.2 to 37 by extending aerobic duration, meaning that partial nitritation turning to full nitritation could be achieved. Impact of partial nitritation degree on SFDA process was investigated and the result showed that, NO2(-)/NH4(+) ratios between 2 and 10 were appropriate for the co-existence of denitrification and anammox together in the SFDA reactor, and denitrification instead of anammox contributed greater for nitrogen removal. Further batch tests indicated that anammox collaborated well with denitrification at low C/N (1.0 in this study). Copyright © 2016 Elsevier Ltd. All rights reserved.
Reactor design and integration into a nuclear electric spacecraft
NASA Technical Reports Server (NTRS)
Phillips, W. M.; Koenig, D. R.
1978-01-01
One of the well-defined applications for nuclear power in space is nuclear electric propulsion (NEP). Mission studies have identified the optimum power level (400 kWe). A single Shuttle launch requirement and science-package integration have added additional constraints to the design. A reactor design which will meet these constraints has been studied. The reactor employs 90 fuel elements, each heat pipe cooled. Reactor control is obtained with BeO/B4C drums in a BeO reflector. The balance of the spacecraft is shielded from the reactor with LiH. Power conditioning and reactor control drum drives are located behind the LiH with the power conditioning. Launch safety, mechanical design and integration with the power conversion subsystem are discussed.
Method to predict relative hydriding within a group of zirconium alloys under nuclear irradiation
Johnson, Jr., A. Burtron; Levy, Ira S.; Trimble, Dennis J.; Lanning, Donald D.; Gerber, Franna S.
1990-01-01
An out-of-reactor method for screening to predict relative in-reactor hydriding behavior of zirconium-bsed materials is disclosed. Samples of zirconium-based materials having different composition and/or fabrication are autoclaved in a relatively concentrated (0.3 to 1.0M) aqueous lithium hydroxide solution at constant temperatures within the water reactor coolant temperature range (280.degree. to 316.degree. C.). Samples tested by this out-of-reactor procedure, when compared on the basis of the ratio of hydrogen weight gain to oxide weight gain, accurately predict the relative rate of hyriding for the same materials when subject to in-reactor (irradiated) corrision.
Comparison of Reductive Dechlorination of Chlorinated Ethylene in Batch and Continuous-Flow Reactor
NASA Astrophysics Data System (ADS)
Park, S.; Jonghwan, L.; Hong, U.; Kim, N.; Ahn, H.; Lee, S.; Kim, Y.
2010-12-01
A 1.28 L-Batch reactor and continuous-flow stirred tank reactor (CFSTR) fed with formate and trichloriethene (TCE) were operated for 120 days and 72 days, respectively, to study the effect of formate as electron donor on reductive dechlorination of TCE to cis-1,2-dichloroethylene (c-DCE), vinyl chloride (VC), and ethylene (ETH). In batch reactor, injected 60 μmol TCE was completely degraded in presence of 20% hydrogen gas (H2) in less than 8 days by Evanite culture (300 mg-soluble protein) with ability to completely degrade tetrachloroethene (PCE) and TCE to ETH under anaerobic conditions. To determine the effect of formate as electron donor instead of H2, about 3 or 11 mmol of formate injected into batch-reactor every 15 days was enough to support H2 for dechlorination of c-DCE to VC and ETH. Soluble protein concentration of Evanite culture during the batch test increased from 300 mg to 688 mg for 120 days. In CFSTR test, TCE was fed continuously at 9.9 ppm (75.38 μmol/L) and the influent formate feed concentration increased stepwise from 1.3 mmol/L to 14.3 mmol/L. Injected TCE was accumulated at HRT 18 days for 13 days, but TCE was completed degraded at HRT 36 days without accumulation during left of experiment period, getting H2 from fermentative hydrogen production of injected formate. Although c-DCE was also accumulated for 23 days after CFSTR operation, it reached steady-state without accumulation in presence of excessive formate. However, since c-DCE in CFSTR was not completely dechlorinated, we will determine the transcriptional level of enzyme involved in reductive dechlorination of TCE, c-DCE, and VC in our future work.
Section 7 reactor incident file general information from 1945
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1969-01-10
At 0308 on January 10, 1966, both B and C Reactors ``scrammed`` due to an electrical fault on Line C2-L8 caused by a raccoon coming in contact with the 13-8 KV line on top of transformer No. 2 at 182-B Building. Line C2-L8 relayed out at the 151-B Building. Details of the occurrence at 151-B are covered in the attachment. C-Reactor scrammed due to reduced voltage on the pressure monitor system. The reduction in voltage caused the auxiliary relays of the pressure monitor ground detector to open, de-energizing the end result relays PSR and PSRA. The safety circuit trip identificationmore » system displayed ``Pressure Monitor`` and ``Ground Detector.`` B-Reactor scrammed by a power failure signal from 190-B Building. The power failure relays for pump numbers 1 and 3 opened due to these pumps contributing power to the fault. The power failure relays at 190-B remained open long enough for the end result relays PF and PFA to open. Since these relays are timed delayed, 0.26 seconds, the power failure relays must have remained open at least that long. At the 190-B Building the steam turbines started due to the power failure relays for pump numbers 1 and 3 opening. The main process pumps remained stable and continued to supply normal flow to the reactor. Pumps were tripped from the line at 182-B and 183-B Buildings. The surge suppressors cycled normally and the turbine export pumps started as a result of low export line pressure. No power equipment was affected in C Area.« less
Characterization of elemental release during microbe granite interactions at T = 28 °C
NASA Astrophysics Data System (ADS)
Wu, Lingling; Jacobson, Andrew D.; Hausner, Martina
2008-02-01
This study used batch reactors to characterize the mechanisms and rates of elemental release (Al, Ca, K, Mg, Na, F, Fe, P, Sr, and Si) during interaction of a single bacterial species ( Burkholderia fungorum) with granite at T = 28 °C for 35 days. The objective was to evaluate how actively metabolizing heterotrophic bacteria might influence granite weathering on the continents. We supplied glucose as a C source, either NH 4 or NO 3 as N sources, and either dissolved PO 4 or trace apatite in granite as P sources. Cell growth occurred under all experimental conditions. However, solution pH decreased from ˜7 to 4 in NH 4-bearing reactors, whereas pH remained near-neutral in NO 3-bearing reactors. Measurements of dissolved CO 2 and gluconate together with mass-balances for cell growth suggest that pH lowering in NH 4-bearing reactors resulted from gluconic acid release and H + extrusion during NH 4 uptake. In NO 3-bearing reactors, B. fungormum likely produced gluconic acid and consumed H + simultaneously during NO 3 utilization. Over the entire 35-day period, NH 4-bearing biotic reactors yielded the highest release rates for all elements considered. However, chemical analyses of biomass show that bacteria scavenged Na, P, and Sr during growth. Abiotic control reactors followed different reaction paths and experienced much lower elemental release rates compared to biotic reactors. Because release rates inversely correlate with pH, we conclude that proton-promoted dissolution was the dominant reaction mechanism. Solute speciation modeling indicates that formation of Al-F and Fe-F complexes in biotic reactors may have enhanced mineral solubilities and release rates by lowering Al and Fe activities. Mass-balances further reveal that Ca-bearing trace phases (calcite, fluorite, and fluorapatite) provided most of the dissolved Ca, whereas more abundant phases (plagioclase) contributed negligible amounts. Our findings imply that during the incipient stages of granite weathering, heterotrophic bacteria utilizing glucose and NH 4 only moderately elevate silicate weathering reactions that consume atmospheric CO 2. However, by enhancing the dissolution of non-silicate, Ca-bearing trace minerals, they could contribute to high Ca/Na ratios commonly observed in granitic watersheds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
FLACH, GREGORYP.
1999-12-01
A groundwater flow model encompassing approximately 4 mi2 within C Reactor area has been developed. The objectives and goals of the C Reactor Area groundwater model are to: Provide a common hydrogeologic and groundwater flow modeling framework for C Area that can be easily updated as additional field data is collected from waste site investigations. Provide a baseline groundwater flow model for use in subsequent flow and transport simulations for remedial/feasibility studies for C Area waste sites. Provide baseline transport simulations for CBRP and CRSB that reconstruct historical contaminant distributions and simulate future plume migration from each waste unit. Providemore » a working groundwater flow model for particle tracking and analysis to guide subsequent field characterization activities. The model incorporates historical and current field characterization data up through spring 1999. The model simulates groundwater flow within the area bounded to the west and north by Fourmile Branch, to the south by Caster Creek, and to the east by a line between Fourmile Branch and the headwaters of Caster Creek. Vertically the model extends from ground surface to the top of the Gordon aquifer. The chosen areal grid is 14,600 by 13,200 feet with a resolution of 200 feet. The model accurately reproduces groundwater flow directions from the CBRP and CRSB, and matches targets for hydraulic head, recharge and baseflow within calibration goals. The hydrogeologic model reflects aquifer heterogeneity as derived from CPT lithologic data.« less
Preliminary design of high temperature ultrasonic transducers for liquid sodium environments
NASA Astrophysics Data System (ADS)
Prowant, M. S.; Dib, G.; Qiao, H.; Good, M. S.; Larche, M. R.; Sexton, S. S.; Ramuhalli, P.
2018-04-01
Advanced reactor concepts include fast reactors (including sodium-cooled fast reactors), gas-cooled reactors, and molten-salt reactors. Common to these concepts is a higher operating temperature (when compared to light-water-cooled reactors), and the proposed use of new alloys with which there is limited operational experience. Concerns about new degradation mechanisms, such as high-temperature creep and creep fatigue, that are not encountered in the light-water fleet and longer operating cycles between refueling intervals indicate the need for condition monitoring technology. Specific needs in this context include periodic in-service inspection technology for the detection and sizing of cracking, as well as technologies for continuous monitoring of components using in situ probes. This paper will discuss research on the development and evaluation of high temperature (>550°C; >1022°F) ultrasonic probes that can be used for continuous monitoring of components. The focus of this work is on probes that are compatible with a liquid sodium-cooled reactor environment, where the core outlet temperatures can reach 550°C (1022°F). Modeling to assess sensitivity of various sensor configurations and experimental evaluation have pointed to a preferred design and concept of operations for these probes. This paper will describe these studies and ongoing work to fabricate and fully evaluate survivability and sensor performance over extended periods at operational temperatures.
Study Gives Good Odds on Nuclear Reactor Safety
ERIC Educational Resources Information Center
Russell, Cristine
1974-01-01
Summarized is data from a recent study on nuclear reactor safety completed by Norman C. Rasmussen and others. Non-nuclear events are about 10,000 times more likely to produce large accidents than nuclear plants. (RH)
Gong, Benzhou; Wang, Yingmu; Wang, Jiale; Huang, Wei; Zhou, Jian; He, Qiang
2018-05-01
A modified anaerobic-anoxic-oxic (AAO) reactor embedding electrolysis was constructed for treatment of low carbon/nitrogen (C/N) wastewater. The effect of different current conditions on the performance of reactor was investigated in this study. When the current ranged from 0 mA to 200 mA, the removal efficiency of total nitrogen (TN) increased from 61.25% (0 mA) to 75.60% (200 mA), and that of total phosphorus (TP) increased from 72.24% (0 mA) to 93.93% (200 mA). In addition, the removal efficiencies of chemical oxygen demand (COD) and NH 4 + -N were not affected. The results indicated that AAO reactor coupling electrolysis was an effective way to strengthen the removal of nitrogen and phosphorus for treatment of low C/N wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su'ud, Zaki, E-mail: szaki@fi.itba.c.id; Sekimoto, H., E-mail: hsekimot@gmail.com
2014-09-30
Pb-Bi Cooled fast reactors with modified CANDLE burn-up scheme with 10 regions and 10 years cycle length has been investigated from neutronic aspects. In this study the safety aspect of such reactors have been investigated and discussed. Several condition of unprotected loss of flow (ULOF) and unprotected rod run-out transient over power (UTOP) have been simulated and the results show that the reactors excellent safety performance. At 80 seconds after unprotected loss of flow condition, the core flow rate drop to about 25% of its initial flow and slowly move toward its natural circulation level. The maximum fuel temperature canmore » be managed below 1000°C and the maximum cladding temperature can be managed below 700°C. The dominant reactivity feedback is radial core expansion and Doppler effect, followed by coolant density effect and fuel axial expansion effect.« less
Calcott, W.S.
1959-10-13
The manufacture of uranium tetrafluoride from urarium dioxide is described. Uranium dioxide is heated to about 500 deg C in a reactor. Anhydrous hydrogen fluoride is passed through the reactor in contact with uranium dioxide for several hours, the flow of hydrogen fluoride is discontinued, and hydrogen passed through the reactor for less than an hour. The flow of hydrogen fluoride is resumed for several hours, and then nitrogen is passed for a few minutes to expel unreacted hydrogen fluoride as water vapor. The reactor is cooled to room temperature and the uranium tetrafluoride removed.
Process for direct conversion of reactive metals to glass
Rajan, John B.; Kumar, Romesh; Vissers, Donald R.
1990-01-01
Radioactive alkali metal is introduced into a cyclone reactor in droplet form by an aspirating gas. In the cyclone metal reactor the aspirated alkali metal is contacted with silica powder introduced in an air stream to form in one step a glass. The sides of the cyclone reactor are preheated to ensure that the initial glass formed coats the side of the reactor forming a protective coating against the reactants which are maintained in excess of 1000.degree. C. to ensure the formation of glass in a single step.
PROCESS WATER BUILDING, TRA605. SECTIONS B, C AND D SHOW ...
PROCESS WATER BUILDING, TRA-605. SECTIONS B, C AND D SHOW RELATIONSHIP BETWEEN FLASH EVAPORATORS (ABOVE) AND SEAL AND SUMP TANKS (BELOW). BASEMENT FLOOR IS BELOW GRADE; FIRST FLOOR, ABOVE GRADE. SHIELDING TOLERANCES. BLAW-KNOX 3150-5-7, 8/1950. INL INDEX NO. 531-605-00-098-100012, REV. 2. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abrecht, David G.; Schwantes, Jon M.
This paper extends the preliminary linear free energy correlations for radionuclide release performed by Schwantes, et al., following the Fukushima-Daiichi Nuclear Power Plant accident. Through evaluations of the molar fractionations of radionuclides deposited in the soil relative to modeled radionuclide inventories, we confirm the source of the radionuclides to be from active reactors rather than the spent fuel pool. Linear correlations of the form ln χ = -α (ΔG rxn°(T C))/(RT C)+β were obtained between the deposited concentration and the reduction potential of the fission product oxide species using multiple reduction schemes to calculate ΔG° rxn(T C). These models allowedmore » an estimate of the upper bound for the reactor temperatures of T C between 2130 K and 2220 K, providing insight into the limiting factors to vaporization and release of fission products during the reactor accident. Estimates of the release of medium-lived fission products 90Sr, 121mSn, 147Pm, 144Ce, 152Eu, 154Eu, 155Eu, 151Sm through atmospheric venting and releases during the first month following the accident were performed, and indicate large quantities of 90Sr and radioactive lanthanides were likely to remain in the damaged reactor cores.« less
Structure and creep of Russian reactor steels with a BCC structure
NASA Astrophysics Data System (ADS)
Sagaradze, V. V.; Kochetkova, T. N.; Kataeva, N. V.; Kozlov, K. A.; Zavalishin, V. A.; Vil'danova, N. F.; Ageev, V. S.; Leont'eva-Smirnova, M. V.; Nikitina, A. A.
2017-05-01
The structural phase transformations have been revealed and the characteristics of the creep and long-term strength at 650, 670, and 700°C and 60-140 MPa have been determined in six Russian reactor steels with a bcc structure after quenching and high-temperature tempering. Creep tests were carried out using specially designed longitudinal and transverse microsamples, which were fabricated from the shells of the fuel elements used in the BN-600 fast neutron reactor. It has been found that the creep rate of the reactor bcc steels is determined by the stability of the lath martensitic and ferritic structures in relation to the diffusion processes of recovery and recrystallization. The highest-temperature oxide-free steel contains the maximum amount of the refractory elements and carbides. The steel strengthened by the thermally stable Y-Ti nanooxides has a record high-temperature strength. The creep rate at 700°C and 100 MPa in the samples of this steel is lower by an order of magnitude and the time to fracture is 100 times greater than that in the oxide-free reactor steels.
Characterization of carbon-14 generated by the nuclear power industry. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eabry, S.; Vance, J.N.; Cline, J.E.
1995-11-01
This report describes an evaluation of C-14 production rates in light-water reactors (LWRs) and characterization of its chemical speciation and environmental behavior. The study estimated the total production rate of the nuclide in operating PWRs and BWRs along with the assessment of the C-14 content of solid radwaste. The major source of production of C-14 in both PWR`s and BWRs was the activation of 0-17 in the water molecule and of N-14 dissolved in reactor coolant. The production of C-14 was estimated to range from 7 Ci/GW(e)-year to 11 Ci/GW(e)-year. The estimated range of the quantity of C-14 in LLWmore » was 1-2 Ci/ reactor-year which compares favorably with data obtained from shipping manifests. The environmental behavior of C-14 associated with low-level waste (LLW) disposal is greatly dependent upon its chemical speciation. This scoping study was performed to help identify the occurrence of inorganic and organic forms of C-14 in reactor coolant water and in primary coolant demineralization resins. These represent the major source for C-14 in LLW from nuclear power stations. Also, the behavior of inorganic and two of the organic forms of C-14 on soil uptake was determined by measuring distribution coefficients (Kd`s) on two soil types and a cement, using two different groundwater types. This study confirms that C-14 concentrations are significantly higher in the primary coolant from PWR stations compared to BWR stations. The C-14 followed trends of Co-60 generation during primary coolant demineralization at all but one of the stations examined. However, the C-14/Co-60 activity ratios measured by this study in resin samples through which samples of coolant were drawn were about 8 to 42 times higher than those reported for waste samples in the industry data base for PWR stations, and 15 to 730 times lower for the BWR stations.« less
Elmitwalli, Tarek A; Sklyar, Vladimir; Zeeman, Grietje; Lettinga, Gatze
2002-05-01
The pre-treatment of domestic sewage for removal of suspended solids (SS) at a process temperature of 13 degrees C and an hydraulic retention time (HRT) of 4 h was investigated in an anaerobic filter (AF) and anaerobic hybrid (AH) reactor. The AF and the top of the AH reactor consisted of vertical sheets of reticulated polyurethane foam (RPF) with knobs. All biomass in the AF was only in attached form to avoid clogging and sludge washout. The AF reactor showed a significantly higher removal of total and suspended chemical oxygen demand (COD) than the AH reactor, respectively, 55% and 82% in the AF reactor and 34% and 53% in the AH reactor. Because the reactors were operated at a short HRT and low temperature, the hydrolysis, acidification and methanogenesis based on the influent COD were limited to, respectively, 12%, 21% and 23% for the AF reactor and 12%, 17% and 16% for the AH reactor. The excess sludge from the AH reactor was more stabilised and had a better settling capacity and dewaterability. However, the excess sludge from both the AH and AF reactors needed stabilisation. Therefore, the AF reactor is recommended for the pretreatment of domestic sewage at low temperatures.
Characterization of 14C in Swedish light water reactors.
Magnusson, Asa; Aronsson, Per-Olof; Lundgren, Klas; Stenström, Kristina
2008-08-01
This paper presents the results of a 4-y investigation of 14C in different waste streams of both boiling water reactors (BWRs) and pressurized water reactors (PWRs). Due to the potential impact of 14C on human health, minimizing waste and releases from the nuclear power industry is of considerable interest. The experimental data and conclusions may be implemented to select appropriate waste management strategies and practices at reactor units and disposal facilities. Organic and inorganic 14C in spent ion exchange resins, process water systems, ejector off-gas and replaced steam generator tubes were analyzed using a recently developed extraction method. Separate analysis of the chemical species is of importance in order to model and predict the fate of 14C within process systems as well as in dose calculations for disposal facilities. By combining the results of this investigation with newly calculated production rates, mass balance assessments were made of the 14C originating from production in the coolant. Of the 14C formed in the coolant of BWRs, 0.6-0.8% was found to be accumulated in the ion exchange resins (core-specific production rate in the coolant of a 2,500 MWth BWR calculated to be 580 GBq GW(e)(-1) y(-1)). The corresponding value for PWRs was 6-10% (production rate in a 2,775 MWth PWR calculated to be 350 GBq GW(e)(-1) y(-1)). The 14C released with liquid discharges was found to be insignificant, constituting less than 0.5% of the production in the coolant. The stack releases, routinely measured at the power plants, were found to correspond to 60-155% of the calculated coolant production, with large variations between the BWR units.
Alcohol synthesis in a high-temperature slurry reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, G.W.; Marquez, M.A.; McCutchen, M.S.
1995-12-31
The overall objective of this contract is to develop improved process and catalyst technology for producing higher alcohols from synthesis gas or its derivatives. Recent research has been focused on developing a slurry reactor that can operate at temperatures up to about 400{degrees}C and on evaluating the so-called {open_quotes}high pressure{close_quotes} methanol synthesis catalyst using this reactor. A laboratory stirred autoclave reactor has been developed that is capable of operating at temperatures up to 400{degrees}C and pressures of at least 170 atm. The overhead system on the reactor is designed so that the temperature of the gas leaving the system canmore » be closely controlled. An external liquid-level detector is installed on the gas/liquid separator and a pump is used to return condensed slurry liquid from the separator to the reactor. In order to ensure that gas/liquid mass transfer does not influence the observed reaction rate, it was necessary to feed the synthesis gas below the level of the agitator. The performance of a commercial {open_quotes}high pressure {close_quotes} methanol synthesis catalyst, the so-called {open_quotes}zinc chromite{close_quotes} catalyst, has been characterized over a range of temperature from 275 to 400{degrees}C, a range of pressure from 70 to 170 atm., a range of H{sub 2}/CO ratios from 0.5 to 2.0 and a range of space velocities from 2500 to 10,000 sL/kg.(catalyst),hr. Towards the lower end of the temperature range, methanol was the only significant product.« less
An easily regenerable enzyme reactor prepared from polymerized high internal phase emulsions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruan, Guihua, E-mail: guihuaruan@hotmail.com; Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004; Wu, Zhenwei
A large-scale high-efficient enzyme reactor based on polymerized high internal phase emulsion monolith (polyHIPE) was prepared. First, a porous cross-linked polyHIPE monolith was prepared by in-situ thermal polymerization of a high internal phase emulsion containing styrene, divinylbenzene and polyglutaraldehyde. The enzyme of TPCK-Trypsin was then immobilized on the monolithic polyHIPE. The performance of the resultant enzyme reactor was assessed according to the conversion ability of N{sub α}-benzoyl-L-arginine ethyl ester to N{sub α}-benzoyl-L-arginine, and the protein digestibility of bovine serum albumin (BSA) and cytochrome (Cyt-C). The results showed that the prepared enzyme reactor exhibited high enzyme immobilization efficiency and fast andmore » easy-control protein digestibility. BSA and Cyt-C could be digested in 10 min with sequence coverage of 59% and 78%, respectively. The peptides and residual protein could be easily rinsed out from reactor and the reactor could be regenerated easily with 4 M HCl without any structure destruction. Properties of multiple interconnected chambers with good permeability, fast digestion facility and easily reproducibility indicated that the polyHIPE enzyme reactor was a good selector potentially applied in proteomics and catalysis areas. - Graphical abstract: Schematic illustration of preparation of hypercrosslinking polyHIPE immobilized enzyme reactor for on-column protein digestion. - Highlights: • A reactor was prepared and used for enzyme immobilization and continuous on-column protein digestion. • The new polyHIPE IMER was quite suit for protein digestion with good properties. • On-column digestion revealed that the IMER was easy regenerated by HCl without any structure destruction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scheer, A. M.; Mukarakate, C.; Robichaud, D. J.
The pyrolyses of phenol and d{sub 5}-phenol (C{sub 6}H{sub 5}OH and C{sub 6}D{sub 5}OH) have been studied using a high temperature, microtubular ({mu}tubular) SiC reactor. Product detection is via both photon ionization (10.487 eV) time-of-flight mass spectrometry and matrix isolation infrared spectroscopy. Gas exiting the heated reactor (375 K-1575 K) is subject to a free expansion after a residence time in the {mu}tubular reactor of approximately 50-100 {micro}s. The expansion from the reactor into vacuum rapidly cools the gas mixture and allows the detection of radicals and other highly reactive intermediates. We find that the initial decomposition steps at themore » onset of phenol pyrolysis are enol/keto tautomerization to form cyclohexadienone followed by decarbonylation to produce cyclopentadiene; C{sub 6}H{sub 5}OH {yields} c-C{sub 6}H{sub 6} = O {yields} c-C{sub 5}H{sub 6} + CO. The cyclopentadiene loses a H atom to generate the cyclopentadienyl radical which further decomposes to acetylene and propargyl radical; c-C{sub 5}H{sub 6} {yields} c-C{sub 5}H{sub 5} + H {yields} HC {triple_bond} CH + HCCCH{sub 2}. At higher temperatures, hydrogen loss from the PhO-H group to form phenoxy radical followed by CO ejection to generate the cyclopentadienyl radical likely contributes to the product distribution; C{sub 6}H{sub 5}O-H {yields} C{sub 6}H{sub 5}O + H {yields} c-C{sub 5}H{sub 5} + CO. The direct decarbonylation reaction remains an important channel in the thermal decomposition mechanisms of the dihydroxybenzenes. Both catechol (o-HO-C{sub 6}H{sub 4}-OH) and hydroquinone (p-HO-C{sub 6}H{sub 4}-OH) are shown to undergo decarbonylation at the onset of pyrolysis to form hydroxycyclopentadiene. In the case of catechol, we observe that water loss is also an important decomposition channel at the onset of pyrolysis.« less
Microstructural analysis of W-SiCf/SiC composite
NASA Astrophysics Data System (ADS)
Yoon, Hanki; Oh, Jeongseok; Kim, Gonho; Kim, Hyunsu; Takahashi, Heishichiro; Kohyama, Akira
2015-03-01
Continuous silicon carbide fiber-reinforced silicon carbide (SiCf/SiC) composites are promising structure candidates for future fusion power systems such as gas coolant fast channels, extreme high temperature reactor and fusion reactors, because of their intrinsic properties such as excellent mechanical properties, high thermal conductivity, good thermal-shock resistance as well as excellent physical and chemical stability in various environments under elevated temperature conditions. In this study, bonding of tungsten and SiCf/SiC was produced by hot-press method. Microstructure analyses were performed using SEM and TEM.
Thermal and hydraulic analysis of a cylindrical blanket module design for a tokamak reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, A.Y.
1978-10-01
Various existing blanket design concepts for a tokamak fusion reactor were evaluated and assessed. These included the demonstration power reactors of ORNL, GA and others. As a result of this study, a cylindrical, modularized blanket design concept was developed. The module is a double-walled, stainless steel 316 cylinder containing liquid lithium for tritium breeding and is cooled by pressurized helium. Steady state and transient thermal conditions under normal and some off-design conditions were analyzed and presented. At the steady state reference operating point the maximum structure temperature is 452/sup 0/C at the maximum stressed location and is 495/sup 0/C atmore » the less stressed location. The coolant inlet pressure is 54.4 atm, the inlet temperature is 200/sup 0/C and the exit temperature is 435/sup 0/C. The coolant could be utilized with a helium/steam turbine power conversion system with a cycle thermal efficiency of 30.8%.« less
Li, Chaoran; Mörtelmaier, Christoph; Winter, Josef; Gallert, Claudia
2014-09-01
Methane production from biowaste with 20-30% dry matter (DM) by box-type dry anaerobic digestion and contributing bacteria were determined for incubation at 20, 37 and 55 °C. The same digestion efficiency as for wet anaerobic digestion of biowaste was obtained for dry anaerobic digestion with 20% DM content at 20, 37 and 55 °C and with 25% DM content at 37 and 55 °C. No or only little methane was produced in dry anaerobic reactors with 30% DM at 20, 37 or 55 °C. Population densities in the 20-30% DM-containing biowaste reactors were similar although in mesophilic and thermophilic biowaste reactors with 30% DM content significantly less but phylogenetically more diverse archaea existed. Biogas production in the 20% and 25% DM assays was catalyzed by Methanosarcinales and Methanomicrobiales. In all assays Pelotomaculum and Syntrophobacter species were dominant propionate degraders. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Oldrieve, R. E.
1971-01-01
Fourteen materials were evaluated in engine screening tests on full-size thermal reactors for automobile engine pollution control systems. Cyclic test-stand engine operation provided 2 hours at 1040 C and a 20-minute air-cool to 70 C each test cycle. Each reactor material was exposed to 83 cycles in 200 hours of engine testing. On the basis of resistance to oxidation and distortion, the best materials included two ferritic iron alloys (Ge 1541 and Armco 18S/R), several commercial oxidation-resistant coatings on AlSl 651 (19-9 DL), and possibly uncoated AISI 310. The best commercial coatings were Cr-Al, Ni-Cr, and a glass ceramic.
10 CFR 72.214 - List of approved spent fuel storage casks.
Code of Federal Regulations, 2010 CFR
2010-01-01
... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General License for Storage of Spent Fuel at Power Reactor Sites § 72.214 List of approved spent...
10 CFR 72.214 - List of approved spent fuel storage casks.
Code of Federal Regulations, 2011 CFR
2011-01-01
... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General License for Storage of Spent Fuel at Power Reactor Sites § 72.214 List of approved spent...
Small low mass advanced PBR's for propulsion
NASA Astrophysics Data System (ADS)
Powell, J. R.; Todosow, M.; Ludewig, H.
1993-10-01
The advanced Particle Bed Reactor (PBR) to be described in this paper is characterized by relatively low power, and low cost, while still maintaining competition values for thrust/weight, specific impulse and operating times. In order to retain competitive values for the thrust/weight ratio while reducing the reactor size, it is necessary to change the basic reactor layout, by incorporating new concepts. The new reactor design concept is termed SIRIUS (Small Lightweight Reactor Integral Propulsion System). The following modifications are proposed for the reactor design to be discussed in this paper: Pre-heater (U-235 included in Moderator); Hy-C (Hydride/De-hydride for Reactor Control); Afterburner (U-235 impregnated into Hot Frit); and Hy-S (Hydride Spike Inside Hot Frit). Each of the modifications will be briefly discussed below, with benefits, technical issues, design approach, and risk levels addressed. The paper discusses conceptual assumptions, feasibility analysis, mass estimates, and information needs.
ENGINEERING APPLICATIONS OF ANALOG COMPUTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryant, L.T.; Janicke, M.J.; Just, L.C.
1961-02-01
Six examples are given of the application of analog computers in the fields of reactor engineering, heat transfer, and dynamics: deceleration of a reactor control rod by dashpot, pressure variations through a packed bed, reactor kinetics over many decades with thermal feedback (simulation of a TREAT transient), vibrating system with two degrees of freedom, temperature distribution in a radiating fin, and temperature distribution in an irfinite slab with variable thermal properties. (D.L.C.)
Method to predict relative hydriding within a group of zirconium alloys under nuclear irradiation
Johnson, A.B. Jr.; Levy, I.S.; Trimble, D.J.; Lanning, D.D.; Gerber, F.S.
1990-04-10
An out-of-reactor method for screening to predict relative in-reactor hydriding behavior of zirconium-based materials is disclosed. Samples of zirconium-based materials having different compositions and/or fabrication methods are autoclaved in a relatively concentrated (0.3 to 1.0M) aqueous lithium hydroxide solution at constant temperatures within the water reactor coolant temperature range (280 to 316 C). Samples tested by this out-of-reactor procedure, when compared on the basis of the ratio of hydrogen weight gain to oxide weight gain, accurately predict the relative rate of hydriding for the same materials when subject to in-reactor (irradiated) corrosion. 1 figure.
Koyanagi, Takaaki; Katoh, Yutai
2017-07-04
Silicon carbide (SiC) fiber–reinforced SiC matrix (SiC/SiC) composites are being actively investigated for use in accident-tolerant core structures of light water reactors (LWRs). Owing to the limited number of irradiation studies previously conducted at LWR-coolant temperature, this paper examined SiC/SiC composites following neutron irradiation at 230–340 °C to 2.0 and 11.8 dpa in the High Flux Isotope Reactor. The investigated materials were chemical vapor infiltrated (CVI) SiC/SiC composites with three different reinforcement fibers. The fiber materials were monolayer pyrolytic carbon (PyC) -coated Hi-Nicalon™ Type-S (HNS), Tyranno™ SA3 (SA3), and SCS-Ultra™ (SCS) SiC fibers. The irradiation resistance of these composites wasmore » investigated based on flexural behavior, dynamic Young's modulus, swelling, and microstructures. There was no notable mechanical properties degradation of the irradiated HNS and SA3 SiC/SiC composites except for reduction of the Young's moduli by up to 18%. The microstructural stability of these composites supported the absence of degradation. In addition, no progressive swelling from 2.0 to 11.8 dpa was confirmed for these composites. On the other hand, the SCS composite showed significant mechanical degradation associated with cracking within the fiber. Finally, this study determined that SiC/SiC composites with HNS or SA3 SiC/SiC fibers, a PyC interphase, and a CVI SiC matrix retain their properties beyond the lifetime dose for LWR fuel cladding at the relevant temperature.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koyanagi, Takaaki; Katoh, Yutai
Silicon carbide (SiC) fiber–reinforced SiC matrix (SiC/SiC) composites are being actively investigated for use in accident-tolerant core structures of light water reactors (LWRs). Owing to the limited number of irradiation studies previously conducted at LWR-coolant temperature, this paper examined SiC/SiC composites following neutron irradiation at 230–340 °C to 2.0 and 11.8 dpa in the High Flux Isotope Reactor. The investigated materials were chemical vapor infiltrated (CVI) SiC/SiC composites with three different reinforcement fibers. The fiber materials were monolayer pyrolytic carbon (PyC) -coated Hi-Nicalon™ Type-S (HNS), Tyranno™ SA3 (SA3), and SCS-Ultra™ (SCS) SiC fibers. The irradiation resistance of these composites wasmore » investigated based on flexural behavior, dynamic Young's modulus, swelling, and microstructures. There was no notable mechanical properties degradation of the irradiated HNS and SA3 SiC/SiC composites except for reduction of the Young's moduli by up to 18%. The microstructural stability of these composites supported the absence of degradation. In addition, no progressive swelling from 2.0 to 11.8 dpa was confirmed for these composites. On the other hand, the SCS composite showed significant mechanical degradation associated with cracking within the fiber. Finally, this study determined that SiC/SiC composites with HNS or SA3 SiC/SiC fibers, a PyC interphase, and a CVI SiC matrix retain their properties beyond the lifetime dose for LWR fuel cladding at the relevant temperature.« less
NASA Astrophysics Data System (ADS)
Koyanagi, Takaaki; Katoh, Yutai
2017-10-01
Silicon carbide (SiC) fiber-reinforced SiC matrix (SiC/SiC) composites are being actively investigated for use in accident-tolerant core structures of light water reactors (LWRs). Owing to the limited number of irradiation studies previously conducted at LWR-coolant temperature, this study examined SiC/SiC composites following neutron irradiation at 230-340 °C to 2.0 and 11.8 dpa in the High Flux Isotope Reactor. The investigated materials were chemical vapor infiltrated (CVI) SiC/SiC composites with three different reinforcement fibers. The fiber materials were monolayer pyrolytic carbon (PyC) -coated Hi-Nicalon™ Type-S (HNS), Tyranno™ SA3 (SA3), and SCS-Ultra™ (SCS) SiC fibers. The irradiation resistance of these composites was investigated based on flexural behavior, dynamic Young's modulus, swelling, and microstructures. There was no notable mechanical properties degradation of the irradiated HNS and SA3 SiC/SiC composites except for reduction of the Young's moduli by up to 18%. The microstructural stability of these composites supported the absence of degradation. In addition, no progressive swelling from 2.0 to 11.8 dpa was confirmed for these composites. On the other hand, the SCS composite showed significant mechanical degradation associated with cracking within the fiber. This study determined that SiC/SiC composites with HNS or SA3 SiC/SiC fibers, a PyC interphase, and a CVI SiC matrix retain their properties beyond the lifetime dose for LWR fuel cladding at the relevant temperature.
Miyaoka, Yuma; Yoochatchaval, Wilasinee; Sumino, Haruhiko; Banjongproo, Pathan; Yamaguchi, Takashi; Onodera, Takashi; Okadera, Tomohiro; Syutsubo, Kazuaki
2017-08-24
This study assesses the performance of an aerobic trickling filter, down-flow hanging sponge (DHS) reactor, as a decentralized domestic wastewater treatment technology. Also, the characteristic eukaryotic community structure in DHS reactor was investigated. Long-term operation of a DHS reactor for direct treatment of domestic wastewater (COD = 150-170 mg/L and BOD = 60-90 mg/L) was performed under the average ambient temperature ranged from 28°C to 31°C in Bangkok, Thailand. Throughout the evaluation period of 550 days, the DHS reactor at a hydraulic retention time of 3 h showed better performance than the existing oxidation ditch process in the removal of organic carbon (COD removal rate = 80-83% and BOD removal rate = 91%), nitrogen compounds (total nitrogen removal rate = 45-51% and NH 4 + -N removal rate = 95-98%), and low excess sludge production (0.04 gTS/gCOD removed). The clone library based on the 18S ribosomal ribonucleic acid gene sequence revealed that phylogenetic diversity of 18S rRNA gene in the DHS reactor was higher than that of the present oxidation ditch process. Furthermore, the DHS reactor also demonstrated sufficient COD and NH 4 + -N removal efficiency under flow rate fluctuation conditions that simulates a small-scale treatment facility. The results show that a DHS reactor could be applied as a decentralized domestic wastewater treatment technology in tropical regions such as Bangkok, Thailand.
NASA Astrophysics Data System (ADS)
Tiyapun, K.; Chimtin, M.; Munsorn, S.; Somchit, S.
2015-05-01
The objective of this work is to demonstrate the method for validating the predication of the calculation methods for neutron flux distribution in the irradiation tubes of TRIGA research reactor (TRR-1/M1) using the MCNP computer code model. The reaction rate using in the experiment includes 27Al(n, α)24Na and 197Au(n, γ)198Au reactions. Aluminium (99.9 wt%) and gold (0.1 wt%) foils and the gold foils covered with cadmium were irradiated in 9 locations in the core referred to as CT, C8, C12, F3, F12, F22, F29, G5, and G33. The experimental results were compared to the calculations performed using MCNP which consisted of the detailed geometrical model of the reactor core. The results from the experimental and calculated normalized reaction rates in the reactor core are in good agreement for both reactions showing that the material and geometrical properties of the reactor core are modelled very well. The results indicated that the difference between the experimental measurements and the calculation of the reactor core using the MCNP geometrical model was below 10%. In conclusion the MCNP computational model which was used to calculate the neutron flux and reaction rate distribution in the reactor core can be used for others reactor core parameters including neutron spectra calculation, dose rate calculation, power peaking factors calculation and optimization of research reactor utilization in the future with the confidence in the accuracy and reliability of the calculation.
Nuclear Data Needs for Generation IV Nuclear Energy Systems
NASA Astrophysics Data System (ADS)
Rullhusen, Peter
2006-04-01
Nuclear data needs for generation IV systems. Future of nuclear energy and the role of nuclear data / P. Finck. Nuclear data needs for generation IV nuclear energy systems-summary of U.S. workshop / T. A. Taiwo, H. S. Khalil. Nuclear data needs for the assessment of gen. IV systems / G. Rimpault. Nuclear data needs for generation IV-lessons from benchmarks / S. C. van der Marck, A. Hogenbirk, M. C. Duijvestijn. Core design issues of the supercritical water fast reactor / M. Mori ... [et al.]. GFR core neutronics studies at CEA / J. C. Bosq ... [et al]. Comparative study on different phonon frequency spectra of graphite in GCR / Young-Sik Cho ... [et al.]. Innovative fuel types for minor actinides transmutation / D. Haas, A. Fernandez, J. Somers. The importance of nuclear data in modeling and designing generation IV fast reactors / K. D. Weaver. The GIF and Mexico-"everything is possible" / C. Arrenondo Sánchez -- Benmarks, sensitivity calculations, uncertainties. Sensitivity of advanced reactor and fuel cycle performance parameters to nuclear data uncertainties / G. Aliberti ... [et al.]. Sensitivity and uncertainty study for thermal molten salt reactors / A. Biduad ... [et al.]. Integral reactor physics benchmarks- The International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPHEP) / J. B. Briggs, D. W. Nigg, E. Sartori. Computer model of an error propagation through micro-campaign of fast neutron gas cooled nuclear reactor / E. Ivanov. Combining differential and integral experiments on [symbol] for reducing uncertainties in nuclear data applications / T. Kawano ... [et al.]. Sensitivity of activation cross sections of the Hafnium, Tanatalum and Tungsten stable isotopes to nuclear reaction mechanisms / V. Avrigeanu ... [et al.]. Generating covariance data with nuclear models / A. J. Koning. Sensitivity of Candu-SCWR reactors physics calculations to nuclear data files / K. S. Kozier, G. R. Dyck. The lead cooled fast reactor benchmark BREST-300: analysis with sensitivity method / V. Smirnov ... [et al.]. Sensitivity analysis of neutron cross-sections considered for design and safety studies of LFR and SFR generation IV systems / K. Tucek, J. Carlsson, H. Wider -- Experiments. INL capabilities for nuclear data measurements using the Argonne intense pulsed neutron source facility / J. D. Cole ... [et al.]. Cross-section measurements in the fast neutron energy range / A. Plompen. Recent measurements of neutron capture cross sections for minor actinides by a JNC and Kyoto University Group / H. Harada ... [et al.]. Determination of minor actinides fission cross sections by means of transfer reactions / M. Aiche ... [et al.] -- Evaluated data libraries. Nuclear data services from the NEA / H. Henriksson, Y. Rugama. Nuclear databases for energy applications: an IAEA perspective / R. Capote Noy, A. L. Nichols, A. Trkov. Nuclear data evaluation for generation IV / G. Noguère ... [et al.]. Improved evaluations of neutron-induced reactions on americium isotopes / P. Talou ... [et al.]. Using improved ENDF-based nuclear data for candu reactor calculations / J. Prodea. A comparative study on the graphite-moderated reactors using different evaluated nuclear data / Do Heon Kim ... [et al.].
NASA Technical Reports Server (NTRS)
1972-01-01
Fuel samples, 90UC - 10 ZrC, and chemically vapor deposited tungsten fuel cups were fabricated for the study of the long term dimensional stability and compatibility of the carbide-tungsten fuel-cladding systems under irradiation. These fuel samples and fuel cups were assembled into the fuel pins of two capsules, designated as V-2E and V-2F, for irradiation in NASA Plum Brook Reactor Facility at a fission power density of 172 watts/c.c. and a miximum cladding temperature of 1823 K. Fabrication methods and characteristics of the fuel samples and fuel cups prepared are described.
Development of ASTM Standard for SiC-SiC Joint Testing Final Scientific/Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobsen, George; Back, Christina
2015-10-30
As the nuclear industry moves to advanced ceramic based materials for cladding and core structural materials for a variety of advanced reactors, new standards and test methods are required for material development and licensing purposes. For example, General Atomics (GA) is actively developing silicon carbide (SiC) based composite cladding (SiC-SiC) for its Energy Multiplier Module (EM2), a high efficiency gas cooled fast reactor. Through DOE funding via the advanced reactor concept program, GA developed a new test method for the nominal joint strength of an endplug sealed to advanced ceramic tubes, Fig. 1-1, at ambient and elevated temperatures called themore » endplug pushout (EPPO) test. This test utilizes widely available universal mechanical testers coupled with clam shell heaters, and specimen size is relatively small, making it a viable post irradiation test method. The culmination of this effort was a draft of an ASTM test standard that will be submitted for approval to the ASTM C28 ceramic committee. Once the standard has been vetted by the ceramics test community, an industry wide standard methodology to test joined tubular ceramic components will be available for the entire nuclear materials community.« less
MTR WING, TRA604. PRECAST CONCRETE PANELS AND DIMENSIONS. TYPES A, ...
MTR WING, TRA-604. PRECAST CONCRETE PANELS AND DIMENSIONS. TYPES A, B, C, D, E, AND F; AND HOW THEY ARE CONNECTED. TYPES C AND D ARE ON WEST SIDE WHERE GLASS BLOCKS SURROUND ENTRY DOOR. BLAW-KNOX 3150-804-20, SHEET #1, 11/1950. INL INDEX NO. 531-0604-62-098-100644, REV. 0. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
NASA Astrophysics Data System (ADS)
Carroll, Spencer
As current reactors approach the end of their operable lifetime, new reactors are needed if nuclear power is to continue being generated in the United States. Some utilities have already began construction on newer, more advanced LWR reactors, which use the same fuel as current reactors and have a similar but updated design. Others are researching next generation (GEN-IV) reactors which have new designs that utilize alternative fuel, coolants and other reactor materials. Many of these alternative fuels are capable of achieving higher burnups and are designed to be more accident tolerant than the currently used UO2 fuel. However, before these new materials can be used, extensive research must be done in order to obtain a detailed understanding of how the new fuels and other materials will interact. New fuels, such as uranium nitride (UN) and uranium carbide (UC) have several advantages over UO2, such as increased burnup capabilities and higher thermal conductivities. However, there are issues with each that prevent UC and UN from being used as direct replacements for UO2. Both UC and UN swell at a significantly higher rate than UO2 and neither fuel reacts favorably when exposed to water. Due to this, UC and UN are being considered more for GEN-IV reactors that use alternative coolant rather than for current LWRs. In an effort to increase accident tolerance, silicon carbide (SiC) is being considered for use as an alternative cladding. The high strength, high melting point and low oxidation of SiC make it an attractive cladding choice, especially in an accident scenario. However, as a ceramic, SiC is not ductile and will not creep outwards upon pellet-clad mechanical interaction (PCMI) which can cause a large build up in interfacial pressure. In order to understand the interaction between the high swelling fuels and unyielding SiC cladding, data on the properties and behaviors of these materials must be gathered and incorporated into FRAPCON. FRAPCON is a fuel performance code developed by PNNL and used by the Nuclear Regulatory Commission (NRC) as a licensing code for US reactors. FRAPCON will give insight into how these new fuel-cladding combinations will affect cladding hoop stress and help determine if the new materials are feasible for use in a reactor. To accurately simulate the interaction between the new materials, a soft pellet model that allows for stresses on the pellet to affect pellet deformation will have to be implemented. Currently, FRAPCON uses a rigid pellet model that does not allow for feedback of the cladding onto the pellet. Since SiC does not creep at the temperatures being considered and is not ductile, any PCMI create a much higher interfacial pressure than is possible with Zircaloy. Because of this, it is necessary to implement a model that allows for pellet creep to alleviate some of these cladding stresses. These results will then be compared to FEMAXI-6, a Japanese fuel performance code that already calculates pellet stress and allows for cladding feedback onto the pellet. This research is intended to be a continuation and verification of previous work done by USC on the analysis of accident tolerant fuels with alternative claddings and is intended to prove that a soft pellet model is necessary to accurately model any fuel with SiC cladding.
Wang, F; Hidaka, T; Oishi, T; Osumi, S; Tsubota, J; Tsuno, H
2011-01-01
To test whether hyperthermophilic treatment promotes polylactide (PLA) dissolution and methane conversion under anaerobic digestion conditions, a single thermophilic control reactor (55 °C) and a two-phase system consisting of a hyperthermophilic reactor (80 °C) and a thermophilic reactor (55 °C) were continuously fed with a mixture of PLA and artificial kitchen garbage. In Runs 1 and 2, the PLA dissolution ratios in the two-phase system were 79.2 ± 6.5% and 85.2 ± 7.0%, respectively, higher than those of the control. Batch experimental results indicated that hyperthermophilic treatment could promote PLA dissolution to a greater degree as compared with single thermophilic treatment and that ammonia addition also had a promotional effect on PLA dissolution. In the two-phase system, after hyperthermophilic treatment, dissolved PLA was converted to methane gas under the subsequent thermophilic condition.
Environmental radiation protection studies related to nuclear industries, using AMS
NASA Astrophysics Data System (ADS)
Hellborg, Ragnar; Erlandsson, Bengt; Faarinen, Mikko; Hâkansson, Helena; Hâkansson, Kjell; Kiisk, Madis; Magnusson, Carl-Erik; Persson, Per; Skog, Göran; Stenström, Kristina; Mattsson, Sören; Thornberg, Charlotte
2001-07-01
14C is produced in nuclear reactors during normal operation and part of it is continuously released into the environment. Because of the biological importance of carbon and the long physical half-life of 14C it is of interest to study these releases. The 14C activity concentrations in the air and vegetation around some Swedish as well as foreign nuclear facilities have been measured by accelerator mass spectrometry (AMS). 59Ni is produced by neutron activation in the stainless steel close to the core of a nuclear reactor. The 59Ni levels have been measured in order to be able to classify the different parts of the reactor with respect to their content of long-lived radionuclides before final storage. The technique used to measure 59Ni at a small accelerator such as the Lund facility has been developed over the past few years and material from the Swedish nuclear industry has been analyzed.
Advanced low-activation materials. Fibre-reinforced ceramic composites
NASA Astrophysics Data System (ADS)
Fenici, P.; Scholz, H. W.
1994-09-01
A serious safety and environmental concern for thermonuclear fusion reactor development regards the induced radioactivity of the first wall and structural components. The use of low-activation materials (LAM) in a demonstration reactor would reduce considerably its potential risk and facilitate its maintenance. Moreover, decommissioning and waste management including disposal or even recycling of structural materials would be simplified. Ceramic fibre-reinforced SiC materials offer highly appreciable low activation characteristics in combination with good thermomechanical properties. This class of materials is now under experimental investigation for structural application in future fusion reactors. An overview on the recent results is given, covering coolant leak rates, thermophysical properties, compatibility with tritium breeder materials, irradiation effects, and LAM-consistent purity. SiC/SiC materials present characteristics likely to be optimised in order to meet the fusion application challenge. The scope is to put into practice the enormous potential of inherent safety with fusion energy.
Method for the catalytic conversion of organic materials into a product gas
Elliott, D.C.; Sealock, L.J. Jr.; Baker, E.G.
1997-04-01
A method for converting organic material into a product gas includes: (a) providing a liquid reactant mixture containing liquid water and liquid organic material within a pressure reactor; (b) providing an effective amount of a reduced metal catalyst selected from the group consisting of ruthenium, rhodium, osmium and iridium or mixtures thereof within the pressure reactor; and (c) maintaining the liquid reactant mixture and effective amount of reduced metal catalyst in the pressure reactor at temperature and pressure conditions of from about 300 C to about 450 C; and at least 130 atmospheres for a period of time, the temperature and pressure conditions being effective to maintain the reactant mixture substantially as liquid, the effective amount of reduced metal catalyst and the period of time being sufficient to catalyze a reaction of the liquid organic material to produce a product gas composed primarily of methane, carbon dioxide and hydrogen. 5 figs.
Method for the catalytic conversion of organic materials into a product gas
Elliott, Douglas C.; Sealock, Jr., L. John; Baker, Eddie G.
1997-01-01
A method for converting organic material into a product gas includes: a) providing a liquid reactant mixture containing liquid water and liquid organic material within a pressure reactor; b) providing an effective amount of a reduced metal catalyst selected from the group consisting of ruthenium, rhodium, osmium and iridium or mixtures thereof within the pressure reactor; and c) maintaining the liquid reactant mixture and effective amount of reduced metal catalyst in the pressure reactor at temperature and pressure conditions of from about 300.degree. C. to about 450.degree. C.; and at least 130 atmospheres for a period of time, the temperature and pressure conditions being effective to maintain the reactant mixture substantially as liquid, the effective amount of reduced metal catalyst and the period of time being sufficient to catalyze a reaction of the liquid organic material to produce a product gas composed primarily of methane, carbon dioxide and hydrogen.
Tritium resources available for fusion reactors
NASA Astrophysics Data System (ADS)
Kovari, M.; Coleman, M.; Cristescu, I.; Smith, R.
2018-02-01
The tritium required for ITER will be supplied from the CANDU production in Ontario, but while Ontario may be able to supply 8 kg for a DEMO fusion reactor in the mid-2050s, it will not be able to provide 10 kg at any realistic starting time. The tritium required to start DEMO will depend on advances in plasma fuelling efficiency, burnup fraction, and tritium processing technology. It is in theory possible to start up a fusion reactor with little or no tritium, but at an estimated cost of 2 billion per kilogram of tritium saved, it is not economically sensible. Some heavy water reactor tritium production scenarios with varying degrees of optimism are presented, with the assumption that only Canada, the Republic of Korea, and Romania make tritium available to the fusion community. Results for the tritium available for DEMO in 2055 range from zero to 30 kg. CANDU and similar heavy water reactors could in theory generate additional tritium in a number of ways: (a) adjuster rods containing lithium could be used, giving 0.13 kg per year per reactor; (b) a fuel bundle with a burnable absorber has been designed for CANDU reactors, which might be adapted for tritium production; (c) tritium production could be increased by 0.05 kg per year per reactor by doping the moderator with lithium-6. If a fusion reactor is started up around 2055, governments in Canada, Argentina, China, India, South Korea and Romania will have the opportunity in the years leading up to that to take appropriate steps: (a) build, refurbish or upgrade tritium extraction facilities; (b) extend the lives of heavy water reactors, or build new ones; (c) reduce tritium sales; (d) boost tritium production in the remaining heavy water reactors. All of the alternative production methods considered have serious economic and regulatory drawbacks, and the risk of diversion of tritium or lithium-6 would also be a major concern. There are likely to be serious problems with supplying tritium for future fusion reactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scervini, M.; Palmer, J.; Haggard, D.C.
2015-07-01
Thermocouples are the most commonly used sensors for temperature measurement in nuclear reactors. They are crucial for the control of current nuclear reactors and for the development of GEN IV reactors. In nuclear applications thermocouples are strongly affected by intense neutron fluxes. As a result of the interaction with neutrons, the thermoelements of the thermocouples undergo transmutation, which produces a time dependent change in composition and, as a consequence, a time dependent drift of the thermocouple signal. Thermocouple drift can be very significant for in-pile temperature measurements and may render the temperature sensors unreliable after exposure to nuclear radiation formore » relatively short times compared to the life required for temperature sensors in nuclear applications. Previous experiences with type K thermocouples in nuclear reactors have shown that they are affected by neutron irradiation only to a limited extent. Similarly type N thermocouples are expected to be only slightly affected by neutron fluxes. Currently the use of Nickel based thermocouples is limited to temperatures lower than 1000 deg. C due to drift related to phenomena other than nuclear irradiation. As part of a collaboration between Idaho National Laboratory (INL) and the University of Cambridge a variety of Type N thermocouples have been exposed at INL in an Advanced Gas Reactor mock-up test at 1150 deg. C for 2000 h, 1200 deg. C for 2000 h, 125 deg. C for 200 h and 1300 deg. C for 200 h, and later analysed metallurgically at the University of Cambridge. The use of electron microscopy allows to identify the metallurgical changes occurring in the thermocouples during high temperature exposure and correlate the time dependent thermocouple drift with the microscopic changes experienced by the thermoelements of different thermocouple designs. In this paper conventional Inconel 600 sheathed type N thermocouples and a type N using a customized sheath developed at the University of Cambridge have been investigated. The rationale for the superior performance of the type N using a customized sheath developed at the University of Cambridge is explained in comparison with the behavior of conventional type N Inconel 600 sheathed thermocouples. (authors)« less
Oxidative coupling of methane using inorganic membrane reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Y.H.; Moser, W.R.; Dixon, A.G.
1995-12-31
The goal of this research is to improve the oxidative coupling of methane in a catalytic inorganic membrane reactor. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and relatively higher yields than in fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gasmore » phase reactions, which are believed to be a main route for formation of CO{sub x} products. Such gas phase reactions are a cause for decreased selectivity in oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Modeling work which aimed at predicting the observed experimental trends in porous membrane reactors was also undertaken in this research program.« less
Samani, Saeed; Abdoli, Mohammad Ali; Karbassi, Abdolreza; Amin, Mohammad Mehdi
Electrical current in the hydrolytic phase of the biogas process might affect biogas yield. In this study, four 1,150 mL single membrane-less chamber electrochemical bioreactors, containing two parallel titanium plates were connected to the electrical source with voltages of 0, -0.5, -1 and -1.5 V, respectively. Reactor 1 with 0 V was considered as a control reactor. The trend of biogas production was precisely checked against pH, oxidation reduction potential and electrical power at a temperature of 37 ± 0.5°C amid cattle manure as substrate for 120 days. Biogas production increased by voltage applied to Reactors 2 and 3 when compared with the control reactor. In addition, the electricity in Reactors 2 and 3 caused more biogas production than Reactor 4. Acetogenic phase occurred more quickly in Reactor 3 than in the other reactors. The obtained results from Reactor 4 were indicative of acidogenic domination and its continuous behavior under electrical stimulation. The results of the present investigation clearly revealed that phasic electrical current could enhance the efficiency of biogas production.
Isanta, Eduardo; Reino, Clara; Carrera, Julián; Pérez, Julio
2015-09-01
Partial nitritation for a low-strength wastewater at low temperature was stably achieved in an aerobic granular reactor. A bench-scale granular sludge bioreactor was operated in continuous mode treating an influent of 70 mg N-NH4(+) L(-1) to mimic pretreated municipal nitrogenous wastewater and the temperature was progressively decreased from 30 to 12.5 °C. A suitable effluent nitrite to ammonium concentrations ratio to a subsequent anammox reactor was maintained stable during 300 days at 12.5 °C. The average applied nitrogen loading rate at 12.5 °C was 0.7 ± 0.3 g N L(-1) d(-1), with an effluent nitrate concentration of only 2.5 ± 0.7 mg N-NO3(-) L(-1). The biomass fraction of nitrite-oxidizing bacteria (NOB) in the granular sludge decreased from 19% to only 1% in 6 months of reactor operation at 12.5 °C. Nitrobacter spp. where found as the dominant NOB population, whereas Nitrospira spp. were not detected. Simulations indicated that: (i) NOB would only be effectively repressed when their oxygen half-saturation coefficient was higher than that of ammonia-oxidizing bacteria; and (ii) a lower specific growth rate of NOB was maintained at any point in the biofilm (even at 12.5 °C) due to the bulk ammonium concentration imposed through the control strategy. Copyright © 2015 Elsevier Ltd. All rights reserved.
Removal properties of diesel exhaust particles by a dielectric barrier discharge reactor.
Suzuki, Ken-ichiro; Takeuchi, Naomi; Madokoro, Kazuhiko; Fushimi, Chihiro; Yao, Shuiliang; Fujioka, Yuichi; Nihei, Yoshimasa
2008-02-01
The removal properties of diesel exhaust particles (DEP) were investigated using an engine exhaust particle size spectrometer (EEPS), field emission-type scanning electron microscopy (FE-SEM) and time-of-flight secondary ion mass spectrometry (TOF-SIMS). DEP were treated using a dielectric barrier discharge (DBD) reactor installed in the tail pipe of a diesel engine, and a model DBD reactor fed with DEP in the mixture of N(2) and O(2). When changing the experimental parameters of both the plasma conditions and the engine load conditions, we obtained characteristic information of DEP treated with plasma discharges from the particle diameter and the composition. In evaluating the model DBD reactor, it became clear that there were two types of plasma processes (reactions with active oxygen species to yield CO(2) and reactions with active nitrogen species to yield nitrogen containing compounds). Moreover, from the result of a TOF-SIMS analysis, the characteristic secondary ions, such as C(2)H(6)N(+), C(4)H(12)N(+), and C(10)H(20)N(2)(+), were strongly detected from the DEP surfaces during the plasma discharges. This indicates that the nitrogen contained hydrocarbons were generated by plasma reactions.
TRIGA Mark II nuclear reactor facility. Final report, 1 July 1980--30 June 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, B.C.
1997-05-01
This report is a final culmination of activities funded through the Department of Energy`s (DOE) University Reactor Sharing Program, Grant DE-FG02-80ER10273, during the period 1 July 1980 through 30 June 1995. Progress reports have been periodically issued to the DOE, namely the Reactor Facility Annual Reports C00-2082/2219-7 through C00-2082/10723-21, which are contained as an appendix to this report. Due to the extent of time covered by this grant, summary tables are presented. Table 1 lists the fiscal year financial obligations of the grant. As listed in the original grant proposals, the DOE grant financed 70% of project costs, namely themore » total amount spent of these projects minus materials costs and technical support. Thus the bulk of funds was spent directly on reactor operations. With the exception of a few years, spending was in excess of the grant amount. As shown in Tables 2 and 3, the Reactor Sharing grant funded a immense number of research projects in nuclear engineering, geology, animal science, chemistry, anthropology, veterinary medicine, and many other fields. A list of these users is provided. Out of the average 3000 visitors per year, some groups participated in classes involving the reactor such as Boy Scout Merit Badge classes, teacher`s workshops, and summer internships. A large number of these projects met the requirements for the Reactor Sharing grant, but were funded by the University instead.« less
Radiocarbon tracer measurements of atmospheric hydroxyl radical concentrations
NASA Technical Reports Server (NTRS)
Campbell, M. J.; Farmer, J. C.; Fitzner, C. A.; Henry, M. N.; Sheppard, J. C.
1986-01-01
The usefulness of the C-14 tracer in measurements of atmospheric hydroxyl radical concentration is discussed. The apparatus and the experimental conditions of three variations of a radiochemical method of atmosphere analysis are described and analyzed: the Teflon bag static reactor, the flow reactor (used in the Wallops Island tests), and the aircraft OH titration reactor. The procedure for reduction of the aircraft reactor instrument data is outlined. The problems connected with the measurement of hydroxyl radicals are discussed. It is suggested that the gas-phase radioisotope methods have considerable potential in measuring tropospheric impurities present in very low concentrations.
ENGINEERING APPLICATIONS OF ANALOG COMPUTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryant, L.T.; Janicke, M.J.; Just, L.C.
1963-10-31
Six experiments from the fields of reactor engineering, heat transfer, and dynamics are presented to illustrate the engineering applications of analog computers. The steps required for producing the analog solution are shown, as well as complete information for duplicating the solution. Graphical results are provided. The experiments include: deceleration of a reactor control rod, pressure variations through a packed bed, reactor kinetics over many decades with thermal feedback, a vibrating system with two degrees of freedom, temperature distribution in a radiating fin, temperature distribution in an infinite slab considering variable thermal properties, and iodine -xenon buildup in a reactor. (M.C.G.)
1986-05-01
COUNT Technical FROM_ TO May 1986 20 16. SUPPLEMENTARY NOTATION 17. COSATI CODES 18. SUBJECT TERMS iConitinue on reverse if neceasary and identify by...Reactor, Modes of Operation, The AFRRI Reactor, Exposure Facilities, and Cerenkov Radiation. I- 20 DISTRISUTIONIAVAILABILITY OF ABSTRACT 21. ABSTRACT...6 Exposure Facilities 12 Cerenkov Radiation 17 Acoessiofl For NTIS GRA&I DT.C TABUnamnnounced [] UusnriOfltond -. By IZ Distribution/ Availability
2003-03-01
facility and Mr. Joseph Talnagi of the Ohio State Research Reactor facility for their personal guidance and insight into reactor dosimetry and neutron...62 Test C1: Dosimetry ..................................................................................................... 63 Special...66 Annex A-3. Preliminary Dosimetry Calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Little, G.A.
For better than ten years there was little public notice of the TRIGA reactor at UC-Berkeley. Then: a) A non-student persuaded the Student and Senate to pass a resolution to request Campus Administration to stop operation of the reactor and remove it from campus. b) Presence of the reactor became a campaign-issue in a City Mayoral election. c) Two local residents reported adverse physical reactions before, during, and after a routine tour of the reactor facility. d) The Berkeley City Council began a study of problems associated with radioactive material within the city. e) Friends Of The Earth formally petitionedmore » the NRC to terminate the reactor's license. Campus personnel have expended many man-hours and many pounds of paper in responding to these happenings. Some of the details are of interest, and may be of use to other reactor facilities. (author)« less
Development of the cascade inertial-confinement-fusion reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pitts, J.H.
Caqscade, originally conceived as a football-shaped, steel-walled reactor containing a Li/sub 2/O granule blanket, is now envisaged as a double-cone-shaped reactor containing a two-layered (three-zone) flowing blanket of BeO and LiAlO/sub 2/ granules. Average blanket exit temperature is 1670 K and gross plant efficiency (net thermal conversion efficiency) using a Brayton cycle is 55%. The reactor has a low-activation SiC-tiled wall. It rotates at 50 rpm, and the granules are transported to the top of the heat exchanger using their peripheral speed; no conveyors or lifts are required. The granules return to the reactor by gravity. After considerable analysis andmore » experimentation, we continue to regard Cascade as a promising reactor concept with the advantages of safety, efficiency, and low activation.« less
Development of the cascade inertial-confinement-fusion reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pitts, J.H.
Cascade, originally conceived as a football-shaped, steel-walled reactor containing a Li/sub 2/O granule blanket, is now envisaged as a double-cone-shaped reactor containing a two-layered (three-zone) flowing blanket of BeO and LiAlO/sub 2/ granules. Average blanket exit temperature is 1670/sup 0/K and gross plant efficiency (net thermal conversion efficiency) using a Brayton cycle is 55%. The reactor has a low-activation SiC-tiled wall. It rotates at 50 rpm, and the granules are transported to the top of the heat exchanger using their peripheral speed; no conveyors or lifts are required. The granules return to the reactor by gravity. After considerable analysis andmore » experimentation, we continue to regard Cascade as a promising reactor concept with the advantages of safety, efficiency, and low activation.« less
Nuclear design of a very-low-activation fusion reactor
NASA Astrophysics Data System (ADS)
Cheng, E. T.; Hopkins, G. R.
1983-06-01
The nuclear design aspects of using very-low-activation materials, such as SiC, MgO, and aluminum for fusion-reactor first wall, blanket, and shield applications were investigated. In addition to the advantage of very-low radioactive inventory, it was found that the very-low-activation fusion reactor can also offer an adequate tritium-breeding ratio and substantial amount of blanket nuclear heating as a conventional-material-structured reactor does. The most-stringent design constraint found in a very-low-activation fusion reactor is the limited space available in the inboard region of a Tokamak concept for shielding to protect the superconducting toroidal field coil. A reference design was developed which mitigates the constraint by adopting a removable tungsten shield design that retains the inboard dimensions and gives the same shield performance as the reference STARFIRE Tokamak reactor design.
NASA Astrophysics Data System (ADS)
Nakazono, Y.; Iwai, T.; Abe, H.
2010-03-01
The Super-Critical Water-cooled Reactor (SCWR) has been designed and investigated because of its high thermal efficiency and plant simplification. There are some advantages including the use of a single phase coolant with high enthalpy but there are numerous potential problems, particularly with materials. As the operating temperature of supercritical water reactor will be between 280°C and 620°C with a pressure of 25MPa, the selection of materials is difficult and important. Austenitic stainless steels were selected for possible use in supercritical water systems because of their corrosion resistance and radiation resistance. The PNC1520 austenitic stainless steel developed by Japan Atomic Energy Agency (JAEA) as a nuclear fuel cladding material for a Na-cooled fast breeder reactor. The corrosion data of PNC1520 in supercritical water (SCW) is required but does not exist. The purpose of the present study is to research the corrosion properties for PNC1520 austenitic stainless steel in supercritical water. The supercritical water corrosion test was performed for the standard PNC1520 (1520S) and the Ti-additional type of PNC1520 (1520Ti) by using a supercritical water autoclave. Corrosion tests on the austenitic 1520S and 1520Ti steels in supercritical water were performed at 400, 500 and 600°C with exposures up to 1000h. The amount of weight gain, weight loss and weight of scale were evaluated after the corrosion test in supercritical water for both austenitic steels. After 1000h corrosion test performed, the weight gains of both austenitic stainless steels were less than 2 g/m2 at 400°C and 500°C . But both weight gain and weight loss of 1520Ti were larger than those of 1520S at 600°C . By increasing the temperature to 600°C, the surface of 1520Ti was covered with magnetite formed in supercritical water and dissolution of the steel alloying elements has been observed. In view of corrosion, 1520S may have larger possibility than 1520Ti to adopt a supercritical water reactor core fuel cladding.
Development of a Reactor for the Extraction of Oxygen and Volatiles From Lunar Regolith
NASA Technical Reports Server (NTRS)
Kleinhenz, Julie; Yuan, Zengguang; Sacksteder, Kurt; Caruso, John
2009-01-01
The RESOLVE (Regolith and Environment Science, Oxygen and Lunar Volatiles Extraction) Project, aims to extract and quantify useful resources from lunar soil. The reactor developed for RESOLVE is a dual purpose system, designed to evolve both water, at 150 C and up to 80 psig, and oxygen, using hydrogen reduction at 900 C. A variety of laboratory tests were performed to verify its operation and to explore the properties of the analog site soil. The results were also applied to modeling efforts which are being used to estimate the apparent thermal properties of the soil. The experimental and numerical results, along with the analog site tests, will be used to evolve and optimize future reactor designs.
Pyrolysis of softwood carbohydrates in a fluidized bed reactor.
Aho, Atte; Kumar, Narendra; Eränen, Kari; Holmbom, Bjarne; Hupa, Mikko; Salmi, Tapio; Murzin, Dmitry Yu
2008-09-01
In the present work pyrolysis of pure pine wood and softwood carbohydrates, namely cellulose and galactoglucomannan (the major hemicellulose in coniferous wood), was conducted in a batch mode operated fluidized bed reactor. Temperature ramping (5 degrees C/min) was applied to the heating until a reactor temperature of 460 degrees C was reached. Thereafter the temperature was kept until the release of non-condensable gases stopped. The different raw materials gave significantly different bio-oils. Levoglucosan was the dominant product in the cellulose pyrolysis oil. Acetic acid was found in the highest concentrations in both the galactoglucomannan and in the pine wood pyrolysis oils. Acetic acid is most likely formed by removal of O-acetyl groups from mannose units present in GGM structure.
Pyrolysis of Softwood Carbohydrates in a Fluidized Bed Reactor
Aho, Atte; Kumar, Narendra; Eränen, Kari; Holmbom, Bjarne; Hupa, Mikko; Salmi, Tapio; Murzin, Dmitry Yu.
2008-01-01
In the present work pyrolysis of pure pine wood and softwood carbohydrates, namely cellulose and galactoglucomannan (the major hemicellulose in coniferous wood), was conducted in a batch mode operated fluidized bed reactor. Temperature ramping (5 °C/min) was applied to the heating until a reactor temperature of 460 °C was reached. Thereafter the temperature was kept until the release of non-condensable gases stopped. The different raw materials gave significantly different bio-oils. Levoglucosan was the dominant product in the cellulose pyrolysis oil. Acetic acid was found in the highest concentrations in both the galactoglucomannan and in the pine wood pyrolysis oils. Acetic acid is most likely formed by removal of O-acetyl groups from mannose units present in GGM structure. PMID:19325824
Pervin, Hasina M; Dennis, Paul G; Lim, Hui J; Tyson, Gene W; Batstone, Damien J; Bond, Philip L
2013-12-01
Temperature-phased anaerobic digestion (TPAD) is an emerging technology that facilitates improved performance and pathogen destruction in anaerobic sewage sludge digestion by optimising conditions for 1) hydrolytic and acidogenic organisms in a first-stage/pre-treatment reactor and then 2) methogenic populations in a second stage reactor. Pre-treatment reactors are typically operated at 55-65 °C and as such select for thermophilic bacterial communities. However, details of key microbial populations in hydrolytic communities and links to functionality are very limited. In this study, experimental thermophilic pre-treatment (TP) and control mesophilic pre-treatment (MP) reactors were operated as first-stages of TPAD systems treating activated sludge for 340 days. The TP system was operated sequentially at 50, 60 and 65 °C, while the MP rector was held at 35 °C for the entire period. The composition of microbial communities associated with the MP and TP pre-treatment reactors was characterised weekly using terminal-restriction fragment length polymorphism (T-RFLP) supported by clone library sequencing of 16S rRNA gene amplicons. The outcomes of this approach were confirmed using 454 pyrosequencing of gene amplicons and fluorescence in-situ hybridisation (FISH). TP associated bacterial communities were dominated by populations affiliated to the Firmicutes, Thermotogae, Proteobacteria and Chloroflexi. In particular there was a progression from Thermotogae to Lutispora and Coprothermobacter and diversity decreased as temperature and hydrolysis performance increased. While change in the composition of TP associated bacterial communities was attributable to temperature, that of MP associated bacterial communities was related to the composition of the incoming feed. This study determined processes driving the dynamics of key microbial populations that are correlated with an enhanced hydrolytic functionality of the TPAD system. Copyright © 2013 Elsevier Ltd. All rights reserved.
2014-01-01
PERSON (Monitor) a. REPORT Unclassified b . ABSTRACT Unclassified c. THIS PAGE Unclassified Travis E. Michalak 19b. TELEPHONE NUMBER (Include...distribution unlimited.Nicholas Niedbalski a, b ,⇑, Douglas Johnson c, Soumya S. Patnaik a, Debjyoti Banerjee b aAir Force Research Laboratory, Aerospace...Systems Directorate, Power and Controls Division, Mechanical and Thermal Systems Branch, 1950 5th St., Wright-Patterson AFB, OH 45433, United States b Texas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laurie, M.; Vlahovic, L.; Rondinella, V.V.
Temperature measurements in the nuclear field require a high degree of reliability and accuracy. Despite their sheathed form, thermocouples subjected to nuclear radiations undergo changes due to radiation damage and transmutation that lead to significant EMF drift during long-term fuel irradiation experiment. For the purpose of a High Temperature Reactor fuel irradiation to take place in the High Flux Reactor Petten, a dedicated fixed-point cell was jointly developed by LNE-Cnam and JRC-IET. The developed cell to be housed in the irradiation rig was tailor made to quantify the thermocouple drift during the irradiation (about two year duration) and withstand highmore » temperature (in the range 950 deg. C - 1100 deg. C) in the presence of contaminated helium in a graphite environment. Considering the different levels of temperature achieved in the irradiation facility and the large palette of thermocouple types aimed at surveying the HTR fuel pebble during the qualification test both copper (1084.62 deg. C) and gold (1064.18 deg. C) fixed-point materials were considered. The aim of this paper is to first describe the fixed-point mini-cell designed to be embedded in the reactor rig and to discuss the preliminary results achieved during some out of pile tests as much as some robustness tests representative of the reactor scram scenarios. (authors)« less
Mesophilic and thermophilic anaerobic digestion of sulphate-containing wastewaters.
Colleran, E; Pender, S
2002-01-01
The effect of sulphate at an influent chemical oxygen demand (COD):sulphate ratio of 4 on the operational performance of anaerobic hybrid reactors treating molasses wastewater was investigated under mesophilic and thermophilic conditions in a long-term laboratory-scale study over a 1,081 day period. The presence of sulphate reduced the COD removal efficiency under both mesophilic and thermophilic conditions. At 55 degrees C, effluent acetate levels were consistently greater than 4000 mg l(-1) indicating that thermophilic acetate-utilising methane-producing bacteria (MPB) or sulphate-reducing bacteria (SRB) had not developed in the reactor under the conditions applied. At 37 degrees C, acetate was exclusively utilised by acetoclastic methanogens, whereas H2-utilising SRB predominated over H2-utilising MPB in the competition for hydrogen. By contrast, hydrogenotrophic MPB were shown to outcompete H2-utilising SRB during long-term thermophilic operation. 16SrDNA analysis of the seed sludge and reactor biomass on conclusion of the 37 degrees C and 55 degrees C trials illustrated that the dominant methanogen present on conclusion of the thermophilic trial in the absence of influent sulphate was related to Methanocorpusculum parvuum, and was capable of growth on both acetate and hydrogen. By contrast, an organism closely related to Methanobacterium thermoautotrophicum was the dominant methanogen present in the sulphate-fed reactor on completion of the thermophilic trial.
Hydrothermal corrosion of silicon carbide joints without radiation
Koyanagi, Takaaki; Katoh, Yutai; Terrani, Kurt A.; ...
2016-09-28
In this paper, hydrothermal corrosion of four types of the silicon carbide (SiC) to SiC plate joints were investigated under pressurized water reactor and boiling water reactor relevant chemical conditions without irradiation. The joints were formed by metal diffusion bonding using molybdenum or titanium interlayer, reaction sintering using Ti—Si—C system, and SiC nanopowder sintering. Most of the joints withstood the corrosion tests for five weeks. The recession of the SiC substrates was limited. Based on the recession of the bonding layers, it was concluded that all the joints except for the molybdenum diffusion bond are promising under the reducing environmentsmore » without radiation. Finally, the SiC nanopowder sintered joint was the most corrosion tolerant under the oxidizing environment among the four joints.« less
NASA Astrophysics Data System (ADS)
Syarip; Po, L. C. C.
2018-05-01
In planning for nuclear power plant construction in Indonesia, helium cooled high temperature reactor (HTR) is favorable for not relying upon water supply that might be interrupted by earthquake. In order to train its personnel, BATAN has cooperated with Micro-Simulation Technology of USA to develop a 200 MWt PC-based simulation model PCTRAN/HTR. It operates in Win10 environment with graphic user interface (GUI). Normal operation of startup, power maneuvering, shutdown and accidents including pipe breaks and complete loss of AC power have been conducted. A sample case of safety analysis simulation to demonstrate the inherent safety features of HTR was done for helium pipe break malfunction scenario. The analysis was done for the variation of primary coolant pipe break i.e. from 0,1% - 0,5 % and 1% - 10 % helium gas leakages, while the reactor was operated at the maximum constant power of 10 MWt. The result shows that the highest temperature of HTR fuel centerline and coolant were 1150 °C and 1296 °C respectively. With 10 kg/s of helium flow in the reactor core, the thermal power will back to the startup position after 1287 s of helium pipe break malfunction.
A novel approach for toluene gas treatment using a downflow hanging sponge reactor.
Yamaguchi, Tsuyoshi; Nakamura, Syoichiro; Hatamoto, Masashi; Tamura, Eisuke; Tanikawa, Daisuke; Kawakami, Shuji; Nakamura, Akinobu; Kato, Kaoru; Nagano, Akihiro; Yamaguchi, Takashi
2018-05-01
A novel gas-scrubbing bioreactor based on a downflow hanging sponge (DHS) reactor was developed as a new volatile organic compound (VOC) treatment system. In this study, the effects of varying the space velocity and gas/liquid ratio were investigated to assess the effectiveness of using toluene gas as a model VOC. Under optimal conditions, the toluene removal rate was greater than 80%, and the maximum elimination capacity was observed at approximately 13 g-C m -3 h -1 . The DHS reactor demonstrated slight pressure loss (20 Pa) and a high concentration of suspended solids (up to 30,000 mg/L-sponge). Cloning analysis of the 16S rRNA and functional genes of toluene degradation pathways (tmoA, todC, tbmD, xylA, and bssA) revealed that the clones belonging to the toluene-degrading bacterium Pseudomonas putida constituted the predominant species detected at the bottom of the DHS reactor. The toluene-degrading bacteria Pseudoxanthomonas spadix and Pseudomonas sp. were also detected by tmoA- and todC-targeted cloning analyses, respectively. These results demonstrate the potential for the industrial application of this novel DHS reactor for toluene gas treatment.
Thermal characteristics analysis of microwaves reactor for pyrolysis of used cooking oil
NASA Astrophysics Data System (ADS)
Anis, Samsudin; Shahadati, Laily; Sumbodo, Wirawan; Wahyudi
2017-03-01
The research is objected to develop microwave reactor for pyrolysis of used cooking oil. The effect of microwave power as well as addition of char as absorber towards its thermal characteristic were investigated. Domestic microwave was modified and used to test the thermal characteristic of used cooking oil in the terms of temperature evolution, heating rate, and thermal efficiency. The samples were examined under various microwave power of 347W, 399W, 572W and 642W for 25 minutes of irradiation time. The char loading was tested in the level of 0, 50, and 100 g. Microwave reactor consists of microwave unit with a maximum power of 642W, a ceramic reactor, and a condenser equipped with temperature measurement system was successfully developed. It was found that microwave power and addition of absorber significantly influenced the thermal characteristic of microwave reactor. Under investigated condition, the optimum result was obtained at microwave power of 642W and 100 g of char. The condition was able to provide temperature of 480°C, heating rate of 18.2°C/min and thermal efficiency of 53% that is suitable to pyrolyze used cooking oil.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oktamuliani, Sri, E-mail: srioktamuliani@ymail.com; Su’ud, Zaki, E-mail: szaki@fi.itb.ac.id
A preliminary study designs SPINNOR (Small Power Reactor, Indonesia, No On-Site Refueling) liquid metal Pb-Bi cooled fast reactors, fuel (U, Pu)N, 150 MWth have been performed. Neutronic calculation uses SRAC which is designed cylindrical core 2D (R-Z) 90 × 135 cm, on the core fuel composed of heterogeneous with percentage difference of PuN 10, 12, 13% and the result of calculation is effective neutron multiplication 1.0488. Power density distribution of the output SRAC is generated for thermal hydraulic calculation using Delphi based on Pascal language that have been developed. The research designed a reactor that is capable of natural circulation atmore » inlet temperature 300 °C with variation of total mass flow rate. Total mass flow rate affect pressure drop and temperature outlet of the reactor core. The greater the total mass flow rate, the smaller the outlet temperature, but increase the pressure drop so that the chimney needed more higher to achieve natural circulation or condition of the system does not require a pump. Optimization of the total mass flow rate produces optimal reactor design on the total mass flow rate of 5000 kg/s with outlet temperature 524,843 °C but require a chimney of 6,69 meters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preece, G.E.; Bell, F.R.; Page, R.W.
1963-03-01
A nuclear reactor core is described. It contains fuel in the form of blocks or pellets that have a grooved, wrinkled, or corrugated surface to provide a greater radiating surface area. The surfaces of spaces in the core are correspondingly corrugated for maximum heat exchange area. (C.E.S.)
DESIGN CRITERIA FOR HIGH TEMPERATURE LATTICE TEST REACTOR PROJECT CAH-100
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballard, D.L.; Brown, W.W.; Harrison, C.W.
Design and construction specifications to be followed in the development of the reactor, its associated systems and experimental facilities, and the housing and required services for the facility are presented. The testing procedures to be used are outlined. (D.C.W.)
10 CFR 2.107 - Withdrawal of application.
Code of Federal Regulations, 2014 CFR
2014-01-01
... NUCLEAR REGULATORY COMMISSION AGENCY RULES OF PRACTICE AND PROCEDURE Procedure for Issuance, Amendment... authorize the removal of any document from the files of the Commission. (c) The Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Federal and State Materials and...
10 CFR 2.102 - Administrative review of application.
Code of Federal Regulations, 2011 CFR
2011-01-01
... completion of its review. (b) The Director, Office of Nuclear Reactor Regulation, Director, Office of New... as requested by the Commission. (c) The Director, Office of Nuclear Reactor Regulation, Director... Energy NUCLEAR REGULATORY COMMISSION RULES OF PRACTICE FOR DOMESTIC LICENSING PROCEEDINGS AND ISSUANCE OF...
10 CFR 2.107 - Withdrawal of application.
Code of Federal Regulations, 2013 CFR
2013-01-01
... NUCLEAR REGULATORY COMMISSION AGENCY RULES OF PRACTICE AND PROCEDURE Procedure for Issuance, Amendment... authorize the removal of any document from the files of the Commission. (c) The Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Federal and State Materials and...
10 CFR 2.102 - Administrative review of application.
Code of Federal Regulations, 2012 CFR
2012-01-01
... completion of its review. (b) The Director, Office of Nuclear Reactor Regulation, Director, Office of New... as requested by the Commission. (c) The Director, Office of Nuclear Reactor Regulation, Director... Energy NUCLEAR REGULATORY COMMISSION RULES OF PRACTICE FOR DOMESTIC LICENSING PROCEEDINGS AND ISSUANCE OF...
Liquid uranium alloy-helium fission reactor
Minkov, V.
1984-06-13
This invention describes a nuclear fission reactor which has a core vessel and at least one tandem heat exchanger vessel coupled therewith across upper and lower passages to define a closed flow loop. Nuclear fuel such as a uranium alloy in its liquid phase fills these vessels and flow passages. Solid control elements in the reactor core vessel are adapted to be adjusted relative to one another to control fission reaction of the liquid fuel therein. Moderator elements in the other vessel and flow passages preclude fission reaction therein. An inert gas such as helium is bubbled upwardly through the heat exchanger vessel operable to move the liquid fuel upwardly therein and unidirectionally around the closed loop and downwardly through the core vessel. This helium gas is further directed to heat conversion means outside of the reactor vessels to utilize the heat from the fission reaction to generate useful output. The nuclear fuel operates in the 1200 to 1800/sup 0/C range, and even higher to 2500/sup 0/C.
Different cultivation methods to acclimatise ammonia-tolerant methanogenic consortia.
Tian, Hailin; Fotidis, Ioannis A; Mancini, Enrico; Angelidaki, Irini
2017-05-01
Bioaugmentation with ammonia tolerant-methanogenic consortia was proposed as a solution to overcome ammonia inhibition during anaerobic digestion process recently. However, appropriate technology to generate ammonia tolerant methanogenic consortia is still lacking. In this study, three basic reactors (i.e. batch, fed-batch and continuous stirred-tank reactors (CSTR)) operated at mesophilic (37°C) and thermophilic (55°C) conditions were assessed, based on methane production efficiency, incubation time, TAN/FAN (total ammonium nitrogen/free ammonia nitrogen) levels and maximum methanogenic activity. Overall, fed-batch cultivation was clearly the most efficient method compared to batch and CSTR. Specifically, by saving incubation time up to 150%, fed-batch reactors were acclimatised to nearly 2-fold higher FAN levels with a 37%-153% methanogenic activity improvement, compared to batch method. Meanwhile, CSTR reactors were inhibited at lower ammonia levels. Finally, specific methanogenic activity test showed that hydrogenotrophic methanogens were more active than aceticlastic methanogens in all FAN levels above 540mgNH 3 -NL -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.
Nanoparticulate-catalyzed oxygen transfer processes
Hunt, Andrew T [Atlanta, GA; Breitkopf, Richard C [Dunwoody, GA
2009-12-01
Nanoparticulates of oxygen transfer materials that are oxides of rare earth metals, combinations of rare earth metals, and combinations of transition metals and rare earth metals are used as catalysts in a variety of processes. Unexpectedly large thermal efficiencies are achieved relative to micron sized particulates. Processes that use these catalysts are exemplified in a multistage reactor. The exemplified reactor cracks C6 to C20 hydrocarbons, desulfurizes the hydrocarbon stream and reforms the hydrocarbons in the stream to produce hydrogen. In a first reactor stage the steam and hydrocarbon are passed through particulate mixed rare earth metal oxide to crack larger hydrocarbon molecules. In a second stage, the steam and hydrocarbon are passed through particulate material that desulfurizes the hydrocarbon. In a third stage, the hydrocarbon and steam are passed through a heated, mixed transition metal/rare earth metal oxide to reform the lower hydrocarbons and thereby produce hydrogen. Stages can be alone or combined. Parallel reactors can provide continuous reactant flow. Each of the processes can be carried out individually.
Performance characteristics of anaerobic downflow stationary fixed film reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
van den Berg, L.; Kennedy, K.J.
1982-01-01
Stationary fixed film reactors operated to ensure a net downflow of substrate have several characteristics different from other retained biomass reactors. The active biomass attaches itself to stationary surface and hence is difficult to wash out. Performance is related to the surface-to-volume of the film support as well as to the composition of the support. Methane production rates of up to 8 cym day at loading rates of up to 30 kg COD/m cym day, are possible. Severe hydraulic and organic overloadings can be tolerated with operation back to normal 24 hours following cessation of mistreatment. Reactors can operate withmore » dilute and concentrated wastes (4000-130,000 mg COD/L) and can change readily over from one waste to another. Intermittent loading at high loading rates are possible. Methane production rates and loading rates decreased linearly with temperature (35) to 10); at 10 C they were about 20% of those at 35 C.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Lizhen; Yang, Ying; Tyburska-Puschel, Beata
The mission of the Nuclear Energy Enabling Technologies (NEET) program is to develop crosscutting technologies for nuclear energy applications. Advanced structural materials with superior performance at elevated temperatures are always desired for nuclear reactors, which can improve reactor economics, safety margins, and design flexibility. They benefit not only new reactors, including advanced light water reactors (LWRs) and fast reactors such as sodium-cooled fast reactor (SFR) that is primarily designed for management of high-level wastes, but also life extension of the existing fleet when component exchange is needed. Developing and utilizing the modern materials science tools (experimental, theoretical, and computational tools)more » is an important path to more efficient alloy development and process optimization. Ferritic-martensitic (FM) steels are important structural materials for nuclear reactors due to their advantages over other applicable materials like austenitic stainless steels, notably their resistance to void swelling, low thermal expansion coefficients, and higher thermal conductivity. However, traditional FM steels exhibit a noticeable yield strength reduction at elevated temperatures above ~500°C, which limits their applications in advanced nuclear reactors which target operating temperatures at 650°C or higher. Although oxide-dispersion-strengthened (ODS) ferritic steels have shown excellent high-temperature performance, their extremely high cost, limited size and fabricability of products, as well as the great difficulty with welding and joining, have limited or precluded their commercial applications. Zirconium has shown many benefits to Fe-base alloys such as grain refinement, improved phase stability, and reduced radiation-induced segregation. The ultimate goal of this project is, with the aid of computational modeling tools, to accelerate the development of a new generation of Zr-bearing ferritic alloys to be fabricated using conventional steelmaking practices, which have excellent radiation resistance and enhanced high-temperature creep performance greater than Grade 91.« less
Bioreactor tests preliminary to landfill in situ aeration: A case study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raga, Roberto, E-mail: roberto.raga@unipd.it; Cossu, Raffaello
Highlights: ► Carbon and nitrogen mass balances in aerated landfill simulation reactors. ► Waste stabilization in aerated landfill simulation reactors. ► Effect of temperature on biodegradation processes in aerated landfills. - Abstract: Lab scale tests in bioreactor were carried out in the framework of the characterization studies of a landfill where in situ aeration (possibly followed by landfill mining) had been proposed as part of the novel waste management strategy in a region in northern Italy. The tests were run to monitor the effects produced by aerobic conditions at different temperatures on waste sampled at different depths in the landfill,more » with focus on the carbon and nitrogen conversion during aeration. Temperatures ranging from 35 to 45 °C were chosen, in order to evaluate possible inhibition of biodegradation processes (namely nitrification) at 45 °C in the landfill. The results obtained showed positive effects of the aeration on leachate quality and a significant reduction of waste biodegradability. Although a delay of biodegradation processes was observed in the reactor run at 45 °C, biodegradation rates increased after 2 months of aeration, providing very low values of the relevant parameters (as in the other aerated reactors) by the end of the study. Mass balances were carried out for TOC and N-NH{sub 4}{sup +}; the findings obtained were encouraging and provided evidence of the effectiveness of carbon and nitrogen conversion processes in the aerated landfill simulation reactors.« less
A high temperature drop-tube and packed-bed solar reactor for continuous biomass gasification
NASA Astrophysics Data System (ADS)
Bellouard, Quentin; Abanades, Stéphane; Rodat, Sylvain; Dupassieux, Nathalie
2017-06-01
Biomass gasification is an attractive process to produce high-value syngas. Utilization of concentrated solar energy as the heat source for driving reactions increases the energy conversion efficiency, saves biomass resource, and eliminates the needs for gas cleaning and separation. A high-temperature tubular solar reactor combining drop tube and packed bed concepts was used for continuous solar-driven gasification of biomass. This 1 kW reactor was experimentally tested with biomass feeding under real solar irradiation conditions at the focus of a 2 m-diameter parabolic solar concentrator. Experiments were conducted at temperatures ranging from 1000°C to 1400°C using wood composed of a mix of pine and spruce (bark included) as biomass feedstock. The aim of this study was to demonstrate the feasibility of syngas production in this reactor concept and to prove the reliability of continuous biomass gasification processing using solar energy. The study first consisted of a parametric study of the gasification conditions to obtain an optimal gas yield. The influence of temperature and oxidizing agent (H2O or CO2) on the product gas composition was investigated. The study then focused on solar gasification during continuous biomass particle injection for demonstrating the feasibility of a continuous process. Regarding the energy conversion efficiency of the lab scale reactor, energy upgrade factor of 1.21 and solar-to-fuel thermochemical efficiency up to 28% were achieved using wood heated up to 1400°C.
Design, Construction and Testing of an In-Pile Loop for PWR (Pressurized Water Reactor) Simulation.
1987-06-01
computer modeling remains at best semiempirical (C-i), this large variation in scaling factor makes extrapolation of data impossible. The DIDO Water...in a full scale PWR are not practical. The reactor plant is not controlled to tolerances necessary for research, and utilities are reluctant to vary...MIT Reactor Safeguards Committee, in revision 1 to the PCCL Safety Evaluation Report (SER), for final approval to begin in-pile testing and
Wang, Yimeng; Wang, Jie
2016-08-01
The pinewood was pyrolyzed in the first reactor at a heating rate of 10°Cmin(-1) from room temperature to 700°C, and the vapor was allowed to be cracked through the second reactor in a temperature range of 450-750°C without and with HZSM-5. Attempts were made to determine a wide spectrum of gaseous and liquid products, as well as the mass and element partitions to gas, water, bio-oil, coke and char. HZSM-5 showed a preferential deoxygenation effect via the facilitated decarbonylation and decarboxylation with the inhibited dehydration at 550-600°C. This catalyst also displayed a high selectivity for the formations of aromatic hydrocarbons and olefins by the promoted hydrogen transfer to these products at 550-600°C. The bio-oil produced with HZSM-5 at 500-600°C had the yields of 14.5-16.8%, the high heat values of 39.1-42.4MJkg(-1), and the energy recoveries of 33-35% (all dry biomass basis). Copyright © 2016 Elsevier Ltd. All rights reserved.
Table 1 summarizes and explanis the Operating Conditions of the SCR Reactor used in the Benzene-Destruction.Table 2 summarizes and explains the Experimental Design and Test Results.Table 3 summarizes and explains the Estimates for Individual Effects and Cross Effects Obtained from the Linear Regression Models for Destruction of C6H6 and Reduction of NO.Fig. 1 shows the Down-flow SCR reactor system in detail.Fig. 2 shows the graphical summary of the Effect of the inlet C6H6 concentration to the SCR reactor on the destruction of C6H6.Fig.3 shows the summary of Carbon mass balance for C6H6 destruction promoted by the V2O5-WO3/TiO2 catalyst.This dataset is associated with the following publication:Lee , C., Y. Zhao, S. Lu, and W.R. Stevens. Catalytic Destruction of a Surrogate Organic Hazardous Air Polutant as a Potential Co-benefit for Coal-fired Selective Catalyst Reduction Systems. AMERICAN CHEMICAL SOCIETY. American Chemical Society, Washington, DC, USA, 30(3): 2240-2247, (2016).
NASA Astrophysics Data System (ADS)
Seo, Y.-S.; Shirley, A.; Kolaczkowski, S. T.
With the aid of thermodynamic analysis using AspenPlus™, the characteristics of three different types of reforming process are investigated. These include: steam-methane reforming (SMR), partial oxidation (POX) and autothermal reforming (ATR). Thereby, favourable operating conditions are identified for each process. The optimum steam-to-carbon (S:C) ratio of the SMR reactor is found to be 1.9. The optimum air ratio of the POX reactor is 0.3 at a preheat temperature of 312 °C. The optimum air ratio and S:C ratio of the ATR reactor are 0.29 and 0.35, respectively at a preheat temperature of 400 °C. Simulated material and energy balances show that the CH 4 flow rates required to generate 1 mol s -1 of hydrogen are 0.364 mol s -1 for POX, 0.367 mol s -1 for ATR and 0.385 mol s -1 for the SMR. These results demonstrate that the POX reforming system has the lowest energy cost to produce the same amount of hydrogen from CH 4.
Qian, Guangsheng; Hu, Xiaomin; Li, Liang; Ye, Linlin; Lv, Weijian
2017-11-01
This study explored the nitrification mechanism of a periodic reversal bio-electrocoagulation system with Fe-C electrodes. The ammonia nitrogen removal was compared in four identical cylindrical sequencing bath reactors. Two of them were reactors with Fe-C electrodes (S1) and C-C electrodes (S2), respectively. The other two were a reactor with iron ions (S3) and a traditional SBR (S4), respectively. The results demonstrated that the effect on enhancing nitrification in S1 was the best among all four SBRs, followed by S3, S2 and S4. Iron ions increased the biomass, and electric field improved the proton transfer and enzyme activity. The dominant bacterial genera in the four SBRs were Hyphomicrobium, Thauera, Nitrobacter, Nitrosomonas, Paracoccus and Hydrogenophaga. The iron ions may increase the levels of Nitrosomonas and Nitrobacter, both of which were the main microbes of the nitrification process. This study provided a significant and meaningful understanding of nitrification in a bio-electrocoagulation system. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Digital instrumentation and controls system technique is being introduced in new constructed research reactor or life extension of older research reactor. Digital systems are easy to change and optimize but the validated process for them is required. Also, to reduce project risk or cost, we have to make it sure that configuration and control functions is right before the commissioning phase on research reactor. For this purpose, simulators have been widely used in developing control systems in automotive and aerospace industries. In these literatures, however, very few of these can be found regarding test on the control system of researchmore » reactor with simulator. Therefore, this paper proposes a simulation platform to verify the performance of RRS (Reactor Regulating System) for research reactor. This simulation platform consists of the reactor simulation model and the interface module. This simulation platform is applied to I and C upgrade project of TRIGA reactor, and many problems of RRS configuration were found and solved. And it proved that the dynamic performance testing based on simulator enables significant time saving and improves economics and quality for RRS in the system test phase. (authors)« less
Reactor Dosimetry State of the Art 2008
NASA Astrophysics Data System (ADS)
Voorbraak, Wim; Debarberis, Luigi; D'Hondt, Pierre; Wagemans, Jan
2009-08-01
Oral session 1: Retrospective dosimetry. Retrospective dosimetry of VVER 440 reactor pressure vessel at the 3rd unit of Dukovany NPP / M. Marek ... [et al.]. Retrospective dosimetry study at the RPV of NPP Greifswald unit 1 / J. Konheiser ... [et al.]. Test of prototype detector for retrospective neutron dosimetry of reactor internals and vessel / K. Hayashi ... [et al.]. Neutron doses to the concrete vessel and tendons of a magnox reactor using retrospective dosimetry / D. A. Allen ... [et al.]. A retrospective dosimetry feasibility study for Atucha I / J. Wagemans ... [et al.]. Retrospective reactor dosimetry with zirconium alloy samples in a PWR / L. R. Greenwood and J. P. Foster -- Oral session 2: Experimental techniques. Characterizing the Time-dependent components of reactor n/y environments / P. J. Griffin, S. M. Luker and A. J. Suo-Anttila. Measurements of the recoil-ion response of silicon carbide detectors to fast neutrons / F. H. Ruddy, J. G. Seidel and F. Franceschini. Measurement of the neutron spectrum of the HB-4 cold source at the high flux isotope reactor at Oak Ridge National Laboratory / J. L. Robertson and E. B. Iverson. Feasibility of cavity ring-down laser spectroscopy for dose rate monitoring on nuclear reactor / H. Tomita ... [et al.]. Measuring transistor damage factors in a non-stable defect environment / D. B. King ... [et al.]. Neutron-detection based monitoring of void effects in boiling water reactors / J. Loberg ... [et al.] -- Poster session 1: Power reactor surveillance, retrospective dosimetry, benchmarks and inter-comparisons, adjustment methods, experimental techniques, transport calculations. Improved diagnostics for analysis of a reactor pulse radiation environment / S. M. Luker ... [et al.]. Simulation of the response of silicon carbide fast neutron detectors / F. Franceschini, F. H. Ruddy and B. Petrović. NSV A-3: a computer code for least-squares adjustment of neutron spectra and measured dosimeter responses / J. G. Williams, A. P. Ribaric and T. Schnauber. Agile high-fidelity MCNP model development techniques for rapid mechanical design iteration / J. A. Kulesza.Extension of Raptor-M3G to r-8-z geometry for use in reactor dosimetry applications / M. A. Hunter, G. Longoni and S. L. Anderson. In vessel exposure distributions evaluated with MCNP5 for Atucha II / J. M. Longhino, H. Blaumann and G. Zamonsky. Atucha I nuclear power plant azimutal ex-vessel flux profile evaluation / J. M. Longhino ... [et al.]. UFTR thermal column characterization and redesign for maximized thermal flux / C. Polit and A. Haghighat. Activation counter using liquid light-guide for dosimetry of neutron burst / M. Hayashi ... [et al.]. Control rod reactivity curves for the annular core research reactor / K. R. DePriest ... [et al.]. Specification of irradiation conditions in VVER-440 surveillance positions / V. Kochkin ... [et al.]. Simulations of Mg-Ar ionisation and TE-TE ionisation chambers with MCNPX in a straightforward gamma and beta irradiation field / S. Nievaart ... [et al.]. The change of austenitic stainless steel elements content in the inner parts of VVER-440 reactor during operation / V. Smutný, J. Hep and P. Novosad. Fast neutron environmental spectrometry using disk activation / G. Lövestam ... [et al.]. Optimization of the neutron activation detector location scheme for VVER-lOOO ex-vessel dosimetry / V. N. Bukanov ... [et al.]. Irradiation conditions for surveillance specimens located into plane containers installed in the WWER-lOOO reactor of unit 2 of the South-Ukrainian NPP / O. V. Grytsenko. V. N. Bukanov and S. M. Pugach. Conformity between LRO mock-ups and VVERS NPP RPV neutron flux attenuation / S. Belousov. Kr. Ilieva and D. Kirilova. FLUOLE: a new relevant experiment for PWR pressure vessel surveillance / D. Beretz ... [et al.]. Transport of neutrons and photons through the iron and water layers / M. J. Kost'ál ... [et al.]. Condition evaluation of spent nuclear fuel assemblies from the first-generation nuclear-powered submarines by gamma scanning / A. F. Usatyi. L. A. Serdyukova and B. S. Stepennov -- Oral session 3: Power plant surveillance. Upgraded neutron dosimetry procedure for VVER-440 surveillance specimens / V. Kochkin ... [et al.]. Neutron dosimetry on the full-core first generation VVER-440 aimed to reactor support structure load evaluation / P. Borodkin ... [et al.]. Ex-vessel neutron dosimetry programs for PWRs in Korea / C. S. Yoo. B. C. Kim and C. C. Kim. Comparison of irradiation conditions of VVER-1000 reactor pressure vessel and surveillance specimens for various core loadings / V. N. Bukanov ... [et al.]. Re-evaluation of dosimetry in the new surveillance program for the Loviisa 1 VVER-440 reactor / T. Serén -- Oral session 4: Benchmarks, intercomparisons and adjustment methods. Determination of the neutron parameter's uncertainties using the stochastic methods of uncertainty propagation and analysis / G. Grégoire ... [et al.].Covariance matrices for calculated neutron spectra and measured dosimeter responses / J. G. Williams ... [et al.]. The role of dosimetry at the high flux reactor / S. C. van der Marek ... [et al.]. Calibration of a manganese bath relative to Cf-252 nu-bar / D. M. Gilliam, A. T. Yue and M. Scott Dewey. Major upgrade of the reactor dosimetry interpretation methodology used at the CEA: general principle / C. Destouches ... [et al.] -- Oral session 5: power plant surveillance. The role of ex-vessel neutron dosimetry in reactor vessel surveillance in South Korea / B.-C. Kim ... [et al.]. Spanish RPV surveillance programmes: lessons learned and current activities / A. Ballesteros and X. Jardí. Atucha I nuclear power plant extended dosimetry and assessment / H. Blaumann ... [et al.]. Monitoring of radiation load of pressure vessels of Russian VVER in compliance with license amendments / G. Borodkin ... [et al.] -- Poster session 2: Test reactors, accelerators and advanced systems; cross sections, nuclear data, damage correlations. Two-dimensional mapping of the calculated fission power for the full-size fuel plate experiment irradiated in the advanced test reactor / G. S. Chang and M. A. Lillo. The radiation safety information computational center: a resource for reactor dosimetry software and nuclear data / B. L. Kirk. Irradiated xenon isotopic ratio measurement for failed fuel detection and location in fast reactor / C. Ito, T. Iguchi and H. Harano. Characterization of dosimetry of the BMRR horizontal thimble tubes and broad beam facility / J.-P. Hu, R. N. Reciniello and N. E. Holden. 2007 nuclear data review / N. E. Holden. Further dosimetry studies at the Rhode Island nuclear science / R. N. Reciniello ... [et al.]. Characterization of neutron fields in the experimental fast reactor Joyo MK-III core / S. Maeda ... [et al.]. Measuring [symbol]Li(n, t) and [symbol]B(n, [symbol]) cross sections using the NIST alpha-gamma apparatus / M. S. Dewey ... [et al.]. Improvement of neutron/gamma field evaluation for restart of JMTR / Y. Nagao ... [et al.]. Monitoring of the irradiated neutron fluence in the neutron transmutation doping process of HANARO / M.-S. Kim and S.-J. Park.Training reactor VR-l neutron spectrum determination / M. Vins, A. Kolros and K. Katovsky. Differential cross sections for gamma-ray production by 14 MeV neutrons on iron and bismuth / V. M. Bondar ... [et al.]. The measurements of the differential elastic neutron cross-sections of carbon for energies from 2 to 133 ke V / O. Gritzay ... [et al.]. Determination of neutron spectrum by the dosimetry foil method up to 35 Me V / S. P. Simakov ... [et al.]. Extension of the BGL broad group cross section library / D. Kirilova, S. Belousov and Kr. Ilieva. Measurements of neutron capture cross-section for tantalum at the neutron filtered beams / O. Gritzayand V. Libman. Measurements of microscopic data at GELINA in support of dosimetry / S. Kopecky ... [et al.]. Nuclide guide and international chart of nuclides - 2008 / T. Golashvili -- Oral session 6: Test reactors, accelerators and advanced systems. Neutronic analyses in support of the HFIR beamline modifications and lifetime extension / I. Remec and E. D. Blakeman. Characterization of neutron test facilities at Sandia National Laboratories / D. W. Vehar ... [et al.]. LYRA irradiation experiments: neutron metrology and dosimetry / B. Acosta and L. Debarberis. Calculated neutron and gamma-ray spectra across the prismatic very high temperature reactor core / J. W. Sterbentz. Enhancement of irradiation capability of the experimental fast reactor joyo / S. Maeda ... [et al.]. Neutron spectrum analyses by foil activation method for high-energy proton beams / C. H. Pyeon ... [et al.] -- Oral session 7: Cross sections, nuclear data, damage correlations. Investigation of new reaction cross-section evaluations in order to update and extend the IRDF-2002 reactor dosimetry library / É. M. Zsolnay, H. J. Nolthenius and A. L. Nichols. A novel approach towards DPA calculations / A. Hogenbirk and D. F. Da Cruz. A new ENDFIB-VII.O based multigroup cross-section library for reactor dosimetry / F. A. Alpan and S. L. Anderson. Activities at the NEA for dosimetry applications / H. Henriksson and I. Kodeli. Validation and verification of covariance data from dosimetry reaction cross-section evaluations / S. Badikov. Status of the neutron cross section standards / A. D. Carlson -- Oral session 8: transport calculations. A dosimetry assessment for the core restraint of an advanced gas cooled reactor / D. A. Thornton ... [et al.]. Neutron dosimetry study in the region of the support structure of a VVER-1000 type reactor / G. Borodkin ... [et al.]. SNS moderator poison design and experiment validation of the moderator performance / W. Lu ... [et al.]. Analysis of OSIRIS in-core surveillance dosimetry for GONDOLE steel irradiation program by using TRIPOLI-4 Monte Carlo code / Y. K. Lee and F. Malouch.Reactor dosimetry applications using RAPTOR-M3G: a new parallel 3-D radiation transport code / G. Longoni and S. L. Anderson.
Utilization of solar energy in sewage sludge composting: fertilizer effect and application.
Chen, Yiqun; Yu, Fang; Liang, Shengwen; Wang, Zongping; Liu, Zizheng; Xiong, Ya
2014-11-01
Three reactors, ordinary, greenhouse, and solar, were constructed and tested to compare their impacts on the composting of municipal sewage sludge. Greenhouse and solar reactors were designed to evaluate the use of solar energy in sludge composting, including their effects on temperature and compost quality. After 40 days of composting, it was found that the solar reactor could provide more stable heat for the composting process. The average temperature of the solar reactor was higher than that of the other two systems, and only the solar reactor could maintain the temperature above 55°C for more than 3 days. Composting with the solar reactor resulted in 31.3% decrease in the total organic carbon, increased the germination index to 91%, decreased the total nitrogen loss, and produced a good effect on pot experiments. Copyright © 2014 Elsevier Ltd. All rights reserved.
IMPROVEMENTS RELATING TO NUCLEAR REACTOR CORE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, F.R.
1963-03-01
A nuclear reactor core composed of a number of stacked horizontal layers is described. Each layer is made up of elements of moderator material of equal height and of generally hexagonal cross-section. Each element has holes containing nuclear fuel and separate ones for coolant. (C.E.S.)
Hydrolysis and fractionation of lignocellulosic biomass
Torget, Robert W.; Padukone, Nandan; Hatzis, Christos; Wyman, Charles E.
2000-01-01
A multi-function process is described for the hydrolysis and fractionation of lignocellulosic biomass to separate hemicellulosic sugars from other biomass components such as extractives and proteins; a portion of the solubilized lignin; cellulose; glucose derived from cellulose; and insoluble lignin from said biomass comprising one or more of the following: optionally, as function 1, introducing a dilute acid of pH 1.0-5.0 into a continual shrinking bed reactor containing a lignocellulosic biomass material at a temperature of about 94 to about 160.degree. C. for a period of about 10 to about 120 minutes at a volumetric flow rate of about 1 to about 5 reactor volumes to effect solubilization of extractives, lignin, and protein by keeping the solid to liquid ratio constant throughout the solubilization process; as function 2, introducing a dilute acid of pH 1.0-5.0, either as virgin acid or an acidic stream from another function, into a continual shrinking bed reactor containing either fresh biomass or the partially fractionated lignocellulosic biomass material from function 1 at a temperature of about 94-220.degree. C. for a period of about 10 to about 60 minutes at a volumetric flow rate of about 1 to about 5 reactor volumes to effect solubilization of hemicellulosic sugars, semisoluble sugars and other compounds, and amorphous glucans by keeping the solid to liquid ratio constant throughout the solubilization process; as function 3, optionally, introducing a dilute acid of pH 1.0-5.0 either as virgin acid or an acidic stream from another function, into a continual shrinking bed reactor containing the partially fractionated lignocellulosic biomass material from function 2 at a temperature of about 180-280.degree. C. for a period of about 10 to about 60 minutes at a volumetric flow rate of 1 to about 5 reactor volumes to effect solubilization of cellulosic sugars by keeping the solid to liquid ratio constant throughout the solubilization process; and as function 4, optionally, introducing a dilute acid of pH 1.0-5.0 either as virgin acid or an acidic stream from another function, into a continual shrinking bed reactor containing the partially fractionated lignocellulosic biomass material from function 3 at a temperature of about 180-280.degree. C. for a period of about 10 to about 60 minutes at a volumetric flow rate of about 1 to about 5 reactor volumes to effect solubilization of cellulosic sugars by keeping the solid to liquid ratio constant throughout the solubilization process.
NASA Astrophysics Data System (ADS)
Abe, K.; Adam, J.; Aihara, H.; Akiri, T.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bartet-Friburg, P.; Bass, M.; Batkiewicz, M.; Bay, F.; Berardi, V.; Berger, B. E.; Berkman, S.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bolognesi, S.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Chikuma, N.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; de Perio, P.; De Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Dewhurst, D.; Di Lodovico, F.; Di Luise, S.; Dolan, S.; Drapier, O.; Duboyski, T.; Duffy, K.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery-Schrenk, S.; Ereditato, A.; Escudero, L.; Ferchichi, C.; Feusels, T.; Finch, A. J.; Fiorentini, G. A.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Garcia, A.; Giffin, S.; Giganti, C.; Gilje, K.; Goeldi, D.; Golan, T.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haegel, L.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayashino, T.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Hosomi, F.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Iwai, E.; Iwamoto, K.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Jiang, M.; Johnson, S.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Katori, T.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J.; King, S.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Koch, L.; Koga, T.; Kolaceke, A.; Konaka, A.; Kopylov, A.; Kormos, L. L.; Korzenev, A.; Koshio, Y.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kurjata, R.; Kutter, T.; Lagoda, J.; Lamont, I.; Larkin, E.; Laveder, M.; Lawe, M.; Lazos, M.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Lopez, J. P.; Ludovici, L.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Martins, P.; Martynenko, S.; Maruyama, T.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Mefodiev, A.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Missert, A.; Miura, M.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nakadaira, T.; Nakahata, M.; Nakamura, K. G.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Nantais, C.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; Nowak, J.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Ovsyannikova, T.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J. L.; Paolone, V.; Payne, D.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pinzon Guerra, E. S.; Pistillo, C.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala-Zezula, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reeves, M.; Reinherz-Aronis, E.; Riccio, C.; Rodrigues, P. A.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Rychter, A.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schoppmann, S.; Schwehr, J. D.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shah, R.; Shaker, F.; Shaw, D.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suda, Y.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Tanaka, M. M.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Wakamatsu, K.; Walter, C. W.; Wark, D.; Warzycha, W.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yano, T.; Yen, S.; Yershov, N.; Yokoyama, M.; Yoo, J.; Yoshida, K.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration
2015-04-01
We report on measurements of neutrino oscillation using data from the T2K long-baseline neutrino experiment collected between 2010 and 2013. In an analysis of muon neutrino disappearance alone, we find the following estimates and 68% confidence intervals for the two possible mass hierarchies: normal hierarchy: sin2θ23=0.51 4-0.056+0.055 and Δ m322=(2.51 ±0.10 )×1 0-3 eV2/c4 and inverted hierarchy: sin2θ23=0.511 ±0.055 and Δ m132=(2.48 ±0.10 )×1 0-3 eV2/c4 . The analysis accounts for multinucleon mechanisms in neutrino interactions which were found to introduce negligible bias. We describe our first analyses that combine measurements of muon neutrino disappearance and electron neutrino appearance to estimate four oscillation parameters, |Δ m2|, sin2θ23, sin2θ13, δC P, and the mass hierarchy. Frequentist and Bayesian intervals are presented for combinations of these parameters, with and without including recent reactor measurements. At 90% confidence level and including reactor measurements, we exclude the region δC P=[0.15 ,0.83 ]π for normal hierarchy and δC P=[-0.08 ,1.09 ]π for inverted hierarchy. The T2K and reactor data weakly favor the normal hierarchy with a Bayes factor of 2.2. The most probable values and 68% one-dimensional credible intervals for the other oscillation parameters, when reactor data are included, are sin2θ23=0.52 8-0.038+0.055 and |Δ m322 |=(2.51 ±0.11 )×1 0-3 eV2/c4 .
Shape-Independent Model of Monitor Neutron Activation Analysis
NASA Astrophysics Data System (ADS)
Yusuf, Siaka Ojo
The technique of monitor neutron activation analysis has been improved by developing a shape-independent model to solve the problem of the treatment of the epithermal reaction contribution to the reaction rate in reactor neutron activation analysis. It is a form of facility characterization in which differential approximations to neither the neutron flux distribution as a function of energy nor the reaction cross section as a function of energy are necessary. The model predicts a linear relationship when the k-factors (ratios of reaction rates of two nuclides at a given irradiation position) for element x, k _{c} (x), is plotted against the k-factor for the monitor, k_{c} (m). The slope of this line, B(x,c,m) is measured for each element x to provide the calibration of the irradiation facility for monitor activation analysis. In this thesis, scandium was chosen as the comparator and antimony as the epithermal monitor. B(x, Sc, Sb) has been accurately measured for a number of nuclides in three different reactors. The measurement was done by irradiating filter papers containing binary mixture of the elements x and the flux monitor Sc at the various irradiation positions in these three reactors. The experiment was designed in such a way that systematic errors due to mass ratios and efficiency ratios cancel out. Also, rate related errors and backgrounds were kept at negligible values. The results show that B(x,c,m) depends not only on x, c, and m, but also on the type of moderator used for the reactor. We want this new approach to be adopted at all laboratories where routine analysis of multi-element samples are done with the monitor method since the choices of c and m are flexible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hallbert, Bruce Perry; Thomas, Kenneth David
2015-10-01
Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.
Analysis of Required Supporting Systems for the Supercritical CO(2) Power Conversion System
2007-09-01
been drawn to the viability of using S-C02 as a working fluid in modern reactor designs. Near the critical point, C02 has a rapid rise in density...viability of using S-CO2 as a working fluid in modern reactor designs. Near the critical point, CO2 has a rapid rise in density allowing a significant...32 Figure 2.2.3 Effect on Mass Transferred of Changing ICV Initial Temperature for emptying PCS ...................32 Figure 2.2.4 Effect
Investigation of Chirality Selection Mechanism of Single Walled Carbon Nanotube-3
2017-12-14
however, several universal and intrinsic problems remain. First, since the dewetting of a thin catalyst film into particles upon heating is a... heated to 800 °C in 15 minutes under Ar atmosphere, maintained for various times, and cooled down to room temperature. - Annealing of Fe-implanted...located 12 cm downstream from the middle of the tube reactor. Then the reactor was heated to 820 °C over 15 min with flowing Ar gas. During the ramping
Chernobyl Doses. Volume 3. Habitat and Vegetation Near the Chernobyl Nuclear Reactor Station
1993-01-01
AD-A260 167 A lexandria, VA 22310-3398 l,* Defense Nuclear Agency Alexandria, VA 22310-.3398 DNA-TR-92-37-V3 Chernobyl Doses, Volume 3-Habitat and...Vegetation Near the Chernobyl Nuclear Reactor Station DTIC~ ELECTF. Elizabeth L. Painter i IN•9 199EIF F. Ward Whicker JAN % 93f Pacific-Sierra...930101 Technical 870929- 920228 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Chernobyl Doses C - DNA 001-87-C-0104 Volume 3-Habitat and Vegetation Near the
Biodegradation of Jet Fuel-4 (JP-4) in Sequencing Batch Reactors
1992-06-01
nalw~eo %CUMENTATION PAGE__ _ _ _ _ _ _ _ _O 74S Ab -A258 020 L AW POi~W6 DATI .~ TYP AIMqm ,-& 0 U. glbs A~ I ma"&LFUN Mu BIODEGRADATION OF JET FUEL...Specific Objectives of This Proposal Are: 1. To assess the ability of C. resinae , P. chrysosporium and selected bacterial consortia to degrade individual...chemical components of JP-4. 2. To develop a sequencing batch reactor that utilizes C. resinae to degrade chemical components of JP-4 in contaminated
Catalysts for synthesizing various short chain hydrocarbons
Colmenares, Carlos
1991-01-01
Method and apparatus (10), including novel photocatalysts, are disclosed for the synthesis of various short chain hydrocarbons. Light-transparent SiO.sub.2 aerogels doped with photochemically active uranyl ions (18) are fluidized in a fluidized-bed reactor (12) having a transparent window (16), by hydrogen and CO, C.sub.2 H.sub.4 or C.sub.2 H.sub.6 gas mixtures (20), and exposed to radiation (34) from a light source (32) external to the reactor (12), to produce the short chain hydrocarbons (36).
Removal of slowly biodegradable COD in combined thermophilic UASB and MBBR systems.
Ji, M; Yu, J; Chen, H; Yue, P L
2001-09-01
Starch, cellulose and polyvinyl alcohol (PVA) are common substrates of the slowly biodegradable COD (SBCOD) in industrial wastewaters. Removal of the individual and mixed SbCOD substrates was investigated in a combined system of thermophilic upflow anaerobic sludge blanket (TUASB) reactor (55 degrees C) and aerobic moving bed biofilm reactor (MBBR). The removal mechanisms of the three SBCOD substrates were quite different. Starch-COD was almost equally utilized and removed in the two reactors. Cellulose-COD was completely (97-98%) removed from water in the TUASB reactor by microbial entrapment and sedimentation of the cellulose fibers. PVA alone was hardly biodegraded and removed by the combined reactors. However, PVA-COD could be removed to some extent in a binary solution of starch (77%) plus PVA (23%). The PVA macromolecules in the binary solution actually affected the microbial activity in the TUASB reactor resulting accumulation of volatile fatty acids, which shifted the overall COD removal from the TUASB to the MBBR reactor where SBCOD including PVA-COD was removed. Since the three SBCOD substrates were removed by different mechanisms, the combined reactors showed a better and more stable performance than individual reactors.
Central waste processing system
NASA Technical Reports Server (NTRS)
Kester, F. L.
1973-01-01
A new concept for processing spacecraft type wastes has been evaluated. The feasibility of reacting various waste materials with steam at temperatures of 538 - 760 C in both a continuous and batch reactor with residence times from 3 to 60 seconds has been established. Essentially complete gasification is achieved. Product gases are primarily hydrogen, carbon dioxide, methane, and carbon monoxide. Water soluble synthetic wastes are readily processed in a continuous tubular reactor at concentrations up to 20 weight percent. The batch reactor is able to process wet and dry wastes at steam to waste weight ratios from 2 to 20. Feces, urine, and synthetic wastes have been successfully processed in the batch reactor.
Materials technology for an advanced space power nuclear reactor concept: Program summary
NASA Technical Reports Server (NTRS)
Gluyas, R. E.; Watson, G. K.
1975-01-01
The results of a materials technology program for a long-life (50,000 hr), high-temperature (950 C coolant outlet), lithium-cooled, nuclear space power reactor concept are reviewed and discussed. Fabrication methods and compatibility and property data were developed for candidate materials for fuel pins and, to a lesser extent, for potential control systems, reflectors, reactor vessel and piping, and other reactor structural materials. The effects of selected materials variables on fuel pin irradiation performance were determined. The most promising materials for fuel pins were found to be 85 percent dense uranium mononitride (UN) fuel clad with tungsten-lined T-111 (Ta-8W-2Hf).
DOE Office of Scientific and Technical Information (OSTI.GOV)
A. J. Palmer; DC Haggard; J. W. Herter
High temperature gas reactor experiments create unique challenges for thermocouple based temperature measurements. As a result of the interaction with neutrons, the thermoelements of the thermocouples undergo transmutation, which produces a time dependent change in composition and, as a consequence, a time dependent drift of the thermocouple signal. This drift is particularly severe for high temperature platinum-rhodium thermocouples (Types S, R, and B); and tungsten-rhenium thermocouples (Types C and W). For lower temperature applications, previous experiences with type K thermocouples in nuclear reactors have shown that they are affected by neutron irradiation only to a limited extent. Similarly type Nmore » thermocouples are expected to be only slightly affected by neutron fluxes. Currently the use of these Nickel based thermocouples is limited when the temperature exceeds 1000°C due to drift related to phenomena other than nuclear irradiation. High rates of open-circuit failure are also typical. Over the past ten years, three long-term Advanced Gas Reactor (AGR) experiments have been conducted with measured temperatures ranging from 700oC – 1200oC. A variety of standard Type N and specialty thermocouple designs have been used in these experiments with mixed results. A brief summary of thermocouple performance in these experiments is provided. Most recently, out of pile testing has been conducted on a variety of Type N thermocouple designs at the following (nominal) temperatures and durations: 1150oC and 1200oC for 2000 hours at each temperature, followed by 200 hours at 1250oC, and 200 hours at 1300oC. The standard Type N design utilizes high purity crushed MgO insulation and an Inconel 600 sheath. Several variations on the standard Type N design were tested, including Haynes 214 alloy sheath, spinel (MgAl2O4) insulation instead of MgO, a customized sheath developed at the University of Cambridge, and finally a loose assembly thermocouple with hard fired alumina insulation and molybdenum sheath. The most current version of the High Temperature Irradiation Resistant Thermocouple (HTIR-TC) based on molybdenum/niobium alloys, and developed at Idaho National Laboratory, was also tested.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmer, A. J.; Haggard, DC; Herter, J. W.
High temperature gas reactor experiments create unique challenges for thermocouple-based temperature measurements. As a result of the interaction with neutrons, the thermoelements of the thermocouples undergo transmutation, which produces a time-dependent change in composition and, as a consequence, a time-dependent drift of the thermocouple signal. This drift is particularly severe for high temperature platinum-rhodium thermocouples (Types S, R, and B) and tungsten-rhenium thermocouples (Type C). For lower temperature applications, previous experiences with Type K thermocouples in nuclear reactors have shown that they are affected by neutron irradiation only to a limited extent. Similarly, Type N thermocouples are expected to bemore » only slightly affected by neutron fluence. Currently, the use of these nickel-based thermocouples is limited when the temperature exceeds 1000 deg. C due to drift related to phenomena other than nuclear irradiation. High rates of open-circuit failure are also typical. Over the past 10 years, three long-term Advanced Gas Reactor experiments have been conducted with measured temperatures ranging from 700 deg. C - 1200 deg. C. A variety of standard Type N and specialty thermocouple designs have been used in these experiments with mixed results. A brief summary of thermocouple performance in these experiments is provided. Most recently, out-of-pile testing has been conducted on a variety of Type N thermocouple designs at the following (nominal) temperatures and durations: 1150 deg. C and 1200 deg. C for 2,000 hours at each temperature, followed by 200 hours at 1250 deg. C and 200 hours at 1300 deg. C. The standard Type N design utilizes high purity, crushed MgO insulation and an Inconel 600 sheath. Several variations on the standard Type N design were tested, including a Haynes 214 alloy sheath, spinel (MgAl{sub 2}O{sub 4}) insulation instead of MgO, a customized sheath developed at the University of Cambridge, and finally a loose assembly thermocouple with hard-fired alumina insulation and a molybdenum sheath. The most current version of the High Temperature Irradiation Resistant Thermocouple, based on molybdenum/niobium alloys and developed at Idaho National Laboratory, was also tested. (authors)« less
Startup of RAPID-L Lunar Base Reactor by Lithium Release Module
NASA Astrophysics Data System (ADS)
Kambe, Mitsuru
The 200 kWe uranium-nitride fueled lithium cooled fast reactor concept RAPID-L to be combined with thermoelectric power conversion system for lunar base power system is demonstrated. Unique challenges in reactivity control systems design have been attempted in RAPID-L concept. The reactor involves the following innovative reactivity control systems: Lithium Expansion Modules (LEM) for inherent reactivity feedback, Lithium Injection Modules (LIM) for inherent ultimate shutdown, and Lithium Release Modules (LRM) for automated reactor startup. All these systems adopt lithium-6 as a liquid poison instead of conventional B4C rods or Be reflectors. These systems are effective independent of the magnitude and direction of the gravity force. In 2006, however, the following design amendment has been made. 1) B4C poison rods were added to ensure criticality safety in unintended positive reactivity insertion by LRMs due to fire in the launch phase accident; because LRM freeze seal melts at 800°C which result in positive reactivity insertion. 2) Lower hot standby temperature of 200°C was adopted instead of conventional 800°C to reduce the external power at the startup. In this paper, development of the LRM orifice which dominates the startup transient of RAPID-L is discussed. An attention was focused how to achieve sufficiently small flow rate of 6Li in the orifice because it enables moderate positive reactivity insertion rate. The LRM orifice performance has been confirmed using 0.5 mm diameter SUS316 orifice/lithium flow test setup in the glove box.
Fatourehchi, Niloufar; Sohrabi, Morteza; Dabir, Bahram; Royaee, Sayed Javid; Haji Malayeri, Adel
2014-02-05
Solid-liquid enzyme reactions constitute important processes in biochemical industries. The isomerization of d-glucose to d-fructose, using the immobilized glucose isomerase (Sweetzyme T), as a typical example of solid-liquid catalyzed reactions has been carried out in one stage and multi-stage novel type of impinging streams reactors. Response surface methodology was applied to determine the effects of certain pertinent parameters of the process namely axial velocity (A), feed concentration (B), nozzles' flow rates (C) and enzyme loading (D) on the performance of the apparatus. The results obtained from the conversion of glucose in this reactor were much higher than those expected in conventional reactors, while residence time was decreased dramatically. Residence time distribution (RTD) in a one-stage impinging streams reactor was investigated using colored solution as the tracer. The results showed that the flow pattern in the reactor was close to that in a continuous stirred tank reactor (CSTR). Based on the analysis of flow region in the reactor, gamma distribution model with bypass (GDB) was applied to study the RTD of the reactor. The results indicated that RTD in the impinging streams reactor could be described by the latter model. Copyright © 2013 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feltus, M.A.
1989-11-01
The operation of a nuclear power plant must be regularly supported by various reactor dynamics and thermal-hydraulic analyses, which may include final safety analysis report (FSAR) design-basis calculations, and conservative and best-estimate analyses. The development and improvement of computer codes and analysis methodologies provide many advantages, including the ability to evaluate the effect of modeling simplifications and assumptions made in previous reactor kinetics and thermal-hydraulic calculations. This paper describes the results of using the RETRAN, MCPWR, and STAR codes in a tandem, predictive-corrective manner for three pressurized water reactor (PWR) transients: (a) loss of feedwater (LOF) anticipated transient without scrammore » (ATWS), (b) station blackout ATWS, and (c) loss of total reactor coolant system (RCS) flow with a scram.« less
Analog to digital converter system for temperature monitoring -- B, C, D, DR, F, and H reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballowe, J.W.
1961-03-23
This document discusses a proposal that certain presently installed reactor process water outlet temperature data logging equipment in subject reactors to be replaced with new functionally simplified equipment of a more adequate design. The primary purpose of the proposed installation is to replace existing equipment which is obsolete and in three reactors is worn out to the point where the equipment is out of service frequently for periods of time up to 8 hours or more. The new equipment will provide reliable process tube temperature information for use in the functions of reactor control and product accountability. Based upon anticipatedmore » incremental production gains resulting from use of the new equipment, the amortization period for the project is calculated at 2.7 years.« less
An optically accessible pyrolysis microreactor
NASA Astrophysics Data System (ADS)
Baraban, J. H.; David, D. E.; Ellison, G. Barney; Daily, J. W.
2016-01-01
We report an optically accessible pyrolysis micro-reactor suitable for in situ laser spectroscopic measurements. A radiative heating design allows for completely unobstructed views of the micro-reactor along two axes. The maximum temperature demonstrated here is only 1300 K (as opposed to 1700 K for the usual SiC micro-reactor) because of the melting point of fused silica, but alternative transparent materials will allow for higher temperatures. Laser induced fluorescence measurements on nitric oxide are presented as a proof of principle for spectroscopic characterization of pyrolysis conditions.
An optically accessible pyrolysis microreactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baraban, J. H.; Ellison, G. Barney; David, D. E.
2016-01-15
We report an optically accessible pyrolysis micro-reactor suitable for in situ laser spectroscopic measurements. A radiative heating design allows for completely unobstructed views of the micro-reactor along two axes. The maximum temperature demonstrated here is only 1300 K (as opposed to 1700 K for the usual SiC micro-reactor) because of the melting point of fused silica, but alternative transparent materials will allow for higher temperatures. Laser induced fluorescence measurements on nitric oxide are presented as a proof of principle for spectroscopic characterization of pyrolysis conditions.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-22
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards; Meeting of the ACRS Subcommittee on Digital Instrumentation & Control (DI&C); Revision to February 23, 2011, ACRS Meeting Federal Register Notice The Federal Register Notice for the ACRS Subcommittee Meeting on Digital Instrumentation...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, F.R.
1963-01-16
An arrangement was described for scramming a reactor in an emergency. Control rods were position adjusted by an electric motor and transmission. A locking system kept the control rods in position but was arranged to be released in an emergency to allow the rods to drop into their shutdown position. (C.E.S.)
10 CFR 2.107 - Withdrawal of application.
Code of Federal Regulations, 2010 CFR
2010-01-01
... application does not authorize the removal of any document from the files of the Commission. (c) The Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, or Director, Office of Nuclear Material Safety and Safeguards, as appropriate, will cause to be published in the Federal Register a notice...
TREATMENT OF METHYL TERT-BUTYL ETHER CONTAMINATED WATER USING PHOTOCATALYSIS
The feasibility of photo-oxidation treatment of methyl tert-butyl ether (MTBE) in water was investigated in three ways, 1) using a slurry falling film photo-reactor, 2) a batch solar reactor system, and 3) a combination of air-stripping and gas phase photooxidation system. MTBE-c...
ELEMENTAL MERCURY CAPTURE BY ACTIVATED CARBON IN A FLOW REACTOR
The paper gives results of bench-scale experiments in a flow reactor to simulate the entrained-flow capture of elemental mercury (Hgo) using solid sorbents. Adsorption of Hgo by a lignite-based activated carbon (Calgon FGD) was examined at different carbon/mercury (C/Hg) rat...
. Departments of Energy and Interior for Hanford Reactor Effort Washington, D.C. - Advisory Council on Historic Interior for seeking and celebrating the designation of the Hanford B Reactor as a National Historic , Washington; and Los Alamos, New Mexico. At that time, the National Park Service, Department of the Interior
PERFORMANCE OF TWO LIQUID METAL TURBOPROP ENGINES UTILIZING A CIRCULATING FUEL REACTOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiedemann, H.J.; Mathews, L.
1955-01-20
The performance of two all-nuclear turboprop engines utilizing the circulating fuel reactor with a fluoride fuel temperature of I500 deg F was investigated. Data are presented for off-match-point and modified match-point performances. Results are given in graph form. (M.C.G.)
A dual function medium (Cr-ZSM-5), capable of physisorbing trichloroethylene (TCE) at ambient temperature and catalytically oxidizing it at elevated temperature (-350 degrees C) was utilized in a novel continuous falling furnace reactor system to store and periodically destroy t...
MOLTEN PLUTONIUM FUELED FAST BREEDER REACTOR
Kiehn, R.M.; King, L.D.P.; Peterson, R.E.; Swickard, E.O. Jr.
1962-06-26
A description is given of a nuclear fast reactor fueled with molten plutonium containing about 20 kg of plutonium in a tantalum container, cooled by circulating liquid sodium at about 600 to 650 deg C, having a large negative temperature coefficient of reactivity, and control rods and movable reflector for criticality control. (AEC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trozera, T.A.; White, J.L.; Chambers, R.H.
Research progress on mechanical metallurgy of reactor materials is reported in three sections: deformation characteristics of reactor materials, stored energy of cold work, and microplastic propenties and mechanical relaxation spectra of very pure refractory bcc metals. (M.C.G.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toloczko, M.B.; Garner, F.A.; Eiholzer, C.R.
1997-04-01
Three ferritic alloys were irradiated in two fast reactors to doses of 50 dpa or more at temperatures near 400{degrees}C. One martensitic alloy, HT9, was irradiated in both the FFTF and PFR reactors. PFR is the Prototype Fast Reactor in Dourneay, Scotland, and FFTF is the Fast Flux Test Facility in Richland, WA. D57 is a developmental alloy that was irradiated in PFR only, and MA957 is a Y{sub 2}O{sub 3} dispersion-hardened ferritic alloy that was irradiated only in FFTF. These alloys exhibited little or no void swelling at {approximately}400{degrees}C. Depending on the alloy starting condition, these steels develop amore » variety of non-creep strains early in the irradiation that are associated with phase changes. Each of these alloys creeps at a rate that is significantly lower than that of austenitic steels irradiated in the same experiments. The creep compliance for ferritic alloys in general appears to be {approximately}0.5 x 10{sup {minus}6} MPa{sup {minus}1} dpa{sup {minus}1}, independent of both composition and starting state. The addition of Y{sub 2}O{sub 3} as a dispersoid does not appear to change the creep behavior.« less
Experimental investigation into fast pyrolysis of biomass using an entrained-flow reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohn, M.; Benham, C.
1981-02-01
Pyrolysis experiments were performed using 30 and 90cm entrained-flow reactors, with steam as a carrier gas and two different feedstocks - wheat straw and powdered material drived from municipal solid waste (ECO-II TM). Reactor wall temperature was varied from 700/sup 0/ to 1400/sup 0/C. Gas composition data from the ECO-II tests were comparable to previously reported data but ethylene yield appeared to vary with reactor wall temperature and residence time. The important conclusion from the wheat straw tests is that olefin yields are about one half that obtained from ECO-II. Evidence was found that high olefin yields from ECO-II aremore » due to the presence of plastics in the feedstock. Batch experiments were run on wheat straw using a Pyroprobe/sup TM/. The samples were heated at a high rate (20,000/sup 0/ C/sec) to 1000/sup 0/ and held at 1000/sup 0/C for a variable period of time from 0.05 to 4.95s. For times up to 0.15s volume fractions of ethylene, propylene, and methane increase while that of carbon dioxide decreases. Subsequently, only carbon monoxide and hydrogen are produced. The change may be related to poor thermal contact and suggests caution in using the Pyroprobe.« less
Liquid uranium alloy-helium fission reactor
Minkov, Vladimir
1986-01-01
This invention teaches a nuclear fission reactor having a core vessel and at least one tandem heat exchanger vessel coupled therewith across upper and lower passages to define a closed flow loop. Nuclear fuel such as a uranium alloy in its liquid phase fills these vessels and flow passages. Solid control elements in the reactor core vessel are adapted to be adjusted relative to one another to control fission reaction of the liquid fuel therein. Moderator elements in the other vessel and flow passages preclude fission reaction therein. An inert gas such as helium is bubbled upwardly through the heat exchanger vessel operable to move the liquid fuel upwardly therein and unidirectionally around the closed loop and downwardly through the core vessel. This helium gas is further directed to heat conversion means outside of the reactor vessels to utilize the heat from the fission reaction to generate useful output. The nuclear fuel operates in the 1200.degree.-1800.degree. C. range, and even higher to 2500.degree. C., limited only by the thermal effectiveness of the structural materials, increasing the efficiency of power generation from the normal 30-35% with 300.degree.-500.degree. C. upper limit temperature to 50-65%. Irradiation of the circulating liquid fuel, as contrasted to only localized irradiation of a solid fuel, provides improved fuel utilization.
Supercritical Water Experimental Setup for µSR
NASA Astrophysics Data System (ADS)
Liu, Guangdong; Chen, Yanggang; Morrison, Alexander H.; Koda, Akihiro; Percival, Paul W.; Ghandi, Khashayar
The Canadian design for Generation IV nuclear reactors uses supercritical water (SCW, water above its critical point of 374 °C, 221 bar (1 bar = 100 kPa)) as the coolant. Supercritical water-cooled reactors (SCWRs) are designed towards sustainability, economic benefits, improved safety, and longer lifespan. Despite the potential advantages of SCWRs, we know very little about the kinetics of radiolysis products that are formed in them because of the limitations of experimental instruments under the extreme conditions of SCW. The radiolysis products can accumulate over time and create a very corrosive environment. Our group has developed and tested an apparatus suitable for muon spin rotation (µSR) studies of water and aqueous solutions up to 550 °C and 250 bar, close to the conditions at the reactor outlet of the proposed Canadian SCWR design (625 °C and 250 bar). The reaction kinetics information obtained from our setup, together with computer simulations, will aid us in developing chemical control strategies to minimize corrosion in SCWRs.
Kinetics of levulinic acid and furfural production from Miscanthus × giganteus.
Dussan, K; Girisuta, B; Haverty, D; Leahy, J J; Hayes, M H B
2013-12-01
This study investigated the kinetics of acid hydrolysis of the cellulose and hemicellulose in Miscanthus to produce levulinic acid and furfural under mild temperature and high acid concentration. Experiments were carried out in an 8L-batch reactor with 9%-wt. biomass loading, acid concentrations between 0.10 and 0.53 M H2SO4, and at temperatures between 150 and 200°C. The concentrations of xylose, glucose, furfural, 5-hydroxymethylfurfural and levulinic acid were used in two mechanistic kinetic models for the prediction of the performance of ideal continuous reactors for the optimisation of levulinic acid and the concurrent production of furfural. A two-stage arrangement was found to maximise furfural in the first reactor (PFR - 185°C, 0.5M H2SO4, 27.3%-mol). A second stage leads to levulinic acid yields between 58% and 72%-mol at temperatures between 160 and 200°C. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wang, Chao; Liu, Sitong; Xu, Xiaochen; Guo, Yongzhao; Yang, Fenglin; Wang, Dong
2018-05-08
The intracellular cyclic diguanylate acid (c-di-GMP) has emerged as a prominent second signal molecule that coordinates sessile-motile transition and biofilm formation in many bacteria. Herein, we study the role of c-di-GMP in affecting microbial community shifts at different pH levels during simultaneous partial nitrification, anammox and denitrification process (SNAD) in integrated fixed film activated sludge (IFAS) reactor. The results demonstrated that the contents of c-di-GMP notably decreased in suspended sludge, whereas the contents of c-di-GMP in biofilm had no significant change as pH gradually increased from 7.5 to 8.5. Most of the bacteria (Blastocatella, Brevundimonas) with flagella that have been reported to be regulated by c-di-GMP were present in suspended sludge, and the microbial community structure of suspended sludge had obvious change than biofilm. The increased alkaline pH reduced intracellular c-di-GMP content for increasing the motility of bacteria to be washed out from the reactor, causing the microbial community shifts in suspended sludge. This change would lead to the increase of nitrite-oxidizing bacteria which would inhibit anammox activity. Overall, this study provided more comprehensive information regarding the shifts of microbial community induced by c-di-GMP in SNAD-IFAS reactor. Copyright © 2018. Published by Elsevier B.V.
Reflector and Shield Material Properties for Project Prometheus
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Nash
2005-11-02
This letter provides updated reflector and shield preliminary material property information to support reactor design efforts. The information provided herein supersedes the applicable portions of Revision 1 to the Space Power Program Preliminary Reactor Design Basis (Reference (a)). This letter partially answers the request in Reference (b) to provide unirradiated and irradiated material properties for beryllium, beryllium oxide, isotopically enriched boron carbide ({sup 11}B{sub 4}C) and lithium hydride. With the exception of {sup 11}B{sub 4}C, the information is provided in Attachments 1 and 2. At the time of issuance of this document, {sup 11}B{sub 4}C had not been studied.
Petzelbauer, Inge; Kuhn, Bernhard; Splechtna, Barbara; Kulbe, Klaus D; Nidetzky, Bernd
2002-03-20
Recombinant hyperthermostable beta-glycosidases from the archaea Sulfolobus solfataricus (Ss beta Gly) and Pyrococcus furiosus (CelB) were covalently attached onto the insoluble carriers chitosan, controlled pore glass (CPG), and Eupergit C. For each enzyme/carrier pair, the protein-binding capacity, the immobilization yield, the pH profiles for activity and stability, the activity/temperature profile, and the kinetic constants for lactose hydrolysis at 70 degrees C were determined. Eupergit C was best among the carriers in regard to retention of native-like activity and stability of Ss beta Gly and CelB over the pH range 3.0-7.5. Its protein binding capacity of approximately 0.003 (on a mass basis) was one-third times that of CPG, while immobilization yields were typically 80% in each case. Activation energies for lactose conversion by the immobilized enzymes at pH 5.5 were in the range 50-60 kJ/mol. This is compared to values of approximately 75 kJ/mol for the free enzymes. Immobilization expands the useful pH range for CelB and Ss beta Gly by approximately 1.5 pH units toward pH 3.5 and pH 4.5, respectively. A packed-bed enzyme reactor was developed for the continuous conversion of lactose in different media, including whey and milk, and operated over extended reaction times of up to 14 days. The productivities of the Eupergit C-immobilized enzyme reactor were determined at dilution rates between 1 and 12 h(-1), and using 45 and 170 g/L initial lactose. Results of kinetic modeling for the same reactor, assuming plug flow and steady state, suggest the presence of mass-transfer limitation of the reaction rate under the conditions used. Formation of galacto-oligosaccharides in the continuous packed-bed reactor and in the batch reactor using free enzyme was closely similar in regard to yield and individual saccharide components produced. Copyright 2002 John Wiley & Sons, Inc. Biotechnol Bioeng 77: 619-631, 2002; DOI 10.1002/bit.10110
NASA Astrophysics Data System (ADS)
Imachi, H.; Tasumi, E.; Morono, Y.; Ito, M.; Takai, K.; Inagaki, F.
2013-12-01
Deep subseafloor environments associated with hydrocarbon reservoirs have been least explored by previous scientific drilling and hence the nature of deep subseafloor life and its ecological roles in the carbon cycle remain largely unknown. In this study, we performed cultivation of subseafloor methanogenic communities using a continuous-flow bioreactor with polyurethane sponges, called down-flow hanging sponge (DHS) reactor. The sample used for the reactor cultivation was obtained from 2 km-deep coalbeds off the Shimokita Peninsula of Japan, the northwestern Pacific, during the Integrated Ocean Drilling Program (IODP) Expedition 337 using a riser drilling technology of the drilling vessel Chikyu. The coalbed samples were incubated anaerobically in the DHS reactor at the in-situ temperature of 40°C. Synthetic seawater supplemented with a tiny amount of yeast extract, acetate, propionate and butyrate was provided into the DHS reactor. After 34 days of the bioreactor operation, a small production of methane was observed. The methane concentration was gradually increased and the stable carbon isotopic composition of methane was consistency 13C-depleted during the bioreactor operation, indicating the occurrence of microbial methanogenesis. Microscopic observation showed that the enrichment culture contained a variety of microorganisms, including methanogen-like rod-shaped cells with F420 auto-fluorescence. Interestingly, many spore-like particles were observed in the bioreactor enrichment. Phylogenetic analysis of 16S rRNA genes showed the growth of phylogenetically diverse bacteria and archaea in the DHS reactor. Predominant archaeal components were closely related to hydrogenotrophic methanogens within the genus Methanobacterium. Some predominant bacteria were related to the spore-formers within the class Clostridia, which are overall in good agreement with microscopic observations. By analyzing ion images using a nano-scale secondary ion mass spectrometry (NanoSIMS), 13C-bicarbonate incorporation of rod-shaped methanogens, as well as 13C-acetate incorporation of other cells, was observed. These microbiological data obtained from the DHS reactor generally support a geochemical indication that microbial processes contribute to the biogeochemical carbon cycle associated with 2 km-coalbeds in the deep subseafloor biosphere.
Thomas, Simon F; Rooks, Paul; Rudin, Fabian; Atkinson, Sov; Goddard, Paul; Bransgrove, Rachel M; Mason, Paul T; Allen, Michael J
2014-01-01
We show in this study that the combination of a swirl flow reactor and an antimicrobial agent (in this case copper alginate beads) is a promising technique for the remediation of contaminated water in waste streams recalcitrant to UV-C treatment. This is demonstrated by comparing the viability of both common and UV-C resistant organisms in operating conditions where UV-C proves ineffective - notably high levels of solids and compounds which deflect UV-C. The swirl flow reactor is easy to construct from commonly available plumbing parts and may prove a versatile and powerful tool in waste water treatment in developing countries.
Mariani, Robert Dominick
2014-09-09
Zirconium-based metal alloy compositions comprise zirconium, a first additive in which the permeability of hydrogen decreases with increasing temperatures at least over a temperature range extending from 350.degree. C. to 750.degree. C., and a second additive having a solubility in zirconium over the temperature range extending from 350.degree. C. to 750.degree. C. At least one of a solubility of the first additive in the second additive over the temperature range extending from 350.degree. C. to 750.degree. C. and a solubility of the second additive in the first additive over the temperature range extending from 350.degree. C. to 750.degree. C. is higher than the solubility of the second additive in zirconium over the temperature range extending from 350.degree. C. to 750.degree. C. Nuclear fuel rods include a cladding material comprising such metal alloy compositions, and nuclear reactors include such fuel rods. Methods are used to fabricate such zirconium-based metal alloy compositions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gangwal, Santosh K; McCabe, Kevin
Coal to liquids (CTL) and coal-biomass to liquids (CBTL) processes were advanced by testing and demonstrating Southern Research’s sulfur tolerant nickel-based reforming catalyst and Chevron’s highly selective and active cobalt-zeolite hybrid Fischer-Tropsch (FT) catalyst to clean, upgrade and convert syngas predominantly to jet fuel range hydrocarbon liquids, thereby minimizing expensive cleanup and wax upgrading operations. The National Carbon Capture Center (NCCC) operated by Southern Company (SC) at Wilsonville, Alabama served as the host site for the gasifier slip-stream and simulated syngas testing/demonstration. Reformer testing was performed to (1) reform tar and light hydrocarbons, (2) decompose ammonia in the presence H2S,more » and (3) deliver the required H2 to CO ratio for FT synthesis. FT Testing was performed to produce a product primarily containing C5-C20 liquid hydrocarbons and no C21+ waxy hydrocarbons with productivity greater than 0.7 gC5+/g catalyst/h, and at least 70% diesel and jet fuel range (C8-C20) hydrocarbon selectivity in the liquid product. A novel heat-exchange reactor system was employed to enable the use of the highly active FT catalyst and larger diameter reactors that results in cost reduction for commercial systems. Following laboratory development and testing, SR’s laboratory reformer was modified to operate in a Class 1 Div. 2 environment, installed at NCCC, and successfully tested for 125 hours using raw syngas. The catalyst demonstrated near equilibrium reforming (~90%) of methane and complete reforming/decomposition of tar and ammonia in the presence of up to 380 ppm H2S. For FT synthesis, SR modified and utilized a bench scale skid mounted FT reactor system (SR-CBTL test rig) that was fully integrated with a slip stream from SC/NCCC’s transport gasifier (TRIG). The test-rig developed in a previous project (DE-FE0010231) was modified to receive up to 7.5 lb/h raw syngas augmented with bottled syngas to adjust the H2/CO molar ratio to 2, clean it to cobalt FT catalyst specifications, and produce liquid FT products at the design capacity of up to 6 L/day. Promising Chevron catalyst candidates in the size range from 70-200 μm were loaded onto SR’s 2-inch ID and 4-inch ID bench-scale reactors utilizing IntraMicron’s micro-fiber entrapped catalyst (MFEC) heat exchange reactor technology. During 2 test campaigns, the FT reactors were successfully demonstrated at NCCC using syngas for ~420 hours. The catalyst did not experience deactivation during the tests. SR’s thermo-syphon heat removal system maintained reactor operating temperature along the axis to within ±4 °C. The experiments gave a steady catalyst productivity of 0.7-0.8 g/g catalyst/h, liquid hydrocarbon selectivity of ~75%, and diesel and jet fuel range hydrocarbon selectivity in the liquid product as high as 85% depending on process conditions. A preliminary techno-economic evaluation showed that the SR technology-based 50,000 bpd plant had a 10 % lower total plant cost compared to a conventional slurry reactor based plant. Furthermore, because of the modular nature of the SR technology, it was shown that the total plant cost advantage increases to >35 % as the plant is scaled down to 1000 bpd.« less
The effect of zinc injection on the increasing of Inconel 600 TT corrosion resistances
NASA Astrophysics Data System (ADS)
Febrianto; Sriyono; Widodo, Surip; Sunaryo, Geni Rina
2018-02-01
Many failures were found in reactor pressure vessel head penetration (RPV) head material. Those failures caused by boric acid corrosion, and from visual examination were found a big hole and white deposit crystal of boric acid during shutdown maintenance at David Besse reactor. Zinc Oxide addition in BWR reactor known as Zinc Injection that has purposed to reduce radiation exposure cause of Hydrogen addition. Beside reducing the radiation exposure, Zinc injection also has an effect in reducing material corrosion. The purpose of study is to determine the effect of zinc addition, boric acid, temperature also the effects of Cobalt Nitrate and Zinc Oxide addition to Inconel 600 TT as RPV head penetration material. The result in the BWR reactor experience will be implementated at PWR reactor, weather zinc oxide addition also has an effect in reducing the corrosion of Inconel 600. The method that used in this research is to observe the corrosion rates for Inconel 600 material using Potentiostat. Examination were conducted in 30, 40, 60, 70, 80 and 80 °C using 1000, 1500, 2000, 2500 and 3000 ppm boric acid concentration. The results showed that the corrosion rate for the material were very small, but the highest corrosion rate occurred in 3000 ppm boric acid concentration at 90 °C with Cobalt Nitrate addition, around 5.210 x 10-1 mpy. In the same condition at 3000 ppm boric acid concentration for temperature at 90 °C, Inconel 600 TT corrosion rate is smaller with Zinc oxide addition, around 4.631 x 10-1 mpy.
David, Pierre-luc; Bulteau, Gaëlle; Humeau, Philippe; Gérente, Claire; Andrès, Yves
2013-01-01
The increasing demand for water and the decrease in global water resources require research into alternative solutions to preserve them. The present study deals with the optimization of a treatment process, i.e. an aerobic fluidized bed reactor and the modelling of the degradation that takes place within it. The methodology employed is based on the hydrodynamics of the treatment process linked to the biodegradation kinetics of greywater coming from a washing machine. The residence time distribution (RTD) approach is selected for the hydrodynamic study. Biodegradation kinetics are quantified by respirometry and dissolved organic carbon (DOC) analysis on several mass quantities of colonized particles. RTD determinations show that there are no dysfunctions in the fluidized bed. Its hydrodynamic behaviour is similar to the one of a continuous stirred-tank reactor. A first-order reaction is obtained from the DOC biodegradation study. A model describing the degradation that takes place into the reactor is proposed, and from a sensitive study, the influence of the operating conditions on DOC biodegradation is defined. The theoretical results calculated from the first-order equation C(t) = 0.593 x C(0) x e(-kt) are compared with the experimental results and validated by a Student test. The value of the kinetic constant k is 0.011 h(-1) in the presence of a biomass carrier. The results highlight that it is possible to design a reactor in order to obtain a carbon content lower than 15 mg C L(-1) when the characteristics of raw greywater are known.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yun, Di, E-mail: diyun1979@xjtu.edu.cn; Xi'an Jiao Tong University, 28 Xian Ning West Road, Xi'an 710049; Mo, Kun
2015-12-15
U–Mo metallic alloys have been extensively used for the Reduced Enrichment for Research and Test Reactors (RERTR) program, which is now known as the Office of Material Management and Minimization under the Conversion Program. This fuel form has also recently been proposed as fast reactor metallic fuels in the recent DOE Ultra-high Burnup Fast Reactor project. In order to better understand the behavior of U–10Mo fuels within the fast reactor temperature regime, a series of annealing and characterization experiments have been performed. Annealing experiments were performed in situ at the Intermediate Voltage Electron Microscope (IVEM-Tandem) facility at Argonne National Laboratorymore » (ANL). An electro-polished U–10Mo alloy fuel specimen was annealed in situ up to 700 °C. At an elevated temperature of about 540 °C, the U–10Mo specimen underwent a relatively slow microstructure transition. Nano-sized grains were observed to emerge near the surface. At the end temperature of 700 °C, the near-surface microstructure had evolved to a nano-crystalline state. In order to clarify the nature of the observed microstructure, Laue diffraction and powder diffraction experiments were carried out at beam line 34-ID of the Advanced Photon Source (APS) at ANL. Phases present in the as-annealed specimen were identified with both Laue diffraction and powder diffraction techniques. The U–10Mo was found to recrystallize due to thermally-induced recrystallization driven by a high density of pre-existing dislocations. A separate in situ annealing experiment was carried out with a Focused Ion Beam processed (FIB) specimen. A similar microstructure transition occurred at a lower temperature of about 460 °C with a much faster transition rate compared to the electro-polished specimen. - Highlights: • TEM annealing experiments were performed in situ at the IVEM facility up to fast reactor temperature. • At 540 °C, the U-10Mo specimen underwent a slow microstructure transition where nano-sized grains were observed to emerge. • UO{sub 2} phase exists at the thin area of the as-annealed specimen whereas U-10Mo γ phase dominated at the thicker part. • Bcc γ U-10Mo recrystallized to become nano-meter sized crystallites near the specimen surface. • A separateannealing experiment was conducted with a FIB processed specimen where similar transition occurred at a lower temperature of 460 °C with a faster rate.« less
Thermal Decomposition of Potential Ester Biofuels. Part I: Methyl Acetate and Methyl Butanoate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porterfield, Jessica P.; Bross, David H.; Ruscic, Branko
2017-06-09
Two methyl esters have been examined as models for the pyrolysis of biofuels. Dilute samples (0.06 - 0.13%) of methyl acetate (CH 3COOCH 3) and methyl butanoate (CH 3CH 2CH 2COOCH 3) were entrained in (He, Ar) carrier gas and decomposed in a set of flash-pyrolysis micro-reactors. The pyrolysis products resulting from the methyl esters were detected and identified by vacuum ultraviolet photoionization mass spectrometry. Complementary product identification was provided by matrix infrared absorption spectroscopy. Pyrolysis pressures in the pulsed micro-reactor were roughly 20 Torr and residence times through the reactors were approximately 25 - 150 µs. Reactor temperatures ofmore » 300 – 1600 K were explored. Decomposition of CH 3COOCH 3 commences at 1000 K and the initial products are (CH 2=C=O and CH 3OH). As the micro-reactor is heated to 1300 K, a mixture of (CH 2=C=O and CH 3OH, CH 3, CH 2=O, H, CO, CO 2) appears. The thermal cracking of CH 3CH 2CH 2COOCH 3 begins at 800 K with the formation of (CH 3CH 2CH=C=O, CH 3OH). By 1300 K, the pyrolysis of methyl butanoate yields a complex mixture of (CH 3CH 2CH=C=O, CH 3OH, CH 3, CH 2=O, CO, CO 2, CH 3CH=CH 2, CH 2CHCH 2, CH 2=C=CH 2, HCCCH 2, CH 2=C=C=O, CH 2=CH 2, HCΞCH, CH 2=C=O). Based on the results from the thermal cracking of methyl acetate and methyl butanoate, we predict several important decomposition channels for the pyrolysis of fatty acid methyl esters, R CH 2-COOCH 3. The lowest energy fragmentation will be a 4-center elimination of methanol to form the ketene, RCH=C=O. At higher temperatures, concerted fragmentation to radicals will ensue to produce a mixture of species: (RCH 2 + CO 2 + CH 3) and (RCH 2 + CO + CH 2=O + H). Thermal cracking of the β C-C bond of the methyl ester will generate the radicals (R and H) as well as CH 2=C=O + CH 2=O. The thermochemistry of methyl acetate and its fragmentation products have been obtained via the Active Thermochemical Tables (ATcT) approach, resulting in Δ fH 298(CH 3COOCH 3) = -98.7 ± 0.2 kcal mol -1, Δ fH 298(CH 3CO 2) = -45.7 ± 0.3 kcal mol -1, and Δ fH 298(COOCH 3) = -38.3 ± 0.4 kcal mol -1.« less
Corrosion and stress corrosion cracking in supercritical water
NASA Astrophysics Data System (ADS)
Was, G. S.; Ampornrat, P.; Gupta, G.; Teysseyre, S.; West, E. A.; Allen, T. R.; Sridharan, K.; Tan, L.; Chen, Y.; Ren, X.; Pister, C.
2007-09-01
Supercritical water (SCW) has attracted increasing attention since SCW boiler power plants were implemented to increase the efficiency of fossil-based power plants. The SCW reactor (SCWR) design has been selected as one of the Generation IV reactor concepts because of its higher thermal efficiency and plant simplification as compared to current light water reactors (LWRs). Reactor operating conditions call for a core coolant temperature between 280 °C and 620 °C at a pressure of 25 MPa and maximum expected neutron damage levels to any replaceable or permanent core component of 15 dpa (thermal reactor design) and 100 dpa (fast reactor design). Irradiation-induced changes in microstructure (swelling, radiation-induced segregation (RIS), hardening, phase stability) and mechanical properties (strength, thermal and irradiation-induced creep, fatigue) are also major concerns. Throughout the core, corrosion, stress corrosion cracking, and the effect of irradiation on these degradation modes are critical issues. This paper reviews the current understanding of the response of candidate materials for SCWR systems, focusing on the corrosion and stress corrosion cracking response, and highlights the design trade-offs associated with certain alloy systems. Ferritic-martensitic steels generally have the best resistance to stress corrosion cracking, but suffer from the worst oxidation. Austenitic stainless steels and Ni-base alloys have better oxidation resistance but are more susceptible to stress corrosion cracking. The promise of grain boundary engineering and surface modification in addressing corrosion and stress corrosion cracking performance is discussed.
An Optically Accessible Pyrolysis Microreactor
NASA Astrophysics Data System (ADS)
Baraban, Joshua H.; David, Donald E.; Ellison, Barney; Daily, John W.
2016-06-01
We report an optically accessible pyrolysis micro-reactor suitable for in situ laser spectroscopic measurements. A radiative heating design allows for completely unobstructed views of the micro-reactor along two axes. The maximum temperature demonstrated here is only 1300 K (as opposed to 1700 K for the usual SiC micro-reactor) because of the melting point of fused silica, but alternative transparent materials will allow for higher temperatures. Laser induced fluorescence measurements on nitric oxide are presented as a proof of principle for spectroscopic characterization of pyrolysis conditions. (This work has been published in J. H. Baraban, D. E. David, G. B. Ellison, and J. W. Daily. An Optically Accessible Pyrolysis Micro-Reactor. Review of Scientific Instruments, 87(1):014101, 2016.)
Development of a Novel Catalytic Membrane Reactor for Heterogeneous Catalysis in Supercritical CO2
Islam, Nazrul M.; Chatterjee, Maya; Ikushima, Yutaka; Yokoyama, Toshiro; Kawanami, Hajime
2010-01-01
A novel type of high-pressure membrane reactor has been developed for hydrogenation in supercritical carbon dioxide (scCO2). The main objectives of the design of the reactor are the separate feeding of hydrogen and substrate in scCO2 for safe reactions in a continuous flow process, and to reduce the reaction time. By using this new reactor, hydrogenation of cinnamaldehyde into hydrocinnamaldehyde has been successfully carried out with 100% selectivity at 50 °C in 10 MPa (H2: 1 MPa, CO2: 9 MPa) with a flow rate of substrate ranging from 0.05 to 1.0 mL/min. PMID:20162008
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ambrose, T.W.
1965-06-04
Process and development activities reported include: depleted uranium irradiations, thoria irradiation, and hot die sizing. Reactor engineering activities include: brittle fracture of 190-C tanks, increased graphite temperature limits for the F reactor, VSR channel caulking, K reactor downcomer flow, zircaloy hydriding, and ribbed zircaloy process tubes. Reactor physics activities include: thoria irradiations, E-D irradiations, boiling protection with the high speed scanner, and in-core flux monitoring. Radiological engineering activities include: radiation control, classification, radiation occurrences, effluent activity data, and well car shielding. Process standards are listed, along with audits, and fuel failure experience. Operational physics and process physics studies are presented.more » Lastly, testing activities are detailed.« less
Generating Breathable Air Through Dissociation of N2O
NASA Technical Reports Server (NTRS)
Zubrin, Robert; Frankie, Brian
2006-01-01
A nitrous oxide-based oxygen-supply system (NOBOSS) is an apparatus in which a breathable mixture comprising 2/3 volume parts of N2 and 1/3 volume part of O2 is generated through dissociation of N2O. The NOBOSS concept can be adapted to a variety of applications in which there are requirements for relatively compact, lightweight systems to supply breathable air. These could include air-supply systems for firefighters, divers, astronauts, and workers who must be protected against biological and chemical hazards. A NOBOSS stands in contrast to compressed-gas and cryogenic air-supply systems. Compressed-gas systems necessarily include massive tanks that can hold only relatively small amounts of gases. Alternatively, gases can be stored compactly in greater quantities and at low pressures when they are liquefied, but then cryogenic equipment is needed to maintain them in liquid form. Overcoming the disadvantages of both compressed-gas and cryogenic systems, the NOBOSS exploits the fact that N2O can be stored in liquid form at room temperature and moderate pressure. The mass of N2O that can be stored in a tank of a given mass is about 20 times the mass of compressed air that can be stored in a tank of equal mass. In a NOBOSS, N2O is exothermically dissociated to N2 and O2 in a main catalytic reactor. In order to ensure the dissociation of N2O to the maximum possible extent, the temperature of the reactor must be kept above 400 C. At the same time, to minimize concentrations of nitrogen oxides (which are toxic), it is necessary to keep the reactor temperature at or below 540 C. To keep the temperature within the required range throughout the reactor and, in particular, to prevent the formation of hot spots that would be generated by local concentrations of the exothermic dissociation reaction, the N2O is introduced into the reactor through an injector tube that features carefully spaced holes to distribute the input flow of N2O widely throughout the reactor. A NOBOSS includes one or more "destroyer" subsystems for removing any nitrogen oxides that remain downstream of the main N2O-dissociation reactor. A destroyer includes a carbon bed in series with a catalytic reactor, and is in thermal contact with the main N2O-dissociation reactor. The gas mixture that leaves the main reactor first goes through a carbon bed, which adsorbs all of the trace NO and most of the trace NO2. The gas mixture then goes through the destroyer catalytic reactor, wherein most or all of the remaining NO2 is dissociated. A NOBOSS can be designed to regulate its reactor temperature across a range of flow rates. One such system includes three destroyer loops; these loops act, in combination with a heat sink, to remove heat from the main N2O-dissociation reactor. In this system, the N2O and product gases play an additional role as coolants; thus, as needed, the coolant flow increases in proportion to the rate of generation of heat, helping to keep the main-reactor temperature below 540 C.
Hossain, Mohammad M; Scott, Ian M; Berruti, Franco; Briens, Cedric
2016-12-01
Valuable chemicals can be separated from agricultural residues by chemical or thermochemical processes. The application of pyrolysis has already been demonstrated as an efficient means to produce a liquid with a high concentration of desired product. The objective of this study was to apply an insect and microorganism bioassay-guided approach to separate and isolate pesticidal compounds from bio-oil produced through biomass pyrolysis. Tobacco leaf (Nicotianata bacum), tomato plant (Solanum lycopersicum), and spent coffee (Coffea arabica) grounds were pyrolyzed at 10°C/min from ambient to 565°C using the mechanically fluidized reactor (MFR). With one-dimensional (1D) MFR pyrolysis, the composition of the product vapors varied as the reactor temperature was raised allowing for the selection of the temperature range that corresponds to vapors with a high concentration of pesticidal properties. Further product separation was performed in a fractional condensation train, or 2D MFR pyrolysis, thus allowing for the separation of vapor components according to their condensation temperature. The 300-400°C tobacco and tomato bio-oil cuts from the 1D MFR showed the highest insecticidal and anti-microbial activity compared to the other bio-oil cuts. The 300-350 and 350-400°C bio-oil cuts produced by 2D MFR had the highest insecticidal activity when the bio-oil was collected from the 210°C condenser. The tobacco and tomato bio-oil had similar insecticidal activity (LC 50 of 2.1 and 2.2 mg/mL) when the bio-oil was collected in the 210°C condenser from the 300-350°C reactor temperature gases. The 2D MFR does concentrate the pesticidal products compared to the 1D MFR and thus can reduce the need for further separation steps such as solvent extraction.
Catalytic wet oxidation of phenol in a trickle bed reactor over a Pt/TiO2 catalyst.
Maugans, Clayton B; Akgerman, Aydin
2003-01-01
Catalytic wet oxidation of phenol was studied in a batch and a trickle bed reactor using 4.45% Pt/TiO2 catalyst in the temperature range 150-205 degrees C. Kinetic data were obtained from batch reactor studies and used to model the reaction kinetics for phenol disappearance and for total organic carbon disappearance. Trickle bed experiments were then performed to generate data from a heterogeneous flow reactor. Catalyst deactivation was observed in the trickle bed reactor, although the exact cause was not determined. Deactivation was observed to linearly increase with the cumulative amount of phenol that had passed over the catalyst bed. Trickle bed reactor modeling was performed using a three-phase heterogeneous model. Model parameters were determined from literature correlations, batch derived kinetic data, and trickle bed derived catalyst deactivation data. The model equations were solved using orthogonal collocations on finite elements. Trickle bed performance was successfully predicted using the batch derived kinetic model and the three-phase reactor model. Thus, using the kinetics determined from limited data in the batch mode, it is possible to predict continuous flow multiphase reactor performance.
Moghanloo, G M Mojarrad; Fatehifar, E; Saedy, S; Aghaeifar, Z; Abbasnezhad, H
2010-11-01
Hydrogen sulfide (H(2)S) removal in mineral media using Thiobacillus thioparus TK-1 in a biofilm airlift suspension reactor (BAS) was investigated to evaluate the relationship between biofilm formation and changes in inlet loading rates. Aqueous sodium sulfide was fed as the substrate into the continuous BAS-reactor. The reactor was operated at a constant temperature of 30 degrees C and a pH of 7, the optimal temperature and pH for biomass growth. The startup of the reactor was performed with basalt carrier material. Optimal treatment performance was obtained at a loading rate of 4.8 mol S(2-) m(-3) h(-1) at a conversion efficiency as high as 100%. The main product of H(2)S oxidation in the BAS-reactor was sulfate because of high oxygen concentrations in the airlift reactor. The maximum sulfide oxidation rate was 6.7 mol S(2-) m(-3) h(-1) at a hydraulic residence time of 3.3 h in the mineral medium. The data showed that the BAS-reactor with this microorganism can be used for sulfide removal from industrial effluent. Copyright 2010 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., Certification Full cost. Amendment, Renewal, Other Approvals Full cost. C. Test Facility/Research Reactor... of components requiring Commission and Executive Branch review, for example, actions under 10 CFR 110... export of reactor and other components requiring Executive Branch review, for example, those actions...
Code of Federal Regulations, 2010 CFR
2010-07-01
... equipment used in research and development if the reactor used to polymerize the vinyl chloride processed in the equipment has a capacity of no more than 0.19 m 3 (50 gal). (c) Sections of this subpart other... equipment used in research and development if the reactor used to polymerize the vinyl chloride processed in...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mann, A.; Herrick, R.; Gunn, J.
2007-07-01
Dounreay was home to commercial fast reactor development in the UK. Following the construction and operation of the Dounreay Fast Reactor, a sodium-cooled Prototype Fast Reactor (PFR), was constructed. PFR started operating in 1974, closed in 1994 and is presently being decommissioned. To date the bulk of the sodium has been removed and treated. Due to the design of the existing extraction system however, a sodium pool will remain in the heel of the reactor. To remove this sodium, a pump/camera system was developed, tested and deployed. The Water Vapour Nitrogen (WVN) process has been selected to allow removal ofmore » the final sodium residues from the reactor. Due to the design of the reactor and potential for structural damage should Normal WVN (which produces hydrated sodium hydroxide) be used, Low Concentration WVN (LC WVN) has been developed. Pilot scale testing has shown that it is possible treat the reactor within 18 months at a WVN concentration of up to 4% v/v and temperature of 120 deg. C. At present the equipment that will be used to apply LC WVN to the reactor is being developed at the detail design stage. and is expected to be deployed within the next few years. (authors)« less
Abreu, Angela A; Alves, Joana I; Pereira, M Alcina; Karakashev, Dimitar; Alves, M Madalena; Angelidaki, Irini
2010-12-01
In the present study, two granular systems were compared in terms of hydrogen production rate, stability and bacterial diversity under extreme thermophilic conditions (70 degrees C). Two EGSB reactors were individually inoculated with heat treated methanogenic granules (HTG) and HTG amended with enrichment culture with high capacity of hydrogen production (engineered heat treated methanogenic granules - EHTG), respectively. The reactor inoculated with EHTG (R(EHTG)) attained a maximum production rate of 2.7l H(2)l(-1)day(-1) in steady state. In comparison, the R(HTG) containing the HTG granules was very unstable, with low hydrogen productions and only two peaks of hydrogen (0.8 and 1.5l H(2)l(-1)day(-1)). The presence of active hydrogen producers in the R(EHTG) system during the reactor start-up resulted in the development of an efficient H(2)-producing bacterial community. The results showed that "engineered inocula" where known hydrogen producers are co-inoculated with HTG is an efficient way to start up biohydrogen-producing reactors. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Pyrolysis of cassava rhizome in a counter-rotating twin screw reactor unit.
Sirijanusorn, Somsak; Sriprateep, Keartisak; Pattiya, Adisak
2013-07-01
A counter-rotating twin screw reactor unit was investigated for its behaviour in the pyrolysis of cassava rhizome biomass. Several parameters such as pyrolysis temperature in the range of 500-700°C, biomass particle size of <0.6mm, the use of sand as heat transfer medium, nitrogen flow rate of 4-10 L/min and nitrogen pressure of 1-3 bar were thoroughly examined. It was found that the pyrolysis temperature of 550°C could maximise the bio-oil yield (50 wt.%). The other optimum parameters for maximising the bio-oil yield were the biomass particle size of 0.250-0.425 mm, the nitrogen flow rate of 4 L/min and the nitrogen pressure of 2 bar. The use of the heat transfer medium could increase the bio-oil yield to a certain extent. Moreover, the water content of bio-oil produced with the counter-rotating twin screw reactor was relatively low, whereas the solids content was relatively high, compared to some other reactor configurations. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kascheev, Vladimir; Poluektov, Pavel; Ustinov, Oleg
The problems of spent reactor graphite are being shown, the options of its disposal is considered. Burning method is selected as the most efficient and waste-free. It is made a comparison of amounts of {sup 14}C that entering the environment in a natural way during the operation of nuclear power plants (NPPs) and as a result of the proposed burning of spent reactor graphite. It is shown the possibility of burning graphite with the arrival of {sup 14}C into the atmosphere within the maximum allowable emissions. This paper analyzes the different ways of spent reactor graphite treatment. It is shownmore » the possibility of its reprocessing by burning method in the air flow. It is estimated the effect of this technology to the overall radiation environment and compared its contribution to the general background radiation due to cosmic radiation and NPPs emission. It is estimated the maximum permissible speeds of burning reactor graphite (for example, RBMK graphite) for areas with different conditions of agricultural activities. (authors)« less
Wang, Jun; Liu, Xi; Wang, Xu -Dong; ...
2016-08-18
Human milk fat-style structured triacylglycerols were produced from microalgal oil in a continuous microfluidic reactor packed with immobilized lipase for the first time. A remarkably high conversion efficiency was demonstrated in the microreactor with reaction time being reduced by 8 times, Michaelis constant decreased 10 times, the lipase reuse times increased 2.25-fold compared to those in a batch reactor. In addition, the content of palmitic acid at sn-2 position (89.0%) and polyunsaturated fatty acids at sn-1, 3 positions (81.3%) are slightly improved compared to the product in a batch reactor. The increase of melting points (1.7 °C) and decrease ofmore » crystallizing point (3 °C) implied higher quality product was produced using the microfluidic technology. The main cost can be reduced from 212.3 to 14.6 per batch with the microreactor. Altogether, the microfluidic bioconversion technology is promising for modified functional lipids production allowing for cost-effective approach to produce high-value microalgal coproducts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jun; Liu, Xi; Wang, Xu -Dong
Human milk fat-style structured triacylglycerols were produced from microalgal oil in a continuous microfluidic reactor packed with immobilized lipase for the first time. A remarkably high conversion efficiency was demonstrated in the microreactor with reaction time being reduced by 8 times, Michaelis constant decreased 10 times, the lipase reuse times increased 2.25-fold compared to those in a batch reactor. In addition, the content of palmitic acid at sn-2 position (89.0%) and polyunsaturated fatty acids at sn-1, 3 positions (81.3%) are slightly improved compared to the product in a batch reactor. The increase of melting points (1.7 °C) and decrease ofmore » crystallizing point (3 °C) implied higher quality product was produced using the microfluidic technology. The main cost can be reduced from 212.3 to 14.6 per batch with the microreactor. Altogether, the microfluidic bioconversion technology is promising for modified functional lipids production allowing for cost-effective approach to produce high-value microalgal coproducts.« less
Wang, Jun; Liu, Xi; Wang, Xu-Dong; Dong, Tao; Zhao, Xing-Yu; Zhu, Dan; Mei, Yi-Yuan; Wu, Guo-Hua
2016-11-01
Human milk fat-style structured triacylglycerols were produced from microalgal oil in a continuous microfluidic reactor packed with immobilized lipase for the first time. A remarkably high conversion efficiency was demonstrated in the microreactor with reaction time being reduced by 8 times, Michaelis constant decreased 10 times, the lipase reuse times increased 2.25-fold compared to those in a batch reactor. In addition, the content of palmitic acid at sn-2 position (89.0%) and polyunsaturated fatty acids at sn-1, 3 positions (81.3%) are slightly improved compared to the product in a batch reactor. The increase of melting points (1.7°C) and decrease of crystallizing point (3°C) implied higher quality product was produced using the microfluidic technology. The main cost can be reduced from $212.3 to $14.6 per batch with the microreactor. Overall, the microfluidic bioconversion technology is promising for modified functional lipids production allowing for cost-effective approach to produce high-value microalgal coproducts. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hamann, S.; Börner, K.; Burlacov, I.; Spies, H.-J.; Strämke, M.; Strämke, S.; Röpcke, J.
2015-12-01
A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH4, C2H2, HCN, and NH3). With the help of OES, the rotational temperature of the screen plasma could be determined.
Utilization of solar energy in sewage sludge composting: Fertilizer effect and application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yiqun; Yu, Fang; Liang, Shengwen
2014-11-15
Highlights: • Solar energy technologies were utilized in aerobic sewage sludge composting. • Greenhouse and solar reactors were constructed to compare impacts on the composting. • Impatiens balsamina was planted in pot experiments to evaluate fertilizer effect. - Abstract: Three reactors, ordinary, greenhouse, and solar, were constructed and tested to compare their impacts on the composting of municipal sewage sludge. Greenhouse and solar reactors were designed to evaluate the use of solar energy in sludge composting, including their effects on temperature and compost quality. After 40 days of composting, it was found that the solar reactor could provide more stablemore » heat for the composting process. The average temperature of the solar reactor was higher than that of the other two systems, and only the solar reactor could maintain the temperature above 55 °C for more than 3 days. Composting with the solar reactor resulted in 31.3% decrease in the total organic carbon, increased the germination index to 91%, decreased the total nitrogen loss, and produced a good effect on pot experiments.« less
Xie, Shu-Guang; Wen, Dong-Hui; Shi, Dong-Wen; Tang, Xiao-Yan
2006-10-01
To investigate the reduction of chlorination by-products (CBPs) precursors using the fluidized-bed biofilm reactor (FBBR). Reduction of total organic carbon (TOC), ultraviolet absorbance (UV254), trihalomethane (THM) formation potential (THMFP), haloacetic acid (HAA) formation potential (HAAFP), and ammonia in FBBR were evaluated in detail. Results The reduction of TOC or UV254 was low, on average 12.6% and 4.7%, respectively, while the reduction of THMFP and HAAFP was significant. The reduction of ammonia was 30%-40% even below 3 degrees C, however, it could quickly rise to over 50% above 3degrees C. Conclusions The FBBR effectively reduces CBPs and ammonia in drinking water even at low temperature and seems to be a very promising and competitive drinking water reactor for polluted surface source waters, especially in China.
Exploratory screening tests of several alloys and coatings for automobile thermal reactors
NASA Technical Reports Server (NTRS)
Oldrieve, R. E.
1971-01-01
A total of 23 materials (including uncoated ferritic and austenitic iron-base alloys, uncoated nickel and cobalt-base superalloys, and several different coatings on AISI 304 stainless steel) were screened as test coupons on a rack in an automobile thermal reactor. Test exposures were generally 51 hours including 142 thermal cycles of 10 minutes at 1010 + or - 30 C test coupon temperature and 7-minutes cool-down to about 510 C. Materials that exhibited corrosion resistance better than that of Hastelloy X include: a ferritic iron alloy with 6 weight percent aluminum; three nickel-base superalloys; two diffused-aluminum coatings on AISI 304; and a Ni-Cr slurry-sprayed coating on AISI 304. Preliminary comparison is made on the performance of the directly impinged coupons and a reactor core of the same material.
Podmirseg, Sabine M; Seewald, Martin S A; Knapp, Brigitte A; Bouzid, Ourdia; Biderre-Petit, Corinne; Peyret, Pierre; Insam, Heribert
2013-08-01
Wood ash addition to biogas plants represents an alternative to commonly used landfilling by improving the reactor performance, raising the pH and alleviating potential limits of trace elements. This study is the first on the effects of wood ash on reactor conditions and microbial communities in cattle slurry-based biogas reactors. General process parameters [temperature, pH, electrical conductivity, ammonia, volatile fatty acids, carbon/nitrogen (C/N), total solids (TS), volatile solids, and gas quantity and quality] were monitored along with molecular analyses of methanogens by polymerase chain reaction- denaturing gradient gel electrophoresis and modern microarrays (archaea and bacteria). A prompt pH rise was observed, as was an increase in C/N ratio and volatile fatty acids. Biogas production was inhibited, but recovered to even higher production rates and methane concentration after single amendment. High sulphur levels in the wood ash generated hydrogen sulphide and potentially hampered methanogenesis. Methanosarcina was the most dominant methanogen in all reactors; however, diversity was higher in ash-amended reactors. Bacterial groups like Firmicutes, Proteobacteria and Acidobacteria were favoured, which could improve the hydrolytic efficiency of the reactors. We recommend constant monitoring of the chemical composition of the used wood ash and suggest that ash amendment is adequate if added to the substrate at a rate low enough to allow adaptation of the microbiota (e.g. 0.25 g g(-1) TS). It could further help to enrich digestate with important nutrients, for example phosphorus, calcium and magnesium, but further experiments are required for the evaluation of wood ash concentrations that are tolerable for anaerobic digestion.
Dawahra, S; Khattab, K; Saba, G
2015-07-01
Comparative studies for the conversion of the fuel from HEU to LEU in the Miniature Neutron Source Reactor (MNSR) have been performed using the MCNP4C and GETERA codes. The precise calculations of (135)Xe and (149)Sm concentrations and reactivities were carried out and compared during the MNSR operation time and after shutdown for the existing HEU fuel (UAl4-Al, 90% enriched) and the potential LEU fuels (U3Si2-Al, U3Si-Al, U9Mo-Al, 19.75% enriched and UO2, 12.6% enriched) in this paper using the MCNP4C and GETERA codes. It was found that the (135)Xe and (149)Sm reactivities did not reach their equilibrium reactivities during the daily operating time of the reactor. The (149)Sm reactivities could be neglected compared to (135)Xe reactivities during the reactor operating time and after shutdown. The calculations for the UAl4-Al produced the highest (135)Xe reactivity in all the studied fuel group during the reactor operation (0.39 mk) and after the reactor shutdown (0.735 mk), It followed by U3Si-Al (0.34 mk, 0.653 mk), U3Si2-Al (0.33 mk, 0.634 mk), U9Mo-Al (0.3 mk, 0.568 mk) and UO2 (0.24 mk, 0.448 mk) fuels, respectively. Finally, the results showed that the UO2 was the best candidate for fuel conversion to LEU in the MNSR since it gave the lowest (135)Xe reactivity during the reactor operation and after shutdown. Copyright © 2015 Elsevier Ltd. All rights reserved.
Coupled reactor kinetics and heat transfer model for heat pipe cooled reactors
NASA Astrophysics Data System (ADS)
Wright, Steven A.; Houts, Michael
2001-02-01
Heat pipes are often proposed as cooling system components for small fission reactors. SAFE-300 and STAR-C are two reactor concepts that use heat pipes as an integral part of the cooling system. Heat pipes have been used in reactors to cool components within radiation tests (Deverall, 1973); however, no reactor has been built or tested that uses heat pipes solely as the primary cooling system. Heat pipe cooled reactors will likely require the development of a test reactor to determine the main differences in operational behavior from forced cooled reactors. The purpose of this paper is to describe the results of a systems code capable of modeling the coupling between the reactor kinetics and heat pipe controlled heat transport. Heat transport in heat pipe reactors is complex and highly system dependent. Nevertheless, in general terms it relies on heat flowing from the fuel pins through the heat pipe, to the heat exchanger, and then ultimately into the power conversion system and heat sink. A system model is described that is capable of modeling coupled reactor kinetics phenomena, heat transfer dynamics within the fuel pins, and the transient behavior of heat pipes (including the melting of the working fluid). This paper focuses primarily on the coupling effects caused by reactor feedback and compares the observations with forced cooled reactors. A number of reactor startup transients have been modeled, and issues such as power peaking, and power-to-flow mismatches, and loading transients were examined, including the possibility of heat flow from the heat exchanger back into the reactor. This system model is envisioned as a tool to be used for screening various heat pipe cooled reactor concepts, for designing and developing test facility requirements, for use in safety evaluations, and for developing test criteria for in-pile and out-of-pile test facilities. .
Seo, Yongwon; Jo, Sung-Ho; Ryu, Chong Kul; Yi, Chang-Keun
2007-10-01
CO(2) capture from flue gas using a sodium-based solid sorbent was investigated in a bubbling fluidized-bed reactor. Carbonation and regeneration temperature on CO(2) removal was determined. The extent of the chemical reactivity after carbonation or regeneration was characterized via (13)C NMR. In addition, the physical properties of the sorbent such as pore size, pore volume, and surface area after carbonation or regeneration were measured by gas adsorption method (BET). With water vapor pretreatment, near complete CO(2) removal was initially achieved and maintained for about 1-2min at 50 degrees C with 2s gas residence time, while without proper water vapor pretreatment CO(2) removal abruptly decreased from the beginning. Carbonation was effective at the lower temperature over the 50-70 degrees C temperature range, while regeneration more effective at the higher temperature over the 135-300 degrees C temperature range. To maintain the initial 90% CO(2) removal, it would be necessary to keep the regeneration temperature higher than about 135 degrees C. The results obtained in this study can be used as basic data for designing and operating a large scale CO(2) capture process with two fluidized-bed reactors.
Structural modifications induced by ion irradiation and temperature in boron carbide B4C
NASA Astrophysics Data System (ADS)
Victor, G.; Pipon, Y.; Bérerd, N.; Toulhoat, N.; Moncoffre, N.; Djourelov, N.; Miro, S.; Baillet, J.; Pradeilles, N.; Rapaud, O.; Maître, A.; Gosset, D.
2015-12-01
Already used as neutron absorber in the current French nuclear reactors, boron carbide (B4C) is also considered in the future Sodium Fast Reactors of the next generation (Gen IV). Due to severe irradiation conditions occurring in these reactors, it is of primary importance that this material presents a high structural resistance under irradiation, both in the ballistic and electronic damage regimes. Previous works have shown an important structural resistance of boron carbide even at high neutron fluences. Nevertheless, the structural modification mechanisms due to irradiation are not well understood. Therefore the aim of this paper is to study structural modifications induced in B4C samples in different damage regimes. The boron carbide pellets were shaped and sintered by using spark plasma sintering method. They were then irradiated in several conditions at room temperature or 800 °C, either by favoring the creation of ballistic damage (between 1 and 3 dpa), or by favoring the electronic excitations using 100 MeV swift iodine ions (Se ≈ 15 keV/nm). Ex situ micro-Raman spectroscopy and Doppler broadening of annihilation radiation technique with variable energy slow positrons were coupled to follow the evolution of the B4C structure under irradiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2013-07-01
The Mathematics and Computation Division of the American Nuclear (ANS) and the Idaho Section of the ANS hosted the 2013 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M and C 2013). This proceedings contains over 250 full papers with topics ranging from reactor physics; radiation transport; materials science; nuclear fuels; core performance and optimization; reactor systems and safety; fluid dynamics; medical applications; analytical and numerical methods; algorithms for advanced architectures; and validation verification, and uncertainty quantification.
PARTIAL ECONOMIC STUDY OF STEAM COOLED HEAVY WATER MODERATED REACTORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1960-04-01
Steam-cooled reactors are compared with CAHDU for costs of Calandria tubes, pressure tubes. heavy water moderator, heavy water reflector, fuel supply, heat exchanger, and turbine generator. A direct-cycle lightsteam-cooled heavy- water-moderated pressure-tube reactor formed the basic reactor design for the study. Two methods of steam circulation through the reactor were examined. In both cases the steam was generated outside the reactor and superheated in the reactor core. One method consisted of a series of reactor and steam generator passes. The second method consisted of the Loeffler cycle and its modifications. The fuel was assumed to be natural cylindrical UO/sub 2/more » pellets sheathed in a hypothetical material with the nuclear properties of Zircaloy, but able to function at temperatures to 900 deg F. For the conditions assumed, the longer the rod, the higher the outlet temperature and therefore the higher the efficiency. The turbine cycle efficiency was calculated on the assumption that suitable steam generators are available. As the neutron losses to the pressure tubes were significant, an economic analysis of insulated pressure tubes is included. A description of the physics program for steam-cooled reactors is included. Results indicated that power from the steam-cooled reactor would cost 1.4 mills/ kwh compared with 1.25 mills/kwh for CANDU. (M.C.G.)« less
van Lier, J B; Lens, P N; Pol, L W
2001-01-01
Stringent environmental laws in Europe and Northern America lead to the development towards closure of the process water streams in pulp and paper mills. Application of a "zero-discharge" process is already a feasible option for the board and packaging paper industry, provided in-line treatment is applied. Concomitant energy conservation inside the mill results in process water temperatures of 50-60 degrees C. Thermophilic anaerobic treatment complemented with appropriate post-treatment is considered as the most cost-effective solution to meet re-use criteria of the process water and to keep its temperature. In the proposed closed-cycle, the anaerobic treatment step removes the largest fraction of the biodegradable COD and eliminates "S" as H2S from the process stream, without the use of additional chemicals. The anaerobic step is regarded as the only possible location to bleed "S" from the process water cycle. In laboratory experiments, the effect of upward liquid velocity (Vupw) and the specific gas loading rate (Vgas) on the S removal capacity of thermophilic anaerobic bio-reactors was investigated. Acidifying, sulphate reducing sludge bed reactors were fed with partly acidified synthetic paper mill wastewater and were operated at 55 degrees C and pH 6. The reactors were operated at organic loading rates up to 50 g COD.l-1.day-1 at COD/SO4(2-) ratios of 10. The effect of Vupw was researched by comparing the performance of a UASB reactor operated at 1.0 m.h-1 and an EGSB reactor, operated at 6.8 m.h-1. The Vupw had a strong effect on the fermentation patterns. In the UASB reactor, acidification yielded H2, acetate and propionate, leading to an accumulation of reducing equivalents. These were partly disposed of by the production of n-butyrate and n-valerate from propionate. In the EGSB reactor net acetate consumption was observed as well as high volumetric gas (CO2 and CH4) production rates. The higher gas production rates in the EGSB reactor resulted in higher S-stripping efficiencies. The effect of Vgas was further researched by comparing 2 UASB reactors which were sparged with N2 gas at a specific gas loading rate of 30 m3.m-2.day-1. In contrast to the regular UASB reactors, the gas-supplied UASB showed a more stable performance when the organic loading rates were increased. Also, the H2S stripping efficiency was 3-4 times higher in the gas-supplied UASB, reaching values of 67%. Higher values were not obtained owing to the relatively poor sulphate reduction efficiencies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moisseytsev, A.; Sienicki, J. J.
2011-04-12
The analysis of specific control strategies and dynamic behavior of the supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle has been extended to the two reactor types selected for continued development under the Generation IV Nuclear Energy Systems Initiative; namely, the Very High Temperature Reactor (VHTR) and the Sodium-Cooled Fast Reactor (SFR). Direct application of the standard S-CO{sub 2} recompression cycle to the VHTR was found to be challenging because of the mismatch in the temperature drop of the He gaseous reactor coolant through the He-to-CO{sub 2} reactor heat exchanger (RHX) versus the temperature rise of the CO{sub 2} through themore » RHX. The reference VHTR features a large temperature drop of 450 C between the assumed core outlet and inlet temperatures of 850 and 400 C, respectively. This large temperature difference is an essential feature of the VHTR enabling a lower He flow rate reducing the required core velocities and pressure drop. In contrast, the standard recompression S-CO{sub 2} cycle wants to operate with a temperature rise through the RHX of about 150 C reflecting the temperature drop as the CO{sub 2} expands from 20 MPa to 7.4 MPa in the turbine and the fact that the cycle is highly recuperated such that the CO{sub 2} entering the RHX is effectively preheated. Because of this mismatch, direct application of the standard recompression cycle results in a relatively poor cycle efficiency of 44.9%. However, two approaches have been identified by which the S-CO{sub 2} cycle can be successfully adapted to the VHTR and the benefits of the S-CO{sub 2} cycle, especially a significant gain in cycle efficiency, can be realized. The first approach involves the use of three separate cascaded S-CO{sub 2} cycles. Each S-CO{sub 2} cycle is coupled to the VHTR through its own He-to-CO{sub 2} RHX in which the He temperature is reduced by 150 C. The three respective cycles have efficiencies of 54, 50, and 44%, respectively, resulting in a net cycle efficiency of 49.3 %. The other approach involves reducing the minimum cycle pressure significantly below the critical pressure such that the temperature drop in the turbine is increased while the minimum cycle temperature is maintained above the critical temperature to prevent the formation of a liquid phase. The latter approach also involves the addition of a precooler and a third compressor before the main compressor to retain the benefits of compression near the critical point with the main compressor. For a minimum cycle pressure of 1 MPa, a cycle efficiency of 49.5% is achieved. Either approach opens up the door to applying the SCO{sub 2} cycle to the VHTR. In contrast, the SFR system typically has a core outlet-inlet temperature difference of about 150 C such that the standard recompression cycle is ideally suited for direct application to the SFR. The ANL Plant Dynamics Code has been modified for application to the VHTR and SFR when the reactor side dynamic behavior is calculated with another system level computer code such as SAS4A/SYSSYS-1 in the SFR case. The key modification involves modeling heat exchange in the RHX, accepting time dependent tabular input from the reactor code, and generating time dependent tabular input to the reactor code such that both the reactor and S-CO{sub 2} cycle sides can be calculated in a convergent iterative scheme. This approach retains the modeling benefits provided by the detailed reactor system level code and can be applied to any reactor system type incorporating a S-CO{sub 2} cycle. This approach was applied to the particular calculation of a scram scenario for a SFR in which the main and intermediate sodium pumps are not tripped and the generator is not disconnected from the electrical grid in order to enhance heat removal from the reactor system thereby enhancing the cooldown rate of the Na-to-CO{sub 2} RHX. The reactor side is calculated with SAS4A/SASSYS-1 while the S-CO{sub 2} cycle is calculated with the Plant Dynamics Code with a number of iterations over a timescale of 500 seconds. It is found that the RHX undergoes a maximum cooldown rate of {approx} -0.3 C/s. The Plant Dynamics Code was also modified to decrease its running time by replacing the compressible flow form of the momentum equation with an incompressible flow equation for use inside of the cooler or recuperators where the CO{sub 2} has a compressibility similar to that of a liquid. Appendices provide a quasi-static control strategy for a SFR as well as the self-adaptive linear function fitting algorithm developed to produce the tabular data for input to the reactor code and Plant Dynamics Code from the detailed output of the other code.« less
Liu, Hengyuan; Chen, Nan; Feng, Chuanping; Tong, Shuang; Li, Rui
2017-05-01
This study aimed to investigate the effect of electro-stimulation on denitrifying bacterial growth in a bio-electrochemical reactor, and the growth were modeled using modified Gompertz model under different current densities at three C/Ns. It was found that the similar optimum current density of 250mA/m 2 was obtained at C/N=0.75, 1.00 and 1.25, correspondingly the maximum nitrate removal efficiencies were 98.0%, 99.2% and 99.9%. Moreover, ATP content and cell membrane permeability of denitrifying bacteria were significantly increased at optimum current density. Furthermore, modified Gompertz model fitted well with the microbial growth curves, and the highest maximum growth rates (µ max ) and shorter lag time were obtained at the optimum current density for all C/Ns. This study demonstrated that the modified Gompertz model could be used for describing microbial growth under different current densities and C/Ns in a bio-electrochemical denitrification reactor, and it provided an alternative for improving the performance of denitrification process. Copyright © 2017 Elsevier Ltd. All rights reserved.
He, Qiang; Zhu, Yinying; Fan, Leilei; Ai, Hainan; Huangfu, Xiaoliu; Chen, Mei
2017-03-01
Emission of nitrous oxide (N 2 O) during biological wastewater treatment is of growing concern. This paper reports findings of the effects of carbon/nitrogen (C/N) ratio on N 2 O production rates in a laboratory-scale biological aerated filter (BAF) reactor, focusing on the biofilm during nitrification. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and microelectrode technology were utilized to evaluate the mechanisms associated with N 2 O production during wastewater treatment using BAF. Results indicated that the ability of N 2 O emission in biofilm at C/N ratio of 2 was much stronger than at C/N ratios of 5 and 8. PCR-DGGE analysis showed that the microbial community structures differed completely after the acclimatization at tested C/N ratios (i.e., 2, 5, and 8). Measurements of critical parameters including dissolved oxygen, oxidation reduction potential, NH 4 + -N, NO 3 - -N, and NO 2 - -N also demonstrated that the internal micro-environment of the biofilm benefit N 2 O production. DNA analysis showed that Proteobacteria comprised the majority of the bacteria, which might mainly result in N 2 O emission. Based on these results, C/N ratio is one of the parameters that play an important role in the N 2 O emission from the BAF reactors during nitrification.
Analysis of fluid fuel flow to the neutron kinetics on molten salt reactor FUJI-12
NASA Astrophysics Data System (ADS)
Aji, Indarta Kuncoro; Waris, Abdul; Permana, Sidik
2015-09-01
Molten Salt Reactor is a reactor are operating with molten salt fuel flowing. This condition interpret that the neutron kinetics of this reactor is affected by the flow rate of the fuel. This research analyze effect by the alteration velocity of the fuel by MSR type Fuji-12, with fuel composition LiF-BeF2-ThF4-233UF4 respectively 71.78%-16%-11.86%-0.36%. Calculation process in this study is performed numerically by SOR and finite difference method use C programming language. Data of reactivity, neutron flux, and the macroscopic fission cross section for calculation process obtain from SRAC-CITATION (Standard thermal Reactor Analysis Code) and JENDL-4.0 data library. SRAC system designed and developed by JAEA (Japan Atomic Energy Agency). This study aims to observe the effect of the velocity of fuel salt to the power generated from neutron precursors at fourth year of reactor operate (last critical condition) with number of multiplication effective; 1.0155.
System Analysis for Decay Heat Removal in Lead-Bismuth-Cooled Natural-Circulation Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakai, Takaaki; Enuma, Yasuhiro; Iwasaki, Takashi
2004-03-15
Decay heat removal analyses for lead-bismuth-cooled natural-circulation reactors are described in this paper. A combined multidimensional plant dynamics code (MSG-COPD) has been developed to conduct the system analysis for the natural-circulation reactors. For the preliminary study, transient analysis has been performed for a 300-MW(thermal) lead-bismuth-cooled reactor designed by Argonne National Laboratory. In addition, decay heat removal characteristics of a 400-MW(electric) lead-bismuth-cooled natural-circulation reactor designed by the Japan Nuclear Cycle Development Institute (JNC) has been evaluated by using MSG-COPD. The primary reactor auxiliary cooling system (PRACS) is prepared for the JNC concept to get sufficient heat removal capacity. During 2000 smore » after the transient, the outlet temperature shows increasing tendency up to the maximum temperature of 430 deg. C because the buoyancy force in a primary circulation path is temporarily reduced. However, the natural circulation is recovered by the PRACS system, and the outlet temperature decreases successfully.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aleksandrowicz, J.
1963-03-01
The experimental equipment used in the work at the horizontal reactor channels is listed. Diagrams of the utilization of the nominal reactor power and core loading are given, the reactivity fractions of the separate fuel assemblies are detonated, together with the diagram of reactivity versus burnup. Reactor channels and space used for sample irradiation and isotope production are described, and the total number of irradiations is given. Results of the measurements connected with the routine reactor operation are quoted, namely: analysis of water purity in the primary circuit, analysis of the work of the ion exchanger and mechanical filter, andmore » analysis of air activity in the special ventilation system. Data are given concerning radiation protection of personnel, including individual monitoring. Leak testing of the fuel elements is discussed. Damage of the reactor equipment and appearance of alarm signals are described. (auth)« less
Microreactor Development for Martian In-Situ Propellant Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holladay, Jamie D.; Brooks, Kriston P.; Wegeng, Robert S.
2007-01-30
The second part of the Martian In-situ Propellant Production (MIPPS) system reviews the development of the Sabatier Reactor (SR). The microchannel SR had integrated cooling channels as well as reaction channels. It was <100cc in volume. The reactor utilized a proprietary catalyst. When operated at 400oC 70-80% CO2 conversion was achieved which enabled ~0.0125 kg CH4/hr production, or 1/8th the target mission. The modular design of the microchannel reactors would enable simple scale up to full scale production for the proposed mission.
Spallina, Vincenzo; Melchiori, Tommaso; Gallucci, Fausto; van Sint Annaland, Martin
2015-03-18
The integration of mixed ionic electronic conducting (MIEC) membranes for air separation in a small-to-medium scale unit for H2 production (in the range of 650-850 Nm3/h) via auto-thermal reforming of methane has been investigated in the present study. Membranes based on mixed ionic electronic conducting oxides such as Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) give sufficiently high oxygen fluxes at temperatures above 800 °C with high purity (higher than 99%). Experimental results of membrane permeation tests are presented and used for the reactor design with a detailed reactor model. The assessment of the H2 plant has been carried out for different operating conditions and reactor geometry and an energy analysis has been carried out with the flowsheeting software Aspen Plus, including also the turbomachines required for a proper thermal integration. A micro-gas turbine is integrated in the system in order to supply part of the electricity required in the system. The analysis of the system shows that the reforming efficiency is in the range of 62%-70% in the case where the temperature at the auto-thermal reforming membrane reactor (ATR-MR) is equal to 900 °C. When the electric consumption and the thermal export are included the efficiency of the plant approaches 74%-78%. The design of the reactor has been carried out using a reactor model linked to the Aspen flowsheet and the results show that with a larger reactor volume the performance of the system can be improved, especially because of the reduced electric consumption. From this analysis it has been found that for a production of about 790 Nm3/h pure H2, a reactor with a diameter of 1 m and length of 1.8 m with about 1500 membranes of 2 cm diameter is required.
Thermal Aspects of Using Alternative Nuclear Fuels in Supercritical Water-Cooled Reactors
NASA Astrophysics Data System (ADS)
Grande, Lisa Christine
A SuperCritical Water-cooled Nuclear Reactor (SCWR) is a Generation IV concept currently being developed worldwide. Unique to this reactor type is the use of light-water coolant above its critical point. The current research presents a thermal-hydraulic analysis of a single fuel channel within a Pressure Tube (PT)-type SCWR with a single-reheat cycle. Since this reactor is in its early design phase many fuel-channel components are being investigated in various combinations. Analysis inputs are: steam cycle, Axial Heat Flux Profile (AHFP), fuel-bundle geometry, and thermophysical properties of reactor coolant, fuel sheath and fuel. Uniform and non-uniform AHFPs for average channel power were applied to a variety of alternative fuels (mixed oxide, thorium dioxide, uranium dicarbide, uranium nitride and uranium carbide) enclosed in an Inconel-600 43-element bundle. The results depict bulk-fluid, outer-sheath and fuel-centreline temperature profiles together with the Heat Transfer Coefficient (HTC) profiles along the heated length of fuel channel. The objective is to identify the best options in terms of fuel, sheath material and AHFPS in which the outer-sheath and fuel-centreline temperatures will be below the accepted temperature limits of 850°C and 1850°C respectively. The 43-element Inconel-600 fuel bundle is suitable for SCWR use as the sheath-temperature design limit of 850°C was maintained for all analyzed cases at average channel power. Thoria, UC2, UN and UC fuels for all AHFPs are acceptable since the maximum fuel-centreline temperature does not exceed the industry accepted limit of 1850°C. Conversely, the fuel-centreline temperature limit was exceeded for MOX at all AHFPs, and UO2 for both cosine and downstream-skewed cosine AHFPs. Therefore, fuel-bundle modifications are required for UO2 and MOX to be feasible nuclear fuels for SCWRs.
Hybrid C-nanotubes/Si 3D nanostructures by one-step growth in a dual-plasma reactor
NASA Astrophysics Data System (ADS)
Toschi, Francesco; Orlanducci, Silvia; Guglielmotti, Valeria; Cianchetta, Ilaria; Magni, Corrado; Terranova, Maria Letizia; Pasquali, Matteo; Tamburri, Emanuela; Matassa, Roberto; Rossi, Marco
2012-06-01
Hybrid nanostructures consisting of Si polycrystalline nanocones, with an anemone-like termination coated with C-nanotubes bundles, have been generated on a (1 0 0) Si substrate in a dual mode microwave/radio-frequency plasma reactor. The substrate is both heated and bombarded by energetic H ions during the synthesis process. The nanocones growth is explained considering pull of the growing Si nanocrystalline phase along the lines of the electrical field, likely via a molten/recrystallization mechanism. The one-step building of the achieved complex 3D architectures is described in terms of dynamic competition between Si and C nanotubes growth under the peculiar conditions of kinetically driven processes.
Carbon-14 bioassay for decommissioning of Hanford reactors.
Carbaugh, Eugene H; Watson, David J
2012-05-01
The production reactors at the U.S. Department of Energy Hanford Site used large graphite piles as the moderator. As part of long-term decommissioning plans, the potential need for ¹⁴C radiobioassay of workers was identified. Technical issues associated with ¹⁴C bioassay and worker monitoring were investigated, including anticipated graphite characterization, potential intake scenarios, and the bioassay capabilities that may be required to support the decommissioning of the graphite piles. A combination of urine and feces sampling would likely be required for the absorption type S ¹⁴C anticipated to be encountered. However, the concentrations in the graphite piles appear to be sufficiently low that dosimetrically significant intakes of ¹⁴C are not credible, thus rendering moot the need for such bioassay.
1980-12-01
UNSHIELDED NUCLEAR REACTOR by H. A. Robitaille and B. E. Hoffarth D T ICS ELECTE SEP 1 5 i9813 C- LA . DISTRIBUTION STATEMENT A O PROJECT NO. 1 DECEMBER 1980...et de neutrons b diff6rentes distances jusqu’ 1100 m~tres du r6acteur ncldaire & neutrons rapides de la Pulse Radiation Division de la U.S. Army...u)UOU N~nl4 N0in0 -CuD z f- 000 LUU ’4 :1O 00 w4 w4 w (u3)uU3 N~n-A NO.Ln3 rc ino OQQ z ca co, 0 0- C ) LU c C. M CU m CD 0 LA (u3uOU N~n1.4No
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
During this time period, at WVU, we tried several methods to eliminate problems related to condensation of heavier products when reduced Mo-Ni-K/C materials were used as catalysts. We then resumed our kinetic study on the reduced Mo-Ni-K/C catalysts. We have also obtained same preliminary results in our attempts to analyze quantitatively the temperature-programmed reduction (TPR) spectra for C-supported Mo-based catalysts. We have completed the kinetic study for the sulfided Co-K-MoS /C catalyst. We have compared the results of methanol synthesis 2 using the membrane reactor with those using a simple plug-flow reactor. At UCC, the complete characterization of selected catalystsmore » has been completed. The results suggest that catalyst pretreatment under different reducing conditions yield different surface compositions and thus different catalytic reactivities.« less
Thomas, Simon F.; Rooks, Paul; Rudin, Fabian; Atkinson, Sov; Goddard, Paul; Bransgrove, Rachel M.; Mason, Paul T.; Allen, Michael J.
2014-01-01
We show in this study that the combination of a swirl flow reactor and an antimicrobial agent (in this case copper alginate beads) is a promising technique for the remediation of contaminated water in waste streams recalcitrant to UV-C treatment. This is demonstrated by comparing the viability of both common and UV-C resistant organisms in operating conditions where UV-C proves ineffective - notably high levels of solids and compounds which deflect UV-C. The swirl flow reactor is easy to construct from commonly available plumbing parts and may prove a versatile and powerful tool in waste water treatment in developing countries. PMID:25541706
Carbon-14 Bioassay for Decommissioning of Hanford Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carbaugh, Eugene H.; Watson, David J.
2012-05-01
The old production reactors at the US Department of Energy Hanford Site used large graphite piles as the moderator. As part of long-term decommissioning plans, the potential need for 14C radiobioassay of workers was identified. Technical issues associated with 14C bioassay and worker monitoring were investigated, including anticipated graphite characterization, potential intake scenarios, and the bioassay capabilities that may be required to support the decommissioning of the graphite piles. A combination of urine and feces sampling would likely be required for the absorption type S 14C anticipated to be encountered. However the concentrations in the graphite piles appear to bemore » sufficiently low that dosimetrically significant intakes of 14C are not credible, thus rendering moot the need for such bioassay.« less
Gotoh, Yoshimi; Iwata, Goichi; Choh, Kyaw; Kubota, Mitsuhiro; Matsuda, Hitoki
2011-10-01
A comparison of CaOs produced by calcining two types of hydrated lime and calcium carbonate was made for decomposition of trichloroethylene and in-situ dry sorption of the decomposed Cl-products using a lab-scale gas flow type tubular packed bed reactor. About 20 mg of CaO sample was mixed with about 2 g of Al2O3 particles and packed in the reactor and allowed to react with a flowing standard gas containing 500 ppm of C2HCl3 (N2 balance) at 673 and 873 K, under the condition that the reaction of CaO with C2HCl3 might be completed within a few hours. It was found that no thermal decomposition of C2HCl3 at or below 673 K was observed in a reactor packed only with Al2O3 particles. However, a considerable amount of decomposition of C2HCl3 was obtained in a reactor packed with CaO and Al2O3, even at 673 K. For 1 mol of CaO prepared by calcining highly reactive Ca(OH)2 at 673 K, decomposition of 0.42 mol of C2HCl3 and in-situ absorption product of 0.53 mol of CaCl2 were obtained. At 873 K, about 46% of C2HCl3 was thermally decomposed. The total amount of C2HCl3 decomposed in CaO-Al2O3 particle bed at 873 K became nearly twice larger than that at 673 K. For 1 mol of CaO prepared by calcining highly reactive Ca(OH)2 at 873 K, decomposition of 0.59 mol of C2HCl3 and in-situ absorption product of 0.67 mol of CaCl2 were obtained. Small amounts of C2Cl2, C2Cl4, CCl4, etc. were detected during decomposition of C2HCl3 at 673 and 873 K. It was recognized that the data on decomposition of C2HCl3 as well as in-situ dry sorption of Cl-products in CaO particle bed were correlated with specific surface area of the CaO employed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Gerczak, Tyler J.; Hunn, John D.; Lowden, Richard A.; ...
2016-08-15
Tristructural isotropic (TRISO) coated particle fuel is a promising fuel form for advanced reactor concepts such as high temperature gas-cooled reactors (HTGR) and is being developed domestically under the US Department of Energy’s Nuclear Reactor Technologies Initiative in support of Advanced Reactor Technologies. The fuel development and qualification plan includes a series of fuel irradiations to demonstrate fuel performance from the laboratory to commercial scale. The first irradiation campaign, AGR-1, included four separate TRISO fuel variants composed of multiple, laboratory-scale coater batches. The second irradiation campaign, AGR-2, included TRISO fuel particles fabricated by BWX Technologies with a larger coater representativemore » of an industrial-scale system. The SiC layers of as-fabricated particles from the AGR-1 and AGR-2 irradiation campaigns have been investigated by electron backscatter diffraction (EBSD) to provide key information about the microstructural features relevant to fuel performance. The results of a comprehensive study of multiple particles from all constituent batches are reported. The observations indicate that there were microstructural differences between variants and among constituent batches in a single variant. Finally, insights on the influence of microstructure on the effective diffusivity of key fission products in the SiC layer are also discussed.« less
Mujtaba, Ghulam; Lee, Kisay
2017-09-01
The use of algal-bacterial symbiotic association establishes a sustainable and cost-effective strategy in wastewater treatment. Using municipal wastewater, the removal performances of inorganic nutrients (nitrogen and phosphorus) and organic pollutants were investigated by the co-culture system having different inoculum ratios (R) of suspended activated sludge to alginate-immobilized microalgae Chlorella vulgaris. The co-culture reactors with lower R ratios obtained more removal of nitrogen than in pure culture of C. vulgaris. The reactor with R = 0.5 (sludge/microalgae) showed the highest performance representing 66% removal after 24 h and 95% removal after 84 h. Phosphorus was completely eliminated (100%) in the co-culture system with inoculum ratios of 0.5 and 1.0 after 24 h and in the pure C. vulgaris culture after 36 h. The COD level was greatly reduced in the activated sludge reactor, while, it was increasing in pure C. vulgaris culture after 24 h of incubation. However, COD was almost stabilized after 24 h in the reactors with high R ratios such as 2.0, 5.0, and 10 due to the higher concentration of activated sludge. The growth of C. vulgaris was promoted from 0.03 g/L/d to 0.05 g/L/d in the co-culture of low inoculum ratios such as R = 0.5, implying that there exist an optimum inoculum ratio in the co-culture system in order to achieve efficient removal of nutrients. Copyright © 2017 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-23
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Digital Instrumentation and Control Systems; Notice of Meeting The ACRS Subcommittee on Digital Instrumentation and Control Systems (DI&C) will hold a meeting on September 7, 2011, Room T-2B1, 11545 Rockville...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-03
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Digital Instrumentation and Control Systems; Notice of Meeting The ACRS Subcommittee on Digital Instrumentation and Control Systems (DI&C) will hold a meeting on June 7, 2011, Room T-2B1, 11545 Rockville Pike...
A KINETIC MODEL FOR H2O2/UV PROCESS IN A COMPLETELY MIXED BATCH REACTOR. (R825370C076)
A dynamic kinetic model for the advanced oxidation process (AOP) using hydrogen peroxide and ultraviolet irradiation (H2O2/UV) in a completely mixed batch reactor (CMBR) is developed. The model includes the known elementary chemical and photochemical reac...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-03
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Digital Instrumentation and Control Systems; Notice of Meeting The ACRS Subcommittee on Digital Instrumentation and Control Systems (DI&C) will hold a meeting on October 30, 2012, Room T-2B1, 11545 Rockville...
Sodium Based Heat Pipe Modules for Space Reactor Concepts: Stainless Steel SAFE-100 Core
NASA Technical Reports Server (NTRS)
Martin, James J.; Reid, Robert S.
2004-01-01
A heat pipe cooled reactor is one of several candidate reactor cores being considered for advanced space power and propulsion systems to support future space exploration applications. Long life heat pipe modules, with designs verified through a combination of theoretical analysis and experimental lifetime evaluations, would be necessary to establish the viability of any of these candidates, including the heat pipe reactor option. A hardware-based program was initiated to establish the infrastructure necessary to build heat pipe modules. This effort, initiated by Los Alamos National Laboratory and referred to as the Safe Affordable Fission Engine (SAFE) project, set out to fabricate and perform non-nuclear testing on a modular heat pipe reactor prototype that can provide 100 kilowatt from the core to an energy conversion system at 700 C. Prototypic heat pipe hardware was designed, fabricated, filled, closed-out and acceptance tested.
Steam reforming of heptane in a fluidized bed membrane reactor
NASA Astrophysics Data System (ADS)
Rakib, Mohammad A.; Grace, John R.; Lim, C. Jim; Elnashaie, Said S. E. H.
n-Heptane served as a model compound to study steam reforming of naphtha as an alternative feedstock to natural gas for production of pure hydrogen in a fluidized bed membrane reactor. Selective removal of hydrogen using Pd 77Ag 23 membrane panels shifted the equilibrium-limited reactions to greater conversion of the hydrocarbons and lower yields of methane, an intermediate product. Experiments were conducted with no membranes, with one membrane panel, and with six panels along the height of the reactor to understand the performance improvement due to hydrogen removal in a reactor where catalyst particles were fluidized. Results indicate that a fluidized bed membrane reactor (FBMR) can provide a compact reformer for pure hydrogen production from a liquid hydrocarbon feedstock at moderate temperatures (475-550 °C). Under the experimental conditions investigated, the maximum achieved yield of pure hydrogen was 14.7 moles of pure hydrogen per mole of heptane fed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamivand, Mahmood; Yang, Ying; Busby, Jeremy T.
The current work combines the Cluster Dynamics (CD) technique and CALPHAD-based precipitation modeling to address the second phase precipitation in cold-worked (CW) 316 stainless steels (SS) under irradiation at 300–400 °C. CD provides the radiation enhanced diffusion and dislocation evolution as inputs for the precipitation model. The CALPHAD-based precipitation model treats the nucleation, growth and coarsening of precipitation processes based on classical nucleation theory and evolution equations, and simulates the composition, size and size distribution of precipitate phases. We benchmark the model against available experimental data at fast reactor conditions (9.4 × 10 –7 dpa/s and 390 °C) and thenmore » use the model to predict the phase instability of CW 316 SS under light water reactor (LWR) extended life conditions (7 × 10 –8 dpa/s and 275 °C). The model accurately predicts the γ' (Ni 3Si) precipitation evolution under fast reactor conditions and that the formation of this phase is dominated by radiation enhanced segregation. The model also predicts a carbide volume fraction that agrees well with available experimental data from a PWR reactor but is much higher than the volume fraction observed in fast reactors. We propose that radiation enhanced dissolution and/or carbon depletion at sinks that occurs at high flux could be the main sources of this inconsistency. The integrated model predicts ~1.2% volume fraction for carbide and ~3.0% volume fraction for γ' for typical CW 316 SS (with 0.054 wt% carbon) under LWR extended life conditions. Finally, this work provides valuable insights into the magnitudes and mechanisms of precipitation in irradiated CW 316 SS for nuclear applications.« less
Mamivand, Mahmood; Yang, Ying; Busby, Jeremy T.; ...
2017-03-11
The current work combines the Cluster Dynamics (CD) technique and CALPHAD-based precipitation modeling to address the second phase precipitation in cold-worked (CW) 316 stainless steels (SS) under irradiation at 300–400 °C. CD provides the radiation enhanced diffusion and dislocation evolution as inputs for the precipitation model. The CALPHAD-based precipitation model treats the nucleation, growth and coarsening of precipitation processes based on classical nucleation theory and evolution equations, and simulates the composition, size and size distribution of precipitate phases. We benchmark the model against available experimental data at fast reactor conditions (9.4 × 10 –7 dpa/s and 390 °C) and thenmore » use the model to predict the phase instability of CW 316 SS under light water reactor (LWR) extended life conditions (7 × 10 –8 dpa/s and 275 °C). The model accurately predicts the γ' (Ni 3Si) precipitation evolution under fast reactor conditions and that the formation of this phase is dominated by radiation enhanced segregation. The model also predicts a carbide volume fraction that agrees well with available experimental data from a PWR reactor but is much higher than the volume fraction observed in fast reactors. We propose that radiation enhanced dissolution and/or carbon depletion at sinks that occurs at high flux could be the main sources of this inconsistency. The integrated model predicts ~1.2% volume fraction for carbide and ~3.0% volume fraction for γ' for typical CW 316 SS (with 0.054 wt% carbon) under LWR extended life conditions. Finally, this work provides valuable insights into the magnitudes and mechanisms of precipitation in irradiated CW 316 SS for nuclear applications.« less
Anaerobic treatability of wastewater contaminated with propylene glycol.
Sezgin, Naim; Tonuk, Gulseven Ubay
2013-09-01
The purpose of this study was to investigate the biodegradability of propylene glycol in anaerobic conditions by using methanogenic culture. A master reactor was set up to develop a culture that would be acclimated to propylene glycol. After reaching steady-state, culture was transferred to serum bottles. Three reactors with same initial conditions were run for consistency. Propylene glycol was completely biodegradable under anaerobic methanogenic conditions. Semi-continuous reactors operated at a temperature of 35°C had consistently achieved a propylene glycol removal of higher than 95 % based on chemical oxygen demand (COD). It was found that in semi-continuous reactors, anaerobic treatment of propylene glycol at concentrations higher than 1,500 mg COD m(-3) day(-1) was not convenient due to instable effluent COD.
Advanced sample environments for in situ neutron diffraction studies of nuclear materials
NASA Astrophysics Data System (ADS)
Reiche, Helmut Matthias
Generation IV nuclear reactor concepts, such as the supercritical-water-cooled nuclear reactor (SCWR), are actively researched internationally. Operating conditions above the critical point of water (374°C, 22.1 MPa) and fuel core temperature that potentially exceed 1850°C put a high demand on the surrounding materials. For their safe application, it is essential to characterize and understand the material properties on an atomic scale such as crystal structure and grain orientation (texture) changes as a function of temperature and stress. This permits the refinement of models predicting the macroscopic behavior of the material. Neutron diffraction is a powerful tool in characterizing such crystallographic properties due to their deep penetration depth into condensed matter. This leads to the ability to study bulk material properties, as opposed to surface effects, and allows for complex sample environments to study e.g. the individual contributions of thermo-mechanical processing steps during manufacturing, operating or accident scenarios. I present three sample environments for in situ neutron diffraction studies that provide such crystallographic information and have been successfully commissioned and integrated into the user program of the High Pressure -- Preferred Orientation (HIPPO) diffractometer at the Los Alamos Neutron Science Center (LANSCE) user facility. I adapted a sample changer for reliable and fast automated texture measurements of multiple specimens. I built a creep furnace combining a 2700 N load frame with a resistive vanadium furnace, capable of temperatures up to 1000°C, and manipulated by a pair of synchronized rotation stages. This combination allows following deformation and temperature dependent texture and strain evolutions in situ. Utilizing the presented sample changer and creep furnace we studied pressure tubes made of Zr-2.5wt%Nb currently employed in CANDURTM nuclear reactors and proposed for future SCWRs, acting as the primary containment vessel of high temperature heavy water (D2O) inside the reactor core. The measured sample texture shows that upon traversing the phase transition, which proceeded according to the Burger orientation relationship, variant selection occurred during heating and cooling of the zirconium alloy. Experimental results of lattice strains depending on the crystallographic orientation can be used to calculate strain pole figures which grant insight into the three-dimensional mechanical response of a polycrystalline aggregate and represent an extremely powerful material model validation tool. Lastly, I developed a resistive graphite high-temperature furnace with sample motion for in situ crystal structure and texture measurements of nuclear materials at steady-state temperatures up to at least 2200°C. This permits in situ observation of e.g. phase transitions and coefficients of thermal expansion, as well as phase formation and texture development during solidification. Utilizing this apparatus, I investigated the carbothermic reduction of UO2 nanopowder forming uranium carbide, a promising Generation IV reactor fuel. The onset of the UO2 + 2C → UC + CO2 reaction was observed at 1440°C with the bulk portion being complete at 1500°C. I describe the novel synthesis for this nanoparticle UO2 powder, which closely imitates observed nano grains in partially burnt reactor fuels. Of the three opposing structure models reported for the non-quenchable cubic UC2 phase, stable between 1769°C and 2560°C, the NaCl-type structure according to Bowman is found to be correct. This is deemed major progress as the CaF2-type structure was used for recent thermal modeling of safety critical factors in nuclear reactors. A temperature dependent increase in density due to carbon diffusion has been observed and quantified. I provide first experimental data of an unspecified, reversible order-disorder transition in this delta-phase with its onset at ˜1800°C which is likely due to rotating C2 molecules in the sublattice.
Tom, Asha P; Pawels, Renu; Haridas, Ajit
2016-03-01
Municipal solid waste with high moisture content is the major hindrance in the field of waste to energy conversion technologies and here comes the importance of biodrying process. Biodrying is a convective evaporation process, which utilizes the biological heat developed from the aerobic reactions of organic components. The numerous end use possibilities of the output are making the biodrying process versatile, which is possible by achieving the required moisture reduction, volume reduction and bulk density enhancement through the effective utilization of biological heat. In the present case study the detailed research and development of an innovative biodrying reactor has been carried out for the treatment of mixed municipal solid waste with high moisture content. A pilot scale biodrying reactor of capacity 565 cm(3) was designed and set up in the laboratory. The reactor dimensions consisted of an acrylic chamber of 60 cm diameter and 200 cm height, and it was enveloped by an insulation chamber. The insulation chamber was provided to minimise the heat losses through the side walls of the reactor. It simulates the actual condition in scaling up of the reactor, since in bigger scale reactors the heat losses through side walls will be negligible while comparing the volume to surface area ratio. The mixed municipal solid waste with initial moisture content of 61.25% was synthetically prepared in the laboratory and the reactor was fed with 109 kg of this substrate. Aerobic conditions were ensured inside the reactor chamber by providing the air at a constant rate of 40 litre per minute, and the direction of air flow was from the specially designed bottom air chamber to the reactor matrix top. The self heating inside reactor matrix was assumed in the range of 50-60°C during the design stage. Innovative biodrying reactor was found to be efficiently working with the temperature inside the reactor matrix rising to a peak value of 59°C by the fourth day of experiment (the peak observed at a height of 60 cm from the air supply). The process analyses results were promising with a reduction of 56.5% of volume, and an increase of 52% of bulk density of the substrate at the end of 33 days of biodrying. Also the weight of mixed MSW substrate has been reduced by 33.94% in 20 days of reaction and the average moisture reduction of the matrix was 20.81% (reduced from the initial value of 61.25% to final value of 48.5%). The moisture reduction would have been higher, if the condensation of evaporated water at the reactor matrix has been avoided. The non-homogeneous moisture reduction along the height of the reactor is evident and this needs further innovation. The leachate production has been completely eliminated in the innovative biodrying reactor and that is a major achievement in the field of municipal solid waste management technology. Copyright © 2016 Elsevier Ltd. All rights reserved.
The effect of core configuration on temperature coefficient of reactivity in IRR-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bettan, M.; Silverman, I.; Shapira, M.
1997-08-01
Experiments designed to measure the effect of coolant moderator temperature on core reactivity in an HEU swimming pool type reactor were performed. The moderator temperature coefficient of reactivity ({alpha}{sub {omega}}) was obtained and found to be different in two core loadings. The measured {alpha}{sub {omega}} of one core loading was {minus}13 pcm/{degrees}C at the temperature range of 23-30{degrees}C. This value of {alpha}{sub {omega}} is comparable to the data published by the IAEA. The {alpha}{sub {omega}} measured in the second core loading was found to be {minus}8 pcm/{degrees}C at the same temperature range. Another phenomenon considered in this study is coremore » behavior during reactivity insertion transient. The results were compared to a core simulation using the Dynamic Simulator for Nuclear Power Plants. It was found that in the second core loading factors other than the moderator temperature influence the core reactivity more than expected. These effects proved to be extremely dependent on core configuration and may in certain core loadings render the reactor`s reactivity coefficient undesirable.« less
Lifetime Neutron Fluence Analysis of the Ringhals Unit 1 Boiling Water Reactor
NASA Astrophysics Data System (ADS)
Kulesza, Joel A.; Roudén, Jenny; Green, Eva-Lena
2016-02-01
This paper describes a neutron fluence assessment considering the entire commercial operating history (35 cycles or ˜ 25 effective full power years) of the Ringhals Unit 1 reactor pressure vessel beltline region. In this assessment, neutron (E >1.0 MeV) fluence and iron atom displacement distributions were calculated on the moderator tank and reactor pressure vessel structures. To validate those calculations, five in-vessel surveillance chain dosimetry sets were evaluated as well as material samples taken from the upper core grid and wide range neutron monitor tubes to act as a form of retrospective dosimetry. During the analysis, it was recognized that delays in characterizing the retrospective dosimetry samples reduced the amount of reactions available to be counted and complicated the material composition determination. However, the comparisons between the surveillance chain dosimetry measurements (M) and calculated (C) results show similar and consistent results with the linear average M/C ratio of 1.13 which is in good agreement with the resultant least squares best estimate (BE)/C ratios of 1.10 for both neutron (E >1.0 MeV) flux and iron atom displacement rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Jinshu; Lin, Jinhan; Xu, Mingliang
Hexagonal boron nitride (h-BN) with high thermal conductivity is potentially an effective catalyst for highly exothermic propane oxidative dehydrogenation (ODH) reaction. Here, we report our experimental and theoretic studies of such a catalyst for propane ODH in a fixed-bed reactor. Based on the computational fluid dynamics calculation (CFD) results, the catalyst bed temperature increases by less than 1°C in the h-BN catalyst bed which is much smaller than that (8°C) in the VO x/γ-Al 2O 3 catalyst bed at a similar propane conversion (25%) using a micro-tubular reactor with a diameter of 6 mm. Even in an industrially relevant reactormore » with an inner diameter of 60 mm, a uniform temperature profile can still be maintained using the h-BN catalyst bed due to its excellent thermal conductivity as opposed to a temperature gradient of 47°C in the VO x/γ-Al 2O 3 catalyst bed. The results reported here provide useful information for potential application of h-BN catalyst in propane ODH.« less
Co-pyrolysis behaviors of saw dust and Shenfu coal in drop tube furnace and fixed bed reactor.
Li, Shuaidan; Chen, Xueli; Wang, Li; Liu, Aibin; Yu, Guangsuo
2013-11-01
Co-pyrolysis behaviors of saw dust (SD) and Shenfu bituminous coal (SF) were studied in a drop tube furnace and a fixed bed reactor at different temperatures respectively. Six different biomass/coal ratios (B:C) were used. Compared the results with the calculated value obtained by the additional behavior, CO volume yields were lower while H2, CH4, CO2, volume yields were higher. Blend char yields had a good agreement with the calculated values, and their structures remained similar with SD and SF char's. Synergy effect occurred in gaseous phase, which was mainly caused by the secondary reactions. Compared the blend char yields in the drop tube furnace with those in the fixed bed reactor, the results showed the contacting way of biomass and coal particles had little influence on char yield in co-pyrolysis process. The reactivity index of blend char achieved the minimum at B:C=40:60 and the maximum at B:C=80:20. Copyright © 2013 Elsevier Ltd. All rights reserved.
Fu, Peng; Bai, Xueyuan; Li, Zhihe; Yi, Weiming; Li, Yongjun; Zhang, Yuchun
2018-05-09
Fast pyrolysis of corn stovers with ceramic ball heat carriers in a dual concentric rotary cylinder reactor was studied to explore the product yields and characteristics in response to temperature. The reactor was confirmed to successfully scale up to a 25 kg/h pilot plant, with its performance being excellent. The highest bio-oil yield of 48.3 wt% at 500 °C was attained with the char and gas yields being 26.8 and 24.9 wt%. Phenols content was reduced from 22.3% to 18.9% when elevating temperature from 450 until 600 °C, with guaiacols and alkyl phenols being the predominant compounds, while ketones accounted for 15.8-23.0% and their content showed a continuous increase, with hydroxyacetone being the paramount ketonic one. Acetic acid was the dominant acidic compound with its peak content of 9.4% at 500 °C. The char characteristics in response to temperatures were determined for subsequent processing and high value-added utilization. Copyright © 2018 Elsevier Ltd. All rights reserved.
Tian, Jinshu; Lin, Jinhan; Xu, Mingliang; ...
2018-04-17
Hexagonal boron nitride (h-BN) with high thermal conductivity is potentially an effective catalyst for highly exothermic propane oxidative dehydrogenation (ODH) reaction. Here, we report our experimental and theoretic studies of such a catalyst for propane ODH in a fixed-bed reactor. Based on the computational fluid dynamics calculation (CFD) results, the catalyst bed temperature increases by less than 1°C in the h-BN catalyst bed which is much smaller than that (8°C) in the VO x/γ-Al 2O 3 catalyst bed at a similar propane conversion (25%) using a micro-tubular reactor with a diameter of 6 mm. Even in an industrially relevant reactormore » with an inner diameter of 60 mm, a uniform temperature profile can still be maintained using the h-BN catalyst bed due to its excellent thermal conductivity as opposed to a temperature gradient of 47°C in the VO x/γ-Al 2O 3 catalyst bed. The results reported here provide useful information for potential application of h-BN catalyst in propane ODH.« less
Characterizing the biotransformation of sulfur-containing wastes in simulated landfill reactors.
Sun, Wenjie; Sun, Mei; Barlaz, Morton A
2016-07-01
Landfills that accept municipal solid waste (MSW) in the U.S. may also accept a number of sulfur-containing wastes including residues from coal or MSW combustion, and construction and demolition (C&D) waste. Under anaerobic conditions that dominate landfills, microbially mediated processes can convert sulfate to hydrogen sulfide (H2S). The presence of H2S in landfill gas is problematic for several reasons including its low odor threshold, human toxicity, and corrosive nature. The objective of this study was to develop and demonstrate a laboratory-scale reactor method to measure the H2S production potential of a range of sulfur-containing wastes. The H2S production potential was measured in 8-L reactors that were filled with a mixture of the target waste, newsprint as a source of organic carbon required for microbial sulfate reduction, and leachate from decomposed residential MSW as an inoculum. Reactors were operated with and without N2 sparging through the reactors, which was designed to reduce H2S accumulation and toxicity. Both H2S and CH4 yields were consistently higher in reactors that were sparged with N2 although the magnitude of the effect varied. The laboratory-measured first order decay rate constants for H2S and CH4 production were used to estimate constants that were applicable in landfills. The estimated constants ranged from 0.11yr(-1) for C&D fines to 0.38yr(-1) for a mixed fly ash and bottom ash from MSW combustion. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mesophilic and thermophilic biotreatment of BTEX-polluted air in reactors.
Mohammad, Balsam T; Veiga, María C; Kennes, Christian
2007-08-15
This study compares the removal of a mixture of benzene, toluene, ethylbenzene, and all three xylene isomers (BTEX) in mesophilic and thermophilic (50 degrees C) bioreactors. In the mesophilic reactor fungi became dominant after long-term operation, while bacteria dominated in the thermophilic unit. Microbial acclimation was achieved by exposing the biofilters to initial BTEX loads of 2-15 g m(-3) h(-1), at an empty bed residence time of 96 s. After adaptation, the elimination capacities ranged from 3 to 188 g m(-3) h(-1), depending on the inlet load, for the mesophilic biofilter with removal efficiencies reaching 96%. On the other hand, in the thermophilic reactor the average removal efficiency was 83% with a maximum elimination capacity of 218 g m(-3) h(-1). There was a clear positive relationship between temperature gradients as well as CO(2) production and elimination capacities across the biofilters. The gas phase was sampled at different depths along the reactors observing that the percentage pollutant removal in each section was strongly dependant on the load applied. The fate of individual alkylbenzene compounds was checked, showing the unusually high biodegradation rate of benzene at high loads under thermophilic conditions (100%) compared to its very low removal in the mesophilic reactor at such load (<10%). Such difference was less pronounced for the other pollutants. After 210 days of operation, the dry biomass content for the mesophilic and thermophilic reactors were 0.300 and 0.114 g g(-1) (support), respectively, reaching higher removals under thermophilic conditions with a lower biomass accumulation, that is, lower pressure drop. (c) 2007 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Xu, W. W.; Xu, Y.; Meng, Y. X.; Wu, B.
2009-01-01
In the paper, it is discussed by using Monte-Carlo simulation that the Bayesian Neural Network (BNN) is applied to determine neutrino incoming direction in reactor neutrino experiments and supernova explosion location by scintillator detectors. As a result, compared to the method in ref. [1], the uncertainty on the measurement of the neutrino direction using BNN is significantly improved. The uncertainty on the measurement of the reactor neutrino direction is about 1.0° at the 68.3% C.L., and the one in the case of supernova neutrino is about 0.6° at the 68.3% C.L. . Compared to the method in ref. [1], the uncertainty attainable by using BNN reduces by a factor of about 20. And compared to the Super-Kamiokande experiment (SK), it reduces by a factor of about 8.
Effect of Different Structural Materials on Neutronic Performance of a Hybrid Reactor
NASA Astrophysics Data System (ADS)
Übeyli, Mustafa; Tel, Eyyüp
2003-06-01
Selection of structural material for a fusion-fission (hybrid) reactor is very important by taking into account of neutronic performance of the blanket. Refractory metals and alloys have much higher operating temperatures and neutron wall load (NWL) capabilities than low activation materials (ferritic/martensitic steels, vanadium alloys and SiC/SiC composites) and austenitic stainless steels. In this study, effect of primary candidate refractory alloys, namely, W-5Re, T111, TZM and Nb-1Zr on neutronic performance of the hybrid reactor was investigated. Neutron transport calculations were conducted with the help of SCALE 4.3 System by solving the Boltzmann transport equation with code XSDRNPM. Among the investigated structural materials, tantalum had the worst performance due to the fact that it has higher neutron absorption cross section than others. And W-5Re and TZM having similar results showed the best performance.
Simulations of carbon sputtering in fusion reactor divertor plates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marian, J; Zepeda-Ruiz, L A; Gilmer, G H
2005-10-03
The interaction of edge plasma with material surfaces raises key issues for the viability of the International Thermonuclear Reactor (ITER) and future fusion reactors, including heat-flux limits, net material erosion, and impurity production. After exposure of the graphite divertor plate to the plasma in a fusion device, an amorphous C/H layer forms. This layer contains 20-30 atomic percent D/T bonded to C. Subsequent D/T impingement on this layer produces a variety of hydrocarbons that are sputtered back into the sheath region. We present molecular dynamics (MD) simulations of D/T impacts on amorphous carbon layer as a function of ion energymore » and orientation, using the AIREBO potential. In particular, energies are varied between 10 and 150 eV to transition from chemical to physical sputtering. These results are used to quantify yield, hydrocarbon composition and eventual plasma contamination.« less
NASA Astrophysics Data System (ADS)
Dorko, E. A.; Glessner, J. W.; Ritchey, C. M.; Rutger, L. L.; Pow, J. J.; Brasure, L. D.; Duray, J. P.; Snyder, S. R.
1986-03-01
The chemiluminescence from electronically excited lead oxide formed during the reaction between lead vapor and either 3Σ O 2 or 1Δ O 2 has been studied. The reactions were accomplished in a flow tube reactor. A microwave discharge was used to generate 1Δ O 2. The vibronic spectrum was analyzed and the band head assignments were used in a linear least-squares calculation to obtain the vibronic molecular constants for the X, a, b, A, B, C, C', D, and E electronic states of lead oxide. Based on these and other molecular constants, Franck-Condon factors were calculated for the transitions to the ground state and also for the A-a and D-a transitions. Evidence was presented to support a kinetic analysis of the mechanism leading to chemiluminescence under the experimental conditions encountered in the flow tube reactor. Mechanisms presented earlier were verified by the present data.
Coal desulfurization by low temperature chlorinolysis, phase 3
NASA Technical Reports Server (NTRS)
Kalvinskas, J. J.; Rohatgi, N. K.; Ernest, J.
1981-01-01
Laboratory scale, bench scale batch reactor, and minipilot plant tests were conducted on 22 bituminous, subbituminous, and lignite coals. Chemical pretreatment and post treatment of coals relative to the chlorination were tried as a means of enhancing desulfurization by the chlorinolysis process. Elevated temperature (500-700 C) hydrogen treatment of chlorinolysis-processed coal at atmospheric pressure was found to substantially increase coal desulfurization up to 90 percent. Sulfur forms, proximate and ultimate analyses of the processed coal are included. Minipilot plant operation indicates that the continuous flow reactor provides coal desulfurization results comparable to those obtained in the batch reactor. Seven runs were conducted at coal feed rates of 1.5 to 8.8 kg per hour using water and methylchloroform solvents, gaseous chlorine feed of 3 to 31.4 SCFH at 21 to 70 C, and atmospheric pressure for retention times of 20 to 120 minutes.
Low temperature conversion of plastic waste into light hydrocarbons.
Shah, Sajid Hussain; Khan, Zahid Mahmood; Raja, Iftikhar Ahmad; Mahmood, Qaisar; Bhatti, Zulfiqar Ahmad; Khan, Jamil; Farooq, Ather; Rashid, Naim; Wu, Donglei
2010-07-15
Advance recycling through pyrolytic technology has the potential of being applied to the management of plastic waste (PW). For this purpose 1 l volume, energy efficient batch reactor was manufactured locally and tested for pyrolysis of waste plastic. The feedstock for reactor was 50 g waste polyethylene. The average yield of the pyrolytic oil, wax, pyrogas and char from pyrolysis of PW were 48.6, 40.7, 10.1 and 0.6%, respectively, at 275 degrees C with non-catalytic process. Using catalyst the average yields of pyrolytic oil, pyrogas, wax and residue (char) of 50 g of PW was 47.98, 35.43, 16.09 and 0.50%, respectively, at operating temperature of 250 degrees C. The designed reactor could work at low temperature in the absence of a catalyst to obtain similar products as for a catalytic process. 2010 Elsevier B.V. All rights reserved.
LBE water interaction in sub-critical reactors: First experimental and modelling results
NASA Astrophysics Data System (ADS)
Ciampichetti, A.; Agostini, P.; Benamati, G.; Bandini, G.; Pellini, D.; Forgione, N.; Oriolo, F.; Ambrosini, W.
2008-06-01
This paper concerns the study of the phenomena involved in the interaction between LBE and pressurised water which could occur in some hypothetical accidents in accelerator driven system type reactors. The LIFUS 5 facility was designed and built at ENEA-Brasimone to reproduce this kind of interaction in a wide range of conditions. The first test of the experimental program was carried out injecting water at 70 bar and 235 °C in a reaction vessel containing LBE at 1 bar and 350 °C. A pressurisation up to 80 bar was observed in the test section during the considered transient. The SIMMER III code was used to simulate the performed test. The calculated data agree in a satisfactory way with the experimental results giving confidence in the possibility to use this code for safety analyses of heavy liquid metal cooled reactors.
The slow and fast pyrolysis of cherry seed.
Duman, Gozde; Okutucu, Cagdas; Ucar, Suat; Stahl, Ralph; Yanik, Jale
2011-01-01
The slow and fast pyrolysis of cherry seeds (CWS) and cherry seeds shells (CSS) was studied in fixed-bed and fluidized bed reactors at different pyrolysis temperatures. The effects of reactor type and temperature on the yields and composition of products were investigated. In the case of fast pyrolysis, the maximum bio-oil yield was found to be about 44 wt% at pyrolysis temperature of 500 °C for both CWS and CSS, whereas the bio yields were of 21 and 15 wt% obtained at 500 °C from slow pyrolysis of CWS and CSS, respectively. Both temperature and reactor type affected the composition of bio-oils. The results showed that bio-oils obtained from slow pyrolysis of CWS and CSS can be used as a fuel for combustion systems in industry and the bio-oil produced from fast pyrolysis can be evaluated as a chemical feedstock. Copyright © 2010 Elsevier Ltd. All rights reserved.
Development of a carbon formation reactor for carbon dioxide reduction
NASA Technical Reports Server (NTRS)
Noyes, G.
1985-01-01
Applied research, engineering development, and performance evaluation were conducted on a process for formation of dense carbon by pyrolysis of methane. Experimental research showed that dense (0.7 to 1.6 g/cc bulk density and 1.6 to 2.2 g/cc solid density) carbon can be produced by methane pyrolysis in quartzwool-packed quartz tubes at temperatrues of 1100 to 1300 C. This result supports the condensation theory of pyrolytic carbon formation from gaseous hydrocarbons. A full-scale Breadboard Carbon Formation Reactor (CFR) was designed, fabricated, and tested at 1100 to 1200 C with 380 to 2280 sccm input flows of methane. Single-pass conversion of methane to carbon ranged from 60 to 100 percent, with 89 percent average conversion. Performance was projected for an Advanced Carbon Reactor Subsystem (ACRS) which indicated that the ACRS is a viable option for management of metabolic carbon on long-duration space missions.
Dong, Bin; Huang, Xiani; Yang, Xiaogang; Li, Guang; Xia, Lan; Chen, George
2017-11-01
A joint chemical reactor system referred to as an ultrasonic-intensified micro-impinging jetting reactor (UIJR), which possesses the feature of fast micro-mixing, was proposed and has been employed for rapid preparation of FePO 4 particles that are amalgamated by nanoscale primary crystals. As one of the important precursors for the fabrication of lithium iron phosphate cathode, the properties of FePO 4 nano particles significantly affect the performance of the lithium iron phosphate cathode. Thus, the effects of joint use of impinging stream and ultrasonic irradiation on the formation of mesoporous structure of FePO 4 nano precursor particles and the electrochemical properties of amalgamated LiFePO 4 /C have been investigated. Additionally, the effects of the reactant concentration (C=0.5, 1.0 and 1.5molL -1 ), and volumetric flow rate (V=17.15, 51.44, and 85.74mLmin -1 ) on synthesis of FePO 4 ·2H 2 O nucleus have been studied when the impinging jetting reactor (IJR) and UIJR are to operate in nonsubmerged mode. It was affirmed from the experiments that the FePO 4 nano precursor particles prepared using UIJR have well-formed mesoporous structures with the primary crystal size of 44.6nm, an average pore size of 15.2nm, and a specific surface area of 134.54m 2 g -1 when the reactant concentration and volumetric flow rate are 1.0molL -1 and 85.74mLmin -1 respectively. The amalgamated LiFePO 4 /C composites can deliver good electrochemical performance with discharge capacities of 156.7mAhg -1 at 0.1C, and exhibit 138.0mAhg -1 after 100 cycles at 0.5C, which is 95.3% of the initial discharge capacity. Copyright © 2017. Published by Elsevier B.V.
(14)C, delta(13)C and total C content in soils around a Brazilian PWR nuclear power plant.
Dias, Cíntia Melazo; Telles, Everaldo C; Santos, Roberto Ventura; Stenström, Kristina; Nícoli, Iêda Gomes; da Silveira Corrêa, Rosangela; Skog, Göran
2009-04-01
Nuclear power plants release (14)C during routine operation mainly as airborne gaseous effluents. Because of the long half-life (5730 years) and biological importance of this radionuclide (it is incorporated in plant tissue by photosynthesis), several countries have monitoring programs in order to quantify and control these emissions. This paper compares the activity of (14)C in soils taken within 1km from a Brazilian nuclear power plant with soils taken within a reference area located 50km away from the reactor site. Analyses of total carbon, delta(13)C and (137)Cs were also performed in order to understand the local soil dynamics. Except for one of the profiles, the isotopic composition of soil organic carbon reflected the actual forest vegetation present in both areas. The (137)Cs data show that the soils from the base of hills are probably allocthonous. The (14)C measurements showed that there is no accumulation due to the operation of the nuclear facility, although excess (14)C was found in the litter taken in the area close to power plant. This indicates that the anthropogenic signal observed in the litter fall has not been transferred yet to the soil. This study is part of an extensive research programme in which other samples including air, vegetation and gaseous effluents (taken in the vent stack of the Brazilian nuclear power reactors Angra I and II) were also analyzed. The present paper aimed to evaluate how (14)C emissions from the nuclear power plant are transferred and stored by soils present in the surroundings of the reactor site. This is the first study concerning anthropogenic (14)C in soils in Brazil.
Gómez-Couso, H; Fontán-Sainz, M; Navntoft, C; Fernández-Ibáñez, P; Ares-Mazás, E
2012-11-01
Solar water disinfection (SODIS) is a type of treatment that can significantly improve the microbiological quality of drinking water at household level and therefore prevent waterborne diseases in developing countries. Cryptosporidium parvum is an obligate protozoan parasite responsible for the diarrhoeal disease cryptosporidiosis in humans and animals. Recently, this parasite has been selected by the WHO as a reference pathogen for protozoan parasites in the evaluation of household water treatment options. In this study, the field efficacy of different static solar reactors [1.5 l transparent plastic polyethylene terephthalate (PET) bottles as well as 2.5 l borosilicate glass and 25 l methacrylate reactors fitted with compound parabolic concentrators (CPC)] for solar disinfection of turbid waters experimentally contaminated with C. parvum oocysts was compared. Potential oocyst viability was determined by inclusion/exclusion of the fluorogenic vital dye propidium iodide. The results demonstrate that static solar reactors fitted with CPCs are an excellent alternative to the conventional SODIS method with PET bottles. These reactors improved the efficacy of the SODIS method by enabling larger volumes of water to be treated and, in some cases, the C. parvum oocysts were rendered totally unviable, minimising the negative effects of turbidity. Copyright © 2012 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.
Adam, Zachary R
2016-06-01
Geologic settings capable of driving prebiotic oligomer synthesis reactions remain a relatively unexplored aspect of origins of life research. Natural nuclear reactors are an example of Precambrian energy sources that produced unique temperature fluctuations. Heat transfer models indicate that water-moderated, convectively-cooled natural fission reactors in porous host rocks create temperature oscillations that resemble those employed in polymerase chain reaction (PCR) devices to artificially amplify oligonucleotides. This temperature profile is characterized by short-duration pulses up to 70-100 °C, followed by a sustained period of temperatures in the range of 30-70 °C, and finally a period of relaxation to ambient temperatures until the cycle is restarted by a fresh influx of pore water. For a given reactor configuration, temperature maxima and the time required to relax to ambient temperatures depend most strongly on the aggregate effect of host rock permeability in decreasing the thermal expansion and increasing the viscosity and evaporation temperature of the pore fluids. Once formed, fission-fueled reactors can sustain multi-kilowatt-level power production for 10(5)-10(6) years, ensuring microenvironmental longevity and chemical output. The model outputs indicate that organic synthesis on young planetary bodies with a sizeable reservoir of fissile material can involve more sophisticated energy dissipation pathways than modern terrestrial analog settings alone would suggest.
Thermoinactivation Mechanism of Glucose Isomerase
NASA Astrophysics Data System (ADS)
Lim, Leng Hong; Saville, Bradley A.
In this article, the mechanisms of thermoinactivation of glucose isomerase (GI) from Streptomyces rubiginosus (in soluble and immobilized forms) were investigated, particularly the contributions of thiol oxidation of the enzyme's cysteine residue and a "Maillard-like" reaction between the enzyme and sugars in high fructose corn syrup (HFCS). Soluble GI (SGI) was successfully immobilized on silica gel (13.5 μm particle size), with an activity yield between 20 and 40%. The immobilized GI (IGI) has high enzyme retention on the support during the glucose isomerization process. In batch reactors, SGI (half-life =145 h) was more stable than IGI (half-life=27 h) at 60°C in HFCS, whereas at 80°C, IGI (half-life=12 h) was more stable than SGI (half-life=5.2 h). IGI was subject to thiol oxidation at 60°C, which contributed to the enzyme's deactivation. IGI was subject to thiol oxidation at 80°C, but this did not contribute to the deactivation of the enzyme. SGI did not undergo thiol oxidation at 60°C, but at 80°C SGI underwent severe precipitation and thiol oxidation, which caused the enzyme to deactivate. Experimental results show that immobilization suppresses the destablizing effect of thiol oxidation on GI. A "Maillard-like" reaction between SGI and the sugars also caused SGI thermoinactivation at 60, 70, and 80°C, but had minimal effect on IGI. At 60 and 80°C, IGI had higher thermostability in continuous reactors than in batch reactors, possibily because of reduced contact with deleterious compounds in HFCS.
Evaluation of infrared thermography as a diagnostic tool in CVD applications
NASA Astrophysics Data System (ADS)
Johnson, E. J.; Hyer, P. V.; Culotta, P. W.; Clark, I. O.
1998-05-01
This research is focused on the feasibility of using infrared temperature measurements on the exterior of a chemical vapor deposition (CVD) reactor to ascertain both real-time information on the operating characteristics of a CVD system and provide data which could be post-processed to provide quantitative information for research and development on CVD processes. Infrared thermography techniques were used to measure temperatures on a horizontal CVD reactor of rectangular cross section which were correlated with the internal gas flow field, as measured with the laser velocimetry (LV) techniques. For the reactor tested, thermal profiles were well correlated with the gas flow field inside the reactor. Correlations are presented for nitrogen and hydrogen carrier gas flows. The infrared data were available to the operators in real time with sufficient sensitivity to the internal flow field so that small variations such as misalignment of the reactor inlet could be observed. The same data were post-processed to yield temperature measurements at known locations on the reactor surface. For the experiments described herein, temperatures associated with approximately 3.3 mm 2 areas on the reactor surface were obtained with a precision of ±2°C. These temperature measurements were well suited for monitoring a CVD production reactor, development of improved thermal boundary conditions for use in CFD models of reactors, and for verification of expected thermal conditions.
Co-pyrolysis characteristics of sawdust and coal blend in TGA and a fixed bed reactor.
Park, Dong Kyoo; Kim, Sang Done; Lee, See Hoon; Lee, Jae Goo
2010-08-01
Co-pyrolysis characteristics of sawdust and coal blend were determined in TGA and a fixed bed reactor. The yield and conversion of co-pyrolysis of sawdust and coal blend based on volatile matters are higher than those of the sum of sawdust and coal individually. Form TGA experiments, weight loss rate of sawdust and coal blend increases above 400 degrees C and additional weight loss was observed at 700 degrees C. In a fixed bed at isothermal condition, the synergy to produce more volatiles is appeared at 500-700 degrees C, and the maximum synergy exhibits with a sawdust blending ratio of 0.6 at 600 degrees C. The gas product yields remarkably increase at lower temperature range by reducing tar yield. The CO yield increases up to 26% at 400 degrees C and CH(4) yield increases up to 62% at 600 degrees C compared with the calculated value from the additive model. (c) 2010 Elsevier Ltd. All rights reserved.
Performance modeling of Deep Burn TRISO fuel using ZrC as a load-bearing layer and an oxygen getter
NASA Astrophysics Data System (ADS)
Wongsawaeng, Doonyapong
2010-01-01
The effects of design choices for the TRISO particle fuel were explored in order to determine their contribution to attaining high-burnup in Deep Burn modular helium reactor fuels containing transuranics from light water reactor spent fuel. The new design features were: (1) ZrC coating substituted for the SiC, allowing the fuel to survive higher accident temperatures; (2) pyrocarbon/SiC "alloy" substituted for the inner pyrocarbon coating to reduce layer failure and (3) pyrocarbon seal coat and thin ZrC oxygen getter coating on the kernel to eliminate CO. Fuel performance was evaluated using General Atomics Company's PISA code. The only acceptable design has a 200-μm kernel diameter coupled with at least 150-μm thick, 50% porosity buffer, a 15-μm ZrC getter over a 10-μm pyrocarbon seal coat on the kernel, an alloy inner pyrocarbon, and ZrC substituted for SiC. The code predicted that during a 1600 °C postulated accident at 70% FIMA, the ZrC failure probability is <10-4.
Grey water treatment in UASB reactor at ambient temperature.
Elmitwalli, T A; Shalabi, M; Wendland, C; Otterpohl, R
2007-01-01
In this paper, the feasibility of grey water treatment in a UASB reactor was investigated. The batch recirculation experiments showed that a maximum total-COD removal of 79% can be obtained in grey-water treatment in the UASB reactor. The continuous operational results of a UASB reactor treating grey water at different hydraulic retention time (HRT) of 20, 12 and 8 hours at ambient temperature (14-24 degrees C) showed that 31-41% of total COD was removed. These results were significantly higher than that achieved by a septic tank (11-14%), the most common system for grey water pre-treatment, at HRT of 2-3 days. The relatively lower removal of total COD in the UASB reactor was mainly due to a higher amount of colloidal COD in the grey water, as compared to that reported in domestic wastewater. The grey water had a limited amount of nitrogen, which was mainly in particulate form (80-90%). The UASB reactor removed 24-36% and 10-24% of total nitrogen and total phosphorus, respectively, in the grey water, due to particulate nutrients removal by physical entrapment and sedimentation. The sludge characteristics of the UASB reactor showed that the system had stable performance and the recommended HRT for the reactor is 12 hours.
Extending the maximum operation time of the MNSR reactor.
Dawahra, S; Khattab, K; Saba, G
2016-09-01
An effective modification to extend the maximum operation time of the Miniature Neutron Source Reactor (MNSR) to enhance the utilization of the reactor has been tested using the MCNP4C code. This modification consisted of inserting manually in each of the reactor inner irradiation tube a chain of three polyethylene-connected containers filled of water. The total height of the chain was 11.5cm. The replacement of the actual cadmium absorber with B(10) absorber was needed as well. The rest of the core structure materials and dimensions remained unchanged. A 3-D neutronic model with the new modifications was developed to compare the neutronic parameters of the old and modified cores. The results of the old and modified core excess reactivities (ρex) were: 3.954, 6.241 mk respectively. The maximum reactor operation times were: 428, 1025min and the safety reactivity factors were: 1.654 and 1.595 respectively. Therefore, a 139% increase in the maximum reactor operation time was noticed for the modified core. This increase enhanced the utilization of the MNSR reactor to conduct a long time irradiation of the unknown samples using the NAA technique and increase the amount of radioisotope production in the reactor. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Petrie, Christian M.
The U.S. Department of Energy is interested in extending optically-based instrumentation from non-extreme environments to extremely high temperature radiation environments for the purposes of developing in-pile instrumentation. The development of in-pile instrumentation would help support the ultimate goal of understanding the behavior and predicting the performance of nuclear fuel systems at a microstructural level. Single crystal sapphire optical fibers are a promising candidate for in-pile instrumentation due to the high melting temperature and radiation hardness of sapphire. In order to extend sapphire fiber-based optical instrumentation to high temperature radiation environments, the ability of sapphire fibers to adequately transmit light in such an environment must first be demonstrated. Broadband optical transmission measurements of sapphire optical fibers were made in-situ as the sapphire fibers were heated and/or irradiated. The damage processes in sapphire fibers were also modeled from the primary knock-on event from energetic neutrons to the resulting damage cascade in order to predict the formation of stable defects that ultimately determine the resulting change in optical properties. Sapphire optical fibers were shown to withstand temperatures as high as 1300 °C with minimal increases in optical attenuation. A broad absorption band was observed to grow over time without reaching a dynamic equilibrium when the sapphire fiber was heated at temperatures of 1400 °C and above. The growth of this absorption band limits the use of sapphire optical fibers, at least in air, to temperatures of 1300 °C and below. Irradiation of sapphire fibers with gamma rays caused saturation of a defect center located below 500 nm, and extending as far as ~1000 nm, with little effect on the transmission at 1300 and 1550 nm. Increasing temperature during gamma irradiation generally reduced the added attenuation. Reactor irradiation of sapphire fibers caused an initial rapid increase in attenuation, followed by a linear increase with continued irradiation time at constant reactor power. The linear increases were a result of displacement damage, and the rate of increase was proportional to the neutron flux. The transmission of sapphire fibers at 1300 and 1550 nm in a reactor radiation environment would ultimately be limited by the growth of low wavelength defect centers, whose tails extend into the near infrared. A model was proposed for the reactor radiation-induced attenuation that involves three previously reported color centers. The model accounts for gamma radiation-induced ionization of pre-existing defects, generation of new defects via displacement damage, and conversion between defect centers via ionization and charge recombination. Heated reactor irradiation experiments showed that the rate of increase of the added attenuation during constant power reactor irradiation monotonically decreases with increasing temperature up to 1000 °C, with the most significant decrease occurring between 300 and 600 °C. Testing of sapphire fiber-based sensors under irradiation at high temperatures is recommended as future work, along with advanced life irradiation testing, for example in the Advanced Test Reactor or the High Flux Isotope Reactor.
10 CFR 72.158 - Control of special processes.
Code of Federal Regulations, 2013 CFR
2013-01-01
... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Quality..., and applicant for a CoC shall establish measures to ensure that special processes, including welding...
10 CFR 72.158 - Control of special processes.
Code of Federal Regulations, 2011 CFR
2011-01-01
... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Quality..., and applicant for a CoC shall establish measures to ensure that special processes, including welding...
10 CFR 72.158 - Control of special processes.
Code of Federal Regulations, 2012 CFR
2012-01-01
... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Quality..., and applicant for a CoC shall establish measures to ensure that special processes, including welding...
10 CFR 72.158 - Control of special processes.
Code of Federal Regulations, 2014 CFR
2014-01-01
... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Quality..., and applicant for a CoC shall establish measures to ensure that special processes, including welding...
Wireless, in-vessel neutron monitor for initial core-loading of advanced breeder reactors
NASA Technical Reports Server (NTRS)
Delorenzo, J. T.; Kennedy, E. J.; Blalock, T. V.; Rochelle, J. M.; Chiles, M. M.; Valentine, K. H.
1981-01-01
An experimental wireless, in-vessel neutron monitor was developed to measure the reactivity of an advanced breeder reactor as the core is loaded for the first time to preclude an accidental critically incident. The environment is liquid sodium at a temperature of approx. 220 C, with negligible gamma or neutron radiation. With ultrasonic transmission of neutron data, no fundamental limitation was observed after tests at 230 C for 2000 h. The neutron sensitivity was approx. 1 count/s-nv, and the potential data transmission rate was approx. 10,000 counts/s.
Digital computer program for nuclear reactor design water properties (LWBR Development Program)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lynn, L.L.
1967-07-01
An edit program MO899 for the tabulation of thermodynamic and transport properties of liquid and vapor water, frequently used in design calculations for pressurized water nuclear reactors, is described. The data tabulated are obtained from a FORTRAN IV subroutine named HOH. Values of enthalpy, specific volume, viscosity, and thermal conductivity are given for the following ranges: pressure from one bar (14.5 psia) to 175 bars (2538 psia) and temperature from as much as 320 deg C (608 deg F) below saturation up to 500 deg C (932 deg F) above saturation. (NSA 21: 38472)
Multilayered BN Coatings Processed by a Continuous LPCVD Treatment onto Hi-Nicalon Fibers
NASA Astrophysics Data System (ADS)
Jacques, S.; Vincent, H.; Vincent, C.; Lopez-Marure, A.; Bouix, J.
2001-12-01
Boron nitride coatings were deposited onto SiC fibers by means of continuous low-pressure chemical vapor deposition (LPCVD) treatment from BF3/NH3 mixtures. This process lies in unrolling the fiber in the reactor axis. The relationships between the processing parameters and the structure of the BN deposits are presented. Thanks to a temperature gradient present in the reactor, multilayered BN films can be performed by stacking successive isotropic and anisotropic sublayers. Tensile tests show that when the temperature profile is well adapted, the SiC fibers are not damaged by the LPCVD treatment.
Hydride vapor phase epitaxy of AlN using a high temperature hot-wall reactor
NASA Astrophysics Data System (ADS)
Baker, Troy; Mayo, Ashley; Veisi, Zeinab; Lu, Peng; Schmitt, Jason
2014-10-01
Aluminum nitride (AlN) was grown on c-plane sapphire substrates by hydride vapor phase epitaxy (HVPE). The experiments utilized a two zone inductively heated hot-wall reactor. The surface morphology, crystal quality, and growth rate were investigated as a function of growth temperature in the range of 1450-1575 °C. AlN templates grown to a thickness of 1 μm were optimized with double axis X-ray diffraction (XRD) rocking curve full width half maximums (FWHMs) of 135″ for the (002) and 513″ for the (102).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamann, S., E-mail: hamann@inp-greifswald.de; Röpcke, J.; Börner, K.
2015-12-15
A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steelmore » samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH{sub 4}, C{sub 2}H{sub 2}, HCN, and NH{sub 3}). With the help of OES, the rotational temperature of the screen plasma could be determined.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trianti, Nuri, E-mail: nuri.trianti@gmail.com; Nurjanah,; Su’ud, Zaki
Thermalhydraulic of reactor core is the thermal study on fluids within the core reactor, i.e. analysis of the thermal energy transfer process produced by fission reaction from fuel to the reactor coolant. This study include of coolant temperature and reactor power density distribution. The purposes of this analysis in the design of nuclear power plant are to calculate the coolant temperature distribution and the chimney height so natural circulation could be occurred. This study was used boiling water reactor (BWR) with cylinder type reactor core. Several reactor core properties such as linear power density, mass flow rate, coolant density andmore » inlet temperature has been took into account to obtain distribution of coolant density, flow rate and pressure drop. The results of calculation are as follows. Thermal hydraulic calculations provide the uniform pressure drop of 1.1 bar for each channels. The optimum mass flow rate to obtain the uniform pressure drop is 217g/s. Furthermore, from the calculation it could be known that outlet temperature is 288°C which is the saturated fluid’s temperature within the system. The optimum chimney height for natural circulation within the system is 14.88 m.« less
NASA Astrophysics Data System (ADS)
Song, Jinliang; Zhao, Yanling; He, Xiujie; Zhang, Baoliang; Xu, Li; He, Zhoutong; Zhang, DongSheng; Gao, Lina; Xia, Huihao; Zhou, Xingtai; Huai, Ping; Bai, Shuo
2015-01-01
A fixed-bed deposition method was used to prepare rough laminar pyrolytic carbon coating (RLPyC) on graphite for inhibiting liquid fluoride salt and Xe135 penetration during use in molten salt breeder reactor. The RLPyC coating possessed a graphitization degree of 44% and had good contact with graphite substrate. A high-pressure reactor was constructed to evaluate the molten salt infiltration in the isostatic graphite (IG-110, TOYO TANSO CO., LTD.) and RLPyC coated graphite under 1.01, 1.52, 3.04, 5.07 and 10.13 × 105 Pa for 12 h. Mercury injection and molten-salt infiltration experiments indicated the porosity and the salt-infiltration amount of 18.4% and 13.5 wt% under 1.52 × 105 Pa of IG-110, which was much less than 1.2% and 0.06 wt% under 10.13 × 105 Pa of the RLPyC, respectively. A vacuum device was constructed to evaluate the Xe135 penetration in the graphite. The helium diffusion coefficient of RLPyC coated graphite was 2.16 × 10-12 m2/s, much less than 1.21 × 10-6 m2/s of the graphite. Thermal cycle experiment indicated the coatings possessed excellent thermal stability. The coated graphite could effectively inhibit the liquid fluoride salt and Xe135 penetration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The objective of Task 1 is to prepare and evaluate catalysts and to develop efficient reactor systems for the selective conversion of hydrogen-lean synthesis gas to alcohol fuel extender and octane enhancers. Task 1 is subdivided into three separate subtasks: laboratory and equipment setup; catalysis research; and reaction engineering and modeling. Research at West Virginia University (WVU) is focused on molybdenum-based catalysts for higher alcohol synthesis. Parallel research carried out at Union Carbide Corporation (UCC) is focused on transition-metal-oxide catalysts. During this time period, at WVU, we tried several methods to eliminate problems related to condensation of heavier products whenmore » reduced Mo-Ni-K/C materials were used as catalysts. We then resumed our kinetic study on the reduced Mo-Ni-K/C materials were used as catalysts. We then resumed our kinetic study on the reduced Mo-Ni-K/C catalysts. We have also obtained same preliminary results in our attempts to analyze quantitatively the temperature-programmed reduction spectra for C- supported Mo-based catalysts. We have completed the kinetic study for the sulfided Co-K-MoS{sub 2}/C catalyst. We have compared the results of methanol synthesis using the membrane reactor with those using a simple plug-flow reactor. At UCC, the complete characterization of selected catalysts has been completed. The results suggest that catalyst pretreatment under different reducing conditions yield different surface compositions and thus different catalytic reactivities.« less
A comparative study of the mechanical and thermal properties of defective ZrC, TiC and SiC.
Jiang, M; Zheng, J W; Xiao, H Y; Liu, Z J; Zu, X T
2017-08-24
ZrC and TiC have been proposed to be alternatives to SiC as fuel-cladding and structural materials in nuclear reactors due to their strong radiation tolerance and high thermal conductivity at high temperatures. To unravel how the presence of defects affects the thermo-physical properties under irradiation, first-principles calculations based on density function theory were carried out to investigate the mechanical and thermal properties of defective ZrC, TiC and SiC. As compared with the defective SiC, the ZrC and TiC always exhibit larger bulk modulus, smaller changes in the Young's and shear moduli, as well as better ductility. The total thermal conductivity of ZrC and TiC are much larger than that of SiC, implying that under radiation environment the ZrC and TiC will exhibit superior heat conduction ability than the SiC. One disadvantage for ZrC and TiC is that their Debye temperatures are generally lower than that of SiC. These results suggest that further improving the Debye temperature of ZrC and TiC will be more beneficial for their applications as fuel-cladding and structural materials in nuclear reactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gessmann, D., comp
1963-11-01
One hundred and eighty-one references on measurement and control techniques in nuclear reactors are presented. The period covered is Jan. 1 to Dec. 31, 1962. The references are arranged by subject and report number and author indexes are included. (M.C.G.)
126. ARAII Plot plan showing location of SL1 power plant ...
126. ARA-II Plot plan showing location of SL-1 power plant (reactor) building, and planned location of administrative and technical support building. C.A. Sundberg and Associates 866-area/ALPR-606-U-1. Date: May 1958. Ineel index code no. 070-0100-00-822-102834. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
FAST CHOPPER DETECTOR HOUSE, TRA665. SECOND FLOOR ADDITION: PLAN, SECTIONS ...
FAST CHOPPER DETECTOR HOUSE, TRA-665. SECOND FLOOR ADDITION: PLAN, SECTIONS AND DETAILS AS ADDED TO THE EXISTING CHOPPER HOUSE IN 1962. F.C. TORKELSON 842-MTR-665-S-3, 4/1962. INL INDEX NO. 531-0665-60-851-150997, REV. 3. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
In-pile Hydrothermal Corrosion Evaluation of Coated SiC Ceramics and Composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpenter, David; Ang, Caen; Katoh, Yutai
2017-09-01
Hydrothermal corrosion accelerated by water radiolysis during normal operation is among the most critical technical feasibility issues remaining for silicon carbide (SiC) composite-based cladding that could provide enhanced accident-tolerance fuel technology for light water reactors. An integrated in-pile test was developed and performed to determine the synergistic effects of neutron irradiation, radiolysis, and pressurized water flow, all of which are relevant to a typical pressurized water reactor (PWR). The test specimens were chosen to cover a range of SiC materials and a variety of potential options for environmental barrier coatings. This document provides a summary of the irradiation vehicle design,more » operations of the experiment, and the specimen loading into the irradiation vehicle.« less
Youchison, Dennis L [Albuquerque, NM; Williams, Brian E [Pocoima, CA; Benander, Robert E [Pacoima, CA
2010-02-23
Methods for manufacturing porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's). Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, a thin coating of nuclear fuel may be deposited inside of a highly porous skeletal structure made, for example, of reticulated vitreous carbon foam.
Porous nuclear fuel element for high-temperature gas-cooled nuclear reactors
Youchison, Dennis L [Albuquerque, NM; Williams, Brian E [Pacoima, CA; Benander, Robert E [Pacoima, CA
2011-03-01
Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.
Porous nuclear fuel element with internal skeleton for high-temperature gas-cooled nuclear reactors
Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.
2013-09-03
Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.
Determination of Etch Rate Behavior of 4H-SiC Using Chlorine Trifluoride Gas
NASA Astrophysics Data System (ADS)
Miura, Yutaka; Habuka, Hitoshi; Katsumi, Yusuke; Oda, Satoko; Fukai, Yasushi; Fukae, Katsuya; Kato, Tomohisa; Okumura, Hajime; Arai, Kazuo
2007-12-01
The etch rate of single-crystalline 4H-SiC is studied using chlorine trifluoride gas at 673-973 K and atmospheric pressure in a cold wall horizontal reactor. The 4H-SiC etch rate can be higher than 10 μm/min at substrate temperatures higher than 723 K. The etch rate increases with the chlorine trifluoride gas flow rate. The etch rate is calculated by taking into account the transport phenomena in the reactor including the chemical reaction at the substrate surface. The flat etch rate at the higher substrate temperatures is caused mainly by the relationship between the transport rate and the surface chemical reaction rate of chlorine trifluoride gas.
Status of FeCrAl ODS Irradiations in the High Flux Isotope Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Field, Kevin G.; Howard, Richard H.
2016-08-19
FeCrAl oxide-dispersion strengthened (ODS) alloys are an attractive sub-set alloy class of the more global FeCrAl material class for nuclear applications due to their high-temperature steam oxidation resistance and hypothesized enhanced radiation tolerance. A need currently exists to determine the radiation tolerance of these newly developed alloys. To address this need, a preliminary study was conducted using the High Flux Isotope Reactor (HFIR) to irradiate an early generation FeCrAl ODS alloy, 125YF. Preliminary post-irradiation examination (PIE) on these irradiated specimens have shown good radiation tolerance at elevated temperatures (≥330°C) but possible radiation-induced hardening and embrittlement at irradiations of 200°C tomore » a damage level of 1.9 displacement per atom (dpa). Building on this experience, a new series of irradiations are currently being conceptualized. This irradiation series called the FCAD irradiation program will irradiate the latest generation FeCrAl ODS and FeCr ODS alloys to significantly higher doses. These experiments will provide the necessary information to determine the mechanical performance of irradiated FeCrAl ODS alloys at light water reactor and fast reactor conditions.« less
EXPERIMENTAL EVALUATION OF THE THERMAL PERFORMANCE OF A WATER SHIELD FOR A SURFACE POWER REACTOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
REID, ROBERT S.; PEARSON, J. BOSIE; STEWART, ERIC T.
2007-01-16
Water based reactor shielding is being investigated for use on initial lunar surface power systems. A water shield may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a 100 kWt lunar surface reactor shield design is evaluated with 2 kW power input to the water in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WSTmore » is used to validate a CFD model. Performance of the water shield on the lunar surface is then predicted with a CFD model anchored to test data. The experiment had a maximum water temperature of 75 C. The CFD model with 1/6-g predicts a maximum water temperature of 88 C with the same heat load and external boundary conditions. This difference in maximum temperature does not greatly affect the structural design of the shield, and demonstrates that it may be possible to use water for a lunar reactor shield.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishimura, Shun; Ebitani, Kohki, E-mail: ebitani@jaist.ac.jp; Miyazato, Akio
Our research project has developed the new movable reactor for bio-oil production in 2013 on the basis of Auger-type system. This package would be a great impact due to the concept of local production for local consumption in the hilly and mountainous area in not only Japan but also in the world. Herein, we would like to report the properties of the bio-oil generated by the developing Auger-type movable reactor. The synthesized bio-oil possessed C: 46.2 wt%, H: 6.5 wt%, N: wt%, S: <0.1 wt%, O: 46.8 wt% and H{sub 2}O: 18.4 wt%, and served a good calorific value ofmore » 18.1 MJ/kg. The spectroscopic and mass analyses such as FT-IR, GC-MS, {sup 13}C-NMR and FT-ICR MS supported that the bio-oil was composed by the fine mixtures of methoxy phenols and variety of alcohol or carboxylic acid functional groups. Thus, it is suggested that the bio-oil generated by the new movable Auger-type reactor has a significant potential as well as the existing bio-oil reported previously.« less
CONTROL RODS FOR NUCLEAR REACTOR CORES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, F.R.
1961-11-15
A reactor control rod is designed which has increased effectiveness as compared with the width of the aperture in the pressure vessel through which it passes. The control rod carries six fins, three on each side, and two of the fins are fixed while the other, being adjustable, is capable of movement from between the fixed fins to an extended position. Thus, the control rod assembly can be arranged so that the parts within the core form a substantially complete shell around the reactor central axis, while the apertures on the pressure vessel wall are well spaced for strength. (D.L.C.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1960-01-01
Thirty-one papers and 10 summaries of papers presented at the Third Conference on Analytical Chemistry in Nuclear Reactor Technology held at Gatlinburg, Tennessee, October 26 to 29, 1959, are given. The papers are grouped into four sections: general, analytical chemistry of fuels, analytical chemistry of plutonium and the transplutonic elements, and the analysis of fission-product mixtures. Twenty-seven of the papers are covered by separate abstracts. Four were previously abstracted for NSA. (M.C.G.)
Irradiation performance of (Th,Pu)O2 fuel under Pressurized Water Reactor conditions
NASA Astrophysics Data System (ADS)
Boer, B.; Lemehov, S.; Wéber, M.; Parthoens, Y.; Gysemans, M.; McGinley, J.; Somers, J.; Verwerft, M.
2016-04-01
This paper examines the in-pile safety performance of (Th,Pu)O2 fuel pins under simulated Pressurized Water Reactor (PWR) conditions. Both sol-gel and SOLMAS produced (Th,Pu)O2 fuels at enrichments of 7.9% and 12.8% in Pu/HM have been irradiated at SCK·CEN. The irradiation has been performed under PWR conditions (155 bar, 300 °C) in a dedicated loop of the BR-2 reactor. The loop is instrumented with flow and temperature monitors at inlet and outlet, which allow for an accurate measurement of the deposited enthalpy.
Behavior of W-SiC/SiC dual layer tiles under LHD plasma exposure
NASA Astrophysics Data System (ADS)
Mohrez, Waleed A.; Kishimoto, Hirotatsu; Kohno, Yutaka; Hirotaki, S.; Kohyama, Akira
2013-11-01
Towards the early realization of fusion power reactors, high performance first wall and plasma facing components (PFCs) are essentially required. As one of the biggest challenges for this, high heat flux component (HHFC) design and R & D has been emphasized. This report provides the high performance HHFC materials R & D status and the first plasma exposure test result from large helical device (LHD). W-SiC/SiC dual layer tiles (hereafter, W-SiC/SiC) were developed by applied NITE process. This is the realistic concept of tungsten armor with ceramic composite substrates for fusion power reactors. The dual layer tiles were fabricated and tested their survival under the LHD divertor plasma exposure (Nominally 10 MW/m2 maximum heat load for 6 s operation cycle). The microstructure evolution, including crack and pore formation, was analyzed, besides the behavior of bonding layer between tungsten and SiC/SiC was evaluated by C-scanning images of ultrasonic method and Electron probe Micro-analyzer (EPMA). Thermal analysis was conducted by finite element method, where ANSYS code release 13.0 was used.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharp, D.J.; Panitz, J.K.G.; Mattox, D.M.
The erosion of materials by low energy ions is of concern in fusion reactors since high Z impurities in the plasma cause radiation cooling. Ion bombardment of the fusion reactor chamber walls arises from ions of fuel (D, T) material, gaseous impurities (O, C), and impurities from eroded components (Fe, Co, Ni, C, Mo, etc.) being accelerated across the wall sheath potential (0.1 to 1 keV). A Kaufman type ion source has been characterized for use with hydrogen, and subsequently used to determine the relative erosion rates of bulk Mo, C, Cu, coating of TiB/sub 2/, B/sub 4/C, Be, VBe/submore » 12/ and other materials. Ions of hydrogen (Z=1), argon (Z=18), and xenon (Z=54) at acceleration potentials of 250, 500, and 1000 V have been used to determine erosion yields.« less
Shen, Nan; Chen, Yun; Zhou, Yan
2017-05-01
Many studies reported that it is challenging to apply enhanced biological phosphorus removal (EBPR) process at high temperature. Glycogen accumulating organisms (GAOs) could easily gain their dominance over poly-phosphate accumulating organisms (PAOs) when the operating temperature was in the range of 25 °C-30 °C. However, a few successful EBPR processes operated at high temperature have been reported recently. This study aimed to have an in-depth understanding on the impact of feeding strategy and carbon source types on EBPR performance in tropical climate. P-removal performance of two EBPR systems was monitored through tracking effluent quality and cyclic studies. The results confirmed that EBPR was successfully obtained and maintained at high temperature with a multi-cycle strategy. More stable performance was observed with acetate as the sole carbon source compared to propionate. Stoichiometric ratios of phosphorus and carbon transformation during both anaerobic and aerobic phases were higher at high temperature than low temperature (20±1 °C) except anaerobic PHA/C ratios within most of the sub-cycles. Furthermore, the fractions of PHA and glycogen in biomass were lower compared with one-cycle pulse feed operation. The microbial community structure was more stable in acetate-fed sequencing batch reactor (C2-SBR) than that in propionate-fed reactor (C3-SBR). Accumulibacter Clade IIC was found to be highly abundant in both reactors. Copyright © 2017 Elsevier Ltd. All rights reserved.
Catalytic Reactor For Oxidizing Mercury Vapor
Helfritch, Dennis J.
1998-07-28
A catalytic reactor (10) for oxidizing elemental mercury contained in flue gas is provided. The catalyst reactor (10) comprises within a flue gas conduit a perforated corona discharge plate (30a, b) having a plurality of through openings (33) and a plurality of projecting corona discharge electrodes (31); a perforated electrode plate (40a, b, c) having a plurality of through openings (43) axially aligned with the through openings (33) of the perforated corona discharge plate (30a, b) displaced from and opposing the tips of the corona discharge electrodes (31); and a catalyst member (60a, b, c, d) overlaying that face of the perforated electrode plate (40a, b, c) opposing the tips of the corona discharge electrodes (31). A uniformly distributed corona discharge plasma (1000) is intermittently generated between the plurality of corona discharge electrode tips (31) and the catalyst member (60a, b, c, d) when a stream of flue gas is passed through the conduit. During those periods when corona discharge (1000) is not being generated, the catalyst molecules of the catalyst member (60a, b, c, d) adsorb mercury vapor contained in the passing flue gas. During those periods when corona discharge (1000) is being generated, ions and active radicals contained in the generated corona discharge plasma (1000) desorb the mercury from the catalyst molecules of the catalyst member (60a, b, c, d), oxidizing the mercury in virtually simultaneous manner. The desorption process regenerates and activates the catalyst member molecules.
Ortega, Amber M.; Hayes, Patrick L.; Peng, Zhe; ...
2016-06-15
Field studies in polluted areas over the last decade have observed large formation of secondary organic aerosol (SOA) that is often poorly captured by models. The study of SOA formation using ambient data is often confounded by the effects of advection, vertical mixing, emissions, and variable degrees of photochemical aging. An oxidation flow reactor (OFR) was deployed to study SOA formation in real-time during the California Research at the Nexus of Air Quality and Climate Change (CalNex) campaign in Pasadena, CA, in 2010. A high-resolution aerosol mass spectrometer (AMS) and a scanning mobility particle sizer (SMPS) alternated sampling ambient andmore » reactor-aged air. The reactor produced OH concentrations up to 4 orders of magnitude higher than in ambient air. OH radical concentration was continuously stepped, achieving equivalent atmospheric aging of 0.8 days–6.4 weeks in 3 min of processing every 2 h. Enhancement of organic aerosol (OA) from aging showed a maximum net SOA production between 0.8–6 days of aging with net OA mass loss beyond 2 weeks. Reactor SOA mass peaked at night, in the absence of ambient photochemistry and correlated with trimethylbenzene concentrations. Reactor SOA formation was inversely correlated with ambient SOA and O x, which along with the short-lived volatile organic compound correlation, indicates the importance of very reactive ( τ OH ~ 0.3 day) SOA precursors (most likely semivolatile and intermediate volatility species, S/IVOCs) in the Greater Los Angeles Area. Evolution of the elemental composition in the reactor was similar to trends observed in the atmosphere (O : C vs. H : C slope ~ –0.65). Oxidation state of carbon (OSc) in reactor SOA increased steeply with age and remained elevated (OS C ~ 2) at the highest photochemical ages probed. The ratio of OA in the reactor output to excess CO (ΔCO, ambient CO above regional background) vs. photochemical age is similar to previous studies at low to moderate ages and also extends to higher ages where OA loss dominates. The mass added at low-to-intermediate ages is due primarily to condensation of oxidized species, not heterogeneous oxidation. The OA decrease at high photochemical ages is dominated by heterogeneous oxidation followed by fragmentation/evaporation. A comparison of urban SOA formation in this study with a similar study of vehicle SOA in a tunnel suggests the importance of vehicle emissions for urban SOA. Pre-2007 SOA models underpredict SOA formation by an order of magnitude, while a more recent model performs better but overpredicts at higher ages. Furthermore, these results demonstrate the value of the reactor as a tool for in situ evaluation of the SOA formation potential and OA evolution from ambient air.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortega, Amber M.; Hayes, Patrick L.; Peng, Zhe
Field studies in polluted areas over the last decade have observed large formation of secondary organic aerosol (SOA) that is often poorly captured by models. The study of SOA formation using ambient data is often confounded by the effects of advection, vertical mixing, emissions, and variable degrees of photochemical aging. An oxidation flow reactor (OFR) was deployed to study SOA formation in real-time during the California Research at the Nexus of Air Quality and Climate Change (CalNex) campaign in Pasadena, CA, in 2010. A high-resolution aerosol mass spectrometer (AMS) and a scanning mobility particle sizer (SMPS) alternated sampling ambient andmore » reactor-aged air. The reactor produced OH concentrations up to 4 orders of magnitude higher than in ambient air. OH radical concentration was continuously stepped, achieving equivalent atmospheric aging of 0.8 days–6.4 weeks in 3 min of processing every 2 h. Enhancement of organic aerosol (OA) from aging showed a maximum net SOA production between 0.8–6 days of aging with net OA mass loss beyond 2 weeks. Reactor SOA mass peaked at night, in the absence of ambient photochemistry and correlated with trimethylbenzene concentrations. Reactor SOA formation was inversely correlated with ambient SOA and O x, which along with the short-lived volatile organic compound correlation, indicates the importance of very reactive ( τ OH ~ 0.3 day) SOA precursors (most likely semivolatile and intermediate volatility species, S/IVOCs) in the Greater Los Angeles Area. Evolution of the elemental composition in the reactor was similar to trends observed in the atmosphere (O : C vs. H : C slope ~ –0.65). Oxidation state of carbon (OSc) in reactor SOA increased steeply with age and remained elevated (OS C ~ 2) at the highest photochemical ages probed. The ratio of OA in the reactor output to excess CO (ΔCO, ambient CO above regional background) vs. photochemical age is similar to previous studies at low to moderate ages and also extends to higher ages where OA loss dominates. The mass added at low-to-intermediate ages is due primarily to condensation of oxidized species, not heterogeneous oxidation. The OA decrease at high photochemical ages is dominated by heterogeneous oxidation followed by fragmentation/evaporation. A comparison of urban SOA formation in this study with a similar study of vehicle SOA in a tunnel suggests the importance of vehicle emissions for urban SOA. Pre-2007 SOA models underpredict SOA formation by an order of magnitude, while a more recent model performs better but overpredicts at higher ages. Furthermore, these results demonstrate the value of the reactor as a tool for in situ evaluation of the SOA formation potential and OA evolution from ambient air.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogale, Amod A
2012-04-27
Nuclear energy is a dependable and economical source of electricity. Because fuel supply sources are available domestically, nuclear energy can be a strong domestic industry that can reduce dependence on foreign energy sources. Commercial nuclear power plants have extensive security measures to protect the facility from intruders [1]. However, additional research efforts are needed to increase the inherent process safety of nuclear energy plants to protect the public in the event of a reactor malfunction. The next generation nuclear plant (NGNP) is envisioned to utilize a very high temperature reactor (VHTR) design with an operating temperature of 650-1000°C [2]. Onemore » of the most important safety design requirements for this reactor is that it must be inherently safe, i.e., the reactor must shut down safely in the event that the coolant flow is interrupted [2]. This next-generation Gen IV reactor must operate in an inherently safe mode where the off-normal temperatures may reach 1500°C due to coolant-flow interruption. Metallic alloys used currently in reactor internals will melt at such temperatures. Structural materials that will not melt at such ultra-high temperatures are carbon/graphtic fibers and carbon-matrix composites. Graphite does not have a measurable melting point; it is known to sublime starting about 3300°C. However, neutron radiation-damage effects on carbon fibers are poorly understood. Therefore, the goal of this project is to obtain a fundamental understanding of the role of nanotexture on the properties of resulting carbon fibers and their neutron-damage characteristics. Although polygranular graphite has been used in nuclear environment for almost fifty years, it is not suitable for structural applications because it do not possess adequate strength, stiffness, or toughness that is required of structural components such as reaction control-rods, upper plenum shroud, and lower core-support plate [2,3]. For structural purposes, composites consisting of strong carbon fibers embedded in a carbon matrix are needed. Such carbon/carbon (C/C) composites have been used in aerospace industry to produce missile nose cones, space shuttle leading edge, and aircraft brake-pads. However, radiation-tolerance of such materials is not adequately known because only limited radiation studies have been performed on C/C composites, which suggest that pitch-based carbon fibers have better dimensional stability than that of polyacrylonitrile (PAN) based fibers [4]. The thermodynamically-stable state of graphitic crystalline packing of carbon atoms derived from mesophase pitch leads to a greater stability during neutron irradiation [5]. The specific objectives of this project were: (i) to generating novel carbonaceous nanostructures, (ii) measure extent of graphitic crystallinity and the extent of anisotropy, and (iii) collaborate with the Carbon Materials group at Oak Ridge National Lab to have neutron irradiation studies and post-irradiation examinations conducted on the carbon fibers produced in this research project.« less
NASA Astrophysics Data System (ADS)
Thompson, Drew; Leparoux, Marc; Jaeggi, Christian; Buha, Jelena; Pui, David Y. H.; Wang, Jing
2013-12-01
In this study, the synthesis of silicon carbide (SiC) nanoparticles in a prototype inductively coupled thermal plasma reactor and other supporting processes, such as the handling of precursor material, the collection of nanoparticles, and the cleaning of equipment, were monitored for particle emissions and potential worker exposure. The purpose of this study was to evaluate the effectiveness of engineering controls and best practice guidelines developed for the production and handling of nanoparticles, identify processes which result in a nanoparticle release, characterize these releases, and suggest possible administrative or engineering controls which may eliminate or control the exposure source. No particle release was detected during the synthesis and collection of SiC nanoparticles and the cleaning of the reactor. This was attributed to most of these processes occurring in closed systems operated at slight underpressure. Other tasks occurring in more open spaces, such as the disconnection of a filter assembly from the reactor system and the use of compressed air for the cleaning of filters where synthesized SiC nanoparticles were collected, resulted in releases of submicrometer particles with a mode size of 170-180 nm. Observation of filter samples under scanning electron microscope confirmed that the particles were agglomerates of SiC nanoparticles.
NASA Astrophysics Data System (ADS)
Gavrilov, A. V.; Kritskii, V. G.; Rodionov, Yu. A.; Berezina, I. G.
2013-07-01
Certain features of the effect of boric acid in the reactor coolant of nuclear power installations equipped with a VVER-440 reactor on mass transfer in the reactor core are considered. It is determined that formation of boric acid polyborate complexes begins under field conditions at a temperature of 300°C when the boric acid concentration is equal to around 0.065 mol/L (4 g/L). Operations for decontaminating the reactor coolant system entail a growth of corrosion product concentration in the coolant, which gives rise to formation of iron borates in the zones where subcooled boiling of coolant takes place and to the effect of axial offset anomalies. A model for simulating variation of pressure drop in a VVER-440 reactor's core that has invariable parameters during the entire fuel campaign is developed by additionally taking into account the concentrations of boric acid polyborate complexes and the quantity of corrosion products (Fe, Ni) represented by the ratio of their solubilities.
Analysis of fluid fuel flow to the neutron kinetics on molten salt reactor FUJI-12
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aji, Indarta Kuncoro, E-mail: indartaaji@s.itb.ac.id; Waris, Abdul, E-mail: awaris@fi.itb.ac.id; Permana, Sidik
Molten Salt Reactor is a reactor are operating with molten salt fuel flowing. This condition interpret that the neutron kinetics of this reactor is affected by the flow rate of the fuel. This research analyze effect by the alteration velocity of the fuel by MSR type Fuji-12, with fuel composition LiF-BeF{sub 2}-ThF{sub 4}-{sup 233}UF{sub 4} respectively 71.78%-16%-11.86%-0.36%. Calculation process in this study is performed numerically by SOR and finite difference method use C programming language. Data of reactivity, neutron flux, and the macroscopic fission cross section for calculation process obtain from SRAC-CITATION (Standard thermal Reactor Analysis Code) and JENDL-4.0 datamore » library. SRAC system designed and developed by JAEA (Japan Atomic Energy Agency). This study aims to observe the effect of the velocity of fuel salt to the power generated from neutron precursors at fourth year of reactor operate (last critical condition) with number of multiplication effective; 1.0155.« less
NASA Technical Reports Server (NTRS)
Sibille, Laurent; Dominguez, Jesus A.
2012-01-01
The technology of direct electrolysis of molten lunar regolith to produce oxygen and molten metal alloys has progressed greatly in the last few years. The development of long-lasting inert anodes and cathode designs as well as techniques for the removal of molten products from the reactor has been demonstrated. The containment of chemically aggressive oxide and metal melts is very difficult at the operating temperatures ca. 1600 C. Containing the molten oxides in a regolith shell can solve this technical issue and can be achieved by designing a Joule-heated (sometimes called 'self-heating') reactor in which the electrolytic currents generate enough Joule heat to create a molten bath. Solutions obtained by multiphysics modeling allow the identification of the critical dimensions of concept reactors.
NASA Technical Reports Server (NTRS)
Houseman, John (Inventor); Voecks, Gerald E. (Inventor)
1986-01-01
A flow through catalytic reactor which selectively catalytically decomposes methanol into a soot free hydrogen rich product gas utilizing engine exhaust at temperatures of 200 to 650 C to provide the heat for vaporizing and decomposing the methanol is described. The reactor is combined with either a spark ignited or compression ignited internal combustion engine or a gas turbine to provide a combustion engine system. The system may be fueled entirely by the hydrogen rich gas produced in the methanol decomposition reactor or the system may be operated on mixed fuels for transient power gain and for cold start of the engine system. The reactor includes a decomposition zone formed by a plurality of elongated cylinders which contain a body of vapor permeable, methanol decomposition catalyst preferably a shift catalyst such as copper-zinc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aaron, Adam M.; Cunningham, Richard Burns; Fugate, David L.
Effective high-temperature thermal energy exchange and delivery at temperatures over 600°C has the potential of significant impact by reducing both the capital and operating cost of energy conversion and transport systems. It is one of the key technologies necessary for efficient hydrogen production and could potentially enhance efficiencies of high-temperature solar systems. Today, there are no standard commercially available high-performance heat transfer fluids above 600°C. High pressures associated with water and gaseous coolants (such as helium) at elevated temperatures impose limiting design conditions for the materials in most energy systems. Liquid salts offer high-temperature capabilities at low vapor pressures, goodmore » heat transport properties, and reasonable costs and are therefore leading candidate fluids for next-generation energy production. Liquid-fluoride-salt-cooled, graphite-moderated reactors, referred to as Fluoride Salt Reactors (FHRs), are specifically designed to exploit the excellent heat transfer properties of liquid fluoride salts while maximizing their thermal efficiency and minimizing cost. The FHR s outstanding heat transfer properties, combined with its fully passive safety, make this reactor the most technologically desirable nuclear power reactor class for next-generation energy production. Multiple FHR designs are presently being considered. These range from the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) [1] design originally developed by UC-Berkeley to the Small Advanced High-Temperature Reactor (SmAHTR) and the large scale FHR both being developed at ORNL [2]. The value of high-temperature, molten-salt-cooled reactors is also recognized internationally, and Czechoslovakia, France, India, and China all have salt-cooled reactor development under way. The liquid salt experiment presently being developed uses the PB-AHTR as its focus. One core design of the PB-AHTR features multiple 20 cm diameter, 3.2 m long fuel channels with 3 cm diameter graphite-based fuel pebbles slowly circulating up through the core. Molten salt coolant (FLiBe) at 700°C flows concurrently (at significantly higher velocity) with the pebbles and is used to remove heat generated in the reactor core (approximately 1280 W/pebble), and supply it to a power conversion system. Refueling equipment continuously sorts spent fuel pebbles and replaces spent or damaged pebbles with fresh fuel. By combining greater or fewer numbers of pebble channel assemblies, multiple reactor designs with varying power levels can be offered. The PB-AHTR design is discussed in detail in Reference [1] and is shown schematically in Fig. 1. Fig. 1. PB-AHTR concept (drawing taken from Peterson et al., Design and Development of the Modular PB-AHTR Proceedings of ICApp 08). Pebble behavior within the core is a key issue in proving the viability of this concept. This includes understanding the behavior of the pebbles thermally, hydraulically, and mechanically (quantifying pebble wear characteristics, flow channel wear, etc). The experiment being developed is an initial step in characterizing the pebble behavior under realistic PB-AHTR operating conditions. It focuses on thermal and hydraulic behavior of a static pebble bed using a convective salt loop to provide prototypic fluid conditions to the bed, and a unique inductive heating technique to provide prototypic heating in the pebbles. The facility design is sufficiently versatile to allow a variety of other experimentation to be performed in the future. The facility can accommodate testing of scaled reactor components or sub-components such as flow diodes, salt-to-salt heat exchangers, and improved pump designs as well as testing of refueling equipment, high temperature instrumentation, and other reactor core designs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marquez, Eva; Pina, Gabriel; Rodriguez, Marina
Spain has to manage about 3700 tons of irradiated graphite from the reactor Vandellos I as radioactive waste. 2700 tons are the stack of the reactor and are still in the reactor core waiting for retrieval. The rest of the quantities, 1000 tons, are the graphite sleeves which have been already retrieved from the reactor. During operation the graphite sleeves were stored in a silo and during the dismantling stage a retrieval process was carried out separating the wires from the graphite, which were crushed and introduced into 220 cubic containers of 6 m{sup 3} each and placed in interimmore » storage. The graphite is an intermediate level radioactive waste but it contains long lived radionuclides like {sup 14}C which disqualifies disposal at the low level waste repository of El Cabril. Therefore, a new project has been started in order to investigate two new options for the management of this waste type. The first one is based on a selective decontamination of {sup 14}C by thermal methods. This method is based on results obtained at the Research Centre Juelich (FZJ) in the Frame of the EC programs 'Raphael' and 'Carbowaste'. The process developed at FZJ is based on a preferential oxidation of {sup 14}C in comparison to the bulk {sup 12}C. Explanations for this effect are the inhomogeneous distribution and a weaker bounding of {sup 14}C which is not incorporated in the graphite lattice. However these investigations have only been performed with graphite from the high temperature reactor Arbeitsgemeinschaft Versuchsreaktor Juelich AVR which has been operated in a non-oxidising condition or research reactor graphite operated at room temperature. The reactor Vandellos I has been operated with CO{sub 2} as coolant and significant amounts of graphite have been already oxidised. The aim of the project is to validate whether a {sup 14}C decontamination can also been achieved with graphite from Vandellos I. A second possibility under investigation is the encapsulation of the graphite in a long term stable glass matrix. The principal applicability has been already proved by FNAG. Crushed graphite mixed with a suitable glass powder has been pressed at elevated temperature under vacuum. The vacuum is required to avoid gas enclosures in the obtained product. The obtained products, named IGM for 'Impermeable Graphite Matrix', have densities above 99% of theoretical density. The amount of glass has been chosen with respect to the pore volume of the former graphite parts. The method allows the production of encapsulated graphite without increasing the disposal volume. This paper will give a short overview of characterisation results of different irradiated graphite materials obtained at CIEMAT and in the Carbowaste project as well as the proposed methods and the actual status of the program including first results about leaching of non-radioactive IGM samples and hopefully first tendencies concerning the C-14 separation from graphite of Vandellos I by thermal treatment. Both processes, the thermal treatment as well as the IGM, have the potential to solve problems related to the management of irradiated graphite in Spain. However the methods have only been tested with different types of i-graphite and virgin graphite, respectively. Only investigations with real i-graphite from Spain will reveal whether the described methods are applicable to graphite from Vandellos I. However all partners are convinced that one of these new methods or a combination of them will lead to a feasible option to manage i-graphite in Spain on an industrial scale. (authors)« less
Testing of Liquid Metal Components for Nuclear Surface Power Systems
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Godfroy, Thomas J.; Pearson, J. Boise
2010-01-01
The Early Flight Fission Test Facility (EFF-TF) was established by the Marshall Space Flight Center (MSFC) to provide a capability for performing hardware-directed activities to support multiple in-space nuclear reactor concepts by using a non-nuclear test methodology. This includes fabrication and testing at both the module/component level and near prototypic reactor configurations. The EFF-TF is currently supporting an effort to develop an affordable fission surface power (AFSP) system that could be deployed on the Lunar surface. The AFSP system is presently based on a pumped liquid metal-cooled (Sodium-Potassium eutectic, NaK-78) reactor design. This design was derived from the only fission system that the United States has deployed for space operation, the Systems for Nuclear Auxiliary Power (SNAP) 10A reactor, which was launched in 1965. Two prototypical components recently tested at MSFC were a pair of Stirling power conversion units that would be used in a reactor system to convert heat to electricity, and an annular linear induction pump (ALIP) that uses travelling electromagnetic fields to pump the liquid metal coolant through the reactor loop. First ever tests were conducted at MSFC to determine baseline performance of a pair of 1 kW Stirling convertors using NaK as the hot side working fluid. A special test rig was designed and constructed and testing was conducted inside a vacuum chamber at MSFC. This test rig delivered pumped NaK for the hot end temperature to the Stirlings and water as the working fluid on the cold end temperature. These test were conducted through a hot end temperature range between 400 to 550C in increments of 50 C and a cold end temperature range from 30 to 70 C in 20 C increments. Piston amplitudes were varied from 6 to 1 1mm in .5 mm increments. A maximum of 2240 Watts electric was produced at the design point of 550 hot end, 40 C cold end with a piston amplitude of 10.5mm. This power level was reached at a gross thermal efficiency of 28%. A baseline performance map was established for the pair of 1kW Stirling convertors. The performance data will then be used for design modification to the Stirling convertors. The ALIP tested at MSFC has no moving parts and no direct electrical connections to the liquid metal containing components. Pressure is developed by the interaction of the magnetic field produced by the stator and the current which flows as a result of the voltage induced in the liquid metal contained in the pump duct. Flow is controlled by variation of the voltage supplied to the pump windings. Under steady-state conditions, pump performance is measured for flow rates from 0.5-4.3 kg/s. The pressure rise developed by the pump to support these flow rates is roughly 5-65 kPa. The RMS input voltage (phase-to-phase voltage) ranges from 5-120 V, while the frequency can be varied arbitrarily up to 60 Hz. Performance is quantified at different loop temperature levels from 50 C up to 650 C, which is the peak operating temperature of the proposed AFSP reactor. The transient response of the pump is also evaluated to determine its behavior during startup and shut-down procedures.
NASA Astrophysics Data System (ADS)
Ahn, Jeongmin
An experimental study of the performance of a Swiss roll heat exchanger and reactor was conducted, with emphasis on the extinction limits and comparison of results with and without Pt catalyst. At Re<40, the catalyst was required to sustain reaction; with the catalyst self-sustaining reaction could be obtained at Re less than 1. Both lean and rich extinction limits were extended with the catalyst, though rich limits were extended much further. At low Re, the lean extinction limit was rich of stoichiometric and rich limit had equivalence ratios 80 in some cases. Non-catalytic reaction generally occurred in a flameless mode near the center of the reactor. With or without catalyst, for sufficiently robust conditions, a visible flame would propagate out of the center, but this flame could only be re-centered with catalyst. Gas chromatography indicated that at low Re, CO and non-C3 H8 hydrocarbons did not form. For higher Re, catalytic limits were slightly broader but had much lower limit temperatures. At sufficiently high Re, catalytic and gas-phase limits merged. Experiments with titanium Swiss rolls have demonstrated reducing wall thermal conductivity and thickness leads to lower heat losses and therefore increases operating temperatures and extends flammability limits. By use of Pt catalysts, reaction of propane-air mixtures at temperatures 54°C was sustained. Such low temperatures suggest that polymers may be employed as a reactor material. A polyimide reactor was built and survived prolonged testing at temperatures up to 500°C. Polymer reactors may prove more practical for microscale devices due to their lower thermal conductivity and ease of manufacturing. Since the ultimate goal of current efforts is to develop combustion driven power generation devices at MEMS like scales, a thermally self-sustaining miniature power generation device was developed utilizing a single-chamber solid-oxide-fuel-cell (SOFC) placed in a Swiss roll. With the single-chamber design, fuel/oxygen crossover due to cracking of seals via thermal cycling is irrelevant and coking on the anode is practically eliminated. SOFC power densities up to 420mW/cm2 were observed at low Re. These results suggest that single-chamber SOFC's integrated with heat-recirculating reactors may be a viable approach for small-scale power generation devices.
NASA Astrophysics Data System (ADS)
Hinoki, Tatsuya
Evaluation techniques and mechanical properties of silicon carbide composites (SiC⁄SiC composites) reinforced with highly crystalline fibers are reviewed for fusion applications. The SiC⁄SiC composites used were fabricated by means of the CVI method. The evaluation includes in-plane tensile strength by in-plane tensile test, transthickness tensile strength by transthickness tensile test and diametral compression test and shear strength by compression test using double-notched specimen. All tests were successfully conducted using small specimens for neutron irradiation experiment. As application technique, the novel tungsten(W) coating technique on SiC is reviewed. The W powder melted by high power lamp in a few seconds and formed coating on SiC. No thick reaction layers of WC and W5Si3, which are formed by the other coating methods, were formed by this method.
Haydary, J; Susa, D; Dudáš, J
2013-05-01
Pyrolysis of aseptic packages (tetrapak cartons) in a laboratory apparatus using a flow screw type reactor and a secondary catalytic reactor for tar cracking was studied. The pyrolysis experiments were realized at temperatures ranging from 650 °C to 850 °C aimed at maximizing of the amount of the gas product and reducing its tar content. Distribution of tetrapak into the product yields at different conditions was obtained. The presence of H2, CO, CH4, CO2 and light hydrocarbons, HCx, in the gas product was observed. The Aluminum foil was easily separated from the solid product. The rest part of char was characterized by proximate and elemental analysis and calorimetric measurements. The total organic carbon in the tar product was estimated by elemental analysis of tars. Two types of catalysts (dolomite and red clay marked AFRC) were used for catalytic thermal tar decomposition. Three series of experiments (without catalyst in a secondary cracking reactor, with dolomite and with AFRC) at temperatures of 650, 700, 750, 800 and 850 °C were carried out. Both types of catalysts have significantly affected the content of tars and other components in pyrolytic gases. The effect of catalyst on the tetrapack distribution into the product yield on the composition of gas and on the total organic carbon in the tar product is presented in this work. Copyright © 2013 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-28
... Subcommittee On Digital I&C Systems The ACRS Subcommittee on Digital Instrumentation and Control (DI&C) Systems... the area of Digital Instrumentation and Control (DI&C) Probabilistic Risk Assessment (PRA). Topics... software reliability methods (QSRMs), NUREG/CR--6997, ``Modeling a Digital Feedwater Control System Using...
78 FR 2295 - Charlissa C. Smith; Establishment of Atomic Safety and Licensing Board
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-10
... NUCLEAR REGULATORY COMMISSION [Docket No. 55-23694-SP; ASLBP No. 13-925-01-SP-BD01] Charlissa C... (Board) is being established to preside over the following proceeding: Charlissa C. Smith, (Denial of Senior Reactor Operator License). This proceeding concerns a hearing request from Charlissa C. Smith...
NASA Astrophysics Data System (ADS)
You, Yan; Yoshida, Katsumi; Yano, Toyohiko
2018-05-01
Boron carbide (B4C) is a leading candidate neutron absorber material for sodium-cooled fast nuclear reactors owing to its excellent neutron-capture capability. The formation and migration energies of the neutron-irradiation-induced defects, including vacancies, neutron-capture reaction products, and knocked-out atoms were studied by density functional theory calculations. The vacancy-type defects tend to migrate to the C–B–C chains of B4C, which indicates that the icosahedral cage structures of B4C have strong resistance to neutron irradiation. We found that lithium and helium atoms had significantly lower migration barriers along the rhombohedral (111) plane of B4C than perpendicular to this plane. This implies that the helium and lithium interstitials tended to follow a two-dimensional diffusion regime in B4C at low temperatures which explains the formation of flat disk like helium bubbles experimentally observed in B4C pellets after neutron irradiation. The knocked-out atoms are considered to be annihilated by the recombination of the close pairs of self-interstitials and vacancies.
The effect of cover use on plastic pyrolysis reactor heating process
NASA Astrophysics Data System (ADS)
Armadi, Benny H.; Rangkuti, Chalilullah; Fauzi, M. D.; Permatasari, R.
2017-03-01
Plastic pyrolysis process to produce liquid fuel is an endothermic process that uses heat from the combustion of fuel as heat source. The reactor used is usually a vertical cylindrical in shape, with LPG fuel combustion under the flat bottom of the reactor, and the combustion gases is dispersed into the surrounding environment, so that heat transferred to the plastic inside the reactor is not effective, causing high LPG consumption. In this study, the reactor is made of stainless steel plate, with a vertical cylindrical shape, with a basic cylindrical conical truncated by a pit pass hot flue gas in the middle that serves to deliver flue gas into the chimney. The contact area between the hot combusted LPG gases to the processed plastic inside the reactor becomes bigger and gets better heat transfer, and required less LPG consumption. For more effective heat transfer process, an outer cover of this reactor was made and the relatively hot combustion gases are used to heat the outside of the reactor by directing the flow of the flue gas from the chimney down along the outer wall of the reactor and out the bottom lid. This construction makes the heating process to be faster and the LPG fuel is used more efficiently. From the measurements, it was found to raise 1°C of temperature inside the covered reactor, the LPG consumed is 0.59 gram, and if the reactor cover is removed, the gas demand will rise nearly threefold to 1.43 grams. With this method, in addition to reducing the rate of heat loss will also help reduce LPG consumption significantly.
Mao, Lingai; Chen, Zhizong; Wu, Xinyue; Tang, Xiujuan; Yao, Shuiliang; Zhang, Xuming; Jiang, Boqiong; Han, Jingyi; Wu, Zuliang; Lu, Hao; Nozaki, Tomohiro
2018-04-05
A dielectric barrier discharge (DBD) catalyst hybrid reactor with CeO 2 /γ-Al 2 O 3 catalyst balls was investigated for benzene decomposition at atmospheric pressure and 30 °C. At an energy density of 37-40 J/L, benzene decomposition was as high as 92.5% when using the hybrid reactor with 5.0wt%CeO 2 /γ-Al 2 O 3 ; while it was 10%-20% when using a normal DBD reactor without a catalyst. Benzene decomposition using the hybrid reactor was almost the same as that using an O 3 catalyst reactor with the same CeO 2 /γ-Al 2 O 3 catalyst, indicating that O 3 plays a key role in the benzene decomposition. Fourier transform infrared spectroscopy analysis showed that O 3 adsorption on CeO 2 /γ-Al 2 O 3 promotes the production of adsorbed O 2 - and O 2 2‒ , which contribute benzene decomposition over heterogeneous catalysts. Nano particles as by-products (phenol and 1,4-benzoquinone) from benzene decomposition can be significantly reduced using the CeO 2 /γ-Al 2 O 3 catalyst. H 2 O inhibits benzene decomposition; however, it improves CO 2 selectivity. The deactivated CeO 2 /γ-Al 2 O 3 catalyst can be regenerated by performing discharges at 100 °C and 192-204 J/L. The decomposition mechanism of benzene over CeO 2 /γ-Al 2 O 3 catalyst was proposed. Copyright © 2017 Elsevier B.V. All rights reserved.
Torkaman, Mojtaba; Borghei, Seyed Mehdi; Tahmasebian, Sepehr; Andalibi, Mohammad Reza
2015-01-01
A moving bed biofilm reactor with pre-denitrification configuration was fed with a synthetic wastewater containing high chemical oxygen demand (COD) and ammonia. By changing different variables including ammonium and COD loading, nitrification rate in the aerobic reactor and denitrification rate in the anoxic reactor were monitored. Changing the influent loading was achieved via adjusting the inlet COD (956-2,096 mg/L), inlet ammonium (183-438 mg/L), and hydraulic retention time of the aerobic reactor (8, 12, and 18 hours). The overall organic loading rate was in the range of 3.60-17.37 gCOD/m2·day, of which 18.5-91% was removed in the anoxic reactor depending on the operational conditions. Considering the complementary role of the aerobic reactor, the overall COD removal was in the range 87.3-98.8%. In addition, nitrification rate increased with influent ammonium loading, the maximum rate reaching 3.05 gNH4/m2·day. One of the most important factors affecting nitrification rate was influent C:N entering the aerobic reactor, by increasing which nitrification rate decreased asymptotically. Nitrate removal efficiency in the anoxic reactor was also controlled by the inlet nitrate level entering the anoxic reactor. Furthermore, by increasing the nitrate loading rate from 0.91 to 3.49 gNO/m3·day, denitrification rate increased from 0.496 to 2.47 gNO/m3·day.
Quantification of syntrophic acetate-oxidizing microbial communities in biogas processes
Westerholm, Maria; Dolfing, Jan; Sherry, Angela; Gray, Neil D; Head, Ian M; Schnürer, Anna
2011-01-01
Changes in communities of syntrophic acetate-oxidizing bacteria (SAOB) and methanogens caused by elevated ammonia levels were quantified in laboratory-scale methanogenic biogas reactors operating at moderate temperature (37°C) using quantitative polymerase chain reaction (qPCR). The experimental reactor was subjected to gradually increasing ammonia levels (0.8–6.9 g NH4+-N l−1), whereas the level of ammonia in the control reactor was kept low (0.65–0.90 g NH4+-N l−1) during the entire period of operation (660 days). Acetate oxidation in the experimental reactor, indicated by increased production of 14CO2 from acetate labelled in the methyl carbon, occurred when ammonia levels reached 5.5 and 6.9 g NH4+-N l−1. Syntrophic acetate oxidizers targeted by newly designed qPCR primers were Thermacetogenium phaeum, Clostridium ultunense, Syntrophaceticus schinkii and Tepidanaerobacter acetatoxydans. The results showed a significant increase in abundance of all these bacteria except T. phaeum in the ammonia-stressed reactor, coincident with the shift to syntrophic acetate oxidation. As the abundance of the bacteria increased, a simultaneous decrease was observed in the abundance of aceticlastic methanogens from the families Methanosaetaceae and Methanosarcinaceae. qPCR analyses of sludge from two additional high ammonia processes, in which methane production from acetate proceeded through syntrophic acetate oxidation (reactor SB) or through aceticlastic degradation (reactor DVX), demonstrated that SAOB were significantly more abundant in the SB reactor than in the DVX reactor. PMID:23761313
Limitations for heavy metal release during thermo-chemical treatment of sewage sludge ash
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nowak, Benedikt, E-mail: benedikt.nowak@tuwien.ac.at; Perutka, Libor; Aschenbrenner, Philipp
2011-06-15
Phosphate recycling from sewage sludge can be achieved by heavy metal removal from sewage sludge ash (SSA) producing a fertilizer product: mixing SSA with chloride and treating this mixture (eventually after granulation) in a rotary kiln at 1000 {+-} 100 deg. C leads to the formation of volatile heavy metal compounds that evaporate and to P-phases with high bio-availability. Due to economical and ecological reasons, it is necessary to reduce the energy consumption of this technology. Generally, fluidized bed reactors are characterized by high heat and mass transfer and thus promise the saving of energy. Therefore, a rotary reactor andmore » a fluidized bed reactor (both laboratory-scale and operated in batch mode) are used for the treatment of granulates containing SSA and CaCl{sub 2}. Treatment temperature, residence time and - in case of the fluidized bed reactor - superficial velocity are varied between 800 and 900 deg. C, 10 and 30 min and 3.4 and 4.6 m s{sup -1}. Cd and Pb can be removed well (>95 %) in all experiments. Cu removal ranges from 25% to 84%, for Zn 75-90% are realized. The amount of heavy metals removed increases with increasing temperature and residence time which is most pronounced for Cu. In the pellet, three major reactions occur: formation of HCl and Cl{sub 2} from CaCl{sub 2}; diffusion and reaction of these gases with heavy metal compounds; side reactions from heavy metal compounds with matrix material. Although, heat and mass transfer are higher in the fluidized bed reactor, Pb and Zn removal is slightly better in the rotary reactor. This is due the accelerated migration of formed HCl and Cl{sub 2} out of the pellets into the reactor atmosphere. Cu is apparently limited by the diffusion of its chloride thus the removal is higher in the fluidized bed unit.« less
ERIC Educational Resources Information Center
Taipa, M. A^ngela; Azevedo, Ana M.; Grilo, Anto´nio L.; Couto, Pedro T.; Ferreira, Filipe A. G.; Fortuna, Ana R. M.; Pinto, Ine^s F.; Santos, Rafael M.; Santos, Susana B.
2015-01-01
An integrative laboratory study addressing fundamentals of enzyme catalysis and their application to reactors operation and modeling is presented. Invertase, a ß-fructofuranosidase that catalyses the hydrolysis of sucrose, is used as the model enzyme at optimal conditions (pH 4.5 and 45 °C). The experimental work involves 3 h of laboratory time…
2000-03-24
Element Method for Designing Plasma Reactors" Leo Kempel, Paul Rummel, Tim Grotjohn and John Amrhein ............................................ 28...34Finite Element Method for Designing Plasma Reactors" Leo Kempel, Paul Rummel, Tim Grotjohn and John Amrhein...548 "lime-Domain Simulation of Electromagnetic Wave Propagation in a Magnetized Plasma" J. Paul , C. Christopoulos, and
SIMULTANEOUS DIFFERENTIAL EQUATION COMPUTER
Collier, D.M.; Meeks, L.A.; Palmer, J.P.
1960-05-10
A description is given for an electronic simulator for a system of simultaneous differential equations, including nonlinear equations. As a specific example, a homogeneous nuclear reactor system including a reactor fluid, heat exchanger, and a steam boiler may be simulated, with the nonlinearity resulting from a consideration of temperature effects taken into account. The simulator includes three operational amplifiers, a multiplier, appropriate potential sources, and interconnecting R-C networks.
After Action Report: Advanced Test Reactor Complex 2015 Evaluated Drill October 6, 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holmes, Forest Howard
2015-11-01
The Advanced Test Reactor (ATR) Complex, operated by Battelle Energy Alliance, LLC, at the Idaho National Laboratory (INL) conducted an evaluated drill on October 6, 2015, to allow the ATR Complex emergency response organization (ERO) to demonstrate the ability to respond to and mitigate an emergency by implementing the requirements of DOE O 151.1C, “Comprehensive Emergency Management System.”
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1960-04-01
The N. S. Savannah program for testing, start-up, and initial operation of all reactor and propulsion components and systems is discussed. Definitions of test phases are given and various stages of the test program are outlined. A list of tests for the various reactor, propulsion, and other system components is included. (C.J.G.)
JPRS Report, Science & Technology, China
1992-09-24
Yuhong; YUHANG XUEBAO, No 3, Jul 92] 23 Improvement of Manufacturing Process and Analysis of Tensile Strength of SiC/Al Preform Wire [Wan Hong...centered on 600MW pressur- ized-water reactor nuclear power plants . Complete devel- opment of the 200MW nuclear low-temperature heat supply reactor...grain yields, substan- tially reduce the amounts of farm chemicals used; develop plant genetic atlas research, try to make major research
Corrosion-resistant fuel cladding allow for liquid metal fast breeder reactors
Brehm, Jr., William F.; Colburn, Richard P.
1982-01-01
An aluminide coating for a fuel cladding tube for LMFBRs (liquid metal fast breeder reactors) such as those using liquid sodium as a heat transfer agent. The coating comprises a mixture of nickel-aluminum intermetallic phases and presents good corrosion resistance to liquid sodium at temperatures up to 700.degree. C. while additionally presenting a barrier to outward diffusion of .sup.54 Mn.
ADVANCED HEAT TRANSFER TEST FACILITY, TRA666A. ELEVATIONS. ROOF FRAMING PLAN. ...
ADVANCED HEAT TRANSFER TEST FACILITY, TRA-666A. ELEVATIONS. ROOF FRAMING PLAN. CONCRETE BLOCK SIDING. SLOPED ROOF. ROLL-UP DOOR. AIR INTAKE ENCLOSURE ON NORTH SIDE. F.C. TORKELSON 842-MTR-666-A5, 8/1966. INL INDEX NO. 531-0666-00-851-152258, REV. 2. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Novel waste printed circuit board recycling process with molten salt.
Riedewald, Frank; Sousa-Gallagher, Maria
2015-01-01
The objective of the method was to prove the concept of a novel waste PCBs recycling process which uses inert, stable molten salts as the direct heat transfer fluid and, simultaneously, uses this molten salt to separate the metal products in either liquid (solder, zinc, tin, lead, etc.) or solid (copper, gold, steel, palladium, etc.) form at the operating temperatures of 450-470 °C. The PCB recovery reactor is essentially a U-shaped reactor with the molten salt providing a continuous fluid, allowing molten salt access from different depths for metal recovery. A laboratory scale batch reactor was constructed using 316L as suitable construction material. For safety reasons, the inert, stable LiCl-KCl molten salts were used as direct heat transfer fluid. Recovered materials were washed with hot water to remove residual salt before metal recovery assessment. The impact of this work was to show metal separation using molten salts in one single unit, by using this novel reactor methodology. •The reactor is a U-shaped reactor filled with a continuous liquid with a sloped bottom representing a novel reactor concept.•This method uses large PCB pieces instead of shredded PCBs as the reactor volume is 2.2 L.•The treated PCBs can be removed via leg B while the process is on-going.
Novel waste printed circuit board recycling process with molten salt
Riedewald, Frank; Sousa-Gallagher, Maria
2015-01-01
The objective of the method was to prove the concept of a novel waste PCBs recycling process which uses inert, stable molten salts as the direct heat transfer fluid and, simultaneously, uses this molten salt to separate the metal products in either liquid (solder, zinc, tin, lead, etc.) or solid (copper, gold, steel, palladium, etc.) form at the operating temperatures of 450–470 °C. The PCB recovery reactor is essentially a U-shaped reactor with the molten salt providing a continuous fluid, allowing molten salt access from different depths for metal recovery. A laboratory scale batch reactor was constructed using 316L as suitable construction material. For safety reasons, the inert, stable LiCl–KCl molten salts were used as direct heat transfer fluid. Recovered materials were washed with hot water to remove residual salt before metal recovery assessment. The impact of this work was to show metal separation using molten salts in one single unit, by using this novel reactor methodology. • The reactor is a U-shaped reactor filled with a continuous liquid with a sloped bottom representing a novel reactor concept. • This method uses large PCB pieces instead of shredded PCBs as the reactor volume is 2.2 L. • The treated PCBs can be removed via leg B while the process is on-going. PMID:26150977
Forbes, C; O'Reilly, C; McLaughlin, L; Gilleran, G; Tuohy, M; Colleran, E
2009-05-01
The objective of this study was to examine the feasibility of using a two-step, fully biological and sustainable strategy for the treatment of carbohydrate rich wastes. The primary step in this strategy involves the application of thermostable enzymes produced by the thermophilic, aerobic fungus, Talaromyces emersonii, to carbohydrate wastes producing a liquid hydrolysate discharged at elevated temperatures. To assess the potential of thermophilic treatment of this hydrolysate, a comparative study of thermophilic and mesophilic digestion of four sugar rich thermozyme hydrolysate waste streams was conducted by operating two high rate upflow anaerobic hybrid reactors (UAHR) at 37 degrees C (R1) and 55 degrees C (R2). The operational performance of both reactors was monitored from start-up by assessing COD removal efficiencies, volatile fatty acid (VFA) discharge and % methane of the biogas produced. Rapid start-up of both R1 and R2 was achieved on an influent composed of the typical sugar components of the organic fraction of municipal solid waste (OFMSW). Both reactors were subsequently challenged in terms of volumetric loading rate (VLR) and it was found that a VLR of 9 gCOD l(-1)d(-1) at a hydraulic retention time (HRT) of 1 day severely affected the thermophilic reactor with instability characterised by a build up of volatile fatty acid (VFA) intermediates in the effluent. The influent to both reactors was changed to a simple glucose and sucrose-based influent supplied at a VLR of 4.5 gCOD l(-1)d(-1) and HRT of 2 days prior to the introduction of thermozyme hydrolysates. Four unique thermozyme hydrolysates were subsequently supplied to the reactors, each for a period of 10 HRTs. The applied hydrolysates were derived from apple pulp, bread, carob powder and cardboard, all of which were successfully and comparably converted by both reactors. The % total carbohydrate removal by both reactors was monitored during the application of the sugar rich thermozyme hydrolysates. This approach offers a sustainable technology for the treatment of carbohydrate rich wastes and highlights the potential of these wastes as substrates for the generation of second-generation biofuels.
Reactivity Initiated Accident Simulation to Inform Transient Testing of Candidate Advanced Cladding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Nicholas R; Wysocki, Aaron J; Terrani, Kurt A
2016-01-01
Abstract. Advanced cladding materials with potentially enhanced accident tolerance will yield different light water reactor performance and safety characteristics than the present zirconium-based cladding alloys. These differences are due to different cladding material properties and responses to the transient, and to some extent, reactor physics, thermal, and hydraulic characteristics. Some of the differences in reactors physics characteristics will be driven by the fundamental properties (e.g., absorption in iron for an iron-based cladding) and others will be driven by design modifications necessitated by the candidate cladding materials (e.g., a larger fuel pellet to compensate for parasitic absorption). Potential changes in thermalmore » hydraulic limits after transition from the current zirconium-based cladding to the advanced materials will also affect the transient response of the integral fuel. This paper leverages three-dimensional reactor core simulation capabilities to inform on appropriate experimental test conditions for candidate advanced cladding materials in a control rod ejection event. These test conditions are using three-dimensional nodal kinetics simulations of a reactivity initiated accident (RIA) in a representative state-of-the-art pressurized water reactor with both nuclear-grade iron-chromium-aluminum (FeCrAl) and silicon carbide based (SiC-SiC) cladding materials. The effort yields boundary conditions for experimental mechanical tests, specifically peak cladding strain during the power pulse following the rod ejection. The impact of candidate cladding materials on the reactor kinetics behavior of RIA progression versus reference zirconium cladding is predominantly due to differences in: (1) fuel mass/volume/specific power density, (2) spectral effects due to parasitic neutron absorption, (3) control rod worth due to hardened (or softened) spectrum, and (4) initial conditions due to power peaking and neutron transport cross sections in the equilibrium cycle cores due to hardened (or softened) spectrum. This study shows minimal impact of SiC-based cladding configurations on the transient response versus reference zirconium-based cladding. However, the FeCrAl cladding response indicates similar energy deposition, but with significantly shorter pulses of higher magnitude. Therefore the FeCrAl-based cases have a more rapid fuel thermal expansion rate and the resultant pellet-cladding interaction occurs more rapidly.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruno, M.J.
1978-12-01
The parameters of charge content, reaction temperatures and residence time were studied in a bench reactor concerning the production of Al--Si and Fe--Si alloys. Results confirmed that minimum final stage reaction temperature is 1950 to 2000/sup 0/C. Residence time varied with initial charge concentration. Fe/sub 2/O/sub 3/ additions to the charge produced a significant increase in metallic yield. A burden preparation procedure was developed for making acceptable agglomerates containing Fe/sub 2/O/sub 3/, bauxite, clay and coke. Particle size distribution of starting materials was correlated with agglomerate strength. A new bench scale reactor was designed and built to facilitate semi-continuous operation,more » using O/sub 2/ injection to burn coke supporting the burden, resulting in burden movement. In a number of runs bridging of the burden material occurred due to condensation of volatilized sub-oxides in the cooler zones of the reactor. The reactor operated smoothly as an iron blast furnace at 1500/sup 0/C, demonstrating the validity of the equipment and test procedures. Initial construction of pilot reactor VSR-1 was completed. Bench scale fractional crystallizer runs were continued to determine the impurity effects of Fe up to 6.9% and Ti up to 1.25% on alloy product concentration and yield. High levels of impurities formed intermetallic complexes with Al and reduced product yield.« less
NASA Astrophysics Data System (ADS)
Kondo, Yoshiyuki; Suga, Keishi; Hibi, Koki; Okazaki, Toshihiko; Komeno, Toshihiro; Kunugi, Tomoaki; Serizawa, Akimi; Yoneda, Kimitoshi; Arai, Takahiro
2009-02-01
An advanced experimental technique has been developed to simulate two-phase flow behavior in a light water reactor (LWR). The technique applies three kinds of methods; (1) use of sulfur-hexafluoride (SF6) gas and ethanol (C2H5OH) liquid at atmospheric temperature and a pressure less than 1.0MPa, where the fluid properties are similar to steam-water ones in the LWR, (2) generation of bubble with a sintering tube, which simulates bubble generation on heated surface in the LWR, (3) measurement of detailed bubble distribution data with a bi-optical probe (BOP), (4) and measurement of liquid velocities with the tracer liquid. This experimental technique provides easy visualization of flows by using a large scale experimental apparatus, which gives three-dimensional flows, and measurement of detailed spatial distributions of two-phase flow. With this technique, we have carried out experiments simulating two-phase flow behavior in a single-channel geometry, a multi-rod-bundle one, and a horizontal-tube-bundle one on a typical natural circulation reactor system. Those experiments have clarified a) a flow regime map in a rod bundle on the transient region between bubbly and churn flow, b) three-dimensional flow behaviour in rod-bundles where inter-subassembly cross-flow occurs, c) bubble-separation behavior with consideration of reactor internal structures. The data have given analysis models for the natural circulation reactor design with good extrapolation.
Ab-initio study of C and O impurities in uranium nitride
NASA Astrophysics Data System (ADS)
Lopes, Denise Adorno; Claisse, Antoine; Olsson, Pär
2016-09-01
Uranium nitride (UN) has been considered a potential fuel for Generation IV (GEN-IV) nuclear reactors as well as a possible new fuel for Light Water Reactors (LWR), which would permit an extension of the fuel residence time in the reactor. Carbon and oxygen impurities play a key role in the UN microstructure, influencing important parameters such as creep, swelling, gas release under irradiation, compatibility with structural steel and coolants, and thermal stability. In this work, a systematic study of the electronic structure of UN containing C and O impurities using first-principles calculations by the Density Functional Theory (DFT) method is presented. In order to describe accurately the localized U 5f electrons, the DFT + U formalism was adopted. Moreover, to avoid convergence toward metastable states, the Occupation Matrix Control (OMC) methodology was applied. The incorporation of C and O in the N-vacancy is found to be energetically favorable. In addition, only for O, the incorporation in the interstitial position is energetically possible, showing some degree of solubility for this element in this site. The binding energies show that the pairs (Csbnd Nvac) and (Osbnd Nvac) interact much further than the other defects, which indicate the possible occurrence of vacancy drag phenomena and clustering of these impurities in grain boundaries, dislocations and free surfaces. The migration energy of an impurity by single N-vacancy show that C and O employ different paths during diffusion. Oxygen migration requires significantly lower energy than carbon. This fact is due to flexibility in the Usbnd O chemical bonds, which bend during the diffusion forming a pseudo UO2 coordination. On the other hand, C and N have a directional and inflexible chemical bond with uranium; always requiring the octahedral coordination. These findings provide detailed insight into how these impurities behave in the UN matrix, and can be of great interest for assisting the development of this new nuclear fuel for next-generation reactors.
NASA Astrophysics Data System (ADS)
Sendula, E.; Lamadrid, H. M.; Bodnar, R. J.
2017-12-01
Ultramafic and mafic rocks (e.g. peridotites, serpentinites and basalts) are being considered as possible targets for CO2 sequestration via mineral carbonation. The determination of reaction kinetics and the factors that control mineralization are important in order to understand and predict fluid-rock reactions between the injected CO2 and the host rocks. Here we present results of experiments focused on determining the reaction rates of carbonation of olivine as a function of initial CO2 concentration (20 mol% and 11 mol%) in the aqueous solution and temperature (100°C and 50°C). We used a recently developed experimental method (Lamadrid et al., 2017) that uses synthetic fluid inclusions as micro-reactors. The micro-reactor technique coupled with non-destructive Raman spectroscopy allows us to monitor the reaction progress in situ and in real time, by quantifying the amount of CO2 consumed in the reaction as a function of time. Results show a measurable decrease of CO2 density in the fluid inclusions as a result of the reaction between the CO2-bearing aqueous phase and olivine. Magnesite formation begins within several hours at 100°C and most of the CO2 was consumed within two days. At 50°C, however, magnesite nucleation and precipitation required weeks to months to begin, and the reaction rates were about an order of magnitude slower than in the experiments at 100°C. No significant differences were observed in the reaction rates as a function of initial CO2 concentration. The application of the synthetic fluid inclusion technique as micro-reactors coupled with non-destructive analytical techniques is a promising tool to monitor rates of fluid-rock reactions in situ and in real time, allowing detailed micron-scale investigations. The technique can be applied to a wide variety of chemical systems, host minerals, reaction products, fluid densities, temperatures, and different starting fluid compositions.
Bian, Wei; Zhang, Shuyan; Zhang, Yanzhuo; Li, Wenjing; Kan, Ruizhe; Wang, Wenxiao; Zheng, Zhaoming; Li, Jun
2017-02-01
A ratio control strategy was implemented in a continuous moving bed biofilm reactor (MBBR) to investigate the response to different temperatures. The control strategy was designed to maintain a constant ratio between dissolved oxygen (DO) and total ammonia nitrogen (TAN) concentrations. The results revealed that a stable nitritation in a biofilm reactor could be achieved via ratio control, which compensated the negative influence of low temperatures by stronger oxygen-limiting conditions. Even with a temperature as low as 6°C, stable nitritation could be achieved when the controlling ratio did not exceed 0.17. Oxygen-limiting conditions in the biofilm reactor were determined by the DO/TAN concentrations ratio, instead of the mere DO concentration. This ratio control strategy allowed the achievement of stable nitritation without complete wash-out of NOB from the reactor. Through the ratio control strategy full nitritation of sidestream wastewater was allowed; however, for mainstream wastewater, only partial nitritation was recommended. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ren, Qingkai; Yu, Yang; Zhu, Suiyi; Bian, Dejun; Huo, Mingxin; Zhou, Dandan; Huo, Hongliang
2017-06-01
A novel micro-pressure swirl reactor (MPSR) was designed and applied to treat domestic wastewater at low temperature by acclimating microbial biomass with steadily decreasing temperature from 15 to 3 °C. Chemical oxygen demand (COD) was constantly removed by 85% and maintained below 50 mg L -1 in the effluent during the process. When the air flow was controlled at 0.2 m 3 h -1 , a swirl circulation was formed in the reactor, which created a dissolved oxygen (DO) gradient with a low DO zone in the center and a high DO zone in the periphery for denitrification and nitrification. 81% of total nitrogen was removed by this reactor, in which ammonium was reduced by over 90%. However, denitrification was less effective because of the presence of low levels of oxygen. The progressively decreasing temperature favored acclimation of psychrophilic bacteria in the reactor, which replaced mesophilic bacteria in the process of treatment.
Use of Nitrogen Trifluoride To Purify Molten Salt Reactor Coolant and Heat Transfer Fluoride Salts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scheele, Randall D.; Casella, Andrew M.; McNamara, Bruce K.
2017-05-02
Abstract: The molten salt cooled nuclear reactor is included as one of the Generation IV reactor types. One of the challenges with the implementation of this reactor is purifying and maintaining the purity of the various molten fluoride salts that will be used as coolants. The method used for Oak Ridge National Laboratory’s molten salt experimental test reactor was to treat the coolant with a mixture of H2 and HF at 600°C. In this article we evaluate thermal NF3 treatment for purifying molten fluoride salt coolant candidates based on NF3’s 1) past use to purify fluoride salts, 2) other industrialmore » uses, 3) commercial availability, 4) operational, chemical, and health hazards, 5) environmental effects and environmental risk management methods, 6) corrosive properties, and 7) thermodynamic potential to eliminate impurities that could arise due to exposure to water and oxygen. Our evaluation indicates that nitrogen trifluoride is a viable and safer alternative to the previous method.« less
A reactor for high-throughput high-pressure nuclear magnetic resonance spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beach, N. J.; Knapp, S. M. M.; Landis, C. R., E-mail: landis@chem.wisc.edu
The design of a reactor for operando nuclear magnetic resonance (NMR) monitoring of high-pressure gas-liquid reactions is described. The Wisconsin High Pressure NMR Reactor (WiHP-NMRR) design comprises four modules: a sapphire NMR tube with titanium tube holder rated for pressures as high as 1000 psig (68 atm) and temperatures ranging from −90 to 90 °C, a gas circulation system that maintains equilibrium concentrations of dissolved gases during gas-consuming or gas-releasing reactions, a liquid injection apparatus that is capable of adding measured amounts of solutions to the reactor under high pressure conditions, and a rapid wash system that enables the reactor tomore » be cleaned without removal from the NMR instrument. The WiHP-NMRR is compatible with commercial 10 mm NMR probes. Reactions performed in the WiHP-NMRR yield high quality, information-rich, and multinuclear NMR data over the entire reaction time course with rapid experimental turnaround.« less
Treatment of smuggled cigarette tobacco by composting process in facultative reactors.
Zittel, Rosimara; Pinto da Silva, Cleber; Domingues, Cinthia Eloise; de Oliveira Stremel, Tatiana Roselena; de Almeida, Thiago Eduardo; Vieira Damiani, Gislaine; Xavier de Campos, Sandro
2018-01-01
This paper presents a study on the degradation of smuggled cigarette tobacco combined with domestic organic waste and sawdust or wood chips, using facultative reactor. Four reactors with different amounts of residue were assembled. For the study of the quality of the compost obtained, physicochemical, phytotoxicity and microbiological analyses were carried out. The mixture with wood chips presented the best temperature conditions and pH variation optimizing the degradation. The final germination index (GI) values of all treatments were above the recommended GI value (50%) and the final C/N ratio between 8 and 13 indicated a mature compost. The concentration of metals under study was below the limit allowed for the commercialization. The composting carried out in all facultative reactors provided ideal conditions for the total sterilization of the final compost. Therefore, the treatment of smuggled cigarettes through facultative reactors was efficient to produce stable and mature compost. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serebrov, A. P., E-mail: serebrov@pnpi.spb.ru; Kislitsin, B. V.; Onegin, M. S.
2016-12-15
Results of calculations of energy releases and temperature fields in the ultracold neutron source under design at the WWR-M reactor are presented. It is shown that, with the reactor power of 18 MW, the power of energy release in the 40-L volume of the source with superfluid helium will amount to 28.5 W, while 356 W will be released in a liquid-deuterium premoderator. The lead shield between the reactor core and the source reduces the radiative heat release by an order of magnitude. A thermal power of 22 kW is released in it, which is removed by passage of water.more » The distribution of temperatures in all components of the vacuum structure is presented, and the temperature does not exceed 100°C at full reactor power. The calculations performed make it possible to go to design of the source.« less
Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH) Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
he Liquid Phase Methanol (LPMEOW) Demonstration Project at Kingsport Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership) to produce methanol from coal-derived synthesis gas (syngas). Air Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman) formed the Partnership to execute the Demonstration Project. The LPMEOEP Process Demonstration Unit was built at a site located at the Eastman coal-to-chemicals complex in Kingsport. The LPMEOHW Demonstration Facility completed its first year of operation on 02 April 1998. The LPMEOW Demonstration Facility also completed themore » longest continuous operating run (65 days) on 21 April 1998. Catalyst activity, as defined by the ratio of the rate constant at any point in time to the rate constant for freshly reduced catalyst (as determined in the laboratory autoclave), was monitored throughout the reporting period. During a six-week test at a reactor temperature of 225oC and Balanced Gas flowrate of 700 KSCFH, the rate of decline in catalyst activity was steady at 0.29-0.36% per day. During a second one-month test at a reactor temperature of 220oC and a Balanced Gas flowrate of 550-600 KSCFH, the rate of decline in catalyst activity was 0.4% per day, which matched the pefiorrnance at 225"C, as well as the 4-month proof-of-concept run at the LaPorte AFDU in 1988/89. Beginning on 08 May 1998, the LPMEOW Reactor temperature was increased to 235oC, which was the operating temperature tier the December 1997 restart with the fresh charge of catalyst (50'Yo of design loading). The flowrate of the primary syngas feed stream (Balanced Gas) was also increased to 700-750 KSCFH. During two stable operating periods between 08 May and 09 June 1998, the average catalyst deactivation rate was 0.8% per day. Due to the scatter of the statistical analysis of the results, this test was extended to better quanti& the catalyst aging behavior. During the reporting perio~ two batches of fresh catalyst were activated and transferred to the reactor (on 02 April and 20 June 1998). The weight of catalyst in the LPMEOW Reactor has reached 80% of the design value. At the end of the reporting period, a step-change in the pressure-drop profile within the LPMEOW Reactor and an increase in the pressure of the steam system which provides cooling to the LPMEOW Reactor were observed. No change in the calculated activity of the catalyst was detected during either of these transients. These parameters will be monitored closely for any additional changes.« less
Input Correlations for Irradiation Creep of FeCrAl and SiC Based on In-Pile Halden Test Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terrani, K. A.; Karlsen, T. M.; Yamamoto, Yukinori
2016-05-01
Swelling and creep behavior of wrought FeCrAl alloys and CVD-SiC, two candidate accident tolerant fuel cladding materials, are being examined using in-pile tests at the Halden reactor. The outcome of these tests are material property correlations that are inputs into fuel performance analysis tools. The results are discussed and compared with what is available in literature from irradiation experiments in other reactors or out-of-pile tests. Specific recommendation on what correlations should be used for swelling, thermal, and irradiation creep for each material are provided in this document.
Characterization of BOR-60 Irradiated 14YWT-NFA1 Tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saleh, Tarik A.; Maloy, Stuart Andrew; Aydogan, Eda
2017-02-15
Tubes of FCRD 14YWT-NFA1 Alloy were placed in the BOR-60 reactor and irradiated under a fast flux neutron environment to two conditions: 7 dpa at 360-370 °C and 6 dpa at 385-430 °C. Small sections of the tube were cut and sent to UC Berkeley for nanohardness testing and focused ion beam (FIB) milling of TEM specimens. FIB specimens were sent back to LANL for final FIB milling and TEM imaging. Hardness data and TEM images are presented in this report. This is the first fast reactor neutron irradiated information on the 14YWT-NFA1 alloy.
Wang, Yong , Liu; Wei, [Richland, WA
2012-01-24
The present invention is a structured monolith reactor and method that provides for controlled Fischer-Tropsch (FT) synthesis. The invention controls mass transport limitations leading to higher CO conversion and lower methane selectivity. Over 95 wt % of the total product liquid hydrocarbons obtained from the monolithic catalyst are in the carbon range of C.sub.5-C.sub.18. The reactor controls readsorption of olefins leading to desired products with a preselected chain length distribution and enhanced overall reaction rate. And, liquid product analysis shows readsorption of olefins is reduced, achieving a narrower FT product distribution.
NASA Astrophysics Data System (ADS)
Bilgunde, Prathamesh N.; Bond, Leonard J.
2018-04-01
Ultrasonic imaging is a key enabling technology required for in-service inspection of advanced sodium fast reactors at the hot stand-by operating mode (˜250C). Current work presents development of a single element, 2.4MHz, planar, ultrasonic immersion transducer for a potential application in ranging, inspection and imaging of the reactor components. The prototype immersion transducer is first tested in water for three thermal cycles up to 92C. The transducer is further evaluated for four thermal cycles in silicone oil, with total seven thermal cycles that exceeded operation period of 21 hours. Moreover, the preliminary data acquired for speed of sound in silicone oil indicates 24% reduction from 22C to 142C. Sensitivity of the ultrasonic transducer is also measured as a function of temperature and demonstrates the effect of multiple thermal cycles on the transducer components.
Transport properties of C and O in UN fuels
NASA Astrophysics Data System (ADS)
Schuler, Thomas; Lopes, Denise Adorno; Claisse, Antoine; Olsson, Pär
2017-03-01
Uranium nitride fuel is considered for fast reactors (GEN-IV generation and space reactors) and for light water reactors as a high-density fuel option. Despite this large interest, there is a lack of information about its behavior for in-pile and out-of-pile conditions. From the present literature, it is known that C and O impurities have significant influence on the fuel performance. Here we perform a systematic study of these impurities in the UN matrix using electronic-structure calculations of solute-defect interactions and microscopic jump frequencies. These quantities were calculated in the DFT +U approximation combined with the occupation matrix control scheme, to avoid convergence to metastable states for the 5 f levels. The transport coefficients of the system were evaluated with the self-consistent mean-field theory. It is demonstrated that carbon and oxygen impurities have different diffusion properties in the UN matrix, with O atoms having a higher mobility, and C atoms showing a strong flux coupling anisotropy. The kinetic interplay between solutes and vacancies is expected to be the main cause for surface segregation, as incorporation energies show no strong thermodynamic segregation preference for (001) surfaces compared with the bulk.
NASA Astrophysics Data System (ADS)
Kuleshova, E. A.; Gurovich, B. A.; Maltsev, D. A.; Frolov, A. S.; Bukina, Z. V.; Fedotova, S. V.; Saltykov, M. A.; Krikun, E. V.; Erak, D. Yu; Zhurko, D. A.; Safonov, D. V.; Zhuchkov, G. M.
2018-04-01
This study was carried out to evaluate the possibility of 1st generation VVER-440 reactors lifetime extension by recovery re-annealing with the respect to base metal (BM). Comprehensive studies of the structure and properties of BM templates (samples cut from the inner surface of the shells in beltline region) of operating VVER-440 reactor (after primary standard recovery annealing 475 °C/150 h and subsequent long-term re-irradiation within reactor pressure vessel (RPV)) were conducted. These templates were also subjected to laboratory re-annealing 475 °C/150 h. TEM, SEM and APT studies of BM after laboratory re-annealing revealed significant recovery of radiation-induced hardening elements (Cu-rich precipitates and dislocation loops). Simultaneously a process of strong phosphorus accumulation at grain boundaries occurs since annealing temperature corresponds to the maximum reversible temper brittleness development. The latter is not observed for VVER-440 weld metal (WM). Comparative assessment of the properties return level for the beltline BM templates after recovery re-annealing 475 °C/150 h showed that it does not reach the one typical for beltline WM after the same annealing.
sCO2 Brayton Cycle: Roadmap to sCO2 Power Cycles NE Commercial Applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendez Cruz, Carmen Margarita; Rochau, Gary E.
The mission of the Energy Conversion (EC) area of the Advanced Reactor Technology (ART) program is to commercialize the sCO2 Brayton cycle for Advance Reactors and for the Supercritical Transformational Electric Production (STEP) program. The near-term objective of the EC team efforts is to support the development of a commercially scalable Recompression Closed Brayton Cycle (RCBC) to be constructed for the first STEP demonstration system with the lowest risk possible. This document details the status of technology, policy and market considerations, documentation of gaps and needs, and outlines the steps necessary for the successful development and deployment of commercial sCO2more » Brayton Power Systems along the path to nuclear reactor applications. Document Control Version Creation Date Revisions Created By Release Date 1.0 2/29/2016 Preliminary Draft Mendez, C. 3/2/2016 2.0 7/29/2016 Preliminaty/Partial Report -- updated Focus Area structure, added commercial path forward Mendez, C. 8/10/16 3.0 5/1/2018 Updated Roadmap supports timeline changes and inclusion of grid qualification goals Mendez, C. 6/6/18« less
Elmitwalli, Tarek A; Otterpohl, Ralf
2007-03-01
Feasibility of grey water treatment in an upflow anaerobic sludge blanket (UASB) reactor operated at different hydraulic retention time (HRT) of 16, 10 and 6h and controlled temperature of 30 degrees C was investigated. Moreover, the maximum anaerobic biodegradability without inoculum addition and maximum removal of chemical oxygen demand (COD) fractions in grey water were determined in batch experiments. High values of maximum anaerobic biodegradability (76%) and maximum COD removal in the UASB reactor (84%) were achieved. The results showed that the colloidal COD had the highest maximum anaerobic biodegradability (86%) and the suspended and dissolved COD had similar maximum anaerobic biodegradability of 70%. Furthermore, the results of the UASB reactor demonstrated that a total COD removal of 52-64% was obtained at HRT between 6 and 16 h. The UASB reactor removed 22-30% and 15-21% of total nitrogen and total phosphorous in the grey water, respectively, mainly due to the removal of particulate nutrients. The characteristics of the sludge in the UASB reactor confirmed that the reactor had a stable performance. The minimum sludge residence time and the maximum specific methanogenic activity of the sludge ranged between 27 and 93 days and 0.18 and 0.28 kg COD/(kg VS d).