Science.gov

Sample records for c-axis oriented mgb2

  1. Optical properties of c-axis oriented superconducting MgB2 films.

    PubMed

    Tu, J J; Carr, G L; Perebeinos, V; Homes, C C; Strongin, M; Allen, P B; Kang, W N; Choi, E M; Kim, H J; Lee, S I

    2001-12-31

    Temperature dependent optical conductivities and dc resistivity of c-axis oriented superconducting (T(c) = 39.6 K) MgB2 films (approximately 450 nm) have been measured. The normal state ab-plane optical conductivities can be described by the Drude model with a temperature independent Drude plasma frequency of omega(p,D) = 13 600+/-100 cm(-1) or 1.68+/-0.01 eV. The normal state resistivity is fitted by the Bloch-Grüneisen formula with an electron-phonon coupling constant lambda(tr) = 0.13+/-0.02. The optical conductivity spectra below T(c) of these films suggest that MgB2 is a multigap superconductor.

  2. Anomalous coherence peak in the microwave conductivity of c-axis oriented MgB2 thin films.

    PubMed

    Jin, B B; Dahm, T; Gubin, A I; Choi, Eun-Mi; Kim, Hyun Jung; Lee, Sung-Ik; Kang, W N; Klein, N

    2003-09-19

    The temperature dependence of the real part of the microwave complex conductivity at 17.9 GHz obtained from surface impedance measurements of two c-axis oriented MgB2 thin films reveals a pronounced maximum at a temperature around 0.6 times the critical temperature. Calculations in the frame of a two-band model based on Bardeen-Cooper-Schrieffer (BCS) theory suggest that this maximum corresponds to an anomalous coherence peak resembling the two-gap nature of MgB2. Our model assumes there is no interband impurity scattering and a weak interband pairing interaction, as suggested by band structure calculations. In addition, the observation of a coherence peak indicates that the pi band is in the dirty limit and dominates the total conductivity of our films.

  3. In situ Pulsed Laser Deposition of C-Axis Oriented MgB2 Films and Their Characterization

    NASA Technical Reports Server (NTRS)

    Shinde, Sanjay; Lakew, Brook; Ogale, S. B.; Kulkarni, V. N.; Kale, S. N.; Venkatesan, T.

    2004-01-01

    The recent discovery of an intermetallic superconductor MgB2 has renewed interest in the area of superconductivity not only because of fundamental understanding of superconductivity but also due to its potential applicability in devices such as thermal detectors. Considerable amount of research has been devoted to obtain MgB2 films by an all in situ growth technique. We have grown MgB2 thin films by an all in situ pulsed laser deposition process from pure B and Mg targets. Ultrathin layers of B and Mg were deposited in a multilayer configuration. Hundreds of such Mg-B bilayers with a capping Mg layer on the top were deposited on sapphire substrate. These depositions were done in high vacuum (approx. 10(exp -7) Torr) and at room temperature. After deposition, such a configuration was annealed at high temperature for a short time in a forming gas (4% H2 in Ar). The best films, obtained by this procedure, showed superconducting transition temperature approx. 30 K. These films have been characterized by x-ray diffraction, Rutherford Backscattering Spectrometry, AC susceptibility-, resistivity- (with and without magnetic field) and 1/f noise-measurements. The physical properties of these films will be presented and discussed.

  4. c-Axis Raman scattering spectra of MgB2: observation of a dirty-limit gap in the pi bands.

    PubMed

    Quilty, J W; Lee, S; Tajima, S; Yamanaka, A

    2003-05-23

    Raman scattering spectra from the ac face of thick MgB2 single crystals were measured in zz, xz, and xx polarizations. In zz and xz polarizations a threshold at around 29 cm(-1) forms in the below T(c) continuum but no pair-breaking peak is seen, in contrast to the sharp pair-breaking peak at around 100 cm(-1) in xx polarization. The zz and xz spectra are consistent with Raman scattering from a dirty superconductor while the sharp peak in the xx spectra argues for a clean system. Analysis of the spectra resolves this contradiction, placing the larger and smaller gap magnitudes in the sigma and pi bands and indicating that relatively strong impurity scattering is restricted to the pi bands.

  5. Tunnel junctions on as-grown MgB 2 films

    NASA Astrophysics Data System (ADS)

    Ueda, Kenji; Naito, Michio

    2004-08-01

    We prepared MgB 2 films by coevaporation of pure Mg and B metals in an ultra high vacuum chamber. These films have c-axis orientation and a slightly depressed Tc (∼35 K). We fabricated various tunnel junctions (SIN and SIS) using these as-grown MgB 2 films. Of these, Au/MgO/MgB 2 junctions showed typical SIN characteristics with a clear superconducting gap of Δ∼2.5 meV. This gap value may correspond to the smaller gap in the multi-gap scenario. Preliminary MgB 2/Al 2O 3/MgB 2 junctions exhibited SIS characteristics, although not ideal, with a similar value of Δ.

  6. Vapor-phase growth of transparent zinc oxide ceramics with c -axis orientation

    SciTech Connect

    Noritake, F.; Yamamoto, N.; Horiguchi, Y. ); Fujitsu, S.; Koumoto, K. ); Yanagida, H. )

    1991-01-01

    Large transparent specimens of polycrystalline zinc oxide with c-axis orientation have been prepared by the vapor transport method. Optical transmittance is 80% to 90% at 800 nm. X-ray diffraction peaks from faces other than (001) are negligible.

  7. Synthesis of c-axis oriented AlN thin films on different substrates: A review

    SciTech Connect

    Iriarte, G.F.

    2010-09-15

    Highly c-axis oriented AlN thin films have been deposited by reactive sputtering on different substrates. The crystallographic properties of layered film structures consisting of a piezoelectric layer, aluminum nitride (AlN), synthesized on a variety of substrates, have been examined. Aluminum nitride thin films have been deposited by reactive pulsed-DC magnetron sputtering using an aluminum target in an Ar/N{sub 2} gas mixture. The influence of the most critical deposition parameters on the AlN thin film crystallography has been investigated by means of X-ray diffraction (XRD) analysis of the rocking curve Full-Width at Half Maximum (FWHM) of the AlN-(0 0 0 2) peak. The relationship between the substrate, the synthesis parameters and the crystallographic orientation of the AlN thin films is discussed. A guide is provided showing how to optimize these conditions to obtain highly c-axis oriented AlN thin films on substrates of different nature.

  8. Flux pinning by a-axis grains in c-axis-oriented Y-Ba-Cu-O films

    NASA Astrophysics Data System (ADS)

    Fuke, H.; Yoshino, H.; Yamazaki, M.; Thanh, T. D.; Nakamura, S.; Ando, K.; Kobayashi, Y.

    1992-05-01

    The relationship between the microstructures and pinning forces is investigated by measuring the magnetic-field dependence and angular dependence of Jc in several kinds of YBCO thin films having different microstructures. A high-Jc value was kept even when the magnetic field was applied perpendicular to the film plane in the case of a c-axis-oriented film which was studded with a-axis-oriented grains. The boundaries between the a-axis-oriented grain and the c-axis-oriented grain are considered to be effective as pinning centers.

  9. Reduced pressure MOCVD of C-axis oriented BiSrCaCuO thin films

    NASA Technical Reports Server (NTRS)

    Hamaguchi, Norihito; Vigil, J.; Gardiner, R.; Kirlin, P. S.

    1990-01-01

    BiSrCaCuO thin films were deposited on MgO (100) single-crystal substrates by metalorganic chemical vapor deposition at 500 C and 2 torr using fluorinated beta-diketonate complexes of Sr, Ca, and Cu and triphenylbismuth. An inverted vertical reaction chamber allowed uniform film growth over large areas (7.7 cm diameter). The as-deposited films were amorphous mixtures of oxides and fluorides; a two-step annealing protocol (750 C + 850-870 C) was developed which gives c-axis oriented films of Bi2Sr2Ca1Cu2O(x). The postannealed films showed onsets in the resistive transition of 110 K, and zero resistivity was achieved by 83 K. Critical current densities as high as 11,000 A/sq cm were obtained at 25 K.

  10. Quartz c-axis preferred orientations in an experimental shear zone

    SciTech Connect

    Dell'Angelo, L.

    1985-01-01

    Natural rocks which have deformed by simple shear commonly exhibits an asymmetric quartz c-axis fabric which can be a useful kinematic indicator. Although there is some controversy on the sense of asymmetry from theoretical models, fabrics measured from natural rocks generally exhibit an asymmetry with maxima inclined in the direction of shear. The authors have deformed a fine grained quartzite in simple shear in order to determine the relationship of the c-axis fabric to the sense of shear, the foliation and the shear zone boundary. The sample was deformed at 800/sup 0/C, 15 kb and 10/sup -6//sec, where previous axial compression experiments produce small circle girdles symmetrical about sigma/sub 1/ due to basal and prism slip. Original grains are flattened with only a minor amount of recrystallization. A thin sample (.1'' thick) was cut from a right cylinder at 45/sup 0/ to the core axis and placed between two ZrO/sub 2/ pistons with matching 45/sup 0/ faces. In the sheared sample, measurements of grain aspect ratios in vertical sections parallel and perpendicular to the shear direction as well as the angle between the shear zone boundary and the foliation (18/sup 0/) indicate that the deformation has been dominantly simple shear (maximum of 2.8) with only a minor component of pure shear. The preferred orientation pattern is an asymmetric type I crossed girdle which is characterized by two girdles connected through the intermediate strain axis by a single girdle. The asymmetry is defined by stronger maxima inclined in the direction of shear.

  11. Lactic acid aided electrochemical deposition of c -axis preferred orientation of zinc oxide thin films: Structural and morphological features

    NASA Astrophysics Data System (ADS)

    Whang, Thou-Jen; Hsieh, Mu-Tao; Tsai, Jia-Ming; Lee, Shyan-Jer

    2011-09-01

    Compact and homogeneous c-axis preferred orientation of zinc oxide (ZnO) films on indium tin oxide (ITO) coated glass have been prepared electrochemically at -1.2 V vs. Ag|AgCl in a weak acidic condition from 0.06 M Zn(NO 3) 2 with 3 mM lactic acid (LA) added. LA was found having strong influence on the electrodeposition of c-axis preferred orientation of zinc oxide films. Other experimental variables such as deposition temperature, potential, and precursor concentration were also conducted in this article. Among these variables, it was found that precursor concentration of zinc nitrate influenced significantly on growth direction and crystal diameter of zinc oxide. Cyclic voltammetry was used to observe the electrochemistry of the deposition. Crystallinities of the films were examined by X-ray diffractometer. The morphologies of zinc oxide films were observed with a field emitting scanning electron microscope. Optical characteristics of zinc oxide layers were measured with UV-vis spectrophotometer. The band gap of the deposited zinc oxide thin films was evaluated from the Tauc relationship of ( αhν) 2 vs. hν, which was found to be 3.31 eV.

  12. Fabrication and Characterization of p-Type SnO Thin Film with High c-Axis Preferred Orientation

    NASA Astrophysics Data System (ADS)

    Pei, Yanli; Liu, Wuguang; Shi, Jingtao; Chen, Zimin; Wang, Gang

    2016-08-01

    p-Type tin monoxide (SnO) thin films with high c-axis preferred orientation have been fabricated on quartz substrate via electron-beam evaporation at 280°C. Subsequently, rapid thermal annealing (RTA) was performed in N2 atmosphere at 400°C to 800°C. Their structural, chemical, optical, and electrical properties were investigated by x-ray diffraction analysis, ultraviolet-visible spectroscopy, scanning electron microscopy, x-ray photoelectron spectroscopy, and Hall-effect measurements. The c-axis-oriented films of Sn-rich SnO presented excellent thermal stability up to RTA at 700°C. Both the crystallization and the hole Hall mobility were enhanced with increasing RTA temperature, with Hall mobility of 16 cm2 V-1 s-1 being obtained after RTA at 700°C. It was considered that the presence of defects and low scattering from grain boundaries contributed to this high Hall mobility. RTA annealing temperature above 700°C induced chemical reaction between SnO and the quartz substrate, with a change of the film to amorphous state with Sn4+ formation.

  13. Fabrication and Characterization of p-Type SnO Thin Film with High c-Axis Preferred Orientation

    NASA Astrophysics Data System (ADS)

    Pei, Yanli; Liu, Wuguang; Shi, Jingtao; Chen, Zimin; Wang, Gang

    2016-11-01

    p-Type tin monoxide (SnO) thin films with high c-axis preferred orientation have been fabricated on quartz substrate via electron-beam evaporation at 280°C. Subsequently, rapid thermal annealing (RTA) was performed in N2 atmosphere at 400°C to 800°C. Their structural, chemical, optical, and electrical properties were investigated by x-ray diffraction analysis, ultraviolet-visible spectroscopy, scanning electron microscopy, x-ray photoelectron spectroscopy, and Hall-effect measurements. The c-axis-oriented films of Sn-rich SnO presented excellent thermal stability up to RTA at 700°C. Both the crystallization and the hole Hall mobility were enhanced with increasing RTA temperature, with Hall mobility of 16 cm2 V-1 s-1 being obtained after RTA at 700°C. It was considered that the presence of defects and low scattering from grain boundaries contributed to this high Hall mobility. RTA annealing temperature above 700°C induced chemical reaction between SnO and the quartz substrate, with a change of the film to amorphous state with Sn4+ formation.

  14. Microstructure of high c-axis oriented stand-alone ZnO self-assembled film.

    PubMed

    Masuda, Yoshitake; Kato, Kazumi

    2009-01-01

    Stand-alone ZnO films were fabricated at air-liquid interfaces. The Microstructures of the films were observed precisely using a transmission electron microscope (TEM) in this study. They were assemblies of nano-sheets having uniform film thickness. The nano-sheets grew down toward the bottom of solutions by the supply of Zn ions from the solutions. X-ray diffraction patterns indicated high c-axis orientation of the films perpendicular to the air-liquid interface. An area of the nano-sheets was magnified for further observation. Electron diffraction patterns and lattice images indicated that the nano-sheets consisted of ZnO crystals. A slight amount of co-precipitated zinc carbonate hydroxide (Zn5(CO3)2(OH)6) was also observed. Their morphologies were drastically changed by electron beam irradiation because of dehydration and crystallization to ZnO.

  15. Shear mode bulk acoustic wave resonator based on c-axis oriented AlN thin film

    NASA Astrophysics Data System (ADS)

    Milyutin, Evgeny; Gentil, Sandrine; Muralt, Paul

    2008-10-01

    A shear mode resonator based on bulk waves trapped in c-axis oriented AlN thin films was fabricated, simulated, and tested. The active 1.55 μm thick AlN layer was deposited on top of an acoustic Bragg reflector composed of SiO2/AlN λ /4 layer pairs. The resonance was excited by means of interdigitated electrodes consisting of 150 nm thick Al lines. Analytical and simulation calculations show that the in-plane electric field excites bulk acoustic wave shear modes that are trapped in such an AlN film slab. The experimental frequency corresponds well to the theoretical one. The evaluated resonance of the fundamental shear mode at 1.86 GHz revealed a coupling of 0.15% and Q-factor of 870 in air and 260 in silicon oil.

  16. The c-axis orientation ZnO by ICP enhanced HiPIMS at ambient temperature

    NASA Astrophysics Data System (ADS)

    Zhang, Haitao; chen, Jianyuan; Cherng, Jyhshiarn; Wang, Zhengduo; Liu, Zhongwei; Chen, Qiang

    2016-11-01

    In this paper, a facile method to prepare a high c-axis orientation ZnO film is reported. We combine a high power impulse magnetron sputtering (HiPIMS) with an inductively coupled plasma (ICP) in purpose of improving the reaction activity of Zn species sputtered from HiPIMS with dissociated oxygen, and gaining a high quality ZnO. The diagnostic of optical emission spectroscope (OES), which reveals the Zn+ and atomic oxygen concentrations in plasma, is evident the increasing ionization of Zn and the dissociation of O2 by ICP. After characterizing films grown with and without ICP, likely crystal through x-ray diffraction (XRD), component by energy dispersive spectroscopy (EDS), and morphology by atomic force microscope (AFM), we conclude that ICP assistance is crucial for the ZnO preferentially growth in (002) facet. With ICP assistance ZnO is grown in a big crystal size with a good quality.

  17. Disorder in carbon-doped HPCVD MgB2 thin films

    NASA Astrophysics Data System (ADS)

    Zhu, Ye; Voyles, P. M.; Pogrebnyakov, A. V.; Xi, X. X.

    2007-03-01

    Carbon-doped MgB2 films prepared by hybrid physical-chemical vapor deposition have the highest Hc2 (˜70 T at 0 K for H parallel to ab plane) of all MgB2 materials. We have characterized the nanoscale structure and chemistry of one such film by TEM and STEM. The C concentration in the Mg(B1-xCx)2 grains from EELS is not dramatically higher than that of C-doped bulk MgB2, so doping does not explain the high Hc2. Instead, the doped film has a variety of forms of structural disorder at length scales down to 5 nm, which may be sufficient to explain the Hc2 of these films. These include MgB2 domains with a 30 degree rotation about the c-axis, small angle rotations about c-axis, and a small tilt of the c-axis. There are also amorphous, C-rich regions between some MgB2 domains. The amorphous phase comes from the oversupply of C during growth, which may also cause the other disorder by interrupting epitaxial film growth. This work is supported by the FRG on MgB2, NSF DMR-0514592.

  18. Ice crystal c-axis orientation and mean grain size measurements from the Dome Summit South ice core, Law Dome, East Antarctica

    NASA Astrophysics Data System (ADS)

    Treverrow, Adam; Jun, Li; Jacka, Tim H.

    2016-06-01

    We present measurements of crystal c-axis orientations and mean grain area from the Dome Summit South (DSS) ice core drilled on Law Dome, East Antarctica. All measurements were made on location at the borehole site during drilling operations. The data are from 185 individual thin sections obtained between a depth of 117 m below the surface and the bottom of the DSS core at a depth of 1196 m. The median number of c-axis orientations recorded in each thin section was 100, with values ranging from 5 through to 111 orientations. The data from all 185 thin sections are provided in a single comma-separated value (csv) formatted file which contains the c-axis orientations in polar coordinates, depth information for each core section from which the data were obtained, the mean grain area calculated for each thin section and other data related to the drilling site. The data set is also available as a MATLAB™ structure array. Additionally, the c-axis orientation data from each of the 185 thin sections are summarized graphically in figures containing a Schmidt diagram, histogram of c-axis colatitudes and rose plot of c-axis azimuths. All these data are referenced by doi:10.4225/15/5669050CC1B3B and are available free of charge at https://data.antarctica.gov.au.<

  19. Highly c-axis-oriented monocrystalline Pb(Zr, Ti)O₃ thin films on si wafer prepared by fast cooling immediately after sputter deposition.

    PubMed

    Yoshida, Shinya; Hanzawa, Hiroaki; Wasa, Kiyotaka; Esashi, Masayoshi; Tanaka, Shuji

    2014-09-01

    We successfully developed sputter deposition technology to obtain a highly c-axis-oriented monocrystalline Pb(Zr, Ti)O3 (PZT) thin film on a Si wafer by fast cooling (~-180°C/min) of the substrate after deposition. The c-axis orientation ratio of a fast-cooled film was about 90%, whereas that of a slow-cooled (~-40°C/min) film was only 10%. The c-axis-oriented monocrystalline Pb(Zr0.5, Ti0.5)O3 films showed reasonably large piezoelectric coefficients, e(31,f) = ~-11 C/m(2), with remarkably small dielectric constants, ϵ(r) = ~220. As a result, an excellent figure of merit (FOM) was obtained for piezoelectric microelectromechanical systems (MEMS) such as a piezoelectric gyroscope. This c-axis orientation technology on Si will extend industrial applications of PZT-based thin films and contribute further to the development of piezoelectric MEMS. PMID:25167155

  20. Implications of reflectance measurements on the mechanism for superconductivity in MgB2.

    PubMed

    Marsiglio, F

    2001-12-10

    Recent optical studies in c-axis oriented superconducting MgB2 films indicate that the electron-phonon coupling is weak. We reinforce this conclusion by examining the raw reflectance data; its frequency dependence is incompatible with strong electron-phonon scattering. This is further strengthened by analysis of the real part of the conductivity, and by the temperature dependence of the effective Drude scattering rate. Using a realistic electron-phonon spectral shape, we find lambda(tr) approximately 0.15. To the extent that lambda(tr) approximately lambda, this disagrees sharply with model calculations, and is far too low to provide the means for T(c) = 39 K. A simple model is constructed with coupling to a high frequency excitation, which is consistent with both the low frequency optical data and the high T(c).

  1. Synthesis and properties of highly c-axis oriented PbTiO3 thin films prepared by and MOCVD method

    NASA Astrophysics Data System (ADS)

    Chen, Xian-Tong; Yamane, Hisanori; Kaya, Kiyoshi

    1992-08-01

    Thin films of PbTiO3 were prepared on MgO(100) substrates by chemical vapor deposition using Pb(C2H5)4 (PbEt) and Ti(OC3H7)4 (TTIP) as sources. With decreasing Pb/Ti molar ratio from 1.2 to 1 the degree of c-axis orientation increased. Highly c-axis oriented PbTiO3 thin films were epitaxially grown at 500°C and 2 kPa. The films were transparent and had a refractive index (n) of 2.64 at 632.8 nm which was about 2% lower than that of a single PbTiO3 crystal (n ≈ 2.7). The films prepared on (100)-oriented Pt electrodes deposited on MgO(100) substrates at 600°C and 2 kPa also showed a prominent c-axis orientation and had a dielectric constant of 90.

  2. SrFeO amorphous underlayer for fabrication of c-axis perpendicularly orientated strontium hexaferrite films by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Masoudpanah, S. M.; Ong, C. K.

    2013-09-01

    A thin amorphous SrFeO underlayer on Si(100) substrate was pulse laser deposited as an underlayer for the growth of c-axis perpendicularly oriented strontium hexaferrite (SrFe12O19) films. The amorphous SrFeO underlayer was deposited at different temperatures in the range from room temperature to 700 °C, while the SrFe12O19 film was deposited at 700 °C. The SrFe12O19 films exhibited slightly perpendicular magnetic anisotropy by the rather higher coercivities in perpendicular direction (Hc⊥) than those for the in-plane direction (Hc||), due to the c-axis perpendicular orientation. The magnetization and coercivities of the SrFe12O19 film increase, but the magnetic anisotropy (ΔHc=Hc⊥-Hc||) increases firstly and then decreases, as the SrFeO underlayer deposition temperature increases.

  3. Growth of thin, c-axis oriented Sr-doped LaP3O9 electrolyte membranes in condensed phosphoric acid solutions

    NASA Astrophysics Data System (ADS)

    Hatada, Naoyuki; Takahashi, Kota; Adachi, Yoshinobu; Uda, Tetsuya

    2016-08-01

    Proton-conducting Sr-doped LaP3O9 has potential application as electrolytes in intermediate temperature fuel cells, but reduction of the electrical resistance of the electrolyte membranes is necessary for practical applications. In this study, we focused on reducing the resistance by reducing the electrolyte thickness, while maintaining a preferable microstructure for proton conduction (c-axis orientation and absence of the small-crystal layer). Thin, c-axis oriented Sr-doped LaP3O9 membranes were successfully obtained in condensed phosphoric acid solutions by a novel "two-step precipitation method". In this method, Sr-doped LaP3O9 powder was artificially deposited on the surface of the carbon paper supports as seeds, and then columnar crystals were grown "downward" in the solutions. We expect that this method will be utilized to produce LaP3O9 electrolyte membranes with lower electrical resistance.

  4. The role of the crystal orientation (c-axis) on switching field distribution and the magnetic domain configuration in electrodeposited hcp Co-Pt nanowires

    NASA Astrophysics Data System (ADS)

    Shahid Arshad, Muhammad; Proenca, Mariana P.; Trafela, Spela; Neu, Volker; Wolff, Ulrike; Stienen, Sven; Vazquez, Manuel; Kobe, Spomenka; Žužek Rožman, Kristina

    2016-05-01

    In this report, Co-Pt nanowires (NWs) were produced via potentiostatic electrodeposition into commonly used commercial ordered-alumina and disordered-polycarbonate membranes with similar pore diameters (≈200 nm). The pore diameter of the membranes and the deposition conditions were chosen such that the Co-Pt NWs fabricated into both membranes had a hexagonal close packed (hcp) crystal structure with a crystallographic texturing of the c-axis in the direction perpendicular to the NWs’ long axis; this effect was more pronounced in the alumina membranes. Due to the local fluctuation in electrodeposition conditions (pore diameter, pore shape), we have found a small variation in the c-axis orientations in the plane perpendicular to the NWs’ long axis. Magnetic characterizations suggested that there is uniaxial anisotropy perpendicular to the Co-Pt NWs’ long axis and the small variation in the orientation of the hcp c-axis plays an important role in the switching-field distribution and the magnetic domain structure of the Co-Pt NWs. First order reversal curves (FORCs) revealed week magnetostatic interactions between Co-Pt NWs, thus suggesting that the different pore alignments are not influencing much the magnetic properties in both membranes. The micromagnetic simulation revealed that the transverse-stripe (TS) and longitudinal stripe (LS) domains are energetically most favorable structures in such NWs. This study accentuates the influence of the crystal orientation (c-axis) of the high-anisotropy materials on their functional magnetic properties and thus is of great importance for the fabrication of nanodevices based on such NWs.

  5. EBSD analysis of MgB2 bulk superconductors

    NASA Astrophysics Data System (ADS)

    Koblischka-Veneva, A.; Koblischka, M. R.; Schmauch, J.; Inoue, K.; Muralidhar, M.; Berger, K.; Noudem, J.

    2016-04-01

    The grain orientation, the texture and the grain boundary misorientations are important parameters for the understanding of the magnetic properties of the bulk MgB2 samples intended for super-magnet applications. Such data can be provided by electron backscatter diffraction (EBSD) analysis. However, as the grain size (GS) of the MgB2 bulks is preferably in the 100-200 nm range, the common EBSD technique working in reflection operates properly only on highly dense samples. In order to achieve a reasonably good Kikuchi pattern quality on all samples, we apply here the newly developed transmission EBSD (t-EBSD) technique to several bulk MgB2 samples. This method requires the preparation of TEM slices by means of focused ion-beam milling, which are then analyzed within the SEM, operating with a specific sample holder. We present several EBSD mappings of samples prepared with different techniques and at various reaction temperatures.

  6. c-axis preferential orientation of hydroxyapatite accounts for the high wear resistance of the teeth of black carp (Mylopharyngodon piceus)

    NASA Astrophysics Data System (ADS)

    Fu, Jimin; He, Chong; Xia, Biao; Li, Yan; Feng, Qiong; Yin, Qifang; Shi, Xinghua; Feng, Xue; Wang, Hongtao; Yao, Haimin

    2016-03-01

    Biological armors such as mollusk shells have long been recognized and studied for their values in inspiring novel designs of engineering materials with higher toughness and strength. However, no material is invincible and biological armors also have their rivals. In this paper, our attention is focused on the teeth of black carp (Mylopharyngodon piceus) which is a predator of shelled mollusks like snails and mussels. Nanoscratching test on the enameloid, the outermost layer of the teeth, indicates that the natural occlusal surface (OS) has much higher wear resistance compared to the other sections. Subsequent X-ray diffraction analysis reveals that the hydroxyapatite (HAp) crystallites in the vicinity of OS possess c-axis preferential orientation. The superior wear resistance of black carp teeth is attributed to the c-axis preferential orientation of HAp near the OS since the (001) surface of HAp crystal, which is perpendicular to the c-axis, exhibits much better wear resistance compared to the other surfaces as demonstrated by the molecular dynamics simulation. Our results not only shed light on the origin of the good wear resistance exhibited by the black carp teeth but are of great value to the design of engineering materials with better abrasion resistance.

  7. c-axis preferential orientation of hydroxyapatite accounts for the high wear resistance of the teeth of black carp (Mylopharyngodon piceus)

    PubMed Central

    Fu, Jimin; He, Chong; Xia, Biao; Li, Yan; Feng, Qiong; Yin, Qifang; Shi, Xinghua; Feng, Xue; Wang, Hongtao; Yao, Haimin

    2016-01-01

    Biological armors such as mollusk shells have long been recognized and studied for their values in inspiring novel designs of engineering materials with higher toughness and strength. However, no material is invincible and biological armors also have their rivals. In this paper, our attention is focused on the teeth of black carp (Mylopharyngodon piceus) which is a predator of shelled mollusks like snails and mussels. Nanoscratching test on the enameloid, the outermost layer of the teeth, indicates that the natural occlusal surface (OS) has much higher wear resistance compared to the other sections. Subsequent X-ray diffraction analysis reveals that the hydroxyapatite (HAp) crystallites in the vicinity of OS possess c-axis preferential orientation. The superior wear resistance of black carp teeth is attributed to the c-axis preferential orientation of HAp near the OS since the (001) surface of HAp crystal, which is perpendicular to the c-axis, exhibits much better wear resistance compared to the other surfaces as demonstrated by the molecular dynamics simulation. Our results not only shed light on the origin of the good wear resistance exhibited by the black carp teeth but are of great value to the design of engineering materials with better abrasion resistance. PMID:27001150

  8. Fast epitaxial growth of a-axis- and c-axis-oriented YBa 2Cu 3O 7- δ films on (1 0 0) LaAlO 3 substrate by laser chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Zhao, Pei; Ito, Akihiko; Tu, Rong; Goto, Takashi

    2011-02-01

    a-axis- and c-axis-oriented YBa2Cu3O7-δ (YBCO) films were epitaxially grown on (1 0 0) LaAlO3 substrates by laser chemical vapor deposition. The preferred orientation in the YBCO film changed from the a-axis to the c-axis with increasing laser powers from 77 to 158 W (the deposition temperatures from 951 to 1087 K). The a-axis-oriented YBCO film showed in-plane epitaxial growth of YBCO [0 0 1]//LAO [0 0 1], and the c-axis-oriented YBCO film showed that of YBCO [0 1 0]//LAO [0 0 1]. A c-axis-oriented YBCO film with a high critical temperature of 90 K was prepared at a deposition rate of 90 μm h-1, about 2-1000 times higher than that of metalorganic chemical vapor deposition.

  9. Impact of titanium layer and silicon substrate properties on the microstructure of c-axis oriented AlN thin films

    NASA Astrophysics Data System (ADS)

    Wistrela, E.; Bittner, A.; Schmid, U.

    2015-05-01

    Highly c-axis orientated sputter deposited aluminium nitride (AlN) thin films are widely used as piezoelectric layers in micro-electro-mechanical systems (MEMS). Therefore, stable and reliable deposition and patterning of the AlN thin films in the fabrication process of such devices is of utmost importance. In this work, we study the wet chemical etching behavior of highly c-axis oriented AlN layers as well as the film-related residuals after the etching procedure. To investigate the impact of the underlying material on the quality of the AlN films they are either deposited on pure silicon (Si) substrates or on Si substrates covered with a sputter-deposited thin titanium (Ti) film. The 620 nm thin AlN layers are synthesized simultaneously onto both substrate types and subsequently wet-chemical etched in a phosphorous acid based etching solution at a temperature of 80°C. We demonstrate a significant difference in surface roughness of the untreated AlN films when sputter-deposited on Ti or pure Si. Furthermore, we analyze the piezoelectric properties of the deposited films. Although the XRD analyses indicate a high c-axis orientated wurtzite structure for all deposited films, the absolute value of the piezoelectric coefficients |d33| of AlN thin films synthesized on Ti are 0.4-4.3 pC/N, whereas corresponding values of 5.2-6 pC/N are determined at those deposited on pure Si substrates,. Finally, after wet chemically etching a porous, but homogeneous AlN microstructure is observed for samples synthesized onto Ti layers, whereas AlN layers deposited directly on Si substrate are either etched very inhomogenously or almost completely with some etch resistant pyramidal-shaped residues. This might be due to a local change in polarity within the AlN layer.

  10. Measurement of c-axis angular orientation in calcite (CaCO3) nanocrystals using X-ray absorption spectroscopy

    PubMed Central

    Gilbert, P. U. P. A.; Young, Anthony; Coppersmith, Susan N.

    2011-01-01

    We demonstrate that the ability to manipulate the polarization of synchrotron radiation can be exploited to enhance the capabilities of X-ray absorption near-edge structure (XANES) spectroscopy, to include linear dichroism effects. By acquiring spectra at the same photon energies but different polarizations, and using a photoelectron emission spectromicroscope (PEEM), one can quantitatively determine the angular orientation of micro- and nanocrystals with a spatial resolution down to 10 nm. XANES-PEEM instruments are already present at most synchrotrons, hence these methods are readily available. The methods are demonstrated here on geologic calcite (CaCO3) and used to investigate the prismatic layer of a mollusk shell, Pinctada fucata. These XANES-PEEM data reveal multiply oriented nanocrystals within calcite prisms, previously thought to be monocrystalline. The subdivision into multiply oriented nanocrystals, spread by more than 50°, may explain the excellent mechanical properties of the prismatic layer, known for decades but never explained. PMID:21693647

  11. The role of starch doping on the superconducting properties of MgB2

    NASA Astrophysics Data System (ADS)

    Tripathi, D.; Moharana, S. S.; Dey, T. K.

    2014-09-01

    The effect of different amount of starch addition on structural and superconducting properties of superconducting MgB2 has been discussed. The samples are synthesized by conventional solid reaction method. XRD analysis confirms that carbon, which is produced during synthesis due to decomposition of starch, is substituted in the B sites. High resolution transmission electron microscope (HRTEM) picture infers the presence of large number of nanosized precipitates (size ∼10-20 nm) in starch doped MgB2 pellets. Superconducting transition temperature (Tc0) of MgB2 (∼38 K) decreases due to the addition of starch. The critical current density (Jc) of starch added MgB2 samples, however, shows significant improvement in whole field range, especially at high magnetic fields. MgB2 added with 2 wt.% of starch gives the best performance amongst the investigated samples and at 20 K displays ∼42 times enhancement in Jc under 4 T field compared to that for pure MgB2. The field dependence of the critical current density (Jc) of starch added MgB2 is explained fairly well in terms of collective pinning theory. An excellent scaling of the reduced critical current density, Jn(=Jc/Jc(0)) and the reduced field hn (=H/H0) is observed for both pure and starch added MgB2 polycrystalline pellets at different temperatures, where Jc(0) and H0 are the fitting parameters obtained from collective pinning model. However, the normalized pinning force density (FP/Fp(max)) of starch added samples does not display any scaling, but shows an excellent correspondence with modified Dew-Hughes expression. The presence of anisotropy and grain orientation is thought to be responsible for the absence of scaling of normalized pinning force density in starch added MgB2 pellets.

  12. Low-noise THz MgB2 Josephson mixer

    NASA Astrophysics Data System (ADS)

    Cunnane, Daniel; Kawamura, Jonathan H.; Acharya, Narendra; Wolak, Matthäus A.; Xi, X. X.; Karasik, Boris S.

    2016-09-01

    The potential applications for high frequency operation of the Josephson effect in MgB2 include THz mixers, direct detectors, and digital circuits. Here we report on MgB2 weak links which exhibit the Josephson behavior up to almost 2 THz and using them for low-noise heterodyne detection of THz radiation. The devices are made from epitaxial film grown in the c-axis direction by the hybrid physical-chemical vapor deposition method. The current in the junctions travels parallel to the surface of the film, thus making possible a large contribution of the quasi-two-dimensional σ-gap in transport across the weak link. These devices are connected to a planar spiral antenna with a dielectric substrate lens to facilitate coupling to free-space radiation for use as a detector. The IcRn product of the junction is 5.25 mV, giving confirmation of a large gap parameter. The sensitivity of the mixer was measured from 0.6 THz to 1.9 THz. At a bath temperature of over 20 K, a mixer noise temperature less than 2000 K (DSB) was measured near 0.6 THz.

  13. Growth Behavior of c-Axis-Oriented Epitaxial SrBi2Ta2O9 Films on SrTiO3 Substrates with Atomic Scale Step Structure

    NASA Astrophysics Data System (ADS)

    Takahashi, Kenji; Suzuki, Muneyasu; Yoshimoto, Mamoru; Funakubo, Hiroshi

    2006-02-01

    c-Axis-oriented ultra thin SrBi2Ta2O9 films were epitaxially grown on atomically flat (100)SrTiO3 substrates by pulse-gas-introduced metalorganic chemical vapor deposition, and their growth behavior was observed by atomic force microscopy (AFM). Growth-time-resolved AFM images clearly showed that a completely filled SrBi2Ta2O9 layer was laid under an incompletely grown half-unit-cell two-dimensional (2D)-island layer, indicating the Frank-van der Merwe (layer-by-layer) growth mode. This is the first step-by-step direct observation of layer-by-layer growth of c-axis-oriented bismuth layer-structured dielectric (BLD) films and is considered to be the origin of the thickness-independent smooth surface of c-axis-oriented BLD films.

  14. Synthesis and characterization of 10 nm thick piezoelectric AlN films with high c-axis orientation for miniaturized nanoelectromechanical devices

    SciTech Connect

    Zaghloul, Usama; Piazza, Gianluca

    2014-06-23

    The scaling of piezoelectric nanoelectromechanical systems (NEMS) is challenged by the synthesis of ultrathin and high quality piezoelectric films on very thin electrodes. We report the synthesis and characterization of the thinnest piezoelectric aluminum nitride (AlN) films (10 nm) ever deposited on ultrathin platinum layers (2–5 nm) using reactive sputtering. X-ray diffraction, high-resolution transmission electron microscopy, and fast Fourier transform analyses confirmed the proper crystal orientation, fine columnar texture, and the continuous lattice structure within individual grains in the deposited AlN nanometer thick films. The average extracted d{sub 31} piezoelectric coefficient for the synthesized films is −1.73 pC/N, which is comparable to the reported values for micron thick and highly c-axis oriented AlN films. The 10 nm AlN films were employed to demonstrate two different types of optimized piezoelectric nanoactuators. The unimorph actuators exhibit vertical displacements as large as 1.1 μm at 0.7 V for 25 μm long and 30 nm thick beams. These results have a great potential to realize miniaturized NEMS relays with extremely low voltage, high frequency resonators, and ultrasensitive sensors.

  15. Superconductivity and the disorder effect in Ag and Al double doped MgB2

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Zhang, Huarong; Zhou, Shiming; Zhao, Jiyin; Zuo, Jian

    2006-07-01

    A series of polycrystalline bulk samples of Mg1-2x(AgAl)xB2 (0.0%⩽x⩽1.0%) has been synthesized by a solid state reaction method. The structure, Raman spectrum, and superconducting properties have been investigated by x-ray diffraction, Raman spectroscopy, and low-temperature resistivity measurements. It is found that the Ag, Al double doping causes the expansion of crystal lattice along the a- and c-axis orientations due to the substitution inducing ionic size variation. A redshift of peak position is observed in Raman spectra, which is ascribed to the crystal cell volume change inducing the variation of the phonon frequency. The superconducting transition temperature (Tc) is degressive with the doping level (x) increase. By the Ag and Al double doping, the hole concentration is kept to be unchanged in MgB2, which eliminates the effects of the charge carrier concentration change and band filling on Tc. It is suggested that the reason of the Tc suppression caused by the double doping is the co-operating results of the disorder effect and the chemical pressure effect induced by the chemical substitution.

  16. High-coercivity, c-axis oriented Nd{sub 2}Fe{sub 14}B films grown by molecular beam epitaxy

    SciTech Connect

    Keavney, D.J.; Fullerton, E.E.; Pearson, J.E.; Bader, S.D.

    1996-12-31

    Thin films of Nd{sub 2}Fe{sub 14}B with a c-axis orientation and bulk- like magnetic properties were grown with thickness as low as 300 {Angstrom}. They were grown on single-crystal MgO(100) wafers overcoated with epitaxial Mo(100) buffer layers. The 2-14-1 phase were crystallized either by sequential deposition or co-deposition of Fe, Nd, and B from pure elemental evaporation sources onto 600-700 C substrates. Structure of each film was characterized in-situ with RHEED and ex-situ with XRD. For the sequentially deposited films, the in-plane saturation field is 60-70 kOe at 300 K, consistent with the bulk anisotropy field of 73 kOe. The spin-reorientation transition at 135 K can also be clearly seen in the in-plane and out-of-plane magnetization vs temperature data. The out-of-plane coercivities range from 15-20 kOe at 20 K and 3-8 kOe at 300 K. Co-deposition results in a multiphase structure, with Nd{sub 2}Fe{sub 14}B now the minority phase. The multiphase structure results in reduced perpendicular anisotropy.

  17. Transparent and conducting intrinsic ZnO thin films prepared at high growth-rate with c-axis orientation and pyramidal surface texture

    NASA Astrophysics Data System (ADS)

    Mondal, Praloy; Das, Debajyoti

    2013-12-01

    The growth of ZnO thin films has been optimized by adjusting the intrinsic ion vacancies, by controlling the RF power applied to the plasma in magnetron sputtering. Preferred c-axis oriented intrinsic ZnO films with largest grain size and a hexagonal wurtzite structure, exhibiting high room temperature conductivity, σ ∼ 1.37 S/cm, high transparency, ∼80-90% within 450-800 nm and ∼90-96% within 800-1900 nm, low reflectance (<5% in the visible range) was obtained at a very high deposition rate ∼214 nm/min, at 300 °C, by maintaining higher concentration of Zn interstitials or singly ionized oxygen vacancy, corresponding to an optimized RF power of 200 W. Films have lowest internal stress, smallest dissipation factor defined as ɛ2/ɛ1, and the specific pyramidal surface texture creates enough surface roughness that helps to improve the light scattering from the surface and makes it suitable for efficient use in thin-film silicon solar cells. With increasing RF power beyond 200 W, the Zn-O bond length reduces promptly and the internal stress increases monotonically approaching toward a virtual saturation. The preferred crystallographic alignment shifts from (0 0 2) to (1 0 3), i.e., from c to a-axis orientation, as the surface energy of ZnO crystal changes due to the increase in the Zn-to-ZnO ion ratio in the plasma caused by the plausible de-oxygenation of ZnO at elevated RF powers. Oxygen deficient ZnO films having the flower-like surface texture prepared with a very high deposition rate ∼554 nm/min at 500 W could indeed make the material suitable for gas and chemical sensing applications.

  18. Highly c-axis oriented growth of GaN film on sapphire (0001) by laser molecular beam epitaxy using HVPE grown GaN bulk target

    SciTech Connect

    Kushvaha, S. S.; Kumar, M. Senthil; Maurya, K. K.; Dalai, M. K.; Sharma, Nita D.

    2013-09-15

    Growth temperature dependant surface morphology and crystalline properties of the epitaxial GaN layers grown on pre-nitridated sapphire (0001) substrates by laser molecular beam epitaxy (LMBE) were investigated in the range of 500–750 °C. The grown GaN films were characterized using high resolution x-ray diffraction, atomic force microscopy (AFM), micro-Raman spectroscopy, and secondary ion mass spectroscopy (SIMS). The x-ray rocking curve full width at a half maximum (FWHM) value for (0002) reflection dramatically decreased from 1582 arc sec to 153 arc sec when the growth temperature was increased from 500 °C to 600 °C and the value further decreased with increase of growth temperature up to 720 °C. A highly c-axis oriented GaN epitaxial film was obtained at 720 °C with a (0002) plane rocking curve FWHM value as low as 102 arc sec. From AFM studies, it is observed that the GaN grain size also increased with increasing growth temperature and flat, large lateral grains of size 200-300 nm was obtained for the film grown at 720 °C. The micro-Raman spectroscopy studies also exhibited the high-quality wurtzite nature of GaN film grown on sapphire at 720 °C. The SIMS measurements revealed a non-traceable amount of background oxygen impurity in the grown GaN films. The results show that the growth temperature strongly influences the surface morphology and crystalline quality of the epitaxial GaN films on sapphire grown by LMBE.

  19. Direct observation of charge re-distribution in a MgB2 superconductor

    NASA Astrophysics Data System (ADS)

    Wu, Sheng Yun; Shih, Po-Hsun; Ji, Jhong-Yi; Chan, Ting-Shan; Yang, Chun Chuen

    2016-04-01

    To study the origin of negative thermal expansion effects near the superconducting transition temperature TC in MgB2, low-temperature high-energy synchrotron radiation x-ray diffraction was used to probe the charge redistribution near the boron atoms. Our results reveal that the in-plane hole-distribution of B- hops through the direct orbital overlap of Mg2+ along the c-axis at 50 K and is re-distributed out-of-plane. This study shows that the out-of-plane π-hole distribution plays a dominant role in the possible origin of superconductivity and negative thermal effects in MgB2.

  20. Anisotropy of superconducting MgB2 as seen in electron spin resonance and magnetization data.

    PubMed

    Simon, F; Jánossy, A; Fehér, T; Murányi, F; Garaj, S; Forró, L; Petrovic, C; Bud'ko, S L; Lapertot, G; Kogan, V G; Canfield, P C

    2001-07-23

    We observed the conduction electron spin resonance (CESR) in fine powders of MgB2 both in the superconducting and normal states. The Pauli susceptibility is chi(s) = 2.0 x 10(-5) emu/mole in the temperature range of 450 to 600 K. The spin relaxation rate has an anomalous temperature dependence. The CESR measured below T(c) at several frequencies suggests that MgB2 is a strongly anisotropic superconductor with the upper critical field, H(c2), ranging between 2 and 16 T. The high-field reversible magnetization data of a randomly oriented powder sample are well described assuming that MgB2 is an anisotropic superconductor with H(ab)(c2)/H(c)(c2) approximately 6-9.

  1. In-plane and out-of-plane dissipation in {ital c}-axis-oriented (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O {sub x} silver-sheathed tapes

    SciTech Connect

    Xu, G.; Sun, Y.; Du, J. |; Zhou, Y.; Zeng, R.; Fu, X.; Hua, P.

    1997-02-01

    The temperature dependence of the out-of-plane and in-plane resistance of a c-axis-oriented (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O {sub x} silver-sheathed tape with high critical current density (J{sub c}{gt}2{times}10{sup 4} A/cm{sup 2}, 77 K, 0 T) has been investigated under applied fields up to 0.9 T. It is found that the in-plane and the out-of-plane resistance transitions are quite different: (1) The out-of-plane zero resistance temperature is much higher than the in-plane one, i.e., T{sub c}{sup ab}(H){lt}T{sub c}{sup c}(H), and the difference increases with magnetic field; (2) the out-of-plane zero resistance temperature corresponds to the c-axis decoupling temperature. These phenomena are attributed to different dissipation mechanisms. The in-plane dissipation at low temperature results from the thermally activated flux{endash}flow, while the out-of-plane dissipation originates from the Josephson junction dissipation of weakly coupled c-axis grain boundaries and/or intrinsic Josephson junctions.{copyright} {ital 1997 American Institute of Physics.}

  2. Influence of c-axis orientation and scandium concentration on infrared active modes of magnetron sputtered Sc{sub x}Al{sub 1−x}N thin films

    SciTech Connect

    Mayrhofer, P. M.; Bittner, A.; Schmid, U.; Eisenmenger-Sittner, C.; Euchner, H.

    2013-12-16

    Doping of wurtzite aluminium nitride (AlN) with scandium (Sc) significantly enhances the piezoelectric properties of AlN. Sc{sub x}Al{sub 1−x}N thin films with different Sc concentrations (x = 0 to 0.15) were deposited by DC reactive magnetron sputtering. Infrared (IR) absorbance spectroscopy was applied to investigate the Sc concentration dependent shift of the IR active modes E{sub 1}(TO) and A{sub 1}(TO). These results are compared to ab initio simulations, being in excellent agreement with the experimental findings. In addition, IR spectroscopy is established as an economical and fast method to distinguish between thin films with a high degree of c-axis orientation and those exhibiting mixed orientations.

  3. Investigation on orientation, epitaxial growth and microstructure of a-axis-, c-axis-, (103)/(110)- and (113)-oriented YBa2Cu3O7-δ films prepared on (001), (110) and (111) SrTiO3 single crystal substrates by spray atomizing and coprecipitating laser chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Zhao, Pei; Wang, Ying; Huang, Zhi liang; Mao, Yangwu; Xu, Yuan Lai

    2015-04-01

    a-axis-, c-axis-, (103)/(110)- and (113)-oriented YBa2Cu3O7-δ (YBCO) films were pareared by spray atomizing and coprecipitating laser chemical vapor deposition. The surface of the a-axis-oriented YBCO film consisted of rectangular needle-like grains whose in-plane epitaxial growth relationship was YBCO [100] // STO [001] (YBCO [001] // STO [100]), and that of the c-axis-oriented YBCO film consisted of dense flat surface with epitaxial growth relationship of YBCO [001] // STO [001] (YBCO [100] //STO [100]). For the (103)/(110)-oriented and (113)-oriented YBCO film, they showed wedge-shaped and triangle-shaped grains, with corresponding in-plane epitaxial growth relationship of YBCO [110] // STO [110] (YBCO [010] // STO [010]) and YBCO [100] // STO [100] (YBCO [113] // STO [111], respectively.

  4. Large anisotropic normal-state magnetoresistance in clean MgB2 thin films.

    PubMed

    Li, Qi; Liu, B T; Hu, Y F; Chen, J; Gao, H; Shan, L; Wen, H H; Pogrebnyakov, A V; Redwing, J M; Xi, X X

    2006-04-28

    We report a large normal-state magnetoresistance with temperature-dependent anisotropy in very clean epitaxial MgB2 thin films (residual resistivity much smaller than 1 microOmega cm) grown by hybrid physical-chemical vapor deposition. The magnetoresistance shows a complex dependence on the orientation of the applied magnetic field, with a large magnetoresistance (Delta(rho)/(rho)0=136%) observed for the field H perpendicular ab plane. The angular dependence changes dramatically as the temperature is increased, and at high temperatures the magnetoresistance maximum changes to H||ab. We attribute the large magnetoresistance and the evolution of its angular dependence with temperature to the multiple bands with different Fermi surface topology in MgB2 and the relative scattering rates of the sigma and pi bands, which vary with temperature due to stronger electron-phonon coupling for the sigma bands.

  5. Bending strain tolerance of MgB2 superconducting wires

    NASA Astrophysics Data System (ADS)

    Kováč, P.; Hušek, I.; Melišek, T.; Kulich, M.; Kopera, L.

    2016-04-01

    This work describes the strain tolerance of MgB2 superconductors subjected to variable bending stresses. Bending of MgB2 wire was done at room temperature in different modes: (i) direct bending of straight annealed samples to variable diameters and by (ii) indirect bending by straightening of bent and annealed samples. I c-bending strain characteristics of samples made by in situ PIT and by the internal magnesium diffusion (IMD) process were measured at 4.2 K. The results show a good agreement between the direct and indirect bending mode, which allows easier estimation of limits important for the winding process of MgB2 superconductors with brittle filaments. A comparison of MgB2 wires made by in situ PIT and IMD processes showed improved strain tolerance for IMD due to better grain connectivity the low annealing temperature, which does not appear to reduce the mechanical strength of sheath material.

  6. de Haas-van Alphen effect in single crystal MgB2.

    PubMed

    Yelland, E A; Cooper, J R; Carrington, A; Hussey, N E; Meeson, P J; Lee, S; Yamamoto, A; Tajima, S

    2002-05-27

    We report observations of quantum oscillations in single crystals of the high temperature superconductor MgB2. Three de Haas-van Alphen frequencies are clearly resolved. Comparison with band structure calculations strongly suggests that two of these come from a single warped Fermi surface tube along the c direction, and that the third arises from cylindrical sections of an in-plane honeycomb network. The measured values of the effective mass range from (0.44-0.68)m(e). By comparing these to calculated band masses, we find that the electron-phonon coupling strength lambda is a factor of approximately 3 larger for the c-axis tube orbits than for the in-plane network orbit, in accord with recent microscopic calculations.

  7. Magnetic lenses using different MgB2 bulk superconductors

    NASA Astrophysics Data System (ADS)

    Zhang, Z. Y.; Choi, S.; Matsumoto, S.; Teranishi, R.; Giunchi, G.; Figini Albisetti, A.; Kiyoshi, T.

    2012-02-01

    A magnetic lens allows the concentration of magnetic fields using the diamagnetism of superconductors. The important features of the magnetic lens are a tapered inner diameter from which the magnetic flux is extruded and a slit to suppress the circumference current that shields the magnetic flux. This concept was experimentally confirmed through the use of GdBaCuO bulks and a stack of NbTi/Nb/Cu sheets. We refer to this arrangement as a magnetic lens. The Mg-reactive liquid infiltration (Mg-RLI) process developed by Edison SpA is suitable for the production of large and high-density MgB2 bulks. Three MgB2 bulk magnetic lenses, each with a different microstructure, were fabricated following the Mg-RLI process. The properties of the MgB2 magnetic lenses were measured in a cryocooler system as well as in liquid helium. The results confirmed that the MgB2 bulk magnetic lenses could concentrate a magnetic field and that their field concentration properties were greatly affected by the temperature and the external field. In addition, the microstructure of the MgB2 bulk also had an influence on the magnetic properties at different external fields. The results indicated that the MgB2 lens might be utilized as a field amplifier in intermediate fields.

  8. Superconductivity in dense MgB2 wires.

    PubMed

    Canfield, P C; Finnemore, D K; Bud'ko, S L; Ostenson, J E; Lapertot, G; Cunningham, C E; Petrovic, C

    2001-03-12

    MgB2 becomes superconducting just below 40 K. Whereas porous polycrystalline samples of MgB2 can be synthesized from boron powders, in this Letter we demonstrate that dense wires of MgB2 can be prepared by exposing boron filaments to Mg vapor. The resulting wires have a diameter of 160 microm, are better than 80% dense, and manifest the full chi = -1/4pi shielding in the superconducting state. Temperature-dependent resistivity measurements indicate that MgB2 is a highly conducting metal in the normal state with rho(40 K) = 0.38 microOmega cm. By using this value, an electronic mean-free path, l approximately 600 A can be estimated, indicating that MgB2 wires are well within the clean limit. Tc, Hc2(T), and Jc data indicate that MgB2 manifests comparable or better superconducting properties in dense wire form than it manifests as a sintered pellet.

  9. Fermi surface topology and the upper critical field in two-band superconductors: application to MgB2.

    PubMed

    Dahm, T; Schopohl, N

    2003-07-01

    Recent measurements of the anisotropy of the upper critical field B(c2) on MgB2 single crystals have shown a puzzling strong temperature dependence. Here, we present a calculation of the upper critical field based on a detailed modeling of band structure calculations that takes into account both the unusual Fermi surface topology and the two gap nature of the superconducting order parameter. Our results show that the strong temperature dependence of the B(c2) anisotropy can be understood as an interplay of the dominating gap on the sigma band, which possesses a small c-axis component of the Fermi velocity, with the induced superconductivity on the pi-band possessing a large c-axis component of the Fermi velocity. We provide analytic formulas for the anisotropy ratio at T=0 and T=T(c) and quantitatively predict the distortion of the vortex lattice based on our calculations.

  10. Preparation and properties of highly c-axis-oriented Sr0.6Ba0.4Nb2O6 thin films by the sol-gel process

    NASA Astrophysics Data System (ADS)

    Shen, Zhiru; Ye, Hui; Zou, Tong; Guo, Bing

    2005-01-01

    Highly oriented ferroelectric strontium barium niobate (Sr0.6Ba0.4Nb2O6) thin films were prepared on P-type Si(100) substrate by the Sol-Gel process. The XRD patterns of the SBN films show that SBN film prepared by using NbCl5, KOH as raw materials performed a highly c-axis preferred orientation perpendicular to the Si substrate, better than films that was prepared using Nb(OC2H5)5 as starting agents. It may be duo to the existence of the potassium ion that not be filtered out completely during the preparation of the niobium alkoxide. The characteristics of D-F and C-V curves were obtained for SBN/Si film. The film exhibits high dielectric constant. In order to investigate ferroelectric characteristics further, the P-E loops of the SBN/Pt/Si were also measured. The films show better optical properties, transmittance of Sr0.6Ba0.4Nb2O6 films on MgO(001) and SiO2 substrates was more than 60% at the range from 450 to 850nm, refractive index was measured to be 2.14 and 2.12 on the MgO and SiO2 substrate at 633nm respectively.

  11. Substitution of Mn for Mg in MgB_2*

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Michael D.; Johnston, David C.; Miller, Lance L.; Hill, Julienne M.

    2002-03-01

    The study of solid solutions in which the Mg in MgB2 is partially replaced by magnetic 3d or 4f atoms can potentially reveal important information on the superconducting state of MgB_2. As an end-member of the hypothetical Mg_1-xMn_xB2 system, MnB2 is isostructural with MgB2 and is an antiferromagnet below TN = 760 K which becomes canted at 157 K. A previous study by Moritomo et al.[1] examined the structure and properties of multi-phase samples with 0.01<= x<= 0.15. We attempted to obtain single-phase samples with x<= 0.25 by reacting the constituent elements in sealed Ta tubes and/or using prereacted MnBx synthesized using an arc furnace. The results of x-ray diffraction and magnetization measurements on those samples will be presented. * Supported by the USDOE under contract no. W-7405-Eng-82. [1] "Mn-substitution effects on MgB2 superconductor", Y.Moritomo et al. J. Phys. Soc. Japan b70, 1889 (2001).; “Effects of transition metal doping in MgB2 superconductor", Y. Moritomo at al. arXiv:cond-mat/0104568.

  12. The impact of argon admixture on the c-axis oriented growth of direct current magnetron sputtered Sc{sub x}Al{sub 1−x}N thin films

    SciTech Connect

    Mayrhofer, P. M.; Bittner, A.; Schmid, U.; Eisenmenger-Sittner, C.; Stöger-Pollach, M.

    2014-05-21

    The piezoelectric properties of wurtzite aluminium nitride (w-AlN) are enhanced by alloying with scandium (Sc), thus offering superior properties for applications in micro electro-mechanical systems devices. Sc{sub x}Al{sub 1−x}N thin films have been prepared by DC reactive magnetron sputtering on Si (100) substrates from a single target. When targeting a concentration range from x = 0 up to x = 0.15, the preparation conditions have been optimized by varying the Ar/N{sub 2} ratio in the sputtering gas. To incorporate an increasing Sc concentration, a higher Ar/N{sub 2} ratio has to be applied during the deposition process. Hence, the argon concentration in the sputtering gas becomes a crucial parameter for microstructure-related parameters. To determine phase purity, degree of c-axis orientation, lattice parameter, and grain size, the Sc{sub x}Al{sub 1−x}N thin films were investigated by techniques, such as scanning electron microscopy, transmission electron microscopy, and X-ray diffraction.

  13. Superconductivity of Metallic Boron in MgB2

    NASA Astrophysics Data System (ADS)

    Kortus, J.; Mazin, I. I.; Belashchenko, K. D.; Antropov, V. P.; Boyer, L. L.

    2001-05-01

    Boron in MgB2 forms stacks of honeycomb layers with magnesium as a space filler. Band structure calculations indicate that Mg is substantially ionized, and the bands at the Fermi level derive mainly from B orbitals. Strong bonding with an ionic component and considerable metallic density of states yield a sizable electron-phonon coupling. Together with high phonon frequencies, which we estimate via zone-center frozen phonon calculations to be between 300 and 700 cm-1, this produces a high critical temperature, consistent with recent experiments. Thus MgB2 can be viewed as an analog of the long sought, but still hypothetical, superconducting metallic hydrogen.

  14. Superconductivity of metallic boron in MgB2.

    PubMed

    Kortus, J; Mazin, I I; Belashchenko, K D; Antropov, V P; Boyer, L L

    2001-05-14

    Boron in MgB2 forms stacks of honeycomb layers with magnesium as a space filler. Band structure calculations indicate that Mg is substantially ionized, and the bands at the Fermi level derive mainly from B orbitals. Strong bonding with an ionic component and considerable metallic density of states yield a sizable electron-phonon coupling. Together with high phonon frequencies, which we estimate via zone-center frozen phonon calculations to be between 300 and 700 cm(-1), this produces a high critical temperature, consistent with recent experiments. Thus MgB2 can be viewed as an analog of the long sought, but still hypothetical, superconducting metallic hydrogen.

  15. Superconducting properties of MgB2 from first principles.

    PubMed

    Floris, A; Profeta, G; Lathiotakis, N N; Lüders, M; Marques, M A L; Franchini, C; Gross, E K U; Continenza, A; Massidda, S

    2005-01-28

    Solid MgB(2) has rather interesting and technologically important properties, such as a very high superconducting transition temperature. Focusing on this compound, we report the first nontrivial application of a novel density-functional-type theory for superconductors, recently proposed by the authors. Without invoking any adjustable parameters, we obtain the transition temperature, the gaps, and the specific heat of MgB(2) in very good agreement with experiment. Moreover, our calculations show how the Coulomb interaction acts differently on sigma and pi states, thereby stabilizing the observed superconducting phase.

  16. Boron isotope effect in superconducting MgB2.

    PubMed

    Bud'ko, S L; Lapertot, G; Petrovic, C; Cunningham, C E; Anderson, N; Canfield, P C

    2001-02-26

    We report the preparation method of and boron isotope effect for MgB2, a new binary intermetallic superconductor with a remarkably high superconducting transition temperature T(c)(10B) = 40.2 K. Measurements of both temperature dependent magnetization and specific heat reveal a 1.0 K shift in T(c) between Mg11B2 and Mg10B2. Whereas such a high transition temperature might imply exotic coupling mechanisms, the boron isotope effect in MgB2 is consistent with the material being a phonon-mediated BCS superconductor.

  17. Synthesis of MgB 2 film by electrochemical process

    NASA Astrophysics Data System (ADS)

    Sakurai, Hiroshi; Kuramochi, Takashi; Furuya, Yudai; Oike, Hiromi; Kato, Tadashi; Hoshi, Kazushi

    2008-07-01

    In order to synthesize MgB2 films, electrolysis is performed in an electrolyte comprising a fused mixture of B2O3, KCl and MgCl2 in a molar ratio of B2O3:KCl:MgCl2 = x:3.5:5. The results of the Meissner effects and X-ray diffraction measurements indicate the formation of MgB2 films on graphite and Si substrates. The superconducting critical temperature depends on both the synthesis temperature of the electrolysis and the amount of B2O3 in the electrolyte.

  18. Low-energy charge-density excitations in MgB2: Striking interplay between single-particle and collective behavior for large momenta.

    PubMed

    Cai, Y Q; Chow, P C; Restrepo, O D; Takano, Y; Togano, K; Kito, H; Ishii, H; Chen, C C; Liang, K S; Chen, C T; Tsuda, S; Shin, S; Kao, C C; Ku, W; Eguiluz, A G

    2006-10-27

    A sharp feature in the charge-density excitation spectra of single-crystal MgB2, displaying a remarkable cosinelike, periodic energy dispersion with momentum transfer (q) along the c* axis, has been observed for the first time by high-resolution nonresonant inelastic x-ray scattering (NIXS). Time-dependent density-functional theory calculations show that the physics underlying the NIXS data is strong coupling between single-particle and collective degrees of freedom, mediated by large crystal local-field effects. As a result, the small-q collective mode residing in the single-particle excitation gap of the B pi bands reappears periodically in higher Brillouin zones. The NIXS data thus embody a novel signature of the layered electronic structure of MgB2.

  19. Permanent magnet with MgB2 bulk superconductor

    NASA Astrophysics Data System (ADS)

    Yamamoto, Akiyasu; Ishihara, Atsushi; Tomita, Masaru; Kishio, Kohji

    2014-07-01

    Superconductors with persistent zero-resistance currents serve as permanent magnets for high-field applications requiring a strong and stable magnetic field, such as magnetic resonance imaging. The recent global helium shortage has quickened research into high-temperature superconductors (HTSs)—materials that can be used without conventional liquid-helium cooling to 4.2 K. Herein, we demonstrate that 40-K-class metallic HTS magnesium diboride (MgB2) makes an excellent permanent bulk magnet, maintaining 3 T at 20 K for 1 week with an extremely high stability (<0.1 ppm/h). The magnetic field trapped in this magnet is uniformly distributed, as for single-crystalline neodymium-iron-boron. Magnetic hysteresis loop of the MgB2 permanent bulk magnet was detrmined. Because MgB2 is a simple-binary-line compound that does not contain rare-earth metals, polycrystalline bulk material can be industrially fabricated at low cost and with high yield to serve as strong magnets that are compatible with conventional compact cryocoolers, making MgB2 bulks promising for the next generation of Tesla-class permanent-magnet applications.

  20. Kinetic analysis of MgB2 layer formation in advanced internal magnesium infiltration (AIMI) processed MgB2 wires

    PubMed Central

    Li, G. Z.; Sumption, M. D.; Collings, E. W.

    2015-01-01

    Significantly enhanced critical current density (Jc) for MgB2 superconducting wires can be obtained following the advanced internal Mg infiltration (AIMI) route. But unless suitable precautions are taken, the AIMI-processed MgB2 wires will exhibit incomplete MgB2 layer formation, i.e. reduced superconductor core size and hence suppressed current-carrying capability. Microstructural characterization of AIMI MgB2 wires before and after the heat treatment reveals that the reaction mechanism changes from a “Mg infiltration-reaction” at the beginning of the heat treatment to a “Mg diffusion-reaction” once a dense MgB2 layer is formed. A drastic drop in the Mg transport rate from infiltration to diffusion causes the termination of the MgB2 core growth. To quantify this process, a two-stage kinetic model is built to describe the MgB2 layer formation and growth. The derived kinetic model and the associated experimental observations indicate that fully reacted AIMI-processed MgB2 wires can be achieved following the optimization of B particle size, B powder packing density, MgB2 reaction activation energy and its response to the additions of dopants. PMID:26973431

  1. Persistence of metastable vortex lattice domains in MgB2 in the presence of vortex motion.

    PubMed

    Rastovski, C; Schlesinger, K J; Gannon, W J; Dewhurst, C D; DeBeer-Schmitt, L; Zhigadlo, N D; Karpinski, J; Eskildsen, M R

    2013-09-01

    Recently, extensive vortex lattice metastability was reported in MgB2 in connection with a second-order rotational phase transition. However, the mechanism responsible for these well-ordered metastable vortex lattice phases is not well understood. Using small-angle neutron scattering, we studied the vortex lattice in MgB2 as it was driven from a metastable to the ground state through a series of small changes in the applied magnetic field. Our results show that metastable vortex lattice domains persist in the presence of substantial vortex motion and directly demonstrate that the metastability is not due to vortex pinning. Instead, we propose that it is due to the jamming of counterrotated vortex lattice domains which prevents a rotation to the ground state orientation.

  2. Persistence of Metastable Vortex Lattice Domains in MgB2 in the Presence of Vortex Motion

    SciTech Connect

    Rastovski, Catherine; Schlesinger, Kimberly; Gannon, William J; Dewhurst, Charles; Debeer-Schmitt, Lisa M; Zhigadlo, Nikolai; Karpinski, Janusz; Eskildsen, Morten

    2013-01-01

    Recently, extensive vortex lattice metastability was reported in MgB2 in connection with a second-order rotational phase transition. However, the mechanism responsible for these well-ordered metastable vortex lattice phases is not well understood. Using small-angle neutron scattering, we studied the vortex lattice in MgB2 as it was driven from a metastable to the ground state through a series of small changes in the applied magnetic field. Our results show that metastable vortex lattice domains persist in the presence of substantial vortex motion and directly demonstrate that the metastability is not due to vortex pinning. Instead, we propose that it is due to the jamming of counterrotated vortex lattice domains which prevents a rotation to the ground state orientation.

  3. Luminescence and dielectric properties of c-axis oriented (Bi1.90Eu0.10)(V1-zMoz)O5.5 ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Xie, Wei; Zou, Changwei; Xie, Mubiao; Bao, Dinghua

    2016-05-01

    (Bi1.90Eu0.10)(V1-zMoz)O5.5 (z = 0, 0.05, 0.10, 0.15 and 0.20) thin films with c-axis oriented were prepared on Pt(111)/Ti/SiO2/Si substrates by using chemical solution deposition method. The effect of Mo6+ concentration on the structure, luminescence properties and dielectric properties of the thin films were characterized systematically. X-ray diffraction data indicates that the thin films with low Mo6+-doping content can remain Bi2VO5.5 structure. When the Mo6+-doping content z reaches to 0.15, the thin films are a mixture of diphase with the main phase Bi2VO5.5 and secondary phase Bi2MoO6. Under UV irradiation, all the thin films emit a bright red or orange emission which origin from Eu3+. With increasing Mo6+-doping content z, the relative intensity of the Red and Orange emissions show obviously change. The value of Red/Orange ratio first decrease, and it reached minimum when z is 0.15, then it recover to the initial value. The variation trend of the Red/Orange ratio reflects the change of the lattice symmetry. Dielectric constant of the thin films increased with the increasing of the Mo6+ concentration while dielectric loss decreased. The decrease of the quantities of oxygen vacancies and the generation of Bi2MoO6 phase are responsible for the improvement of electric properties. These results explain that Eu3+ion can be used as an effective luminescent probe in (Bi1.90Eu0.10)(V1-zMoz)O5.5 (z = 0, 0.05, 0.10, 0.15 and 0.20) thin films, and the electric properties of the thin films can be improved by Mo6+ doping.

  4. High-resolution photoemission study of MgB2.

    PubMed

    Takahashi, T; Sato, T; Souma, S; Muranaka, T; Akimitsu, J

    2001-05-21

    We have performed high-resolution photoemission spectroscopy on MgB2 and observed opening of a superconducting gap with a narrow coherent peak. We found that the superconducting gap is s like with the gap value ( Delta) of 4.5+/-0.3 meV at 15 K. The temperature dependence (15-40 K) of the gap value follows well the BCS form, suggesting that 2Delta/k(B)T(c) at T = 0 is about 3. No pseudogap behavior is observed in the normal state. The present results strongly suggest that MgB2 is categorized into a phonon-mediated BCS superconductor in the weak-coupling regime.

  5. Evidence for two superconducting gaps in MgB2.

    PubMed

    Chen, X K; Konstantinovic, M J; Irwin, J C; Lawrie, D D; Franck, J P

    2001-10-01

    We have measured the Raman spectra of polycrystalline MgB2 from 25 to 1200 cm(-1). A superconductivity-induced redistribution in the electronic Raman continuum was observed. Two pair-breaking peaks appear in the spectra, suggesting the presence of two superconducting gaps. The measured spectra were analyzed using a quasi-two-dimensional model in which two s-wave superconducting gaps open on two sheets of Fermi surface. For the gap values we have obtained Delta(1) = 22 cm(-1) ( 2.7 meV) and Delta(2) = 50 cm(-1) ( 6.2 meV). Our results suggest that a conventional phonon-mediated pairing mechanism occurs in the planar boron sigma bands and is responsible for the superconductivity of MgB2.

  6. Heterostructures of Bi-4334 and MgB2 superconductors

    NASA Astrophysics Data System (ADS)

    Padmavathi, M.; Singh, R.

    2016-05-01

    We report the studies on hetero structures of Bi-4334 and MgB2 superconductors. The two superconductors were arranged in the form of bulk multilayers using hydraulic pressure system. X-ray diffraction pattern and dc magnetization studies confirm the presence of both superconducting phases in this try-layer hetero structured sample. The d.c magnetization shows the superconducting onset at 77K and 39K for Bi-4334 and MgB2 phases respectively. Critical current density (Jc) is calculated from hysteresis loop of the sample in both in-plane field and out of plane field configurations. Inverted anisotropy in Jc is observed due to enhancement of ab-plane properties because of multilayer growth process. Morphology of the samples at surface and interface of two superconducting layers is discussed in view of Field emission scanning electron microscopy.

  7. Active Protection of an MgB2 Test Coil

    PubMed Central

    Park, Dong Keun; Hahn, Seungyong; Bascuñán, Juan; Iwasa, Yukikazu

    2011-01-01

    This paper presents results of a study, experimental and computational, of a detect-and-activate-the-heater protection technique applied to a magnesium diboride (MgB2) test coil operated in semi-persistent mode. The test coil with a winding ID of 25 cm and wound with ~500-m long reacted MgB2 wire was operated at 4.2 K immersed in a bath of liquid helium. In this active technique, upon the initiation of a “hot spot” of a length ~10 cm, induced by a “quench heater,” a “protection heater” (PH) of ~600-cm long planted within the test coil is activated. The normal zone created by the PH is large enough to absorb the test coil’s entire initial stored energy and still keeps the peak temperature within the winding below ~260 K. PMID:22081754

  8. Superconductivity in MgB2 irradiated with energetic protons

    NASA Astrophysics Data System (ADS)

    Sandu, Viorel; Craciun, Liviu; Ionescu, Alina Marinela; Aldica, Gheorghe; Miu, Lucica; Kuncser, Andrei

    2016-09-01

    A series of MgB2 samples were irradiated with protons of 11.3 and 13.2 MeV. Magnetization data shows an insignificant reduction of the critical temperatures but a continuous decrease of the Meissner fraction with increasing fluence or energy. All samples show a consistent improvement of the critical current density compared to the virgin sample and an increase of the pinning energy at high fields as resulted from relaxation data.

  9. Fine-Filament MgB2 Superconductor Wire

    NASA Technical Reports Server (NTRS)

    Cantu, Sherrie

    2015-01-01

    Hyper Tech Research, Inc., has developed fine-filament magnesium diboride (MgB2) superconductor wire for motors and generators used in turboelectric aircraft propulsion systems. In Phase I of the project, Hyper Tech demonstrated that MgB2 multifilament wires (<10 micrometers) could reduce alternating current (AC) losses that occur due to hysteresis, eddy currents, and coupling losses. The company refined a manufacturing method that incorporates a magnesium-infiltration process and provides a tenfold enhancement in critical current density over wire made by a conventional method involving magnesium-boron powder mixtures. Hyper Tech also improved its wire-drawing capability to fabricate fine multifilament strands. In Phase II, the company developed, manufactured, and tested the wire for superconductor and engineering current density and AC losses. Hyper Tech also fabricated MgB2 rotor coil packs for a superconducting generator. The ultimate goal is to enable low-cost, round, lightweight, low-AC-loss superconductors for motor and generator stator coils operating at 25 K in next-generation turboelectric aircraft propulsion systems.

  10. Lattice parameter, lattice disorder and resistivity of carbohydrate doped MgB2 and their correlation with the transition temperature.

    PubMed

    Kim, J H; Oh, Sangjun; Xu, X; Joo, Jinho; Rindfleisch, M; Tomsic, M; Dou, S X

    2009-12-01

    The change in the lattice parameters or the lattice disorder is claimed as a cause of the slight reduction in the transition temperature by carbon doping in MgB2. In this work, an extensive investigation on the effects of carbohydrate doping has been carried out. It is found that not only the a-axis but also the c-axis lattice parameter increases with the sintering temperature. A linear relation between the unit cell volume and the critical temperature is observed. Compared with the well known correlation between the lattice strain and the critical temperature, the X-ray peak broadening itself shows a closer correlation with the transition temperature. The residual resistivity and the critical temperature are linearly correlated with each other as well and its implication is further discussed.

  11. Dynamic and Structural Studies of Metastable Vortex Lattice Domains in MgB2

    NASA Astrophysics Data System (ADS)

    de Waard, E. R.; Kuhn, S. J.; Rastovski, C.; Eskildsen, M. R.; Leishman, A.; Dewhurst, C. D.; Debeer-Schmitt, L.; Littrell, K.; Karpinski, J.; Zhigadlo, N. D.

    Small-angle neutron scattering (SANS) studies of the vortex lattice (VL) in the type-II superconductor MgB2 have revealed an unprecedented degree of metastability that is demonstrably not due to vortex pinning, [C. Rastovski et al . , Phys. Rev. Lett. 111, 107002 (2013)]. The VL can be driven to the GS through successive application of an AC magnetic field. Here we report on detailed studies of the transition kinetics and structure of the VL domains. Stroboscopic studies of the transition revealed a stretched exponential decrease of the metastable volume fraction as a function of the number of applied AC cycles, with subtle differences depending on whether the AC field is oriented parallel or perpendicular to the DC field used to create the VL. We speculate the slower transition kinetics for the transverse AC field may be due to vortex cutting. Spatial studies include scanning SANS measurements showing the VL domain distribution within the MgB2 single crystal as well as measurements of VL correlation lengths. This work is supported by the U.S. Department of Energy, Office of Basic Energy Sciences under Award DE-FG02-10ER46783.

  12. Fast creation of dense MgB2 phase in wires made by IMD process

    NASA Astrophysics Data System (ADS)

    Kováč, P.; Hušek, I.; Melišek, T.; Kopera, L.; Kulich, M.

    2016-10-01

    Single-core MgB2 wires have been made by internal magnesium diffusion (IMD) into boron process. Heat treatments were performed at variable periods (4-90 min) for two adjusted temperatures 635 °C and 650 °C, with an overshoot of ≈20 °C after 5 min. Critical currents of differently treated MgB2/Ti/GlidCop wires have been measured and related with the MgB2 layers. The fast creation MgB2 compound has been observed after 8 min annealing at both temperatures and showing the critical current maxima. The less uniform MgB2 containing cracks was created for longer annealing periods (≥10 min), which resulted in lowered critical currents and worsened thermal stability. The fast creation of dense MgB2 allows it to utilize a continual and short heat treatment process for high current density wires made by IMD.

  13. Properties of in situ made MgB2 in Nb or Ti sheath

    NASA Astrophysics Data System (ADS)

    Kováč, P.; Hušek, I.; Kopera, L.; Melišek, T.; Rosová, A.; Dobročka, E.

    2013-02-01

    Pure Nb and Ti have been used as sheath materials for MgB2 wires examined experimentally. The reason for this research is to compare the effects of these metallic sheaths on the basic properties of MgB2 superconductor. Single-core SiC doped MgB2 wires with Nb and/or Ti sheaths have been made by a powder-in-tube in situ process. Different transport currents, phase compositions and grain connectivity were observed for Nb- and Ti sheathed MgB2 heat treated at temperatures 650-850 °C/30 min. It was found that the critical current density of MgB2/Nb annealed above 700 °C rapidly decreases, while Jc of MgB2/Ti is systematically increasing with temperature. This is explained by the positive role of Ti absorbing impurities from the MgB2 core and by the negative effect of boron diffusion into Nb, reducing the quantity and worsening the quality of the MgB2 core. The obtained results show clearly that a Ti sheath offers the application of higher heat treatment temperatures (above 700 °C) and consequently the achievement of higher critical current densities in comparison to MgB2/Nb.

  14. Superconducting MgB2 flowers: growth mechanism and their superconducting properties

    NASA Astrophysics Data System (ADS)

    Seong, Won Kyung; Ranot, Mahipal; Lee, Ji Yeong; Yang, Cheol-Woong; Lee, Jae Hak; Oh, Young Hoon; Ahn, Jae-Pyoung; Kang, Won Nam

    2016-04-01

    We report for the first time the growth and the systematic study of the growth mechanism for flower-like MgB2 structures fabricated on the substrates for solid-state electronics by the hybrid physical-chemical vapor deposition (HPCVD) technique. The MgB2 flower has a width of 30 μm and a height of 10 μm. The superconductivity of MgB2 flowers was confirmed by a magnetization measurement, and the transition temperature is 39 K, which is comparable with high-quality bulk samples. The excellent current-carrying capability was demonstrated by MgB2 flowers. To understand the nucleation and growth mechanism of MgB2 flowers a very systematic study was performed by a high-resolution transmission electron microscope (HRTEM) and atom probe (AP) microscopy. The HRTEM revealed that the seed grain of a MgB2 flower has a [101¯0] direction, and the flower is composed of micro-columnar MgB2 grains having pyramidal tips and which are grown along the (0001) plane. A clear understanding of the growth mechanism for MgB2 flowers could lead to the growth of other low-dimensional MgB2 structures for superconducting electronic devices.

  15. MgB2 superconducting whiskers synthesized by using the hybrid physical-chemical vapor deposition.

    PubMed

    Wang, Yazhou; Zhuang, Chenggang; Gao, Jingyun; Shan, Xudong; Zhang, Jingmin; Liao, Zhimin; Xu, Hongjun; Yu, Dapeng; Feng, Qingrong

    2009-02-25

    In this work, MgB(2) whiskers were fabricated on a copper substrate by using the hybrid physical-chemical vapor deposition, which was one of the most effective ways to make high quality pure MgB(2) films, with the possible growth mechanism discussed. The whiskers are hexagonal and conelike and grow along the [0001] direction with a single-crystal structure. The onset transition temperature is approximately 39 K, which is among the best in the published nanostructure MgB(2) papers. Fabrication of nanoscale MgB(2) whiskers provides the fundamental understanding of the effect of dimensionality and size on superconductivity.

  16. Al-doped MgB2 materials studied using electron paramagnetic resonance and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Bateni, Ali; Erdem, Emre; Repp, Sergej; Weber, Stefan; Somer, Mehmet

    2016-05-01

    Undoped and aluminum (Al) doped magnesium diboride (MgB2) samples were synthesized using a high-temperature solid-state synthesis method. The microscopic defect structures of Al-doped MgB2 samples were systematically investigated using X-ray powder diffraction, Raman spectroscopy, and electron paramagnetic resonance. It was found that Mg-vacancies are responsible for defect-induced peculiarities in MgB2. Above a certain level of Al doping, enhanced conductive properties of MgB2 disappear due to filling of vacancies or trapping of Al in Mg-related vacancy sites.

  17. Neutron irradiation of MgB2 bulk superconductors

    SciTech Connect

    Eisterer, M; Zehetmayer, M; Tonies, S; Weber, H W.; Kambara, M; Babu, N H.; Cardwell, D A.; Greenwood, Lawrence R. )

    2001-12-01

    Sintered samples of MgB2 were irradiated in a fission reactor. Defects in the bulk microstructure are produced during this process mainly by the 10B(n,a7Li) reaction while collisions of fast neutrons with the lattice atoms induce much less damage. Self-shielding effects turn out to be very important and lead to a highly inhomogeneous defect distribution in the irradiated samples. The resulting disorder enhances the normal state resistivity and the upper critical field. The irreversibility line shifts to higher fields at low temperatures and the measured critical current densities increase following irradiation.

  18. Superconductivity in MgB2: clean or dirty?

    PubMed

    Mazin, I I; Andersen, O K; Jepsen, O; Dolgov, O V; Kortus, J; Golubov, A A; Kuz'menko, A B; Van Der Marel, D

    2002-09-01

    A large number of experimental facts and theoretical arguments favor a two-gap model for superconductivity in MgB2. However, this model predicts strong suppression of the critical temperature by interband impurity scattering and, presumably, a strong correlation between the critical temperature and the residual resistivity. No such correlation has been observed. We argue that this fact can be understood if the band disparity of the electronic structure is taken into account, not only in the superconducting state, but also in normal transport.

  19. Two-band superconductivity in MgB2.

    PubMed

    Iavarone, M; Karapetrov, G; Koshelev, A E; Kwok, W K; Crabtree, G W; Hinks, D G; Kang, W N; Choi, Eun-Mi; Kim, Hyun Jung; Kim, Hyeong-Jin; Lee, S I

    2002-10-28

    The study of the anisotropic superconductor MgB2 using a combination of scanning tunneling microscopy and spectroscopy reveals two distinct energy gaps at Delta(1)=2.3 meV and Delta(2)=7.1 meV at 4.2 K. Different spectral weights of the partial superconducting density of states are a reflection of different tunneling directions in this multiband system. Temperature evolution of the tunneling spectra follows the BCS scenario [Phys. Rev. Lett. 3, 552 (1959)

  20. Phonon dispersion and lifetimes in MgB2.

    PubMed

    Shukla, Abhay; Calandra, Matteo; D'Astuto, Matteo; Lazzeri, Michele; Mauri, Francesco; Bellin, Christophe; Krisch, Michael; Karpinski, J; Kazakov, S M; Jun, J; Daghero, D; Parlinski, K

    2003-03-01

    We measure phonon dispersion and linewidth in a single crystal of MgB2 along the Gamma-A, Gamma-M, and A-L directions using inelastic x-ray scattering. We use density functional theory to compute the effect of both electron-phonon coupling and anharmonicity on the linewidth, obtaining excellent agreement with experiment. Anomalous broadening of the E(2g) phonon mode is found all along Gamma-A. The dominant contribution to the linewidth is always the electron-phonon coupling.

  1. Vortex-flux anomalies in MgB 2 polycrystals

    NASA Astrophysics Data System (ADS)

    Goeckner, H. P.; Claus, H.; Kouvel, J. S.

    2005-02-01

    For two MgB 2 polycrystalline samples prepared differently, magnetic hysteresis loops at 4.2 K revealed some striking magnetization ( M) anomalies at low magnetic fields ( H). In one sample, M drops abruptly by an amount that diminishes to zero as the maximum M, reached just before the drop, is reduced below a critical value (by reducing the slowly cycled H). The remanent magnetization ( Mrem), measured as the temperature ( T) was slowly raised from 4.2 K to Tc (39 K), was seen to decrease very rapidly just above 4.2 K and then remain constant up to ∼20 K, where it starts to descend gradually to zero at Tc. A similar set of anomalies was observed with the second sample, but where the hysteretic drop of M is rapid but not abrupt. However, both samples showed that the vortex-flux component of M remains nearly constant over a range of H just before the rapid drop of M, indicating that the vortices in the sample stay fairly constant in number before many of them exit the sample rapidly. For both MgB 2 samples, this whole set of anomalous properties disappears at temperatures above 5 K, where the slow steady descent of Mrem as T increases to Tc indicates that the size distribution of vortex pinning forces extends up to very high values.

  2. Characterization of MgB2 Superconducting Hot Electron Bolometers

    NASA Technical Reports Server (NTRS)

    Cunnane, D.; Kawamura, J. H.; Wolak, M. A.; Acharya, N.; Tan, T.; Xi, X. X.; Karasik, B. S.

    2014-01-01

    Hot-Electron Bolometer (HEB) mixers have proven to be the best tool for high-resolution spectroscopy at the Terahertz frequencies. However, the current state of the art NbN mixers suffer from a small intermediate frequency (IF) bandwidth as well as a low operating temperature. MgB2 is a promising material for HEB mixer technology in view of its high critical temperature and fast thermal relaxation allowing for a large IF bandwidth. In this work, we have fabricated and characterized thin-film (approximately 15 nanometers) MgB2-based spiral antenna-coupled HEB mixers on SiC substrate. We achieved the IF bandwidth greater than 8 gigahertz at 25 degrees Kelvin and the device noise temperature less than 4000 degrees Kelvin at 9 degrees Kelvin using a 600 gigahertz source. Using temperature dependencies of the radiation power dissipated in the device we have identified the optical loss in the integrated microantenna responsible as a cause of the limited sensitivity of the current mixer devices. From the analysis of the current-voltage (IV) characteristics, we have derived the effective thermal conductance of the mixer device and estimated the required local oscillator power in an optimized device to be approximately 1 microwatts.

  3. In situ epitaxial MgB2 thin films for superconducting electronics.

    PubMed

    Zeng, Xianghui; Pogrebnyakov, Alexej V; Kotcharov, Armen; Jones, James E; Xi, X X; Lysczek, Eric M; Redwing, Joan M; Xu, Shengyong; Li, Qi; Lettieri, James; Schlom, Darrell G; Tian, Wei; Pan, Xiaoqing; Liu, Zi-Kui

    2002-09-01

    The newly discovered 39-K superconductor MgB2 holds great promise for superconducting electronics. Like the conventional superconductor Nb, MgB2 is a phonon-mediated superconductor, with a relatively long coherence length. These properties make the prospect of fabricating reproducible uniform Josephson junctions, the fundamental element of superconducting circuits, much more favourable for MgB2 than for high-temperature superconductors. The higher transition temperature and larger energy gap of MgB2 promise higher operating temperatures and potentially higher speeds than Nb-based integrated circuits. However, success in MgB2 Josephson junctions has been limited because of the lack of an adequate thin-film technology. Because a superconducting integrated circuit uses a multilayer of superconducting, insulating and resistive films, an in situ process in which MgB2 is formed directly on the substrate is desirable. Here we show that this can be achieved by hybrid physical-chemical vapour deposition. The epitaxially grown MgB2 films show a high transition temperature and low resistivity, comparable to the best bulk samples, and their surfaces are smooth. This advance removes a major barrier for superconducting electronics using MgB2.

  4. Properties of MgB2 films deposited on single crystal Ag layers

    NASA Astrophysics Data System (ADS)

    Liu, Z. H.; Wei, Y. K.; Zhang, C.; Feng, Q. R.; Ma, P.; Wang, Y.

    2014-04-01

    We have recently developed a method to deposit MgB2 thin films on single crystal Ag layers, and found that thin Ag layers reduced the the superconductivity of MgB2 not much, which may be a possible material to fabricate MgB2 SNS Josephson junctions. The single crystal Ag layers were deposited on (0 0 0 1) SiC substrates, and then the MgB2 thin films were deposited on the Ag layers. All the measurements included the XRD, M-T and M-H curves. The transition temperature of MgB2 films decreases from 39 K to 37 K, while the thickness of Ag layers grows from 0 to 20 nm, and the critical current density at 4.2 K decreases from 1.76 MA/cm2 to 1.24 MA/cm2, too.

  5. Doping effect of nano-diamond on superconductivity and flux pinning in MgB2

    NASA Astrophysics Data System (ADS)

    Cheng, C. H.; Zhang, H.; Zhao, Y.; Feng, Y.; Rui, X. F.; Munroe, P.; Zeng, H. M.; Koshizuka, N.; Murakami, M.

    2003-10-01

    The doping effect of diamond nanoparticles on the superconducting properties of MgB2 bulk material has been studied. It is found that the superconducting transition temperature Tc of MgB2 is suppressed by the diamond doping, however, the irreversibility field Hirr and the critical current density Jc are systematically enhanced. Microstructural analysis shows that the diamond-doped MgB2 superconductor consists of tightly-packed MgB2 nano-grains (~50-100 nm) with highly dispersed and uniformly distributed diamond nanoparticles (~10-20 nm) inside the grains. The high density of dislocations and diamond nanoparticles may be responsible for the enhanced flux pinning in the diamond-doped MgB2.

  6. Preparation and characterisation of Ru doped MgB2

    NASA Astrophysics Data System (ADS)

    Grivel, J.-C.; Holte, O. J.

    2013-12-01

    Samples with Mg1-xRuxB2 nominal stoichiometry were prepared by sintering at 800 °C. The critical transition temperature decreases up to a substitution level of x ≈ 0.015. A maximum solubility limit slightly in excess of 1 at.% Ru for Mg is confirmed by energy dispersive spectroscopy measurements. From and beyond this limit, an unidentified phase appears in the X-ray diffraction patterns. Interestingly, the lattice parameters of the MgB2 phase are constant up to x = 0.015, but start to decrease for higher Ru contents. This feature could be related to the fact that a Mg-Ru impurity phase results in a Mg-deficient (Mg,Ru)B2 matrix.

  7. Scanning tunneling spectroscopy in MgB2.

    PubMed

    Karapetrov, G; Iavarone, M; Kwok, W K; Crabtree, G W; Hinks, D G

    2001-05-01

    We present scanning tunneling microscopy measurements of the surface of superconducting MgB2 with a critical temperature of 39 K. In zero magnetic field the conductance spectra can be analyzed in terms of the standard BCS theory with a smearing parameter gamma. The value of the superconducting gap is 5 meV at 4.2 K, with no experimentally significant variation across the surface of the sample. The temperature dependence of the gap follows the BCS form, fully consistent with phonon-mediated superconductivity in this novel superconductor. The application of a magnetic field induces strong pair breaking as seen in the conductance spectra in fields up to 6 T.

  8. Preparation and characterisation of Os doped MgB2

    NASA Astrophysics Data System (ADS)

    Grivel, J.-C.; Namazkar, S.; Alexiou, A.; Holte, O. J.

    2014-12-01

    Polycrystalline samples with Mg1-xOsxB2.04 nominal stoichiometry were made by reacting elemental powders at 800 °C under argon atmosphere. Based on XRD diffraction patterns, EDS analysis and magnetisation measurements, it is found that Os can replace up to about 1 at.% Mg in the MgB2 lattice. Beyond this doping level, unreacted Os and Mg-rich Mg-Os impurity phases are formed. The a-axis parameter contracts upon doping while the superconducting transition temperature decreases at a rate of 2.1 K/at.% Os substitution. At 10 K, Os doping induces an improvement of the normalised critical current density under applied magnetic fields in excess of 0.5 T, indicating a modest enhancement of flux pinning in this range.

  9. Structure and properties of oxygen-containing thin films and bulk MgB2

    NASA Astrophysics Data System (ADS)

    Prikhna, T.; Shapovalov, A.; Goldacker, W.; Eisterer, M.; Kozyrev, A.; Shaternik, V.; Boutko, V.; Gusev, A.; Weber, H. W.; Karpets, M.; Basyuk, T.; Sverdun, V.; Moshchil, V.; Belogolovskiy, M.; Sergienko, N.

    2015-12-01

    A structural Auger spectroscopy study of MgB2 thin (∼140 nm) oxygen-containing polycrystalline films produced by magnetron sputtering and 99% dense MgB2 bulks synthesized at 2 GPa allows us to conclude that jc of MgB2 depends to a high extent on the amount and distribution of oxygen in the material matrix. jc reached 7.8-2.7 MA/cm2 below 1T at 20 K in the films and 0.3-0.9 MA/cm2 (depending on the boron used) in the bulks. The higher jc in MgB2 thin films can be associated with finer oxygen-enriched Mg-B-O inclusions and their higher density in the film structure compared to the bulk. Calculations of the total electron density of states (DOS) in MgB2, MgB1.75O0.25, MgB1.5O0.5 and MgBO showed that all the compounds are conductors with metal-like behaviour. The DOS is even higher in MgB1.5O0 5 than in MgB2 and the binding energy is similar. So, the experimentally found presence of some dissolved oxygen in MgB2 does not contradict its high SC performance. The introduction of a high amount of oxygen into the MgB2 structure does not dramatically reduce the material's Tc and allows obtaining highjc as observed in our MgB2 films and bulks.

  10. Measuring the hole-state anisotropy in MgB2 by electron energy-loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Klie, Robert F.; Su, Haibin; Zhu, Yimei; Davenport, James W.; Idrobo, Juan-Carlos; Browning, Nigel D.; Nellist, Peter D.

    2003-04-01

    We have examined polycrystalline MgB2 by electron energy-loss spectroscopy (EELS) and density of states calculations. In particular, we have studied two different crystal orientations, [110] and [001], with respect to the incident electron beam direction, and found significant changes in the near-edge fine structure of the B K-edge. Density-functional theory suggests that the pre-peak of the B K-edge core loss is composed of a mixture of pxy- and pz-hole states and we will show that these contributions can be distinguished only with an experimental energy resolution better than 0.5 eV. For conventional transmission electron microscope/scanning transmission electron microscope instruments with an energy resolution of ˜1.0 eV the pre-peak still contains valuable information about the local charge-carrier concentration that can be probed by core-loss EELS. By considering the scattering momentum transfer for different crystal orientations, it is possible to analytically separate pxy and pz components from the experimental spectra. With careful experiments and analysis, EELS can be a unique tool measuring the superconducting properties of MgB2, doped with various elements for improved transport properties on a subnanometer scale.

  11. Improving magnetic properties of MgB2 bulk superconductors by synthetic engine oil treatment

    NASA Astrophysics Data System (ADS)

    Taylan Koparan, E.; Savaskan, B.; Yanmaz, E.

    2016-08-01

    The present study focuses on the effects of standby time of the MgB2 samples immersed in synthetic engine oil on the critical current density (Jc(H)), magnetic field dependence of the pinning force density fp(b) and Tc performances of MgB2 bulk superconductors. Synthetic engine oil was used as a product which is cheap and a rich carbon source. Manufactured MgB2 pellet samples were immersed at different standby time of 30 min, 120 min, 300 min and 1440 min in synthetic engine oil after the first heating process. Finally, MgB2 samples immersed in synthetic engine oil were sintered at 1000 °C and kept for 15 min in Ar atmosphere. The critical current density of all of MgB2 samples immersed at different standby time in engine oil in whole field range was better than that of the pure MgB2 sample because of the number of the pinning centers. The MgB2 sample immersed at 300 min standby time in synthetic engine oil has the best performance compared to other samples. The Jc value for the pure sample is 2.0 × 103 A/cm2, whereas for the MgB2 sample immersed at 300 min standby time in engine oil the Jc is enhanced to 4.8 × 103A/cm2 at 5 K and 3 T. The superconducting transition temperature (Tc) did not change with the increasing standby time of the samples in synthetic engine oil at all. The best diamagnetic property was obtained from the sample which kept in synthetic engine oil for 300 min. Synthetic engine oil treatment results in remarkable improvement of the critical current density and pinning force performances of MgB2 superconductors. It was found that all MgB2 samples have a different pinning property at different measuring temperatures. Using synthetic engine oil as a product which is cheap and a rich carbon source in MgB2 bulk superconductors makes MgB2 samples immersed in synthetic engine oil a good candidate for industrial applications.

  12. Improved critical current density of MgB2--carbon nanotubes composite.

    PubMed

    Shekhar, Chandra; Giri, Rajiv; Malik, S K; Srivastav, O N

    2007-06-01

    In the present study, we report a systematic study of doping/admixing of carbon nanotubes (CNTs) in different concentrations in MgB2. The composite material corresponding to MgB2-x at.% CNTs (35 at.% > or = x > or = 0 at.%) have been prepared by solid-state reaction at ambient pressure. All the samples in the present investigation have been subjected to structural/microstructural characterization employing XRD, Scanning electron microscopic (SEM), and Transmission electron microscopic (TEM) techniques. The magnetization measurements were performed by Physical property measurement system (PPMS) and electrical transport measurements have been done by the four-probe technique. The microstructural investigations reveal the formation of MgB2-carbon nanotube composites. A CNT connecting the MgB2 grains may enhance critical current density due to its size (approximately 5-20 nm diameter) compatible with coherence length of MgB2 (approximately 5-6 nm) and ballistic transport current carrying capability along the tube axis. The transport critical current density (Jct) of MgB2 samples with varying CNTs concentration have been found to vary significantly e.g., Jct of the MgB2 sample with 10 at.% CNT addition is approximately 2.3 x 10(3) A/cm2 and its value for MgB2 sample without CNT addition is approximately 7.2 x 102 A/cm2 at 20 K. In order to study the flux pinning effect of CNTs doping/ admixing in MgB2, the evaluation of intragrain critical current density (JJ) has been carried out through magnetic measurements on the fine powdered version of the as synthesized samples. The optimum result on Jc is obtained for 10 at.% CNTs admixed MgB2 sample at 5 K, the Jc reaches approximately 5.2 x 10(6) A/cm2 in self field, -1.6 x 10(6) A/cm2 at 1 T, approximately 2.9 x 10(5) A/cm2 at 2.6 T, and approximately 3.9 x 10(4) A/cm2 at 4 T. The high value of intragrain Jc in 10 at.% CNTs admixed MgB2 superconductor has been attributed to the incorporation of CNTs into the crystal matrix of MgB2, which are capable of providing effective flux pinning centres. A feasible correlation between microstructural features and superconducting properties has been put forward.

  13. Doping Effect of Nano-Ybco Additive on MgB2

    NASA Astrophysics Data System (ADS)

    Rui, X. F.; Sun, X. F.; Xu, X. L.; Zhang, L.; Zhang, H.

    The effect of YBCO nanoparticles added into MgB2 on Tc, Jc, and flux pinning was studied for MgB2(YBCO)x with x=0, 5, 10, 15 wt%. Phase analysis shows that none of elements are doped into the MgB2 lattice in the samples with YBCO addition. For the samples with YBCO addition, the Jc-H characteristics behave poorly in comparison with the pure sample. Our experimental results show that the nanoscale size of addition dosen't comprise the only condition for its effectiveness as pinning centers.

  14. Terahertz surface impedance of epitaxial MgB2 thin film

    NASA Astrophysics Data System (ADS)

    Jin, B. B.; Kuzel, P.; Kadlec, F.; Dahm, T.; Redwing, J. M.; Pogrebnyakov, A. V.; Xi, X. X.; Klein, N.

    2005-08-01

    We report on terahertz (THz) surface impedance measurement of an epitaxial MgB2 thin film using time domain THz spectroscopy. We show that the surface resistance of the MgB2 film is much lower than that of YBa2Cu3O7-δ and copper in the THz range. A linear dependence of the surface reactance on frequency is observed, yielding a penetration depth of about 100nm at low temperatures. The measurements agree qualitatively with calculations based on impurity scattering in the Born limit. Our results clearly indicate that MgB2 thin films have a great potential for THz electronic applications.

  15. Doping and effect of nano-diamond and carbon-nanotubes on flux pinning properties of MgB 2

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Yang, Y.; Cheng, C. H.; Zhang, Y.

    2007-10-01

    Doping effects of two types of nano-carbons: nano-diamond and carbon-nanotubes (CNTs), on the flux pinning properties of MgB2 bulk materials have been studied. Compared with nano-diamond, CNTs is prone to be doped into MgB2 lattice. Nano-diamond doping improves Jc(H) characteristics more significantly than CNTs doping in MgB2. TEM analysis reveals a unique microstructure in diamond-doped MgB2, which consists of tightly packed MgB2 nanograins (50-100 nm) with dense distribution of diamond nanoparticles (10-20 nm) inside the grains. Relatively, such a unique microstructure is not easy to form in CNTs-doped MgB2 due to an active reaction between CNTs and MgB2.

  16. Superconducting characteristics of short MgB2 wires of long level sensor for liquid hydrogen

    NASA Astrophysics Data System (ADS)

    Takeda, M.; Inoue, Y.; Maekawa, K.; Matsuno, Y.; Fujikawa, S.; Kumakura, H.

    2015-12-01

    To establish the worldwide storage and marine transport of hydrogen, it is important to develop a high-precision and long level sensor, such as a superconducting magnesium diboride (MgB2) level sensor for large liquid hydrogen (LH2) tanks on board ships. Three 1.7- m-long MgB2 wires were fabricated by an in situ method, and the superconducting characteristics of twenty-four 20-mm-long MgB2 wires on the 1.7-m-long wires were studied. In addition, the static level-detecting characteristics of five 500-mm-long MgB2 level sensors were evaluated under atmospheric pressure.

  17. Epitaxial growth of MgB2 films at ambient temperature

    NASA Astrophysics Data System (ADS)

    Shishido, Hiroaki; Yoshida, Takuya; Nakagami, Takatoshi; Ishida, Takekazu

    We grew crystalline MgB2 thin films using molecular beam epitaxy at a low substrate temperature of 110 °C under an ultrahigh vacuum of about 10-6 Pa. MgB2 thin films were deposited on the (001) surface of a 4H-SiC substrate with an epitaxial Mg buffer layer. The epitaxial growth was confirmed by X-ray diffraction measurements. MgB2 thin films show a sharp superconducting transition at 27.2 K, with a relatively narrow superconducting transition width ΔTc = 0.9 K. The growth temperature was lower than any in prior reports on superconducting MgB2 thin films. The presence of the epitaxial Mg buffer layer is crucial for reducing the epitaxial temperature.

  18. Crystallization behavior of MgB2 films fabricated on copper cathodes via electrochemical technique

    NASA Astrophysics Data System (ADS)

    Yang, Huazhe; Sun, Xiaguang; Yu, Xiaoming; Qi, Yang

    2012-11-01

    An electrochemical technique was devised and settled to prepare MgB2 films on copper cathodes in MgCl2-Mg(BO2)2-NaCl-KCl molten salts. X-ray diffraction and scanning probe microscopy were adopted to investigate the phase composition and elements distribution of sample. R-T curve of film was monitored through standard four-probe method. Transmission electron microscope and scanning electron microscope analysis were chosen to investigate the crystallization behavior and morphology of the films at different electrolytic temperatures. The results indicated that MgB2 films were successfully fabricated on the copper cathodes, and the optimal electrolytic temperature was 601 °C. It was presumed that the non-conducting MgO impurities hindered continuous growth of MgB2 grain, which may result in dendritic growth of MgB2 grain.

  19. Electronic structure of scandium-doped MgB2

    NASA Astrophysics Data System (ADS)

    de La Peña, Omar; Agrestini, Stefano

    2005-03-01

    Recently has been reported the synthesis of a new superconducting alloy based on MgB2, where Mg is partially substituted with Sc. In order to analyze the effect of Sc doping on the structural and superconducting properties of Mg1-xScxB2, we have performed a detailed study of the electronic structure for this new diboride. The calculations have been done using the first-principles LAPW method, within the supercell approach for modeling the doping. In this work we report results for the electronic band structure, Fermi surface, and density of states. The effect of the Sc-d orbitals on the structural and electronic properties of Mg1-xScxB2 is analyzed. Increasing the Sc concentration (x) the σ-band is gradually filled, because Sc have one valence electron more than Mg. Interestingly, the analysis of the band structure shows that even for ScB2 the top of the σ-band remain above the Fermi level, nevertheless the σ-band presents high dispersion and has an important contribution of d states. In this way, in addition to the band filling effect, Sc doping gradually reduces the two-dimensional character of the σ- band in Mg1-xScxB2 as a result of increasing the sp(B)-d(Sc) hybridization. This research was partially supported by Consejo Nacional de Ciencia y Tecnolog'ia (CONACYT, M'exico) under Grant. No. 43830-F

  20. Lightweight MgB2 superconducting 10 MW wind generator

    NASA Astrophysics Data System (ADS)

    Marino, I.; Pujana, A.; Sarmiento, G.; Sanz, S.; Merino, J. M.; Tropeano, M.; Sun, J.; Canosa, T.

    2016-02-01

    The offshore wind market demands a higher power rate and more reliable turbines in order to optimize capital and operational costs. The state-of-the-art shows that both geared and direct-drive conventional generators are difficult to scale up to 10 MW and beyond due to their huge size and weight. Superconducting direct-drive wind generators are considered a promising solution to achieve lighter weight machines. This work presents an innovative 10 MW 8.1 rpm direct-drive partial superconducting generator using MgB2 wire for the field coils. It has a warm iron rotor configuration with the superconducting coils working at 20 K while the rotor core and the armature are at ambient temperature. A cooling system based on cryocoolers installed in the rotor extracts the heat from the superconducting coils by conduction. The generator's main parameters are compared against a permanent magnet reference machine, showing a significant weight and size reduction. The 10 MW superconducting generator concept will be experimentally validated with a small-scale magnetic machine, which has innovative components such as superconducting coils, modular cryostats and cooling systems, and will have similar size and characteristics as the 10 MW generator.

  1. High critical currents in iron-clad superconducting MgB2 wires.

    PubMed

    Jin, S; Mavoori, H; Bower, C; van Dover, R B

    2001-05-31

    Technically useful bulk superconductors must have high transport critical current densities, Jc, at operating temperatures. They also require a normal metal cladding to provide parallel electrical conduction, thermal stabilization, and mechanical protection of the generally brittle superconductor cores. The recent discovery of superconductivity at 39 K in magnesium diboride (MgB2) presents a new possibility for significant bulk applications, but many critical issues relevant for practical wires remain unresolved. In particular, MgB2 is mechanically hard and brittle and therefore not amenable to drawing into the desired fine-wire geometry. Even the synthesis of moderately dense, bulk MgB2 attaining 39 K superconductivity is a challenge because of the volatility and reactivity of magnesium. Here we report the successful fabrication of dense, metal-clad superconducting MgB2 wires, and demonstrate a transport Jc in excess of 85,000 A cm-2 at 4.2 K. Our iron-clad fabrication technique takes place at ambient pressure, yet produces dense MgB2 with little loss of stoichiometry. While searching for a suitable cladding material, we found that other materials dramatically reduced the critical current, showing that although MgB2 itself does not show the 'weak-link' effect characteristic of the high-Tc superconductors, contamination does result in weak-link-like behaviour.

  2. Quantum confinement induced band gaps in MgB2 nanosheets

    NASA Astrophysics Data System (ADS)

    Xu, Bo Z.; Beckman, Scott P.

    2016-09-01

    The discovery of two-dimensional semiconducting materials, a decade ago, spawned an entire sub-field within solid-state physics that is focused on the development of nanoelectronics. Here we present a new class of semiconducting two-dimensional material based on hexagonal MgB2. Although MgB2 is a semimetal, similar to the other well-studied transition metal diborides, we demonstrate that, unlike the transition metal diborides, thinning MgB2, to create nanosheets, opens a band gap in the density of states. We predict that a 7 Å thick MgB2 nanosheet will have a band gap of 0.51 eV. MgB2 nanosheets differ from other two-dimensional semiconductors in that the band gap is introduced by (001) surfaces and is opened by the quantum confinement effect. The implications of these findings are that nanostructured MgB2 is not merely a new composition, but also has intrinsic mechanisms for tuning its electronic properties, which may facilitate the development of nanoelectronics.

  3. Significant enhancement of the superconducting properties of MgB2 by polyvinyl alcohol additives

    NASA Astrophysics Data System (ADS)

    Zeng, R.; Lu, L.; Dou, S. X.

    2008-08-01

    We report a systematic study of the effects of polymer addition on the lattice parameters, microstructure and superconducting properties of MgB2. Polyvinyl alcohol [-C2H4O-]n (PVA) as a typical polymer was used as an additive to MgB2. It was found that PVA additions have the following features: (1) the polymer can have a very low oxygen (O) content or even none at all, and PVA has a low O content (C:O = 2:1), which reduces the impurities brought into MgB2 from the doping, and (2) PVA decomposes at a temperature of 400-650 °C, which means that the reaction occurs in the same temperature range as MgB2 formation, providing highly reactive C, which homogeneously substitutes for B at this low-temperature range. The above considerations significantly enhance the critical current, Jc, the irreversibility field, Hirr, and the upper critical field, Hc2, of MgB2 compared to un-doped samples or those doped with other carbon sources. In this work, suitable PVA doping levels improved both the connectivity and flux pinning, so that the Jc of PVA-doped MgB2 was improved over the whole field range.

  4. Investigation of lauric acid dopant as a novel carbon source in MgB 2 wire

    NASA Astrophysics Data System (ADS)

    Lee, C. M.; Lee, S. M.; Park, G. C.; Joo, J.; Lim, J. H.; Kang, W. N.; Yi, J. H.; Jun, B.-H.; Kim, C.-J.

    2010-11-01

    We fabricated lauric acid (LA) doped MgB 2 wires and investigated the effects of the LA doping. For the fabrication of the LA-doped MgB 2 wires, B powder was mixed with LA at 0-5 wt.% of the total amount of MgB 2 using an organic solvent, dried, and then the LA-treated B and Mg powders were mixed stoichiometrically. The powder mixture was loaded into an Fe tube and the assemblage was drawn and sintered at 900 °C for 3 h under an argon atmosphere. We observed that the LA doping induced the substitution of C for the B sites in MgB 2 and that the actual content of C increased monotonically with increasing LA doping level. The LA-doped MgB 2 wires exhibited a lower critical temperature ( Tc), but better critical current density ( Jc) behavior in a high magnetic field: the 5 wt.% LA-doped sample had a Jc value of 5.32 × 10 3 A/cm 2, which was 2.17 times higher than that of the pristine sample (2.45 × 10 3 A/cm 2) at 5 K and 6 T, suggesting that LA is an effective C dopant in MgB 2 for enhancing the high-field Jc performance.

  5. Connectivity, Doping, and Anisotropy in Highly Dense Magnesium Diboride (MgB2)

    NASA Astrophysics Data System (ADS)

    Li, Guangze

    Magnesium diboride (MgB2) is a superconducting material which can be potentially used in many applications such as magnetic resonance imaging system (MRI), wind turbine generators and high energy physics facilities. The major advantages of MgB2 over other superconductors include its relatively high critical temperature of about 39 K, its low cost of raw materials, its simple crystal structure, and its round multifilament form when in the form of superconducting wires. Over the past fourteen years, much effort has been made to develop MgB2 wires with excellent superconducting properties, particularly the critical current density J c. However, this research has been limited by technical difficulties such as high porosity and weak connectivity in MgB2, relatively small flux pinning strength, low upper critical field B c2 and relatively high anisotropy. The goal of this dissertation is to understand the relationship between superconducting properties, microstructure, and reaction mechanisms in MgB 2. In particular, the influences of connectivity, B c2, anisotropy and flux pinning were investigated in terms of the effects of these variables on the Jcs and n-values of MgB2 superconducting wires (n-value is a parameter which indicates the sharpness of resistive V-I transition). The n -values of traditional "Powder in Tube (PIT)" processed MgB2 wires were improved by optimizing precursor species after the identification of microstructural defects such as so-called "sausaging problems". Also, it was found that "high porosity and weak connectivity" was one of the most critical issues which limited the J c performance in typical MgB2. To overcome this problem, highly dense, well-connected MgB2 conductors were successfully fabricated by adopting an innovative "Advanced Internal Magnesium Infiltration (AIMI)" process. A careful study on the reaction kinetics together with the microstructural evidence demonstrated how the MgB2 layer was formed as the infiltration process proceeded. As a result, it is possible to control the MgB2 layer growth in the AIMI-processed MgB 2 wires. The best AIMI wires, with improved density and connectivity, accomplished an outstanding layer Jc, which was 1.0 x 105 A/cm2 at 4.2 K and 10 T, nearly 10 times higher than the Jcs of PIT wires. The engineering Je of AIMI wires, namely the critical current over the whole cross-sectional area in the wire, achieved 1.7 x 104 A/cm2 at 4.2 K, 10 T, 200 % higher than those of PIT wires. Finally, two promising dopants, Dy2O3 and O, were engineered to incorporate with MgB2. Dy 2O3 nanopowders, co-doped with C in AIMI wires, enhanced the Jc performance at elevated temperatures such as 20 K. Oxygen, on the other hand, doped into MgB2 thin films through a newly-developed O2 annealing process, improved Bc2 to 14 T at 21 K. Both of the doping studies were helpful to understand the superconducting nature of MgB2.

  6. Fabrication of c-axis Oriented Epitaxial EuBa2Cu3O7-δ and EuBa2Cu4O8 Films on SrTiO3 (100) Substrate by Molten Hydroxide Method at 450°C

    NASA Astrophysics Data System (ADS)

    Miyachi, Y.; Funaki, S.; Yamada, Y.

    EuBa2Cu3O7-δ (Eu123) and EuBa2Cu4O8 (Eu124) films oriented in c-axis were deposited on SrTiO3 (100) substrates with eutectic NaOH-KOH flux at 450 °C. Synthesized phase has changed by using various types of barium source materials. Pure Eu124 films showed superconducting transition at ∼70 K, zero-resistance was not observed for Eu123/124 two-phase films. One of the possible reasons of this is Eu/Ba substitution of Eu123 phase. According to Tc of the Eu124, the molten hydroxide method enables to deposit high-quality Eu124 films.

  7. Assessment of liquid hydrogen cooled MgB2 conductors for magnetically confined fusion

    NASA Astrophysics Data System (ADS)

    Glowacki, B. A.; Nuttall, W. J.

    2008-02-01

    Importantly environmental factors are not the only policy-driver for the hydrogen economy. Over the timescale of the development of fusion energy systems, energy security issues are likely to motivate a shift towards both hydrogen production and fusion as an energy source. These technologies combine local control of the system with the collaborative research interests of the major energy users in the global economy. A concept Fusion Island Reactor that might be used to generate H2 (rather than electricity) is presented. Exploitation of produced hydrogen as a coolant and as a fuel is proposed in conjunction with MgB2 conductors for the tokomak magnets windings, and electrotechnical devices for Fusion Island's infrastructure. The benefits of using MgB2 over the Nb-based conductors during construction, operation and decommissioning of the Fusion Island Reactor are presented. The comparison of Nb3Sn strands for ITER fusion magnet with newly developed high field composite MgB2 PIT conductors has shown that at 14 Tesla MgB2 possesses better properties than any of the Nb3Sn conductors produced. In this paper the potential of MgB2 conductors is examined for tokamaks of both the conventional ITER type and a Spherical Tokamak geometry. In each case MgB2 is considered as a conductor for a range of field coil applications and the potential for operation at both liquid helium and liquid hydrogen temperatures is considered. Further research plans concerning the application of MgB2 conductors for Fusion Island are also considered.

  8. Application of superconducting magnesium diboride (MGB2) in superconducting radio frequency cavities

    NASA Astrophysics Data System (ADS)

    Tan, Teng

    The superconductivity in magnesium diboride (MgB2) was discovered in 2001. As a BCS superconductor, MgB2 has a record-high Tc of 39 K, high Jc of > 107 A/cm2 and no weak link behavior across the grain boundary. All these superior properties endorsed that MgB2 would have great potential in both power applications and electronic devices. In the past 15 years, MgB2 based power cables, microwave devices, and commercial MRI machines emerged and the next frontier are superconducting radio frequency (SRF) cavities. SRF cavities are one of the leading accelerator technologies. In SRF cavities, applied microwave power generates electrical fields that accelerate particle beams. Compared with other accelerator techniques, SRF cavity accelerators feature low loss, high acceleration gradients and the ability to accelerate continuous particle beams. However, current SRF cavities are made from high-purity bulk niobium and work at 2 K in superfluid helium. The construction and operational cost of SRF cavity accelerators are very expensive. The demand for SRF cavity accelerators has been growing rapidly in the past decade. Therefore, a lot of effort has been devoted to the enhancement of the performance and the reduction of cost of SRF cavities. In 2010, an acceleration gradient of over 50 MV/m has been reported for a Nb-based SRF cavity. The magnetic field at the inner surface of such a cavity is ~ 1700 Oe, which is close to the thermodynamic critical field of Nb. Therefore, new materials and technologies are required to raise the acceleration gradient of future SRF cavity accelerators. Among all the proposed approaches, using MgB2 thin films to coat the inner surface of SRF cavities is one of the promising tactics with the potential to raise both the acceleration gradient and the operation temperature of SRF cavity accelerators. In this work, I present my study on MgB2 thin films for their application in SRF cavities. C-epitaxial MgB2 thin films grown on SiC(0001) substrates showed Tc > 41 K and Jc > 107 A/cm2, which is superior to bulk MgB2 samples. Polycrystalline MgB2 thin films grown on metal substrates showed similar Tc and Jc compared with bulk samples, indicating MgB2 is suitable for coating a metal cavity. Large c-pitaxial MgB2 thin films were grown on 2-inch diameter c-sapphire wafers, showing our technique is capable of depositing large area samples. The lower critical field (Hc1) of MgB2 thin films was measured as well as it is know that bulk MgB2 has a small Hc1 and would suffer from vortex penetration at low magnetic fields. The penetrating magnetic vortices would result in loss in an applied RF field. However, due to the geometry barrier, thin film MgB2 would have a higher Hc1 than the bulk material. In my experiments, the Hc1 of MgB2 thin films increased with decreasing film thickness. At 5 K, a 100 nm epitaxial MgB2 thin film showed enhanced Hc1 ~ 1880 Oe, which is higher than Hc1 of Nb at 2 K. This showed that MgB2 coated SRF cavities have the potential to work at higher magnetic fields and higher temperature. Because the magnetic field distribution in the thin film Hc1 measurement is different from the magnetic field in a real SRF cavity, a few Nb ellipsoids were machined and coated with MgB2. The ellipsoid only has a magnetic field outside its surface and can serve as an inverse SRF cavity in the vortex penetration measurement. In the experiments, vortices penetrate into the bulk Nb ellipsoid at a magnetic field 400 Oe lower than the vortex penetration field of MgB2 coated Nb ellipsoids. This result confirmed our prediction that MgB2 coated SRF cavities could work at higher magnetic fields, thus producing higher acceleration gradients. In the last part of this thesis, I discussed how I used the dielectric resonator technique to measure the surface resistance (Rs) and Tc of MgB2 thin films. While the sensitivity of this technique was not high enough to lead to reliable Rs values, it can still serve for the determination of Tc for large area samples that are too bulky for other measurement systems.

  9. Flux pinning behavior of MgB2 doped with Fe and Fe2O3 nanowires

    NASA Astrophysics Data System (ADS)

    Ke, C.; Cheng, C. H.; Yang, Y.; Zhang, Y.; Wang, W. T.; Zhao, Y.

    MgB2 bulks doped with Fe and Fe2O3 nanowires are prepared by hybridized diffusion method. The doping effect on superconductivity transition temperature, Tc, critical current density Jc, and flux pinning behavior have been studied. It is found that both Tc and Jc of MgB2 show quite different features for these two kinds of nanowires. Fe2O3 nanowires significantly suppress both Tc and Jc of MgB2, whereas Fe nanowires do improve the flux pining behavior of MgB2 although the Tc is slightly suppressed.

  10. The analysis of quartz c-axis fabrics using a modified optical microscope.

    PubMed

    Wilson, C J L; Russell-Head, D S; Kunze, K; Viola, G

    2007-07-01

    A new fully automated microfabric analyzer (MiFA) is described that can be used for the fast collection of high-resolution spatial c-axis orientation data from a set of digital polarized light images. At the onset of an analysis the user is presented with an axial-distribution diagram (AVA -'Achsenverteilungsanalyse') of a thin section. It is then a simple matter to build-up c-axis pole figures from selected areas of interest. The c-axis inclination and colatitudes at any pixel site is immediately available to create bulk fabric diagrams or to select measurements in individual areas. The system supports both the interactive selection of c-axis measurement sites and grid array selection. A verification process allows the operator to exclude dubious measurements due to impurities, grain boundaries or bubbles. We present a comparison of bulk and individual c-axis MiFA measurements to pole figures measured with an X-ray texture goniometer and to data collected from a scanning electron microscope furnished with electron backscatter diffraction (EBSD) facility. A second sample, an experimentally deformed quartzite, illustrates that crystal orientations can be precisely linked to any location within an individual grain.

  11. Improved Jc-B properties of MgB2 multifilamentary wires and tapes

    NASA Astrophysics Data System (ADS)

    Wang, Chengduo; Wang, Dongliang; Zhang, Xianping; Yao, Chao; Wang, Chunlei; Ma, Yanwei; Oguro, Hidetoshi; Awaji, Satoshi; Watanabe, Kazuo

    2012-12-01

    MgB2 multifilamentary wires and tapes were fabricated by the in situ powder-in-tube (PIT) process using acetone doped milled precursor powders. The critical current density of MgB2 is strongly enhanced by high energy milling and acetone doping. Furthermore, the liquid acetone can restrain the agglomeration of milled powder, which is beneficial to the fabrication of MgB2 multifilamentary wires. At 4.2 K and 10 T, the Jc of the 80 h doped Fe/Cu wire is 2.9 × 103 A cm-2, 20 times larger than that of the 1 h pure one (the ‘1 h’ and ‘80 h’, refer to ball milling times). The Jc of 80 h doped Fe/Monel tape is up to 9.2 × 103 A cm-2 at 4.2 K and 10 T. The Jc values of Nb barrier wires are comparable to those of the Fe barrier MgB2 wires. These results indicate that the addition of liquid C-containing material during high energy milling may be an effective way to get excellent properties of MgB2 for practical applications.

  12. Influence of microstructures and crystalline defects on the superconductivity of MgB2

    NASA Astrophysics Data System (ADS)

    Serquis, A.; Liao, X. Z.; Zhu, Y. T.; Coulter, J. Y.; Huang, J. Y.; Willis, J. O.; Peterson, D. E.; Mueller, F. M.; Moreno, N. O.; Thompson, J. D.; Nesterenko, V. F.

    2002-07-01

    This work studies the influence of microstructures and crystalline defects on the superconductivity of MgB2, with the objective to improve its flux pinning. A MgB2 sample pellet that was hot isostatic pressed (HIPed) was found to have significantly increased critical current density (Jc) at higher fields than its un-HIPed counterpart. The HIPed sample had a Jc of 10 000 A/cm2 in 50 000 Oe (5 T) at 5 K. This was 20 times higher than that of the un-HIPed sample, and the same as the best Jc reported by other research groups. Microstructures observed in scanning and transmission electron microscopy indicate that the HIP process eliminated porosity present in the MgB2 pellet resulting in an improved intergrain connectivity. Such improvement in intergrain connectivity was believed to prevent the steep Jc drop with magnetic field H that occurred in the un-HIPed MgB2 pellet at H>45 000 Oe(4.5 T) and T=5 K. The HIP process was also found to disperse the MgO that existed at the grain boundaries of the un-HIPed MgB2 pellet and to generate more dislocations in the pellets. These dispersed MgO particles and dislocations improved flux pinning also at H<45 000 Oe. The HIPing process was also found to lower the resistivity at room temperature.

  13. The phase analysis of spark plasma sintered MgB2 after ball milling.

    PubMed

    Kang, Deuk-Kyun; Kim, Dong-Woong; Kim, Cheol-Jin; Ahn, In-Shup

    2010-01-01

    Mg and amorphous B powders below 10 and 3 micro meter were used as raw materials, and mixed by planetary-mill for 9 hours at argon atmosphere. MgB2 bulk was fabricated at the various temperatures by Spark Plasma Sintering. In the sintering process, mixed powders were sintered in graphite mold, at the pressure of 55 Mpa. The fabricated MgB2 samples were evaluated with XRD, EDS, FE-SEM, PPMS. MgB2, MgO and Fe phases were observed from XRD result. In the results, MgO and Fe were impurity which may affect superconducting properties of MgB2 samples, and it's distribution could be confirmed from EDS mapping result. In order to confirm the formation of MgB2 phase, DTA was used as heating rate of 10 degrees C/min at Ar atmosphere from room temperature to 1200 degrees C. In the PPMS result, the Tc (critical temperature) was about 21 K, and the density of spark plasma sintered samples increased to 1.87 g/cm3 by increasing sintering temperature.

  14. Theoretical investigation of superconductivity in MgB2-xCx alloys

    NASA Astrophysics Data System (ADS)

    Sharma, Gargee; Sharma, Smita

    2016-05-01

    In this paper we investigated the superconducting properties of MgB2-xCx alloys where x is the concentration (0.0, 0.03, 0.11 and 0.20). The superconducting state parameters, namely, the electron-phonon coupling strength (λ), Coulomb pseudopotential (μ*), transition temperature (Tc), isotope effect exponent (α) and interaction strength (NoV) of MgB2-xCx alloys have been investigated in the BCS-Eliashberg-McMillan framework, as modified for MgB2-xCx alloys. Pseudo ions with average properties have been considered to replace different types of ions in the system. It is observed that all the superconducting parameters go on decreasing as the concentration of C is increased. The magnitudes of λ and Tc indicate that MgB2-xCx is strong-to-intermediate coupling superconductor. It is also observed that Tc is composition dependent. Present computations yield almost linear variation of Tc with concentration x of C in the MgB2-xCx system, which is in agreement with the experimental data. A linear Tc equation is proposed by fitting the present results.

  15. Evaluations of MgB2 Coatings on 2'' Copper Discs for Superconducting Radio Frequency Applications

    NASA Astrophysics Data System (ADS)

    Withanage, Wenura; Tan, Teng; Lee, Namhoon; Banjade, Huta; Eremeev, Grigory; Welander, Paul; Valente-Feliciano, Anne-Marie; Kustom, Robert; Wolak, Matthäus; Nassiri, Alireza; Xi, Xiaoxing

    We propose that coating the inner walls of copper RF cavities with superconducting MgB2 (Tc = 39 K) can result in a viable alternative to the already established niobium-based SRF technology. This approach improves the thermal conductivity, allows for operation at higher temperatures, and reduces the need for large helium refrigeration, thereby resulting in lower operational costs. For our studies, we grew MgB2 films via hybrid physical chemical vapor deposition (HPCVD) on 2'' Cu substrates. Since Mg and Cu readily form an alloy at higher temperatures, the HPCVD setup was modified in order to achieve lower deposition temperatures, minimize alloy formation, and provide high quality MgB2 films. This method yielded MgB2 coatings on 2'' Cu discs with transition temperatures around 38 K. The samples were characterized with regards to their RF attributes and showed similar performance in comparison to Nb reference samples. The presented results show that MgB2 coated copper can be a suitable alternative for use in SRF cavities.

  16. Definitive experimental evidence for two-band superconductivity in MgB2.

    PubMed

    Tsuda, S; Yokoya, T; Takano, Y; Kito, H; Matsushita, A; Yin, F; Itoh, J; Harima, H; Shin, S

    2003-09-19

    The superconducting-gap of MgB2 has been studied by high-resolution angle-resolved photoemission spectroscopy. The results show that superconducting gaps with values of 5.5 and 2.2 meV open on the sigma band and the pi band, respectively, but both the gaps close at the bulk transition temperature, providing a definitive experimental evidence for the two-band superconductivity with strong interband pairing interaction in MgB2. The experiments validate the role of k-dependent electron-phonon coupling as the origin of multiple-gap superconductivity as well as the high transition temperature of MgB2.

  17. Coherent phonon decay and the boron isotope effect for MgB2.

    PubMed

    Alarco, Jose A; Talbot, Peter C; Mackinnon, Ian D R

    2014-12-14

    Ab initio DFT calculations for the phonon dispersion (PD) and the phonon density of states (PDOS) of the two isotopic forms ((10)B and (11)B) of MgB2 demonstrate that use of a reduced symmetry super-lattice provides an improved approximation to the dynamical, phonon-distorted P6/mmm crystal structure. Construction of phonon frequency plots using calculated values for these isotopic forms gives linear trends with integer multiples of a base frequency that change in slope in a manner consistent with the isotope effect (IE). Spectral parameters inferred from this method are similar to that determined experimentally for the pure isotopic forms of MgB2. Comparison with AlB2 demonstrates that a coherent phonon decay down to acoustic modes is not possible for this metal. Coherent acoustic phonon decay may be an important contributor to superconductivity for MgB2.

  18. Magnetization and electric transport properties of single-crystal MgB2 nanowires.

    PubMed

    Wu, Cen-Shawn; Chang, Yu-Cheng; Chen, Weimeng; Chen, Chinping; Feng, Qingrong

    2012-11-23

    High quality single-crystal magnesium diboride (MgB(2)) nanowires with lengths exceeding 10 μm were successfully synthesized by hybrid physical chemical vapor deposition. The magnetization and electrical transport properties of single-crystal MgB(2) nanowires (NWs) were measured. The superconducting transition temperature of the NWs was 37 K, as confirmed by magnetization measurements. The disordered behavior of the nanowires was observed by four-terminal current-voltage characteristic measurements of an individual NW from T = 10 to 300 K. The temperature-dependent resistivity curves for seven NWs collapsed into a universal curve described by the variable range hopping model, showing intrinsic nonmetallic transport properties. This implies that the granular superconducting defect states are critical to the superconductivity of the individual MgB(2) NWs.

  19. Three-dimensional MgB2-type superconductivity in hole-doped diamond.

    PubMed

    Boeri, Lilia; Kortus, Jens; Andersen, O K

    2004-12-01

    We substantiate by numerical and analytical calculations that the recently discovered superconductivity below 4 K in 3% boron-doped diamond is caused by electron-phonon coupling of the same type as in MgB2, albeit in three dimensions. Holes at the top of the zone-centered, degenerate sigma-bonding valence-band couple strongly to the optical bond-stretching modes. The increase from two to three dimensions reduces the mode softening crucial for T(c) reaching 40 K in MgB2. Even if diamond had the same bare coupling constant as MgB2, which could be achieved with 10% doping, T(c) would be only 25 K. Superconductivity above 1 K in Si (Ge) requires hole doping beyond 5% (10%).

  20. Study of the microwave electrodynamic response of MgB 2 thin films

    NASA Astrophysics Data System (ADS)

    Andreone, A.; Cassinese, A.; Cantoni, C.; Di Gennaro, E.; Lamura, G.; Maglione, M. G.; Paranthaman, M.; Salluzzo, M.; Vaglio, R.

    2002-08-01

    We present a study on the power dependence of the microwave surface impedance in thin films of the novel superconductor MgB 2. 500 nm thick samples exhibiting critical temperatures ranging between 26 and 38 K are synthesized by an ex situ post-anneal of e-beam evaporated boron in the presence of an Mg vapor at 900 °C. Preliminary results on films grown in situ by a high rate magnetron sputtering technique from stoichiometric MgB 2 and Mg targets are also reported. Microwave measurements have been carried out employing a dielectrically loaded niobium superconducting cavity operating at 19.8 GHz and 4 K. The study shows that the electrodynamic response of MgB 2 films is presently dominated by extrinsic sources of dissipation, appearing already at low microwave power, likely to be ascribed to the presence of grain boundaries and normal inclusions in the samples.

  1. Physics Among Lightweights: Boride Superconductors (Superconductivity in MgB2)

    SciTech Connect

    Canfield, Paul C.

    2001-06-13

    Recently there has been a great deal of excitement about the intermetallic superconductor MgB2. MgB2 has a superconducting transition temperature Tc {approx} 40 K, can be synthesized as single phase powders and wire segments, has a remarkably low normal state resistivity, and manifests a promising critical current density in the superconducting state. In this colloquium I will review recent discoveries associated with intermetallic borides and try to show how MgB2 fits into the basic gestalt of intermetallic compounds. In addition I will try to explain why anybody should care about this and why some physicists find the topic of novel states in intermetallic compounds to be an extremely interesting research topic.

  2. Numerical modelling and comparison of MgB2 bulks fabricated by HIP and infiltration growth

    NASA Astrophysics Data System (ADS)

    Zou, J.; Ainslie, M. D.; Fujishiro, H.; Bhagurkar, A. G.; Naito, T.; Babu, N. Hari; Fagnard, J.-F.; Vanderbemden, P.; Yamamoto, A.

    2015-07-01

    MgB2 in bulk form shows great promise as trapped field magnets (TFMs) as an alternative to bulk (RE)BCO materials to replace permanent magnets in applications such as rotating machines, magnetic bearings and magnetic separation, and the relative ease of fabrication of MgB2 materials has enabled a number of different processing techniques to be developed. In this paper, a comparison is made between bulk MgB2 samples fabricated by the hot isostatic pressing (HIP), with and without Ti-doping, and infiltration growth (IG) methods and the highest trapped field in an IG-processed bulk MgB2 sample, Bz = 2.12 at 5 K and 1.66 T at 15 K, is reported. Since bulk MgB2 has a more homogeneous Jc distribution than (RE)BCO bulks, studies on such systems are made somewhat easier because simplified assumptions regarding the geometry and Jc distribution can be made, and a numerical simulation technique based on the 2D axisymmetric H-formulation is introduced to model the complete process of field cooling (FC) magnetization. As input data for the model, the measured Jc(B,T) characteristics of a single, small specimen taken from each bulk sample are used, in addition to measured specific heat and thermal conductivity data for the materials. The results of the simulation reproduce the experimental results extremely well: (1) indicating the samples have excellent homogeneity, and (2) validating the numerical model as a fast, accurate and powerful tool to investigate the trapped field profile of bulk MgB2 discs of any size accurately, under any specific operating conditions. Finally, the paper is concluded with a numerical analysis of the influence of the dimensions of the bulk sample on the trapped field.

  3. Suppression of superconductivity in epitaxial MgB2 ultrathin films

    NASA Astrophysics Data System (ADS)

    Zhang, Chen; Wang, Yue; Wang, Da; Zhang, Yan; Liu, Zheng-Hao; Feng, Qing-Rong; Gan, Zi-Zhao

    2013-07-01

    MgB2 ultrathin films have potential to make sensitive superconducting devices such as superconducting single-photon detectors working at relatively high temperatures. We have grown epitaxial MgB2 films in thicknesses ranging from about 40 nm to 6 nm by using the hybrid physical-chemical vapor deposition method and performed electrical transport measurements to study the thickness dependence of the superconducting critical temperature Tc. With reducing film thickness d, although a weak depression of the Tc has been observed, which could be attributed to an increase of disorder (interband impurity scattering) in the film, the Tc retains close to the bulk value of MgB2 (39 K), being about 35 K in the film of 6 nm thick. We show that this result, beneficial to the application of MgB2 ultrathin films and in accordance with recent theoretical calculations, is in contrast to previous findings in MgB2 films prepared by other methods such as co-evaporation and molecular-beam epitaxy, where a severe Tc suppression has been observed with Tc about one third of the bulk value in films of ˜5 nm thick. We discuss this apparent discrepancy in experiments and suggest that, towards the ultrathin limit, the different degrees of Tc suppression displayed in currently obtained MgB2 films by various techniques may arise from the different levels of disorder present in the film or different extents of proximity effect at the film surface or film-substrate interface.

  4. Experimental hybrid power transmission line with liquid hydrogen and MgB2-based superconducting cable

    NASA Astrophysics Data System (ADS)

    Kostyuk, V. V.; Antyukhov, I. V.; Blagov, E. V.; Vysotsky, V. S.; Katorgin, B. I.; Nosov, A. A.; Fetisov, S. S.; Firsov, V. P.

    2012-03-01

    Results of developing and testing an experimental hybrid power transmission line with liquid hydrogen and superconducting power (SCP) cable based on magnesium diboride (MgB2) are presented. Critical currents of the MgB2 based prototype SCP cable have been determined for the first time at the forced flow of liquid hydrogen in a temperature interval of 20-26 K. Various regimes of SCP cable cryostatting with both subcooled saturated liquid hydrogen have been tested in a broad range of supply rates (7-220 g/s) and pressures (0.15-0.4 MPa).

  5. Low-Temperature Synthesis of Superconducting Nanocrystalline MgB 2

    DOE PAGES

    Lu, Jun; Xiao, Zhili; Lin, Qiyin; Claus, Helmut; Fang, Zhigang Zak

    2010-01-01

    Magnesium diboride (MgB 2 ) is considered a promising material for practical application in superconducting devices, with a transition temperature near 40 K. In the present paper, nanocrystalline MgB 2 with an average particle size of approximately 70 nm is synthesized by reacting LiBH 4 with MgH 2 at temperatures as low as 450 ° C. This synthesis approach successfully bypasses the usage of either elemental boron or toxic diborane gas. The superconductivity of the nanostructures is confirmed by magnetization measurements, showing a superconducting critical temperature of 38.7 K.

  6. The preliminary study of the quench protection of an MgB2

    NASA Astrophysics Data System (ADS)

    Juster, F. P.; Berriaud, C.; Bonelli, A.; Pasquet, R.; Przybilski, H.; Schild, T.; Scola, L.

    2014-01-01

    In the framework of general studies currently carried out at CEA/Saclay in collaboration with Sigmaphi Company on dry MgB2 magnet operating at 10 K and medium range field, 1 T up to 4 T., we plan to build a prototype-coil with a commercial MgB2 wire. This coil, the nominal axial magnetic field of which is 1 tesla, will be placed in a 3 teslas background field generated by a classical NbTi coil. This paper deals with the preliminary quench protection studies including stability and quench propagation modeling.

  7. Isotope Effect on Electron-Phonon Coupling in Multiband Superconductor MgB2

    NASA Astrophysics Data System (ADS)

    Mou, Daixiang; Taufour, Valentin; Wu, Yun; Huang, Lunan; Bud'Ko, Serguei; Canfield, Paul; Kaminski, Adam

    We systematically investigate the isotope effect of electron-phonon coupling in multi-band superconductor MgB2 by laser based Angle Resolved Photoemission Spectroscopy. The kink structure around 70 meV on two σ bands, which is caused by electron coupling to E2 g phonon mode, is shifted to higher binding energy in Mg10B2 than that in Mg11B2. The measured shifting energy of 3.5 meV is consistent with theoretical calculation based on harmonic phonon in MgB2. Our temperature dependent measurement also indicates the isotope effect of kink structure is not dependent on superconducting transition.

  8. MgB2 ultrathin films fabricated by hybrid physical chemical vapor deposition and ion milling

    NASA Astrophysics Data System (ADS)

    Acharya, Narendra; Wolak, Matthäus A.; Tan, Teng; Lee, Namhoon; Lang, Andrew C.; Taheri, Mitra; Cunnane, Dan; Karasik, Boris. S.; Xi, X. X.

    2016-08-01

    In this letter, we report on the structural and transport measurements of ultrathin MgB2 films grown by hybrid physical-chemical vapor deposition followed by low incident angle Ar ion milling. The ultrathin films as thin as 1.8 nm, or 6 unit cells, exhibit excellent superconducting properties such as high critical temperature (Tc) and high critical current density (Jc). The results show the great potential of these ultrathin films for superconducting devices and present a possibility to explore superconductivity in MgB2 at the 2D limit.

  9. Observation of interband pairing interaction in a two-band superconductor: MgB2.

    PubMed

    Geerk, J; Schneider, R; Linker, G; Zaitsev, A G; Heid, R; Bohnen, K-P; v Löhneysen, H

    2005-06-10

    The recently discovered anisotropic superconductor MgB2 is the first of its kind showing the intriguing properties of two-band superconductivity. By tunneling experiments using thin film tunnel junctions, electron-coupled phonon spectra were determined showing that superconductivity in MgB2 is phonon mediated. In a further analysis, which involves first principles calculations, the strongest feature in these spectra could be traced back to the key quantity of two-band superconductivity, the interband pairing interaction. For the phonons, this interaction turns out quite selective. It involves mainly low-energy optical phonon modes, where the boron atoms move perpendicular to the boron planes.

  10. Pair-breaking and superconducting state recovery dynamics in MgB2.

    PubMed

    Demsar, J; Averitt, R D; Taylor, A J; Kabanov, V V; Kang, W N; Kim, H J; Choi, E M; Lee, S I

    2003-12-31

    We present studies of the photoexcited quasiparticle dynamics in MgB2 where, using femtosecond optical techniques, Cooper pair-breaking dynamics (PBD) have been temporally resolved for the first time. The PBD are strongly temperature and photoexcitation intensity dependent. Analysis of the PBD using the Rothwarf-Taylor equations suggests that the anomalous PBD arises from the fact that in MgB2 photoexcitation is initially followed by energy relaxation to high frequency phonons instead of, as commonly assumed, e-e thermalization. Furthermore, the bare quasiparticle recombination rate and the probability for pair breaking by phonons have been determined.

  11. Magnetic vortex flux pinning in silicon-oil-doped MgB2

    NASA Astrophysics Data System (ADS)

    Lee, Sung-Ik; Ghorbani, S. R.

    2010-12-01

    The field dependence of the critical current density, jc (B), of MgB2 doped with 10 wt.% of a liquid precursor, silicon oil, was measured. The obtained jc (B) was enhanced compared with the value of pure MgB2. The temperature dependence of the crossover field, Bsb(T), from the region of a single vortex to the region of small vortex bundle pinning shows that δl pinning, which is associated with mean-free-path fluctuations of the charge carriers, is dominant in this superconductor.

  12. Electrochemical synthesis of superconductive MgB 2 from molten salts

    NASA Astrophysics Data System (ADS)

    Yoshii, Kenji; Abe, Hideki

    2003-05-01

    We have found that superconductive MgB2 can be electrochemically synthesized from molten salts. The electrolysis was performed in an Ar flow at 600 °C on fused mixtures composed of MgCl2, MgB2O4, Na2B2O4 and alkali halides such as KCl, NaCl, and LiCl. Superconductivity was observed for a wide variety of electrolytes. It was also found that the magnetic and electrical transport properties are the most improved for samples prepared from MgCl2-NaCl-KCl-MgB2O4 electrolytes.

  13. Identification of TRAK1 (Trafficking protein, kinesin-binding 1) as MGb2-Ag: a novel cancer biomarker.

    PubMed

    Zhang, Faming; Ren, Gui; Lu, Yuanyuan; Jin, Bin; Wang, Jun; Chen, Xiong; Liu, Zhenxiong; Li, Kai; Nie, Yongzhan; Wang, Xin; Fan, Daiming

    2009-02-18

    The present study aimed to describe the characterization of an antibody MGb2 that reacts with an epitope on gastric cancer cells, and identification of MGb2 antigen (MGb2-Ag). Immunostaining revealed its distribution in human tissues and demonstrated that the positive rate of MGb2-Ag was 81.48% in gastric cancer, 100% in gastric signet-ring cell carcinoma and mucinous adenocarcinoma, 13.16% in precancerous conditions, and 0% in chronic superficial gastritis. Using Western blotting, immunoprecipitation and MALDI-TOF MS (matrix assisted laser desorption/ionization time-of-flight mass spectrometry), MGb2-Ag was identified as TRAK1 (Trafficking protein, kinesin-binding 1), a new molecular gained limited recognition. Both MGb2 and commercial anti-TRAK1 Ab recognized prokaryotic expressed TRAK1. Immunostaining characteristics of TRAK1 were identical with MGb2-Ag in continuous sections of paraffin-embedded tissues of gastric tissues. This is the first report that TRAK1/MGb2-Ag is a promising diagnostic marker for gastric cancer and may help to detect signet-ring cell carcinoma and mucinous adenocarcinoma.

  14. Flux jump behaviors and mechanism of FeTi doped MgB2 at 5 K

    NASA Astrophysics Data System (ADS)

    Lee, H. B.; Kim, G. C.; Kim, Y. C.; Ahmad, D.

    2015-08-01

    This study examined the flux jump behaviors of Fe-doped MgB2 according to content of FeTi particles at 5 K, at which flux jump has been shown to be more frequent. The samples were synthesized in a stainless steel tube with Mg, B and FeTi particles. The motives of flux jump in MgB2 superconductors are over-moving fluxes around the defects and the low heat capacity of MgB2. MgB2 was doped with FeTi particles to overcome these vulnerable points of MgB2. The flux jump of MgB2 decreased with increasing content of doped FeTi particles. On the other hand, excessive doping of FeTi resulted in a decrease of diamagnetic properties and the flux pinning effects together. It is concluded that FeTi particles in MgB2 do not block the flux jump itself, but the propagation of flux jump of MgB2.

  15. An innovative technique to synthesize C-doped MgB2 by using chitosan as the carbon source

    NASA Astrophysics Data System (ADS)

    Bovone, G.; Vignolo, M.; Bernini, C.; Kawale, S.; Siri, A. S.

    2014-02-01

    Here, we report a new technique to synthesize carbon-doped MgB2 powder. Chitosan was innovatively used as the carbon source during the synthesis of boron from boron oxide. This allowed the introduction of local defects, which later on served as pinning centers in MgB2, in the boron lattice itself, avoiding the traditional and time consuming ways of ex situ MgB2 doping (e.g. ball milling). Two volume percentages of C-doping have been tried and its effect on the superconducting properties, evaluated by magnetic and transport measurements, are discussed here. Morphological analysis by scanning electron microscopy revealed nano-metric grains’ distribution in the boron and MgB2 powder. Mono-filamentary MgB2 wires have been fabricated by an ex situ powder-in-tube technique by using the thus prepared carbon-doped MgB2 and pure MgB2 powders. Transport property measurements on these wires were made and compared with MgB2 wire produced using commercial boron.

  16. RAPID COMMUNICATION: Formation of MgB2 at ambient temperature with an electrochemical process: a plausible mechanism

    NASA Astrophysics Data System (ADS)

    Jadhav, A. B.; Subhedar, K. M.; Hyam, R. S.; Talaptra, A.; Sen, Pintu; Bandyopadhyay, S. K.; Pawar, S. H.

    2005-06-01

    The binary intermetallic MgB2 superconductor has been synthesized by many research groups. However, the mechanism of its formation is not clearly understood. In this communication, a comprehensive mechanism of the formation of MgB2 from Le Chatelier's principle of equilibrium reaction has been explained both for solid-state reaction and electrodeposition methods.

  17. Hot Extrusion of Ex-Situ MgB2 Powder

    NASA Astrophysics Data System (ADS)

    Nachtrab, William T.; Rudziak, Mark K.; Wong, Terence

    2008-03-01

    We investigated the fabrication of ex-situ processed MgB2 round wire by hot extrusion. Composite ex-situ MgB2 monocore billets were fabricated with a composite sheath consisting of either an AISI 304 or AISI 430 stainless steel clad with copper. The stainless steel was intended to serve as reinforcement for the powder core and maintain mechanical compatibility between the MgB2 core and the copper cladding. The composite billets were extruded at temperatures between 593 and 900 °C at a reduction ratio of 5.2 (81% RA). The billets having the 304 SS barrier cracked during extrusion, while the billets with 430 SS were successfully extruded. Several additional monocore billets with 430 SS/Cu sheath were extruded at 650 °C and reduction ratio of 5.0 (80% RA). The extruded rods were cold drawn, restacked in a copper tube in an 18 filament array, and subsequently cold drawn to 2 mm diameter. A 61 filament restack billet was also assembled and hot extruded at 538 °C and R = 5.0. The results demonstrate that hot extrusion has the potential to be a viable method for fabricating multifilament round MgB2 wire.

  18. Point pinning centers in SiC doped MgB2 wires after HIP

    NASA Astrophysics Data System (ADS)

    Gajda, D.; Zaleski, A.; Morawski, A.; Cetner, T.; Thong, C. J.; Rindfleisch, M. A.

    2016-08-01

    In this study we show that dominant point pinning mechanisms in SiC doped MgB2 wires can be obtained by annealing in high isostatic pressure. The results indicate that the point pinning centers increase the critical current density in medium and high magnetic fields, but not at low magnetic fields. In addition, our study shows that dominant pinning mechanism changes from point to surface type with increase of magnetic fields. An MgB2 wire heat treated in a high pressure of 1.4 GPa shows a high critical current density of 100 A mm‑2 in 13 T at 4.2 K. Scanning electron microscope studies show that high isostatic pressure increases the density of the MgB2 material, eliminates voids, allows for small Si precipitates and homogeneous distribution of Si precipitates. Transport measurements E - B and E - I show that the MgB2 wires manufactured by Hyper Tech Research did not heat up after transition into a normal state. This is important for applications in coils.

  19. Microstructural and superconducting properties of C6H6 added bulk MgB2 superconductor

    NASA Astrophysics Data System (ADS)

    Babaoğlu, Meral G.; Safran, Serap; Çiçek, Özlem; Ağıl, Hasan; Ertekin, Ercan; Hossain, Md. Shahriar A.; Yanmaz, Ekrem; Gencer, Ali

    2012-10-01

    The effect of aromatic hydrocarbon (benzene, C6H6) addition on lattice parameters, microstructure, critical temperature (Tc), critical current density (Jc) of bulk MgB2 has been studied. In this work only 2 mol% C6H6 addition was found to be very effective in increasing the Jc values, while resulting in slight reduction of the Tc. Jc values of 2 mol% C6H6 added MgB2 bulks reached to 1.83×106 A/cm2 at 15 K and 0 T. Microstructural analyses suggest that Jc enhancement is associated with the substitution of carbon with boron and which also results in the smaller MgB2 grain size. The change in the lattice parameters or the lattice disorder is claimed as a cause of the slight reduction in the Tc by carbon addition. We note that our results show the advantages of C6H6 addition include homogeneous mixing of precursor powders, avoidance of expansive nanoadditives, production of highly reactive C, and significant enhancement in Jc of MgB2, compared to un-doped samples.

  20. The role of various boron precursor on superconducting properties of MgB2/Fe

    NASA Astrophysics Data System (ADS)

    Safran, S.; Kılıçarslan, E.; Kılıç, A.; Gencer, A.

    2014-09-01

    The superconducting properties of Fe sheathed MgB2 wire has been studied as a function of precursor B powder particle size. The in situ processed MgB2 samples were prepared by means of conventional solid state reaction method with magnesium powder (99.8%, 325 mesh) and three different types of amorphous boron powders (purity; 98.8%, >95% and 91.9%) from two sources, Pavezyum (Turkish supplier) and Sigma Aldrich. The particle sizes of Turkish boron precursor powder were selected between 300 and 800 nm. The structural and magnetic properties of the prepared samples were investigated by means of the X-ray powder diffraction (XRD) and ac susceptibility measurements. The XRD patterns showed that the diffraction peaks for our samples belong to the main phase of the MgB2 diffraction patterns. The highest critical temperature, Tc = 38.4 K was measured for the MgB2 sample which was fabricated by using the 98.8% B. The critical current density of this sample was extracted from the magnetization measurements and Jc = 5.4 × 105 A cm-2 at 5 K and B = 2 T. We found that the sample made by using the 98.8% boron showed almost 2 times higher Jc than that of obtained from 91.9% B powder.

  1. Point pinning centers in SiC doped MgB2 wires after HIP

    NASA Astrophysics Data System (ADS)

    Gajda, D.; Zaleski, A.; Morawski, A.; Cetner, T.; Thong, C. J.; Rindfleisch, M. A.

    2016-08-01

    In this study we show that dominant point pinning mechanisms in SiC doped MgB2 wires can be obtained by annealing in high isostatic pressure. The results indicate that the point pinning centers increase the critical current density in medium and high magnetic fields, but not at low magnetic fields. In addition, our study shows that dominant pinning mechanism changes from point to surface type with increase of magnetic fields. An MgB2 wire heat treated in a high pressure of 1.4 GPa shows a high critical current density of 100 A mm-2 in 13 T at 4.2 K. Scanning electron microscope studies show that high isostatic pressure increases the density of the MgB2 material, eliminates voids, allows for small Si precipitates and homogeneous distribution of Si precipitates. Transport measurements E - B and E - I show that the MgB2 wires manufactured by Hyper Tech Research did not heat up after transition into a normal state. This is important for applications in coils.

  2. The origin of multiple superconducting gaps in MgB2.

    PubMed

    Souma, S; Machida, Y; Sato, T; Takahashi, T; Matsui, H; Wang, S-C; Ding, H; Kaminski, A; Campuzano, J C; Sasaki, S; Kadowaki, K

    2003-05-01

    Magnesium diboride, MgB2, has the highest transition temperature (T(c) = 39 K) of the known metallic superconductors. Whether the anomalously high T(c) can be described within the conventional BCS (Bardeen-Cooper-Schrieffer) framework has been debated. The key to understanding superconductivity lies with the 'superconducting energy gap' associated with the formation of the superconducting pairs. Recently, the existence of two kinds of superconducting gaps in MgB2 has been suggested by several experiments; this is in contrast to both conventional and high-T(c) superconductors. A clear demonstration of two gaps has not yet been made because the previous experiments lacked the ability to resolve the momentum of the superconducting electrons. Here we report direct experimental evidence for the two-band superconductivity in MgB2, by separately observing the superconducting gaps of the sigma and pi bands (as well as a surface band). The gaps have distinctly different sizes, which unambiguously establishes MgB2 as a two-gap superconductor.

  3. Thickness dependence of Jc (0) in MgB2 films

    NASA Astrophysics Data System (ADS)

    Chen, Yiling; Yang, Can; Jia, Chunyan; Feng, Qingrong; Gan, Zizhao

    2016-06-01

    MgB2 superconducting films, whose thicknesses range from 10 nm to 8 μm, have been fabricated on SiC substrates by hybrid physical-chemical vapor deposition (HPCVD) method. It is the first time that the Tc and the Jc of MgB2 films are studied on such a large scale. It is found that with the increasing of thickness, Tc elevates first and then keeps roughly stable except for some slight fluctuations, while Jc (5 K, 0 T) experiences a sharp increase followed by a relatively slow fall. The maximum Jc (5 K, 0 T) = 2.3 × 108 A cm-2 is obtained for 100 nm films, which is the experimental evidence for preparing high-quality MgB2 films by HPCVD method. Thus, this work may provide guidance on choosing the suitable thickness for applications. Meanwhile, the films prepared by us cover ultrathin films, thin films and thick films, so the study on them will bring a comprehensive understanding of MgB2 films.

  4. Doping effects of carbon and titanium on the critical current density of MgB2

    NASA Astrophysics Data System (ADS)

    Shen, T. M.; Li, G.; Cheng, C. H.; Zhao, Y.

    2006-11-01

    MgB2 bulks doped with Ti or/and C were prepared by an in situ solid state reaction method to determine the combined effect of C and Ti doping and to probe the detailed mechanism. The magnetization measurement shows that Mg0.95Ti0.05B1.95C0.05 sample has significantly improved flux pinning compared to the MgB1.95C0.05 sample at 20 K, indicating that C and Ti are largely cooperative in improving the Jc(H) behaviour. No TiC phase was detected in the x-ray diffraction (XRD) patterns. Moreover, the overlap of the (100) peaks of MgB1.95C0.05 and Mg0.95Ti0.05B1.95C0.05 showed that Ti doping does not reduce the amount of C in MgB2. Microstructural analyses revealed that the addition of Ti eliminated the porosity present in the carbon-doped MgB2 pellet, resulting in an improved intergrain connectivity and an increase of effective current pass. Further, MgB2 doped with C and Ti, which mainly consists of spherical grains about 200-300 nm in size, shows an higher grain homogeneity than the C-doped sample, suggesting that the Ti doping in MgB1-xCx has played an important role in obtaining uniform grains.

  5. Enhancement of flux pinning in a MgB2 superconductor doped with tartaric acid

    NASA Astrophysics Data System (ADS)

    Hossain, M. S. A.; Kim, J. H.; Wang, X. L.; Xu, X.; Peleckis, G.; Dou, S. X.

    2007-01-01

    The synthesis and characterization of a carbon (C) doped polycrystalline MgB2 superconductor is reported with tartaric acid (C4H6O6) used as the C source. The amount of C4H6O6 is varied between 5 and 30 wt%. Relationships between microstructures, critical current density (Jc), critical temperature (Tc), upper critical field (Hc2), and irreversibility field (Hirr) for MgB2 doped with 0-30 wt% C4H6O6 are systematically studied. A reduction in Tc from 37.65 to 34.45 K and in lattice parameter a due to the C substitution occurs with C4H6O6 doping. Jc, Hc2, and Hirr are significantly enhanced with an increasing amount of C4H6O6. All the samples exhibit a Jc above 104 A cm-2 at 5 K and 8 T. This value is higher than for un-doped MgB2 by a factor of 6. The significant improvement in the superconducting properties is attributed to the lattice distortion due to the C substitution for boron, with the C coming from the C4H6O6. These findings suggest that C4H6O6 is a promising C source for MgB2 with excellent Jc properties under high field.

  6. Local environments of iron and cobalt in doped MgB2 superconductors

    NASA Astrophysics Data System (ADS)

    Kuzmann, E.; Homonnay, Z.; Klencsár, Z.; Kühberger, M.; Vértes, A.; Gritzner, G.

    2002-11-01

    MgB2 has been doped with 57Fe and 57Co in order to probe the electronic structure of the superconductor by Mössbauer spectroscopy. Simultaneous SEM-EDX studies showed that both Fe and Co were incorporated to some extent into the MgB2 host lattice. Mössbauer spectroscopy indicated that Fe2B and FeB were also formed during the preparation. At higher Fe contents Fe2B appeared unambiguously as a secondary phase in the x-ray diffraction. CoB was detected at substitution levels of 10 mol% and greater. Both Fe and Co doping decreased the Tc(0) modestly. Co and Fe were found to substitute at the Mg site in the MgB2 lattice. The Mössbauer parameters for 57Co and 57Fe were consistent with a metallic environment. The similarity of the isomer shifts in MgB2 and in cuprate superconductors is being discussed.

  7. Rational design of MgB2 conductors toward practical applications

    NASA Astrophysics Data System (ADS)

    Patel, Dipak; Hossain, Md Shahriar Al; Motaman, Ashkan; Barua, Shaon; Shahabuddin, Mohammed; Kim, Jung Ho

    2014-09-01

    We report the research progress that has been made on developing rational MgB2 superconducting conductors toward practical applications. Owing to the poor performance of the critical current density (Jc) of bare MgB2, various techniques have been developed to overcome this obstacle. Among these, chemical doping has proved to be the most effective way to enhance the superconducting properties, such as Jc and the irreversibility field (Birr). More than a hundred different forms of dopants have been investigated over the past 13 years. Among these, the most effective dopants have been identified to be silicon carbide, carbon, and malic acid. The best results, Birr of 22 T and Jc of 40,000 A cm-2 at 4.2 K and 10 T, have been reported for malic acid treated MgB2 conductors, which have matched the benchmark performance of commercial low temperature superconductor wire such as Nb-Ti. This work will review and discuss the progress on MgB2 conductor development over the past few years at the University of Wollongong and Hyper Tech Research, Inc.

  8. Solution Fabrication of a Superconducting MgB2 Coated Conductor on Stainless Steel

    NASA Astrophysics Data System (ADS)

    Wang, Yin-Bo; Chen, Li-Ping; Zhang, Chen; Wang, Yue; Guo, Zheng-Shan; Chen, Yi-Ling; Feng, Qing-Rong; Gan, Zi-Zhao

    2012-04-01

    We report the solution fabrication of a MgB2 coated conductor on a stainless steel substrate. The precursor solution of Mg(BH4)2 diethyl ether is initially synthesized by refluxing the milled mixture of NaBH4 and MgCl2 in diethyl ether. Then the Mg(BH4)2 diethyl ether is spin coated on a stainless steel substrate and annealed in Mg vapor, which yields a homogeneous MgB2 coated conductor. X-ray diffraction indicates that the grown MgB2 coated conductor is polycrystalline. It has a superconducting transition temperature of 34-37 K. The slope of the upper critical field HC2 increases with decreasing temperature, and the extrapolated value of HC2(0) reaches ~28 T. The critical current density estimated by the Bean model is JC(25K, 0T)~106 A·cm-2. These parameters indicate that the solution method is potentially able to produce MgB2 coated conductors that can satisfy application purposes.

  9. Influence of magnetic nanoparticles on superconductivity of MgB2

    NASA Astrophysics Data System (ADS)

    Novosel, N.; Babić, E.

    2013-10-01

    Recently we begun systematic study of the influence of magnetic nanoparticles (MNPs) on the superconducting properties (transition temperature Tc, critical fields and critical current density, Jc) of MgB2 wires. We prepared over 60 Fe-sheathed MgB2 wires doped with different types and quantities of MNPs, such as pure metals (Fe, Co, Ni), magnetic borides (Fe2B, Co2B, NiCoB) and ferrites (AFe2O4, A = Mn, Fe, Co, Ni, Cu). Both, uncoated and coated (with silica or dextrin) MNPs were used in order to assess also the effects of co-doping and of interactions between MNPs. All MNPs suppress Tc of MgB2 and higher MNP contents inevitably cause deterioration of superconducting properties of wires. However, light doping (⩽2.5 wt.%) with few species of MNP (Ni, NiCoB and dextrin coated NiFe2O4 and Fe3O4) improved low-temperature, high-field Jc of MgB2 wires. Possible origin of this improvement is briefly discussed.

  10. The critical parameters in in-situ MgB2 wires and tapes with ex-situ MgB2 barrier after hot isostatic pressure, cold drawing, cold rolling and doping

    NASA Astrophysics Data System (ADS)

    Gajda, D.; Morawski, A.; Zaleski, A. J.; Häßler, W.; Nenkov, K.; Rindfleisch, M. A.; Żuchowska, E.; Gajda, G.; Czujko, T.; Cetner, T.; Hossain, M. S. A.

    2015-05-01

    MgB2 precursor wires were prepared using powder in tube technique by Institute of High Pressure PAS in Warsaw. All samples were annealed under isostatic pressure generated by liquid Argon in the range from 0.3 GPa to 1 GPa. In this paper, we show the effects of different processing routes, namely, cold drawing (CD), cold rolling (CR), hot isostatic pressure (HIP) and doping on critical current density (Jc), pinning force (Fp), irreversible magnetic-field (Birr), critical temperature (Tc), n value, and dominant pinning mechanism in MgB2/Fe wires with ex situ MgB2 barrier. The results show that medium pressures (˜0.35 GPa) lead to high Jc in low and medium magnetic fields (0 T - 9 T). On the other hand, higher pressures (˜1 GPa) lead to enhanced Jc in high magnetic fields (above 9 T). Transport measurements show that CD, CR, and HIP have small effects on Birr and Tc, but CD, CR, HIP, and doping enhance Jc and Fp in in situ MgB2 wires with ex situ MgB2 barrier. Transport measurements on in situ undoped MgB2 wire with ex situ MgB2 barrier yield a Jc of about 100 A/mm2 at 4.2 K in 6 T, at 10 K in 4 T and at 20 K in 2 T. The results also show that cold drawing causes increase of n value.

  11. Giant Anharmonicity and Theory of Surprising BCS Superconductivity in MgB2 at 40 K

    NASA Astrophysics Data System (ADS)

    Yildirim, Taner

    2002-03-01

    The recent surprise discovery of superconductivity in MgB2 at 40 K has stimulated a great deal of research on this intercalated grahite-like system. Sparked by this discovery, we set out to unlock the structural secrets and, in particular, to reveal the origin of the high Tc in MgB_2; an electron-phonon or other exotic mechanism? To answer this fundamental question, we calculated T_c, its pressure dependence for uni- and biaxial compressions, and the isotope effect from the electronic band structure and lattice dynamics of MgB2 using density functional theory[1-2]. The calculated phonon density of states (DOS) are in excellent agreement with the inelastic neutron scattering measurements. We find that the in-plane boron phonons near the zone-center are very anharmonic and strongly coupled to the planar B sigma bands near the Fermi level. The boron mass and pressure dependence of this mode is found to be the key to quantitatively explaining the observed high T_c, the total isotope effect, and the pressure dependence of T_c. We propose that a stringent test on the hole and phonon based theories of the superconductivity in MgB2 would be a measurement of the biaxial ab-compression dependence of T_c. In collobration with Oguz Gulseren, NIST and UPENN [1] T. Yildirim et. al., Phys. Rev. Lett. 87, 037001 (2001). [2] For details, see http://www.ncnr.nist.gov/staff/taner/mgb2

  12. Significant improvement of critical current density in MgB2 doped with ferromagnetic Fe3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Qu, B.; Sun, X. D.; Li, J.-G.; Xiu, Z. M.; Liu, S. H.; Xue, C. P.

    2009-01-01

    Ferromagnetic Fe3O4-doped MgB2 bulks were first fabricated in this work by the hot pressing method. It was found that Fe3O4 does not react with Mg or B during the fabrication process. Peak Jc values of the 5 wt% Fe3O4-doped MgB2 are higher than 106 A cm-2 in the temperature range 5-30 K. Especially at 30 K, the peak Jc is 1.02 × 106 A cm-2 for the 5 wt% Fe3O4-doped MgB2, the highest values at 30 K found in the literature, and about seven times that of the 5 wt% SiC-doped MgB2 sample. The drop in Jc with increasing field for the Fe3O4-doped MgB2 is significantly slower than that of the SiC-doped MgB2 at 30 K. These results indicate that the Fe3O4-doped MgB2 is a potential superconductor to be used at temperatures greater than 25 K which is a critical temperature for large-scale practical applications.

  13. Comparison between nano-diamond and carbon nanotube doping effects on critical current density and flux pinning in MgB2

    NASA Astrophysics Data System (ADS)

    Cheng, C. H.; Yang, Y.; Munroe, P.; Zhao, Y.

    2007-03-01

    Doping effects of nano-diamond and carbon nanotubes (CNTs) on critical current density of bulk MgB2 have been studied. CNTs are found prone to be doped into the MgB2 lattice whereas nano-diamond tends to form second-phase inclusions in the MgB2 matrix, leading to a more significant improvement of Jc(H) by doping by nano-diamond than by CNTs in MgB2. TEM reveals tightly packed MgB2 nanograins (50-100 nm) with a dense distribution of diamond nanoparticles (10-20 nm) inside MgB2 grains in nano-diamond-doped samples. Such a unique microstructure leads to a flux pinning behaviour different from that in CNTs-doped MgB2.

  14. Strong interaction between electrons and collective excitations in the multiband superconductor MgB2

    DOE PAGES

    Mou, Daixiang; Jiang, Rui; Taufour, Valentin; Flint, Rebecca; Bud'ko, S. L.; Canfield, P. C.; Wen, J. S.; Xu, Z. J.; Gu, Genda; Kaminski, Adam

    2015-04-08

    We use a tunable laser angle-resolved photoemission spectroscopy to study the electronic properties of the prototypical multiband BCS superconductor MgB2. Our data reveal a strong renormalization of the dispersion (kink) at ~65meV, which is caused by the coupling of electrons to the E2g phonon mode. In contrast to cuprates, the 65 meV kink in MgB2 does not change significantly across Tc. More interestingly, we observe strong coupling to a second, lower energy collective mode at a binding energy of 10 meV. As a result, this excitation vanishes above Tc and is likely a signature of the elusive Leggett mode.

  15. Hydrogen cooling options for MgB2-based superconducting systems

    NASA Astrophysics Data System (ADS)

    Stautner, W.; Xu, M.; Mine, S.; Amm, K.

    2014-01-01

    With the arrival of MgB2 for low-cost superconducting magnets, hydrogen cooling has become an interesting alternative to costly liquid helium. Hydrogen is generally regarded as the most efficient coolant in cryogenics and, in particular, is well suited for cooling superconducting magnets. Cooling methods need to take into account the specific quench propagation in the MgB2 magnet winding and facilitate a cryogenically reliable and safe cooling environment. The authors propose three different multi-coolant options for MRI scanners using helium or hydrogen within the same design framework. Furthermore, a design option for whole-body scanners which employs technology, components, fueling techniques and safety devices from the hydrogen automotive industry is presented, continuing the trend towards replacing helium with hydrogen as a safe and cost efficient coolant.

  16. Magnetic nanoparticles in MgB2: Vortex pinning, pair breaking and connectivity

    NASA Astrophysics Data System (ADS)

    Babić, Emil; Novosel, Nikolina; Pajić, Damir; Galić, Stipe; Zadro, Krešo; Drobac, Đuro

    2016-02-01

    The results indicating magnetic flux pinning in MgB2 wires doped with three types of magnetic nanoparticles (MNP) are reported. The magnetic state of MNPs, both as-prepared and inside the MgB2 core, was determined with magnetization and ac susceptibility measurements. The competition between detrimental influence of doping (reduced connectivity, pair breaking) and enhanced flux pinning leads to deterioration of electromagnetic properties of doped wires at high MNP content, whereas light doping causes an enhancement of critical current density, Jc, and/or irreversibility field, Birr, for all our MNPs. For Ni and dextrin coated NiFe2O4 MNPs the enhancement of Jc was comparable to that achieved with the best nonmagnetic dopands. Detailed analysis indicates the contribution of magnetic flux pinning including the matching effects in flux pinning on MNPs.

  17. Preparation and characterization of Sc doped MgB2 wires

    NASA Astrophysics Data System (ADS)

    Grivel, J.-C.; Burdusel, M.

    2016-09-01

    The in-situ technique was used to manufacture scandium (Sc) doped MgB2 wires in a composite Cu-Nb sheath. After reaction at 700 °C, at most 1 at.% Mg was replaced by Sc in the MgB2 phase, without significant influence on its superconducting transition temperature. For higher Sc concentrations in the nominal composition, the formation of Sc-rich impurity phases was evidenced by SEM/EDS observations. The critical current density and accommodation field of the wires are weakly dependant on the Sc content. It is believed that these effects are related more to modifications of the thermal behaviour of the precursor powders revealed by DTA measurements than to actual doping. The best performance was obtained in a wire with Mg:Sc = 0.995_0.005 atomic ratio.

  18. Electronic structure of MgB2 from angle-resolved photoemission spectroscopy.

    PubMed

    Uchiyama, H; Shen, K M; Lee, S; Damascelli, A; Lu, D H; Feng, D L; Shen, Z-X; Tajima, S

    2002-04-15

    The first angle-resolved photoemission spectroscopy results from MgB2 single crystals are reported. Along the GammaK and GammaM directions, we observed three distinct dispersive features approaching the Fermi energy. These can be assigned to the theoretically predicted sigma (B 2p(x,y)) and pi (B 2p(z)) bands. In addition, a small parabolic-like band is detected around the Gamma point, which can be attributed to a surface-derived state. The overall agreement between our results and the band calculations suggests that the electronic structure of MgB2 is of a conventional nature, thus implying that electron correlations are weak and may be of little importance to superconductivity in this system.

  19. Anisotropies of the lower and upper critical fields in MgB2 single crystals.

    PubMed

    Lyard, L; Szabó, P; Klein, T; Marcus, J; Marcenat, C; Kim, K H; Kang, B W; Lee, H S; Lee, S I

    2004-02-01

    The temperature dependence of the upper (H(c2)) and lower (H(c1)) critical fields has been deduced from Hall probe magnetization measurements of high quality MgB2 single crystals along the two main crystallographic directions. We show that Gamma(H(c2))=H(c2 axially ab)/H(c2 axially c) and Gamma(H(c1))=H(c1 axially c)/H(c1 axially ab) differ significantly at low temperature (being approximately 5 and approximately 1, respectively) and have opposite temperature dependencies. We suggest that MgB2 can be described by a single field dependent anisotropy parameter gamma(H) (=lambda(c)/lambda(ab)=xi(ab)/xi(c)) that increases from Gamma(H(c1)) at low field to Gamma(H(c2)) at high field.

  20. Effects of glucose doping on the MgB2 superconductors using cheap crystalline boron

    NASA Astrophysics Data System (ADS)

    Parakkandy, Jafar Meethale; Shahabuddin, Mohammed; Shah, M. Shahabuddin; Alzayed, Nasser S.; Qaid, Salem A. S.; Madhar, Niyaz Ahmad; Ramay, Shahid M.; Shar, Muhammad Ali

    2015-12-01

    We report the effect of glucose (C6H12O6) doping on the structural and electromagnetic properties of MgB2 superconductor fabricated by dry mixing using planetary ball milling. Herein, as-prepared bulk polycrystalline Mg (B1-xCx) 2 samples with different doping levels (x = 0, 2, 4, and 6 at. %) were systematically studied by X-ray diffraction, magnetic and resistivity measurements, and microstructure analysis. When carbon doped, the reduction in critical transition temperature and shrinkage in a-lattice were obviously observed. This resulted in structural distortion of the MgB2 lattice, and thereby, enhanced an impurity scattering. In addition to these, upper critical field and high-field critical current densities were also enhanced. On the other hand, both pinning force and low-field critical current density are decreased. The high field enhancement and low field degradation are due to increase in impurity scattering and decrease in pinning force respectively.

  1. Ab initio investigation of collective charge excitations in MgB2.

    PubMed

    Ku, Wei; Pickett, W E; Scalettar, R T; Eguiluz, A G

    2002-02-01

    A sharp collective charge excitation is predicted in MgB2 at approximately 2.5 eV for q perpendicular to the boron layers, based on an all-electron analysis of the dynamical density response within time-dependent density functional theory. This novel excitation, consisting of coherent charge fluctuation between Mg and B sheets, induces an abrupt plasma edge in the experimentally observable reflectivity. The existence of this mode reflects the unique electronic structure of MgB2 that is also responsible for strong electron-phonon coupling. By contrast, the acoustic plasmon, recently suggested to explain the high T(c), is not realized when realistic transition strengths are incorporated.

  2. Specific heat and thermal conductivity in the mixed state of MgB2.

    PubMed

    Tewordt, L; Fay, D

    2002-09-23

    The specific heat C and the electronic and phononic thermal conductivities kappa(e) and kappa(ph) are calculated in the mixed state for magnetic fields H near H(c2), including the effects of supercurrent flow and Andreev scattering. The resulting function C(H) is nearly linear while kappa(e)(H) exhibits an upward curvature near H(c2). The slopes decrease with impurity scattering which improves the agreement with the data on MgB2. The ratio of phonon relaxation times tau(n)/tau(s)=g(omega(0),H) for phonon energy omega(0) is smeared out around omega(0)=2Delta and tends to one for increasing H. This leads to a rapid reduction of kappa(ph)(H) in MgB2 for relatively small fields due to the rapid suppression of the smaller energy gap.

  3. Temperature-dependent anisotropy of the penetration depth and coherence length of MgB2.

    PubMed

    Fletcher, J D; Carrington, A; Taylor, O J; Kazakov, S M; Karpinski, J

    2005-08-26

    We report measurements of the temperature-dependent anisotropies (gamma(lambda) and gamma(xi)) of both the London penetration depth lambda and the upper critical field of MgB2. Data for gamma(lambda)=lambda(c)/lambda(a) was obtained from measurements of lambda(a) and lambda(c) on a single crystal sample using a tunnel diode oscillator technique. gamma(xi)=H(perp)c(c2)/H(||c)(c2) was deduced from field-dependent specific heat measurements on the same sample. Gamma(lambda) and gamma(xi) have opposite temperature dependencies, but close to T(c) tend to a common value (gamma(lambda) similar or equal to gamma(xi)=1.75 +/- 0.05). These results are in good agreement with theories accounting for the two-gap nature of MgB2.

  4. High T(c) superconductivity in MgB2 by nonadiabatic pairing.

    PubMed

    Cappelluti, E; Ciuchi, S; Grimaldi, C; Pietronero, L; Strässler, S

    2002-03-18

    The evidence for the key role of the sigma bands in the electronic properties of MgB2 points to the possibility of nonadiabatic effects in the superconductivity of these materials. These are governed by the small value of the Fermi energy due to the vicinity of the hole doping level to the top of the sigma bands. We show that the nonadiabatic theory leads to a coherent interpretation of T(c) = 39 K and the boron isotope coefficient alphaB = 0.30 without invoking very large couplings and it naturally explains the role of the disorder on T(c). It also leads to various specific predictions for the properties of MgB2 and for the material optimization of these types of compounds.

  5. Relaxation and pinning in spark-plasma sintered MgB2 superconductor

    NASA Astrophysics Data System (ADS)

    Jirsa, M.; Rames, M.; Koblischka, M. R.; Koblischka-Veneva, A.; Berger, K.; Douine, B.

    2016-02-01

    The model of thermally activated relaxation developed and successfully tested on high-T c superconductors (Jirsa et al 2004 Phys. Rev. B 70 0245251) was applied to magnetic data of a bulk spark-plasma sintered MgB2 sample to elucidate its magnetic relaxation behavior. MgB2 and the related borides form a superconductor class lying between classical and high-T c superconductors. In accord with this classification, the relaxation phenomena were found to be about ten times weaker than in cuprates. Vortex pinning analyzed in terms of the field dependence of the pinning force density indicates a combined pinning by normal point-like defects and by grain surfaces. An additional mode of pinning at rather high magnetic fields (of still unknown origin) was observed.

  6. MgB2 wires with Ti and NbTi barrier made by IMD process

    NASA Astrophysics Data System (ADS)

    Kováč, P.; Hušek, I.; Kulich, M.; Melišek, T.; Kováč, J.; Kopera, L.

    2016-10-01

    MgB2 wires with Ti and NbTi barriers have been made by internal magnesium diffusion (IMD) into boron process. Critical currents, strain tolerances and AC loss of wires with Ti and NbTi barriers have been compared. It was shown that worse uniformity of NbTi barrier affects the creation of regular MgB2 layer and consequently influences (reduces) also the current densities. Positive effects of NbTi barrier are in improved strain tolerance and reduced coupling losses. The maximum AC loss of not twisted wire with Ti barrier is measured at frequency 9 Hz, but it is shifted up to 60 Hz for NbTi due to considerably increased barrier resistance at 20 K.

  7. Comparison of Tunneling in Fe-based Superconductors with Multi-band MgB2

    NASA Astrophysics Data System (ADS)

    Zasadzinski, John; Iavarone, Maria

    MgB2 is an s-wave, phonon coupled, multiband superconductor that exhibits novel tunneling spectra including a subtle dip feature due to quasiparticle transfer between bands. Since this feature mimics the above-gap spectral dip feature observed in Fe-based superconductors, typically attributed to a strong coupling boson, it is worthwhile to consider whether quasiparticle transfer is relevant. We first show that the dip in MgB2 appears in the π-band, DOS (Δ = 2.4 meV) and is due to quasiparticle transfer to the σ-band with Δ = 7.2 meV. Reviewing the spectral dip in Fe-based superconductors, including new data on FeSe crystals, there are inconsistencies with quasiparticle transfer as the origin. The conclusion is that the spectral dip is more likely due to a boson, the resonance spin excitation, as found in cuprate superconductors.

  8. Enhancement of critical current density of MgB2 by doping Ho2O3

    NASA Astrophysics Data System (ADS)

    Cheng, C.; Zhao, Y.

    2006-12-01

    Mg1-x(Ho2O3)xB2 alloys were prepared by in situ solid state reaction to study the effect of magnetic Ho2O3 dopant on flux pinning behavior of MgB2. Crystal structure, Tc, and Hc2 were not affected by Ho2O3 doping; however, Jc and Hirr were significantly enhanced. In 5T field, the best sample (x =3%) reached Jc of 1.0×103, 2.0×104, and 1.2×105A/cm2 at 20, 10, and 5K, respectively, much higher than those achieved by nonmagnetic impurity, such as Ti-, Zr-, and Y2O3-doped MgB2. The observed magnetic HoB4 nanoparticles were attributed to be the source for the enhanced flux pinning effects.

  9. Magnetic relaxation induced by transverse flux shaking in MgB2 superconductors

    NASA Astrophysics Data System (ADS)

    Luzuriaga, J.; Badía-Majós, A.; Nieva, G.; Giordano, J. L.; López, C.; Serquis, A.; Serrano, G.

    2009-01-01

    We report on measurements and numerical simulations of the behavior of MgB2 superconductors when magnetic field components are applied along mutually perpendicular directions. By closely matching the geometry in simulations and measurements, full quantitative agreement is found. The critical state theory and a single phenomenological law, i.e. the field dependence of the critical current density Jc(B), are sufficient for a full quantitative description of the measurements. These were performed in thick strips of carbon nanotube doped MgB2 samples. Magnetization was measured in two orthogonal directions using a SQUID magnetometer. Magnetic relaxation effects induced by the application of an oscillatory perpendicular field were observed and simulated numerically. The measurements confirm the numerical predictions, that two relaxation regimes appear, depending on the amplitude of the applied magnetic field. The overall agreement constitutes a convincing validation of the critical state model and the numerical procedures used.

  10. Fabrication and properties of kilometer level, Nb reinforced, 6 filamentary MgB2 wires

    NASA Astrophysics Data System (ADS)

    Li, C. S.; Yan, G.; Wang, Q. Y.; Jiao, G. F.; Sulpice, A.; Yang, F.; Xiong, X. M.; Liu, G. Q.; Feng, J. Q.; Feng, Y.; Zhang, P. X.

    2013-11-01

    Kilometer level 6 + 1 filamentary MgB2 wires sheathed with Nb/Cu composite tube was fabricated by in situ powder-in-tube (PIT) method, nonferromagnetic Nb was employed as the centre reinforced materials. There is no any annealing in the whole fabrication process due to the excellent ductility of Nb/Cu based tube. The (Mg, B)/Nb/Cu composite wire was fabricated to the target size of 1.4 mm in diameter and heat treated at 680 °C for 2 h in a vacuum furnace. Microstructure, superconductivity, mechanical properties and homogeneity of critical current were measured respectively. The transport engineering critical current density (Jce) reaches 2.5 × 104 A/cm2 at 20 K, 1 T. The results show a good potential to fabricate high performance MgB2 wires at ambient pressure for practical application.

  11. Feasibility study of a MgB2 superconducting magnetic cloak

    DOE PAGES

    Giunchi, Giovanni; Turrioni, Daniele; Kashikhin, Vladimir; Nguyen, Hogan; Barzi, Emanuela

    2016-04-01

    The magnetic shielding capability of bulk MgB2 hollow cylinders can be fruitfully combined with an external paramagnetic sheath, to tailor the shape of the external magnetic flux lines. By appropriate selection of the external sheath permeability and thickness, it is possible to leave the magnetic flux lines unaltered by the shield (cloaking effect). Preliminary measurements have been performed at 4.2 K on shielding capability of bulk cylinders, which are subjected to axial and transversal magnetic fields up to 5 T. Furthermore, the cloaking conditions have been modeled to find the optimized thickness to realize the cloaking effect. The MgB2 materialmore » of the superconducting shield is also optimized to avoid low-temperature flux jumps, without losing its shielding capability.« less

  12. A trapped field of >3 T in bulk MgB2 fabricated by uniaxial hot pressing

    NASA Astrophysics Data System (ADS)

    Durrell, J. H.; Dancer, C. E. J.; Dennis, A.; Shi, Y.; Xu, Z.; Campbell, A. M.; Babu, N. Hari; Todd, R. I.; Grovenor, C. R. M.; Cardwell, D. A.

    2012-11-01

    A trapped field of over 3 T has been measured at 17.5 K in a magnetized stack of two disc-shaped bulk MgB2 superconductors of diameter 25 mm and thickness 5.4 mm. The bulk MgB2 samples were fabricated by uniaxial hot pressing, which is a readily scalable, industrial technique, to 91% of their maximum theoretical density. The macroscopic critical current density derived from the trapped field data using the Biot-Savart law is consistent with the measured local critical current density. From this we conclude that critical current density, and therefore trapped field performance, is limited by the flux pinning available in MgB2, rather than by lack of connectivity. This suggests strongly that both increasing sample size and enhancing pinning through doping will allow further increases in trapped field performance of bulk MgB2.

  13. High density and connectivity of a MgB2 filament made using the internal magnesium diffusion technique

    NASA Astrophysics Data System (ADS)

    Kulich, M.; Kováč, P.; Hain, M.; Rosová, A.; Dobročka, E.

    2016-03-01

    In order to allow precise and detailed physical studies of an MgB2 filament made by the internal magnesium diffusion process (IMD), a modified approach (MIMD) using a Mg tube filled with boron powder deformed into wire was introduced. The MIMD process allows easy extraction of the MgB2 filament after the final heat treatment and performance of four-probe resistive measurements and density estimation, which is not possible for standard IMD wires. The Rowell approach has been applied for the grain connectivity from R(T) data of extracted MgB2 for the first time. The filament’s density has been estimated from the precise volume measured by x-ray micro-tomography and mass. The high connectivity and density of the MgB2 filament made by the diffusion process are discussed and compared with those of filaments made by other processes.

  14. The effect of citric and oxalic acid doping on the superconducting properties of MgB2

    NASA Astrophysics Data System (ADS)

    Ojha, N.; Malik, V. K.; Singla, Rashmi; Bernhard, C.; Varma, G. D.

    2009-12-01

    In this paper we report the effect of carbon doping on the structural and superconducting properties of MgB2 using citric and oxalic acids as carbon sources. The bulk polycrystalline samples have been synthesized via a standard solid state reaction route with composition MgB2+x wt% of citric and oxalic acids (x = 0, 5 and 10). The x-ray diffraction results reveal the formation of dominantly MgB2 with only a small amount of impurity phase MgO and substitution of C at the B site of MgB2 for both dopants. Improvements in the upper critical field (HC2), irreversibility field (Hirr) and high field (>2.5 T) critical current density (JC) have been observed on C doping in the samples. The correlations between superconducting properties and structural characteristics of the samples are described and discussed in this paper.

  15. Mixed state of a dirty two-band superconductor: application to MgB2.

    PubMed

    Koshelev, A E; Golubov, A A

    2003-05-01

    We investigate the vortex state in a two-band superconductor with strong intraband and weak interband electronic scattering rates. Coupled Usadel equations are solved numerically, and the distributions of the pair potentials and local densities of states are calculated for two bands at different values of magnetic fields. The existence of two distinct length scales corresponding to different bands is demonstrated. The results provide qualitative interpretation of recent scanning tunneling microscopy experiments on vortex structure imaging in MgB2.

  16. Observation of Leggett's collective mode in a multiband MgB2 superconductor.

    PubMed

    Blumberg, G; Mialitsin, A; Dennis, B S; Klein, M V; Zhigadlo, N D; Karpinski, J

    2007-11-30

    We report observation of Leggett's collective mode in a multiband MgB2 superconductor with Tc=39 K arising from the fluctuations in the relative phase between two superconducting condensates. The novel mode is observed by Raman spectroscopy at 9.4 meV in the fully symmetric scattering channel. The observed mode frequency is consistent with theoretical considerations based on first-principles computations.

  17. Evidence for two-band superconductivity from break-junction tunneling on MgB2.

    PubMed

    Schmidt, H; Zasadzinski, J F; Gray, K E; Hinks, D G

    2002-03-25

    Superconductor-insulator-superconductor tunnel junctions have been fabricated on MgB2 that display Josephson and quasiparticle currents. These junctions exhibit a gap magnitude, Delta approximately 2.5 meV, that is considerably smaller than the BCS value, but which clearly and reproducibly closes near the bulk T(c). In conjunction with fits of the conductance spectra, these results are interpreted as direct evidence of two-band superconductivity.

  18. Raman scattering from a superconductivity-induced bound state in MgB2.

    PubMed

    Zeyher, R

    2003-03-14

    It is shown that the sharp peak in the E(2g) Raman spectrum of superconducting MgB2 is due to a bound state caused by the electron-phonon coupling. Our theory explains why this peak appears only in the spectra with E(2g) symmetry and only in the sigma but not the pi bands. The properties of the bound state and the Raman spectrum are investigated, also in the presence of impurity scattering.

  19. Effect of interband interactions on the pressure dependence on transition temperature of MgB2

    NASA Astrophysics Data System (ADS)

    Ogbuu, Okechukwu A.; Abah, Obinna

    2015-12-01

    A two-band BCS model with interactions, both phonon and non-phonon induced interactions, were employed to investigate the pressure dependence on superconducting transition temperature of two-band superconductor. We derived the transition temperature and its pressure dependence within Bogoliubov--Valatin formalism for magnesium diboride superconductor. We examined the influence of interband interactions on transition temperature at varying pressure and analyzed the relevance of this calculation in magnesium diboride, MgB2.

  20. Anisotropic normal-state properties of the MgB2 superconductor

    NASA Astrophysics Data System (ADS)

    de la Mora, Pablo; Castro, Miguel; Tavizon, Gustavo

    2005-02-01

    Based on the experimentally-found existence of two superconducting gaps in MgB2 (one gap associated to the boron σ-states and the other to the boron π-states), the different contributions to the transport properties, electrical conductivity and Hall coefficient were studied using the full potential-linearized augmented plane wave method and the generalized gradient approximation. Four different relaxation times were needed to adjust the electrical conductivity and Hall coefficient to experimental values. MgB2 doping was analysed in the rigid band approximation; this permitted a detailed study of the partial substitution of magnesium for aluminium (Mg1-xAlxB2). Other substitutions such as AB2 (A = Be, Sc, Zr, Nb and Ta) are also discussed. The MgB2 σ-bands (boron σ-states), which are associated to the large gap, are very anisotropic at EF, while the π bands have very little anisotropic character. In Mg1-xAlxB2, Tc diminishes with Al content; the other compounds are not superconductors or have a low Tc. In this work it was found that with electron doping, such as Al substitution, the σ-band conductivity decreases and the corresponding bands become less anisotropic. The σ-band contribution for BeB2 and ScB2 at EF is very small and the anisotropy is much lower. For Zr, Nb and Ta there are no σ-bands at EF. These results give a clear connection between superconductivity and the character of the σ-band, band conductivity, and band anisotropy. This gives a plausible explanation for the diminution of Tc with different doping of MgB2.

  1. Titania doping effect on superconducting properties of MgB2 bulk samples

    NASA Astrophysics Data System (ADS)

    Serrano, G.; Bridoux, G.; Serquis, A.

    2009-05-01

    In this work we study the microstructural and superconducting properties of doped and undoped bulk MgB2 samples prepared by solid-state reaction, with 0 and 2.5 %at. nominal TiO2 nanotubes contents, annealed at different temperatures in the 750-900°C range. We discuss the Tc, Jc and Hc2 performance and their correlation with the different synthesis parameters.

  2. Spherulitic (c-axis) Growth for Terrestrial (Mauna Kea, Hawaii) and Martian Hematite "blueberries"

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Ming, D. W.; Morris, R. V.

    2006-01-01

    Hematite concentrations observed by Thermal Emission Spectrometer (TES) onboard Mars Global Surveyor were considered a possible indicator for aqueous processes on Mars. Observations made by Opportunity show that the hematite at Meridiani Planum is present as spherules ( blueberries) and their fragments. The internal structure of the hematite spherules is not discernable at the resolution limit (approx.30 m/pixel) of Opportunity s Microscopic Imager (MI). A terrestrial analog for martian hematite spherules are spherules from hydrothermally altered and sulfate-rich tephra from the summit region of Mauna Kea volcano, Hawaii. The objective of this study is to determine the crystal growth fabric of the Mauna Kea hematite spherules using transmission electron microscopy (TEM) techniques and to relate that crystalline fabric to the observed TES signature of Meridiani Planum "blueberries." TEM analysis of Mauna Kea spherules exhibited a radial growth pattern consisting of "fibrous" hematite with the c-axis of hematite particles aligned along the elongation direction of the hematite fibers. The individual fibers appear to be made of coalesced nano-particles of hematite arranged with their c-axis oriented radially to form a spherical structure. Lattice fringes suggest long-range order across particles and along fibers. According to interpretations of thermal emission spectra for Meridian Planum hematite, the absence of a band at approx. 390/cm implies a geometry where c-face emission dominates. Because the c-face is perpendicular to the c-axis, this is precisely the geometry for the Mauna Kea spherules because the c-axis is aligned parallel to their radial growth direction. Therefore, we conclude as a working hypothesis that the martian spherules also have radial, c-axis growth pattern on a scale that is too small to be detected by the MER MI. Furthermore, by analogy with the Mauna Kea spherules, the martian blueberries could have formed during hydrothermal alteration of

  3. Metallurgical phases and their magnetism at the interface of nanoscale MgB2/Fe layered structures

    NASA Astrophysics Data System (ADS)

    Sahoo, B.; Keune, W.; Kuncser, V.; Becker, H.-W.; Röhlsberger, R.

    2011-11-01

    We report on the characterization of metallurgical phases and their magnetism at the interfaces of nanoscale MgB2/Fe layered structures. MgB2/57Fe multilayers with varying layer thicknesses were prepared by vacuum deposition and investigated, before and after annealing by electrical resistance measurements, x-ray diffraction and 57Fe conversion-electron Mössbauer spectroscopy (CEMS) down to 5 K. Interfacial Fe-B phases, such as Fe2B, were identified by CEMS. A superparamagnetic-to-ferromagnetic transition is observed with increasing 57Fe film thickness. Ultrahigh vacuum annealing at 500 °C of the multilayers leads to strong diffusion of Fe atoms into the boundary regions of the MgB2 layers. MgB2 in the as-grown multilayers is non-superconducting. Structural disorder and the effect of Fe interdiffusion contribute to the suppression of superconductivity in the MgB2 films of all the as-grown multilayers and the thinner annealed multilayers. However, an annealed MgB2/57Fe/MgB2 trilayer with thicker (500 Å) MgB2 layers is observed to be superconducting with an onset temperature of 25 K. At 5 K, the annealed trilayer can be conceived as being strongly chemically modulated, consisting of two partially Fe-doped superconducting MgB2 layers separated by an interdiffused weakly magnetic Fe-B interlayer, which is characterized by a low hyperfine magnetic field Bhf of ˜11 T. This chemically modulated layer structure of the trilayer after annealing was verified by Rutherford backscattering.

  4. Metallurgical phases and their magnetism at the interface of nanoscale MgB2/Fe layered structures.

    PubMed

    Sahoo, B; Keune, W; Kuncser, V; Becker, H-W; Röhlsberger, R

    2011-11-30

    We report on the characterization of metallurgical phases and their magnetism at the interfaces of nanoscale MgB(2)/Fe layered structures. MgB(2)/(57)Fe multilayers with varying layer thicknesses were prepared by vacuum deposition and investigated, before and after annealing by electrical resistance measurements, x-ray diffraction and (57)Fe conversion-electron Mössbauer spectroscopy (CEMS) down to 5 K. Interfacial Fe-B phases, such as Fe(2)B, were identified by CEMS. A superparamagnetic-to-ferromagnetic transition is observed with increasing (57)Fe film thickness. Ultrahigh vacuum annealing at 500 °C of the multilayers leads to strong diffusion of Fe atoms into the boundary regions of the MgB(2) layers. MgB(2) in the as-grown multilayers is non-superconducting. Structural disorder and the effect of Fe interdiffusion contribute to the suppression of superconductivity in the MgB(2) films of all the as-grown multilayers and the thinner annealed multilayers. However, an annealed MgB(2)/(57)Fe/MgB(2) trilayer with thicker (500 Å) MgB(2) layers is observed to be superconducting with an onset temperature of 25 K. At 5 K, the annealed trilayer can be conceived as being strongly chemically modulated, consisting of two partially Fe-doped superconducting MgB(2) layers separated by an interdiffused weakly magnetic Fe-B interlayer, which is characterized by a low hyperfine magnetic field B(hf) of ∼11 T. This chemically modulated layer structure of the trilayer after annealing was verified by Rutherford backscattering.

  5. From E2g to other modes: effects of pressure on electron-phonon interaction in MgB2.

    PubMed

    Singh, Prabhakar P

    2006-12-15

    We study the effects of pressure on the electron-phonon interaction in MgB2 using density-functional-based methods. Our results show that the superconductivity in MgB2 vanishes by 100 GPa, and then reappears at higher pressures. In particular, we find a superconducting transition temperature Tc approximately 2 K for mu*=0.1 at a pressure of 137 GPa.

  6. Observation of multiband effects in the microwave complex conductivity of pure and Al-doped MgB 2 samples

    NASA Astrophysics Data System (ADS)

    Di Gennaro, E.; Lamura, G.; Palenzona, A.; Putti, M.; Andreone, A.

    2004-08-01

    There is presently a general agreement that the simple inter-metallic compound MgB 2 is a conventional, phonon mediated, superconductor, and that the anomalies in its behaviour can be consistently explained by the existence of two different gaps. We present a study of the complex conductivity as a function of temperature in pure and Al-doped MgB 2 pellets by using a dielectrically loaded resonant cavity at 19 GHz.

  7. Large MgB2 Superconducting Coils for the Ignitor Experiment

    NASA Astrophysics Data System (ADS)

    Tumino, A.; Grasso, G.; Coppi, B.

    2012-10-01

    Intermediate temperature, superconducting cables have been adopted for the fabrication of the largest poloidal field coils of the Ignitor experiment. This is an important step to achieve better duty cycles in Ignitor-like machines with innovative magnet technologies compared to traditional superconductors. The commercially available MgB2 strands manufactured by Columbus Superconductors meets the target specifications for the considered coils, about 5 meters of outer diameter and maximum field on the conductor below 5 T, and they are also compatible with the Ignitor cryogenic system, which is designed to cool the machine at 30 K, although MgB2 may use colder gas at 10 K. The technical feasibility of these coils, as well as their stability and protection in the unlikely case of its quench, has been studied. The final design includes about 300 MgB2 multifilamentary strands of 1 mm in diameter and a copper pipe for the He-gas flow in the center. A mock-up cable has been manufactured. Measurements of the critical current Jc as a function of magnetic field and temperature have been done for the cable bent to a curvature radius of 20 cm and compared to the results of a straight sample. The feasability of the manufacturing and jacketing processes has thus been demonstrated.

  8. Effect of heating rates on microstructure and superconducting properties of pure MgB 2

    NASA Astrophysics Data System (ADS)

    Zhao, Qian; Liu, Yongchang; Han, Yajing; Ma, Zongqing; Shi, Qingzhi; Gao, Zhiming

    2009-07-01

    The influence of different heating rates, ranging from 5 to 30 K min -1, on the microstructure and superconducting of the MgB 2 bulk was investigated. No obvious variation in the grain size was found for the samples heated from 5 K min -1 to 20 K min -1 except for the changes in morphologies. Moreover, the grain refinement was obtained under the heating rate of 30 K min -1. The critical current density ( Jc) suggested that the 5 K min -1 sample had the best performance in high field. Here, the differential thermal analysis (DTA) was employed to analyze the kinetics of MgB 2 phase formation with the different heating rates. The results showed that the large amount of MgB 2 formed at low temperature, which lead to compact structures under the slow heating rate. The fast heating rate would promote the evaporation of Mg at high temperature, which was considered to generate the vacancy and impurities in the sample.

  9. Flux jumps in high-J c MgB2 bulks during pulsed field magnetization

    NASA Astrophysics Data System (ADS)

    Fujishiro, H.; Mochizuki, H.; Naito, T.; Ainslie, M. D.; Giunchi, G.

    2016-03-01

    Pulsed field magnetization (PFM) of a high-J c MgB2 bulk disk has been investigated at 20 K, in which flux jumps frequently occur for high pulsed fields. Using a numerical simulation of the PFM procedure, we estimated the time dependence of the local magnetic field and temperature during PFM. We analyzed the electromagnetic and thermal instability of the high-J c MgB2 bulk to avoid flux jumps using the time dependence of the critical thickness, d c(t), which shows the upper safety thickness to stabilize the superconductor magnetically, and the minimum propagation zone length, l m(t), to obtain dynamical stability. The values of d c(t) and l m(t) change along the thermally-stabilized direction with increasing temperature below the critical temperature, T c. However, the flux jump can be qualitatively understood by the local temperature, T(t), which exceeds T c in the bulk. Finally, possible solutions to avoid flux jumps in high-J c MgB2 bulks are discussed.

  10. l/f Noise in the Superconducting Transition of a MgB2 Thin Film

    NASA Technical Reports Server (NTRS)

    Lakew, B.; Aslam, S.; Jones, H.; Stevenson, T.; Cao, N.

    2010-01-01

    The noise voltage spectral density in the superconducting transition of a MgB2 thin film on a SiN-coated Si thick substrate was measured over the frequency range 1 Hz-to-1 KHz. Using established bolometer noise theory the theoretical noise components due to Johnson, 1/f(excess) and phonon noise are modeled to the measured data. It is shown that for the case of a MgB2 thin film in the vicinity of the mid-point of transition, coupled to a heat sink via a fairly high thermal conductance (approximately equal to 10(sup -1) W/K)) that the measured noise voltage spectrum is 1/f limited and exhibits lit dependence with a varying between 0.3 and 0.5 in the measured frequency range. At a video frame rate frequency of 30 Hz the measured noise voltage density in the film is approximately equal to 61 nV /the square root of HZ, using this value an upper limit of electrical NEP approximately equal to 0.67pW / the square root of Hz is implied for a practical MgB2 bolometer operating at 36.1 K.

  11. Influence of nanocrystalline boron precursor powder on superconductivity in MgB2 bulk.

    PubMed

    Zhang, Yun; Lu, Cheng; Zhou, Sihai; Joo, Jinho

    2009-12-01

    In this report, high-purity nanocrystalline boron powders processed by ball-milling were used as the precursor powders to fabricate MgB2 superconductor. The transport properties and the critical current density in the samples made from ball-milled boron powders and as-supplied boron powders were investigated. It was found that the ball-milled boron powders led to a significant enhancement of the critical current density in MgB2 sintered at 650 degrees C. The reason can be attributed to the small MgB2 grain size caused by the ball-milled boron precursor powders. The resistivity of the samples made from the ball-milled boron powder was lower than that of the sample from as-supplied boron powder. As the sintering temperature increased, both resistivity and upper critical field decreased in the samples using the ball-milled boron powders as a precursor. Poor connectivity and large strain are responsible for the high resistivity.

  12. Phonon modes of MgB2: super-lattice structures and spectral response.

    PubMed

    Alarco, Jose A; Chou, Alison; Talbot, Peter C; Mackinnon, Ian D R

    2014-11-28

    Micrometre-sized MgB2 crystals of varying quality, synthesized at low temperature and autogenous pressure, are compared using a combination of Raman and infra-red (IR) spectroscopy. These data, which include new peak positions in both spectroscopies for high quality MgB2, are interpreted using DFT calculations on phonon behaviour for symmetry-related structures. Raman and IR activity additional to that predicted by point group analyses of the P6/mmm symmetry are detected. These additional peaks, as well as the overall shapes of calculated phonon dispersion (PD) models are explained by assuming a double super-lattice, consistent with a lower symmetry structure for MgB2. A 2× super-lattice in the c-direction allows a simple correlation of the pair breaking energy and the superconducting gap by activation of corresponding acoustic frequencies. A consistent physical interpretation of these spectra is obtained when the position of a phonon anomaly defines a super-lattice modulation in the a-b plane.

  13. High-pressure synthesis of pure and doped superconducting MgB2 compounds

    NASA Astrophysics Data System (ADS)

    Toulemonde, P.; Musolino, N.; Flükiger, R.

    2003-02-01

    Superconducting properties of bulk, dense, pure MgB2 and doped (Mg1-xAx)B2 samples with A = Na, Ca, Cu, Ag, Zn and Al were studied for compositional ranges 0 < x leq 0.20. The effects on pinning properties and critical current were investigated, particularly for A = aluminium. The samples were sintered and/or synthesized at high pressure-high temperature in a cubic multi-anvil press (typically 3.5-6 GPa, 900-1000 °C). They were characterized by x-ray diffraction, scanning electron microscopy and their superconducting properties were investigated by ac susceptibility, magnetization (VSM and SQUID) and transport measurements under a magnetic field. Only Al really substitutes on the Mg site. The other elements form secondary phases with B or Mg which do not act as pinning centres. No positive effect is observed on the superconducting properties of the bulk MgB2 samples with these doping elements added: Tc, critical current jc, Hirr and Hc2. For Al, the effect on Hc2 remains small, and the irreversibility line does not move, thus not improving the critical current of the Al-doped MgB2 samples.

  14. Temperature effect on microstructure and electromagnetic performance of polycarbosilane and sugar-doped MgB2 wires

    NASA Astrophysics Data System (ADS)

    Shcherbakov, A. V.; Horvat, J.; Shcherbakova, O. V.; Novosel, N.; Babić, E.; Dou, S. X.

    2010-06-01

    The effect of processing temperature on structural and superconducting properties of 10 wt.% sugar- and 10 wt.% PCS-doped MgB2 wires is systematically investigated. It is demonstrated that these dopants significantly enhance the electromagnetic performance of Fe-clad MgB2 superconductor and increase its potential for practical application. The enhancement of in-field critical current density (Jc(Ba)) and upper critical field (Bc2) is due to formation of a large amount of lattice defects caused by impurities and C substitution into the MgB2 crystal lattice. High temperature sintering of sugar-doped sample results in as high Bc2 value as 37 T (at 5 K), which correlates with higher level of C substitution into MgB2 crystal lattice in this sample. In contrast, for PCS doped MgB2 wire higher Bc2 value (32 T at 5 K) is observed at lower sintering temperatures. In spite of the fact that the level of C in the crystal lattice and Bc2 value are higher in the sugar doped MgB2 sample, this sample has lower Jc(Ba) when compared to the sample with PCS addition. We speculate that it is due to a higher level of MgO impurities in the sugar doped sample (18.6 wt.% compared to 9.15 wt.% in the PCS doped sample), which results in the dissipation of supercurrent flowing through this sample.

  15. Self-sintering-assisted high intergranular connectivity in ball-milled ex situ MgB2 bulks

    NASA Astrophysics Data System (ADS)

    Mizutani, Shunsuke; Yamamoto, Akiyasu; Shimoyama, Jun-ichi; Ogino, Hiraku; Kishio, Kohji

    2014-11-01

    To understand the mechanisms leading to higher intergranular connectivity in polycrystalline ex situ MgB2 prepared using a pressure-less self-sintering technique, the influence of the initial particle size of the MgB2 powder was investigated. MgB2 bulks sintered at 900 °C for 24 h using ball-milled powders exhibited a network structure with both qualitatively and quantitatively improved intergranular couplings. The connectivity calculated using normal-state transport measurements reached a high value of ˜40%, which is comparable to that of MgB2 bulks fabricated via Mg diffusion or high-pressure-assisted processes. Moreover, the sintering time required to achieve a reasonably high connectivity of 25-30% was less than 1 h. Notably, microstructural analyses confirmed the formation of intergranular necks and grain boundaries during the early stage of sintering. These results suggested self-sintering of the ball-milled MgB2 bulks proceeded much more rapidly than those sintered using an MgB2 powder without ball-milling. Increased intergranular contact points and decreased gap length between grains in green compact are assumed to be the origins for the stimulated self-sintering and corresponding increase in the electrical connectivity.

  16. Observation of well-ordered metastable vortex lattice phases in superconducting MgB2 using small-angle neutron scattering.

    PubMed

    Das, P; Rastovski, C; O'Brien, T R; Schlesinger, K J; Dewhurst, C D; DeBeer-Schmitt, L; Zhigadlo, N D; Karpinski, J; Eskildsen, M R

    2012-04-20

    The vortex lattice (VL) symmetry and orientation in clean type-II superconductors depends sensitively on the host material anisotropy, vortex density and temperature, frequently leading to rich phase diagrams. Typically, a well-ordered VL is taken to imply a ground-state configuration for the vortex-vortex interaction. Using neutron scattering we studied the VL in MgB(2) for a number of field-temperature histories, discovering an unprecedented degree of metastability in connection with a known, second-order rotation transition. This allows, for the first time, structural studies of a well-ordered, nonequilibrium VL. While the mechanism responsible for the longevity of the metastable states is not resolved, we speculate it is due to a jamming of VL domains, preventing a rotation to the ground-state orientation.

  17. Observation of Well-ordered Metastable Vortex Lattice Phases in Superconducting MgB2 Using Small-Angle Neutron Scattering

    SciTech Connect

    Das, Pinaki; Rastovski, Catherine; O'Brien, Timothy; Schlesinger, Kimberly; Dewhurst, Charles; Debeer-Schmitt, Lisa M; Zhigadlo, Nikolai; Karpinski, Janusz; Eskildsen, Morten

    2012-01-01

    The vortex lattice (VL) symmetry and orientation in clean type-II superconductors depends sensitively on the host material anisotropy, vortex density and temperature, frequently leading to rich phase diagrams. Typically, a well-ordered VL is taken to imply a ground-state configuration for the vortex-vortex interaction. Using neutron scattering we studied the VL in MgB2 for a number of field-temperature histories, discovering an unprecedented degree of metastability in connection with a known, second-order rotation transition. This allows, for the first time, structural studies of a well-ordered, nonequilibrium VL. While the mechanism responsible for the longevity of the metastable states is not resolved, we speculate it is due to a jamming of VL domains, preventing a rotation to the ground-state orientation.

  18. Using helium as background gas to avoid hydrogen brittleness for MgB2 film fabrication on niobium substrate by HPCVD

    NASA Astrophysics Data System (ADS)

    Guo, Xin; Ni, Zhimao; Chen, Lizhi; Hu, Hui; Yang, Can; Feng, Qingrong; Liu, Kexin

    2016-05-01

    Magnesium diboride has shown potential as an alternative material for the application of superconducting RF cavities. However, if MgB2 films are fabricated on niobium substrates with HPCVD method, hydrogen brittleness will cause cracks on MgB2 film when it is bent. In this work, we have investigated the possibility of depositing MgB2 film on niobium in other background gases rather than hydrogen to avoid hydrogen brittleness. Though MgB2 films fabricated in nitrogen and argon have impurities and show poor superconducting properties, the MgB2 film fabricated in helium has similar morphology and superconducting properties of that prepared in hydrogen and no cracks are observed after bending. The problem of hydrogen brittleness can be solved by using helium as the background gas when fabricating MgB2 films on niobium substrates.

  19. Enhancement of the in-field Jc of MgB2 via SiCl4 doping

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Lin; Dou, S. X.; Hossain, M. S. A.; Cheng, Z. X.; Liao, X. Z.; Ghorbani, S. R.; Yao, Q. W.; Kim, J. H.; Silver, T.

    2010-06-01

    We present the following results. (1) We introduce a doping source for MgB2 , liquid SiCl4 , which is free of C, to significantly enhance the irreversibility field (Hirr) , the upper critical field (Hc2) , and the critical current density (Jc) with a little reduction in the critical temperature (Tc) . (2) Although Si can not be incorporated into the crystal lattice, a significant reduction in the a -axis lattice parameter was found, to the same extent as for carbon doping. (3) Based on the first-principles calculation, it is found that it is reliable to estimate the C concentration just from the reduction in the a -lattice parameter for C-doped MgB2 polycrystalline samples that are prepared at high sintering temperatures, but not for those prepared at low sintering temperatures. Strain effects and magnesium deficiency might be reasons for the a -lattice reduction in non-C or some of the C-added MgB2 samples. (4) The SiCl4 -doped MgB2 shows much higher Jc with superior field dependence above 20 K compared to undoped MgB2 and MgB2 doped with various carbon sources. (5) We introduce a parameter, RHH (Hc2/Hirr) , which can clearly reflect the degree of flux-pinning enhancement, providing us with guidance for further enhancing Jc . (6) It was found that spatial variation in the charge-carrier mean free path is responsible for the flux-pinning mechanism in the SiCl4 treated MgB2 with large in-field Jc .

  20. Lineation-parallel c-axis Fabric of Quartz Formed Under Water-rich Conditions

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Zhang, J.; Li, P.

    2014-12-01

    The crystallographic preferred orientation (CPO) of quartz is of great significance because it records much valuable information pertinent to the deformation of quartz-rich rocks in the continental crust. The lineation-parallel c-axis CPO (i.e., c-axis forming a maximum parallel to the lineation) in naturally deformed quartz is generally considered to form under high temperature (> ~550 ºC) conditions. However, most laboratory deformation experiments on quartzite failed to produce such a CPO at high temperatures up to 1200 ºC. Here we reported a new occurrence of the lineation-parallel c-axis CPO of quartz from kyanite-quartz veins in eclogite. Optical microstructural observations, fourier transform infrared (FTIR) and electron backscattered diffraction (EBSD) techniques were integrated to illuminate the nature of quartz CPOs. Quartz exhibits mostly straight to slightly curved grain boundaries, modest intracrystalline plasticity, and significant shape preferred orientation (SPO) and CPOs, indicating dislocation creep dominated the deformation of quartz. Kyanite grains in the veins are mostly strain-free, suggestive of their higher strength than quartz. The pronounced SPO and CPOs in kyanite were interpreted to originate from anisotropic crystal growth and/or mechanical rotation during vein-parallel shearing. FTIR results show quartz contains a trivial amount of structurally bound water (several tens of H/106 Si), while kyanite has a water content of 384-729 H/106 Si; however, petrographic observations suggest quartz from the veins were practically deformed under water-rich conditions. We argue that the observed lineation-parallel c-axis fabric in quartz was inherited from preexisting CPOs as a result of anisotropic grain growth under stress facilitated by water, but rather than due to a dominant c-slip. The preservation of the quartz CPOs probably benefited from the preexisting quartz CPOs which renders most quartz grains unsuitably oriented for an easy a-slip at

  1. Fabrication of MgB2 superconducting wires with a hybrid method combining internal-Mg-diffusion and powder-in-tube processes

    NASA Astrophysics Data System (ADS)

    Ye, ShuJun; Matsumoto, Akiyoshi; Togano, Kazumasa; Zhang, YunChao; Ohmura, Takahito; Kumakura, Hiroaki

    2014-05-01

    We have previously reported that the addition of Mg powder to the B powder layer (B layer) of internal-Mg-diffusion (IMD)-processed MgB2 wires can decrease the amount of unreacted B particles, and hence increase the critical current density (Jc). As the amount of Mg powder is increased, the diameter of the central Mg rod must be reduced in order to maintain an overall Mg:B molar ratio of 1:2, corresponding to stoichiometric MgB2. If this ratio is achieved by the Mg powder alone, then the required diameter of the Mg rod is zero, which means that the IMD process becomes the powder-in-tube (PIT) process. A hybrid process intermediate between the IMD and PIT processes is proposed as a new approach for fabricating MgB2 wires. In the present study, the critical current and microstructure of MgB2 wires fabricated using this method are investigated. It is found that the method yields a higher engineering critical current density (Je, = Jc × MgB2 area fraction, where the MgB2 area fraction corresponds to the ratio of the MgB2 cross-sectional area to the total cross-sectional area of the wire) than that for either the IMD or the PIT method. Compared with the IMD method, the MgB2 layer thickness (the thickness of the MgB2 layer in the transverse cross section) is increased and the diameter of the central hole is decreased, thus increasing the MgB2 area fraction The proposed method also achieves a much higher MgB2 layer density, and thus a much higher Jc, than is possible using the PIT method. The combination of these factors leads to the enhanced Je value of MgB2 wires.

  2. Pulsed laser deposition of c-axis untilted YBCO films on c-axis tilted ISD MgO-buffered metallic substrates

    NASA Astrophysics Data System (ADS)

    Li, M.; Ma, B.; Koritala, R. E.; Fisher, B. L.; Venkataraman, K.; Maroni, V. A.; Vlasko-Vlasov, V.; Berghuis, P.; Welp, U.; Gray, K. E.; Balachandran, U.

    2003-05-01

    Biaxially textured MgO template layer was deposited on nontextured metal substrates by inclined-substrate deposition (ISD) at a deposition rate of 24-600 nm/min. c-axis untilted YBa 2Cu 3O 7- x (YBCO) films were deposited on these MgO-buffered substrates by pulsed laser deposition. The crystalline structures of the YBCO films and MgO layers were examined by X-ray pole figure analysis, X-ray φ-scans, and χ-scans. A tilt angle of 33° of the MgO[0 0 1] with respect to the substrate normal and c-axis untilted YBCO films were observed, respectively. Good biaxial texture of these films with full-width-at-half-maximum values of 13.8° and 10.6° for the φ-scans of YBCO(1 0 3) and MgO(2 2 0), respectively, were obtained. Morphologies were examined by scanning electron microscopy, which revealed a unique roof-tile feature and columnar grain growth for the ISD MgO layer. Raman spectroscopy and magneto-optical image technique were also used to evaluate the quality of the YBCO film. An angular dependence of Jc on the direction of an applied magnetic field confirmed the c-axis untilted orientation of the YBCO films. Tc=90 K with sharp transition and Jc=3.0×10 5 A/cm 2 at 77 K in zero field were obtained on 0.4-μm-thick YBCO films.

  3. MgB2: doped or with pressure, four systems same behaviour

    NASA Astrophysics Data System (ADS)

    de La Mora, Pablo; Ruiz-Chavarria, Sabina; Estevez, Ulises; Tavizon, Gustavo

    2007-03-01

    MgB2, the intermediate Tc superconductor, can be doped with carbon, aluminium and scandium and it has been also studied experimentally under pressure, in these four cases Tc diminishes. In previous studies we have shown, with electronic structure calculations, that when Mg is substituted with Sc [(Mg,Sc)B2] the drop of Tc can be associated with the loss of electrical anisotropy of the σ-bands [1]. When Mg is substituted with Al [(Mg,Al)B2] or B is substituted with C [Mg(B,C)2] then, with a change of doping scale, a common Tc curve is obtained for both systems, comparison with the σ-DOS shows that Tc drop is due to σ-band-filling and to σ-band anisotropy loss [2]. In further studies we have found that both these features, σ-band anisotropy reduction and the loss of σ-band-carriers, can be associated to the drop of Tc in these three doped systems [Mg(B,C)2, Mg,Al)B2 and (Mg,Sc)B2] and in MgB2 under pressure. All these studies show that: (a) with a change of doping scale then Tc in both the C and Al doped systems follows the same curve which is very close to the σ-DOS; (b) for the four systems both the σ-band anisotropy and the number of σ-carriers are two fundamental physical properties of the relatively high Tc in MgB2. [1] J. Phys.: Condens. Matter 18 (2006) 1403-1412 [2] cond-mat/0606019

  4. Isotope effect on electron-phonon interaction in the multiband superconductor MgB2

    DOE PAGES

    Mou, Daixiang; Manni, Soham; Taufour, Valentin; Wu, Yun; Huang, Lunan; Bud'ko, S. L.; Canfield, P. C.; Kaminski, Adam

    2016-04-07

    We investigate the effect of isotope substitution on the electron-phonon interaction in the multiband superconductor MgB2 using tunable laser-based angle-resolved photoemission spectroscopy. The kink structure around 70 meV in the σ band, which is caused by electron coupling to the E2g phonon mode, is shifted to higher binding energy by ~3.5 meV in Mg10B2 and the shift is not affected by superconducting transition. Furthermore, these results serve as the benchmark for investigations of isotope effects in known, unconventional superconductors and newly discovered superconductors where the origin of pairing is unknown.

  5. Enhanced Transport Currents in Cu-Sheathed MgB2 Wires

    SciTech Connect

    Eisterer, M; Glowacki, B A.; Weber, H W.; Greenwood, Lawrence R. ); Majoros, M

    2002-01-01

    Copper sheathed MgB2 wires, prepared by an in-situ process, were exposed to neutron radiation in order to introduce defects into the superconductor. The high level of disorder (4.6 x 10{sup -2} dpa) leads to a decreases of the transition temperature by more than 4 K, but to an increase of the slope of the irreversibility line, thus resulting in higher irreversibility fields at low temperatures. The transport currents are significantly enhanced at 4.2 K for fields above 2 T.

  6. Experimental evidence for anisotropic double-gap behavior in MgB2.

    PubMed

    Cubitt, R; Levett, S; Bud'ko, S L; Anderson, N E; Canfield, P C

    2003-04-18

    The behavior of a type II superconductor in the presence of a magnetic field is governed by two characteristic length scales, the London penetration depth and the coherence length. We present magnetization measurements on MgB2 powder showing an anisotropy in the upper critical field and hence the coherence length of 6. Using the technique of small angle neutron scattering we show that this anisotropy is not mirrored in the London penetration depth, which is almost isotropic. This result can be explained by the superconductivity residing in two distinct electronic bands of the material, only one of which is highly anisotropic.

  7. Dramatic role of critical current anisotropy on flux avalanches in MgB2 films.

    PubMed

    Albrecht, J; Matveev, A T; Strempfer, J; Habermeier, H-U; Shantsev, D V; Galperin, Y M; Johansen, T H

    2007-03-16

    Anisotropic penetration of magnetic flux in MgB(2) films grown on vicinal sapphire substrates is investigated using magneto-optical imaging. Regular penetration above 10 K proceeds more easily along the substrate surface steps, the anisotropy of the critical current being 6%. At lower temperatures the penetration occurs via abrupt dendritic avalanches that preferentially propagate perpendicular to the surface steps. This inverse anisotropy in the penetration pattern becomes dramatic very close to 10 K where all flux avalanches propagate in the strongest pinning direction. The observed behavior is fully explained using a thermomagnetic model of the dendritic instability.

  8. Isotope effect on electron-phonon interaction in the multiband superconductor MgB2

    NASA Astrophysics Data System (ADS)

    Mou, Daixiang; Manni, Soham; Taufour, Valentin; Wu, Yun; Huang, Lunan; Bud'ko, S. L.; Canfield, P. C.; Kaminski, Adam

    2016-04-01

    We investigate the effect of isotope substitution on the electron-phonon interaction in the multiband superconductor MgB2 using tunable laser-based angle-resolved photoemission spectroscopy. The kink structure around 70 meV in the σ band, which is caused by electron coupling to the E2 g phonon mode, is shifted to higher binding energy by ˜3.5 meV in Mg 10B2 and the shift is not affected by superconducting transition. These results serve as the benchmark for investigations of isotope effects in known, unconventional superconductors and newly discovered superconductors where the origin of pairing is unknown.

  9. Exponential temperature dependence of the penetration depth in single crystal MgB2.

    PubMed

    Manzano, F; Carrington, A; Hussey, N E; Lee, S; Yamamoto, A; Tajima, S

    2002-01-28

    The temperature dependence of the London penetration depth, lambda(T), was measured in both single crystal and polycrystalline MgB2 samples by a high-resolution, radio frequency technique. A clear exponential temperature dependence of lambda(T) was observed at low temperature, indicating s-wave pairing. A BCS fit to the lowest temperature data gives an in-plane energy gap Delta of 30+/-2 K (2Delta/T(c) = 1.5+/-0.1), which is significantly smaller than the standard BCS weak coupling value of 3.5. We find that the data are best described by a two-gap model.

  10. Experimental and numerical study of transverse flux shaking in MgB2 superconductors

    NASA Astrophysics Data System (ADS)

    Luzuriaga, J.; Badía-Majos, A.; Nieva, G.; Giordano, J. L.; López, C.; Serquis, A.; Serrano, G.

    2009-05-01

    Magnetization measurements in the mixed state of thick strips of carbon nanotube doped MgB2 in crossed fields configurations are reported, together with numerical simulations performed with a geometry equivalent to the sample shape. The samples were subjected to magnetic field components along mutually perpendicular directions, an oscillatory field in one direction and a remanent magnetization in the perpendicular direction. The magnetic response along the oscillatory field and the magnetic relaxation perpendicular to it are observed and simulated using the critical state theory. A remarkable quantitative agreement between the experiment and the theory was obtained.

  11. Micro-SQUIDs based on MgB2 nano-bridges for NEMS readout

    NASA Astrophysics Data System (ADS)

    Lolli, L.; Li, T.; Portesi, C.; Taralli, E.; Acharya, N.; Chen, K.; Rajteri, M.; Cox, D.; Monticone, E.; Gallop, J.; Hao, L.

    2016-10-01

    We show the results obtained from the fabrication and characterisation of MgB2 loops with two nano-bridges as superconducting weak links. These ring structures are made to operate as superconducting quantum interference devices and are investigated as readout system for cryogenics NEMS resonators. The nano-constrictions are fabricated by EBL and ion beam milling. The SQUIDs are characterised at different temperatures and measurements of the noise levels have been performed. The devices show high critical current densities and voltage modulations under applied magnetic field, close to the critical temperatures.

  12. Development of hot-electron THz bolometric mixers using MgB2 thin films

    NASA Astrophysics Data System (ADS)

    Cunnane, Daniel; Kawamura, Jonathan; Karasik, Boris S.; Wolak, Matthaeus A.; Xi, X. X.

    2014-07-01

    Terahertz high-resolution spectroscopy of interstellar molecular clouds greatly relies on hot-electron superconducting bolometric (HEB) mixers. Current state-of-the-art receivers use mixer devices made from ultrathin (~ 3-5 nm) films of NbN with critical temperature ~ 9-11 K. Such mixers have been deployed on a number of groundbased, suborbital, and orbital platforms including the HIFI instrument on the Hershel Space Observatory. Despite its good sensitivity and well-established fabrication process, the NbN HEB mixer suffers from the narrow intermediate frequency (IF) bandwidth ~ 2-3 GHz and is limited to operation at liquid Helium temperature. As the heterodyne receivers are now trending towards "high THz" frequencies, the need in a larger IF bandwidth becomes more pressing since the same velocity resolution for a Doppler shifted line at 5 THz requires a 5-times greater IF bandwidth than at 1 THz. Our work is focusing on the realization of practical HEB mixers using ultrathin (10-20 nm) MgB2 films. They are prepared using a Hybrid Physical-Chemical Vapor Deposition (HPCVD) process yielding ultrathin films with critical temperature ~ 37-39 K. The expectation is that the combination of small thickness, high acoustic phonon transparency at the interface with the substrate, and very short electron-phonon relaxation time may lead to IF bandwidth ~ 10 GHz or even higher. SiC continues to be the most favorable substrate for MgB2 growth and as a result, a study has been conducted on the transparency of SiC at THz frequencies. FTIR measurements show that semi-insulating SiC substrates are at least as transparent as Si up to 2.5 THz. Currently films are passivated using a thin (10 nm) SiO2 layer which is deposited ex-situ via RF magnetron sputtering. Micron-sized spiral antenna-coupled HEB mixers have been fabricated using MgB2 films as thin as 10 nm. Fabrication was done using contact UV lithography and Ar Ion milling, with E-beam evaporated Au films deposited for the antenna. Measurements have been carried out on these devices in the DC, Microwave, and THz regimes. The devices are capable of mixing signals above 20 K indicating that operation may be possible using a cryogen-free cooling system. We will report the results of all measurements taken to indicate the local oscillator power requirements and the IF bandwidth of MgB2 HEB mixers.

  13. Second-phase segregation and micro strain/lattice parameter dependent transition temperature in polycrystalline MgB2

    NASA Astrophysics Data System (ADS)

    Cai, Qi; Liu, Yongchang; Guo, Qianying; Ma, Zongqing; Li, Huijun

    2016-10-01

    Un-doped, metal-doped, and carbon-doped MgB2 samples were prepared by furnace cooling and quenching to investigate the second phase behavior and the resultant critical current density J c performance under different heat treatment processes, which is infrequently mentioned, and to explore the strain/lattice parameter dependence of the superconducting transition temperature. To release the residual stress, quenching induced second-phase segregation in these MgB2 samples shows a negative effect on the J c. Nevertheless, the dislocations and the lattice distortion assisted the enhancement of the high-field J c in the un-doped and metal-doped MgB2 samples, which indicated that quenching could be technically applied for the fabrication of metal-sheathed MgB2 wires and tapes to obtain excellent J c. After evaluating the micro strain and the lattice parameters’ (c and a for hexagonal lattice) variation, a dome was observed in the illustration of the strain/lattice parameter c/a dependence of T c, which differed from the reported linear relation in previous work. This suggests that the c/a ratio and the strain may be the predominant parameters for scaling of the superconducting dome width in the superconducting phase diagram of MgB2.

  14. RAPID COMMUNICATION: Electrical transport properties of bulk MgB2 materials synthesized by electrolysis on fused mixtures of MgCl2, NaCl, KCl and MgB2O4

    NASA Astrophysics Data System (ADS)

    Yoshii, Kenji; Abe, Hideki

    2002-10-01

    Bulk MgB2 materials have been synthesized electrochemically from fused mixtures of MgCl2, NaCl, KCl and MgB2O4 under an Ar flow at 600 °C. Electrical resistivity measurements for the samples show an onset of superconducting transition at ~37 K in the absence of an applied magnetic field. This temperature is quite close to that observed from magnetic measurements. The resistivity decreases to zero below ~32 K. From the applied-field dependence of resistivity, the upper critical field and the coherence length were calculated to be 9.7 T and 5.9 nm at 0 K, respectively.

  15. Enhancement at low temperatures of the critical current density for Au-coated MgB2 thin films

    NASA Astrophysics Data System (ADS)

    Choi, Eun-Mi; Lee, Hyun-Sook; Kim, Heon-Jung; Lee, Sung-Ik; Kim, Hyeong-Jin; Kang, W. N.

    2004-01-01

    We measured the superconducting critical current densities (Jc) from the magnetization hysteresis (M-H) loop for Au-coated MgB2 thin films. The purpose of this experiment was to determine whether the vortex avalanche phenomenon which suppresses the Jc for low temperature (T<15 K) and low field (H⩽1000 Oe) could be cured by gold deposition. This avalanche, called flux noise, has been a headache in applications of MgB2 thin films. Fortunately, the flux noise in the M-H loop is suppressed with increasing Au-film thickness and finally disappears when the thickness of the gold becomes 2.55 μm. We found a way to remove one obstacle for applications of MgB2 thin films as an superconducting device.

  16. Enhancement of low temperature Critical current density of MgB2 thin films by Au coating

    NASA Astrophysics Data System (ADS)

    Choi, Eun-Mi; Lee, Hyun-Sook; Kim, Heon-Jung; Lee, Sung-Ik; Kim, Hyeong-Jin; Kang, W. N.

    2004-03-01

    We measured the superconducting critical current densities (J_c) from the magnetization hysteresis (M-H) loop while depositing the gold on top of the MgB2 thin film. The purpose of this experiment is whether the vortex avalanche phenomena which suppress the Jc for low temperature ( T < 15 K ) and low field (H ≤ 1000 Oe) can be cured by gold deposition. This avalanche called flux noise has been headache for the application of the MgB2 thin films. As increasing the thickness of Au film, fortunately, the flux noise in the M-H loop is suppressed and finally disappears when thickness of the gold becomes 2.55 ¥im. From this experiment, the obstacles of the application of MgB2 thin film are completely overcome

  17. Mechanism of enhancement in electromagnetic properties of MgB2 by Nano SiC doping.

    PubMed

    Dou, S X; Shcherbakova, O; Yeoh, W K; Yoeh, W K; Kim, J H; Soltanian, S; Wang, X L; Senatore, C; Flukiger, R; Dhalle, M; Husnjak, O; Babic, E

    2007-03-01

    A comparative study of pure, SiC, and C doped MgB2 wires has revealed that the SiC doping allowed C substitution and MgB2 formation to take place simultaneously at low temperatures. C substitution enhances H_{c2}, while the defects, small grain size, and nanoinclusions induced by C incorporation and low-temperature processing are responsible for the improvement in J_{c}. The irreversibility field (H_{irr}) for the SiC doped sample reached the benchmarking value of 10 T at 20 K, exceeding that of NbTi at 4.2 K. This dual reaction model also enables us to predict desirable dopants for enhancing the performance properties of MgB2.

  18. Vortex flux pinning mechanism and enhancement of in-field Jc in succinic acid doped MgB2

    NASA Astrophysics Data System (ADS)

    Ghorbani, S. R.; Darini, M.; Wang, X. L.; Hossain, M. S. A.; Dou, S. X.

    2013-08-01

    The field dependence of the resistivity and the critical current density, Jc(B), of MgB2 doped with 10 wt% wet and dry succinic acid have been investigated by magnetic measurements. The dry succinic acid significantly enhanced the upper critical field, the irreversibility field, and the Jc(B) compared to the wet succinic acid doped MgB2 and the pure MgB2. The field dependence of Jc(B) was analyzed within the collective pinning model. The observed temperature dependence of the crossover field, Bsb(T), from the single vortex to the small vortex bundle pinning regime shows that flux pinning arising from variation in the critical temperature, δTc, is the dominant mechanism for the wet sample over the whole studied temperature range, while there is a competition between δTc pinning and the pinning from variation in the mean free path, δl, for the dry sample.

  19. A study on the nonlinear microwave electrodynamic response of e-beam evaporated MgB2 superconducting thin films

    NASA Astrophysics Data System (ADS)

    Andreone, A.; Di Gennaro, E.; Lamura, G.; Salluzzo, M.; Purnell, A.; Cohen, L. F.; Hao, L.; Gallop, J.; Cantoni, C.; Paranthaman, M.

    2003-02-01

    We present a study on the temperature and field dependence of the microwave surface impedance Zs in thin films of the superconducting MgB2 compound. Samples were prepared by e-beam evaporation of boron on r-plane sapphire followed by an ex situ annealing in Mg vapour. Critical temperature values range between 26 and 38 K. Surface impedance measurements (Zs = Rs + iXs) were performed from 2 K close to Tc in the microwave region up to 20 GHz via parallel plate or dielectrically loaded resonators in 'symmetric' (two MgB2 films) and asymmetric (an MgB2 film and a commercial YBCO control film) configurations. At high microwave power, frequency domain measurements show a characteristic signature associated with weak links and this appears to be the limiting factor governing the performance of these films.

  20. Investigations of current limiting properties of the MgB2 wires subjected to pulse overcurrents in the benchtop tester

    NASA Astrophysics Data System (ADS)

    Ye, Lin; Majoros, M.; Campbell, A. M.; Coombs, T.; Harrison, S.; Sargent, P.; Haslett, M.; Husband, M.

    2007-04-01

    A laboratory scale desktop test system including a cryogenic system, an AC pulse generation system and a real time data acquisition program in LabView/DAQmx, has been developed to evaluate the quench properties of MgB2 wires as an element in a superconducting fault current limiter under pulse overcurrents at 25 K in self-field conditions. The MgB2 samples started from a superconducting state and demonstrated good current limiting properties characterized by a fast transition to the normal state during the first half of the cycle and a continuously limiting effect in the subsequent cycles without burnouts. The experimental and numerical simulation results on the quench behaviour indicate the feasibility of using MgB2 for future superconducting fault current limiter (SFCL) applications. This work is supported by Rolls-Royce Plc and the UK Department of Trade & Industry (DTI).

  1. Evidence of new pinning centers in irradiated MgB2

    NASA Astrophysics Data System (ADS)

    Tarantini, C.; Martinelli, A.; Manfrinetti, P.; Palenzona, A.; Pallecchi, I.; Putti, M.; Ferdeghini, C.; Cimberle, M. R.

    2008-03-01

    It has been shown that C or SiC addictions can strongly enhance upper critical field of MgB2, leading to an in-field increase of critical current, but without introducing pinning centers other than grain boundaries. On the contrary neutron irradiation introduces new pinning centers, as highlighted by a significant shift of the maximum of pinning force and by a strong improvement of Jc at high field. This effect can be correlated to the defects that neutron irradiation produces. In fact TEM images show the presence of nanometric amorphous regions whose sizes are compatible with the coherence length and such as to act as pinning centers through two different mechanisms. The influence that neutron irradiation induces on MgB2 is also confirmed by magnetization decays that, differently by doped samples, show an important enhancement of pinning energies at high field. These measurements highlight as the increase of pinning energy with irradiation fluence is strongly correlated with Jc improvement.

  2. Thermal study of a cryogen-less MgB2 cavity

    NASA Astrophysics Data System (ADS)

    Holzbauer, J. P.; Nassiri, A.

    2014-12-01

    Recent efforts towards production of high-quality magnesium diboride (MgB2) coatings have raised the possibility of producing usable accelerating cavities. Work continues to reliably produce films of sufficient quality over the large, complex surface area of an accelerating cavity, but this technology would open many interesting technical opportunities. One of these is to replace the traditionally required liquid helium cryogenic systems with a dry system based on cryocoolers. This is made possible by the much higher Tc of MgB2, allowing operation closer to 30 K where cryocooler efficiency becomes competitive with alternative systems. This removes the need for pressure vessels in the cryomodule as well as internal distribution systems, greatly simplifying cryomodule design and fabrication. The lack of uniform cooling over the cavity surface, however, complicates behavior by coupling RF losses, heat leak, and cooling design in a way not seen in traditional SRF cavities. In this paper, these complexities are explored, including realistic cryocooler performance, temperature dependant RF losses, and standard thermal management challenges.

  3. The Effect of Argon Ambient Pressure and Annealing Time on Bulk MgB2 Superconductor

    NASA Astrophysics Data System (ADS)

    Erdem, Murat; Ozturk, Ozgur; Asikuzun, Elif; Kaya, Seydanur; Safran, Serap; Kilic, Ahmet; Terzioglu, Cabir

    2015-03-01

    The effects of Ar ambient pressure (vacuum, 0B, 10B and 20B) and annealing times (0.5 h and 1 h) on microstructural, superconducting and mechanical properties of bulk superconducting MgB2 are investigated. The samples are produced using the solid state reaction method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) measurements were performed for determination of the crystal structure, and surface morphology of MgB2 samples, respectively. The superconducting properties were studied by AC magnetic susceptibility and DC resistivity measurements. Increasing the Ar pressure decreased the lattice parameters and hence the average grain size. Increasing the annealing time results in larger lattice parameters and larger grain formation. The susceptibility measurements revealed two step transition which is reminiscent of granular superconductors. The intra-grain transition temperature is determined to be 38.4 K for all samples. The inter-grain transition temperatures of 37.2 K is obtained for samples produced under Ar ambient. The samples produced under Ar ambient have better superconducting properties than the ones produced in vacuum. Increasing the annealing time under vacuum further decreases the superconducting properties probably due to Mg loss. This research is supported by Kastamonu University Scientific Research Projects Coordination Department under the Grant No. KUBAP-03/2012-03.

  4. Vortex dynamics in superconducting MgB2 and prospects for applications.

    PubMed

    Bugoslavsky, Y; Perkins, G K; Qi, X; Cohen, L F; Caplin, A D

    2001-03-29

    The recently discovered superconductor magnesium diboride, MgB2, has a transition temperature, Tc, approaching 40 K, placing it intermediate between the families of low- and high-temperature superconductors. In practical applications, superconductors are permeated by quantized vortices of magnetic flux. When a supercurrent flows, there is dissipation of energy unless these vortices are 'pinned' in some way, and so inhibited from moving under the influence of the Lorentz force. Such vortex motion ultimately determines the critical current density, Jc, which the superconductor can support. Vortex behaviour has proved to be more complicated in high-temperature superconductors than in low-temperature superconductors and, although this has stimulated extensive theoretical and experimental research, it has also impeded applications. Here we describe the vortex behaviour in MgB2, as reflected in Jc and in the vortex creep rate, S, the latter being a measure of how fast the 'persistent' supercurrents decay. Our results show that naturally occurring grain boundaries are highly transparent to supercurrents, a desirable property which contrasts with the behaviour of the high-temperature superconductors. On the other hand, we observe a steep, practically deleterious decline in Jc with increasing magnetic field, which is likely to reflect the high degree of crystalline perfection in our samples, and hence a low vortex pinning energy.

  5. High critical current density and enhanced irreversibility field in superconducting MgB2 thin films.

    PubMed

    Eom, C B; Lee, M K; Choi, J H; Belenky, L J; Song, X; Cooley, L D; Naus, M T; Patnaik, S; Jiang, J; Rikel, M; Polyanskii, A; Gurevich, A; Cai, X Y; Bu, S D; Babcock, S E; Hellstrom, E E; Larbalestier, D C; Rogado, N; Regan, K A; Hayward, M A; He, T; Slusky, J S; Inumaru, K; Haas, M K; Cava, R J

    2001-05-31

    The discovery of superconductivity at 39 K in magnesium diboride offers the possibility of a new class of low-cost, high-performance superconducting materials for magnets and electronic applications. This compound has twice the transition temperature of Nb3Sn and four times that of Nb-Ti alloy, and the vital prerequisite of strongly linked current flow has already been demonstrated. One possible drawback, however, is that the magnetic field at which superconductivity is destroyed is modest. Furthermore, the field which limits the range of practical applications-the irreversibility field H*(T)-is approximately 7 T at liquid helium temperature (4.2 K), significantly lower than about 10 T for Nb-Ti (ref. 6) and approximately 20 T for Nb3Sn (ref. 7). Here we show that MgB2 thin films that are alloyed with oxygen can exhibit a much steeper temperature dependence of H*(T) than is observed in bulk materials, yielding an H* value at 4.2 K greater than 14 T. In addition, very high critical current densities at 4.2 K are achieved: 1 MA cm-2 at 1 T and 105 A cm-2 at 10 T. These results demonstrate that MgB2 has potential for high-field superconducting applications.

  6. Ab initio investigation of the electronic and geometric structure of magnesium diboride, MgB2.

    PubMed

    Tzeli, Demeter; Mavridis, Aristides

    2005-12-01

    Employing multireference variational (MRCI) and coupled cluster (CC) methods combined with quadruple-zeta quality correlation-consistent basis set, we have studied 36 states of the magnesium diboride (MgB(2)) molecule as well as 17 states of the experimentally unknown diatomic MgB. For all states of MgB(2), we report geometries, atomization energies, and dipole moments, while for the first 5 states, potential energy profiles have been also constructed. The ground state is formally of (1)A(1) V-shaped symmetry with an atomization energy of 108.1(109) kcal/mol at the MRCI(MRCI + Davidson correction) level. The first excited state ((3)B(1)) is less than 1 kcal/mol above the X(1)A(1) state, with the next state of linear Mg-B-B geometry (b(3)Sigma(-)) located 10 kcal/mol higher. In all states, bent or linear, the bonding is complicated and unconventional because of the extraordinary bonding agility of the boron atom(s).

  7. Strongly linked current flow in polycrystalline forms of the superconductor MgB2.

    PubMed

    Larbalestier, D C; Cooley, L D; Rikel, M O; Polyanskii, A A; Jiang, J; Patnaik, S; Cai, X Y; Feldmann, D M; Gurevich, A; Squitieri, A A; Naus, M T; Eom, C B; Hellstrom, E E; Cava, R J; Regan, K A; Rogado, N; Hayward, M A; He, T; Slusky, J S; Khalifah, P; Inumaru, K; Haas, M

    2001-03-01

    The discovery of superconductivity at 39 K in magnesium diboride, MgB2, raises many issues, a critical one being whether this material resembles a high-temperature copper oxide superconductor or a low-temperature metallic superconductor in terms of its behaviour in strong magnetic fields. Although the copper oxides exhibit very high transition temperatures, their in-field performance is compromized by their large anisotropy, the result of which is to restrict high bulk current densities to a region much less than the full magnetic-field-temperature (H-T) space over which superconductivity is found. Moreover, the weak coupling across grain boundaries makes transport current densities in untextured polycrystalline samples low and strongly sensitive to magnetic field. Here we report that, despite the multiphase, untextured, microscale, subdivided nature of our MgB2 samples, supercurrents flow throughout the material without exhibiting strong sensitivity to weak magnetic fields. Our combined magnetization, magneto-optical, microscopy and X-ray investigations show that the supercurrent density is mostly determined by flux pinning, rather than by the grain boundary connectivity. Our results therefore suggest that this new superconductor class is not compromized by weak-link problems, a conclusion of significance for practical applications if higher temperature analogues of this compound can be discovered.

  8. Enhanced critical current properties observed in Na2CO3-doped MgB2

    NASA Astrophysics Data System (ADS)

    Ueda, Shinya; Shimoyama, Jun-ichi; Yamamoto, Akiyasu; Horii, Shigeru; Kishio, Kohji

    2004-07-01

    A significant improvement of the critical current properties in MgB2 bulk has been attained by sodium carbonate doping. A series of Mg1-2xB2(Na2CO3)x bulk samples with x = 0-0.1 were prepared by solid-state reaction in sealed stainless tubes. Both the critical current density, Jc, and irreversibility field, Hirr, at 20 K were systematically improved up to x = 0.055 and decreased monotonically by excess doping, while their Tcs were continuously decreased with an increase of x. The sample with x = 0.055, having a slightly decreased Tc of 37.6 K, recorded the best critical current performance at 20 K with Jc of 3.8 × 105 A cm-2 in self-field and mgr0Hirr of approximately 6 T. Both small particles of MgO and a carbon-containing local region, Mg(B,C)2, are believed to act as effective pinning centres, resulting in an enhancement of the flux pinning force. In addition, the coherence length xgr of the MgB2 was dramatically shortened by sodium carbonate doping, and consequently the mgr0Hc 2 was enhanced to approximately 29 T at the highest doping level of x = 0.10.

  9. Structural Studies of Metastable and Ground State Vortex Lattice Domains in MgB2

    NASA Astrophysics Data System (ADS)

    de Waard, E. R.; Kuhn, S. J.; Rastovski, C.; Eskildsen, M. R.; Leishman, A.; Dewhurst, C. D.; Debeer-Schmitt, L.; Littrell, K.; Karpinski, J.; Zhigadlo, N. D.

    2015-03-01

    Small-angle neutron scattering (SANS) studies of the vortex lattice (VL) in the type-II superconductor MgB2 have revealed an unprecedented degree of metastability that is demonstrably not due to vortex pinning, [C. Rastovski et al . , Phys. Rev. Lett. 111, 107002 (2013)]. Application of an AC magnetic field to drive the VL to the ground state revealed a two-step power law behavior, indicating a slow nucleation of ground state domains followed by a faster growth. The dependence on the number of applied AC cycles is reminiscent of jamming of soft, frictionless spheres. Here, we report on detailed structural studies of both metastable and ground state VL domains. These include measurements of VL correlation lengths as well as spatially resolved SANS measurements showing the VL domain distribution within the MgB2 single crystal. We discuss these results and how they may help to resolve the mechanism responsible for stabilizing the metastable VL phases. This work is supported by the U.S. Department of Energy, Office of Basic Energy Sciences under Award DE-FG02-10ER46783.

  10. A Solid Nitrogen Cooled MgB2 “Demonstration” Coil for MRI Applications

    PubMed Central

    Yao, Weijun; Bascuñán, Juan; Kim, Woo-Seok; Hahn, Seungyong; Lee, Haigun; Iwasa, Yukikazu

    2009-01-01

    A 700-mm bore superconducting magnet was built and operated in our laboratory to demonstrate the feasibility of newly developed MgB2 superconductor wire for fabricating MRI magnets. The magnet, an assembly of 10 coils each wound with a reacted and s-glass insulated wire ~1-km long, was immersed in solid nitrogen rather than in a bath of liquid cryogen. This MgB2 magnet was designed to operate in the temperature range 10–15 K, maintained by a cryocooler. A combination of this “wide” temperature range and immersion of the winding in solid nitrogen enables this magnet to operate under conditions not possible with a low temperature superconductor (LTS) counterpart. Tested individually at 13 K, each coil could carry current up to 100 A. When assembled into the magnet, some coils, however, became resistive, causing the magnet to prematurely quench at currents ranging from 79 A to 88 A, at which point the magnet generated a center field of 0.54 T. Despite the presence of a large volume (50 liters) of solid nitrogen in the cold body, cooldown from 77 K to 10 K went smoothly. PMID:20390056

  11. A Solid Nitrogen Cooled MgB(2) "Demonstration" Coil for MRI Applications.

    PubMed

    Yao, Weijun; Bascuñán, Juan; Kim, Woo-Seok; Hahn, Seungyong; Lee, Haigun; Iwasa, Yukikazu

    2008-01-01

    A 700-mm bore superconducting magnet was built and operated in our laboratory to demonstrate the feasibility of newly developed MgB(2) superconductor wire for fabricating MRI magnets. The magnet, an assembly of 10 coils each wound with a reacted and s-glass insulated wire ~1-km long, was immersed in solid nitrogen rather than in a bath of liquid cryogen. This MgB(2) magnet was designed to operate in the temperature range 10-15 K, maintained by a cryocooler. A combination of this "wide" temperature range and immersion of the winding in solid nitrogen enables this magnet to operate under conditions not possible with a low temperature superconductor (LTS) counterpart. Tested individually at 13 K, each coil could carry current up to 100 A. When assembled into the magnet, some coils, however, became resistive, causing the magnet to prematurely quench at currents ranging from 79 A to 88 A, at which point the magnet generated a center field of 0.54 T. Despite the presence of a large volume (50 liters) of solid nitrogen in the cold body, cooldown from 77 K to 10 K went smoothly.

  12. Effects of Bi-2212 addition on the levitation force properties of bulk MgB2 superconductors

    NASA Astrophysics Data System (ADS)

    Taylan Koparan, E.; Savaskan, B.; Guner, S. B.; Celik, S.

    2016-02-01

    We present a detailed investigation of the effects of Bi2Sr2Ca1Cu2O8+κ (Bi-2212) adding on the levitation force and magnetic properties of bulk MgB2 obtained by hot press method. The amount of Bi-2212 was varied between 0 and 10 wt% (0, 2, 4, 6, 10 wt%) of the total MgB2. Moreover, we present MgB2 bulk samples fabricated by using different production methods including hot pressing method to our knowledge. All samples were prepared by using elemental magnesium (Mg) powder, amorphous nano-boron (B) powder and Bi-2212 powder which are produced by hot press method. As a result of hot press process, compact pellet samples were manufactured. The vertical and lateral levitation force measurements were executed at the temperatures of 20, 24 and 28 K under zero-field-cooled (ZFC) and field-cooled (FC) regimes for samples with various adding levels. At 24 K and 28 K under ZFC regime, the 2 wt% Bi-2212 added sample exhibits a higher vertical levitation force than the pure sample. Bi-2212 added MgB2 samples compared to the pure sample have lower attractive force values in FC regime. The magnetic field dependence of the critical current density J c was calculated from the M-H loops for Bi-2212 added MgB2 samples. The 2 wt% Bi-2212 added sample has the best levitation and critical current density performance compared to other samples. The critical temperature ( T c ) has slightly dropped from 37.8 K for the pure MgB2 sample to 36.7 K for the 10 wt% of Bi-2212 added sample. The transition temperature slightly decreases when Bi-2212 adding level is increased.

  13. Electro-mechanical characterization of MgB2 wires for the Superconducting Link Project at CERN

    NASA Astrophysics Data System (ADS)

    Konstantopoulou, K.; Ballarino, A.; Gharib, A.; Stimac, A.; Garcia Gonzalez, M.; Perez Fontenla, A. T.; Sugano, M.

    2016-08-01

    In previous years, the R & D program between CERN and Columbus Superconductors SpA led to the development of several configurations of MgB2 wires. The aim was to achieve excellent superconducting properties in high-current MgB2 cables for the HL-LHC upgrade. In addition to good electrical performance, the superconductor shall have good mechanical strength in view of the stresses during operation (Lorenz forces and thermal contraction) and handling (tension and bending) during cabling and installation at room temperature. Thus, the study of the mechanical properties of MgB2 wires is crucial for the cable design and its functional use. In the present work we report on the electro-mechanical characterization of ex situ processed composite MgB2 wires. Tensile tests (critical current versus strain) were carried out at 4.2 K and in a 3 T external field by means of a purpose-built bespoke device to determine the irreversible strain limit of the wire. The minimum bending radius of the wire was calculated taking into account the dependence of the critical current with the strain and it was then used to obtain the minimum twist pitch of MgB2 wires in the cable. Strands extracted from cables having different configurations were tested to quantify the critical current degradation. The Young’s modulus of the composite wire was measured at room temperature. Finally, all measured mechanical parameters will be used to optimize an 18-strand MgB2 cable configuration.

  14. Sugar as an optimal carbon source for the enhanced performance of MgB2 superconductors at high magnetic fields

    NASA Astrophysics Data System (ADS)

    Shcherbakova, O. V.; Pan, A. V.; Wang, J. L.; Shcherbakov, A. V.; Dou, S. X.; Wexler, D.; Babić, E.; Jerčinović, M.; Husnjak, O.

    2008-01-01

    In this paper we report the results of an extended study of the effect of sugar doping on the structural and electromagnetic properties of MgB2 superconductors. High values of the upper critical field (Bc2) of 36 T and the irreversibility field (Birr) of 27 T have been estimated at the temperature of 5 K in a bulk MgB2 sample with the addition of 10 wt% of sugar. The critical current density (Jc(Ba)) of sugar-doped samples has been significantly improved in the high field region. The value of transport Jc has reached as high as 108 A m-2 at 10 T and 5 K for Fe-sheathed sugar-doped MgB2 wire. The analysis of the pinning mechanism in the samples investigated indicated that dominant vortex pinning occurs on the surface type of pinning defects, such as grain boundaries, dislocations, stacking faults etc, for both pure and doped MgB2. In sugar-doped samples, pinning is governed by numerous crystal lattice defects, which appear in MgB2 grains as a result of crystal lattice distortion caused by carbon substitution for boron and nano-inclusions. The drastically improved superconducting properties of sugar-doped samples are also attributed to the highly homogeneous distribution and enhanced reactivity of this dopant with host Mg and B powders. The results of this work suggest that sugar is the optimal source of carbon for doping MgB2 superconductor, especially for application at high magnetic fields.

  15. Design, manufacturing and tests of first cryogen-free MgB2 prototype coils for offshore wind generators

    NASA Astrophysics Data System (ADS)

    Sarmiento, G.; Sanz, S.; Pujana, A.; Merino, J. M.; Iturbe, R.; Apiñaniz, S.; Nardelli, D.; Marino, I.

    2014-05-01

    Although renewable sector has started to take advantage of the offshore wind energy recently, the development is very intense. Turbines reliability, size, and cost are key aspects for the wind industry, especially in marine locations. A superconducting generator will allow a significant reduction in terms of weight and size, but cost and reliability are two aspects to deal with. MgB2 wire is presented as one promising option to be used in superconducting coils for wind generators. This work shows the experimental results in first cryogen-free MgB2 prototype coils, designed according to specific requirements of TECNALIA's wind generator concept.

  16. Specific heat of single crystal MgB2: a two-band superconductor with two different anisotropies.

    PubMed

    Bouquet, F; Wang, Y; Sheikin, I; Plackowski, T; Junod, A; Lee, S; Tajima, S

    2002-12-16

    Heat-capacity measurements of a 39 microg MgB2 single crystal in fields up to 14 T and below 3 K allow the determination of the low-temperature linear term of the specific heat, its field dependence, and its anisotropy. Our results are compatible with two-band superconductivity, the band carrying the smaller gap being isotropic, that carrying the larger gap having an anisotropy of approximately 5. Three different upper critical fields are thus needed to describe the superconducting state of MgB2.

  17. Phonon dispersion and electron-phonon coupling in MgB2 and AlB2.

    PubMed

    Bohnen, K P; Heid, R; Renker, B

    2001-06-18

    We present a first principles investigation of the lattice dynamics and electron-phonon coupling of the superconductor MgB2 and the isostructural AlB2 within the framework of density functional perturbation theory using a mixed-basis pseudopotential method. Complete phonon dispersion curves and Eliashberg functions alpha2F are calculated for both systems. The main differences are related to high frequency in-plane boron vibrations, which are strongly softened in MgB2 and exhibit an exceptionally strong electron-phonon coupling. We also report on Raman measurements, which support the theoretical findings. Implications for the superconducting transition temperature are briefly discussed.

  18. Search for E(2g) phonon modes in MgB2 single crystals by point-contact spectroscopy.

    PubMed

    Naidyuk, Yu G; Yanson, I K; Kvitnitskaya, O E; Lee, S; Tajima, S

    2003-05-16

    The electron-phonon interaction in magnesium diboride MgB2 single crystals is investigated by point-contact (PC) spectroscopy. For the first time the electron coupling with E(2g) phonon modes is resolved in the PC spectra. The correlation between intensity of the extremely broad E(2g) modes in the PC spectra and value of the superconducting gap is established. Our observations favor current theoretical models for electron-phonon mediated superconductivity in MgB2, and they better match the harmonic phonon model.

  19. Phase 1 Final Technical Report - MgB2 Synthesis for High Field Performance

    SciTech Connect

    Mohit Bhatia; Peter McIntyre

    2009-11-02

    Accelerator Technology Corp. (ATC) has successfully completed its Phase 1 effort to devel-op rf plasma torch synthesis of MgB2 superconducting powder. The overall objective is to de-velop a way to introduce homogeneous alloying of C and SiC impurities into phase-pure MgB2. Several groups have attained remarkable benefits from such alloying in raising the upper critical field Hc2 from ~14 T to ~30 T (bulk) and ~50 T (thin films). But no one has succeeded in pro-ducing that benefit homogeneously, so that current transport in a practical powder-in-tube (PIT) conductor is largely the same as without the alloying. ATC has conceived the possibility of attaining such homogeneity by passing aerosol suspen-sions of reactant powders through an rf plasma torch, with each reactant transported on a stream-line that heats it to an optimum temperature for the synthesis reaction. This procedure would uniquely access non-equilibrium kinetics for the synthesis reaction, and would provide the possi-bility to separately control the temperature and stoichiometry of each reactant as it enters the mixing region where synthesis occurs. It also facilitates the introduction of seed particles (e.g. nanoscale SiC) to dramatically enhance the rate of the synthesis reaction compared to gas-phase synthesis in rf plasma reported by Canfield and others. During the Phase 1 effort ATC commissioned its 60 kW 5 MHz rf source for a manufactur-ing-scale rf plasma torch. This effort required repair of numerous elements, integration of cooling and input circuits, and tuning of the load characteristics. The effort was successful, and the source has now been tested to ~full power. Also in the Phase 1 effort we encountered a subsidiary but very important problem: the world is running out of the only present supply of phase-pure amorphous boron. The starting boron powder must be in the amorphous phase in order for the synthesis reaction to produce phase-pure MgB2. Even small contamination with crystalline boron results in the formation of parasitic phases such as MgB4, MgB7, etc. Such parasitic phases are a primary element of the connectivity problem, in which even though a sample powder may contain grains of high-quality MgB2, adjacent grains are surrounded by intergrowths of parasitic phases so that current trans-port is badly degraded. The best results to date have been obtained using boron powder produced long ago for a rocket propellant development project. The synthesis process was complex and is now largely lost, and the manufacturing equipment has long since been scrapped. The last batch of the powder has been used during recent years to support MgB2 R&D at several labs, but supplies are dwindling. ATC has identified a first application of its plasma torch to synthesize phase-pure amorphous boron flake using a rapid-quench splat technique. Inexpensive technical-grade boron would be purified of contaminants, then dispersed as an aerosol in inert gas and passed through the plasma torch to melt it into a spray. The spray would be splat-condensed on a rotating drum to form pure amorphous flake. The process would begin with technical-grade boron powder, having good stoichiometric purity, nanoscale particles, but significant contamination of MgO and crystalline boron. We used wet chemistry to remove B2O3 completely and reduced the MgO impurity, and analyzed the particle size distribution using a Coulter counter and the phase composition using X-ray diffrac-tion (XRD). The next step will be to build an rf plasma torch with a recirculating single-component aerosol feed and the cooled splat drum and collector, and undertake process devel-opment for amorphous boron powder. This revised goal has two benefits. First, it is an easier technology than our ultimate goal of a multi-component laminar flow torch. We have been counseled by those experienced in plasma torch technology that our ultimate goal will require a torch that should be feasible but has never been attempted. It may require an extended period of R&D for both the torch itself and the gas dynamics in the reaction region. Second, this simpler single-component process will yield a product powder that is important today for the many groups undertaking powder-metallurgy routes to MgB2. The above success and learning curve has brought us to a significant shift of strategy from what was originally set out in the Phase 1 plan. But this shift has brought us to within sight of a powder product that will itself be an enabling boost for the community of MgB2 developers.

  20. Effect of temperature and concentration of solution in chemical treatment for MgB 2 powder on the Jc- B property of ex situ processed MgB 2 superconducting tapes

    NASA Astrophysics Data System (ADS)

    Fujii, H.; Ozawa, K.

    2010-03-01

    MgB 2 tapes were fabricated through an ex situ process in a powder-in-tube (PIT) technique using powders treated at elevated temperatures in benzene solutions of benzoic acid with various concentrations. The amount of carbon substitution in MgB 2 in heat-treated tapes with treatment at the boiling points (BPs) of the solutions is smaller than that at room temperature (RT). This carbon substitution improves the Jc property in the high-field region. For RT treatment, the Jc property is improved with increasing the solution concentration. In contrast, the Jc property is deteriorated with increasing the concentration for BP treatment. On the other hand, treatment with pure solvent does not bring about the Jc enhancement and carbon substitution at all at both RT and the BPs. This suggests that acidity essential for the dissolution of MgO layers attached to the surface of MgB 2 is required for carbon substitution. The BP treatment enhances the acting of the acidity and possibly inflicts damage on MgB 2 itself.

  1. Analysis of the levitation force of pure and starch/polystyrene/MWCNT added bulk MgB2 superconductors using frozen image model under zero field cooling condition

    NASA Astrophysics Data System (ADS)

    Tripathi, D.; Dey, T. K.

    2016-04-01

    The measurement of superconducting levitation force between permanent magnet and polycrystalline samples of pure and MgB2 added with starch, polystyrene (PS) and multiwall carbon nanotube (MWCNT) have been performed under zero field cooling (ZFC) condition at 20 K in both descending and ascending modes. For this, the bulk pellets were synthesized by conventional solid state sintering technique. The XRD data indicate well developed MgB2 phase. However, a decrease in lattice parameter 'a = b' have been observed for doped MgB2 samples. Superconducting transition temperature of MgB2 also decreases with starch/PS/MWCNT addition. Unlike MWCNT, the addition of starch/polystyrene is found to enhance the levitation force of MgB2 superconductor. The levitation force between PM and investigated pellets in ZFC condition is explained well in terms of the updated version of modified frozen image model and the magnetic moment originated due to vertical motion of the superconductors have been estimated. It may be noted that except for MWCNT, addition of starch/PS in MgB2 improves the magnetic moment generated by vertical movement of pure MgB2. However, this improvement is more pronounced for 1 wt.% of PS added MgB2, which indicates more flux trapping and hence better levitation properties in 1 wt.% of PS added MgB2. The vertical stiffness estimated for pure and starch/PS/MWCNT doped MgB2 samples indicate that the levitation force are more sensitive in the region close to the PM.

  2. Further progresses in the development of large MgB2 Superconducting Coils for the Ignitor Experiment

    NASA Astrophysics Data System (ADS)

    Tumino, A.; Grasso, G.; Coppi, B.

    2013-10-01

    Intermediate temperature superconducting cables have been adopted for the fabrication of the largest poloidal field coils of the Ignitor experiment. This is an important step toward achieving better duty cycles in Ignitor-like machines with innovative magnet technologies compared to traditional superconductors. The commercially available MgB2 strands manufactured by Columbus Superconductors can achieve the target specifications for the considered coils, about 5 meters of outer diameter and maximum field on the conductor below 5 T. These cables are also compatible with the Ignitor cryogenic system, which is designed to cool the machine at about 30 K, although MgB2 may use colder gas at 10 K. The preliminary cable design includes about 300 MgB2 multifilamentary strands of 1 mm in diameter and a copper tube for the He-gas flow in the center. Recently we have succeeded in the development of MgB2 strands with a further improvement in design and electrical properties for cable application. Reaching of a higher critical current density and better current sharing properties between the different strands is allowed by the newest design. The implementation of this progress in wire performance and its impact on the coil design will be discussed. US DOE partly sponsored.

  3. Analysis of Advantages Obtainable Using MgB2 in the Design of Electromagnets with Iron Yoke for MRI

    NASA Astrophysics Data System (ADS)

    Masullo, G.; Matrone, A.; Santoro, A.; Besio, S.; Pittaluga, S.; Trequattrini, A.

    The discovery of superconductivity in MgB2 gives the chance to study the application in magnet design in conjunction with the use of cryocoolers. Central field and compactness of conventional copper electromagnets with iron yoke can be improved using superconducting materials. The possibility to use MgB2 is under investigation. A critical current density of 1000 A/mm2 at 4.2K, at self-field, can be considered a typical value for this material. Taking into account temperature and magnetic field dependence and constructional packing factors we have considered a more realistic engineering current for our study. In the frame of a cooperation among CRIS and ESAOTE, the feasibility of a MRI (Magnetic Resonance Imaging) electromagnet by using MgB2 will be investigated. For a preliminary magnet configuration, a typical iron profile has been considered to drive the magnetic flux and to obtain sufficient final magnetic field homogeneity. Additional considerations concern possible modification in magnetic design to take maximum advantage by the use of MgB2 conductor.

  4. RT-PCR for mammaglobin genes, MGB1 and MGB2, identifies breast cancer micrometastases in sentinel lymph nodes.

    PubMed

    Ouellette, Rodney J; Richard, Dominique; Maïcas, Emmanuel

    2004-05-01

    In the present study, we examined the expression of the mammaglobin genes, MGB1 and MGB2, in the sentinel lymph nodes (SLNs) of patients with breast cancer and compared our results with the histologic status of the same SLNs. Compared with immunohistochemical staining for cytokeratin 8, which detected metastases in 17 of 42 patients, reverse transcription-polymerase chain reaction (RT-PCR) for MGB1 or MGB2 genes was positive in 22 patients. The concordance between the expression of any mammaglobin and histologic status was 79% (33/42), with a sensitivity of 88% and specificity of 72%. The detection of patients with metastases was more sensitive when testing for both MGB1 and MGB2 (P < .0001) rather than MGB2 (P < .0005) or MGB1 (P < .05) alone. The increased detection rate relative to histologic examination suggests that using RT-PCR for the mammaglobin genes might identify patients at higher risk compared with patients with negative RT-PCR results.

  5. The effect of reactive nanostructured carbon on the superconducting properties of mechanically alloyed MgB2

    NASA Astrophysics Data System (ADS)

    Herrmann, M.; Häßler, W.; Mickel, C.; Gruner, W.; Holzapfel, B.; Schultz, L.

    2007-12-01

    Polycrystalline samples of MgB2 doped with reactive nanostructured carbon were synthesized by pressure assisted sintering of mechanically alloyed precursors. Varying the nominal carbon concentration from x = 0 to 0.316, the effects of carbon doping on the lattice parameter, lattice strain, actual amount of incorporated carbon (xactual), grain size, normal state resistivity (ρ), connectivity, superconducting transition (Tc), critical fields (Birr and Bc2) and critical current density (Jc) as well as the pinning force (Fp) were evaluated. An evident solubility limit of carbon within the MgB2 matrix, forming MgB2-xCx with an xactual≈0.125, was observed. In addition to the carbon saturation the superconducting properties, e.g. Tc, Bc2 and Jc, also reflect saturation effects with respect to the actual carbon concentration. Improved electron scattering in MgB2-xCx seems responsible for the observed enhancement of Bc2 to 11.4 T at 20 K. On the other hand, calculations of the flux-pinning forces show a dramatic decrease of Fp,max with increasing carbon concentration. Therefore we conclude the observed improvement in critical current density at applied fields >6 T to result mainly from the raised upper critical field.

  6. Flux pinning mechanism and Hc2-anisotropy in melanin doped bulk MgB2

    NASA Astrophysics Data System (ADS)

    Shahabuddin Shah, M.; Shahabuddin, Mohammed; Alzayed, Nasser S.; Parakkandy, Jafar M.

    2014-06-01

    Flux pinning mechanism in melanin doped MgB2 superconductor has been studied using a scaling law proposed by Dew-Hughes and another method proposed by Eisterer. Our experimental data could be fitted very closely by the aforementioned scaling law. The fitting parameters, the positions of peaks bpeak and k = bpeak/bn confirm a grain-boundary pinning in the 10% melanin doped sample, while the undoped sample consists of mixed pinning. Furthermore, percolation theory was utilized under grain-boundary approximation to investigate the role of Hc2-anisotropy in the critical current density, and its dependence on applied field as well as temperature. The Hc2-anisotropy decreases with melanin doping resulting in the increase of Jc in high field. There is suppression of flux pinning maximum due to melanin doping, which is found to be the main reason for the degradation of low-field Jc.

  7. Surface superconductivity of dirty two-band superconductors: applications to MgB2.

    PubMed

    Gorokhov, Denis A

    2005-02-25

    The minimal magnetic field H(c2) destroying superconductivity in the bulk of a superconductor is smaller than the magnetic field H(c3) needed to destroy surface superconductivity if the surface of a superconductor coincides with one of the crystallographic planes and is parallel to the external magnetic field. While for a dirty single-band superconductor the ratio of H(c3) to H(c2) is a universal temperature-independent constant 1.6946, for dirty two-band superconductors this is not the case. I show that in the latter case the interaction of the two bands leads to a novel scenario with the ratio H(c3)/H(c2) varying with temperature and taking values larger and smaller than 1.6946. The results are applied to MgB(2) and compared with recent experiments (A. Rydh, cond-mat/0307445).

  8. Kohn anomaly in MgB2 by inelastic X-ray scattering.

    PubMed

    Baron, A Q R; Uchiyama, H; Tanaka, Y; Tsutsui, S; Ishikawa, D; Lee, S; Heid, R; Bohnen, K-P; Tajima, S; Ishikawa, T

    2004-05-14

    We study phonons in MgB2 using inelastic x-ray scattering (1.6 and 6 meV resolution). We clearly observe the softening and broadening of the crucial E(2g) mode through the Kohn anomaly along GammaM, in excellent agreement with ab initio calculations. Low temperature measurements (just above and below T(c)) show negligible changes for the momentum transfers investigated and no change in the E(2g) mode at A between room temperature and 16 K. We report the presence of a longitudinal mode along GammaA near in energy to the E(2g) mode that is not predicted by theory.

  9. Band filling and interband scattering effects in MgB2: carbon versus aluminum doping.

    PubMed

    Kortus, Jens; Dolgov, Oleg V; Kremer, Reinhard K; Golubov, Alexander A

    2005-01-21

    We argue, based on band structure calculations and the Eliashberg theory, that the observed decrease of T(c) of Al and C doped MgB2 samples can be understood mainly in terms of a band filling effect due to the electron doping by Al and C. A simple scaling of the electron-phonon coupling constant lambda by the variation of the density of states as a function of electron doping is sufficient to capture the experimentally observed behavior. Further, we also explain the long standing open question of the experimental observation of a nearly constant pi gap as a function of doping by a compensation of the effect of band filling and interband scattering. Both effects together generate a nearly constant pi gap and shift the merging point of both gaps to higher doping concentrations, resolving the discrepancy between experiment and theoretical predictions based on interband scattering only.

  10. Far-infrared optical conductivity gap in superconducting MgB2 films.

    PubMed

    Kaindl, Robert A; Carnahan, Marc A; Orenstein, Joseph; Chemla, Daniel S; Christen, Hans M; Zhai, Hong-Ying; Paranthaman, Mariappan; Lowndes, Doug H

    2002-01-14

    We report the first study of the optical conductivity of MgB2 covering the range of its lowest-energy superconducting gap. Terahertz time-domain spectroscopy is utilized to determine the complex, frequency-dependent conductivity sigma(omega) of thin films. The imaginary part reveals an inductive response due to the emergence of the superconducting condensate. The real part exhibits a strong depletion of oscillator strength near 5 meV resulting from the opening of a superconducting energy gap. The gap ratio of 2Delta0/k(B)TC approximately 1.9 is well below the weak-coupling value, pointing to complex behavior in this novel superconductor.

  11. Temperature and field dependence of the anisotropy of MgB2.

    PubMed

    Angst, M; Puzniak, R; Wisniewski, A; Jun, J; Kazakov, S M; Karpinski, J; Roos, J; Keller, H

    2002-04-22

    The anisotropy gamma of the superconducting state of high quality single crystals of MgB2 was determined, using torque magnetometry with two different methods. The anisotropy of the upper critical field was found to be temperature dependent, decreasing from gamma approximately 6 at 15 K to 2.8 at 35 K. Reversible torque data near T(c) reveal a field dependent anisotropy, increasing nearly linearly from gamma approximately equal to 2 in zero field to 3.7 in 10 kOe. The unusual temperature dependence is a true bulk property and can be explained by nonlocal effects of anisotropic pairing and/or the k--> dependence of the effective mass tensor.

  12. Laser induced infrared spectral shift of the MgB2:Cr superconductor films.

    PubMed

    AlZayed, N S; Kityk, I V; Soltan, S; El-Naggar, A M; Shahabuddin, M

    2015-02-01

    During illumination of the MgB2:Cr2O3 films it was established substantial spectral shift of the infrared spectra in the vicinity of 20-50cm(-1). The excitations were performed by nanosecond Er:glass laser operating at 1.54μm and by microsecond 10.6μm CO2 laser. The spectral shifts of the IR maxima were in opposite spectral directions for the two types of lasers. This one observed difference correlates well with spectral shift of their critical temperatures. The possible explanation is given by performance of DFT calculations of the charge density redistribution and the time kinetics of the photovoltaic response. To understand the kinetics of the photoinduced processes the time kinetics of photoresponse was done for the particular laser wavelengths.

  13. Magnetic penetration depth measurements in MgB2 sintered pellets and thin films

    NASA Astrophysics Data System (ADS)

    Lamura, G.; di Gennaro, E.; Salluzzo, M.; Andreone, A.; Le Cochec, J.; Gauzzi, A.; Cantoni, C.; Paranthaman, M.; Christen, D. K.; Christen, H. M.; Giunchi, G.; Ceresara, S.

    2002-01-01

    We have performed accurate measurements of the temperature dependence of the magnetic penetration depth of the new intermetallic superconductor MgB2 using a high resolution single coil mutual inductance technique. Both sintered pellets and thin films exhibiting critical temperature values ranging between 37 and 38.4 K have been studied. In the case of the film, for T

  14. Intermodulation distortion measurements of MgB2 thin films grown by HPCVD

    NASA Astrophysics Data System (ADS)

    Cifariello, G.; Aurino, M.; di Gennaro, E.; Lamura, G.; Orgiani, P.; Villegier, J.-C.; Xi, X. X.; Andreone, A.

    2006-06-01

    The two tone intermodulation distortion (IMD) arising in MgB2 thin films synthesized by hybrid physical-chemical vapour deposition (HPCVD) is studied in order to probe the influence of the two bands on the symmetry of the gap function. The measurements are carried out by using a dielectrically loaded copper cavity operating at 7 GHz. Microwave data on samples having critical temperatures above 41 K, very low resistivity values, and residual resistivity ratio larger than 10, are shown. The dependence of the nonlinear surface losses and of the third order intermodulation products on the power feeding the cavity and on the temperature is analyzed. At low power, IMD versus temperature data show the intrinsic s-wave behaviour expected for this compound

  15. Structural and AC loss study for pure and doped MgB2 superconductor

    NASA Astrophysics Data System (ADS)

    Hansdah, J. S.; Sarun, P. M.

    2015-06-01

    Superconducting polycrystalline bulk MgB2 samples doped with n-C, n-Y2O3 and n-Ho2O3 were prepared by powder-in-sealed (PIST) method. XRD measurement shows the influence of dopants on phase and lattice parameters of samples. The ac susceptibility measurement reveals ac loss and activation energy of the samples. Nano-C doped sample shows less ac loss in all frequency (208 Hz - 999 Hz) among the doped samples; whereas n-Ho2O3 doped sample shows highest ac loss. The activation energy is high for rare earth (n-Y2O3 and n-Ho2O3) doped samples as compare to n-C doped samples which reveals the enhancement in flux-pinning properties of these materials.

  16. Superconductivity in MgPtSi: An orthorhombic variant of MgB2

    NASA Astrophysics Data System (ADS)

    Kudo, Kazutaka; Fujimura, Kazunori; Onari, Seiichiro; Ota, Hiromi; Nohara, Minoru

    2015-05-01

    A ternary compound, MgPtSi, was synthesized by solid-state reaction. An examination of the compound by powder x-ray diffraction revealed that it crystallizes in the orthorhombic TiNiSi-type structure with the P n m a space group. The structure comprises alternately stacked layers of Mg and PtSi honeycomb network, which is reminiscent of MgB2, and the buckling of the honeycomb network causes orthorhombic distortion. Electrical and magnetic studies revealed that MgPtSi exhibited superconductivity with a transition temperature of 2.5 K. However, its isostructural compounds, namely, MgRhSi and MgIrSi, were not found to exhibit superconductivity.

  17. An Actively Shielded 1.5T MgB2 MRI Magnet Design

    NASA Astrophysics Data System (ADS)

    Martens, Michael; Baig, Tanvir; Cara, Mihai; Brown, Robert; Doll, David; Tomsic, Michael

    2013-03-01

    Superconducting magnets for MRI are often constructed with NbTi wire cooled below 4.2K using liquid helium. As helium costs have more than tripled in the last decade, there is a need for a cryogen-free conduction-cooled alternative. A key reason for pursuing MgB2 superconductor wire in the design of MRI magnets is its superior critical current compared to NbTi over a temperature range of 10-15K. We present a 1.5T whole body actively shielded main magnet design assuming second-generation multifilament MgB2 wire using an improved functional approach. The design exhibits 4 pairs of primary bundles and 1 pair of shielding bundles with an inner (outer) diameter of 1.1 (1.89)m and a length of 1.54m. The imaging volume is 45cm with a maximum of 9ppm inhomogeneity. The wire dimension is assumed to be 1mm2 and the wire current is 135A. The maximum field on a wire is found to be 4.1T well below the critical field value of approximately 6T at 10K for the second-generation wire. The 5-Gauss footprint for the new magnet is found to be 2.7 (3.7)m in the radial (axial) direction. The maximum hoop stress and axial force on a bundle, respectively, are 82.9MPa and 2680.2kN. Trade-offs for the reduction of any given parameter are analyzed. Support from the Ohio Third Frontier and NIH Contract No. 5R44CA144415-03

  18. Pinning and irreversibility in superconducting bulk MgB2 with added nanodiamonds

    NASA Astrophysics Data System (ADS)

    Gupta, Anurag; Narlikar, A. V.

    2009-12-01

    Resistance, R(T), and magnetization, M(B), studies on superconducting bulk MgB2 samples containing nanodiamonds (ND) as additives (wt% of ND: x = 0%, 1%, 3%, 5%, 7% and 10%) were recently published in two articles (Vajpayee et al 2007 Supercond. Sci. Technol. 20 S155, Vajpayee et al 2008 J. Appl. Phys. 103 07C708). The main observations reported were significant improvements in the critical current density Jc(B), irreversibility line Birr(T) and upper critical field Bc2(T) with ND addition. However, a closer look shows that as regards the potential of this technologically important material at higher magnetic fields and temperatures, there is still a lot of room for improvement. With that in mind we revisit the R(T) and M(B) data and analyze them, in the present work. We show that, despite ND addition, Jc depends strongly on B in the high field region and tends to vanish at irreversibility lines that lie deep, i.e. at around 0.3 Bc2(T), in the B-T phase diagram. The irreversibility lines, determined by R(T) \\to 0 in the presence of B, are found to lie at around 0.5 Bc2(T) in the phase diagram. These results for pinning and irreversibility lines are discussed in the light of various models such as those of surface sheath superconductivity, magnetically introduced percolation in polycrystalline MgB2, thermally assisted flux motion (TAFM) and a modified flux line shear mechanism. Our analysis hints at TAFM and weak pinning channels with distributed superconducting properties percolating in our samples determining the irreversibility and pinning properties.

  19. Experimental studies of the quench behaviour of MgB2 superconducting wires for fault current limiter applications

    NASA Astrophysics Data System (ADS)

    Ye, Lin; Majoros, M.; Campbell, A. M.; Coombs, T.; Astill, D.; Harrison, S.; Husband, M.; Rindfleisch, M.; Tomsic, M.

    2007-07-01

    Various MgB2 wires with different sheath materials provided by Hyper Tech Research Inc., have been tested in the superconducting fault current limiter (SFCL) desktop tester at 24-26 K in a self-field. Samples 1 and 2 are similarly fabricated monofilamentary MgB2 wires with a sheath of CuNi, except that sample 2 is doped with SiC and Mg addition. Sample 3 is a CuNi sheathed multifilamentary wire with Cu stabilization and Mg addition. All the samples with Nb barriers have the same diameter of 0.83 mm and superconducting fractions ranging from 15% to 27% of the total cross section. They were heat-treated at temperatures of 700 °C for a hold time of 20-40 min. Current limiting properties of MgB2 wires subjected to pulse overcurrents have been experimentally investigated in an AC environment in the self-field at 50 Hz. The quench currents extracted from the pulse measurements were in a range of 200-328 A for different samples, corresponding to an average engineering critical current density (Je) of around 4.8 × 104 A cm-2 at 25 K in the self-field, based on the 1 µV cm-1 criterion. This work is intended to compare the quench behaviour in the Nb-barrier monofilamentary and multifilamentary MgB2 wires with CuNi and Cu/CuNi sheaths. The experimental results can be applied to the design of fault current limiter applications based on MgB2 wires. This work is supported by Rolls-Royce plc and the UK Department of Trade and Industry (DTI).

  20. Microstructure and superconducting properties of nanocarbon-doped internal Mg diffusion-processed MgB2 wires fabricated using different boron powders

    NASA Astrophysics Data System (ADS)

    Xu, Da; Wang, Dongliang; Li, Chen; Yuan, Pusheng; Zhang, Xianping; Yao, Chao; Dong, Chiheng; Huang, He; Ma, Yanwei; Oguro, Hidetoshi; Awaji, Satoshi; Watanabe, Kazuo

    2016-04-01

    MgB2/Nb/Monel monofilament wires were fabricated using four different boron powders by an internal Mg diffusion (IMD) process. The microstructure, morphology and the critical current density (J c) of the used boron powders and the formative MgB2 layers were analyzed and compared. It was found that the purity and particle size of the boron powder influence the superconducting properties of MgB2 wires; further that the optimized heat-treatment condition also depends on the quality of the boron powder. The highest J c was obtained in the MgB2 layer made using amorphous boron (AB) powder, although a certain amount of voids existed in the superconducting layer. The IMD-processed MgB2 layer fabricated using high-purity boron (HB) powder had also a high J c compared with the powder-in-tube (PIT) process and a few unreacted boron particles remained in it. MgB2 wire fabricated using low-purity boron (LB) powder had a high cost-performance ratio compared with the others, which is expected to allow the fabrication of large-scale and low-cost superconducting wires for practical application. However, the enhancement of the J c was not found in the MgB2 layer manufactured using the ball-milled LB (MLB) powder as expected due to the increased percentage of impurity.

  1. The synthesis of lamellar nano MgB2 grains with nanoimpurities, flux pinning centers and their significantly improved critical current density.

    PubMed

    Ma, Zongqing; Liu, Yongchang; Cai, Qi

    2012-03-21

    MgB(2) superconductors with unique microstructures were rapidly fabricated at low temperatures, and exhibited significantly improved critical current density (J(c)). According to the microstructure observations, the prepared samples consisted of lamellar nano MgB(2) grains with many embedded nanoimpurities (about 10 nm). The formation of these lamellar nano MgB(2) grains is associated with the presence of a local Mg-Cu liquid at sintering temperatures as low as 575 °C. The ball milling treatment of the original powders also plays a positive role in the growth of lamellar grains. Based on an analysis of the relationship between resistivity and temperature, the lamellar nano MgB(2) grains in the prepared sample possess better grain connectivity than the typical morphology of MgB(2) samples prepared by traditional high-temperature sintering. Furthermore, the presence of many nano MgB(2) grain boundaries and nano impurities in the prepared sample can obviously increase the flux pinning centers in accordance with the analysis of flux pinning behavior. Both factors mentioned above contribute to the significant improvement in J(c) from low field to relative high field. The method developed in the present work is an effective and low-cost way to further enhance J(c) in MgB(2) superconductors across a wide range of applied magnetic fields without using expensive nanometer-sized dopants.

  2. Doping effect of nano-Ho2O3 and naphthalene in MgB2 superconductor prepared by powder-in-sealed-tube method

    NASA Astrophysics Data System (ADS)

    Hansdah, J. S.; Sarun, P. M.

    2015-03-01

    The effect on crystal structure, critical temperature (TC), and critical current density (JC) of bulk MgB2 doped with nano-Ho2O3 and naphthalene was studied. Among all the samples studied, the sample doped with 2.5 wt. % nano-Ho2O3 have shown the best field dependent critical current density [JC(H)], i.e., 0.77 × 105 A/cm2 at 2 T and 10 K. While naphthalene doped MgB2 sample has shown the least JC(H) characteristics. The improved JC(H) characteristics in the nano-Ho2O3 doped MgB2 samples are attributed to improved flux pinning properties due to the formation of HoB4 and in naphthalene doped MgB2 samples. The slight lower TC value (37.01 K) in naphthalene doped samples is attributed to the occurrence of lattice defect by the substitution of carbon at boron site of MgB2 superconductor. Lower ΔTC value implies the lesser anisotropy in all the synthesized samples. The flux pinning force density (FP/FPmax) curves are theoretically analyzed using Dew-Hughes model. The result revealed that point pinning is the dominant pinning mechanism for nano-Ho2O3 doped MgB2 samples, while, surface and grain boundary pinning become dominant with increasing naphthalene addition in nano-Ho2O3 doped MgB2 samples.

  3. Facile synthesis and regeneration of Mg(BH4)2 by high energy reactive ball milling of MgB2.

    PubMed

    Gupta, Shalabh; Hlova, Ihor Z; Kobayashi, Takeshi; Denys, Roman V; Chen, Fu; Zavaliy, Ihor Y; Pruski, Marek; Pecharsky, Vitalij K

    2013-01-28

    We report direct hydrogenation of MgB(2) in a planetary ball mill. Magnesium borohydride, Mg(BH(4))(2), and various polyhedral borane anion salts have been synthesized at pressures between 50 and 350 bar H(2) without the need for subsequent isothermal hydrogenation at elevated temperature and pressure. The obtained products release ∼4 wt% H(2) below 390 °C, and a major portion of Mg(BH(4))(2) transforms back to MgB(2) at around 300 °C, demonstrating the possibility of reversible hydrogen storage in an Mg(BH(4))(2)-MgB(2) system.

  4. ``Hybrid'' multi-gap/single-gap Josephson junctions: Evidence of macroscopic quantum tunneling in superconducting-to-normal switching experiments on MgB2/I/Pb and MgB2/I/Sn junctions

    NASA Astrophysics Data System (ADS)

    Carabello, Steve; Lambert, Joseph; Dai, Wenqing; Li, Qi; Chen, Ke; Cunnane, Daniel; Xi, X. X.; Ramos, Roberto

    We report results of superconducting-to-normal switching experiments on MgB2/I/Pb and MgB2/I/Sn junctions, with and without microwaves. These results suggest that the switching behavior is dominated by quantum tunneling through the washboard potential barrier, rather than thermal excitations or electronic noise. Evidence includes a leveling in the standard deviation of the switching current distribution below a crossover temperature, a Lorentzian shape of the escape rate enhancement peak upon excitation by microwaves, and a narrowing in the histogram of escape counts in the presence of resonant microwave excitation relative to that in the absence of microwaves. These are the first such results reported in ``hybrid'' Josephson tunnel junctions, consisting of multi-gap and single-gap superconducting electrodes.

  5. Differential Conductance Measurements of MgB2/I/Pb Heterojunctions and all-MgB2 Junctions

    NASA Astrophysics Data System (ADS)

    Cusick, David; Eckhardt, Matthew; Dai, Wenqing; Li, Qi; Chen, Ke; Cunnane, Daniel; Zhuang, C. G.; Xi, X. X.; Naito, Michio; Ramos, Roberto

    2015-03-01

    We present our work characterizing several types of Magnesium Diboride Josephson junctions, including MgB2/I/Pb heterojunctions and all-MgB2 junctions. We will report on the I-V and dI/dV-V data collected at various temperatures using both a cryocooler-based experimental platform between 2 and 20 Kelvin and using a 3He probe platform between 0.3 and 1.0 Kelvin. These were both developed by undergraduates in a liberal arts university. Using high-sampling rates with a 24-bit data acquisition card and access to a broad of range of temperatures, we track and report energy gap distributions and temperature-dependent features of dI/dV peaks of MgB2, comparing these with theoretical predictions. R.C.R. acknowledges support from National Science Foundation Grant # DMR-1206561.

  6. Effects of three different homemade nanocarbons doping on the superconducting properties of MgB2 tapes

    NASA Astrophysics Data System (ADS)

    Wang, Dongliang; Zhang, Haitao; Zhang, Xianping; Tang, Shaopu; Ma, Yanwei; Oguro, Hidetoshi; Awaji, Satoshi; Watanabe, Kazuo

    2015-01-01

    The doping effects of three different homemade nanocarbons on microstructure and superconducting properties of in situ powder-in-tube (PIT) processed MgB2/Fe tapes were studied. Compared with pure tapes, all homemade nano-carbon additions led to an order of magnitude enhancement of the supercurrent at 4.2 K, 10 T. Among them, hollow carbon nanoboxes doped samples exhibited the highest transport Jc-B properties, about 3.4 × 104 A cm-2 at 4.2 K, 10 T (Je ∼ 104 A cm-2). The large Jc improvements of doped samples are thought to be attributed to the enhancement of flux pinning force. It is also interesting that the change of microstructure and critical field of three nanocarbons doped MgB2 samples are not obvious, which mainly because that the performance parameters of these nanocarbons with different morphologies are almost same.

  7. Enhancement of critical current of SiC and malic acid codoped MgB2/Fe wires

    NASA Astrophysics Data System (ADS)

    Li, W. X.; Chen, R. H.; Xu, X.; Hu, Y. M.; Zhu, M. Y.; Li, Y.; Dou, S. X.

    2015-09-01

    The influences of microstructure, connectivity, and disorder on the critical current density, Jc, are discussed to clarify the different mechanisms of Jc(H) in different magnetic field ranges for in situ and combined in situ/ex situ MgB2/Fe wires with nano SiC and malic acid codoping. Sintering temperature plays a very important role in the electromagnetic properties at different temperatures and under various magnetic fields. Connectivity, upper critical field, Hc2, and irreversibility field, Hirr, are studied to demonstrate the mechanism of Jc dependence on magnetic field. The combined in situ/ex situ process is proved to be a promising technique for fabrication of practical MgB2 wires.

  8. Conceptual design of MgB2 coil for the 100 MJ SMES of advanced superconducting power conditioning system (ASPCS)

    NASA Astrophysics Data System (ADS)

    Atomura, Naoki; Takahashi, Toshinori; Amata, Hiroto; Iwasaki, Tatsuya; Son, Kyoungwoo; Miyagi, Daisuke; Tsuda, Makoto; Hamajima, Takataro; Shintomi, Takakazu; Makida, Yasuhiro; Takao, Tomoaki; Munakata, Kohe; Kajiwara, Masataka

    In order to reduce global carbon-dioxide in the world, we propose an Advanced Superconducting Power Conditioning System (ASPCS) which is composed of 5 MW renewable energy resources and 1 MW hybrid storage system. The hybrid storage system is composed of FC-H2-EL and SMES which is installed adjacent to a LH2 station for vehicles. Since the SMES can be operated at 20 K which is a saturated temperature of LH2, we can use MgB2 superconductors. In the ASPCS, 100 MJ storage capacities of the SMES should be required. This paper focuses on studies into a conceptual design of SMES toroidal coil composed of the MgB2 and indirectly cooled by LH2.

  9. Electromagnetic properties and microstructures of in situ MgB2 wires made from three types of boron powders

    NASA Astrophysics Data System (ADS)

    Kodama, Motomune; Kotaki, Hiroshi; Yamamoto, Hiroyuki; Iwane, Tomohiro; Tanaka, Kazuhide; Tanaka, Hideki; Okishiro, Kenji; Okamoto, Kazutaka; Nishijima, Gen; Matsumoto, Akiyoshi; Kumakura, Hiroaki; Yamamoto, Akiyasu; Shimoyama, Jun-ichi; Kishio, Kohji

    2016-10-01

    In powder-in-tube processed MgB2 wires, the choice of boron powder as a starting material crucially affects their performance. In this paper, we prepared in situ MgB2 wires from three types of boron powders in various heat-treatment conditions and investigated their electromagnetic properties and microstructures. Their critical current density, J c, varied over a wide range from sample to sample. The difference in J c is understood to be caused by the effect of changes in the electrical connectivity, K, and intrinsic residual resistivity, ρ 0. Here, K represents the effective cross-sectional area for current, and ρ 0 reflects the degree of the charge carrier scattering caused by lattice defects. It was found that the use of boron powder with a large specific surface area leads to a large degree of lattice defects in MgB2 grains and enhances ρ 0, resulting in improving J c. The boron powder produced by thermal decomposition of B2H6 has a large specific surface area. Hence, this boron powder is the most suitable as a starting material for MgB2. Meanwhile, dry pulverization of low-cost boron powder, which is largely produced by active-metal reduction of B2O3, is also effective to increase its specific surface area without introducing impurities, resulting in the enhancement of J c in the entire magnetic field region. This finding broadens the choice of boron powder and contributes to realizing superconducting applications with excellent balance between performance and cost.

  10. Order-Disorder Transition and Phase Separation in the MgB2 Metallic Sublattice Induced by Al Doping.

    PubMed

    Brutti, S; Gigli, G

    2009-07-14

    MgB2 is a superconductor constituted by alternating Mg and B planar layers: doping of both the sublattices has been observed experimentally to destroy the outstanding superconductive properties of this simple material. In this study we present the investigation by first principles methods at atomistic scale of the phase separation induced by aluminum doping in the MgB2 lattice. The calculations were performed by Density Functional Theory in generalized gradient approximation and pseudopotentials. Orthorhombic oP36 supercells derived by the primitive hR3 MgB2 cell were built in order to simulate the aluminum-magnesium substitution in the 0-50% composition range. The computational results explained the occurrence of a phase separation in the Mg1-xAlxB2 system. The miscibility gap is predicted to be induced by an order-disorder transition in the metallic sublattice at high Al concentration. Indeed at 1000 K aluminum substitution takes place on random Mg sites for concentration up to 17% of the total metallic sites, whereas at Al content larger than 31% the substitution is energetically more favorable on alternated metallic layers (Mg undoped planes alternate with Mg-Al layers). The formation of this Al-rich phase lead at 50% doping to the formation of the double omega Mg1/2Al1/2B2 ordered lattice. From 17 to 31% the two phases, the disordered Mg1-xAlxB2 (x < 0.17) and the ordered Mg1/2+yAl1/2-yB2 (y < 0.19) lattices, coexist. This phase separation is driven by the balance of the enthalpy and entropy contributions to the Gibbs energy. Present DFT-GGA calculations indicate that this thermodynamically predicted suppression of the Al doping disorder in the metallic sublattice of MgB2 occurs in parallel with the collapse of the superconductive properties of the material.

  11. Power Dependence of the RF Surface Resistance of MgB2 Superconductor.

    SciTech Connect

    Tajima, T.; Findikoglu, A. T.; Jason, A. J.; Krawczyk, F. L.; Mueller, F. M.; Shapiro, A. H.; Geng, R. L.; Padamsee, Hasan,; Romanenko, A.; Moeckly, B. H.

    2005-01-01

    Magnesium diboride (MgB{sub 2}) is a superconducting material that has a transition temperature (T{sub c}) of {approx}40 K, which is {approx}30 K higher than niobium (Nb) that has been used for most superconducting RF cavities in the past decades. Last year, it was demonstrated that the RF surface resistance of MgB{sub 2} can be lower than Nb at 4 K. One of the problems with other high-T{sub c} materials such as YBCO was its rapid increase in RF surface resistance with higher surface magnetic fields. Recently, we have shown that MgB2 shows little increase in the surface resistance up to {approx}120 Oe, equivalent of an accelerating field of {approx}3 MV/m. The highest field tested was limited by available power. This result is encouraging and has made us consider fabrication of a cavity coated with MgB{sub 2} and test it. Also, there is a potential that this material has a higher critical magnetic field that enables the cavity to run at a higher gradient than Nb cavities in addition to the possibility of operation at higher temperatures.

  12. Magnetic and transport properties of HTS MgB2 wires

    NASA Astrophysics Data System (ADS)

    Abin, D. A.; Mineev, N. A.; Osipov, M. A.; Pokrovskiy, S. V.; Rudnev, I. A.

    2016-09-01

    Critical current Ic and magnetization M of industrial MgB2 tape and wire were measured in order to estimate their suitability for production of liquid helium free cryomagnetic system. Samples were subjected to bending with different diameters Db and critical current was measured at temperature T = 4.2 K in magnetic fields up to 10 T. The dependences of the critical current on the diameter of the bend Ic (Db) were found and used for optimization of liquid helium free cryomagnetic system. The magnetization of the wire was measured by a vibrating sample magnetometer at temperatures T = 4.2,10, 15, 20, 25 K in magnetic fields up to 14 T. It was found that the magnetization curve M (H) is influenced by ferromagnetic response of the metal matrix. Ferromagnetic contribution had been taken into account and magnetization loops caused by the diamagnetic contribution of the superconducting phase were extracted. Dependencies Ic(T) and Ic(H) were obtained from the data.

  13. Development of ex situ processed MgB 2 wires and their applications to magnets

    NASA Astrophysics Data System (ADS)

    Braccini, Valeria; Nardelli, Davide; Penco, Roberto; Grasso, Giovanni

    2007-06-01

    In spite of the relatively short time dedicated to the development of magnesium diboride conductors since its discovery in early 2001, a substantial improvement was soon achieved in their manufacture and use. Unlike many others HTS and LTS materials, the MgB 2 conductor processing is more open to a number of improvements and modifications that help in making it more attractive for several DC and AC applications. Many kilometres of conductors were already produced throughout the world and it is now possible to start seriously thinking about a systematic industrial production of this material, as it is already possible to purchase it in reasonable lengths on the free market. These remarkable lengths of conductor were also wound in coils and their performance continuously improved in the past years. Here we will present a review of the recent results and a perspective for the future development of this “new” superconductor, starting from the optimisation of the precursor powders needed to improve the magnetic field behaviour of the tapes, to the conductor development, i.e. the production of multifilamentary Cu-stabilized tapes in lengths up to 1.78 km, to the realization of the first large-scale application devices such as MRI magnets and fault current limiters.

  14. Critical Currents, Vortex Dynamics and Microstructure in MgB_2

    NASA Astrophysics Data System (ADS)

    Serquis, Adriana; Civale, Leonardo; Liao, Xiazhou; Maley, Martin; Zhu, Yuntian; Peterson, Dean; Mueller, Fred

    2003-03-01

    One key issue in optimizing critical current density in MgB2 is to determine which structural features are the relevant pinning centers. In this work we explore the influence of microstructures on the vortex dynamics of bulk samples prepared either at ambient or at high isostatic pressure (HIP). Several types of defects were observed by electron microscopy. Both un-HIPed and HIPed samples contain a large number of intra-grain Mg(B,O) 2 precipitates coherent with the matrix, with sizes very well suited to act as pinning centers (5 - 100 nm). The HIP process further improves flux pinning by eliminating porosity and generating dislocations. We also present a detailed study of the temperature T, field H and current density J dependence of the normalized time (t) relaxation rate, S=dlnJ/dlnt. At low T, we observe a linear S(T), from which we extract a pinning energy Uc that is weakly T dependent and decreases monotonically with H. The extrapolations to T=0 indicate that the quantum creep rate is small. At higher T, the activation energy U(J) shows the divergent behavior at J -> 0 that characterizes the glassy phases. Results are contrasted with the expectations of various collective creep scenarios to extract information on the characteristics of the pinning centers.

  15. Electric transport measurements on bulk, polycrystalline MgB2 samples prepared at various reaction temperatures

    NASA Astrophysics Data System (ADS)

    Wiederhold, A.; Koblischka, M. R.; Inoue, K.; Muralidhar, M.; Murakami, M.; Hartmann, U.

    2016-03-01

    A series of disk-shaped, bulk MgB2 superconductors (sample diameter up to 4 cm) was prepared in order to improve the performance for superconducting super-magnets. Several samples were fabricated using a solid state reaction in pure Ar atmosphere from 750 to 950oC in order to determine the optimum processing parameters to obtain the highest critical current density as well as large trapped field values. Additional samples were prepared with added silver (up to 10 wt.-%) to the Mg and B powder. Magneto-resistance data and I/V-characteristics were recorded using an Oxford Instruments Teslatron system. From Arrhenius plots, we determine the TAFF pinning potential, U 0. The I/V-characteristics yield detailed information on the current flow through the polycrystalline samples. The current flow is influenced by the presence of pores in the samples. Our analysis of the achieved critical currents together with a thorough microstructure investigation reveals that the samples prepared at temperatures between 775°C and 805°C exhibit the smallest grains and the best connectivity between them, while the samples fabricated at higher reaction temperatures show a reduced connectivity and lower pinning potential. Doping the samples with silver leads to a considerable increase of the pinning potential and hence, the critical current densities.

  16. Electronic, dynamical and superconducting properties of MgB2: doping, surface and pressure effects

    NASA Astrophysics Data System (ADS)

    Profeta, G.; Continenza, A.; Bernardini, F.; Monni, M.; Massidda, S.

    2003-02-01

    We report a detailed first-principles local-density-functional investigation of the structural, electronic, dynamical and superconducting properties of MgB2 focusing on different aspects related to this material. In particular, we examine Al doping, as well as reduced dimensionality and pressure effects on the electronic and superconducting properties of this compound. Our ab initio calculations for the case of 50% Al doping are able to correctly reproduce the measured frequencies of the E2g phonon and explain the disappearance of superconductivity in terms of filling effects on both carrier concentration and electron-phonon coupling. The surface study shows that an enhanced density of states at the Fermi level is found in the B-terminated case. However, we find the Mg-terminated surface to be the most stable structure in the whole range admitted by the chemical potentials, in agreement with very recent experimental results. Finally, the study of the E2g phonon frequency under pressure is able to explain the critical temperature lowering under applied pressure.

  17. Study of the Electrodynamic Response of MgB2 Sintered Pellets and Thin Films

    NASA Astrophysics Data System (ADS)

    Andreone, A.; di Gennaro, E.; Lamura, G.; Salluzzo, M.; Le Cochec, J.; Gauzzi, A.; Cantoni, C.; Paranthaman, M.; Ceresara, S.; Giunchi, G.

    We present a number of experimental results on the temperature dependence of the magnetic penetration depth λ and on the temperature and field dependence of the microwave surface impedance Zs=Rs+iXs in both pellets and thin films of MgB2, exhibiting critical temperatures ranging between 26 and 38 K. Accurate measurements of Zs(H,T) were performed by means of a sapphire dielectrically loaded cavity operating in the microwave region (20 GHz). The study of λ(T) was carried out employing a single coil mutual inductance technique in the MHz region. An anisotropic s-wave BCS model can account for the temperature dependence experimentally observed in the penetration depth data of the best films, confirming previous reports on the conventional nature of superconductivity in diborides. On the contrary, films having a reduced value of the critical temperature and pellets show no evidence of saturation, and the experimental results strictly follow a quadratic dependence down to the lowest temperatures. We explain this behavior with the presence of metallic Mg inclusions that may locally depress the gap. The study of the surface impedance versus temperature and field shows also that the source of microwave loss can be markedly different, depending on the structural and transport properties of the samples.

  18. Fabrication and superconducting properties of internal Mg diffusion processed MgB2 wires using MgB4 precursors

    NASA Astrophysics Data System (ADS)

    Xu, Da; Wang, Dongliang; Yao, Chao; Zhang, Xianping; Ma, Yanwei; Oguro, Hidetoshi; Awaji, Satoshi; Watanabe, Kazuo

    2016-10-01

    Monofilament MgB2/Nb/Monel wires were fabricated using three different MgB4 precursors by an internal Mg diffusion (IMD) process. The wire geometry and heat-treatment conditions were optimized in order to improve the critical current density (J c) of the MgB2 wire. The influences of the quality of MgB4 powders, such as the particle size and MgO impurity, on the microstructure and superconducting properties of the wires were discussed. Although there were small amounts of voids, unreacted MgB4 particles and MgO impurity existed in the superconducting layers, and the transport layer J c of the wire with the MgB4 precursor reached 3.0 × 104 A cm-2 at 4.2 K and 10 T, which was comparable to that of IMD-processed wires fabricated using boron precursors. Both the non-barrier J c and engineering J c of MgB2 wire made using a MgB4 precursor were enhanced due to the improved grain connectivity and the enlarged fill factor.

  19. Enhancement of the high-magnetic-field critical current density of superconducting MgB2 by proton irradiation.

    PubMed

    Bugoslavsky, Y; Cohen, L F; Perkins, G K; Polichetti, M; Tate, T J; Gwilliam, R; Caplin, A D

    2001-05-31

    Magnesium diboride, MgB2, has a relatively high superconducting transition temperature, placing it between the families of low- and high-temperature (copper oxide based) superconductors. Supercurrent flow in MgB2 is unhindered by grain boundaries, making it potentially attractive for technological applications in the temperature range 20-30 K. But in the bulk material, the critical current density (Jc) drops rapidly with increasing magnetic field strength. The magnitude and field dependence of the critical current are related to the presence of structural defects that can 'pin' the quantized magnetic vortices that permeate the material, and a lack of natural defects in MgB2 may be responsible for the rapid decline of Jc with increasing field strength. Here we show that modest levels of atomic disorder induced by proton irradiation enhance the pinning of vortices, thereby significantly increasing Jc at high field strengths. We anticipate that either chemical doping or mechanical processing should generate similar levels of disorder, and so achieve performance that is technologically attractive in an economically viable way.

  20. MgB2UltrathinFilms Fabricated by Hybrid Physical Chemical Vapor Deposition and Subsequent Ion Milling

    NASA Astrophysics Data System (ADS)

    Acharya, Narendra; Wolak, Matthaeus; Tan, Teng; Cunnane, Daniel; Karasik, Boris; Xi, Xiaoxing

    Hot electron bolometer (HEB) mixers are a great tool for measuring high-resolution spectroscopy at Terahertz frequencies. MgB2offers a higher critical temperature (39 K) compared to commonly used Nb and NbN and boasts a shorter intrinsic electron-phonon relaxation time, giving rise to a broader intermediate frequency (IF) bandwidth. We have fabricated high quality ultrathin MgB2films using hybrid physical-chemical vapor deposition (HPCVD) and employing ion milling to achieve thickness down to 2 nm. The thinnest achieved films show high Tc of 28 K with residual resistivity below 28 µ Ωcm and high critical current Jcof 1x106 A/cm2at 20 K. As a result of the employed low angle ion milling process, the films remain well connected even after being thinned down since the initial thick films offer a better connectivity than as-grown thin films. The established process offers a way to realize MgB2 based HEB mixers of extremely low thickness and therefore small local oscillator power requirements and increased IF bandwidth.

  1. A new approach to a superconducting joining process for carbon-doped MgB2 conductor

    NASA Astrophysics Data System (ADS)

    Patel, Dipak; Hossain, Md Shahriar Al; Maeda, Minoru; Shahabuddin, Mohammed; Yanmaz, Ekrem; Pradhan, Subrata; Tomsic, Mike; Choi, Seyong; Kim, Jung Ho

    2016-09-01

    We report a new approach to a superconducting joining process for unreacted in situ carbon (C)-doped magnesium diboride (MgB2) wires. To operate a magnetic resonance imaging (MRI) magnet in the persistent mode, the superconducting joints between two conductors are as critical as the other key components. In addition, a stable and reliable joining process enables the superconducting magnet to operate without an external power supply. However, joint results using unreacted in situ C-doped MgB2 wires, which are used for high-field operation, have been limited, and only very poor performance has been obtained. By controlling the pressure inside a joint part, in this study, we successfully obtained current carrying retention in the joint of up to 72% compared to wire without a joint. The closed-circuit resistance of our closed-loop coil was less than 1.8 × 10-13 Ω at 16.7 ± 4.7 K, as measured by the field-decay measurement method. These results indicate that MgB2 has a promising future in MRI application.

  2. Behaviour of filamentary MgB2 wires subjected to tensile stress at 4.2 K

    NASA Astrophysics Data System (ADS)

    Kováč, P.; Kopera, L.; Melišek, T.; Rindfleisch, M.; Haessler, W.; Hušek, I.

    2013-10-01

    Different filamentary MgB2 wires have been subjected to tensile stress at 4.2 K. Stress-strain and critical current versus stress and strain characteristics of wires differing by filament architecture, sheath materials, deformation and heat treatment were measured and compared. It was found that the linear increase of critical current due to the pre-compression effect (ranging from 5% up to ≈20%) is affected by thermal expansion and the strength of used metallic sheaths. The values of irreversible strain ɛirr and stress σirr depend dominantly on the applied outer sheath and its final heat treatment conditions. Consequently, the strain-tolerance of MgB2 wires is influenced by several parameters and it is difficult to see a clear relation between Ic(ɛ) and σ(ɛ) characteristics. The lowest ɛirr was measured for Monel sheathed wires (0.3-0.6%), medium for GlidCop® sheath (0.48-0.6%), and the highest ɛirr = 0.6-0.9% were obtained for MgB2 wires reinforced by the stainless steel 316L annealed at temperature between 600 and 800 ° C. The highest ɛirr = 0.9% and σirr = 900 MPa were measured for the work-hardened steel, which is not considerably softened by the heat treatment at 600 ° C/2.5 h.

  3. The Influence of CuFe2O4 Nanoparticles on Superconductivity of MgB2

    NASA Astrophysics Data System (ADS)

    Novosel, Nikolina; Pajić, Damir; Skoko, Željko; Mustapić, Mislav; Babić, Emil; Zadro, Krešo; Horvat, Joseph

    The influence of CuFe2O4 nanoparticle doping on superconducting properties of Fe-sheated MgB2 wires has been studied. The wires containing 0, 3 and 7.5 wt.% of monodisperse superparamagnetic nanoparticles (˜7 nm) were sintered at 650°C or 750°C for 1 hour in the pure argon atmosphere. X-ray diffraction patterns of doped samples showed very small maxima corresponding to iron boride and an increase in the fraction of MgO phase indicating some interaction of nanoparticles with Mg and B. Both magnetic and transport measurements (performed in the temperature range 2-42 K and magnetic field up to 16 T) showed strong deterioration of the superconducting properties upon doping with CuFe2O4. The transition temperatures, Tc, of doped samples decreased for about 1.4 K per wt.% of CuFe2O4. Also, the irreversibility fields Birr(T) decreased progressively with increasing doping. Accordingly, also the suppression of Jc with magnetic field became stronger. The observed strong deterioration of superconducting properties of MgB2 wires is at variance with reported enhancement of critical currents at higher temperatures (determined from magnetization) in bulk MgB2 samples doped with Fe3O4 nanoparticles. The probable reason for this discrepancy is briefly discussed

  4. A new approach to a superconducting joining process for carbon-doped MgB2 conductor

    NASA Astrophysics Data System (ADS)

    Patel, Dipak; Hossain, Md Shahriar Al; Maeda, Minoru; Shahabuddin, Mohammed; Yanmaz, Ekrem; Pradhan, Subrata; Tomsic, Mike; Choi, Seyong; Kim, Jung Ho

    2016-09-01

    We report a new approach to a superconducting joining process for unreacted in situ carbon (C)-doped magnesium diboride (MgB2) wires. To operate a magnetic resonance imaging (MRI) magnet in the persistent mode, the superconducting joints between two conductors are as critical as the other key components. In addition, a stable and reliable joining process enables the superconducting magnet to operate without an external power supply. However, joint results using unreacted in situ C-doped MgB2 wires, which are used for high-field operation, have been limited, and only very poor performance has been obtained. By controlling the pressure inside a joint part, in this study, we successfully obtained current carrying retention in the joint of up to 72% compared to wire without a joint. The closed-circuit resistance of our closed-loop coil was less than 1.8 × 10‑13 Ω at 16.7 ± 4.7 K, as measured by the field-decay measurement method. These results indicate that MgB2 has a promising future in MRI application.

  5. Tellurium addition as a solution to improve compactness of ex-situ processed MgB2-SiC superconducting tapes

    NASA Astrophysics Data System (ADS)

    Sandu, V.; Aldica, G.; Popa, S.; Enculescu, Monica; Badica, P.

    2016-06-01

    Ex-situ spark plasma sintering (SPS) was used to obtain dense MgB2-based tapes in a Fe sheath with the starting composition (MgB2)0.975 + (SiC)0.025 + Te0.01. Prior to the SPS procedure of tape formation, the samples were submitted to a series of cold working processes typical for the powder-in-tube technique. The tapes were compared with optimal doped bulk samples (having the same starting composition) and a pristine MgB2 tape. The morphology of the composite samples, the phase structure of both the core and the inner face of the metallic sheath shows the formation of a plethora of traces as a result of interaction between MgB2, additives, and the Fe sheath. Important critical parameters, like critical current density and the irreversibility field, show that there is a field and temperature range where the SiC and Te-added tapes display better critical parameters comparative to either pristine MgB2 tapes in the Fe sheath or SiC and Te doped MgB2 bulk samples.

  6. Evaluation of Young’s modulus of MgB2 filaments in composite wires for the superconducting links for the high-luminosity LHC upgrade

    NASA Astrophysics Data System (ADS)

    Sugano, Michinaka; Ballarino, Amalia; Bartova, Barbora; Bjoerstad, Roger; Gerardin, Alexandre; Scheuerlein, Christian

    2016-02-01

    MgB2 wire is a promising superconductor for the superconducting links for the high-luminosity upgrade of the large Hadron collider at CERN. The mechanical properties of MgB2 must be fully quantified for the cable design, and in this study, we evaluate the Young’s modulus of MgB2 filaments in wires with a practical level of critical current. The Young’s moduli of MgB2 filaments by two different processes, in situ and ex situ, were compared. Two different evaluation methods were applied to an in situ MgB2 wire, a single-fiber tensile test and a tensile test after removing Monel. In addition, the Young’s modulus of the few-micron-thick Nb-Ni reaction layer in an ex situ processed wire was evaluated using a nanoindentation testing technique to improve the accuracy of analysis based on the rule of mixtures. The Young’s moduli of the in situ and ex situ MgB2 wires were in the range of 76-97 GPa and no distinct difference depending on the fabrication process was found.

  7. Superior critical current density obtained in MgB2 bulks via employing carbon-coated boron and minor Cu addition

    NASA Astrophysics Data System (ADS)

    Peng, Junming; Liu, Yongchang; Ma, Zongqing; Shahriar Al Hossain, M.; Xin, Ying; Jin, Jianxun

    2016-09-01

    High performance Cu doped MgB2 bulks were prepared by an in-situ method with carbon-coated amorphous boron as precursor. It was found that the usage of carbon-coated boron in present work leads to the formation of uniformly refined MgB2 grains, as well as a high level of homogeneous carbon doping in the MgB2 samples, which significantly enhance the Jc in both Cu doped and undoped bulks compared to MgB2 bulks with normal amorphous boron precursor. Moreover, minor Cu can service as activator, and thus facilitates the growth of MgB2 grains and improves crystallinity and grain connectivity, which can bring about the excellent critical current density (Jc) at self fields and low fields (the best values are 7 × 105 A/cm2 at self fields, and 1 × 105 A/cm2 at 2 T, 20 K, respectively). Simultaneously, minor Cu addition can reduce the amount of MgO impurity significantly, also contributing to the improvement of Jc at low fields. Our work suggests that Cu-activated sintering combined with employment of carbon-coated amorphous boron as precursor could be a promising technique to produce practical MgB2 bulks or wires with excellent Jc on an industrial scale.

  8. Flux pinning mechanism in SiC and nano-C doped MgB2: evidence for transformation from δTc to δℓ pinning

    NASA Astrophysics Data System (ADS)

    Ghorbani, S. R.; Farshidnia, G.; Wang, X. L.; Dou, S. X.

    2014-12-01

    Magnetic and transport properties of 10 wt% SiC doped MgB2 and 5 wt% nano-C doped MgB2 were studied by resistance and critical current density measurements. The results showed improvement of the critical current density for the MgB2 superconductor doped with SiC in comparison with the nano-C doped sample. The flux pinning mechanisms of both doped MgB2 superconductors have been investigated based on the collective theory. It was found that the pinning mechanism in MgB2 was transformed by SiC doping from transition temperature fluctuation induced pinning, δTc pinning, to mean free path fluctuation induced pinning, δℓ pinning, while in the MgB2 doped with nano-C, δTc and δℓ pinning coexist. Their contributions are strongly temperature dependent, however. The δℓ pinning is dominant at low temperature, decreases with increasing temperature, and is suppressed completely at temperatures close to Tc. The δTc pinning mechanism shows the opposite trend.

  9. Phonon mean free path of graphite along the c-axis

    SciTech Connect

    Wei, Zhiyong; Yang, Juekuan; Chen, Weiyu; Bi, Kedong; Chen, Yunfei

    2014-02-24

    Phonon transport in the c-axis direction of graphite thin films has been studied using non-equilibrium molecular dynamics (MD) simulation. The simulation results show that the c-axis thermal conductivities for films of thickness ranging from 20 to 500 atomic layers are significantly lower than the bulk value. Based on the MD data, a method is developed to construct the c-axis thermal conductivity as an accumulation function of phonon mean free path (MFP), from which we show that phonons with MFPs from 2 to 2000 nm contribute ∼80% of the graphite c-axis thermal conductivity at room temperature, and phonons with MFPs larger than 100 nm contribute over 40% to the c-axis thermal conductivity. These findings indicate that the commonly believed value of just a few nanometers from the simple kinetic theory drastically underestimates the c-axis phonon MFP of graphite.

  10. On the roles of graphene oxide doping for enhanced supercurrent in MgB2 based superconductors

    NASA Astrophysics Data System (ADS)

    Yeoh, W. K.; Cui, X. Y.; Gault, B.; de Silva, K. S. B.; Xu, X.; Liu, H. W.; Yen, H.-W.; Wong, D.; Bao, P.; Larson, D. J.; Martin, I.; Li, W. X.; Zheng, R. K.; Wang, X. L.; Dou, S. X.; Ringer, S. P.

    2014-05-01

    Due to their graphene-like properties after oxygen reduction, incorporation of graphene oxide (GO) sheets into correlated-electron materials offers a new pathway for tailoring their properties. Fabricating GO nanocomposites with polycrystalline MgB2 superconductors leads to an order of magnitude enhancement of the supercurrent at 5 K/8 T and 20 K/4 T. Herein, we introduce a novel experimental approach to overcome the formidable challenge of performing quantitative microscopy and microanalysis of such composites, so as to unveil how GO doping influences the structure and hence the material properties. Atom probe microscopy and electron microscopy were used to directly image the GO within the MgB2, and we combined these data with computational simulations to derive the property-enhancing mechanisms. Our results reveal synergetic effects of GO, namely, via localized atomic (carbon and oxygen) doping as well as texturing of the crystals, which provide both inter- and intra-granular flux pinning. This study opens up new insights into how low-dimensional nanostructures can be integrated into composites to modify the overall properties, using a methodology amenable to a wide range of applications.Due to their graphene-like properties after oxygen reduction, incorporation of graphene oxide (GO) sheets into correlated-electron materials offers a new pathway for tailoring their properties. Fabricating GO nanocomposites with polycrystalline MgB2 superconductors leads to an order of magnitude enhancement of the supercurrent at 5 K/8 T and 20 K/4 T. Herein, we introduce a novel experimental approach to overcome the formidable challenge of performing quantitative microscopy and microanalysis of such composites, so as to unveil how GO doping influences the structure and hence the material properties. Atom probe microscopy and electron microscopy were used to directly image the GO within the MgB2, and we combined these data with computational simulations to derive the property-enhancing mechanisms. Our results reveal synergetic effects of GO, namely, via localized atomic (carbon and oxygen) doping as well as texturing of the crystals, which provide both inter- and intra-granular flux pinning. This study opens up new insights into how low-dimensional nanostructures can be integrated into composites to modify the overall properties, using a methodology amenable to a wide range of applications. Electronic supplementary information (ESI) available: Crystallographic data on the proposed Mg(B,O)2, MgB2O0.25 and MgB2O0.5 phases. Evidence of phase separation of Mg(B,O)2 into nanocrystalline MgO and MgB2, and evidence of the Mg(B,O)2 phase in X-ray diffraction with the X-ray index table for Mg(B,O)2. See DOI: 10.1039/c4nr00415a

  11. Temperature-Dependent Mean Free Path Spectra of Thermal Phonons Along the c-Axis of Graphite.

    PubMed

    Zhang, Hang; Chen, Xiangwen; Jho, Young-Dahl; Minnich, Austin J

    2016-03-01

    Heat conduction in graphite has been studied for decades because of its exceptionally large thermal anisotropy. While the bulk thermal conductivities along the in-plane and cross-plane directions are well-known, less understood are the microscopic properties of the thermal phonons responsible for heat conduction. In particular, recent experimental and computational works indicate that the average phonon mean free path (MFP) along the c-axis is considerably larger than that estimated by kinetic theory, but the distribution of MFPs remains unknown. Here, we report the first quantitative measurements of c-axis phonon MFP spectra in graphite at a variety of temperatures using time-domain thermoreflectance measurements of graphite flakes with variable thickness. Our results indicate that c-axis phonon MFPs have values of a few hundred nanometers at room temperature and a much narrower distribution than in isotropic crystals. At low temperatures, phonon scattering is dominated by grain boundaries separating crystalline regions of different rotational orientation. Our study provides important new insights into heat transport and phonon scattering mechanisms in graphite and other anisotropic van der Waals solids.

  12. Temperature-Dependent Mean Free Path Spectra of Thermal Phonons Along the c-Axis of Graphite.

    PubMed

    Zhang, Hang; Chen, Xiangwen; Jho, Young-Dahl; Minnich, Austin J

    2016-03-01

    Heat conduction in graphite has been studied for decades because of its exceptionally large thermal anisotropy. While the bulk thermal conductivities along the in-plane and cross-plane directions are well-known, less understood are the microscopic properties of the thermal phonons responsible for heat conduction. In particular, recent experimental and computational works indicate that the average phonon mean free path (MFP) along the c-axis is considerably larger than that estimated by kinetic theory, but the distribution of MFPs remains unknown. Here, we report the first quantitative measurements of c-axis phonon MFP spectra in graphite at a variety of temperatures using time-domain thermoreflectance measurements of graphite flakes with variable thickness. Our results indicate that c-axis phonon MFPs have values of a few hundred nanometers at room temperature and a much narrower distribution than in isotropic crystals. At low temperatures, phonon scattering is dominated by grain boundaries separating crystalline regions of different rotational orientation. Our study provides important new insights into heat transport and phonon scattering mechanisms in graphite and other anisotropic van der Waals solids. PMID:26840052

  13. Conductivity sum rule, implication for in-plane dynamics, and c-axis response

    NASA Astrophysics Data System (ADS)

    Kim, Wonkee; Carbotte, J. P.

    2000-10-01

    Recently observed c-axis optical sum rule violations indicate non-Fermi-liquid in-plane behavior. For coherent c-axis coupling, the observed flat, nearly frequency-independent c-axis conductivity σ1(ω) implies a large in-plane scattering rate Γ around (0,π) and therefore any pseudogap that might form at low frequency in the normal state will be smeared. On the other hand, incoherent c-axis coupling places no restriction on the value of Γ and gives a more consistent picture of the observed sum-rule violation which, we find in some cases, can be less than half.

  14. AC susceptibility analysis on MgB2 bulk and Ti-sheathed wire superconductors

    NASA Astrophysics Data System (ADS)

    Çiçek, Özlem; Yetiş, Hakan; Gencer, Ali

    2014-09-01

    We report a comparative study for bulk MgB2 superconductors and monofilamentary Ti/MgB2 wires as functions of the boron powder purity, average particle size of magnesium, and applied pressure. The structural and magnetic characterizations of the bulk samples were performed by means of XRD and AC susceptibility measurements, respectively. We found that the applied pressure did not cause any significant change on the onset transition temperature Tc,onset and transition width. This is also confirmed by the calculation of the lattice parameters. On the other hand, Tc,onset values were measured as 37.3 K, 38.0 K, and 38.6 K for the samples prepared from the precursor boron powders with purities of 95.2%, ⩾95%, and >98%, respectively. However Mg-particle size (Mg1: AlfaAesar Mg powder, avg. par. size: -325 mesh, purity: 99.8%; Mg2: SigmaAldrich Mg powder, avg. par. size: 20-230 mesh, purity: 98%) did not affect the Tc,onset but increasing the Mg particle size caused a significant broadening at the superconducting transition width for all precursor boron powder purity levels. Magnetization measurements showed that the critical current density of Ti/MgB2 wire prepared from AlfaAesar Mg powder (avg. par. size: -325 mesh) and Aldrich B powder (amorphous, purity ⩾ 95%) is greater than that of prepared by SigmaAldrich Mg powder (avg. par. size: 20-230 mesh) and Pavezyum B powder (amorphous, avg. par. size: 0,3 μm (max), purity > 98%) as 2.6 × 105 A/cm2 and 1.4 × 105 A/cm2 at T = 10 K and μ0H = 0.5 T, respectively. In addition, SigmaAldrich Mg and Pavezyum B wire sample has a lower pinning force, Fp, value at each temperature.

  15. Influence of Metal Diboride and Dy2O3 Additions on Microstructure and Properties of MgB2 Fabricated at High Temperatures and under Pressure

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Sumption, M. D.; Collings, E. W.

    2016-07-01

    High temperatures and under pressure (HTP) processing has been used to study the effects of chemical doping in MgB2. ZrB2, TiB2 and NbB2 were selected as additives since, like MgB2, they have an AlB2-type structure and similar lattice parameters. Dy2O3 was selected as it has been reported to generate nanoscale, secondary intragrain phases in MgB2. While C is known to enter the B-sublattice readily, attempts to dope Zr and other elements onto the Mg site have been less successful due to slow bulk diffusion, low solubility in MgB2, or both. We have used high-temperature, solid-state sintering (1500 °C), as well as excursions through the peritectic temperature (up to 1700 °C), to investigate both of these limitations. Bulk MgB2 samples doped with MB2 (M = Zr, Ti and Nb) and Dy2O3 additions were synthesized and then characterized. Lattice distortion and high densities of crystal defects were observed in the MgB2 grains around nano-sized MB2 inclusions, this highly defected band contributed to a large increase in Bc2 but was not large enough to increase the irreversibility field. In contrast, distributed intragrain precipitates were formed by Dy2O3 additions which did not change the lattice parameters, Tc, Tc distribution or Bc2 of MgB2, but modified the flux pinning.

  16. Influence of Metal Diboride and Dy2O3 Additions on Microstructure and Properties of MgB2 Fabricated at High Temperatures and under Pressure.

    PubMed

    Yang, Y; Sumption, M D; Collings, E W

    2016-07-13

    High temperatures and under pressure (HTP) processing has been used to study the effects of chemical doping in MgB2. ZrB2, TiB2 and NbB2 were selected as additives since, like MgB2, they have an AlB2-type structure and similar lattice parameters. Dy2O3 was selected as it has been reported to generate nanoscale, secondary intragrain phases in MgB2. While C is known to enter the B-sublattice readily, attempts to dope Zr and other elements onto the Mg site have been less successful due to slow bulk diffusion, low solubility in MgB2, or both. We have used high-temperature, solid-state sintering (1500 °C), as well as excursions through the peritectic temperature (up to 1700 °C), to investigate both of these limitations. Bulk MgB2 samples doped with MB2 (M = Zr, Ti and Nb) and Dy2O3 additions were synthesized and then characterized. Lattice distortion and high densities of crystal defects were observed in the MgB2 grains around nano-sized MB2 inclusions, this highly defected band contributed to a large increase in Bc2 but was not large enough to increase the irreversibility field. In contrast, distributed intragrain precipitates were formed by Dy2O3 additions which did not change the lattice parameters, Tc, Tc distribution or Bc2 of MgB2, but modified the flux pinning.

  17. Influence of Metal Diboride and Dy2O3 Additions on Microstructure and Properties of MgB2 Fabricated at High Temperatures and under Pressure

    PubMed Central

    Yang, Y.; Sumption, M. D.; Collings, E. W.

    2016-01-01

    High temperatures and under pressure (HTP) processing has been used to study the effects of chemical doping in MgB2. ZrB2, TiB2 and NbB2 were selected as additives since, like MgB2, they have an AlB2-type structure and similar lattice parameters. Dy2O3 was selected as it has been reported to generate nanoscale, secondary intragrain phases in MgB2. While C is known to enter the B-sublattice readily, attempts to dope Zr and other elements onto the Mg site have been less successful due to slow bulk diffusion, low solubility in MgB2, or both. We have used high-temperature, solid-state sintering (1500 °C), as well as excursions through the peritectic temperature (up to 1700 °C), to investigate both of these limitations. Bulk MgB2 samples doped with MB2 (M = Zr, Ti and Nb) and Dy2O3 additions were synthesized and then characterized. Lattice distortion and high densities of crystal defects were observed in the MgB2 grains around nano-sized MB2 inclusions, this highly defected band contributed to a large increase in Bc2 but was not large enough to increase the irreversibility field. In contrast, distributed intragrain precipitates were formed by Dy2O3 additions which did not change the lattice parameters, Tc, Tc distribution or Bc2 of MgB2, but modified the flux pinning. PMID:27406904

  18. Effect of field cooling heights on the levitation force of pure and starch/polystyrene/MWCNT added bulk MgB2 superconductors

    NASA Astrophysics Data System (ADS)

    Tripathi, D.; Dey, T. K.

    2014-12-01

    A series of MgB2 pellets with and without addition of carbon from different sources (viz. starch, polystyrene and carbon nanotubes) have been synthesized by solid state reaction under argon atmosphere. XRD analysis indicates a decrease in lattice parameters of MgB2 with addition of starch, polystyrene (PS) and MWCNT and confirms substitution of carbon in boron sites. The presence of nanosized carbon inclusions between the grain boundaries in the present set of samples is evident in TEM photographs. Resistivity data confirms a decrease in superconducting transition temperature (Tc0) for MgB2 doped with starch/PS/MWCNT. The effect of different field cooling heights (HIFC) at 20 K on maximum levitation force (FMLF) and maximum attractive force (FMAF) of pure MgB2 and MgB2 doped with starch/PS/MWCNT have been investigated. Except for MWCNT, doping of starch and PS in MgB2 is found to improve FMLF and FMAF and the best result is obtained for MgB2 doped with 1 wt.% PS. Levitation force measured as a function of decreasing initial field cooling height indicates exponential dependence of both maximum levitation force (FMLF) and maximum attractive force (FMAF). However, the gap distance between PM and the sample (H0AF and HMAF) corresponding to maximum attractive force (FMAF) and zero attractive force (F0AF) varies linearly and their difference remains constant. This constancy in (HMAF - H0AF) is understood in terms of constant reduction rate of magnetic flux density between H0AF and HMAF.

  19. Manufacturing process influence on superconducting properties of MgB2 wires prepared using laboratory made boron

    NASA Astrophysics Data System (ADS)

    Bovone, Gianmarco; Matera, Davide; Bernini, Cristina; Magi, Emanuele; Vignolo, Maurizio

    2015-06-01

    Here we report a systematic study of the superconductive properties of mono-filamentary MgB2-based wires, manufactured with four different techniques. A detailed comparison of the influence of manufacturing technique and final heat treatment on superconducting properties has been given. The boron used was synthesized in laboratory following magnesiothermic reduction of boron oxide, purified thanks to several acid leaching and heat treated at high temperature, to enhance crystalline degree and remove impurities. MgB2 conductors were manufactured using the same B precursor through four different techniques (ex situ, in situ, the MgB4 or ‘mixed’ technique (half ex situ and half in situ), and reactive liquid infiltration (Rli)). Transport critical current density was measured on the best wire for each technique, considering the literature data in order to identify the corresponding best final heat treatment. Magnetic critical current density and critical temperature were investigated at different synthesis/sintering temperatures in order to evaluate their dependence to the applied final heat treatment and the data were compared. Critical current density was evaluated on short wire pieces by magnetic measurement at 5 K in a MPMS 5.5 T Quantum Design SQUID, while critical temperature was measured with a four probe system by drop of resistivity during the cooling process of the sample in a liquid helium dewar. A detailed morphological analysis is given, with void percentage evaluation and analysis of elemental Mg diffusion across the transversal cross section. X-ray diffraction was performed on MgB2 powder extracted removing each metal sheath, in order to investigate the influence of manufacturing process on the MgB2 phase. This study shows that despite the presence of a wide void within the superconducting core (due to the Mg diffusion) in the Rli sample, this manufacturing technique allows wires with higher Jc (105 A cm-2 at 3 T when heat treatment at 700 °C is applied) than other powder in tube techniques, while the highest Tc (39.2 K at the onset) can be reached by following the mixed technique, which also shows low dependence to heat treatment for both Tc and Jc. In order to establish the presence of some impurities in the lab-made B precursor energy dispersion spectroscopy analysis, inductively coupled plasma atomic emission spectrometry and X-ray analysis were performed on B.

  20. Evidence for strong-coupling s-wave superconductivity in MgB2: (11)B NMR Study.

    PubMed

    Kotegawa, H; Ishida, K; Kitaoka, Y; Muranaka, T; Akimitsu, J

    2001-09-17

    We have investigated a gap structure in a newly discovered superconductor, MgB2, through measurement of the (11)B nuclear spin-lattice relaxation rate, (11)(1/T(1)). (11)(1/T(1)) is proportional to the temperature (T) in the normal state, and decreases exponentially in the superconducting (SC) state, revealing a tiny coherence peak just below T(c). The T dependence of 1/T(1) in the SC state can be accounted for by an s-wave SC model with a large gap size of 2Delta/k(B)T(c) approximately 5 which suggests it is in a strong-coupling regime.

  1. The influence of heating rate on superconducting characteristics of MgB2 obtained by spark plasma sintering technique

    NASA Astrophysics Data System (ADS)

    Aldica, G.; Burdusel, M.; Popa, S.; Enculescu, M.; Pasuk, I.; Badica, P.

    2015-12-01

    Superconducting bulks of MgB2 were obtained by the Spark Plasma Sintering (SPS) technique. Different heating rates of 20, 100, 235, 355, and 475 °C/min were used. Samples have high density, above 95%. The onset critical temperature Tc, is about 38.8 K. There is an optimum heating rate of ∼100 °C/min to maximize the critical current density Jc0, the irreversibility field Hirr, the product (Jc0 x μ0Hirr), and to partially avoid formation of undesirable flux jumps at low temperatures. Significant microstructure differences were revealed for samples processed with low and high heating rates in respect to grain boundaries.

  2. A 2-D Array of Superconducting Magnesium Diboride (MgB2) Far-IR Thermal Detectors for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Lakew, Brook

    2009-01-01

    A 2-D array of superconducting Magnesium Diboride(MgB2) far IR thermal detectors has been fabricated. Such an array is intended to be at the focal plane of future generation thermal imaging far-IR instruments that will investigate the outer planets and their icy moons. Fabrication and processing of the pixels of the array as well as noise characterization of architectured MgB2 thin films will be presented. Challenges and solutions for improving the performance of the array will be discussed.

  3. First-order transition in the magnetic vortex matter in superconducting MgB2 tuned by disorder.

    PubMed

    Klein, T; Marlaud, R; Marcenat, C; Cercellier, H; Konczykowski, M; van der Beek, C J; Mosser, V; Lee, H S; Lee, S I

    2010-07-23

    The field-driven transition from an ordered Bragg glass to a disordered vortex phase in single-crystalline MgB2 is tuned by an increasing density of point defects, introduced by electron irradiation. The discontinuity observed in magnetization attests to the first-order nature of the transition. The temperature and defect density dependences of the transition field point to vortex pinning mediated by fluctuations in the quasiparticle mean free path, and reveal the mechanism of the transition in the absence of complicating factors such as layeredness or thermal fluctuations.

  4. High-field properties of carbon-doped MgB2 thin films by hybrid physical-chemical vapor deposition using different carbon sources

    NASA Astrophysics Data System (ADS)

    Dai, Wenqing; Ferrando, V.; Pogrebnyakov, A. V.; Wilke, R. H. T.; Chen, Ke; Weng, Xiaojun; Redwing, Joan; Wung Bark, Chung; Eom, Chang-Beom; Zhu, Y.; Voyles, P. M.; Rickel, Dwight; Betts, J. B.; Mielke, C. H.; Gurevich, A.; Larbalestier, D. C.; Li, Qi; Xi, X. X.

    2011-12-01

    We have studied the high-field properties of carbon-doped MgB2 thin films prepared by hybrid physical-chemical vapor deposition (HPCVD). Carbon doping was accomplished by adding carbon-containing gas, such as bis(methylcyclopentadienyl)magnesium and trimethylboron, into the hydrogen carrier gas during the deposition. In both cases, Tc drops slowly and residual resistivity increases considerably with carbon doping. Both the a and c lattice constants increase with carbon content in the films, a behavior different from that of bulk carbon-doped MgB2 samples. The films heavily doped with trimethylboron show very high parallel Hc2 over 70 T at low temperatures and a large temperature derivative -\\rmd H_{ {c2}}^{\\parallel } /\\rmd T near Tc. These behaviors are found to depend on the unique microstructure of the films, which consists of MgB2 layers a few-nanometers thick separated by non-superconducting MgB2C2 layers. This leads to an increase in the parallel Hc2 by the geometrical effect, which is in addition to the significant enhancement of Hc2 due to changes in the scattering rates within and between the two bands present in films doped using both carbon sources. The high Hc2 and high-field Jc(H) values observed in this work are very promising for the application of MgB2 in high magnetic fields.

  5. A multiscale and multiphysics model of strain development in a 1.5 T MRI magnet designed with 36 filament composite MgB2 superconducting wire

    NASA Astrophysics Data System (ADS)

    Amin, Abdullah Al; Baig, Tanvir; Deissler, Robert J.; Yao, Zhen; Tomsic, Michael; Doll, David; Akkus, Ozan; Martens, Michael

    2016-05-01

    High temperature superconductors such as MgB2 focus on conduction cooling of electromagnets that eliminates the use of liquid helium. With the recent advances in the strain sustainability of MgB2, a full body 1.5 T conduction cooled magnetic resonance imaging (MRI) magnet shows promise. In this article, a 36 filament MgB2 superconducting wire is considered for a 1.5 T full-body MRI system and is analyzed in terms of strain development. In order to facilitate analysis, this composite wire is homogenized and the orthotropic wire material properties are employed to solve for strain development using a 2D-axisymmetric finite element analysis (FEA) model of the entire set of MRI magnet. The entire multiscale multiphysics analysis is considered from the wire to the magnet bundles addressing winding, cooling and electromagnetic excitation. The FEA solution is verified with proven analytical equations and acceptable agreement is reported. The results show a maximum mechanical strain development of 0.06% that is within the failure criteria of -0.6% to 0.4% (-0.3% to 0.2% for design) for the 36 filament MgB2 wire. Therefore, the study indicates the safe operation of the conduction cooled MgB2 based MRI magnet as far as strain development is concerned.

  6. A defect detection method for MgB2 superconducting and iron-based Ba(Fe,Co)2As2 wires

    NASA Astrophysics Data System (ADS)

    Gajda, D.; Morawski, A.; Zaleski, A.; Yamamoto, A.; Cetner, T.

    2016-04-01

    In this article, a method allowing for the detection of damage in iron-based superconducting bulks and MgB2 wires is presented. MgB2 wires were made of in situ material with ex situ MgB2 barrier. The iron superconductor studied was Ba(Fe,Co)2As2. This material was surrounded by Nb barrier and placed inside an iron tube. All samples were annealed in the isostatic pressure of 1 GPa. Transport measurements were made using a four-contact probe. The transition of Nb and ex situ MgB2 barrier from superconducting into resistive state (first transition) was observed at a temperature range from 5 K to 10 K and can be attributed to damage in either the Nb or ex situ MgB2 barrier in these samples. For samples with a damaged barrier, it was not possible to determine the critical current density of the wires. The analysis indicates that annealing at 1 GPa leads to the Ba(Fe,Co)2As2 material with critical temperatures of 27 K and 21.5 K at upper critical flux density (Bc2) of 14 T.

  7. Superconducting Properties of MgB2 with Addition of Other AlB2-type Diborides and Carbon Sources, Prepared Using High Energy Ball Milling and HIP

    NASA Astrophysics Data System (ADS)

    Rodrigues, Durval; Silva, Lucas B. S. da; Metzner, Vivian C. V.; Hellstrom, Eric E.

    In the present work it is described the production of MgB2 samples by using the mixture of MgB2 with other diborides, (TaB2, VB2, and AlB2) which have the same C32 hexagonal structure as the MgB2, and simultaneous addition with the diborides and SiC, that contribute with C, to replace B in the crystalline structure of the matrix. As an important result, the critical current density (Jc) was improved at low magnetic fields when just the diborides are added. However, when SiC is added simultaneously with the diborides, the result is the improvement of Jc at high fields. The critical temperature (Tc) was maintained high.

  8. Loss of superconductivity with the addition of Al to MgB2 and a structural transition in Mg1-x AlxB2.

    PubMed

    Slusky, J S; Rogado, N; Regan, K A; Hayward, M A; Khalifah, P; He, T; Inumaru, K; Loureiro, S M; Haas, M K; Zandbergen, H W; Cava, R J

    2001-03-15

    The basic magnetic and electronic properties of most binary compounds have been well known for decades. The recent discovery of superconductivity at 39 K in the simple binary ceramic compound magnesium diboride, MgB2, was therefore surprising. Indeed, this material has been known and structurally characterized since the mid 1950s (ref. 2), and is readily available from chemical suppliers (it is commonly used as a starting material for chemical metathesis reactions). Here we show that the addition of electrons to MgB2, through partial substitution of Al for Mg, results in the loss of superconductivity. Associated with the Al substitution is a subtle but distinct structural transition, reflected in the partial collapse of the spacing between boron layers near an Al content of 10 per cent. This indicates that superconducting MgB2 is poised very near a structural instability at slightly higher electron concentrations.

  9. Reactive spark plasma sintering of MgB2 in nitrogen atmosphere for the enhancement of the high-field critical current density

    NASA Astrophysics Data System (ADS)

    Badica, P.; Burdusel, M.; Popa, S.; Pasuk, I.; Ivan, I.; Borodianska, H.; Vasylkiv, O.; Kuncser, A.; Ionescu, A. M.; Miu, L.; Aldica, G.

    2016-10-01

    High density bulks (97%-99%) of MgB2 were prepared by spark plasma sintering (SPS) in nitrogen (N2) atmosphere for different heating rates (10, 20 and 100 °C min-1) and compared with reference samples processed in vacuum and Ar. N2 reacts with MgB2 and forms MgB9N along the MgB2 grain boundaries. The high-field critical current density is enhanced for the sample processed in N2 with a heating rate of 100 °C min-1. At 2-35 K, this sample shows the strongest contribution of the grain boundary pinning (GBP). All samples are in the point pinning (PP) limit and by increasing temperature the GBP contribution decreases.

  10. Cryogenic Tests of 30 m Flexible Hybrid Energy Transfer Line with Liquid Hydrogen and Superconducting MgB2 Cable

    NASA Astrophysics Data System (ADS)

    Vysotsky, V. S.; Antyukhov, I. V.; Firsov, V. P.; Blagov, E. V.; Kostyuk, V. V.; Nosov, A. A.; Fetisov, S. S.; Zanegin, S. Yu.; Rachuk, V. S.; Katorgin, B. I.

    Recently we reported about first in the world test of 10 m hybrid energy transfer line with liquid hydrogen and MgB2 superconducting cable. In this paper we present the new development of our second hybrid energy transfer line with 30 m length. The flexible 30 m hydrogen cryostat has three sections with different types of thermal insulation in each section: simple vacuum superinsulation, vacuum superinsulation with liquid nitrogen shield and active evaporating cryostatting (AEC) system. We performed thermo-hydraulic tests of the cryostat to compare three thermo-insulating methods. The tests were performed at temperatures from 20 to 26 K, hydrogen flow from 100 to 450 g/s and pressure from 0.25 to 0.5 MPa. It was found that AEC thermal insulation practically eliminated completely heat transfer from room temperature to liquid hydrogen in the 10 m section. AEC thermal insulation method can be used for long superconducting power cables. High voltage current leads were developed as well. The current leads and superconducting MgB2 cable have been passed high voltage DC test up to 50 kV DC. Critical current of the cable at ∼21 K was ∼3500 A. The 30 m hybrid energy system developed is able to deliver up to 135 MW of chemical and electrical power in total.

  11. Design of a cryogenic system for a 20m direct current superconducting MgB2 and YBCO power cable

    NASA Astrophysics Data System (ADS)

    Cheadle, Michael J.; Bromberg, Leslie; Jiang, Xiaohua; Glowacki, Bartek; Zeng, Rong; Minervini, Joseph; Brisson, John

    2014-01-01

    The Massachusetts Institute of Technology, the University of Cambridge in the United Kingdom, and Tsinghua University in Beijing, China, are collaborating to design, construct, and test a 20 m, direct current, superconducting MgB2 and YBCO power cable. The cable will be installed in the State Key Laboratory of Power Systems at Tsinghua University in Beijing beginning in 2013. In a previous paper [1], the cryogenic system was briefly discussed, focusing on the cryogenic issues for the superconducting cable. The current paper provides a detailed discussion of the design, construction, and assembly of the cryogenic system and its components. The two-stage system operates at nominally 80 K and 20 K with the primary cryogen being helium gas. The secondary cryogen, liquid nitrogen, is used to cool the warm stage of binary current leads. The helium gas provides cooling to both warm and cold stages of the rigid cryostat housing the MgB2 and YBCO conductors, as well as the terminations of the superconductors at the end of the current leads. A single cryofan drives the helium gas in both stages, which are thermally isolated with a high effectiveness recuperator. Refrigeration for the helium circuit is provided by a Sumitomo RDK415 cryocooler. This paper focuses on the design, construction, and assembly of the cryostat, the recuperator, and the current leads with associated superconducting cable terminations.

  12. The complex nature of superconductivity in MgB2 as revealed by the reduced total isotope effect.

    PubMed

    Hinks, D G; Claus, H; Jorgensen, J D

    2001-05-24

    Magnesium diboride, MgB2, was recently observed to become superconducting at 39 K, which is the highest known transition temperature for a non-copper-oxide bulk material. Isotope-effect measurements, in which atoms are substituted by isotopes of different mass to systematically change the phonon frequencies, are one of the fundamental tests of the nature of the superconducting mechanism in a material. In a conventional Bardeen-Cooper-Schrieffer (BCS) superconductor, where the mechanism is mediated by electron-phonon coupling, the total isotope-effect coefficient (in this case, the sum of both the Mg and B coefficients) should be about 0.5. The boron isotope effect was previously shown to be large and that was sufficient to establish that MgB2 is a conventional superconductor, but the Mg effect has not hitherto been measured. Here we report the determination of the Mg isotope effect, which is small but measurable. The total reduced isotope-effect coefficient is 0.32, which is much lower than the value expected for a typical BCS superconductor. The low value could be due to complex materials properties, and would seem to require both a large electron-phonon coupling constant and a value of mu* (the repulsive electron-electron interaction) larger than found for most simple metals.

  13. On the roles of graphene oxide doping for enhanced supercurrent in MgB2 based superconductors.

    PubMed

    Yeoh, W K; Cui, X Y; Gault, B; De Silva, K S B; Xu, X; Liu, H W; Yen, H-W; Wong, D; Bao, P; Larson, D J; Martin, I; Li, W X; Zheng, R K; Wang, X L; Dou, S X; Ringer, S P

    2014-06-01

    Due to their graphene-like properties after oxygen reduction, incorporation of graphene oxide (GO) sheets into correlated-electron materials offers a new pathway for tailoring their properties. Fabricating GO nanocomposites with polycrystalline MgB2 superconductors leads to an order of magnitude enhancement of the supercurrent at 5 K/8 T and 20 K/4 T. Herein, we introduce a novel experimental approach to overcome the formidable challenge of performing quantitative microscopy and microanalysis of such composites, so as to unveil how GO doping influences the structure and hence the material properties. Atom probe microscopy and electron microscopy were used to directly image the GO within the MgB2, and we combined these data with computational simulations to derive the property-enhancing mechanisms. Our results reveal synergetic effects of GO, namely, via localized atomic (carbon and oxygen) doping as well as texturing of the crystals, which provide both inter- and intra-granular flux pinning. This study opens up new insights into how low-dimensional nanostructures can be integrated into composites to modify the overall properties, using a methodology amenable to a wide range of applications.

  14. Evaluation of persistent-mode operation in a superconducting MgB2 coil in solid nitrogen

    NASA Astrophysics Data System (ADS)

    Patel, Dipak; Hossain, Md Shahriar Al; See, Khay Wai; Qiu, Wenbin; Kobayashi, Hiroki; Ma, Zongqing; Kim, Seong Jun; Hong, Jonggi; Park, Jin Yong; Choi, Seyong; Maeda, Minoru; Shahabuddin, Mohammed; Rindfleisch, Matt; Tomsic, Mike; Xue Dou, Shi; Kim, Jung Ho

    2016-04-01

    We report the fabrication of a magnesium diboride (MgB2) coil and evaluate its persistent-mode operation in a system cooled by a cryocooler with solid nitrogen (SN2) as a cooling medium. The main purpose of SN2 was to increase enthalpy of the cold mass. For this work, an in situ processed carbon-doped MgB2 wire was used. The coil was wound on a stainless steel former in a single layer (22 turns), with an inner diameter of 109 mm and height of 20 mm without any insulation. The two ends of the coil were then joined to make a persistent-current switch to obtain the persistent-current mode. After a heat treatment, the whole coil was installed in the SN2 chamber. During operation, the resultant total circuit resistance was estimated to be <7.4 × 10-14 Ω at 19.5 K ± 1.5 K, which meets the technical requirement for magnetic resonance imaging application.

  15. Enhancement in the critical current density of C-doped MgB2 wire using a polyacrylic acid dopant.

    PubMed

    Lee, Seung Muk; Hwang, Soo Min; Lee, Chang Min; Kim, Won; Joo, Jinho; Lim, Jun Hyung; Kim, Chan-Joong; Hong, Gye-Won

    2012-02-01

    C-doped MgB2 wires were fabricated from a polyacrylic acid (PAA) using a conventional in-situ PIT technique. The effects of the PAA content on the lattice parameter, microstructure, critical temperature (Tc) and critical current density (Jc) were examined. With increasing PAA content, the amount of MgO in the sample increased but the crystallinity, a-axis lattice parameter, and Tc of MgB2 wires decreased, indicating that the C that decomposed from PAA during heat treatment had substituted for B. All doped samples exhibited a higher Jc than the undoped sample at high magnetic field, and the Jc(B) property improved with increasing PAA content: for the 7 wt% doped sample, the Jc was approximately 3-times higher than that of the pristine sample (1.28 kA/cm2 vs. 3.43 kA/cm2) at 5 K and 6.6 T. The improved Jc(B) of the doped sample was attributed to the decreased grain size, enlarged lattice distortion and increased C doping level.

  16. Substantial increment in critical parameters of MgB2 superconductor by boron site nano-carbon substitution

    NASA Astrophysics Data System (ADS)

    Mudgel, Monika; Awana, V. P. S.; Bhalla, G. L.; Kishan, H.

    2010-12-01

    This paper deals with the determination of critical properties of MgB2 along with the impact of carbon substitution on critical parameters. The change in lattice parameters and decrease of transition temperature, Tc confirms the successful substitution by carbon at boron site. The magneto transport measurements up to 140 kOe are carried out to determine upper critical field (Hc2). The upper critical field values, Hc2 are obtained from ρ-T(H) data based upon the criterion of 90% of normal resistivity. The Ginzburg Landau theory (GL equation) is applied to the ρ-T(H) data which accounts for the temperature dependence behavior of Hc2 in the low temperature high field region along with the determination of Hc(0) value. The Hc(0) value of about 300 kOe is obtained for the carbon doped sample while the same is just near to 160 kOe for the pure MgB2 sample.

  17. Effect of heat treatment temperature on superconducting performance of B 4C added MgB 2/Nb conductors

    NASA Astrophysics Data System (ADS)

    Viljamaa, J.; Kario, A.; Dobročka, E.; Reissner, M.; Kulich, M.; Kováč, P.; Häßler, W.

    2012-02-01

    A previously observed enhancing effect of addition of 10 wt.% of B 4C on critical current density ( Jc) dependence on magnetic flux density ( B) in MgB 2 superconductors is examined here in more detail. Nb sheathed in situ MgB 2 monofilamentary Powder-in-Tube (PIT) samples are prepared with the 10 wt.% addition of boron carbide. The samples are heat treated at different temperatures, namely at 650, 700, 750, and 800 °C for 30 min. The phases and lattice parameters of the samples are studied using X-ray Diffraction (XRD). The amount of B 4C does not decrease from the initial amount with increasing heat treatment temperature ( Tht) but instead increases. This indicates that some of the Mg from the precursor reacts with the Nb sheath. Magnetic Jc( B) characteristics are obtained at several temperatures in external B in a Vibrating Sample Magnetometer (VSM). The magnetic and transport Jc( B) results disagree with each other which can be explained by unsuitability of Nb as the sheath with higher Tht. From these results, also pinning force densities ( Fp) are calculated. No effect on pinning mechanism of B 4C added samples is observed by the heat treatment conditions. Resistance dependencies on temperature are also measured in a Physical Properties Measurement System (PPMS). Mg deficiency with high Tht is supported by these measurements.

  18. Study on effect of annealing conditions on structural, magnetic and superconducting properties of MgB2 bulk samples

    NASA Astrophysics Data System (ADS)

    Phaneendra, Konduru; Asokan, K.; Awana, V. P. S.; Sastry, S. Sreehari; Kanjilal, D.

    2014-04-01

    Effect of annealing conditions on structural, magnetic and superconducting properties of Magnesium Diboride (MgB2) bulk superconductor samples prepared by solid state route method are compared. The samples are made by taking Magnesium and Boron powders in stoichiometric ratio, grounded well and pelletized at pressure of about 10Tonnes. These pellets are annealed in both Argon and vacuum environment separately up to 800°c for two hours. Both the samples show clear superconducting transition at Tc ˜ 38 k. This is further conformed by AC/DC magnetization (M-T), Resistivity [ρ (T, H)] measurements under magnetic field up to 14 Tesla as well. Rietveld refinement of X-ray diffraction of both samples conformed the MgB2 phase formation with P6/mmm space group symmetry. Scanning Electron Microscopy images of the surface revile more agglomeration of grains in case of Argon annealed samples. This result in more critical current density (Jc) of Argon annealed samples than vacuum annealed one calculated from Bean's critical state model. This high Jc is explained in terms of more inter grain connectivity for Argon annealed sample than vacuum annealed sample.

  19. Critical currents and magnetization in c -axis textured Bi-Pb-Sr-Ca-Cu-O superconductors

    SciTech Connect

    Jin, S.; van Dover, R.B.; Tiefel, T.H.; Graebner, J.E. ); Spencer, N.D. )

    1991-02-25

    Transport critical currents and magnetization behavior in {ital c}-axis textured Bi-Pb-Sr-Ca-Cu-O superconductor ribbons have been studied. The highly oriented layer structure was achieved by a combination processing of spray coating on silver foil, cold rolling, and partial melting. Transport {ital J}{sub {ital c}} values as high as 2.3{times}10{sup 5} A/cm{sup 2} at 4.2 K, {ital H}=8 T ({ital H}{perpendicular}{ital ab}) have been obtained. The high {ital J}{sub {ital c}} at {ital H}{ge}5 T is maintained to temperatures near 20 K but it vanishes completely at or above {similar to}30 K, thus showing the limitation in useful, high-field operating temperatures for the Bi-system superconductors. A comparison of {ital J}{sub {ital c}} (transport) and {ital J}{sub {ital c}} (magnetization) indicates that the size scale of the circulating supercurrent loop in the Bean model nearly corresponds to the whole sample dimension rather than the orders-of-magnitude-smaller grain size. This demonstrates that the {ital a}-{ital b} grain boundaries in the melt-processed ribbons are not weakly coupled. The time decay of magnetization has also been studied.

  20. Enhancement of the critical current density and flux pinning of MgB2 superconductor by nanoparticle SiC doping

    NASA Astrophysics Data System (ADS)

    Dou, S. X.; Soltanian, S.; Horvat, J.; Wang, X. L.; Zhou, S. H.; Ionescu, M.; Liu, H. K.; Munroe, P.; Tomsic, M.

    2002-10-01

    Doping of MgB2 by nano-SiC and its potential for the improvement of flux pinning were studied for MgB2-x)(SiCx/2 with x=0, 0.2, and 0.3 and for 10 wt % nano-SiC-doped MgB2 samples. Cosubstitution of B by Si and C counterbalanced the effects of single-element doping, decreasing Tc by only 1.5 K, introducing intragrain pinning centers effective at high fields and temperatures, and significantly enhancing Jc and Hirr. Compared to the undoped sample, Jc for the 10 wt % doped sample increased by a factor of 32 at 5 K and 8 T, 42 at 20 K and 5 T, and 14 at 30 K and 2 T. At 20 K and 2 T, the Jc for the doped sample was 2.4 x105 A/cm2, which is comparable to Jc values for the best Ag/Bi-2223 tapes. At 20 K and 4 T, Jc was twice as high as for the best MgB2 thin films and an order of magnitude higher than for the best Fe/MgB2 tapes. The magnetic Jc is consistent with the transport Jc which remains at 20 000 A/cm2 even at 10 T and 5 K for the doped sample, an order of magnitude higher than the undoped one. Because of such high performance, it is anticipated that the future MgB2 conductors will be made using a formula of MgBxSiyCz instead of pure MgB2.

  1. Wave Propagation Direction and c-Axis Tilt Angle Influence on the Performance of ScAlN/Sapphire-Based SAW Devices.

    PubMed

    Kochhar, Abhay; Yamamoto, Yasuo; Teshigahara, Akihiko; Hashimoto, Ken-Ya; Tanaka, Shuji; Esashi, Masayoshi

    2016-07-01

    Some previously reported surface acoustic wave (SAW) devices using bulk piezoelectric substrates showed higher acoustic power radiated in either forward or backward wave propagation direction depending on their crystal orientations and are called natural single-phase unidirectional transducers (NSPUDT). While these reports were based on bulk piezoelectric substrates, we report directionality in the c-axis tilted 44% scandium doped aluminum nitride thin piezoelectric film-based SAW devices on sapphire. It is worth noting that our observance of directionality is specifically in Sezawa mode. We produced a c-axis tilt up to 5.5° over the single wafer and examined the directionality by comparing the forward and backward insertion loss utilizing split finger electrodes as a receiver. The wave propagation direction and c-axis tilt angle influence on the performance of SAW devices is evaluated. Furthermore, return loss and insertion loss data are presented for various SAW propagation directions and c-axis tilt angles. Finally, the comparison for both acoustic modes, i.e., Rayleigh and Sezawa, is reported. PMID:26978772

  2. Quartz c-axis fabric development associated with shear deformation along an extensional detachment shear zone: Chapedony Metamorphic Core Complex, Central-East Iranian Microcontinent

    NASA Astrophysics Data System (ADS)

    Faghih, Ali; Soleimani, Masoumeh

    2015-01-01

    Lattice preferred orientations (LPOs) of quartz were used to establish differences in deformation geometry, finite strain and temperature across an extensional detachment shear zone within the Chapedony Metamorphic Core Complex in the Central-East Iranian Microcontinent along the northern flank of Gondwana. Quartz c-axis data show a continuous evolution across the core complex from asymmetric Type I crossed girdles at the southwest margin, to broken, asymmetric Type I crossed girdle and single girdle with a large concentration of axes plotted in the center of the stereoplot at the central parts of the core complex and small circle girdle pattern at the northeast margin. These variations in quartz c-axis patterns imply change in strain geometry during deformation from plane strain to general flattening and pure flattening. Integrating analyses of quartz c-axis opening angles, quartz c-axis patterns and recrystalization regimes of quartz and feldspar suggests deformation temperatures range between less than 400 °C and 650 °C, which yield greenschist to amphibolite facies conditions. Mean kinematic vorticity number (Wm) measured in the mylonite samples ranges between 0.67 and 0.71, which indicates that exhumation of the metamorphic rocks of the CMCC was facilitated by a significant component of pure shear strain within a general shear regime.

  3. Pinning and trapped field in MgB2- and MT-YBaCuO bulk superconductors manufactured under pressure

    NASA Astrophysics Data System (ADS)

    Prikhna, T.; Eisterer, M.; Chaud, X.; Weber, H. W.; Habisreuther, T.; Moshchil, V.; Kozyrev, A.; Shapovalov, A.; Gawalek, W.; Wu, M.; Litzkendorf, D.; Goldacker, W.; Sokolovsky, V.; Shaternik, V.; Rabier, J.; Joulain, A.; Grechnev, G.; Boutko, V.; Gusev, A.; Shaternik, A.; Barvitskiy, P.

    2016-03-01

    The relevant pinning centers of Abrikosov vortices in MgB2-based materials are oxygen-enriched Mg-B-O inclusions or nanolayers and inclusions of MgBx (x>4) phases. The high critical current densities, j c, of 106 and 103A/cm2 at 1 and 8.5 T, respectively, at 20 K can be achieved in polycrystalline materials (prepared at 2 GPa) containing a large amount of admixed oxygen. Besides, oxygen can be incorporated into the MgB2 structure in small amounts (MgB1.5O0.5), which is supported by Auger studies and calculations of the DOS and the binding energy. The j c of melt textured YBa2Cu3O7-δ (or Y123)-based superconductors (MT-YBaCuO) depends not only on the perfectness of texture and the amount of oxygen in the Y123 structure, but also on the density of twins and micro-cracks formed during the oxygenation (due to shrinking of the c-lattice parameter). The density of twins and microcracks increases with the reduction of the distance between Y2BaCuO5 (Y211) inclusions in Y123. At 77 K jc=8·104 A/cm2 in self-field and jc=103 A/cm2 at 10 T were found in materials oxygenated at 16 MPa for 3 days with a density of twins of 22–35 per µm (thickness of the lamellae: 45-30 nm) and a density of micro-cracks of 200–280 per mm. Pinning can occur at the points of intersection between the Y123 twin planes and the Y211 inclusions. MTYBaCuO at 77 K can trap 1.4 T (38×38×17 mm, oxygenated at 0.1 MPa for 20 days) and 0.8 T (16 mm in diameter and 10 mm thick with 0.45 mm holes oxygenated at 10 MPa for 53 h). The sensitivity of MgB2 to magnetic field variations (flux jumps) complicates estimates of the trapped field. At 20 K 1.8 T was found for a block of 30 mm in diameter and a thickness of 7.5 mm and 1.5 T (if the magnetic field was increased at a rate of 0.1 T) for a ring with dimensions 24×18 mm and a thickness of 8 mm.

  4. Effect of boron particle size on microstructure and superconducting properties of in-situ Cu addition MgB2 multifilamentary wire

    NASA Astrophysics Data System (ADS)

    Hishinuma, Y.; Kikuchi, A.; Shimada, Y.; Hata, S.; Takeuchi, T.; Yamada, S.; Sagara, A.

    2014-05-01

    In previous studies, the secondary (impurity and non-reactive) phase and voids were observed in MgB2 matrix after the heat treatment, and then these are the lowering factors of critical current density (Jc) property. In order to improve Jc property by microstructure control of MgB2 matrix, the fine elemental boron powder as the raw material was carried out using the high-speed vibrated milling with tungsten carbide (WC) jar. The average particle size of metal boron powder was decreased from 1.14 μm to 0.20 μm by the high-speed vibrated milling. The various fine particle boron powders as the function of milling time were also prepared, and in-situ Cu addition MgB2 multifilamentary wires using these fine boron powders were fabricated. Critical transition temperature (Tc) value of Cu addition MgB2 wire using fine boron powder obtained to about 37 K. No change of the Tc property by the different particle sized boron powders was confirmed. In this paper, the comparisons of microstructure and superconducting properties between the different boron particle sizes were investigated.

  5. Low-temperature mass production of superconducting MgB2 nanofibers from Mg(BH4)2 decomposition and recombination.

    PubMed

    Yang, Junzhi; Zheng, Jie; Zhang, Xuanzhou; Li, Yaoqi; Yang, Rong; Feng, Qingrong; Li, Xingguo

    2010-10-28

    Massive superconducting MgB(2) nanofibers are obtained for the first time from Mg(BH(4))(2). The technique optimizes reaction conditions to only 1 h at 460 °C and provides nanofibers which exhibited satisfying superconducting properties. The morphology transformation according to temperature changes and the special mechanism of precursor inductive synthesis are discussed.

  6. Uniform transport performance of a 100 m-class multifilament MgB2 wire fabricated by an internal Mg diffusion process

    NASA Astrophysics Data System (ADS)

    Wang, Dongliang; Xu, Da; Zhang, Xianping; Yao, Chao; Yuan, Pusheng; Ma, Yanwei; Oguro, Hidetoshi; Awaji, Satoshi; Watanabe, Kazuo

    2016-06-01

    A 100 m long six-filament MgB2 wire was successfully fabricated using an internal magnesium diffusion (IMD) process. We investigated the transport properties and the uniformity of this long multifilament IMD wire. The MgB2 layer and the sub-filament region are regular, and the J c values have a fairly homogenous distribution throughout the wire, suggesting that there were no obvious defects along the length of the wire. The uniformity problem of long multifilament IMD MgB2 wires can be mitigated by optimizing the starting composite parameters, multifilament geometry, fabricating process and annealing conditions. A layer J c as high as 1.2 × 105 A cm-2 at 4.2 K and 8 T was obtained, which was comparable with the highest reported value for a short multifilament IMD wire. The transport layer J c, non-barrier J c and J e values are independent of the wire diameter. In addition, the analysis of the stress-strain characteristics and the n value of the IMD wire is also presented. These results indicate that the long multifilament IMD-processed MgB2 superconducting wire is suitable for practical applications.

  7. Flux pinning and vortex dynamics in MgB2 doped with TiO2 and SiC inclusions

    NASA Astrophysics Data System (ADS)

    Prokhorov, V. G.; Kaminsky, G. G.; Svetchnikov, V. L.; Park, J. S.; Eom, T. W.; Lee, Y. P.; Kang, J.-H.; Khokhlov, V. A.; Mikheenko, P.

    2009-06-01

    The mixed-state superconducting properties of bulk MgB2+2at.%TiO2 and +8at.%SiC, prepared by in situ solid state reaction, are investigated. Analysis of the mixed-state parameters, such as the upper critical field, the coherence length, and the Ginzburg-Landau parameter, proves that MgB2+2at.%TiO2 is a high-κ type-II superconductor in the dirty limit, while MgB2+8at.%SiC corresponds to that in the moderately clean limit. It is shown that the grain-boundary pinning realized in fine-grained doped MgB2 polycrystals is of the anisotropic rather than the electron-scattering type. The field-cooled temperature dependences of the magnetic moment reveal a transition of the samples to the paramagnetic state at certain applied magnetic fields, which is treated as manifestation of the paramagnetic Meissner effect. The experimental results are discussed on the base of modern theoretical approaches.

  8. Strong competition between the δl and δTc flux pinning mechanisms in MgB2 doped with carbon containing compounds

    NASA Astrophysics Data System (ADS)

    Ghorbani, S. R.; Wang, Xiao-Lin; Hossain, M. S. A.; Yao, Q. W.; Dou, S. X.; Lee, Sung-IK; Chung, K. C.; Kim, Y. K.

    2010-06-01

    The transport and magnetic properties of 10 wt % malic acid and 5 wt % nanocarbon doped MgB2 have been studied by measuring the resistivity (ρ), critical current density (jc), connectivity factor (AF), irreversibility field (Hirr), and upper critical field (Hc2). The pinning mechanisms are studied in terms of the collective pinning model. It was found that both mean free path (δl) and critical temperature (δTc) pinning mechanisms coexist in both doped MgB2. For both the malic acid and nanocarbon doped samples, the temperature dependence of the crossover field, which separates the single vortex and the small bundle pinning regime, Bsb(T ), shows that the δl pinning mechanism is dominant for temperatures up to t(T /Tc)=0.7 but the δTc pinning mechanism is dominant for t >0.7. This tendency of coexistence of the δl and the δTc pinning mechanism is in strong contrast with the pure MgB2, in which the δTc pinning mechanism is dominant over a wide temperature range below Tc. It was also observed that the connectivity factor, active cross-sectional area fraction (AF), are 0.11 and 0.14 for the nanocarbon and the malic acid doped MgB2, respectively, indicating that there are still rooms for further improving jc performance.

  9. Momentum dependence of the superconducting gap and in-gap states in MgB2 multiband superconductor

    DOE PAGES

    Mou, Daixiang; Jiang, Rui; Taufour, Valentin; Bud'ko, S. L.; Canfield, P. C.; Kaminski, Adam

    2015-06-29

    We use tunable laser-based angle-resolved photoemission spectroscopy to study the electronic structure of the multiband superconductor MgB2. These results form the baseline for detailed studies of superconductivity in multiband systems. We find that the magnitude of the superconducting gap on both σ bands follows a BCS-like variation with temperature with Δ0 ~ 7meV. Furthermore, the value of the gap is isotropic within experimental uncertainty and in agreement with a pure s-wave pairing symmetry. We observe in-gap states confined to kF of the σ band that occur at some locations of the sample surface. As a result, the energy of thismore » excitation, ~ 3 meV, was found to be somewhat larger than the previously reported gap on π Fermi sheet and therefore we cannot exclude the possibility of interband scattering as its origin.« less

  10. A possible analog to MgB2: Discovery of a predicted layered LiB via cold compression

    NASA Astrophysics Data System (ADS)

    Kolmogorov, Aleksey; Hajinazar, Samad; Angyal, Chris; Kuznetzov, Vladimir; Jephcoat, Andrew

    Stoichiometric LiB has been previously predicted to be a new synthesizable layered material with electronic and vibrational properties desired for MgB2-type superconductivity. However, previous experiments showed no signs of the proposed compound forming under high pressures. We report on the synthesis of the LiB via cold compression in the diamond anvil cell. Remarkably, the signature powder XRD peak from the new layered compound appeared above 21 GPa and remained visible down to ambient pressure upon sample quenching. Apparent stacking disorder in LiB and a stoichiometry shift in the starting LiBy (from y ~ 0.90 down to y ~ 0.75) made material characterization a challenge. Ab initio modeling allowed us to establish the pressure-dependent composition of LiBy and predict related stable structures overlooked in previous studies. Supported by NSF Grant DMR-1410514.

  11. Fully band-resolved scattering rate in MgB2 revealed by the nonlinear hall effect and magnetoresistance measurements.

    PubMed

    Yang, Huan; Liu, Yi; Zhuang, Chenggang; Shi, Junren; Yao, Yugui; Massidda, Sandro; Monni, Marco; Jia, Ying; Xi, Xiaoxing; Li, Qi; Liu, Zi-Kui; Feng, Qingrong; Wen, Hai-Hu

    2008-08-01

    We have measured the normal state temperature dependence of the Hall effect and magnetoresistance in epitaxial MgB2 thin films with variable disorders characterized by the residual resistance ratio RRR ranging from 4.0 to 33.3. A strong nonlinearity of the Hall effect and magnetoresistance have been found in clean samples, and they decrease gradually with the increase of disorders or temperature. By fitting the data to the theoretical model based on the Boltzmann equation and ab initio calculations for a four-band system, for the first time, we derived the scattering rates of these four bands at different temperatures and magnitude of disorders. Our method provides a unique way to derive these important parameters in multiband systems.

  12. Determination of the Fermi surface of MgB2 by the de Haas-van Alphen effect.

    PubMed

    Carrington, A; Meeson, P J; Cooper, J R; Balicas, L; Hussey, N E; Yelland, E A; Lee, S; Yamamoto, A; Tajima, S; Kazakov, S M; Karpinski, J

    2003-07-18

    We report measurements of the de Haas-van Alphen (dHvA) effect for single crystals of MgB2, in magnetic fields up to 32 T. In contrast to our earlier work, dHvA orbits from all four sheets of the Fermi surface were detected. Our results are in good overall agreement with calculations of the electronic structure and the electron-phonon mass enhancements of the various orbits, but there are some small quantitative discrepancies. In particular, systematic differences in the relative volumes of the Fermi-surface sheets and the magnitudes of the electron-phonon coupling constants could be large enough to affect detailed calculations of T(c) and other superconducting properties.

  13. Deriving the electron-phonon spectral density of MgB2 from optical data, using maximum entropy techniques.

    PubMed

    Hwang, J; Carbotte, J P

    2014-04-23

    We use maximum entropy techniques to extract an electron-phonon density from optical data for the normal state at T = 45 K of MgB2. Limiting the analysis to a range of phonon energies below 110 meV, which is sufficient for capturing all phonon structures, we find a spectral function that is in good agreement with that calculated for the quasi-two-dimensional σ-band. Extending the analysis to higher energies, up to 160 meV, we find no evidence for any additional contributions to the fluctuation spectrum, but find that the data can only be understood if the density of states is taken to decrease with increasing energy.

  14. Time-resolved photoexcitation of the superconducting two-gap state in MgB2 thin films.

    PubMed

    Xu, Y; Khafizov, M; Satrapinsky, L; Kús, P; Plecenik, A; Sobolewski, Roman

    2003-11-01

    Femtosecond pump-probe studies show that carrier dynamics in MgB2 films is governed by the sub-ps electron-phonon (e-ph) relaxation present at all temperatures, the few-ps e-ph process well pronounced below 70 K, and the sub-ns superconducting relaxation below T(c). The amplitude of the superconducting component versus temperature follows the superposition of the isotropic dirty gap and the three-dimensional pi gap dependences, closing at two different T(c) values. The time constant of the few-ps relaxation exhibits a double divergence at temperatures corresponding to the T(c)'s of the two gaps.

  15. Intrinsic nonlinearity probed by intermodulation distortion microwave measurements on high quality MgB2 thin films

    NASA Astrophysics Data System (ADS)

    Cifariello, G.; Aurino, M.; Di Gennaro, E.; Lamura, G.; Andreone, A.; Orgiani, P.; Xi, X. X.; Villégier, J.-C.

    2006-04-01

    The two-tone intermodulation distortion arising in MgB2 thin films synthesized by hybrid physical-chemical vapor deposition is studied in order to probe the influence of the two bands on the nonlinear response of this superconductor. The measurements are carried out by using a dielectrically loaded copper cavity operating at 7GHz. Microwave data on samples having critical temperatures above 41K, very low resistivity values, and residual resistivity ratio larger than 10 are shown. The dependence of the nonlinear surface losses and of the third order intermodulation products on the power feeding the cavity and on the temperature is analyzed. At low power, the signal arising from distortion versus temperature shows the intrinsic s-wave behavior expected for this compound. Data are compared with measurements performed on Nb and YBa2Cu3O7-δ thin films using the same technique.

  16. Ab initio theory of magnetic-field-induced odd-frequency two-band superconductivity in MgB2

    NASA Astrophysics Data System (ADS)

    Aperis, Alex; Maldonado, Pablo; Oppeneer, Peter M.

    2015-08-01

    We develop the anisotropic Eliashberg framework for superconductivity in the presence of an applied magnetic field. Using as input the ab initio calculated electron and phonon band structures and electron-phonon coupling, we solve self-consistently the anisotropic Eliashberg equations for the archetypal superconductor MgB2. We find two self-consistent solutions, time-even two-band superconductivity, as well as unconventional time-odd s -wave spin triplet two-band superconductivity emerging with applied field. We provide the full momentum, frequency, and spin-resolved dependence and magnetic field-temperature phase diagrams of the time-even and time-odd superconducting pair amplitudes and predict fingerprints of this novel odd-frequency state in tunneling experiments.

  17. High-performance MgB2 superconducting wires for use under liquid-helium-free conditions fabricated using an internal Mg diffusion process

    NASA Astrophysics Data System (ADS)

    Ye, ShuJun; Song, Minghui; Matsumoto, Akiyoshi; Togano, Kazumasa; Takeguchi, Masaki; Ohmura, Takahito; Kumakura, Hiroaki

    2013-12-01

    MgB2 has a superconducting transition temperature (Tc) of 39 K, which is much higher than that for practical metallic superconductors. Thus, it is hoped that MgB2 can not only replace metallic superconductors, but can be used under liquid-helium-free conditions, for example, at temperatures of 10-20 K that can easily be achieved using cryocooling systems. However, to date, the reported critical current density (Jc) for MgB2 wires is not high enough for large-scale applications in liquid-helium-free conditions. In the present study, successful fabrication of high-performance MgB2 superconducting wires was carried out using an internal Mg diffusion (IMD) process, involving a p-dimethylbenzene (C8H10) pre-treatment of carbon-coated B powder with nanometer-sized particles. The resulting wires exhibited the highest ever Jc of 1.2 × 105 A cm-2 at 4.2 K and 10 T, and an engineering critical current density (Je) of about 1 × 104 A cm-2. Not only in 4.2 K, but also in 10 K, the Jc values for the wires fabricated in the present study are in fact higher than that for Nb-Ti wires at 4.2 K for the magnetic fields at which the measurements were carried out. At 20 K and 5 T, the Jc and Je were about 7.6 × 105 A cm-2 and 5.3 × 103 A cm-2, respectively, which are the highest values reported for MgB2 wires to date. The results of a detailed microstructural analysis suggested that the main reason for the superior electrical performance was the high density of the MgB2 layer rather than just the small grain size, and that the critical current could be further increased by suitable control of the microstructure. These high-performance IMD-processed MgB2 wires are thus promising superconductors for applications such as magnetic resonance imaging and maglev trains that can operate under liquid-helium-free conditions.

  18. Influence of twisting and bending on the Jc and n-value of multifilamentary MgB2 strands

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Li, G.; Susner, M.; Sumption, M. D.; Rindfleisch, M.; Tomsic, M.; Collings, E. W.

    2015-12-01

    The influences of strand twisting and bending (applied at room temperature) on the critical current densities, Jc, and n-values of MgB2 multifilamentary strands were evaluated at 4.2 K as function of applied field strength, B. Three types of MgB2 strand were evaluated: (i) advanced internal magnesium infiltration (AIMI)-processed strands with 18 filaments (AIMI-18), (ii) powder-in-tube (PIT) strands processed using a continuous tube forming and filling (CTFF) technique with 36 filaments (PIT-36) and (iii) CTFF processed PIT strands with 54 filaments (PIT-54). Transport measurements of Jc(B) and n-value at 4.2 K in fields of up to 10 T were made on: (i) PIT-54 after it was twisted (at room temperature) to twist pitch values, Lp, of 10-100 mm. Transport measurements of Jc(B) and n-value were performed at 4.2 K; (ii) PIT-36 and AIMI-18 after applying bending strains up to 0.6% at room temperature. PIT-54 twisted to pitches of 100 mm down to 10 mm exhibited no degradation in Jc(B) and only small changes in n-value. Both the Jc(B) and n-value of PIT-36 were seen to be tolerant to bending strain of up to 0.4%. On the other hand, AIMI-18 showed ±10% changes in Jc(B) and significant scatter in n-value over the bending strain range of 0-0.6%.

  19. Estimation of hysteretic losses for MgB2 tapes under the operating conditions of a generator

    NASA Astrophysics Data System (ADS)

    Vargas-Llanos, Carlos Roberto; Zermeño, Víctor M. R.; Sanz, Santiago; Trillaud, Frederic; Grilli, Francesco

    2016-03-01

    Hysteretic losses in the MgB2 wound superconducting coils of a 550 kW synchronous hybrid scaled generator were estimated as part of the European project SUPRAPOWER led by the Spanish Fundación Tecnalia Research & Innovation. Particular interest was given to the losses caused by the magnetic flux ripples in the rotor coils originating from the conventional stator during nominal operation. To compute these losses, a 2D finite element analysis was conducted and Maxwell’s equations written in the H-formulation were solved considering the nonlinear material properties of the conductor materials. The modeled tapes are made of multiple MgB2 filaments embedded in a Ni matrix and soldered to a high purity copper strip and insulated with Dacron braid. Three geometrical models of single tape cross sections of decreasing complexity were studied: (1) the first model reproduced closely the actual cross section obtained from tape micrographs. (2) The second model was obtained from the computed elasto-plastic deformation of a round Ni wire. (3) The third model was based on a simplified cross section with the superconducting filaments bundled in a single elliptical bulky structure. The last geometry allowed the validation of the modeling technique by comparing numerical losses with results from well-established analytical expressions. Additionally, the following cases of filament transpositions of the multi-filamentary tape were studied: no transposition, partial and full transposition; thereby improving understanding of the relevance of the tape fabrication process on the magnitude of the determination of ac losses. Finally, choosing the right level of geometrical detail, the following operational regimes of the machine and its impact on individual superconducting tape losses in the rotor were studied: bias-dc current, ramping current under ramping background field and magnetic flux ripples under dc background current and field.

  20. Charge dynamics along the less conducting c-axis of the layered transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Ruzicka, B.; Degiorgi, L.; Berger, H.; Gaal, R.; Forro, L.

    2001-03-01

    We present optical results on 2H-TaSe2 along the less conducting c-axis. This dichalcogenide compound belongs to a large class of conductors called "bad metals" (with mean free path smaller than the lattice constant along the c-axis), which also includes the superconducting cuprates. The optical response shows the progressive development of a pseudogap-like feature with decreasing temperature. The spectral weight lost by the opening of such a pseudogap goes into the narrow Drude component, developing at low frequency and temperature. There is no violation of the sum rule in 2H-TaSe2 contrary to the cuprates. Furthermore, we will discuss the c-axis response with respect to our recent results within the two-dimensional ab-plane. The data on 2H-TaSe2 will be also compared to our results on the superconducting 2H-NbSe2 dichalcogenide material.

  1. The non-epitaxial growth of c-axis YBa 2Cu 3O x films on high-index planes of silver

    NASA Astrophysics Data System (ADS)

    Huang, D. X.; Yamada, Y.; Hirabayashi, I.

    2000-11-01

    YBa 2Cu 3O x (YBCO) thin films were deposited by the pulsed-laser ablation on polycrystalline Ag substrates. The c-axis-oriented YBCO films on various high-index silver crystal planes have been observed using cross-sectional transmission electron microscopy (TEM). The obtained results show that, differing from the epitaxial growth of the YBCO films on low-index planes, the YBCO films grown on high-index planes have not a good epitaxial relationship. The c-axes of the YBCO grains keep to vertical to the substrate surface plane but the a- and b- axes of the grains are randomly oriented.

  2. Transport Anisotropy in ErNi2B2C Along c-AXIS

    NASA Astrophysics Data System (ADS)

    Lee, W. C.

    The resistivities along c-axis ρc(H, T) of ErNi2 B2C have been measured with H⊥ and H‖ c-axis for 2 < T < 300 K and the superconducting upper critical field Hc2(T) curves of ErNi2B2C were constructed for each magnetic fields. Our Hc2(T) curves have been compared and discussed with those from ρab(H, T) measurements which explain the anisotropy and its temperature dependence of Hc2(T) are thought to arise from magnetic pair breaking and the anisotropic field dependence of Néel temperature TN originated from Er+3 sublattice.

  3. Effect of excess Mg and nano-additives on the superconducting properties of weakly connected bulk MgB2

    NASA Astrophysics Data System (ADS)

    Bhadauria, P. P. S.; Gupta, Anurag; Kishan, Hari; Narlikar, A. V.

    2013-02-01

    Series of ex-situ polycrystalline MgB2 bulk samples, by adding different additives like more of excess Mg (5 wt. %), nanoparticles of Ag (3 wt. %), and SiC (10 wt. %) to a previously optimized composition MgB2 + Mg (5 wt. %), were prepared by solid state synthesis route. Detailed investigations were carried out by XRD, SEM, and thermoelectric power S(T), resistivity ρ(T), and magnetization M(B) at temperatures T = 4.2-300 K and applied fields B = 0-8 T. All the samples typically show low connectivity (i.e., normal state current carrying cross section ˜0.9%-3%). The effect of different additives was different on the critical current density (Jc) of the samples. The Jc, for instance at T = 4.2 K and B = 1 T, varied between 4.8 × 107 and 2.8 × 108 A/m2 for various samples. In comparison to the previously optimized values, the Jc was enhanced by further addition of 5 wt. % Mg and degraded both by nano-SiC and nano-Ag addition. However, many of the other properties of the samples were not much affected. For instance, the samples did not show any change in the superconducting onsets, S(T) and the parallel upper critical field (Bc2|| (T) ˜ 11-13 T at 20 K and 20-21 T at 4.2 K). The Jc(B) dependence also shows similar behavior in all the samples, where the Jc is found to scale as B-1 up to a sample independent crossover field Bcr ˜ 2 T and 1.3 T at T = 4.2 and 20 K, respectively. At higher fields B > Bcr, the Jc(B) curves branch out and decrease rapidly towards zero at a sample dependent characteristic field. We try to understand these results quantitatively in terms of changes in connectivity, pinning, and anisotropy driven percolation. However, all our results and analysis point out that the intra-particle regions stay unaffected and mainly the inter-particle regions get affected by the additives leading to the Jc variation in the weakly connected samples.

  4. Effect of strain along C-axis NbS{sub 2}

    SciTech Connect

    Singh, Tapender Kumar, Jagdish Sastri, O. S. K. S.

    2015-05-15

    We have studied electronic properties of double layered hexagonal structure of the Niobium Di-Sulphide (2H-NbS{sub 2}) superconductor for various strains introduced along the c-axis using ab-initio calculations. The DFT calculations based on Full Potential Linearized Augmented Plane Wave (FPLAPW) method are performed using the ELK code. The total energy curve (E vs a), Density of States (DOS) and the Band structure calculations obtained in this work are matching with the earlier reports. The Pressure-Volume (P-V) diagram for 2H-NbS{sub 2} was obtained using the Equation of State(EOS) calculations, which provides the relationship between the pressure and strain applied along the c-axis. The band structures for various strains ranging from 0 percent to 10 percent along c-axis in steps of 2 percent are obtained. We note that there are increasing number of bands crossing over the Fermi energy level with increase in strain. Thus, we conclude that with increasing strain along c-axis, number of conduction bands crossing the E{sub F} increases, which gives rise to more conduction states and hence higher conductivity.

  5. Effect of strain along C-axis NbS2

    NASA Astrophysics Data System (ADS)

    Singh, Tapender; Kumar, Jagdish; Sastri, O. S. K. S.

    2015-05-01

    We have studied electronic properties of double layered hexagonal structure of the Niobium Di-Sulphide (2H-NbS2) superconductor for various strains introduced along the c-axis using ab-initio calculations. The DFT calculations based on Full Potential Linearized Augmented Plane Wave (FPLAPW) method are performed using the ELK code. The total energy curve (E vs a), Density of States (DOS) and the Band structure calculations obtained in this work are matching with the earlier reports. The Pressure-Volume (P-V) diagram for 2H-NbS2 was obtained using the Equation of State(EOS) calculations, which provides the relationship between the pressure and strain applied along the c-axis. The band structures for various strains ranging from 0 percent to 10 percent along c-axis in steps of 2 percent are obtained. We note that there are increasing number of bands crossing over the Fermi energy level with increase in strain. Thus, we conclude that with increasing strain along c-axis, number of conduction bands crossing the EF increases, which gives rise to more conduction states and hence higher conductivity.

  6. Comparison of critical current density in SiC-doped in situ MgB2 coils and straight wire samples processed by HIP

    NASA Astrophysics Data System (ADS)

    Gajda, D.; Morawski, A.; Zaleski, A.; Cetner, T.; Małecka, M.; Presz, A.; Rindfleisch, M.; Tomsic, M.; Thong, C. J.; Surdacki, P.

    2013-11-01

    Unreacted MgB2 wires fabricated from SiC-doped precursor material by Hyper Tech Research, Inc. have been used to make small-diameter (14 mm) superconducting coils. All coils made of 500 mm length wires were subjected to hot isostatic pressure (HIP) treatment. The critical current density (Jc) parameters of coils were compared to straight samples characteristics. Both types of samples have been measured in perpendicular magnetic field configuration for Jc and pinning force density (Fp) evaluation. No significant Jc difference between the long wires on coils and straight wires was found. These results suggest that the critical current (Ic) for coils can be determined for straight samples (25 mm). SEM analysis indicated that a small diameter of the coil does not influence the structure of in situ MgB2 wire.

  7. Direct evidence for two-band superconductivity in MgB2 single crystals from directional point-contact spectroscopy in magnetic fields.

    PubMed

    Gonnelli, R S; Daghero, D; Ummarino, G A; Stepanov, V A; Jun, J; Kazakov, S M; Karpinski, J

    2002-12-01

    We present the results of the first directional point-contact spectroscopy experiments in high-quality MgB2 single crystals. Because of the directionality of the current injection into the samples, the application of a magnetic field allowed us to separate the contributions of the sigma and pi bands to the total conductance of our point contacts. By using this technique, we were able to obtain the temperature dependency of each gap independent of the other. The consequent, strong reduction of the error on the value of the gap amplitude as a function of temperature allows a stricter test of the predictions of the two-band model for MgB2.

  8. Generalized Elliott-Yafet theory of electron spin relaxation in metals: origin of the anomalous electron spin lifetime in MgB2.

    PubMed

    Simon, F; Dóra, B; Murányi, F; Jánossy, A; Garaj, S; Forró, L; Bud'ko, S; Petrovic, C; Canfield, P C

    2008-10-24

    The temperature dependence of the electron-spin relaxation time in MgB2 is anomalous as it does not follow the resistivity above 150 K; it has a maximum around 400 K and decreases for higher temperatures. This violates the well established Elliot-Yafet theory of spin relaxation in metals. The anomaly occurs when the quasiparticle scattering rate (in energy units) is comparable to the energy difference between the conduction and a neighboring bands. The anomalous behavior is related to the unique band structure of MgB2 and the large electron-phonon coupling. The saturating spin relaxation is the spin transport analogue of the Ioffe-Regel criterion of electron transport.

  9. A 0.6 T/650 mm RT Bore Solid Nitrogen Cooled MgB2 Demonstration Coil for MRI—a Status Report

    PubMed Central

    Bascuñán, Juan; Lee, Haigunan; Bobrov, Emmanuel S.; Hahn, Seungyong; Iwasa, Yukikazu; Tomsic, Mike; Rindfleisch, Matt

    2014-01-01

    Aiming to demonstrate feasibility and practicality of a low cost superconducting MRI magnet system targeted for use in small hospitals, rural communities and underdeveloped countries, MIT-Francis Bitter Magnet Laboratory has developed a 0.6 T/650 mm room temperature bore demonstration coil wound with multifilament MgB2 conductor and cooled via an innovative cryogenic design/operation. The coil is to be maintained cold by solid nitrogen kept in the solid state by a cryocooler. In the event of a power failure the cryocooler is automatically thermally decoupled from the system. In this paper we present details of the MgB2 conductor, winding process, and preliminary theoretical analysis of the current-carrying performance of the conductively cooled coils in zero background field and over the 10–30 K temperature range. PMID:25580068

  10. In-plane and c-axis optical spectroscopy study on 122 Fe-pnictides

    NASA Astrophysics Data System (ADS)

    Wang, Nan Lin

    2011-03-01

    I present the in-plane and the c-axis optical spectroscopy investigations on 122 Fe-pnictides. For the parent compound BaFe 2 As 2 , the in-plane measurement revealed two different energy gaps in the SDW state, whereas for the c-axis polarized measurement only the energy gap at smaller energy scale could be clearly observed. We suggest different driving mechanisms for the formation of the two energy gaps. The large energy gap is caused by the nesting between disconnected 2D cylinder-like electron and hole Fermi surfaces. It is the main driving force for the SDW instability. The small energy gap is the one formed on the 3D Fermi surface due to the presence of reduced magnetic Brillouin zone which crosses the 3D Fermi surface. It is the consequence of the establishment of the magnetic order. For the doped superconducting 122 samples, the in-plane optical measurement revealed a formation of full superconducting energy gap, whereas the c-axis optical measurement indicated a large residual quasiparticle population down to very low temperature. Those quasiparticles contribute specifically to the c-axis transport. We suggest that there exist horizontal nodes in the superconducting gap in regions of the 3D Fermi surface that contribute dominantly to the c-axis optical conductivity. Work done with Z. G. Chen, W. Z. Hu, B. Cheng, G. Li, J. Dong, T. Dong, R. H. Yuan, P. Zheng, G. F. Chen, J. L. Luo, Z. Fang, X. Dai, C. L. Zhang and P. Dai.

  11. Potential ability of 3 T-class trapped field on MgB2 bulk surface synthesized by the infiltration-capsule method

    NASA Astrophysics Data System (ADS)

    Naito, Tomoyuki; Ogino, Arata; Fujishiro, Hiroyuki

    2016-11-01

    We successfully synthesized a dense (˜90%-filled) MgB2 bulk with no residual Mg via an infiltration process by overcoming the problems in this process such as the expansion of a B precursor disk under a liquid Mg infiltration and the residuals of unreacted Mg in the bulk using a specially designed capsule. As a result, we have achieved a record-high trapped field to date, {B}{{T}}, of 2.4 T at the center of the bulk surface at the lowest temperature of 15.9 K among the infiltration-processed MgB2 bulks. The trapped-fields simulated for a model with the experimental {J}{{c}}({μ }0H) characteristics well reproduced the experimental {B}{{T}}’s and gave a reliable estimated {B}{{T}} below 15.9 K. The extrapolation of the experimental and simulated {B}{{T}} curve reached 3 T at 4.2 K. The critical current densities, {J}{{c}}({μ }0H)’s, at 20 K were 1.8 × 105 A cm-2 under the self-field and 4.5 × 103 A cm-2 under the magnetic-field of {μ }0H = 3 T. The connectivity, K, of 16% of the present bulk was comparable with that of the ˜50%-filled MgB2 bulk. The high {B}{{T}} with low K and the microstructure of the present bulk suggested that the high- and low-{J}{{c}} regions coexisted because of the wide variation of the MgB2 grain-size.

  12. Influence of ZnO and Dy2 O3 on MgB2 Bulks Fabricated by High Temperature and Pressure Reaction

    NASA Astrophysics Data System (ADS)

    Sumption, Mike; Yang, Yuan

    ZnO and Dy2O3 have been considered as dopants for the improvement of superconducting properties in MgB2 bulks. However, the effect of these dopants is still unclear: some studies reported these metal oxides worked as new pinning centers and others was attributed the effects to Mg site substitution. In addition, low temperature reactions may explore limited solubility regimes for these dopants. In order to study the intrinsic effect of ZnO and Dy2O3 in MgB2, a high temperature solid state sintering method has been used to fabricate dense and homogeneous MgB2 bulks. Even higher temperature excursions above the peritectic allow us to explore the solubility limits. To do this we used an induction furnace built inside of a high pressure vessel which allowed us to reach 1700oC and 1500 Psi. A slow cooling rate (2oC/min) was used in an attempt to obtain a homogeneous nucleation and phase distribution. A series of MgB2 bulk samples with ZnO and Dy2O3 additives were synthesized through this high pressure and temperature procedures. The resulting microstructures of these bulk samples were revealed by SEM and TEM. Atomic substitution were evaluated by high resolution XRD. The upper critical field Bc 2, irreversible field Birr and Tc were obtained from both magnetic and resistivity measurements. The roles of substitution vs precipitate induced strain on Bc 2enhancements with adding ZnO and Dy2O3 were discussed.

  13. Observation of the crossover from two-gap to single-gap superconductivity through specific heat measurements in neutron-irradiated MgB2.

    PubMed

    Putti, M; Affronte, M; Ferdeghini, C; Manfrinetti, P; Tarantini, C; Lehmann, E

    2006-02-24

    We report specific heat measurements on neutron-irradiated MgB2 samples, for which the critical temperature is lowered to 8.7 K, but the superconducting transition remains extremely sharp, indicative of a defect structure extremely homogeneous. Our results evidence the presence of two superconducting gaps in the temperature range above 21 K, while single-gap superconductivity is well established as a bulk property, not associated with local disorder fluctuations, when Tc decreases to 11 K.

  14. Update on the Fabrication and Performance of 2-D Arrays of Superconducting Magnesium Diboride (MgB2) Thermal Detectors for Outer-Planets Exploration

    NASA Technical Reports Server (NTRS)

    Lakew, Brook; Aslam, S.

    2011-01-01

    Detectors with better performance than the current thermopile detectors that operate at room temperature will be needed at the focal plane of far-infrared instruments on future planetary exploration missions. We will present an update on recent results from the 2-D array of MgB2 thermal detectors being currently developed at NASA Goddard. Noise and sensitivity results will be presented and compared to thermal detectors currently in use on planetary missions.

  15. A trapped magnetic field of 3 T in homogeneous, bulk MgB2 superconductors fabricated by a modified precursor infiltration and growth process

    NASA Astrophysics Data System (ADS)

    Bhagurkar, A. G.; Yamamoto, A.; Anguilano, L.; Dennis, A. R.; Durrell, J. H.; Babu, N. Hari; Cardwell, D. A.

    2016-03-01

    The wetting of boron with liquid magnesium is a critical factor in the synthesis of MgB2 bulk superconductors by the infiltration and growth (IG) process. Poor wetting characteristics can therefore result potentially in non-uniform infiltration, formation of defects in the final sample structure and poor structural homogeneity throughout the bulk material. Here we report the fabrication of near-net-shaped MgB2 bulk superconductors by a modified precursor infiltration and growth (MPIG) technique. A homogeneous bulk microstructure has subsequently been achieved via the uniform infiltration of Mg liquid by enriching pre-reacted MgB2 powder within the green precursor pellet as a wetting enhancer, leading to relatively little variation in superconducting properties across the entire bulk sample. Almost identical values of trapped magnetic field of 2.12 T have been measured at 5 K at both the top and bottom surfaces of a sample fabricated by the MPIG process, confirming the uniformity of the bulk microstructure. A maximum trapped field of 3 T has been measured at 5 K at the centre of a stack of two bulk MgB2 samples fabricated using this technique. A steady rise in trapped field was observed for this material with decreasing temperature down to 5 K without the occurrence of flux avalanches and with a relatively low field decay rate (1.5%/d). These properties are attributed to the presence of a fine distribution of residual Mg within the bulk microstructure generated by the MPIG processing technique.

  16. Experimental results on MgB2 used as ADR magnetic shields, and comparison to NbTi

    NASA Astrophysics Data System (ADS)

    Prouvé, T.; Duval, J. M.; Luchier, N.; D'escrivan, S.

    2014-11-01

    Adiabatic Demagnetization Refrigerator (ADR) is an efficient way to obtain sub-Kelvin temperatures in space environments. The SAFARI instrument for the Japanese spaceborne SPICA mission features detectors which will be cooled down to 50 mK. This cooling will be done by a hybrid cooler comprising a 300 mK sorption stage and a 50 mK ADR stage. For this cooler and ADR in general, the main contribution to the overall mass is in the magnetic system and particularly in the magnetic shielding required to keep the stray field within acceptable values. In order to reduce this mass, superconducting materials can be used as active magnetic shields thanks to un-attenuated eddy currents generated while ramping the magnet current. In this way they could reduce the need of heavy ferromagnetic material shields and increase the shielding efficiency to reach very low parasitic values. In the framework of SAFARI we have built a numerical model of a superconductor magnetic shield. The good results regarding the weight gain lead us to an experimental confirmation. In this paper we present an experimental study on MgB2 and NbTi superconducting materials. 2 pairs of rings of typical diameter of 80 mm have been tested using a superconducting magnet matching closely the dimensions of the SAFARI ADR cooler. The magnetic shielding measurements have been compared to a numerical model.

  17. MgB2 Thin-Film Bolometer for Applications in Far-Infrared Instruments on Future Planetary Missions

    NASA Technical Reports Server (NTRS)

    Lakew, B.; Aslam, S.; Brasunas, J.; Cao, N.; Costen, N.; La, A.; Stevenson, T.; Waczynski, A.

    2012-01-01

    A SiN membrane based MgB2 thin-film bolometer, with a non-optimized absorber, has been fabricated that shows an electrical noise equivalent power of 256 fW/square root Hz operating at 30 Hz in the 8.5 - 12.35 micron spectral bandpass. This value corresponds to an electrical specific detectivity of 7.6 x 10(exp 10) cm square root Hz/W. The bolometer shows a measured blackbody (optical) specific detectivity of 8.8 x 10(exp 9) cm square root Hz/W, with a responsivity of 701.5 kV/W and a first-order time constant of 5.2 ms. It is predicted that with the inclusion of a gold black absorber that a blackbody specific detectivity of 6.4 x 10(exp 10) cm/square root Hz/W at an operational frequency of 10 Hz, can be realized for integration into future planetary exploration instrumentation where high sensitivity is required in the 17 - 250 micron spectral wavelength range.

  18. MgB2-Based Bolometer Array for Far Infra-Red Thermal Imaging and Fourier Transform Spectroscopy Applications

    NASA Technical Reports Server (NTRS)

    Lakew, B.; Aslam, S.; Brasunas, J.

    2012-01-01

    The mid-superconducting critical temperature (T(sub c) approximately 39 K) of the simple binary, intermetallic MgB, [1] makes it a very good candidate for the development of the next generation of electrooptical devices (e.g. [2]). In particular, recent advances in thin film deposition teclmiques to attain higb quality polycrystalline thin film MgB, deposited on SiN-Si substrates, with T(sub c) approximately 38K [3] coupled with the low voltage noise performance of the film [4] makes it higbly desirable for the development of moderately cooled bolometer arrays for integration into future space-bourne far infra-red (FIR) spectrometers and thermal mappers for studying the outer planets, their icy moons and other moons of interest in the 17-250 micrometer spectral wavelength range. Presently, commercially available pyroelectric detectors operating at 300 K have specific detectivity, D(*), around 7 x 10(exp 8) to 2 x 10(exp 9) centimeters square root of Hz/W. However, a MgB2 thin film based bolometer using a low-stress (less than 140 MPa) SiN membrane isolated from the substrate by a small thermal conductive link, operating at 38 K, promises to have two orders of magnitude higher specific detectivity [5][6].

  19. The effects of graphene doping on the in-field Jc of MgB2 wires.

    PubMed

    Xu, X; Li, W X; Zhang, Y; De Silva, K S B; Kim, J H; Choi, S

    2012-02-01

    The field and temperature dependence of the critical current density Jct were measured for both un-doped and graphene doped MgB2/Fe wires manufactured by 99.999% Crystalline Boron and 10% excess Magnesium (99%, 325 mesh). At 4.2 K and 10 T, Jct was estimated to be for the wire sintered at 800 degrees C for 30 minutes, the doped sample is almost improved as one order, compared with the best un-doped sample. At the same time, the temperature dependence of the upper critical field (Hc2) and the irreversibility field (Hirr) for the samples will also be included from the resistance (R)-temperature (T). A significant increase in the upper critical field is the main cause of the enhancement of the critical current density, Jct, in the high field region. The calculated active cross-sectional area fraction (A(F)) represents the connectivity factor between adjacent grains. This value is decreased with wire samples, which is why the improvement of transport Jct is lower than the improvement of magnetic Jcm in diffusion bulk sample.

  20. Strong enhancement of high-field critical current properties and irreversibility field of MgB2 superconducting wires by coronene active carbon source addition via the new B powder carbon-coating method

    NASA Astrophysics Data System (ADS)

    Ye, Shu Jun; Matsumoto, Akiyoshi; Chao Zhang, Yun; Kumakura, Hiroaki

    2014-08-01

    We report an effective carbon-containing additive, coronene (C24H12), for MgB2 superconducting wires. We used B powder coated with C24H12 to fabricate MgB2 wires using the powder-in-tube (PIT) and internal Mg diffusion (IMD) processes. The in-field critical current properties are strongly enhanced for both PIT- and IMD-processed MgB2 wires. For PIT MgB2 wires, a critical current density (Jc) value of 1.8 × 104 A cm-2 is obtained at 4.2 K and 10 T. For IMD MgB2 wires, we obtained a Jc of 1.07 × 105 A cm-2 and an engineering Jc (Je) of 1.12 × 104 A cm-2 at 4.2 K and 10 T. These Jc and Je values are similar to the highest values reported for MgB2 wires thus far. Furthermore, the irreversibility field, Birr, determined with a current density criterion of 100 A cm-2, is strongly enhanced to 25 T at 4.2 K, which is also the highest value reported for MgB2 superconducting wires thus far. Coronene is an active carbon source for MgB2 superconducting wires because (1) coronene has a high carbon content (96 wt%) with a small amount of hydrogen (impurity), (2) the decomposition temperature for coronene is near the reaction temperature between Mg and B, and (3) uniform dispersion of coronene on the B surface can be obtained due to the melting point of coronene being lower than the decomposition temperature. Carbon substitution for B caused by the coronene active carbon source is mainly responsible for the high field critical current properties and the high Birr obtained in this work.

  1. Thermodynamic stability of transition metals on the Mg-terminated MgB2 (0001) surface and their effects on hydrogen dissociation and diffusion

    NASA Astrophysics Data System (ADS)

    Wang, Yongli; Michel, Kyle; Zhang, Yongsheng; Wolverton, C.

    2015-04-01

    The hydrogenation of MgB2 is a critical step in the reversibility of several well-known hydrogen storage reactions. Of the many processes that must occur during rehydrogenation, at least two of them take place near the surface: the dissociation of H2 molecules and the subsequent diffusion of atomic hydrogen. Using first-principles calculations, we determine the energetic barriers for these processes on the ideal Mg-terminated MgB2 (0001) surface, as well as on surfaces containing transition metal dopants (Sc-Zn, Y-Cd, Pt, and Au). The calculated dissociation barrier for H2 on the clean surface is 0.89 eV, and the surface diffusion barrier is 0.17 eV. However, we find examples of dopants that significantly decrease the activation barrier for the dissociation of H2 . Our calculations suggest that Ni, Cu, and Pd are good catalytic candidates for the surface processes involved in MgB2 rehydrogenation.

  2. Magnetic field dependent stability and quench behavior and degradation limits in conduction-cooled MgB2 wires and coils

    PubMed Central

    Ye, Liyang; Cruciani, Davide; Xu, Minfeng; Mine, Susumu; Amm, Kathleen; Schwartz, Justin

    2015-01-01

    Long lengths of metal/MgB2 composite conductors with high critical current density (Jc), fabricated by the power-in-tube (PIT) process, have recently become commercially available. Owing to its electromagnetic performance in the 20 K – 30 K range and relatively low cost, MgB2 may be attractive for a variety of applications. One of the key issues for magnet design is stability and quench protection, so the behavior of MgB2 wires and magnets must be understood before large systems can emerge. In this work, the stability and quench behavior of several conduction-cooled MgB2 wires are studied. Measurements of the minimum quench energy and normal zone propagation velocity are performed on short samples in a background magnetic field up to 3 T and on coils in self-field and the results are explained in terms of variations in the conductor architecture, electrical transport behavior, operating conditions (transport current and background magnetic field) and experimental setup (short sample vs small coil). Furthermore, one coil is quenched repeatedly with increasing hot-spot temperature until Jc is decreased. It is found that degradation during quenching correlates directly with temperature and not with peak voltage; a safe operating temperature limit of 260 K at the surface is identified. PMID:25883414

  3. Numerical study on the quench propagation in a 1.5 T MgB2 MRI magnet design with varied wire compositions

    NASA Astrophysics Data System (ADS)

    Poole, Charles; Baig, Tanvir; Deissler, Robert J.; Doll, David; Tomsic, Michael; Martens, Michael

    2016-04-01

    To reduce the usage of liquid helium in MRI magnets, magnesium diboride (MgB2), a high temperature superconductor, has been considered for use in a design of conduction cooled MRI magnets. Compared to NbTi wires the normal zone propagation velocity (NZPV) in MgB2 is much slower leading to a higher temperature rise and the necessity of active quench protection. The temperature rise, resistive voltage, and NZPV during a quench in a 1.5 T main magnet design with MgB2 superconducting wire was calculated for a variety of wire compositions. The quench development was modeled using the Douglas-Gunn method to solve the 3D heat equation. It was determined that wires with higher bulk thermal conductivity and lower electrical resistivity reduced the hot-spot temperature rise near the beginning of a quench. These improvements can be accomplished by increasing the copper fraction inside the wire, using a sheath material (such as Glidcop) with a higher thermal conductivity and lower electrical resistivity, and by increasing the thermal conductivity of the wire’s insulation. The focus of this paper is on the initial stages of quench development, and does not consider the later stages of the quench or magnet protection.

  4. Enhancement of the superconducting transition temperature of MgB2 by a strain-induced bond-stretching mode softening.

    PubMed

    Pogrebnyakov, A V; Redwing, J M; Raghavan, S; Vaithyanathan, V; Schlom, D G; Xu, S Y; Li, Qi; Tenne, D A; Soukiassian, A; Xi, X X; Johannes, M D; Kasinathan, D; Pickett, W E; Wu, J S; Spence, J C H

    2004-10-01

    We report a systematic increase of the superconducting transition temperature T(c) with a biaxial tensile strain in MgB2 films to well beyond the bulk value. The tensile strain increases with the MgB2 film thickness, caused primarily by the coalescence of initially nucleated discrete islands (the Volmer-Weber growth mode.) The T(c) increase was observed in epitaxial films on SiC and sapphire substrates, although the T(c) values were different for the two substrates due to different lattice parameters and thermal expansion coefficients. We identified, by first-principles calculations, the underlying mechanism for the T(c) increase to be the softening of the bond-stretching E(2g) phonon mode, and we confirmed this conclusion by Raman scattering measurements. The result suggests that the E(2g) phonon softening is a possible avenue to achieve even higher T(c) in MgB2-related material systems.

  5. C-axis critical current density of second-generation YBCO tapes.

    SciTech Connect

    Jia, Y.; Hua, J.; Crabtree, G. W.; Kwok, W. K.; Welp, U.; Malozemoff, A. P.; Rupich, M.; Fleshler, S.; Materials Science Division; American Superconductor Corp.

    2010-10-01

    We report on measurements of the temperature and field dependence of the c-axis critical current density (J{sub c}{sup c}) obtained on mesa structures that were patterned into the YBCO layer of second-generation HTS tapes. We find the J{sub c}{sup c}-values of {approx}4 kA cm{sup -2} at 77 K and self-field, corresponding to an unexpectedly high anisotropy in the critical current density J{sub c}{sup ab}/J{sub c}{sup c} of 500-600. C-axis current flow is expected to arise in applications such as the helically wound wires in HTS cables. A simple estimate is given of the fraction of tape width for such a c-axis flow; while in our samples this fraction is approximately 5% for a typical geometry, the fraction will grow linearly with increasing current density anisotropy and could affect the current-carrying ability of the tape.

  6. Quartz c-axis evidence for deformation characteristics in the Sanandaj-Sirjan metamorphic belt, Iran

    NASA Astrophysics Data System (ADS)

    Samani, Babak

    2013-05-01

    Quartz c-axis fabric, finite strain, and kinematic vorticity analyses were carried out in well-exposed quartz mylonites to investigate the heterogeneous nature of ductile deformation within the Eghlid deformed area in the High Pressure-Low Temperature (HP-LT) Sanandaj-Sirjan metamorphic belt (Zagros Mountains, Iran). This belt belongs to a sequence of tectonometamorphic complexes with low- to high-grade metamorphic rocks affected by a polyphase deformation history. Asymmetric quartz c-axis fabrics (type I) confirm a localized top-to-the-southeast sense of shear. Quantitative finite strain analysis in the XZ, XY and YZ principal planes of the finite strain ellipsoid demonstrate that the strain ratio increases towards the thrust planes of the Zagros Thrust System. Kinematic vorticity analysis of deformed quartz grains showed sequential variation in the kinematic vorticity number from ˜0.5 to ˜0.8 between the thrust sheets. Such vorticity numbers show that both simple and pure shear components contribute to the deformation. Our results show that simple shear dominated deformation near the thrust faults, and pure shear dominated deformation far from them. Quartz c-axis opening angles suggest deformation temperatures range between 450° ± 50 °C and 600° ± 50 °C, which yield greenschist to amphibolite facies conditions during ductile deformation.

  7. A method for quantitatively analyzing the angle of direction for arbitral c-axis alignment with retardation measurements

    NASA Astrophysics Data System (ADS)

    Shimoi, Norihiro; Tanaka, Yasumitsu

    2015-01-01

    c-axis alignment in a polymer or crystal structure has drawn attention in numerous scientific and technological applications, including crystals, thin film growth, electro-optic devices, and phase difference optics. We here demonstrate a new approach based on retardation measurement that can obtain the direction of the c-axis alignment. This is employed to visualize the three-dimensional direction of continuous crystals as a thin optical film utilizing a liquid crystal panel, using retardation analysis equipment with high resolution measurement capability. The direction of the c-axis alignment is shown so as to allow a detailed characterization of the direction perpendicular to the plane. In this analysis, the direction of the c-axis alignment is identified, and differences between molecules at inequivalent sites are quantified. The results suggest that the excellent lubrication properties of the c-axis alignment may be due to a significant localization in lateral directions.

  8. Substrate Heating Effect on c-Axis Texture and Piezoelectric Properties of AlN Thin Films Deposited by Unbalanced Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Hasheminiasari, Masood; Lin, Jianliang

    2016-06-01

    Aluminum nitride (AlN) thin films with highly preferred (002) orientations have been reactively deposited by a pulsed-closed field unbalanced magnetron sputtering system using TiN/Ti as the seed/adhesion layer with various substrate temperatures. The texture, orientation and piezoelectric properties of AlN films were characterized by means of x-ray diffraction, rocking curves and laser interferometry. A Michelson laser interferometer was designed and built to obtain the converse piezoelectric response of the deposited AlN thin films. It was found that a slight substrate temperature increase would significantly affect the (002) orientation and the piezoelectric coefficient of AlN thin films compared to the coating obtained with no intentional substrate heating, while higher temperature applications on substrate deteriorated the c-axis texture of the coatings without significant improvement in the piezoelectric response of AlN films.

  9. Recent achievements in MgB 2 physics and applications: A large-area SQUID magnetometer and point-contact spectroscopy measurements

    NASA Astrophysics Data System (ADS)

    Gonnelli, R. S.; Daghero, D.; Calzolari, A.; Ummarino, G. A.; Tortello, M.; Stepanov, V. A.; Zhigadlo, N. D.; Rogacki, K.; Karpinski, J.; Portesi, C.; Monticone, E.; Mijatovic, D.; Veldhuis, D.; Brinkman, A.

    2006-03-01

    In the first part of the present paper we discuss the fabrication and the characterization of an MgB2-based SQUID magnetometer with a directly coupled large-area pick-up loop, made on an MgB2 film deposited by an all in situ technique. The coarse structure of the SQUID was defined by optical lithography and Ar-ion milling, while the two nanobridges acting as weak links in the superconducting loop were made by focused ion beam (FIB) milling. The device was characterized at different temperatures and showed Josephson quantum interference up to 20 K as well as a noise level already compatible with the recording of an adult magnetocardiogram. In the second part, concerning the fundamental physics of MgB2, we present the results of very recent point-contact measurements on Mg1-xMnxB2 single crystals with 34.1 ⩾ Tc ⩾ 13.3 K (i.e. 0.37% ⩽ x ⩽ 1.5%). The experimental conductance curves were fitted with the generalized two-band BTK model and their behaviour in magnetic fields was studied to check if both the order parameters (OPs) of the σ and π bands were present in the whole doping range. The dependence of the OPs (evaluated through the fit) on the Andreev critical temperature of the junctions is analyzed in the framework of the two-band Eliashberg theory by including the effects of magnetic impurities. The results give an evidence of a dominant effect of the magnetic impurities on the σ-band channel.

  10. The c-axis charge traveling wave in a coupled system of Josephson junctions

    NASA Astrophysics Data System (ADS)

    Shukrinov, Yu. M.; Hamdipour, M.

    2012-05-01

    We demonstrate a manifestation of the charge traveling wave along the c axis (TW) in current voltage characteristics of coupled Josephson junctions in high- T c superconductors. The branches related to the TW with different wavelengths are found for the stacks with different number of Josephson junctions at different values of system's parameters. Transitions between the TW branches and the outermost branch are observed. The electric charge in the superconducting layers and charge-charge correlation functions for TW and outermost branches show different behavior with bias current. We propose an experimental testing of the TW branching by microwave irradiation.

  11. Synthesis and Characterization of High c-axis ZnO Thin Film by Plasma Enhanced Chemical Vapor Deposition System and its UV Photodetector Application.

    PubMed

    Chao, Chung-Hua; Wei, Da-Hua

    2015-10-03

    In this study, zinc oxide (ZnO) thin films with high c-axis (0002) preferential orientation have been successfully and effectively synthesized onto silicon (Si) substrates via different synthesized temperatures by using plasma enhanced chemical vapor deposition (PECVD) system. The effects of different synthesized temperatures on the crystal structure, surface morphologies and optical properties have been investigated. The X-ray diffraction (XRD) patterns indicated that the intensity of (0002) diffraction peak became stronger with increasing synthesized temperature until 400 (o)C. The diffraction intensity of (0002) peak gradually became weaker accompanying with appearance of (10-10) diffraction peak as the synthesized temperature up to excess of 400 (o)C. The RT photoluminescence (PL) spectra exhibited a strong near-band-edge (NBE) emission observed at around 375 nm and a negligible deep-level (DL) emission located at around 575 nm under high c-axis ZnO thin films. Field emission scanning electron microscopy (FE-SEM) images revealed the homogeneous surface and with small grain size distribution. The ZnO thin films have also been synthesized onto glass substrates under the same parameters for measuring the transmittance. For the purpose of ultraviolet (UV) photodetector application, the interdigitated platinum (Pt) thin film (thickness ~100 nm) fabricated via conventional optical lithography process and radio frequency (RF) magnetron sputtering. In order to reach Ohmic contact, the device was annealed in argon circumstances at 450 (o)C by rapid thermal annealing (RTA) system for 10 min. After the systematic measurements, the current-voltage (I-V) curve of photo and dark current and time-dependent photocurrent response results exhibited a good responsivity and reliability, indicating that the high c-axis ZnO thin film is a suitable sensing layer for UV photodetector application.

  12. Examination of an influence of winding geometry and operating temperature on basic parameters of superconducting coils made of MgB2 wire - Theoretical analysis

    NASA Astrophysics Data System (ADS)

    Pitel, Jozef; Kováč, Pavol

    2012-12-01

    Development and consecutive improvement of the properties of superconductor such as MgB2 raise the natural question about its potential with respect to application in magnets. A magnet designer is confronted with the question what quantitative values of the basic parameters of coils such as critical current, central field and stored energy can be expected at various operating temperature. In fact, the overall wire length can be considered as one of the key factors which determines the final price of the magnet. Therefore, a simple mathematical model was developed, and a detailed theoretical analysis of the influence of the winding geometry on the parameters of the cylindrical coils was performed with respect to the constant wire length. As an example the experimental data of the 30 filament MgB2 wire which was developed at the Department of Superconductor Physics, Institute of Electrical Engineering, Slovak Academy of Sciences, were used in calculations at operating temperatures between 4.2 and 20 K. An influence of the inner winding diameter and overall wire length on the values of the coils’ critical current, central field and stored energy, was studied theoretically with the aim to specify the significance of respective parameters. An optimization of the winding geometry was performed with respect to achieving the maximum central field.

  13. Comparison of local electrodynamic responses of superconducting materials--from bulk Nb to MgB2 and Nb thin films

    NASA Astrophysics Data System (ADS)

    Tai, Tamin; Ghamsari, Behnood; Tan, Teng; Xi, Xiaoxing; Anlage, Steven

    2013-03-01

    A near-field magnetic field microwave microscope that enables mapping of the local electrodynamic response in the GHz frequency regime at liquid helium cryogenic temperatures was successful built using the combination of a magnetic writer and a near field-microwave microscope. Many superconducting materials, especially the candidate materials for superconducting RF cavities, were tested at a fixed location to analyze the local electromagnetic response, including both the intrinsic and extrinsic nonlinearities. The bulk Nb materials only show extrinsic nonlinearity, consistent with vortex generation and annihilation in the material. The measurements on Nb and MgB2 thin film materials shows not only the extrinsic nonlinearity due to the vortex mechanism, but also intrinsic nonlinearity. The intrinsic nonlinearity comes from the modulation of the superconducting order parameter near Tc, but behaves differently for single band gap (Nb) and two-gap (MgB2) superconductors. Quantitatively analyzing the nonlinear mechanisms will enable the microscope to extract many material parameters and image the superconducting properties by raster scanning. This work is supported by the US DOE/HEP through grant # DESC0004950, and also by the ONR AppEl Center, Task D10, (Award No. N000140911190), and UMD-CNAM.

  14. Variation of pinning mechanism and enhancement of critical current density in MgB2 bulk containing self-generated coherent MgB4 impurity

    NASA Astrophysics Data System (ADS)

    Cai, Qi; Liu, Yongchang; Ma, Zongqing; Li, Huijun; Yu, Liming

    2013-09-01

    Bulk MgB2, with self-generated MgB4 pinning centers, have experienced two-step sintering process, initially at 750 °C and then 900-1000 °C. On the contrary to the widely accepted point that MgB4 deteriorates superconductivity, it was found that MgB4 played a significant role in enhancing critical current density. The precipitation pattern of MgB4 was studied from the lattice scale images. It was observed that the initial coherent relation between the MgB4 and the matrix was destroyed to become semi-coherent and even incoherent as the second-step sintering temperature increased. Owing to the lattice distortion caused by the elastic accommodation of the coherent interface, the small-sized MgB4 particles controlled by the sintering temperature, and the fine grain connectivity affected by the porosity, the critical current density was improved over the entire magnetic field. Finally, the dominating pinning mechanism within the crystal was confirmed to be Δκ pinning in the two-step sintered MgB2 sample, where the κ is the Ginzburg-Landau parameter, while the mechanism of one-step sintered sample is surface pinning.

  15. The non-canonical role of vascular endothelial growth factor-C axis in cancer progression

    PubMed Central

    Wang, Chu-An

    2015-01-01

    It has been shown in many clinical studies that the level of vascular endothelial growth factor-C (VEGF-C) positively correlates with lymph node metastasis. Nevertheless, beyond the canonical role of VEGF-C in stimulating lymphangiogenesis and thus promoting lymph node/distant metastasis, emerging evidence indicates that expression of VEGF-C contributes to various aspects of carcinogenicity via autocrine regulation. The newly identified functions of VEGF-C include but are not limited to proliferation, migration, invasion, and chemo-resistance. Besides tumor cell autocrine regulation, VEGF-C can also modulate the immune system such that tumor cells more easily escape immune surveillance. Therefore, understanding the functional roles and regulatory mechanisms related to the VEGF-C axis may lead to alternative strategies for cancer treatment. This mini-review will focus on summarizing recent discoveries regarding the unconventional functions of VEGF-C in cancer progression. PMID:25888649

  16. Bilayer splitting and c-axis coupling in CMR bilayer manganites

    SciTech Connect

    Jozwiak, Chris; Graf, Jeff; Zhou, Shuyun; Bostwick, Aaron; Rotenberg, Eli; Zheng, Hong; Mitchell, John; Lanzara, Alessandra

    2009-09-03

    By performing angle-resolved photoemission spectroscopy of the bilayer colossal magnetoresistive (CMR) manganite, La2-2xSr1+2xMn2O7, we provide the complete mapping of the Fermi-level spectral weight topology. Clear and unambiguous bilayer splitting of the in-plane 3dx2-y2 band, mapped throughout the Brillouin zone, and the full mapping of the 3d3z2-r2 band are reported. Peculiar doping and temperature dependencies of these bands imply that as transition from the ferromagnetic metallic phase approaches, either as a function of doping or temperature, coherence along the c-axis between planes within the bilayer is lost, resulting in reduced interplane coupling. These results suggest that interplane coupling plays a large role in the CMR transition.

  17. First-principles prediction of MgB2-like NaBC: A more promising high-temperature superconducting material than LiBC

    NASA Astrophysics Data System (ADS)

    Miao, Rende; Huang, Guiqin; Yang, Jun

    2016-05-01

    Crystal structure, lattice dynamics, and superconducting properties for sodium borocarbides NaB1+xC1-x are investigated with first-principles calculations. Based on crystal structure analysis by particle swarm optimization methodology, NaBC is predicted to crystallize in the layered P63 / mmc crystal structure as LiBC. However, it is different from LiBC, in that Na atoms are effectively ionized, with no longitudinal covalence exist between Na and B-C layers, just as in the case of MgB2. Therefore, Na1-xBC is more similar to MgB2 than Li1-xBC as a potential high-temperature superconductor. Further more, we suggest that the slight hole doping of NaBC through partial substitution of C by B atoms can also produce cause superconductivity. The phonon spectra for NaBC and NaB1.1C0.9 are obtained within the virtual-crystal approximation treatment. There is a remarkable softening of the in-plane B-C bond-stretching modes for NaB1.1C0.9 in certain regions of the Brillouin zone, while other phonon bands show no obvious softening behavior. This conspicuous softening of the in-plane B-C bond-stretching modes indicates a strong electron-phonon coupling for them. The obtained total electron-phonon coupling strength λ for NaB1.1C0.9 is 0.73, and superconducting transition temperature TC is predicted to be 35 K (μ* = 0.1). This indicates that NaB1+xC1-x is potentially high-temperature superconducting and hole doping of NaBC could produce high-temperature superconductivity. In addition, we conjecture that, to design a MgB2-like high TC superconducting material, the longitudinal covalent bonds between the metal cations and graphite-like layers need be excluded.

  18. Microstructures and critical currents of single- and multi-filamentary MgB2 superconducting wires fabricated by an internal Mg diffusion process

    NASA Astrophysics Data System (ADS)

    Togano, K.; Hur, J.; Matsumoto, A.; Kumakura, H.

    2010-08-01

    A single-filament wire and 7- and 19-filament wires of MgB2 superconductor were fabricated by an internal Mg diffusion (IMD) process. The wire is sheathed by a Cu-Ni alloy and each filament is composed of an outermost Ta, an intermediate B + SiC powder layer and an Mg core at the center. Despite the large total area reduction, the cross sections of all wires show uniform deformation of the composite. During the subsequent heat treatment, a reacted layer with a dense composite structure composed of a MgB2 matrix and fine particles is formed by Mg liquid infiltration and the reaction with the B + SiC powder. For all wires, the highest transport Ic was obtained at furnace temperatures of 640-645 °C, which is just below the melting point of Mg. In the single-filament wire, a fairly large amount of B + SiC remains outside the reacted layer, while the residual B + SiC is much reduced in the multi-filamentary wires, resulting in higher Ic, than that of the single-filament wire. However, the Jc, estimated for the reacted layer is not so different between the wires. When the heat treatment temperature exceeds 650 °C, the Ic value rapidly decreases, although the volume fraction of the MgB2 detected continues to increase. It is observed that the thickness of the reacted layer formed at higher temperatures becomes significantly inhomogeneous, which is thought to be responsible for the deterioration of transport Ic values. The highest Jc(layer) estimated for the reacted layer is as high as 9.9 × 104 A cm - 2 at 4.2 K and 10 T and 3.3 × 105 A cm - 2 at 20 K and 1 T achieved for the multi-filamentary wires. The Jc(core) estimated for the area including the hole and remnant B is about 1/3 of the Jc(layer). From good workability of the composite and excellent Jc values, it is expected that the IMD process can compete in terms of practical wire fabrication with the conventional powder-in-tube (PIT) process.

  19. First principle study of hydrogenation of MgB2: an important step toward reversible hydrogen storage in the coupled LiBH4/MgH2 system.

    PubMed

    Du, A J; Smith, Sean C; Yao, X D; Sun, C H; Li, L; Lu, G Q

    2009-07-01

    Recent experiments [F. E. Pinkerton, M. S. Meyer, G. P. Meisner, M. P. Balogh, and J. J. Vajo, J. Phys. Chem. C 111, 12881 (2007) and J. J. Vajo and G. L. Olson, Scripta Mater. 56, 829 (2007)] demonstrated that the recycling of hydrogen in the coupled LiBH4/MgH2 system is fully reversible. The rehydrogenation of MgB2 is an important step toward the reversibility. By using ab initio density functional theory calculations, we found that the activation barrier for the dissociation of H2 are 0.49 and 0.58 eV for the B and Mg-terminated MgB2(0001) surface, respectively. This implies that the dissociation kinetics of H2 on a MgB2(0001) surface should be greatly improved compared to that in pure Mg materials. Additionally, the diffusion of dissociated H atom on the Mg-terminated MgB2(0001) surface is almost barrier-less. Our results shed light on the experimentally-observed reversibility and improved kinetics for the coupled LiBH4/MgH2 system.

  20. Blowpipe Mineralogy for Physics/Environment: Highest-Possible-Tc SuperConductor (Beyond: (but via!!!) MgB2 , Cuprates, Pnictides) Quest; BOTH PERMANENT FOREVER Carb-IDES SOLID-State Sequestration AND Drought(s)-Elimination

    NASA Astrophysics Data System (ADS)

    Segler, Kurt; Williams, Wendell; Siegel, Edward

    2013-03-01

    Detailed are old blowpipe new applications: charcoal-block reduction of borates to yield (''N-NW'' of MgB2) Overhauser-[PR 35,1,411(1987); Intl.J.Mod.Phys.1, 2 & 4, 927(1987)]-''land'' predicted high-EST-POSSIBLE Tc SC

  1. Effect of cold isostatic pressing on the transport current of filamentary MgB2 wire made by the IMD process

    NASA Astrophysics Data System (ADS)

    Kováč, P.; Hušek, I.; Pachla, W.; Melišek, T.; Kulich, M.; Rosová, A.; Kopera, L.

    2016-07-01

    This work describes the effect of cold isostatic pressing applied to as-drawn filamentary wires in a GlidCop and/or Cu sheath made by the internal magnesium diffusion process. Critical currents of as-drawn and isostatically pressed wires at high pressures up to 2.0 GPa followed by heat treatment at 640 °C for 40 min were measured. The obtained results show an improvement in boron powder density resulting in an increase of the critical current of MgB2 layers. The engineering current density increases by 4–13 times after the high-pressure treatment, and is influenced by the density of the boron powder and by the mechanical strength of the outer sheath.

  2. Effect of cold isostatic pressing on the transport current of filamentary MgB2 wire made by the IMD process

    NASA Astrophysics Data System (ADS)

    Kováč, P.; Hušek, I.; Pachla, W.; Melišek, T.; Kulich, M.; Rosová, A.; Kopera, L.

    2016-07-01

    This work describes the effect of cold isostatic pressing applied to as-drawn filamentary wires in a GlidCop and/or Cu sheath made by the internal magnesium diffusion process. Critical currents of as-drawn and isostatically pressed wires at high pressures up to 2.0 GPa followed by heat treatment at 640 °C for 40 min were measured. The obtained results show an improvement in boron powder density resulting in an increase of the critical current of MgB2 layers. The engineering current density increases by 4-13 times after the high-pressure treatment, and is influenced by the density of the boron powder and by the mechanical strength of the outer sheath.

  3. A Case Study of MgB2 and HTS Magnets Being Cooled and Cooled Down using a Hydrogen Thermal-siphon Cooling-loop with Coolers

    NASA Astrophysics Data System (ADS)

    Green, Michael A.

    When one fabricates a magnet using MgB2 or HTS conductors, the operating temperature of the magnet can be increased into the temperature range from about 15 to 30 K. This temperature range is between the triple-point (13.8 K) and the critical point of para-hydrogen (32.3 K). Hydrogen has excellent heat transfer properties both as a liquid and as a gas at low temperature. The heat of vaporization of hydrogen is larger than any cryogenic fluid. In addition, the specific heat of the liquid and the gas is higher than any cryogenic fluid. Hydrogen may be the best fluid to use to connect a magnet operating between 15 and 30 K with a source of refrigeration. This paper compares magnet cooling at 20 K using helium and hydrogen. A safe completely passive cooling loop is discussed in this paper.

  4. Influence of high-pressure deformation and annealing on the structure and properties of a bulk MgB2 superconductor

    NASA Astrophysics Data System (ADS)

    Degtyarev, M. V.; Pilyugin, V. P.; Akshentsev, Yu. N.; Kuznetsova, E. I.; Krinitsina, T. P.; Blinova, Yu. V.; Sudareva, S. V.; Romanov, E. P.

    2016-08-01

    A synthesized MgB2 superconductor has been investigated by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and by the measurements of the superconducting characteristics and microhardness after cold high-pressure deformation in a Toroid chamber and in Bridgman anvils and subsequent high-temperature annealing. A nanocrystalline structure is formed in the superconductor after high-pressure treatment, but internal cracks appear, and the critical current density decreases strongly. The annealing leads to a coarsening of the structure and to an increase in the critical current density up to 5.8-6.7 × 104 A/cm2, which is more than three times greater than that in the initial state.

  5. Flux-pinning mechanism in silicone-oil-doped MgB2 : Evidence for charge-carrier mean free path fluctuation pinning

    NASA Astrophysics Data System (ADS)

    Ghorbani, S. R.; Wang, X. L.; Dou, S. X.; Lee, Sung-Ik; Hossain, M. S. A.

    2008-11-01

    Flux-pinning mechanism of MgB2 doped with 10wt% silicone-oil sintered at low and high temperatures has been investigated by magnetic measurements. The field dependence of the critical current density, jc(B) , was analyzed within the collective pinning model. A crossover field, Bsb , from the single vortex to the small vortex bundle-pinning regime was observed. For both types of sintered samples, the temperature dependence of Bsb(T) at low temperature is in good agreement with the δl pinning mechanism, i.e., pinning associated with charge-carrier mean free path fluctuation. At temperatures close to the critical temperature, however, there is evidence for δTc pinning, which is associated with spatial fluctuations of the transition temperature. These results provide strong evidence that the liquid precursor, silicone oil, produces very small pinning centers and enhances the jc(B) .

  6. Numerical solution of Bloch-Gruneisen function to determine the contribution of electron-phonon interaction in polycrystalline MgB 2 superconductor

    NASA Astrophysics Data System (ADS)

    Ansari, Intikhab A.

    2010-06-01

    Here, we report the efficient and feasible analytical method for the generalized Bloch-Gruneisen law in association with Debye temperature and various temperatures range in terms of incomplete gamma function. In addition, our results are in agreement with previous reports as shown in this letter. Bloch-Gruneisen function describes the contribution of electron-phonon interaction to the results of temperature dependence behavior of resistivity for integer and noninteger values of index m. In conclusion, the algorithm is constructed in Fortran 90 language for replicate the variation of temperature dependence of resistivity for pristine MgB 2 sample. Moreover, the comparison of numerical results with the proposed method reveals the validity and precision of the method.

  7. Experimental research of high field pinning centers in 2% C doped MgB2 wires at 20 K and 25 K

    NASA Astrophysics Data System (ADS)

    Gajda, D.; Morawski, A.; Zaleski, A. J.; Häßler, W.; Nenkov, K.; Małecka, M.; Rindfleisch, M. A.; Hossain, M. S. A.; Tomsic, M.

    2016-09-01

    High field pinning centers in MgB2 doped with 2 at. % carbon under a low and a high hot isostatic pressures have been investigated by transport measurements. The field dependence of the transport critical current density was analyzed within the different pinning mechanisms: surface pinning, point pinning, and pinning due to spatial variation in the Ginzburg-Landau parameter (Δκ pinning). Research indicates that a pressure of 1 GPa allows similar pinning centers to Δκ pinning centers to be obtained. This pinning is very important, because it makes it possible to increase the critical current density in high magnetic fields at 20 K and 25 K. Our results indicate that the δTc and δl pinning mechanisms, which are due to a spatial variation in the critical temperature (Tc) and the mean free path, l, respectively, create dislocations. The high density of dislocations with inhomogeneous distribution in the structure of the superconducting material creates the δl pinning mechanism. The low density of dislocations with inhomogeneous distribution creates the δTc pinning mechanism. Research indicates that the hot isostatic pressure process makes it possible to obtain a high dislocation density with a homogeneous distribution. This allows us to obtain the δTc pinning mechanism in MgB2 wires. In addition, a high pressure increases the crossover field from the single vortex to the small vortex bundle regime (Bsb) and improves the δTc pinning mechanism. Our research has proved that a high pressure significantly increases the crossover field from the small bundle to the thermal regime (Bth), with only a modest decrease in Tc of 1.5 K, decreases the thermal fluctuations, increases the irreversibility magnetic field (Birr) and the upper critical field (Bc2) in the temperature range from 4.2 K to 25 K, and reduces Birr and Bc2 above 25 K.

  8. Charge Dynamics of 2H- TaSe2 along the Less-Conducting c-Axis

    NASA Astrophysics Data System (ADS)

    Ruzicka, B.; Degiorgi, L.; Berger, H.; Gaál, R.; Forró, L.

    2001-04-01

    We present an optical study of 2H-TaSe2 along the less conducting c-axis. This dichalcogenide compound belongs to a large class of conductors called ``bad metals'' (with a mean free path smaller than the lattice constant along the c-axis), which also includes the superconducting cuprates. The optical response shows the progressive development of a pseudogaplike feature with decreasing temperature. The spectral weight lost by the opening of such a pseudogap goes into the narrow Drude component, developing at low frequency and temperature. There is no violation of the sum rule in 2H-TaSe2 contrary to the cuprates.

  9. Deformation thermometry based on quartz c-axis fabrics and recrystallization microstructures: A review

    NASA Astrophysics Data System (ADS)

    Law, Richard D.

    2014-09-01

    For quartz-rich tectonites two types of deformation thermometer are currently commonly employed: 1) The quartz c-axis fabric opening-angle thermometer that provides an estimate of deformation temperatures when fabrics were ‘locked in' during dislocation creep and dynamic recrystallization. 2) The quartz recrystallization thermometer that indicates a range of likely deformation temperatures based on observed microstructures and inferred mechanisms of dynamic recrystallization. A critically important caveat in applying both thermometers is the assumption that deformation temperature is the primary controlling factor in recrystallization mechanisms and fabric development. However, fabric opening-angles and recrystallization mechanisms are also sensitive to other variables such as strain rate and water weakening. In this paper the development of these thermometers is reviewed, and their potential sensitivities to competing factors such as temperature, strain rate, water weakening and (in the case of opening-angles) 3D strain type are discussed. Examples of the application of these potential thermometers to naturally deformed quartz-rich rocks are given, and case studies of correlations between deformation temperatures estimated by these thermometers and temperatures of synkinematic metamorphism determined by petrology-based thermobarometers are highlighted. In the review, attention is focused on problems associated with applying these thermometers to natural deformation, and examples of such problems are discussed.

  10. Origin of the c-axis ultraincompressibility of Mo2GaC above about 15 GPa from first principles

    NASA Astrophysics Data System (ADS)

    Qing-He, Gao; Zhi-Jun, Xu; Ling, Tang; Jin, Li; An, Du; Yun-Dong, Guo; Ze-Jin, Yang

    2016-01-01

    The mechanical properties and structural evolution of Mo2GaC are calculated by first-principles under pressure. Our results unexpectedly found that the c axis is always stiffer than a axis within 0-100 GPa. An ultraincompressibility of c axis within 15-60 GPa is observed, with a contraction of about 0.2 Å, slightly larger than that of a axis (0.14 Å). The abnormal expansion of c axis and the fast decrease in a axis above about 15 GPa and 70 GPa failed to induce the structural instability, whereas such behavior caused the elastic softening in many mechanical quantities. The shrinkage anomaly of c axis is closely reflected by the internal coordinate (u) shift of Mo atom as it shows three different slopes within 0-15 GPa, 20-60 GPa, and 70-100 GPa, respectively. The longest Mo-Mo bond is responsible for the unusual shrinkage of c-axis under pressure as they experience nearly identical pressure dependences, whereas the a axis presents certain response with the variation of C-Mo bond particularly at 70 GPa. The electronic properties are investigated, including the energy band and density of states, and so on. At G point of K-M line, the energy decreases at 10 GPa first and increases at 30 GPa subsequently, the critical point is at about 15 GPa, with respective values of -0.17 of 0 GPa, -0.18 of 10 GPa, -0.16 of 15 GPa, and -0.13 of 30 GPa, respectively. This alternative energy change of G point, which is the symmetry center of the rhombic parallelogram of Ga atoms and the midpoint of the two bonded Mo atoms, convincingly reveal the origin of the anomalous ultraincompressibility of c axis as the Mo-Mo bond length shrinkage has to overcome the increasing energy barrier height. The Mo-Mo bond population and the electronegativity investigations of the Mo atom further reveal the most likely origin of the ultraincompressibility of c axis. This interesting result expects further experimental confirmation as this is the first nanolaminate ceramics compound presenting quite

  11. A new empirical calibration of the quartz c-axis fabric opening-angle deformation thermometer

    NASA Astrophysics Data System (ADS)

    Faleiros, F. M.; Moraes, R.; Pavan, M.; Campanha, G. A. C.

    2016-03-01

    The opening-angle of quartz c-axis fabrics (OA) is strongly temperature dependent and has proven to be a powerful deformation thermometer for natural metamorphic rocks. Previous considerations of empirical data have identified a linear correlation between OA and temperature between 250 and 650 °C, and no correlation above 650 °C. However, possible effects of pressure have not been investigated. We expanded the data set of OA versus temperature, including data from rocks deformed over 300-1050 °C and 2.5-15 kbar. Disregarding possible effects of pressure, the OA-temperature relationship can be described by two linear correlations for the intervals ~ 250-650 °C and ~ 650-1050 °C: The change on the curve slope of the OA-temperature relationship correlates approximately to the low- to high-quartz transition and to changes in the dynamic recrystallization mechanism from subgrain rotation to grain boundary migration. The available data suggest that pressure has a secondary effect accompanying the major temperature dependence of OA, which is particularly important for temperatures above 650 °C, where the correlation between OA and temperature is less pronounced. For fixed pressures, the OA has logarithmic relationships with temperature over the range 250-1050 °C. The following thermometer equation is formulated from a multiple regression: An uncertainty of ± 50 °C is inherited from the petrological temperature estimates of the natural samples. The data suggest the gradual increasing importance of prism [c] slip relative to < a > slip in quartz with rising temperature. Under conditions of 'average' geological strain rate and water weakening, prism [c] slip dominates for deformation above ~ 700 °C.

  12. Morphology and composition controlled growth of polar c-axis and nonpolar m-axis well-aligned ternary III-nitride nanotube arrays

    NASA Astrophysics Data System (ADS)

    Li, Huijie; Zhao, Guijuan; Kong, Susu; Han, Dongyue; Wei, Hongyuan; Wang, Lianshan; Chen, Zhen; Yang, Shaoyan

    2015-10-01

    Control over the nanostructure morphology and growth orientation is in high demand for fundamental research and technological applications. Herein we report a general strategy to fabricate polar c-axis and nonpolar m-axis well-aligned III-nitride ternary nanotube arrays with controllable morphologies and compositions. By depositing AlN on the InN nanorod array templates and thermally removing the InN templates, InAlN nanotubes can be obtained. Polar c-axis and nonpolar m-axis nanotubes were formed on the c- and r-plane sapphire substrates, respectively. The nanotubes are single crystalline and highly ordered on the substrates, as revealed by X-ray diffraction, electron microscopy, and selected area electron microscopy characterization. It was found that the In droplets on top of the InN nanorods play a critical role in controlling the morphology of the nanotubes. By keeping or removing the In droplets, the obtained nanotubes exhibited both ends open or only one end open. And by varying the AlN deposition temperature, the In composition in the nanotubes can be changed from 0 to 0.29. The nanotube synthesis method is simple and can be applied to the formation of other III-nitride ternary (InGaN, and AlGaN) or quaternary (InAlGaN) alloy nanotube arrays.Control over the nanostructure morphology and growth orientation is in high demand for fundamental research and technological applications. Herein we report a general strategy to fabricate polar c-axis and nonpolar m-axis well-aligned III-nitride ternary nanotube arrays with controllable morphologies and compositions. By depositing AlN on the InN nanorod array templates and thermally removing the InN templates, InAlN nanotubes can be obtained. Polar c-axis and nonpolar m-axis nanotubes were formed on the c- and r-plane sapphire substrates, respectively. The nanotubes are single crystalline and highly ordered on the substrates, as revealed by X-ray diffraction, electron microscopy, and selected area electron microscopy

  13. Effects of Magnetic and Non-Magnetic Impurities in MgB2: A Point-Contact Study of Single Crystals

    NASA Astrophysics Data System (ADS)

    Daghero, D.

    2007-03-01

    We studied the effects of chemical substitutions, either magnetic (Mn) or non-magnetic (Al, C), on the energy gaps of MgB2 by means of directional point-contact spectroscopy (PCS) in state-of-the-art single crystals. Here we discuss two noticeable cases, i.e. Mg1-xMnxB2 crystals with x up to 0.015, and Mg1-xAlxB2 crystals with x up to 0.32. In both cases, we used a pressure-less PCS technique in which a thin Au wire is put in contact with the side surface of the crystal by means of a small drop of Ag paint. The gaps δσ and δπ were obtained through a two-band Blonder-Tinkham-Klapwijk (BTK) fit of the Andreev-reflection conductance curves of the resulting contacts. Both in Mn- and Al-doped MgB2, the gaps decrease on decreasing the critical temperature of the contacts, Tc^A (at which the Andreev-reflection structures disappear), but remain clearly distinct down to Tc^A˜10 K. Once analysed within the two-band Eliashberg theory, the δσ and δπ vs. Tc^A curves give information about the effects of Mn and Al substitutions on the different scattering channels (interband and intraband, magnetic or non-magnetic). It turns out that the main effect of Mn is to increase the spin-flip scattering within the σ band (with smaller contributions from either the π-π or the σ-π channels), as also confirmed by first-principle bandstructure calculations. In the case of Al, the band-filling effect is largely dominant. An increase in non-magnetic interband scattering is possible, but small enough not to give rise to gap merging. In collaboration with G.A. Ummarino, A. Calzolari, M. Tortello, D. Delaude, R.S. Gonnelli, Dipartimento di Fisica and CNISM, Politecnico di Torino, Italy; V.A. Stepanov, P.N. Lebedev Physical Institute, RAS, Moscow, Russia; N.D. Zhigadlo, J. Karpinski, Laboratory for Solid State Physics, ETHZ, Zurich, Switzerland; and S. Massidda, Dipartimento di Fisica, Universitàdi Cagliari, Italy.

  14. The effect of carbon doping on the upper critical field (Hc2) and resistivity of MgB2 by using sucrose (C12H22O11) as the carbon source

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Zhou, S. H.; Lu, C.; Konstantinov, K.; Dou, S. X.

    2009-01-01

    In this work, sucrose was doped into MgB2 samples to act as a carbon source. The sintering temperature varied from 850 to 1050 °C. The effects of sucrose doping and sintering temperature on the lattice parameters, microstrain, critical temperature (Tc), resistivity, and upper critical field (Hc2) have been investigated in detail. It has been found that sucrose doping results in a small depression in Tc and high resistivity, while the Hc2 performance is improved. The best performance was shown in the sucrose-doped sample sintered at 850 °C. The reason for the enhancement of Hc2 is likely to be disorder caused by C substitution for B and/or diffusion of C atoms in the MgB2 lattice as interstitial atoms.

  15. Effects of c-axis Josephson coupling on dissipation, flux dynamics and the mechanism of high-T{sub c} superconductivity

    SciTech Connect

    Gray, K.E.; Hettinger, J.D.

    1995-12-31

    Measurements of the c-axis transport in highly anisotropic HTS materials strongly indicate that Josephson coupling is involved. This conclusion affects various properties of the HTS cuprates, including the irreversibility behavior for transport in the ab planes, the direct c-axis transport and potentially the mechanism of Cooper pairing.

  16. Study of the potential of three different MgB2 tapes for application in cylindrical coils operating at 20 K

    NASA Astrophysics Data System (ADS)

    Pitel, J.; Kováč, P.; Tropeano, M.; Grasso, G.

    2015-05-01

    The goal of this theoretical study is to illustrate the potential of three different MgB2 tapes, developed by Columbus Superconductors, for application in cylindrical coils. First, the distribution of critical currents and electric fields of individual turns is compared when the winding of the model coil is made with tapes having different Ic(B) and anisotropy values. Second, the influence of the winding geometry on basic parameters of cylindrical coils which consist of a set of pancake coils, such as critical current Icmin, central magnetic field B0 and stored energy E, is analysed. The winding geometry of the coils, i.e. the outer winding radius and the coil length, with the same inner winding radius, was changed from a disc shape to a long thin solenoid in such a way that the overall tape length was held constant, and considered as a parameter. Finally, the winding cross-section of the coil is optimized with respect to the constant tape length in order to reach the maximum central field. The results of calculations show that for a given overall tape length and inner winding radius there exists only one winding geometry which generates the maximum central field. The overall tape length, as a parameter, is changed in a broad range from 500 m to 10 km. All calculations were performed using the experimental data measured at 20 K while the effect of the anisotropy in the Ic(B) characteristic of the short samples is taken into account.

  17. Signature of the Leggett mode in the A1 g Raman response: From MgB2 to iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Cea, T.; Benfatto, L.

    2016-08-01

    The Raman response in a superconductor is a powerful probe to investigate the symmetry of the superconducting gap. Here we show that in a multiband superconductor it also offers the unique opportunity to establish whether the driving pairing interaction has an intraband or interband character. In the model with one hole and one electron band the full gauge-invariant Raman response, obtained by accounting for the fluctuations of both the density and superconducting phase degrees of freedom, is always dominated by the Leggett mode, regardless its nature. However, while in the case of intraband-dominated pairing the Josephson-like phase fluctuations of the two condensates identify a well-defined peak, as observed in MgB2, for dominant interband pairing the Leggett resonance is pushed at twice the largest gap, resembling apparently a pair-breaking peak. The latter case is in very good agreement with experimental data in iron-based superconductors, suggesting that an interband pairing mechanism should be at play in these systems. These results have also interesting implications for the nonlinear optical response probed by means of intense THz fields.

  18. Evaluation of Trapped Magnetic Field Properties in Superconducting MgB2 Bulk Magnets of Various Shapes by Finite Element Method

    NASA Astrophysics Data System (ADS)

    Hiramatsu, Y.; Otabe, E. S.; Kiuchi, M.

    The trapped magnetic field properties of superconducting MgB2 bulk magnets with various shapes such as a triangular, a quadrangular, a hexangular bulk were calculated by the Finite Elements Method (FEM). The effect for the combination of several numbers of bulks was also investigated for several kinds of shapes to obtain large area of bulk surface in spite of one large bulk. In this calculation, the simple magnetization process replaced by the field-cool magnetization was used to obtain the equivalent distribution of the magnetic field, and the thermal equation in FEM was omitted. The trapped magnetic field for the triangular bulk by FEM was compared with the experimental result. It was found that the calculated results agreed well with the experimental result. The maximum trapped magnetic field was obtained in the cylindrical shape among several kinds of shapes. The trapped magnetic field was increased by the combination of multi-bulks. It was confirmed that the trapped magnetic field of the multi-bulks was larger than that of the single bulk. The trapped magnetic field increases with increasing the number of the bulks.

  19. Organic derivatives of Mg(BH4)2 as precursors towards MgB2 and novel inorganic mixed-cation borohydrides.

    PubMed

    Wegner, W; Jaroń, T; Dobrowolski, M A; Dobrzycki, Ł; Cyrański, M K; Grochala, W

    2016-09-28

    A series of organic derivatives of magnesium borohydride, including Mg(BH4)2·1.5DME (DME = 1,2-dimethoxyethane) and Mg(BH4)2·3THF (THF = tetrahydrofuran) solvates and three mixed-cation borohydrides, [Cat]2[Mg(BH4)4], [Cat] = [Me4N], [nBu4N], [Ph4P], have been characterized. The phosphonium derivative has been tested as a precursor for synthesis of inorganic mixed-metal borohydrides of magnesium, Mx[Mg(BH4)2+x], M = Li-Cs, via a metathetic method. The synthetic procedure has yielded two new derivatives of heavier alkali metals M3Mg(BH4)5 (M = Rb, Cs) mixed with amorphous Mg(BH4)2. Thermal decomposition has been studied for both the organic and inorganic magnesium borohydride derivatives. Amorphous MgB2 has been detected among the products of the thermal decomposition of the solvates studied, together with organic and inorganic impurities.

  20. Cryogenic design and test results of 30-m flexible hybrid energy transfer line with liquid hydrogen and superconducting MgB2 cable

    NASA Astrophysics Data System (ADS)

    Kostyuk, V. V.; Blagov, E. V.; Antyukhov, I. V.; Firsov, V. P.; Vysotsky, V. S.; Nosov, A. A.; Fetisov, S. S.; Zanegin, S. Yu.; Svalov, G. G.; Rachuk, V. S.; Katorgin, B. I.

    2015-03-01

    In this paper we present the development of a new hybrid energy transfer line with 30 m length. The line is essentially a flexible 30 m hydrogen cryostat that has three sections with different types of thermal insulation in each section: simple vacuum superinsulation, vacuum superinsulation with liquid nitrogen precooling and active evaporating cryostatting (AEC) system. We performed thermo-hydraulic tests of the cryostat to compare three thermo-insulating methods. The tests were made at temperatures from 20 to 26 K, hydrogen flow from 70 to 450 g/s and pressure from 0.25 to 0.5 MPa. It was found that AEC thermal insulation was the most effective in reducing heat transfer from room temperature to liquid hydrogen in ∼10 m section of the cryostat, indicating that it can be used for long superconducting power cables. High voltage current leads were developed as well. The current leads and superconducting MgB2 cable passed high voltage DC test up to 50 kV DC. Critical current of the cable at ∼21 K was 3500 A. It means that the 30 m hybrid energy system developed is able to deliver ∼50-60 MW of chemical power and ∼50-75 MW of electrical power, i.e. up to ∼135 MW in total.

  1. Charge-screening role of c -axis atomic displacements in YBa2Cu3O6 +x and related superconductors

    NASA Astrophysics Data System (ADS)

    Božin, E. S.; Huq, A.; Shen, Bing; Claus, H.; Kwok, W. K.; Tranquada, J. M.

    2016-02-01

    The importance of charge reservoir layers for supplying holes to the CuO2 planes of cuprate superconductors has long been recognized. Less attention has been paid to the screening of the charge transfer by the intervening ionic layers. We address this issue in the case of YBa2Cu3O6 +x , where CuO chains supply the holes for the planes. We present a simple dielectric-screening model that gives a linear correlation between the relative displacements of ions along the c axis, determined by neutron powder diffraction, and the hole density of the planes. Applying this model to the temperature-dependent shifts of ions along the c axis, we infer a charge transfer of 5-10% of the hole density from the planes to the chains on warming from the superconducting transition to room temperature. Given the significant coupling of c -axis displacements to the average charge density, we point out the relevance of local displacements for screening charge modulations and note recent evidence for dynamic screening of in-plane quasiparticles. This line of argument leads us to a simple model for atomic displacements and charge modulation that is consistent with images from scanning-tunneling microscopy for underdoped Bi2Sr2CaCu2O8 +δ .

  2. Trapped field of 1.1 T without flux jumps in an MgB2 bulk during pulsed field magnetization using a split coil with a soft iron yoke

    NASA Astrophysics Data System (ADS)

    Fujishiro, H.; Mochizuki, H.; Ainslie, M. D.; Naito, T.

    2016-08-01

    MgB2 superconducting bulks have promising potential as trapped field magnets. We have achieved a trapped field of B z = 1.1 T on a high-J c MgB2 bulk at 13 K without flux jumps by pulsed field magnetization (PFM) using a split-type coil with a soft iron yoke, which is a record-high trapped field by PFM for bulk MgB2 to date. The flux jumps, which frequently took place using a solenoid-type coil during PFM, were avoided by using the split-type coil, and the B z value was enhanced by the insertion of soft iron yoke. The flux dynamics and heat generation/propagation were analyzed during PFM using a numerical simulation, in which the magnetic flux intruded and attenuated slowly in the bulk and tended to align along the axial direction due to the presence of soft iron yoke. The advantages of the split-type coil and the simultaneous use of a soft iron yoke are discussed.

  3. X-Ray Studies of Layer Rigidity and C-Axis Expansion in Intercalated Layered Solids.

    NASA Astrophysics Data System (ADS)

    Lee, Soonil

    From X-ray diffraction and Raman active torsional model frequency studies the new synthetic vermiculite intercalation compounds, ((CH_3)_4N ^+) _{rm x} ((CH_3)_3NH ^+) _{rm 1-x} -Vm, are determined to have a solid solution type mixed gallery cation distribution. The x dependence of the normalized basal spacing, d_{rm n}(x), of ternary pillared vermiculite ((CH_3)_4 N^+) _{ rm x} ((CH_3)_3 NH^+) _{ rm 1-x}-Vm has been measured and compared with that of Cs_{rm x}Rb _{rm 1-x}-Vm. Both systems exhibit a nonlinear d_{rm n}(X) with approximate thresholds of x ~ 0.2 and 0.5, respectively. A model which relates d_{rm n}(x) to layer rigidity and the binding energies of gallery and defect sites yields excellent fits to the basal spacing data and to monolayer simulations if collective effects are included. We also have constructed a plot of the normalized basal spacing versus normalized torsional model frequency for two vermiculite intercalation compounds, Cs _{rm x}Rb_ {rm 1-x}-Vm and ((CH_3) _4N^+) _ {rm x} ((CH_3)_3 NH^+) _{ rm 1-x}-Vm. This plot shows a striking "scaling-like"behavior for the two different mixed-ion systems. An attempt to understand this behavior based on the virtual crystal approximation has been made. This mode calculation reveals a very close relationship between the basal spacing and the gallery ion-oxygen interaction. A layer rigidity model which includes the effects of elastic deformation of the host layers is applied to a variety of layered intercalation compounds. This model can account for the composition dependence of the c-axis expansion of the three classes of layered solids. Rigidity parameters deduced from this model for each of the three classes of layered solid are reflective of structurally derived rigidity as are the healing lengths computed on the basis of discrete and continuum analyses. Using the continuum elastic theory the attractive intralayer interaction in intercalation compounds is calculated to show the contribution of each

  4. Rapid and semi-analytical design and simulation of a toroidal magnet made with YBCO and MgB2 superconductors

    DOE PAGES

    Dimitrov, I. K.; Zhang, X.; Solovyov, V. F.; Chubar, O.; Li, Qiang

    2015-07-07

    Recent advances in second-generation (YBCO) high-temperature superconducting wire could potentially enable the design of super high performance energy storage devices that combine the high energy density of chemical storage with the high power of superconducting magnetic storage. However, the high aspect ratio and the considerable filament size of these wires require the concomitant development of dedicated optimization methods that account for the critical current density in type-II superconductors. In this study, we report on the novel application and results of a CPU-efficient semianalytical computer code based on the Radia 3-D magnetostatics software package. Our algorithm is used to simulate andmore » optimize the energy density of a superconducting magnetic energy storage device model, based on design constraints, such as overall size and number of coils. The rapid performance of the code is pivoted on analytical calculations of the magnetic field based on an efficient implementation of the Biot-Savart law for a large variety of 3-D “base” geometries in the Radia package. The significantly reduced CPU time and simple data input in conjunction with the consideration of realistic input variables, such as material-specific, temperature, and magnetic-field-dependent critical current densities, have enabled the Radia-based algorithm to outperform finite-element approaches in CPU time at the same accuracy levels. Comparative simulations of MgB2 and YBCO-based devices are performed at 4.2 K, in order to ascertain the realistic efficiency of the design configurations.« less

  5. Volatile magnesium octahydrotriborate complexes as potential CVD precursors to MgB2. Synthesis and characterization of Mg(B3H8)2 and its etherates.

    PubMed

    Kim, Do Young; Yang, Yu; Abelson, John R; Girolami, Gregory S

    2007-10-29

    The solid-state reaction of MgBr2 and NaB3H8 at 20 degrees C, followed by sublimation at 80 degrees C and 0.05 Torr, affords Mg(B3H8)2 as a white solid. Similar reactions with MgBr2(Et2O) and MgBr2(Me2O)1.5 afford the crystalline ether adducts Mg(B3H8)2(Et2O)2 and Mg(B3H8)2(Me2O)2, respectively. In contrast, reactions of MgBr2 with NaB3H8, the presence of excess solvent result in the formation of nonvolatile, probably ionic, magnesium compounds of the type [MgLx][B3H8]2. The adducts Mg(B3H8)2(Et2O)2 and Mg(B3H8)2(Me2O)2 are the first crystallographically characterized magnesium complexes of the B3H8- ligand; in both structures, the magnesium center adopts a distorted cis-octahedral geometry with two bidentate B3H8 groups and two Et2O ligands. Owing to their volatility, Mg(B3H8)2(Et2O)2 and Mg(B3H8)2(Me2O)2 are potential precursors for the deposition of MgB2 thin films, although preliminary efforts to employ them as chemical vapor deposition sources produce boron-rich MgBx films instead, with x approximately 7. Finally, the synthesis and structure of Cp2Mg(thf) are described: this mono-thf adduct of Cp2Mg bears two eta5-Cp groups, unlike other Lewis base adducts of Cp2Mg, which contain one eta5-Cp group and one eta1- or eta2-Cp group.

  6. Images of interlayer vortices and c -axis penetration depth of high- Tc YBa2Cu3O7-y superconductor

    NASA Astrophysics Data System (ADS)

    Iguchi, Ienari; Takeda, Tomohiro; Uchiyama, Tetsuji; Sugimoto, Akira; Hatano, Takeshi

    2006-06-01

    The measurements on the magnetic image of interlayer vortices are performed for the high- Tc YBa2Cu3O7-y(110) thin film using a high sensitive scanning SQUID microscopy. Clear images of aligned giant interlayer vortices are observable. For the majority of vortices, using the London model, the c -axis penetration depth is estimated to be about 20μm at 3K . The temperature dependence of λc is obtained from the observed vortex images at different temperatures, whose behavior is in good agreement with those of the microwave cavity measurement.

  7. Incoherent c-Axis Interplane Response of the Iron Chalcogenide FeTe0:55Se0:45 Superconductor from Infrared Spectroscopy

    SciTech Connect

    Gu, G.D.; Moon, S.J.; Homes, C.C.; Akrap, A.; Xu,, Z.J.; Wen, J.S.; Lin,, Z.W.; Li, Q.; Basov, D.N.

    2011-05-23

    We report on the interplane c-axis electronic response of FeTe{sub 0.55}Se{sub 0.45} investigated by infrared spectroscopy. We find that the normal-state c-axis electronic response of FeTe{sub 0.55}Se{sub 0.45} is incoherent and bears significant similarities to those of mildly underdoped cuprates. The c-axis optical conductivity {sigma}{sub c}({omega}) of FeTe{sub 0.55}Se{sub 0.45} does not display well-defined Drude response at all temperatures. As temperature decreases, {sigma}{sub c}({omega}) is continuously suppressed. The incoherent c-axis response is found to be related to the strong dissipation in the ab-plane transport: a pattern that holds true for various correlated materials as well as FeTe{sub 0.55}Se{sub 0.45}.

  8. Far infrared video detection and difference frequency mixing with tilted c-axis epitaxial YBa2Cu3O7 - delta thin films

    NASA Astrophysics Data System (ADS)

    Huber, W. M.; Berr, M.; Kalbeck, A.; Prettl, W.; Huggard, P. G.

    1996-06-01

    Epitaxial YBa2Cu3O7-δ thin films, grown with a controllable misalignment between c-axis and surface normal, exhibit a sensitive photoresponse to far infrared laser radiation at temperatures below Tc. While no photoresponse was observed in c-axis normal films, a sensitivity of 0.2 V/W was measured at a wavelength of 432 μm for a film with a 20° c-axis tilt. Difference frequency mixing of two laser modes has also been demonstrated at intermediate frequencies between 200 kHz and 6 MHz. Both mixing and video detection are believed to originate in the ac Josephson effect: the effect of the tilted growth is to allow a component of the radiation field to be applied along the c-axis, thus modulating the relatively weak Josephson coupling in this direction.

  9. Effect of spin fluctuations on the c-axis thermoelectric power in underdoped La2- xSrxCuO4+δ

    NASA Astrophysics Data System (ADS)

    Ping, Lou

    2001-04-01

    A theory of the thermoelectric power due to the competition between interlayer direct hopping and the hopping assisted by the spin fluctuations has been developed. The prediction of the theory captures the main feature of experiment. Thus we argue that the c-axis thermoelectric power exhibits metallic behavior while the c-axis electronic conductivity appears to be nonmetallic in the underdoped LaSrCuO and may be properly understood within the theory.

  10. Effect of combined addition of nano-SiC and nano-Ho2O3 on the in-field critical current density of MgB2 superconductor

    NASA Astrophysics Data System (ADS)

    Varghese, Neson; Vinod, K.; Chattopadhyay, M. K.; Roy, S. B.; Syamaprasad, U.

    2010-01-01

    MgB2 superconducting samples added with nano-Ho2O3 (n-Ho2O3) and/or nano-SiC (n-SiC) have been prepared by an in situ solid state reaction method to investigate and compare the combined and individual effects of n-SiC and n-Ho2O3 on a crystal structure, critical temperature (TC), and critical current density (JC) of MgB2. All the doped samples exhibit significantly enhanced in-field JC and the codoped sample with 2.5 wt % n-Ho2O3 and 5 wt % n-SiC gives the best performance in in-field JC, and the enhancement is around 100 times and 2 times greater than the undoped and monodoped n-SiC samples, respectively, at 5 K and 8 T. For the n-SiC added sample, lattice distortions due to C substitution on the B site and the formation of reacted phase Mg2Si as flux pinners cause enhanced JC up to the maximum field studied (8 T). While in the n-Ho2O3 added sample, a reacted phase HoB4 having a strong magnetic moment forms, without any substitution at the Mg or B site, which acts as a flux pinner in order to enhance the in-field JC. Accordingly the best codoped sample exhibits these combined benefits of n-SiC and n-Ho2O3 in MgB2 superconductor.

  11. Temperature dependent c-axis hole mobilities in rubrene single crystals determined by time-of-flight

    NASA Astrophysics Data System (ADS)

    Pundsack, Tom J.; Haugen, Neale O.; Johnstone, Lucas R.; Daniel Frisbie, C.; Lidberg, Russell L.

    2015-03-01

    Hole mobilities (μ) in rubrene single crystals (space group Cmca) along the crystallographic c-axis have been investigated as a function of temperature and applied electric field by the time-of-fight method. Measurements demonstrate an inverse power law dependence on temperature, namely, μ=μ0T-n with n = 1.8, from room temperature down to 180 K. At 296 K, the average value of μ was found to be 0.29 cm2/Vs increasing to an average value of 0.70 cm2/Vs at 180 K. Below 180 K a decrease in mobility is observed with further cooling. Overall, these results confirm the anisotropic nature of transport in rubrene crystals as well as the generality of the inverse power law temperature dependence that is observed for field effect mobility measurements in the a-b crystal plane.

  12. Nanosecond laser switching of surface wettability and epitaxial integration of c-axis ZnO thin films with Si(111) substrates.

    PubMed

    Molaei, R; Bayati, M R; Alipour, H M; Estrich, N A; Narayan, J

    2014-01-01

    We have achieved integration of polar ZnO[0001] epitaxial thin films with Si(111) substrates where cubic yttria-stabilized zirconia (c-YSZ) was used as a template on a Si(111) substrate. Using XRD (θ-2θ and φ scans) and HRTEM techniques, the epitaxial relationship between the ZnO and the c-YSZ layers was shown to be [0001]ZnO || [111]YSZ and [21¯1¯0]ZnO || [1¯01](c-YSZ), where the [21¯1¯0] direction lies in the (0001) plane, and the [1¯01] direction lies in the (111) plane. Similar studies on the c-YSZ/Si interface revealed epitaxy as (111)YSZ || (111)Si and in-plane (110)YSZ || (110)Si. HRTEM micrographs revealed atomically sharp and crystallographically continuous interfaces. The ZnO epilayers were subsequently laser annealed by a single pulse of a nanosecond excimer KrF laser. It was shown that the hydrophobic behavior of the pristine sample became hydrophilic after laser treatment. XPS was employed to study the effect of laser treatment on surface stoichiometry of the ZnO epilayers. The results revealed the formation of oxygen vacancies, which are envisaged to control the observed hydrophilic behavior. Our AFM studies showed surface smoothing due to the coupling of the high energy laser beam with the surface. The importance of integration of c-axis ZnO with Si(111) substrates is emphasized using the paradigm of domain matching epitaxy on the c-YSZ[111] buffer platform along with their out-of-plane orientation, which leads to improvement of the performance of the solid-state devices. The observed ultrafast response and switching in photochemical characteristics provide new opportunities for application of ZnO in smart catalysts, sensors, membranes, DNA self-assembly and multifunctional devices.

  13. Fabrication and characteristics of weak links between {cflx {ital a}} and {cflx {ital c}}-axis normal grains of Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7{minus}{ital x}}

    SciTech Connect

    Mahajan, S.; Buchholz, D.B.; Lei, J.; Chang, R.P.; Hogan, T.; Kannewurf, C.R.; Song, S.N.; Ketterson, J.B.; Hinds, B.; Marks, T.J.; Eckstein, J.

    1996-05-01

    We have used pulsed organometallic beam epitaxy (POMBE) to simultaneously deposit {cflx {ital a}} and {cflx {ital c}}-axis oriented Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7{minus}{ital x}} (YBCO) thin films at arbitrary locations on LaAlO{sub 3}(100) substrates. Using photolithography and ion milling, several types of {cflx {ital a}}-{cflx {ital c}} weak links have been fabricated at the boundary between the two films. The current-voltage ({ital I}-{ital V}) characteristics show a flux flow type behavior. The resistive transitions are broad and the critical current density is low, indicating weak coupling across these boundaries. With magnetic field applied parallel to the grain boundary plane, nonhysteretic {ital I}-{ital V} curves are obtained and the critical current goes to zero at an applied magnetic field of {approximately}7500 Gauss. {copyright} {ital 1996 Materials Research Society.}

  14. Degradation of the acousto-electric current saturation behavior in c-axis fiber-textured polycrystalline zinc oxide films

    SciTech Connect

    Pompe, T.; Srikant, V.; Clarke, D.R.

    1996-12-31

    Acoustic-electric current saturation has been observed in thin, polycrystalline Al-doped zinc oxide films grown on fused quartz. The films, grown by laser ablation, are c-axis textured with high angle grain boundaries between the grains. After annealing at 600 C in 0.1 mtorr oxygen, the films exhibit a current saturation at a current density of 2 10{sup 5} A/cm{sup 2} and electric fields of 5 10{sup 3} V/cm. However, under constant field the current density falls and the current saturation behavior is not maintained. Current saturation at the same current density can, however, be restored by increasing the electric field. Similarly, the appearance and disappearance of the current saturation behavior can be reversibly controlled by annealing in different oxygen partial pressures at 200 C. The degradation phenomena is attributed to the high acoustic flux enhancing the diffusion of oxygen along the grain boundaries where oxygen can alter the grain boundary potential barrier and hence the electric field in the grains.

  15. Josephson Coupling along the c-Axis in Highly Anisotropic High Temperature Superconductors at High-Magnetic-Fields

    NASA Astrophysics Data System (ADS)

    Gray, K. E.; Hettinger+, J. D.; Washburn, B.; Veal, B. W.; Paulikas, A. P.; Kostic, P.

    1996-03-01

    We have extended previous measurements of oxygen deficient YBa_2Cu_3O_y^1 to magnetic fields as high as 27T and temperatures down to 4K. Measurements were made on three samples with different oxygen contents with critical temperatures ranging from 25K to 70K. The results are consistent with those previously reported and extend those measurements over a broader range in parameter space. These measurements demonstrate an unusual temperature dependent electron transmission suggesting increased c-axis coherency below T_c. The temperature dependence of the electron transmission extends to the lowest temperatures measured. ^+Present address: Rowan College of New Jersey. High-magnetic field measurements performed with the assistance of S. T. Hannahs at the NHMFL funded by the NSF. We acknowledge the support of the D.O.E., Divisions of Basic Energy Sciences-Materials Sciences under contract W-31-109-ENG-38, and the NSF-Office of Science and Technology Centers under contract DMR 91-20000. ^1J. D. Hettinger, K. E. Gray, B.W. Veal, A. P. Paulikas, P. Kostic, B. R. Washburn, W. C. Tonjes, and A. C. Flewelling, Phys. Rev. Lett. 74, 4726 (1995).

  16. Atom probe tomography evaporation behavior of C-axis GaN nanowires: Crystallographic, stoichiometric, and detection efficiency aspects

    SciTech Connect

    Diercks, David R. Gorman, Brian P.; Kirchhofer, Rita; Sanford, Norman; Bertness, Kris; Brubaker, Matt

    2013-11-14

    The field evaporation behavior of c-axis GaN nanowires was explored in two different laser-pulsed atom probe tomography (APT) instruments. Transmission electron microscopy imaging before and after atom probe tomography analysis was used to assist in reconstructing the data and assess the observed evaporation behavior. It was found that the ionic species exhibited preferential locations for evaporation related to the underlying crystal structure of the GaN and that the species which evaporated from these locations was dependent on the pulsed laser energy. Additionally, the overall stoichiometry measured by APT was significantly correlated with the energy of the laser pulses. At the lowest laser energies, the apparent composition was nitrogen-rich, while higher laser energies resulted in measurements of predominantly gallium compositions. The percent of ions detected (detection efficiency) for these specimens was found to be considerably below that shown for other materials, even for laser energies which produced the expected Ga:N ratio. The apparent stoichiometry variation and low detection efficiency appear to be a result of evaporation of Ga ions between laser pulses at the lowest laser energies and evaporation of neutral N{sub 2} species at higher laser energies. All of these behaviors are tied to the formation of nitrogen-nitrogen bonds on the tip surface, which occurred under all analysis conditions. Similar field evaporation behaviors are therefore expected for other materials where the anionic species readily form a strong diatomic bond.

  17. Critical current density and pinning behaviour of mono-core MgB2 wires prepared by internal magnesium diffusion and in-situ powder-in-tube method

    NASA Astrophysics Data System (ADS)

    Brunner, Boris; Kováč, Pavol; Reissner, Michael; Hušek, Imrich; Melišek, Tibor; Pardo, Enric

    2014-10-01

    Mono-core MgB2 wires were produced by internal magnesium diffusion (IMD) and in-situ powder-in-tube (PIT) technique. Hysteresis loops and magnetic relaxations were measured to calculate critical current density, Jcm (via Bean’s critical state model) and mean effective activation energy (via Anderson’s flux creep theory). To calculate Jcm of the IMD sample, the formulae for typical cylindrical sample geometry must have been modified properly with regard to IMD hollow cylinder geometry. Results for Jcm were compared to direct transport measurements. Also studied was the irreversibility field, Birr, and upper critical field, Bc2. It was found that the dominant difference between wires is in Jc. For the IMD sample, Jc was higher and less field-dependent than Jc of the PIT sample.

  18. Specific heat in the superconducting and normal state (2-300 K, 0-16 T), and magnetic susceptibility of the 38 K superconductor MgB 2: evidence for a multicomponent gap

    NASA Astrophysics Data System (ADS)

    Wang, Yuxing; Plackowski, Tomasz; Junod, Alain

    2001-06-01

    The specific heat C of a sintered polycrystalline sample of MgB 2 with a bulk superconducting transition temperature Tc=36.7 K is measured as a function of the temperature (2-300 K) and magnetic field (0-16 T), together with magnetic properties (normal-state susceptibility, superconducting-state magnetization, etc.). The Sommerfeld constant γ=0.89±0.05 mJ/K 2/gat (2.7 mJ/K 2/mol) is determined in the normal state above Hc2. The normal- and superconducting-state entropies are equal at Tc. Several moments of the PDOS are obtained from the lattice specific heat. We report bulk values for: the thermodynamic critical field, Bc(0)=0.26 T; the slope of the upper critical field, (d Bc2/d T) Tc=0.56 T/K; the Ginzburg-Landau parameter, κ=38; the coherence length, ξ≅5 nm; the lower critical field, Bc1≅0.018 T; the London penetration depth, λ(0)≅180 nm. These results characterize MgB 2 as a type-II superconductor. The nearly quadratic dependence of C( T) versus T at T≪ Tc, its non-linear field dependence, and the discrepancy between the electron-phonon coupling constant λep as determined by the renormalization of the electron density of states ( λep≅0.6) and by McMillan's equation for isotropic superconductors ( λep≅1.1), are inconsistent with a single isotropic gap. In addition to high phonon frequencies, anisotropy or two-band gap structure may explain why the critical temperature of this superconductor is high in spite of its low condensation energy, which does not exceed 1/16 of that of YBa 2Cu 3O 7 and 1/4 of that of Nb 3Sn.

  19. Pyroelectric-field driven defects diffusion along c-axis in ZnO nanobelts under high-energy electron beam irradiation

    SciTech Connect

    Ding, Yong Liu, Ying; Niu, Simiao; Wu, Wenzhuo; Wang, Zhong Lin

    2014-10-21

    When ZnO nanobelts are exposed to a high-dose electron probe of several nanometers to hundred nanometers in diameter inside a transmission electron microscope, due to the radiolysis effect, part of oxygen atoms will be ejected into the vacuum and leaving a Zn-ion rich surface with a pit appearance at both the electron-entrance and electron-exit surfaces. At the same time, a temperature distribution is created around the electron probe due to local beam heating effect, which generates a unidirectional pyroelectric field. This pyroelectric field is strong enough to drive Zn ions moving along its positive c-axis direction as interstitial ions. In the first case, for the ZnO nanobelts with c-axis lie in their large surfaces, defects due to the aggregation of Zn interstitial ions will be formed at some distances of 30–50 nm approximately along the c-axis direction from the electron beam illuminated area. Alternatively, for the ZnO nanobelts with ±(0001) planes as their large surfaces, the incident electron beam is along its c-axis and the generated pyroelectric field will drive the interstitial Zn-ions to aggregate at the Zn terminated (0001) surface where the local electrical potential is the lowest. Such electron beam induced damage in ZnO nanostructures is suggested as a result of Zn ion diffusion driven by the temperature gradient induced pyroelectric field along c-axis. Our study shows a radiation damage caused by electron beam in transmission electron microscopy, especially when the electron energy is high.

  20. Investigation of easy axis orientation of Nd-Fe-B melt-spun ribbons produced by hot rolling and influence of Ti-C addition

    SciTech Connect

    Takezawa, M.; Nakanishi, Y.; Morimoto, Y.; Yamasaki, J.; Yagi, M.

    2012-04-01

    The c-axis orientation of Nd-Fe-B melt-spun ribbons caused by hot rolling and the influence of Ti-C addition were investigated. A small roll was placed on a steel wheel near a quartz tube in such a manner that the melt-spun ribbons were hot rolled immediately after quenching. X-ray diffraction patterns measured on both surfaces of the Nd-Fe-B-Ti ribbon indicate that the c-axis is oriented normal to the ribbon plane. The domain pattern of the Nd-Fe-B-Ti-C ribbon was observed with a Kerr microscope. Most of the grains exhibit a maze domain configuration, indicating that the c-axis is oriented normal to the ribbon plane. Furthermore, it was demonstrated that hot rolling and the addition of Ti-C promote c-axis orientation and high coercivity of Nd-Fe-B melt-spun ribbons.

  1. c -axis longitudinal magnetoresistance of the electron-doped superconductor Pr1.85Ce0.15CuO4

    NASA Astrophysics Data System (ADS)

    Yu, W.; Liang, B.; Greene, R. L.

    2006-12-01

    We report c -axis resistivity and longitudinal magnetoresistance measurements of superconducting Pr1.85Ce0.15CuO4 single crystals. In the temperature range 13⩽T⩽32K , a negative magnetoresistance is observed at fields just above HC2 . Our studies suggest that this negative magnetoresistance is caused by superconducting fluctuations. At lower temperatures (T⩽13K) , a different magnetoresistance behavior and a resistivity upturn are observed, whose origin is still unknown.

  2. Collective responses of Bi-2212 stacked junction to 100 GHz microwave radiation under magnetic field oriented along the c-axis

    NASA Astrophysics Data System (ADS)

    Pavlenko, V. N.; Latyshev, Yu. I.; Chen, J.; Gaifullin, M. B.; Irzhak, A.; Kim, S.-J.; Wu, P. H.

    2009-05-01

    We studied a response of Bi-2212 mesa type structures to 100 GHz microwave radiation. We found that applying magnetic field of about 0.1 T across the layers enables to observe collective Shapiro step response corresponding to a synchronization of all 50 intrinsic Josephson junctions (IJJ) of the mesa. At high microwave power we observed up to 10th harmonics of the fundamental Shapiro step. Besides, we found microwave induced flux-flow step position of which is proportional to the square root of microwave power and that can exceed at high enough powers 1 THz operating frequency of IJJ oscillations.

  3. Transport and optical properties of c-axis oriented wedge shaped GaN nanowall network grown by molecular beam epitaxy

    SciTech Connect

    Bhasker, H. P.; Dhar, S.; Thakur, Varun; Kesaria, Manoj; Shivaprasad, S. M.

    2014-02-21

    The transport and optical properties of wedge-shaped nanowall network of GaN grown spontaneously on cplane sapphire substrate by Plasma-Assisted Molecular Beam Epitaxy (PAMBE) show interesting behavior. The electron mobility at room temperature in these samples is found to be orders of magnitude higher than that of a continuous film. Our study reveals a strong correlation between the mobility and the band gap in these nanowall network samples. However, it is seen that when the thickness of the tips of the walls increases to an extent such that more than 70% of the film area is covered, it behaves close to a flat sample. In the sample with lower surface coverage (≈40% and ≈60%), it was observed that the conductivity, mobility as well as the band gap increase with the decrease in the average tip width of the walls. Photoluminescence (PL) experiments show a strong and broad band edge emission with a large (as high as ≈ 90 meV) blue shift, compared to that of a continuous film, suggesting a confinement of carriers on the top edges of the nanowalls. The PL peak width remains wide at all temperatures suggesting the existence of a high density of tail states at the band edge, which is further supported by the photoconductivity result. The high conductivity and mobility observed in these samples is believed to be due to a “dissipation less” transport of carriers, which are localized at the top edges (edge states) of the nanowalls.

  4. Development of quartz c-axis crossed/single girdles under simple-pure shear deformation: Results of visco-plastic self-consistent modeling

    NASA Astrophysics Data System (ADS)

    Nie, Guanjun; Shan, Yehua

    2014-09-01

    Quartz c-axis fabrics are widely used to determine the shear plane in ductile shear zones, based upon an assumption that the shear plane is perpendicular to both the central segment of quartz c-axis crossed girdle and single girdle. In this paper the development of quartz c-axis fabric under simple-pure shear deformation is simulated using the visco-plastic self-consistent (VPSC) model so as to re-examine this assumption. In the case of no or weak dynamic recrystallization, the simulated crossed girdles have a central segment perpendicular or nearly perpendicular to the maximum principal finite strain direction (X) and the XY finite strain plane, and at a variable angle relative to the imposed kinematic framework that is dependent on the modeled flow vorticity and finite strain. These crossed girdles have a symmetrical skeleton with respect to the finite strain axes, regardless of the bulk strain and the kinematic vorticity, and rotate in a way similar to the shear sense with increasing bulk strain ratio. The larger the vorticity number the more asymmetrical their legs tend to be. In the case of strong dynamic recrystallization and large bulk strain, under simple shear the crossed girdle switches into single girdles, sub-perpendicular to the shear plane, by losing the weak legs. The numerical results in our models do not confirm the above-mentioned assumption.

  5. Charge-screening role of c-axis atomic displacements in YBa2Cu3O6+x and related superconductors

    DOE PAGES

    E. S. Bozin; Huq, A.; Shen, Bing; Claus, H.; Kwok, W. K.; Tranquada, J. M.

    2016-02-29

    Here, the importance of charge reservoir layers for supplying holes to the CuO2 planes of cuprate superconductors has long been recognized. Less attention has been paid to the screening of the charge transfer by the intervening ionic layers. We address this issue in the case of YBa2Cu3O6+x, where CuO chains supply the holes for the planes. We present a simple dielectric-screening model that gives a linear correlation between the relative displacements of ions along the c axis, determined by neutron powder diffraction, and the hole density of the planes. Applying this model to the temperature-dependent shifts of ions along themore » c axis, we infer a charge transfer of 5–10% of the hole density from the planes to the chains on warming from the superconducting transition to room temperature. Given the significant coupling of c-axis displacements to the average charge density, we point out the relevance of local displacements for screening charge modulations and note recent evidence for dynamic screening of in-plane quasiparticles. This line of argument leads us to a simple model for atomic displacements and charge modulation that is consistent with images from scanning-tunneling microscopy for underdoped Bi2Sr2CaCu2O8+δ.« less

  6. Dynamic control of substrate bias for highly c-axis textured thin ferromagnetic CoCrTa film in inductively coupled plasma-assisted sputtering

    SciTech Connect

    Okimura, Kunio; Oyanagi, Junya

    2005-01-01

    This study shows highly c-axis textured thin ferromagnetic Co-based alloy (CoCrTa) film growth in inductively coupled plasma (ICP)-assisted sputtering with an internal coil with an insulated surface. Dynamic control of the substrate bias achieved highly c-axis textured CoCrTa film with a thickness of 70 nm in 3 min depositions on a Si substrate. The prepared film showed a smooth, dense surface consisting of small crystal grains. The film had a perpendicular magnetic coercivity of 1030 Oe and coercive squareness of 0.36. ICP-assisted sputtering with an internal coil with an insulated surface enabled higher-density ({>=}1.0x10{sup 11} cm{sup -3}) plasma with lower space potential ({<=}30 V) compared to ICP-assisted sputtering with bare coil systems. Therefore, the proposed bias control is quite effective for textured growth of thinner Co layers via the effect of a high flux of ions with proper energies. This method can be a candidate for the deposition technique of c-axis textured films as perpendicular magnetic recording media.

  7. Blowpipe Mineralogy for Physics/Environment: Highest-Possible-Tc SuperConductor (Beyond: (but via!!!) MgB2, Cuprates, Pnictides) Quest; BOTH PERMANENT FOREVER Carb-IDES SOLID-State Sequestration AND Drought(s)-Elimination

    NASA Astrophysics Data System (ADS)

    Segler, Kurt; Williams, Wendell; Siegel, Edward

    2011-03-01

    Detailed are old blowpipe new applications: charcoal-block reduction of borates to yield ("N-NW" of MgB2) Overhauser-[PR 35,1,411(1987); Intl.J.Mod.Phys.1, 2 & 4, 927(1987)]-"land" predicted high-EST-POSSIBLE Tc SC "LiD2"; very-early: Siegel[Phys.Stat.Sol.(a)11,45(1972);Semiconductors.and Insulators 5: 39,47,62(1979)] carb-IDES SOLID-state phase-TRANSITIONED CHEMICALLY-REDOX"-REACTED STABLE PERMANENT LONG-term NOT "CO2" BUT C-sequestration: PROFITABLE "Grab and Sell" TRUMPS "cap and trade"!!!; Mott alloying/vertical metal-insulator transitions in "borax-(GLASS)-beads"; and very-earlySiegel [{3rd Intl.Conf.Alt.Energy }(1980)-vol.5/p.459!!!] "FLYING-WATER" Hindenberg-effect (H2-UP;H2O-DOWN) via Hydrogen-maximal-Archimedes-buoyancy "chemical-rain-in-pipelines", only via Siegel proprietary "magnetic-hydrogen-valve"(MHV): Renewables-Hydrogen-Water flexible versatile agile scaleable retrofitable integrated operating-system for PERMANENT drought(s)-elimination FOREVER!!!

  8. Crystal orientations in nacreous layers of organic-inorganic biocomposites

    SciTech Connect

    Lee, Seung Woo

    2009-09-15

    Abalone shell comprises a bio-composite material, combining the properties of inorganic calcite intergrown with organic nacre. This paper reports about the microstructure of this composite. By examining the Kikuchi patterns obtained for nacre (Haliotis discus hannai) using transmission electron microscopy, we have shown that the tiles within nacre have specific orientations. The stereographic projection spheres for the tiles of nacre can be divided into two main types, namely a right oriented region and a left oriented region with respect to the c axis as a reference plane (001). The cluster character of nacre can be explained in terms of the growth mechanism of the 'Christmas tree' pattern. The orientation of the c-axis in the nacreous layer is elucidated for the first time. We demonstrate the use of the soluble protein obtained from the tiles of nacre in in vitro calcium carbonate crystallization.

  9. Photoinduced enhancement of the c-axis conductivity in oxygen-deficient YBa{sub 2}Cu{sub 3}O{sub x} thin films

    SciTech Connect

    Markowitsch, W.; Stockinger, C.; Lang, W. |; Bierleutgeb, K.; Pedarnig, J.D.; Baeuerle, D.

    1997-09-01

    High quality thin films of oxygen-depleted YBa{sub 2}Cu{sub 3}O{sub x} (x{approx}6.6) were prepared by pulsed-laser deposition on SrTiO{sub 3}, substrates that were cut with tilt angles of 10{degree} and 20{degree} with respect to the [001] direction, resulting in a steplike growth of the layers. The resistance showed a semiconducting behavior along the projection of the c axis to the film surface, but a metallic behavior in the perpendicular direction, indicating that the former is dominated by the c-axis resistivity and the latter by the ab-plane resistivity of YBa{sub 2}Cu{sub 3}O{sub x}. Long-term illumination of the samples with a 100 W halogen lamp resulted in a significant conductivity enhancement in both directions. The photoinduced change of the out-of-plane resistance vs temperature characteristics is comparable to the effect of large hydrostatic pressure, introducing structural changes similar to that of photoexcitation. {copyright} {ital 1997 American Institute of Physics.}

  10. Mathematical model to determine the dimensions of superconducting cylindrical coils with a given central field - the case study for MgB2 conductors with isotropic Ic(B) characteristic

    NASA Astrophysics Data System (ADS)

    Pitel, Jozef; Melišek, Tibor; Tropeano, Matteo; Nardelli, Davide; Tumino, Andrea

    2016-08-01

    In this work, we present a mathematical model which enables to design cylindrical coils with a given central field, made of the superconducting conductor with isotropic Ic(B) characteristic. The model results in a computer code that enables to find out the coil dimensions, and to calculate the coil parameters such as critical current, maximum field in the winding and field non-uniformity on the coil axis. The Ic(B) characteristic of the conductor is represented by the set of data measured in discrete points. This approach allows us to express the Ic(B) as a function linearized in parts. Then, it is possible to involve the central field of the coil, coil dimensions, and parameters of the conductor, including its Ic(B) characteristic, in one equation which can be solved using ordinary numerical non-linear methods. Since the coil dimensions and conductor parameters are mutually linked in one equation with respect to a given coil central field, it is possible to analyze an influence of one parameter on the other one. The model was applied to three commercially available MgB2/Ni/Cu conductors produced by Columbus Superconductors. The results of simulations with the Ic(B) data at 20 K illustrate that there exists a set of winding geometries that generate a required central field, changing from a disc shape to long thin solenoid. Further, we analyze how the thickness of stabilizing copper influences the coil dimensions, overall conductor length, coil critical current, maximum field in the winding. An influence of the safety coefficient in operating current on coil dimensions and other above mentioned parameters is studied as well. Finally, we compare the coil dimensions, overall conductor length as well as coil critical current and maximum field in the winding if the value of required central field changes between 1 and 3 T.

  11. Microstructural characterization of an oriented silicalite film

    SciTech Connect

    Lovallo, M.C.; Tsapatsis, M.

    1997-12-31

    The crystal orientation of a submicron silicalite membrane is examined using standard x-ray diffraction and pole-figure analyses. Results indicate that the crystals in the molecular sieving layer are preferentially oriented with both straight and sinusoidal channel networks of the zeolite parallel to the membrane surface. This requires that transport across the membrane proceed down the c-axis of the crystals which can occur by jumping between the two channel networks. EDAX data confirms that the molecular sieving layer is the pure silica zeolite silicalite.

  12. c -Axis Electronic Raman Scattering in Bi{sub 2} Sr{sub 2} CaCu{sub 2} O{sub 8+{delta} }

    SciTech Connect

    Liu, H.L.; Blumberg, G.; Klein, M.V.; Guptasarma, P.; Hinks, D.G.; Blumberg, G.

    1999-04-01

    We report on the c -axis-polarized electronic Raman scattering of Bi{sub 2}Sr {sub 2}CaCu{sub 2}O{sub 8+{delta}} single crystals with various oxygen concentrations. In the normal state, a resonant electronic continuum extends to 1.5thinspthinspeV and gains significant intensity as the incoming photon energy increases. Below T{sub c} , a superconductivity-induced 2{Delta} peak is observed for {omega}{lt}80 meV and the 2{Delta}/k{sub B}T{sub c} value increases with decreasing hole doping. In particular, this A{sub 1g} 2{Delta} peak energy, which is higher than that seen with in-plane polarizations for all doping levels studied, signifies distinctly different dynamics of quasiparticles created with out-of-plane polarization. {copyright} {ital 1999} {ital The American Physical Society}

  13. Influence of the spatially inhomogeneous gap distribution on the quasiparticle current in c-axis junctions involving d-wave superconductors with charge density waves.

    PubMed

    Ekino, T; Gabovich, A M; Suan Li, Mai; Szymczak, H; Voitenko, A I

    2016-11-01

    The quasiparticle tunnel current J(V) between the superconducting ab-planes along the c-axis and the corresponding conductance [Formula: see text] were calculated for symmetric junctions composed of disordered d-wave layered superconductors partially gapped by charge density waves (CDWs). Here, V is the voltage. Both the checkerboard and unidirectional CDWs were considered. It was shown that the spatial spread of the CDW-pairing strength substantially smears the peculiarities of G(V) appropriate to uniform superconductors. The resulting curves G(V) become very similar to those observed for a number of cuprates in intrinsic junctions, e.g. mesas. In particular, the influence of CDWs may explain the peak-dip-hump structures frequently found for high-T c oxides. PMID:27604150

  14. Influence of the spatially inhomogeneous gap distribution on the quasiparticle current in c-axis junctions involving d-wave superconductors with charge density waves

    NASA Astrophysics Data System (ADS)

    Ekino, T.; Gabovich, A. M.; Li, Mai Suan; Szymczak, H.; Voitenko, A. I.

    2016-11-01

    The quasiparticle tunnel current J(V) between the superconducting ab-planes along the c-axis and the corresponding conductance G(V)=\\text{d}J/\\text{d}V were calculated for symmetric junctions composed of disordered d-wave layered superconductors partially gapped by charge density waves (CDWs). Here, V is the voltage. Both the checkerboard and unidirectional CDWs were considered. It was shown that the spatial spread of the CDW-pairing strength substantially smears the peculiarities of G(V) appropriate to uniform superconductors. The resulting curves G(V) become very similar to those observed for a number of cuprates in intrinsic junctions, e.g. mesas. In particular, the influence of CDWs may explain the peak-dip-hump structures frequently found for high-T c oxides.

  15. c-axis inclined ZnO films for shear-wave transducers deposited by reactive sputtering using an additional blind

    SciTech Connect

    Link, M.; Schreiter, M.; Weber, J.; Gabl, R.; Pitzer, D.; Primig, R.; Wersing, W.; Assouar, M.B.; Elmazria, O.

    2006-03-15

    This article reports on the growth and characterization of polycrystalline ZnO films having c axis inclined up to 16 deg. with respect to the substrate normal. These films allow the excitation of shear and longitudinal waves with comparable electromechanical coupling constants and are of significant interest for thin film bulk acoustic resonators (FBARs). The films are deposited on silicon substrates covered by Al{sub 2}O{sub 3} and SiO{sub 2} buffer layers under low pressure using a modified reactive dc-pulsed magnetron sputtering system. A blind has been positioned between target and substrate, allowing oblique particle incidence without tilting the wafer. The study of structural properties of the deposited ZnO films by x-ray diffraction and scanning electron microscopy has permitted to show the presence of the inclined structure. Electromechanical coupling constants K up to 13% have been extracted for shear-mode excitation using highly overmoded FBARs.

  16. Quartz c-axis fabrics in constrictionally strained orthogneisses: implications for the evolution of the Orlica-Śnieżnik Dome, the Sudetes, Poland

    NASA Astrophysics Data System (ADS)

    Żelaźniewicz, Andrzej; Kromuszczyńska, Olga; Biegała, Natalia

    2013-12-01

    Żelaźniewicz, A., Kromuszczyńska, O. and Biegała, N. 2013. Quartz c-axis fabrics in constrictionally strained orthogneisses: implications for the evolution of the Orlica-Śnieżnik Dome, the Sudetes, Poland. Acta Geologica Polonica, 63(4), 697-722, Warszawa. The Orlica-Śnieżnik Dome (OSD), NE Bohemian Massif, contains in its core several gneiss variants with protoliths dated at ~500 Ma. In the western limb of the OSD, rodding augen gneisses (Spalona gneiss unit) are mainly L>S tectonites with a prominent stretching lineation. The few quartz LPO studies have produced somewhat discrepant results. Reexamination of these rocks revealed that texture formation was a protracted, multistage process that involved strain partitioning with changing strain rate and kinematics in a general shear regime at temperatures of the amphibolite facies (450-600°C). Quartz c-axis microfabrics show complex yet reproducible patterns that developed under the joint control of strain geometry and temperature; thus the LPOs are mixed features represented by pseudogirdle patterns. Domainal differences in quartz microfabrics (ribbons, tails, quartzo-feldspathic aggregate) are common in the Spalona orthogneisses but uncommon in the sheared migmatitic gneisses. In the latter rocks, the constrictional strain was imposed on the originally planar fabric defined by high-temperature migmatitic layering. The constrictional fabric of the Spalona gneisses may have developed in the hinge zones of kilometer-scale folds, where the elongation occurred parallel to the fold axes. Other occurrences of rodding gneisses throughout the Orlica-Śnieżnik Dome are thought to occupy similar structural positions, which would point to the significance of large-scale folds in the tectonic structure of the dome.

  17. Effect on C-axis transport properties of a critical state in Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8}

    SciTech Connect

    Cho, J.H.; Maley, M.P.; Bulaevskii, L.N.

    1995-12-31

    At low temperatures, the c-axis transport properties of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} single crystals depend strongly on the magnetic field history for fields applied along the c-axis, indicating the effect of a critical state in the ab direction. In this study, the authors report zero field cooled (ZFC), field cooled warming (FCW), and field cooled cooling (FCC) c-axis transport properties. In addition, they also report magnetic relaxation measurements on the same samples to identify the c-axis dissipation mechanism. They observe a relaxation of the c-axis resistivity that follows the relaxation of the flux profile across the ab plane. By identifying the irreversible temperature vs. magnetic field for H // c, they construct a phase diagram of vortex states. Finally, they will discuss the implication of the phase diagram and the features related to the transport properties of the Josephson-coupled system and the role of pancake vortices in highly two-dimensional superconductors.

  18. Quantum oscillation of the c-axis resistivity due to entrance of pancake vortices into micro-fabricated Bi 2Sr 2CaCu 2O 8+ δ intrinsic Josephson junctions

    NASA Astrophysics Data System (ADS)

    Kakeya, I.; Fukui, K.; Kawamata, K.; Yamamoto, T.; Kadowaki, K.

    2008-04-01

    The c-axis resistance in Bi2Sr2CaCu2O8+δ intrinsic Josephson junctions (IJJs) with areas of the ab-plane less than 2 μm2 were measured as functions of applied magnetic field and angle to the crystalline axes. When the magnetic field is tilted off from the lock-in state of Josephson vortices, several sharp dips are found. The separation between the dips approaches to the value corresponding to ϕ0 with further tilting the external magnetic field. This behavior is attributed to the penetration of a quantized pancake vortex into the tiny IJJ. This argument is further supported by the result that the c-axis resistance under magnetic fields parallel to the c-axis shows identical stepwise behavior.

  19. Low-magnetic-field operations of intrinsic Josephson junctions with a long c-axis periodicity by artificial critical-current modulations

    NASA Astrophysics Data System (ADS)

    Sakai, Shigeki; Zhao, Xia

    2007-02-01

    Flux-flow cavity resonances in intrinsic Josephson junctions (IJJs) with long c-axis periodicity by artificial critical-current (Jc) modulation are studied numerically and theoretically. For an n-1-n-1-n-1-n IJJ system with n-layer high-Jc and one-layer low-Jc alternately stacked, numerical simulation confirms fluxon penetration only in the low-Jc junctions under proper low magnetic fields. The simulation also shows pronounced cavity-resonance steps in the I-V curves of the low-Jc junctions, meaning that fluxon dynamics can be generated under much lower magnetic fields, compared to the fields for usual IJJs with homogeneous Jc. A theoretical method for describing the flux-flow cavity-resonance properties is presented. The general disperse k-ω relationship shows that, at low-k regions, the critical-current-modulated junction system can be regarded as simple homogeneous stacked junctions with a new effective thickness and a new inductive coupling strength. For general-k cases, the cavity-resonant voltage steps on the I-V curves at various magnetic fields can be well indexed by integers, which means excellent agreement between the theoretical analysis and the numerical simulations.

  20. Properties of c-axis-aligned crystalline indium-gallium-zinc oxide field-effect transistors fabricated through a tapered-trench gate process

    NASA Astrophysics Data System (ADS)

    Asami, Yoshinobu; Kurata, Motomu; Okazaki, Yutaka; Higa, Eiji; Matsubayashi, Daisuke; Okamoto, Satoru; Sasagawa, Shinya; Moriwaka, Tomoaki; Kakehata, Tetsuya; Yakubo, Yuto; Kato, Kiyoshi; Hamada, Takashi; Sakakura, Masayuki; Hayakawa, Masahiko; Yamazaki, Shunpei

    2016-04-01

    To achieve both low power consumption and high-speed operation, we fabricated c-axis-aligned crystalline indium-gallium-zinc oxide (CAAC-IGZO) field-effect transistors (FETs) with In-rich IGZO and common IGZO (\\text{In}:\\text{Ga}:\\text{Zn} = 1:1:1 in atomic ratio) active layers through a simple process using trench gates, and evaluated their characteristics. The results confirm that 60-nm-node IGZO FETs fabricated through a 450 °C process show an extremely low off-state current below the detection limit (at most 2 × 10-16 A) even at a measurement temperature of 150 °C. The results also reveal that the FETs with the In-rich IGZO active layer show a higher on-state current than those with the common IGZO active layer and have excellent frequency characteristics with a cutoff frequency and a maximum oscillation frequency of up to 20 and 6 GHz, respectively. Thus, we demonstrated that CAAC-IGZO FETs with trench gates are promising for achieving both low power consumption and high-speed operation.

  1. Channel length dependence of field-effect mobility of c-axis-aligned crystalline In-Ga-Zn-O field-effect transistors

    NASA Astrophysics Data System (ADS)

    Matsuda, Shinpei; Kikuchi, Erumu; Yamane, Yasumasa; Okazaki, Yutaka; Yamazaki, Shunpei

    2015-04-01

    Field-effect transistors (FETs) with c-axis-aligned crystalline In-Ga-Zn-O (CAAC-IGZO) active layers have extremely low off-state leakage current. Exploiting this feature, we investigated the application of CAAC-IGZO FETs to LSI memories. A high on-state current is required for the high-speed operation of these LSI memories. The field-effect mobility μFE of a CAAC-IGZO FET is relatively low compared with the electron mobility of single-crystal Si (sc-Si). In this study, we measured and calculated the channel length L dependence of μFE for CAAC-IGZO and sc-Si FETs. For CAAC-IGZO FETs, μFE remains almost constant, particularly when L is longer than 0.3 µm, whereas that of sc-Si FETs decreases markedly as L shortens. Thus, the μFE difference between both FET types is reduced by miniaturization. This difference in μFE behavior is attributed to the different susceptibilities of electrons to phonon scattering. On the basis of this result and the extremely low off-state leakage current of CAAC-IGZO FETs, we expect high-speed LSI memories with low power consumption.

  2. Orientation Studies of Recrystallized Vanadium Dioxide

    NASA Astrophysics Data System (ADS)

    Rivera, Felipe; Clemens, Mike; Burk, Laurel; Davis, Robert; Vanfleet, Richard

    2007-03-01

    Crystalline films and isolated vanadium dioxide particles were obtained through thermal annealing of amorphous vanadium dioxide thin films on silicon dioxide. Vanadium dioxide undergoes an insulator to metal transition near 66 ^oC. Orientation Imaging Microscopy (OIM) was used to study the phase and orientation of the crystals formed, as well as to differentiate from different vanadium oxide crystal structures. Kikuchi patterns for the tetragonal phase of vanadium dioxide were used for indexing as the Kikuchi patterns for the two phases are indistinguishable by OIM. There is a preferred orientation for the growth of these crystals with the c axis of the tetragonal phase parallel to the plane of the specimen. Resistance and Capacitance measurements on these films are being performed to study the electronic chracteristics of this phase transition. The results of this study will be presented.

  3. Orientation Studies of Recrystallized Vanadium Dioxide

    NASA Astrophysics Data System (ADS)

    Rivera, Felipe; Burk, Laurel; Davis, Robert; Vanfleet, Richard

    2006-10-01

    Crystalline films and isolated vanadium dioxide particles (up to 700nm in diameter) were obtained through thermal annealing of amorphous vanadium dioxide thin films on silicon dioxide. Vanadium dioxide undergoes a metal to insulator transition changing from a monoclinic to tetragonal phase near 66 ^o C. Orientation Imaging Microscopy (OIM) was used to study the phase and orientation of the crystals formed, as well as to differentiate from different vanadium oxide crystal structures. Kikuchi patterns for the tetragonal phase of vanadium dioxide were used for indexing as the Kikuchi patterns for the monoclinic phase are indistinguishable, by OIM, from those of the tetragonal phase. There is a preferred orientation for the growth of these crystals with the c axis in the plane of the specimen.

  4. Crystallographic Orientation of Cuttlebone Shield Determined by Electron Backscatter Diffraction

    NASA Astrophysics Data System (ADS)

    Cusack, Maggie; Chung, Peter

    2014-01-01

    In common with many cephalopod mollusks, cuttlefish produce an internal biomineral buoyancy device. This cuttlebone is analogous to a surf board in shape and structure, providing rigidity and a means of controlling buoyancy. The cuttlebone is composed of calcium carbonate in the form of aragonite and comprises an upper dorsal shield and a lower lamellar matrix. The lamellar matrix comprises layers of chambers with highly corrugated walls. The dorsal shield comprises bundles of aragonite needles stacked on top of each other. Electron backscatter diffraction analyses of the dorsal shield reveal that the c-axis of aragonite is parallel with the long axis of the needles in the bundles such that any spread in crystallographic orientation is consistent with the spread in orientation of the fibers as they radiate to form the overall structure of the dorsal shield. This arrangement of c-axis coincident with the long axis of the biomineral structure is similar to the arrangement in corals and in contrast to the situation in the molluskan aragonite nacre of brachiopod calcite where the c-axis is perpendicular to the aragonite tablet or calcite fiber, respectively.

  5. Control of magnetization reversal in oriented strontium ferrite thin films

    SciTech Connect

    Roy, Debangsu Anil Kumar, P. S.

    2014-02-21

    Oriented Strontium Ferrite films with the c axis orientation were deposited with varying oxygen partial pressure on Al{sub 2}O{sub 3}(0001) substrate using Pulsed Laser Deposition technique. The angle dependent magnetic hysteresis, remanent coercivity, and temperature dependent coercivity had been employed to understand the magnetization reversal of these films. It was found that the Strontium Ferrite thin film grown at lower (higher) oxygen partial pressure shows Stoner-Wohlfarth type (Kondorsky like) reversal. The relative importance of pinning and nucleation processes during magnetization reversal is used to explain the type of the magnetization reversal with different oxygen partial pressure during growth.

  6. Epitaxial growth of biaxially oriented YBCO films on silver

    NASA Astrophysics Data System (ADS)

    Liu, Danmin; Zhou, Meiling; Wang, Xue; Suo, Hongli; Zuo, Tieyong; Schindl, Michael; Flükiger, René

    2001-09-01

    YBCO films were deposited on (100), (110) and (111) oriented silver single crystals and { 100} <100>, { 110} <211> and { 012} <100> biaxially textured Ag substrates by pulsed laser deposition. It is shown that the (100) and (110) orientated single crystals and the { 110} biaxially textured Ag tape are all suitable for the deposition of YBCO thin films with c-axis in-plane alignment. The Jc of YBCO film deposited on { 110} <211> biaxially textured Ag foil is 7×105A cm-2 at 77 K, 0 T. A scheme for the regular growth of YBCO on silver was put forward.

  7. Epitaxial aluminum-doped zinc oxide thin films on sapphire. 1: Effect of substrate orientation

    SciTech Connect

    Srikant, V.; Sergo, V.; Clarke, D.R.

    1995-07-01

    Epitaxial thin films of Al-doped zinc oxide have been grown on sapphire substrates by pulsed laser ablation. The effect of substrate temperature, background pressure of oxygen, and substrate orientation (A, M, R, C) on the orientation relationships between ZnO and sapphire have been evaluated using on- and off-axis X-ray diffractometry. Under all growth conditions zinc oxide, on A- and C-plane sapphire, grew with the c-axis perpendicular to the substrate. In contrast, on M and R orientations of sapphire, ZnO grew with its c-axis parallel or perpendicular to the substrate depending on the substrate temperature and background pressure employed during growth. In all cases only one unique in-plane relationship between the sapphire substrate and the zinc oxide film was found with the exception of the M-plane at high substrate temperatures.

  8. Periodic c-axis modulation and crystallographic Fourier analysis of Bi 2Sr 2Ca nCu n+1O 6+2n+x ( n=0,1) single crystals with excess Bi

    NASA Astrophysics Data System (ADS)

    Ariosa, D.; Berger, H.; Schmauder, T.; Pavuna, D.; Margaritondo, G.; Christensen, S.; Kelley, R. J.; Onellion, M.

    2001-04-01

    We report on a distortion of Bi 2Sr 2Ca nCu n+1O 6+2n+x ( n=0,1) single crystals, perpendicular to the CuO 2 planes (the c-axis), for non-stoichiometric samples containing an excess of Bi. The distortion involves two parts: (a) symmetric displacements in the SrO and CuO 2 planes along the c-axis, and (b) an antisymmetric longitudinal compressive wave. The latter is revealed by observing odd harmonics in the X-ray diffraction (XRD) data. Such odd harmonics are typically extinguished for the I4/mmm space group of the exact stoichiometric phase. The antisymmetric compressive wave is reported for both BSCCO-2201 and BSCCO-2212 Bi excess samples, as well as for La-doped BSCCO-2201 samples. We have performed XRD model calculations for all samples studied, combined with Fourier analysis of the periodic c-axis modulation. The antisymmetric compressive wave was proven by reconstructing the atomic position profile from the intensity of odd XRD peaks caused by this commensurate modulation. Our results indicate preferential ordered substitution of Bi ions on nominally Sr ion positions. We also discuss implications for oxygen mobility, reversible sample doping, and electronic properties.

  9. Orientation of thin YBa2Cu3O7-delta/YSZ films characterization by micro-Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, M. S.; Shen, Z. X.; Zhou, W. Z.; Xu, S. Y.; Ong, C. K.

    1999-05-01

    Micro-Raman scattering of thin YBa2Cu3O7-icons/Journals/Common/delta" ALT="delta" ALIGN="MIDDLE"/> films of various thicknesses, deposited by pulsed laser deposition on the yttrium-stabilized zirconia (001) substrates, was carried out at different scattering geometries. The fraction of c-axis orientation of the films was calculated from the intensity ratio of the O(2,3)-B1g and O(4)-Ag modes. It is shown that it is strongly dependent on the film thickness and the highest fraction of c-axis orientation occurs for film thickness around 80 nm. The lower c-axis fraction for thinner films was explained by the simultaneous growth of a- and c-axis-oriented grains at the interface region, while the lower c-axis fraction for thicker films was due to the faults and voids in the films. Several a- and b-axis in-plane orientations have been identified using polarized Raman spectra.

  10. XRD analysis on ZnO and Au film crystal orientation in ZnO/Au/SiO2 structure

    NASA Astrophysics Data System (ADS)

    Qin, Huibin; Yu, Hong; Chen, Yunxang

    2000-05-01

    The orientation of the Zn/Au/Si structure was examined by XRD. The experiment showed that the ZnO/Au/Si films deposited by magnetron sputtering were possessed of a preferred orientation in C axis perpendicular to the film surface. The (111) of Au film was possessed of a preferred <111> orientation which was perpendicular to the film surface also. The XRD (theta) approximately 2 (theta) scan irradiated that there were only (001) peaks in excellent orientated ZnO films. The rock cure scan demonstrated that the C axis of ZnO film was not exactly perpendicular to the surface, the angular divergence was about 2 degree(s), and the space divergence angle about 1.5 degree(s). Expert the (kkk) main peaks of Au film there were weak diffraction peaks, such as (002), (022), and (311) peaks. The phenomena indicated that in Au film there was not only (111) plane in parallel to the surface of substrate. As there was only 12% dis-matching between Au (111) and ZnO (001), the Au (111) oriented film was facilitated for the ZnO (001) orientation in C axis and deposing parameters adjustment.

  11. Superconductivity-induced effect on c-axis electronic Raman scattering in Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} single crystals

    SciTech Connect

    Liu, H. L.; Blumberg, G.; Klein, M. V.; Guptasarma, P.; Hinks, D. G.

    1999-09-01

    We report on the c-axis-polarized electronic Raman scattering of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} single crystals with various oxygen concentrations. Below T{sub c}, there is a low-energy redistribution of the electronic continuum and the presence of a 2{delta} peak-like feature for all doping levels studied. The superconductivity-induced effect is also accumulated from frequencies as high as 40{delta}. (c) 1999 American Institute of Physics.

  12. Persistence of the superconducting condensate far above the critical temperature of YBa2(Cu,Zn)3O(y) revealed by c-axis optical conductivity measurements for several Zn concentrations and carrier doping levels.

    PubMed

    Uykur, Ece; Tanaka, Kiyohisa; Masui, Takahiko; Miyasaka, Shigeki; Tajima, Setsuko

    2014-03-28

    The superconductivity precursor phenomena in high temperature cuprate superconductors is studied by direct measurements of the superconducting condensate with the use of the c-axis optical conductivity of YBa2(Cu1-xZnx)3Oy for several doping levels (p) as well as for several Zn concentrations. Both the real and imaginary parts of the optical conductivity clearly show that the superconducting carriers persist up to the high temperatures Tp that is higher than the critical temperature Tc but lower than the pseudogap temperature T*. Tp increases with reducing doping level like T*, but decreases with Zn substitution unlike T*.

  13. Crystal-oriented tungsten-bronze type ceramics prepared by a rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Tanaka, S.; Doshida, Y.; Shimizu, H.; Furushima, R.; Uematsu, K.

    2011-03-01

    Forming and sintering of c-axis-oriented Sr2NaNb5O15 (SNN) ceramics were examined. Particle-oriented SNN was fabricated by using a rotating high magnetic field and subsequent sintering without magnetic field. SNN ceramics are tungsten-bronze-type ferroelectric materials with a tetragonal crystal system. The diamagnetic susceptibilities of the c-axis are smaller than that of the a- and b-axis (χc < χa,b < 0). SNN powder was prepared by conventional solid-state reaction. The synthesized powder was mixed with distilled water and a dispersant by using ball milling to give a slurry with solid loading of 30 vol%. The slurry was poured into a plastic mold and this was placed in a 10Tesla magnetic field in a superconducting magnet. The mold was rotated at 30 rpm while the slurry dried at room temperature. The resulting powder compact with a columnar shape was heated at 5 K/min to 1473 K, held for 6 h, and then heated at 1525 K for 2 h to prevent exaggerated grain growth. XRD patterns showed that c-axis-oriented SNN polycrystalline ceramics were produced in the presence of the rotating magnetic field. In XRD patterns viewed from the top surface of the sintered specimens, peaks from the c-planes of the crystal, such as 001 and 002, were very strong. Diffraction peaks which were very strong in the ceramics, such as 320 and 410, were absent in the specimen. Oriented microstructure was developed well by sintering. Grain-growth along to c-axis was observed in the SNN ceramics heated at 1525 K.

  14. Effects of the crystallographic orientation of Sn on the electromigration of Cu/Sn-Ag-Cu/Cu ball joints

    SciTech Connect

    Lee, Kiju; Kim, Keun-Soo; Tsukada, Yutaka; Suganuma, Katsuaki; Yamanaka, Kimihiro; Kuritani, Soichi; Ueshima, Minoru

    2011-11-17

    Electromigration behavior and fast circuit failure with respect to crystallographic orientation of Sn grains were examined. The test vehicle was Cu/Sn-3.0 wt% Ag-0.5 wt% Cu/Cu ball joints, and the applied current density was 15 kA/cm2 at 160 °C. The experimental results indicate that most of the solder bumps show different microstructural changes with respect to the crystallographic orientation of Sn grains. Fast failure of the bump occurred due to the dissolution of the Cu circuit on the cathode side caused by the fast interstitial diffusion of Cu atoms along the c-axis of the Sn grains when the c-axis was parallel to the electron flow. Slight microstructural changes were observed when the c-axis was perpendicular to the electron flow. In addition, Cu6Sn5 intermetallic compound (IMC) was formed along the direction of the c-axis of the Sn grains instead of the direction of electron flow in all solder ball joints.

  15. SHMUTZ & PROTON-DIAMANT H + Irradiated/Written-Hyper/Super-conductivity(HC/SC) Precognizance/Early Experiments Connections: Wet-Graphite Room-Tc & Actualized MgB2 High-Tc: Connection to Mechanical Bulk-Moduli/Hardness: Diamond Hydrocarbon-Filaments, Disorder, Nano-Powders:C,Bi,TiB2,TiC

    NASA Astrophysics Data System (ADS)

    Wunderman, Irwin; Siegel, Edward Carl-Ludwig; Lewis, Thomas; Young, Frederic; Smith, Adolph; Dresschhoff-Zeller, Gieselle

    2013-03-01

    SHMUTZ: ``wet-graphite''Scheike-....[Adv.Mtls.(7/16/12)]hyper/super-SCHMUTZ-conductor(S!!!) = ``wet''(?)-``graphite''(?) = ``graphene''(?) = water(?) = hydrogen(?) =ultra-heavy proton-bands(???) = ...(???) claimed room/high-Tc/high-Jc superconductOR ``p''-``wave''/ BAND(!!!) superconductIVITY and actualized/ instantiated MgB2 high-Tc superconductors and their BCS- superconductivity: Tc Siegel[ICMAO(77);JMMM 7,190(78)] connection to SiegelJ.Nonxline-Sol.40,453(80)] disorder/amorphous-superconductivity in nano-powders mechanical bulk/shear(?)-moduli/hardness: proton-irradiated diamond, powders TiB2, TiC,{Siegel[Semis. & Insuls.5:39,47, 62 (79)])-...``VS''/concommitance with Siegel[Phys.Stat.Sol.(a)11,45(72)]-Dempsey [Phil.Mag. 8,86,285(63)]-Overhauser-(Little!!!)-Seitz-Smith-Zeller-Dreschoff-Antonoff-Young-...proton-``irradiated''/ implanted/ thermalized-in-(optimal: BOTH heat-capacity/heat-sink & insulator/maximal dielectric-constant) diamond: ``VS'' ``hambergite-borate-mineral transformable to Overhauser optimal-high-Tc-LiBD2 in Overhauser-(NW-periodic-table)-Land: CO2/CH4-ETERNAL-sequestration by-product: WATER!!!: physics lessons from

  16. Controlling laser emission by selecting crystal orientation

    NASA Astrophysics Data System (ADS)

    Chen, Lijuan; Han, Shujuan; Wang, Zhengping; Wang, Jiyang; Zhang, Huanjin; Yu, Haohai; Han, Shuo; Xu, Xinguang

    2013-01-01

    Based on the anisotropy of laser crystal, we demonstrate a method of adjusting laser emission by selecting crystal orientation. When the light propagating direction varies from a to c axis of Nd:LiGd(MoO4)2 crystal, emission wavelength exhibits a sensitive change of 1061 nm → 1061/1062 + 1068 nm → 1068 nm. The experimental discipline is well explained by a theoretical study of simulating on the spatial distribution of stimulated emission cross-section. This letter manifests that the laser property along non-principal-axis direction is also valuable for research and application, which breaks through the traditional custom of using laser materials processed along principal-axis.

  17. Whose Orientations?

    ERIC Educational Resources Information Center

    Gutoff, Joshua

    2010-01-01

    This article presents the author's response to Jon A. Levisohn's article entitled "A Menu of Orientations in the Teaching of Rabbinic Literature." While the "menu" Levisohn describes in his groundbreaking work on orientations to the teaching of rabbinic texts will almost certainly be refined over time, even as it stands this article should be of…

  18. Preferential orientation of biological apatite in normal and osteoporotic human vertebral trabeculae

    NASA Astrophysics Data System (ADS)

    Miyabe, S.; Ishimoto, T.; Nakano, T.

    2009-05-01

    The preferential orientation of biological apatite (BAp) is a possible bone quality parameter for the comparison of the bone mechanical property. The preferential BAp orientation undergoes sensitive changes according to the change in the in vivo stress distribution, bone turnover rate etc., resulting in a variation of bone function. Osteoporosis is a metabolic bone disease characterized by reduced bone mass and deterioration of bone microstructure. The effect of osteoporosis on the preferential BAp orientation is however unknown. In this study, a microbeam-X-ray diffraction (μXRD) study was carried out on a trabecula extracted from osteoporotic and normal human vertebral bones and the degree of orientation for the BAp c-axis along its craniocaudal axis was analysed based on our previous report. A micro-computed tomography (μCT) measurement was also performed to analyze trabecular density and structure. In osteoporotic human vertebra, the trabecular number is markedly lower than that in normal vertebra. To sustain increased stress because of bone loss, the primary trabeculae, which are aligned parallel to the craniocaudal axis, tend to selectively remain while the secondary trabeculae, which are perpendicular to the craniocaudal axis, mostly disappear. Moreover, the primary trabecula from osteoporotic vertebra showed a significantly higher degree of BAp preferential orientation than the normal bone. This suggests that the remaining primary trabecula in osteoporotic vertebra is further reinforced by an increase in applied stress in vivo by enhancing the preferred BAp c-axis orientation along the trabecular direction.

  19. Blocks and residual stresses in sapphire rods of different crystallographic orientations grown by the Stepanov method

    SciTech Connect

    Krymov, V. M. Nosov, Yu. G.; Bakholdin, S. I.; Maslov, V. N.; Shul’pina, I. L.

    2015-05-15

    The formation of blocks in shaped sapphire rods of two crystallographic orientations has been investigated. It is shown that, when growth occurs in the direction of the optical c axis, blocks are formed with a higher probability than in the case of growth in the a direction. A model of formation of blocks in rods of different orientations is proposed. The distribution of residual stresses over sapphire rod cross sections is measured by conoscopy. It is found that stresses increase from the middle of a rod to its periphery and reach 20 MPa.

  20. Effect of crystal orientation on conductivity and electron mobility in single-crystal alumina

    NASA Technical Reports Server (NTRS)

    Will, Fritz G.; Delorenzi, Horst G.; Janora, Kevin H.

    1992-01-01

    The electrical conductivity of high-purity, single-crystal alumina is determined parallel to and perpendicular to the c-axis. The mean conductivity of four samples of each orientation is a factor 3.3 higher parallel to the c-axis than perpendicular to it. The conductivity as a function of temperature is attributed to extrinsic electron conduction at temperatures from 400 to 900 C, and intrinsic semiconduction at temperatures from 900 to 1300 C. In the high-temperature regime, the slope on all eight specimens is 4.7 +/- 0.1 eV. Hence, the thermal bandgap at O K is 9.4 +/- 0.2 eV.

  1. Local grain orientation and strain in polycrystalline YBa2Cu3O7-δ superconductor thin films measured by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Amer, Maher S.; Maguire, John; Cai, L.; Biggers, R.; Busbee, J.; LeClair, S. R.

    2001-06-01

    We report direct measurements of local grain orientation and residual strain in polycrystalline, C-axis oriented thin YBa2Cu3O7-δ superconducting films using polarized Raman spectroscopy. Strain dependence of the Ag Raman active mode at 335 cm-1 was calibrated and used to measure local strain in the films. Our data showed that high quality films are associated with the connected path of uniform grain orientation (single crystal-like) across the film and uniform residual strain in the range of -0.3%. Nonuniform grain orientation or high angle grain boundaries and nonuniform local strains were associated with low quality films.

  2. Birefringence imaging and orientation of laser patterned β-BaB{sub 2}O{sub 4} crystals with bending and curved shapes in glass

    SciTech Connect

    Ogawa, Kazuki; Honma, Tsuyoshi; Komatsu, Takayuki

    2013-11-15

    Nonlinear optical β-BaB{sub 2}O{sub 4} crystals (β-BBO) with bending and curved shapes were patterned at the surface of 8Sm{sub 2}O{sub 3}–42BaO–50B{sub 2}O{sub 3} glass by laser irradiations (Yb:YVO{sub 4} laser with a wavelength of 1080 nm, power of 0.8 W, and scanning speed of 4 μm/s), and the orientation state of β-BBO crystals was examined from the birefringence imaging obtained by polarization optical microscope (POM) observations. The formation (crystallization) of β-BBO crystals follows along laser scanning direction even if the laser scanning direction changes at a certain point within the bending angle of 60°. The birefringence images indicate that the formation of highly c-axis oriented β-BBO crystals follows along laser scanning direction even if the laser scanning direction changes, and in particular the direction of the c-axis of β-BBO crystals changes gradually at the bending point. The model for the orientation of the c-axis of β-BBO near the bending point is proposed. The present study proposes that the laser-induced crystallization opens a new door for the science and technology in crystal growth engineering. - Graphical abstract: This figure shows the birefringence images obtained by the Abrio IM imaging system (λ=546 nm) for the laser-patterned β-BaB{sub 2}O{sub 4} crystal line with the bending angle of 45° in the glass. The relation between the direction of slow axis and color is also shown. It is demonstrated that the formation (crystallization) of highly c-axis oriented β-BaB{sub 2}O{sub 4} crystals follows along laser scanning direction even if the laser scanning direction changes. Display Omitted - Highlights: • β-BaB{sub 2}O{sub 4} crystals with bending and curved shapes were patterned by laser irradiations. • The orientation was examined from the birefringence imaging. • Highly c-axis oriented crystals follows along laser scanning direction. • The c-axis direction changes gradually at the bending point. • The

  3. Current-voltage characteristics of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8-{delta}} in the c-axis direction

    SciTech Connect

    Takeya, J.; Akita, S.; Kishio, K.

    1997-06-01

    Current-voltage (I-V) characteristics of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} single crystals were measured in the c-axis direction as a function of temperature and magnetic field parallel to the current. In order to eliminate heating effect, a voltage pulse with a width of 0.5 - 1 {mu}s was applied for each I-V point. The authors found an ohmic region far below the gap voltage. The ohmic resistance increased with decreasing temperature and grew 30 times larger at 4.2 K than that at room temperature. Magnetic field strongly suppressed the critical current but did not change this ohmic resistance. These behaviors can be explained by a semiconductive shunt resistance connected in parallel to a stack of Josephson junctions. By applying two-step voltage pulses, the authors observed a hysteretic feature of the intrinsic Josephson junctions. Crystals with different oxygen contents showed a large variation in critical current, normal resistance, the shunt resistance at low temperature and the degree of hysteresis due to a difference in anisotropy ratios. Utilizing the bistability revealed by the hysteretic feature, the Bi2212 crystal can function as a switching device in the c-direction. A natural stack of many junctions will exhibit large response voltage, which is a great advantage for application to power devices.

  4. Industrial Orientation.

    ERIC Educational Resources Information Center

    Rasor, Leslie; Brooks, Valerie

    These eight modules for an industrial orientation class were developed by a project to design an interdisciplinary program of basic skills training for disadvantaged students in a Construction Technology Program (see Note). The Drafting module overviews drafting career opportunities, job markets, salaries, educational requirements, and basic…

  5. A MgB2 superferric racetrack magnet

    NASA Astrophysics Data System (ADS)

    Musenich, R.; Sorbi, M.; Tavilla, G.; Volpini, G.; Marabotto, R.; Modica, M.; Nardelli, D.

    2008-10-01

    A magnesium diboride, cryogen-free, H-dipole magnet with cold iron yoke was constructed and tested. The racetrack coil, 48 cm long, was wound with 350 m of nickel-clad, copper-MgB2 tape. The iron yoke forms a 2.6 cm gap. The magnet was connected to a cryocooler and tested at different temperatures ranging between 8.5 and 24 K. The maximum current, 263 A, was reached, without training, at 8.5 K. The corresponding field in the gap was 2.35 T.

  6. Multilayer MgB2 superconducting quantum interference filter magnetometers

    NASA Astrophysics Data System (ADS)

    Galan, Elias; Melbourne, Thomas; Davidson, Bruce A.; Xi, X. X.; Chen, Ke

    2016-04-01

    We report two types of all-MgB2 superconductive quantum interference filter (SQIF) magnetometers that can measure absolute magnetic fields with high sensitivity. In one configuration, the SQIFs were made of 20 multilayer nonplanar all-MgB2 superconducting quantum interference devices (SQUIDs) connected in parallel with loop areas ranging in size from 0.4 to 3.6 μm2. These devices are sensitive to magnetic fields parallel to the substrate and show a single antipeak from 3 to 16 K with a maximum transfer function of ˜16 V/T at 3 K and a field noise of ˜110 pT/Hz1/2 above 100 Hz at 10 K. In a second configuration, the SQIFs were made with 16 planar SQUIDs connected in parallel with loop areas ranging in size from 4 μm2 to 25 μm2 and are sensitive to the magnetic fields perpendicular to the substrate. The planar SQIF shows a single antipeak from 10 to 22 K with a maximum transfer function of 7800 V/T at 10 K and a field noise of ˜70 pT/Hz1/2 above 100 Hz at 20 K.

  7. Assessment of crystal quality and unit cell orientation in epitaxial Cu₂ZnSnSe₄ layers using polarized Raman scattering.

    PubMed

    Krämmer, Christoph; Lang, Mario; Redinger, Alex; Sachs, Johannes; Gao, Chao; Kalt, Heinz; Siebentritt, Susanne; Hetterich, Michael

    2014-11-17

    We use polarization-resolved Raman spectroscopy to assess the crystal quality of epitaxial kesterite layers. It is demonstrated for the example of epitaxial Cu₂ZnSnSe₄ layers on GaAs(001) that "standing" and "lying" kesterite unit cell orientations (c'-axis parallel / perpendicular to the growth direction) can be distinguished by the application of Raman tensor analysis. From the appearance of characteristic intensity oscillations when the sample is rotated one can distinguish polycrystalline and epitaxial layers. The method can be transferred to kesterite layers oriented in any crystal direction and can shed light on the growth of such layers in general. PMID:25402065

  8. Recrystallization fabrics of sheared quartz veins with a strong pre-existing crystallographic preferred orientation from a seismogenic shear zone

    NASA Astrophysics Data System (ADS)

    Price, Nancy A.; Song, Won Joon; Johnson, Scott E.; Gerbi, Christopher C.; Beane, Rachel J.; West, David P.

    2016-07-01

    Microstructural investigations were carried out on quartz veins in schist, protomylonite, and mylonite samples from an ancient seismogenic strike-slip shear zone (Sandhill Corner shear zone, Norumbega fault system, Maine, USA). We interpret complexities in the microstructural record to show that: (1) pre-existing crystallographic preferred orientations (CPO) in the host rock may persist in the new CPO patterns of the shear zone and (2) the inner and outer parts of the shear zone followed diverging paths of fabric development. The host rocks bounding the shear zone contain asymmetrically-folded quartz veins with a strong CPO. These veins are increasingly deformed and recrystallized with proximity to the shear zone core. Matrix-accommodated rotation and recrystallization may position an inherited c-axis maximum in an orientation coincident with rhomb < a > or basal < a > slip. This inherited CPO likely persists in the shear zone fabric as a higher concentration of poles in one hemisphere of the c-axis pole figure, leading to asymmetric crossed girdle or paired maxima c-axis patterns about the foliation plane. Three observed quartz grain types indicate a general trend of localization with decreasing temperature: (1) large (> 100 μm), low aspect ratio (<~5) and (2) high aspect ratio (~ 5-20) grains overprinted by (3) smaller (<~80 μm), low aspect ratio (<~4) grains through subgrain rotation-dominated recrystallization. In the outer shear zone, subgrain rotation recrystallization led to a well-developed c-axis crossed girdle pattern. In the inner shear zone, the larger grains are completely overprinted by smaller grains, but the CPO patterns are relatively poorly developed and are associated with distinctively different misorientation angle histogram profiles ("flat" neighbor-pair profile with similar number fraction for angles from 10 to 90°). This may reflect the preferential activation of grain size sensitive deformation processes in the inner-most part of the

  9. Hydroxyapatite coatings with oriented nanoplate and nanorod arrays: Fabrication, morphology, cytocompatibility and osteogenic differentiation.

    PubMed

    Chen, Wei; Tian, Bo; Lei, Yong; Ke, Qin-Fei; Zhu, Zhen-An; Guo, Ya-Ping

    2016-10-01

    Hydroxyapatite (HA) crystals exhibit rod-like shape with c-axis orientation and plate-like shape with a(b)-axis orientation in vertebrate bones and tooth enamel surfaces, respectively. Herein, we report the synthesis of HA coatings with the oriented nanorod arrays (RHACs) and HA coatings with oriented nanoplate arrays (PHACs) by using bioglass coatings as sacrificial templates. After soaking in simulated body fluid (SBF) at 120°C, the bioglass coatings are hydrothermally converted into the HA coatings via a dissolution-precipitation reaction. If the Ca/P ratios in SBF are 2.50 and 1.25, the HA crystals on the coatings are oriented nanorod arrays and oriented nanoplate arrays, respectively. Moreover, the bioglass coatings are treated with SBF at 37°C, plate-like HA coatings with a low crystallinity (SHACs) are prepared. As compared with the Ti6Al4V and SHACs, the human bone marrow stromal cells (hBMSCs) on the RHACs and PHACs have better cell adhesion, spreading, proliferation and osteogenic differentiation because of their moderately hydrophilic surfaces and similar chemical composition, morphology and crystal orientation to human hard tissues. Notably, the morphologies of HA crystals have no obvious effects on cytocompatibility and osteogenic differentiation. Hence, the HA coatings with oriented nanoplate arrays or oriented nanorod arrays have a great potential for orthopedic applications. PMID:27287136

  10. Orienting hypnosis.

    PubMed

    Hope, Anna E; Sugarman, Laurence I

    2015-01-01

    This article presents a new frame for understanding hypnosis and its clinical applications. Despite great potential to transform health and care, hypnosis research and clinical integration is impaired in part by centuries of misrepresentation and ignorance about its demonstrated efficacy. The authors contend that advances in the field are primarily encumbered by the lack of distinct boundaries and definitions. Here, hypnosis, trance, and mind are all redefined and grounded in biological, neurological, and psychological phenomena. Solutions are proposed for boundary and language problems associated with hypnosis. The biological role of novelty stimulating an orienting response that, in turn, potentiates systemic plasticity forms the basis for trance. Hypnosis is merely the skill set that perpetuates and influences trance. This formulation meshes with many aspects of Milton Erickson's legacy and Ernest Rossi's recent theory of mind and health. Implications of this hypothesis for clinical skills, professional training, and research are discussed.

  11. EDITORIAL: Optical orientation Optical orientation

    NASA Astrophysics Data System (ADS)

    SAME ADDRESS *, Yuri; Landwehr, Gottfried

    2008-11-01

    priority of the discovery in the literature, which was partly caused by the existence of the Iron Curtain. I had already enjoyed contact with Boris in the 1980s when the two volumes of Landau Level Spectroscopy were being prepared [2]. He was one of the pioneers of magneto-optics in semiconductors. In the 1950s the band structure of germanium and silicon was investigated by magneto-optical methods, mainly in the United States. No excitonic effects were observed and the band structure parameters were determined without taking account of excitons. However, working with cuprous oxide, which is a direct semiconductor with a relative large energy gap, Zakharchenya and his co-worker Seysan showed that in order to obtain correct band structure parameters, it is necessary to take excitons into account [3]. About 1970 Boris started work on optical orientation. Early work by Hanle in Germany in the 1920s on the depolarization of luminescence in mercury vapour by a transverse magnetic field was not appreciated for a long time. Only in the late 1940s did Kastler and co-workers in Paris begin a systematic study of optical pumping, which led to the award of a Nobel prize. The ideas of optical pumping were first applied by Georges Lampel to solid state physics in 1968. He demonstrated optical orientation of free carriers in silicon. The detection method was nuclear magnetic resonance; optically oriented free electrons dynamically polarized the 29Si nuclei of the host lattice. The first optical detection of spin orientation was demonstrated by with the III-V semiconductor GaSb by Parsons. Due to the various interaction mechanisms of spins with their environment, the effects occurring in semiconductors are naturally more complex than those in atoms. Optical detection is now the preferred method to detect spin alignment in semiconductors. The orientation of spins in crystals pumped with circularly polarized light is deduced from the degree of circular polarization of the recombination

  12. EDITORIAL: Optical orientation Optical orientation

    NASA Astrophysics Data System (ADS)

    SAME ADDRESS *, Yuri; Landwehr, Gottfried

    2008-11-01

    priority of the discovery in the literature, which was partly caused by the existence of the Iron Curtain. I had already enjoyed contact with Boris in the 1980s when the two volumes of Landau Level Spectroscopy were being prepared [2]. He was one of the pioneers of magneto-optics in semiconductors. In the 1950s the band structure of germanium and silicon was investigated by magneto-optical methods, mainly in the United States. No excitonic effects were observed and the band structure parameters were determined without taking account of excitons. However, working with cuprous oxide, which is a direct semiconductor with a relative large energy gap, Zakharchenya and his co-worker Seysan showed that in order to obtain correct band structure parameters, it is necessary to take excitons into account [3]. About 1970 Boris started work on optical orientation. Early work by Hanle in Germany in the 1920s on the depolarization of luminescence in mercury vapour by a transverse magnetic field was not appreciated for a long time. Only in the late 1940s did Kastler and co-workers in Paris begin a systematic study of optical pumping, which led to the award of a Nobel prize. The ideas of optical pumping were first applied by Georges Lampel to solid state physics in 1968. He demonstrated optical orientation of free carriers in silicon. The detection method was nuclear magnetic resonance; optically oriented free electrons dynamically polarized the 29Si nuclei of the host lattice. The first optical detection of spin orientation was demonstrated by with the III-V semiconductor GaSb by Parsons. Due to the various interaction mechanisms of spins with their environment, the effects occurring in semiconductors are naturally more complex than those in atoms. Optical detection is now the preferred method to detect spin alignment in semiconductors. The orientation of spins in crystals pumped with circularly polarized light is deduced from the degree of circular polarization of the recombination

  13. Characterization of tin crystal orientation evolution during thermal cycling in lead-free solder joints

    NASA Astrophysics Data System (ADS)

    Zhou, Bite

    To address the long term reliability of lead-free solder joints in electronic devices during thermal cycling, the fundamental understanding of deformation mechanisms was studied using polarized light optical microscopy (PLM), electron backscatter diffraction (EBSD) in scanning electron microscopy (SEM), and synchrotron X-ray diffraction (XRD). Near-eutectic Sn-3.0(wt %) Ag-0.5(wt %) Cu (SAC305) lead-free solder joints were assessed in three different package designs: low-strain plastic ball grid array (PBGA), medium-strain fine-pitch ball grid array (BGA), and high-strain wafer-level-chip-scale package (WLCSP). The effect of microstructure evolution on solder failure is correlated with dislocation slip activities. The major failure mode in lead-free solder joints during thermal cycling that causes the electrical failure of the device is cracking in the bulk Sn near the Si chip/solder interface. Microstructure and Sn grain orientation evolution usually precedes crack development. A combined approach of both statistical analysis of a large number of solder joints, and detailed studies of individual solder balls was used to investigate the causes of fracture. Sn crystal orientation evolution and its effect on deformation was characterized in solder joints with different thermal histories, and compared with those from other package designs with different effective strain levels. The relationship between the initial dominant and localized recrystallized Sn grain orientations on crack development was investigated. It is found that in the low-strain package design, cracking is strongly correlated with Sn grain orientations with the [001] direction (c-axis) nearly aligned with the chip/solder interface. But no cracks were observed in solder balls with dominant orientations that have the c-axis normal to the interface plane. In higher-strain packages, however, cracking occurred in a variety of Sn grain orientations, and even solder balls with dominant orientations that are

  14. Mechanism of Calcite Co-Orientation in the Sea Urchin Tooth

    SciTech Connect

    Killian, Christopher; Metzler, Rebecca; Gong, Y. U. T.; Olson, Ian; Aizenberg, Joanna; Politi, Yael; Wilt, Fred; Scholl, Andreas; Young, Anthony; Doran, Andrew; Kunz, Martin; Tamura, Nobumichi; Coppersmith, Susan; Gilbert, P. U. P. A.

    2009-12-01

    Sea urchin teeth are remarkable and complex calcite structures, continuously growing at the forming end and self-sharpening at the mature grinding tip. The calcite (CaCO{sub 3}) crystals of tooth components, plates, fibers, and a high-Mg polycrystalline matrix, have highly co-oriented crystallographic axes. This ability to co-orient calcite in a mineralized structure is shared by all echinoderms. However, the physico-chemical mechanism by which calcite crystals become co-oriented in echinoderms remains enigmatic. Here, we show differences in calcite c-axis orientations in the tooth of the purple sea urchin (Strongylocentrotus purpuratus), using high-resolution X-ray photoelectron emission spectromicroscopy (X-PEEM) and microbeam X-ray diffraction ({mu}XRD). All plates share one crystal orientation, propagated through pillar bridges, while fibers and polycrystalline matrix share another orientation. Furthermore, in the forming end of the tooth, we observe that CaCO{sub 3} is present as amorphous calcium carbonate (ACC). We demonstrate that co-orientation of the nanoparticles in the polycrystalline matrix occurs via solid-state secondary nucleation, propagating out from the previously formed fibers and plates, into the amorphous precursor nanoparticles. Because amorphous precursors were observed in diverse biominerals, solid-state secondary nucleation is likely to be a general mechanism for the co-orientation of biomineral components in organisms from different phyla.

  15. Uniaxial drawing of poly[(R)-3-hydroxybutyrate]/cellulose acetate butyrate blends and their orientation behavior.

    PubMed

    Park, Jun Wuk; Tanaka, Toshihisa; Doi, Yoshiharu; Iwata, Tadahisa

    2005-09-16

    Miscible blends of PHB and CAB were prepared by the solvent-casting method with various blend compositions, and their orientation behavior was investigated during uniaxial drawing. X-ray analysis revealed that the orientation of the crystallizable PHB component in the drawn PHB/CAB blends was changed from c-axis-orientation to a-axis-orientation with increasing CAB content. The a-axis-orientation was a result from the a-axis-oriented crystal growth caused by the intramolecular nucleation and the confined crystal growth. For quantitative assessment of the chain orientation, the Hermans orientation functions of the two respective components were obtained from the polarized FT-IR measurements. The orientation function of pure PHB stretched to 5 times of its initial length was approximately 0.8. However the value decreased rapidly with increasing CAB content, and it turned to a negative value from 30 wt.-% CAB content. This indicates that the PHB chains were aligned perpendicular to the drawing direction. On the contrary, the value of the CAB component remained almost unchanged at about 0.1 regardless of the blend composition and the annealing time, indicating that the CAB chains were constantly oriented parallel to the drawing direction without any chain relaxation. In addition, SAXS analysis suggested that the lamellar stacking direction also changed from parallel to perpendicular in the stretching direction with increasing CAB content.

  16. Biological apatite (BAp) crystallographic orientation and texture as a new index for assessing the microstructure and function of bone regenerated by tissue engineering.

    PubMed

    Nakano, Takayoshi; Kaibara, Kazuhiro; Ishimoto, Takuya; Tabata, Yasuhiko; Umakoshi, Yukichi

    2012-10-01

    Recently, there have been remarkable advances in medical techniques for regenerating bone defects. To determine the degree of bone regeneration, it is essential to develop a new method that can analyze microstructure and related mechanical function. Here, quantitative analysis of the orientation distribution of biological apatite (BAp) crystallites by a microbeam X-ray diffractometer system is proposed as a new index of bone quality for the evaluation of regenerated bone microstructure. Preferential alignment of the BAp c-axis in the rabbit ulna and skull bone, regenerated by controlled release of basic fibroblast growth factor (bFGF) was investigated. The BAp c-axis orientation was evaluated by the relative intensity between the (002) and (310) diffraction peaks, or the three-dimensional texture for the (002) peak. It was found that new bone in the defects was initially produced without preferential alignment of the BAp c-axis, and subsequently reproduced to recover towards the original alignment. In other words, the BAp density recovered prior to the BAp orientation. Perfect recovery of BAp alignment was not achieved in the ulna and skull defects after 4 weeks and 12 weeks, respectively. Apparent recovery of the macroscopic shape and bio-mineralization of BAp was almost complete in the ulna defect after 4 weeks. However, an additional 2 weeks was required for complete repair of BAp orientation. It is finally concluded that orientation distribution of BAp crystallites offers an effective means of evaluating the degree of microstructural regeneration, and also the related mechanical function, in regenerated hard tissues.

  17. Nanoscale imaging of grain orientations and ferroelectric domains in (Bi1-xLax)4Ti3O12 films for ferroelectric memories

    NASA Astrophysics Data System (ADS)

    Yang, B.; Park, N. J.; Seo, B. I.; Oh, Y. H.; Kim, S. J.; Hong, S. K.; Lee, S. S.; Park, Y. J.

    2005-08-01

    We report results of nanoscopic investigation of grain crystallographic orientations and ferroelectric domains by electron backscatter diffraction (EBSD) technique and piezoresponse force microscope (PFM), respectively, in (Bi1-xLax)4Ti3O12 (BLT) films for ferroelectric semiconductor memories. It is demonstrated that the EBSD technique is useful in characterizing nanoscale grain crystallographic orientations of BLT films. Comparison studies of grain orientations by EBSD technique and switching properties of ferroelectric domains by PFM show that c-axis parallel to normal oriented grains with almost linear dielectric properties have platelike morphology. However, a- or b-axis oriented grains with superior ferroelectric properties have ellipsoidal morphology with a size of less than 0.2μm in long axis. Consequently, the suppression of the platelike structures through process controls is important for the realization of high-density BLT-based memories.

  18. Crystallographic orientation inhomogeneity and crystal splitting in biogenic calcite.

    PubMed

    Checa, Antonio G; Bonarski, Jan T; Willinger, Marc G; Faryna, Marek; Berent, Katarzyna; Kania, Bogusz; González-Segura, Alicia; Pina, Carlos M; Pospiech, Jan; Morawiec, Adam

    2013-09-01

    The calcitic prismatic units forming the outer shell of the bivalve Pinctada margaritifera have been analysed using scanning electron microscopy-electron back-scatter diffraction, transmission electron microscopy and atomic force microscopy. In the initial stages of growth, the individual prismatic units are single crystals. Their crystalline orientation is not consistent but rather changes gradually during growth. The gradients in crystallographic orientation occur mainly in a direction parallel to the long axis of the prism, i.e. perpendicular to the shell surface and do not show preferential tilting along any of the calcite lattice axes. At a certain growth stage, gradients begin to spread and diverge, implying that the prismatic units split into several crystalline domains. In this way, a branched crystal, in which the ends of the branches are independent crystalline domains, is formed. At the nanometre scale, the material is composed of slightly misoriented domains, which are separated by planes approximately perpendicular to the c-axis. Orientational gradients and splitting processes are described in biocrystals for the first time and are undoubtedly related to the high content of intracrystalline organic molecules, although the way in which these act to induce the observed crystalline patterns is a matter of future research.

  19. Crystallographic orientation inhomogeneity and crystal splitting in biogenic calcite

    PubMed Central

    Checa, Antonio G.; Bonarski, Jan T.; Willinger, Marc G.; Faryna, Marek; Berent, Katarzyna; Kania, Bogusz; González-Segura, Alicia; Pina, Carlos M.; Pospiech, Jan; Morawiec, Adam

    2013-01-01

    The calcitic prismatic units forming the outer shell of the bivalve Pinctada margaritifera have been analysed using scanning electron microscopy–electron back-scatter diffraction, transmission electron microscopy and atomic force microscopy. In the initial stages of growth, the individual prismatic units are single crystals. Their crystalline orientation is not consistent but rather changes gradually during growth. The gradients in crystallographic orientation occur mainly in a direction parallel to the long axis of the prism, i.e. perpendicular to the shell surface and do not show preferential tilting along any of the calcite lattice axes. At a certain growth stage, gradients begin to spread and diverge, implying that the prismatic units split into several crystalline domains. In this way, a branched crystal, in which the ends of the branches are independent crystalline domains, is formed. At the nanometre scale, the material is composed of slightly misoriented domains, which are separated by planes approximately perpendicular to the c-axis. Orientational gradients and splitting processes are described in biocrystals for the first time and are undoubtedly related to the high content of intracrystalline organic molecules, although the way in which these act to induce the observed crystalline patterns is a matter of future research. PMID:23804442

  20. Spin orientation, structure, morphology, and magnetic properties of hematite nanoparticles

    SciTech Connect

    Xu, S.; Habib, A. H.; Gee, S. H.; Hong, Y. K.; McHenry, M. E.

    2015-05-07

    Monodisperse hematite (α-Fe{sub 2}O{sub 3}) nanoparticles were synthesized by forced hydrolysis of acidic Fe{sup 3+} solution. Rietveld analysis was applied to the X-ray powder diffraction data to refine the lattice constants and atomic positions. The lattice constants for a hexagonal unit cell were determined to be a ∼ 0.50327 and c ∼ 1.37521 nm. High resolution transmission electron microscopy was employed to study the morphology of the particles. Atomic scale micrographs and diffraction patterns from several zone axes were obtained. These reveal the high degree of crystallinity of the particles. A series of observations made on the particles by tilting them through a range of ±45° revealed the particles to be micaceous with stacking of platelets with well defined crystallographic orientations. The Morin transition in these nanoparticles was found to occur at 210 K, which is lower temperature than 263 K of bulk hematite. It was ascertained from the previous Mössbauer studies that the spin orientation for nano-sized hematite particle flips from 90° to 28° with respect to the c-axis of the hexagonal structure during the Morin transition, which is in contrast to that observed in bulk hematite where spin orientation flips from 90° to 0°.

  1. Spin orientation, structure, morphology, and magnetic properties of hematite nanoparticles

    NASA Astrophysics Data System (ADS)

    Xu, S.; Habib, A. H.; Gee, S. H.; Hong, Y. K.; McHenry, M. E.

    2015-05-01

    Monodisperse hematite (α-Fe2O3) nanoparticles were synthesized by forced hydrolysis of acidic Fe3+ solution. Rietveld analysis was applied to the X-ray powder diffraction data to refine the lattice constants and atomic positions. The lattice constants for a hexagonal unit cell were determined to be a ˜ 0.50327 and c ˜ 1.37521 nm. High resolution transmission electron microscopy was employed to study the morphology of the particles. Atomic scale micrographs and diffraction patterns from several zone axes were obtained. These reveal the high degree of crystallinity of the particles. A series of observations made on the particles by tilting them through a range of ±45° revealed the particles to be micaceous with stacking of platelets with well defined crystallographic orientations. The Morin transition in these nanoparticles was found to occur at 210 K, which is lower temperature than 263 K of bulk hematite. It was ascertained from the previous Mössbauer studies that the spin orientation for nano-sized hematite particle flips from 90° to 28° with respect to the c-axis of the hexagonal structure during the Morin transition, which is in contrast to that observed in bulk hematite where spin orientation flips from 90° to 0°.

  2. Poly(ethylene oxide) Crystal Orientation Changes in an Inverse Hexagonal Cylindrical Phase Morphology Constructed by a Poly(ethylene oxide)-block-polystyrene Diblock Copolymer

    SciTech Connect

    Huang,P.; Zheng, J.; Leng, S.; Van Horn, R.; Jeong, K.; Thomas, E.; Hsiao, B.

    2006-01-01

    A poly(ethylene oxide)-block-polystyrene (PEO-b-PS) diblock copolymer with number-average molecular weights of 7.7k g/mol for the PS block and 21.4k g/mol for the PEO block was used to study the PEO crystal orientation changes at different crystallization temperatures (T{sub x}) via small- and wide-angle X-ray scattering techniques. For this diblock copolymer, an inverse hexagonal cylinder (IHC) phase morphology was identified with PX cylinders hexagonally packed within the PEO matrix. In this IHC morphology, the PEO blocks were tethered on the convex interfaces of the PS domains, and the crystallization of PEO blocks was outside of the cylinders. The crystal orientation of the PEO blocks (the c-axis of the PEO crystals) after crystallization among the PS cylinders was, for the first time, found to change with respect to the long cylinder axis, a, depending solely on T{sub x}. At very low T{sub x}'s, when the samples were quenched into liquid nitrogen, the crystals possessed a random orientation. When -30 {sup o}C {<=} T{sub x} {<=} 5 {sup o}C, PEO crystals had an orientation with their c-axis parallel to a. Within the temperature region of 10 {sup o}C < T{sub x} {<=} 20 {sup o}C, the c-axis crystal orientation changed to be tilted with respect to a (the tilting angle was defined to be between the c-axis of the PEO crystals and a). This tilting angle increased with increasing T{sub x}. Finally, a major crystal orientation with the c-axes of PEO crystals perpendicular to a was observed with T{sub x} reached 30 {sup o}C. Furthermore, it was particularly interesting that the PEO crystals in the IHC phase were oriented in two dimensions when T{sub x} = 30 {sup o}C. Namely, the PEO crystal growth was specifically grown along the {l_brace}1010{r_brace} planes of the hexagonal PS cylinders. The crystallite sizes were estimated by the Scherrer equation. The PEO crystal sizes, at least along on dimension, were on the scale of the sizes limited by the distance between the

  3. Poly(ethylene oxide) Crystal Orientation Changes in an Inverse Hexagonal Cylindrical Phase Morphology Constructed by a Poly(ethylene oxide)-block-Polystyrene Diblock Copolymer

    SciTech Connect

    Huang,P.; Zheng, J.; Leng, S.; Van Horn, R.; Jeong, K.; Guo, Y.; Quirk, R.; Cheng, S.; Lotz, B.; et al.

    2007-01-01

    A poly(ethylene oxide)-block-polystyrene (PEO-b-PS) diblock copolymer with number-average molecular weights of 7.7k g/mol for the PS block and 21.4k g/mol for the PEO block was used to study the PEO crystal orientation changes at different crystallization temperatures (T{sub x}) via small- and wide-angle X-ray scattering techniques. For this diblock copolymer, an inverse hexagonal cylinder (IHC) phase morphology was identified with PS cylinders hexagonally packed within the PEO matrix. In this IHC morphology, the PEO blocks were tethered on the convex interfaces of the PS domains, and the crystallization of PEO blocks was outside of the cylinders. The crystal orientation of the PEO blocks (the c-axis of the PEO crystals) after crystallization among the PS cylinders was, for the first time, found to change with respect to the long cylinder axis, {cflx a}, depending solely on T{sub x}. At very low T{sub x}'s, when the samples were quenched into liquid nitrogen, the crystals possessed a random orientation. When -30 C {<=}T{sub x} {<=} 5 C, PEO crystals had an orientation with their c-axis parallel to {cflx a}. Within the temperature region of 10 C {<=} T{sub x} {<=} 20 C, the c-axis crystal orientation changed to be tilted with respect to {cflx a} (the tilting angle was defined to be between the c-axis of the PEO crystals and {cflx a}). This tilting angle increased with increasing T{sub x}. Finally, a major crystal orientation with the c-axes of PEO crystals perpendicular to {cflx a} was observed when Tx reached 30 C. Furthermore, it was particularly interesting that the PEO crystals in the IHC phase were oriented in two dimensions when T{sub x} = 30 C. Namely, the PEO crystal growth was specifically grown along the {l_brace}100{r_brace} planes of the hexagonal PS cylinders. The crystallite sizes were estimated by the Scherrer equation. The PEO crystal sizes, at least along one dimension, were on the scale of the sizes limited by the distance between the neighboring

  4. Fabrication and characterization of oriented Nd2NiO4 bulk and cathode for low-temperature operating solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Murata, Atsufumi; Uchikoshi, Tetsuo; Matsuda, Motohide

    2015-10-01

    Textured Nd2NiO4 (NNO) bulks were fabricated by slip casting in a 5 T magnetic field generated by a superconducting magnet. The easy-magnetization axis of NNO was determined by X-ray diffraction (XRD) measurements performed on the surfaces parallel and perpendicular to the applied magnetic field direction of the sintered bulk NNO ceramics. The anisotropic electric conductivity and thermal expansion coefficient of the textured NNO were characterized by the conventional DC four-terminal method and dilatometry, respectively. A higher electric conductivity and lower thermal expansion in the direction perpendicular to the c-axis were confirmed. Based on the obtained experimental data, fabrication of the a-b plane perpendicular-oriented NNO cathode layer on a Gd-doped ceria (GDC) electrolyte was finally attempted in a 0.9 T magnetic field generated by neodymium magnets. The effect of the rotation of the magnetic field in the horizontal plane on the orientation condition of the NNO layer was also investigated. The rotation of the magnetic field could produce the random orientation of the c-axis while retaining the a-b plane orientation against the electrolyte. Based on the performance tests of single cells equipped with different oriented NNO cathodes, the ideal situation of the NNO cathode layer leading to good performance is proposed.

  5. Magnetic properties of in-plane oriented barium hexaferrite thin films prepared by direct current magnetron sputtering

    SciTech Connect

    Zhang, Xiaozhi; Yue, Zhenxing Meng, Siqin; Yuan, Lixin

    2014-12-28

    In-plane c-axis oriented Ba-hexaferrite (BaM) thin films were prepared on a-plane (112{sup ¯}0) sapphire (Al{sub 2}O{sub 3}) substrates by DC magnetron sputtering followed by ex-situ annealing. The DC magnetron sputtering was demonstrated to have obvious advantages over the traditionally used RF magnetron sputtering in sputtering rate and operation simplicity. The sputtering power had a remarkable influence on the Ba/Fe ratio, the hematite secondary phase, and the grain morphology of the as-prepared BaM films. Under 80 W of sputtering power, in-plane c-axis highly oriented BaM films were obtained. These films had strong magnetic anisotropy with high hysteresis loop squareness (M{sub r}/M{sub s} of 0.96) along the in-plane easy axis and low M{sub r}/M{sub s} of 0.03 along the in-plane hard axis. X-ray diffraction patterns and pole figures revealed that the oriented BaM films grew via an epitaxy-like growth process with the crystallographic relationship BaM (101{sup ¯}0)//α-Fe{sub 2}O{sub 3}(112{sup ¯}0)//Al{sub 2}O{sub 3}(112{sup ¯}0)

  6. Neutron diffraction texture analysis for α-Al2O3 oriented by high magnetic field and sintering

    NASA Astrophysics Data System (ADS)

    Terada, N.; Suzuki, H. S.; Suzuki, T. S.; Kitazawa, H.; Sakka, Y.; Kaneko, K.; Metoki, N.

    2009-05-01

    We have performed neutron diffraction experiments on highly oriented α-Al2O3, obtained by slip casting under a magnetic field and sintering. In order to investigate the magnetic field, B, and sintering temperature, Tsint, dependence of the degree of alignment of the orientation, we used samples treated with systematically varied B up to 12 T and Tsint up to 1600 °C. The degree of alignment of the magnetic easy axis (the hexagonal c-axis) is rapidly enhanced by sintering above 1200 °C, which is coincident with the temperature at which crystal grains start to grow. The angular distribution of the c-axis for the sample sintered at 1600 °C, obtained by ω-scan neutron diffraction profiles, is almost coincident with the probability distribution calculated for the particle size two times larger than that in the starting material. We discuss the orientation process mechanism with sintering in light of the results of this analysis.

  7. Orientation alignment of epitaxial LiCoO2 thin films on vicinal SrTiO3 (100) substrates

    NASA Astrophysics Data System (ADS)

    Nishio, Kazunori; Ohnishi, Tsuyoshi; Mitsuishi, Kazutaka; Ohta, Narumi; Watanabe, Ken; Takada, Kazunori

    2016-09-01

    LiCoO2 is epitaxially grown on SrTiO3 (100) substrates with (104) orientation. Because the LiCoO2 film is grown with its c-axis parallel to four equivalent <111> axes of the SrTiO3, the (104)-oriented film exhibits four-domain structure on the SrTiO3 (100) substrate. Introducing off-cut angle to the substrate surface breaks the equivalency between the four <111> axes of the SrTiO3 substrate to induce preferential growth of specific orientation with the c-axis in a descending direction of off-cut surface. Increasing off-cut angle and lowering deposition rate promote the preferential growth, because they facilitate step-flow growth mode, and finally align the c-axes in the domains completely into one <111> direction of the SrTiO3 substrate. The LiCoO2 film delivers a discharge capacity of 90 mAh g-1 at a low discharge rate of 0.01 C, and 25% of capacity is kept even at a high rate of discharge with 100 C.

  8. Orientational coupling between the vortex lattice and the crystalline lattice in a weakly pinned Co0.0075NbSe2 single crystal

    NASA Astrophysics Data System (ADS)

    Ganguli, Somesh Chandra; Singh, Harkirat; Ganguly, Rini; Bagwe, Vivas; Thamizhavel, Arumugam; Raychaudhuri, Pratap

    2016-04-01

    We report experimental evidence of strong orientational coupling between the crystal lattice and the vortex lattice in a weakly pinned Co-doped NbSe2 single crystal through direct imaging using low temperature scanning tunneling microscopy/spectroscopy. When the magnetic field is applied along the six-fold symmetric c-axis of the NbSe2 crystal, the basis vectors of the vortex lattice are preferentially aligned along the basis vectors of the crystal lattice. The orientational coupling between the vortex lattice and crystal lattice becomes more pronounced as the magnetic field is increased. This orientational coupling enhances the stability of the orientational order of the vortex lattice, which persists even in the disordered state at high fields where dislocations and disclinations have destroyed the topological order. Our results underpin the importance of crystal lattice symmetry on the vortex state phase diagram of weakly pinned type II superconductors.

  9. Effect of hydrogen in controlling the structural orientation of ZnO:Ga:H as transparent conducting oxide films suitable for applications in stacked layer devices.

    PubMed

    Mondal, Praloy; Das, Debajyoti

    2016-07-27

    Hydrogenation of the ZnO:Ga network has been chosen as a promising avenue to further upgrade the optoelectronic and structural properties of the films. With an optimum incorporation of hydrogen at a low substrate temperature (TS = 100 °C) in RF magnetron sputtering plasma, the ZnO:Ga:H film, with a large crystallite size (∼17 nm) and improved crystallinity along the optimally preferred c-axis orientation with respect to both the 〈100〉 (I〈002〉/I〈100〉 ∼ 74) and 〈103〉 (I〈002〉/I〈103〉 ∼ 10) directions, attains a high electrical conductivity (σ ∼ 1.5 × 10(3)) and ∼90% visible range optical transmission that yields a wide optical band gap of ∼3.78 eV. The dominant c-axis orientation of the ZnO crystals exhibits a distinct UV luminescence band at ∼340 nm that arises as a result of the typical exciton emission or near-band-edge emission, which occurs due to the recombination of photo-generated electrons and holes in the valence band or in traps near the valence band. Vacancies created by the out diffusion of oxygen from the network induces the growth along the 〈103〉 crystallographic orientation. With the introduction of an optimum amount of hydrogen into the network, the VO peak (OII) in the O 1s XPS spectrum significantly reduces in intensity while the Zn-OH peak (OIII) increases, indicating enhanced surface absorption of O species, which causes the improvement of c-axis orientation. The increase in the conductivity has been attributed to the centers assigned to isolated hydrogen atoms in the anti-bonding sites (ABO) or bond-centered sites of O-Zn bonds (BC), and Zn vacancies passivated by one or two hydrogen atoms. Hydrogen-induced dopant-like defects in the film and the associated large amount of tensile stress developed within the network has been correlated to the high conductivity and the wide band gap of the ZnO:Ga:H film due to the decreased repulsion between the O 2p and the Zn 4s bands and the Burstein-Moss effect as a

  10. Effect of hydrogen in controlling the structural orientation of ZnO:Ga:H as transparent conducting oxide films suitable for applications in stacked layer devices.

    PubMed

    Mondal, Praloy; Das, Debajyoti

    2016-07-27

    Hydrogenation of the ZnO:Ga network has been chosen as a promising avenue to further upgrade the optoelectronic and structural properties of the films. With an optimum incorporation of hydrogen at a low substrate temperature (TS = 100 °C) in RF magnetron sputtering plasma, the ZnO:Ga:H film, with a large crystallite size (∼17 nm) and improved crystallinity along the optimally preferred c-axis orientation with respect to both the 〈100〉 (I〈002〉/I〈100〉 ∼ 74) and 〈103〉 (I〈002〉/I〈103〉 ∼ 10) directions, attains a high electrical conductivity (σ ∼ 1.5 × 10(3)) and ∼90% visible range optical transmission that yields a wide optical band gap of ∼3.78 eV. The dominant c-axis orientation of the ZnO crystals exhibits a distinct UV luminescence band at ∼340 nm that arises as a result of the typical exciton emission or near-band-edge emission, which occurs due to the recombination of photo-generated electrons and holes in the valence band or in traps near the valence band. Vacancies created by the out diffusion of oxygen from the network induces the growth along the 〈103〉 crystallographic orientation. With the introduction of an optimum amount of hydrogen into the network, the VO peak (OII) in the O 1s XPS spectrum significantly reduces in intensity while the Zn-OH peak (OIII) increases, indicating enhanced surface absorption of O species, which causes the improvement of c-axis orientation. The increase in the conductivity has been attributed to the centers assigned to isolated hydrogen atoms in the anti-bonding sites (ABO) or bond-centered sites of O-Zn bonds (BC), and Zn vacancies passivated by one or two hydrogen atoms. Hydrogen-induced dopant-like defects in the film and the associated large amount of tensile stress developed within the network has been correlated to the high conductivity and the wide band gap of the ZnO:Ga:H film due to the decreased repulsion between the O 2p and the Zn 4s bands and the Burstein-Moss effect as a

  11. Measurement of Optical Functions of Highly Oriented Pyrolytic Graphite in the Visible

    SciTech Connect

    Jellison Jr, Gerald Earle; Hunn, John D; Lee, Ho Nyung

    2007-01-01

    The spectroscopic dielectric functions of highly oriented pyrolytic graphite (HOPG) are determined at 9 different wavelengths from 405 to 750 nm (3.06 to 1.65 eV). This determination is made on the basis of two ellipsometry measurements: 1) Standard ellipsometry measurements are performed on HOPG with the c-axis perpendicular to the sample surface, and 2) Two-modulator generalized ellipsometry microscope (2-MGEM) measurements are performed on HOPG cut and polished such that the c-axis is parallel to the sample surface. Both the ordinary and extraordinary complex dielectric functions show non-zero absorption throughout the observed spectral range, while the ordinary dielectric function shows Drude-like behavior at longer wavelengths. From this, it can be concluded that graphite is metallic for visible light polarized parallel to the graphene planes, but acts more as a semiconductor or semimetal for visible light polarized perpendicular to the graphene planes. The 2-MGEM technique can also be used to generate images of the diattenuation, retardation, and direction of the principal axis.

  12. Theories of Sexual Orientation.

    ERIC Educational Resources Information Center

    Storms, Michael D.

    1980-01-01

    Results indicated homosexuals, heterosexuals, and bisexuals did not differ within each sex on measures of masculinity and femininity. Strong support was obtained for the hypothesis that sexual orientation relates primarily to erotic fantasy orientation. (Author/DB)

  13. Lateral orientation (image)

    MedlinePlus

    ... chest, and the ears are lateral to the head. A medial orientation is a position toward the midline of the body. An example of medial orientation is the eyes, which are medial to the ears on the head.

  14. They Call it Orienteering

    ERIC Educational Resources Information Center

    Wexler, Mark

    1977-01-01

    Through the use of personal anecdotes, the author details his initial experience with orienteering, a sport rapidly increasing in popularity that teaches people not to get lost in the woods. Sources of information about orienteering are provided. (BT)

  15. Determination of crystallographic orientation of lead-free piezoelectric (K,Na)NbO{sub 3} epitaxial thin films grown on SrTiO{sub 3} (100) surfaces

    SciTech Connect

    Yu, Qi; Zhu, Fang-Yuan; Cheng, Li-Qian; Wang, Ke; Li, Jing-Feng

    2014-03-10

    Crystallographic structure of sol-gel-processed lead-free (K,Na)NbO{sub 3} (KNN) epitaxial films on [100]-cut SrTiO{sub 3} single-crystalline substrates was investigated for a deeper understanding of its piezoelectric response. Lattice parameter measurement by high-resolution X-ray diffraction and transmission electron microscopy revealed that the orthorhombic KNN films on SrTiO{sub 3} (100) surfaces are [010] oriented (b-axis-oriented) rather than commonly identified c-axis orientation. Based on the crystallographic orientation and corresponding ferroelectric domain structure investigated by piezoresponse force microscopy, the superior piezoelectric property along b-axis of epitaxial KNN films than other orientations can be explained.

  16. Preferential growth orientation of laser-patterned LiNbO{sub 3} crystals in lithium niobium silicate glass

    SciTech Connect

    Komatsu, T.; Koshiba, K.; Honma, T.

    2011-02-15

    Dots and lines consisting of LiNbO{sub 3} crystals are patterned on the surface of 1CuO-40Li{sub 2}O-32Nb{sub 2}O{sub 5}-28SiO{sub 2} (mole ratio) glass by irradiations of continuous-wave Nd:YAG laser (wavelength: {lambda}=1064 nm), diode laser ({lambda}=795 nm), and Yb:YVO{sub 4} fiber laser ({lambda}=1080 nm), and the feature of laser-patterned LiNbO{sub 3} crystal growth is examined from linearly polarized micro-Raman scattering spectrum measurements. LiNbO{sub 3} crystals with the c-axis orientation are formed at the edge parts of the surface and cross-section of dots. The growth direction of an LiNbO{sub 3} along the laser scanning direction is the c-axis. It is proposed that the profile of the temperature distribution in the laser-irradiated region and its change along laser scanning would be one of the most important conditions for the patterning of crystals with a preferential growth orientation. Laser irradiation giving a narrow width is also proposed to be one of the important factors for the patterning of LiNbO{sub 3} crystal lines with homogeneous surface morphologies. -- Graphical abstract: Polarized optical microscope observations for the surface and cross-section of the dot obtained by LD laser ({lambda}=795 nm) irradiations of P=1.4 W and t=20 s in Cu-LNS glass. Schematic model for the orientation of LiNbO{sub 3} crystals at the edge parts of the surface and cross-section of the dot is also shown. Display Omitted Research highlights: > Dots and lines with LiNbO{sub 3} crystals are patterned on the glass surface by laser irradiations. > LiNbO{sub 3} crystals with the c-axis orientation are formed at the edge parts of the surface and cross-section of dots. > The profile of the temperature distribution in the laser-irradiated region is one of the most important conditions for the patterning of highly oriented crystals.

  17. Microstructure and Grain Orientation Evolution in Sn-3.0Ag-0.5Cu Solder Interconnects Under Electrical Current Stressing

    NASA Astrophysics Data System (ADS)

    Chen, Hongtao; Hang, Chunjin; Fu, Xing; Li, Mingyu

    2015-10-01

    In situ observation was performed on cross-sections of Sn-3.0Ag-0.5Cu solder interconnects to track the evolution of microstructure and grain orientation under electrical current stressing. Cross-sections of Cu/Ni-Sn-3.0Ag-0.5Cu-Ni/Cu sandwich-structured solder interconnects were prepared by the standard metallographic method and subjected to electrical current stressing for different times. The electron backscatter diffraction technique was adopted to characterize the grain orientation and structure of the solder interconnects. The results show that metallization dissolution and intermetallic compound (IMC) migration have close relationships with the grain orientation and structure of the solder interconnects. Ni metallization dissolution at the cathode interface and IMC migration in the solder bulk can be accelerated when the c-axis of the grain is parallel to the electron flow direction, while no observable change was found when the c-axis of the grain was perpendicular to the electron flow direction. IMC can migrate along or be blocked at the grain boundary, depending on the misorientation between the current flow direction and grain boundary.

  18. Convex Image Orientation from Relative Orientations

    NASA Astrophysics Data System (ADS)

    Reich, M.; Heipke, C.

    2016-06-01

    In this paper we propose a novel workflow for the estimation of global image orientations given relative orientations between pairs of overlapping images. Our approach is convex and independent on initial values. First, global rotations are estimated in a relaxed semidefinite program (SDP) and refined in an iterative least squares adjustment in the tangent space of SO(3). A critical aspect is the handling of outliers in the relative orientations. We present a novel heuristic graph based approach for filtering the relative rotations that outperforms state-of-the-art robust rotation averaging algorithms. In a second part we make use of point-observations, tracked over a set of overlapping images and formulate a linear homogeneous system of equations to transfer the scale information between triplets of images, using estimated global rotations and relative translation directions. The final step consists of refining the orientation parameters in a robust bundle adjustment. The proposed approach handles outliers in the homologous points and relative orientations in every step of the processing chain. We demonstrate the robustness of the procedure on synthetic data. Moreover, the performance of our approach is illustrated on real world benchmark data.

  19. Microscale strain partitioning? Differential quartz lattice preferred orientation development in micaceous phyllite, Hindu Kush, northwestern Pakistan

    NASA Astrophysics Data System (ADS)

    Larson, K. P.; Lamming, J. L.; Faisal, S.

    2014-09-01

    Spatially referenced quartz c axis fabrics demonstrate the preservation of multiple, distinct fabrics in a specimen collected from northwestern Pakistan. The overall fabric yielded by the specimen is dominated by a single population of quartz grains, while the fabric signatures of two other unique, spatially distinct populations are overwhelmed. It is these minor fabrics, however, that provide information on temperature of deformation (403 ± 50 °C), differential stress (8.6 + 2.6/-1.5 MPa to 15.0 +3.8/-2.5 MPa), strain rate (10-16 s-1 to 10-15 s-1), and strain partitioning recorded by the specimen. This work highlights the potential importance of using spatially referenced data when conducting lattice preferred orientation analyses.

  20. Ice crystals growing on K-feldspar (microcline) have preferential orientation dictated by feldspar lattice structure

    NASA Astrophysics Data System (ADS)

    Kiselev, A. A.; Bachmann, F.; Pedevilla, P.; Cox, S.; Michaelides, A.

    2014-12-01

    Recently, we have conducted experiments on deposition nucleation and growth of ice on freshly cleaved natural K-feldspar (microcline) crystals exposed to water vapor in the Environmental Scanning Electron Microscope (ESEM, FEI Quanta 650 FEG). Independently adjusting the partial water vapor pressure in the sample chamber and the temperature of the substrate mounted on top of the double-stage Peltier element, deposition ice nucleation, growth, and sublimation can be studied within the temperature range from -5°C to -60°C. By using small crystal size and tilted geometry we have been able to record the video sequences of ice nucleation taking place on both 001 and 010 crystallographic planes simultaneously. Here, we report the following general features of ice nucleation and growth observed in these experiments: Nucleation of ice always starts before the water saturation is reached. Ice was preferentially nucleating on surface defects (steps, cracks, and pits) or on the debris particles scattered over the surface of feldspar crystal. Ice crystals grown via deposition at temperatures above -30°C on any of the feldspar crystal faces have shown the same directional and rotational orientation, with c-axis of ice aligned with the c-axis of microcline unit cell. Below -35°C no preferential orientation has been observed whatsoever. The majority of observed ice crystals exhibit the evaporation groove at the waist of hexagonal prism, indicting the presence of lattice dislocations in the crystal nucleation plane. We discuss a possible mechanism of crystal lattice alignment by considering layer of ordered water on the surface of feldspar crystal forming prior to ice nucleation. Using density functional theory we show how the mineral surface interacts with water, particularly addressing the interaction of surface cations and hydroxyl groups with a water overlayer. We argue that the misalignment of the 001 lattice planes for microcline and ice (inherently following from the