C-Axis-Oriented Hydroxyapatite Film Grown Using ZnO Buffer Layer
NASA Astrophysics Data System (ADS)
Sakoishi, Yasuhiro; Iguchi, Ryo; Nishikawa, Hiroaki; Hontsu, Shigeki; Hayami, Takashi; Kusunoki, Masanobu
2013-11-01
A method of fabricating c-axis-oriented hydroxyapatite film on a quartz crystal microbalance (QCM) sensor was investigated. ZnO was used as a template to obtain a hexagonal hydroxyapatite crystal of uniaxial orientation. The ZnO was grown as a c-axis film on a Au/quartz with the surface structure of a QCM sensor. Under optimized conditions, hydroxyapatite was deposited by pulsed laser deposition. X-ray diffraction showed the hydroxyapatite film to be oriented along the c-axis. Because Au and ZnO are applied to many devices, the anisotropic properties of hydroxyapatite may be incorporated into these devices as well as QCM sensors.
Doping induced c-axis oriented growth of transparent ZnO thin film
NASA Astrophysics Data System (ADS)
Mistry, Bhaumik V.; Joshi, U. S.
2018-04-01
c-Axis oriented In doped ZnO (IZO) transparent conducting thin films were optimized on glass substrate using sol gel spin coating method. The Indium content in ZnO was varied systematically and the structural parameters were studied. Along with the crystallographic properties, the optoelectronic and electrical properties of IZO thin films were investigated in detail. The IZO thin films revealed hexagonal wurtzite structure. It was found that In doping in ZnO promotes the c-axis oriented growth of the thin films deposited on amorphous substrate. The particle size of the IZO films were increase as doping content increases from 2% to 5%. The 2% In doped ZnO film show electrical resistivity of 0.11 Ω cm, which is far better than the reported value for ZnO thin film. Better than 75% average optical transmission was estimated in the wavelength range from 400-800 nm. Systematic variartions in the electron concentration and band gap was observed with increasing In doping. Note worthy finding is that, with suitable amount of In doping improves not only transparency and conductivity but also improves the preferred orientation of the oxide thin film.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saha, Tridib, E-mail: tridib.saha@monash.edu; Achath Mohanan, Ajay, E-mail: ajay.mohanan@monash.edu; Swamy, Varghese, E-mail: varghese.swamy@monash.edu
Highlights: • c-Axis alignment of ZnO nanowires was optimized using self-seeding thermal evaporation method. • Influence of purified air on the morphology and optoelectronic properties were studied. • Nanowires grown under optimal conditions exhibit strong UV emission peak in PL spectrum. • Optimized growth condition establish nanowires of excellent UV sensing characteristics - Abstract: Well-aligned (c-axis oriented) ZnO nanowire arrays were successfully synthesized on Si (1 0 0) substrates through an optimized self-seeding thermal evaporation method. An open-ended chemical vapor deposition (CVD) setup was used in the experiment, with argon and purified air as reaction gases. Epitaxial growth of c-axismore » oriented ZnO nanowires was observed for 5 sccm flow rate of purified air, whereas Zn/Zn suboxide layers and multiple polycrystalline layers of ZnO were obtained for absence and excess of purified air, respectively. Ultraviolet (UV) sensing and emission properties of the as-grown ZnO nanostructures were investigated through the current–voltage (I–V) characteristics of the nanowires under UV (λ = 365 nm) illumination of 8 mW/cm{sup 2} and using photoluminescence spectra. Nanowires grown under optimum flow of air emitted four times higher intensity of 380 nm UV light as well as exhibited 34 times higher UV radiation sensitivity compared to that of other nanostructures synthesized in this study.« less
Jehl, Z; Rousset, J; Donsanti, F; Renou, G; Naghavi, N; Lincot, D
2010-10-01
The electrodeposition of ZnO nanorods on ZnO:Al films with different orientations is reported. The influence of the total charge exchanged during electrodeposition on the nanorod's geometry (length, diameter, aspect ratio and surface density) and the optical transmission properties of the nanorod arrays is studied on a [0001]-oriented ZnO:Al substrate. The nanorods are highly vertically oriented along the c axis, following the lattice matching with the substrate. The growth on a [1010] and [1120] ZnO:Al-oriented substrate with c axis parallel to the substrate leads to a systematic deviation angle of 55 degrees from the perpendicular direction. This finding has been explained by the occurrence of a minority orientation with the [1011] planes parallel to the surface, with a preferential growth on corresponding [0001] termination. Substrate crystalline orientation is thereby found to be a major parameter in finely tuning the orientation of the nanorod array. This new approach allows us to optimize the light scattering properties of the films.
NASA Astrophysics Data System (ADS)
Yu, Z. X.; Ma, Y. Z.; Zhao, Y. L.; Huang, J. B.; Wang, W. Z.; Moliere, M.; Liao, H. L.
2017-08-01
Solution precursor plasma spraying (SPPS) as a novel thermal spray method was employed to deposit nano-structured ZnO thin film using different formulations of the precursor solution. This article focuses on the influence of the solution composition on the preferential orientation of crystal growth, on crystal size and surface morphology of the resulting ZnO films. The trend of preferential growth along (002) lattice plane of ZnO film was studied by slow scanning X-ray diffraction using a specific coefficient P(002). It appears that the thermal spray process promotes the buildup of ZnO films preferentially oriented along the c-axis. The shape of single particle tends to change from round shaped beads to hexagonal plates by increasing the volume ratio of ethanol in the solvent. Both cauliflower and honeycomb-like surface morphologies featuring high specific surface area and roughness were obtained through the SPPS process by varying solution composition. These ZnO films are hydrophobic with contact angle as high as 136°, which is seemingly associated with micro reliefs developing high surface specific area. Then the gas sensing performances of ZnO films preferentially oriented along (002) face were tentatively predicted using the "first principle calculation method" and were compared with those of conventional films that are mainly oriented along the (101) face. The (002) face displays better hydrogen adsorption capability than the (101) face with much larger resulting changes in electrical resistance. In conclusion, the c-axis oriented ZnO films obtained through SSPS have favorable performances to be used as sensitive layer in gas sensing applications.
Room temperature chemical vapor deposition of c-axis ZnO
NASA Astrophysics Data System (ADS)
Barnes, Teresa M.; Leaf, Jacquelyn; Fry, Cassandra; Wolden, Colin A.
2005-02-01
Highly (0 0 2) oriented ZnO films have been deposited at temperatures between 25 and 230 °C by high-vacuum plasma-assisted chemical vapor deposition (HVP-CVD) on glass and silicon substrates. The HVP-CVD process was found to be weakly activated with an apparent activation energy of ∼0.1 eV, allowing room temperature synthesis. Films deposited on both substrates displayed a preferential c-axis texture over the entire temperature range. Films grown on glass demonstrated high optical transparency throughout the visible and near infrared.
NASA Astrophysics Data System (ADS)
Saha, Shibu; Mehan, Navina; Sreenivas, K.; Gupta, Vinay
2009-08-01
Temperature dependent optical properties of c-axis oriented ZnO thin film were investigated using surface plasmon resonance (SPR) technique. SPR data for double layer (prism-Au-ZnO-air) and single layer (prism-Au-air) systems were taken over a temperature range (300-525 K). Dielectric constant at optical frequency and real part of refractive index of the ZnO film shows an increase with temperature. The bandgap of the oriented ZnO film was found to decrease with rise in temperature. The work indicates a promising application of the system as a temperature sensor and highlights an efficient scientific tool to study optical properties of thin film under varying ambient conditions.
Bandgap tuning in highly c-axis oriented Zn1-xMgxO thin films
NASA Astrophysics Data System (ADS)
Kumar, Parmod; Malik, Hitendra K.; Ghosh, Anima; Thangavel, R.; Asokan, K.
2013-06-01
We propose Mg doping in zinc oxide (ZnO) films for realizing wider optical bandgap in highly c-axis oriented Zn1-xMgxO (0 ≤ x ≤ 0.3) thin films. A remarkable enhancement of 25% in the bandgap by 30% Mg doping was achieved. The bandgap was tuned between 3.25 eV (ZnO) and 4.06 eV (Zn0.7Mg0.3O), which was further confirmed by density functional theory based wien2k simulation employing a combined generalized gradient approximation with scissor corrections. The change of stress and crystallite size in these films were found to be the causes for the observed blueshift in the bandgap.
Controllable dimension of ZnO nanowalls on GaN/c-Al2O3 substrate by vapor phase epitaxy method.
Song, W Y; Shin, T I; Kang, S M; Kim, S W; Yang, J H; Park, M H; Yang, C W; Yoon, D H
2008-09-01
Vertically well-aligned ZnO nanowalls were successfully synthesized at 950-1050 degrees C. Ar gas was introduced into the furnace at a flow rate of 2000-2500 sccm. An Au thin film with a thickness of 3 nm was used as a catalyst. The ZnO nanowalls were successfully grown on the substrate and most of them had nearly the same thickness and were oriented perpendicular to the substrate. The morphology and chemical composition of the ZnO nanowalls were examined as a function of the growth conditions examined. It was found that the grown ZnO nanowalls have a single-crystalline hexagonal structure and preferred c-axis growth orientation based on the X-ray diffraction and high-resolution transmission electron microscope measurements. The room temperature photoluminescence showed a strong free-exciton emission band with negligible deep level emission, indicating the high optical property of our ZnO nanowall samples.
NASA Astrophysics Data System (ADS)
Shandilya, Swati; Tomar, Monika; Sreenivas, K.; Gupta, Vinay
2009-05-01
Highly c-axis oriented LiNbO3 films are deposited using pulsed laser deposition on a silicon substrate using a transparent conducting Al doped ZnO layer. X-ray diffraction and Raman spectroscopic analysis show the fabrication of single phase and oriented LiNbO3 films under the optimized deposition condition. An extra peak at 905 cm-1 was observed in the Raman spectra of LiNbO3 film deposited at higher substrate temperature and higher oxygen pressure, and attributed to the presence of niobium antisite defects in the lattice. Dielectric constant and ac conductivity of oriented LiNbO3 films deposited under the static and rotating substrate modes have been studied. Films deposited under the rotating substrate mode exhibit dielectric properties close to the LiNbO3 single crystal. The cause of deviation in the dielectric properties of the film deposited under the static substrate mode, in comparison with the bulk, are discussed in the light of the possible formation of an interdiffusion layer at the interface of the LiNbO3 film and the Al : ZnO layer.
Effect of intrinsic zinc oxide coating on the properties of Al-doped zinc oxide nanorod arrays
NASA Astrophysics Data System (ADS)
Saidi, S. A.; Mamat, M. H.; Ismail, A. S.; Malek, M. F.; Yusoff, M. M.; Sin, N. D. Md.; Zoolfakar, A. S.; Khusaimi, Z.; Rusop, M.
2018-05-01
The aim of this study was to explore the influence of intrinsic zinc oxide (ZnO) coating fabricated by a simple immersion method. X-ray powder diffraction (XRD) analysis indicated that the Al-doped ZnO nanorod arrays films had a hexagonal wurtzite structure, similar to that of an intrinsic ZnO coating. Structural properties of the samples were characterised using field emission scanning electron microscopy (FESEM; JEOL JSM-7600F) and optical properties using X-ray diffraction (XRD). The XRD results showed that all films were crystallized under hexagonal wurtzite structure and presented a preferential orientation along the c-axis (002) was obtained. The XRD results showed that the intrinsic ZnO coating material had a strong orientation, whereas the ZnO was randomly oriented. Overall these results indicate that intrinsic ZnO coating are pontetial for the creation of functional materials such as barrier protection, optoelectronic devices, humidity sensor and ultraviolet photoconductive sensor.
NASA Astrophysics Data System (ADS)
Kunj, Saurabh; Sreenivas, K.
2016-05-01
Radio frequency Magnetron sputtering technique was employed to fabricate ZnO thin films on quartz substrate at room temperature. The effect of varying oxygen to argon (O2/Ar) gas ratio on the structural and photoluminescence properties of the film is analyzed.X-ray diffraction (XRD) spectra reveals the formation of hexagonal wurtzite structured ZnO thin films with preferred orientation along (002) plane. Photoluminescence (PL) characterization reveals the preparation of highly crystalline films exhibiting intense Ultraviolet (UV) emission with negligible amount of defects as indicated by the absence of Deep Level Emission (DLE) in the PL spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunj, Saurabh, E-mail: saurabhkunj22@gmail.com; Sreenivas, K.
2016-05-23
Radio frequency Magnetron sputtering technique was employed to fabricate ZnO thin films on quartz substrate at room temperature. The effect of varying oxygen to argon (O{sub 2}/Ar) gas ratio on the structural and photoluminescence properties of the film is analyzed.X-ray diffraction (XRD) spectra reveals the formation of hexagonal wurtzite structured ZnO thin films with preferred orientation along (002) plane. Photoluminescence (PL) characterization reveals the preparation of highly crystalline films exhibiting intense Ultraviolet (UV) emission with negligible amount of defects as indicated by the absence of Deep Level Emission (DLE) in the PL spectra.
Guillemin, Sophie; Parize, Romain; Carabetta, Joseph; Cantelli, Valentina; Albertini, David; Gautier, Brice; Brémond, Georges; Fong, Dillon D; Renevier, Hubert; Consonni, Vincent
2017-03-03
The polarity in ZnO nanowires is an important issue since it strongly affects surface configuration and reactivity, nucleation and growth, electro-optical properties, and nanoscale-engineering device performances. However, measuring statistically the polarity of ZnO nanowire arrays grown by chemical bath deposition and elucidating its correlation with the polarity of the underneath polycrystalline ZnO seed layer grown by the sol-gel process represents a major difficulty. To address that issue, we combine resonant x-ray diffraction (XRD) at Zn K-edge using synchrotron radiation with piezoelectric force microscopy and polarity-sensitive chemical etching to statistically investigate the polarity of more than 10 7 nano-objects both on the macroscopic and local microscopic scales, respectively. By using high temperature annealing under an argon atmosphere, it is shown that the compact, highly c-axis oriented ZnO seed layer is more than 92% Zn-polar and that only a few small O-polar ZnO grains with an amount less than 8% are formed. Correlatively, the resulting ZnO nanowires are also found to be Zn-polar, indicating that their polarity is transferred from the c-axis oriented ZnO grains acting as nucleation sites in the seed layer. These findings pave the way for the development of new strategies to form unipolar ZnO nanowire arrays as a requirement for a number of nanoscale-engineering devices like piezoelectric nanogenerators. They also highlight the great advantage of resonant XRD as a macroscopic, non-destructive method to simultaneously and statistically measure the polarity of ZnO nanowire arrays and of the underneath ZnO seed layer.
NASA Astrophysics Data System (ADS)
Guillemin, Sophie; Parize, Romain; Carabetta, Joseph; Cantelli, Valentina; Albertini, David; Gautier, Brice; Brémond, Georges; Fong, Dillon D.; Renevier, Hubert; Consonni, Vincent
2017-03-01
The polarity in ZnO nanowires is an important issue since it strongly affects surface configuration and reactivity, nucleation and growth, electro-optical properties, and nanoscale-engineering device performances. However, measuring statistically the polarity of ZnO nanowire arrays grown by chemical bath deposition and elucidating its correlation with the polarity of the underneath polycrystalline ZnO seed layer grown by the sol-gel process represents a major difficulty. To address that issue, we combine resonant x-ray diffraction (XRD) at Zn K-edge using synchrotron radiation with piezoelectric force microscopy and polarity-sensitive chemical etching to statistically investigate the polarity of more than 107 nano-objects both on the macroscopic and local microscopic scales, respectively. By using high temperature annealing under an argon atmosphere, it is shown that the compact, highly c-axis oriented ZnO seed layer is more than 92% Zn-polar and that only a few small O-polar ZnO grains with an amount less than 8% are formed. Correlatively, the resulting ZnO nanowires are also found to be Zn-polar, indicating that their polarity is transferred from the c-axis oriented ZnO grains acting as nucleation sites in the seed layer. These findings pave the way for the development of new strategies to form unipolar ZnO nanowire arrays as a requirement for a number of nanoscale-engineering devices like piezoelectric nanogenerators. They also highlight the great advantage of resonant XRD as a macroscopic, non-destructive method to simultaneously and statistically measure the polarity of ZnO nanowire arrays and of the underneath ZnO seed layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guillemin, Sophie; Parize, Romain; Carabetta, Joseph
The polarity in ZnO nanowires is an important issue since it strongly affects surface configuration and reactivity, nucleation and growth, electro-optical properties, and nanoscaleengineering device performances. However, measuring statistically the polarity of ZnO nanowire arrays grown by chemical bath deposition and elucidating its correlation with the polarity of the underneath polycrystalline ZnO seed layer grown by the sol–gel process represents a major difficulty. To address that issue, we combine resonant x-ray diffraction (XRD) at Zn K-edge using synchrotron radiation with piezoelectric force microscopy and polarity-sensitive chemical etching to statistically investigate the polarity of more than 107 nano-objects both on themore » macroscopic and local microscopic scales, respectively. By using high temperature annealing under an argon atmosphere, it is shown that the compact, highly c-axis oriented ZnO seed layer is more than 92% Zn-polar and that only a few small O-polar ZnO grains with an amount less than 8% are formed. Correlatively, the resulting ZnO nanowires are also found to be Zn-polar, indicating that their polarity is transferred from the c-axis oriented ZnO grains acting as nucleation sites in the seed layer. These findings pave the way for the development of new strategies to form unipolar ZnO nanowire arrays as a requirement for a number of nanoscaleengineering devices like piezoelectric nanogenerators. They also highlight the great advantage of resonant XRD as a macroscopic, non-destructive method to simultaneously and statistically measure the polarity of ZnO nanowire arrays and of the underneath ZnO seed layer.« less
Chao, Chung-Hua; Wei, Da-Hua
2015-01-01
In this study, zinc oxide (ZnO) thin films with high c-axis (0002) preferential orientation have been successfully and effectively synthesized onto silicon (Si) substrates via different synthesized temperatures by using plasma enhanced chemical vapor deposition (PECVD) system. The effects of different synthesized temperatures on the crystal structure, surface morphologies and optical properties have been investigated. The X-ray diffraction (XRD) patterns indicated that the intensity of (0002) diffraction peak became stronger with increasing synthesized temperature until 400 oC. The diffraction intensity of (0002) peak gradually became weaker accompanying with appearance of (10-10) diffraction peak as the synthesized temperature up to excess of 400 oC. The RT photoluminescence (PL) spectra exhibited a strong near-band-edge (NBE) emission observed at around 375 nm and a negligible deep-level (DL) emission located at around 575 nm under high c-axis ZnO thin films. Field emission scanning electron microscopy (FE-SEM) images revealed the homogeneous surface and with small grain size distribution. The ZnO thin films have also been synthesized onto glass substrates under the same parameters for measuring the transmittance. For the purpose of ultraviolet (UV) photodetector application, the interdigitated platinum (Pt) thin film (thickness ~100 nm) fabricated via conventional optical lithography process and radio frequency (RF) magnetron sputtering. In order to reach Ohmic contact, the device was annealed in argon circumstances at 450 oC by rapid thermal annealing (RTA) system for 10 min. After the systematic measurements, the current-voltage (I-V) curve of photo and dark current and time-dependent photocurrent response results exhibited a good responsivity and reliability, indicating that the high c-axis ZnO thin film is a suitable sensing layer for UV photodetector application. PMID:26484561
NASA Astrophysics Data System (ADS)
Nomoto, Junichi; Makino, Hisao; Yamamoto, Tetsuya
2016-06-01
Five hundred-nanometer-thick ZnO-based textured polycrystalline films consisting of 490-nm-thick Al-doped ZnO (AZO) films deposited on 10-nm-thick Ga-doped ZnO (GZO) films exhibited a high Hall mobility ( μ H) of 50.1 cm2/Vs with a carrier concentration ( N) of 2.55 × 1020 cm-3. Firstly, the GZO films were prepared on glass substrates by ion plating with dc arc discharge, and the AZO films were then deposited on the GZO films by direct current magnetron sputtering (DC-MS). The GZO interface layers with a preferential c-axis orientation play a critical role in producing AZO films with texture development of a well-defined (0001) orientation, whereas 500-nm-thick AZO films deposited by only DC-MS showed a mixture of the c-plane and the other plane orientation, to exhibit a μ H of 38.7 cm2/Vs with an N of 2.22 × 1020 cm-3.
NASA Astrophysics Data System (ADS)
Yoon, Im Taek; Cho, Hak Dong; Lee, Sejoon; Roshchupkin, Dmitry V.
2018-02-01
We have fabricated as-grown ZnO nanorods (NRs) and carbon-assisted NR arrays on semi-insulating (100)-oriented Si substrates. We compared the structural and luminescent properties of them. High-resolution transmission microscopy, field emission scanning electron microscopy, x-ray diffraction and energy-dispersive x-ray revealed that the as-grown ZnO NRs and carbon-assisted ZnO NRs were single crystals with a hexagonal wurtzite structure, and grew with a c-axis orientation perpendicular to the Si substrate. These measurements show that the carbon-assisted ZnO NRs were better synthesized vertically on an Si substrate compared to the as-grown ZnO NRs. Photoluminescence measurements showed that luminescence intensity of the carbon-assisted ZnO NRs was enhanced compared to the as-grown ZnO NRs. The enhanced luminescence intensity of the carbon-assisted ZnO demonstrates the possible improvement in the performance of photovoltaic nanodevices based on ZnO-like materials. This method can be applied to the fabrication of well-aligned ZnO NRs used widely in optoelectronic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kusaka, Kazuya, E-mail: kusaka@tokushima-u.ac.jp; Maruoka, Yutaka, E-mail: ymaruoka1116@gmail.com; Matsue, Tatsuya, E-mail: tmatsue@mat.niihama-nct.ac.jp
2016-05-15
Zinc oxide (ZnO) films were deposited on a soft polyimide sheet substrate by radio frequency sputtering with a ZnO powder target, and the films' crystal orientations and residual stress were investigated using x-ray diffraction as a function of substrate temperature. C-axis oriented ZnO films were achieved using this ZnO powder target method. The ZnO films exhibited high compressive residual stresses between −0.7 and −1.4 GPa. Finally, the authors examined the strength of the obtained film by applying tensile bending loads. No cracks were observed on the surfaces of the ZnO films after a bending test using cylinders with diameters >25 mm. Aftermore » a bending test using a cylinder with a diameter of 19 mm, large cracks were formed on the films. Therefore, the authors concluded that the tensile bending strength of the obtained films was greater than ∼420 MPa.« less
Synthesis and annealing study of RF sputtered ZnO thin film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Shushant Kumar, E-mail: singhshushant86@gmail.com; Sharma, Himanshu; Singhal, R.
2016-05-23
In this paper, we have investigated the annealing effect on optical and structural properties of ZnO thin films, synthesized by RF magnetron sputtering. ZnO thin films were deposited on glass and silicon substrates simultaneously at a substrate temperature of 300 °C using Argon gas in sputtering chamber. Thickness of as deposited ZnO thin film was found to be ~155 nm, calculated by Rutherford backscattering spectroscopy (RBS). These films were annealed at 400 °C and 500 °C temperature in the continuous flow of oxygen gas for 1 hour in tube furnace. X-ray diffraction analysis confirmed the formation of hexagonal wurtzite structuremore » of ZnO thin film along the c-axis (002) orientation. Transmittance of thin films was increased with increasing the annealing temperature estimated by UV-visible transmission spectroscopy. Quality and texture of the thin films were improved with annealing temperature, estimated by Raman spectroscopy.« less
Comparative study of textured and epitaxial ZnO films
NASA Astrophysics Data System (ADS)
Ryu, Y. R.; Zhu, S.; Wrobel, J. M.; Jeong, H. M.; Miceli, P. F.; White, H. W.
2000-06-01
ZnO films were synthesized by pulsed laser deposition (PLD) on GaAs and α-Al 2O 3 substrates. The properties of ZnO films on GaAs and α-Al 2O 3 have been investigated to determine the differences between epitaxial and textured ZnO films. ZnO films on GaAs show very strong emission features associated with exciton transitions as do ZnO films on α-Al 2O 3, while the crystalline structural qualities for ZnO films on α-Al 2O 3 are much better than those for ZnO films on GaAs. The properties of ZnO films are studied by comparing highly oriented, textured ZnO films on GaAs with epitaxial ZnO films on α-Al 2O 3 synthesized along the c-axis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, H. F.; Chua, S. J.; Hu, G. X.
2007-10-15
X-ray diffractions, Nomarski microscopy, scanning electron microscopy, and photoluminescence have been used to study the effects of substrate on the structure and orientation of ZnO thin films grown by rf-magnetron sputtering. GaAs(001), GaAs(111), Al{sub 2}O{sub 3}(0002) (c-plane), and Al{sub 2}O{sub 3}(1102) (r-plane) wafers have been selected as substrates in this study. X-ray diffractions reveal that the ZnO film grown on GaAs(001) substrate is purely textured with a high c-axis orientation while that grown on GaAs(111) substrate is a single ZnO(0002) crystal; a polycrystalline structure with a large-single-crystal area of ZnO(0002) is obtained on a c-plane Al{sub 2}O{sub 3} substrate whilemore » a ZnO(1120) single crystal is formed on an r-plane Al{sub 2}O{sub 3} substrate. There is absence of significant difference between the photoluminescence spectra collected from ZnO/GaAs(001), ZnO/GaAs(111), and ZnO/Al{sub 2}O{sub 3}(0002), while the photoluminescence from ZnO/Al{sub 2}O{sub 3}(1102) shows a reduced intensity together with an increased linewidth, which is, likely, due to the increased incorporation of native defects during the growth of ZnO(1120)« less
Impedance spectroscopy of undoped and Cr-doped ZnO gas sensors under different oxygen concentrations
NASA Astrophysics Data System (ADS)
Al-Hardan, N.; Abdullah, M. J.; Aziz, A. Abdul
2011-08-01
Thin films of undoped and chromium (Cr)-doped zinc oxide (ZnO) were synthesized by RF reactive co-sputtering for oxygen gas sensing applications. The prepared films showed a highly c-axis oriented phase with a dominant (0 0 2) peak appeared at a Bragg angle of around 34.13 °, which was lower than that of the standard reference of ZnO powder (34.42 °). The peak shifted to a slightly higher angle with Cr doping. The operating temperature of the ZnO gas sensor was around 350 °C, which shifted to around 250 °C with Cr-doping. The response of the sensor to oxygen gas was enhanced by doping ZnO with 1 at.% Cr. Impedance spectroscopy analysis showed that the resistance due to grain boundaries significantly contributed to the characteristics of the gas sensor.
NASA Astrophysics Data System (ADS)
Ning, Shuai; Zhan, Peng; Wang, Wei-Peng; Li, Zheng-Cao; Zhang, Zheng-Jun
2014-12-01
Highly c-axis oriented un-doped zinc oxide (ZnO) thin films, each with a thickness of ~ 100 nm, are deposited on Si (001) substrates by pulsed electron beam deposition at a temperature of ~ 320 °C, followed by annealing at 650 °C in argon in a strong magnetic field. X-ray photoelectron spectroscopy (XPS), positron annihilation analysis (PAS), and electron paramagnetic resonance (EPR) characterizations suggest that the major defects generated in these ZnO films are oxygen vacancies. Photoluminescence (PL) and magnetic property measurements indicate that the room-temperature ferromagnetism in the un-doped ZnO film originates from the singly ionized oxygen vacancies whose number depends on the strength of the magnetic field applied in the thermal annealing process. The effects of the magnetic field on the defect generation in the ZnO films are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azzez, Shrook A., E-mail: shurouq44@yahoo.com; Hassan, Z.; Alimanesh, M.
Highly oriented zinc oxide nanorod were successfully grown on seeded p-type silicon substrate by hydrothermal methode. The morphology and the crystallinty of ZnO c-axis (002) arrays were systematically studied using field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) methods. The effect of seed layer pre-annealing on nanorods properties was explained according to the nucleation site of ZnO nanoparticles on silicon substrate. In addition, the variation of the equal molarity of zinc nitrate hexahydrate and hexamine concentrations in the reaction vessel play a crucial role related to the ZnO nanorods.
Development and surface characterization of a glucose biosensor based on a nanocolumnar ZnO film
NASA Astrophysics Data System (ADS)
Rodrigues, A.; Castegnaro, M. V.; Arguello, J.; Alves, M. C. M.; Morais, J.
2017-04-01
Highly oriented nanostructured ZnO films were grown on the surface of stainless steel plates (ZnO/SS) by chemical bath deposition (CBD). The films consisted of vertically aligned ZnO nanocolumns, ∼1 μm long and ∼80 nm wide, as observed by SEM (scanning electron microscopy) and FIB (focused ion beam). XRD (X-ray diffraction) confirmed the c-axis preferred orientation of the ZnO columns, which were functionalized with the glucose oxidase (GOx) enzyme into a biosensor of glucose. The electrochemical response studied by CV (cyclic voltammetry) proved that the biosensor was capable of detecting glucose from 1.5 up to 16 mM concentration range. XPS (X-ray photoelectron spectroscopy) analysis, excited with synchrotron radiation, probed the atom specific chemical environment at the electrode's surface and shed some light on the nature of the ZnO-GOx interaction.
Synthesis of ZnO nanopencils using wet chemical method and its investigation as LPG sensor
NASA Astrophysics Data System (ADS)
Shimpi, Navinchandra G.; Jain, Shilpa; Karmakar, Narayan; Shah, Akshara; Kothari, D. C.; Mishra, Satyendra
2016-12-01
ZnO nanopencils (NPCs) were prepared by a novel wet chemical process, using triethanolamine (TEA) as a mild base, which is relatively simple and cost effective method as compared to hydrothermal method. ZnO NPCs were characterized using powder X-ray diffraction (XRD), Fourier Transform Infra-Red (FTIR) spectroscopy in mid-IR and far-IR regions, X-ray Photoelectron Spectroscopy (XPS), UV-vis (UV-vis) absorption spectroscopy, room temperature Photoluminescence (PL) spectroscopy and Field Emission Scanning Electron Microscopy (FESEM). ZnO NPCs obtained, were highly pure, uniform and monodispersed.XRD pattern indicated hexagonal unit cell structure with preferred orientation along the c-axis. Sensing behaviour of ZnO NPCs was studied towards Liquefied Petroleum Gas (LPG) at different operating temperatures. The study shows that ZnO NPCs were most sensitive and promising candidate for detection of LPG at 250 °C with gas sensitivity > 60%. The high response towards LPG is due to high surface area of ZnO NPCs and their parallel alignment.
Epitaxial ZnO/LiNbO{sub 3}/ZnO stacked layer waveguide for application to thin-film Pockels sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akazawa, Housei, E-mail: akazawa.housei@lab.ntt.co.jp; Fukuda, Hiroshi
We produced slab waveguides consisting of a LiNbO{sub 3} (LN) core layer that was sandwiched with Al-doped ZnO cladding layers. The ZnO/LN/ZnO stacked layers were grown on sapphire C-planes by electron cyclotron resonance (ECR) plasma sputtering and were subjected to structural, electrical, and optical characterizations. X-ray diffraction confirmed that the ZnO and LN layers were epitaxial without containing misoriented crystallites. The presence of 60°-rotational variants of ZnO and LN crystalline domains were identified from X-ray pole figures. Cross-sectional transmission electron microscopy images revealed a c-axis orientated columnar texture for LN crystals, which ensured operation as electro-optic sensors based on opticalmore » anisotropy along longitudinal and transversal directions. The interfacial roughness between the LN core and ZnO bottom layers as well as that between the ZnO top and the LN core layers was less than 20 nm, which agreed with surface images observed with atomic force microscopy. Outgrowth of triangular LN crystalline domains produced large roughness at the LN film surface. The RMS roughness of the LN film surface was twice that of the same structure grown on sapphire A-planes. Vertical optical transmittance of the stacked films was higher than 85% within the visible and infrared wavelength range. Following the approach adopted by Teng and Man [Appl. Phys. Lett. 56, 1734 (1990)], ac Pockels coefficients of r{sub 33} = 24-28 pm/V were derived for c-axis oriented LN films grown on low-resistive Si substrates. Light propagation within a ZnO/LN/ZnO slab waveguide as well as within a ZnO single layer waveguide was confirmed. The birefringence of these waveguides was 0.11 for the former and 0.05 for the latter.« less
Low-cost synthesis of pure ZnO nanowalls showing three-fold symmetry
NASA Astrophysics Data System (ADS)
Scuderi, Mario; Strano, Vincenzina; Spinella, Corrado; Nicotra, Giuseppe; Mirabella, Salvo
2018-04-01
ZnO nanowalls (NWLs) represent a non-toxic, Earth abundant, high surface-to-volume ratio, semiconducting nanostructure which has already showed potential applications in biosensing, environmental monitoring and energy. Low-cost synthesis of these nanostructures is extremely appealing for large scale upgrading of laboratory results, and its implementation has to be tested at the nanoscale, at least in terms of chemical purity and crystallographic orientation. Here, we have produced pure and texturized ZnO NWLs by using chemical bath deposition (CBD) synthesis followed by a thermal treatment at 300 °C. We examined the NWL formation process and the new obtained structure at the nanoscale, by means of scanning and transmission electron microscopy in combination with x-ray diffraction and Rutherford backscattering spectrometry. We have shown that only after annealing at 300 °C in nitrogen does the as-grown material, composed of a mixture of Zn compounds NWLs, show its peculiar crystal arrangement. The resulting ZnO sheets are in fact made by ZnO wurtzite domains (4-5 nm) that show a particular kind of texturization; indeed, they are aligned with their own c-axis always perpendicular to the sheets forming the wall and rotated (around the c-axis) by multiples of 20° from each other. The presented data show that low-cost CBD, followed by an annealing process, gives pure ZnO with a peculiarly ordered nanostructure that shows three-fold symmetry. Such evidence at the nanoscale will have significant implications for realizing sensing or catalyst devices based on ZnO NWLs.
Molaei, R; Bayati, M R; Alipour, H M; Estrich, N A; Narayan, J
2014-01-08
We have achieved integration of polar ZnO[0001] epitaxial thin films with Si(111) substrates where cubic yttria-stabilized zirconia (c-YSZ) was used as a template on a Si(111) substrate. Using XRD (θ-2θ and φ scans) and HRTEM techniques, the epitaxial relationship between the ZnO and the c-YSZ layers was shown to be [0001]ZnO || [111]YSZ and [21¯1¯0]ZnO || [1¯01](c-YSZ), where the [21¯1¯0] direction lies in the (0001) plane, and the [1¯01] direction lies in the (111) plane. Similar studies on the c-YSZ/Si interface revealed epitaxy as (111)YSZ || (111)Si and in-plane (110)YSZ || (110)Si. HRTEM micrographs revealed atomically sharp and crystallographically continuous interfaces. The ZnO epilayers were subsequently laser annealed by a single pulse of a nanosecond excimer KrF laser. It was shown that the hydrophobic behavior of the pristine sample became hydrophilic after laser treatment. XPS was employed to study the effect of laser treatment on surface stoichiometry of the ZnO epilayers. The results revealed the formation of oxygen vacancies, which are envisaged to control the observed hydrophilic behavior. Our AFM studies showed surface smoothing due to the coupling of the high energy laser beam with the surface. The importance of integration of c-axis ZnO with Si(111) substrates is emphasized using the paradigm of domain matching epitaxy on the c-YSZ[111] buffer platform along with their out-of-plane orientation, which leads to improvement of the performance of the solid-state devices. The observed ultrafast response and switching in photochemical characteristics provide new opportunities for application of ZnO in smart catalysts, sensors, membranes, DNA self-assembly and multifunctional devices.
NASA Astrophysics Data System (ADS)
Liu, H. F.; Liu, W.; Guo, S.; Chi, D. Z.
2016-03-01
High-resolution x-ray diffraction (HRXRD) was used to investigate the crystallographic tilts and structural anisotropies in epitaxial nonpolar a-plane InGaN/GaN grown by metal-organic chemical vapor deposition on r-plane sapphire using a ZnO buffer. The substrate had an unintentional miscut of 0.14° towards its [-4 2 2 3] axis. However, HRXRD revealed a tilt of 0.26° (0.20°) between the ZnO (GaN) (11-20) and the Al2O3 (1-102) atomic planes, with the (11-20) axis of ZnO (GaN) tilted towards its c-axis, which has a difference of 163° in azimuth from that of the substrate’s miscut. Excess broadenings in the GaN/ZnO (11-20) rocking curves (RCs) were observed along its c-axis. Specific analyses revealed that partial dislocations and anisotropic in-plane strains, rather than surface-related effects, wafer curvature or stacking faults, are the dominant factors for the structural anisotropy. The orientation of the partial dislocations is most likely affected by the miscut of the substrate, e.g. via tilting of the misfit dislocation gliding planes created during island coalescences. Their Burgers vector components in the growth direction, in turn, gave rise to crystallographic tilts in the same direction as that of the excess RC-broadenings.
Direct Heteroepitaxial Growth of ZnO over GaN Crystal in Aqueous Solution
NASA Astrophysics Data System (ADS)
Hamada, Takahiro; Ito, Akihiro; Nagao, Nobuaki; Suzuki, Nobuyasu; Fujii, Eiji; Tsujimura, Ayumu
2013-04-01
We report on the structural and electrical properties of ZnO films grown on surface-treated GaN/Al2O3 substrates by chemical bath deposition. X-ray diffraction analysis indicated that the ZnO films had a single-crystalline wurtzite structure with c-axis orientation. The ZnO film exhibited n-type conduction with a carrier concentration of 6.9 ×1018 cm-3, an electron mobility of 41 cm2/(V.s), and a resistivity of 2.2 ×10-2 Ω.cm. A low specific contact resistivity of 4.3 ×10-3 Ω.cm2 was obtained at the ZnO/n-GaN interface. Additionally, the ZnO film exhibited high transparency in the visible and infrared region.
NASA Astrophysics Data System (ADS)
Losurdo, M.; Giangregorio, M. M.; Sacchetti, A.; Capezzuto, P.; Bruno, G.; Malandrino, G.; Fragalà, I. L.
2007-07-01
Thin films of ZnO have been grown by plasma assisted metal-organic chemical vapour deposition (PA-MOCVD) using a 13.56 MHz O 2 plasma and the Zn(TTA)•tmed (HTTA=2-thenoyltrifluoroacetone, TMED=N,N,N',N'-tetramethylethylendiamine) precursor. The effects of growth parameters such as the plasma activation, the substrate, the surface temperature, and the ratio of fluxes of precursors on the structure, morphology, and optical and electrical properties of ZnO thin films have been studied. Under a very low plasma power of 20 W, c-axis oriented hexagonal ZnO thin films are grown on hexagonal sapphire (0001), cubic Si(001) and amorphous quartz substrates. The substrate temperature mainly controls grain size.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Genghong; Zhu, Jia; Jiang, Gelei
Piezoelectricity is closely related with the performance and application of piezoelectric devices. It is a crucial issue to understand its detailed fundamental for designing functional devices with more peculiar performances. Basing on the first principles simulations, the ZnO piezoelectric tunnel junction is taken as an example to systematically investigate its piezoelectricity (including the piezopotential energy, piezoelectric field, piezoelectric polarization and piezocharge) and explore their correlation. The comprehensive picture of the piezoelectricity in the ZnO tunnel junction is revealed at atomic scale and it is verified to be the intrinsic characteristic of ZnO barrier, independent of its terminated surface but dependentmore » on its c axis orientation and the applied strain. In the case of the ZnO c axis pointing from right to left, an in-plane compressive strain will induce piezocharges (and a piezopotential energy drop) with positive and negative signs (negative and positive signs) emerging respectively at the left and right terminated surfaces of the ZnO barrier. Meanwhile a piezoelectric polarization (and a piezoelectric field) pointing from right to left (from left to right) are also induced throughout the ZnO barrier. All these piezoelectric physical quantities would reverse when the applied strain switches from compressive to tensile. This study provides an atomic level insight into the fundamental behavior of the piezoelectricity of the piezoelectric tunnel junction and should have very useful information for future designs of piezoelectric devices.« less
Nanoporous structures on ZnO thin films
NASA Astrophysics Data System (ADS)
Gür, Emre; Kılıç, Bayram; Coşkun, C.; Tüzemen, S.; Bayrakçeken, Fatma
2010-01-01
Porous structures were formed on ZnO thin films which were grown by an electrochemical deposition (ECD) method. The growth processes were carried out in a solution of dimethylsulfoxide (DMSO) zinc perchlorate, Zn(ClO 4) 2, at 120 ∘C on indium tin oxide (ITO) substrates. Optical and structural characterizations of electrochemically grown ZnO thin films have shown that the films possess high (0002) c-axis orientation, high nucleation, high intensity and low FWHM of UV emission at the band edge region and a sharp UV absorption edge. Nanoporous structures were formed via self-assembled monolayers (SAMs) of hexanethiol (C 6SH) and dodecanethiol (C 12SH). Scanning electron microscope (SEM) measurements showed that while a nanoporous structure (pore radius 20 nm) is formed on the ZnO thin films by hexanathiol solution, a macroporous structure (pore radius 360 nm) is formed by dodecanethiol solution. No significant variation is observed in X-ray diffraction (XRD) measurements on the ZnO thin films after pore formation. However, photoluminescence (PL) measurements showed that green emission is observed as the dominant emission for the macroporous structures, while no variation is observed for the thin film nanoporous ZnO sample.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohammad, Sabah M., E-mail: Sabahaskari14@gmail.com; Ahmed, Naser M.; Abd-Alghafour, Nabeel M.
Vertically, well-aligned and high density ZnO nanorods were successfully hydrothermally grown on glass and silicon substrates using a simple and low cost system. The mechanism of synthesis of ZnO nanorods, generated with our system under hydrothermal conditions, is investigated in this report. Field-emission scanning electron microscopy indicated that the fabricated ZnO nanorods on both substrates have hexagonal shape with diameters ranging from 20 nm to 70 nm which grew vertically from the substrate. XRD analysis confirms the formation of wurtzite ZnO phase with a preferred orientation along (002) direction perpendicular on the substrate and enhanced crystallinity. The low value ofmore » the tensile strain (0.126 %) revealed that ZnO nanorods preferred to grow along the c-axis for both substrates. Photoluminescence spectra exhibited a strong, sharp UV near band edge emission peak with narrow FWHM values for both samples.« less
Effect of in situ Al doping on structure and optical properties of ZnO nanowires grown by MOCVD
NASA Astrophysics Data System (ADS)
Souissi, H.; Jabri, S.; Souissi, A.; Lusson, A.; Galtier, P.; Meftah, A.; Sallet, V.; Oueslati, M.
2018-01-01
Al-doped ZnO nanowires (NWs) were grown on C-axis oriented sapphire by metal organic chemical vapor deposition using dimethylzinc-triethylamine (DMZn-TEN), nitrogen dioxide (NO2) and TMAl as zinc, oxygen and aluminum doping sources respectively. The NWs morphology has been characterized by scanning electron microscopy and transmission electron microscopy. The photoluminescence (PL) spectra exhibit a strong excitonic transition bond that confirms the Al incorporation in the ZnO NWs. Raman results support PL conclusion by showing additional modes in Al-doped ZnO NWs at nearly 270, 510, 579 and 641 cm-1. The micro-Raman scattering analysis along a single Al-doped ZnO needle-like NW shows an increase of the Al concentration from the basis to the tip of the wire.
On the formation of well-aligned ZnO nanowall networks by catalyst-free thermal evaporation method
NASA Astrophysics Data System (ADS)
Yin, Zhigang; Chen, Nuofu; Dai, Ruixuan; Liu, Lei; Zhang, Xingwang; Wang, Xiaohui; Wu, Jinliang; Chai, Chunlin
2007-07-01
Two-dimensional ZnO nanowall networks were grown on ZnO-coated silicon by thermal evaporation at low temperature without catalysts or additives. All of the results from scanning electronic spectroscope, X-ray diffraction and Raman scattering confirmed that the ZnO nanowalls were vertically aligned and c-axis oriented. The room-temperature photoluminescence spectra showed a dominated UV peak at 378 nm, and a much suppressed orange emission centered at ˜590 nm. This demonstrates fairly good crystal quality and optical properties of the product. A possible three-step, zinc vapor-controlled process was proposed to explain the growth of well-aligned ZnO nanowall networks. The pre-coated ZnO template layer plays a key role during the synthesis process, which guides the growth direction of the synthesized products.
NASA Astrophysics Data System (ADS)
Mannam, Ramanjaneyulu; Kumar, E. Senthil; Priyadarshini, D. M.; Bellarmine, F.; DasGupta, Nandita; Ramachandra Rao, M. S.
2017-10-01
We report on the growth of ZnO nanostructures in different gas ambient (Ar and N2) using pulsed laser deposition technique. Despite the similar growth temperature, use of N2 ambient gas resulted in well-aligned nanorods with flat surface at the tip, whereas, nanorods grown with Ar ambient exhibited tapered tips. The Nanorods grown under N2 ambient exhibited additional Raman modes corresponding to N induced zinc interstitials. The nanorods are c-axis oriented and highly epitaxial in nature. Photoluminescence spectroscopy reveals that the UV emission can be significantly enhanced by 10 times for the nanorods grown under Ar ambient. The enhanced UV emission is attributed to the reduction in polarization electric field along the c-axis. n-ZnO nanorods/p-Si heterojunction showed rectifying I-V characteristics with a turn of voltage of 3.4 V.
Tan, Kok Hong; Lim, Fang Sheng; Toh, Alfred Zhen Yang; Zheng, Xia-Xi; Dee, Chang Fu; Majlis, Burhanuddin Yeop; Chai, Siang-Piao; Chang, Wei Sea
2018-04-17
Observation of visible light trapping in zinc oxide (ZnO) nanorods (NRs) correlated to the optical and photoelectrochemical properties is reported. In this study, ZnO NR diameter and c-axis length respond primarily at two different regions, UV and visible light, respectively. ZnO NR diameter exhibits UV absorption where large ZnO NR diameter area increases light absorption ability leading to high efficient electron-hole pair separation. On the other hand, ZnO NR c-axis length has a dominant effect in visible light resulting from a multiphoton absorption mechanism due to light reflection and trapping behavior in the free space between adjacent ZnO NRs. Furthermore, oxygen vacancies and defects in ZnO NRs are associated with the broad visible emission band of different energy levels also highlighting the possibility of the multiphoton absorption mechanism. It is demonstrated that the minimum average of ZnO NR c-axis length must satisfy the linear regression model of Z p,min = 6.31d to initiate the multiphoton absorption mechanism under visible light. This work indicates the broadening of absorption spectrum from UV to visible light region by incorporating a controllable diameter and c-axis length on vertically aligned ZnO NRs, which is important in optimizing the design and functionality of electronic devices based on light absorption mechanism. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effect of aluminium doping on structural and optical properties of ZnO thin films by sol-gel method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vijayaprasath, G.; Murugan, R.; Ravi, G., E-mail: raviganesa@rediffmail.com, E-mail: gravicrc@gmail.com
2015-06-24
We systematically investigated the structural, morphological and optical properties of 0.05 mol % Al doped ZnO (Al:ZnO) thin films deposited on glass substrates by sol-gel spin coating method. The influences of Al doping in ZnO thin films are characterized by Powder X-ray diffraction study. ZnO and Al:ZnO thin films have showed hexagonal wurtzite structure without any secondary phase in c-axis (002) orientation. The SEM images also proved the hexagonal rod like morphologies for both films. All the films exhibited transmittance of 70-80% in the visible range up to 800 nm and cut-off wavelength observed at ∼390 nm corresponding to the fundamental absorption ofmore » ZnO. The band gap of the ZnO thin films slightly widened with the Al doping. The photoluminescence properties have been studied for Al: ZnO thin films and the results are presented in detail.« less
Effects on the optical properties and conductivity of Ag-N co-doped ZnO
NASA Astrophysics Data System (ADS)
Xu, Zhenchao; Hou, Qingyu; Qu, Lingfeng
2017-01-01
Nowadays, the studies of the effects on the optical bandgap, absorption spectrum, and electrical properties of Ag-N co-doped ZnO have been extensively investigated. However, Ag and N atoms in doped systems are randomly doped, and the asymmetric structure of ZnO is yet to be explored. In this paper, the geometric structure, stability, density of states, absorption spectra and conductivity of pure and Ag-N co-doped Zn1-xAgxO1-xNx(x=0.03125, 0.0417 and 0.0625) in different orientations are calculated by using plane-wave ultrasoft pseudopotential on the basis of density functional theory with GGA+U method. Results show that the volume, equivalent total energy and formation energy of the doped system increase as the concentration of Ag-N co-doped Zn1-xAgxO1-xNx increases at the same doping mode. The doped systems also become unstable, and difficulty in doping. At the same concentration of Ag-N co-doped Zn1-xAgxO1-xNx, the systems with Ag-N along the c-axis orientation is unstable, and doping is difficult. The optical bandgap of Ag-N co-doped systems is narrower than that of the pure ZnO. At the same doping mode, the optical bandgap of the systems with Ag-N perpendicular to the c-axis orientation becomes narrow as the concentration of Ag-N co-doped Zn1-xAgxO1-xNx increases. The absorption spectra of the doped systems exhibit a red shift, and this red shift becomes increasingly significant as the concentration of Ag-N co-doped Zn1-xAgxO1-xNx increases. Under the same condition, the relative hole concentrations of the doped systems increases, the hole effective mass in valence band maximum decreases, the hole mobility decreases, the ionization energy decreases, Bohr radius increases, the conductance increases and the conductivity become better. Our results may be used as a basis for the designing and preparation of new optical and electrical materials for Ag-N co-doped ZnO applied in low temperature end of temperature difference battery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawamura, Yumi; Hattori, Nozomu; Miyatake, Naomasa
Zinc oxide (ZnO) thin films have attracted significant attention for application in thin film transistors (TFTs) due to their specific characteristics, such as high mobility and transparency. In this paper, the authors fabricated TFTs with ZnO thin films as channel layers deposited by plasma-assisted atomic layer deposition (PAALD) at 100 Degree-Sign C using two different plasma sources, water (H{sub 2}O-plasma) and oxygen gas (O{sub 2}-plasma), as oxidants, and investigated the effects of the plasma sources on TFT performances. The TFT with ZnO channel layer deposited with H{sub 2}O-plasma indicated higher performances such as a field effect mobility ({mu}) of 1.1more » cm{sup 2}/Vs. Analysis of the ZnO films revealed that the residual carbon in the film deposited with H{sub 2}O-plasma was lower than that of O{sub 2}-plasma. In addition, the c-axis preferred orientation was obtained in the case of the ZnO film deposited with H{sub 2}O-plasma. These results suggest that it is possible to fabricate high-performance ZnO TFTs at low temperatures by PAALD with H{sub 2}O-plasma.« less
NASA Astrophysics Data System (ADS)
Hou, Qing-Yu; Li, Wen-Cai; Qu, Ling-Feng; Zhao, Chun-Wang
2017-06-01
Currently, the stability and visible light properties of Ga-2N co-doped ZnO systems have been studied extensively by experimental analysis and theoretical calculations. However, previous theoretical calculations arbitrarily assigned Ga- and 2N-doped sites in ZnO. In addition, the most stable and possible doping orientations of doped systems have not been fully and systematically considered. Therefore, in this paper, the electron structure and absorption spectra of the unit cells of doped and pure systems were calculated by first-principles plane-wave ultrasoft pseudopotential with the GGA+U method. Calculations were performed for pure ZnO, Ga-2N supercells heavily co-doped with Zn1-xGaxO1-yNy (x = 0.03125 - 0.0625, y = 0.0625 - 0.125) under different co-doping orientations and conditions, and the Zn16GaN2O14 interstitial model. The results indicated that under different orientations and constant Ga-2N co-doping concentrations, the systems co-doped with Ga-N atoms vertically oriented to the c-axis and with another N atom located in the nearest-neighboring site exhibited higher stability over the others, thus lowering formation energy and facilitating doping. Moreover, Ga-interstitial- and 2N-co-doped ZnO systems easily formed chemical compounds. Increasing co-doping concentration while the co-doping method remained constant decreased doped system volume and lowered formation energies. Meantime, co-doped systems were more stable and doping was facilitated. The bandgap was also narrower and red shifting of the absorption spectrum was more significant. These results agreed with previously reported experimental results. In addition, the absorption spectra of Ga-interstitial- and 2N-co-doped ZnO both blue shifted in the UV region compared with that of the pure ZnO system.
Purely hopping conduction in c-axis oriented LiNbO3 thin films
NASA Astrophysics Data System (ADS)
Shandilya, Swati; Tomar, Monika; Sreenivas, K.; Gupta, Vinay
2009-05-01
Dielectric constant and ac conductivity of highly c-axis oriented LiNbO3 thin film grown by pulsed laser deposition were studied in a metal-insulator-metal configuration over a wide temperature (200 to 450 K) and frequency (100 Hz to 1 MHz) range. The preferred oriented Al (1%) doped ZnO film with electrical conductivity 1.1×103 Ω-1 cm-1 was deposited for dual purpose: (1) to serve as nucleating center for LiNbO3 crystallites along preferred c-axis growth direction, and (2) to act as a suitable bottom electrode for electrical studies. The room temperature dc conductivity (σdc) of LiNbO3 film was about 5.34×10-10 Ω-1 cm-1 with activation energy ˜0.3 eV, indicating extrinsic conduction. The ac conductivity σac was found to be much higher in comparison to σdc in the low temperature region (<300 K) and exhibits a power law behavior due to the hopping of charge carriers. In higher temperature region (>300 K), σac shows a weak frequency dependence, whereas dielectric constant exhibits a strong frequency dispersion. The dielectric dispersion data has been discussed in the light of theoretical models based on Debye type mixed conduction and purely hopping conduction. The dominant conduction in c-axis oriented LiNbO3 thin film is attributed to the purely hopping where both σdc and σac arise due to same mechanism.
Thermoelectric Properties of Al-Doped ZnO Thin Films
NASA Astrophysics Data System (ADS)
Saini, S.; Mele, P.; Honda, H.; Matsumoto, K.; Miyazaki, K.; Ichinose, A.
2014-06-01
We have prepared 2 % Al-doped ZnO (AZO) thin films on SrTiO3 substrates by a pulsed laser deposition technique at various deposition temperatures ( T dep = 300-600 °C). The thermoelectric properties of AZO thin films were studied in a low temperature range (300-600 K). Thin film deposited at 300 °C is fully c-axis-oriented and presents electrical conductivity 310 S/cm with Seebeck coefficient -65 μV/K and power factor 0.13 × 10-3 Wm-1 K-2 at 300 K. The performance of thin films increases with temperature. For instance, the power factor is enhanced up to 0.55 × 10-3 Wm-1 K-2 at 600 K, surpassing the best AZO film previously reported in the literature.
Zinc Oxide-Based Schottky Diode Prepared Using Radio-Frequency Magnetron Cosputtering System
NASA Astrophysics Data System (ADS)
Lai, Bo-Ting; Lee, Ching-Ting; Hong, Jhen-Dong; Yao, Shiau-Lu; Liu, Day-Shan
2010-08-01
The rectifying property of a zinc oxide (ZnO)-based Schottky diode prepared using a radio-frequency (rf) magnetron cosputtering system was improved by enhancing the cosputtered ZnO crystal quality, thereby optimizing the ohmic contact resistance and compensating the Schottky contact surface states. An undoped ZnO layer with a high c-axis orientation and a low internal residual stress was achieved using a postannealing treatment. A homogeneous n-type ZnO-indium tin oxide (ITO) cosputtered film was deposited onto the undoped ZnO layer to optimize the ohmic contact behavior to the Al electrode. The Schottky contact surface of the undoped ZnO layer to the Ni/Au electrode was passivated using an oxygen plasma treatment. Owing to the compensation of the native oxygen vacancies (VO) on the undoped ZnO surface, the leakage current markedly decreased and subsequently led to a quality Schottky diode performance with an ideality factor of 1.23 and a Schottky barrier height of 0.82 eV.
Wu, Jyh Ming; Chen, Yi-Ru; Lin, Yu-Hung
2011-03-01
We are the first group to use a simple direct ultraviolet light (UV, λ=365 nm, I=76 mW cm(-2)) in a decomposition process to fabricate ZnO nanowires on a flexible substrate using a zinc acetylacetonate hydrate precursor in ambient air. ZnO nanocrystal (or nanowire) production only requires three to ten minutes. A field emission scanning electron microscopy (FESEM) image reveals a high aspect ratio of the ZnO nanowires, which are grown on a substrate with a diameter of ∼50-100 nm, and a length of up to several hundred microns. High resolution transmission electron microscopy (HRTEM) images reveal that the nanowires consist of many single crystalline ZnO nanoparticles that grow along the c axis, which suggests an oriented attachment process. A potential application for flexible UV photodetectors was investigated using a UV lamp (λ=365 nm, I=2.34 mW cm(-2)). A significant ratio of photocurrent to dark current--around 11,300%--was achieved.
NASA Astrophysics Data System (ADS)
Wright, N.; Mateo-Feliciano, D.; Ostoski, A.; Mukherjee, P.; Witanachchi, S.
Nanosphere lithography is a combination of different methods to nanofabrication. In this work nanosphere lithography is used to study the growth of Zinc Oxide Nano-columns (ZnO NCs) on different diameter Silica Nanosphere (SNS) self-assembled templates. ZnO NCs are promising building blocks for many existing and emerging optical, electrical, and piezoelectric devices, specifically, the seeded growth of other oxide materials. Recently, reports have shown a ferroelectric phase of zinc stannate (ZnSnO3) and while lead zirconium titanate oxide (PZT) has been the main material of interest in ferroelectric and piezoelectric applications, the toxicity of lead has been of great concern. The possibility of developing lead free piezoelectric materials is of great interest in the ferroelectric community. Langmuir-Blodgett method was used to construct a self-assembled monolayer of SNSs on silicon substrates. Oriented ZnO NCs were grown on top of the spheres using the glancing angle pulsed laser deposition technique. Columns were formed in a spatially ordered closed-packed hexagonal configuration. Growth of ZnO NCs was studied as function of ambient Oxygen pressure with SNS size ranging from 250-1000 nm. Cross-sectional Scanning Electron Microscopy and X-ray diffraction (XRD) were used to study the template structure. Relative aspect ratios were studied and showed tunability of column dimensions with sphere size. XRD revealed ZnO NC arrays were c-axis oriented with hexagonal wurtzite structure.
Structural studies of ZnO nanostructures by varying the deposition parameters
NASA Astrophysics Data System (ADS)
Yunus, S. H. A.; Sahdan, M. Z.; Ichimura, M.; Supee, A.; Rahim, S.
2017-01-01
The effect of Zinc Oxide (ZnO) thin film on the growth of ZnO nanorods (NRs) was investigated. The structures of ZnO NRs were synthesized by chemical bath deposition (CBD) method in aqueous solution of N2O6Zn.6H2O and C6H12N4 at 90°C of deposition temperature. One of the ZnO NRs samples was deposited on a ZnO seed layer coated on a glass substrate to investigate the properties of ZnO NRs without receiving effect of other materials. Next, for diode application, the ZnO NRs was deposited on tin monosulfide (SnS) coated on indium-tin-oxide (ITO) coated glass substrate (SnS/ITO). The next, the ZnO structural properties were studied from surface morphology, X-ray diffractometer (XRD) spectra, and chemical composition by using field emission scanning electron microscope (FESEM), XRD and energy dispersive X-ray Spectroscopy (EDX). The growth of ZnO NRs on ZnO seed layer was investigated by ZnO seed layer condition while the growth of ZnO NRs on SnS/ITO was investigated by deposition time and deposition temperature parameters. From FESEM images, aligned ZnO NRs were obtained, and the diameters of ZnO NRs were 0.024-3.94 µm. The SnS thin film was affected by the diameter of ZnO NRs which are the ZnO NRs grow on SnS thin films has a larger diameter compared to ZnO NRs grow on ZnO seed layer. Besides that, all of ZnO peaks observed from XRD corresponding to the wurzite structure and preferentially oriented along the c-axis. In addition, EDX shows a high composition of zinc (Zn) and oxygen (O) signals, which indicated that the NRs are indeed made up of Zn and O.
Ibupoto, Zafar Hussain; Khun, Kimleang; Eriksson, Martin; AlSalhi, Mohammad; Atif, Muhammad; Ansari, Anees; Willander, Magnus
2013-08-19
Well aligned ZnO nanorods have been prepared by a low temperature aqueous chemical growth method, using a biocomposite seed layer of ZnO nanoparticles prepared in starch and cellulose bio polymers. The effect of different concentrations of biocomposite seed layer on the alignment of ZnO nanorods has been investigated. ZnO nanorods grown on a gold-coated glass substrate have been characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) techniques. These techniques have shown that the ZnO nanorods are well aligned and perpendicular to the substrate, and grown with a high density and uniformity on the substrate. Moreover, ZnO nanorods can be grown with an orientation along the c -axis of the substrate and exhibit a wurtzite crystal structure with a dominant (002) peak in an XRD spectrum and possessed a high crystal quality. A photoluminescence (PL) spectroscopy study of the ZnO nanorods has revealed a conventional near band edge ultraviolet emission, along with emission in the visible part of the electromagnetic spectrum due to defect emission. This study provides an alternative method for the fabrication of well aligned ZnO nanorods. This method can be helpful in improving the performance of devices where alignment plays a significant role.
Ibupoto, Zafar Hussain; Khun, Kimleang; Eriksson, Martin; AlSalhi, Mohammad; Atif, Muhammad; Ansari, Anees; Willander, Magnus
2013-01-01
Well aligned ZnO nanorods have been prepared by a low temperature aqueous chemical growth method, using a biocomposite seed layer of ZnO nanoparticles prepared in starch and cellulose bio polymers. The effect of different concentrations of biocomposite seed layer on the alignment of ZnO nanorods has been investigated. ZnO nanorods grown on a gold-coated glass substrate have been characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) techniques. These techniques have shown that the ZnO nanorods are well aligned and perpendicular to the substrate, and grown with a high density and uniformity on the substrate. Moreover, ZnO nanorods can be grown with an orientation along the c-axis of the substrate and exhibit a wurtzite crystal structure with a dominant (002) peak in an XRD spectrum and possessed a high crystal quality. A photoluminescence (PL) spectroscopy study of the ZnO nanorods has revealed a conventional near band edge ultraviolet emission, along with emission in the visible part of the electromagnetic spectrum due to defect emission. This study provides an alternative method for the fabrication of well aligned ZnO nanorods. This method can be helpful in improving the performance of devices where alignment plays a significant role. PMID:28811454
Band alignment and optical response of facile grown NiO/ZnO nano-heterojunctions
NASA Astrophysics Data System (ADS)
Sultan, Muhammad; Mumtaz, Sundas; Ali, Asad; Khan, Muhammad Yaqoob; Iqbal, Tahir
2017-12-01
ZnO nanorods decorated by NiO nanostructures were fabricated using facile chemical route. The nanorods of ZnO were prepared by using chemical bath deposition technique and subsequently decorated by NiO using sol-gel spin coating. The density and orientation of the ZnO nanorods was controlled through the seed layer with preferential growth along c-axis and hexagonal face. X-Ray Photoelectron Spectroscopy (XPS) analysis was used to confirm stoichiometry of the materials and band alignment study of the heterostructures. Type-II band alignment was observed from the experimental results. The IV characteristics of the device depicting rectifying behavior at different temperatures were observed with photocurrent generation in response to light excitation. The electrical properties reported in this study are in line with earlier work where heterojunctions were fabricated by physical deposition techniques.
Perovskite solar cells based on nanocolumnar plasma-deposited ZnO thin films.
Ramos, F Javier; López-Santos, Maria C; Guillén, Elena; Nazeeruddin, Mohammad Khaja; Grätzel, Michael; Gonzalez-Elipe, Agustin R; Ahmad, Shahzada
2014-04-14
ZnO thin films having a nanocolumnar microstructure are grown by plasma-enhanced chemical vapor deposition at 423 K on pre-treated fluorine-doped tin oxide (FTO) substrates. The films consist of c-axis-oriented wurtzite ZnO nanocolumns with well-defined microstructure and crystallinity. By sensitizing CH3NH3PbI3 on these photoanodes a power conversion of 4.8% is obtained for solid-state solar cells. Poly(triarylamine) is found to be less effective when used as the hole-transport material, compared to 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD), while the higher annealing temperature of the perovskite leads to a better infiltration in the nanocolumnar structure and an enhancement of the cell efficiency. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Internal Stress and Microstructure of Zinc Oxide Films Sputter-Deposited with Carbon Dioxide Gas
NASA Astrophysics Data System (ADS)
Toru Ashida,; Kazuhiro Kato,; Hideo Omoto,; Atsushi Takamatsu,
2010-06-01
The internal stress and microstructure of ZnO films were investigated as a function of carbon dioxide (CO2) gas flow ratio [CO2/(O2+CO2)] during sputter deposition. The internal stress of the ZnO films decreased with increasing CO2 gas flow ratio. The carbon concentration in the films deposited using CO2 gas increased by up to 4.0 at. %. Furthermore, the ZnO films deposited without CO2 gas exhibited a preferred orientation of (002); however, the C-doped ZnO films exhibited random orientations. These findings suggest that the C atoms incorporated in the ZnO crystal lattice induce this random orientation, thereby relaxing the internal stress of C-doped ZnO films.
NASA Astrophysics Data System (ADS)
Gao, Mei-Zhen; Zhang, Feng; Liu, Jing; Sun, Hui-Na
2009-08-01
Transparent conductive Al-doped ZnO (AZO) thin films are prepared on normal glass substrates by the sol-gel spin coating method. The effects of drying conditions, annealing temperature and cooling rate on the structural, electrical and optical properties of AZO films are investigated by x-ray diffraction, scanning electron microscopy, the four-point probe method and UV-VIS spectrophotometry, respectively. The deposited films show a hexagonal wurtzite structure and high preferential c-axis orientation. As the drying temperature increases from 100°C to 300°C the resistivity of AZO films decreases dramatically. In contrast to the annealed films cooled in a furnace and in air, the resistivity of the annealed film which is cooled at -15°C is greatly reduced. Increasing the cooling rate dramatically increases the electrical conductivity of AZO films.
2010-01-01
TERMS MEMS , acoustic wave devices, acoustic wave sensors Qing-Ming Wang University of Pittsburgh 123 University Place University Club Pittsburgh, PA...resonators,” Proc. SPIE Vol. 6223, 62230I, Micro ( MEMS ) and Nanotechnologies for Space Applications; Thomas George, Zhong-Yang Cheng; Eds. (May...microelectromechanical resonators has been recognized as a technological challenge in the current microelectronics and MEMS development. The
Lin, Chin Jung; Liao, Shu-Jun; Kao, Li-Cheng; Liou, Sofia Ya Hsuan
2015-06-30
Hierarchical branched ZnO nanorod (B-ZnR) arrays as an electrode for efficient photoelectrocatalytic degradation of paracetamol were grown on fluorine-doped tin oxide substrates using a solution route. The morphologic and structural studies show the ZnO trunks are single-crystalline hexagonal wurtzite ZnO with a [0001] growth direction and are densely covered by c-axis-oriented ZnO branches. The obvious enhancement in photocurrent response of the B-ZnR electrode was obtained than that in the ZnO nanoparticle (ZnO NP) electrode. For the photoelectrocatalytic degradation of paracetamol in 20 h, the conversion fraction of the drug increased from 32% over ZnO NP electrode to 62% over B-ZnR arrays with about 3-fold increase in initial reaction rate. The light intensity-dependent photoelectrocatalytic experiment indicated that the superior performance over the B-ZnR electrode was mainly ascribed to the increased specific surface area without significantly sacrificing the charge transport and pollutant diffusion efficiencies. Two aromatic intermediate compounds were observed and eventually converted into harmless carboxylic acids and ammonia. Hierarchical tree-like ZnO arrays can be considered effective alternatives to improve photoelectro degradation rates without the need for expensive additives. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahoo, Trilochan; Ju, Jin-Woo; Kannan, V.
2008-03-04
Single crystalline ZnO thin film on p-GaN/sapphire (0 0 0 1) substrate, using two different precursors by hydrothermal route at a temperature of 90 deg. C were successfully grown. The effect of starting precursor on crystalline nature, surface morphology and optical emission of the films were studied. ZnO thin films were grown in aqueous solution of zinc acetate and zinc nitrate. X-ray diffraction analysis revealed that all the thin films were single crystalline in nature and exhibited wurtzite symmetry and c-axis orientation. The thin films obtained with zinc nitrate had a more pitted rough surface morphology compared to the filmmore » grown in zinc acetate. However the thickness of the films remained unaffected by the nature of the starting precursor. Sharp luminescence peaks were observed from the thin films almost at identical energies but deep level emission was slightly prominent for the thin film grown in zinc nitrate.« less
Structural and optical properties of magnetron sputtered MgxZn1-xO thin films
NASA Astrophysics Data System (ADS)
Kumar, Sanjeev; Gupte, Vinay; Sreenivas, K.
2006-04-01
MgxZn1-xO (MZO) thin films prepared by an rf magnetron sputtering technique are reported. The films were grown at room temperature and at relatively low rf power of 50 W. MZO thin films were found to possess preferred c-axis orientation and exhibited hexagonal wurtzite structure of ZnO up to a Mg concentration of 42 mol%. A small variation in the c-axis lattice parameter of around 0.3% was observed with increasing Mg composition, showing the complete solubility of Mg in ZnO. The band gap of the MZO films in the wurtzite phase varied linearly with the Mg concentration and a maximum band gap ~4.19 eV was achieved at x = 0.42. The refractive indices of the MgO films were found to decrease with increasing Mg content. The observed optical dispersion data are in agreement with the single oscillator model. A photoluminescence study revealed a blue shift in the near band edge emission peak with increasing Mg content in the MZO films. The results show the potential of MZO films in various opto-electronic applications.
NASA Astrophysics Data System (ADS)
Nomoto, Junichi; Inaba, Katsuhiko; Kobayashi, Shintaro; Makino, Hisao; Yamamoto, Tetsuya
2017-06-01
A 10-nm-thick radio frequency magnetron-sputtered aluminum-doped zinc oxide (AZO) showing a texture with a preferential (0001) orientation on amorphous glass substrates was used as an interface layer for tailoring the orientation of 490-nm-thick polycrystalline AZO films subsequently deposited by direct current (DC) magnetron sputtering at a substrate temperature of 200 °C. Wide-angle X-ray diffraction pole figure analysis showed that the resulting 500-nm-thick AZO films showed a texture with a highly preferential c-axis orientation. This showed that DC-magnetron-sputtered AZO films grew along with the orientation matching that of the interface layer, whereas 500-nm-thick AZO films deposited on bare glass substrates by DC magnetron sputtering exhibited a mixed orientation of the c-plane and other planes. The surface morphology was also improved while retaining the lateral grain size by applying the interface layer as revealed by atomic force microscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simimol, A.; Department of Physics, National Institute of Technology, Calicut 673601; Manikandanath, N. T.
Highly dense and c-axis oriented zinc oxide (ZnO) nanorods with hexagonal wurtzite facets were deposited on fluorine doped tin oxide coated glass substrates by a simple and cost-effective electrodeposition method at low bath temperature (80 °C). The as-grown samples were then annealed at various temperatures (T{sub A} = 100–500 °C) in different environments (e.g., zinc, oxygen, air, and vacuum) to understand their photoluminescence (PL) behavior in the ultra-violet (UV) and the visible regions. The PL results revealed that the as-deposited ZnO nanorods consisted of oxygen vacancy (V{sub O}), zinc interstitial (Zn{sub i}), and oxygen interstitial (O{sub i}) defects and these can be reduced significantlymore » by annealing in different environments at optimal annealing temperatures. However, the intensity of deep level emission increased for T{sub A} greater than the optimized values for the respective environments due to the introduction of various defect centers. For example, for T{sub A} ≥ 450 °C in the oxygen and air environments, the density of O{sub i} defects increased, whereas, the green emission associated with V{sub O} is dominant in the vacuum annealed (T{sub A} = 500 °C) ZnO nanorods. The UV peak red shifted after the post-growth annealing treatments in all the environments and the vacuum annealed sample exhibited highest UV peak intensity. The observations from the PL data are supported by the micro-Raman spectroscopy. The present study gives new insight into the origin of different defects that exist in the electrodeposited ZnO nanorods and how these defects can be precisely controlled in order to get the desired emissions for the opto-electronic applications.« less
Effect of morphology evolution on the thermoelectric properties of oxidized ZnO thin films
NASA Astrophysics Data System (ADS)
Liu, Shiying; Li, Guojian; Xiao, Lin; Jia, Baohai; Gao, Yang; Wang, Qiang
2018-04-01
The effects of nanowire content on the thermoelectric properties of ZnO films were investigated. The nanowire content of ZnO films was tuned by thermal oxidation of evaporated Zn films. The results showed that hexagonal and polyhedral morphologies on the surface of Zn films can be used to tune the nanowire content of ZnO films. Hexagonal nanoplates with a diameter of 100-350 nm readily grew ZnO nanowires with c-axis preferential orientation. Conversely, it was difficult to grow nanowires on polyhedral nanoparticles with diameters of 500-750 nm because the meeting of ZnO (101) and (001) facets suppressed nanowire growth. Thermoelectric parameters were strongly affected by nanowire content. In particular, carrier concentration increased with nanowire content. Carrier mobility also increased with nanowire content because the nanowires behaved as channels for electronic migration. The band gap of the films narrowed with increasing nanowire content because the binding energy of O 1s electrons with oxygen vacancies decreased. The maximum power factor of the film with high nanowire content (8.80 μW/m K2 at 530 K) was approximately 300% higher than that of the film with low nanowire content.
Kang, Donghyeon; Lee, Dongho; Choi, Kyoung-Shin
2016-10-04
Electrochemical synthesis conditions using nonaqueous solutions were developed to prepare highly transparent (T > 90%) and crystalline ZnO and Al-doped ZnO (AZO) films for use in solar energy conversion devices. A focused effort was made to produce pinhole-free films in a reproducible manner by identifying a key condition to prevent the formation of cracks during deposition. The polycrystalline domains in the resulting films had a uniform orientation (i.e., the c-axis perpendicular to the substrate), which enhanced the electron transport properties of the films. Furthermore, electrochemical Al doping of ZnO using nonaqueous media, which was demonstrated for the first time in this study, effectively increased the carrier density and raised the Fermi level of ZnO. These films were coupled with an electrodeposited p-type Cu 2 O to construct p-n heterojunction solar cells to demonstrate the utilization of these films for solar energy conversion. The resulting n-ZnO/p-Cu 2 O and n-AZO/p-Cu 2 O cells showed excellent performance compared with previously reported n-ZnO/p-Cu 2 O cells prepared by electrodeposition. In particular, replacing ZnO with AZO resulted in simultaneous enhancements in short circuit current and open circuit potential, and the n-AZO/p-Cu 2 O cell achieved an average power conversion efficiency (η) of 0.92 ± 0.09%. The electrodeposition condition reported here will offer a practical and versatile way to produce ZnO or AZO films, which play key roles in various solar energy conversion devices, with qualities comparable to those prepared by vacuum-based techniques.
Effect of growth time on Ti-doped ZnO nanorods prepared by low-temperature chemical bath deposition
NASA Astrophysics Data System (ADS)
Bidier, Shaker A.; Hashim, M. R.; Al-Diabat, Ahmad M.; Bououdina, M.
2017-04-01
Ti-doped ZnO nanorod arrays were grown onto Si substrate using chemical bath deposition (CBD) method at 93 °C. To investigate the effect of time deposition on the morphological, and structural properties, four Ti-doped ZnO samples were prepared at various deposition periods of time (2, 3.5, 5, and 6.5 h). FESEM images displayed high-quality and uniform nanorods with a mean length strongly dependent upon deposition time; i.e. it increases for prolonged growth time. Additionally, EFTEM images reveal a strong erosion on the lateral side for the sample prepared for 6.5 h as compared to 5 h. This might be attributed to the dissolution reaction of ZnO with for prolonged growth time. XRD analysis confirms the formation of a hexagonal wurtzite-type structure for all samples with a preferred growth orientation along the c-axis direction. The (100) peak intensity was enhanced and then quenched, which might be the result of an erosion on the lateral side of nanorods as seen in EFTEM. This study confirms the important role of growth time on the morphological features of Ti-doped ZnO nanorods prepared using CBD. Increase the growth time causes an erosion in lateral side -(100) direction XRD- and enhances the axial direction -(002), XRD.
Effect of substrate on thermoelectric properties of Al-doped ZnO thin films
NASA Astrophysics Data System (ADS)
Mele, P.; Saini, S.; Honda, H.; Matsumoto, K.; Miyazaki, K.; Hagino, H.; Ichinose, A.
2013-06-01
We have prepared 2% Al doped ZnO (AZO) thin films on SrTiO3 (STO) and Al2O3 substrates by Pulsed Laser Deposition technique at various deposition temperatures (Tdep = 300 °C-600 °C). Transport and thermoelectric properties of AZO thin films were studied in low temperature range (300 K-600 K). AZO/STO films present superior performance respect to AZO/Al2O3 films deposited at the same temperature, except for films deposited at 400 °C. Best film is the fully c-axis oriented AZO/STO deposited at 300 °C, which epitaxial strain and dislocation density are the lowest: electrical conductivity 310 S/cm, Seebeck coefficient -65 μV/K, and power factor 0.13 × 10-3 W m-1 K-2 at 300 K. Its performance increases with temperature. For instance, power factor is enhanced up to 0.55 × 10-3 W m-1 K-2 at 600 K, surpassing the best AZO film previously reported in literature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barhoumi, A., E-mail: amira-barhoumi@yahoo.fr; Guermazi, S.; Leroy, G.
2014-05-28
Al-doped ZnO thin films (AZO) have been deposited on amorphous glass substrates by DC sputtering at different substrate temperatures T{sub s}. X-Ray diffraction results reveal that AZO thin films have a hexagonal wurtzite structure with (002) preferred orientation. (002) peaks indicate that the crystalline structure of the films is oriented with c-axis perpendicular to the substrate. Three-dimensional (3D) atomic force microscopy images of AZO thin films deposited on glass substrate at 200 °C, 300 °C, and 400 °C, respectively, shows the improvement of the crystallinity and the homogeneity of AZO thin films with T{sub s} which is in agreement with the noise measurements.more » The noise was characterized between 1 Hz and 100 kHz and we have obtained 1/f spectra. The noise is very sensitive to the crystal structure especially to the orientation of the crystallites which is perpendicular to the substrate and to the grain boundaries which generate a high current flow and a sharp increase in noise. Through time, R{sub sh} and [αμ]{sub eff} increase with the modification of the crystallinity of AZO thin films. Study of noise aging shows that the noise is more sensitive than resistivity for all AZO thin films.« less
Arslan, Andaç; Hür, Evrim; Ilican, Saliha; Caglar, Yasemin; Caglar, Mujdat
2014-07-15
ZnO nanorod array films were deposited from aqueous solution containing different concentrations (1×10(-2) M and 5×10(-3) M) Zn(NO3)2⋅6H2O and C6H12N4 and at different electrodeposition times (i.e., 15 min, 30 min, 60 min, 120 min and 180 min) using chronoamperometry method on p-Si substrate. Surface morphology and crystal structural properties of ZnO films were investigated by XRD and FESEM to select ZnO films which have optimum properties. The highest TC(hkl) value was observed in (002) plane for the film, which is deposited at 1×10(-2) M and 120 min. It is also observed that the highly oriented nanorods in this film are denser. Additionally, the conductivity type was determined by using Mott-Schottky which is electrochemical impedance spectroscopy method (EIS). On the other hand, to investigate the utility of obtained ZnO on p-Si (p-Si/n-ZnO) as supercapacitor electrode active material, the electrochemical storage properties of p-Si/ZnO was studied by electrochemical impedance spectroscopy and repeating chronopotentiometry methods. It is suggested from electrochemical tests results that p-Si/ZnO is a promising electrode materials for supercapacitor applications that required low voltage (<10 V). Rectifiying behavior was observed from the I-V characteristic of nanorod array n-ZnO/p-Si heterojunction diode. The n value, Io and the ϕb were found to be 5.48, 1.93×10(-8) A and 0.75 eV, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akazawa, Housei, E-mail: akazawa.housei@lab.ntt.co.jp; Shinojima, Hiroyuki
2015-04-21
We identified prerequisite conditions to obtain intense photoluminescence at 1.54 μm from Er{sup 3+} ions doped in ZnO host crystals. The epitaxial ZnO:Er films were grown on sapphire C-plane substrates by sputtering, and Er{sup 3+} ions were resonantly excited at a wavelength of 532 nm between energy levels of {sup 4}I{sub 15/2} and {sup 2}H{sub 11/2}. There is a threshold deposition temperature between 500 and 550 °C, above which epitaxial ZnO films become free of miss-oriented domains. In this case, Er{sup 3+} ions are outside ZnO crystallites, having the same c-axis lattice parameters as those of undoped ZnO crystals. The improved crystallinity wasmore » correlated with enhanced emissions peaking at 1538 nm. Further elevating the deposition temperature up to 650 °C generated cracks in ZnO crystals to relax the lattice mismatch strains, and the emission intensities from cracked regions were three times as large as those from smooth regions. These results can be consistently explained if we assume that emission-active Er{sup 3+} ions are those existing at grain boundaries and bonded to single-crystalline ZnO crystallites. In contrast, ZnO:Er films deposited on a ZnO buffer layer exhibited very weak emissions because of their degraded crystallinity when most Er{sup 3+} ions were accommodated into ZnO crystals. Optimizing the degree of oxidization of ZnO crystals is another important factor because reduced films suffer from non-radiative decay of excited states. The optimum Er content to obtain intense emissions was between 2 and 4 at. %. When 4 at. % was exceeded, the emission intensity was severely attenuated because of concentration quenching as well as the degradation in crystallinity. Precipitation of Er{sub 2}O{sub 3} crystals was clearly observed at 22 at. % for films deposited above 650 °C. Minimizing the number of defects and impurities in ZnO crystals prevents energy dissipation, thus exclusively utilizing the excitation energy to emissions from Er{sup 3+} ions.« less
Synergistic effect of indium and gallium co-doping on the properties of RF sputtered ZnO thin films
NASA Astrophysics Data System (ADS)
Shaheera, M.; Girija, K. G.; Kaur, Manmeet; Geetha, V.; Debnath, A. K.; Karri, Malvika; Thota, Manoj Kumar; Vatsa, R. K.; Muthe, K. P.; Gadkari, S. C.
2018-04-01
ZnO thin films were synthesized using RF magnetron sputtering, with simultaneous incorporation of Indium (In) and Gallium (Ga). The structural, optical, chemical composition and surface morphology of the pure and co-doped (IGZO) thin films were characterized by X-Ray diffraction (XRD), UV-visible spectroscopy, Field Emission Scanning Electron Microscopy (FESEM), and Raman spectroscopy. XRD revealed that these films were oriented along c-axis with hexagonal wurtzite structure. The (002) diffraction peak in the co-doped sample was observed at 33.76° with a slight shift towards lower 2θ values as compared to pure ZnO. The surface morphology of the two thin films was observed to differ. For pure ZnO films, round grains were observed and for IGZO thin films round as well as rod type grains were observed. All thin films synthesized show excellent optical properties with more than 90% transmission in the visible region and band gap of the films is observed to decrease with co-doping. The co doping of In and Ga is therefore expected to provide a broad range optical and physical properties of ZnO thin films for a variety of optoelectronic applications.
NASA Astrophysics Data System (ADS)
Pruna, A.; Shao, Q.; Kamruzzaman, M.; Li, Y. Y.; Zapien, J. A.; Pullini, D.; Busquets Mataix, D.; Ruotolo, A.
2017-01-01
Novel hybrid core-shell nanoarchitectures were fabricated by a simple two-step electrochemical approach: first ZnO nanorod core was electrodeposited from Zn(NO3)2 solution; further, the core nanoarray was coated with a shell based on polypyrrole hybridized with graphene oxide by electropolymerization. The properties of the core/shell nanoarchitectures were studied as a function of the core properties induced by electrodeposition parameters. The ZnO nanostructures showed improved crystallinity and c-axis preferred orientation with increasing cathodic deposition potential while the increased deposition duration resulted in a morphology transition from nanorod to pyramidal shape. The electrochemical activity of the core/shell arrays was found to increase with the deposition potential of ZnO core but decreased when morphology changed from nanorod to pyramid shape. The photocatalytic results showed improved activity for the core/hybrid shell nanoarrays with respect to ZnO and ZnO/PPy ones. The degradation rate for methylene blue decreased with prolonged deposition duration of the core. The obtained results highlight the importance of electrochemical tuning of ZnO-based core/shell nanoarrays for improved performance in electrochemical and photocatalytic applications.
Singh, Shaivalini; Chakrabarti, P
2012-03-01
We report the performance of the thin film transistors (TFTs) using ZnO as an active channel layer grown by radio frequency (RF) magnetron sputtering technique. The bottom gate type TFT, consists of a conventional thermally grown SiO2 as gate insulator onto p-type Si substrates. The X-ray diffraction patterns reveal that the ZnO films are preferentially orientated in the (002) plane, with the c-axis perpendicular to the substrate. A typical ZnO TFT fabricated by this method exhibits saturation field effect mobility of about 0.6134 cm2/V s, an on to off ratio of 102, an off current of 2.0 x 10(-7) A, and a threshold voltage of 3.1 V at room temperature. Simulation of this TFT is also carried out by using the commercial software modeling tool ATLAS from Silvaco-International. The simulated global characteristics of the device were compared and contrasted with those measured experimentally. The experimental results are in fairly good agreement with those obtained from simulation.
Characterization of Gold-Sputtered Zinc Oxide Nanorods-a Potential Hybrid Material.
Perumal, Veeradasan; Hashim, Uda; Gopinath, Subash C B; Rajintra Prasad, Haarindraprasad; Wei-Wen, Liu; Balakrishnan, S R; Vijayakumar, Thivina; Rahim, Ruslinda Abdul
2016-12-01
Generation of hybrid nanostructures has been attested as a promising approach to develop high-performance sensing substrates. Herein, hybrid zinc oxide (ZnO) nanorod dopants with different gold (Au) thicknesses were grown on silicon wafer and studied for their impact on physical, optical and electrical characteristics. Structural patterns displayed that ZnO crystal lattice is in preferred c-axis orientation and proved the higher purities. Observations under field emission scanning electron microscopy revealed the coverage of ZnO nanorods by Au-spots having diameters in the average ranges of 5-10 nm, as determined under transmission electron microscopy. Impedance spectroscopic analysis of Au-sputtered ZnO nanorods was carried out in the frequency range of 1 to 100 MHz with applied AC amplitude of 1 V RMS. The obtained results showed significant changes in the electrical properties (conductance and dielectric constant) with nanostructures. A clear demonstration with 30-nm thickness of Au-sputtering was apparent to be ideal for downstream applications, due to the lowest variation in resistance value of grain boundary, which has dynamic and superior characteristics.
Haarindraprasad, R.; Hashim, U.; Gopinath, Subash C. B.; Kashif, Mohd; Veeradasan, P.; Balakrishnan, S. R.; Foo, K. L.; Poopalan, P.
2015-01-01
The performance of sensing surfaces highly relies on nanostructures to enhance their sensitivity and specificity. Herein, nanostructured zinc oxide (ZnO) thin films of various thicknesses were coated on glass and p-type silicon substrates using a sol-gel spin-coating technique. The deposited films were characterized for morphological, structural, and optoelectronic properties by high-resolution measurements. X-ray diffraction analyses revealed that the deposited films have a c-axis orientation and display peaks that refer to ZnO, which exhibits a hexagonal structure with a preferable plane orientation (002). The thicknesses of ZnO thin films prepared using 1, 3, 5, and 7 cycles were measured to be 40, 60, 100, and 200 nm, respectively. The increment in grain size of the thin film from 21 to 52 nm was noticed, when its thickness was increased from 40 to 200 nm, whereas the band gap value decreased from 3.282 to 3.268 eV. Band gap value of ZnO thin film with thickness of 200 nm at pH ranging from 2 to 10 reduces from 3.263eV to 3.200 eV. Furthermore, to evaluate the transducing capacity of the ZnO nanostructure, the refractive index, optoelectric constant, and bulk modulus were analyzed and correlated. The highest thickness (200 nm) of ZnO film, embedded with an interdigitated electrode that behaves as a pH-sensing electrode, could sense pH variations in the range of 2-10. It showed a highly sensitive response of 444 μAmM-1cm-2 with a linear regression of R2 =0.9304. The measured sensitivity of the developed device for pH per unit is 3.72μA/pH. PMID:26167853
Physical study on Cobalt-Indium Co-doped ZnO nanofilms as hydrophobic surfaces
NASA Astrophysics Data System (ADS)
Mimouni, R.; Mahdhi, N.; Boubaker, K.; Madouri, A.; Amlouk, M.
2016-03-01
The present work reports some physical investigations on (Co,In) codoped zinc oxide nanofilms deposited on glass substrates at 460 °C by the spray pyrolysis technique. The effect of Co and In concentration on the structural, morphological, optical and surface wettability properties have been investigated using X-ray diffraction (XRD) patterns, Raman spectroscopy, SEM, optical measurement, photoluminescence spectroscopy as well as the measurement of hydrophobicity in terms of water contact angle. It is found that all films crystallized in würtzite ZnO phase, with a preferentially orientation towards (002) direction parallel to c-axis. The Raman spectra of the samples exhibit the presence of E2high characteristic mode of würtzite structure with high crystallinity as well as two dominant bands 1LO and 2LO. Also, no additional modes introduced by codopoing have been found. SEM micrographs show the uniform deposition of fine grains on surface films. Thicknesses of films are less than 100 nm. In addition, optical investigations indicate that the band gap narrowing of (Co,In) codoped ZnO thin films is due to the increase in the band tail width. Indeed, PL study indicates that (Co,In) codoped ZnO nanofilms exhibit a large decrease of the UV luminescence, which is assigned to the trapping of photo-generated electrons by both In3+ and Co2+ ions as well as an improvement of charge separation in the ZnO thin films. Finally, the (Co,In) codoping influences the surface wettability property and transform the ZnO character from hydrophilic (θ < 90°) for pure ZnO nanofilm to hydrophobic (θ > 90°) for (Co,In) codoped ZnO ones.
NASA Astrophysics Data System (ADS)
Arif, Mohd.; Sanger, Amit; Vilarinho, Paula M.; Singh, Arun
2018-04-01
Nanocrystalline ZnO thin films were deposited on glass substrate via sol-gel dip-coating technique then annealed at 300°C, 400°C, and 500°C for 1 h. Their optical, structural, and morphological properties were studied using ultraviolet-visible (UV-Vis) spectrophotometry, x-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM). XRD diffraction revealed that the crystalline nature of the thin films increased with increasing annealing temperature. The c-axis orientation improved, and the grain size increased, as indicated by increased intensity of the (002) plane peak at 2θ = 34.42° corresponding to hexagonal ZnO crystal. The average crystallite size of the thin films ranged from 13 nm to 23 nm. Increasing the annealing temperature resulted in larger crystallite size and higher crystallinity with increased surface roughness. The grain size according to SEM analysis was in good agreement with the x-ray diffraction data. The optical bandgap of the thin films narrowed with increasing annealing temperature, lying in the range of 3.14 eV to 3.02 eV. The transmission of the thin films was as high as 94% within the visible region. The thickness of the thin films was 400 nm, as measured by ellipsometry, after annealing at the different temperatures of 300°C, 400°C, and 500°C.
Structure evolution of zinc oxide thin films deposited by unbalance DC magnetron sputtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aryanto, Didik, E-mail: didi027@lipi.go.id; Materials Research Group, Physics Department, Universitas Negeri Semarang, Gunungpati, Semarang 50229 Jawa Tengah; Marwoto, Putut
Zinc oxide (ZnO) thin films are deposited on corning glass substrates using unbalanced DC magnetron sputtering. The effect of growth temperature on surface morphology and crystallographic orientation of ZnO thin film is studied using atomic force microscopy (AFM) and X-ray diffraction (XRD) techniques. The surface morphology and crystallographic orientation of ZnO thin film are transformed against the increasing of growth temperature. The mean grain size of film and the surface roughness are inversely and directly proportional towards the growth temperature from room temperature to 300 °C, respectively. The smaller grain size and finer roughness of ZnO thin film are obtainedmore » at growth temperature of 400 °C. The result of AFM analysis is in good agreement with the result of XRD analysis. ZnO thin films deposited in a series of growth temperatures have hexagonal wurtzite polycrystalline structures and they exhibit transformations in the crystallographic orientation. The results in this study reveal that the growth temperature strongly influences the surface morphology and crystallographic orientation of ZnO thin film.« less
Khan, Fasihullah; Ajmal, Hafiz Muhammad Salman; Huda, Noor Ul; Kim, Ji Hyun; Kim, Sam-Dong
2018-01-01
In this study, the ambient condition for the as-coated seed layer (SL) annealing at 350 °C is varied from air or nitrogen to vacuum to examine the evolution of structural and optical properties of ZnO nanorods (NRs). The NR crystals of high surface density (~240 rods/μm2) and aspect ratio (~20.3) show greatly enhanced (002) degree of orientation and crystalline quality, when grown on the SLs annealed in vacuum, compared to those annealed in air or nitrogen ambient. This is due to the vacuum-annealed SL crystals of a highly preferred orientation toward (002) and large grain sizes. X-ray photoelectron spectroscopy also reveals that the highest O/Zn atomic ratio of 0.89 is obtained in the case of vacuum-annealed SL crystals, which is due to the effective desorption of hydroxyl groups and other contaminants adsorbed on the surface formed during aqueous solution-based growth process. Near band edge emission (ultra violet range of 360–400 nm) of the vacuum-annealed SLs is also enhanced by 44% and 33% as compared to those annealed in air and nitrogen ambient, respectively, in photoluminescence with significant suppression of visible light emission associated with deep level transition. Due to this improvement of SL optical crystalline quality, the NR crystals grown on the vacuum-annealed SLs produce ~3 times higher ultra violet emission intensity than the other samples. In summary, it is shown that the ZnO NRs preferentially grow along the wurtzite c-axis direction, thereby producing the high crystalline quality of nanostructures when they grow on the vacuum-annealed SLs of high crystalline quality with minimized impurities and excellent preferred orientation. The ZnO nanostructures of high crystalline quality achieved in this study can be utilized for a wide range of potential device applications such as laser diodes, light-emitting diodes, piezoelectric transducers and generators, gas sensors, and ultraviolet detectors. PMID:29373523
NASA Astrophysics Data System (ADS)
Buckley, Darragh; McCormack, Robert; O'Dwyer, Colm
2017-04-01
The angle-resolved reflectance of high crystalline quality, c-axis oriented ZnO and AZO single and periodic quasi-superlattice (QSL) spin-coated TFT channels materials are presented. The data is analysed using an adapted model to accurately determine the spectral region for optical thickness and corresponding reflectance. The optical thickness agrees very well with measured thickness of 1-20 layered QSL thin films determined by transmission electron microscopy if the reflectance from lowest interference order is used. Directional reflectance for single layers or homogeneous QSLs of ZnO and AZO channel materials exhibit a consistent degree of anti-reflection characteristics from 30 to 60° (~10-12% reflection) for thickness ranging from ~40 nm to 500 nm. The reflectance of AZO single layer thin films is <10% from 30 to 75° at 514.5 nm, and <6% at 632.8 nm from 30-60°. The data show that ZnO and AZO with granular or periodic substructure behave optically as dispersive, continuous thin films of similar thickness, and angle-resolved spectral mapping provides a design rule for transparency or refractive index determination as a function of film thickness, substructure (dispersion) and viewing angle.
NASA Astrophysics Data System (ADS)
Menon, Rashmi; Sreenivas, K.; Gupta, Vinay
2008-05-01
Highly c axis oriented zinc oxide (ZnO) thin films have been prepared on 1737 Corning glass substrate by planar rf magnetron sputtering under varying pressure (10-50mTorr) and different oxygen percentage (40%-100%) in reactive gas mixtures. The as-grown ZnO thin films were found to have stress over a wide range from -6×1010to-9×107dynes/cm2. The presence of stress depends strongly on processing conditions, and films become almost stress free under a unique combination of sputtering pressure and reactive gas composition. The studies show a correlation of stress with structural and electrical properties of the ZnO thin film. The stressed films possess high electrical conductivity and exhibits strong dielectric dispersion over a wide frequency (1kHz-1MHz). The dielectric constant ɛ'(ω) of stress free ZnO film was almost frequency independent and was close to the bulk value. The measured value of dc conductivity, σdc(ω) and ac conductivity σac(ω) of stress free ZnO film was 1.3×10-9 and 6.8×10-5Ω-1cm-1, respectively. The observed variation in the structural and electrical properties of ZnO thin film with stress has been analyzed in the light of growth kinetics.
Mahpeykar, S M; Koohsorkhi, J; Ghafoori-Fard, H
2012-04-27
Long vertically aligned ZnO nanowire arrays were synthesized using an ultra-fast microwave-assisted hydrothermal process. Using this method, we were able to grow ZnO nanowire arrays at an average growth rate as high as 200 nm min(-1) for maximum microwave power level. This method does not suffer from the growth stoppage problem at long growth times that, according to our investigations, a normal microwave-assisted hydrothermal method suffers from. Longitudinal growth of the nanowire arrays was investigated as a function of microwave power level and growth time using cross-sectional FESEM images of the grown arrays. Effect of seed layer on the alignment of nanowires was also studied. X-ray diffraction analysis confirmed c-axis orientation and single-phase wurtzite structure of the nanowires. J-V curves of the fabricated ZnO nanowire-based mercurochrome-sensitized solar cells indicated that the short-circuit current density is increased with increasing the length of the nanowire array. According to the UV-vis spectra of the dyes detached from the cells, these increments were mainly attributed to the enlarged internal surface area and therefore dye loading enhancement in the lengthened nanowire arrays.
Nam, Giwoong; Yoon, Hyunsik; Kim, Byunggu; Lee, Dong-Yul; Kim, Jong Su; Leem, Jae-Young
2014-11-01
The structural and optical properties of Co-doped ZnO thin films prepared by a sol-gel dip-coating method were investigated. X-ray diffraction analysis showed that the thin films were grown with a c-axis preferred orientation. The position of the (002) peak was almost the same in all samples, irrespective of the Co concentration. It is thus clear that Co doping had little effect on the position of the (002) peak. To confirm that Co2+ was substituted for Zn2+ in the wurtzite structure, optical measurements were conducted at room temperature by a UV-visible spectrometer. Three absorption peaks are apparent in the Co-doped ZnO thin films that do not appear for the undoped ZnO thin film. As the Co concentration was increased, absorption related to characteristic Co2+ transitions increased because three absorption band intensities and the area underneath the absorption wells between 500 and 700 nm increased with increasing Co concentration. The optical band gap and static dielectric constant decreased and the Urbach energy and extinction coefficient increased with increasing Co concentration.
NASA Astrophysics Data System (ADS)
Sharma, Sanjeev K.; Singh, Satendra Pal; Kim, Deuk Young
2018-02-01
The heterojunction diode of yttrium-doped ZnO (YZO) thin films was fabricated on p-Si(100) substrates by sol-gel method. The post-annealing process was performed at 600 °C in vacuum for a short time (3 min) to prevent inter-diffusion of Zn, Y, and Si atoms. X-ray diffraction (XRD) pattern of as-grown and annealed (600 °C in vacuum) films showed the preferred orientation along the c-axis (002) regardless of dopant concentrations. The uniform surface microstructure and the absence of other metal/oxide peaks in XRD pattern confirmed the excellence of films. The increasing bandgap and carrier concentration of YZO thin films were interpreted by the BM shift, that is, the Fermi level moves towards the conduction band edge. The current-voltage characteristics of the heterojunction diode, In/n-ZnO/p-Si/Al, showed a rectification behavior. The turn-on voltage and ideality factor of n-ZnO/p-Si and n-YZO/p-Si were observed to be 3.47 V, 2.61 V, and 1.97, 1.89, respectively. Y-dopant in ZnO thin films provided more donor electrons caused the shifting of Fermi-energy level towards the conduction band and strengthen the interest for heterojunction diodes.
NASA Astrophysics Data System (ADS)
Shih, Wen-Ching; Huang, Yi-Fan; Wu, Mu-Shiang
2017-10-01
ZnO films with c-axis (0002) orientation have been successfully grown by RF magnetron sputtering on Al2O3/glass substrates. The alumina films were firstly deposited on glass substrates, and then secondly deposited on interdigital transducer/ZnO film/alumina film/glass substrates by electron beam evaporation. The crystalline structure and surface roughness of the films were investigated by X-ray diffraction and atomic force microscopy, respectively. The phase velocity and coupling coefficient of the surface acoustic wave (SAW) device were both increased when we deposited the double alumina layers. On the other hand, the temperature coefficient of frequency becomes better if we increase the thickness of the lower alumina film. The experimental result is beneficial for improving the performance of the ZnO thin-film SAW devices on inexpensive glass substrates.
Microstructure study of ZnO thin films on Si substrate grown by MOCVD
NASA Astrophysics Data System (ADS)
Huang, Jingyun; Ye, Zhizhen; Lu, Huanming; Wang, Lei; Zhao, Binghui; Li, Xianhang
2007-08-01
The microstructure of zinc oxide thin films on silicon substrates grown by metalorganic chemical vapour deposition (MOCVD) was characterized. The cross-sectional bright-field transmission electron microscopy (TEM) image showed that small ZnO columnar grains were embedded into large columnar grains, and the selected-area electron diffraction pattern showed that the ZnO/Si thin films were nearly c-axis oriented. The deviation angle along the ZnO (0 0 0 1) direction with respect to the growth direction of Si (1 0 0) was no more than 5°. The [0 0 0 1]-tilt grain boundaries in ZnO/Si thin films were investigated symmetrically by plan-view high resolution TEM. The boundaries can be classified into three types: low-angle boundaries described as an irregular array of edge dislocations, boundaries of near 30° angle with (1\\,0\\,\\bar{1}\\,0) facet structures and large-angle boundaries with symmetric structure which could be explained by a low Σ coincident site lattice structure mode. The research was useful to us for finding optimized growth conditions to improve ZnO/Si thin film quality.
NASA Astrophysics Data System (ADS)
Toubane, M.; Tala-Ighil, R.; Bensouici, F.; Bououdina, M.; Souier, M.; Liu, S.; Cai, W.; Iratni, A.
2017-03-01
ZnO thin films were deposited onto glass substrate by sol-gel dip coating method. The initial sol concentrations were varied from 0.2 to 0.5 M. Zinc acetate dihydrate, ethanol and Diethanolamine (DEA) were used as staring material, solvent and stabilizer respectively. The evolution of structural, optical properties and methylene blue (MB) photodegradation of the as-deposited films on sol concentration was investigated. Rietveld refinements of x-ray patterns reveal that all the as-prepared thin films have a Zincite-type structure with grain orientation along to c-axis. The strongest sol concentration is favorable for the highest crystallization quality. However, the high preferred orientation factor (POF) occurs for 0.3 M sol concentration. The field emission scanning electron microscopy observations reveals nanofibrous morphology with different lengths. The nanofibers density increases with increasing sols concentrations until forming a flower-like morphology. The EDS analysis confirms the high purity of the as-deposited ZnO films. It is found that all films present good transparency greater than 95% in the visible range; the optical band gap is slightly reduced with the increase in sol concentration. The photocatalytic degradation is enhanced by 90% with the sol concentration. The K app rate reaction increased with increasing sol concentration. The films stability is found to slightly decrease after the third cycle, especially for 0.5 M sol concentration.
Novel Gas Sensor Based on ZnO Nanorod Circular Arrays for C2H5OH Gas Detection.
Jianjiao, Zhang; Hongyan, Yue; Erjun, Guo; Shaolin, Zhang; Liping, Wang; Chunyu, Zhang; Xin, Gao; Jing, Chang; Hong, Zhang
2015-03-01
Novel side-heating gas sensor based on ZnO nanorod circular arrays was firstly fabricated by hydrothermal treatment assisted with a kind of simple dip-coating technique. The structure and morphologies of ZnO nanorods were characterized by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), respectively. XRD result indicates that the obtained ZnO nanorods have good crystalline with the hexagonal wurtzite structure. SEM result indicates that ZnO nanorod arrays are vertically growth on the surface of ceramic tube of side-heating sensor with controlled diameter and length, narrow size distribution and high orientation. The gas sensing properties of ZnO nanorod circular arrays are also evaluated. Comparative to the sensor based on scattered ZnO nanorods responding to 25 ppm H2, CO, C6H5CH3 and C2H5OH gas, respectively, the sensing values of high orientation gas sensor are generally increased by 5%. This novel sensor has good application promising for the fabrication of cost effective and high performance gas sensors.
NASA Astrophysics Data System (ADS)
Koike, Kazuto; Yano, Mitsuaki; Gonda, Shun-ichi; Uedono, Akira; Ishibashi, Shoji; Kojima, Kazunobu; Chichibu, Shigefusa F.
2018-04-01
The polarity dependence of the radiation hardness of single-crystalline ZnO bulk crystals is studied by irradiating the Zn-polar and O-polar c-planes with an 8 MeV proton beam up to the fluence of 4.2 × 1016 p/cm2. To analyze the hardness, radiation-induced defects were evaluated using positron annihilation (PA) analysis, and the recovery by post-annealing was examined using continuous-wave photoluminescence (PL) and time-resolved photoluminescence (TRPL) measurements. It was suggested by the PA and PL analyses that the major defects in both polarities were VZnVO divacancies. While the PA data did not show the clear dependence on the polarity, the PL and TRPL results showed that the Zn-polar c-plane had a little higher radiation tolerance than that of the O-polar c-plane, which was consistent with the result that the increase in the electrical resistance by proton beam irradiation was smaller for the former one. Considering these results in total, the polarity dependence is considered to be not so large, but the Zn-polar c-plane has a little higher tolerance than that of the O-polar one.
Origin of stress in radio frequency magnetron sputtered zinc oxide thin films
NASA Astrophysics Data System (ADS)
Menon, Rashmi; Gupta, Vinay; Tan, H. H.; Sreenivas, K.; Jagadish, C.
2011-03-01
Highly c-axis oriented ZnO thin films have been deposited on silicon substrates by planar rf magnetron sputtering under varying pressure (10-50 mTorr) and oxygen percentage (50-100%) in the reactive gas (Ar + O2) mixture. The as-grown films were found to be stressed over a wide range from -1 × 1011 to -2 × 108 dyne/cm2 that in turn depends strongly on the processing conditions, and the film becomes stress free at a unique combination of sputtering pressure and reactive gas composition. Raman spectroscopy and photoluminescence (PL) analyses identified the origin of stress as lattice distortion due to defects introduced in the ZnO thin film. FTIR study reveals that Zn-O bond becomes stronger with the increase in oxygen fraction in the reactive gas mixture. The lattice distortion or stress depends on the type of defects introduced during deposition. PL spectra show the formation of a shoulder in band emission with an increase in the processing pressure and are related to the presence of stress. The ratio of band emission to defect emission decreases with the increase in oxygen percentage from 50 to 100%. The studies show a correlation of stress with the structural, vibrational, and photoluminescence properties of the ZnO thin film. The systematic study of the stress will help in the fabrication of efficient devices based on ZnO film.
A potentiometric biosensor for the detection of notch 3 using functionalized ZnO nanorods.
Ibupoto, Z H; Khun, K; Liu, X; Willander, M
2014-09-01
The notch signalling plays a vital and radical role for the activity of cellular proliferation, differentiation and apoptosis. In this study, for the first time a particular biosensor is developed for the detection of notch 3. ZnO nanorods were fabricated on the gold coated glass substrate by hydrothermal method and afterwards were decorated with the gold nanoparticles by electrodepositing technique. Scanning electron microscopy (SEM) has shown the perpendicular to the substrate growth pattern of ZnO nanorods. X-ray diffraction (XRD) studies showed the c-axis oriented growth direction with wurtzite crystal structure of ZnO nanorods. X-ray Photoelectron Spectroscopy (XPS) and energy dispersive X-ray (EDX) techniques have shown the presence of Zn, O and Au atoms in the prepared functional material. Furthermore, the anti-notch 3 was physically adsorbed on the gold nanoparticles functionalized ZnO nanorods. The developed potentiometric immunosensor has shown response to the wide range of notch 3 molecules. The detected range included 1.00 x 10(-5)-1.50 x 10(0 ) μg/mL with a sensitivity of 23.15 ± 0.31 mV/decade. The analytical parameters including reproducibility, stability, and selectivity were also investigated and the observed results indicate the acceptable performance of the notch 3 biosensor. Moreover, the proposed notch 3 biosensor exhibited a fast response time of 10 s.
NASA Astrophysics Data System (ADS)
Khomchenko, Viktoriya; Mazin, Mikhail; Sopinskyy, Mykola; Lytvyn, Oksana; Dan'ko, Viktor; Piryatinskii, Yurii; Demydiuk, Pavlo
2018-05-01
The simple way for silver doping of ZnO films is presented. The ZnO films were prepared by reactive rf-magnetron sputtering on silicon and sapphire substrates. Ag doping is carried out by sublimation of the Ag source located at close space at atmospheric pressure in air. Then the ZnO and ZnO-Ag films were annealed in wet media. The microstructure and optical properties of the films were compared and studied by atomic force microscopy (AFM), X-ray diffraction (XRD), photoluminescence (PL) and cathodoluminescence (CL). XRD results indicated that all the ZnO films have a polycrystalline hexagonal structure and a preferred orientation with the c-axis perpendicular to the substrate. The annealing and Ag doping promote increasing grain's sizes and modification of grain size distribution. The effect of substrate temperature, substrate type, Ag doping and post-growth annealing of the films was studied by PL spectroscopy. The effect of Ag doping was obvious and identical for all the films, namely the wide visible bands of PL spectra are suppressed by Ag doping. The intensity of ultraviolet band increased 15 times as compared to their reference films on sapphire substrate. The ultraviolet/visible emission ratio was 20. The full width at half maximum (FWHM) for a 380 nm band was 14 nm, which is comparable with that of epitaxial ZnO. The data implies the high quality of ZnO-Ag films. Possible mechanisms to enhance UV emission are discussed.
Sanctis, Shawn; Hoffmann, Rudolf C; Eiben, Sabine; Schneider, Jörg J
2015-01-01
Tobacco mosaic virus (TMV) has been employed as a robust functional template for the fabrication of a TMV/zinc oxide field effect transistor (FET). A microwave based approach, under mild conditions was employed to synthesize stable zinc oxide (ZnO) nanoparticles, employing a molecular precursor. Insightful studies of the decomposition of the precursor were done using NMR spectroscopy and material characterization of the hybrid material derived from the decomposition was achieved using dynamic light scattering (DLS), transmission electron microscopy (TEM), grazing incidence X-ray diffractometry (GI-XRD) and atomic force microscopy (AFM). TEM and DLS data confirm the formation of crystalline ZnO nanoparticles tethered on top of the virus template. GI-XRD investigations exhibit an orientated nature of the deposited ZnO film along the c-axis. FET devices fabricated using the zinc oxide mineralized virus template material demonstrates an operational transistor performance which was achieved without any high-temperature post-processing steps. Moreover, a further improvement in FET performance was observed by adjusting an optimal layer thickness of the deposited ZnO on top of the TMV. Such a bio-inorganic nanocomposite semiconductor material accessible using a mild and straightforward microwave processing technique could open up new future avenues within the field of bio-electronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aadila, A., E-mail: aadilaazizali@gmail.com; Asib, N. A. M.; Afaah, A. N.
In this work, solution-immersion method was used to grow ZnO rods on PMMA-coated substrate. For this purpose, 0.15 M of zinc nitrate hexahydrate (Zn(NO{sub 3}){sub 2}.6H{sub 2}O) and hexamethylenetetramine (C{sub 6}H{sub 12}N{sub 4}) were used to growth of ZnO films at different annealing temperatures (room temperature, 80, 100, 120 and 140 °C). The morphology of the films was investigated by Scanning Electron Microscope (SEM) and optical properties were studied by Ultraviolet (UV-Vis) Spectroscopy. SEM analysis showed ubiquitous growth of ZnO rods that became better aligned and more closely-packed as the annealing temperature increased. As the annealing temperature exceeds 100 °C,more » the rods tend to merge to adjacent particles and the UV absorption decreased for the sample at higher temperatures (120 °C and 140 °C). Good absorption and better orientation of ZnO was obtained for the sample annealed at 100 °C due to the film possess better distribution and these improved orientation of particles caused the light to be effectively scattered on the sample. Both surface morphology and UV was significantly affected by the change in annealing temperatures thus thermal effect played a dominant role in shaping and improving the orientation of ZnO rods on PMMA-coated and its UV absorption.« less
Mechanism of polarization switching in wurtzite-structured zinc oxide thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konishi, Ayako; Ogawa, Takafumi; Fisher, Craig A. J.
2016-09-05
The properties of a potentially new class of ferroelectric materials based on wurtzite-structured ZnO thin films are examined using the first-principles calculations. Theoretical P-E hysteresis loops were calculated using the fixed-D method for both unstrained and (biaxially) strained single crystals. Ferroelectric polarization switching in ZnO (S.G. P6{sub 3}mc) is shown to occur via an intermediate non-polar structure with centrosymmetric P6{sub 3}/mmc symmetry by displacement of cations relative to anions in the long-axis direction. The calculated coercive electric field (E{sub c}) for polarization switching was estimated to be 7.2 MV/cm for defect-free monocrystalline ZnO. During switching, the short- and long-axis latticemore » parameters expand and contract, respectively. The large structural distortion required for switching may explain why ferroelectricity in this compound has not been reported experimentally for pure ZnO. Applying an epitaxial tensile strain parallel to the basal plane is shown to be effective in lowering E{sub c} during polarization, with a 5% biaxial expansion resulting in a decrease of E{sub c} to 3.5 MV/cm. Comparison with calculated values for conventional ferroelectric materials suggests that the ferroelectric polarization switching of wurtzite-structured ZnO may be achievable by preparing high-quality ZnO thin films with suitable strain levels and low defect concentrations.« less
Structural and electrical properties of sputter deposited ZnO thin films
NASA Astrophysics Data System (ADS)
Muhammed Shameem P., V.; Mekala, Laxman; Kumar, M. Senthil
2018-05-01
The growth of zinc oxide thin films having different oxygen content was achieved at ambient temperature by reactive dc magnetron sputtering technique and their structural and electrical properties are studied. The structural studies show that the films are polycrystalline with a preferential orientation of the grains along the c-axis [002], which increases with increase in oxygen partial pressure. The grain size and the surface roughness of the zinc oxide films are found to decrease with increasing oxygen partial pressure. It is observed that the resistivity of the zinc oxide films can be tuned from semiconducting to insulating regime by varying the oxygen content.
Yanagitani, Takahiko; Mishima, Natsuki; Matsukawa, Mami; Watanabe, Yoshiaki
2007-04-01
The (1120) textured polycrystalline ZnO films with a high shear mode electromechanical coupling coefficient k15 are obtained by sputter deposition. An over-moded resonator, a layered structure of metal electrode film/(1120) textured ZnO piezoelectric film/metal electrode film/silica glass substrate was used to characterize k15 by a resonant spectrum method. The (1120) textured ZnO piezoelectric films with excellent crystallite c-axis alignment showed an electromechanical coupling coefficient k15 of 0.24. This value was 92% of k15 value in single-crystal (k15 = 0.26).
NASA Astrophysics Data System (ADS)
Farhat, O. F.; Halim, M. M.; Ahmed, Naser M.; Oglat, Ammar A.; Abuelsamen, A. A.; Bououdina, M.; Qaeed, M. A.
2017-12-01
In this study, ZnO nanorods (NRs) were well deposited on Teflon substrates (PTFE) via a chemical bath deposition (CBD) method at low temperature. The consequences of growth time (1 h-4 h) on the structural and optical properties of the aligned ZnO (NRs) were investigated through X-ray diffraction, field-emission scanning electron microscopy (FESEM), and photoluminescence (PL) analyses. The results show that the ZnO (NRs) were preferred to grew aligned along the c-axis as hexagonal wurtzite structure as proved by the sharp and strong ZnO (002) peaks of the ZnO (NRs). Irrespective of the growth continuation, FESEM photos confirmed that the ZnO nanorods arrays were fit to be aligned along the c-axis and perpendicular to (PTFE) substrates. The ZnO nanorods that exhibited the sharper stand most intense PL peaks among the sample were grown for 3hs as demonstrated by PL spectra. The device further showed a sensitivity of 4068 to low-power (1.25 mW/cm2) 375 nm light pulses without an external bias. The measurements of photoresponse demonstrated the highly reproducible characteristics of the fabricated UV detector with rapid response and baseline recovery times of 48.05 ms. Thus, this work introduced a simple, low-cost method of fabricating rapid-response, and highly photosensitive UV detectors with zero power consumption on Teflon substrates.
Hambali, Nur Ashikyn; Yahaya, Hafizal; Mahmood, Mohamad Rusop; Terasako, Tomoaki; Hashim, Abdul Manaf
2014-01-01
The electrochemical growth of zinc oxide (ZnO) nanostructures on graphene on glass using zinc nitrate hexahydrate was studied. The effects of current densities and temperatures on the morphological, structural, and optical properties of the ZnO structures were studied. Vertically aligned nanorods were obtained at a low temperature of 75°C, and the diameters increased with current density. Growth temperature seems to have a strong effect in generating well-defined hexagonal-shape nanorods with a smooth top edge surface. A film-like structure was observed for high current densities above -1.0 mA/cm(2) and temperatures above 80°C due to the coalescence between the neighboring nanorods with large diameter. The nanorods grown at a temperature of 75°C with a low current density of -0.1 mA/cm(2) exhibited the highest density of 1.45 × 10(9) cm(-2). X-ray diffraction measurements revealed that the grown ZnO crystallites were highly oriented along the c-axis. The intensity ratio of the ultraviolet (UV) region emission to the visible region emission, I UV/I VIS, showed a decrement with the current densities for all grown samples. The samples grown at the current density below -0.5 mA/cm(2) showed high I UV/I VIS values closer to or higher than 1.0, suggesting their fewer structural defects. For all the ZnO/graphene structures, the high transmittance up to 65% was obtained at the light wavelength of 550 nm. Structural and optical properties of the grown ZnO structures seem to be effectively controlled by the current density rather than the growth temperature. ZnO nanorod/graphene hybrid structure on glass is expected to be a promising structure for solar cell which is a conceivable candidate to address the global need for an inexpensive alternative energy source.
Highly textured and transparent RF sputtered Eu2O3 doped ZnO films
Sreedharan, Remadevi Sreeja; Ganesan, Vedachalaiyer; Sudarsanakumar, Chellappan Pillai; Bhavsar, Kaushalkumar; Prabhu, Radhakrishna; Mahadevan Pillai, Vellara Pappukutty Pillai
2015-01-01
Background Zinc oxide (ZnO) is a wide, direct band gap II-VI oxide semiconductor. ZnO has large exciton binding energy at room temperature, and it is a good host material for obtaining visible and infrared emission of various rare-earth ions. Methods Europium oxide (Eu2O3) doped ZnO films are prepared on quartz substrate using radio frequency (RF) magnetron sputtering with doping concentrations 0, 0.5, 1, 3 and 5 wt%. The films are annealed in air at a temperature of 773 K for 2 hours. The annealed films are characterized using X-ray diffraction (XRD), micro-Raman spectroscopy, atomic force microscopy, ultraviolet (UV)-visible spectroscopy and photoluminescence (PL) spectroscopy. Results XRD patterns show that the films are highly c-axis oriented exhibiting hexagonalwurtzite structure of ZnO. Particle size calculations using Debye-Scherrer formula show that average crystalline size is in the range 15–22 nm showing the nanostructured nature of the films. The observation of low- and high-frequency E2 modes in the Raman spectra supports the hexagonal wurtzite structure of ZnO in the films. The surface morphology of the Eu2O3 doped films presents dense distribution of grains. The films show good transparency in the visible region. The band gaps of the films are evaluated using Tauc plot model. Optical constants such as refractive index, dielectric constant, loss factor, and so on are calculated using the transmittance data. The PL spectra show both UV and visible emissions. Conclusion Highly textured, transparent, luminescent Eu2O3 doped ZnO films have been synthesized using RF magnetron sputtering. The good optical and structural properties and intense luminescence in the ultraviolet and visible regions from the films suggest their suitability for optoelectronic applications. PMID:25765728
Spontaneous polarization induced electric field in zinc oxide nanowires and nanostars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farid, S., E-mail: sfarid3@uic.edu; Choi, M.; Datta, D.
We report on the detection mechanism of spontaneous polarization using electrostatic force microscopy in zinc oxide nanowires and nanostars grown by vapor-liquid-solid technique. Optical and structural properties are investigated in detail to understand the complex ZnO nanostructures comprehensively. Calculations are carried out to estimate the electric field from the change in interleave amplitude induced by the electrostatic force due to the spontaneous polarization effects. Attraction of the probe between the tip and the sample varies for different structures with a stronger attraction for nanostars as compared to nanowires. Strength of electric field is dependent on the orientation of nanowires andmore » nanostars c-axis with measured magnitude of electric field to be ∼10{sup 7 }V/m and 10{sup 8 }V/m respectively. This technique presents a unique detection mechanism of built-in spontaneous polarization and electric field from polar ZnO nanowires with applications in voltage gated ion channels, nano-bio interfaces, optoelectronic and photonic devices.« less
Polarization-dependent DANES study on vertically-aligned ZnO nanorods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Chengjun; Park, Chang-In; Jin, Zhenlan
2016-05-01
The local structural and local density of states of vertically-aligned ZnO nanorods were examined by using a polarization-dependent diffraction anomalous near edge structure (DANES) measurements from c-oriented ZnO nanorods at the Zn K edge with the incident x-ray electric field parallel and perpendicular to the x-ray momentum transfer direction. Orientation-dependent local structures determined by DANES were comparable with polarization-dependent EXAFS results. Unlike other techniques, polarization-dependent DANES can uniquely describe the orientation-dependent local structural properties and the local density of states of a selected element in selected-phased crystals of compounds or mixed-phased structures.
NASA Astrophysics Data System (ADS)
Kumar, Yogendra; Rana, Amit Kumar; Bhojane, Prateek; Pusty, Manojit; Bagwe, Vivas; Sen, Somaditya; Shirage, Parasharam M.
2015-10-01
ZnO nanostructured films were prepared by a chemical bath deposition method on glass substrates without any assistance of either microwave or high pressure autoclaves. The effect of solute concentration on the pure wurtzite ZnO nanostructure morphologies is studied. The control of the solute concentration helps to control the nanostructure to form nano-needles, and -rods. X-ray diffraction (XRD) studies revealed highly c-axis oriented thin films. Scanning electron microscopy (SEM) confirms the modification of the nanostructure dependent on the concentration. Transmission electron microscopy (TEM) results show the single crystalline electron diffraction pattern, indicating high quality nano-material. UV-vis results show the variation in the band gap from 3.20 eV to 3.14 eV with increasing concentration as the nanostructures change from needle- to rod-like. Photoluminescence (PL) data indicate the existence of defects in the nanomaterials emitting light in the yellow-green region, with broad UV and visible spectra. A sharp and strong peak is observed at ˜438 cm-1 by Raman spectroscopy, assigned to the {{{{E}}}2}{{high}} optical mode of ZnO, the characteristic peak for the highly-crystalline wurtzite hexagonal phase. The solute concentration significantly affects the formation of defect states in the nanostructured films, and as a result, it alters the structural and optical properties. Current-voltage characteristics alter with the measurement environment, indicating potential sensor applications.
Effect of annealing on the structural and optical properties of heavily carbon-doped ZnO
NASA Astrophysics Data System (ADS)
Huang, He; Deng, Z. W.; Li, D. C.; Barbir, E.; Y Jiang, W.; Chen, M. X.; Kavanagh, K. L.; Mooney, P. M.; Watkins, S. P.
2010-04-01
ZnO films grown by metalorganic vapor phase epitaxy (MOVPE) at low temperatures (~500 °C) exhibit very high levels of carbon incorporation in the range of up to several percent. Such large levels of carbon incorporation significantly affect the structural properties of the thin films resulting in broadening of symmetric (0 0 2) rocking curves as well as broadened (1 0 1) pole figures compared with films grown at high temperature. Annealing of the films under air ambient at temperatures between 800 and 1100 °C results in dramatic sharpening of symmetric (0 0 2) rocking curves, indicating improved crystal alignment along the c-axes. (1 0 1) pole figure scans also show significant sharpening in the azimuthal axis, indicating similar improvements in the in-plane crystal alignment perpendicular to the c-axis. Raman spectra for as-grown ZnO at 500 °C show strong D and G peaks at 1381 and 1578 cm-1 due to sp2 carbon clusters. Annealing at 1000 °C results in the elimination of these bands, indicating that post-growth annealing treatment is a useful method to reduce the concentration of sp2 carbon clusters.
Low temperature growth of ZnO nanorods array via solution-immersion on TiO2 seed layer
NASA Astrophysics Data System (ADS)
Asib, N. A. M.; Aadila, A.; Afaah, A. N.; Rusop, M.; Khusaimi, Z.
2018-05-01
In this work, TiO2:ZNR thin films were successfully fabricated on glass substrates at low temperatures of 75 to 90°C. The substrates were coated with titanium dioxide (TiO2) using sol-gel spin coating, which act as seed layer to grow zinc oxide nanorods (ZNR) by solution-immersion method. At 90 and 95° C, ZNR with hexagonal tip are well dispersed without any aggregation and exhibit more uniform nanorods array as observed using FESEM. The diffraction peak intensity of the (0 0 2)-plane increased as the temperature increased, indicating improved orientation in the c-axis direction of the ZNR as detected in XRD patterns. From UV-Vis absorbance spectra, it was found that the samples has higher absorption properties at middle range of immersion temperatures; 80, 85 and 90°C.
NASA Astrophysics Data System (ADS)
Marimuthu, T.; Anandhan, N.; Thangamuthu, R.
2018-01-01
Electrochemical deposition of vertically aligned zinc oxide (ZnO) nanorods were prepared on ZnO seeded fluorine doped tin oxide (FTO) substrate in the solutions consisting of different concentrations of hexamethylenetetramine (HMTA). The electrochemical, structural, morphological, vibrational and optical properties were characterized by cyclic voltammetry (CV), X-ray diffraction (XRD), scanning electron microscope (SEM), Raman spectroscopy and photoluminescence (PL) spectroscopy, respectively. CV curves confirm that metallic zinc phase is not deposited as the HMTA concentration is about 9 mM in a deposition solution. XRD patterns of the as-prepared films show that the increasing HMTA concentrations from 0 mM to 9 mM not only increase the formation of zinc hydrate chloride (Zn5(OH)8Cl2·H2O) but also decrease and finally disappear the metallic Zn deposition. After the as-prepared films annealed at 450 ° C, the crystalline phases of Zn and Zn5(OH)8Cl2·H2O are completely converted to ZnO hexagonal wurtzite phase with high intense growth (002) plane orientation. SEM images support that the vertical growth of ZnO nanostructures (nanorods and petals) with a few flowers is found to be in the cordillera structure as the films are deposited in the solutions consisting of 3 mM, 6 mM and 9 mM HMTA respectively. Raman and PL spectra confirm that the ZnO film deposited in the solution consisting of 9 mM HMTA has a higher crystalline nature with lesser atomic defects and is also higher c-axis growth than that of other films deposited in the solutions consisting of 0 mM, 3 mM and 6 mM, respectively. UV-vis absorbance spectra corroborate that the ZnO film deposited in the solution consisting of 9 mM HMTA shows a high dye absorbance as compared with other films. The efficiency of DSSCs based on ZnO photoanodes deposited in the solutions consisting of 0 mM and 9 mM HMTA was 1.79 and 3.75%, respectively. Electrochemical impedance spectra revealed that DSSC based on ZnO photoanode deposited in the solution consisting of 9 mM HMTA has a higher charge recombination resistance (Rrec) than that of another DSSC.
Elastic-plastic and phase transition of zinc oxide single crystal under shock compression
NASA Astrophysics Data System (ADS)
Liu, Xun; Mashimo, Tsutomu; Li, Wei; Zhou, Xianming; Sekine, Toshimori
2015-03-01
The Hugoniot data for zinc oxide (ZnO) single crystals were measured up to 80 GPa along both the ⟨ 11 2 ¯ 0 ⟩ (a-axis) and ⟨0001⟩ (c-axis) directions using a velocity interferometer system for any reflector and inclined-mirror method combined with a powder gun and two-stage light gas gun. The Hugoniot-elastic limits of ZnO were determined to be 10.5 and 11.5 GPa along the a- and c-axes, respectively. The wurtzite (B4) to rocksalt (B1) phase transition pressures along the a- and c-axes are 12.3 and 14.4 GPa, respectively. Shock velocity (Us) versus particle velocity (Up) relation of the final phase is given by the following relationship: Us (km/s) = 2.76 + 1.51Up (km/s). Based on the Debye-Grüneisen model and Birch-Murnaghan equation of state (EOS), we discuss the EOS of the B1 phase ZnO. The bulk modulus (K0) and its pressure derivative (K0') are estimated to be K0 = 174 GPa and K0' = 3.9, respectively.
NASA Astrophysics Data System (ADS)
Jiao, D. L.; Zhong, X. C.; Qiu, W. Q.; Zhang, H.; Liu, Z. W.; Zhang, G. Q.
2018-03-01
N-, P-, and Na-doped ZnO films with c-axis orientation were produced by pulsed laser deposition using N2O or O2 as the reaction gas. The effects of deposition temperature and deposition pressure on the lattice structure, morphology, and electric conduction have been investigated. High gas pressure leads to large-sized grains with large grain barriers, which cause a reduced mobility. P acts as an acceptor and the number of compensating defects in the P-doped film is reduced under high O2 pressure. Na also acts as an acceptor, and the effects of high temperature on Na-doped films are encouraging as the solubility of the dopant is high. However, high temperature may cause less incorporation of N and P in the film. In the present work, p-type conduction has not been obtained in N- and P-doped films despite a wide range of processing parameters employed. Na-doped films display an increasing trend towards p-type films at high temperatures and high O2 pressures. These results provide an insight on how these dopants behave in ZnO films and indicate that the careful selection of the deposition conditions is necessary in order to obtain p-type films by pulsed laser deposition.
Resistive switching: An investigation of the bipolar–unipolar transition in Co-doped ZnO thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santos, Daniel A.A., E-mail: danielandrade.ufs@gmail.com; Department of Physics, University at Buffalo, The State University of New York, Buffalo, NY 14260; Zeng, Hao
2015-06-15
Highlights: • A purely bipolar behavior on a Co-doped ZnO thin film has been demonstrated. • We have shown what can happen if a unipolar test is performed in a purely bipolar device. • An explanation for how a sample can show a purely bipolar switching behavior was suggested. • An important open issue about resistive switching effect was put in debate. - Abstract: In order to investigate the resistive switching effect we built devices in a planar structure in which two Al contacts were deposited on the top of the film and separated by a small gap using amore » shadow mask. Therefore, two samples of 10% Co-doped ZnO thin films were sputtered on glass substrate. High resolution X-ray diffraction (HRXRD) revealed a highly c-axis oriented crystalline structure, without secondary phase. The high resolution scanning electron microscopy (HRSEM) showed a flat surface with good coverage and thickness about 300 nm. A Keithley 2425 semiconductor characterization system was used to perform the resistive switching tests in the bipolar and unipolar modes. Considering only the effect of compliance current (CC), the devices showed a purely bipolar behavior since an increase in CC did not induce a transition to unipolar behavior.« less
NASA Astrophysics Data System (ADS)
Sharma, Akash; Sahoo, Pooja; Thangavel, R.
2018-05-01
In this work, ZnO nanorods (NRs) were fabricated, on cleaned ITO substrates by using sol-gel spin coating followed by hydrothermal technique. In order to coat zinc sulphide (ZnS) layers on the earlier prepared NRs a facile ion-exchange approach was adopted. The ZnO@ZnS nanostructures so prepared were characterised by using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), UV-visible spectroscopy and photoelectrochemical study. XRD spectra confirmed the hexagonal wurtzite structure of all the samples along with preferential c-axis orientation. Further it was also observed from the FESEM images that sulfidation process doesn't affect the structure of ZnO NRs arrays. From the absorption spectra it can be clearly observed that the light absorbing property has increased in within the visible range due to the formation of ZnS layer on the ZnO nanostructures, which is not possible for either of the material individually. The cyclic voltammetry results indicates the enhancement in photocurrent density after illumination for the synthesized nanostructures. The electrocatalytic behaviour of ZnO@ZnS electrodes have been studied using a 3-electrode system in presence of 0.1M NaOH electrolyte solution with respect to an Ag/AgCl reference electrode.
Characterization of Non-Polar ZnO Layers with Positron Annihilation Spectroscopy
NASA Astrophysics Data System (ADS)
Zubiaga, A.; Tuomisto, F.; Zúñiga-Pérez, J.; Muñoz-San José, V.
2008-11-01
We applied positron annihilation spectroscopy to study the effect of growth polarity on the vacancy defects in ZnO grown by metal-organic vapor phase deposition on sapphire. Both c-plane and a-plane ZnO layers were measured, and Zn vacancies were identified as the dominant defects detected by positrons. The results are qualitatively similar to those of earlier experiments in GaN. The Zn vacancy concentration decreases in c-plane ZnO by almost one order of magnitude (from high 1017 cm-3 to low 1017 cm-3) when the layer thickness is increased from 0.5 to 2 μm. Interestingly, in a-plane ZnO the Zn vacancy concentration is constant at a level of about 2×1017 cm-3 in all the samples with thicknesses varying from 0.6 to 2.4 μm. The anisotropy of the Doppler broadening of the annihilation radiation parallel and perpendicular to the hexagonal c-axis was also measured.
NASA Astrophysics Data System (ADS)
Yilmaz, Ceren; Unal, Ugur
2016-04-01
Zn(NO3)2 concentration had been reported to be significantly influential on electrodeposition of ZnO structures. In this work, this issue is revisited using hydrothermal-electrochemical deposition (HED). Seedless, cathodic electrochemical deposition of ZnO films is carried out on ITO electrode at 130 °C in a closed glass reactor with varying Zn(NO3)2 concentration. Regardless of the concentration of Zn2+ precursor (0.001-0.1 M) in the deposition solution, vertically aligned 1-D ZnO nanorods are obtained as opposed to electrodepositions at lower temperatures (70-80 °C). We also report the effects of high bath temperature and pressure on the photoelectrochemical properties of the ZnO films. Manipulation of precursor concentration in the deposition solution allows adjustment of the aspect ratio of the nanorods and the degree of texturation along the c-axis; hence photoinduced current density. HED is shown to provide a single step synthesis route to prepare ZnO rods with desired aspect ratio specific for the desired application just by controlling the precursor concentration.
Silva, J P B; Wang, J; Koster, G; Rijnders, G; Negrea, R F; Ghica, C; Sekhar, K C; Moreira, J Agostinho; Gomes, M J M
2018-05-02
In the present work, we study the hysteretic behavior in the electric-field-dependent capacitance and the current characteristics of 0.5Ba(Zr 0.2 Ti 0.8 )O 3 -0.5(Ba 0.7 Ca 0.3 )TiO 3 (BCZT)/ZnO bilayers deposited on 0.7 wt % Nb-doped (001)-SrTiO 3 (Nb:STO) substrates in a metal-ferroelectric-semiconductor (MFS) configuration. The X-ray diffraction measurements show that the BCZT and ZnO layers are highly oriented along the c-axis and have a single perovskite and wurtzite phases, respectively, whereas high-resolution transmission electron microscopy revealed very sharp Nb:STO/BCZT/ZnO interfaces. The capacitance-electric field ( C- E) characteristics of the bilayers exhibit a memory window of 47 kV/cm and a capacitance decrease of 22%, at a negative bias. The later result is explained by the formation of a depletion region in the ZnO layer. Moreover, an unusual resistive switching (RS) behavior is observed in the BCZT films, where the RS ratio can be 500 times enhanced in the BCZT/ZnO bilayers. The RS enhancement can be understood by the barrier potential profile modulation at the depletion region, in the BCZT/ZnO junction, via ferroelectric polarization switching of the BCZT layer. This work builds a bridge between the hysteretic behavior observed either in the C- E and current-electric field characteristics on a MFS structure.
Haarindraprasad, R; Hashim, Uda; Gopinath, Subash C B; Perumal, Veeradasan; Liu, Wei-Wen; Balakrishnan, S R
2016-06-21
Diabetes is a metabolic disease with a prolonged elevated level of glucose in the blood leads to long-term complications and increases the chances for cardiovascular diseases. The present study describes the fabrication of a ZnO nanowire (NW)-modified interdigitated electrode (IDE) to monitor the level of blood glucose. A silver IDE was generated by wet etching-assisted conventional lithography, with a gap between adjacent electrodes of 98.80 μm. The ZnO-based thin films and NWs were amended by sol-gel and hydrothermal routes. High-quality crystalline and c-axis orientated ZnO thin films were observed by XRD analyses. The ZnO thin film was annealed for 1, 3 and 5 h, yielding a good-quality crystallite with sizes of 50, 100 and 110 nm, and the band gaps were measured as 3.26, 3.20 and 3.17 eV, respectively. Furthermore, a flower-modeled NW was obtained with the lowest diameter of 21 nm. Our designed ZnO NW-modified IDE was shown to have a detection limit as low as 0.03 mg/dL (correlation coefficient = 0.98952) of glucose with a low response time of 3 s, perform better than commercial glucose meter, suitable to instantly monitor the glucose level of diabetes patients. This study demonstrated the high performance of NW-mediated IDEs for glucose sensing as alternative to current glucose sensors. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tonny, Kaniz Naila; Rafique, Rosaleena; Sharmin, Afrina; Bashar, Muhammad Shahriar; Mahmood, Zahid Hasan
2018-06-01
Al doped ZnO (AZO) films are fabricated by using sol-gel spin coating method and changes in electrical, optical and structural properties due to variation in film thickness is studied. AZO films provide c-axis orientation along the (002) plane and peak sharpness increased with film thickness is evident from XRD analysis. Conductivity (σ) of AZO films has increased from 2.34 (Siemens/cm) to 20156.27 (Siemens/cm) whereas sheet resistance (Rsh) decreases from 606300 (ohms/sq.) to 2.08 (ohm/sq.) with increase of film thickness from 296 nm to 1030 nm. Optical transmittance (T%) of AZO films is decreased from around 82% to 62% in the visible region. And grain size (D) of AZO thin films has been found to increase from 19.59 nm to 25.25 nm with increase of film thickness. Figure of Merit is also calculated for prepared sample of AZO. Among these four sample of AZO thin films, L-15 sample (having thickness in 895 nm) has provided highest figure of merit which is 5.49*10^-4 (Ω-1).
Han, Xinhai; Wang, Guanzhong; Jie, Jiansheng; Choy, Wallace C H; Luo, Yi; Yuk, T I; Hou, J G
2005-02-24
Novel ZnO cone arrays with controllable morphologies have been synthesized on silicon (100) substrates by thermal evaporation of metal Zn powder at a low temperature of 570 degrees C without a metal catalyst. Clear structure evolutions were observed using scanning electron microscopy: well-aligned ZnO nanocones, double-cones with growing head cones attached by stem cones, and cones with straight hexagonal pillar were obtained as the distance between the source and the substrates was increased. X-ray diffraction shows that all cone arrays grow along the c-axis. Raman and photoluminescence spectra reveal that the optical properties of the buffer layer between the ZnO cone arrays and the silicon substrates are better than those of the ZnO cone arrays due to high concentration of Zn in the heads of the ZnO cone arrays and higher growth temperature of the buffer layer. The growth of ZnO arrays reveals that the cone arrays are synthesized through a self-catalyzed vapor-liquid-solid (VLS) process.
NASA Astrophysics Data System (ADS)
Ali, Asad; Hasanain, Syed Khurshid; Ali, Tahir; Sultan, Muhammad
2017-03-01
Metal-oxide chalcogenide nanostructures as part of hybrid systems are very important for photovoltaic and optoelectronic applications. It is however known that the various interfaces within the hybrid structures play a crucial role in limiting the efficiency of these devices. Here we report on the improvement of Sb2S3 structure through modification of interface between Zn-oxide nanostructures and chalcogenides. ZnO nanorods were grown on fluorine doped tin oxide (FTO) substrate by chemical bath deposition (CBD) method. X-ray diffraction (XRD) and SEM analysis confirmed the single phase wurtzite structure and c-axis orientation of the ZnO nanorod arrays. Antimony tri-sulfide (Sb2S3) was deposited on ZnO nanords by CBD and subsequently annealed at 300 °C in argon environment for 30 min. XRD and the XPS analysis of ZnO-Sb2S3 system showed the dominant presence of Sb2O3 rather than Sb2S3. Since oxidation of Sb2S3 is understood to proceed mainly from the ZnO-Sb2S3 interface, a ZnS interlayer was introduced between ZnO nanorods and Sb2S3 by chemical route. The subsequent structural and optical properties of the ZnO-ZnS-Sb2S3 system are analyzed in detail. The introduction of sulfide interlayer prevents the oxidation of Sb2S3 which is evident from reduced oxide phase in Sb2S3. Significant improvement in the structural and optical properties of Sb2S3 are reported as compared to the parent ZnO-Sb2S3 system. This gain in the optical properties of hybrid ZnO-ZnS-Sb2S3 nanostructures is explained as being related to successful prevention of Sb2O3 formation at the Sb-ZnO interface and stabilization of the desired Sb2S3.
NASA Astrophysics Data System (ADS)
Lee, Ming-Kwei; Hong, Min-Hsuan; Li, Bo-Wei
2016-07-01
The characteristics of a ZnO nanorod array/TiO2 film heterojunction were investigated. A TiO2 film was prepared on glass by aqueous solution deposition with precursors of ammonium hexafluorotitanate and boric acid at 40 °C. Then, a ZnO seed layer was prepared on a TiO2 film/glass substrate by RF sputtering. A vertically oriented ZnO nanorod array was grown on a ZnO seed layer/TiO2 film/glass substrate by aqueous solution deposition with precursors of zinc nitrate and hexamethylenetetramine (HMT) at 70 °C. After thermal annealing in N2O ambient at 300 °C, this heterojunction used as an oxygen gas sensor shows much better rise time, decay time, and on/off current ratio than as-grown and annealed ZnO nanorods.
Yoshida, Shinya; Hanzawa, Hiroaki; Wasa, Kiyotaka; Esashi, Masayoshi; Tanaka, Shuji
2014-09-01
We successfully developed sputter deposition technology to obtain a highly c-axis-oriented monocrystalline Pb(Zr, Ti)O3 (PZT) thin film on a Si wafer by fast cooling (~-180°C/min) of the substrate after deposition. The c-axis orientation ratio of a fast-cooled film was about 90%, whereas that of a slow-cooled (~-40°C/min) film was only 10%. The c-axis-oriented monocrystalline Pb(Zr0.5, Ti0.5)O3 films showed reasonably large piezoelectric coefficients, e(31,f) = ~-11 C/m(2), with remarkably small dielectric constants, ϵ(r) = ~220. As a result, an excellent figure of merit (FOM) was obtained for piezoelectric microelectromechanical systems (MEMS) such as a piezoelectric gyroscope. This c-axis orientation technology on Si will extend industrial applications of PZT-based thin films and contribute further to the development of piezoelectric MEMS.
Chen, Tingfang; Wang, Aiji; Kong, Lingrui; Li, Yongliang; Wang, Yinshu
2016-04-01
Pure and Cl- incorporated ZnO nanofilms were grown by the ultrasonic spray-assisted chemical vapor deposition (CVD) method. The properties of the nanofilms were investigated. The effects of growth temperature and Cl- concentration on the crystal structure, morphology, and optical properties of the nanofilms were studied. Temperature plays an important role in the growth mode and morphology of the pure nanofilms. Preferential growth along the c-axis occurs only at modulating temperature. Lower temperature suppresses the preferential growth, and higher temperature suppresses the growth of the nanofilms. The morphologies of the nanofilms change from lamellar and spherical structures into hexagonal platelets, then into separated nanoparticles with an increase in the temperature. Incorporating Cl- results in the lattice contracting gradually along with c-axis. Grains composing the nanofilms refine, and the optical gap broadens with increasing of Cl- concentration in growth precursor. Incorporating Cl- could reduce oxygen vacancies and passivate the non-irradiated centers, thus enhancing the UV emission and suppressing the visible emission of ZnO nanofilms.
Chen, Tao-Hsing; Chen, Ting-You
2015-11-03
An investigation is performed into the optical, electrical, and microstructural properties of Ti-Ga-doped ZnO films deposited on polyimide (PI) flexible substrates and then annealed at temperatures of 300 °C, 400 °C, and 450 °C, respectively. The X-ray diffraction (XRD) analysis results show that all of the films have a strong (002) Ga doped ZnO (GZO) preferential orientation. As the annealing temperature is increased to 400 °C, the optical transmittance increases and the electrical resistivity decreases. However, as the temperature is further increased to 450 °C, the transmittance reduces and the resistivity increases due to a carbonization of the PI substrate. Finally, the crystallinity of the ZnO film improves with an increasing annealing temperature only up to 400 °C and is accompanied by a smaller crystallite size and a lower surface roughness.
NASA Astrophysics Data System (ADS)
Hassanpour, A.; Guo, P.; Shen, S.; Bianucci, P.
2017-10-01
Undoped and C-doped (C: Mg2+, Ni2+, Mn2+, Co2+, Cu2+, Cr3+) ZnO nanorods were synthesized by a hydrothermal method at temperatures as low as 60 °C. The effect of doping on the morphology of the ZnO nanorods was visualized by taking their cross section and top SEM images. The results show that the size of nanorods was increased in both height and diameter by cation doping. The crystallinity change of the ZnO nanorods due to each doping element was thoroughly investigated by an x-ray diffraction (XRD). The XRD patterns show that the wurtzite crystal structure of ZnO nanorods was maintained after cation addition. The optical Raman-active modes of undoped and cation-doped nanorods were measured with a micro-Raman setup at room temperature. The surface chemistry of samples was investigated by x-ray photoelectron spectroscopy and energy-dispersive x-ray spectroscopy. Finally, the effect of each cation dopant on band-gap shift of the ZnO nanorods was investigated by a photoluminescence setup at room temperature. Although the amount of dopants (Mg2+, Ni2+, and Co2+) was smaller than the amount of Mn2+, Cu2+, and Cr3+ in the nanorods, their effect on the band structure of the ZnO nanorods was profound. The highest band-gap shift was achieved for a Co-doped sample, and the best crystal orientation was for Mn-doped ZnO nanorods. Our results can be used as a comprehensive reference for engineering of the morphological, structural and optical properties of cation-doped ZnO nanorods by using a low-temperature synthesis as an economical mass-production approach.
NASA Astrophysics Data System (ADS)
Fu, Desheng; Suzuki, Hisao; Ogawa, Takeshi; Ishikawa, Kenji
2002-05-01
The piezoelectric responses of c-axis-oriented Pb(Zr0.53Ti0.47)O3 (PZT) thin films have been studied by measuring the stress-induced charge with an accurate charge integrator. These measurements reveal that the c-axis-oriented PZT films have high values of d33, which are several times those of ceramic materials. The intrinsic d33 values of poled films are about 680 and 800 pC/N for the c-axis-oriented films on Si and MgO single-crystal substrates, respectively. It shows that the thin-film deposition technique opens an approach for exploring the potential superior properties of PZT near the morphotropic phase boundary.
Singh, Manpreet; Jiang, Ruibin; Coia, Heidi; Choi, Daniel S.; Alabanza, Anginelle; Chang, Jae Young; Wang, Jianfang; Hahm, Jong-in
2014-01-01
We have carried out a combined experimental and simulation study identifying the key physical and optical parameters affecting the presence and degree of fluorescence intensification measured on zinc oxide nanorod (ZnO NR) ends. Previously, we reported on the highly localized, intensified, and prolonged fluorescence signal measured on the NR ends, termed as fluorescence intensification on NR ends (FINE). As a step towards understanding the mechanism of FINE, the present study aims to provide an insight into the unique optical phenomenon of FINE through experimental and simulation approaches and to elucidate the key factors affecting the occurrence, degree, and temporal stability of FINE. Specifically, we examined the effect of the length, width, and growth orientation of single ZnO NRs on the NR-enhanced biomolecular emission profile after decorating the NR surfaces with different amounts and types of fluorophore-coupled protein molecules. We quantitatively and qualitatively profiled the biomolecular fluorescence signal from individual ZnO NRs as a function of both position along the NR long axis and time. Regardless of the physical dimensions and growth orientations of the NRs, we confirmed the presence of FINE from all ZnO NRs tested by using a range of protein concentrations. We also showed that the manifestation of FINE is not dependent on the spectroscopic signatures of the fluorophores employed. We further observed that the degree of FINE is dependent on the length of the NR with longer NRs showing increased levels of FINE. We also demonstrated that vertically oriented NRs exhibit much stronger fluorescence intensity at the NR ends and a higher level of FINE than the laterally oriented NRs. Additionally, we employed finite-difference time-domain (FDTD) methods to understand the experimental outcomes and to promote our understanding of the mechanism of FINE. Particularly, we utilized the electrodynamic simulations to examine both near-field and far-field emission characteristics when considering various scenarios of fluorophore locations, polarizations, spectroscopic characteristics, and NR dimensions. Our efforts may provide a deeper insight into the unique optical phenomenon of FINE and further be beneficial to highly miniaturized biodetection favoring the use of single ZnO NRs in low-volume and high-throughput protein assays. PMID:25504319
NASA Astrophysics Data System (ADS)
Lee, Sung Kyun; Lee, Woo; Alexe, Marin; Nielsch, Kornelius; Hesse, Dietrich; Gösele, Ulrich
2005-04-01
Two-dimensionally well-ordered, large-area arrays of epitaxial, ferroelectric, La-substituted Bi4Ti3O12 (BLT) nanostructures are prepared using gold nanotube membranes as a liftoff mask. Epitaxial nanostructures with a height of about 65nm and a lateral size of about 150nm, with either (001) ("c-axis") orientation, or mixed (118)/(100) ("non-c-axis") orientation, are obtained on (001)- and (011)-oriented SrTiO3 substrates, respectively. The ferroelectric properties are probed by piezoresponse scanning force microscopy. Non-c-axis-oriented BLT nanostructures show an effective piezoresponse coefficient (2dzz) of about 38.0pm /V, whereas c-axis-oriented structures show one of only about 4.9pm/V.
Room temperature photoluminescence properties of ZnO nanorods grown by hydrothermal reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iwan, S., E-mail: iwan-sugihartono@unj.ac.id; Prodi Ilmu Material, Departemen Fisika, FMIPA, Universitas Indonesia, Kampus UI Depok; Fauzia, Vivi
Zinc oxide (ZnO) nanorods were fabricated by a hydrothermal reaction on silicon (Si) substrate at 95 °C for 6 hours. The ZnO seed layer was fabricated by depositing ZnO thin films on Si substrates by ultrasonic spray pyrolisis (USP). The annealing effects on crystal structure and optical properties of ZnO nanorods were investigated. The post-annealing treatment was performed at 800 °C with different environments. The annealed of ZnO nanorods were characterized by X-ray diffraction (XRD) and photoluminescence (PL) in order to analyze crystal structure and optical properties, respectively. The results show the orientations of [002], [101], [102], and [103] diffractionmore » peaks were observed and hexagonal wurtzite structure of ZnO nanorods were vertically grown on Si substrates. The room temperature PL spectra show ultra-violet (UV) and visible emissions. The annealed of ZnO nanorods in vacuum condition (3.8 × 10{sup −3} Torr) has dominant UV emission. Meanwhile, non-annealed of ZnO nanorods has dominant visible emission. It was expected that the annealed of ZnO in vacuum condition suppresses the existence of native defects in ZnO nanorods.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alnoor, Hatim, E-mail: hatim.alnoor@liu.se; Chey, Chan Oeurn; Pozina, Galia
Hexagonal c-axis oriented zinc oxide (ZnO) nanorods (NRs) with 120-300 nm diameters are synthesized via the low temperature aqueous chemical route at 80 °C on silver-coated glass substrates. The influence of varying the precursor solutions stirring durations on the concentration and spatial distributions of deep level defects in ZnO NRs is investigated. Room temperature micro-photoluminesnce (μ-PL) spectra were collected for all samples. Cathodoluminescence (CL) spectra of the as-synthesized NRs reveal a significant change in the intensity ratio of the near band edge emission (NBE) to the deep-level emission (DLE) peaks with increasing stirring durations. This is attributed to the variation inmore » the concentration of the oxygen-deficiency with increasing stirring durations as suggested from the X-ray photoelectron spectroscopy analysis. Spatially resolved CL spectra taken along individual NRs revealed that stirring the precursor solutions for relatively short duration (1-3 h), which likely induced high super saturation under thermodynamic equilibrium during the synthesis process, is observed to favor the formation of point defects moving towards the tip of the NRs. In contrary, stirring for longer duration (5-15 h) will induce low super saturation favoring the formation of point defects located at the bottom of the NRs. These findings demonstrate that it is possible to control the concentration and spatial distribution of deep level defects in ZnO NRs by varying the stirring durations of the precursor solutions.« less
NASA Astrophysics Data System (ADS)
Sali, S.; Boumaour, M.; Kermadi, S.; Keffous, A.; Kechouane, M.
2012-09-01
We investigated the structural; optical and electrical properties of ZnO thin films as the n-type semiconductor for silicon a-Si:H/Si heterojunction photodiodes. The ZnO film forms the front contact of the super-strata solar cell and has to exhibit good electrical (high conductivity) and optical (high transmittance) properties. In this paper we focused our attention on the influence of doping on device performance. The results show that the X-ray diffraction (XRD) spectra revealed a preferred orientation of the crystallites along c-axis. SEM images show that all films display a granular, polycrystalline morphology and the ZnO:Al exhibits a better grain uniformity. The transmittance of the doped films was found to be higher when compared to undoped ZnO. A low resistivity of the order of 2.8 × 10-4 Ω cm is obtained for ZnO:Al using 0.4 M concentration of zinc acetate. The photoluminescence (PL) spectra exhibit a blue band with two peaks centered at 442 nm (2.80 eV) and 490 nm (2.53 eV). It is noted that after doping the ZnO films a shift of the band by 22 nm (0.15 eV) is recorded and a high luminescence occurs when using Al as a dopant. Dark I-V curves of ZnO/a-Si:H/Si structure showed large difference, which means there is a kind of barrier to current flow between ZnO and a-Si:H layer. Doping films was applied and the turn-on voltages are around 0.6 V. Under reverse bias, the current of the ZnO/a-Si:H/Si heterojunction is larger than that of ZnO:Al/a-Si:H/Si. The improvement with ZnO:Al is attributed to a higher number of generated carriers in the nanostructure (due to the higher transmittance and a higher luminescence) that increases the probability of collisions.
Complex and oriented ZnO nanostructures.
Tian, Zhengrong R; Voigt, James A; Liu, Jun; McKenzie, Bonnie; McDermott, Matthew J; Rodriguez, Mark A; Konishi, Hiromi; Xu, Huifang
2003-12-01
Extended and oriented nanostructures are desirable for many applications, but direct fabrication of complex nanostructures with controlled crystalline morphology, orientation and surface architectures remains a significant challenge. Here we report a low-temperature, environmentally benign, solution-based approach for the preparation of complex and oriented ZnO nanostructures, and the systematic modification of their crystal morphology. Using controlled seeded growth and citrate anions that selectively adsorb on ZnO basal planes as the structure-directing agent, we prepared large arrays of oriented ZnO nanorods with controlled aspect ratios, complex film morphologies made of oriented nanocolumns and nanoplates (remarkably similar to biomineral structures in red abalone shells) and complex bilayers showing in situ column-to-rod morphological transitions. The advantages of some of these ZnO structures for photocatalytic decompositions of volatile organic compounds were demonstrated. The novel ZnO nanostructures are expected to have great potential for sensing, catalysis, optical emission, piezoelectric transduction, and actuations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Yi-Mu, E-mail: ymlee@nuu.edu.t; Yang, Hsi-Wen
2011-03-15
High-transparency and high quality ZnO nanorod arrays were grown on the ITO substrates by a two-step chemical bath deposition (CBD) method. The effects of processing parameters including reaction temperature (25-95 {sup o}C) and solution concentration (0.01-0.1 M) on the crystal growth, alignment, optical and electrical properties were systematically investigated. It has been found that these process parameters are critical for the growth, orientation and aspect ratio of the nanorod arrays, showing different structural and optical properties. Experimental results reveal that the hexagonal ZnO nanorod arrays prepared under reaction temperature of 95 {sup o}C and solution concentration of 0.03 M possessmore » highest aspect ratio of {approx}21, and show the well-aligned orientation and optimum optical properties. Moreover the ZnO nanorod arrays based heterojunction electrodes and the solid-state dye-sensitized solar cells (SS-DSSCs) were fabricated with an improved optoelectrical performance. -- Graphical abstract: The ZnO nanorod arrays demonstrate well-alignment, high aspect ratio (L/D{approx}21) and excellent optical transmittance by low-temperature chemical bath deposition (CBD). Display Omitted Research highlights: > Investigate the processing parameters of CBD on the growth of ZnO nanorod arrays. > Optimization of CBD process parameters: 0.03 M solution concentration and reaction temperature of 95 {sup o}C. > The prepared ZnO samples possess well-alignment and high aspect ratio (L/D{approx}21). > An n-ZnO/p-NiO heterojunction: great rectifying behavior and low leakage current. > SS-DSSC has J{sub SC} of 0.31 mA/cm{sup 2} and V{sub OC} of 590 mV, and an improved {eta} of 0.059%.« less
NASA Astrophysics Data System (ADS)
Bandura, Andrei V.; Evarestov, Robert A.; Lukyanov, Sergey I.; Piskunov, Sergei; Zhukovskii, Yuri F.
2017-08-01
Morphologically reproducible wurtzite-structured zinc oxide nanowires (ZnO NWs) can be synthesized by different methods. Since ZnO NWs have been found to possess piezoelectricity, a comprehensive study of their mechanical properties, e.g. deformations caused by external compression or stretching, is one of the actual tasks of this paper. We have calculated wurtzite-structured [0 0 0 1]-oriented ZnO NWs whose diameters have been varied within 1-5 nm and 1-20 nm ranges when using either ab initio (hybrid DFT-LCAO) or force-field (molecular mechanical) methods, respectively (the minimum diameter d NW of experimentally synthesized NWs has been estimated on average to be ~20 nm). When using both chosen calculation approaches, the values of Young’s moduli determined for the mentioned ranges of NW diameters have been found to be qualitatively compatible (168-169 GPa for 5 nm NW thickness), whereas results of molecular mechanical simulations on Y NW for 20 nm-thick NWs (160-162 GPa) have been qualitatively comparable with those experimentally measured along the [0 0 0 1] direction of NW loading. In all the cases, a gradual increase of the NW diameter has resulted in an asymptotic decrease of Young’s modulus consequently approaching that (Y b) of wurtzite-structured ZnO bulk along its [0 0 0 1] axis. The novelty of this study is that we combine the computation methods of quantum chemistry and molecular mechanics, while the majority of previous studies with the same aim have focused on the application of different classical molecular dynamical methods.
Mg-doped ZnO nanoparticles for efficient sunlight-driven photocatalysis.
Etacheri, Vinodkumar; Roshan, Roshith; Kumar, Vishwanathan
2012-05-01
Magnesium-doped ZnO (ZMO) nanoparticles were synthesized through an oxalate coprecipitation method. Crystallization of ZMO upon thermal decomposition of the oxalate precursors was investigated using differential scanning calorimetry (DSC) and X-ray diffraction (XRD) techniques. XRD studies point toward a significant c-axis compression and reduced crystallite sizes for ZMO samples in contrast to undoped ZnO, which was further confirmed by HRSEM studies. X-ray photoelectron spectroscopy (XPS), UV/vis spectroscopy and photoluminescence (PL) spectroscopy were employed to establish the electronic and optical properties of these nanoparticles. (XPS) studies confirmed the substitution of Zn(2+) by Mg(2+), crystallization of MgO secondary phase, and increased Zn-O bond strengths in Mg-doped ZnO samples. Textural properties of these ZMO samples obtained at various calcination temperatures were superior in comparison to the undoped ZnO. In addition to this, ZMO samples exhibited a blue-shift in the near band edge photoluminescence (PL) emission, decrease of PL intensities and superior sunlight-induced photocatalytic decomposition of methylene blue in contrast to undoped ZnO. The most active photocatalyst 0.1-MgZnO obtained after calcination at 600 °C showed a 2-fold increase in photocatalytic activity compared to the undoped ZnO. Band gap widening, superior textural properties and efficient electron-hole separation were identified as the factors responsible for the enhanced sunlight-driven photocatalytic activities of Mg-doped ZnO nanoparticles.
Liang, Lusheng; Huang, Zhifeng; Cai, Longhua; Chen, Weizhong; Wang, Baozeng; Chen, Kaiwu; Bai, Hua; Tian, Qingyong; Fan, Bin
2014-12-10
Suitable electrode interfacial layers are essential to the high performance of perovskite planar heterojunction solar cells. In this letter, we report magnetron sputtered zinc oxide (ZnO) film as the cathode interlayer for methylammonium lead iodide (CH3NH3PbI3) perovskite solar cell. Scanning electron microscopy and X-ray diffraction analysis demonstrate that the sputtered ZnO films consist of c-axis aligned nanorods. The solar cells based on this ZnO cathode interlayer showed high short circuit current and power conversion efficiency. Besides, the performance of the device is insensitive to the thickness of ZnO cathode interlayer. Considering the high reliability and maturity of sputtering technique both in lab and industry, we believe that the sputtered ZnO films are promising cathode interlayers for perovskite solar cells, especially in large-scale production.
Large enhancement of X-ray excited luminescence in Ga-doped ZnO nanorod arrays by hydrogen annealing
NASA Astrophysics Data System (ADS)
Li, Qianli; Liu, Xiaoliln; Gu, Mu; Li, Fengrui; Zhang, Juannan; Wu, Qiang; Huang, Shiming; Liu, Si
2018-03-01
Highly c-axis oriented and densely packed ZnO:Ga nanorod arrays were fabricated on ZnO-seeded substrates by hydrothermal method, and the effect of hydrogen annealing on their morphology, structure and luminescence properties was investigated in detail. Under ultraviolet or X-ray excitation, an intense ultraviolet luminescence appeared in the hydrogen-annealed samples owing to the formation of a shallow hydrogen donor state, which can sharply activate the reconbination radiation. The luminescence intensity increased with the annealing temperature, and then decreased at a higher temperature due to the dissociation of the hydrogen ion. The optimum concentration and time of hydrogen annealing were acquired simultaneously. It is expected that the ZnO:Ga nanorod array is a promising candidate for application in ultrafast and high-spatial-resolution X-ray imaging detector.
Study of annealing effect on the growth of ZnO nanorods on ZnO seed layers
NASA Astrophysics Data System (ADS)
Sannakashappanavar, Basavaraj S.; Pattanashetti, Nandini A.; Byrareddy, C. R.; Yadav, Aniruddh Bahadur
2018-04-01
A zinc oxide (ZnO) seed layer was deposited on the SiO2/Si substrate by RF sputtering. To study the effect of annealing, the seed layers were classified into annealed and unannealed thin films. Annealing of the seed layers was carried at 450°C. Surface morphology of the seed layers were studied by Atomic force microscopy. ZnO nanorods were then grown on both the types of seed layer by hydrothermal method. The morphology and the structural properties of the nanorods were characterized by X-ray diffraction and Scanning electron microscopy. The effect of seed layer annealing on the growth and orientation of the ZnO nanorods were clearly examined on comparing with the nanorods grown on unannealed seed layer. The nanorods grown on annealed seed layers were found to be well aligned and oriented. Further, the I-V characteristic study was carried out on these aligned nanorods. The results supports positively for the future work to further enhance the properties of developed nanorods for their wide applications in electronic and optoelectronic devices.
Angle-dependent photodegradation over ZnO nanowire arrays on flexible paper substrates
2014-01-01
In this study, we grew zinc oxide (ZnO) nanowire arrays on paper substrates using a two-step growth strategy. In the first step, we formed single-crystalline ZnO nanoparticles of uniform size distribution (ca. 4 nm) as seeds for the hydrothermal growth of the ZnO nanowire arrays. After spin-coating of these seeds onto paper, we grew ZnO nanowire arrays conformally on these substrates. The crystal structure of a ZnO nanowire revealed that the nanowires were single-crystalline and had grown along the c axis. Further visualization through annular bright field scanning transmission electron microscopy revealed that the hydrothermally grown ZnO nanowires possessed Zn polarity. From photocatalytic activity measurements of the ZnO nanowire (NW) arrays on paper substrate, we extracted rate constants of 0.415, 0.244, 0.195, and 0.08 s-1 for the degradation of methylene blue at incident angles of 0°, 30°, 60°, and 75°, respectively; that is, the photocatalytic activity of these ZnO nanowire arrays was related to the cosine of the incident angle of the UV light. Accordingly, these materials have promising applications in the design of sterilization systems and light-harvesting devices. PMID:25593556
Ahmad, Mashkoor; Sun, Hongyu; Zhu, Jing
2011-04-01
Vertically oriented well-aligned Indium doped ZnO nanowires (NWs) have been successfully synthesized on Au-coated Zn substrate by controlled thermal evaporation. The effect of indium dopant on the optical and field-emission properties of these well-aligned ZnO NWs is investigated. The doped NWs are found to be single crystals grown along the c-axis. The composition of the doped NWs is confirmed by X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), and X-ray photospectroscopy (XPS). The photoluminescence (PL) spectra of doped NWs having a blue-shift in the UV region show a prominent tuning in the optical band gap, without any significant peak relating to intrinsic defects. The turn-on field of the field emission is found to be ∼2.4 V μm(-1) and an emission current density of 1.13 mA cm(-2) under the field of 5.9 V μm(-1). The field enhancement factor β is estimated to be 9490 ± 2, which is much higher than that of any previous report. Furthermore, the doped NWs exhibit good emission current stability with a variation of less than 5% during a 200 s under a field of 5.9 V μm(-1). The superior field emission properties are attributed to the good alignment, high aspect ratio, and better crystallinity of In-doped NWs. © 2011 American Chemical Society
Meng, Lijian; Teixeira, Vasco; Dos Santos, M P
2013-02-01
ZnO films doped with vanadium (ZnO:V) have been prepared by dc reactive magnetron sputtering technique at different substrate temperatures (RT-500 degrees C). The effects of the substrate temperature on ZnO:V films properties have been studied. XRD measurements show that only ZnO polycrystalline structure has been obtained, no V2O5 or VO2 crystal phase can be observed. It has been found that the film prepared at low substrate temperature has a preferred orientation along the (002) direction. As the substrate temperature is increased, the (002) peak intensity decreases. When the substrate temperature reaches the 500 degrees C, the film shows a random orientation. SEM measurements show a clear formation of the nano-grains in the sample surface when the substrate temperature is higher than 400 degrees C. The optical properties of the films have been studied by measuring the specular transmittance. The refractive index has been calculated by fitting the transmittance spectra using OJL model combined with harmonic oscillator.
NASA Astrophysics Data System (ADS)
Treverrow, Adam; Jun, Li; Jacka, Tim H.
2016-06-01
We present measurements of crystal c-axis orientations and mean grain area from the Dome Summit South (DSS) ice core drilled on Law Dome, East Antarctica. All measurements were made on location at the borehole site during drilling operations. The data are from 185 individual thin sections obtained between a depth of 117 m below the surface and the bottom of the DSS core at a depth of 1196 m. The median number of c-axis orientations recorded in each thin section was 100, with values ranging from 5 through to 111 orientations. The data from all 185 thin sections are provided in a single comma-separated value (csv) formatted file which contains the c-axis orientations in polar coordinates, depth information for each core section from which the data were obtained, the mean grain area calculated for each thin section and other data related to the drilling site. The data set is also available as a MATLAB™ structure array. Additionally, the c-axis orientation data from each of the 185 thin sections are summarized graphically in figures containing a Schmidt diagram, histogram of c-axis colatitudes and rose plot of c-axis azimuths. All these data are referenced by doi:10.4225/15/5669050CC1B3B and are available free of charge at https://data.antarctica.gov.au.<
ERIC Educational Resources Information Center
Koenig, Emma; Jacobs, Ari; Lisensky, George
2017-01-01
Semiconductors are an important class of materials; preparing ZnO nanorods allows semiconducting properties to be easily observed. The week before lab, groups of four students take 15 min to setup two fluorine-doped tin oxide glass (FTO) slides in a zinc nitrate and hexamethylenetetramine solution stored at 90°C until the next lab. Hexagonal ZnO…
NASA Astrophysics Data System (ADS)
Ievtushenko, A.; Karpyna, V.; Eriksson, J.; Tsiaoussis, I.; Shtepliuk, I.; Lashkarev, G.; Yakimova, R.; Khranovskyy, V.
2018-05-01
ZnO films and nanostructures were deposited on Si substrates by MOCVD using single source solid state zinc acetylacetonate (Zn(AA)) precursor. Doping by silver was realized in-situ via adding 1 and 10 wt. % of Ag acetylacetonate (Ag(AA)) to zinc precursor. Influence of Ag on the microstructure, electrical and optical properties of ZnO at temperature range 220-550 °C was studied by scanning, transmission electron and Kelvin probe force microscopy, photoluminescence and four-point probe electrical measurements. Ag doping affects the ZnO microstructure via changing the nucleation mode into heterogeneous and thus transforming the polycrystalline films into a matrix of highly c-axis textured hexagonally faceted nanorods. Increase of the work function value from 4.45 to 4.75 eV was observed with Ag content increase, which is attributed to Ag behaviour as a donor impurity. It was observed, that near-band edge emission of ZnO NS was enhanced with Ag doping as a result of quenching deep-level emission. Upon high doping of ZnO by Ag it tends to promote the formation of basal plane stacking faults defect, as it was observed by HR TEM and PL study in the case of 10 wt.% of Ag. Based on the results obtained, it is suggested that NS deposition at lower temperatures (220-300 °C) is more favorable for p-type doping of ZnO.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saw, K. G., E-mail: kgsaw@usm.my; Aznan, N. M., E-mail: nanieaz1004@gmail.com; Yam, F. K., E-mail: yamfk@yahoo.com
2016-07-06
ZnO thin films doped with various amounts of In impurities were prepared by magnetron sputtering at a substrate temperature of 150°C. The shift in optical bandgap of the In-doped ZnO films is studied as a function of carrier concentration. Nominally doped ZnO films exhibit an increase in the measured optical band gap known as the Burstein-Moss effect. Dominant band gap narrowing is observed with increased doping. XPS and TOFSIMS analyses confirm that In is incorporated in the ZnO material. The In 3d peaks show that no metallic In is present as a result of heavy doping. The XRD phase analysismore » shows a preferential c-axis growth but a shift of the ZnO (002) peak to lower 2-theta values with increasing FWHM as the carrier concentration increases indicates the decline in the quality of crystallinity. An elongation of the c lattice constant is also observed and is likely to be caused by intersitital In as the amount of In dopants increases. The incorporation of In induces a semiconductor-metal transition between the carrier concentrations of 3.58 – 5.61×10{sup 19} cm{sup −3} and structural changes in the ZnO host material.« less
NASA Astrophysics Data System (ADS)
Cheng, Zhenxiang; Kannan, Chinna Venkatasamy; Ozawa, Kiyoshi; Kimura, Hideo; Wang, Xiaolin
2006-07-01
Samarium doped bismuth titanate thin films with the composition of Bi3.25Sm0.75Ti3O12 and with strong preferred orientations along the c axis and the (117) direction were fabricated on Pt /TiO2/SiO2/Si substrate by pulsed laser ablation. Measurements on Pt /BSmT/Pt capacitors showed that the c-axis oriented film had a small remanent polarization (2Pr) of 5μC/cm2, while the highly (117) oriented film showed a 2Pr value of 54μC/cm2 at an electrical field of 268kV/cm and a coercive field Ec of 89kV/cm. This is different from the sol-gel derived c-axis oriented Bi3.15Sm0.85Ti3O12 film showing a 2Pr value of 49μC/cm2.
Growth of High-Density Zinc Oxide Nanorods on Porous Silicon by Thermal Evaporation
Rusli, Nurul Izni; Tanikawa, Masahiro; Mahmood, Mohamad Rusop; Yasui, Kanji; Hashim, Abdul Manaf
2012-01-01
The formation of high-density zinc oxide (ZnO) nanorods on porous silicon (PS) substrates at growth temperatures of 600–1000 °C by a simple thermal evaporation of zinc (Zn) powder in the presence of oxygen (O2) gas was systematically investigated. The high-density growth of ZnO nanorods with (0002) orientation over a large area was attributed to the rough surface of PS, which provides appropriate planes to promote deposition of Zn or ZnOx seeds as nucleation sites for the subsequent growth of ZnO nanorods. The geometrical morphologies of ZnO nanorods are determined by the ZnOx seed structures, i.e., cluster or layer structures. The flower-like hexagonal-faceted ZnO nanorods grown at 600 °C seem to be generated from the sparsely distributed ZnOx nanoclusters. Vertically aligned hexagonal-faceted ZnO nanorods grown at 800 °C may be inferred from the formation of dense arrays of ZnOx clusters. The formation of disordered ZnO nanorods formed at 1000 °C may due to the formation of a ZnOx seed layer. The growth mechanism involved has been described by a combination of self-catalyzed vapor-liquid-solid (VLS) and vapor-solid (VS) mechanism. The results suggest that for a more precise study on the growth of ZnO nanostructures involving the introduction of seeds, the initial seed structures must be taken into account given their significant effects.
2016-04-01
project attempted to grow La5Ca9Cu24O41 (LCCO) films on important substrates with the high- thermal -conductivity direction parallel or perpendicular...to the surface of the substrate, counting success as demonstration of b-axis or c-axis oriented LCCO films along with measurement of bulk thermal ...deposition, LCCO, La5Ca9Cu24O41, thermal conductivity, epitaxy 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF PAGES 24
Formation of homologous In{sub 2}O{sub 3}(ZnO){sub m} thin films and its thermoelectric properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, Junjun; Nakamura, Shin-ichi; Shigesato, Yuzo, E-mail: yuzo@chem.aoyama.ac.jp
Homologous In{sub 2}O{sub 3}(ZnO){sub 5} thin films were produced on a synthetic quartz glass substrate by thermal annealing of magnetron sputtered In{sub 2}O{sub 3}-ZnO compound films. When the annealing temperature was increased to 700 °C, the sputtered In{sub 2}O{sub 3}-ZnO film with In{sub 2}O{sub 3} microcrystalline changed to a c-oriented homologous In{sub 2}O{sub 3}(ZnO){sub 5} structure, for which the crystallization is suggested to begin from the surface and proceed along with the film thickness. The annealing temperature of 700 °C to form the In{sub 2}O{sub 3}(ZnO){sub 5} structure was substantially lower than temperatures of conventional solid state synthesis from In{sub 2}O{sub 3}more » and ZnO powders, which is attributed to the rapid diffusional transport of In and Zn due to the mixing of In{sub 2}O{sub 3} and ZnO in the atomic level for sputtered In{sub 2}O{sub 3}-ZnO compound films. The homologous structure collapsed at temperatures above 900 °C, which is attributed to (1) zinc vaporization from the surface and (2) a gradual increase of zinc silicate phase at the interface. This c-oriented layer structure of homologous In{sub 2}O{sub 3}(ZnO){sub 5} thin films along the film thickness allowed the thin film to reach a power factor of 1.3 × 10{sup −4} W/m K{sup 2} at 670 °C, which is comparable with the reported maximum value for the textured In{sub 2}O{sub 3}(ZnO){sub 5} powder (about 1.6 × 10{sup −4} W/m K{sup 2} at 650 °C).« less
Acoustoelectric current saturation in c-axis fiber-textured polycrystalline zinc oxide films
NASA Astrophysics Data System (ADS)
Pompe, T.; Srikant, V.; Clarke, D. R.
1996-12-01
Acoustoelectric current saturation, which until now has only been observed in piezoelectric single crystals, is observed in thin polycrystalline zinc oxide films. Epitaxial ZnO films on c-plane sapphire and textured ZnO polycrystalline films on fused silica both exhibit current saturation phenomenon. The values of the saturation current densities are in the range 105-106 A/cm2, depending on the carrier concentration in the film, with corresponding saturation electric fields of 3-5×103 V/cm. In addition to the current saturation, the electrical properties of the films degraded with the onset of the acoustoelectric effect but could be restored by annealing at 250 °C in a vacuum for 30 min.
NASA Astrophysics Data System (ADS)
Pedersen, Joachim D.; Esposito, Heather J.; Teh, Kwok Siong
2011-10-01
We report a rapid, self-catalyzed, solid precursor-based thermal plasma chemical vapor deposition process for depositing a conformal, nonporous, and optically transparent nanocrystalline ZnO thin film at 130 Torr (0.17 atm). Pure solid zinc is inductively heated and melted, followed by ionization by thermal induction argon/oxygen plasma to produce conformal, nonporous nanocrystalline ZnO films at a growth rate of up to 50 nm/min on amorphous and crystalline substrates including Si (100), fused quartz, glass, muscovite, c- and a-plane sapphire (Al2O3), gold, titanium, and polyimide. X-ray diffraction indicates the grains of as-deposited ZnO to be highly textured, with the fastest growth occurring along the c-axis. The individual grains are observed to be faceted by (103) planes which are the slowest growth planes. ZnO nanocrystalline films of nominal thicknesses of 200 nm are deposited at substrate temperatures of 330°C and 160°C on metal/ceramic substrates and polymer substrates, respectively. In addition, 20-nm- and 200-nm-thick films are also deposited on quartz substrates for optical characterization. At optical spectra above 375 nm, the measured optical transmittance of a 200-nm-thick ZnO film is greater than 80%, while that of a 20-nm-thick film is close to 100%. For a 200-nm-thick ZnO film with an average grain size of 100 nm, a four-point probe measurement shows electrical conductivity of up to 910 S/m. Annealing of 200-nm-thick ZnO films in 300 sccm pure argon at temperatures ranging from 750°C to 950°C (at homologous temperatures between 0.46 and 0.54) alters the textures and morphologies of the thin film. Based on scanning electron microscope images, higher annealing temperatures appear to restructure the ZnO nanocrystalline films to form nanorods of ZnO due to a combination of grain boundary diffusion and bulk diffusion. PACS: films and coatings, 81.15.-z; nanocrystalline materials, 81.07.Bc; II-VI semiconductors, 81.05.Dz.
C-axis orientated AlN films deposited using deep oscillation magnetron sputtering
NASA Astrophysics Data System (ADS)
Lin, Jianliang; Chistyakov, Roman
2017-02-01
Highly <0001> c-axis orientated aluminum nitride (AlN) films were deposited on silicon (100) substrates by reactive deep oscillation magnetron sputtering (DOMS). No epitaxial favored bond layer and substrate heating were applied for assisting texture growth. The effects of the peak target current density (varied from 0.39 to 0.8 Acm-2) and film thickness (varied from 0.25 to 3.3 μm) on the c-axis orientation, microstructure, residual stress and mechanical properties of the AlN films were investigated by means of X-ray diffraction rocking curve methodology, transmission electron microscopy, optical profilometry, and nanoindentation. All AlN films exhibited a <0001> preferred orientation and compressive residual stresses. At similar film thicknesses, an increase in the peak target current density to 0.53 Acm-2 improved the <0001> orientation. Further increasing the peak target current density to above 0.53 Acm-2 showed limited contribution to the texture development. The study also showed that an increase in the thickness of the AlN films deposited by DOMS improved the c-axis alignment accompanied with a reduction in the residual stress.
Investigation and characterization of ZnO single crystal microtubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Naser, Qusay A.H.; Zhou, Jian, E-mail: jianzhou@whut.edu.cn; Liu, Guizhen
2016-04-15
Morphological, structural, and optical characterization of microwave synthesized ZnO single crystal microtubes were investigated in this work. The structure and morphology of the ZnO microtubes are characterized using X-ray diffraction (XRD), single crystal diffraction (SCD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). The results reveal that the as-synthesized ZnO microtube has a highly regular hexagonal cross section and smooth surfaces with an average length of 650–700 μm, an average outer diameter of 50 μm and wall thickness of 1–3 μm, possessing a single crystal wurtzite hexagonal structure. Optical properties of ZnOmore » single crystal microtubes were investigated by photoluminescence (PL) and ultraviolet-visible (UV-vis) absorption techniques. Room-temperature PL spectrum of the microtube reveal a strong UV emission peak at around 375.89 nm and broad and a weak visible emission with a main peak identified at 577 nm, which was assigned to the nearest band-edge emission and the deep-level emission, respectively. The band gap energy of ZnO microtube was found to be 3.27 eV. - Highlights: • ZnO microtube length of 650–700 μm, diameter of 50 μm, wall thickness of 1–3 μm • ZnO microtube possesses a single crystal wurtzite hexagonal structure. • The crystal system is hexahedral oriented along a-axis with indices of (100). • A strong and sharp UV emission at 375.89 nm (3.29 eV) • One prominent absorption band around 378.88 nm (3.27 eV)« less
Dhanalakshmi, A; Palanimurugan, A; Natarajan, B
2018-09-01
Mono, di and polysaccharides of glucose (C 6 H 12 O 6 ), sucrose (C 12 H 24 O 12 ) and starch (C 6 H 12 O 6 ) n bio-template ZnO nanoparticles (NPs) has prepared by chemical precipitation method. Saccharides bio-template ZnO (SBts-ZnO) NPs were efficiently prepared for their structural and optical properties were examined by using XRD, FE-SEM, AFM, FTIR, UV and PL techniques. All the samples are polycrystalline nature with a preferential orientation depending on the (1 0 1) plane. The reduction of crystalline size by utilizing glucose, sucrose and starch bio-template of ZnO NPs. FE-SEM images revealed that the spherical and nano-rods like morphologies for ZnO and SBts-ZnO NPs respectively. AFM recorded images shows spherical features that confirmed and also the morphological changes were noticed with the addition of polymers. Interaction of bio-templated saccharides (glucose G 1 , sucrose S 2 & starch S n ) molecules was proved by FTIR study. Optical absorbance and emission behaviours were investigated using UV-Vis and photoluminescence techniques. The antibacterial study revealed that SBts-ZnO have excellent antibacterial effect than ZnO. The S n -ZnO sample has potent antibacterial activity against the Proteus vulgaris followed by Klebsiella pneumoniae, Escherichia coli and Staphylococcus aureus. Copyright © 2018 Elsevier B.V. All rights reserved.
Highly controlled orientation of CaBi4Ti4O15 using a strong magnetic field
NASA Astrophysics Data System (ADS)
Suzuki, Tohru S.; Kimura, Masahiko; Shiratsuyu, Kosuke; Ando, Akira; Sakka, Yoshio; Sakabe, Yukio
2006-09-01
The texture of feeble magnetic ceramics can be controlled by a strong magnetic field. When the magnetic susceptibility of the c axis is smaller than that of the other axes, the c axis aligns perpendicular to the magnetic field; however, the direction is randomly oriented on the plane perpendicular to the magnetic field. The authors demonstrate in this letter that a highly controlled texture in bismuth titanate, which has a c-axis susceptibility smaller than the other axes, can be achieved using a two-step magnetic field procedure. This highly controlled orientation is effective for improving the electromechanical coupling coefficient.
Inducing and manipulating magnetization in 2D zinc–oxide by strain and external voltage
NASA Astrophysics Data System (ADS)
Taivansaikhan, P.; Tsevelmaa, T.; Rhim, S. H.; Hong, S. C.; Odkhuu, D.
2018-04-01
Two-dimensional (2D) structures that exhibit intriguing magnetic phenomena such as perpendicular magnetic anisotropy and its switchable feature are of great interests in spintronics research. Herein, the density functional theory studies reveal the critical impacts of strain and external gating on vacancy-induced magnetism and its spin direction in a graphene-like single layer of zinc oxide (ZnO). In contrast to the pristine and defective ZnO with an O-vacancy, the presence of a Zn-vacancy induces significant magnetic moments to its first neighboring O and Zn atoms due to the charge deficit. We further predict that the direction of magnetization easy axis reverses from an in-plane to perpendicular orientation under a practically achievable biaxial compressive strain of only ~1–2% or applying an electric field by means of the charge density modulation. This magnetization reversal is mainly driven by the strain- and electric-field-induced changes in the spin–orbit coupled d states of the first-neighbor Zn atom to a Zn-vacancy. These findings open interesting prospects for exploiting strain and electric field engineering to manipulate magnetism and magnetization orientation of 2D materials.
NASA Astrophysics Data System (ADS)
Pham, Huyen T.; Nguyen, Tam D.; Tran, Dat Q.; Akabori, Masashi
2017-05-01
ZnO semiconductors, especially in form of nanomaterials, possess many excellent properties and have been employed in many applications. In this article, we reported the selective area growth of ZnO nanowires on different (1 1 1) oriented Si, GaAs, and first time on InP substrates by electrochemical deposition method without any seed layers, using zinc nitrate hexahydrate precursor in the presence of hexamethylenetetramine. The position, density and orientation of such ZnO nanowires were controlled by the substrate patterning technique using electron-beam lithography. As-synthesized ZnO nanowires grown on patterned substrates show smaller diameter, higher density and better orientation, compared to the one grown on unpatterned substrates. In particular, the ZnO nanowires grown on GaAs patterned substrate indicate the best morphological property, with the average diameter, length and density of about 100 nm, 2.4 µm and 35 µm-2, respectively. The x-ray diffraction and Raman scattering also demonstrate high crystalline quality of our ZnO nanowires. Moreover, as-reported ZnO nanowires are also conductive, which would allow their use in field-effect transistor and other potential nanoscale device applications.
NASA Astrophysics Data System (ADS)
Kim, Doyoung; Kang, Hyemin; Kim, Jae-Min; Kim, Hyungjun
2011-02-01
Zinc oxide (ZnO) thin films were prepared by plasma-enhanced atomic layer deposition (PE-ALD) using oxygen plasma as a reactant and the properties were compared with those of thermal atomic layer deposition (TH-ALD) ZnO thin films. While hexagonal wurzite phase with preferential (0 0 2) orientation was obtained for both cases, significant differences were observed in various aspects of film properties including resistivity values between these two techniques. Photoluminescence (PL) measurements have shown that high resistivity of PE-ALD ZnO thin films is due to the oxygen interstitials at low growth temperature of 200 °C, whose amount decreases with increasing growth temperature. Thin film transistors (TFT) using TH- and PE-ALD ZnO as an active layer were also fabricated and the device properties were evaluated comparatively.
Laurenti, M; Castellino, M; Perrone, D; Asvarov, A; Canavese, G; Chiolerio, A
2017-02-06
Vanadium doped ZnO (VZO) thin films were grown by RF magnetron sputtering, starting from a ZnO:V ceramic target. The crystal structure, chemical composition, electric and piezoelectric properties of the films were investigated either on the as-grown thin films or after a post-deposition rapid thermal annealing (RTA) treatment performed at 600 °C for different lengths of time (1 and 5 min) in an oxygen atmosphere. Substitutional doping of Zn 2+ with V 3+ and V 5+ ions strongly deteriorated the hexagonal wurtzite ZnO structure of the as-grown thin films due to lattice distortion. The resulting slight amorphization led to a poor piezoelectric response and higher resistivity. After the RTA treatment, strong c-axis oriented VZO thin films were obtained, together with a partial conversion of the starting V 3+ ions into V 5+ . The improvement of the crystal structure and the stronger polarity of both V 3+ - O and V 5+ - O chemical bonds, together with the corresponding easier rotation under the application of an external electric field, positively affected the piezoelectric response and increased conductivity. This was confirmed by closed-loop butterfly piezoelectric curves, by a maximum d 33 piezoelectric coefficient of 85 pm·V -1 , and also by ferroelectric switching domains with a well-defined polarization hysteresis curve, featuring a residual polarization of 12.5 μC∙cm -2 .
Lead-free piezoelectrics: V3+ to V5+ ion conversion promoting the performances of V-doped Zinc Oxide
Laurenti, M.; Castellino, M.; Perrone, D.; Asvarov, A.; Canavese, G.; Chiolerio, A.
2017-01-01
Vanadium doped ZnO (VZO) thin films were grown by RF magnetron sputtering, starting from a ZnO:V ceramic target. The crystal structure, chemical composition, electric and piezoelectric properties of the films were investigated either on the as-grown thin films or after a post-deposition rapid thermal annealing (RTA) treatment performed at 600 °C for different lengths of time (1 and 5 min) in an oxygen atmosphere. Substitutional doping of Zn2+ with V3+ and V5+ ions strongly deteriorated the hexagonal wurtzite ZnO structure of the as-grown thin films due to lattice distortion. The resulting slight amorphization led to a poor piezoelectric response and higher resistivity. After the RTA treatment, strong c-axis oriented VZO thin films were obtained, together with a partial conversion of the starting V3+ ions into V5+. The improvement of the crystal structure and the stronger polarity of both V3+ – O and V5+ – O chemical bonds, together with the corresponding easier rotation under the application of an external electric field, positively affected the piezoelectric response and increased conductivity. This was confirmed by closed-loop butterfly piezoelectric curves, by a maximum d33 piezoelectric coefficient of 85 pm·V−1, and also by ferroelectric switching domains with a well-defined polarization hysteresis curve, featuring a residual polarization of 12.5 μC∙cm−2. PMID:28165040
Cu-doped ZnO nanorod arrays: the effects of copper precursor and concentration
2014-01-01
Cu-doped ZnO nanorods have been grown at 90°C for 90 min onto a quartz substrate pre-coated with a ZnO seed layer using a hydrothermal method. The influence of copper (Cu) precursor and concentration on the structural, morphological, and optical properties of ZnO nanorods was investigated. X-ray diffraction analysis revealed that the nanorods grown are highly crystalline with a hexagonal wurtzite crystal structure grown along the c-axis. The lattice strain is found to be compressive for all samples, where a minimum compressive strain of −0.114% was obtained when 1 at.% Cu was added from Cu(NO3)2. Scanning electron microscopy was used to investigate morphologies and the diameters of the grown nanorods. The morphological properties of the Cu-doped ZnO nanorods were influenced significantly by the presence of Cu impurities. Near-band edge (NBE) and a broad blue-green emission bands at around 378 and 545 nm, respectively, were observed in the photoluminescence spectra for all samples. The transmittance characteristics showed a slight increase in the visible range, where the total transmittance increased from approximately 80% for the nanorods doped with Cu(CH3COO)2 to approximately 90% for the nanorods that were doped with Cu(NO3)2. PMID:24855460
Confocal Raman microscopy of one dimensional ZnO nanostructures
NASA Astrophysics Data System (ADS)
Singamaneni, Srikanth; Gupta, Maneesh; Yang, Rusen; Wang, Zhong; Tsukruk, Vladimir
2009-03-01
ZnO nanostructures with various shapes (vertically aligned nanorods, nanobelts, nanohelixes, nanorings) have been synthesized using both vapor phase and solution growth methods. In the simplest example of a nanobelt, the fast growth direction can be either (21 1 0) or (011 0) or (0001). Here, we show that confocal Raman microscopy can be employed as a fast and nondestructive analytical technique to identify the crystal planes and reveal the relative orientation of the ZnO nanostructure. Various features of the Raman spectrum of ZnO nanostructures (presence of the A1(TO) mode, width of the E2 mode) were found to be sensitive to relative orientation of the incident source laser and the crystal plane. Furthermore, owing to the optical anisotropy of ZnO, Raman scattering from the substrate is modulated (either enhanced or suppressed with respect to the background) depending on the polarization of the incident light with respect to orientation of the nanobelt. The results presented here describe a novel method to nondestructively identify the growth, relative orientation, and the waveguiding properties of the ZnO nanostructures.
NASA Astrophysics Data System (ADS)
Seo, Youngmi; Kim, Jung Hyeun
2011-06-01
Highly oriented ZnO nanorods are synthesized hydrothermally on ZnO and Pt seed layers, and they are dissolved in KOH solution. The rods grown on ZnO seed layer show uniform dissolution, but those grown on Pt seed layer are rod-selectively dissolved. The ZnO nanorods from both seed layers show the same crystalline structure through XRD and Raman spectrometer data. However, the surface potential analysis reveals big difference for ZnO and Pt seed cases. The surface potential distribution is very uniform for the ZnO seed case, but it is much fluctuated on the Pt seed case. It suggests that the rod-selective dissolution phenomena on Pt seed case are likely due to the surface energy difference.
NASA Astrophysics Data System (ADS)
Zhang, Zhiyuan; Huang, Jingyun; Chen, Shanshan; Pan, Xinhua; Chen, Lingxiang; Ye, Zhizhen
2016-12-01
Single-crystalline ZnO films were grown on a-plane sapphire substrates by plasma-assisted molecular beam epitaxy technique. The films have been implanted with fixed fluence of 120 keV N and 130 keV O ions at 460 °C. Hall measurements show that the dually-implanted single-crystalline ZnO films exhibit p-type characteristics with hole concentration in the range of 2.1 × 1018-1.1 × 1019 cm-3, hole mobilities between 1.6 and 1.9 cm2 V-1 s-1, and resistivities in the range of 0.353-1.555 Ω cm. The ZnO films exhibit (002) (c-plane) orientation as identified by the X-ray diffraction pattern. It is confirmed that N ions were effectively implanted by SIMS results. Raman spectra, polarized Raman spectra, and X-ray photoelectron spectroscopy results reflect that the concentration of oxygen vacancies is reduced, which is attributed to O ion implantation. It is concluded that N and O implantation and dynamic annealing play a critical role in forming p-type single-crystalline ZnO films.
Hydrodynamic fabrication of structurally gradient ZnO nanorods.
Kim, Hyung Min; Youn, Jae Ryoun; Song, Young Seok
2016-02-26
We studied a new approach where structurally gradient nanostructures were fabricated by means of hydrodynamics. Zinc oxide (ZnO) nanorods were synthesized in a drag-driven rotational flow in a controlled manner. The structural characteristics of nanorods such as orientation and diameter were determined by momentum and mass transfer at the substrate surface. The nucleation of ZnO was induced by shear stress which plays a key role in determining the orientation of ZnO nanorods. The nucleation and growth of such nanostructures were modeled theoretically and analyzed numerically to understand the underlying physics of the fabrication of nanostructures controlled by hydrodynamics. The findings demonstrated that the precise control of momentum and mass transfer enabled the formation of ZnO nanorods with a structural gradient in diameter and orientation.
Localized deformation in Ni-Mn-Ga single crystals
NASA Astrophysics Data System (ADS)
Davis, Paul H.; Efaw, Corey M.; Patten, Lance K.; Hollar, Courtney; Watson, Chad S.; Knowlton, William B.; Müllner, Peter
2018-06-01
The magnetomechanical behavior of ferromagnetic shape memory alloys such as Ni-Mn-Ga, and hence the relationship between structure and nanoscale magnetomechanical properties, is of interest for their potential applications in actuators. Furthermore, due to its crystal structure, the behavior of Ni-Mn-Ga is anisotropic. Accordingly, nanoindentation and magnetic force microscopy were used to probe the nanoscale mechanical and magnetic properties of electropolished single crystalline 10M martensitic Ni-Mn-Ga as a function of the crystallographic c-axis (easy magnetization) direction relative to the indentation surface (i.e., c-axis in-plane versus out-of-plane). Load-displacement curves from 5-10 mN indentations on in-plane regions exhibited pop-in during loading, whereas this phenomenon was absent in out-of-plane regions. Additionally, the reduced elastic modulus measured for the c-axis out-of-plane orientation was ˜50% greater than for in-plane. Although heating above the transition temperature to the austenitic phase followed by cooling to the room temperature martensitic phase led to partial recovery of the indentation deformation, the magnitude and direction of recovery depended on the original relative orientation of the crystallographic c-axis: positive recovery for the in-plane orientation versus negative recovery (i.e., increased indent depth) for out-of-plane. Moreover, the c-axis orientation for out-of-plane regions switched to in-plane upon thermal cycling, whereas the number of twins in the in-plane regions increased. We hypothesize that dislocation plasticity contributes to the permanent deformation, while pseudoelastic twinning causes pop-in during loading and large recovery during unloading in the c-axis in-plane case. Minimization of indent strain energy accounts for the observed changes in twin orientation and number following thermal cycling.
Nano/microstructure and optical properties of ZnO particles precipitated from zinc acetylacetonate
NASA Astrophysics Data System (ADS)
Petrović, Željka; Ristić, Mira; Musić, Svetozar; Fabián, Martin
2015-06-01
The influence of experimental conditions on the nano/microstructure and optical properties of ZnO particles produced by rapid hydrolysis of zinc acetylacetonate, followed by aging of the precipitation system at 160 °C, was investigated. Samples were characterized by XRD, FE scanning electron microscopy (FE-SEM), FT-IR, UV/Vis/NIR and photoluminescence (PL) spectroscopies. XRD patterns of all samples were assigned to the hexagonal ZnO phase (wurtzite-type), as well as the corresponding FT-IR spectra. FE-SEM inspection showed a high dependence of the ZnO nano/microstructure on the chemical composition of the reaction mixture and autoclaving time after the rapid hydrolysis of zinc acetylacetonate. Microstructural differences were noticed between C2H5OH/H2O and H2O media, as well as under the influence of NH4OH addition. Measurements of nanocrystallite sizes showed no significant preferential orientation in the (1 0 0) and (0 0 2) directions relative to the (1 0 1) and (1 1 0) directions. Somewhat smaller crystallite sizes were noticed for ZnO samples synthesized by adding the NH4OH solution. Dissolution/recrystallization of ZnO particles played an important role in the formation of different ZnO nano/microstructures. The band gap values for prepared ZnO samples were calculated on the basis of recorded UV/Vis spectra. PL spectra were recorded for ZnO samples in powder form and their suspensions in pure ethanol. Noticed differences are discussed.
NASA Astrophysics Data System (ADS)
Eskandari, Alireza; Abdizadeh, Hossein; Pourshaban, Erfan; Golobostanfard, Mohammad Reza
2018-01-01
Zinc oxide nanowires are considered as promising materials for wide range of optoelectrical and chemical devices, thanks to their desirable structural and optoelectrical properties. Over the past decade, chemical bath deposition (CBD) has been widely used to synthesize these nanostructures due to its low cost and controllability. Since improving the aspect ratio and length of nanowires is a vital issue in growing one-dimensional nanostructures, the influence of polyethyleneimine (PEI) as a complexing and chelating agent on the structural, morphological, and optoelectrical properties of ZnO nanowires has been studied in this report. As-grown ZnO nanowires synthesized by mixing deionized water, zinc acetate dihydrate, hexamethylenetetramine, and PEI were characterized with field emission scanning electron microscope (FESEM), X-ray diffractometer (XRD), and photoluminescence spectroscopy (PL). FESEM results unambiguously show that increasing PEI concentration (from 0 to 0.2 g in 50 ml DI water) reduces the diameter and density of nanowires from ˜120 to 56 nm and from ˜85% to 65%, respectively. Interestingly, although adding more PEI decreases nanowires diameter, over-increasing of PEI brings about an inappropriate nanostructures growth. Moreover, XRD patterns demonstrate that all the samples have wurtzite structure with a preferred orientation along c-axis which may be improved or deteriorated by adding PEI into the chemical bath. Accordingly, it is crucial to optimize the amount of PEI in CBD method. Near-band edge (NBE) region in PL spectrum also confirms wide bandgap of ZnO (˜3.3 eV). In addition, comparing the appearance of PEI free with PEI assisted solutions show a considerable difference in their colors, which may be attributed to the formation of new chemical compounds. Considering these results, PEI plays a couple of determining roles in synthesizing ZnO nanowires; making nanowires thinner, with selectively absorption to the non-polar, lateral facets of wurtzite lattice, and controlling deposition rate by forming the PEI-Zn2+-HCHO complex compounds.
Bressy, Christine; Ngo, Van Giang; Ziarelli, Fabio; Margaillan, André
2012-02-14
Functionalization of zinc oxide (ZnO) nano-objects by silane grafting is an attractive method to provide nanostructured materials with a variety of surface properties. Active hydroxyl groups on the oxide surface are one of the causes governing the interfacial bond strength in nanohybrid particles. Here, "as-prepared" and commercially available zinc oxide nanopowders with a wide range of surface hydroxyl density were functionalized by a well-known polymerizable silane coupling agent, i.e., 3-(trimethoxysilyl)propylmethacrylate (MPS). Fourier transform infrared (FTIR) and solid-state (13)C and (29)Si nuclear magnetic resonance (NMR) spectroscopic investigations demonstrated that the silane coupling agent was fully hydrolyzed and linked to the hydroxyl groups already present on the particle surface through covalent and hydrogen bonds. Due to a basic catalyzed condensation of MPS with water, a siloxane layer was shown to be anchored to the nanoparticles through mono- and tridentate structures. Quantitative investigations were performed by thermogravimetric (TGA) and elemental analyses. The amount of silane linked to ZnO particles was shown to be affected by the amount of isolated hydroxyl groups available to react on the particle surface. For as-prepared ZnO nanoparticles, the number of isolated and available hydroxyl groups per square nanometer was up to 3 times higher than the one found on commercially available ZnO nanoparticles, leading to higher amounts of polymerizable silane agent linked to the surface. The MPS molecules were shown to be mainly oriented perpendicular to the oxide surface for all the as-prepared ZnO nanoparticles, whereas a parallel orientation was found for the preheated commercially ZnO nanopowders. In addition, ZnO nanoparticles were shown to be hydrophobized by the MPS treatment with water contact angles higher than 60°.
Solution epitaxy of gallium-doped ZnO on p-GaN for heterojunction light-emitting diodes
NASA Astrophysics Data System (ADS)
Le, H. Q.; Lim, S. K.; Goh, G. K. L.; Chua, S. J.; Ang, N. S. S.; Liu, W.
2010-09-01
We report white light emission from a Ga-doped ZnO/p-GaN heterojunction light-emitting diode which was fabricated by growing gallium-doped ZnO film on the p-GaN in water at 90°C. As determined from Ga-doped ZnO films grown on (111) oriented MgAl2O4 spinel single crystal substrates, thermal treatment at 600°C in nitrogen ambient leads to a carrier concentration of 3.1×1020 cm-3 (and carrier mobility of 28 cm2/Vs) which is two orders of magnitude higher than that of the undoped films. Electroluminescence emissions at wavelengths of 393 nm (3.155 eV) and 529.5 nm (2.4 eV) were observed under forward bias in the heterojunction diode and white light could be visibly observed. The high concentration of electrons supplied from the Ga-doped ZnO films helped to enhance the carrier recombination and increase the light-emitting efficiency of the heterojunction diode.
NASA Astrophysics Data System (ADS)
Singh, Satyendra Kumar; Hazra, Purnima
2017-04-01
In this article, temperature-dependent current-voltage characteristics of n-ZnO/p-Si nanoparticle thin film heterojunction diode grown by RF sputtering technique are analyzed in the temperature range of 300-433 k to investigate the performance of the device in high temperature environment. The microstructural, morphological, optical and temptrature dependent electrical properties of as-grown nanoparticle thin film were characterized by X-ray diffractometer (XRD), atomic force microscopy (AFM), field emmision scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), variable angle ellipsometer and semiconductor device analyzer. XRD spectra of as-grown ZnO films are exhibited that highly c-axis oriented ZnO nanostructures are grown on p- Si〈100〉 substrate whereas AFM and FESEM images confirm the homogeneous deposition of ZnO nanoparticles on surface of Si substratewith minimum roughness.The optical propertiesof as-grown ZnO nanoparticles have been measured in the spectral range of 300-800 nm using variable angle ellipsometer.To measure electrical parameters of the device prototype in the temperature range of room temperature (300 K) to 433 K, large area ohmic contacts were fabricated on both side of the ZnO/Si heterostructure. From the current-voltage charcteristics of ZnO/Si heterojunction device, it is observed that the device exhibits rectifing nature at room temperature. However, with increase in temperature, reverse saturation current and barrier height are found to increase, whereas ideality factor is started decreasing. This phenomenon confirms that barrier inhomogeneities are present at the interface of ZnO/Si heterojunction, as a result of lattice constant and thermal coefficient mismatch between Si and ZnO. Therefore, a modified value of Richardson constant [33.06 Acm-2K-2] has been extracted from the temperature-dependent electrical characteristics after assuming the Gaussian distribution of special barrier height inhomogeneities across the Si/ZnO interface which is close to its theoretical value [32 Acm-2K-2]. This result indicates that regardless of presence of barrier height inmogeneities, ZnO/Si heterojunction diode still hasability to perform well in high temperature environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Qi; Zhu, Fang-Yuan; Cheng, Li-Qian
Crystallographic structure of sol-gel-processed lead-free (K,Na)NbO{sub 3} (KNN) epitaxial films on [100]-cut SrTiO{sub 3} single-crystalline substrates was investigated for a deeper understanding of its piezoelectric response. Lattice parameter measurement by high-resolution X-ray diffraction and transmission electron microscopy revealed that the orthorhombic KNN films on SrTiO{sub 3} (100) surfaces are [010] oriented (b-axis-oriented) rather than commonly identified c-axis orientation. Based on the crystallographic orientation and corresponding ferroelectric domain structure investigated by piezoresponse force microscopy, the superior piezoelectric property along b-axis of epitaxial KNN films than other orientations can be explained.
Lin, Ming-Yi; Wu, Shang-Hsuan; Hsiao, Li-Jen; Budiawan, Widhya; Chen, Shih-Lun; Tu, Wei-Chen; Lee, Chia-Yen; Chang, Yia-Chung; Chu, Chih-Wei
2018-04-25
This manuscript describes how to design and fabricate efficient inverted solar cells, which are based on a two-dimensional conjugated small molecule (SMPV1) and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM), by utilizing ZnO nanorods (NRs) grown on a high quality Al-doped ZnO (AZO) seed layer. The inverted SMPV1:PC71BM solar cells with ZnO NRs that grew on both a sputtered and sol-gel processed AZO seed layer are fabricated. Compared with the AZO thin film prepared by the sol-gel method, the sputtered AZO thin film exhibits better crystallization and lower surface roughness, according to X-ray diffraction (XRD) and atomic force microscope (AFM) measurements. The orientation of the ZnO NRs grown on a sputtered AZO seed layer shows better vertical alignment, which is beneficial for the deposition of the subsequent active layer, forming better surface morphologies. Generally, the surface morphology of the active layer mainly dominates the fill factor (FF) of the devices. Consequently, the well-aligned ZnO NRs can be used to improve the carrier collection of the active layer and to increase the FF of the solar cells. Moreover, as an anti-reflection structure, it can also be utilized to enhance the light harvesting of the absorption layer, with the power conversion efficiency (PCE) of solar cells reaching 6.01%, higher than the sol-gel based solar cells with an efficiency of 4.74%.
Agrawal, Ravi; Espinosa, Horacio D
2011-02-09
Nanowires made of materials with noncentrosymmetric crystal structure are under investigation for their piezoelectric properties and suitability as building blocks for next-generation self-powered nanodevices. In this work, we investigate the size dependence of piezoelectric coefficients in nanowires of two such materials - zinc oxide and gallium nitride. Nanowires, oriented along their polar axis, ranging from 0.6 to 2.4 nm in diameter were modeled quantum mechanically. A giant piezoelectric size effect is identified for both GaN and ZnO nanowires. However, GaN exhibits a larger and more extended size dependence than ZnO. The observed size effect is discussed in the context of charge redistribution near the free surfaces leading to changes in local polarization. The study reveals that local changes in polarization and reduction of unit cell volume with respect to bulk values lead to the observed size effect. These results have strong implication in the field of energy harvesting, as piezoelectric voltage output scales with the piezoelectric coefficient.
Guo, Zhen; Li, Haiwen; Zhou, Lianqun; Zhao, Dongxu; Wu, Yihui; Zhang, Zhiqiang; Zhang, Wei; Li, Chuanyu; Yao, Jia
2015-01-27
A novel method of fabricating large-scale horizontally aligned ZnO microrod arrays with controlled orientation and periodic distribution via combing technology is introduced. Horizontally aligned ZnO microrod arrays with uniform orientation and periodic distribution can be realized based on the conventional bottom-up method prepared vertically aligned ZnO microrod matrix via the combing method. When the combing parameters are changed, the orientation of horizontally aligned ZnO microrod arrays can be adjusted (θ = 90° or 45°) in a plane and a misalignment angle of the microrods (0.3° to 2.3°) with low-growth density can be obtained. To explore the potential applications based on the vertically and horizontally aligned ZnO microrods on p-GaN layer, piezo-phototronic devices such as heterojunction LEDs are built. Electroluminescence (EL) emission patterns can be adjusted for the vertically and horizontally aligned ZnO microrods/p-GaN heterojunction LEDs by applying forward bias. Moreover, the emission color from UV-blue to yellow-green can be tuned by investigating the piezoelectric properties of the materials. The EL emission mechanisms of the LEDs are discussed in terms of band diagrams of the heterojunctions and carrier recombination processes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Controlled Growth of Parallel Oriented ZnO Nanostructural Arrays on Ga2O3 Nanowires
2008-11-01
Controlled Growth of Parallel Oriented ZnO Nanostructural Arrays on Ga2O3 Nanowires Lena Mazeina,* Yoosuf N. Picard, and Sharka M. Prokes Electronics...Manuscript ReceiVed NoVember 6, 2008 ABSTRACT: Novel hierarchical ZnO- Ga2O3 nanostructures were fabricated via a two stage growth process. Nanowires of Ga2O3 ...nanobrushes (NBs) with Ga2O3 as the core and ZnO as the branches self-assembling symmetrically in six equiangular directions around the core
Lee, Jee-Wook; Kobayashi, Akio; Nakano, Takayoshi
2017-05-01
The aim of the present study was to investigate the preferred orientation of biological apatite (BAp) as a new index of the quality of subchondral bone (SB) in knee joint osteoarthritis (OA). Ten OA and five normal knee joints were obtained. Thickness, quantity and bone mineral density (BMD) of SB were analyzed at the medial condyle of the femur in dry conditions by peripheral quantitative computed tomography. In addition, the preferred crystallographic orientation of the c-axis of BAp was evaluated as bone quality parameter using a microbeam X-ray diffractometer technique. BMD and thickness of SB were significantly increased in OA specimens compared to normal knee specimens (P < 0.01), and the preferred orientation of the c-axis of BAp along the normal direction of SB surface was significantly higher in OA specimens (P < 0.01), reflecting the change in stress of concentration in the pathological portion without cartilage. SB sclerosis in OA results in both proliferation of bone tissues and enhanced degree of preferential alignment of the c-axis of BAp. Our findings could have major implications for the diagnosis of clinical studies, including pathologic elucidation in OA.
Endo, Osamu; Nakamura, Masashi; Amemiya, Kenta; Ozaki, Hiroyuki
2017-04-25
The influence of the preparation method and adsorbed amount of n-tetratetracontane (n-C 44 H 90 ) on its orientation in a monolayer on the Au(111) surface is studied by near carbon K-edge X-ray absorption fine structure spectroscopy (C K-NEXAFS), scanning tunneling microscopy (STM) under ultrahigh vacuum, and infrared reflection-absorption spectroscopy (IRAS) at the electrochemical interface in sulfuric acid solution. The n-C 44 H 90 molecules form self-assembled lamellar structures with the chain axis parallel to the surface, as observed by STM. For small amounts adsorbed, the carbon plane is parallel to the surface (flat-on orientation). An increase in the adsorbed amount by ∼10-20% induces compression of the lamellar structure either along the lamellar axis or alkyl chain axis. The compressed molecular arrangement is observed by STM, and induced conformation and orientation changes are confirmed by in situ IRAS and C K-NEXAFS.
NASA Astrophysics Data System (ADS)
Menegon, Luca; Pennacchioni, Giorgio; Heilbronner, Renee; Pittarello, Lidia
2008-11-01
We have studied quartz microstructures and the c-axis crystallographic preferred orientations (CPOs) in four granitoid samples representative of increasing ductile shear deformation, from a weakly deformed granitoid (stage 1) to a mylonitic granitoid (stage 4). The quartz c-axis CPO measured in the mylonitic granitoid has been compared with the one observed in a fully recrystallized quartz mylonite from the same area. All the samples belong to the Austroalpine Arolla unit (Western Alps) and were deformed at greenschist facies conditions. The quartz c-axis CPO was analyzed using a U-stage and the optical orientation imaging technique. The magmatic plagioclase, forming more than 50% of the volume of the granitoid, is extensively replaced by a mica-rich aggregate even in weakly deformed samples of stage 1. These aggregates flow to form an interconnected weak matrix with increasing deformation, wrapping relatively less strained quartz grains that undergo dominantly coaxial strain. Recrystallization of quartz ranges from less than 1% in the weakly deformed granitoid to up to 85% in the mylonitic granitoid, with average grain strain of 41% and 64%, respectively. With increasing strain and recrystallization, quartz grains in the granitoids show a sequence of transient microstructures and CPOs. Crystal plastic deformation is initially accomplished by dislocation glide with limited recovery, and at 50% grain strain it results in a CPO consistent with dominantly basal < a> slip. At 60% grain strain, recrystallization is preferentially localized along shear bands, which appear to develop along former intragranular cracks, and the recrystallized grains develop a strong c-axis CPO with maxima orthogonal to the shear band boundaries and independent of the host grain orientation. Within the granitoid mylonite, at an average quartz grain strain of 64%, recrystallization is extensive and the c-axis CPO of new grains displays maxima overlapping the host c-axis orientation and, therefore, unrelated to the bulk sense of shear. The host-controlled CPO is inferred to reflect pervasive recrystallization by progressive subgrain rotation. The switch from 'shear band-control' to 'host-control' on c-axis CPO occurred between 40% and 70% of recrystallization. In the quartz mylonite, the quartz c-axis CPO develops an asymmetric single girdle consistent with the bulk sense of shear and the synkinematic greenschist facies conditions. This study indicates that the CPO evolution of quartz may significantly differ in cases of polymineralic vs. monomineralic rocks under the same deformation conditions, if quartz in the polymineralic rock behaves as a 'strong' phase.
Epitaxial Growth of YBa2Cu3O7 Films onto LaAlO3 (100) by Using Oxalates
NASA Astrophysics Data System (ADS)
Dominguez, A. Bustamante; Felix, L. León; Garcia, J.; Santibañez, J. Flores; Valladares, L. De Los Santos; Gonzalez, J. C.; Anaya, A. Osorio; Pillaca, M.
Due to the current necessity to obtain epitaxial superconductor films at low cost, we report the growth of YBa2Cu3O7 (Y123) films by chemical deposition. The procedure involved simple steps such as precipitation of stoichiometric amounts of yttrium, barium and copper acetates in oxalic acid (H2C2O4). The precursor solution was dripped onto LaAlO3 (100) substrates with the help of a Fisher pipette. The films were annealed in oxygen atmosphere during 12 h at three different temperatures: 820 °C, 840 °C and 860 °C. After 820 °C and 860 °C annealing, X-ray diffraction (XRD) analysis revealed high intensity of the (00l) reflections denoting that most of the Y123 grains were c-axis oriented. In addition, we also observed a-axis oriented grains ((h00) reflexion), minor randomly oriented grains and other phases (such as Y2BaCuO5 and CuO). In contrast, the sample treated at 840 °C, we noticed c - and a-axis oriented grains, very small amounts of randomly oriented grains without formation of other phases. From the magnetization versus temperature measurements, the critical temperatures were estimated at 70K and 90K for the samples annealed at 820 °C and 860 °C respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, Kaoru, E-mail: n-kaoru@criepi.denken.or.jp; Higuchi, Sadao; Ohnuma, Toshiharu
2016-03-21
Using density functional perturbation theory, we investigated the effect of various substitutional dopant elements and in-plane strain on the piezoelectric properties of ZnO. The piezoelectric stress constant e{sub 33} of doped ZnO was found to depend on the formal charge of the substitutional dopant. By decomposing the piezoelectric stress constant e{sub 33} into the individual atomic contributions, the change in the piezoelectric properties was found to originate from a change in the coupling between the atomic displacement and the strain. Furthermore, we found that in-plane tensile strain along the a axis, which is specific to the thin film, can enhancemore » the piezoelectric constant of ZnO. A phase transition from wurtzite to h-BN-type structure was found to occur with increasing in-plane tensile. The piezoelectric strain constant d{sub 33} was predicted to reach ∼200 pC/N for 2.78 at. % V-substituted ZnO at 5.5% in-plane strain, just before the phase transition. These theoretical results suggest that the piezoelectric constant of ZnO can be enhanced by controlling the in-plane strain via selection of the substrate material and dopant element.« less
Synthesis of ZnO:As Films Using Off-Axis Sputtering Deposition
NASA Technical Reports Server (NTRS)
Zhu, Shen; Su, Ching-Hua; Lehoczky, S. L.; Rose, M. Franklin (Technical Monitor)
2001-01-01
As a novel oxide semiconductor material, ZnO is interesting for use in many applications. For fabricating electronic devices, it is important to have n- and p- type ZnO materials. Arsenic has been proven to be one of the p-type dopants for ZnO materials. However, information in studying the ZnAsO ternary compound films has been scarce. In order to investigate the morphology, structure and electrical properties of ZnAsO ternary compounds, ZnO:As films have been synthesized using off-axis sputtering deposition on various substrates including (100) Si and (0001) sapphire crystals. Films are grown under various growth conditions. ZnO:As targets with the atomic weight ratios of arsenic to zinc from 0.01 to 0.10 are used for film synthesis. The growth temperatures and pressures range from 350 to 550C and 5 to 150 mTorr, respectively. Argon to oxygen gas ratio for film growth is varied to examine the film quality as well. Film surface morphology, crystal structure, and compositions, are characterized using atomic force microscopy, x-ray diffraction, and energy dispersive spectroscopy, respectively. The compositions of target material and ZnO:As films grown under various conditions are then assessed. The electrical properties were also measured. The detail of these measurements will be discussed in the presentation.
The electrophoretic deposition of ZnO on highly oriented pyrolytic graphite
NASA Astrophysics Data System (ADS)
Ghalamboran, Milad; Jahangiri, Mojtaba; Yousefiazari, Ehsan
2017-12-01
Intensive research has been conducted on ZnO thin and thick films in recent years. Such layers, used in different electronic devices, are deposited utilizing various methods, but electrophoretic deposition (EPD) has been chosen because of the advantages like low energy consumption, economical superiority, ecofriendliness, controllability, and high deposition rate. Here, we report electrophoretically depositing ZnO layers onto highly oriented pyrolytic graphite. Well-dispersed and stable ZnO suspensions are used for the deposition of continuous and even layers of ZnO on the substrate. ZnO powder is dispersed in acetone. The electric field applied is in the 250 V/cm to 2000 V/cm range. The morphology of the deposits are studied by SEM at the different stages of the deposition process.
NASA Astrophysics Data System (ADS)
Zhang, Zhiyuan; Huang, Jingyun; Chen, Shanshan; Pan, Xinhua; Chen, Lingxiang; Ye, Zhizhen
2018-02-01
Single-crystalline ZnO films were grown by plasma-assisted molecular beam epitaxy technique on c-plane sapphire substrates. The films have been implanted with fixed fluence of 130 keV Na and 90 keV N ions at 460 °C. It is observed that dually-implanted single crystalline ZnO films exhibit p-type characteristics with hole concentration in the range of 1.24 × 1016-1.34 × 1017 cm-3, hole mobilities between 0.65 and 8.37 cm2 V-1 s-1, and resistivities in the range of 53.3-80.7 Ω cm by Hall-effect measurements. There are no other secondary phase appearing, with (0 0 2) (c-plane) orientation after ion implantation as identified by the X-ray diffraction pattern. It is obtained that Na and N ions were successfully implanted and activated as acceptors measured by XPS and SIMS results. Also compared to other similar studies, lower amount of Na and N ions make p-type characteristics excellent as others deposited by traditional techniques. It is concluded that Na and N ion implantation and dynamic annealing are essential in forming p-type single-crystalline ZnO films.
Fabrication of nanostructured ZnO film as a hole-conducting layer of organic photovoltaic cell
2013-01-01
We have investigated the effect of fibrous nanostructured ZnO film as a hole-conducting layer on the performance of polymer photovoltaic cells. By increasing the concentration of zinc acetate dihydrate, the changes of performance characteristics were evaluated. Fibrous nanostructured ZnO film was prepared by sol-gel process and annealed on a hot plate. As the concentration of zinc acetate dihydrate increased, ZnO fibrous nanostructure grew from 300 to 600 nm. The obtained ZnO nanostructured fibrous films have taken the shape of a maze-like structure and were characterized by UV-visible absorption, scanning electron microscopy, and X-ray diffraction techniques. The intensity of absorption bands in the ultraviolet region was increased with increasing precursor concentration. The X-ray diffraction studies show that the ZnO fibrous nanostructures became strongly (002)-oriented with increasing concentration of precursor. The bulk heterojunction photovoltaic cells were fabricated using poly(3-hexylthiophene-2,5-diyl) and indene-C60 bisadduct as active layer, and their electrical properties were investigated. The external quantum efficiency of the fabricated device increased with increasing precursor concentration. PMID:23680100
Fabrication of nanostructured ZnO film as a hole-conducting layer of organic photovoltaic cell
NASA Astrophysics Data System (ADS)
Kim, Hyomin; Kwon, Yiseul; Choe, Youngson
2013-05-01
We have investigated the effect of fibrous nanostructured ZnO film as a hole-conducting layer on the performance of polymer photovoltaic cells. By increasing the concentration of zinc acetate dihydrate, the changes of performance characteristics were evaluated. Fibrous nanostructured ZnO film was prepared by sol-gel process and annealed on a hot plate. As the concentration of zinc acetate dihydrate increased, ZnO fibrous nanostructure grew from 300 to 600 nm. The obtained ZnO nanostructured fibrous films have taken the shape of a maze-like structure and were characterized by UV-visible absorption, scanning electron microscopy, and X-ray diffraction techniques. The intensity of absorption bands in the ultraviolet region was increased with increasing precursor concentration. The X-ray diffraction studies show that the ZnO fibrous nanostructures became strongly (002)-oriented with increasing concentration of precursor. The bulk heterojunction photovoltaic cells were fabricated using poly(3-hexylthiophene-2,5-diyl) and indene-C60 bisadduct as active layer, and their electrical properties were investigated. The external quantum efficiency of the fabricated device increased with increasing precursor concentration.
Ferro- and piezoelectric properties of polar-axis-oriented CaBi4Ti4O15 films
NASA Astrophysics Data System (ADS)
Kato, Kazumi; Fu, Desheng; Suzuki, Kazuyuki; Tanaka, Kiyotaka; Nishizawa, Kaori; Miki, Takeshi
2004-05-01
Polar-axis-oriented CaBi4Ti4O15 (CBTi144) films were fabricated on Pt foils using a complex metal alkoxide solution. The 500-nm-thick film showed the columnar structure and consisted of well-developed grains. The a/b-axis orientation of the ferroelectric films is considered to be associated with the preferred orientation of Pt foil. The film showed good ferro- and piezoelectric properties. The Pr and Ec were 25 μC/cm2 and 306 kV/cm, respectively, at an applied voltage of 115 V. The d33 was characterized as 30 pm/V by piezoresponse force microscopy. The values were twice as large as those of the CBTi144 thin film with random orientation. The polar-axis-oriented CBTi144 films would open up possibilities for devices as Pb-free piezoelectric materials.
The phase relations in the In 2O 3Fe 2ZnO 4ZnO system at 1350°C
NASA Astrophysics Data System (ADS)
Nakamura, Masaki; Kimizuka, Noboru; Mohri, Takahiko
1990-05-01
The phase relations in the In 2O 3Fe 2ZnO 4ZnO system at 1350°C are determined by means of a classical quenching method. There are a series of homologous solid solutions, In 1.28Fe 0.72O 3(ZnO)InFeO 3(ZnO), In 1.69Fe 0.31O 3(ZnO) 2InFeO 3(ZnO) 2In 0.85Fe 1.15O 3(ZnO) 2, In 2O 3(ZnO) 3InFeO 3(ZnO) 3In 0.78Fe 1.22O 3(ZnO) 3, In 2O 3(ZnO) 4InFeO 3(ZnO) 4In 0.62Fe 1.38O 3(ZnO) 4, In 2O 3(ZnO) 5InFeO 3(ZnO) 5In 0.67Fe 1.33O 3(ZnO) 5, In 2O 3(ZnO) 6InFeO 3(ZnO) 6In 0.60Fe 1.40O 3(ZnO) 6, In 2O 3(ZnO) 7InFeO 3(ZnO) 7In 0.51Fe 1.49O 3(ZnO) 7, In 2O 3(ZnO) 8InFeO 3(ZnO) 8In 1- xFe 1+ xO 3(ZnO) 8 (0.44 ≦ x ≦ 0.64), In 2O 3(ZnO) 9InFeO 3(ZnO) 9In 0.20Fe 1.80O 3(ZnO) 9, In 2O 3(ZnO) 10InFeO 3(ZnO) 10In 1- xFe 1+ xO 3(ZnO) 10 (0.74 ≦ x ≦ 0.89), In 2O 3(ZnO) 11InFeO 3(ZnO) 11In 1- xFe 1+ xO 3(ZnO) 11 (0.60 ≦ x < 1.00), and In 2O 3(ZnO) 13InFeO 3(ZnO) 13Fe 2O 3(ZnO) 13 having the layered structures with space group R overline3m (m = odd) or {P6 3}/{mmc} (m = even) for m in the InFeO 3(ZnO) m. We conclude that there are a series of homologous phases, (Fe 2O 3)(ZnO) m (m ≧ 12) , in the binary ZnOFe 2O 3 system. The lattice constants for these solid solutions are presented as a hexagonal crystal system. It is also concluded that the crystal structures for each solid solution consist of three kinds of layers which are stacked perpendicular to the c-axis in the hexagonal crystal system. In 1+ xFe 1- xO 3(ZnO) m (0 ≦ x ≦ 1) is composed of the InO 1.5, (In xFe 1- xZn)O 2.5, and ZnO layers, and In 1- xFe 1+ xO 3(ZnO) m (0 ≦ x ≦ 1) is composed of (In 1- xFe x)O 1.5, (FeZn)O 2.5, and ZnO layers, respectively. The solid solution range between Fe 2ZnO 4 and In xFe 2- xZnO 4 ( x = 0.40 ± 0.02) with a spinel structure is observed.
Ethanol gas sensor based upon ZnO nanoparticles prepared by different techniques
NASA Astrophysics Data System (ADS)
Bhatia, Sonik; Verma, Neha; Bedi, R. K.
Nowadays, applications of nanosized materials have been an important issue in basic and applied sciences. In this investigation, Zinc Oxide (ZnO) nanoparticles were prepared by two different techniques (simple heat treatment, thermal evaporation-two zone furnaces). In order to control shape and size - ZnO nanoparticles prepared from heat treatment were used as a source for thermal evaporation method by using two zone split furnace by varying zone temperature (Zone 1-800 °C and Zone 2-400 °C). For both techniques 0.17 M of Zn acetate dihydrate is used as main precursor and film is deposited on glass substrate. Synthesized ZnO were characterized for XRD, FESEM, FTIR and UV-Vis spectrophotometer and LCR meter. XRD revealed hexagonal wurtzite structure with preferential orientation along (1 0 1) plane. FESEM observed that grain size in the range of range of ∼50 ± 5 nm. FTIR spectra showed that the peaks between 400 and 500 cm-1 for ZnO stretching modes. Optical properties has been studied and found that the observed band gap lies in the range of 3.32-3.36 eV. The higher value of capacitance is observed at lower frequency. Gas sensing properties showed the higher response in case of thermal evaporation as compared to simple heat treatment at an operating temperature of 250 °C.
Transparent and conducting ZnO films grown by spray pyrolysis
NASA Astrophysics Data System (ADS)
Hadjeris, Lazhar; Herissi, Labidi; Badreddine Assouar, M.; Easwarakhanthan, Thomas; Bougdira, Jamal; Attaf, Nadhir; Salah Aida, M.
2009-03-01
ZnO films were prepared using the simple, flexible and cost-effective spray pyrolysis technique at different substrate temperatures and precursor molarity values. The films' structural, optical and electrical properties were investigated by x-ray diffraction, UV-VIS transmittance spectroscopy, profilometry and voltage-current-temperature (VIT) measurements. The films prepared at substrate temperatures above 400 °C appear better crystallized with (0 0 2) preferred orientation and exhibit higher visible transmittance (65-80%), higher electrical n-type semiconductor conductivity (10-50 (Ω cm)-1), lower activation energy (<0.35 eV) and smaller Urbach energy (80 meV). These results indicate that such sprayed ZnO films are chemically purer and have many fewer defects and less disorder owing to an almost complete chemical decomposition of the precursor droplets. ZnO films having desired optical and electrical properties for cheaper large-area solar cells may thus be tailored through the substrate temperature and the precursor molarity.
NASA Astrophysics Data System (ADS)
Thust, Anja; Heilbronner, Renée.; Stünitz, Holger
2010-05-01
Samples of natural milky quartz were deformed in a Griggs deformation apparatus at different confining pressures (700 MPa, 1000 MPa, 1500 MPa), with constant displacement rates of 1 * 10-6s-1, axial strains of 3 - 19%, and at a temperature of 900° C. The single crystal starting material contains a large number of H2O-rich fluid inclusions. Directly adjacent to the fluid inclusions the crystal is essentially dry (50-150H/106Si, determined by FTIR). The samples were cored from a narrow zone of constant 'milkyness' (i.e. same density of fluid inclusions) in a large single crystal in two different orientations (1) normal to one of the prism planes (⊥{m} orientation) and (2) 45° to and to (O+ orientation).During attaining of the experimental P and T conditions, numerous fluid inclusions decrepitate by cracking. Rapid crack healing produces regions of very small fluid inclusions ('wet' quartz domains). Only these regions are subsequently deformed by dislocation glide, dry quartz domains without cracking and decrepitation of fluid inclusions remain undeformed. Sample strain is not sufficient to cause recrystallization, so that deformation is restricted to dislocation glide. In experiments at lower temperatures (800, 700° C) or at lower strain rate (10-5s-1) there is abundant cracking and semi-brittle deformation, indicating that 900° C, (10-6s-1) represents the lower temperature end of crystal plastic deformation in these single crystals. Peak strengths (at 900° C) range between 150 and 250 MPa for most samples of both orientations. There is a trend of decreasing strength with increasing confining pressure, as described by Kronenberg and Tullis (1984) for quartzites, but the large variation in strength due to inhomogeneous sample strain precludes a definite analysis of the strength/pressure dependence in our single crystals. In the deformed samples, we can distinguish a number of microstructures and inferred different slip systems. In both orientations, deformation lamellae with a high optical relief appear in the usual sub-basal orientation; often they are associated with 'fluid inclusions trails', cracks or en echelon arrays. In ⊥{m} orientation, conjugate misorientation bands sub-parallel to the prism planes can be observed. The barreled shape of the samples can be explained by prism glide. Unfortunately, since prism glide does not affect the c-axis orientation it cannot be recognized on a c-axis orientation image. Nevertheless, changes in the c-axis orientation are observed locally, indicating either the activity of an additional slip system or a different deformation process (not specified yet). In O+ orientation, we observe the formation of internally kinked shear bands. They are up to 100 μm wide and oriented at α 90° w/r to the host c-axis, slightly oblique to the sense of shear. The width of the kinked domains is 20-40 μm and the average misorientation (β) is 5° . The dispersion of c-axis orientation with synthetic rotation of the c-axis is evidence of basal glide. References: Kronenberg, A.K. & Tullis, J. (1984): Flow strength of quartz aggregates: grain size and pressure effects due to hydrolytic weakening. JGR Vol. 89, 4281-4281.
NASA Astrophysics Data System (ADS)
Vert, Vicente B.; Serra, José M.
The influence of different application-oriented factors on the electrochemical activity and stability of TbBaCo 3ZnO 7+ δ when used as a solid oxide fuel cell cathode has been studied. Calcination at temperatures above 900 °C (e.g. 1000 °C) leads to a significant increase in the electrode polarization resistance. The effect of the sintering temperature of the TbBaCo 3ZnO 7+ δ cathode seems to be more important than the effect produced by the Tb substitution as observed when compared with 900 °C-sintered YBaCo 3ZnO 7+ δ; and ErBaCo 3ZnO 7+ δ electrode performances. The presence of CO 2 in the air flow leads to an increase of roughly 10% in the polarization resistance for the whole studied temperature range (500-850 °C) while this effect is reversible. Analysis of the impedance spectroscopy measurements shows that the exchange rate constant (k G from Gerischer element) is significantly affected by CO 2 at temperatures below 700 °C, while the diffusion coefficient related parameter is slightly influenced at low temperatures. Electrode degrades with a low constant rate of 1 mΩ cm 2 h -1 after 60 h. This cathode material exhibits high CO 2 tolerance, as shown by temperature programmed treatment under a continuous gas flow of air with 5% CO 2, and a relatively low thermal expansion coefficient.
NASA Astrophysics Data System (ADS)
Alimanesh, Mahmoud; Hassan, Z.; Zainal, Norzaini
2017-10-01
Zinc oxide (ZnO) nanorod arrays (NRAs) with different morphologies such as; perfect hexagon flat-head, pyramidal, compact pencil, nail-shaped, and high-compact ZnO nanorod thin films, were successfully grown on silicon substrates. These NRAs were formed on substrates using a simple low-temperature electrochemical method without adding any catalyst or template via the precursors of zinc nitrate hexahydrate [Zn(NO3)2·6H2O] and hexamethylenetetramine [HMT; C6H12N4] with an equal molar concentration of 0.025 mol/l. The morphologies of the ZnO nanorods (NRs) could be controlled and transformed successfully in to other morphologies by changing the growth conditions, such as; growth temperature and applied current density. Detailed structural investigations reveal that the synthesized various NRs are single crystalline with wurtzite hexagonal phase and preferentially grow along the c-axis direction. The room temperature photoluminescence spectra show that each spectrum consists of an ultraviolet (UV) band and a relative broad visible light emission and infrared emission peak. The enhanced light emission intensity at UV peak (∼375 nm) is observed significantly from ZnO nanopyramid (NP) arrays because of the conical shape of NP. The photoluminescence intensity of the UV peak from the NPs is found to be 1.5-17 times larger than those from the other various NRs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Fuxue, E-mail: yanfuxue@126.com; Han, Kai, E-
2017-02-15
C-axis oriented La{sub 0.67}Sr{sub 0.33}MnO{sub 3}(LSMO)/PbZr{sub 0.52}Ti{sub 0.48}O{sub 3}(PZT) films are fabricated successfully by sol-gel method on LaAlO{sub 3} (00l) substrates. The structure, composition and morphology of the films are investigated by X-ray diffractometer (XRD, θ-2θ scan, ω-scan and ϕ-scan), X-ray photoelectron spectroscope (XPS), field emission scanning electron microscope (FESEM) and high resolution transmission electron microscope (HRTEM). The electric and magnetic properties of randomly and c-axis oriented LSMO/PZT films are studied comparably using ferroelectric testing apparatus and physical property measurement system (PPMS). It is found that the epitaxial LSMO/PZT composite films show well controlled growth along c-axis, and much bettermore » magnetoelectric properties than the randomly oriented ones. The ME voltage coefficient increases from 23 mV cm{sup −1} Oe{sup −1} for the randomly oriented LSMO/PZT composite films to 52 mV cm{sup −1} Oe{sup −1} for c-axis oriented ones prepared using the low cost sol-gel method presented in this study, which shows high potential in promising applications. - Highlights: •Epitaxial LSMO/PZT films were fabricated successfully by sol-gel method on LAO (00l) substrate. •The prepared films exhibit well-defined multiferroic properties for the epitaxial LSMO/PZT films. •Epitaxial LSMO/PZT films show superior magnetoelectric properties to the randomly oriented ones.« less
Adaptation of BAp crystal orientation to stress distribution in rat mandible during bone growth
NASA Astrophysics Data System (ADS)
Nakano, T.; Fujitani, W.; Ishimoto, T.; Umakoshi, Y.
2009-05-01
Biological apatite (BAp) c-axis orientation strongly depends on stress distribution in vivo and tends to align along the principal stress direction in bones. Dentulous mandible is subjected to a complicated stress condition in vivo during chewing but few studies have been carried out on the BAp c-axis orientation; so the adaptation of BAp crystal orientation to stress distribution was examined in rat dentulous mandible during bone growth and mastication. Female SD rats 4 to 14 weeks old were prepared, and the bone mineral density (BMD) and BAp crystal orientation were analyzed in a cross-section of mandible across the first molar focusing on two positions: separated from and just under the tooth root on the same cross-section perpendicular to the mesiodistal axis. The degree of BAp orientation was analyzed by a microbeam X-ray diffractometer using Cu-Kα radiation equipped with a detector of curved one-dimensional PSPC and two-dimensional PSPC in the reflection and transmission optics, respectively. BMD quickly increased during bone growth up to 14 weeks, although it was independent of the position from the tooth root. In contrast, BAp crystal orientation strongly depended on the age and the position from the tooth root, even in the same cross-section and direction, especially along the mesiodistal and the biting axes. With increased biting stress during bone growth, the degree of BAp orientation increased along the mesiodistal axis in a position separated from the tooth root more than that near the tooth root. In contrast, BAp preferential alignment clearly appeared along the biting axis near the tooth root. We conclude that BAp orientation rather than BMD sensitively adapts to local stress distribution, especially from the chewing stress in vivo in the mandible.
Petersen, Julien; Brimont, Christelle; Gallart, Mathieu; Schmerber, Guy; Gilliot, Pierre; Ulhaq-Bouillet, Corinne; Rehspringer, Jean-Luc; Colis, Silviu; Becker, Claude; Slaoui, Abdelillah; Dinia, Aziz
2010-01-01
We investigated the structural and optical properties of Eu-doped ZnO thin films made by sol-gel technique and magnetron reactive sputtering on Si (100) substrate. The films elaborated by sol-gel process are polycrystalline while the films made by sputtering show a strongly textured growth along the c-axis. X-ray diffraction patterns and transmission electron microscopy analysis show that all samples are free of spurious phases. The presence of Eu2+ and Eu3+ into the ZnO matrix has been confirmed by x-ray photoemission spectroscopy. This means that a small fraction of Europium substitutes Zn2+ as Eu2+ into the ZnO matrix; the rest of Eu being in the trivalent state. This is probably due to the formation of Eu2O3 oxide at the surface of ZnO particles. This is at the origin of the strong photoluminescence band observed at 2 eV, which is characteristic of the 5D0→7F2 Eu3+ transition. In addition the photoluminescence excitonic spectra showed efficient energy transfer from the ZnO matrix to the Eu3+ ion, which is qualitatively similar for both films although the sputtered films have a better structural quality compared to the sol-gel process grown films. PMID:20644657
Mechanism of polarization switching in wurtzite-structured zinc oxide thin films
NASA Astrophysics Data System (ADS)
Konishi, Ayako; Ogawa, Takafumi; Fisher, Craig A. J.; Kuwabara, Akihide; Shimizu, Takao; Yasui, Shintaro; Itoh, Mitsuru; Moriwake, Hiroki
2016-09-01
The properties of a potentially new class of ferroelectric materials based on wurtzite-structured ZnO thin films are examined using the first-principles calculations. Theoretical P-E hysteresis loops were calculated using the fixed-D method for both unstrained and (biaxially) strained single crystals. Ferroelectric polarization switching in ZnO (S.G. P63mc) is shown to occur via an intermediate non-polar structure with centrosymmetric P63/mmc symmetry by displacement of cations relative to anions in the long-axis direction. The calculated coercive electric field (Ec) for polarization switching was estimated to be 7.2 MV/cm for defect-free monocrystalline ZnO. During switching, the short- and long-axis lattice parameters expand and contract, respectively. The large structural distortion required for switching may explain why ferroelectricity in this compound has not been reported experimentally for pure ZnO. Applying an epitaxial tensile strain parallel to the basal plane is shown to be effective in lowering Ec during polarization, with a 5% biaxial expansion resulting in a decrease of Ec to 3.5 MV/cm. Comparison with calculated values for conventional ferroelectric materials suggests that the ferroelectric polarization switching of wurtzite-structured ZnO may be achievable by preparing high-quality ZnO thin films with suitable strain levels and low defect concentrations.
III-nitrides on oxygen- and zinc-face ZnO substrates
NASA Astrophysics Data System (ADS)
Namkoong, Gon; Burnham, Shawn; Lee, Kyoung-Keun; Trybus, Elaissa; Doolittle, W. Alan; Losurdo, Maria; Capezzuto, Pio; Bruno, Giovanni; Nemeth, Bill; Nause, Jeff
2005-10-01
The characteristics of III-nitrides grown on zinc- and oxygen-face ZnO by plasma-assisted molecular beam epitaxy were investigated. The reflection high-energy electron diffraction pattern indicates formation of a cubic phase at the interface between III-nitride and both Zn- and O-face ZnO. The polarity indicates that Zn-face ZnO leads to a single polarity, while O-face ZnO forms mixed polarity of III-nitrides. Furthermore, by using a vicinal ZnO substrate, the terrace-step growth of GaN was realized with a reduction by two orders of magnitude in the dislocation-related etch pit density to ˜108cm-2, while a dislocation density of ˜1010cm-2 was obtained on the on-axis ZnO substrates.
NASA Astrophysics Data System (ADS)
Murkute, Punam; Ghadi, Hemant; Saha, Shantanu; Chavan, Vinayak; Chakrabarti, Subhananda
2018-03-01
ZnO has potential application in the field of short wavelength devices like LED's, laser diodes, UV detectors etc, because of its wide band gap (3.34 eV) and high exciton binding energy (60 meV). ZnO possess N-type conductivity due to presence of defects arising from oxygen and zinc interstitial vacancies. In order to achieve P-type or intrinsic carrier concentration an implantation study is preferred. In this report, we have varied phosphorous implantation time and studied its effect on optical as well structural properties of RF sputtered ZnO thin-films. Implantation was carried out using Plasma Immersion ion implantation technique for 10 and 20 s. These films were further annealed at 900°C for 10 s in oxygen ambient to activate phosphorous dopants. Low temperature photoluminescence (PL) spectra measured two distinct peaks at 3.32 and 3.199 eV for 20 s implanted sample annealed at 900°C. Temperature dependent PL measurement shows slightly blue shift in peak position from 18 K to 300 K. 3.199 eV peak can be attributed to donoracceptor pair (DAP) emission and 3.32 eV peak corresponds to conduction-band-to-acceptor (eA0) transition. High resolution x-ray diffraction revels dominant (002) peak from all samples. Increasing implantation time resulted in low peak intensity suggesting a formation of implantation related defects. Compression in C-axis with implantation time indicates incorporation of phosphorus in the formed film. Improvement in surface quality was observed from 20 s implanted sample which annealed at 900°C.
Mukherjee, Kunal; Hayamizu, Yoshiaki; Kim, Chang Sub; Kolchina, Liudmila M; Mazo, Galina N; Istomin, Sergey Ya; Bishop, Sean R; Tuller, Harry L
2016-12-21
Highly textured thin films of undoped, Ce-doped, and Sr-doped Pr 2 CuO 4 were synthesized on single crystal YSZ substrates using pulsed laser deposition to investigate their area-specific resistance (ASR) as cathodes in solid-oxide fuel cells (SOFCs). The effects of T' and T* crystal structures, donor and acceptor doping, and a-axis and c-axis orientation on ASR were systematically studied using electrochemical impedance spectroscopy on half cells. The addition of both Ce and Sr dopants resulted in improvements in ASR in c-axis oriented films, as did the T* crystal structure with the a-axis orientation. Pr 1.6 Sr 0.4 CuO 4 is identified as a potential cathode material with nearly an order of magnitude faster oxygen reduction reaction kinetics at 600 °C compared to thin films of the commonly studied cathode material La 0.6 Sr 0.4 Co 0.8 Fe 0.2 O 3-δ . Orientation control of the cuprate films on YSZ was achieved using seed layers, and the anisotropy in the ASR was found to be less than an order of magnitude. The rare-earth doped cuprate was found to be a versatile system for study of relationships between bulk properties and the oxygen reduction reaction, critical for improving SOFC performance.
Inversion domain boundaries in ZnO with additions of Fe2O3 studied by high-resolution ADF imaging.
Wolf, Frank; Freitag, Bert H; Mader, Werner
2007-01-01
Columns of metal atoms in the polytypoid compound Fe2O3(ZnO)15 could be resolved by high angle annular dark field imaging in a transmission electron microscopy (TEM)/STEM electron microscope--a result which could not be realized by high-resolution bright field imaging due to inherent strain from inversion domains and inversion domain boundaries (IDBs) in the crystals. The basal plane IDB was imaged in [11 00] yielding the spacing of the two adjacent ZnO domains, while imaging in [21 1 0] yields the position of single metal ions. The images allow the construction of the entire domain structure including the stacking sequence and positions of the oxygen ions. The IDB consists of a single layer of octahedrally co-ordinated Fe3+ ions, and the inverted ZnO domains are related by point symmetry at the iron position. The FeO6 octahedrons are compressed along the ZnO c-axis resulting in a FeO bond length of 0.208 nm which is in the range of FeO distances in iron containing oxides. The model of the basal plane boundary resembles that of the IDB in polytypoid ZnO-In2O3 compounds.
NASA Astrophysics Data System (ADS)
Jilani, Asim; Abdel-wahab, M. Sh; Al-ghamdi, Attieh A.; Dahlan, Ammar sadik; Yahia, I. S.
2016-01-01
The 2.2 wt% of aluminum (Al)-doped zinc oxide (AZO) transparent and preferential c-axis oriented thin films were prepared by using radio frequency (DC/RF) magnetron sputtering at different substrate temperature ranging from room temperature to 200 °C. For structural analysis, X-ray Diffraction (XRD) and Atomic Force Electron Microscope (AFM) was used for morphological studies. The optical parameters such as, optical energy gap, refractive index, extinction coefficient, dielectric loss, tangent loss, first and third order nonlinear optical properties of transparent films were investigated. High transmittance above 90% and highly homogeneous surface were observed in all samples. The substrate temperature plays an important role to get the best transparent conductive oxide thin films. The substrate temperature at 150 °C showed the growth of highly transparent AZO thin film. Energy gap increased with the increased in substrate temperature of Al doped thin films. Dielectric constant and loss were found to be photon energy dependent with substrate temperature. The change in substrate temperature of Al doped thin films also affect the non-liner optical properties of thin films. The value of χ(3) was found to be changed with the grain size of the thin films that directly affected by the substrate temperature of the pure and Al doped ZnO thin films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao Bo; Liu Hongrui; Avrutin, Vitaliy
2009-11-23
High quality (001)-oriented Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} (BST) thin films have been grown on a-plane sapphire (1120) by rf magnetron sputtering using a double bridge layer consisting of (0001)-oriented ZnO (50 nm) and (001)-oriented MgO (10 nm) prepared by plasma-assisted molecular beam epitaxy. X-ray diffraction revealed the formation of three sets of in-plane BST domains, offset from one another by 30 deg., which is consistent with the in-plane symmetry of the MgO layer observed by in situ reflective high electron energy diffraction. The in-plane epitaxial relationship of BST, MgO, and ZnO has been determined to be BST [110]//MgO [110]//ZnO [1120]more » and BST [110]/MgO [110]//ZnO [1100]. Capacitance-voltage measurements performed on BST coplanar interdigitated capacitor structures revealed a high dielectric tunability of up to 84% at 1 MHz.« less
Study on electrical structure and magneto-optical properties of W-doped ZnO
NASA Astrophysics Data System (ADS)
Li, Yong; Hou, Qingyu; Zhao, Chunwang; Xu, Zhenchao
2018-04-01
For W-doping amounts ranging from 0.0417 to 0.0833, experimental UV-visible absorption spectra blue shift and red shift results have been reported in the literatures. However, there is few literature reported research on magnetic mechanism. To solve this problem, this study investigates the disagreement about blue shift and red shift results and research on magnetic mechanism. The band structures, density of states, absorption spectra and magnetism have been investigated using first-principles planewave ultrasoft pseudopotential method based on the density functional theory. The calculated results showed that increased W-doping amounts first increase the volumes, and then reduce the volumes, decrease the formation energies, and stabilize the doped system. The band gaps become narrower and the absorption spectrum exhibits a significant red shift in UV and visible light emission. Moreover, the covalent bond vertical to c-axis strengthens, and the ionic bond parallel to c-axis weakens. Increased W-doping amounts decrease the magnetism of doped system. The magnetism of doped system originates from the electron exchange among W-5d, O-2p and Zn-3d orbitals of the W-doped ZnO. In W double-doped system, the ferromagnetic Curie temperature can be above room temperature when the doped system has a longer W-W distance.
Growth process optimization of ZnO thin film using atomic layer deposition
NASA Astrophysics Data System (ADS)
Weng, Binbin; Wang, Jingyu; Larson, Preston; Liu, Yingtao
2016-12-01
The work reports experimental studies of ZnO thin films grown on Si(100) wafers using a customized thermal atomic layer deposition. The impact of growth parameters including H2O/DiethylZinc (DEZn) dose ratio, background pressure, and temperature are investigated. The imaging results of scanning electron microscopy and atomic force microscopy reveal that the dose ratio is critical to the surface morphology. To achieve high uniformity, the H2O dose amount needs to be at least twice that of DEZn per each cycle. If the background pressure drops below 400 mTorr, a large amount of nanoflower-like ZnO grains would emerge and increase surface roughness significantly. In addition, the growth temperature range between 200 °C and 250 °C is found to be the optimal growth window. And the crystal structures and orientations are also strongly correlated to the temperature as proved by electron back-scattering diffraction and x-ray diffraction results.
Annealing Temperature Dependent Structural and Optical Properties of RF Sputtered ZnO Thin Films.
Sharma, Shashikant; Varma, Tarun; Asokan, K; Periasamy, C; Boolchandani, Dharmendar
2017-01-01
This work investigates the effect of annealing temperature on structural and optical properties of ZnO thin films grown over Si 100 and glass substrates using RF sputtering technique. Annealing temperature has been varied from 300 °C to 600 °C in steps of 100, and different microstructural parameters such as grain size, dislocation density, lattice constant, stress and strain have been evaluated. The structural and surface morphological characterization has been done using X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM). XRD analysis reveals that the peak intensity of 002 crystallographic orientation increases with increased annealing temperature. Optical characterization of deposited films have been done using UV-Vis-NIR spectroscopy and photoluminescence spectrometer. An increase in optical bandgap of deposited ZnO thin films with increasing annealing temperature has been observed. The average optical transmittance was found to be more than 85% for all deposited films. Photoluminiscense spectra (PL) suggest that the crystalline quality of deposited film has increased at higher annealing temperature.
NASA Astrophysics Data System (ADS)
Kim, T. Y.; Lee, J. H.; Oh, Y. J.; Choi, M. R.; Jo, W.
2007-02-01
The authors report charge retention in preferentially (117) oriented and textured c-axis oriented ferroelectric Bi3.25La0.75Ti3O12 thin films by electrostatic force microscopy. Surface charges of the films were observed as a function of time in a selected area which consists of a single-poled region and a reverse-poled region. The highly (117) oriented film shows the extended exponential decay with characteristic scaling exponents, n =1.5-1.6. The preferentially c-axis oriented film shows a remarkable retained behavior regardless of the poling. Decay and retention mechanisms of the regions are explained by space-charge redistribution and trapping of defects in the films.
Zhou, Xiongtu; Lin, Tihang; Liu, Yuhui; Wu, Chaoxing; Zeng, Xiangyao; Jiang, Dong; Zhang, Yong-ai; Guo, Tailiang
2013-10-23
High-quality tetrapod-shaped Sn-doped ZnO (T-SZO) nanostructures have been successfully synthesized via the thermal evaporation of mixed Zn and Sn powder. The effects of the Sn dopant on the morphology, microstructure, optical, and field-emission (FE) properties of T-SZO were investigated. It was found that the growth direction of the legs of T-SZO is parallel to the [0001] crystal c-axis direction and that the incorporation of Sn in the ZnO matrix increases the aspect ratio of the tetrapods, leads to blue shift in the UV region, and considerably improves the FE performance. The results also show that tetrapod cathodes with around a 0.84 atom % Sn dosage have the best FE properties, with a turn-on field of 1.95 V/μm, a current density of 950 μA/cm2 at a field of 4.5 V/μm, and a field-enhancement factor as high as 9556.
Sereda, Valentin; Ralbovsky, Nicole M; Vasudev, Milana C; Naik, Rajesh R; Lednev, Igor K
2016-09-01
Self-assembly of short peptides into nanostructures has become an important strategy for the bottom-up fabrication of nanomaterials. Significant interest to such peptide-based building blocks is due to the opportunity to control the structure and properties of well-structured nanotubes, nanofibrils, and hydrogels. X-ray crystallography and solution NMR, two major tools of structural biology, have significant limitations when applied to peptide nanotubes because of their non-crystalline structure and large weight. Polarized Raman spectroscopy was utilized for structural characterization of well-aligned D-Diphenylalanine nanotubes. The orientation of selected chemical groups relative to the main axis of the nanotube was determined. Specifically, the C-N bond of CNH 3 + groups is oriented parallel to the nanotube axis, the peptides' carbonyl groups are tilted at approximately 54° from the axis and the COO - groups run perpendicular to the axis. The determined orientation of chemical groups allowed the understanding of the orientation of D-diphenylalanine molecule that is consistent with its equilibrium conformation. The obtained data indicate that there is only one orientation of D-diphenylalanine molecules with respect to the nanotube main axis.
Bottle-brush-shaped heterostructures of NiO-ZnO nanowires: growth study and sensing properties
NASA Astrophysics Data System (ADS)
Baratto, C.; Kumar, R.; Comini, E.; Ferroni, M.; Campanini, M.
2017-11-01
We present here heterostructured ZnO-NiO nanowires (NWs), constituted by a core of single crystalline ZnO NWs, covered by poly-crystalline NiO nanorods (NRs). The bottle-brush shape was investigated by scanning electron microscopy and transmission electron microscope, confirming that a columnar growth of NiO occurred over the ZnO core, with a preferred orientation of NiO over ZnO NWs. The heterostructured devices are proposed for gas sensing application. Bare ZnO NWs and heterostructured sensors with two different thicknesses of NiO poly-crystalline NRs were analysed for acetone, ethanol, NO2 and H2 detection. All sensors maintained n-type sensing mechanism, with improved sensing performance for lower thickness of NiO, due to high catalytic activity of NiO. The sensing dynamic is also strongly modified by the presence of heterojunction of NiO/ZnO, with a reduction of response and recovery times towards ethanol and acetone at 400 °C.
Unique temporal and spatial biomolecular emission profile on individual zinc oxide nanorods
NASA Astrophysics Data System (ADS)
Singh, Manpreet; Song, Sheng; Hahm, Jong-In
2013-12-01
Zinc oxide nanorods (ZnO NRs) have emerged in recent years as extremely useful, optical signal-enhancing platforms in DNA and protein detection. Although the use of ZnO NRs in biodetection has been demonstrated so far in systems involving many ZnO NRs per detection element, their future applications will likely take place in a miniaturized setting while exploiting single ZnO NRs in a low-volume, high-throughput bioanalysis. In this paper, we investigate temporal and spatial characteristics of the biomolecular fluorescence on individual ZnO NR systems. Quantitative and qualitative examinations of the biomolecular intensity and photostability are carried out as a function of two important criteria, the time and position along the long axis (length) of NRs. Photostability profiles are also measured with respect to the position on NRs and compared to those characteristics of biomolecules on polymeric control platforms. Unlike the uniformly distributed signal observed on the control platforms, both the fluorescence intensity and photostability are position-dependent on individual ZnO NRs. We have identified a unique phenomenon of highly localized, fluorescence intensification on the nanorod ends (FINE) of well-characterized, individual ZnO nanostructures. When compared to the polymeric controls, the biomolecular fluorescence intensity and photostability are determined to be higher on individual ZnO NRs regardless of the position on NRs. We have also carried out finite-difference time-domain simulations the results of which are in good agreement with the observed FINE. The outcomes of our investigation will offer a much needed basis for signal interpretation for biodetection devices and platforms consisting of single ZnO NRs and, at the same time, contribute significantly to provide insight in understanding the biomolecular fluorescence observed from ZnO NR ensemble-based systems.Zinc oxide nanorods (ZnO NRs) have emerged in recent years as extremely useful, optical signal-enhancing platforms in DNA and protein detection. Although the use of ZnO NRs in biodetection has been demonstrated so far in systems involving many ZnO NRs per detection element, their future applications will likely take place in a miniaturized setting while exploiting single ZnO NRs in a low-volume, high-throughput bioanalysis. In this paper, we investigate temporal and spatial characteristics of the biomolecular fluorescence on individual ZnO NR systems. Quantitative and qualitative examinations of the biomolecular intensity and photostability are carried out as a function of two important criteria, the time and position along the long axis (length) of NRs. Photostability profiles are also measured with respect to the position on NRs and compared to those characteristics of biomolecules on polymeric control platforms. Unlike the uniformly distributed signal observed on the control platforms, both the fluorescence intensity and photostability are position-dependent on individual ZnO NRs. We have identified a unique phenomenon of highly localized, fluorescence intensification on the nanorod ends (FINE) of well-characterized, individual ZnO nanostructures. When compared to the polymeric controls, the biomolecular fluorescence intensity and photostability are determined to be higher on individual ZnO NRs regardless of the position on NRs. We have also carried out finite-difference time-domain simulations the results of which are in good agreement with the observed FINE. The outcomes of our investigation will offer a much needed basis for signal interpretation for biodetection devices and platforms consisting of single ZnO NRs and, at the same time, contribute significantly to provide insight in understanding the biomolecular fluorescence observed from ZnO NR ensemble-based systems. Electronic supplementary information (ESI) available: ZnO NR size distributions, a FINE image from fluorophores on ZnO NR without protein coupling, and FDTD simulation movies. See DOI: 10.1039/c3nr05031a
NASA Astrophysics Data System (ADS)
Perumal, R.; Hassan, Z.
2016-06-01
Zinc oxide receives remarkable attention due to its several attractive physical properties. Zinc oxide thin films doped with nitrogen were grown by employing RF magnetron sputtering method at room temperature. Doping was accomplished in gaseous medium by mixing high purity nitrogen gas along with argon sputtering gas. Structural studies confirmed the high crystalline nature with c-axis oriented growth of the nitrogen doped zinc oxide thin films. The tensile strain was developed due to the incorporation of the nitrogen into the ZnO crystal lattice. Surface roughness of the grown films was found to be decreased with increasing doping level was identified through atomic force microscope analysis. The presenting phonon modes of each film were confirmed through FTIR spectral analysis. The increasing doping level leads towards red-shifting of the cut-off wavelength due to decrement of the band gap was identified through UV-vis spectroscopy. All the doped films exhibited p-type conductivity was ascertained using Hall measurements and the obtained results were presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yasui, Kanji, E-mail: kyasui@vos.nagaokaut.ac.jp; Morioka, Makoto; Kanauchi, Shingo
The influence of N{sub 2}O gas addition on the properties of zinc oxide (ZnO) films grown on a-plane (11–20) sapphire (a-Al{sub 2}O{sub 3}) substrates was investigated, using a chemical vapor deposition method based on the reaction between dimethylzinc and high-temperature H{sub 2}O produced by a catalytic H{sub 2}-O{sub 2} reaction on platinum (Pt) nanoparticles. The addition of N{sub 2}O was found to increase the size of the crystalline facets and to improve the crystal orientation along the c-axis. The electron mobility at 290 K was also increased to 234 cm{sup 2}/Vs following the addition of N{sub 2}O gas at a pressure ofmore » 3.2 × 10{sup −3 }Pa. In addition, the minimum full width at half maximum of the most intense photoluminescence peak derived from neutral donor bound excitons at 10 K decreased to 0.6 meV by the addition of N{sub 2}O gas at a pressure of 3.1 × 10{sup −2 }Pa.« less
Raman tensor elements for tetragonal BaTiO3 and their use for in-plane domain texture assessments
NASA Astrophysics Data System (ADS)
Deluca, Marco; Higashino, Masayuki; Pezzotti, Giuseppe
2007-08-01
A quantitative assessment of c-axis oriented domains in a textured BaTiO3 (BT) single crystal has been carried out by polarized Raman microprobe spectroscopy. The relative intensity modulation of the Raman phonon modes has been theoretically modeled as a function of crystal rotation and linked to the volume fraction of c-axis oriented domains. Raman tensor elements have also been experimentally determined for the Ag and B1 vibrational modes. As an application, the internal in-plane texture and the volume fraction of c-oriented domains in the BT single crystal have been nondestructively visualized by monitoring the relative intensity of Ag and B1 Raman modes.
Ukar, Estibalitz; Laubach, Stephen E.; Marrett, Randall
2016-03-09
Here, we evaluate a published model for crystal growth patterns in quartz cement in sandstone fractures by comparing crystal fracture-spanning predictions to quartz c-axis orientation distributions measured by electron backscatter diffraction (EBSD) of spanning quartz deposits. Samples from eight subvertical opening-mode fractures in four sandstone formations, the Jurassic– Cretaceous Nikanassin Formation, northwestern Alberta Foothills (Canada), Cretaceous Mesaverde Group (USA; Cozzette Sandstone Member of the Iles Formation), Piceance Basin, Colorado (USA), and upper Jurassic–lower Cretaceous Cotton Valley Group (Taylor sandstone) and overlying Travis Peak Formation, east Texas, have similar quartzose composition and grain size but contain fractures with different temperature historiesmore » and opening rates based on fluid inclusion assemblages and burial history. Spherical statistical analysis shows that, in agreement with model predictions, bridging crystals have a preferred orientation with c-axis orientations at a high angle to fracture walls. The second form of validation is for spanning potential that depends on the size of cut substrate grains. Using measured cut substrate grain sizes and c-axis orientations of spanning bridges, we calculated the required orientation for the smallest cut grain to span the maximum gap size and the required orientation of the crystal with the least spanning potential to form overgrowths that span across maximum measured gap sizes. We find that within a 10° error all spanning crystals conform to model predictions. Using crystals with the lowest spanning potential based on crystallographic orientation (c-axis parallel to fracture wall) and a temperature range for fracture opening measured from fluid inclusion assemblages, we calculate maximum fracture opening rates that allow crystals to span. These rates are comparable to those derived independently from fracture temperature histories based on burial history and multiple sequential fluid inclusion assemblages. Results support the R. Lander and S. Laubach model, which predicts that for quartz deposited synchronously with fracture opening, spanning potential, or likelihood of quartz deposits that are thick enough to span between fracture walls, depends on temperature history, fracture opening rate, size of opening increments, and size, mineralogy, and crystallographic orientation of substrates in the fracture wall (transected grains). Results suggest that EBSD maps, which can be more rapidly acquired than measurement of tens to hundreds of fluid inclusion assemblages, can provide a useful measure of relative opening rates within populations of quartz-filled fractures formed under sedimentary basin conditions. Such data are useful for evaluating fracture pattern development models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ukar, Estibalitz; Laubach, Stephen E.; Marrett, Randall
Here, we evaluate a published model for crystal growth patterns in quartz cement in sandstone fractures by comparing crystal fracture-spanning predictions to quartz c-axis orientation distributions measured by electron backscatter diffraction (EBSD) of spanning quartz deposits. Samples from eight subvertical opening-mode fractures in four sandstone formations, the Jurassic– Cretaceous Nikanassin Formation, northwestern Alberta Foothills (Canada), Cretaceous Mesaverde Group (USA; Cozzette Sandstone Member of the Iles Formation), Piceance Basin, Colorado (USA), and upper Jurassic–lower Cretaceous Cotton Valley Group (Taylor sandstone) and overlying Travis Peak Formation, east Texas, have similar quartzose composition and grain size but contain fractures with different temperature historiesmore » and opening rates based on fluid inclusion assemblages and burial history. Spherical statistical analysis shows that, in agreement with model predictions, bridging crystals have a preferred orientation with c-axis orientations at a high angle to fracture walls. The second form of validation is for spanning potential that depends on the size of cut substrate grains. Using measured cut substrate grain sizes and c-axis orientations of spanning bridges, we calculated the required orientation for the smallest cut grain to span the maximum gap size and the required orientation of the crystal with the least spanning potential to form overgrowths that span across maximum measured gap sizes. We find that within a 10° error all spanning crystals conform to model predictions. Using crystals with the lowest spanning potential based on crystallographic orientation (c-axis parallel to fracture wall) and a temperature range for fracture opening measured from fluid inclusion assemblages, we calculate maximum fracture opening rates that allow crystals to span. These rates are comparable to those derived independently from fracture temperature histories based on burial history and multiple sequential fluid inclusion assemblages. Results support the R. Lander and S. Laubach model, which predicts that for quartz deposited synchronously with fracture opening, spanning potential, or likelihood of quartz deposits that are thick enough to span between fracture walls, depends on temperature history, fracture opening rate, size of opening increments, and size, mineralogy, and crystallographic orientation of substrates in the fracture wall (transected grains). Results suggest that EBSD maps, which can be more rapidly acquired than measurement of tens to hundreds of fluid inclusion assemblages, can provide a useful measure of relative opening rates within populations of quartz-filled fractures formed under sedimentary basin conditions. Such data are useful for evaluating fracture pattern development models.« less
Effect of crystal orientation on conductivity and electron mobility in single-crystal alumina
NASA Technical Reports Server (NTRS)
Will, Fritz G.; Delorenzi, Horst G.; Janora, Kevin H.
1992-01-01
The electrical conductivity of high-purity, single-crystal alumina is determined parallel to and perpendicular to the c-axis. The mean conductivity of four samples of each orientation is a factor 3.3 higher parallel to the c-axis than perpendicular to it. The conductivity as a function of temperature is attributed to extrinsic electron conduction at temperatures from 400 to 900 C, and intrinsic semiconduction at temperatures from 900 to 1300 C. In the high-temperature regime, the slope on all eight specimens is 4.7 +/- 0.1 eV. Hence, the thermal bandgap at O K is 9.4 +/- 0.2 eV.
Fu, Jimin; He, Chong; Xia, Biao; Li, Yan; Feng, Qiong; Yin, Qifang; Shi, Xinghua; Feng, Xue; Wang, Hongtao; Yao, Haimin
2016-01-01
Biological armors such as mollusk shells have long been recognized and studied for their values in inspiring novel designs of engineering materials with higher toughness and strength. However, no material is invincible and biological armors also have their rivals. In this paper, our attention is focused on the teeth of black carp (Mylopharyngodon piceus) which is a predator of shelled mollusks like snails and mussels. Nanoscratching test on the enameloid, the outermost layer of the teeth, indicates that the natural occlusal surface (OS) has much higher wear resistance compared to the other sections. Subsequent X-ray diffraction analysis reveals that the hydroxyapatite (HAp) crystallites in the vicinity of OS possess c-axis preferential orientation. The superior wear resistance of black carp teeth is attributed to the c-axis preferential orientation of HAp near the OS since the (001) surface of HAp crystal, which is perpendicular to the c-axis, exhibits much better wear resistance compared to the other surfaces as demonstrated by the molecular dynamics simulation. Our results not only shed light on the origin of the good wear resistance exhibited by the black carp teeth but are of great value to the design of engineering materials with better abrasion resistance. PMID:27001150
NASA Astrophysics Data System (ADS)
Gupta, Manisha; Chowdhury, Fatema Rezwana; Barlage, Douglas; Tsui, Ying Yin
2013-03-01
In this work we present the optimization of zinc oxide (ZnO) film properties for a thin-film transistor (TFT) application. Thin films, 50±10 nm, of ZnO were deposited by Pulsed Laser Deposition (PLD) under a variety of growth conditions. The oxygen pressure, laser fluence, substrate temperature and annealing conditions were varied as a part of this study. Mobility and carrier concentration were the focus of the optimization. While room-temperature ZnO growths followed by air and oxygen annealing showed improvement in the (002) phase formation with a carrier concentration in the order of 1017-1018/cm3 with low mobility in the range of 0.01-0.1 cm2/V s, a Hall mobility of 8 cm2/V s and a carrier concentration of 5×1014/cm3 have been achieved on a relatively low temperature growth (250 °C) of ZnO. The low carrier concentration indicates that the number of defects have been reduced by a magnitude of nearly a 1000 as compared to the room-temperature annealed growths. Also, it was very clearly seen that for the (002) oriented films of ZnO a high mobility film is achieved.
NASA Astrophysics Data System (ADS)
Singh, Manpreet
There has been longstanding interest in improving the optical detection capabilities of fluorescence spectroscopy to achieve ultrahigh resolution and sensitivity in chemical and biological sensing applications. To promote these efforts, I present my work characterizing and developing zinc oxide nanorods (ZnO NRs) as advanced optical detection platforms that can enable enhanced intensity and stability of adsorbed fluorophore-coupled biomolecules. First, I present my unique findings profiling the temporal and spatial characteristics of biomolecular fluorescence on individual ZnO NRs in which I've identified highly localized, non-linear optical phenomena of fluorescence intensification on nanorod ends (FINE) and enhanced photostability. Using combined experimental and computational strategies, I elucidate the fundamental physicochemical origins of these optical phenomena by systematically decoupling various biomolecular, chemical, and nanomaterial factors. On the biomolecular side, I evaluate the roles of fluorophores with varying spectroscopic properties and concentrations as well as facet-selective biomolecular adsorption on the unique spatiotemporal optical responses on single ZnO NRs. From the chemical/nanomaterial context, I profile the biomolecular emission behaviors on single ZnO NRs as a function of varying NR physical dimensions, NR orientations, and positions along the NR long axis I also present the results of employing finite-difference time domain (FDTD) simulations to corroborate my multifold experimental findings. The FDTD results further clarify the passive waveguiding capacity of the ZnO NRs to couple the radiation of surface-adsorpbed emitters and form evanescent waves that propagate to the NR ends before final emission into the far-field, confirming the experimental manifestation of FINE.. I also present an application exploiting the optical enhancement enabled by ZnO NRs in which I've engineered and validated a novel biosensing assay for the ultrasensitive detection and quantification of two Acute Kidney Injury biomarkers in real patient urine samples. Using micropatterned arrays of ZnO NRs, I've achieved unparalleled sensitivity with detection limits three orders of magnitude lower than conventional enzyme-linked immnosorbent assays allowing for earlier clinical diagnosis and intervention. The combined results of my efforts are hoped to promote the development of highly miniaturized biological/chemical sensing probes, platforms, and devices that utilize the remarkable enhancement of optical intensity and photostability provided by single ZnO NRs.
Long-range ordering effect in electrodeposition of zinc and zinc oxide.
Liu, Tao; Wang, Sheng; Shi, Zi-Liang; Ma, Guo-Bin; Wang, Mu; Peng, Ru-Wen; Hao, Xi-Ping; Ming, Nai-Ben
2007-05-01
In this paper, we report the long-range ordering effect observed in the electro-crystallization of Zn and ZnO from an ultrathin aqueous electrolyte layer of ZnSO4 . The deposition branches are regularly angled, covered with random-looking, scalelike crystalline platelets of ZnO. Although the orientation of each crystalline platelet of ZnO appears random, transmission electron microscopy shows that they essentially possess the same crystallographic orientation as the single-crystalline zinc electrodeposit underneath. Based on the experimental observations, we suggest that this unique long-range ordering effect results from an epitaxial nucleation effect in electrocrystallization.
NASA Astrophysics Data System (ADS)
Samanta, Kousik
Dilute magnetic semiconductors (DMS), especially 3d-transition metal (TM) doped ZnO based DMS materials are the most promising candidates for optoelectronics and spintronics applications; e.g. in spin light emitting diode (SLED), spin transistors, and spin field effect transistors (SFET), etc. In the present dissertation, thin films of Zn1-xTMxO (TM = Co2+, Cu2+, and Mn2+) were grown on (0001) oriented Al2O3 substrates by pulsed laser deposition (PLD) technique. The films were highly c-axis oriented, nearly single crystalline, and defects free for a limited concentration of the dilution of transition metal ions. In particular, we have obtained single crystalline phases of Zn1-xTMxO thin films for up to 10, 3, and 5 stoichiometric percentages of Co2+, Cu2+, and Mn2+ respectively. Raman micro-probe system was used to understand the structural and lattice dynamical properties at different physical conditions. The confinement of optical phonons in the disorder lattice was explained by alloy potential fluctuation (APF) using a spatial correlation (SC) model. The detailed analysis of the optical phonon behavior in disorder lattice confirmed the substitution of the transition metal ions in Zn 2+ site of the ZnO host lattice. The secondary phases of ZnCo 2O4, CuO, and ZnMn2O4 were detected in higher Co, Cu, and Mn doped ZnO thin films respectively; where as, XRD did not detect these secondary phases in the same samples. Room temperature ferromagnetism was observed in Co2+ and Cu2+ ions doped ZnO thin films with maximum saturation magnetization (Ms) of 1.0 and 0.76 muB respectively. The origin of the observed ferromagnetism in Zn1-xCoxO thin films was tested by the controlled introduction of shallow donors (Al) in Zn0.9-x Co0.1O:Alx (x = 0.005 and 0.01) thin films. The saturation magnetization for the 10% Co-doped ZnO (1.0 muB /Co) at 300K reduced (˜0.25 muB/Co) due to Al doping. The observed ferromagnetism and the reduction due to Al doping can be explained by the Bound Magnetic Polaron (BMP) model. The Resistivity of ZCO sample (˜ 103 O-cm) dropped by 5 orders of magnitude (0.02 O-cm) in Co, Al co-doped samples and the carrier concentrations increases 4 orders of magnitude (˜ 1019/cm3). The Cu2+ doped ZnO thin films showed the ferromagnetic property at 300K. The p-d orbital mixing of high spin Cu2+ (d9) state with the nearest neighbor oxygen p-orbital can explain the origin of RTFM in Zn 1-xCuxO thin films. The optical transmission spectroscopy and the photoluminescence spectroscopy analysis were used to understand the electronic band structure, near band edge (NBE) transition, and the excitonic behavior in ZnO and Zn1-xTMxO thin films. We have found the reduction of NBE transition at 300K due to the substitution of Co and Cu in ZnO host lattice. This narrowing of the optical band gap (NBE) is due to the sp-d exchange interaction between the d electrons of transition metal ions and the band electrons of ZnO; the strength of this interaction strongly depends on the number of d electrons. The s-d and p-d exchanges give rise to negative and positive corrections to the conduction and valance band edges respectively, leading to the NBE narrowing. We have observed the characteristic inter atomic d-d transitions in Co doped samples; thus confirming the substitution of Co2+ in the tetrahedral site in ZnO. The low temperature (77K) PL spectrum showed the basic excitonic characteristics of pure ZnO in Zn1-xTMxO thin films. The X-ray photoelectron spectroscopy (XPS) showed that the Co and Cu are normally in 2+ oxidation state, but in the case of higher Cu concentrations (>3%), the mixed state of Cu2+ and Cu1+ were detected.
NASA Astrophysics Data System (ADS)
Adeoye Victor, Babalola
2017-12-01
This study involves the preparation of ZnO thin films by spray pyrolysis and to investigate the effect of concentration of the film and irradiation on ZnO thin film deposited by spray pyrolysis method deposited at 350 ± 5 °C. The precursor for zinc oxide was produced from zinc acetate (Zn(CH3COO))2. The samples were annealed at 500 °C for 6 h and irradiated using 137Cs 90.998 mCi radiation. They were then characterised using ultra violet-visible spectrophotometry, X-ray Diffractometry (XRD) with Cu-Kα radiation to determine the structure of the film, Four-point probe for electrical properties and Rutherford Backscattering Spectrometry (RBS) were used for the composition of the film. XRD diffraction peaks observed for 0.05 M ZnO were (1 0 0), (0 0 2), (1 0 1) and (1 1 0) planes for the annealed and irradiated annealed ZnO films with no preferential orientation. The as-deposited films have low peaks belonging to (1 0 0), (0 0 2), (1 0 1), (1 1 0) plane and other peaks such as (1 1 2), (2 0 0) and (2 0 1). The results are explained with regard to the irradiation damage introduced to the samples. The as-deposited, annealed and irradiated-annealed films are highly transparent in the visible range of the electromagnetic spectrum with an average percent transmittance values of 85% and present a sharp ultraviolet cut-off at approximately 380 nm for the ZnO thin film.
NASA Astrophysics Data System (ADS)
Kim, Tai Suk; Kim, Ki Woong; Jeon, Min Ku; Jung, Chang Hwa; Woo, Seong Ihl
2007-01-01
Bi4-x/3Ti3-xVxO12 (BTV) ferroelectric thin films were fabricated by liquid source misted chemical deposition. The substitution of vanadium for titanium site changed the crystalline orientation and surface morphology of the thin film, which in turn influenced the remanent polarization (Pr). 2Pr of BTV thin film increased with increase of vanadium content and reached a maximum value (21.5μC/cm2) at x =0.03, as this corresponded with the largest degree of a-axis orientation. However, at 0.05⩽x⩽0.09, 2Pr reduced with decrease in the degree of a-axis orientation. These results indicate that the Pr of the films is dependent on the degree of a-axis orientation.
Non-polar p-type Zn0.94Mn0.05Na0.01O texture: Growth mechanism and codoping effect
NASA Astrophysics Data System (ADS)
Zhang, L. Q.; Lu, B.; Lu, Y. H.; Ye, Z. Z.; Lu, J. G.; Pan, X. H.; Huang, J. Y.
2013-02-01
The microstructure and crystal orientations of polycrystalline films crucially affect the properties and performance of the films. Controlling preferred orientations (PO) and related film morphology are necessary to obtain the desirable properties. In this paper, we demonstrate a rational and effective route toward the realization of non-polar p-type ZnO thin film with surface texture on quartz substrate through Mn-Na codoping. It is uncovered experimentally and theoretically that mono-doping of Mn creates opportunity to realize PO from polar (c-axis) to non-polar ((101¯0), (101¯1), and (112¯0)) changing. With Mn-Na codoping, an acute modulation of the growth behavior and electrical conductivity of the film have been revealed, leading to weak p-type non-polar Zn0.94Mn0.05Na0.01O (ZMNO) texture. The dominant mechanism for the non-polar self-texture in the current paper is deliberately elucidated as resulting from the interplane surface diffusion with the cooperative effect of impurity dopants. The ZMNO films exhibit p-type conduction with hole concentration of 9.51 × 1015-1.86 × 1017 cm-3 and enhanced room temperature (RT) ferromagnetism possessing a saturation magnetization (Ms) of 1.52 μB/Mn. The results have potential applications in development of non-polar optoelectronic devices such as lighting emitting diodes (LEDs).
Ion-/proton-conducting apparatus and method
Yates, Matthew [Penfield, NY; Liu, Dongxia [Rochester, NY
2011-05-17
A c-axis-oriented HAP thin film synthesized by seeded growth on a palladium hydrogen membrane substrate. An exemplary synthetic process includes electrochemical seeding on the substrate, and secondary and tertiary hydrothermal treatments under conditions that favor growth along c-axes and a-axes in sequence. By adjusting corresponding synthetic conditions, an HAP this film can be grown to a controllable thickness with a dense coverage on the underlying substrate. The thin films have relatively high proton conductivity under hydrogen atmosphere and high temperature conditions. The c-axis oriented films may be integrated into fuel cells for application in the intermediate temperature range of 200-600.degree. C. The electrochemical-hydrothermal deposition technique may be applied to create other oriented crystal materials having optimized properties, useful for separations and catalysis as well as electronic and electrochemical applications, electrochemical membrane reactors, and in chemical sensors.
Valanarasu, S; Dhanasekaran, V; Chandramohan, R; Kulandaisamy, I; Sakthivelu, A; Mahalingam, T
2013-08-01
The influence of thermal treatment on the structural and morphological properties of the ZnO films deposited by double dip Successive ionic layer by adsorption reaction is presented. The effect of annealing temperature and time in air ambient is presented in detail. The deposited films were annealed from 200 to 400 degrees C in air and the structural properties were determined as a function of annealing temperature by XRD. The studies revealed that films were exhibiting preferential orientation along (002) plane. The other structural parameters like the crystallite size (D), micro strain (epsilon), dislocation density (delta) and stacking fault (alpha) of as-deposited and annealed ZnO films were evaluated and reported. The optical properties were also studied and the band gap of the ZnO thins films varied from 3.27 to 3.04 eV with the annealing temperature. SEM studies revealed that the hexagonal shaped grains with uniformly distributed morphology in annealed ZnO thin films. It has been envisaged using EDX analysis that the near stoichiometric composition of the film can be attained by thermal treatment during which microstructural changes do occur.
Barium ferrite thin-film recording media
NASA Astrophysics Data System (ADS)
Sui, Xiaoyu; Scherge, Matthias; Kryder, Mark H.; Snyder, John E.; Harris, Vincent G.; Koon, Norman C.
1996-03-01
Both longitudinal and perpendicular barium ferrite thin films are being pursued as overcoatless magnetic recording media. In this paper, prior research on thin-film Ba ferrite is reviewed and the most recent results are presented. Self-textured high-coercivity longitudinal Ba ferrite thin films have been achieved using conventional rf diode sputtering. Microstructural studies show that c-axis in-plane oriented grains have a characteristic acicular shape, while c-axis perpendicularly oriented grains have a platelet shape. Extended X-ray absorption fine structure (EXAFS) measurements indicate that the crystal orientations are predetermined by the structural anisotropy in the as-sputtered 'amorphous' state. Recording tests on 1500 Oe coercivity longitudinal Ba ferrite disks show performance comparable with that of a 1900 Oe Co alloy disk. To further improve the recording performance, both grain size and aspect ratio need to be reduced. Initial tribological tests indicate high hardness of Ba ferrite thin films. However, surface roughness needs to be reduced. For future ultrahigh-density contact recording, it is believed that perpendicular recording may be used. A thin Pt underlayer has been found to be capable of producing Ba ferrite thin films with excellent c-axis perpendicular orientation.
Annealing induced reorientation of crystallites in Sn doped ZnO films
NASA Astrophysics Data System (ADS)
Ravichandran, K.; Vasanthi, M.; Thirumurugan, K.; Sakthivel, B.; Karthika, K.
2014-11-01
Tin doped ZnO thin films were prepared by employing a simplified spray pyrolysis technique using a perfume atomizer and subsequently annealed under different temperatures from 350 °C to 500 °C in steps of 50 °C. The structural, optical, electrical, photoluminescence and surface morphological properties of the as-deposited films were studied and compared with that of the annealed films. The X-ray diffraction studies showed that as-deposited film exhibits preferential orientation along the (0 0 2) plane and it changes in favour of (1 0 0) plane after annealing. The increase in crystallite size due to annealing is explained on the basis of Ostwald ripening effect. It is found that the optical transmittance and band gap increases with increase in annealing temperature. A slight decrease in resistivity caused by annealing is discussed in correlation with annealing induced defect modifications and surface morphology.
Ahn, Cheol Hyoun; Lee, Ju Ho; Lee, Jeong Yong; Cho, Hyung Koun
2014-12-01
Binary ZnO active layers possessing a polycrystalline structure were deposited with various argon/oxygen flow ratios at 250 degrees C via sputtering. Then ZnO thin-film-transistors (TFTs) were fabricated without additional thermal treatments. As the oxygen content increased during the deposition, the preferred orientation along the (0002) was weakened and the rotation of the grains increased, and furthermore, less conducting films were observed. On the other hand, the reduced oxygen flow rate induced the formation of amorphous-like transition layers during the initial growth due to a high growth rate and high energetic bombardment of the adatoms. As a result, the amorphous phases at the gate dielectric/channel interface were responsible for the formation of a hump shape in the subthreshold region of the TFT transfer curve. In addition, the relationship between the crystal properties and the shift in the threshold voltage was experimentally confirmed by a hysteresis test.
Fabrication of ZnO Nanowire Based Piezoelectric Generators and Related Structures
NASA Astrophysics Data System (ADS)
Opoku, Charles; Dahiya, Abhishek Singh; Oshman, Christopher; Cayrel, Frederic; Poulin-Vittrant, Guylaine; Alquier, Daniel; Camara, Nicolas
Using vertically grown hydrothermal ZnO nanowires, we demonstrate the assembly of fully functional piezoelectric energy harvesters on plastics substrates. A seedless hydrothermal process is employed for the growth of single crystalline vertically orientated ZnO NWs at around 100oC. Flexible NG are assembled using ∼7 μm thick PDMS polymer matrix on a 3x3cm substrate. A representative device with an active area of 4cm2 is characterised revealing average output voltage generation of ∼22mV (±1.2) and -32mV (±0.16) in the positive and negative cycles after 3-4mm periodic deflection at 20Hz. A power density of ∼288nW/cm3 is estimated for the device. It is envisaged that such energy scavengers may find potential applications targeting self-powered systems, sensors and on-body charging of electronics.
NASA Astrophysics Data System (ADS)
Suko, Ayaka; Jia, JunJun; Nakamura, Shin-ichi; Kawashima, Emi; Utsuno, Futoshi; Yano, Koki; Shigesato, Yuzo
2016-03-01
Amorphous indium-gallium-zinc oxide (a-IGZO) films were deposited by DC magnetron sputtering and post-annealed in air at 300-1000 °C for 1 h to investigate the crystallization behavior in detail. X-ray diffraction, electron beam diffraction, and high-resolution electron microscopy revealed that the IGZO films showed an amorphous structure after post-annealing at 300 °C. At 600 °C, the films started to crystallize from the surface with c-axis preferred orientation. At 700-1000 °C, the films totally crystallized into polycrystalline structures, wherein the grains showed c-axis preferred orientation close to the surface and random orientation inside the films. The current-gate voltage (Id-Vg) characteristics of the IGZO thin-film transistor (TFT) showed that the threshold voltage (Vth) and subthreshold swing decreased markedly after the post-annealing at 300 °C. The TFT using the totally crystallized films also showed the decrease in Vth, whereas the field-effect mobility decreased considerably.
Jeong, Huisu; Song, Hui; Lee, Ryeri; Pak, Yusin; Kumaresan, Yogeenth; Lee, Heon; Jung, Gun Young
2015-12-01
We present a holey titanium dioxide (TiO2) film combined with a periodically aligned ZnO nanorod layer (ZNL) for maximum light utilization in dye-sensitized solar cells (DSCs). Both the holey TiO2 film and the ZNL were simultaneously fabricated by imprint technique with a mold having vertically aligned ZnO nanorod (NR) array, which was transferred to the TiO2 film after imprinting. The orientation of the transferred ZNL such as laid, tilted, and standing ZnO NRs was dependent on the pitch and height of the ZnO NRs of the mold. The photoanode composed of the holey TiO2 film with the ZNL synergistically utilized the sunlight due to enhanced light scattering and absorption. The best power conversion efficiency of 8.5 % was achieved from the DSC with the standing ZNL, which represented a 33 % improvement compared to the reference cell with a planar TiO2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiaozhi; Yue, Zhenxing, E-mail: yuezhx@mail.tsinghua.edu.cn; Meng, Siqin
2014-12-28
In-plane c-axis oriented Ba-hexaferrite (BaM) thin films were prepared on a-plane (112{sup ¯}0) sapphire (Al{sub 2}O{sub 3}) substrates by DC magnetron sputtering followed by ex-situ annealing. The DC magnetron sputtering was demonstrated to have obvious advantages over the traditionally used RF magnetron sputtering in sputtering rate and operation simplicity. The sputtering power had a remarkable influence on the Ba/Fe ratio, the hematite secondary phase, and the grain morphology of the as-prepared BaM films. Under 80 W of sputtering power, in-plane c-axis highly oriented BaM films were obtained. These films had strong magnetic anisotropy with high hysteresis loop squareness (M{sub r}/M{sub s}more » of 0.96) along the in-plane easy axis and low M{sub r}/M{sub s} of 0.03 along the in-plane hard axis. X-ray diffraction patterns and pole figures revealed that the oriented BaM films grew via an epitaxy-like growth process with the crystallographic relationship BaM (101{sup ¯}0)//α-Fe{sub 2}O{sub 3}(112{sup ¯}0)//Al{sub 2}O{sub 3}(112{sup ¯}0)« less
NASA Astrophysics Data System (ADS)
Sumiyama, Takashi; Fukumoto, Takaya; Ohtsu, Yasunori; Tabaru, Tatsuo
2017-05-01
Spatial structure of high-density radio frequency ring-shaped magnetized discharge plasma sputtering with two facing ZnO/Al2O3 cylindrical targets mounted in ring-shaped hollow cathode has been measured and Al-doped ZnO (AZO) thin film is deposited without substrate heating. The plasma density has a peak at ring-shaped hollow trench near the cathode. The radial profile becomes uniform with increasing the distance from the target cathode. A low ion current flowing to the substrate of 0.19 mA/cm2 is attained. Large area AZO films with a resistivity of 4.1 - 6.7×10-4 Ω cm can be prepared at a substrate room temperature. The transmittance is 84.5 % in a visible region. The surface roughnesses of AZO films are 0.86, 0.68, 0.64, 1.7 nm at radial positions of r = 0, 15, 30, 40 mm, respectively, while diffraction peak of AZO films is 34.26°. The grains exhibit a preferential orientation along (002) axis.
Ion-conducting ceramic apparatus, method, fabrication, and applications
Yates, Matthew [Penfield, NY; Liu, Dongxia [Rochester, NY
2012-03-06
A c-axis-oriented HAP thin film synthesized by seeded growth on a palladium hydrogen membrane substrate. An exemplary synthetic process includes electrochemical seeding on the substrate, and secondary and tertiary hydrothermal treatments under conditions that favor growth along c-axes and a-axes in sequence. By adjusting corresponding synthetic conditions, an HAP this film can be grown to a controllable thickness with a dense coverage on the underlying substrate. The thin films have relatively high proton conductivity under hydrogen atmosphere and high temperature conditions. The c-axis oriented films may be integrated into fuel cells for application in the intermediate temperature range of 200-600.degree. C. The electrochemical-hydrothermal deposition technique may be applied to create other oriented crystal materials having optimized properties, useful for separations and catalysis as well as electronic and electrochemical applications, electrochemical membrane reactors, and in chemical sensors.
Piezo-phototronic effect enhanced photo-detector based on ZnO nano-arrays/NiO structure
NASA Astrophysics Data System (ADS)
Sun, Jingchang; Li, Peida; Gao, Ruixue; Lu, Xue; Li, Chengren; Lang, Yueyi; Zhang, Xiwen; Bian, Jiming
2018-01-01
A photo-detector with n-ZnO nano-arrays/p-NiO film structure was synthesized on flexible Ni foil substrate. In contrast to conventional detectors that detect only the photon energies greater than the band gap of working materials, the visible light with smaller photon energies (3.0 eV) than the band gap of both ZnO (3.3 eV) and NiO (3.7 eV) can be sensitively detected by this detector due to the spatially indirect type-II transition between ZnO nano-arrays and NiO film. The increase in output currents of the photo-detector with illumination density was observed at both forward and reverse bias, and it can be further enhanced by exerting external compressive strain along the c axis of ZnO nano-arrays by piezo-phototronic effect. A maximum enhancement of 1020% of the responsivity (R) was achieved under external compressive strain. The similar behaviors were demonstrated at four different excitation wavelengths (325, 365, 388 and 405 nm), providing compelling evidence that the responses performance of the photo-detector can be effectively enhanced using piezo-phototronic effect. Moreover, the piezo-phototronic effect enhanced performance can be well elucidated by the corresponding energy band diagram.
NASA Astrophysics Data System (ADS)
Rahal, Hassiba; Kihal, Rafiaa; Affoune, Abed Mohamed; Ghers, Mokhtar; Djazi, Faycal
2017-06-01
Zinc oxide thin films have been grown by electrodeposition technique onto Cu and ITO-coated glass substrates from an aqueous zinc nitrate solution with addition of sodium thiosulfate at 90 °C. The effects of sodium thiosulfate on the electrochemical deposition of ZnO were investigated by cyclic voltammetry and chronoamperometry techniques. Deposited films were obtained at -0.60 V vs. SCE and characterized by XRD, SEM, FTIR, optical, photoelectrochemical and electrical measurements. Thickness of the deposited film was measured to be 357 nm. X-ray diffraction results indicated that the synthesized ZnO has a pure hexagonal wurtzite structure with a marked preferential orientation along (002) plane. FTIR results confirmed the presence of ZnO films at peak 558 cm-1. SEM images showed uniform, compact morphology without any cracks and films composed of large flower-like ZnO agglomerates with star-shape. Optical properties of ZnO reveal a high optical transmission (> 80 % ) and high absorption coefficient (α > {10}5 {{cm}}-1) in visible region. The optical energy band gap was found to be 3.28 eV. Photoelectrochemical measurements indicated that the ZnO films had n-type semiconductor conduction. Electrical properties of ZnO films showed a low electrical resistivity of 6.54 {{Ω }}\\cdot {cm}, carrier concentration of -1.3× {10}17 {{cm}}-3 and mobility of 7.35 cm2 V-1 s-1. Project supported by the Algerian Ministry of Higher Education and Scientific Research, Algeria (No. J0101520090018).
2011-01-01
A simple method for the synthesis of ZnO nanofilms composed of vertical array of quasi-1D ZnO nanostructures (quasi-NRs) on the surface was demonstrated via a 1D crystal growth of the attached nanoseeds under a rapid hydrolysis process of zinc salts in the presence of ammonia at room temperature. In a typical procedure, by simply controlling the concentration of zinc acetate and ammonia in the reaction, a high density of vertically oriented nanorod-like morphology could be successfully obtained in a relatively short growth period (approximately 4 to 5 min) and at a room-temperature process. The average diameter and the length of the nanostructures are approximately 30 and 110 nm, respectively. The as-prepared quasi-NRs products were pure ZnO phase in nature without the presence of any zinc complexes as confirmed by the XRD characterisation. Room-temperature optical absorption spectroscopy exhibits the presence of two separate excitonic characters inferring that the as-prepared ZnO quasi-NRs are high-crystallinity properties in nature. The mechanism of growth for the ZnO quasi-NRs will be proposed. Due to their simplicity, the method should become a potential alternative for a rapid and cost-effective preparation of high-quality ZnO quasi-NRs nanofilms for use in photovoltaic or photocatalytics applications. PACS: 81.07.Bc; 81.16.-c; 81.07.Gf. PMID:22027275
NASA Astrophysics Data System (ADS)
Ram, S. D. Gopal; Ravi, G.; Athimoolam, A.; Mahalingam, T.; Kulandainathan, M. Anbu
2011-12-01
Tuning the morphology, size and aspect ratio of free standing ZnO nanostructured arrays by a simple hydrothermal method is reported. Pre-coated ZnO seed layers of two different thicknesses (≈350 nm or 550 nm) were used as substrates to grow ZnO nanostructures for the study. Various parameters such as chemical ambience, pH of the solution, strength of the Zn2+ atoms and thickness of seed bed are varied to analyze their effects on the resultant ZnO nanostructures. Vertically oriented hexagonal nanorods, multi-angular nanorods, hexagonal diskette and popcorn-like nanostructures are obtained by altering the experimental parameters. All the produced nanostructures were analysed by X-ray powder diffraction analysis and found to be grown in the (002) orientation of wurtzite ZnO. The texture co-efficient of ZnO layer was improved by combining a thick seed layer with higher cationic strength. Surface morphological studies reveal various nanostructures such as nanorods, diskettes and popcorn-like structures based on various preparation conditions. The optical property of the closest packed nanorods array was recorded by UV-VIS spectrometry, and the band gap value simulated from the results reflect the near characteristic band gap of ZnO. The surface roughness profile taken from the Atomic Force Microscopy reveals a roughness of less than 320 nm.
Preparation of a Non-Polar ZnO Film on a Single-Crystal NdGaO3 Substrate by the RF Sputtering Method
NASA Astrophysics Data System (ADS)
Kashiwaba, Y.; Tanaka, Y.; Sakuma, M.; Abe, T.; Imai, Y.; Kawasaki, K.; Nakagawa, A.; Niikura, I.; Kashiwaba, Y.; Osada, H.
2018-04-01
Preparation of non-polar ZnO ( 11\\overline{2} 0 ) films on single-crystal NdGaO3 (NGO) (001) substrates was successfully achieved by the radio frequency (RF) sputtering method. Orientation, deposition rate, and surface roughness of ZnO films strongly depend on the working pressure. Characteristics of ZnO films deposited on single-crystal NGO (001) substrates were compared with those of ZnO films deposited on single-crystal sapphire ( 01\\overline{1} 2 ) substrates. An x-ray diffraction peak of the ZnO ( 11\\overline{2} 0 ) plane was observed on ZnO films deposited on single-crystal NGO (001) substrates under working pressure of less than 0.5 Pa. On the other hand, uniaxially oriented ZnO ( 11\\overline{2} 0 ) films on single-crystal sapphire ( 01\\overline{1} 2 ) substrates were observed under working pressure of 0.1 Pa. The mechanism by which the diffraction angle of the ZnO ( 11\\overline{2} 0 ) plane on single-crystal NGO (001) substrates was shifted is discussed on the basis of anisotropic stress of lattice mismatch. The deposition rate of ZnO films decreased with an increase in working pressure, and the deposition rate on single-crystal NGO (001) substrates was larger than that on single-crystal sapphire ( 01\\overline{1} 2 ) substrates. Root mean square (RMS) roughness of ZnO films increased with an increase in working pressure, and RMS roughness of ZnO films on single-crystal NGO (001) substrates was smaller than that of ZnO films on single-crystal sapphire ( 01\\overline{1} 2 ) substrates even though the film thickness on single-crystal NGO (001) substrates was greater than that on sapphire substrates. It is thought that a single-crystal NGO (001) substrate is useful for deposition of non-polar ZnO ( 11\\overline{2} 0 ) films.
NASA Astrophysics Data System (ADS)
Zhang, Haimin; Quan, Xie; Chen, Shuo; Zhao, Huimin
2007-11-01
Uniform, large-scale, and well-aligned needle-like ZnO nanorods with good photoluminescence and photocatalysis properties on Zn substrates, have been successfully fabricated using a simple low-temperature seed-layer growth approach in solution (50 °C). The formation of ZnO seed-layer by the anodic oxidation technique (AOT) plays an important role in the subsequent growth of highly oriented ZnO nanorods arrays. Temperature also proved to be a significant factor in the growth of ZnO nanorods and had a great effect on their optical properties. X-ray diffraction (XRD) analysis, selected-area electron diffraction (SAED) pattern and high-resolution TEM (HRTEM) indicated that the needle-like ZnO nanorods were single crystal in nature and that they had grown up preferentially along the [0001] direction. The well-aligned ZnO nanorods arrays on Zn substrates exhibited strong UV emission at around 380 nm at room temperature. To investigate their potential as photocatalysts, degradation of pentachlorophenol (PCP) in aqueous solution was carried out using photocatalytic processes, with comparison to direct photolysis. After 1 h, the degradation efficiencies of PCP by direct photolysis and photocatalytic processes achieved 57% and 76% under given experimental conditions, respectively. This improved degradation efficiency of PCP illustrates that ZnO nanorods arrays on Zn substrates have good photocatalytic activity. This simple low-temperature seed-layer growth approach in solution resulted in the development of an effective and low-cost fabrication process for high-quality ZnO nanorods arrays with good optical and photocatalytic properties that can be applicable in many fields such as photocatalysis, photovoltaic cells, luminescent sensors, and photoconductive sensors.
Texture formation in FePt thin films via thermal stress management
NASA Astrophysics Data System (ADS)
Rasmussen, P.; Rui, X.; Shield, J. E.
2005-05-01
The transformation variant of the fcc to fct transformation in FePt thin films was tailored by controlling the stresses in the thin films, thereby allowing selection of in- or out-of-plane c-axis orientation. FePt thin films were deposited at ambient temperature on several substrates with differing coefficients of thermal expansion relative to the FePt, which generated thermal stresses during the ordering heat treatment. X-ray diffraction analysis revealed preferential out-of-plane c-axis orientation for FePt films deposited on substrates with a similar coefficients of thermal expansion, and random orientation for FePt films deposited on substrates with a very low coefficient of thermal expansion, which is consistent with theoretical analysis when considering residual stresses.
Lineation-parallel c-axis Fabric of Quartz Formed Under Water-rich Conditions
NASA Astrophysics Data System (ADS)
Wang, Y.; Zhang, J.; Li, P.
2014-12-01
The crystallographic preferred orientation (CPO) of quartz is of great significance because it records much valuable information pertinent to the deformation of quartz-rich rocks in the continental crust. The lineation-parallel c-axis CPO (i.e., c-axis forming a maximum parallel to the lineation) in naturally deformed quartz is generally considered to form under high temperature (> ~550 ºC) conditions. However, most laboratory deformation experiments on quartzite failed to produce such a CPO at high temperatures up to 1200 ºC. Here we reported a new occurrence of the lineation-parallel c-axis CPO of quartz from kyanite-quartz veins in eclogite. Optical microstructural observations, fourier transform infrared (FTIR) and electron backscattered diffraction (EBSD) techniques were integrated to illuminate the nature of quartz CPOs. Quartz exhibits mostly straight to slightly curved grain boundaries, modest intracrystalline plasticity, and significant shape preferred orientation (SPO) and CPOs, indicating dislocation creep dominated the deformation of quartz. Kyanite grains in the veins are mostly strain-free, suggestive of their higher strength than quartz. The pronounced SPO and CPOs in kyanite were interpreted to originate from anisotropic crystal growth and/or mechanical rotation during vein-parallel shearing. FTIR results show quartz contains a trivial amount of structurally bound water (several tens of H/106 Si), while kyanite has a water content of 384-729 H/106 Si; however, petrographic observations suggest quartz from the veins were practically deformed under water-rich conditions. We argue that the observed lineation-parallel c-axis fabric in quartz was inherited from preexisting CPOs as a result of anisotropic grain growth under stress facilitated by water, but rather than due to a dominant c-slip. The preservation of the quartz CPOs probably benefited from the preexisting quartz CPOs which renders most quartz grains unsuitably oriented for an easy a-slip at lower temperatures and the weak deformation during subsequent exhumation. This hypothesis provides a reasonable explanation for the observations that most lineation-parallel c-axis fabrics of quartz were found in veins and that deformation experiments on quartz-rich rocks at high temperature failed to produce such CPOs.
NASA Astrophysics Data System (ADS)
Chen, Cheng; Ding, Taotao; Qi, Zhiqiang; Zhang, Wei; Zhang, Jun; Xu, Juan; Chen, Jingwen; Dai, Jiangnan; Chen, Changqing
2018-04-01
The periodically ordered ZnO nanorod (NR) arrays have been successfully synthesized via a hydrothermal approach on the silicon substrates by templating of the TiO2 ring deriving from the polystyrene (PS) nanosphere monolayer colloidal crystals (MCC). With the inverted MCC mask, sol-gel-derived ZnO seeds could serve as the periodic nucleation positions for the site-specific growth of ZnO NRs. The large-scale patterned arrays of single ZnO NR with good side-orientation can be readily produced. According to the experimental results, the as-integrated ZnO NR arrays showed an excellent crystal quality and optical property, very suitable for optoelectronic applications such as stimulated emitters and ZnO photonic crystal devices.
NASA Astrophysics Data System (ADS)
Adamczyk, J.; Horny, N.; Tricoteaux, A.; Jouan, P.-Y.; Zadam, M.
2008-01-01
This paper deals with experimental design applied to response surface methodology (RSM) in order to determine the influence of the discharge conditions on preferred c-axis orientation of sputtered AlN thin films. The thin films have been deposited by DC reactive magnetron sputtering on Si (1 0 0) substrates. The preferred orientation was evaluated using a conventional Bragg-Brentano X-ray diffractometer ( θ-2 θ) with the CuKα radiation. We have first determined the experimental domain for 3 parameters: sputtering pressure (2-6 mTorr), discharge current (312-438 mA) and nitrogen percentage (17-33%). For the setup of the experimental design we have used a three factors Doehlert matrix which allows the use of the statistical response surface methodology (RSM) in a spherical domain. A four dimensional surface response, which represents the (0 0 0 2) peak height as a function of sputtering pressure, discharge current and nitrogen percentage, was obtained. It has been found that the main interaction affecting the preferential c-axis orientation was the pressure-nitrogen percentage interaction. It has been proved that a Box-Cox transformation is a very useful method to interpret and discuss the experimental results and leads to predictions in good agreement with experiments.
NASA Technical Reports Server (NTRS)
Chorey, C. M.; Bhasin, K. B.; Warner, J. D.; Josefowicz, J. Y.; Rensch, D. B.
1991-01-01
Microstrip transmission lines in the form of ring resonators were fabricated from a number of in-situ grown laser ablated films and post-annealed co-sputtered YBa2Cu3O(7-x) films. The properties of these resonators were measured at 35 GHz and the observed performance is examined in light of the critical temperature (Tc) and film thickness, and also the film morphology, which is different for the two deposition techniques. It is found that Tc is a major indicator of the film performance for each growth type, with film thickness becoming important as it decreases towards 1000 A. It is also found that the films with a mixed grain orientation (both a-axis and c-axis oriented grains) have poorer microwave properties as compared with the primarily c-axis oriented material. This is probably due to the significant number of grain boundaries between the different crystallites, which may act as superconducting weak links and contribute to the surface resistance.
NASA Technical Reports Server (NTRS)
Chorey, C. M.; Bhasin, K. B.; Warner, J. D.; Josefowicz, J. Y.; Rensch, D. B.; Nieh, C. W.
1990-01-01
Microstrip transmission lines in the form of ring resonators were fabricated from a number of in-situ grown laser ablated films and post-annealed co-sputtered YBa2Cu3O(7-x) films. The properties of these resonators were measured at 35 GHz and the observed performance is examined in light of the critical temperature (Tc) and film thickness and also the film morphology which is different for the two deposition techniques. It is found that Tc is a major indicator of the film performance for each growth type with film thickness becoming important as it decreases towards 100 A. It is also found that the films with a mixed grain orientation (both a axis and c axis oriented grains) have poorer microwave properties as compared with the primarily c axis oriented material. This is probably due to the significant number of grain boundaries between the different crystallites, which may act as superconducting weak links and contribute to the surface resistance.
NASA Astrophysics Data System (ADS)
Chen, Miin-Jang; Yang, Jer-Ren; Shiojiri, Makoto
2012-07-01
We have investigated ZnO-based light-emitting diodes (LEDs) fabricated by atomic layer deposition (ALD), demonstrating that ALD is one of the noteworthy techniques to prepare high-quality ZnO required for ultraviolet (UV) photonic devices. Here, we review our recent investigations on different ZnO-based heterojunction LEDs such as n-ZnO/p-GaN LEDS, n-ZnO:Al/ZnO nanodots-SiO2 composite/p-GaN LEDS, n-ZnO/ZnO nanodots-SiO2 composite/p-AlGaN LEDs, n-ZnO:Al/i-ZnO/p-SiC(4H) LEDs, and also on ZnO-based nanostructures including ZnO quantum dots embedded in SiO2 nanoparticle layer, ZnO nanopillars on sapphire substrates, Al-doped ZnO films on sapphire substrate and highly (0 0 0 1)-oriented ZnO films on amorphous glass substrate. The latest investigation also demonstrated p-type ZnO:P films prepared on amorphous silica substrates, which allow us to fabricate ZnO-based homojunction LEDs. These devices and structures were studied by x-ray diffraction and various analytical electron microscopy observations as well as electric and electro-optical measurements.
NASA Astrophysics Data System (ADS)
Gui, Zhou; Wang, Xian; Liu, Jian; Yan, Shanshan; Ding, Yanyan; Wang, Zhengzhou; Hu, Yuan
2006-07-01
On the basis of the highly oriented ZnO nanoparticle nanoribbons as the growth seed layer (GSL) and solution growth technique, we have synthesized vertical ZnO nanorod arrays with high density over a large area and multi-teeth brush nanostructure, respectively, according to the density degree of the arrangement of nanoparticle nanoribbons GSL on the glass substrate. This controllable and convenient technique opens the possibility of creating nanostructured film for industrial fabrication and may represent a facile way to get similar structures of other compounds by using highly oriented GSL to promote the vertical arrays growth. The growth mechanism of the formation of the ordered nanorod arrays is also discussed. The second-order nonlinear optical coefficient d31 of the vertical ZnO nanorod arrays measured by the Maker fringes technique is 11.3 times as large as that of d36 KH 2PO 4 (KDP).
Aging effects of the precursor solutions on the properties of spin coated Ga-doped ZnO thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serrao, Felcy Jyothi, E-mail: jyothiserrao@gmail.com; Dharmaprakash, S. M.
2015-06-24
In this study, gallium doped zinc oxide thin films (GZO) were grown on a glass substrate by a simple sol-gel process and spin coating technique using zinc acetate and gallium nitrate (3at%) as precursors for Zn and Ga ions respectively. The effects of aging time of the precursor solution on the structural and optical properties of the GZO films were investigated. The surface morphology, grain size, film thickness and optical properties of the GZO films were found to depend directly on the sol aging time. XRD studies reveal that the films are polycrystalline with a hexagonal wurtzite structure and showmore » the c-axis grain orientation. Optical transmittance spectra of all the films exhibited transmittance higher than about 82% within the visible wavelength region. A sharp fundamental absorption edge with a slight blue shifting was observed with an increase in sol aging time which can be explained by Burstein-Moss effect. The result indicates that an appropriate aging time of the sol is important for the improvement of the structural and optical properties of GZO thin films derived from sol-gel method.« less
Oriented Attachment Is a Major Control Mechanism To Form Nail-like Mn-Doped ZnO Nanocrystals.
Patterson, Samuel; Arora, Priyanka; Price, Paige; Dittmar, Jasper W; Das, Vijay Kumar; Pink, Maren; Stein, Barry; Morgan, David Gene; Losovyj, Yaroslav; Koczkur, Kallum M; Skrabalak, Sara E; Bronstein, Lyudmila M
2017-12-26
Here, we present a controlled synthesis of Mn-doped ZnO nanoparticles (NPs) with predominantly nail-like shapes, whose formation occurs via tip-to-base-oriented attachment of initially formed nanopyramids, followed by leveling of sharp edges that lead to smooth single-crystalline "nails". This shape is prevalent in noncoordinating solvents such as octadecene and octadecane. Yet, the double bond in the former promotes oriented attachment. By contrast, Mn-doped ZnO NP synthesis in a weakly coordinating solvent, benzyl ether, results in dendritic structures because of random attachment of initial NPs. Mn-doped ZnO NPs possess a hexagonal wurtzite structure, and in the majority of cases, the NP surface is enriched with Mn, indicating a migration of Mn 2+ ions to the NP surface during the NP formation. When the NP formation is carried out without the addition of octadecyl alcohol, which serves as a surfactant and a reaction initiator, large, concave pyramid dimers are formed whose attachment takes place via basal planes. UV-vis and photoluminescence spectra of these NPs confirm the utility of controlling the NP shape to tune electro-optical properties.
Zhang, Xiaozhi; Meng, Siqin; Song, Dongsheng; Zhang, Yao; Yue, Zhenxing; Harris, Vincent G.
2017-01-01
Barium hexaferrite (BaM) films with in-plane c-axis orientation are promising and technically important materials for self-biased magnetic microwave devices. In this work, highly oriented BaM films with different thickness and an in-plane easy axis (c-axis) of magnetization were grown on a-plane single-crystal sapphire substrates by direct current magnetron sputtering. A procedure involving seed layers, layer-by-layer annealing was adopted to reduce the substrate-induced strains and allow for the growth of thick (~3.44 μm) films. The epitaxial growth of the BaM film on sapphire was revealed by high-resolution transmission electron microscopy with dislocations being observed at the film-substrate interface. The orientation was also verified by X-ray diffraction and more notably, polarized Raman scattering. The magnetic properties and ferromagnetic resonant frequencies were experimentally characterized by a vibrating sample magnetometry and a frequency-swept ferromagnetic resonant flip-chip technique, respectively. The micron-thick BaM films exhibited a large remanence ratio of 0.92 along in-plane easy axis and a small one of 0.09 for the in-plane hard axis loop measurement. The FMR frequency was 50.3 GHz at zero field and reached 57.9 GHz under a magnetic field of 3 kOe, indicating that the epitaxial BaM films with strong self-biased behaviors have good electromagnetic properties in millimeter-wave range. PMID:28276492
Zhang, Xiaozhi; Meng, Siqin; Song, Dongsheng; Zhang, Yao; Yue, Zhenxing; Harris, Vincent G
2017-03-09
Barium hexaferrite (BaM) films with in-plane c-axis orientation are promising and technically important materials for self-biased magnetic microwave devices. In this work, highly oriented BaM films with different thickness and an in-plane easy axis (c-axis) of magnetization were grown on a-plane single-crystal sapphire substrates by direct current magnetron sputtering. A procedure involving seed layers, layer-by-layer annealing was adopted to reduce the substrate-induced strains and allow for the growth of thick (~3.44 μm) films. The epitaxial growth of the BaM film on sapphire was revealed by high-resolution transmission electron microscopy with dislocations being observed at the film-substrate interface. The orientation was also verified by X-ray diffraction and more notably, polarized Raman scattering. The magnetic properties and ferromagnetic resonant frequencies were experimentally characterized by a vibrating sample magnetometry and a frequency-swept ferromagnetic resonant flip-chip technique, respectively. The micron-thick BaM films exhibited a large remanence ratio of 0.92 along in-plane easy axis and a small one of 0.09 for the in-plane hard axis loop measurement. The FMR frequency was 50.3 GHz at zero field and reached 57.9 GHz under a magnetic field of 3 kOe, indicating that the epitaxial BaM films with strong self-biased behaviors have good electromagnetic properties in millimeter-wave range.
NASA Astrophysics Data System (ADS)
Kamardin, Ili Liyana Khairunnisa; Ainuddin, Ainun Rahmahwati
2017-04-01
Transparent Conducting Oxide (TCO) Film has been chosen as flexible substrate recently in the application of a device. One of the TCO mostly used is ITO/PET substrates. Through this communication, the effect of time exposure of ZnO thin film by modified sol-gel deposited on flexible substrates was investigated. 0.75 M of NaOH and C6H8O7 were dropped directly into precursor solution right before aging process in order to modified precursor solution environment condition. x-ray diffraction pattern recorded plane (100) and (101) as preferential growth orientation. The (101) plane was selected to calculate the average crystallite. The atomic force microscopy indicated RMS value for NaOH samples increased with time exposure. Meanwhile, for C6H8O7 samples decreased with hot water treatment time exposure.
Controlling laser emission by selecting crystal orientation
NASA Astrophysics Data System (ADS)
Chen, Lijuan; Han, Shujuan; Wang, Zhengping; Wang, Jiyang; Zhang, Huanjin; Yu, Haohai; Han, Shuo; Xu, Xinguang
2013-01-01
Based on the anisotropy of laser crystal, we demonstrate a method of adjusting laser emission by selecting crystal orientation. When the light propagating direction varies from a to c axis of Nd:LiGd(MoO4)2 crystal, emission wavelength exhibits a sensitive change of 1061 nm → 1061/1062 + 1068 nm → 1068 nm. The experimental discipline is well explained by a theoretical study of simulating on the spatial distribution of stimulated emission cross-section. This letter manifests that the laser property along non-principal-axis direction is also valuable for research and application, which breaks through the traditional custom of using laser materials processed along principal-axis.
NASA Astrophysics Data System (ADS)
Wu, J. Z.; Shi, J. J.; Baca, F. J.; Emergo, R.; Wilt, J.; Haugan, T. J.
2015-12-01
The orientation phase diagram of self-assembled BaZrO3 (BZO) nanostructures in c-oriented YBa2Cu3O{}7-δ (YBCO) films on flat and vicinal SrTiO3 substrates was studied experimentally with different dopant concentrations and vicinal angles and theoretically using a micromechanical model based on the theory of elasticity. The organized BZO nanostructure configuration was found to be tunable, between c-axis to ab-plane alignment, by the dopant concentration in the YBCO film matrix strained via lattice mismatched substrates. The correlation between the local strain caused by the BZO doping and the global strain on the matrix provides a unique approach for controllable growth of dopant nanostructure landscapes. In particular, a mixed phase of the c-axis-aligned nanorods and the ab-plane-aligned planar nanostructures can be obtained, leading to a three-dimensional pinning landscape with single impurity doping and much improved J c in almost all directions of applied magnetic field.
NASA Astrophysics Data System (ADS)
Minh, Vu Anh; Tuan, Le Anh; Huy, Tran Quang; Hung, Vu Ngoc; Quy, Nguyen Van
2013-01-01
Vertically aligned ZnO nanorods were directly synthesised on a gold electrode of quartz crystal microbalance (QCM) by a simple low-temperature hydrothermal method for a NH3 gas sensing application. The length of vertically aligned ZnO nanorods was increased to purpose enhancement in the gas sensing response of the sensor. The length of ZnO nanorods increased with an increase in growth time. The growth time of ZnO nanorods was systematically varied in the range of 1-4 h to examine the effect of the length of the ZnO nanorods on the gas sensing properties of the fabricated sensors. The gas sensing properties of sensors with different ZnO nanorods lengths was examined at room temperature for various concentrations of NH3 (50-800 ppm) in synthetic air. Enhancement in gas sensing response by increasing the length of ZnO nanorods was observed.
NASA Astrophysics Data System (ADS)
Zheng, Min; Choe, Geon; Johnson, Kenneth E.
2002-05-01
Seedlayer and underlayer effects on crystallographic orientation and recording performance were studied for CoCrPtB media sputtered on glass substrates. For this study, the seedlayers are XAl (X=Ni, Co, Ti, and Ru) and the underlayers are CrY (Y=V, Mo, W, and Ti). It was found that not only different seedlayers, but also different combinations of seedlayer and underlayer, led to different magnetic performance. NiAl and CoAl seedlayers orient the Co c axis to (10.0) and TiAl and RuAl seedlayers produce (11.0) Co orientation. For the NiAl and CoAl seedlayer, CrV and CrW underlayers develop less out-of-plane c-axis orientation and higher coercivity and coercive squareness while CrTi and CrMo underlayers work better for TiAl and RuAl seedlayers, respectively. Media with RuAl seedlayers have better parametric performance than media with NiAl and CoAl seedlayers. The detailed relationship between seedlayer and underlayer types and crystal orientation and recording performance is discussed.
The Effect of Sn Orientation on Intermetallic Compound Growth in Idealized Sn-Cu-Ag Interconnects
NASA Astrophysics Data System (ADS)
Kinney, Chris; Linares, Xioranny; Lee, Kyu-Oh; Morris, J. W.
2013-04-01
The work reported here explores the influence of crystal orientation on the growth of the interfacial intermetallic layer during electromigration in Cu||Sn||Cu solder joints. The samples were thin, planar Sn-Ag-Cu (SAC) solder layers between Cu bars subject to a uniaxial current. Electron backscatter diffraction (EBSD) was used to characterize the microstructure before and after testing. The most useful representation of the EBSD data identifies the Sn grain orientation by the angle between the Sn c-axis and the current direction. The tested samples included single-crystal joints with c-axis nearly parallel to the current ("green" samples) and with c-axis perpendicular to the current ("red" samples). At current density of 104 A/cm2 (steady-state temperature of ~150°C), an intermetallic layer grew at an observable rate in the "green" samples, but not in the "red" ones. A current density of 1.15 × 104 A/cm2 (temperature ~160°C) led to measurable intermetallic growth in both samples. The growth fronts were nearly planar and the growth rates constant (after an initial incubation period); the growth rates in the "green" samples were about 10× those in the "red" samples. The Cu concentrations were constant within the joints, showing that the intermetallic growth is dominated by the electromigration flux. The measured growth rates and literature values for the diffusion of Cu in Sn were used to extract values for the effective charge, z *, that governs the electromigration of Cu. The calculated value of z * is significantly larger for current perpendicular to the c-axis than along it.
NASA Astrophysics Data System (ADS)
Zhu, Zhi-Xiang; Ruangchalermwong, C.; Li, Jing-Feng
2008-09-01
Tetragonal Nb-doped Pb(Zr0.3Ti0.7)O3 (PNZT) films with a lead oxide seeding layer were deposited on the Pt(111)/Ti/SiO2/Si(100) substrates by sol-gel processing. The as-grown PNZT films with thicknesses ranging from about 0.08 to 0.78 μm show highly a-axis preferential orientation, and their ferroelectric and piezoelectric properties improved with increasing film thickness. Due to the combined effects of Nb doping and a-axis texturing as well as reduced substrate constraint, a high d33 constant up to 196 pm/V was obtained for PNZT film at 0.78 μm in addition to a large remnant polarization of 69 μC/cm2. This well a-axis-oriented PNZT films on platinized Si with a high piezoresponse are suitable for the fabrication of microelectromechanical devices.
Dale, R E; Hopkins, S C; an der Heide, U A; Marszałek, T; Irving, M; Goldman, Y E
1999-01-01
The orientation of proteins in ordered biological samples can be investigated using steady-state polarized fluorescence from probes conjugated to the protein. A general limitation of this approach is that the probes typically exhibit rapid orientational motion ("wobble") with respect to the protein backbone. Here we present a method for characterizing the extent of this wobble and for removing its effects from the available information about the static orientational distribution of the probes. The analysis depends on four assumptions: 1) the probe wobble is fast compared with the nanosecond time scale of its excited-state decay; 2) the orientational distributions of the absorption and emission transition dipole moments are cylindrically symmetrical about a common axis c fixed in the protein; 3) protein motions are negligible during the excited-state decay; 4) the distribution of c is cylindrically symmetrical about the director of the experimental sample. In a muscle fiber, the director is the fiber axis, F. All of the information on the orientational order of the probe that is available from measurements of linearly polarized fluorescence is contained in five independent polarized fluorescence intensities measured with excitation and emission polarizers parallel or perpendicular to F and with the propagation axis of the detected fluorescence parallel or perpendicular to that of the excitation. The analysis then yields the average second-rank and fourth-rank order parameters (
NASA Technical Reports Server (NTRS)
Nakagawa, Y. G.; Terashima, H.; Yoshizawa, H.; Ohta, Y.; Murakami, K.
1986-01-01
The anisotropy of high temperature strength of nickel-base superalloy, Alloy 454, in service for advanced jet engine turbine blades and vanes, was investigated. Crystallographic orientation dependence of tensile yield strength, creep and creep rupture strength was found to be marked at about 760C. In comparison with other single crystal data, a larger allowance in high strength off-axial orientation from the 001 axis, and relatively poor strength at near the -111 axis were noted. From transmission electron microscopy the anisotropic characteristics of this alloy were explained in terms of available slip systems and stacking geometries of gamma-prime precipitate cuboids which are well hardened by a large tantalum content. 100 cube slip was considered to be primarily responsible for the poor strength of the -111 axis orientation replacing the conventional 111 plane slip systems.
NASA Astrophysics Data System (ADS)
Juday, Reid
The work contained in this dissertation is focused on the optical properties of direct band gap semiconductors which crystallize in a wurtzite structure: more specifically, the III-nitrides and ZnO. By using cathodoluminescence spectroscopy, many of their properties have been investigated, including band gaps, defect energy levels, carrier lifetimes, strain states, exciton binding energies, and effects of electron irradiation on luminescence. Part of this work is focused on p-type Mg-doped GaN and InGaN. These materials are extremely important for the fabrication of visible light emitting diodes and diode lasers and their complex nature is currently not entirely understood. The luminescence of Mg-doped GaN films has been correlated with electrical and structural measurements in order to understand the behavior of hydrogen in the material. Deeply-bound excitons emitting near 3.37 and 3.42 eV are observed in films with a significant hydrogen concentration during cathodoluminescence at liquid helium temperatures. These radiative transitions are unstable during electron irradiation. Our observations suggest a hydrogen-related nature, as opposed to a previous assignment of stacking fault luminescence. The intensity of the 3.37 eV transition can be correlated with the electrical activation of the Mg acceptors. Next, the acceptor energy level of Mg in InGaN is shown to decrease significantly with an increase in the indium composition. This also corresponds to a decrease in the resistivity of these films. In addition, the hole concentration in multiple quantum well light emitting diode structures is much more uniform in the active region when Mg-doped InGaN (instead of Mg-doped GaN) is used. These results will help improve the efficiency of light emitting diodes, especially in the green/yellow color range. Also, the improved hole transport may prove to be important for the development of photovoltaic devices. Cathodoluminescence studies have also been performed on nanoindented ZnO crystals. Bulk, single crystal ZnO was indented using a sub-micron spherical diamond tip on various surface orientations. The resistance to deformation (the "hardness") of each surface orientation was measured, with the c-plane being the most resistive. This is due to the orientation of the easy glide planes, the c-planes, being positioned perpendicularly to the applied load. The a-plane oriented crystal is the least resistive to deformation. Cathodoluminescence imaging allows for the correlation of the luminescence with the regions located near the indentation. Sub-nanometer shifts in the band edge emission have been assigned to residual strain the crystals. The a- and m-plane oriented crystals show two-fold symmetry with regions of compressive and tensile strain located parallel and perpendicular to the +/- c-directions, respectively. The c-plane oriented crystal shows six-fold symmetry with regions of tensile strain extending along the six equivalent a-directions.
NASA Astrophysics Data System (ADS)
Mondal, Praloy; Das, Debajyoti
2017-07-01
Technologically appropriate device friendly ZnO:Ga films have been prepared at a low growth temperature (100 °C) by changing the RF power (P) applied to the magnetron plasma. Structurally preferred c-axis orientation of the ZnO:Ga network has been attained with I〈002〉/I〈103〉 > 5. The c-axis oriented grains of wurtzite ZnO:Ga grows geometrically and settles in tangentially, providing favorable conduction path for stacked layer devices. Nano-sheet like structures produced at the surface are interconnected and provide conducting path across the surface; however, those accommodate a lot of pores in between that help better light trapping and reduce the reflection loss. The optimized ZnO:Ga thin film prepared at RF power of 200 W has 〈002〉 oriented grains of average size ∼10 nm and exhibits a very high conductivity ∼200 S cm-1 and elevated transmission (∼93% at 500 nm) in the visible range. The optimized ZnO:Ga film has been used as the transparent conducting oxide (TCO) window layer of RF-PECVD grown silicon thin film solar cells in glass/TCO/p-i-n-Si/Al configuration. The characteristics of identically prepared p-i-n-Si solar cells are compared by replacing presently developed ZnO:Ga TCO with the best quality U-type SnO2 coated Asahi glass substrates. The ZnO:Ga coated glass substrate offers a higher open circuit voltage (VOC) and the higher fill factor (FF). The ZnO:Ga film being more stable in hydrogen plasma than its SnO2 counterpart, maintains a high transparency to the solar radiation and improves the VOC, while reduced diffusion of Zn across the p-layer creates less defects at the p-i interface in Si:H cells and thereby, increases the FF. Nearly identical conversion efficiency is preserved for both TCO substrates. Excellent c-axis orientation even at low growth temperature promises improved device performance by extended parametric optimization.
Effect of heavy Ag doping on the physical properties of ZnO
NASA Astrophysics Data System (ADS)
Hou, Qingyu; Zhao, Chunwang; Jia, Xiaofang; Xu, Zhenchao
2018-04-01
The band structure, density of state and absorption spectrum of Zn1‑xAgxO (x = 0.02778, 0.04167) were calculated. Results indicated that a higher doping content of Ag led to a higher total energy, lower stability, higher formation energy, narrower bandgap, more significant red shift of the absorption spectrum, higher relative concentration of free hole, smaller hole effective mass, lower mobility and better conductivity. Furthermore, four types of model with the same doping content of double Ag-doped Zn1‑xAgxO (x = 0.125) but different manners of doping were established. Two types of models with different doping contents of double Ag-doped Zn1‑xAgxO (x = 0.0626, 0.0833) but the same manner of doping, were also established. Under the same doping content and different ordering occupations in Ag double doping, the doped system almost caused magnetic quenching upon the nearest neighbor -Ag-O-Ag- bonding at the direction partial to the a- or b-axis. Upon the next-nearest neighbor of -Ag-O-Zn-O-Ag- bonding at the direction partial to the c-axis, the total magnetic moment of the doped system increased, and the doped system reached a Curie temperature above the room-temperature. All these results indicated that the magnetic moments of Ag double-doped ZnO systems decreased with increased Ag doping content. Within the range of the mole number of the doping content of 0.02778-0.04167, a greater Ag doping content led to a narrower bandgap of the doped system and a more significant red shift in the absorption spectrum. The absorption spectrum of the doped ZnO system with interstitial Ag also shows a red shift.
Nucleation and growth of zinc oxide nanorods directly on metal wire by sonochemical method.
Rayathulhan, Ruzaina; Sodipo, Bashiru Kayode; Aziz, Azlan Abdul
2017-03-01
ZnO nanorods were directly grown on four different wires (silver, nickel, copper, and tungsten) using sonochemical method. Zinc nitrate hexahydrate and hexamethylenetetramine (HMT) were used as precursors. Influence of growth parameters such as precursors' concentration and ultrasonic power on the grown nanorods were determined. The results demonstrated that the precursor concentration affected the growth structure and density of the nanorods. The morphology, distribution, and orientation of nanorods changed as the ultrasonic power changed. Nucleation of ZnO nanorods on the wire occurred at lower ultrasonic power and when the power increased, the formation and growth of ZnO nanorods on the wires were initiated. The best morphology, size, distribution, and orientation of the nanorods were observed on the Ag wire. The presence of single crystal nanorod with hexagonal shaped was obtained. This shape indicates that the ZnO nanorods corresponded to the hexagonal wurtzite structure with growth preferential towards the (002) direction. Copyright © 2016 Elsevier B.V. All rights reserved.
Growth and dielectric properties of ZnO nanoparticles deposited by using electrophoretic deposition
NASA Astrophysics Data System (ADS)
Chung, Yoonsung; Park, Hyejin; Kim, Dong-Joo; Cho, Sung Baek; Yoon, Young Soo
2015-05-01
The deposition behavior of ZnO nanoparticles on metal plates and conductive fabrics was investigated using electrophoretic deposition (EPD). The deposition kinetics on both metal plates and fabrics were examined using the Hamaker equation. Fabric substrates give more deposited weight than flat substrates due to their rougher shape and higher surface area. The morphologies and the structures of the deposited ZnO layers showed uniform deposition without any preferred orientation on both substrates. The dielectric properties of the ZnO layers formed by using EPD showed values that were reduced, but comparable to those of bulk ZnO. This result suggests that EPD is a convenient method to deposit functional oxides on flexible substrates.
Uniaxial alignment of triisopropylsilylethynyl pentacene via zone-casting technique.
Su, Yajun; Gao, Xiang; Liu, Jiangang; Xing, Rubo; Han, Yanchun
2013-09-14
Uniaxially aligned triisopropylsilylethynyl pentacene (TIPS-pentacene) crystals over a large area were fabricated using zone-casting technique. The array of TIPS-pentacene displayed a high orientation degree with a dichroic ratio (DR) of 0.80. The crystals were arranged with c axis perpendicular to the substrate and the long axis of the ribbon corresponded to the a axis of TIPS-pentacene. The properties of the solutions and the processing parameters were shown to influence the formation of the oriented TIPS-pentacene crystalline array. Solvent with a low boiling point (such as chloroform) favoured the orientation of the ribbon-like crystals. The concentration of the solution should be appropriate, ensuring the crystallization velocity of TIPS-pentacene matching with the receding of the meniscus. Besides, we proved that the casting speed should be large enough to induce a sufficient concentration gradient. The orientation mechanism of TIPS-pentacene was attributed to a synergy of the ordered nuclei and a match between the crystallization velocity and the casting speed. Field effect transistors (FETs) based on the oriented TIPS-pentacene crystalline array showed a mobility of 0.67 cm(2) V(-1) s(-1).
Characteristics of surface acoustic waves in (11\\bar 2 0)ZnO film/ R-sapphire substrate structures
NASA Astrophysics Data System (ADS)
Wang, Yan; Zhang, ShuYi; Xu, Jing; Xie, YingCai; Lan, XiaoDong
2018-02-01
(11\\bar 2 0)ZnO film/ R-sapphire substrate structure is promising for high frequency acoustic wave devices. The propagation characteristics of SAWs, including the Rayleigh waves along [0001] direction and Love waves along [1ī00] direction, are investigated by using 3 dimensional finite element method (3D-FEM). The phase velocity ( v p), electromechanical coupling coefficient ( k 2), temperature coefficient of frequency ( TCF) and reflection coefficient ( r) of Rayleigh wave and Love wave devices are theoretically analyzed. Furthermore, the influences of ZnO films with different crystal orientation on SAW properties are also investigated. The results show that the 1st Rayleigh wave has an exceedingly large k 2 of 4.95% in (90°, 90°, 0°) (11\\bar 2 0)ZnO film/ R-sapphire substrate associated with a phase velocity of 5300 m/s; and the 0th Love wave in (0°, 90°, 0°) (11\\bar 2 0)ZnO film/ R-sapphire substrate has a maximum k 2 of 3.86% associated with a phase velocity of 3400 m/s. And (11\\bar 2 0)ZnO film/ R-sapphire substrate structures can be used to design temperature-compensated and wide-band SAW devices. All of the results indicate that the performances of SAW devices can be optimized by suitably selecting ZnO films with different thickness and crystal orientations deposited on R-sapphire substrates.
NASA Astrophysics Data System (ADS)
Farhat, O. F.; Halim, M. M.; Ahmed, Naser M.; Qaeed, M. A.
2016-12-01
In this study, ZnO nanofibers (ZnO NFs) were successfully grown for the first time on Teflon substrates using CBD technique. The well-aligned ZnO nanorods (ZnO NRs) were transformed to ZnO nanofibers (NFs) by varying growth temperature and growth time. The high intensity and distinct growth orientation of peaks observed in the XRD spectra of the NFs indicate high crystal quality. The field emission scanning electron microscopy (FESEM) revealed high density of small diameter sized and long ZnO nanofibers (NFs) that are distributed in random directions. Raman analyses revealed a high E2 (high) peak at 436 nm, which indicates the wurtzite structure of ZnO. A flexible ZnO nanofiber (NFs)-based metal-semiconductor-metal UV detector was fabricated and analyzed for photo response and sensitivity under low power illumination (375 nm, 1.5 mW/cm2). The results showed a sensitivity of 4045% which can be considered a relatively high response and baseline recovery for UV detection.
Annealing Time Effect on Nanostructured n-ZnO/p-Si Heterojunction Photodetector Performance
NASA Astrophysics Data System (ADS)
Habubi, Nadir. F.; Ismail, Raid. A.; Hamoudi, Walid K.; Abid, Hassam. R.
2015-02-01
In this work, n-ZnO/p-Si heterojunction photodetectors were prepared by drop casting of ZnO nanoparticles (NPs) on single crystal p-type silicon substrates, followed by (15-60) min; step-annealing at 600∘C. Structural, electrical, and optical properties of the ZnO NPs films deposited on quartz substrates were studied as a function of annealing time. X-ray diffraction studies showed a polycrystalline, hexagonal wurtizte nanostructured ZnO with preferential orientation along the (100) plane. Atomic force microscopy measurements showed an average ZnO grain size within the range of 75.9 nm-99.9 nm with a corresponding root mean square (RMS) surface roughness between 0.51 nm-2.16 nm. Dark and under illumination current-voltage (I-V) characteristics of the n-ZnO/p-Si heterojunction photodetectors showed an improving rectification ratio and a decreasing saturation current at longer annealing time with an ideality factor of 3 obtained at 60 min annealing time. Capacitance-voltage (C-V) characteristics of heterojunctions were investigated in order to estimate the built-in-voltage and junction type. The photodetectors, fabricated at optimum annealing time, exhibited good linearity characteristics. Maximum sensitivity was obtained when ZnO/Si heterojunctions were annealed at 60 min. Two peaks of response, located at 650 nm and 850 nm, were observed with sensitivities of 0.12-0.19 A/W and 0.18-0.39 A/W, respectively. Detectivity of the photodetectors as function of annealing time was estimated.
Studies of anisotropic in-plane aligned a-axis oriented YBa(2)Cu(3)O(7-x) thin films
NASA Astrophysics Data System (ADS)
Trajanovic, Zoran
1997-12-01
Due to their layered planar structure, cuprate oxide superconductors possess remarkable anisotropic properties which may be related to their high transition temperatures. In-plane aligned a-axis YBa2Cu3O7 (YBCO) films are good candidates for such anisotropic studies. Furthermore, the full advantage of favorable material characteristics can be then utilized in applications such as vertical SNS junctions with the leads along the b-direction of YBCO and other novel junction configurations. High quality, smooth, in-plane aligned films are obtained on (100) LaSrGaO4. Form x-ray data, the films show complete b- and c-axes separation for the measured a-axis orientation. The anisotropic resistivity ratio (ρ c/ρ b), measured along the two crystallographic axes of single films gives ρ c/ρ b of ≈20 near the transition, with T cs near 90 K. In such films the grain boundary effects can be decoupled from the intrinsic anisotropic properties of YBCO. From oxygen annealing studies it was estimated that the CuO chains supply about 60% of the carriers. From J c measurements it is determined that the orientation of magnetic field with respect to the crystallographic film axes is the primary factor governing the J c values. The angular dependence of J c on the applied magnetic field is compared against various theoretical models showing the best agreement with the modified Ginzburg-Landau's anisotropic mass model (at T ≈ T c) and Tinkham's thin film model (at T < T c). By utilizing the Co-dopant, the coupling between CuO2 planes and the resulting enhancement of the intrinsic anisotropy of YBCO can be studied. Deposition and cooling conditions are shown to be the primary factor that influence the quality of dopant incorporation and the resulting oxygen ordering within the YBCO lattice. Various complex structures and devices utilizing in-plane aligned, a-axis films are presented. Other materials exhibiting in-plane alignment and a-axis growth are described. Optional substrates for achieving such films are also discussed.
UV-light-assisted ethanol sensing characteristics of g-C3N4/ZnO composites at room temperature
NASA Astrophysics Data System (ADS)
Zhai, Jiali; Wang, Tao; Wang, Chuang; Liu, Dechen
2018-05-01
A highly efficient UV-light-assisted room temperature sensor based on g-C3N4/ZnO composites were prepared by an in situ precipitation method. The thermostability, composition, structure, and morphology properties of the as-prepared g-C3N4/ZnO composites were characterized by TGA, XRD, FT-IR, TEM, and XPS, respectively. And then, we studied the ethanol (C2H5OH) sensing performance of the g-C3N4/ZnO composites at the room temperature. Compared with pure ZnO and g-C3N4, the gas sensing activity of g-C3N4/ZnO composites was greatly improved at room temperature, for example, the g-C3N4/ZnO-8% composites showed an obvious response of 121-40 ppm C2H5OH at room temperature, which was 60 times higher than the pure ZnO based on the sensors under the same condition. The great enhancement of the C2H5OH sensing properties of composites can be understood by the efficient separation of photogenerated charge carriers of g-C3N4/ZnO heterogeneous and the UV-light catalytic effect. Finally, a possible mechanism for the gas sensing activity was proposed.
Ionic displacement induced ferroelectricity in multiferroic Cr doped ZnO
NASA Astrophysics Data System (ADS)
Tiwari, Jeetendra Kumar; Ali, Nasir; Ghosh, Subhasis
2018-05-01
Cr doped ZnO thin film was grown on quartz substrate using RF magnetron sputtering. Room temperature magnetic and ferroelectric properties of Cr doped ZnO were investigated. It is shown that ZnO becomes ferromagnetic upon Cr doping. It is considered that breaking of centrosymmetry due strain developed by doping of Cr should be responsible for the ferroelectricity. These films were characterized by X-ray diffraction (XRD), which shows that the films possess crystalline structure with preferred orientation along the (002) crystal plane and there is no extra peak due to Cr i.e. single phase.
Synthesis and characterization of ZnO thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anilkumar, T. S., E-mail: anil24march@gmail.com; Girija, M. L., E-mail: girija.ml.grt1@gmail.com; Venkatesh, J., E-mail: phph9502@yahoo.com
2016-05-06
Zinc oxide (ZnO) Thin films were deposited on glass substrate using Spin coating method. Zinc acetate dehydrate, Carbinol and Mono-ethanolamine were used as the precursor, solvent and stabilizer respectively to prepare ZnO Thin-films. The molar ratio of Monoethanolamine to Zinc acetate was maintained as approximately 1. The thickness of the films was determined by Interference technique. The optical properties of the films were studied by UV Vis-Spectrophotometer. From transmittance and absorbance curve, the energy band gap of ZnO is found out. Electrical Conductivity measurements of ZnO are carried out by two probe method and Activation energy for the electrical conductivitymore » of ZnO are found out. The crystal structure and orientation of the films were analyzed by XRD. The XRD patterns show that the ZnO films are polycrystalline with wurtzite hexagonal structure.« less
Caglar, Yasemin; Gorgun, Kamuran; Aksoy, Seval
2015-03-05
ZnO nanopowders were synthesized via microwave-assisted hydrothermal method at different deposition (microwave irradiation) times and pH values. The effects of pH and deposition (microwave irradiation) time on the crystalline structure and orientation of the ZnO nanopowders have been investigated by X-ray diffraction (XRD) study. XRD observations showed that the crystalline quality of ZnO nanopowders increased with increasing pH value. The crystallite size and texture coefficient values of ZnO nanopowders were calculated. The structural quality of ZnO nanopowder was improved by deposition parameters. Field emission scanning electron microscope (FESEM) was used to analyze the surface morphology of the ZnO nanopowders. Microwave irradiation time and pH value showed a significant effect on the surface morphology. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ceccato, Alberto; Pennacchioni, Giorgio; Menegon, Luca; Bestmann, Michel
2017-10-01
Quartz veins within Rieserferner pluton underwent deformation during post-magmatic cooling at temperature around 450 °C. Different crystallographic orientations of cm-sized quartz vein crystals conditioned the evolution of microstructures and crystallographic preferred orientations (CPO) during vein-parallel simple shear up to high shear strains (γ ≈ 10). For γ < 2, crystals stretched to ribbons of variable aspect ratios. The highest aspect ratios resulted from {m} glide in ribbons with c-axis sub-parallel to the shear zone vorticity Y-axis. Ribbons with c-axis orthogonal to Y (XZ-type ribbons) were stronger and hardened more quickly: they show lower aspect ratios and fine (grain size 10-20 μm) recrystallization along sets of microshear zones (μSZs) exploiting crystallographic planes. Distortion of XZ-type ribbons and recrystallization preferentially exploited the slip systems with misorientation axis close to Y. New grains of μSZs initiated by subgrain rotation recrystallization (SGR) and thereupon achieved high angle misorientations by a concurrent process of heterogeneous rigid grain rotation around Y associated with the confined shear within the μSZ. Dauphiné twinning occurred pervasively, but did not play a dominant role on μSZ nucleation. Recrystallization became widespread at γ > 2 and pervasive at γ ≈ 10. Ultramylonitic quartz veins are fine grained ( 10 μm, similar to new grains of μSZ) and show a CPO banding resulting in a bulk c-axis CPO with a Y-maximum, as part of a single girdle about orthogonal to the foliation, and orientations at the pole figure periphery at moderate to high angle to the foliation. This bulk CPO derives from steady-state SGR associated with preferential activity, in the different CPO bands, of slip systems generating subgrain boundaries with misorientation axes close to Y. The CPO of individual recrystallized bands is largely inherited from the original crystallographic orientation of the ribbons (and therefore vein crystals) from which they derived. High strain and pervasive recrystallization were not enough to reset the initial crystallographic heterogeneity and this CPO memory is explained by the dominance of SGR. This contrast with experimental observation of a rapid erasure of a pristine CPO by cannibalism from grains with the most favourably oriented slip system under dominant grain boundary migration recrystallization.
NASA Astrophysics Data System (ADS)
Shalaeva, E. V.; Gyrdasova, O. I.; Krasilnikov, V. N.; Melkozerova, M. A.; Baklanova, I. V.; Buldakova, L. Yu.
Various thermolysis rotes of zinc glicolate complexes are considered for the synthesis of quasi-one-dimensional nanostructured aggregates ZnO and Zn-O-C used as photocatalysts. Structural features of quasi-one-dimensional aggregates Zn-O-C and ZnO are investigated in detail. Transmission electron microscopy, Raman spectroscopy, and electron paramagnetic resonance spectroscopy methods demonstrate that the aggregates Zn-O-C have either composite structure (ZnO crystallites in amorphous carbon matrix) or a C-doped ZnO single-phase structure depending on heat treatment conditions, and that all the aggregates exhibit as a rule a tubular morphology, a nanocrystalline structure with a high specific surface area, and a high concentration of singly charged oxygen vacancies. The mechanism of the nanocrystalline structure formation is discussed and the effect of thermolysis condition on the formation of the textured structure of aggregates is investigated. The results of examination of the photocatalytic and optical absorption properties of the synthesized aggregates are presented. The photocatalytic activity for the hydroquinone oxidation reaction under ultraviolet and visible light increases in the series: the reference ZnO powder, quasi-one-dimensional ZnO, quasi-one-dimensional aggregates C-doped ZnO, and this tendency correlates with the reduction of the optical gap width. As a result of our studies, we have arrived at an important conclusion that thermal treatment of ZnO:nC composites allows a C-doped ZnO with high catalytic activity. This increasing photoactivity of C-doped ZnO aggregates is attributed to the optimal specific surface area and electron-energy spectrum restructuring to be produced owing to the presence of singly charged oxygen vacancies and carbon dissolved in the ZnO lattice.
NASA Astrophysics Data System (ADS)
Jeon, Woosung; Leem, Jae-Young
2018-05-01
ZnO nanorods were prepared on a Si substrate with and without a ZnO seed layer formed by electro-oxidation to investigate the effect of the seed layer on their growth. The ZnO nanorods grown on the ZnO seed layer had top surfaces that were flat whereas those grown without it had rough top surfaces, as observed in field-emission scanning electron microscopy images. In the Xray diffraction analysis, all ZnO nanorods showed preferential orientation with the (002) plane. In the case of ZnO nanorods prepared with a ZnO seed layer, the residual stress decreased, and the full width at half maximum of the ZnO (002) plane peak decreased. The photoluminescence spectra show a strong and narrow near-band-edge emission peak and high near-band-edge emission to deep-level emission peak ratio for the ZnO nanorods prepared with the seed layer. With respect to the photoresponse properties, the ZnO nanorods grown with the ZnO seed layer showed higher responsivity and faster rise/decay curves than those grown without it. Thus, the ZnO seed layer formed by electro-oxidation improves the structural, optical, and photoresponse properties of the ZnO nanorods formed on it. This method could serve as a new route for improving the properties of optoelectronic devices.
Smazna, Daria; Rodrigues, Joana; Shree, Sindu; Postica, Vasile; Neubüser, Gero; Martins, A F; Ben Sedrine, N; Jena, Naresh K; Siebert, Leonard; Schütt, Fabian; Lupan, Oleg; Ahuja, Rajeev; Correia, M R; Monteiro, Teresa; Kienle, Lorenz; Yang, Ya; Adelung, Rainer; Mishra, Yogendra Kumar
2018-05-21
Buckminster fullerene (C60) based hybrid metal oxide materials are receiving considerable attention because of their excellent fundamental and applied aspects, like semiconducting, electron transfer, luminescent behaviors, etc. and this work briefly discusses the successful fabrication of C60 decorated ZnO tetrapod materials and their detailed structure-property relationships including device sensing applications. The electron microscopy investigations indicate that a quite dense surface coverage of ZnO tetrapods with C60 clusters is achieved. The spectroscopy studies confirmed the identification of the C60 vibrational modes and the C60 induced changes in the absorption and luminescence properties of the ZnO tetrapods. An increased C60 concentration on ZnO results in steeper ZnO bandgap absorption followed by well-defined free exciton and 3.31 eV line emissions. As expected, higher amounts of C60 increase the intensity of C60-related visible absorption bands. Pumping the samples with photons with an energy corresponding to these absorption band maxima leads to additional emission from ZnO showing an effective charge transfer phenomenon from C60 to the ZnO host. The density of states model obtained from DFT studies for pure and C60 coated ZnO surfaces confirms the experimental observations. The fabricated C60-ZnO hybrid tetrapod based micro- and nanodevices showed interesting ethanol gas sensing characteristics.
Gopikrishnan, Ramya; Zhang, Kai; Ravichandran, Prabakaran; Biradar, Santhoshkumar; Ramesh, Vani; Goornavar, Virupaxi; Jeffers, Robert B; Pradhan, Aswini; Hall, Joseph C; Baluchamy, Sudhakar; Ramesh, Govindarajan T
2011-10-01
Here, we have synthesized Zinc Oxide (ZnO) nanorods at room temperature using zinc acetate and hexamethylenetetramine as precursors followed by characterization using X-ray diffraction (XRD), fourier transform infra red spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy. The growth of the synthesized ZnO was found to be very close to its hexagonal nature, which is confirmed by XRD. The nanorods were grown perpendicular to the long-axis and grew along the [001] direction, which is the nature of ZnO growth. The morphology of the synthesized ZnO nanorods was also confirmed by SEM. The size of the nanorod was estimated to be around 20-25 nm in diameter and approximately 50-60 nm in length. Our biocompatibility studies using synthesized ZnO showed no significant dose- or time-dependent increase in the formation of free radicals, accumulation of peroxidative products, antioxidant depletion or loss of cell viability on lung epithelial cells.
Mosaic structure in epitaxial thin films having large lattice mismatch
NASA Astrophysics Data System (ADS)
Srikant, V.; Speck, J. S.; Clarke, D. R.
1997-11-01
Epitaxial films having a large lattice mismatch with their substrate invariably form a mosaic structure of slightly misoriented sub-grains. The mosaic structure is usually characterized by its x-ray rocking curve on a surface normal reflection but this is limited to the out-of-plane component unless off-axis or transmission experiments are performed. A method is presented by which the in-plane component of the mosaic misorientation can be determined from the rocking curves of substrate normal and off-axis reflections. Results are presented for two crystallographically distinct heteroepitaxial systems, ZnO, AlN, and GaN (wurtzite crystal structure) on c-plane sapphire and MgO (rock salt crystal structure) on (001) GaAs. The differences in the mosaic structure of these films are attributed to the crystallographic nature of their lattice dislocations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukuda, Koichiro, E-mail: fukuda.koichiro@nitech.ac.jp; Hasegawa, Ryo; Kitagawa, Takuya
2016-03-15
The c-axis-oriented polycrystalline lanthanum silicate oxyapatite, La{sub 9.48}(Si{sub 5.89}□{sub 0.11})O{sub 26} (□ denotes a vacancy in the Si site), was successfully prepared by the reactive diffusion between randomly grain-oriented La{sub 2}SiO{sub 5} polycrystal and [SiO+1/2O{sub 2}] gases at 1873 K in Ar atmosphere. The polycrystal was characterized using optical microscopy, scanning electron microscopy equipped with energy dispersive X-ray spectroscopy, micro-Raman spectroscopy, X-ray diffractometry, and impedance spectroscopy. The crystal structure (space group P6{sub 3}/m) showed the deficiency of Si site at ca. 1.9%. The bulk oxide-ion conductivity along the grain-alignment direction steadily increased from 9.2 × 10{sup −3} to 1.17 ×more » 10{sup −2} S/cm with increasing temperature from 923 to 1073 K. The activation energy of conduction was 0.23(2) eV. - Graphical abstract: We have successfully prepared the highly c-axis-oriented polycrystalline La{sub 9.48}(Si{sub 5.89}□{sub 0.11})O{sub 26} by the reactive diffusion between randomly grain-oriented La{sub 2}SiO{sub 5} polycrystal and [SiO + 1/2O{sub 2}] gases at 1873 K in Ar atmosphere. The crystal structure (space group P6{sub 3}/m) showed the deficiency of Si site of ca. 1.9%. - Highlights: • The c-axis-oriented polycrystalline La{sub 9.48}(Si{sub 5.89}□{sub 0.11})O{sub 26} is successfully prepared. • Crystal structure of La{sub 9.48}(Si{sub 5.89}□{sub 0.11})O{sub 26} is determined by single-crystal XRD. • The polycrystal shows relatively high oxide ion conductivity along the common c-axis. • Reactive diffusion is successfully used for the preparation of grain-aligned ceramics.« less
NASA Astrophysics Data System (ADS)
Zhu, Peng-wei; Phillips, Andrew; Tung, Jason; Edward, Graham
2005-05-01
The orientation distribution of sheared isotactic polypropylene (iPP) containing different amount of sodium benzoate (SB) has been investigated through the gradient of shear flow field using microbeam of synchrotron wide-angle x-ray techniques. The degree of the overall orientation of α-phase crystal is found to increase with increasing concentration of SB. Compared with the sheared iPP in the absence of SB, the orientation of α-phase crystal is found to distribute over a broader range of shear flow field in the presence of SB. The overall orientation of α-phase crystal is explained in terms of a parent-daughter model or lamella-branched shish-kebab structure. As the concentration of SB increases, the contribution from the c-axis orientation of parent lamellae decreases in the flow direction. The contribution from the a*-axis orientation of daughter lamellae is developed to be dominant in the flow direction when the concentration of SB exceeds a critical value.
NASA Astrophysics Data System (ADS)
Mariappan, R.; Ponnuswamy, V.; Suresh, P.; Suresh, R.; Ragavendar, M.
2013-07-01
Nanostructured GdxZn1-xO thin films with different Gd concentration from 0% to 10% deposited at 400 °C using the NSP technique. The films were characterized by structural, surface and optical properties, respectively. X-ray diffraction analysis shows that the Gd doped ZnO films have lattice parameters a = 3.2497 Å and c = 5.2018 Å with hexagonal structure and preferential orientation along (0 0 2) plane. The estimated values compare well with the standard values. When film thickness increases from 222 to 240 nm a high visible region transmittance (>70%) is observed. The optical band gap energy, optical constants (n and k), complex dielectric constants (ɛr and ɛi) and optical conductivities (σr and σi) were calculated from optical transmittance data. The optical band gap energy is 3.2 eV for pure ZnO film and 3.6 eV for Gd0.1Zn0.9O film. The PL studies confirm the presence of a strong UV emission peak at 399 nm. Besides, the UV emission of ZnO films decreases with the increase of Gd doping concentration correspondingly the ultra-violet emission is replaced by blue and green emissions.
NASA Astrophysics Data System (ADS)
Bishop, S. M.; Reynolds, C. L.; Liliental-Weber, Z.; Uprety, Y.; Zhu, J.; Wang, D.; Park, M.; Molstad, J. C.; Barnhardt, D. E.; Shrivastava, A.; Sudarshan, T. S.; Davis, R. F.
2007-04-01
The polytype and surface and defect microstructure of epitaxial layers grown on 4H( {11}overline{{2}} {0} ), 4H(0001) on-axis, 4H(0001) 8° off-axis, and 6H(0001) on-axis substrates have been investigated. High-resolution x-ray diffraction (XRD) revealed the epitaxial layers on 4H( {11}overline{{2}} {0} ) and 4H(0001) 8° off-axis to have the 4H-SiC (silicon carbide) polytype, while the 3C-SiC polytype was identified for epitaxial layers on 4H(0001) and 6H(0001) on-axis substrates. Cathodoluminescence (CL), Raman spectroscopy, and transmission electron microscopy (TEM) confirmed these results. The epitaxial surface of 4H( {11}overline{{2}} {0} ) films was specular with a roughness of 0.16-nm root-mean-square (RMS), in contrast to the surfaces of the other epitaxial layer-substrate orientations, which contained curvilinear boundaries, growth pits (˜3 × 104 cm-2), triangular defects >100 μm, and significant step bunching. Molten KOH etching revealed large defect densities within 4H( {11}overline{{2}} {0} ) films that decreased with film thickness to ˜106 cm-2 at 2.5 μm, while cross-sectional TEM studies showed areas free of defects and an indistinguishable film-substrate interface for 4H( {11}overline{{2}} {0} ) epitaxial layers.
NASA Astrophysics Data System (ADS)
Li, Jin; Bi, Xiaofang
2016-07-01
Al2O3/ZnO nanolaminates (NLs) with various ZnO sublayer thicknesses were prepared by atomic layer deposition. The Al2O3 sublayers are characterized as amorphous and the ZnO sublayers have an oriented polycrystalline structure. As the ZnO thickness decreases to a certain value, each NL exhibits a critical temperature at which its dielectric constant starts to rise quickly. Moreover, this temperature increases as the ZnO thickness is decreased further. On the other hand, the permittivity demonstrates a large value of several hundred at a frequency ⩽1000 Hz, followed by a steplike decrease at a higher frequency. The change in the cut-off frequency with ZnO thickness is characterized by a hook function. It is revealed that the Coulomb confinement effect becomes predominant in the dielectric behaviors of the NLs with very thin ZnO. As the ZnO thickness decreases to about the same as or even smaller than the Bohr radius of ZnO, a great change in the carrier concentration and effective mass of ZnO is induced, which is shown to be responsible for the peculiar dielectric behaviors of Al2O3/ZnO with very thin ZnO. These findings provide insight into the prevailing mechanisms to optimize the dielectric properties of semiconductor/insulator laminates with nanoscale sublayer thickness.
Khun, Kimleang; Ibupoto, Zafar Hussain; AlSalhi, Mohamad S; Atif, Muhammad; Ansari, Anees A; Willander, Magnus
2013-09-30
In this study, by taking the advantage of both inorganic ZnO nanoparticles and the organic material chitosan as a composite seed layer, we have fabricated well-aligned ZnO nanorods on a gold-coated glass substrate using the hydrothermal growth method. The ZnO nanoparticles were characterized by the Raman spectroscopic techniques, which showed the nanocrystalline phase of the ZnO nanoparticles. Different composites of ZnO nanoparticles and chitosan were prepared and used as a seed layer for the fabrication of well-aligned ZnO nanorods. Field emission scanning electron microscopy, energy dispersive X-ray, high-resolution transmission electron microscopy, X-ray diffraction, and infrared reflection absorption spectroscopic techniques were utilized for the structural characterization of the ZnO nanoparticles/chitosan seed layer-coated ZnO nanorods on a gold-coated glass substrate. This study has shown that the ZnO nanorods are well-aligned, uniform, and dense, exhibit the wurtzite hexagonal structure, and are perpendicularly oriented to the substrate. Moreover, the ZnO nanorods are only composed of Zn and O atoms. An optical study was also carried out for the ZnO nanoparticles/chitosan seed layer-coated ZnO nanorods, and the obtained results have shown that the fabricated ZnO nanorods exhibit good crystal quality. This study has provided a cheap fabrication method for the controlled morphology and good alignment of ZnO nanorods, which is of high demand for enhancing the working performance of optoelectronic devices.
Khun, Kimleang; Ibupoto, Zafar Hussain; AlSalhi, Mohamad S.; Atif, Muhammad; Ansari, Anees A.; Willander, Magnus
2013-01-01
In this study, by taking the advantage of both inorganic ZnO nanoparticles and the organic material chitosan as a composite seed layer, we have fabricated well-aligned ZnO nanorods on a gold-coated glass substrate using the hydrothermal growth method. The ZnO nanoparticles were characterized by the Raman spectroscopic techniques, which showed the nanocrystalline phase of the ZnO nanoparticles. Different composites of ZnO nanoparticles and chitosan were prepared and used as a seed layer for the fabrication of well-aligned ZnO nanorods. Field emission scanning electron microscopy, energy dispersive X-ray, high-resolution transmission electron microscopy, X-ray diffraction, and infrared reflection absorption spectroscopic techniques were utilized for the structural characterization of the ZnO nanoparticles/chitosan seed layer-coated ZnO nanorods on a gold-coated glass substrate. This study has shown that the ZnO nanorods are well-aligned, uniform, and dense, exhibit the wurtzite hexagonal structure, and are perpendicularly oriented to the substrate. Moreover, the ZnO nanorods are only composed of Zn and O atoms. An optical study was also carried out for the ZnO nanoparticles/chitosan seed layer-coated ZnO nanorods, and the obtained results have shown that the fabricated ZnO nanorods exhibit good crystal quality. This study has provided a cheap fabrication method for the controlled morphology and good alignment of ZnO nanorods, which is of high demand for enhancing the working performance of optoelectronic devices. PMID:28788336
Fabrication of n-ZnO:Al/p-Si(100) heterojunction diode and its characterization
NASA Astrophysics Data System (ADS)
Parvathy Venu, M.; Dharmaprakash, S. M.; Byrappa, K.
2018-04-01
Aluminum doped ZnO (n-ZnO:Al) nanostructured thin films were grown on ZnO seed layer coated p-Si(100) substrate employing hydrothermal technique. X-ray diffraction pattern revealed that the ZnO:Al film possess hexagonal wurtzite structure with preferential orientation along (002) direction. Photoluminescence of the sample displayed near band edge emission peak in the ultra-violet region and defect level emission peak in the visible region. The as grown thin film was used in the fabrication of n-ZnO:Al/p-Si heterojunction diode and the room temperature current-voltage (I-V) and capacitance-voltage (C-V) characteristics were studied. The heterojunction exhibited fairly good rectification with an ideality of 2.49 and reverse saturation current of 2 nA. The barrier height was found to be 0.668 eV from the I-V measurements. The C-V measurements showed a decrease in the capacitance of the heterojunction with an increase in the reverse bias voltage.
THE LIMITED EFFECT OF COINCIDENT ORIENTATION ON THE CHOICE OF INTRINSIC AXIS (.).
Li, Jing; Su, Wei
2015-06-01
The allocentric system computes and represents general object-to-object spatial relationships to provide a spatial frame of reference other than the egocentric system. The intrinsic frame-of-reference system theory, which suggests people learn the locations of objects based upon an intrinsic axis, is important in research about the allocentric system. The purpose of the current study was to determine whether the effect of coincident orientation on the choice of intrinsic axis was limited. Two groups of participants (24 men, 24 women; M age = 24 yr., SD = 2) encoded different spatial layouts in which the objects shared the coincident orientation of 315° and 225° separately at learning perspective (0°). The response pattern of partial-scene-recognition task following learning reflected different strategies for choosing the intrinsic axis under different conditions. Under the 315° object-orientation condition, the objects' coincident orientation was as important as the symmetric axis in the choice of the intrinsic axis. However, participants were more likely to choose the symmetric axis as the intrinsic axis under the 225° object-orientation condition. The results suggest the effect of coincident orientation on the choice of intrinsic axis is limited.
NASA Astrophysics Data System (ADS)
Vinoth, E.; Gopalakrishnan, N.
2018-04-01
Undoped and Mg doped (at l0 mol %) ZnO thin films have been grown on glass substrates by using the RF magnetron sputtering. The structural properties of the fabricated thin films were studied by X-ray diffraction analysis and it was found hexagonal wurtzite phase and preferential orientation along (002) of both films. Green Band Emission peaks in the Photoluminescence spectra confirm the structural defects such as oxygen vacancies (Vo) in the films. Uniform distribution of spherical shape morphology of grains observed in the both films by FESEM. However, the growth of grains was found in the Mg doped thin film. The temperature dependent ammonia sensing is done by the indigenously made gas sensing setup. The gas response of the both films was increased as the temperature increases, attains maximum at 75° C and then decreases. Response and recovery time measurementswere donefor boththe films and it shows the fast response time and quick recovery for doped thin film compared to the pure ZnO thin film.
NASA Astrophysics Data System (ADS)
Shin, Junsoo; Goyal, Amit; Jesse, Stephen; Kim, Dae Ho
2009-06-01
Epitaxial, c-axis oriented BaTiO3 thin films were deposited using pulsed laser ablation on flexible, polycrystalline Ni alloy tape with biaxially textured oxide buffer multilayers. The high quality of epitaxial BaTiO3 thin films with P4mm group symmetry was confirmed by x-ray diffraction. The microscopic ferroelectric domain structure and the piezoelectric domain switching in these films were confirmed via spatially resolved piezoresponse mapping and local hysteresis loops. Macroscopic measurements demonstrate that the films have well-saturated hysteresis loops with a high remanent polarization of ˜11.5 μC/cm2. Such high-quality, single-crystal-like BaTiO3 films on low-cost, polycrystalline, flexible Ni alloy substrates are attractive for applications in flexible lead-free ferroelectric devices.
NASA Astrophysics Data System (ADS)
Chen, Shihong; Sebastian, Mary Ann; Gautam, Bibek; Wilt, Jamie; Chen, Yanbin; Sun, Lei; Xing, Zhongwen; Haugan, Timothy; Wu, Judy
2017-12-01
High concentration artificial pinning centers (APCs), such as BaZrO3 nanorods (BZO 1D APCs) aligned along the c-axis of the high temperature superconductor YBa2Cu3O7 (YBCO) can provide strong pinning of magnetic vortices and are desirable for applications in high magnetic fields. Unfortunately, in YBCO films with single-doping (SD) of BZO 1D APCs, a monotonic decreasing superconducting T c and critical current density J c(H) with BZO doping has been observed due to strain field overlap at high-concentration perfectly c-axis aligned BZO 1D APCs. In order to resolve this issue, double-doping (DD) of 2-6 vol% BZO 1D APCs and 3.0 vol% Y2O3 nanoparticles (Y2O3-NPs) in YBCO films has been explored to promote BZO-NR orientation misalignment from the c-axis. Remarkably, a monotonic increasing J c(H) with BZO 1D APCs concentration has been obtained in the BZO DD samples. Such a microstructure change is evidenced in the much smaller c-lattice parameter expansion of 0.103% in the DD samples as opposed to 0.511% in the SD counterparts and reduced c-axis alignment of the BZO 1D APCs as revealed in TEM. This yields a mixed 1D + 2D + 3D APC morphology and enhanced isotropic pinning with respect to the orientation of the H-field in the BZO DD samples.
Trapping of diffusing particles by striped cylindrical surfaces. Boundary homogenization approach
Dagdug, Leonardo; Berezhkovskii, Alexander M.; Skvortsov, Alexei T.
2015-01-01
We study trapping of diffusing particles by a cylindrical surface formed by rolling a flat surface, containing alternating absorbing and reflecting stripes, into a tube. For an arbitrary stripe orientation with respect to the tube axis, this problem is intractable analytically because it requires dealing with non-uniform boundary conditions. To bypass this difficulty, we use a boundary homogenization approach which replaces non-uniform boundary conditions on the tube wall by an effective uniform partially absorbing boundary condition with properly chosen effective trapping rate. We demonstrate that the exact solution for the effective trapping rate, known for a flat, striped surface, works very well when this surface is rolled into a cylindrical tube. This is shown for both internal and external problems, where the particles diffuse inside and outside the striped tube, at three orientations of the stripe direction with respect to the tube axis: (a) perpendicular to the axis, (b) parallel to the axis, and (c) at the angle of π/4 to the axis. PMID:26093574
Linear and Non-Linear Response of Liquid and Solid Particles to Energetic Radiation
1991-03-11
for particle 2 located on the + x6 axis (perpendicular to the beam propagation axis) one diameter surface-to-surface from particle 1 (i 12 = 4.0, Obd2 ...axis direction. Off is the far field scattering angle relative to the beam propagation axis. Obd2 is the orientation angle of particle 2 relative to...Particle 2 in the Xb - Zb plane and positioned one diameter surface-to-surface from particle 1 (P12 = 4.0). a.) Obd2 = 00, b.) Obd2 = 30 ° , c.) ebd
NASA Astrophysics Data System (ADS)
Barnes, Teresa M.; Hand, Steve; Leaf, Jackie; Wolden, Colin A.
2004-09-01
Zinc oxide thin films were produced by high vacuum plasma-assisted chemical vapor deposition (HVP-CVD) from dimethylzinc (DMZn) and atomic oxygen. HVP-CVD is differentiated from conventional remote plasma-enhanced CVD in that the operating pressures of the inductively coupled plasma (ICP) source and the deposition chamber are decoupled. Both DMZn and atomic oxygen effuse into the deposition chamber under near collisionless conditions. The deposition rate was measured as a function of DMZn and atomic oxygen flux on glass and silicon substrates. Optical emission spectroscopy and quadrupole mass spectrometry (QMS) were used to provide real time analysis of the ICP source and the deposition chamber. The deposition rate was found to be first order in DMZn pressure and zero order in atomic oxygen density. All films demonstrated excellent transparency and were preferentially orientated along the c-axis. The deposition chemistry occurs exclusively through surface-mediated reactions, since the collisionless transport environment eliminates gas-phase chemistry. QMS analysis revealed that DMZn was almost completely consumed, and desorption of unreacted methyl radicals was greatly accelerated in the presence of atomic oxygen. Negligible zinc was detected in the gas phase, suggesting that Zn was efficiently consumed on the substrate and walls of the reactor.
Shirsath, Sagar E.; Liu, Xiaoxi; Yasukawa, Yukiko; Li, Sean; Morisako, Akimitsu
2016-01-01
Perpendicular magnetization and precise control over the magnetic easy axis in magnetic thin film is necessary for a variety of applications, particularly in magnetic recording media. A strong (111) orientation is successfully achieved in the CoFe2O4 (CFO) thin film at relatively low substrate temperature of 100 °C, whereas the (311)-preferred randomly oriented CFO is prepared at room temperature by the DC magnetron sputtering technique. The oxygen-deficient porous CFO film after post-annealing gives rise to compressive strain perpendicular to the film surface, which induces large perpendicular coercivity. We observe the coercivity of 11.3 kOe in the 40-nm CFO thin film, which is the highest perpendicular coercivity ever achieved on an amorphous SiO2/Si substrate. The present approach can guide the systematic tuning of the magnetic easy axis and coercivity in the desired direction with respect to crystal orientation in the nanoscale regime. Importantly, this can be achieved on virtually any type of substrate. PMID:27435010
Performance improvement for solution-processed high-mobility ZnO thin-film transistors
NASA Astrophysics Data System (ADS)
Sha Li, Chen; Li, Yu Ning; Wu, Yi Liang; Ong, Beng S.; Loutfy, Rafik O.
2008-06-01
The fabrication technology of stable, non-toxic, transparent, high performance zinc oxide (ZnO) thin-film semiconductors via the solution process was investigated. Two methods, which were, respectively, annealing a spin-coated precursor solution and annealing a drop-coated precursor solution, were compared. The prepared ZnO thin-film semiconductor transistors have well-controlled, preferential crystal orientation and exhibit superior field-effect performance characteristics. But the ZnO thin-film transistor (TFT) fabricated by annealing a drop-coated precursor solution has a distinctly elevated linear mobility, which further approaches the saturated mobility, compared with that fabricated by annealing a spin-coated precursor solution. The performance of the solution-processed ZnO TFT was further improved when substituting the spin-coating process by the drop-coating process.
Ferroelectric enhancement in heterostructured ZnO /BiFeO3-PbTiO3 film
NASA Astrophysics Data System (ADS)
Yu, Shengwen; Chen, Rui; Zhang, Guanjun; Cheng, Jinrong; Meng, Zhongyan
2006-11-01
The authors have prepared heterostructured ZnO /BiFeO3-PbTiO3 (BFO-PT) composite film and BFO-PT film on Pt /Ti/SiO2/Si substrates by pulsed-laser deposition. The structure and morphologies of the films were characterized by x-ray diffraction (XRD) and scanning electron microscope. XRD results show that both films are perovskite structured last with different orientations. The leakage current density in the ZnO /BFO-PT film was found to be nearly two orders of magnitude lower. This could be due to the introduced ZnO layer behaving as a Schottky barrier between the BFO-PT film and top electrodes. The dramatic ferroelectric enhancement in ZnO /BFO-PT film is mostly ascribed to the improved insulation.
Duraisamy, Navaneethan; Kwon, Ki Rin; Jo, Jeongdai; Choi, Kyung-Hyun
2014-08-01
This article presents the non-vacuum technique for the preparation of nanostructured zinc oxide (ZnO) thin film on glass substrate through electrohydrodynamic atomization (EHDA) technique. The detailed process parameters for achieving homogeneous ZnO thin films are clearly discussed. The crystallinity and surface morphology of ZnO thin film are investigated by X-ray diffraction and field emission scanning electron microscopy. The result shows that the deposited ZnO thin film is oriented in the wurtzite phase with void free surface morphology. The surface roughness of deposited ZnO thin film is found to be ~17.8 nm. The optical properties of nanostructured ZnO thin films show the average transmittance is about 90% in the visible region and the energy band gap is found to be 3.17 eV. The surface chemistry and purity of deposited ZnO thin films are analyzed by fourier transform infrared and X-ray photoelectron spectroscopy, conforming the presence of Zn-O in the deposited thin films without any organic moiety. The photocurrent measurement of nanostructured ZnO thin film is examined in the presence of UV light illumination with wavelength of 365 nm. These results suggest that the deposited nanostructured ZnO thin film through EHDA technique possess promising applications in the near future.
Lim, Jun Hyung; Lee, Seung Muk; Kim, Hyun-Suk; Kim, Hyun You; Park, Jozeph; Jung, Seung-Boo; Park, Geun Chul; Kim, Jungho; Joo, Jinho
2017-02-03
We synthesized ZnO nanorods (NRs) using simple hydrothermal method, with the simultaneous incorporation of gallium (Ga) and indium (In), in addition, investigated the co-doping effect on the morphology, microstructure, electronic structure, and electrical/optical properties. The growth behavior of the doped NRs was affected by the nuclei density and polarity of the (001) plane. The c-axis parameter of the co-doped NRs was similar to that of undoped NRs due to the compensated lattice distortion caused by the presence of dopants that are both larger (In 3+ ) and smaller (Ga 3+ ) than the host Zn 2+ cations. Red shifts in the ultraviolet emission peaks were observed in all doped NRs, owing to the combined effects of NR size, band gap renormalization, and the presence of stacking faults created by the dopant-induced lattice distortions. In addition, the NR/p-GaN diodes using co-doped NRs exhibited superior electrical conductivity compared to the other specimens due to the increase in the charge carrier density of NRs and the relatively large effective contact area of (001) planes. The simultaneous doping of In and Ga is therefore anticipated to provide a broader range of optical, physical, and electrical properties of ZnO NRs for a variety of opto-electronic applications.
NASA Astrophysics Data System (ADS)
Lim, Jun Hyung; Lee, Seung Muk; Kim, Hyun-Suk; Kim, Hyun You; Park, Jozeph; Jung, Seung-Boo; Park, Geun Chul; Kim, Jungho; Joo, Jinho
2017-02-01
We synthesized ZnO nanorods (NRs) using simple hydrothermal method, with the simultaneous incorporation of gallium (Ga) and indium (In), in addition, investigated the co-doping effect on the morphology, microstructure, electronic structure, and electrical/optical properties. The growth behavior of the doped NRs was affected by the nuclei density and polarity of the (001) plane. The c-axis parameter of the co-doped NRs was similar to that of undoped NRs due to the compensated lattice distortion caused by the presence of dopants that are both larger (In3+) and smaller (Ga3+) than the host Zn2+ cations. Red shifts in the ultraviolet emission peaks were observed in all doped NRs, owing to the combined effects of NR size, band gap renormalization, and the presence of stacking faults created by the dopant-induced lattice distortions. In addition, the NR/p-GaN diodes using co-doped NRs exhibited superior electrical conductivity compared to the other specimens due to the increase in the charge carrier density of NRs and the relatively large effective contact area of (001) planes. The simultaneous doping of In and Ga is therefore anticipated to provide a broader range of optical, physical, and electrical properties of ZnO NRs for a variety of opto-electronic applications.
NASA Astrophysics Data System (ADS)
Lee, Wookbin; Leem, Jae-Young
2018-03-01
We report the structural, morphological, optical, and ultraviolet (UV) photoresponse properties of Al-doped ZnO (AZO) thin films prepared on silicon substrates with different Al doping concentrations by using the sol-gel spin-coating method. An analysis of the X-ray diffraction patterns of the AZO thin films revealed that the average grain size decreased and the c-axis lattice constant increased with Al content. The field-emission scanning electron microscopy images showed that with Al doping, the grain size decreased, but the film density increased with increasing Al doping concentration from 0% to 3%. These results indicate that the surface area of the film increased with increasing Al doping. The absorbance spectra revealed that the UV absorbance of the AZO thin films increased with increasing Al doping concentration and that the absorption onset shifted towards lower energies. The photoluminescence spectra revealed that with increasing Al doping, the intensity of the visible emission greatly decreased and the visible emission peak shifted forward lower energy (a red shift). The UV sensor based on the AZO thin films exhibited a higher responsivity than that based on the undoped ZnO thin film. Therefore, this study provides a facile method for improving the photoresponsivity of UV sensors.
H2O2 sensing using HRP modified catalyst-free ZnO nanorods synthesized by RF sputtering
NASA Astrophysics Data System (ADS)
Srivastava, Amit; Kumar, Naresh; Singh, Priti; Singh, Sunil Kumar
2017-06-01
Catalyst-free ( 00 l) oriented ZnO nanorods (NRs) -based biosensor for the H2O2 sensing has been reported. The (002) oriented ZnO NRs as confirmed by X-ray diffraction were successfully grown on indium tin oxide (ITO) coated glass substrate by radio frequency (RF) sputtering technique without using any catalyst. Horseradish peroxidase (HRP) enzyme was immobilized on ZnO NRs by physical adsorption technique to prepare the biosensor. In this HRP/ZnO NR/ITO bioelectrode, nafion solution was added to form a tight membrane on surface. The prepared bioelectrode has been used for biosensing measurements by electrochemical analyzer. The electrochemical studies reveal that the prepared HRP/ZnO NR/ITO biosensor is highly sensitive to the detection of H2O2 over a linear range of 0.250-10 μM. The ZnO NR-based biosensor showed lower value of detection limit (0.125 μM) and higher sensitivity (13.40 µA/µM cm2) towards H2O2. The observed value of higher sensitivity attributed to larger surface area of ZnO nanostructure for effective loading of HRP besides its high electron communication capability. In addition, the biosensor also shows lower value of enzyme's kinetic parameter (Michaelis-Menten constant, K m) of 0.262 μM which indicates enhanced enzyme affinity of HRP to H2O2. The reported biosensor may be useful for various applications in biosensing, clinical, food, and beverage industry.
Ultraviolet/visible photodiode of nanostructure Sn-doped ZnO/Si heterojunction
NASA Astrophysics Data System (ADS)
Kheirandish, N.; Mortezaali, A.
2013-05-01
Sn doped ZnO nanostructures deposited on Si substrate with (100) orientation by spray pyrolysis method at temperature 450 °C. Sn/Zn atomic ratio varies from 0% to 5%. The scanning electron microscope measurements showed that size of particles reduce with increasing the doping concentration. The X-ray diffraction analysis revealed formation of the wurtzite phase of ZnO. I-V curves of Sn doped ZnO/Si were investigated in dark and shows diode-like rectifying behavior. Among doped ZnO/Si, sample with atomic ratio of Sn/Zn = 5% is a good candidate to study photodiode properties in UV/visible range. Photoelectric effects have been observed under illumination monochromatic laser light with a wavelength of 325 nm and halogen lamp. Measurements demonstrate that the photodiode has high sensitivity and reproducibility to halogen light respect to laser light.
Effect of ZnO facet on ethanol steam reforming over Co/ZnO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Ning; Zhang, He; Davidson, Stephen D.
2016-01-01
The effects of ZnO facets on ethanol steam reforming (ESR) were investigated over Co/ZnO catalysts synthesized using ZnO with different fractions of (10-10) non-polar facet. Co supported on ZnO with a higher fraction of (10-10) non-polar facet shows higher C-C cleavage activity and higher selectivity to CO2 (lower selectivity to CO) compared with Co supported on ZnO with less (10-10) non-polar facet exposed. The improved ethanol steam reforming performances are attributed to the high fraction of metallic Co stabilized by the ZnO (10-10) non-polar facet, which enhanced C-C cleavage and water-gas-shift (WGS) activities.
NASA Astrophysics Data System (ADS)
Ugryumova, Nadya; Bonesi, Marco; Matcher, Stephen J.
2008-02-01
Polarization-sensitive optical coherence tomography has been used to solve fast-axis fibre orientation in three dimension space. Previously we have demonstrated that the apparent variations in polar angle orientation of collagen fibers along sagittal ridge of equine third metacarpophalangeal joint exist. A quantitative method based on multiple angles of illumination has been proposed to determine the polar angle of the collagen fibers. This method however ignored the full 3D structure by assuming that the collagen fibers long-axis lay within the plane of incidence. A new quantitative method based on the theory of light propagation in uniaxial materials is described which avoids this assumption. To test this method we have performed control experiments on a sample of equine tendon (this tissue has well defined c-axis lying along the long-axis of the tendon). Several samples of tendon were cut to achieve a planar surface inclined at -20° to the long axis. Additional 30° rotation provided non-zero azimuthal angle. The surface was then imaged using incident beam angles -40°, -20°, 0, +20°, +40° in two orthogonal planes. Values for both the polar and azimuthal angles were then derived using a numerical optimisation procedure. Results agreed qualitatively with the nominal values but suggested that the accuracy was limited by our method of determining the apparent birefringence.
NASA Astrophysics Data System (ADS)
Ugryumova, Nadya; Matcher, Stephen J.
2007-02-01
Polarization-sensitive optical coherence tomography has been used to solve fast-axis fibre orientation in three dimension space. Previously we have demonstrated that the apparent variations in polar angle orientation of collagen fibers along sagittal ridge of equine third metacarpophalangeal joint exist. A quantitative method based on multiple angles of illumination has been proposed to determine the polar angle of the collagen fibers. This method however ignored the full 3-D structure by assuming that the collagen fibers long-axis lay within the plane of incidence. A new quantitative method based on the theory of light propagation in uniaxial materials is described which avoids this assumption. To test this method we have performed control experiments on a sample of equine tendon (this tissue has well defined c-axis lying along the long-axis of the tendon). Several samples of tendon were cut to achieve a planar surface inclined at -20° to the long axis. Additional 30° rotation provided non-zero azimuthal angle. The surface was then imaged using incident beam angles -40°, -20°, 0, +20°, +40° in two orthogonal planes. Values for both the polar and azimuthal angles were then derived using a numerical optimisation procedure. Results agreed qualitatively with the nominal values but suggested that the accuracy was limited by our method of determining the apparent birefringence.
Band-Gap Engineering in ZnO Thin Films: A Combined Experimental and Theoretical Study
NASA Astrophysics Data System (ADS)
Pawar, Vani; Jha, Pardeep K.; Panda, S. K.; Jha, Priyanka A.; Singh, Prabhakar
2018-05-01
Zinc oxide thin films are synthesized and characterized using x-ray diffraction, field-emission scanning electron microscopy, atomic force microscopy, and optical spectroscopy. Our results reveal that the structural, morphological, and optical properties are closely related to the stress of the sample provided that the texture of the film remains the same. The anomalous results are obtained once the texture is altered to a different orientation. We support this experimental observation by carrying out first-principles hybrid functional calculations for two different orientations of the sample and show that the effect of quantum confinement is much stronger for the (100) surface than the (001) surface of ZnO. Furthermore, our calculations provide a route to enhance the band gap of ZnO by more than 50% compared to the bulk band gap, opening up possibilities for wide-range industrial applications.
The grain size(s) of Black Hills Quartzite deformed in the dislocation creep regime
NASA Astrophysics Data System (ADS)
Heilbronner, Renée; Kilian, Rüdiger
2017-10-01
General shear experiments on Black Hills Quartzite (BHQ) deformed in the dislocation creep regimes 1 to 3 have been previously analyzed using the CIP method (Heilbronner and Tullis, 2002, 2006). They are reexamined using the higher spatial and orientational resolution of EBSD. Criteria for coherent segmentations based on c-axis orientation and on full crystallographic orientations are determined. Texture domains of preferred c-axis orientation (Y and B domains) are extracted and analyzed separately. Subdomains are recognized, and their shape and size are related to the kinematic framework and the original grains in the BHQ. Grain size analysis is carried out for all samples, high- and low-strain samples, and separately for a number of texture domains. When comparing the results to the recrystallized quartz piezometer of Stipp and Tullis (2003), it is found that grain sizes are consistently larger for a given flow stress. It is therefore suggested that the recrystallized grain size also depends on texture, grain-scale deformation intensity, and the kinematic framework (of axial vs. general shear experiments).
Effect of cobalt doping on the mechanical properties of ZnO nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vahtrus, Mikk; Šutka, Andris
In this work, we investigate the influence of doping on the mechanical properties of ZnO nanowires (NWs) by comparing the mechanical properties of pure and Co-doped ZnO NWs grown in similar conditions and having the same crystallographic orientation [0001]. The mechanical characterization included three-point bending tests made with atomic force microscopy and cantilever beam bending tests performed inside scanning electron microscopy. It was found that the Young's modulus of ZnO NWs containing 5% of Co was approximately a third lower than that of the pure ZnO NWs. Bending strength values were comparable for both materials and in both cases weremore » close to theoretical strength indicating high quality of NWs. Dependence of mechanical properties on NW diameter was found for both doped and undoped ZnO NWs. - Highlights: •Effect of Co doping on the mechanical properties of ZnO nanowires is studied. •Co substitutes Zn atoms in ZnO crystal lattice. •Co addition affects crystal lattice parameters. •Co addition results in significantly decreased Young's modulus of ZnO. •Bending strength for doped and undoped wires is close to the theoretical strength.« less
NASA Astrophysics Data System (ADS)
Labhane, P. K.; Sapkal, B. M.; Sonawane, G. H.
2018-05-01
Carbon (C) doped ZnO rod like nanoparticles were prepared by simple co-precipitation method. The effect of C doping on ZnO has been evaluated by using XRD, Williamson-Hall Plot, FESEM and EDX data. UV light assisted photocatalytic activities of prepared samples were evaluated spectrophotometrically by the degradation of methylene blue (MB). C doped ZnO shows excellent catalytic efficiency compared to pure ZnO, degrading MB completely within 100 min under UV light. Photocatalysis follows the first order kinetics law and the calculated apparent reaction kinetics rate constant suggest the better activity of C-ZnO.
Structural characterization of ZnO thin films grown on various substrates by pulsed laser deposition
NASA Astrophysics Data System (ADS)
Novotný, M.; Čížek, J.; Kužel, R.; Bulíř, J.; Lančok, J.; Connolly, J.; McCarthy, E.; Krishnamurthy, S.; Mosnier, J.-P.; Anwand, W.; Brauer, G.
2012-06-01
ZnO thin films were grown by pulsed laser deposition on three different substrates: sapphire (0 0 0 1), MgO (1 0 0) and fused silica (FS). The structure and morphology of the films were characterized by x-ray diffraction and scanning electron microscopy and defect studies were carried out using slow positron implantation spectroscopy (SPIS). Films deposited on all substrates studied in this work exhibit the wurtzite ZnO structure and are characterized by an average crystallite size of 20-100 nm. However, strong differences in the microstructure of films deposited on various substrates were found. The ZnO films deposited on MgO and sapphire single-crystalline substrates exhibit local epitaxy, i.e. a well-defined relation between film crystallites and the substrate. Domains with different orientation relationships with the substrate were found in both films. On the other hand, the film deposited on the FS substrate exhibits fibre texture with random lateral orientation of crystallites. Extremely high compressive in-plane stress of σ ˜ 14 GPa was determined in the film deposited on the MgO substrate, while the film deposited on sapphire is virtually stress-free, and the film deposited on the FS substrate exhibits a tensile in-plane stress of σ ˜ 0.9 GPa. SPIS investigations revealed that the concentration of open-volume defects in the ZnO films is substantially higher than that in a bulk ZnO single crystal. Moreover, the ZnO films deposited on MgO and sapphire single-crystalline substrates exhibit a significantly higher density of defects than the film deposited on the amorphous FS substrate.
NASA Astrophysics Data System (ADS)
Srivastava, Amar; Herng, T. S.; Saha, Surajit; Nina, Bao; Annadi, A.; Naomi, N.; Liu, Z. Q.; Dhar, S.; Ariando; Ding, J.; Venkatesan, T.
2012-06-01
We have investigated the photoluminescence and electrical properties of a coherently coupled interface consisting of a ZnO layer grown on top of an oriented VO2 layer on sapphire across the phase transition of VO2. The band edge and defect luminescence of the ZnO overlayer exhibit hysteresis in opposite directions induced by the phase transition of VO2. Concomitantly the phase transition of VO2 was seen to induce defects in the ZnO layer. Such coherently coupled interfaces could be of use in characterizing the stability of a variety of interfaces in situ and also for novel device application.
Cuba, M; Muralidharan, G
2015-11-01
The 30 wt% of ZnO (weight percentage of ZnO has been optimised) incorporated tris- (8-hydroxyquinoline)aluminum (Alq3) has been synthesised and coated on to glass substrates using dip coating method. The structural and optical properties of the Alq3/ZnO composite film after thermal annealing from 50 to 300 °C insteps 50° has been studied and reported. XRD pattern reveals the presence of crystalline ZnO in all the annealed films. The films annealed above 150 °C reveal the presence of crystalline Alq3 along with crystalline ZnO. The FTIR spectra confirm the presence of hydroxyquinoline and ZnO vibration in all the annealed composite films. The composite films annealed above 150 °C show a partial sublimation and degradation of hydroxyquinoline compounds. The ZnO incorporated composite films (Alq3/ZnO) exhibit two emission peaks, one corresponding to ZnO at 487 nm and another at 513 nm due to Alq3. The films annealed at 200 °C exhibit maximum photoluminescence (PL) intensity than pristine film at 513 nm when excited at 390 nm.
Oxides for sustainable photovoltaics with earth-abundant materials
NASA Astrophysics Data System (ADS)
Wagner, Alexander; Stahl, Mathieu; Ehrhardt, Nikolai; Fahl, Andreas; Ledig, Johannes; Waag, Andreas; Bakin, Andrey
2014-03-01
Energy conversion technologies are aiming to extremely high power capacities per year. Nontoxicity and abundance of the materials are the key requirements to a sustainable photovoltaic technology. Oxides are among the key materials to reach these goals. We investigate the influence of thin buffer layers on the performance of an ZnO:Al/buffer/Cu2O solar cells. Introduction of a thin ZnO or Al2O3 buffer layer, grown by thermal ALD, between ZnO:Al and Cu2O resulted in 45% increase of the solar cell efficiency. VPE growth of Cu2O employing elemental copper and pure oxygen as precursor materials is presented. The growth is performed on MgO substrates with the (001) orientation. On- and off- oriented substrates have been employed and the growth results are compared. XRD investigations show the growth of the (110) oriented Cu2O for all temperatures, whereas at a high substrate temperature additional (001) Cu2O growth occurs. An increase of the oxygen partial pressure leads to a more pronounced 2D growth mode, whereby pores between the islands still remain. The implementation of off-axis substrates with 3.5° and 5° does not lead to an improvement of the layer quality. The (110) orientation remains predominant, the grain size decreases and the FWHM of the (220) peak increases. From the AFM images it is concluded, that the (110) surface grows with a tilt angle to the substrate surface.
The effect of size, orientation and alloying on the deformation of AZ31 nanopillars
NASA Astrophysics Data System (ADS)
Aitken, Zachary H.; Fan, Haidong; El-Awady, Jaafar A.; Greer, Julia R.
2015-03-01
We conducted uniaxial compression of single crystalline Mg alloy, AZ31 (Al 3 wt% and Zn 1 wt%) nanopillars with diameters between 300 and 5000 nm with two distinct crystallographic orientations: (1) along the [0001] c-axis and (2) at an acute angle away from the c-axis, nominally oriented for basal slip. We observe single slip deformation for sub-micron samples nominally oriented for basal slip with the deformation commencing via a single set of parallel shear offsets. Samples compressed along the c-axis display an increase in yield strength compared to basal samples as well as significant hardening with the deformation being mostly homogeneous. We find that the "smaller is stronger" size effect in single crystals dominates any improvement in strength that may have arisen from solid solution strengthening. We employ 3D-discrete dislocation dynamics (DDD) to simulate compression along the [0001] and [ 11 2 bar 2 ] directions to elucidate the mechanisms of slip and evolution of dislocation microstructure. These simulations show qualitatively similar stress-strain signatures to the experimentally obtained stress-strain data. Simulations of compression parallel to the [ 11 2 bar 2 ] direction reveal the activation and motion of only -type dislocations and virtually no dislocation junction formation. Computations of compression along [0001] show the activation and motion of both
NASA Astrophysics Data System (ADS)
Uchida, Hiroshi; Ichinose, Daichi; Shiraishi, Takahisa; Shima, Hiromi; Kiguchi, Takanori; Akama, Akihiko; Nishida, Ken; Konno, Toyohiko J.; Funakubo, Hiroshi
2017-10-01
For the application of electronic devices using ferroelectric/piezoelectric components, one-axis-oriented tetragonal Pb(Zr0.40Ti0.60)O3 (PZT) films with thicknesses of up to 1 µm were fabricated with the aid of a Ca2Nb3O10 nanosheet (ns-CN) template for preferential crystal growth for evaluating their polarization switching behavior. The ns-CN template was supported on ubiquitous silicon (Si) wafer by a simple dip coating technique, followed by the repetitive chemical solution deposition (CSD) of PZT films. The PZT films were grown successfully with preferential crystal orientation of PZT(100) up to the thickness of 1020 nm. The (100)-oriented PZT film with ∼1 µm thickness exhibited unique polarization behavior of ferroelectric polarization, i.e., a marked increase in remanent polarization (P r) up to approximately 40 µC/cm2 induced by domain switching under high electric field, whereas the film with a lower thickness showed only a lower P r of approximately 11 µC/cm2 even under a high electric field. The ferroelectric property of the (100)-oriented PZT film after domain switching on ns-CN/Pt/Si can be comparable to those of (001)/(100)-oriented epitaxial PZT films.
Crystallographic Mapping of Guided Nanowires by Second Harmonic Generation Polarimetry
2017-01-01
The growth of horizontal nanowires (NWs) guided by epitaxial and graphoepitaxial relations with the substrate is becoming increasingly attractive owing to the possibility of controlling their position, direction, and crystallographic orientation. In guided NWs, as opposed to the extensively characterized vertically grown NWs, there is an increasing need for understanding the relation between structure and properties, specifically the role of the epitaxial relation with the substrate. Furthermore, the uniformity of crystallographic orientation along guided NWs and over the substrate has yet to be checked. Here we perform highly sensitive second harmonic generation (SHG) polarimetry of polar and nonpolar guided ZnO NWs grown on R-plane and M-plane sapphire. We optically map large areas on the substrate in a nondestructive way and find that the crystallographic orientations of the guided NWs are highly selective and specific for each growth direction with respect to the substrate lattice. In addition, we perform SHG polarimetry along individual NWs and find that the crystallographic orientation is preserved along the NW in both polar and nonpolar NWs. While polar NWs show highly uniform SHG along their axis, nonpolar NWs show a significant change in the local nonlinear susceptibility along a few micrometers, reflected in a reduction of 40% in the ratio of the SHG along different crystal axes. We suggest that these differences may be related to strain accumulation along the nonpolar wires. We find SHG polarimetry to be a powerful tool to study both selectivity and uniformity of crystallographic orientations of guided NWs with different epitaxial relations. PMID:28094977
Crystallographic Mapping of Guided Nanowires by Second Harmonic Generation Polarimetry.
Neeman, Lior; Ben-Zvi, Regev; Rechav, Katya; Popovitz-Biro, Ronit; Oron, Dan; Joselevich, Ernesto
2017-02-08
The growth of horizontal nanowires (NWs) guided by epitaxial and graphoepitaxial relations with the substrate is becoming increasingly attractive owing to the possibility of controlling their position, direction, and crystallographic orientation. In guided NWs, as opposed to the extensively characterized vertically grown NWs, there is an increasing need for understanding the relation between structure and properties, specifically the role of the epitaxial relation with the substrate. Furthermore, the uniformity of crystallographic orientation along guided NWs and over the substrate has yet to be checked. Here we perform highly sensitive second harmonic generation (SHG) polarimetry of polar and nonpolar guided ZnO NWs grown on R-plane and M-plane sapphire. We optically map large areas on the substrate in a nondestructive way and find that the crystallographic orientations of the guided NWs are highly selective and specific for each growth direction with respect to the substrate lattice. In addition, we perform SHG polarimetry along individual NWs and find that the crystallographic orientation is preserved along the NW in both polar and nonpolar NWs. While polar NWs show highly uniform SHG along their axis, nonpolar NWs show a significant change in the local nonlinear susceptibility along a few micrometers, reflected in a reduction of 40% in the ratio of the SHG along different crystal axes. We suggest that these differences may be related to strain accumulation along the nonpolar wires. We find SHG polarimetry to be a powerful tool to study both selectivity and uniformity of crystallographic orientations of guided NWs with different epitaxial relations.
NASA Astrophysics Data System (ADS)
Song, X.; Jordan, T. H.
2016-12-01
Body-wave and normal-mode observations have revealed an inner-core structure that is radially layered, axially anisotropic, and hemispherically asymmetric. Previous theoretical studies have examined the consistency of these features with the elasticity of iron crystals thought to dominate inner-core composition, but a fully consistent model has been elusive. Here we compare the seismic observation with effective-medium models derived from ab initio calculations of the elasticity tensors for hcp-Fe and bcc-Fe. Our estimates are based on Jordan's (GJI, 2015) effective medium theory, which is derived from a self-consistent, second-order Born approximation. The theory provides closed-form expressions for the effective elastic parameters of 3D anisotropic, heterogeneous media in which the local anisotropy is a constant hexagonal stiffness tensor C stochastically oriented about a constant symmetry axis \\hat{s} and the statistics of the small-scale heterogeneities are transversely isotropic in the plane perpendicular to \\hat{s}. The stochastic model is then described by a dimensionless "aspect ratio of the heterogeneity", 0 ≤ η < ∞, and a dimensionless "orientation ratio of the anisotropy", 0 ≤ ξ < ∞. The latter determines the degree to which the axis of C is aligned with \\hat{s}. We compute the loci of models with \\hat{s} oriented along the Earth's rotational axis ( \\hat{s} = north) by varying ξ and η for various ab initio estimates of C. We show that a lot of widely used estimates of C are inconsistent with most published normal-mode models of inner-core anisotropy. In particular, if the P-wave fast axis aligns with the rotational axis, which is required to satisfy the body-wave observations, then these hcp-Fe models predict that the fast polarization of the S waves is in the plane perpendicular to \\hat{s}, which disagrees with most normal-mode models. We have attempted to resolve this discrepancy by examining alternative hcp-Fe models, including radially anisotropic distributions of stochastic anisotropy and heterogeneity (i.e., where \\hat{s} = \\hat{r}), as well as bcc-Fe models. Our calculations constrain the form of C needed to satisfy the seismological inferences.
NASA Technical Reports Server (NTRS)
Vlasse, Marcus
1992-01-01
The development of pure phase 123 and Bi-based 2223 superconductors has been optimized. The pre-heat processing appears to be a very important parameter in achieving optimal physical properties. The synthesis of pure phases in the Bi-based system involves effects due to oxygen partial pressure, time, and temperature. Orientation/melt-sintering effects include the extreme c-axis orientation of Yttrium 123 and Bismuth 2223, 2212, and 2201 phases. This orientation is conductive to increasing critical currents. A procedure was established to substitute Sr for Ba in Y-123 single crystals.
Impact of Substrate Types on Structure and Emission of ZnO Nanocrystalline Films
NASA Astrophysics Data System (ADS)
Ballardo Rodriguez, I. Ch.; El Filali, B.; Díaz Cano, A. I.; Torchynska, T. V.
2018-02-01
Zinc oxide (ZnO) films were simultaneously synthesized by an ultrasonic spray pyrolysis (USP) method on p-type Si (100), silicon carbide polytype [6H-SiC (0001)], porous 6H-SiC and amorphous glass substrates with the aim of studying the impact of substrate types on the structure and emission of ZnO nanocrystalline films. Porous silicon carbide (P-SiC) was prepared by the electrochemical anodization method at a constant potential of 20 V and etching time of 12 min. ZnO films grown on the SiC and P-SiC substrates are characterized by a wurtzite crystal structure with preferential growth along the (002) direction and with grain sizes of 90-180 and 70-160 nm, respectively. ZnO films grown on the Si substrate have just some small irregular hexagonal islands. The amorphous glass substrate did not promote the formation of any regular crystal forms. The obtained x-ray diffraction and photoluminescence (PL) results have shown that the better ZnO film crystallinity and high PL intensity of near-band edge emissions were achieved in the films grown on the porous SiC and SiC substrates. The preferential growth and crystalline nature of ZnO films on the SiC substrate have been discussed from the point of view of the lattice parameter compatibility between ZnO and SiC crystals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Son, Hyo-Soo; Choi, Nak-Jung; Kim, Kyoung-Bo
Highlights: • Polar and semipolar ZnO NRs were successfully achieved by hydrothermal synthesis. • Semipolar and polar ZnO NRs were grown on ZnO and AZO/m-sapphire, respectively. • Al % of AZO/m-sapphire enhanced the lateral growth rate of polar ZnO NRs. - Abstract: We investigated the effect of an Al-doped ZnO film on the crystallographic direction of ZnO nanorods (NRs) using electrochemical deposition. From high-solution X-ray diffraction measurements, the crystallographic plane of ZnO NRs grown on (1 0 0) ZnO/m-plane sapphire was (1 0 1). The surface grain size of the (100) Al-doped ZnO (AZO) film decreased with increasing Al contentmore » in the ZnO seed layer, implying that the Al dopant accelerated the three-dimensional (3D) growth of the AZO film. In addition, it was found that with increasing Al doping concentration of the AZO seed layer, the crystal orientation of the ZnO NRs grown on the AZO seed layer changed from [1 0 1] to [0 0 1]. With increasing Al content of the nonpolar (1 0 0) AZO seed layer, the small surface grains with a few crystallographic planes of the AZO film changed from semipolar (1 0 1) ZnO NRs to polar (0 0 1) ZnO NRs due to the increase of the vertical [0 0 1] growth rate of the ZnO NRs owing to excellent electrical properties.« less
Trioctylphosphine-assisted morphology control of ZnO nanoparticles
NASA Astrophysics Data System (ADS)
Hong, Yun-Kun; Cho, GeonHee; Park, YoonSu; Oh, Soong Ju; Ha, Don-Hyung
2018-06-01
This study investigates the morphological change in colloidal ZnO nanoparticles (NPs) synthesized with trioctylphosphine (TOP). The addition of TOP to the synthesis causes an evolution in the shape of ZnO NPs to tadpole-like particles from quasi-spherical particles at 300 °C. The total length of the tadpole-like ZnO NPs can be modified by controlling the molar ratio of TOP to oleylamine (OLAM). The tadpole-like particles are elongated as the concentration of TOP increased but decreased when the addition of TOP is excessive. These tadpole-like ZnO NPs transform to quasi-spherical NPs regardless of the amount of TOP at a reaction time of 3 h at 300 °C. At 200 °C, the effect of TOP on the ZnO NP synthesis differs from that at 300 °C. The ZnO NPs synthesized by controlling the molar ratios of surfactant ligands (TOP:OLAM = 2:100 and 70:100) at 200 °C share similar amorphous structures, while a crystalline ZnO phase is formed when the reaction time is 3 h. X-ray photoelectron spectroscopy analysis shows that TOP influences the oxidation of ZnO and suggests that a combination of OLAM and TOP plays a role in controlling the shape of ZnO NPs. These results provide critical insights to the utilization of TOP for a shape controlling ligand in ZnO NPs and suggest a new route to design oxide NPs.
Trioctylphosphine-assisted morphology control of ZnO nanoparticles.
Hong, Yun-Kun; Cho, GeonHee; Park, YoonSu; Oh, Soong Ju; Ha, Don-Hyung
2018-06-01
This study investigates the morphological change in colloidal ZnO nanoparticles (NPs) synthesized with trioctylphosphine (TOP). The addition of TOP to the synthesis causes an evolution in the shape of ZnO NPs to tadpole-like particles from quasi-spherical particles at 300 °C. The total length of the tadpole-like ZnO NPs can be modified by controlling the molar ratio of TOP to oleylamine (OLAM). The tadpole-like particles are elongated as the concentration of TOP increased but decreased when the addition of TOP is excessive. These tadpole-like ZnO NPs transform to quasi-spherical NPs regardless of the amount of TOP at a reaction time of 3 h at 300 °C. At 200 °C, the effect of TOP on the ZnO NP synthesis differs from that at 300 °C. The ZnO NPs synthesized by controlling the molar ratios of surfactant ligands (TOP:OLAM = 2:100 and 70:100) at 200 °C share similar amorphous structures, while a crystalline ZnO phase is formed when the reaction time is 3 h. X-ray photoelectron spectroscopy analysis shows that TOP influences the oxidation of ZnO and suggests that a combination of OLAM and TOP plays a role in controlling the shape of ZnO NPs. These results provide critical insights to the utilization of TOP for a shape controlling ligand in ZnO NPs and suggest a new route to design oxide NPs.
NASA Astrophysics Data System (ADS)
Renjith, A. R.; Mamtani, Manish A.; Urai, Janos L.
2016-01-01
We ask the question whether petrofabric data from anisotropy of magnetic susceptibility (AMS) analysis of deformed quartzites gives information about shape preferred orientation (SPO) or crystallographic preferred orientation (CPO) of quartz. Since quartz is diamagnetic and has a negative magnetic susceptibility, 11 samples of nearly pure quartzites with a negative magnetic susceptibility were chosen for this study. After performing AMS analysis, electron backscatter diffraction (EBSD) analysis was done in thin sections prepared parallel to the K1K3 plane of the AMS ellipsoid. Results show that in all the samples quartz SPO is sub-parallel to the orientation of the magnetic foliation. However, in most samples no clear correspondance is observed between quartz CPO and K1 (magnetic lineation) direction. This is contrary to the parallelism observed between K1 direction and orientation of quartz c-axis in the case of undeformed single quartz crystal. Pole figures of quartz indicate that quartz c-axis tends to be parallel to K1 direction only in the case where intracrystalline deformation of quartz is accommodated by prism
Drepper, F; Mathis, P
1997-02-11
The photosynthetic reaction center (RC) and its secondary electron donor the water-soluble cytochrome (cyt) c2 from the purple bacterium Rhodobacter sphaeroides have been used in cross-linked and non-cross-linked complexes, oriented in compressed gels or partially dried multilayers, to study the respective orientation of the primary donor P (BChl dimer) and of cyt c2. Three methods were used: (i) Polarized optical absorption spectra at 295 and 10 K were measured and the linear dichroism of the two individual transitions (Qx, Qy), which are nearly degenerate within the alpha-band of reduced cyt c2, was determined. Attribution of the polarization directions to the molecular axes within the heme plane yielded the average cyt orientation in the complexes. (ii) Time-resolved flash absorption measurements using polarized light allowed determination of the orientation of cyt c2 in complexes which differ in their kinetics of electron transfer. (iii) EPR spectroscopy of ferricyt c2 in cross-linked RC-cyt c2 complexes was used to determine the angle between the heme and the membrane plane. The results suggest the following structural properties for the docking of cyt c2 to the RC: (i) In cross-linked complexes, the two cytochromes displaying half-lives of 0.7 and 60 micros for electron transfer to P+ are similarly oriented (difference < 10 degrees). (ii) For cross-linked cyt c2 the heme plane is parallel to the symmetry axis of the RC (0 degrees +/- 10 degrees). Moreover, the Qy transition, which is assumed to be polarized within the ring III-ring I direction of the heme plane, makes an angle of 56 degrees +/- 1 degree with the symmetry axis. (iii) The dichroism spectrum for the fast phase (0.7 micros) for the non-cross-linked cyt c2-RC complex suggests an orientation similar to that of cross-linked cyt c2, but the heme plane is tilted about 20 degrees closer to the membrane. An alternative model is that two or more bound states of cyt c2 with heme plane tilt angles between 0 degrees and 30 degrees allow the fast electron transfer. Zero-length cross-linking of cyt c2 may take place in one of these bound states. These orientations of cyt c2 are compared to different structural models of RC-cyt c2 complexes proposed previously. The relation of the two kinetic phases observed in cross-linked cyt c2 complexes to biphasic kinetics of the mobile reaction partners is discussed with respect to the dynamic electrostatic interactions during the formation of a docking complex and its dissociation. A mechanism is proposed in which a pre-orientation of cyt c2 relative to the membrane plane occurs by interaction of its strong electrostatic dipole with the negative surface charges of the RC. The optimal matching of the oppositely charged surfaces of the two proteins necessitates further rotation of the cyt around its dipole axis.
Costa, Saionara V; Gonçalves, Agnaldo S; Zaguete, Maria A; Mazon, Talita; Nogueira, Ana F
2013-09-21
In this report, hierarchical ZnO nano- and microstructures were directly grown for the first time on a bacterial cellulose substrate and on two additional different papers by hydrothermal synthesis without any surface modification layer. Compactness and smoothness of the substrates are two important parameters that allow the growth of oriented structures.
V T, Fidal; T S, Chandra
2017-06-01
Biosensing of NADH on bare electrodes has drawbacks such as high over-potential and poisoning during the oxidation reaction. To overcome this challenge a different approach has been undertaken by incorporating neutral red (NR) in Al doped ZnO (AZO) thin films using one-pot chemical bath deposition (CBD). The surface morphology of the films was hexagonal nanorods along the c-axis, perpendicular to the substrate. The thickness of the thin films were ranging from 400 to 3000nm varying dependent on time of deposition (30 to 150min). The average diameter of the nanorods was larger in the presence of neutral red (NR-AZO) with ~300nm in contrast to its absence (AZO) with ~200nm. The density of the packing of nanorods was dependent on the citrate concentration used during deposition. Control over the dopant concentration in the films was achieved by varying the area of Al foil used in the deposition solution. The selected area diffraction (SAED) and X-ray diffraction (XRD) indicated 002 plane of orientation in the nanorods. FTIR and FT-Raman analysis revealed conserved structure of NR and AZO. Chronoamperometric (CA) analysis showed a sensitivity of 0.45μAcm -2 mM -1 and LoD of 22μM within the range 0.075-4mM of NADH. The biological sensing of NADH was validated by physical adsorption of NAD + dependent-lactate dehydrogenase (LDH) on NR-AZO. CA showed sensitivity of 0.56μAcm -2 mM -1 and LoD for lactate was 27μM in the range of 0.1-1mM of lactate. Further validation with real-time serum sample shows that LDH/NR-AZO correlates with the clinical values. The distinction in this study is that the organic mediator like neutral red has been incorporated into the grain structure of the ZnO thin film whereas other study with the mediators have only attempted surface functionalization. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editor: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lappalainen, Jyrki; Lantto, Vilho; Frantti, Johannes; Hiltunen, Jussi
2006-06-01
Microstructure, film orientation, and optical transmission spectra of polycrystalline Nd-modified Pb(ZrxTi1-x)O3 films were studied as a function of film thickness. Pulsed laser deposition was used for the fabrication of films with thickness from 80to465nm on single-crystal MgO(100) substrates. Raman spectroscopy, x-ray diffraction, and spectrophotometry measurements were utilized in the film characterization. With the decreasing film thickness, films first oriented with c axis perpendicular to film surface, and then, after some critical thickness, changed to a-axis orientation. At the same time, compressive stress increased up to 1.3GPa and a clear blueshift of the optical absorption edge was found in transmission spectra.
NASA Astrophysics Data System (ADS)
Hu, Yu Min; Li, Jung Yu; Chen, Nai Yun; Chen, Chih Yu; Han, Tai Chun; Yu, Chin Chung
2017-02-01
The crystallinity and intrinsic defects of transparent conducting oxide (TCO) films have a high impact on their optical and electrical properties and therefore on the performance of devices incorporating such films, including flat panel displays, electro-optical devices, and solar cells. The optical and electrical properties of TCO films can be modified by tailoring their deposition parameters, which makes proper understanding of these parameters crucial. Magnetron sputtering is the most adaptable method for preparing TCO films used in industrial applications. In this study, we investigate the direct and inter-property correlation effects of sputtering power (PW) on the crystallinity, intrinsic defects, and optical and electrical properties of Al-doped ZnO (AZO) TCO films. All of the films were preferentially c-axis-oriented with a wurtzite structure and had an average transmittance of over 80% in the visible wavelength region. Scanning electron microscopy images revealed significantly increased AZO film grain sizes for PW ≥ 150 W, which may lead to increased conductivity, carrier concentration, and optical band gaps but decreased carrier mobility and in-plane compressive stress in AZO films. Photoluminescence results showed that, with increasing PW, the near band edge emission gradually dominates the defect-related emissions in which zinc interstitial (Zni), oxygen vacancy (VO), and oxygen interstitial (Oi) are possibly responsible for emissions at 3.08, 2.8, and 2.0 eV, respectively. The presence of Zni- and Oi-related emissions at PW ≥ 150 W indicates a slight increase in the presence of Al atoms substituted at Zn sites (AlZn). The presence of Oi at PW ≥ 150 W was also confirmed by X-ray photoelectron spectroscopy results. These results clearly show that the crystallinity and intrinsic-defect type of AZO films, which dominate their optical and electrical properties, may be controlled by PW. This understanding may facilitate the development of TCO-based optoelectronic devices for industrial production.
NASA Astrophysics Data System (ADS)
Nair, Manjula G.; Malakar, Meenakshi; Mohapatra, Saumya R.; Chowdhury, Avijit
2018-05-01
This research reports the observation of bipolar resistive switching memory in ZnO nanorod based polymer nanocomposites. We synthesized ZnO nanorods by wet-chemical method and characterized them using XRD, UV-VIS spectroscopy and SEM. The synthesized materials have hexagonal ZnO phase with grain size of 24 nm and having strong orientation along (101) direction as observed from XRD. The SEM micrograph confirms the formation of ZnO nanorods with diameter in the range of 10 to 20 nm and length of the order of 1 µm. From optical absorption spectra the band gap is estimated to be 2.42 eV. ZnO nanorods were dispersed in PVDF-HFP polymer matrix to prepare the nanocomposite. This nanocomposite was used as active layer in the devices having sandwich structure of ITO/PVDF-HFP+ZnO nanorods/Al. Bipolar non-volatile memory was observed with ON-OFF resistance ratio of the order of 103 and with a wide voltage window of 2.3V. The switching mechanism could be due to the trapping and de-trapping of electrons by the ZnO nanorods in the nanocomposite during ON and OFF states respectively.
Huang, Heh-Chang; Hsieh, Tsung-Eong
2010-07-23
ZnO particles with an average size of about 5 nm were prepared via a sol-gel chemical route and the silane coupling agent, (3-glycidyloxypropyl)-trimethoxysilane (GPTS), was adopted to enhance the dispersion of the ZnO nanoparticles in ethyl glycol (EG) solution. A ZnO surface potential as high as 66 mV was observed and a sedimentation test showed that the ZnO precursor solution remains transparent for six months of storage, elucidating the success of surface modification on ZnO nanoparticles. The ZnO thin films were then prepared by spin coating the precursor solution on a Si wafer and annealing treatments at temperatures up to 500 degrees C were performed for subsequent preparation of ZnO thin film transistors (TFTs). Microstructure characterization revealed that the coalescence of ZnO nanoparticles occurs at temperatures as low as 200 degrees C to result in a highly uniform, nearly pore-free layer. However, annealing at higher temperatures was required to remove organic residues in the ZnO layer for satisfactory device performance. The 500 degrees C-annealed ZnO TFT sample exhibited the best electrical properties with on/off ratio = 10(5), threshold voltage = 17.1 V and mobility (micro) = 0.104 cm(2) V(-1) s(-1).
NASA Astrophysics Data System (ADS)
Hameed, M. Shahul; Princice, J. Joseph; Babu, N. Ramesh; Zahirullah, S. Syed; Deshmukh, Sampat G.; Arunachalam, A.
2018-05-01
Transparent conductive Sn doped ZnO nanorods have been deposited at various doping level by spray pyrolysis technique on glass substrate. The structural, surface morphological and optical properties of these films have been investigated with the help of X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscope (AFM) and UV-Vis spectrophotometer respectively. XRD patterns revealed a successful high quality growth of single crystal ZnO nanorods with hexagonal wurtzite structure having (002) preferred orientation. The scanning electron microscope (SEM) image of the prepared films exposed the uniform distribution of Sn doped ZnO nanorod shaped grains. All these films were highly transparent in the visible region with average transmittance of 90%.
Soft-solution route to ZnO nanowall array with low threshold power density
NASA Astrophysics Data System (ADS)
Jang, Eue-Soon; Chen, Xiaoyuan; Won, Jung-Hee; Chung, Jae-Hun; Jang, Du-Jeon; Kim, Young-Woon; Choy, Jin-Ho
2010-07-01
ZnO nanowall array (ZNWA) has been directionally grown on the buffer layer of ZnO nanoparticles dip-coated on Si-wafer under a soft solution process. Nanowalls on substrate are in most suitable shape and orientation not only as an optical trap but also as an optical waveguide due to their unique growth habit, V[011¯0]≫V[0001]≈V[0001¯]. Consequently, the stimulated emission at 384 nm through nanowalls is generated by the threshold power density of only 25 kW/cm2. Such UV lasing properties are superior to those of previously reported ZnO nanorod arrays. Moreover, there is no green (defect) emission due to the mild procedure to synthesize ZNWA.
Zn nanoparticle formation in FIB irradiated single crystal ZnO
NASA Astrophysics Data System (ADS)
Pea, M.; Barucca, G.; Notargiacomo, A.; Di Gaspare, L.; Mussi, V.
2018-03-01
We report on the formation of Zn nanoparticles induced by Ga+ focused ion beam on single crystal ZnO. The irradiated materials have been studied as a function of the ion dose by means of atomic force microscopy, scanning electron microscopy, Raman spectroscopy and transmission electron microscopy, evidencing the presence of Zn nanoparticles with size of the order of 5-30 nm. The nanoparticles are found to be embedded in a shallow amorphous ZnO matrix few tens of nanometers thick. Results reveal that ion beam induced Zn clustering occurs producing crystalline particles with the same hexagonal lattice and orientation of the substrate, and could explain the alteration of optical and electrical properties found for FIB fabricated and processed ZnO based devices.
NASA Astrophysics Data System (ADS)
Shibata, Yosei; Matsuzaki, Tomoya; Ishinabe, Takahiro; Fujikake, Hideo
2018-06-01
In this study, we analyzed organic semiconducting single crystals composed of benzothienobenzothiophene derivatives (2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene, C8-BTBT) grown by nematic-phase liquid crystal (LC) solvent. As a result, we clarified that the crystal b-axis direction of the C8-BTBT single crystals was consistent with the LC alignment direction. By optical evaluation and simulation based on density functional theory, we found that the C8-BTBT single crystals in LC solvent exhibited a novel molecular conformation having alkyl chains oriented toward the b-axis.
Effect of Er3+ doping on structural, morphological and photocatalytical properties of ZnO thin films
NASA Astrophysics Data System (ADS)
Bouhouche, S.; Bensouici, F.; Toubane, M.; Azizi, A.; Otmani, A.; Chebout, K.; Kezzoula, F.; Tala-Ighil, R.; Bououdina, M.
2018-05-01
In this research work, structure, microstructure, optical and photocatalytic properties of undoped and Erbium doped nanostructured ZnO thin films prepared by sol-gel dip-coating are investigated. X-ray diffraction (XRD) analysis indicates that the deposited films crystallize within the hexagonal wurtzite-type structure with a preferential growth orientation along (002) plane. Morphological observations using scanning electron microscopy (SEM) reveal important influence of Er concentration; displaying homogeneous and dense aspect for undoped to 0.3% then grid-like morphology for 0.4 and 0.5%. UV/vis/NIR transmittance spectroscopy spectra display a transmittance over 70%, and small variation in the energy gap energy 3.263–3.278 eV. Wettability test of ZnO thin films surface ranges from hydrophilic aspect for pure ZnO to hydrophobic one for Er doped ZnO, and the contact angle is found to increase from 58.7° for pure ZnO up to 98.4° for 0.4% Er doped ZnO. The photocatalytic activity measurements evaluated using the degradation of methylene blue (MB) under UV light irradiation demonstrate that undoped ZnO film shows higher photocatalytic activity compared to Er doped ZnO films, which may be attributed to the deterioration of films’crystallinity resulting in lower transmittance.
Gordon, Brian J; Dapena, Jesús
2013-01-04
Inaccuracy in determining the orientation of the upper arm about its longitudinal axis (twist orientation) has been a pervasive problem in sport biomechanics research. The purpose of this study was to develop a method to improve the calculation of the upper arm twist orientation in dynamic sports activities. The twist orientation of the upper arm is defined by the orientation of its mediolateral axis. The basis for the new method is that at any angle in the flexion/extension range of an individual's elbow, it is possible to define a true mediolateral axis and also a surrogate mediolateral axis perpendicular to the plane containing the shoulder, elbow and wrist joints. The difference between the twist orientations indicated by these two versions of the mediolateral axis will vary from one elbow angle to another, but if the elbow joint deforms equally in different activities, for any given subject the difference should be constant at any given value of the elbow angle. Application of the new method required individuals to execute sedate elbow extension trials prior to the dynamic trials. Three-dimensional motion analysis of the sedate extension trials allowed quantification of the difference between the true and surrogate mediolateral axes for all angles in the entire flexion/extension range of an individual's elbow. This made it possible to calculate in any dynamic trial the twist orientation defined by the true mediolateral axis from the twist orientation defined by the surrogate mediolateral axis. The method was tested on a wooden model of the arm. Copyright © 2012 Elsevier Ltd. All rights reserved.
Spherulitic Growth of Coral Skeletons and Synthetic Aragonite: Nature’s Three-Dimensional Printing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Chang-Yu; Marcus, Matthew A.; Frazier, Matthew J.
Coral skeletons were long assumed to have a spherulitic structure, that is, a radial distribution of acicular aragonite (CaCO 3) crystals with their c-axes radiating from series of points, termed centers of calcification (CoCs). This assumption was based on morphology alone, not on crystallography. In this paper, we measure the orientation of crystals and nanocrystals and confirm that corals grow their skeletons in bundles of aragonite crystals, with their c-axes and long axes oriented radially and at an angle from the CoCs, thus precisely as expected for feather-like or “plumose” spherulites. Furthermore, we find that in both synthetic and coralmore » aragonite spherulites at the nanoscale adjacent crystals have similar but not identical orientations, thus demonstrating by direct observation that even at nanoscale the mechanism of spherulite formation is non-crystallographic branching (NCB), as predicted by theory. Finally, synthetic aragonite spherulites and coral skeletons have similar angle spreads, and angular distances of adjacent crystals, further confirming that coral skeletons are spherulites. This is important because aragonite grows anisotropically, 10 times faster along the c-axis than along the a-axis direction, and spherulites fill space with crystals growing almost exclusively along the c-axis, thus they can fill space faster than any other aragonite growth geometry, and create isotropic materials from anisotropic crystals. Greater space filling rate and isotropic mechanical behavior are key to the skeleton’s supporting function and therefore to its evolutionary success. Finally, in this sense, spherulitic growth is Nature’s 3D printing.« less
Spherulitic Growth of Coral Skeletons and Synthetic Aragonite: Nature’s Three-Dimensional Printing
Sun, Chang-Yu; Marcus, Matthew A.; Frazier, Matthew J.; ...
2017-05-31
Coral skeletons were long assumed to have a spherulitic structure, that is, a radial distribution of acicular aragonite (CaCO 3) crystals with their c-axes radiating from series of points, termed centers of calcification (CoCs). This assumption was based on morphology alone, not on crystallography. In this paper, we measure the orientation of crystals and nanocrystals and confirm that corals grow their skeletons in bundles of aragonite crystals, with their c-axes and long axes oriented radially and at an angle from the CoCs, thus precisely as expected for feather-like or “plumose” spherulites. Furthermore, we find that in both synthetic and coralmore » aragonite spherulites at the nanoscale adjacent crystals have similar but not identical orientations, thus demonstrating by direct observation that even at nanoscale the mechanism of spherulite formation is non-crystallographic branching (NCB), as predicted by theory. Finally, synthetic aragonite spherulites and coral skeletons have similar angle spreads, and angular distances of adjacent crystals, further confirming that coral skeletons are spherulites. This is important because aragonite grows anisotropically, 10 times faster along the c-axis than along the a-axis direction, and spherulites fill space with crystals growing almost exclusively along the c-axis, thus they can fill space faster than any other aragonite growth geometry, and create isotropic materials from anisotropic crystals. Greater space filling rate and isotropic mechanical behavior are key to the skeleton’s supporting function and therefore to its evolutionary success. Finally, in this sense, spherulitic growth is Nature’s 3D printing.« less
NASA Astrophysics Data System (ADS)
Veselov, A. G.; Elmanov, V. I.; Kiryasova, O. A.; Nikulin, Yu. V.
2018-01-01
Effect of material of metal sublayer (aluminum, vanadium, chromium, iron, cobalt, nickel, and copper) and deposition configuration on the formation of the oblique and straight texture in the ZnO films is studied. The films that are synthesized in a dc magnetron sputtering system. It is shown that the piezoactive ZnO films with oblique texture that can generate shear waves are formed on the Cr and V metal sublayers in the shifted deposition configuration when the substrate is shifted relative to the magnetron axis toward the region of the target erosion. The piezoactive ZnO films with the straight structure that can generate longitudinal waves are formed on a chemically pure Al sublayer in the symmetric deposition configuration when the substrate is centered with respect to the target. Changes of the sublayer material in both deposition configurations or preliminary oxidation of the sublayer lead to the formation of the piezoactive ZnO films with mixed texture that excite shear and longitudinal waves. Chemical etching is used to show that the ZnO films with the oblique and straight textures exhibit piezoactive properties and can generate hypersound at thicknesses of no less than about 0.3 and about 0.9 μm, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, L.; Zheng, Z.; Phukan, H.
Knowledge of the critical resolved shear stress (CRSS) values of different slip modes is important for accurately modeling plastic deformation of hexagonal materials. Here, we demonstrate that CRSS can be directly measured with an in-situ high energy X-ray diffraction microscopy (HEDM) experiment. A commercially pure Ti tensile specimen was deformed up to 2.6% strain. In-situ far-field HEDM experiments were carried out to track the evolution of crystallographic orientations, centers of masses, and stress states of 1153 grains in a material volume of 1.1mm×1mm×1mm. Predominant prismatic slip was identified in 18 grains, where the orientation change occurred primarily by rotation aroundmore » the c-axis during specimen deformation. By analyzing the resolved shear stress on individual slip systems, the estimated CRSS for prismatic slip is 96±18 MPa. Predominant basal slip was identified in 22 other grains, where the 2 orientation change occurred primarily by tilting the c-axis about an axis in the basal plane. The estimated CRSS for basal slip is 127±33 MPa. The ratio of CRSS basal/CRSS prismatic is in the range of 1.7-2.1. From indirect assessment, the CRSS for pyramidal < c+a > slip is likely greater than 240MPa. Lastly, grain size and free surface effects on the CRSS value in different grains are also examined.« less
Wang, L.; Zheng, Z.; Phukan, H.; ...
2017-05-07
Knowledge of the critical resolved shear stress (CRSS) values of different slip modes is important for accurately modeling plastic deformation of hexagonal materials. Here, we demonstrate that CRSS can be directly measured with an in-situ high energy X-ray diffraction microscopy (HEDM) experiment. A commercially pure Ti tensile specimen was deformed up to 2.6% strain. In-situ far-field HEDM experiments were carried out to track the evolution of crystallographic orientations, centers of masses, and stress states of 1153 grains in a material volume of 1.1mm×1mm×1mm. Predominant prismatic slip was identified in 18 grains, where the orientation change occurred primarily by rotation aroundmore » the c-axis during specimen deformation. By analyzing the resolved shear stress on individual slip systems, the estimated CRSS for prismatic slip is 96±18 MPa. Predominant basal slip was identified in 22 other grains, where the 2 orientation change occurred primarily by tilting the c-axis about an axis in the basal plane. The estimated CRSS for basal slip is 127±33 MPa. The ratio of CRSS basal/CRSS prismatic is in the range of 1.7-2.1. From indirect assessment, the CRSS for pyramidal < c+a > slip is likely greater than 240MPa. Lastly, grain size and free surface effects on the CRSS value in different grains are also examined.« less
Dimensions and aspect ratios of natural ice crystals
Um, J.; McFarquhar, G. M.; Hong, Y. P.; ...
2015-04-15
During the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE) in the tropics, the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) in the Arctic, and the 2010 Small PARTicles In CirrUS (SPARTICUS) campaign at mid-latitudes, high-resolution images of ice crystals were recorded by a Cloud Particle Imager at temperatures ( T) between -87 and 0 °C. The projected maximum dimension ( D'), length ( L'), and width ( W') of pristine columns, plates, and component bullets of bullet rosettes were measured using newly developed software, the Ice Crystal Ruler. The number of bullets in each bullet rosette was also measured.more » Column crystals were further distinguished as either horizontally oriented columns or columns with other orientations to eliminate any orientation effect on the measured dimensions. The dimensions and aspect ratios (AR, the dimension of the major axis divided by the dimension of the minor axis) of crystals were determined as functions of temperature, geophysical location, and type of cirrus. Dimensions of crystals generally increased with temperature. Columns and bullets had larger dimensions (i.e., W') of the minor axis (i.e., a axis) for a given dimension (i.e., D' or L') of the major axis (i.e., c axis), and thus smaller AR, as T increased, whereas this trend did not occur for plate crystals. The average number of branches in bullet rosettes was 5.50 ± 1.35 during three campaigns and 6.32 ± 1.34 (5.46 ± 1.34; 4.95 ± 1.01) during TWP-ICE (SPARTICUS; ISDAC). The AR of bullets increased with the number of branches in bullet rosettes. Most dimensions of crystals and ARs of columnar crystals measured during SPARTICUS were larger than those measured during TWP-ICE and ISDAC at −67 < T < -35 °C and at −40 < T < −15 °C, respectively. The relative occurrence of varying pristine habits depended strongly on cirrus type (i.e., anvil or non-anvil clouds), with plates especially occurring more frequently in anvils. Finally, the L– W relationships of columns derived using current data exhibited a strong dependence on temperature; similar relationships determined in previous studies were within the range of the current data.« less
Dimensions and aspect ratios of natural ice crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Um, J.; McFarquhar, G. M.; Hong, Y. P.
During the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE) in the tropics, the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) in the Arctic, and the 2010 Small PARTicles In CirrUS (SPARTICUS) campaign at mid-latitudes, high-resolution images of ice crystals were recorded by a Cloud Particle Imager at temperatures ( T) between -87 and 0 °C. The projected maximum dimension ( D'), length ( L'), and width ( W') of pristine columns, plates, and component bullets of bullet rosettes were measured using newly developed software, the Ice Crystal Ruler. The number of bullets in each bullet rosette was also measured.more » Column crystals were further distinguished as either horizontally oriented columns or columns with other orientations to eliminate any orientation effect on the measured dimensions. The dimensions and aspect ratios (AR, the dimension of the major axis divided by the dimension of the minor axis) of crystals were determined as functions of temperature, geophysical location, and type of cirrus. Dimensions of crystals generally increased with temperature. Columns and bullets had larger dimensions (i.e., W') of the minor axis (i.e., a axis) for a given dimension (i.e., D' or L') of the major axis (i.e., c axis), and thus smaller AR, as T increased, whereas this trend did not occur for plate crystals. The average number of branches in bullet rosettes was 5.50 ± 1.35 during three campaigns and 6.32 ± 1.34 (5.46 ± 1.34; 4.95 ± 1.01) during TWP-ICE (SPARTICUS; ISDAC). The AR of bullets increased with the number of branches in bullet rosettes. Most dimensions of crystals and ARs of columnar crystals measured during SPARTICUS were larger than those measured during TWP-ICE and ISDAC at −67 < T < -35 °C and at −40 < T < −15 °C, respectively. The relative occurrence of varying pristine habits depended strongly on cirrus type (i.e., anvil or non-anvil clouds), with plates especially occurring more frequently in anvils. Finally, the L– W relationships of columns derived using current data exhibited a strong dependence on temperature; similar relationships determined in previous studies were within the range of the current data.« less
Lim, Jun Hyung; Lee, Seung Muk; Kim, Hyun-Suk; Kim, Hyun You; Park, Jozeph; Jung, Seung-Boo; Park, Geun Chul; Kim, Jungho; Joo, Jinho
2017-01-01
We synthesized ZnO nanorods (NRs) using simple hydrothermal method, with the simultaneous incorporation of gallium (Ga) and indium (In), in addition, investigated the co-doping effect on the morphology, microstructure, electronic structure, and electrical/optical properties. The growth behavior of the doped NRs was affected by the nuclei density and polarity of the (001) plane. The c-axis parameter of the co-doped NRs was similar to that of undoped NRs due to the compensated lattice distortion caused by the presence of dopants that are both larger (In3+) and smaller (Ga3+) than the host Zn2+ cations. Red shifts in the ultraviolet emission peaks were observed in all doped NRs, owing to the combined effects of NR size, band gap renormalization, and the presence of stacking faults created by the dopant-induced lattice distortions. In addition, the NR/p-GaN diodes using co-doped NRs exhibited superior electrical conductivity compared to the other specimens due to the increase in the charge carrier density of NRs and the relatively large effective contact area of (001) planes. The simultaneous doping of In and Ga is therefore anticipated to provide a broader range of optical, physical, and electrical properties of ZnO NRs for a variety of opto-electronic applications. PMID:28155879
NASA Astrophysics Data System (ADS)
Rodriguez, JoséA.
1989-11-01
The chemisorptions of methyl (CH 3), acetylide (H-CC), chlorine (Cl) and phosphorus trifluoride (PF 3) on ZnO(0001) and of Cl on ZnO(101¯0) have been examined employing semi-em- pirical quantum-chemical calculations (INDO/S) and neutral clusters of limited size (Zn 13O 13). CH 3, H-CC and Cl appear as strong electron acceptors when adsorbed on Zn sites of ZnO. The chemisorption bonds of these molecules are almost pure σ-bonds and are largely localized on the adsorption site. An increase in the work function of ZnO surfaces upon adsorption of CH 3, H-CC and Cl is predicted. The PF 3 molecule is a very weak acceptor of electrons when adsorbed on a-top sites of ZnO(0001). The bonding mechanism of CH 3, H-CC, Cl and PF 3 on the ZnO(0001) surface involves primarily the HOMO and LUMO of the adsorbate and the Zn(4s,4p) orbitals of the substrate. The effects of chemisorption on the C-H bonds of CH 3 and H-CC, the C-C bond of H-CC, and the P-F bonds of PF 3 are examined. On the basis of these INDO/S results, the possible UPS spectra for CH 3, H-CC and PF 3 adsorbed on ZnO(0001) are discussed and compared with results for adsorption on transition-metal surfaces. A general picture of the chemisorption bond of alkyls, acetylides, alkoxides, carboxylates and halogens on a-top sites of ZnO(0001) is obtained by comparing our results for adsorption of CH 3, H-CC and Cl with those previously reported for adsorption of methoxy, OH and formate.
Influence of C or In buffer layer on photoluminescence behaviour of ultrathin ZnO film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saravanan, K., E-mail: saravanan@igcar.gov.in; Jayalakshmi, G.; Krishnan, R.
We study the effect of the indium or carbon buffer layer on the photoluminescence (PL) property of ZnO ultrathin films deposited on a Si(100) substrate. The surface morphology of the films obtained using scanning tunnelling microscopy shows spherical shaped ZnO nanoparticles of size ∼8 nm in ZnO/C/Si and ∼22 nm in ZnO/Si samples, while the ZnO/In/Si sample shows elliptical shaped ZnO particles. Further, the ZnO/C/Si sample shows densely packed ZnO nanoparticles in comparison with other samples. Strong band edge emission has been observed in the presence of In or C buffer layer, whereas the ZnO/Si sample exhibits poor PL emission. The influencemore » of C and In buffer layers on the PL behaviour of ZnO films is studied in detail using temperature dependent PL measurements in the range of 4 K–300 K. The ZnO/C/Si sample exhibits a multi-fold enhancement in the PL emission intensity with well-resolved free and bound exciton emission lines. Our experimental results imply that the ZnO films deposited on the C buffer layer showed higher particle density and better exciton emission desired for optoelectronic applications.« less
Effect of bath temperature on surface morphology and photocatalytic activity of ZnO nanorods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sriharan, N.; Senthil, T. S., E-mail: tssenthi@gmail.com; Muthukumarasamy, N.
2016-05-06
ZnO nanorods were prepared by using simple hydrothermal method using four different bath temperatures. All the prepared ZnO nanorods are annealed at 450°C and are characterized by using various techniques such as X-ray diffraction, UV spectra and scanning electron microscopy. Photocatalytic activity of the prepared ZnO nanorods is analyzed. A novel photocatalytic reactor designed with ZnO nanorods prepared at 90°C shows enhanced catalytic efficiency. The role of light irradiation time, bath temperature and surface morphology of the ZnO nanorods on the performance of photocatalytic reaction is analyzed.
NASA Astrophysics Data System (ADS)
Ryu, Y. R.; Zhu, S.; Look, D. C.; Wrobel, J. M.; Jeong, H. M.; White, H. W.
2000-06-01
p-Type ZnO obtained by arsenic (As) doping is reported for the first time. Arsenic-doped ZnO (ZnO : As) films have been deposited on (0 0 1)-GaAs substrates by pulsed laser ablation. The process of synthesizing p-type ZnO : As films was performed in an ambient gas of ultra-pure (99.999%) oxygen. The ambient gas pressure was 35 mTorr with the substrate temperature in the range 300-450°C. ZnO films grown at 400°C and 450°C are p-type and As is a good acceptor. The acceptor peak is located at 3.32 eV and its binding energy is about 100 meV. Acceptor concentrations of As atoms in ZnO films were in the range from high 10 17 to high 10 21 atoms/cm 3 as determined by secondary ion mass spectroscopy (SIMS) and Hall effect measurements.
Magnetic self-orientation of lyotropic hexagonal phases based on long chain alkanoic (fatty) acids.
Douliez, Jean-Paul
2010-07-06
It is presently shown that long chain (C14, C16, and C18) alkanoic (saturated fatty) acids can form magnetically oriented hexagonal phases in aqueous concentrated solutions in mixtures with tetrabutylammonium (TBAOH) as the counterion. The hexagonal phase occurred for a molar ratio, alkanoic acid/TBAOH, higher than 1, i.e., for an excess of fatty acid. The hexagonal phase melted to an isotropic phase (micelles) upon heating at a given temperature depending on the alkyl chain length. The self-orientation of the hexagonal phase occurred upon cooling from the "high-temperature" isotropic phase within the magnetic field. The long axis of the hexagonal phase was shown to self-orient parallel to the magnetic field as evidenced by deuterium solid-state NMR. This finding is expected to be of interest in the field of structural biology and materials chemistry for the synthesis of oriented materials.
Defect-induced magnetic order in pure ZnO films
NASA Astrophysics Data System (ADS)
Khalid, M.; Ziese, M.; Setzer, A.; Esquinazi, P.; Lorenz, M.; Hochmuth, H.; Grundmann, M.; Spemann, D.; Butz, T.; Brauer, G.; Anwand, W.; Fischer, G.; Adeagbo, W. A.; Hergert, W.; Ernst, A.
2009-07-01
We have investigated the magnetic properties of pure ZnO thin films grown under N2 pressure on a -, c -, and r -plane Al2O3 substrates by pulsed-laser deposition. The substrate temperature and the N2 pressure were varied from room temperature to 570°C and from 0.007 to 1.0 mbar, respectively. The magnetic properties of bare substrates and ZnO films were investigated by SQUID magnetometry. ZnO films grown on c - and a -plane Al2O3 substrates did not show significant ferromagnetism. However, ZnO films grown on r -plane Al2O3 showed reproducible ferromagnetism at 300 K when grown at 300-400°C and 0.1-1.0 mbar N2 pressure. Positron annihilation spectroscopy measurements as well as density-functional theory calculations suggest that the ferromagnetism in ZnO films is related to Zn vacancies.
NASA Astrophysics Data System (ADS)
Baek, Seung-Hye; Lee, Hyun-Jin; Lee, Sung-Nam
2018-06-01
We studied the thickness dependence of the crystallographic and optical properties of ZnO thin films grown on c-plane sapphire substrate using atomic layer deposition. High-resolution X-ray diffraction (HR-XRD) revealed two peaks at 34.5° and 36.2° in the initial growth stage of ZnO on the sapphire substrate, corresponding to the (002) and (101) ZnO planes, respectively. However, as the thickness of the ZnO film increased, the XRD intensity of the (002) ZnO peak increased drastically, compared with that of the (101) ZnO peak. This indicated that (002) and (101) ZnO were simultaneously grown on the c-plane sapphire substrate in the initial growth stage, and that (002) ZnO was predominantly grown with the increase in the thickness of ZnO film. The ZnO thin film presented an anisotropic surface structure at the initial stage, whereas the isotropic surface morphology was developed with an increase in the film thickness of ZnO. These observations were consistent with the HR-XRD results.
NASA Astrophysics Data System (ADS)
Hu, G. D.
2006-11-01
Bi3.15Nd0.85Ti3O12 (BNT0.85) thin films with (100) [α(100)=87.8%], (117) [α(117)=77.1%], and (001) [α(001)=98.8%] preferred orientations were deposited on Pt(100)/TiO2/SiO2/Si substrates using a metal organic decomposition process. The remanent polarization of (100)-predominant BNT0.85 film is about 50% and three times larger than those of (117)-preferred and (001)-oriented films, respectively, suggesting that the major polarization vector of BNT0.85 is close to the a axis rather than the c axis. This result can be further demonstrated by the piezoelectric measurements using an atomic force microscope in the piezoresponse mode.
NASA Astrophysics Data System (ADS)
Pahlke, Patrick; Sieger, Max; Ottolinger, Rick; Lao, Mayraluna; Eisterer, Michael; Meledin, Alexander; Van Tendeloo, Gustaaf; Hänisch, Jens; Holzapfel, Bernhard; Schultz, Ludwig; Nielsch, Kornelius; Hühne, Ruben
2018-04-01
Recent efforts in the development of YBa2Cu3O7-x (YBCO) coated conductors are devoted to the increase of the critical current I c in magnetic fields. This is typically realized by growing thicker YBCO layers as well as by the incorporation of artificial pinning centers. We studied the growth of doped YBCO layers with a thickness of up to 7 μm using pulsed laser deposition with a growth rate of about 1.2 nm s-1. Industrially fabricated ion-beam textured YSZ templates based on metal tapes were used as substrates for this study. The incorporation of BaHfO3 (BHO) or Ba2Y(Nb0.5Ta0.5)O6 (BYNTO) secondary phase additions leads to a denser microstructure compared to undoped films. A purely c-axis-oriented YBCO growth is preserved up to a thickness of about 4 μm, whereas misoriented texture components were observed in thicker films. The critical temperature is slightly reduced compared to undoped films and independent of film thickness. The critical current density J c of the BHO- and BYNTO-doped YBCO layers is lower at 77 K and self-field compared to pure YBCO layers; however, I c increases up to a thickness of 5 μm. A comparison between films with a thickness of 1.3 μm revealed that the anisotropy of the critical current density J c(θ) strongly depends on the incorporated pinning centers. Whereas BHO nanorods lead to a strong B∣∣c-axis peak, the overall anisotropy is significantly reduced by the incorporation of BYNTO forming a mixture of short c-axis-oriented nanorods and small (a-b)-oriented platelets. As a result, the J c values of the doped films outperform the undoped samples at higher fields and lower temperatures for most magnetic field directions.
Anisotropic magnetism and spin-dependent transport in Co nanoparticle embedded ZnO thin films
NASA Astrophysics Data System (ADS)
Li, D. Y.; Zeng, Y. J.; Pereira, L. M. C.; Batuk, D.; Hadermann, J.; Zhang, Y. Z.; Ye, Z. Z.; Temst, K.; Vantomme, A.; Van Bael, M. J.; Van Haesendonck, C.
2013-07-01
Oriented Co nanoparticles were obtained by Co ion implantation in crystalline ZnO thin films grown by pulsed laser deposition. Transmission electron microscopy revealed the presence of elliptically shaped Co precipitates with nanometer size, which are embedded in the ZnO thin films, resulting in anisotropic magnetic behavior. The low-temperature resistance of the Co-implanted ZnO thin films follows the Efros-Shklovskii type variable-range-hopping. Large negative magnetoresistance (MR) exceeding 10% is observed in a magnetic field of 1 T at 2.5 K and the negative MR survives up to 250 K (0.3%). The negative MR reveals hysteresis as well as anisotropy that correlate well with the magnetic properties, clearly demonstrating the presence of spin-dependent transport.
Growth of Vertically Aligned ZnO Nanowire Arrays Using Bilayered Metal Catalysts
2012-01-01
12] J. P. Liu, C. X. Guo, C. M. Li et al., “Carbon-decorated ZnO nanowire array: a novel platform for direct electrochemistry of enzymes and...cited. Vertically aligned, high-density ZnO nanowires (NWs) were grown for the first time on c-plane sapphire using binary alloys of Ni/Au or Cu/Au as...deleterious to the ZnO NW array growth. Significant improvement of the Au adhesion on the substrate was noted, opening the potential for direct
NASA Astrophysics Data System (ADS)
Cheng, Ke; Liu, Jingjing; Jin, Ranran; Liu, Jingling; Liu, Xinsheng; Lu, Zhangbo; Liu, Ya; Liu, Xiaolan; Du, Zuliang
2017-07-01
Aluminum-doped zinc oxide (AZO) has attained intensive attention as being a very good transparent conducting oxide for photovoltaic applications. In this work, AZO films have been deposited on glass substrate by radio frequency (RF) magnetron sputtering. The influences of substrate temperatures on morphological, structural, optical and electrical properties of AZO films were systematically investigated. The results indicate that all AZO films have the hexagonal structure with c-axis preferred orientation. Morphological and electrical measurements have revealed that the substrate temperatures have strong influence on the microstructure, optical and electrical properties of AZO films. The AZO film is highly transparent from ultraviolet up to near infrared range with highest average transparency exceeding 83%. The minimum resistivity is as low as 6.1 × 10-4 Ω cm. The carrier concentration and mobility are as high as 3.357 × 1020 cm-3 and 30.48 cm2/Vs, respectively. Finally, the performances of the AZO film are evaluated by its practical application in Cu(In1-xGax)Se2 (CIGS) photovoltaic device as a transparent electrode. Benefited from its highly transparent and conductive feature, the most efficient device reveals an efficiency of 7.8% with a short-circuit current density of 28.99 mA/cm2, an open-circuit voltage of 430 mV, and a fill factor of 62.44 under standard conditions.
Photoconductive ZnO Films Printed on Flexible Substrates by Inkjet and Aerosol Jet Techniques
NASA Astrophysics Data System (ADS)
Winarski, D. J.; Kreit, E.; Heckman, E. M.; Flesburg, E.; Haseman, M.; Aga, R. S.; Selim, F. A.
2018-02-01
Zinc oxide (ZnO) thin films have remarkable versatility in sensor applications. Here, we report simple ink synthesis and printing methods to deposit ZnO photodetectors on a variety of flexible and transparent substrates, including polyimide (Kapton), polyethylene terephthalate, cyclic olefin copolymer (TOPAS), and quartz. X-ray diffraction analysis revealed the dependence of the film orientation on the substrate type and sintering method, and ultraviolet-visible (UV-Vis) absorption measurements revealed a band edge near 380 nm. van der Pauw technique was used to measure the resistivity of undoped ZnO and indium/gallium-codoped ZnO (IGZO) films. IGZO films showed lower resistivity and larger average grain size compared with undoped ZnO films due to addition of In3+ and Ga3+, which act as donors. A 365-nm light-emitting diode was used to photoirradiate the films to study their photoconductive response as a function of light intensity at 300 K. The results revealed that ZnO films printed by aerosol jet and inkjet techniques exhibited five orders of magnitude photoconductivity, indicating that such films are viable options for use in flexible photodetectors.
Wang, Michael F Z; Hunter, Miranda V; Wang, Gang; McFaul, Christopher; Yip, Christopher M; Fernandez-Gonzalez, Rodrigo
2017-04-01
Embryos extend their anterior-posterior (AP) axis in a conserved process known as axis elongation. Drosophila axis elongation occurs in an epithelial monolayer, the germband, and is driven by cell intercalation, cell shape changes, and oriented cell divisions at the posterior germband. Anterior germband cells also divide during axis elongation. We developed image analysis and pattern-recognition methods to track dividing cells from confocal microscopy movies in a generally applicable approach. Mesectoderm cells, forming the ventral midline, divided parallel to the AP axis, while lateral cells displayed a uniform distribution of division orientations. Mesectoderm cells did not intercalate and sustained increased AP strain before cell division. After division, mesectoderm cell density increased along the AP axis, thus relieving strain. We used laser ablation to isolate mesectoderm cells from the influence of other tissues. Uncoupling the mesectoderm from intercalating cells did not affect cell division orientation. Conversely, separating the mesectoderm from the anterior and posterior poles of the embryo resulted in uniformly oriented divisions. Our data suggest that mesectoderm cells align their division angle to reduce strain caused by mechanical forces along the AP axis of the embryo. © 2017. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Singh, Satyendra Kumar; Hazra, Purnima
2018-05-01
This work reports fabrication and characterization of p-Si/ MgxZn1-xO thin film heterojunction diodes grown by RF magnetron sputtering technique. In this work, ZnO powder was mixed with MgO powder at per their weight percentage from 0 to 10% to prepare MgxZn1-xO target. The microstructural, surface morphological and optical properties of as-deposited p-Si/MgxZn1-xO heterostructure thin films have been studied using X-ray Diffraction, atomic force microscopy and variable angle ellipsometer. XRD spectra exhibit that undoped ZnO thin films has preferred crystal orientation in (002) plane. However, with increase in Mg-doping, ZnO (101) crystal plane is enhanced progressively due to phase segregation, even though preferred growth orientation of ZnO crystals is still towards (002) plane. The electrical characteristics of Si/ MgxZn1-xO heterojunction diodes with large area Al/Ti ohmic contacts are evaluated using semiconductor parameter analyzer. With rectification ratio of 27894, reverse saturation current of 20.5 nA and barrier height of 0.724 eV, Si/Mg0.5Zn0.95O thin film heterojunction diode is believed to have potential to be used in wider bandgap nanoelectronic device applications.
NASA Technical Reports Server (NTRS)
Graham, C. D., Jr.; Pope, D. P.; Kulkarni, S.; Wolf, M.
1978-01-01
The hot workability of polycrystalline silicon was studied. Uniaxail stress-strain curves are given for strain rates in the range of .0001 to .1/sec and temperatures from 1100 to 1380 C. At the highest strain rates at 1380 C axial strains in excess of 20% were easily obtainable without cracking. After deformations of 36%, recrystallization was completed within 0.1 hr at 1380 C. When the recrystallization was complete, there was still a small volume fraction of unrecyrstallized material which appeared very stable and may degrade the electronic properties of the bulk materials. Texture measurements showed that the as-produced vapor deposited polycrystalline rods have a 110 fiber texture with the 110 direction parallel to the growth direction and no preferred orientation about this axis. Upon axial compression perpendicular to the growth direction, the former 110 fiber axis changed to 111 and the compression axis became 110 . Recrystallization changed the texture to 110 along the former fiber axis and to 100 along the compression axis.
Methyl 4-amino-3-methylbenzoate
Li, Xiang; Yuan, Lian-Shan; Wang, Dan; Liu, Shan; Yao, Cheng
2008-01-01
In the molecule of the title compound, C9H11NO2, the methyl C and amino N atoms bonded to the benzene ring lie in the ring plane. Intramolecular C—H⋯O hydrogen bonding results in the formation of a five-membered planar ring, which is oriented at a dihedral angle of 2.73 (3)° with respect to the benzene ring, so they are nearly coplanar. In the crystal structure, intermolecular N—H⋯O hydrogen bonds link the molecules into chains elongated along the c axis and stacked along the b axis. PMID:21202370
On-chip surface modified nanostructured ZnO as functional pH sensors
NASA Astrophysics Data System (ADS)
Zhang, Qing; Liu, Wenpeng; Sun, Chongling; Zhang, Hao; Pang, Wei; Zhang, Daihua; Duan, Xuexin
2015-09-01
Zinc oxide (ZnO) nanostructures are promising candidates as electronic components for biological and chemical applications. In this study, ZnO ultra-fine nanowire (NW) and nanoflake (NF) hybrid structures have been prepared by Au-assisted chemical vapor deposition (CVD) under ambient pressure. Their surface morphology, lattice structures, and crystal orientation were investigated by scanning electron microscopy (SEM), x-ray diffraction (XRD), and transmission electron microscopy (TEM). Two types of ZnO nanostructures were successfully integrated as gate electrodes in extended-gate field-effect transistors (EGFETs). Due to the amphoteric properties of ZnO, such devices function as pH sensors. We found that the ultra-fine NWs, which were more than 50 μm in length and less than 100 nm in diameter, performed better in the pH sensing process than NW-NF hybrid structures because of their higher surface-to-volume ratio, considering the Nernst equation and the Gouy-Chapman-Stern model. Furthermore, the surface coating of (3-Aminopropyl)triethoxysilane (APTES) protects ZnO nanostructures in both acidic and alkaline environments, thus enhancing the device stability and extending its pH sensing dynamic range.
NASA Astrophysics Data System (ADS)
Makhlouf, Houssin; Karam, Chantal; Lamouchi, Amina; Tingry, Sophie; Miele, Philippe; Habchi, Roland; Chtourou, Radhouane; Bechelany, Mikhael
2018-06-01
In this work, ZnO nanowires (ZnO NWs) and urchin-like ZnO nanowires (U-ZnO NWs) based on self-assembled ordered polystyrene sphere (PS) were successfully prepared by combining atomic layer deposition (ALD) and electrochemical deposition (ECD) processes to build UV photosensors. The photo-response of the prepared samples was investigated and compared. The growth of the nanowires on self-assembled, ordered PS introduces a significant modification on the morphology, crystal orientation and grain size of U-ZnO NWs compared to randomly, vertically aligned ZnO NWs, and therefore improves the photo-response of U-ZnO NWs. The photocurrent may be produced by either a surface or bulk-related process. For ZnO NW-based photosensors, the photocurrent was monitored by a surface related process, whereas, it was mainly governed by a bulk related process for U-ZnO NWs, resulting in a higher and faster photo-response. The study of the rise and decay time constants for both materials showed that these parameters were strikingly sensitive to the optical properties.
ZnO thin film piezoelectric micromachined microphone with symmetric composite vibrating diaphragm
NASA Astrophysics Data System (ADS)
Li, Junhong; Wang, Chenghao; Ren, Wei; Ma, Jun
2017-05-01
Residual stress is an important factor affecting the sensitivity of piezoelectric micromachined microphone. A symmetric composite vibrating diaphragm was adopted in the micro electro mechanical systems piezoelectric microphone to decrease the residual stress and improve the sensitivity of microphone in this paper. The ZnO film was selected as piezoelectric materials of microphone for its higher piezoelectric coefficient d 31 and lower relative dielectric constant. The thickness optimization of piezoelectric film on square diaphragm is difficult to be fulfilled by analytic method. To optimize the thickness of ZnO films, the stress distribution in ZnO film was analyzed by finite element method and the average stress in different thickness of ZnO films was given. The ZnO films deposited using dc magnetron sputtering exhibits a densely packed structure with columnar crystallites preferentially oriented along (002) plane. The diaphragm of microphone fabricated by micromachining techniques is flat and no wrinkling at corners, and the sensitivity of microphone is higher than 1 mV Pa-1. These results indicate the diaphragm has lower residual stress.
Effects of Sn Layer Orientation on the Evolution of Cu/Sn Interfaces
NASA Astrophysics Data System (ADS)
Sun, Menglong; Zhao, Zhangjian; Hu, Fengtian; Hu, Anmin; Li, Ming; Ling, Huiqin; Hang, Tao
2018-03-01
The effects of Sn layer orientation on the evolution of Cu/Sn joint interfaces were investigated. Three Sn layers possessing (112), (321) and (420) orientations were electroplated on polycrystalline Cu substrates respectively. The orientations of Sn layer preserved during reflowing at 250 °C for 10 s. After aging at 150 °C for different time, the interfacial microstructures were observed from the cross-section and top-view. The alignment between the c-axis of Sn and Cu diffusion direction significantly sped up the Cu diffusion, leading to the thickest intermetallic compound layer formed in (112) joint. Two types of voids, namely, intracrystalline voids and grain islanding caused intercrystalline voids generated at Cu/Cu3Sn interfaces due to the different interdiffusion coefficients of Cu and Sn (112) oriented Sn/Cu joint produced many more voids than (321) joint, and no voids were detected in (420) joint. Therefore, to enhance the reliability of solder joints, using (420) oriented Sn as solder layer could be an efficient way.
Peternell, M; Russell-Head, D S; Wilson, C J L
2011-05-01
Two in situ plane-strain deformation experiments on norcamphor and natural ice using synchronous recording of crystal c-axis orientations have been performed with an automated fabric analyser and a newly developed sample press and deformation stage. Without interrupting the deformation experiment, c-axis orientations are determined for each pixel in a 5 × 5 mm sample area at a spatial resolution of 5 μm/pixel. In the case of norcamphor, changes in microstructures and associated crystallographic information, at a strain rate of ∼2 × 10(-5) s(-1), were recorded for the first time during a complete in situ deformation-cycle experiment that consisted of an annealing, deformation and post-deformation annealing path. In the case of natural ice, slower external strain rates (∼1 × 10(-6) s(-1)) enabled the investigation of small changes in the polycrystal aggregate's crystallography and microstructure for small amounts of strain. The technical setup and first results from the experiments are presented. © 2010 The Authors Journal of Microscopy © 2010 Royal Microscopical Society.
Synthesis of porous and nonporous ZnO nanobelt, multipod, and hierarchical nanostructure from Zn-HDS
NASA Astrophysics Data System (ADS)
Jang, Eue-Soon; Won, Jung-Hee; Kim, Young-Woon; Cheng, Zhen; Choy, Jin-Ho
2010-08-01
Zn based hydroxide double salts (Zn-HDS) with an interlayer spacing of 20 Å was produced by dissolving dumbbell-like ZnO crystal. The resulting Zn-HDS with a ribbon-like shape has a suitable morphology to explore the remarkably mild procedure for synthesis of ZnO nanobelts. We found that the intercalated water molecules into the Zn-HDS could play a key role in the ZnO nanobelts porosity. The nonporous ZnO nanobelts were successfully synthesized from the Zn-HDS by soft-solution process at 95 °C through mild dehydration agent as Na 2CO 3. As-synthesized ZnO nanobelts were grown along not only the [0 1 -1 0], but also the [2 -1 -1 0]. On the other hand, the porous ZnO nanobelts were obtained from the Zn-HDS by calcinations at 200 and 400 °C. In addition, flower-like ZnO multipod and hierarchical nanostructures were produced from the Zn-HDS by using of strong dehydration agent (NaOH) through hydrothermal reaction at 150 and 230 °C.
BHQ revisited (1) - Looking at grain size
NASA Astrophysics Data System (ADS)
Heilbronner, Renée; Kilian, Rüdiger; Tullis, Jan
2016-04-01
Black Hills Quartzite (BHQ) has been used extensively in experimental rock deformation for numerous studies. Coaxial and general shear experiments have been carried out, for example, to define the dislocation creep regimes of quartz (Hirth & Tullis, 1992), to determine the effect of annealing (Heilbronner & Tullis, 2002) or to study the development of texture and microstructure with strain (Heilbronner & Tullis, 2006). BHQ was also used to determine the widely used quartz piezometer by Stipp & Tullis (2003). Among the microstructure analyses that were performed in those original papers, grain size was usually determined using CIP misorientation images. However, the CIP method (= computer-integrated polarization microscopy, details in Heilbronner and Barrett, 2014) is only capable of detecting the c-axis orientation of optically uniaxial materials and hence is only capable of detecting grain boundaries between grains that differ in c-axis orientation. One of the puzzling results we found (Heilbronner & Tullis, 2006) was that the recrystallized grain size seemed to depend on the crystallographic preferred orientation of the domain. In other words the grain size did not only depend on the flow stress but also on the orientation of the c-axis w/r to the shear direction. At the time, no EBSD analysis (electron back scatter diffraction) was carried out and hence the full crystallographic orientation was not known. In principle it is therefore possible that we missed some grain boundaries (between grains with parallel c-axes) and miscalculated our grain sizes. In the context of recent shear experiments on quartz gouge at the brittle-viscous transition (see Richter et al., this conference), where EBSD is used to measure the recrystallized grain size, we wanted to re-measure the CIP grain sizes of our 2006 samples (deformed in regime 1, 2 and 3 of dislocation) in exactly the same way. In two companion posters we use EBSD orientation imaging to repeat, refine and expand the microstructure and texture analysis of Heilbronner & Tullis (2006). Here, in poster (1), we focus on the recrystallized grain size with the aim of (a) comparing CIP- and EBSD derived grain size measurements, (b) of comparing the recrystallized grain size of coaxially deformed and sheared BHQ and (c) in order to confirm that the quartz piezometer indeed depends on texture, and (d) to test if it also depends on the type of deformation (irrotational versus rotational deformation). References cited: Heilbronner, R., and S.D. Barrett (2014) Image Analysis in Earth Sciences, Springer. Heilbronner, R., and J. Tullis (2002), The effect of static annealing on micro- structure and crystallographic preferred orientations of quartzites experimentally deformed in axial compression and shear, Geol. Soc. Spec. Publ., 200, 191 - 218. Heilbronner, R., and J. Tullis (2006), Evolution of c axis pole figures and grain size during dynamic recrystallization: Results from experimentally sheared quartzite. JGR, 111, B10202, doi:10.1029/2005JB004194, 2006 Hirth, G., and J. Tullis (1992), Dislocation creep regimes in quartz aggregates, JSG, 14, 145-159. Stipp, M., and J. Tullis (2003), The recrystallized grain size piezometer for quartz, Geophys. Res. Lett., 30(21), 2088, doi:10.1029/2003GL018444.
Fabric and texture at Siple Dome, Antarctica
Diprinzio, C.L.; Wilen, Lawrence A.; Alley, R.B.; Fitzpatrick, J.J.; Spencer, M.K.; Gow, A.J.
2005-01-01
Preferred c-axis orientations are present in the firn at Siple Dome, West Antarctica, and recrystallization begins as shallow as 200 m depth in ice below -20??C, based on digital analysis of c-axis fabrics, grain-sizes and other characteristics of 52 vertical thin sections prepared in the field from the kilometer-long Siple Dome ice core. The shallowest section analyzed, from 22 m, shows clustering of c axes toward the vertical. By 200 m depth, girdle fabric and other features of recrystallized ice are evident in layers (or regions), separated by layers (regions) of typically finer-grained ice lacking evidence of recrystallization. Ice from about 700-780 m depth, which was deposited during the last ice age, is especially fine-grained, with strongly vertical c axes, but deeper ice shows much larger crystals and strong evidence of recrystallization. Azimuthal asymmetry of some c-axis fabrics, trends in grain-size, and other indicators reveal additional information on processes and history of ice flow at Siple Dome.
Nanostructure and elastic modulus of single trabecula in bovine cancellous bone.
Yamada, Satoshi; Tadano, Shigeru; Fukuda, Sakurako
2014-11-07
We aimed to investigate the elastic modulus of trabeculae using tensile tests and assess the effects of nanostructure at the hydroxyapatite (HAp) crystal scale on the elastic modulus. In the experiments, 18 trabeculae that were at least 3mm in length in the proximal epiphysis of three adult bovine femurs were used. Tensile tests were conducted using a small tensile testing device coupled with microscopy under air-dried condition. The c-axis orientation of HAp crystals and the degree of orientation were measured by X-ray diffraction. To observe the deformation behavior of HAp crystals under tensile loading, the same tensile tests were conducted in X-ray diffraction measurements. The mineral content of specimens was evaluated using energy dispersive X-ray spectrometry. The elastic modulus of a single trabecula varied from 4.5 to 23.6 GPa, and the average was 11.5 ± 5.0 GPa. The c-axis of HAp crystals was aligned with the trabecular axis and the crystals were lineally deformed under tensile loading. The ratio of the HAp crystal strain to the tissue strain (strain ratio) had a significant correlation with the elastic modulus (r=0.79; P<0.001). However, the mineral content and the degree of orientation did not vary widely and did not correlate with the elastic modulus in this study. It suggests that the strain ratio may represent the nanostructure of a single trabecula and would determine the elastic modulus as well as mineral content and orientation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hot seeding for the growth of c-axis-oriented Nd-Ba-Cu-O
NASA Astrophysics Data System (ADS)
Chauhan, H. S.; Murakami, M.
2000-06-01
The fabrication of large single-grain RE-Ba-Cu-O (RE denotes rare earth elements) is essential for bulk applications. In the present study, we report on a hot-seeding method for growing Nd-Ba-Cu-O with Nd123 seed crystals. We made an arrangement, in which the Nd123 seed crystal can be transported to the centre of the furnace with a rod through a hole in a rubber cork and insulating stopper. The seed was placed in a small dip made in the rod, which can be turned to drop the seed on the sample. The advantage of this method is that perturbation in the growth conditions such as temperature and oxygen partial pressure can be minimized. Using this method we could grow large single-domain c-axis-oriented samples with the surface area larger than 3 cm×3 cm.
Schelhorn, Juliane; Neudorf, Ulrich; Schemuth, Haemi; Nensa, Felix; Nassenstein, Kai; Schlosser, Thomas W
2015-11-01
Patients with corrected tetralogy of Fallot (cToF) are prone to develop pulmonary regurgitation and right ventricular enlargement resulting in long-term complications, thus correct right ventricular volumetric monitoring is crucial. However, it remains controversial which cardiovascular magnetic resonance imaging (CMRI) slice orientation is most appropriate in cToF for the analysis of the right ventricular volume. To investigate which slice orientation is most suited for right ventricular volumetry in cToF we compared short-axis and axial slices, and furthermore we compared right ventricular data between CMRI and echocardiography. Thirty CMRI examinations of 27 patients with cToF were included retrospectively. Right ventricular end-diastolic (EDV) and end-systolic volume (ESV) were derived from short-axis and axial cine CMRI planes. Furthermore, pulmonary trunk forward flow in phase-contrast CMRI and right ventricular inner diastolic diameter in echocardiography (R VIDdiast) were measured. By Bland-Altman and variance analysis intra- and inter-observer agreement were assessed for cine CMRI data. By Pearson correlation CMRI cine and phase-contrast data and CMRI cine and echocardiographic data were compared. Intra- and inter-observer variability for right ventricular EDV were significantly lower in axial slices (P = 0.016, P = 0.010). For right ventricular ESV a trend towards a lower intra- and inter-observer variability in axial slices was found (P = 0.063, P = 0.138). Right ventricular stroke volume in short-axis (r = 0.872, P < 0.001) and in axial (r = 0.914, P < 0.001) planes correlated highly, respectively very highly with pulmonary trunk forward flow in phase-contrast CMRI. R VIDdiast correlated highly with right ventricular EDV assessed by short-axis and axial CMRI (P < 0.001, P < 0.001). Due to lower intra- and inter-observer variability, axial slices are recommended for right ventricular volumetry in cToF. © The Foundation Acta Radiologica 2014.
Effect of temperature on the electrical properties of Zn0.95M0.05O (M = Zn, Fe, Ni)
NASA Astrophysics Data System (ADS)
Sedky, A.; Mohamed, S. B.
2014-01-01
We report here the structural and electrical properties of Zn0.95M0.05O ceramic varistors, M = Zn, Ni and Fe. The samples were tested for phase purity and structural morphology by using X-Ray diffraction XRD and scanning electron microscope SEM techniques. The current-voltage characteristics J-E were obtained by dc electrical measurements in the temperature range of 300-500 K. Addition of doping did not influence the hexagonal wurtzite structure of ZnO ceramics. Furthermore, the lattice parameters ratio c/a for hexagonal distortion and the length of the bond parallel to the c axis, u were nearly unaffected. The average grain size was decreased from 1.57 μm for ZnO to 1.19 μm for Ni sample and to 1.22 μm for Fe sample. The breakdown field EB was decreased as the temperature increased, in the following order: Fe > Zn > Ni. The nonlinear region was clearly observed for all samples as the temperature increased up to 400 K and completely disappeared with further increase of temperature up to 500 K. The values of nonlinear coefficient, a were between 1.16 and 42 for all samples, in the following order: Fe > Zn > Ni. Moreover, the electrical conductivity s was gradually increased as the temperature increased up to 500 K, in the following order: Ni > Zn > Fe. On the other hand, the activation energies were 0.194 eV, 0.136 and 0.223 eV for all samples, in the following order: Fe, Zn and Ni. These results have been discussed in terms of valence states, magnetic moment and thermo-ionic emission, which were produced by the doping, and controlling the potential barrier of ZnO.
NASA Astrophysics Data System (ADS)
Chiu, I.-Non; Umetsu, Keiichi; Sereno, Mauro; Ettori, Stefano; Meneghetti, Massimo; Merten, Julian; Sayers, Jack; Zitrin, Adi
2018-06-01
We perform a three-dimensional triaxial analysis of 16 X-ray regular and 4 high-magnification galaxy clusters selected from the CLASH survey by combining two-dimensional weak-lensing and central strong-lensing constraints. In a Bayesian framework, we constrain the intrinsic structure and geometry of each individual cluster assuming a triaxial Navarro–Frenk–White halo with arbitrary orientations, characterized by the mass {M}200{{c}}, halo concentration {c}200{{c}}, and triaxial axis ratios ({q}{{a}}≤slant {q}{{b}}), and investigate scaling relations between these halo structural parameters. From triaxial modeling of the X-ray-selected subsample, we find that the halo concentration decreases with increasing cluster mass, with a mean concentration of {c}200{{c}}=4.82+/- 0.30 at the pivot mass {M}200{{c}}={10}15{M}ȯ {h}-1. This is consistent with the result from spherical modeling, {c}200{{c}}=4.51+/- 0.14. Independently of the priors, the minor-to-major axis ratio {q}{{a}} of our full sample exhibits a clear deviation from the spherical configuration ({q}{{a}}=0.52+/- 0.04 at {10}15{M}ȯ {h}-1 with uniform priors), with a weak dependence on the cluster mass. Combining all 20 clusters, we obtain a joint ensemble constraint on the minor-to-major axis ratio of {q}{{a}}={0.652}-0.078+0.162 and a lower bound on the intermediate-to-major axis ratio of {q}{{b}}> 0.63 at the 2σ level from an analysis with uniform priors. Assuming priors on the axis ratios derived from numerical simulations, we constrain the degree of triaxiality for the full sample to be { \\mathcal T }=0.79+/- 0.03 at {10}15{M}ȯ {h}-1, indicating a preference for a prolate geometry of cluster halos. We find no statistical evidence for an orientation bias ({f}geo}=0.93+/- 0.07), which is insensitive to the priors and in agreement with the theoretical expectation for the CLASH clusters.
NASA Astrophysics Data System (ADS)
Keong, Choo Cheng; Sunitha Vivek, Yamini; Salamatinia, Babak; Amini Horri, Bahman
2017-04-01
In this study, zinc oxide (ZnO) was prepared via extrusion-dripping method through an ion exchange mediated process using sodium alginate. The samples were synthesized at 500 °C and 600 °C to study the effect of calcination temperature. The morphology, microstructure and optical activity of the calcined ZnO nanoparticles were analyzed by TGA, FESEM and XRD. It was found that ZnO nanoparticles synthesized at 600 °C was of higher purity with high crystallinity. To enhance the photocatalytic efficiency of zinc oxide, ZnO/NCC films were synthesized at varying ZnO loading fractions of 10 wt%, 15 wt%, 20 wt% and 25 wt% and were evaluated by photodegradation of Methylene blue dye and the highest dye percentage removal is found to be 96% which is obtained at ZnO loadings of 25 wt%. The usage of ion-exchange process has shown promising results in producing ZnO of desirable characteristics.
Titan's interior from its rotation axis orientation and its Love number
NASA Astrophysics Data System (ADS)
Baland, Rose-Marie; Gabriel, Tobie; Axel, Lefèvre
2013-04-01
The tidal Love number k2 of Titan has been recently estimated from Cassini flybys radio-tracking and is consistent with the presence of a global ocean in Titan's interior, located between two ice layers (Iess et al. 2012), in accordance with prediction from interior and evolutionary models for Titan. Previously, the orientation of the rotation axis of Titan has been measured on the basis of radar images from Cassini (Stiles et al. 2008). Titan's obliquity, is about 0.3. The measured orientation is more consistent with the presence of a global internal liquid ocean than with an entirely solid Titan (Baland et al. 2011). The global topography data of Titan seem to indicate some departure from the hydrostatic shape expected for a synchronous satellite under the influence of its rotation and the static tides raised by the central planet (Zebker et al. 2009). This may be explained by a differential tidal heating in the ice shell which flattens the poles (Nimmo and Bills 2010). A surface more flattened than expected implies compensation in depth to explain the measured gravity coefficients C20 and C22 of Iess et al. (2012). Here, all layers are assumed to have a tri-axial ellipsoid shape, but with polar and equatorial flattenings that differ from the hydrostatic expected ones. We assess the influence of this non-hydrostatic shape on the conclusions of Baland et al. (2011), which developped a Cassini state model for the orientation of the rotation axis of a synchronous satellite having an internal liquid layer. We assess the possibility to constrain Titan's interior (and particularly the structure of the water/ice layer) from both the rotation axis orientation and the Love number. We consider a range of internal structure models consistent with the mean density and the mean radius of Titan, and made of a shell, an ocean, a mantle, and a core, from the surface to the center, with various possible compositions (e.g. ammonia mixed with water for the ocean). The internal structure models consistent with the measured orientation of the rotation axis and Love number still have to be examined with respect to other constrains, such as the shell thickness estimation derived from electric-field measurement of the Huyges probe (Béghin et al. 2012) and the expected temperature profile of the water/ice layer. For instance, a thin shell would imply a rather thick ocean, based on water (or water/ammonia) phase diagram.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deka, Angshuman; Nanda, Karuna Kar
2013-06-15
ZnO films have been grown via a vapour phase transport (VPT) on soda lime glass (SLG) and indium-tin oxide (ITO) coated glass. ZnO film on ITO had traces of Zn and C which gives them a dark appearance while that appears yellowish-white on SLG. X-ray photoelectron spectroscopy studies confirm the traces of C in the form of C-O. The photoluminescence studies reveal a prominent green luminescence band for ZnO film on ITO.
Plasma-assisted molecular beam epitaxy of ZnO on in-situ grown GaN/4H-SiC buffer layers
NASA Astrophysics Data System (ADS)
Adolph, David; Tingberg, Tobias; Andersson, Thorvald; Ive, Tommy
2015-04-01
Plasma-assisted molecular beam epitaxy (MBE) was used to grow ZnO (0001) layers on GaN(0001)/4H-SiC buffer layers deposited in the same growth chamber equipped with both N- and O-plasma sources. The GaN buffer layers were grown immediately before initiating the growth of ZnO. Using a substrate temperature of 440°C-445°C and an O2 flow rate of 2.0-2.5 sccm, we obtained ZnO layers with smooth surfaces having a root-mean-square roughness of 0.3 nm and a peak-to-valley distance of 3 nm shown by AFM. The FWHM for X-ray rocking curves recorded across the ZnO(0002) and ZnO(10bar 15) reflections were 200 and 950 arcsec, respectively. These values showed that the mosaicity (tilt and twist) of the ZnO film was comparable to corresponding values of the underlying GaN buffer. It was found that a substrate temperature > 450°C and a high Zn-flux always resulted in a rough ZnO surface morphology. Reciprocal space maps showed that the in-plane relaxation of the GaN and ZnO layers was 82.3% and 73.0%, respectively and the relaxation occurred abruptly during the growth. Room-temperature Hall-effect measurements showed that the layers were intrinsically n-type with an electron concentration of 1019 cm-3 and a Hall mobility of 50 cm2·V-1·s-1.
Electrical properties of Mg doped ZnO nanostructure annealed at different temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohamed, R., E-mail: ruziana12@gmail.com; Mamat, M. H., E-mail: hafiz-030@yahoo.com; Rusop, M., E-mail: nanouitm@gmail.com
In this work, ZincOxide (ZnO) nanostructures doped with Mg were successfully grown on the glass substrate. Magnesium (Mg) metal element was added in the ZnO host which acts as a doping agent. Different temperature in range of 250°C to 500°C was used in order to investigate the effect of annealing temperature of ZnO thin films. Field Emission Scanning Electron Microscopy (FESEM) was used to investigate the physical characteristic of ZnO thin films. FESEM results have revealed that ZnO nanorods were grown vertically aligned. The structural properties were determined by using X-Ray Diffraction (XRD) analysis. XRD results showed Mg doped ZnOmore » thin have highest crystalinnity at 500°C annealing temperature. The electrical properties were investigating by using Current-Voltage (I-V) measurement. I-V measurement showed the electrical properties were varied at different annealing temperature. The annealing temperature at 500°C has the highest electrical conductance properties.« less
NASA Astrophysics Data System (ADS)
Bazilah Rosli, Aimi; Awang, Zaiki; Sobihana Shariffudin, Shafinaz; Herman, Sukreen Hana
2018-03-01
Zinc Oxide (ZnO) nanostructures were deposited using chemical bath deposition (CBD) technique in water bath at 95 °C for 4 h. Post-deposition heat treatment in air ambient at various temperature ranging from 200-600 °C for 30 min was applied in order to enhance the electrical properties of ZnO nanostructures as the sensing membrane of extended-gate field effect transistor (EGFET) pH sensor. The as-deposited sample was prepared for comparison. The samples were characterized in terms of physical and sensing properties. FESEM images showed that scattered ZnO nanorods were formed for the as-deposited sample, and the morphology of the ZnO nanorods changed to ZnO nanoflowers when the heat treatment was applied from 200-600 °C. For sensing properties, the samples heated at 300 °C showed the higher sensitivity which was 39.9 mV/pH with the linearity of 0.9792. The sensing properties was increased with the increasing annealing treatment temperature up to 300 °C before decreased drastically.
Functional electrospun membranes
NASA Astrophysics Data System (ADS)
Ognibene, G.; Fragalà, M. E.; Cristaldi, D. A.; Blanco, I.; Cicala, G.
2016-05-01
In this study we combined electrospun PES nanofibers with ZnO nanostructures in order to obtain a hierarchical nanostructured hybrid material to be use for active water filtration membranes. It benefits of flexibility and high surface area of the polymeric nanofibers as well as of additional functionalities of ZnOnanostructures. First, randomly oriented nanofibers with diameters of 716nm ±365 nm were electrospun on a glass fibers substrate from a solution of PES and DMF-TOL(1:1). ZnO nanorods were grown onto the surface of electrospun PES fibers by a Chemical Bath Deposition (CBD) process. It was preceed by a seeding process necessary to form nucleation sites for the subsequent radially aligned growth of ZnO nanowires. The morfology of the fibers and the effect of the seeding time have been analysed by SEM. The amount of ZnO nanowires grown over electrospun nanofibers was determined as 45% by weight. The high purity and crystallinity of the asobtained products are confirmed by XRD since all reflection peaks can be indexed to hexagonal wurtzite ZnO.
Tailoring the morphology of electrodeposited ZnO and its photoluminescence properties
NASA Astrophysics Data System (ADS)
Cui, H.; Mollar, M.; Marí, B.
2011-01-01
High density ZnO columnar films with well-aligned and well-perpendicular to the surface of film were electrodeposited on ITO substrates by using an electrolyte consisting of a mix of water and organic solvent namely dimethylsulfoxide (DMSO). The effect of mixing ratio of water and DMSO on the growth of film has been examined critically. SEM images have shown that well-oriented ZnO quasi-nano columns were formed perpendicular to the substrate. At the same time we found there are three kinds of competitions for growth of ZnO crystalmorphology i.e. column, rod and needle like. The needle like morphology has high density with well-aligned structure. The reasons for the growth of films of different morphology and their photoluminescence (PL) properties have been presented and discussed. It has been found that the three-dimensional (3D) ordered ZnO structure exhibits high intensity PL band which may shift their position and intensity with the varying conditions of depositions.
Synthesis of ktenasite, a double hydroxide of zinc and copper, and its intercalation reaction
NASA Astrophysics Data System (ADS)
Xue, Mei; Chitrakar, Ramesh; Sakane, Kohji; Ooi, Kenta; Kobayashi, Shoichi; Ohnishi, Masayuki; Doi, Akira
2004-04-01
Ktenasite was synthesized by the simple method of mixing ZnO powder with CuSO 4 solution at room temperature. The X-ray diffraction pattern of synthesized ktenasite was very similar to that of mineral ktenasite. The lattice parameters were determined as a=0.559, b=0.616, c=2.374 nm and β=95.63°, which agreed comparatively well with those for mineral ktenasite. The synthesized ktenasite consisted of thin rectangular particles ranging in size from 2 to 4 μm in length. TEM observation suggested the formation of a super lattice structure in the a-axis direction and significant crystal growth in the b-axis direction. The intercalation reaction of sodium dodecyl sulfate (NaDS) with ktenasite showed that the intercalation took place accompanied by the expansion of basal spacing from 1.17 to 2.70 nm. The reaction progressed by the SO 42-/DS - anion exchange mechanism with the dissolution of interlayer [Zn(H 2O) 6]SO 4 salt.
Low cycle fatigue of MAR-M 200 single crystals at 760 and 870 deg C
NASA Technical Reports Server (NTRS)
Milligan, W. W.; Jayaraman, N.; Bill, R. C.
1984-01-01
Fully reversed low cycle fatigue tests were conducted on single crystals of the nickel-base superalloys Mar-M 200 at 760 C and 870 C. At 760 C, planar slip (octahedral) lead to orientation-dependent strain hardening and cyclic lives. Multiple slip crystals strain hardened the most, resulting in relatively high stress ranges and low lives. Single slip crystals strain hardened the least, resulting in relatively low stress ranges and higher lives. A preferential crack initiation site which was related to slip plane geometry was observed in single slip orientated crystals. At 870 C, the trends were quite different, and the slip character was much more homogeneous. As the tensile axis orientation deviated from 001 , the stress ranges increased and the cyclic lives decreased. Two possible mechanisms were proposed to explain the behavior: one is based on Takeuchi and Kuramoto's cube cross-slip model, and the other is based on orientation-dependent creep rates.
Candida tropicalis biofilm inhibition by ZnO nanoparticles and EDTA.
Jothiprakasam, Vinoth; Sambantham, Murugan; Chinnathambi, Stalin; Vijayaboopathi, Singaravel
2017-01-01
Biofilm of Candida tropicalis denote as a complex cellular congregation with major implication in pathogenesis. This lifestyle of fungus as a biofilm can inhibit immune system and antifungal therapy in treatment of infectious disease especially medical device associated chronic disease. In this study effects of Zinc Oxide (ZnO) nanoparticles and EDTA were evaluated on C. tropicalis biofilm by using different techniques. ZnO nanoparticles were synthesized from Egg albumin. To assay the formation of biofilm of yeast cells like Fluconazole-susceptible C. tropicalis (ATCC 13,803) and fluconazole-resistant standard strains of C. tropicalis (ATCC 750) were grown in 24 well plates and antifungal effect of ZnO and EDTA were evaluated on C. tropicalis biofilm using ATP bioluminescence and tetrasodium salt (XTT) reduction assays. Synthesized ZnO NPs and EDTA had effective antifungal properties at the concentration of 5.2, 8.6μg/ml for Fluconazole susceptible strain and 5.42, 10.8μg/ml Fluconazole resistant strains of C. tropicalis biofilms compared to fluconazole drug. In present study we conclude, ZnO considered as a new agent in field of prevention C. tropicalis biofilms especially biofilms formed surface of medical device. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Muslim, Muhammad; Habib, Md Ahsan; Mahmood, Abu Jafar; Islam, Tajmeri Selima Akhter; Ismail, Iqbal Mohmmad Ibrahim
2012-10-01
ZnO, comprising nanosize particles (approximately 40 nm) has been prepared by heating (300°C) ZnCO3, which was obtained as precipitate by mixing ZnSO4 and (NH4)2CO3 solutions. The prepared ZnO was characterized by X-ray diffraction, scanning electron microscopy (SEM), laser-induced breakdown spectroscopy, and adsorption studies. It has been used to catalyze the decolorization of Ponceau S (PS), a model diazo dye, in an aqueous suspension under visible light ( I ≈ 1.8 × 10-4 W cm-2). This ZnO was found to be more efficient as a photocatalyst compared to pristine ZnO. ZnO samples with higher temperatures (500°C and 700°C) show less catalytic activity. SEM images show that the particle size of ZnO increases with the increase in calcined temperature of ZnO through agglomeration, resulting in a decrease in surface area. Photodecolorization of PS is affected by its and ZnO concentrations, but unaffected by the initial pH of the solutions in the range of 4 to 7. Illumination for a sufficiently long time completely mineralizes the dye, but no Zn2+ can be detected in the clear solution. Photodegradation kinetics in the ZnO suspension obeys the Langmuir-Hinshelwood equation, and some activation of the ZnO surface by light is indicated.
Peng, Dungeng; Satterlee, James D.; Ma, Li-Hua; Dallas, Jerry L.; Smith, Kevin M.; Zhang, Xuhong; Sato, Michihiko; La Mar, Gerd N.
2011-01-01
Heme oxygenase, HO, from the pathogenic bacterium N. meningitidis, NmHO, which secures host iron, shares many properties with mammalian HOs, but also exhibits some key differences. The crystal structure appears more compact and the crystal-undetected C-terminus interacts with substrate in solution. The unique nature of substrate-protein, specifically pyrrole-I/II-helix-2, peripheral interactions in NmHO are probed by 2D 1H NMR to reveal unique structural features controlling substrate orientation. The thermodynamics of substrate orientational isomerism are mapped for substrates with individual vinyl → methyl → hydrogen substitutions and with enzyme C-terminal deletions. NmHO exhibits significantly stronger orientational preference, reflecting much stronger and selective pyrrole-I/II interactions with the protein matrix, than in mammalian HOs. Thus, replacing bulky vinyls with hydrogens results in a 180° rotation of substrate about the α,γ-meso axis in the active site. A "collapse" of the substrate pocket as substrate size decreases is reflected in movement of helix-2 toward the substrate as indicated by significant and selective increased NOESY cross peak intensity, increase in steric Fe-CN tilt reflected in the orientation of the major magnetic axis, and decrease in steric constraints controlling the rate of aromatic ring reorientation. The active site of NmHO appears "stressed" for native protohemin and its "collapse" upon replacing vinyls by hydrogen leads to a factor ~102 increase in substrate affinity. Interaction of the C-terminus with the active site destabilizes the crystallographic protohemin orientation by ~0.7 kcal/mol, which is consistent with optimizing the His207-Asp27 H-bond. Implications of the active site "stress" for product release are discussed. PMID:21870860
Radio-frequency oxygen-plasma-enhanced pulsed laser deposition of IGZO films
NASA Astrophysics Data System (ADS)
Chou, Chia-Man; Lai, Chih-Chang; Chang, Chih-Wei; Wen, Kai-Shin; Hsiao, Vincent K. S.
2017-07-01
We demonstrate the crystalline structures, optical transmittance, surface and cross-sectional morphologies, chemical compositions, and electrical properties of indium gallium zinc oxide (IGZO)-based thin films deposited on glass and silicon substrates through pulsed laser deposition (PLD) incorporated with radio-frequency (r.f.)-generated oxygen plasma. The plasma-enhanced pulsed laser deposition (PEPLD)-based IGZO thin films exhibited a c-axis-aligned crystalline (CAAC) structure, which was attributed to the increase in Zn-O under high oxygen vapor pressure (150 mTorr). High oxygen vapor pressure (150 mTorr) and low r.f. power (10 W) are the optimal deposition conditions for fabricating IGZO thin films with improved electrical properties.
Investigation of the non-volatile resistance change in noncentrosymmetric compounds
Herng, T. S.; Kumar, A.; Ong, C. S.; Feng, Y. P.; Lu, Y. H.; Zeng, K. Y.; Ding, J.
2012-01-01
Coexistence of polarization and resistance-switching characteristics in single compounds has been long inspired scientific and technological interests. Here, we report the non-volatile resistance change in noncentrosymmetric compounds investigated by using defect nanotechnology and contact engineering. Using a noncentrosymmetric material of ZnO as example, we first transformed ZnO into high resistance state. Then ZnO electrical polarization was probed and its domains polarized 180° along the [001]-axis with long-lasting memory effect (>25 hours). Based on our experimental observations, we have developed a vacancy-mediated pseudoferroelectricity model. Our first-principle calculations propose that vacancy defects initiate a spontaneous inverted domains nucleation at grain boundaries, and then they grow in the presence of an electrical field. The propagation of inverted domains follows the scanning tip motion under applied electrical field, leading to the growth of polarized domains over large areas. PMID:22905318
Magnetic domain configuration of (111)-oriented LaFeO 3 epitaxial thin films
Hallsteinsen, I.; Moreau, M.; Chopdekar, R. V.; ...
2017-08-22
In antiferromagnetic spintronics control of the domains and corresponding spin axis orientation is crucial for devices. Here we investigate the antiferromagnetic axis in (111)-oriented LaFeO 3 SrTiO 3 , which is coupled to structural twin domains. The structural domains have either the orthorhombic a- or b-axis along the in-plane <1more » $$\\bar{1}$$0> cubic directions of the substrate, and the corresponding magnetic domains have the antiferromagnetic axis in the sample plane. Six degenerate antiferromagnetic axes are found corresponding to the <1$$\\bar{1}$$0> and <11$$\\bar{2}$$> in-plane directions. This is in contrast to the biaxial anisotropy in (001)-oriented films and reflects how crystal orientation can be used to control magnetic anisotropy in antiferromagnets.« less
Clement, Marta; Olivares, Jimena; Capilla, Jose; Sangrador, Jesús; Iborra, Enrique
2012-01-01
We investigate the excitation and propagation of acoustic waves in polycrystalline aluminum nitride films along the directions parallel and normal to the c-axis. Longitudinal and transverse propagations are assessed through the frequency response of surface acoustic wave and bulk acoustic wave devices fabricated on films of different crystal qualities. The crystalline properties significantly affect the electromechanical coupling factors and acoustic properties of the piezoelectric layers. The presence of misoriented grains produces an overall decrease of the piezoelectric activity, degrading more severely the excitation and propagation of waves traveling transversally to the c-axis. It is suggested that the presence of such crystalline defects in c-axis-oriented films reduces the mechanical coherence between grains and hinders the transverse deformation of the film when the electric field is applied parallel to the surface. © 2012 IEEE
Li, G Z; Susner, M A; Bohnenstiehl, S D; Sumption, M D; Collings, E W
2015-12-01
High quality, c -axis oriented, MgB 2 thin films were successfully grown on 6H-SiC substrates using pulsed laser deposition (PLD) with subsequent in situ annealing. To obtain high purity films free from oxygen contamination, a dense Mg-B target was specially made from a high temperature, high pressure reaction of Mg and B to form large-grained (10~50 µm) MgB 2 . Microstructural analysis via electron microscopy found that the resulting grains of the film were composed of ultrafine columnar grains of 19-30 nm. XRD analysis showed the MgB 2 films to be c -axis oriented; the a -axis and c -axis lattice parameters were determined to be 3.073 ± 0.005 Å and 3.528 ± 0.010 Å, respectively. The superconducting critical temperature, T c,onset , increased monotonically as the annealing temperature was increased, varying from 25.2 K to 33.7 K. The superconducting critical current density as determined from magnetic measurements, J cm , at 5 K, was 10 5 A/cm 2 at 7.8 T; at 20 K, 10 5 A/cm 2 was reached at 3.1 T. The transport and pinning properties of these films were compared to "powder-in-tube" (PIT) and "internal-infiltration" (AIMI) processed wires. Additionally, examination of the pinning mechanism showed that when scaled to the peak in the pinning curve, the films follow the grain boundary, or surface, pinning mechanism quite well, and are similar to the response seen for C doped PIT and AIMI strands, in contrast to the behavior seen in undoped PIT wires, in which deviations are seen at high b ( b = B/B c2 ). On the other hand, the magnitude of the pinning force was similar for the thin films and AIMI conductors, unlike the values from connectivity-suppressed PIT strands.
Single ZnO nanowire-PZT optothermal field effect transistors.
Hsieh, Chun-Yi; Lu, Meng-Lin; Chen, Ju-Ying; Chen, Yung-Ting; Chen, Yang-Fang; Shih, Wan Y; Shih, Wei-Heng
2012-09-07
A new type of pyroelectric field effect transistor based on a composite consisting of single zinc oxide nanowire and lead zirconate titanate (ZnO NW-PZT) has been developed. Under infrared (IR) laser illumination, the transconductance of the ZnO NW can be modulated by optothermal gating. The drain current can be increased or decreased by IR illumination depending on the polarization orientation of the Pb(Zr(0.3)Ti(0.7))O(3) (PZT) substrate. Furthermore, by combining the photocurrent behavior in the UV range and the optothermal gating effect in the IR range, the wide spectrum of response of current by light offers a variety of opportunities for nanoscale optoelectronic devices.
NASA Astrophysics Data System (ADS)
Akazawa, Housei; Ueno, Yuko
2014-10-01
We report how the crystallinity and orientation of hydroxyapatite (HAp) films deposited on sapphire substrates depend on the crystallographic planes. Both solid-phase crystallization of amorphous HAp films and crystallization during sputter deposition at elevated temperatures were examined. The low-temperature epitaxial phase on C-plane sapphire substrates has c-axis orientated HAp crystals regardless of the crystallization route, whereas the preferred orientation switches to the (310) direction at higher temperatures. Only the symmetric stretching mode (ν1) of PO43- units appears in the Raman scattering spectra, confirming well-ordered crystalline domains. In contrast, HAp crystals grown on A-plane sapphire substrates are always oriented toward random orientations. Exhibiting all vibrational modes (ν1, ν3, and ν4) of PO43- units in the Raman scattering spectra reflects random orientation, violating the Raman selection rule. If we assume that Raman intensities of PO43- units represent the crystallinity of HAp films, crystallization terminating the surface with the C-plane is hindered by the presence of excess H2O and OH species in the film, whereas crystallization at random orientations on the A-plane sapphire is rather promoted by these species. Such contrasting behaviors between C-plane and A-plane substrates will reflect surface-plane dependent creation of crystalline seeds and eventually determine the orientation of resulting HAp films.
Effect of ZnO buffer layer on phase transition properties of vanadium dioxide thin films
NASA Astrophysics Data System (ADS)
Zhu, Huiqun; Li, Lekang; Li, Chunbo
2016-03-01
VO2 thin films were prepared on ZnO buffer layers by DC magnetron sputtering at room temperature using vanadium target and post annealing at 400 °C. The ZnO buffer layers with different thickness deposited on glass substrates by magnetron sputtering have a high visible and near infrared optical transmittance. The electrical resistivity and the phase transition properties of the VO2/ZnO composite thin films in terms of temperature were investigated. The results showed that the resistivity variation of VO2 thin film with ZnO buffer layer deposited for 35 min was 16 KΩ-cm. The VO2/ZnO composite thin films exhibit a reversible semiconductor-metal phase transition at 48 °C.
Contour symmetry detection: the influence of axis orientation and number of objects.
Friedenberg, J; Bertamini, M
2000-09-01
Participants discriminated symmetrical from random contours connected by straight lines to form part of one- or two-objects. In experiment one, symmetrical contours were translated or reflected and presented at vertical, horizontal, and oblique axis orientations with orientation constant within blocks. Translated two-object contours were detected more easily than one, replicating a "lock-and-key" effect obtained previously for vertical orientations only [M. Bertamini, J.D. Friedenberg, M. Kubovy, Acta Psychologica, 95 (1997) 119-140]. A second experiment extended these results to a wider variety of axis orientations under mixed block conditions. The pattern of performance for translation and reflection at different orientations corresponded in both experiments, suggesting that orientation is processed similarly in the detection of these symmetries.
Pan, Jiaqi; Sheng, Yingzhuo; Zhang, Jingxiang; Huang, Peng; Zhang, Xin; Feng, Boxue
2015-04-22
Carbon quantum dots (C QDs)/p-type CuAlO2/n-type ZnO photoelectric bilayer film composites were prepared by a simple route, through which ZnO films were sputtered on crystal quartz substrates and CuAlO2 films were prepared by sol-gel on ZnO films and then these bilayer films were composited with C QDs on their surface. The characterization results indicated that C QDs were well combined with the surface of the CuAlO2 films. The photovoltage and photocurrent of these bilayer film composites were investigated under illumination and darkness switching, which demonstrated to be significantly enhanced compared with those of the CuAlO2/ZnO bilayer films. Through analysis, this enhancement of the photoconductivity was mainly attributed to C QDs with unique up-converted photoluminescence behavior.
Ion/proton-conducting apparatus and method
Yates, Matthew; Xue, Wei
2014-12-23
A c-axis-oriented HAP thin film synthesized by seeded growth on a palladium hydrogen membrane substrate. An exemplary synthetic process includes electrochemical seeding on the substrate, and secondary and tertiary hydrothermal treatments under conditions that favor growth along c-axes and a-axes in sequence. By adjusting corresponding synthetic conditions, an HAP this film can be grown to a controllable thickness with a dense coverage on the underlying substrate. The thin films have relatively high proton conductivity under hydrogen atmosphere and high temperature conditions. The c-axis oriented films may be integrated into fuel cells for application in the intermediate temperature range of 200-600.degree. C. The electrochemical-hydrothermal deposition technique may be applied to create other oriented crystal materials having optimized properties, useful for separations and catalysis as well as electronic and electrochemical applications, electrochemical membrane reactors, and in chemical sensors. Additional high-density and gas-tight HAP film compositions may be deposited using a two-step deposition method that includes an electrochemical deposition method followed by a hydrothermal deposition method. The two-step method uses a single hydrothermal deposition solution composition. The method may be used to deposit HAP films including but not limited to at least doped HAP films, and more particularly including carbonated HAP films. In addition, the high-density and gas-tight HAP films may be used in proton exchange membrane fuel cells.
Microwave Synthesized ZnO Nanorod Arrays for UV Sensors: A Seed Layer Annealing Temperature Study.
Pimentel, Ana; Ferreira, Sofia Henriques; Nunes, Daniela; Calmeiro, Tomas; Martins, Rodrigo; Fortunato, Elvira
2016-04-20
The present work reports the influence of zinc oxide (ZnO) seed layer annealing temperature on structural, optical and electrical properties of ZnO nanorod arrays, synthesized by hydrothermal method assisted by microwave radiation, to be used as UV sensors. The ZnO seed layer was produced using the spin-coating method and several annealing temperatures, ranging from 100 to 500 °C, have been tested. X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and spectrophotometry measurements have been used to investigate the structure, morphology, and optical properties variations of the produced ZnO nanorod arrays regarding the seed layer annealing temperatures employed. After the growth of ZnO nanorod arrays, the whole structure was tested as UV sensors, showing an increase in the sensitivity with the increase of seed layer annealing temperature. The UV sensor response of ZnO nanorod arrays produced with the seed layer annealed temperature of 500 °C was 50 times superior to the ones produced with a seed layer annealed at 100 °C.
Microwave Synthesized ZnO Nanorod Arrays for UV Sensors: A Seed Layer Annealing Temperature Study
Pimentel, Ana; Ferreira, Sofia Henriques; Nunes, Daniela; Calmeiro, Tomas; Martins, Rodrigo; Fortunato, Elvira
2016-01-01
The present work reports the influence of zinc oxide (ZnO) seed layer annealing temperature on structural, optical and electrical properties of ZnO nanorod arrays, synthesized by hydrothermal method assisted by microwave radiation, to be used as UV sensors. The ZnO seed layer was produced using the spin-coating method and several annealing temperatures, ranging from 100 to 500 °C, have been tested. X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and spectrophotometry measurements have been used to investigate the structure, morphology, and optical properties variations of the produced ZnO nanorod arrays regarding the seed layer annealing temperatures employed. After the growth of ZnO nanorod arrays, the whole structure was tested as UV sensors, showing an increase in the sensitivity with the increase of seed layer annealing temperature. The UV sensor response of ZnO nanorod arrays produced with the seed layer annealed temperature of 500 °C was 50 times superior to the ones produced with a seed layer annealed at 100 °C. PMID:28773423
Ahn, Joo-Seob; Kwon, Ji-Hye; Yang, Heesun
2013-06-01
ZnO film was grown on ZnO quantum dot seed layer-coated substrate by a low-temperature chemical bath deposition, where sodium citrate serves as a complexing agent for Zn2+ ion. The ZnO film deposited under the optimal condition exhibited a highly uniform surface morphology with a thickness of approimately 30 nm. For the fabrication of thin-film-transistor with a bottom-gate structure, ZnO film was chemically deposited on the transparent substrate of a seed layer-coated SiN(x)/ITO (indium tin oxide)/glass. As-deposited ZnO channel was baked at low temperatures of 60-200 degrees C to investigate the effect of baking temperature on electrical performances. Compared to the device with 60 degrees C-baked ZnO channel, the TFT performances of one with 200 degrees C-baked channel were substantially improved, exhibiting an on-off current ratio of 3.6 x 10(6) and a saturated field-effect mobility of 0.27 cm2/V x s.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oruc, Feyza B.; Aygun, Levent E.; Donmez, Inci
ZnO thin film transistors (TFTs) are fabricated on Si substrates using atomic layer deposition technique. The growth temperature of ZnO channel layers are selected as 80, 100, 120, 130, and 250 °C. Material characteristics of ZnO films are examined using x-ray photoelectron spectroscopy and x-ray diffraction methods. Stoichiometry analyses showed that the amount of both oxygen vacancies and interstitial zinc decrease with decreasing growth temperature. Electrical characteristics improve with decreasing growth temperature. Best results are obtained with ZnO channels deposited at 80 °C; I{sub on}/I{sub off} ratio is extracted as 7.8 × 10{sup 9} and subthreshold slope is extracted as 0.116 V/dec.more » Flexible ZnO TFT devices are also fabricated using films grown at 80 °C. I{sub D}–V{sub GS} characterization results showed that devices fabricated on different substrates (Si and polyethylene terephthalate) show similar electrical characteristics. Sub-bandgap photo sensing properties of ZnO based TFTs are investigated; it is shown that visible light absorption of ZnO based TFTs can be actively controlled by external gate bias.« less
Magnetic Compass Orientation in the European Eel
Durif, Caroline M. F.; Browman, Howard I.; Phillips, John B.; Skiftesvik, Anne Berit; Vøllestad, L. Asbjørn; Stockhausen, Hans H.
2013-01-01
European eel migrate from freshwater or coastal habitats throughout Europe to their spawning grounds in the Sargasso Sea. However, their route (∼ 6000 km) and orientation mechanisms are unknown. Several attempts have been made to prove the existence of magnetoreception in Anguilla sp., but none of these studies have demonstrated magnetic compass orientation in earth-strength magnetic field intensities. We tested eels in four altered magnetic field conditions where magnetic North was set at geographic North, South, East, or West. Eels oriented in a manner that was related to the tank in which they were housed before the test. At lower temperature (under 12°C), their orientation relative to magnetic North corresponded to the direction of their displacement from the holding tank. At higher temperatures (12–17°C), eels showed bimodal orientation along an axis perpendicular to the axis of their displacement. These temperature-related shifts in orientation may be linked to the changes in behavior that occur between the warm season (during which eels are foraging) and the colder fall and winter (during which eels undertake their migrations). These observations support the conclusion that 1. eels have a magnetic compass, and 2. they use this sense to orient in a direction that they have registered moments before they are displaced. The adaptive advantage of having a magnetic compass and learning the direction in which they have been displaced becomes clear when set in the context of the eel’s seaward migration. For example, if their migration is halted or blocked, as it is the case when environmental conditions become unfavorable or when they encounter a barrier, eels would be able to resume their movements along their old bearing when conditions become favorable again or when they pass by the barrier. PMID:23554997
Magnetic compass orientation in the European eel.
Durif, Caroline M F; Browman, Howard I; Phillips, John B; Skiftesvik, Anne Berit; Vøllestad, L Asbjørn; Stockhausen, Hans H
2013-01-01
European eel migrate from freshwater or coastal habitats throughout Europe to their spawning grounds in the Sargasso Sea. However, their route (~ 6000 km) and orientation mechanisms are unknown. Several attempts have been made to prove the existence of magnetoreception in Anguilla sp., but none of these studies have demonstrated magnetic compass orientation in earth-strength magnetic field intensities. We tested eels in four altered magnetic field conditions where magnetic North was set at geographic North, South, East, or West. Eels oriented in a manner that was related to the tank in which they were housed before the test. At lower temperature (under 12°C), their orientation relative to magnetic North corresponded to the direction of their displacement from the holding tank. At higher temperatures (12-17°C), eels showed bimodal orientation along an axis perpendicular to the axis of their displacement. These temperature-related shifts in orientation may be linked to the changes in behavior that occur between the warm season (during which eels are foraging) and the colder fall and winter (during which eels undertake their migrations). These observations support the conclusion that 1. eels have a magnetic compass, and 2. they use this sense to orient in a direction that they have registered moments before they are displaced. The adaptive advantage of having a magnetic compass and learning the direction in which they have been displaced becomes clear when set in the context of the eel's seaward migration. For example, if their migration is halted or blocked, as it is the case when environmental conditions become unfavorable or when they encounter a barrier, eels would be able to resume their movements along their old bearing when conditions become favorable again or when they pass by the barrier.
High Tc YBCO superconductor deposited on biaxially textured Ni substrate
Budai, John D.; Christen, David K.; Goyal, Amit; He, Qing; Kroeger, Donald M.; Lee, Dominic F.; List, III, Frederick A.; Norton, David P.; Paranthaman, Mariappan; Sales, Brian C.; Specht, Eliot D.
1999-01-01
A superconducting article includes a biaxially-textured Ni substrate, and epitaxial buffer layers of Pd (optional), CeO.sub.2 and YSZ, and a top layer of in-plane aligned, c-axis oriented YBCO having a critical current density (J.sub.c) in the range of at least 100,000 A/cm.sup.2 at 77 K.
ZnO thin-film transistors with a polymeric gate insulator built on a polyethersulfone substrate
NASA Astrophysics Data System (ADS)
Hyung, Gun Woo; Park, Jaehoon; Koo, Ja Ryong; Choi, Kyung Min; Kwon, Sang Jik; Cho, Eou Sik; Kim, Yong Seog; Kim, Young Kwan
2012-03-01
Zinc oxide (ZnO) thin-film transistors (TFTs) with a cross-linked poly(vinyl alcohol) (c-PVA) insulator are fabricated on a polyethersulfone substrate. The ZnO film, formed by atomic layer deposition, shows a polycrystalline hexagonal structure with a band gap energy of about 3.37 eV. The fabricated ZnO TFT exhibits a field-effect mobility of 0.38 cm2/Vs and a threshold voltage of 0.2 V. The hysteresis of the device is mainly caused by trapped electrons at the c-PVA/ZnO interface, whereas the positive threshold voltage shift occurs as a consequence of constant positive gate bias stress after 5000 s due to an electron injection from the ZnO film into the c-PVA insulator.
Piezoelectric and optoelectronic properties of electrospinning hybrid PVDF and ZnO nanofibers
NASA Astrophysics Data System (ADS)
Ma, Jian; Zhang, Qian; Lin, Kabin; Zhou, Lei; Ni, Zhonghua
2018-03-01
Polyvinylidene fluoride (PVDF) is a unique ferroelectric polymer with significant promise for energy harvesting, data storage, and sensing applications. ZnO is a wide direct band gap semiconductor (3.37 eV), commonly used as ultraviolet photodetectors, nanoelectronics, photonicsand piezoelectric generators. In this study, we produced high output piezoelectric energy harvesting materials using hybrid PVDF/ZnO nanofibers deposited via electrospinning. The strong electric fields and stretching forces during the electrospinning process helps to align dipoles in the nanofiber crystal such that the nonpolar α-phase (random orientation of dipoles) is transformed into polar β-phase in produced nanofibers. The effect of the additional ZnO nanowires on the nanofiber β-phase composition and output voltage are investigated. The maximum output voltage generated by a single hybrid PVDF and ZnO nanofiber (33 wt% ZnO nanowires) is over 300% of the voltage produced by a single nanofiber made of pure PVDF. The ZnO NWs served not only as a piezoelectric material, but also as a semiconducting material. The electrical conductivity of the hybrid PVDF/ZnO nanofibers increased by more than a factor of 4 when exposed under ultraviolet (UV) light.
NASA Astrophysics Data System (ADS)
A, Kamalianfar; S, A. Halim; Mahmoud Godarz, Naseri; M, Navasery; Fasih, Ud Din; J, A. M. Zahedi; Kasra, Behzad; K, P. Lim; A Lavari, Monghadam; S, K. Chen
2013-08-01
Three-dimensional ZnO multipods are successfully synthesized on functional substrates using the vapor transport method in a quartz tube. The functional surfaces, which include two different distributions of Ag nanoparticles and a layer of commercial Ag nanowires, are coated onto silicon substrates before the growth of ZnO nanostructures. The structures and morphologies of the ZnO/Ag heterostructures are investigated using X-ray diffraction and field emission scanning electron microscopy. The sizes and shapes of the Ag particles affect the growth rates and initial nucleations of the ZnO structures, resulting in different numbers and shapes of multipods. They also influence the orientation and growth quality of the rods. The optical properties are studied by photoluminescence, UV-vis, and Raman spectroscopy. The results indicate that the surface plasmon resonance strongly depends on the sizes and shapes of the Ag particles.
NASA Astrophysics Data System (ADS)
Li, Qi; Qian, Lirong; Fu, Sulei; Song, Cheng; Zeng, Fei; Pan, Feng
2018-04-01
Characteristics of one-port surface acoustic wave (SAW) resonators fabricated on ZnO/6H-SiC layered structure were investigated experimentally and theoretically. Phase velocities (V p), electromechanical coupling coefficients (K 2), quality factors (Q), and temperature coefficients of frequency (TCF) of Rayleigh wave (0th mode) and first- and second-order Sezawa wave (1st and 2nd modes, respectively) for different piezoelectric film thickness-to-wavelength (h ZnO /λ) ratios were systematically studied. Results demonstrated that one-port SAW resonators fabricated on the ZnO/6H-SiC layered structure were promising for high-frequency SAW applications with moderate K 2 and TCF values. A high K 2 of 2.44% associated with a V p of 5182 m s‑1 and a TCF of ‑41.8 ppm/°C was achieved at h ZnO /λ = 0.41 in the 1st mode, while a large V p of 7210 m s‑1 with a K 2 of 0.19% and a TCF of ‑36.4 ppm/°C was obtained for h ZnO /λ = 0.31 in the 2nd mode. Besides, most of the parameters were reported for the first time and will be helpful for the future design and optimization of SAW devices fabricated on ZnO/6H-SiC layered structures.
NASA Astrophysics Data System (ADS)
Ohmori, Masashi; Nakatani, Mitsuhiro; Kajii, Hirotake; Miyamoto, Ayano; Yoneya, Makoto; Fujii, Akihiko; Ozaki, Masanori
2018-03-01
Field-effect transistors with molecularly oriented thin films of metal-free non-peripherally octahexyl-substituted phthalocyanine (C6PcH2), which characteristically form a columnar structure, have been fabricated, and the electrical anisotropy of C6PcH2 has been investigated. The molecularly oriented thin films of C6PcH2 were prepared by the bar-coating technique, and the uniform orientation in a large area and the surface roughness at a molecular level were observed by polarized spectroscopy and atomic force microscopy, respectively. The field effect mobilities parallel and perpendicular to the column axis of C6PcH2 were estimated to be (1.54 ± 0.24) × 10-2 and (2.10 ± 0.23) × 10-3 cm2 V-1 s-1, respectively. The electrical anisotropy based on the columnar structure has been discussed by taking the simulated results obtained by density functional theory calculation into consideration.
In Situ Characterization of Twin Nucleation in Pure Ti Using 3D-XRD
NASA Astrophysics Data System (ADS)
Bieler, Thomas R.; Wang, Leyun; Beaudoin, Armand J.; Kenesei, Peter; Lienert, Ulrich
2014-01-01
A small tensile specimen of grade 1 commercially pure titanium was deformed to a few percent strain with concurrent synchrotron X-ray diffraction measurements to identify subsurface {102} twin nucleation events. This sample was from the same piece of material in which a prior study showed that twin nucleation stimulated by slip transfer across a grain boundary accounted for many instances of twin nucleation. The sample had a strong c-axis texture of about eight times random aligned with the tensile axis. After 1.5 pct tensile strain, three twin nucleation events were observed in grains where the c-axis was nearly parallel to the tensile direction. Far-field 3-D X-ray diffraction data were analyzed to obtain the positional center of mass, the average lattice strain, and stress tensors in each grain and twin. In one case where the parent grain was mostly surrounded by hard grain orientations, the twin system with the highest resolved shear stress (RSS) among the six {102} twin variants was activated and the stress in the parent grain decreased after twin nucleation. In two other parent grains with a majority of softer neighboring grain orientations, the observed twins did not occur on the twin system with the highest RSS. Their nucleation could be geometrically attributed to slip transfer from neighboring grains with geometrically favorable basal slip systems, and the stress in the parent grain increased after twin nucleation. In all three twin events, the stress in the twin was 10 to 30 pct lower than the stress in the parent grain, indicating load partitioning between the hard-oriented parent grain and the soft-oriented twin.
In vitro toxicity of zinc oxide nanoparticles: a review
NASA Astrophysics Data System (ADS)
Pandurangan, Muthuraman; Kim, Doo Hwan
2015-03-01
The toxic effect of ZnO nanoparticles is due to their solubility. ZnO nanoparticles dissolve in the extracellular region, which in turn increases the intracellular [Zn2+] level. The mechanism for increased intracellular [Zn2+] level and ZnO nanoparticles dissolution in the medium is still unclear. Cytotoxicity, increased oxidative stress, increased intracellular [Ca2+] level, decreased mitochondrial membrane potential, and interleukin-8 productions occur in the BEAS-2B bronchial epithelial cells and A549 alveolar adenocarcinoma cells following the exposure of ZnO nanoparticles. Confluent C2C12 cells are more resistant to ZnO nanoparticles compared to the sparse monolayer. Loss of 3T3-L1 cell viability, membrane leakage, and morphological changes occurs due to exposure of ZnO nanoparticles. ZnO nanoparticle induces cytotoxicity and mitochondrial dysfunction in RKO colon carcinoma cells. The occurrence of apoptosis, increased ROS level, reduced mitochondrial activity and formation of tubular intracellular structures are reported following exposure of ZnO nanoparticles in skin cells. Macrophages, monocytes, and dendritic cells are affected by ZnO nanoparticles. In addition, genotoxicity is also induced. The present review summarizes the literature on in vitro toxicity of ZnO nanoparticles (10-100 nm) on various cell lines.
Emission and Structure-Varying ZnO and Carbon Nanocrystal Composite in Mechanical Processing
NASA Astrophysics Data System (ADS)
Torchynska, T.; Perez Millan, B.; Polupan, G.; Kakazey, M.
2018-03-01
Morphology, photoluminescence (PL), and Raman scattering spectra have been investigated for mixtures of ZnO+0.1%C nanocrystals (NCs) at different stages of mechanical processing (MP). The transformation of graphite into graphene monolayers covering the ZnO NC surface is revealed for the first MP stage. The interaction with oxygen has been detected in the second MP stage which leads to the dissolution of oxygen interstitials in the ZnO NCs and to the formation of graphene (graphite) oxides. Increasing the concentration of the oxygen interstitials in ZnO NCs also enhances the intensity stimulation of the orange PL band (2.18eV). Simultaneously, the PL band peaking at 2.82-2.90 eV is detected in the PL spectra of the ZnO+0.1%C NC mixture after MP for 9-90 min. Then, the variation of the ZnO NC shape, agglomeration of ZnO NCs, modification of ZnO defects and decreasing PL intensity have been detected after prolonged MP for 390 min. It is expected that short stages of MP can be useful for ZnO NC surface covering by graphene layers or graphene (graphite) oxides.
Room temperature synthesis and optical properties of small diameter (5 nm) ZnO nanorod arrays.
Cho, Seungho; Jang, Ji-Wook; Lee, Jae Sung; Lee, Kun-Hong
2010-10-01
We report a simple wet-chemical synthesis of ∼5 nm diameter ZnO nanorod arrays at room temperature (20 °C) and normal atmospheric pressure (1 atm) and their optical properties. They were single crystalline in nature, and grew in the [001] direction. These small diameter ZnO nanorod arrays can also be synthesized at 0 °C. Control experiments were also conducted. On the basis of the results, we propose a mechanism for the spontaneous growth of the small diameter ZnO structures. The optical properties of the 5 nm diameter ZnO nanorod arrays synthesized using this method were probed by UV-Visible diffuse reflectance spectroscopy. A clear blue-shift, relative to the absorption band from 50 nm diameter ZnO nanorod arrays, was attributed to the quantum confinement effects caused by the small nanocrystal size in the 5 nm diameter ZnO nanorods.
The orientation of the cervical vertebral column in unrestrained awake animals. I. Resting position.
Vidal, P P; Graf, W; Berthoz, A
1986-01-01
The orientation of the cervical vertebral column was studied by X-ray photography of the region containing the head and the neck in nine unrestrained species of vertebrates (man, monkey, cat, rabbit, guinea pig, rat, chicken, frog, lizard). In addition, the orientation of the horizontal semicircular canals was measured in four species using landmarks on the skull. In all vertebrates studied, with the exception of frog and lizard, the general orientation of the cervical vertebral column was vertical when animals were at rest, and not horizontal or oblique as suggested by the macroscopic appearance of the neck. The posture of the animal, whether lying, sitting or standing, had little effect on this general vertical orientation, although some variability was noticed depending on the species. This finding prompted the definition of a resting zone, where the cervical column can take any orientation within a narrow range around a mean position. The cervical vertebral column composes part of the S-shaped structure of the entire vertebral column, with one inflection around the cervico-thoracic (C7/Th1) junction. This feature is already noticable in the lizard. The vertical orientation of the cervical vertebral column is interpreted to provide a stable and energy saving balance of the head. Furthermore, when the head is lowered or raised, the atlanto-occipital and cervico-thoracic junctions are predominantly involved, while the entire cervical column largely preserves its intrinsic configuration. The curved configuration of the cervico-thoracic vertebral column embedded in long spring-like muscles is interpreted to function as a shock absorber. At rest, animals did not hold their heads with the horizontal canals oriented earth horizontally all the time, but often maintained them pitched up by ca. 5 deg, as has been reported for man. At other times, presumably when the vigilance level increased, the horizontal canals were brought into the earth horizontal plane. The vertical orientation of the cervical column results in a vertical positioning of the odontoid process of the axis (second cervical vertebra, C2), which thus provides the axis of rotation for yaw movements of the head. This axis corresponds to that of the horizontal semicircular canals. The vertical organization of the cervical vertebral column in birds and mammals, whether the animal is quadrupedal or bipedal, points to a common organizational principle for eye and head movement systems.(ABSTRACT TRUNCATED AT 400 WORDS)
The Phase Relations in the In 2O 3-Al 2ZnO 4-ZnO System at 1350°C
NASA Astrophysics Data System (ADS)
Nakamura, Masaki; Kimizuka, Noboru; Mohri, Takahiko; Isobe, Mitsumasa
1993-08-01
Phase relations in the In 2O 3-Al 2ZnO 4-ZnO system at 1350°C are determined by a classical quenching method. This system consists of In 2O 3, Al 2ZnO 4, ZnO, and homologous phases InAlO 3(ZnO) m ( m = 2, 3, …) having solid solutions with LuFeO 3(ZnO) m-type crystal structures. These solid solution ranges are as follows: In 1+ x1Al 1- x1O 3(ZnO) 2 ( x1 = 0.70)-In 1+ x2Al 1- x2O 3(ZnO) 2 ( x2 = 0.316-0.320), In 2O 3(ZnO) 3-In 1+ xAl 1- xO 3(ZnO) 3 ( x = 0.230), In 2O 3(ZnO) 4-In 1+ xAl 1- xO 3(ZnO) 4 ( x = 0.15-0.16), In 2O 3(ZnO) 5-In 1+ xAl 1- xO 3(ZnO) 5 ( x = 0.116-0.130), In 2O 3(ZnO) 6-In 1+ xAl 1- xO 3(ZnO) 6 ( x = 0.000-0.111), In 2O 3(ZnO) 7-In 1+ xAl 1- xO 3(ZnO) 7 ( x = 0.08), In 2O 3(ZnO) 8-In 1+ xAl 1- xO 3(ZnO) 8 ( x: undetermined), and In 2O 3(ZnO) m-InAlO 3(ZnO) m ( m = 9, 10, 11, 13, 15, 17, and 19). The space groups of these homologous phases belong to R3¯ m for m = odd or P6 3/ mmc for m = even. Their crystal structures, In 1+ xAl 1- xO 3(ZnO) m (0 < x < 1), consist of three kinds of layers: an InO 1.5 layer, an (In xAl 1- xZn)O 2.5 layer, and ZnO layers. A comparison of the phase relations in the In 2O 3- M2ZnO 4-ZnO systems ( M = Fe, Ga, or Al) is made and their characteristic features are discussed in terms of the ionic radii and site preferences of the M cations.
NASA Astrophysics Data System (ADS)
Lv, Yang-Yang; Li, Xiao; Pang, Bin; Cao, Lin; Lin, Dajun; Zhang, Bin-Bin; Yao, Shu-Hua; Chen, Y. B.; Zhou, Jian; Dong, Song-Tao; Zhang, Shan-Tao; Lu, Ming-Hui; Chen, Yan-Feng
2017-07-01
Layered transition-metal dichalcogenides have been recently attracted a lot of attention because of their unique physical properties, such as extremely large and anisotropic magnetoresistance (MR) in WTe2. In this work, we observed the abnormally anisotropic MR on Td-MoTe2 crystal that is strongly dependent on the temperature, as well as the orientations of both magnetic field B and electric field E with respect to crystallographic axes of Td-MoTe2. When E//a-axis and B//c-axis, MR is parabolically dependent on B and is as high as 520% under 9 T and 2 K conditions; the MR is quasi-linearly dependent on B when E//a-axis and B//b-axis (E//b-axis and B//c-axis), and the corresponding MR is only 130% (220%); MR is initially parabolically dependent on B, then linearly on B, and finally shows a saturate trend under E//B//a-axis (or E//B//b-axis) conditions, and the MR is about 16% (30%). These anisotropic MR behaviors can be qualitatively explained by the features of the Fermi surface of Td-MoTe2. This work may demonstrate the rich anisotropic physical behavior in layered transition-metal dichalcognides.
Stimuli-Driven Control of the Helical Axis of Self-Organized Soft Helical Superstructures.
Bisoyi, Hari Krishna; Bunning, Timothy J; Li, Quan
2018-06-01
Supramolecular and macromolecular functional helical superstructures are ubiquitous in nature and display an impressive catalog of intriguing and elegant properties and performances. In materials science, self-organized soft helical superstructures, i.e., cholesteric liquid crystals (CLCs), serve as model systems toward the understanding of morphology- and orientation-dependent properties of supramolecular dynamic helical architectures and their potential for technological applications. Moreover, most of the fascinating device applications of CLCs are primarily determined by different orientations of the helical axis. Here, the control of the helical axis orientation of CLCs and its dynamic switching in two and three dimensions using different external stimuli are summarized. Electric-field-, magnetic-field-, and light-irradiation-driven orientation control and reorientation of the helical axis of CLCs are described and highlighted. Different techniques and strategies developed to achieve a uniform lying helix structure are explored. Helical axis control in recently developed heliconical cholesteric systems is examined. The control of the helical axis orientation in spherical geometries such as microdroplets and microshells fabricated from these enticing photonic fluids is also explored. Future challenges and opportunities in this exciting area involving anisotropic chiral liquids are then discussed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Tardío, M.; Egaña, A.; Ramírez, R.; Muñoz-Santiuste, J. E.; Alves, E.
2016-07-01
The electrical conductivity in α-Al2O3 single crystals implanted with Mg ions in two different crystalline orientations, parallel and perpendicular to c axis, was investigated. The samples were implanted at room temperature with energies of 50 and 100 keV and fluences of 1 × 1015, 5 × 1015 and 5 × 1016 ions/cm2. Optical characterization reveals slight differences in the absorption bands at 6.0 and 4.2 eV, attributed to F type centers and Mie scattering from Mg precipitates, respectively. DC electrical measurements using the four and two-point probe methods, between 295 and 490 K, were used to characterize the electrical conductivity of the implanted area (Meshakim and Tanabe, 2001). Measurements in this temperature range indicate that: (1) the electrical conductivity is thermally activated independently of crystallographic orientation, (2) resistance values in the implanted region decrease with fluence levels, and (3) the I-V characteristic of electrical contacts in samples with perpendicular c axis orientation is clearly ohmic, whereas contacts are blocking in samples with parallel c axis. When thin layers are sequentially removed from the implanted region by immersing the sample in a hot solution of nitric and fluorhydric acids the electrical resistance increases until reaching the values of non-implanted crystal (Jheeta et al., 2006). We conclude that the enhancement in conductivity observed in the implanted regions is related to the intrinsic defects created by the implantation rather than to the implanted Mg ions (da Silva et al., 2002; Tardío et al., 2001; Tardío et al., 2008).
ZnO/Er2O3 core-shell nanorod arrays: Synthesis, properties and growth mechanism
NASA Astrophysics Data System (ADS)
Yang, Jun; Wang, Yongqian; Jiang, Tingting; Li, Yinchang; Yang, Xiande
2015-01-01
In this study, we demonstrated large-scale ZnO/Er2O3 core-shell nanorod arrays, which were successfully synthesized by a facile and simple electrodeposition method. The effect of varying the amount of Er2O3 in the range from 0.2 g to 1.0 g on morphology of ZnO nanorod arrays has been thoroughly investigated. The results indicate that the growth pattern of all the ZnO/Er2O3 shell-core nanorod arrays were along c-axis and perpendicular to the substrate as before, even more vertical. Photoluminescence measurement was carried out and the PL peaks at 382 nm, 438 nm and 462 nm were observed, which are considered to be due to free excitons and donor-bound excitons, respectively. The ZnO/Er2O3 core-shell nanorods exhibited improved optical property, which can be attributed to the enhanced donor density by the covered Er2O3. Finally, a possible growth mechanism of the ZnO nanostructures is discussed. The electrochemical deposition of ZnO/Er2O3 core-shell nanorod arrays including two stages, namely nucleation and growth process.
Demel, Jan; Pleštil, Josef; Bezdička, Petr; Janda, Pavel; Klementová, Mariana; Lang, Kamil
2011-08-15
Delamination of layered zinc hydroxide salts (LZH) into hydroxide layers provides nanobuilding blocs of a two-dimensional anisotropy. The methodology, extent of delamination, the size and stability of hydroxide lamellae are described in detail. The ability of lamellae to restack to form oriented hydroxide films depends on the solvent, original LZH salt, and conditions used for delamination. The most interesting results were obtained using LZH intercalated with dodecyl sulfate anions and LZH nitrate delaminated in butanol at 60 °C and in formamide at room temperature, respectively. The former method produces hydroxide lamellae of a lateral size of ca. 10-20 nm. The inner structure of the hydroxide layers is conserved and separated lamellae restack to the original layered structure of LZH dodecyl sulfate. The latter method yields lamellae with a size decreasing from 73.3 nm to 10 nm after a 2-week aging, while their thickness is nearly constant (2.6-3.8 nm). However, the use of formamide is complicated by the formation of Zn(II) formate. The major part of LZH intercalated with dodecyl sulfate anions is transformed during the delamination procedure to anisotropic ZnO nanoparticles, either needle-like particles prolonged in the [0 0 1] direction or disc-like particles flattened along the (0 0 1) plane. Copyright © 2011 Elsevier Inc. All rights reserved.
Effect of grain alignment on magnetic properties of Hg(Re)-1223 superconductors
NASA Astrophysics Data System (ADS)
Sakamoto, N.; Noguchi, S.; Akune, T.; Matsumoto, Y.
2002-08-01
Alignment of HgBa 2Ca 2Cu 3Re 0.2O y (Hg(Re)-1223) powders was made in epoxy resin under a high magnetic field of 10 T to be confirmed by X-ray analysis. DC magnetizations and AC susceptibilities of the grain aligned specimen were measured by SQUID and PPMS magnetometers at temperatures of 5-110 K and under the field of 0-14 T for both field directions of B parallel and perpendicular to ab-plane. The magnetization width for B parallel to the c-axis ΔMc showed high values at low field, decreased rather rapidly with the magnetic field compared to that for B parallel to the ab-plane ΔMab and became lower than ΔMab above a crossing field Bcr. Peak-heights of the imaginary parts of the AC susceptibilities χ″ were largest at B∥ c-axis. Non-aligned samples always showed intermediate characteristics between B∥ c-axis and B∥ ab-plane. Irreversibility fields of all samples were also evaluated. Correlations of the pinning mechanism with the crystal axis orientations are discussed.
ZnO layers prepared by spray pyrolysis
NASA Astrophysics Data System (ADS)
Messaoudi, C.; Abd-Lefdil, S.; Sayah, D.; Cadene, M.
1998-02-01
Highly transparent undoped and indium doped ZnO thin films have been grown on glass substrates by using the spray pyrolysis process. Conditions of preparation have been optimized to get good quality and reproducible films with required properties. Polycrystalline films with an hexagonal Wurtzite-type structure were easily obtained under the optimum spraying conditions. Both of samples have shown high transmission coefficient in the visible and infrared wavelength range with sharp absorption edge around 380 nm which closely corresponds to the intrinsic band-gap of ZnO (3.2 eV). Orientation and crystallites size were remarkably modified by deposition temperature and indium doping. Des couches minces de ZnO, hautement transparentes, non dopées et dopées à l'indium ont été élaborées sur un substrat en verre par le procédé de pulvérisation chimique réactive spray. Les conditions de préparation ont été optimisées pour l'obtention de couches reproductibles, de bonne qualité et ayant les propriétés requises. Des films polycristallins, présentant une structure hexagonale de type Wurtzite, ont été aisément obtenus dans les conditions optimales de pulvérisation. Tous les échantillons ont présenté un coefficient de transmission élevé dans le domaine du visible et du proche infrarouge, avec une absorption brutale au voisinage de 380 nm, correspondant au gap optique du ZnO (3,2 eV). L'orientation et la taille des cristallites ont été remarquablement modifiées par la température du dépôt et par le dopage à l'indium.
Anomalous thermal expansion behaviors in Sm-Ba-Cu-O superconductors
NASA Astrophysics Data System (ADS)
Okaji, Masahiro; Yamada, Naofumi; Mase, Atsushi; Ikuta, Hiroshi; Mizutani, Uichiro
2000-11-01
Linear thermal expansion coefficients α of c-axis oriented Ag-added Sm-Ba-Cu-O superconductors have been measured in the range of 10 - 300 K. The α showed a large bump along the c-axis and a large dent along the ab-plane around 170 - 260 K for the 2 wt% and 5 wt% Ag 2O specimens, but these anomalies essentially disappeared with thermal cycles between room and cryogenic temperatures. In contrast, there were no significant anomalies for the 10 wt% and 20 wt% Ag 2O specimens. These results suggest that the addition of Ag 2O should moderate deformation and help to increase mechanical strength.
Gigantic transverse voltage induced via off-diagonal thermoelectric effect in CaxCoO2 thin films
NASA Astrophysics Data System (ADS)
Takahashi, Kouhei; Kanno, Tsutomu; Sakai, Akihiro; Adachi, Hideaki; Yamada, Yuka
2010-07-01
Gigantic transverse voltages exceeding several tens volt have been observed in CaxCoO2 thin films with tilted c-axis orientation upon illumination of nanosecond laser pulses. The voltage signals were highly anisotropic within the film surface showing close relation with the c-axis tilt direction. The magnitude and the decay time of the voltage strongly depended on the film thickness. These results confirm that the large laser-induced voltage originates from a phenomenon termed the off-diagonal thermoelectric effect, by which a film out-of-plane temperature gradient leads to generation of a film in-plane voltage.
2014-01-01
The electrical conductance response of single ZnO microwire functionalized with amine-groups was tested upon an acid pH variation of a solution environment after integration on a customized gold electrode array chip. ZnO microwires were easily synthesized by hydrothermal route and chemically functionalized with aminopropyl groups. Single wires were deposited from the solution and then oriented through dielectrophoresis across eight nanogap gold electrodes on a platform single chip. Therefore, eight functionalized ZnO microwire-gold junctions were formed at the same time, and being integrated on an ad hoc electronic platform, they were ready for testing without any further treatment. Experimental and simulation studies confirmed the high pH-responsive behavior of the amine-modified ZnO-gold junctions, obtaining in a simple and reproducible way a ready-to-use device for pH detection in the acidic range. We also compared this performance to bare ZnO wires on the same electronic platform, showing the superiority in pH response of the amine-functionalized material. PMID:24484615
2014-01-01
Nanostructured zinc oxide (ZnO) nanorods (NRs) with hexagonal wurtzite structures were synthesized using an easy and low-cost bottom-up hydrothermal growth technique. ZnO thin films were prepared with the use of four different solvents, namely, methanol, ethanol, isopropanol, and 2-methoxyethanol, and then used as seed layer templates for the subsequent growth of the ZnO NRs. The influences of the different solvents on the structural and optical properties were investigated through scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, ultraviolet–visible spectroscopy, and photoluminescence. The obtained X-ray diffraction patterns showed that the synthesized ZnO NRs were single crystals and exhibited a preferred orientation along the (002) plane. In addition, the calculated results from the specific models of the refractive index are consistent with the experimental data. The ZnO NRs that grew from the 2-methoxyethanol seeded layer exhibited the smallest grain size (39.18 nm), largest diffracted intensities on the (002) plane, and highest bandgap (3.21 eV). PMID:25221458
Positive and negative ZnO micropatterning on functionalized polymer surfaces.
Yang, Peng; Zou, Shengli; Yang, Wantai
2008-09-01
Patterned ZnO deposition on substrates has received increasing attention because of its great potential in photocatalysis, energy conversion, and electro-optical techniques. Chemical solution growth is especially promising for organic substrates due to its very mild reaction conditions. Here this method is used on functionality-patterned polymer surfaces in order to fabricate positive and negative ZnO micropatterns. A ZnO film made of arrayed rods, typically 500-750 nm in diameter and 2.5 microm in length, is selectively obtained on sulfated and hydroxylated regions of biaxially oriented poly(propylene), giving rise to positive patterns. For reactive polyesters such as poly(ethylene terephthalate), the ZnO rods selectively remain on the unmodified original regions, creating negative patterns. Unlike complex photolithography procedures, the irradiation and patterning processes do not require the use of positive or negative photoresists, and possible damage from acidic solutions on the underlying substrate during the chemical etching process is avoided. The process thus proves to be a simple, creditable, and low-cost method, which could be easily applied on a variety of inert and reactive polymer surfaces.
NASA Astrophysics Data System (ADS)
Sannakashappanavar, Basavaraj S.; Byrareddy, C. R.; Kumar, Pesala Sudheer; Yadav, Aniruddh Bahadur
2018-05-01
Hydrothermally grown one dimensional ZnO nanostructures are among the most widely used semiconductor materials to build high-efficiency electronic devices for various applications. Few researchers have addressed the growth mechanism and effect of ZnO seed layer on different properties of ZnO nanorods grown by hydrothermal method, instead, no one has synthesized ZnO nanorod over SiO2/p-Si substrate. The aim of this study is to study the effect of ZnO seed layer and the growth mechanism of ZnO nanorods over SiO2/p-Si substrate. To achieve the goal, we have synthesized ZnO nanorods over different thickness ZnO seed layers by using the hydrothermal method on SiO2/p-Si substrate. The effects of c-plane area ratio were identified for the growth rate of c-plane, reaction rate constant and stagnant layer thickness also calculated by using a modified rate growth equation. We have identified maximum seed layer thickness for the growth of vertical ZnO nanorod. A step dislocation in the ZnO nanorods grown on 150and 200 nm thick seed layers was observed, the magnitude of Burges vector was calculated for this disorder. The seed layer and ZnO nanorods were characterized by AFM, XPS, UV-visible, XRD (X-ray diffraction, and SEM(scanning electron microscope). To justify the application of the grown ZnO nanorods Ti/Au was deposited over ZnO nanorods grown over all seed layers for the fabrication of photoconductor type UV detector.
The Electrochemical Assembly of Semiconducting Organic-Inorganic Lamellar Domains for Photovoltaics
NASA Astrophysics Data System (ADS)
Herman, David John
This dissertation investigates the one-step electrodeposition of alternating nanoscale domains of n-type ZnO and p-type organic molecules for photovoltaics. In such hybrid photovoltaic systems, a nanoscale lamellar periodicity of 5-10 nm between electron donor and electron acceptor materials is ideal for efficient exciton separation. In addition, achieving uniform density and substrate-wide alignment of the hybrid lamellar structures with orientation perpendicular to substrate surfaces is important in providing direct pathways for charge carriers to the electrodes. To this end, it is first reported how to control the assembly of the pyrene-based surfactant 1-pyrenebutyric acid (PyBA) with zinc hydroxide (a precursor to the semiconductor ZnO), resulting in a nanoscale lamellar structure with a periodicity of 3.2 nm. By exploring solution chemistry parameters, the surfactant concentration and solvent composition are shown to have the greatest effect on the morphology of lamellar growth. By studying the early nucleation and growth on indium tin oxide (ITO) substrates with 2D grazing incidence small angle X-ray scattering, it is revealed that the lamellae preferentially nucleate parallel to the hydrophilic ITO surface. It is hypothesized that the conductive and more hydrophobic poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) surface increases the affinity for the pyrene functions to the surface, and therefore the oriented growth of the lamellae changes from parallel to perpendicular with respect to the substrate surface. The second part of this thesis investigates the effects of conjugated surfactant design in directing the growth of hybrid lamellar structures by incorporating either a pyrene or terthiophene moiety and varying overall molecular design. It is found that high aspect ratio and amphiphilic surfactants possessing a flexible alkyl spacer between the carboxylic acid and conjugated moiety consistently allow for the controlled and directed assembly of lamellae with orientations either parallel (on ITO) or perpendicular (on PEDOT:PSS) to the substrate. For surfactants without the spacer or with bolaamphiphilic design, the decrease in entropic freedom either during surface assembly or during lamellae growth is believed to result in uncontrolled orientations and heterogeneous morphologies. In all cases, the lack or low-density of solution micelles at the deposition conditions implied that the growth and orientation of lamellar structures is mediated by surfactant-substrate interactions and assemblies. Finally, the controlled deposition of quinquethiophene surfactant and ZnO lamellae with a periodicity of 2.5 nm was achieved. By optimizing the device architecture with an inverted design, the photovoltaic efficiency improved from 0.0008% to 0.01%. Converting the Zn(OH)2 to ZnO by annealing at 150 °C and pulsing the electrodeposition potential led to a three-fold improvement in efficiency to 0.035%. External quantum efficiency measurements indicate that pulsed depositions lead to better π-π stacking of the thiophenes inside the lamellar galleries. Although the seemingly ideal assembly between n- and p-type materials is approached and photovoltaic devices are demonstrated, the efficiencies remain limited due to high charge carrier resistances from the excess active layer thickness, which was required to prevent electrode shorting during device fabrication.
Winship, I R; Wylie, D R
2001-11-01
The responses of neurons in the medial column of the inferior olive to translational and rotational optic flow were recorded from anaesthetized pigeons. Panoramic translational or rotational flowfields were produced by mechanical devices that projected optic flow patterns onto the walls, ceiling and floor of the room. The axis of rotation/translation could be positioned to any orientation in three-dimensional space such that axis tuning could be determined. Each neuron was assigned a vector representing the axis about/along which the animal would rotate/translate to produce the flowfield that elicited maximal modulation. Both translation-sensitive and rotation-sensitive neurons were found. For neurons responsive to translational optic flow, the preferred axis is described with reference to a standard right-handed coordinate system, where +x, +y and +z represent rightward, upward and forward translation of the animal, respectively (assuming that all recordings were from the right side of the brain). t(+y) neurons were maximally excited in response to a translational optic flowfield that results from self-translation upward along the vertical (y) axis. t(-y) neurons also responded best to translational optic flow along the vertical axis but showed the opposite direction preference. The two remaining groups, t(-x+z) and t(-x-z) neurons, responded best to translational optic flow along horizontal axes that were oriented 45 degrees to the midline. There were two types of neurons responsive to rotational optic flow: rVA neurons preferred rotation about the vertical axis, and rH135c neurons preferred rotation about a horizontal axis at 135 degrees contralateral azimuth. The locations of marking lesions indicated a clear topographical organization of the six response types. In summary, our results reinforce that the olivo-cerebellar system dedicated to the analysis of optic flow is organized according to a reference frame consisting of three approximately orthogonal axes: the vertical axis, and two horizontal axes oriented 45 degrees to either side the midline. Previous research has shown that the eye muscles, vestibular semicircular canals and postural control system all share a similar spatial frame of reference.
NASA Astrophysics Data System (ADS)
He, Hong-Sen; Zhang, Ming-Ming; Dong, Jun; Ueda, Ken-Ichi
2016-12-01
A tilted, linearly polarized laser diode end-pumped Cr4+:YAG passively Q-switched a-cut Nd:YVO4 microchip laser for generating numerous Ince-Gaussian (IG) laser modes with controllable orientations has been demonstrated by selecting the crystalline orientation of an a-cut Nd:YVO4 crystal. The same IG laser mode with different orientations has been achieved with the same absorbed pump power in a passively Q-switched Nd:YVO4 microchip laser under linearly polarized pumping when the incident pump power and the crystalline orientation of an a-cut Nd:YVO4 crystal are both properly selected. The significant improvement of pulsed laser performance of controllable IG modes has been achieved by selecting the crystalline orientation of an a-cut Nd:YVO4 crystal. The maximum pulse energy is obtained along the a-axis of an a-cut Nd:YVO4 crystal and the highest peak power is achieved along the c-axis of an a-cut Nd:YVO4 crystal, respectively, which has potential applications on quantum computation and optical manipulation. The generation of controllable IG laser modes in microchip lasers under linearly polarized pumping provides a convenient and universal way to control IG laser mode numbers with anisotropic crystal as a gain medium.
NASA Astrophysics Data System (ADS)
Fichtner, Simon; Wolff, Niklas; Krishnamurthy, Gnanavel; Petraru, Adrian; Bohse, Sascha; Lofink, Fabian; Chemnitz, Steffen; Kohlstedt, Hermann; Kienle, Lorenz; Wagner, Bernhard
2017-07-01
Enhancing the piezoelectric activity of AlN by partially substituting Al with Sc to form Al1-xScxN is a promising approach to improve the performance of piezoelectric micro-electromechanical systems. Here, we present evidence of an instability in the morphology of Al1-xScxN, which originates at, or close to, the substrate/Al1-xScxN interface and becomes more pronounced as the Sc content is increased. Based on Transmission electron microscopy, piezoresponse force microscopy, X-ray diffraction, and SEM analysis, it is identified to be the incipient formation of (100) oriented grains. Approaches to successfully reestablish exclusive c-axis orientation up to x = 0.43 are revealed, with electrode pre-treatment and cathode-substrate distance found to exert significant influence. This allows us to present first measurements of the transversal thin film piezoelectric coefficient e31,f and dielectric loss tangent tan δ beyond x = 0.3.
NASA Astrophysics Data System (ADS)
Takenaka, Kosuke; Satake, Yoshikatsu; Uchida, Giichiro; Setsuhara, Yuichi
2018-01-01
The low-temperature formation of c-axis-oriented aluminum nitride thin films was demonstrated by plasma-assisted reactive pulsed-DC magnetron sputtering. The effects of the duty cycle at the pulsed-DC voltage applied to the Al target on the properties of AlN films formed via inductively coupled plasma (ICP)-enhanced pulsed-DC magnetron sputtering deposition were investigated. With decreasing duty cycle at the target voltage, the peak intensity of AlN(0002) increased linearly. The surface roughness of AlN films decreased since there was an increase in film density owing to the impact of energetic ions on the films together with the enhancement of nitriding associated with the relative increase in N radical flux. The improvement of both the crystallinity and surface morphology of AlN films at low temperatures is considered to be caused by the difference between the relative flux values of ions and sputtered atoms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Kun; Gao, Ziwei, E-mail: zwgao@snnu.edu.cn; Da, Min
Highlights: Black-Right-Pointing-Pointer Highly oriented and well-defined ZnO urchin-like crystals were successfully fabricated by a facile and effective hydrotherm method. Black-Right-Pointing-Pointer Polyvinylpyrrolidone- and hydrogen peroxide-assisted synthesis of ZnO could optimize its crystalline quality and the obtained ZnO have smooth surface, radial growth of morphology, obvious crystal edges and decreased defects. Black-Right-Pointing-Pointer The physicochemical properties of samples were studied by analysis of its structure, morphology, surface and optical properties. Black-Right-Pointing-Pointer This study represented a multistep mechanism based on [Zn(OH){sub 4}]{sup 2-} growth units about formation such urchin-like structure. -- Abstract: The urchin-like ZnO microcrystals with high crystallinity decomposed from [Zn(OH){sub 4}]{sup 2-}more » directly were obtained via a hydrothermal method. The morphology, particle size, crystalline structure and fluorescence of the as-prepared ZnO were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and photoluminescence (PL) analyses. The results demonstrated that the urchin-like ZnO crystals with wurtzite structure had a narrow distribution in size, which could be adjusted in the range of 30-80 {mu}m by varying reaction time. Broad visible light emission peak was also observed in the PL spectra of the synthesized ZnO products. A multistep growth process about how to form such a structure was proposed.« less
Growth of ZnO films in sol-gel electrophoretic deposition by different solvents
NASA Astrophysics Data System (ADS)
Hallajzadeh, Amir Mohammad; Abdizadeh, Hossein; Taheri, Mahtab; Golobostanfard, Mohammad Reza
2018-01-01
This article introduces a process to fabricate zinc oxide (ZnO) films through combining sol preparation and electrophoretic deposition (EPD). The experimental results have proved that the EPD process is a powerful route to fabricate ZnO films with desire thickness from stable colloidal suspension under a direct current (DC) electric field. In this method, ZnO sol is prepared by dissolving zinc acetate dehydrate (ZAD) as the main precursor and diethanolamine (DEA) as the additive in various solvents such as methanol (MeOH), ethanol (EtOH), and 2-proponal (2-PrOH). The deposition was performed under a constant voltage of 30 V for 2 min. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and diffuse reflectance spectroscopy (DRS) were used to characterize ZnO films. XRD pattern of the ZnO film prepared by MeOH shows the highest degree of preferential orientation and this is mainly attributed to the higher dielectric constant of the MeOH which results in higher current density in electrophoretic deposit ion. The SEM cross section images also show that the thickness of the ZnO film enhances by decreasing the solvent chain length. According to SEM results, as the viscosity of the medium increased, more compact layers are formed, which can be attributed to the lower deposition rates in heavier alcohols.
Xie, Yanping; He, Yiping; Irwin, Peter L; Jin, Tony; Shi, Xianming
2011-04-01
The antibacterial effect of zinc oxide (ZnO) nanoparticles on Campylobacter jejuni was investigated for inhibition and inactivation of cell growth. The results showed that C. jejuni was extremely sensitive to treatment with ZnO nanoparticles. The MIC of ZnO nanoparticles for C. jejuni was determined to be 0.05 to 0.025 mg/ml, which is 8- to 16-fold lower than that for Salmonella enterica serovar Enteritidis and Escherichia coli O157:H7 (0.4 mg/ml). The action of ZnO nanoparticles against C. jejuni was determined to be bactericidal, not bacteriostatic. Scanning electron microscopy examination revealed that the majority of the cells transformed from spiral shapes into coccoid forms after exposure to 0.5 mg/ml of ZnO nanoparticles for 16 h, which is consistent with the morphological changes of C. jejuni under other stress conditions. These coccoid cells were found by ethidium monoazide-quantitative PCR (EMA-qPCR) to have a certain level of membrane leakage. To address the molecular basis of ZnO nanoparticle action, a large set of genes involved in cell stress response, motility, pathogenesis, and toxin production were selected for a gene expression study. Reverse transcription-quantitative PCR (RT-qPCR) showed that in response to treatment with ZnO nanoparticles, the expression levels of two oxidative stress genes (katA and ahpC) and a general stress response gene (dnaK) were increased 52-, 7-, and 17-fold, respectively. These results suggest that the antibacterial mechanism of ZnO nanoparticles is most likely due to disruption of the cell membrane and oxidative stress in Campylobacter.
Lee, Hee Kwan; Yu, Jae Su
2012-04-01
We investigated the effect of growth parameters on the structural and optical properties of the ZnO nanostructures (NSs) grown on Au-coated Si substrate by a two-zone thermal chemical vapor deposition. The morphologies of ZnO NSs were controlled by various growth parameters, such as growth temperature, O2 flow rate, and working pressure, for different thicknesses of Au layer. The nanorod-like ZnO NSs were formed at 915 degrees C and the growth of two-dimensional structures, i.e., nanosheets, was enhanced with the increase of growth temperature up to 965 degrees C. It was found that the low working pressure contributed to improvement in vertical alignment and uniformity of ZnO NSs. The Zn/O atomic % ratio, which plays a key role in the growth mechanism of ZnO NSs, was changed by the growth parameters. The Zn/O atomic % ratio was increased with increasing the growth temperature, while it was decreased with increasing the working pressure. Under proper O2 flow rate, the ZnO nanorods with good crystallinity were fabricated with a Zn/O atomic % ratio of -0.9. For various growth parameters, the photoluminescence emission was slightly shifted with the ultraviolet emission related to the near band edge transition.
Thermal process induced change of conductivity in As-doped ZnO
NASA Astrophysics Data System (ADS)
Su, S. C.; Fan, J. C.; Ling, C. C.
2012-02-01
Arsenic-doped ZnO films were fabricated by radio frequency magnetron sputtering method with different substrate temperature TS. Growing with the low substrate temperature of TS=200°C yielded n-type semi-insulating sample. Increasing the substrate temperature would yield p-type ZnO film and reproducible p-type film could be produced at TS~450°C. Post-growth annealing of the n-type As-doped ZnO sample grown at the low substrate temperature (TS=200°C) in air at 500°C also converted the film to p-type conductivity. Further increasing the post-growth annealing temperature would convert the p-type sample back to n-type. With the results obtained from the studies of positron annihilation spectroscopy (PAS), photoluminescence (PL), cathodoluminescence (CL), X-ray photoelectron spectroscopy (XPS), secondary ion mass spectroscopy (SIMS) and nuclear reaction analysis (NRA), we have proposed mechanisms to explain for the thermal process induced conduction type conversion as observed in the As-doped ZnO films.
NASA Astrophysics Data System (ADS)
Jokubavicius, Valdas; Sun, Jianwu; Liu, Xinyu; Yazdi, Gholamreza; Ivanov, Ivan. G.; Yakimova, Rositsa; Syväjärvi, Mikael
2016-08-01
We demonstrate growth of thick SiC layers (100-200 μm) on nominally on-axis hexagonal substrates using sublimation epitaxy in vacuum (10-5 mbar) at temperatures varying from 1700 to 1975 °C with growth rates up to 270 μm/h and 70 μm/h for 6H- and 4H-SiC, respectively. The stability of hexagonal polytypes are related to process growth parameters and temperature profile which can be engineered using different thermal insulation materials and adjustment of the induction coil position with respect to the graphite crucible. We show that there exists a range of growth rates for which single-hexagonal polytype free of foreign polytype inclusions can be maintained. Further on, foreign polytypes like 3C-SiC can be stabilized by moving out of the process window. The applicability of on-axis growth is demonstrated by growing a 200 μm thick homoepitaxial 6H-SiC layer co-doped with nitrogen and boron in a range of 1018 cm-3 at a growth rate of about 270 μm/h. Such layers are of interest as a near UV to visible light converters in a monolithic white light emitting diode concept, where subsequent nitride-stack growth benefits from the on-axis orientation of the SiC layer.
Mass sensing AlN sensors for waste water monitoring
NASA Astrophysics Data System (ADS)
Porrazzo, R.; Potter, G.; Lydecker, L.; Foraida, Z.; Gattu, S.; Tokranova, N.; Castracane, J.
2014-08-01
Monitoring the presence of nanomaterials in waste water from semiconductor facilities is a critical task for public health organizations. Advanced semiconductor technology allows the fabrication of sensitive piezoelectric-based mass sensors with a detection limit of less than 1.35 ng/cm2 of nanomaterials such as nanoparticles of alumina, amorphous silica, ceria, etc. The interactions between acoustic waves generated by the piezoelectric sensor and nanomaterial mass attached to its surface define the sensing response as a shift in the resonant frequency. In this article the development and characterization of a prototype AlN film bulk acoustic resonator (FBAR) are presented. DC reactive magnetron sputtering was used to create tilted c-axis oriented AlN films to generate shear waves which don't propagate in liquids thus minimizing the acoustic losses. The high acoustic velocity of AlN over quartz allows an increase in resonance frequency in comparison with a quartz crystal microbalance (QCM) and results in a higher frequency shift per mass change, and thus greater sensitivity. The membrane and electrodes were fabricated using state of the art semiconductor technology. The device surface functionalization was performed to demonstrate selectivity towards a specific nanomaterial. As a result, the devices were covered with a "docking" layer that allows the nanomaterials to be selectively attached to the surface. This was achieved using covalent modification of the surface, specifically targeting ZnO nanoparticles. Our functionalization approach was tested using two different types of nanoparticles, and binding specificity was confirmed with various analytical techniques.
Influence Al doped ZnO nanostructure on structural and optical properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramelan, Ari Handono, E-mail: aramelan@mipa.uns.ac.id; Wahyuningsih, Sayekti; Chasanah, Uswatul
2016-04-19
The preparation of Al-doped ZnO (AZO) thin films prepared by the spin-coating method was reported. Preparation of AZO was conducted by annealing treatment at a temperature of 700°C. While the spin-coating process of AZO thin films were done at 2000 and 3000 rpm respectively. The structural properties of ZnO were determined by X- ray diffraction (XRD) analysis. ZnOnanostructure was formed after annealed at atemperature of 400°C.The morphology of ZnO was determined by Scanning Electron Microscopy (SEM) showed the irregular morphology about 30-50µm in size. Al doped on ZnO influenced the optical properties of those material. Increasing Al contain on ZnO causemore » of shifting to the lower wavelength. The optical properties of the ZnO as well as AZO films showed that higher reflectance on the ultraviolet region so those materials were used as anti-reflecting agent.Al addition significantly enhance the optical transparency and induce the blue-shift in optical bandgap of ZnO films.« less
Efficient acetone sensor based on Ni-doped ZnO nanostructures prepared by spray pyrolysis technique
NASA Astrophysics Data System (ADS)
Darunkar, Swapnil S.; Acharya, Smita A.
2018-05-01
Ni-doped ZnO thin film was prepared by home-built spray pyrolysis unit for the detection of acetone at 300°C. Scanning electron microscopic (SEM) images of as-developed thin film of undoped ZnO exhibits large quantity of spherical, non-agglomerated particles with uniform size while in Ni-doped ZnO, particles are quite non-uniform in nature. The particle size estimated by using image J are obtained to be around 20-200 nm. Ni-doping effect on band gaps are determined by UV-vis optical spectroscopy and band gap of Ni-doped ZnO is found to be 3.046 eV. Nickel doping exceptionally enhances the sensing response of ZnO as compared to undoped ZnO system. The major role of the Ni-doping is to create more active sites for chemisorbed oxygen on the surface of sensor and correspondingly, to improve the sensing response. The 6 at.% of Ni-doped ZnO exhibits the highest response (92%) for 100 ppm acetone at 300 °C.
Ali, Jawad; Irshad, Rabia; Li, Baoshan; Tahir, Kamran; Ahmad, Aftab; Shakeel, Muhammad; Khan, Naeem Ullah; Khan, Zia Ul Haq
2018-06-01
A "green route" to fabricate nanoparticles has emerged as a revolutionary approach. The reported work presents a green approach to synthesize ZnO nanoparticles using Conyza canadensis plant leaves extract. The synthesis of ZnO was conducted at two different temperatures i.e. 30 °C and 80 °C. ZnO nanoparticles prepared at 80 °C were smaller in size and exhibited spherical morphology. The prepared nanomaterials were examined for the reduction of organic dyes i.e. methylene blue and methyl orange. The fabricated ZnO nanoparticles synthesized at 80 °C were found to be highly active for the reduction of aforementioned dyes with 94.5% reduction of MO and 85.3% reduction of MB in 45 min and 20 min respectively. The rate constant (k) for this reduction of MO was found to be 5.781 × 10 -3 s -1 in the absence of a catalyst and 5.843 × 10 -2 s -1 in the presence of ZnO NPs catalyst. The rate constant (k) for the reduction of MB was found to be 4.7 × 10 -3 s -1 in the absence of a catalyst and 9.936 × 10 -3 s -1 in the presence of ZnO NPs catalyst. ZnO nanoparticles synthesized at 80 °C were examined for their antibacterial activity. The biogenic ZnO nanoparticles exhibited strong antibacterial activity against E. coli and S. aureus with a zone of inhibition (16 mm) and (14 mm) respectively. This high antibacterial and catalytic activity of biogenic ZnO nanoparticles can be attributed to its small size, good dispersion, and well-defined morphology. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sholehah, Amalia; Achmad, NurSumiati; Dimyati, Arbi; Dwiyanti, Yanyan; Partuti, Tri
2017-05-01
ZnO thin layer has a broad potential application in optoelectronic devices. In the present study, vertically align ZnO layers on ITO glass were synthesized using wet chemical method. The seed layers were prepared using electrodeposition method at 3°C. After that, the growing process was carried out using chemical bath deposition (CBD) at 90°C. To improve the structural property of the ZnO layers, hydrothermal technique was used subsequently. Results showed that seeding layer has a great influence on the physical properties of the ZnO layers. Moreover, hydrothermal process conducted after the ZnO growth can enhance the morphological property of the layers. From the experiments, it is found that the ZnO layers has diameter of ∼60 nm with increasing thickness from ∼0.8 to 1.2 μm and band-gap energies of ∼3.2 eV.
Estimating the spin axis orientation of the Echostar-2 box-wing geosynchronous satellite
NASA Astrophysics Data System (ADS)
Earl, Michael A.; Somers, Philip W.; Kabin, Konstantin; Bédard, Donald; Wade, Gregg A.
2018-04-01
For the first time, the spin axis orientation of an inactive box-wing geosynchronous satellite has been estimated from ground-based optical photometric observations of Echostar-2's specular reflections. Recent photometric light curves obtained of Echostar-2 over four years suggest that unusually bright and brief specular reflections were occurring twice within an observed spin period. These bright and brief specular reflections suggested two satellite surfaces with surface normals separated by approximately 180°. The geometry between the satellite, the Sun, and the observing location at the time of each of the brightest observed reflections, was used to estimate Echostar-2's equatorial spin axis orientation coordinates. When considering prograde and retrograde rotation, Echostar-2's spin axis orientation was estimated to have been located within 30° of either equatorial coordinate pole. Echostar-2's spin axis was observed to have moved approximately 180° in right ascension, within a time span of six months, suggesting a roughly one year spin axis precession period about the satellite's angular momentum vector.
Li, Yujia; Liu, Haiou; Wang, Huanting; Qiu, Jieshan; Zhang, Xiongfu
2018-05-07
Highly oriented, ultrathin metal-organic framework (MOF) membranes are attractive for practical separation applications, but the scalable preparation of such membranes especially on standard tubular supports remains a huge challenge. Here we report a novel bottom-up strategy for directly growing a highly oriented Zn 2 (bIm) 4 (bIm = benzimidazole) ZIF nanosheet tubular membrane, based on graphene oxide (GO) guided self-conversion of ZnO nanoparticles (NPs). Through our approach, a thin layer of ZnO NPs confined between a substrate and a GO ultrathin layer self-converts into a highly oriented Zn 2 (bIm) 4 nanosheet membrane. The resulting membrane with a thickness of around 200 nm demonstrates excellent H 2 /CO 2 gas separation performance with a H 2 performance of 1.4 × 10 -7 mol m -2 s -1 Pa -1 and an ideal separation selectivity of about 106. The method can be easily scaled up and extended to the synthesis of other types of Zn-based MOF nanosheet membranes. Importantly, our strategy is particularly suitable for the large-scale fabrication of tubular MOF membranes that has not been possible through other methods.
Pre and post annealed low cost ZnO nanorods on seeded substrate
NASA Astrophysics Data System (ADS)
Nordin, M. N.; Kamil, Wan Maryam Wan Ahmad
2017-05-01
We wish to report the photonic band gap (where light is confined) in low cost ZnO nanorods created by two-step chemical bath deposition (CBD) method where the glass substrates were pre-treated with two different seeding thicknesses, 100 nm (sample a) and 150 nm (sample b), of ZnO using radio frequency magnetron sputtering. Then the samples were annealed at 600°C for 1 hour in air before and after immersed into the chemical solution for CBD process. To observe the presence of photonic band gap on the sample, UV-Visible-NIR spectrophotometer was utilized and showed that sample a and sample b both achieved wide band gap between 240 nm and 380 nm, within the UV range for typical ZnO, however sample b provided a better light confinement that may be attributed by the difference in average nanorods size. Field Emission Scanning Electron Microscope (FESEM) of the samples revealed better oriented nanorods uniformly scattered across the surface when substrates were coated with 100 nm of seeding layer whilst the 150 nm seeding sample showed a poor distribution of nanorods probably due to defects in the sample. Finally, the crystal structure of the ZnO crystallite is revealed by employing X-ray diffraction and both samples showed polycrystalline with hexagonal wurtzite structure that matched with JCPDS No. 36-1451. The 100 nm pre-seeded samples was recognized to have bigger average crystallite size, however sample b was suggested as having a higher crystalline quality. In conclusion, the sample b is recognized as a better candidate for future photonic applications due to its more apparent of photonic band gap and this may be contributed by more random distribution of the nanorods as observed in FESEM images as well as higher crystalline quality as suggested from XRD measurements.
Fe-Al alloy single-crystal thin film preparation for basic magnetic measurements
NASA Astrophysics Data System (ADS)
Abe, Tatsuya; Kawai, Tetsuroh; Futamoto, Masaaki; Ohtake, Mitsuru; Inaba, Nobuyuki
2018-04-01
Fe100-xAlx (x = 0, 4, 10, 20, 30 at. %) alloy films of 40 nm thickness are prepared on MgO(001) single-crystal substrates by varying substrate temperature from room temperature to 600 °C. Single-crystal films of (001) orientation with bcc-based disordered A2 structure are obtained for the Al content range of x = 0 - 20 at. %. An ordered phase of DO3 structure is observed in Fe70Al30 films prepared at temperatures higher than 200 °C, whereas (001) oriented single-crystal films of A2 structure are obtained when prepared at room temperature. The film surface profile does not depend much on the film composition, while the surface roughness increases with increasing substrate temperature. Island-like crystals are observed for films prepared at 600°C for all compositions. Difference in lattice spacing measured parallel and perpendicular to the substrate is noted for the single-crystal thin films and it increases with increasing Al content. The lattice strain in single-crystal film is caused possibly to accommodate the lattice mismatch with the MgO substrate. The (001)-oriented single-crystal films with A2 structure show four-fold symmetries in in-plane magnetic anisotropy with the easy magnetization axis A2[100] and the hard magnetization axis A2[110], whereas the films with DO3 ordered structure show almost isotropic magnetic properties.
NASA Astrophysics Data System (ADS)
Wang, Dong; Chen, Z. Q.; Wang, D. D.; Gong, J.; Cao, C. Y.; Tang, Z.; Huang, L. R.
2010-11-01
High purity Fe 2O 3/ZnO nanocomposites were annealed in air at different temperatures between 100 and 1200 °C to get Fe-doped ZnO nanocrystals. The structure and grain size of the Fe 2O 3/ZnO nanocomposites were investigated by X-ray diffraction 2θ scans. Annealing induces an increase of the grain size from 25 to 195 nm and appearance of franklinite phase of ZnFe 2O 4. Positron annihilation measurements reveal large number of vacancy defects in the interface region of the Fe 2O 3/ZnO nanocomposites, and they are gradually recovered with increasing annealing temperature. After annealing at temperatures higher than 1000 °C, the number of vacancies decreases to the lower detection limit of positrons. Room temperature ferromagnetism can be observed in Fe-doped ZnO nanocrystals using physical properties measurement system. The ferromagnetism remains after annealing up to 1000 °C, suggesting that it is not related with the interfacial defects.
Analysis of crystallographic preferred orientations of experimentally deformed Black Hills Quartzite
NASA Astrophysics Data System (ADS)
Kilian, Rüdiger; Heilbronner, Renée
2017-10-01
The crystallographic preferred orientations (textures) of three samples of Black Hills Quartzite (BHQ) deformed experimentally in the dislocation creep regimes 1, 2 and 3 (according to Hirth and Tullis, 1992) have been analyzed using electron backscatter diffraction (EBSD). All samples were deformed to relatively high strain at temperatures of 850 to 915 °C and are almost completely dynamically recrystallized. A texture transition from peripheral [c] axes in regime 1 to a central [c] maximum in regime 3 is observed. Separate pole figures are calculated for different grain sizes, aspect ratios and long-axis trends of grains, and high and low levels of intragranular deformation intensity as measured by the mean grain kernel average misorientation (gKAM). Misorientation relations are analyzed for grains of different texture components (named Y, B, R and σ grains, with reference to previously published prism, basal, rhomb and σ1 grains). Results show that regimes 1 and 3 correspond to clear end-member textures, with regime 2 being transitional. Texture strength and the development of a central [c]-axis maximum from a girdle distribution depend on deformation intensity at the grain scale and on the contribution of dislocation creep, which increases towards regime 3. Adding to this calculations of resolved shear stresses and misorientation analysis, it becomes clear that the peripheral [c]-axis maximum in regime 1 is not due to deformation by basal a slip. Instead, we interpret the texture transition as a result of different texture forming processes, one being more efficient at high stresses (nucleation or growth of grains with peripheral [c] axes), the other depending on strain (dislocation glide involving prism and rhomb a slip systems), and not as a result of temperature-dependent activity of different slip systems.
NASA Astrophysics Data System (ADS)
Agrawal, A. V.; Kumar, R.; Venkatesan, S.; Zakhidov, A.; Zhu, Z.; Bao, Jiming; Kumar, Mahesh; Kumar, Mukesh
2017-08-01
The increased usage of hydrogen as a next generation clean fuel strongly demands the parallel development of room temperature and low power hydrogen sensors for their safety operation. In this work, we report strong evidence for preferential hydrogen adsorption at edge-sites in an edge oriented vertically aligned 3-D network of MoS2 flakes at room temperature. The vertically aligned edge-oriented MoS2 flakes were synthesised by a modified CVD process on a SiO2/Si substrate and confirmed by Scanning Electron Microscopy. Raman spectroscopy and PL spectroscopy reveal the signature of few-layer MoS2 flakes in the sample. The sensor's performance was tested from room temperature to 150 °C for 1% hydrogen concentration. The device shows a fast response of 14.3 s even at room temperature. The sensitivity of the device strongly depends on temperature and increases from ˜1% to ˜11% as temperature increases. A detail hydrogen sensing mechanism was proposed based on the preferential hydrogen adsorption at MoS2 edge sites. The proposed gas sensing mechanism was verified by depositing ˜2-3 nm of ZnO on top of the MoS2 flakes that partially passivated the edge sites. We found a decrease in the relative response of MoS2-ZnO hybrid structures. This study provides a strong experimental evidence for the role of MoS2 edge-sites in the fast hydrogen sensing and a step closer towards room temperature, low power (0.3 mW), hydrogen sensor development.
Formation of quasi-single crystalline porous ZnO nanostructures with a single large cavity
NASA Astrophysics Data System (ADS)
Cho, Seungho; Kim, Semi; Jung, Dae-Won; Lee, Kun-Hong
2011-09-01
We report a method for synthesizing quasi-single crystalline porous ZnO nanostructures containing a single large cavity. The microwave-assisted route consists of a short (about 2 min) temperature ramping stage (from room temperature to 120 °C) and a stage in which the temperature is maintained at 120 °C for 2 h. The structures produced by this route were 200-480 nm in diameter. The morphological yields of this method were very high. The temperature- and time-dependent evolution of the synthesized powders and the effects of an additive, vitamin C, were studied. Spherical amorphous/polycrystalline structures (70-170 nm in diameter), which appeared transitorily, may play a key role in the formation of the single crystalline porous hollow ZnO nanostructures. Studies and characterization of the nanostructures suggested a possible mechanism for formation of the quasi-single crystalline porous ZnO nanostructures with an interior space.We report a method for synthesizing quasi-single crystalline porous ZnO nanostructures containing a single large cavity. The microwave-assisted route consists of a short (about 2 min) temperature ramping stage (from room temperature to 120 °C) and a stage in which the temperature is maintained at 120 °C for 2 h. The structures produced by this route were 200-480 nm in diameter. The morphological yields of this method were very high. The temperature- and time-dependent evolution of the synthesized powders and the effects of an additive, vitamin C, were studied. Spherical amorphous/polycrystalline structures (70-170 nm in diameter), which appeared transitorily, may play a key role in the formation of the single crystalline porous hollow ZnO nanostructures. Studies and characterization of the nanostructures suggested a possible mechanism for formation of the quasi-single crystalline porous ZnO nanostructures with an interior space. Electronic supplementary information (ESI) available: TEM images and the corresponding SAED image of a ZnO nanostructure synthesized from the reaction without l(+)-ascorbic acid at the 85 °C time point (Fig. S1). See DOI: 10.1039/c1nr10609k
Magneto-crystalline anisotropy of NdFe0.9Mn0.1O3 single crystal
NASA Astrophysics Data System (ADS)
Mihalik, Marián; Mihalik, Matúš; Zentková, Mária; Uhlířová, Klára; Kratochvílová, Marie; Roupcová, Pavla
2018-05-01
Our present study on oriented single crystal revealed huge magneto-crystalline anisotropy with respect to principal crystallographic axes, even several magnetic transitions were observed below TN = 748 K (c-axis) at 700 K (a-axis) as well 657 K (b-axis). The spin reorientation of magnetic moment takes place in very narrow temperature range between 135 K and 125 K and is attributed to vanishing of ferromagnetic component aligned along b-axis. Measurements of magnetic isotherms trace the development of ferromagnetic component and revealed the intermediate temperature range between 120 K and 20 K which is characterised by zero ferromagnetic components in any principal crystal direction. The ferromagnetic component develops consecutive at low temperature below 20 K along a-axis. Our study indicates completely different magnetic structure of NdFe0.9Mn0.1O3 below 135 K in comparison with NdFeO3.
First principles calculations for interaction of tyrosine with (ZnO)3 cluster
NASA Astrophysics Data System (ADS)
Singh, Satvinder; Singh, Gurinder; Kaura, Aman; Tripathi, S. K.
2018-04-01
First Principles Calculations have been performed to study interactions of Phenol ring of Tyrosine (C6H5OH) with (ZnO)3 atomic cluster. All the calculations have been performed under the Density Functional Theory (DFT) framework. Structural and electronic properties of (ZnO)3/C6H5OH have been studied. Gaussian basis set approach has been adopted for the calculations. A ring type most stable (ZnO)3 atomic cluster has been modeled, analyzed and used for the calculations. The compatibility of the results with previous studies has been presented here.
Wang, Zhijiang; Wu, Lina; Zhou, Jigang; Jiang, Zhaohua; Shen, Baozhong
2014-11-07
A chemoselective route to induce Fe3O4@ZnO core-shell nanoparticles decorating carbon nanotubes to form MWCNT/Fe3O4@ZnO heterotrimers has been developed. Charges are redistributed in the heterotrimers through C-O-Zn, C-O-Fe and Fe-O-Zn bondings, giving rise to multiple electronic phases. The generated significant interfacial polarization and synergetic interaction between dielectric and magnetic absorbers result in the MWCNT/Fe3O4@ZnO heterotrimers with high-performance microwave absorption in an entire X band.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Naser, Qusay A.H.; Zhou, Jian, E-mail: jianzhou@whut.edu.cn; Wang, Han
Highlights: • ZnO microtubes were successfully synthesized within 15 min. • Introducing a design of a traveling-wave mode microwave system. • Growth temperature of ZnO microtubes becomes predominant between 1350 °C and 1400 °C. • ZnO microtube showed a strong ultraviolet and a weak and broad green emission. • ZnO microtube is composed only of ZnO with high crystallinity. - Abstract: Field emission scanning electron microscopy (FESEM) investigation reveals that zinc oxide (ZnO) microtubes have been successfully synthesized via a traveling-wave mode microwave system. These products are hexagonal tubular crystals with an average diameter of 60 μm and 250 μmmore » in length, having a well faceted end and side surfaces. The wall thickness of the ZnO tubes is about 3–5 μm. The influence of reaction temperature on the formation of crystalline ZnO hexagonal tubes is studied. Room temperature photoluminescence (PL) spectra have also been examined to explore the optical property which exhibits strong ultraviolet emission at 377.422 nm and a weak and broad green emission band at 587.548 nm. X-ray diffraction (XRD) and energy dispersive spectrometer (EDS) show that the product is composed only of ZnO with high crystallinity. The presented synthesis method possesses several advantages, which would be significant to the deeper study and wide applications of ZnO tubes in the future.« less
The high temperature creep behavior of oxides and oxide fibers
NASA Technical Reports Server (NTRS)
Jones, Linda E.; Tressler, Richard E.
1991-01-01
A thorough review of the literature was conducted on the high-temperature creep behavior of single and polycrystalline oxides which potentially could serve as fiber reinforcements in ceramics or metal matrix applications. Sapphire when oriented with the basal plane perpendicular to the fiber axis (c-axis oriented) is highly creep resistant at temperatures in excess of 1600 C and applied loads of 100 MPa and higher. Pyramidal slip is preferentially activated in sapphire under these conditions and steady-state creep rates in the range of 10(exp -7) to 10 (exp -8)/s were reported. Data on the creep resistance of polycrystalline beryllia suggest that C-axiz oriented single crystal beryllia may be a viable candidate as a fiber reinforcement material; however, the issure of fabricability and moisture sensitivity must be addressed for this material. Yttrium aluminum garnet (YAG) also appears to be a fiber candidate material having a high resistance to creep which is due to it's complex crystal structure and high Peierl resistance. The high creep resistance of garnet suggests that there may be other complex ternary oxides such as single crystal mullite which may also be candidate materials for fiber reinforcements. Finally, CVD and single crystal SiC, although not oxides, do possess a high resistance to creep in the temperature range between 1550 and 1850 C and under stresses of 110 to 220 MPa. From a review of the literature, it appears that for high creep resistant applications sapphire, silicon carbide, yttrium aluminum garnet, mullite, and beryllia are desirable candidate materials which require further investigation.
Detection of quantum well induced single degenerate-transition-dipoles in ZnO nanorods.
Ghosh, Siddharth; Ghosh, Moumita; Seibt, Michael; Rao, G Mohan
2016-02-07
Quantifying and characterising atomic defects in nanocrystals is difficult and low-throughput using the existing methods such as high resolution transmission electron microscopy (HRTEM). In this article, using a defocused wide-field optical imaging technique, we demonstrate that a single ultrahigh-piezoelectric ZnO nanorod contains a single defect site. We model the observed dipole-emission patterns from optical imaging with a multi-dimensional dipole and find that the experimentally observed dipole pattern and model-calculated patterns are in excellent agreement. This agreement suggests the presence of vertically oriented degenerate-transition-dipoles in vertically aligned ZnO nanorods. The HRTEM of the ZnO nanorod shows the presence of a stacking fault, which generates a localised quantum well induced degenerate-transition-dipole. Finally, we elucidate that defocused wide-field imaging can be widely used to characterise defects in nanomaterials to answer many difficult questions concerning the performance of low-dimensional devices, such as in energy harvesting, advanced metal-oxide-semiconductor storage, and nanoelectromechanical and nanophotonic devices.
Photoelectrochemical properties of highly mobilized Li-doped ZnO thin films.
Shinde, S S; Bhosale, C H; Rajpure, K Y
2013-03-05
Li-doped ZnO thin films with preferred (002) orientation have been prepared by spray pyrolysis technique in aqueous medium on to the corning glass substrates. The effect of Li-doping on to the photoelectrochemical, structural, morphological, optical, luminescence, electrical and thermal properties has been investigated. XRD and Raman study indicates that the films have hexagonal crystal structure. The transmittance, reflectance, refractive index, extinction coefficient and bandgap have been analyzed by optical study. PL spectra consist of a near band edge and visible emission due to the electronic defects, which are related to deep level emissions, such as oxide antisite (OZn), interstitial zinc (Zni), interstitial oxygen (Oi) and zinc vacancy (VZn). The Li-doped ZnO films prepared for 1at% doping possesses the highest electron mobility of 102cm(2)/Vs and carrier concentration of 3.62×10(19)cm(-3). Finally, degradation of 2,4,6-Trinitrotoluene using Li-doped ZnO thin films has been reported. Copyright © 2013 Elsevier B.V. All rights reserved.
Interfaces between hexagonal and cubic oxides and their structure alternatives
Zhou, Hua; Wu, Lijun; Wang, Hui-Qiong; ...
2017-11-14
Multi-layer structure of functional materials often involves the integration of different crystalline phases. The film growth orientation thus frequently exhibits a transformation, owing to multiple possibilities caused by incompatible in-plane structural symmetry. Nevertheless, the detailed mechanism of the transformation has not yet been fully explored. Here we thoroughly probe the heteroepitaxially grown hexagonal zinc oxide (ZnO) films on cubic (001)-magnesium oxide (MgO) substrates using advanced scanning transition electron microscopy, X-ray diffraction and first principles calculations, revealing two distinct interface models of (001) ZnO/(001) MgO and (100) ZnO/(001) MgO. Here we have found that the structure alternatives are controlled thermodynamically bymore » the nucleation, while kinetically by the enhanced Zn adsorption and O diffusion upon the phase transformation. Finally, this work not only provides a guideline for the interface fabrication with distinct crystalline phases but also shows how polar and non-polar hexagonal ZnO films might be manipulated on the same cubic substrate.« less
NASA Astrophysics Data System (ADS)
Djiokap, S. R. Tankio; Urgessa, Z. N.; Mbulanga, C. M.; Boumenou, C. Kameni; Venter, A.; Botha, J. R.
2018-04-01
In this paper, the growth of ZnO nanorods on bare and NiO-coated p-Si substrates is reported. A two-step chemical bath deposition process has been used to grow the nanorods. X-ray diffraction and scanning probe microscopy confirmed that the NiO films were polycrystalline, and that the average grain size correlated with the NiO layer thickness. The ZnO nanorod morphology, orientation and optical properties seemed to be unaffected by the intermediate NiO layer thickness. Current-voltage measurements confirmed the rectifying behavior of all the ZnO/NiO/Si heterostructures. The inclusion of a NiO layer between the substrate and the ZnO nanorods are shown to cause a reduction in both the forward and reverse bias currents. This is in qualitative agreement with the band diagram of these heterostructures, which suggests that the intermediate NiO layer should act as an electron blocking layer.
NASA Astrophysics Data System (ADS)
Arafat, M. M.; Ong, J. Y.; Haseeb, A. S. M. A.
2018-03-01
In this research, the gas sensing behavior of Pd nanoparticles loaded zinc stannate/zinc oxide (Zn2SnO4/ZnO) nanowires were investigated. The Zn2SnO4/ZnO nanowires were grown on Au interdigitated alumina substrate by carbon assisted thermal evaporation process. Pd nanoparticles were loaded on the Zn2SnO4/ZnO nanowires by wet reduction process. The nanowires were characterized by X-ray diffractometer, field emission scanning electron microscope and energy dispersive X-ray spectroscope. The Zn2SnO4/ZnO and Pd nanoparticles loaded Zn2SnO4/ZnO nanowires were investigated for detecting H2, H2S and C2H5OH gases in N2 background. Results revealed that the average diameter and length of as-grown Zn2SnO4/ZnO nanowires were 74 nm and 30 μm, respectively. During wet reduction process,Pd particles having size of 20-60 nm were evenly distributed on the Zn2SnO4/ZnO nanowires. The Zn2SnO4/ZnO nanowires based sensors showed selective response towards C2H5OH whereas Pd nanoparticles loaded Zn2SnO4/ZnO nanowires showed selective response towards H2. The recovery time of the sensors reduced with Pd loading on Zn2SnO4/ZnO nanowires. A mechanism is proposed to elucidate the gas sensing mechanism of Pd nanoparticles loaded Zn2SnO4/ZnO nanowires.
NASA Astrophysics Data System (ADS)
Hsiao, Ming-Siao; Zheng, Joseph X.; van Horn, Ryan M.; Quirk, Roderic P.; Thomas, Edwin L.; Lotz, Bernard; Cheng, Stephen Z. D.
2009-03-01
One-dimensional (1-D) defect-free nanoscale confinement is created by growing single crystals of PS-b-PEO block copolymers in dilute solution. Those defect-free, 1-D confined lamellae having different PEO layer thicknesses in PS-b-PEO lamellar single crystals (or crystal mats) were used to study the polymer recrystallization and crystal orientation evolution as a function of recrystallization temperature (Trx) because the Tg^PS is larger than Tm^PEO in the PS-b-PEO single crystal. The results are summarized as follows. First, by the combination of electron diffraction and known PEO crystallography, the crystallization of PEO only takes place at Trx<-5^oC. Meanwhile a unique tilted PEO orientation is formed at Trx >-5^oC after self-seeding. The origin of the formation of tilted chains in the PEO crystal will be addressed. Second, from the analysis of 2D WAXD patterns of crystal mats, it is shown that the change in PEO c-axis orientation from homogeneous at low Trx to homeotropic at higher Trx transitions sharply, within 1^oC. The mechanism inducing this dramatic change in crystal orientation will be investigated in detail.
Construction of g-C3N4/CeO2/ZnO ternary photocatalysts with enhanced photocatalytic performance
NASA Astrophysics Data System (ADS)
Yuan, Yuan; Huang, Gui-Fang; Hu, Wang-Yu; Xiong, Dan-Ni; Zhou, Bing-Xin; Chang, Shengli; Huang, Wei-Qing
2017-07-01
Promoting the spatial separation of photoexcited charge carriers is of paramount significance for photocatalysis. In this work, binary g-C3N4/CeO2 nanosheets are first prepared by pyrolysis and subsequent exfoliation method, then decorated with ZnO nanoparticles to construct g-C3N4/CeO2/ZnO ternary nanocomposites with multi-heterointerfaces. Notably, the type-II staggered band alignments existing between any two of the constituents, as well as the efficient three-level transfer of electron-holes in unique g-C3N4/CeO2/ZnO ternary composites, leads to the robust separation of photoexcited charge carriers, as verified by its photocurrent increased by 8 times under visible light irradiation. The resulting g-C3N4/CeO2/ZnO ternary nanocomposites unveil appreciably increased photocatalytic activity, faster than that of pure g-C3N4, ZnO and g-C3N4/CeO2 by a factor of 11, 4.6 and 3.7, respectively, and good stability toward methylene blue (MB) degradation. The remarkably enhanced photocatalytic activity of g-C3N4/CeO2/ZnO ternary heterostructures can be interpreted in terms of lots of active sites of nanosheet shapes and the efficient charge separation owing to the resulting type-II band alignment with more than one heterointerface and the efficient three-level electron-hole transfer. A plausible mechanism is also elucidated via active species trapping experiments with various scavengers, which indicating that the photogenerated holes and •OH radicals play a crucial role in photodegradation reaction under visible light irradiation. This work suggest that the rational design and construction of type II multi-heterostructures is powerful for developing highly efficient and reusable visible-light photocatalysts for environmental purification and energy conversion.
Wang, Jun; Jiang, Zhe; Zhang, Liqun; Kang, Pingli; Xie, Yingpeng; Lv, Yanhui; Xu, Rui; Zhang, Xiangdong
2009-02-01
Here, a novel sonocatalyst, composite TiO2/ZnO powder, was prepared through the combination of nano-sized TiO2 and ZnO powders. Because of the appropriate adsorbability to organic pollutants and special crystal interphase between TiO2 and ZnO particles, the composite TiO2/ZnO powder exhibits a high sonocatalytic activity under ultrasonic irradiation during the degradation of acid red B. Especially, the sonocatalytic activity of composite TiO2/ZnO powder with 4:1 molar proportion treated at 500 degrees C for 50 min showed obvious improvement compared with pure nano-sized TiO2 and ZnO powders. When the experimental conditions such as 10mg/L acid red B concentration, 1.0 g/L catalyst addition amount, pH=7.0, 20 degrees C system temperature, 100 min ultrasonic time and 50 mL total volume were adopted, the satisfactory degradation ratio and rate were obtained. All experiments indicate that the sonocatalytic method using composite TiO2/ZnO powder may be a more advisable choice for the treatments of non- or low-transparent organic wastewaters in future.
The effect of ZnO nanoparticles on liver function in rats
Tang, Hua-Qiao; Xu, Min; Rong, Qian; Jin, Ru-Wen; Liu, Qi-Ji; Li, Ying-Lun
2016-01-01
Zinc oxide (ZnO) is widely incorporated as a food additive in animal diets. In order to optimize the beneficial effects of ZnO and minimize any resultant environmental pollution, ZnO nanoparticles are often used for delivery of the zinc. However, the possible toxic effects of ZnO nanoparticles, including effects on cytochrome P450 (CYP450) enzymes, have not been evaluated. In this study, we investigated the effect of ZnO nanoparticles, in doses used in animal feeds, on CYP450 enzymes, liver and intestinal enzymes, liver and kidney histopathology, and hematologic indices in rats. We found that liver and kidney injury occurred when the concentrations of ZnO nanoparticles in feed were 300–600 mg/kg. Also, liver mRNA expression for constitutive androstane receptor was suppressed and mRNA expression for pregnane X receptor was induced when feed containing ZnO nanoparticles was given at a concentration of 600 mg/kg. Although the expression of mRNA for CYP 2C11 and 3A2 enzymes was induced by ZnO nanoparticles, the activities of CYP 2C11 and 3A2 were suppressed. While liver CYP 1A2 mRNA expression was suppressed, CYP 1A2 activity remained unchanged at all ZnO nanoparticle doses. Therefore, it has been concluded that ZnO nanoparticles, in the doses customarily added to animal feed, changed the indices of hematology and blood chemistry, altered the expression and activity of hepatic CYP enzymes, and induced pathological changes in liver and kidney tissues of rats. These findings suggest that greater attention needs to be paid to the toxic effects of ZnO nanoparticles in animal feed, with the possibility that the doses of ZnO should be reduced. PMID:27621621
NASA Astrophysics Data System (ADS)
Haseman, Micah; Saadatkia, P.; Winarski, D. J.; Selim, F. A.; Leedy, K. D.; Tetlak, S.; Look, D. C.; Anwand, W.; Wagner, A.
2016-12-01
Aluminum-doped zinc oxide (ZnO:Al) thin films were synthesized by atomic layer deposition on silicon, quartz and sapphire substrates and characterized by x-ray diffraction (XRD), high-resolution scanning electron microscopy, optical spectroscopy, conductivity mapping, Hall effect measurements and positron annihilation spectroscopy. XRD showed that the as-grown films are of single-phase ZnO wurtzite structure and do not contain any secondary or impurity phases. The type of substrate was found to affect the orientation and degree of crystallinity of the films but had no effect on the defect structure or the transport properties of the films. High conductivity of 10-3 Ω cm, electron mobility of 20 cm2/Vs and carrier density of 1020 cm-3 were measured in most films. Thermal treatments in various atmospheres induced a large effect on the thickness, structure and electrical properties of the films. Annealing in a Zn and nitrogen environment at 400°C for 1 h led to a 16% increase in the thickness of the film; this indicates that Zn extracts oxygen atoms from the matrix and forms new layers of ZnO. On the other hand, annealing in a hydrogen atmosphere led to the emergence of an Al2O3 peak in the XRD pattern, which implies that hydrogen and Al atoms compete to occupy Zn sites in the ZnO lattice. Only ambient air annealing had an effect on film defect density and electrical properties, generating reductions in conductivity and electron mobility. Depth-resolved measurements of positron annihilation spectroscopy revealed short positron diffusion lengths and high concentrations of defects in all as-grown films. However, these defects did not diminish the electrical conductivity in the films.
2013-01-01
We report on efficient ZnO nanocrystal (ZnO-NC) emission in the near-UV region. We show that luminescence from ZnO nanocrystals embedded in a SiO2 matrix can vary significantly as a function of the annealing temperature from 450°C to 700°C. We manage to correlate the emission of the ZnO nanocrystals embedded in SiO2 thin films with transmission electron microscopy images in order to optimize the fabrication process. Emission can be explained using two main contributions, near-band-edge emission (UV range) and defect-related emissions (visible). Both contributions over 500°C are found to be size dependent in intensity due to a decrease of the absorption cross section. For the smallest-size nanocrystals, UV emission can only be accounted for using a blueshifted UV contribution as compared to the ZnO band gap. In order to further optimize the emission properties, we have studied different annealing atmospheres under oxygen and under argon gas. We conclude that a softer annealing temperature at 450°C but with longer annealing time under oxygen is the most preferable scenario in order to improve near-UV emission of the ZnO nanocrystals embedded in an SiO2 matrix. PMID:24314071
Pita, Kantisara; Baudin, Pierre; Vu, Quang Vinh; Aad, Roy; Couteau, Christophe; Lérondel, Gilles
2013-12-06
We report on efficient ZnO nanocrystal (ZnO-NC) emission in the near-UV region. We show that luminescence from ZnO nanocrystals embedded in a SiO2 matrix can vary significantly as a function of the annealing temperature from 450°C to 700°C. We manage to correlate the emission of the ZnO nanocrystals embedded in SiO2 thin films with transmission electron microscopy images in order to optimize the fabrication process. Emission can be explained using two main contributions, near-band-edge emission (UV range) and defect-related emissions (visible). Both contributions over 500°C are found to be size dependent in intensity due to a decrease of the absorption cross section. For the smallest-size nanocrystals, UV emission can only be accounted for using a blueshifted UV contribution as compared to the ZnO band gap. In order to further optimize the emission properties, we have studied different annealing atmospheres under oxygen and under argon gas. We conclude that a softer annealing temperature at 450°C but with longer annealing time under oxygen is the most preferable scenario in order to improve near-UV emission of the ZnO nanocrystals embedded in an SiO2 matrix.
Haja Hameed, Abdulrahman Syedahamed; Karthikeyan, Chandrasekaran; Senthil Kumar, Venugopal; Kumaresan, Subramanian; Sasikumar, Seemaisamy
2015-01-01
The antifungal ability of pure and alkaline metal ion (Mg(2+), Ca(2+), Sr(2+) and Ba(2+)) doped ZnO nanoparticles (NPs) prepared by the co-precipitation method was tested against the pathogenic yeast, Candida albicans (C. albicans), and the results showed that the Mg-doped ZnO NPs possessed greater effect than the other alkaline metal ion doped ZnO NPs. The impact of the concentration of Mg doped ZnO sample on the growth of C. albicans was also studied. The Minimal Fungicidal Concentration (MFC) of the Mg doped ZnO NPs was found to be 2000 μg/ml for which the growth of C. albicans was completely inhibited. The ZnO:Mg sample (1.5mg/ml) with various concentrations of histidine reduced the fungicidal effect of the nanoparticles against C. albicans, which was deliberately explained by the role of ROS. The ZnO:Mg sample added with 5mM of histidine scavenged the ample amount of generated ROS effectively. The binding of the NPs with fungi was observed by their FESEM images and their electrostatic attraction is confirmed by the zeta potential measurement. Copyright © 2015. Published by Elsevier B.V.
Poddar, Maneesh Kumar; Sharma, Sachin; Pattipaka, Srinivas; Pamu, D; Moholkar, Vijayanand S
2017-11-01
The present study reports synthesis and characterization of poly(MMA-co-BA)/ZnO nanocomposites using ultrasound-assisted in-situ emulsion polymerization. Methyl methacrylate (MMA) was copolymerized with butyl acrylate (BA), for enhanced ductility of copolymer matrix, in presence of nanoscale ZnO particles. Ultrasound generated strong micro-turbulence in reaction mixture, which resulted in higher encapsulation and uniform dispersion of ZnO (in native form - without surface modification) in polymer matrix, as compared to mechanical stirring. The nanocomposites were characterized for physical properties and structural morphology using standard techniques such as XRD, FTIR, particle size analysis, UV-Visible spectroscopy, electrical conductivity, TGA, DSC, FE-SEM and TEM. Copolymerization of MMA and BA (in presence of ZnO) followed second order kinetics. Thermal stability (T 10% =324.9°C) and glass transition temperature (T g =67.8°C) of poly(MMA-co-BA)/ZnO nanocomposites showed significant enhancement (35.1°C for 1wt% ZnO and 15.7°C for 4wt% ZnO, respectively), as compared to pristine poly(MMA-co-BA). poly(MMA-co-BA)/ZnO (5wt%) nanocomposites possessed the highest electrical conductivity of 0.192μS/cm and peak UV absorptivity of 0.55 at 372nm. Solution rheological study of nanocomposites revealed enhancement in viscosity with increasing ZnO loading. Maximum viscosity of 0.01Pa-s was obtained for 5wt% ZnO loading. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marimuthu, T.; Anandhan, N., E-mail: anandhan-kn@rediffmail.com; Mummoorthi, M.
Zinc oxide (ZnO) and zinc oxide/eosin yellow (ZnO/EY) thin films were potentiostatically deposited onto fluorine doped tin oxide (FTO) glass substrate. Effect of eosin yellow dye on structural, morphological and optical properties was studied. X-ray diffraction patterns, micro Raman spectra and photoluminescence (PL) spectra reveal hexagonal wurtzite structure with less atomic defects in 101 plane orientation of the ZnO/EY film. Scanning electron microscopy (SEM) images show flower for ZnO and porous like structure for ZnO/EY thin film, respectively. DSSC was constructed and evaluated by measuring the current density verses voltage curve.
James, Susan H; Wald, Rachel; Wintersperger, Bernd J; Jimenez-Juan, Laura; Deva, Djeven; Crean, Andrew M; Nguyen, Elsie; Paul, Narinder S; Ley, Sebastian
2013-08-01
The left ventricle (LV) is routinely assessed with cardiac magnetic resonance imaging (MRI) by using short-axis orientation; it remains unclear whether the right ventricle (RV) can also be adequately assessed in this orientation or whether dedicated axial orientation is required. We used phase-contrast (PC) flow measurements in the main pulmonary artery (MPA) and the ascending aorta (Aorta) as nonvolumetric standard of reference and compared RV and LV volumes in short-axis and axial orientations. A retrospective analysis identified 30 patients with cardiac MRI data sets. Patients underwent MRI (1.5 T or 3 T), with retrospectively gated cine steady-state free-precession in axial and short-axis orientations. PC flow analyses of MPA and Aorta were used as the reference measure of RV and LV output. There was a high linear correlation between MPA-PC flow and RV-stroke volume (SV) short axis (r = 0.9) and RV-SV axial (r = 0.9). Bland-Altman analysis revealed a mean offset of 1.4 mL for RV axial and -2.3 mL for RV-short-axis vs MPA-PC flow. There was a high linear correlation between Aorta-PC flow and LV-SV short-axis (r = 0.9) and LV-SV axial (r = 0.9). Bland-Altman analysis revealed a mean offset of 4.8 m for LV short axis and 7.0 mL for LV axial vs Aorta-PC flow. There was no significant difference (P = .6) between short-axis-LV SV and short-axis-RV SV. No significant impact of the slice acquisition orientation for determination of RV and LV stroke volumes was found. Therefore, cardiac magnetic resonance workflow does not need to be extended by an axial data set for patients without complex cardiac disease for assessment of biventricular function and volumes. Copyright © 2013 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ismail, Abdul Hadi; Abdullah, Abdul Halim; Sulaiman, Yusran
2017-03-01
The physical and electrochemical properties of zinc oxide (ZnO) film electrode that were prepared electrochemically were studied. ZnO was electrodeposited on ITO glass substrate by applying three different highly cathodic potentials (-1.3 V, -1.5 V, -1.7 V) in a solution containing 70 mM of Zn(NO3)2.xH2O and 0.1 M KCl with bath temperatures of 70 °C and 80 °C. The presence of ZnO was asserted from XRD analysis where the corresponding peaks in the spectra were assigned. SEM images revealed the plate-like hexagonal morphology of ZnO which is in agreement with the XRD analysis. The areal capacitance of the ZnO was observed to increase when the applied electrodeposition potential is increased from -1.3 V to -1.5 V. However, the areal capacitance is found to decrease when the applied electrodeposition potential is further increased to -1.7 V. The resistance of charge transfer (Rct) of the ZnO decreased when the applied electrodeposition potential varies from -1.3 V to -1.7 V due to the decreased particle size of ZnO when more cathodic electrodeposition potential is applied.
NASA Astrophysics Data System (ADS)
Sehgal, Preeti; Narula, A. K.
2015-06-01
Zinc oxide nanoparticles were synthesized by precipitation method using triethanolamine (TEA) and hexamine (HA) as capping agents, and their effects on the optical, thermal, and morphological properties were analyzed. We have also analyzed the role of solvents on the aforementioned properties of ZnO nanoparticles. The optical properties of capped zinc oxide nanoparticles were investigated by UV-visible and fluorescent techniques. The HA@ZnO and TEA@ZnO that showed blueshift in comparison with ZnO without surfactant revealed the role of surfactant in reducing the trap sites by forming defect-free nanoparticles. TG-DTA curves indicated that optimum annealing temperature for ZnO nanoparticles was in the range of 360-469 °C depending upon the surfactant and solvent; no weight loss was observed above 469 °C. Synthesized ZnO nanoparticles had pure wurtzite structure as elucidated by X-ray diffraction studies (XRD). Scanning electron microscope revealed that the ZnO synthesized in isopropyl alcohol had spherical morphology, whereas ZnO nanoparticles synthesized in methanol had agglomerate sheet-like structure. The average size of the nanocrystal was estimated around 85-169 nm for ZnO.
NASA Astrophysics Data System (ADS)
Brahma, Sanjaya; Liu, C.-W.; Huang, R.-J.; Chang, S.-J.; Lo, K.-Y.
2015-11-01
We demonstrate the formation of self-assembled homogenous flower-like ZnO nanorods over a ZnO seed layer deposited on a HF-etched Si (111) substrate. The typical flower-like morphology of ZnO nanorod arrays is ascribed to the formation of the island-like seed layer which is deposited by the drop method followed by annealing at 300 °C. The island-like ZnO seed layer consists of larger ZnO grains, and is built by constraining of the Si (111) surface due to pattern matching. Pattern matching of Si with ZnO determines the shape and size of the seed layer and this controls the final morphology of ZnO nanorods to be either flower like or vertically aligned. The high quality of the island-like ZnO seed layer enhances the diameter and length of ZnO nanorods. Besides, while the amorphous layer formed during the annealing process would influence the strained ZnO grain, that subsequent amorphous layer will not block the constraining between the ZnO grain and the substrate.
A comparative study of physico-chemical properties of CBD and SILAR grown ZnO thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jambure, S.B.; Patil, S.J.; Deshpande, A.R.
2014-01-01
Graphical abstract: Schematic model indicating ZnO nanorods by CBD (Z{sub 1}) and nanograins by SILAR (Z{sub 2}). - Highlights: • Simple methods for the synthesis of ZnO thin films. • Comparative study of physico-chemical properties of ZnO thin films prepared by CBD and SILAR methods. • CBD outperforms SILAR method. - Abstract: In the present work, nanocrystalline zinc oxide (ZnO) thin films have been successfully deposited onto glass substrates by simple and economical chemical bath deposition (CBD) and successive ionic layer adsorption reaction (SILAR) methods. These films were further characterized for their structural, optical, surface morphological and wettability properties. Themore » X-ray diffraction (XRD) patterns for both CBD and SILAR deposited ZnO thin films reveal the highly crystalline hexagonal wurtzite structure. From optical studies, band gaps obtained are 2.9 and 3.0 eV for CBD and SILAR deposited thin films, respectively. The scanning electron microscope (SEM) patterns show growth of well defined randomly oriented nanorods and nanograins on the CBD and SILAR deposited samples, respectively. The resistivity of CBD deposited films (10{sup 2} Ω cm) is lower than that of SILAR deposited films (10{sup 5} Ω cm). Surface wettability studies show hydrophobic nature for both films. From the above results it can be concluded that CBD grown ZnO thin films show better properties as compared to SILAR method.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Anju, E-mail: singh-nk24@yahoo.com; Vishwakarma, H. L., E-mail: horilal5@yahoo.com
2015-07-31
In this work, ZnO nanorods were achieved by a simple chemical precipitation method in the presence of capping agent Poly Vinyl Pyrrolidone (PVP) at room temperature. X-Ray Diffraction (XRD) result indicates that the synthesized undoped ZnO nanorods have wurtzite hexagonal structure without any impurities. It has been seen that the growth orientation of the prepared ZnO nanorods were (101). XRD analysis revealed that the nanorods having the crystallite size 49 nm. The Scanning Electron Microscopy (SEM) image confirmed the size and shape of these nanorods. The diameter of nanorods has been found that 1.52 µm to 1.61 µm and the lengthmore » of about 4.89 µm. It has also been found that at room temperature Ultra Violet Visible (UV-VIS) absorption band is around 355 nm (blue shifted as compared to bulk). Electroluminescence (EL) studies show that emission of light is possible at very small threshold voltage and increases rapidly with increasing applied voltage. It is seen that smaller ZnO nanoparticles give higher electroluminescence brightness starting at lower threshold voltage. The brightness is also affected by increasing the frequency of AC signal.« less
NASA Astrophysics Data System (ADS)
Kumar, A. Guru Sampath; Obulapathi, L.; Sarmash, T. Sofi; Rani, D. Jhansi; Maddaiah, M.; Rao, T. Subba; Asokan, K.
2015-04-01
Thin films of cadmium (Cd) (0 wt.%, 2 wt.%, 4 wt.% and 10 wt.%) doped zinc oxide (ZnO) have been deposited on a glass substrate by reactive DC magnetron sputtering. The synthesized films are characterized by glancing angle x-ray diffraction (GAXRD), UV-Vis-NIR spectroscopy, four probe resistivity measurement, Hall measurement system, field emission-scanning electron microscopy and energy dispersive analysis by x-rays. A systematic study has been made on the structure, electrical and optical properties of Cd doped ZnO thin films as a function of Cd concentration (0 wt.%, 2 wt.%, 4 wt.% and 10 wt.%). All these films have a hexagonal wurtzite ZnO structure with (0 0 2) orientation without any Cd related phase from the GAXRD patterns. The grain size was increased and maximum appears at 4 wt.% Cd concentration. The electrical resistivity of the films decreased with the Cd doping and minimum resistivity was observed at 4 wt.% Cd concentration. UV-Vis-NIR studies showed that the optical band gap of ZnO (3.37 eV) was reduced to 3.10 eV which is at 4 wt.% Cd concentration.
NASA Astrophysics Data System (ADS)
Srivastava, Amar; Saha, S.; Annadi, A.; Zhao, Y. L.; Gopinadhan, K.; Wang, X.; Naomi, N.; Liu, Z. Q.; Dhar, S.; Herng, T. S.; Nina, Bao; Ariando, -; Ding, Jun; Venkatesan, T.
2012-02-01
In this work we report a study of a coherently coupled interface consisting of a ZnO layer grown on top of an oriented VO2 layer on sapphire by photoluminescence and electrical transport measurements across the VO2 metal insulator phase transition (MIT). The photoluminescence of the ZnO layer showed a broad hysteresis induced by the phase transition of VO2 while the width of the electrical hysteresis was narrow and unaffected by the over layer. The enhanced width of the PL hysteresis was due to the formation of defects during the MIT as evidenced by a broad hysteresis in the opposite direction to that of the band edge PL in the defect luminescense. Unlike VO2 the defects in ZnO did not fully recover across the phase transition. From the defect luminescence data, oxygen interstitials were found to be the predominant defects in ZnO mediated by the strain from the VO2 phase transition. Such coherently coupled interfaces could be of use in characterizing the stability of a variety of interfaces and also for novel device application.
NASA Astrophysics Data System (ADS)
Adolph, David; Tingberg, Tobias; Ive, Tommy
2015-09-01
Plasma-assisted molecular beam epitaxy was used to grow ZnO(0001) layers on GaN(0001)/4H-SiC buffer layers deposited in the same growth chamber equipped with both N- and O-plasma sources. The GaN buffer layers were grown immediately before initiating the growth of ZnO. Using a substrate temperature of 445 °C and an O2 flow rate of 2.5 standard cubic centimeters per minute, we obtained ZnO layers with statistically smooth surfaces having a root-mean-square roughness of 0.3 nm and a peak-to-valley distance of 3 nm as revealed by atomic force microscopy. The full-width-at-half-maximum for x-ray rocking curves obtained across the ZnO(0002) and ZnO(10 1 bar 5) reflections was 198 and 948 arcsec, respectively. These values indicated that the mosaicity of the ZnO layer was comparable to the corresponding values of the underlying GaN buffer layer. Reciprocal space maps showed that the in-plane relaxation of the GaN and ZnO layers was 82% and 73%, respectively, and that the relaxation occurred abruptly during the growth. Room-temperature Hall-effect measurements revealed that the layers were inherently n-type and had an electron concentration of 1×1019 cm-3 and a Hall mobility of 51 cm2/V s.
Seong, Kieun; Kim, Kyongjun; Park, Si Yun; Kim, Youn Sang
2013-04-07
Chemical imprinting was conducted on ZnO semiconductor films via a chemical reaction at the contact regions between a micro-patterned PDMS stamp and ZnO films. In addition, we applied the chemical imprinting on Li doped ZnO thin films for high performance TFTs fabrication. The representative micro-patterned Li doped ZnO TFTs showed a field effect mobility of 4.2 cm(2) V(-1) s(-1) after sintering at 300 °C.
NASA Astrophysics Data System (ADS)
Minemura, Yoshiki; Nagasaka, Kohei; Kiguchi, Takanori; Konno, Toyohiko J.; Funakubo, Hiroshi; Uchida, Hiroshi
2013-09-01
Nanosheet Ca2Nb3O20 (ns-CN) layers with pseudo-perovskite-type crystal configuration were applied on the surface of polycrystalline metal substrates to achieve preferential crystal orientation of Pb(Zr,Ti)O3 (PZT) films for the purpose of enhanced ferroelectricity comparable to that of epitaxial thin films. PZT films with tetragonal symmetry (Zr/Ti=0.40:0.60) were fabricated by chemical solution deposition (CSD) on ns-CN-buffered Inconel 625 and SUS 316L substrates, while ns-CN was applied on the the substrates by dip-coating. The preferential crystal growth on the ns-CN layer can be achieved by favorable lattice matching between (001)/(100)PZT and (001)ns-CN planes. The degree of (001) orientation was increased for PZT films on ns-CN/Inconel 625 and ns-CN/SUS 316L substrates, whereas randomly-oriented PZT films with a lower degree of (001) orientation were grown on bare and Inconel 625 films. Enhanced remanent polarization of 60 µC/cm2 was confirmed for the PZT films on ns-CN/metal substrates, ascribed to the preferential alignment of the polar [001] axis normal to the substrate surface, although it also suffered from higher coercive field above 500 kV/cm caused by PZT/metal interfacial reaction.
SrZnO nanostructures grown on templated <0001> Al2O3 substrates by pulsed laser deposition
NASA Astrophysics Data System (ADS)
Labis, Joselito P.; Alanazi, Anwar Q.; Albrithen, Hamad A.; El-Toni, Ahmed Mohamed; Hezam, Mahmoud; Elafifi, Hussein Elsayed; Abaza, Osama M.
2017-09-01
The parameters of pulsed laser deposition (PLD) have been optimized to design different nanostructures of Strontium-alloyed zinc oxide (SrZnO). In this work, SrZnO nanostructures are grown on <0001>Al2O3 substrates via two-step templating/seeding approach. In the temperature range between 300 - 750 oC and O2 background pressures between 0.01 and 10 Torr, the growth conditions have been tailored to grow unique pointed leaf-like- and pitted olive-like nanostructures. Prior to the growth of the nanostructures, a thin SrZnO layer that serves as seed layer/template is first deposited on the Al2O3 substrates at ˜300oC and background oxygen pressure of 10 mTorr. The optical properties of the nanostructures were examined by UV/Vis spectroscopy and photoluminescence (PL), while the structures/morphologies were examined by SEM, TEM, and XRD. The alloyed SrZnO nanostructures, grown by ablating ZnO targets with 5, 10, 25% SrO contents, have in common a single-crystal hexagonal nanostructure with (0002) preferential orientation and have shown remarkable changes in the morphological and optical properties of the materials. To date, this is the only reported work on optimization of laser ablation parameters to design novel SrZnO nanostructures in the 5-25% alloying range, as most related Sr-doped ZnO studies were done below 7% doping. Although the physical properties of ZnO are modified via Sr doping, the mechanism remains unclear. The PLD-grown SrZnO nanostructures were directly grown onto the Al2O3 substrates; thus making these nanomaterials very promising for potential applications in biosensors, love-wave filters, solar cells, and ultrasonic oscillators.
NASA Astrophysics Data System (ADS)
Rangel-Mendez, Jose R.; Matos, Juan; Cházaro-Ruiz, Luis F.; González-Castillo, Ana C.; Barrios-Yáñez, Guillermo
2018-03-01
The microwave-assisted solvothermal synthesis of C-doped TiO2 and ZnO hybrid materials was performed. Saccharose, titanium isopropoxide and zinc acetate were used as organic and inorganic sources for the synthesis. The influence of temperature and reaction time on the textural and optoelectronic properties of the hybrid materials was verified. Carbon quantum-dots of TiO2 and ZnO nanostructured spheres were obtained in a second pot by controlled calcination steps of the precursor hybrid materials. A carefully characterization by adsorption-desorption N2 isotherms, XRD, XPS, SEM, UV-vis/DR and electro- and photo-electrochemistry properties of the carbon quantum-dots TiO2 and ZnO spheres was performed. The photoelectrochemical activity of TiO2-C and ZnO-C films proved to be dependent on the conditions of synthesis. It was found a red-shift in the energy band gap of the semiconductors with values of 3.02 eV and 3.13 eV for the TiO2-C and ZnO-C, respectively, clearly lower than those on bare semiconductors, which is associated with the C-doping effect. From the photo-electrochemistry characterization of C-doped TiO2 and ZnO films can be concluded that the present materials have potential applications as photoelectrodes for quantum-dots sensitized solar cells.
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.; Yun, Hee Mann; DiCarlo, James A.
2007-01-01
The tensile mechanical properties of ceramic matrix composites (CMC) in directions off the primary axes of the reinforcing fibers are important for architectural design of CMC components that are subjected to multi-axial stress states. In this study, 2D-woven melt-infiltrated (MI) SiC/SiC composite panels with balanced fiber content in the 0 degree and 90 degree directions were tensile loaded in-plane in the 0 degree direction and at 45 degree to this direction. In addition, a 2D triaxially-braided MI composite panel with balanced fiber content in the plus or minus 67 degree bias directions and reduced fiber content in the axial direction was tensile loaded perpendicular to the axial direction tows (i.e., 23 degrees from the bias fibers). Stress-strain behavior, acoustic emission, and optical microscopy were used to quantify stress-dependent matrix cracking and ultimate strength in the panels. It was observed that both off-axis loaded panels displayed higher composite onset stresses for through-thickness matrix cracking than the 2D-woven 0/90 panels loaded in the primary 0 degree direction. These improvements for off-axis cracking strength can in part be attributed to higher effective fiber fractions in the loading direction, which in turn reduces internal stresses on critical matrix flaws for a given composite stress. Also for the 0/90 panel loaded in the 45 degree direction, an improved distribution of matrix flaws existed due to the absence of fiber tows perpendicular to the loading direction. In addition, for the +67/0/-67 braided panel, the axial tows perpendicular to the loading direction were not only low in volume fraction, but were also were well separated from one another. Both off-axis oriented panels also showed relatively good ultimate tensile strength when compared to other off-axis oriented composites in the literature, both on an absolute strength basis as well as when normalized by the average fiber strength within the composites. Initial implications are discussed for constituent and architecture design to improve the directional cracking of SiC/SiC CMC components with MI matrices.
Thermal and temporal evolution of microstructure in polycrystalline ZnO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kondal, Neha; Tiwari, Sanjiv Kumar, E-mail: sanjivkumar.tiwari@juit.ac.in
2016-05-06
Tug between electronics and spintronics has opened up new area of research named as dilute magnetic semiconductors (DMS), ZnO is one of the most reliable candidates for spintronic devices and DMS. Since, pure and transition metal doped polycrystalline ZnO shows room temperature ferromagnetism, therefore it is very important to gain insight into its microstructure (MS) evolution. We report thermal evolution of MS of pure ZnO on sintering it at 200 °C, 400 °C, 600 °C, and 800 °C in ambient atmosphere for two hours. Temporal evolution at fixed temperature was analyzed using mean field model of internal energy and entropy.more » Grain size of ZnO MS were analyzed using integral breadth method of X-ray diffraction (XRD) lines using Voigt profile fit,. XRD line corresponding to [101] plane shifts from 36.17° to 36.28° whereas grain size increases from 67.5 nm to 93.7 nm with increase of temperature from 23°C to 800°C respectively. Grain growth with increase of temperature show Arrhenius type behavior with activation energy of 30.77 kJ-mol{sup −1} and temporal growth shows diffusive behavior with exponent 0.5.« less
Crystallographic orientation inhomogeneity and crystal splitting in biogenic calcite
Checa, Antonio G.; Bonarski, Jan T.; Willinger, Marc G.; Faryna, Marek; Berent, Katarzyna; Kania, Bogusz; González-Segura, Alicia; Pina, Carlos M.; Pospiech, Jan; Morawiec, Adam
2013-01-01
The calcitic prismatic units forming the outer shell of the bivalve Pinctada margaritifera have been analysed using scanning electron microscopy–electron back-scatter diffraction, transmission electron microscopy and atomic force microscopy. In the initial stages of growth, the individual prismatic units are single crystals. Their crystalline orientation is not consistent but rather changes gradually during growth. The gradients in crystallographic orientation occur mainly in a direction parallel to the long axis of the prism, i.e. perpendicular to the shell surface and do not show preferential tilting along any of the calcite lattice axes. At a certain growth stage, gradients begin to spread and diverge, implying that the prismatic units split into several crystalline domains. In this way, a branched crystal, in which the ends of the branches are independent crystalline domains, is formed. At the nanometre scale, the material is composed of slightly misoriented domains, which are separated by planes approximately perpendicular to the c-axis. Orientational gradients and splitting processes are described in biocrystals for the first time and are undoubtedly related to the high content of intracrystalline organic molecules, although the way in which these act to induce the observed crystalline patterns is a matter of future research. PMID:23804442
Crystal orientation of PEO confined within the nanorod templated by AAO nanochannels.
Liu, Chien-Liang; Chen, Hsin-Lung
2018-06-18
The orientation of poly(ethylene oxide) (PEO) crystallites developed in the nanochannels of anodic aluminum oxide (AAO) membrane has been investigated. PEO was filled homogeneously into the nanochannels in the melt state, and the crystallization confined within the PEO nanorod thus formed was allowed to take place subsequently at different temperatures. The effects of PEO molecular weight (MPEO), crystallization temperature (Tc) and AAO channel diameter (DAAO) on the crystal orientation attained in the nanorod were revealed by 2-D wide angle X-ray scattering (WAXS) patterns. In the nanochannels with DAAO = 23 nm, the crystallites formed from PEO with the lowest MPEO (= 3400 g mol-1) were found to adopt a predominantly perpendicular orientation with the crystalline stems aligning normal to the channel axis irrespective of Tc (ranging from -40 to 20 °C). Increasing MPEO or decreasing Tc tended to induce the development of the tilt orientation characterized by the tilt of the (120) plane by 45° from the channel axis. In the case of the highest MPEO (= 95 000 g mol-1) studied, both perpendicular and tilt orientations coexisted irrespective of Tc. Coexistent orientation was always observed in the channels with a larger diameter (DAAO = 89 nm) irrespective of MPEO and Tc. Compared with the previous results of the crystal orientation attained in nanotubes templated by the preferential wetting of the channel walls by PEO, the window of the perpendicular crystal orientation in the nanorod was much narrower due to its weaker confinement effect imposed on the crystal growth than that set by the nanotube.
Effect of Pre-Annealing on Thermal and Optical Properties of ZnO and Al-ZnO Thin Films
NASA Astrophysics Data System (ADS)
Saravanan, P.; Gnanavelbabu, A.; Pandiaraj, P.
Zinc oxide (ZnO) nanoparticles were synthesized by a simple solution route method using zinc acetate as the precursor and ethanol as the solvent. At a temperature of 60∘C, a clear homogenous solution is heated to 100∘C for ethanol evaporation. Then the obtained precursor powder is annealed at 600∘C for the formation of ZnO nanocrystalline structure. Doped ZnO particle is also prepared by using aluminum nitrate nonahydrate to produce aluminum (Al)-doped nanoparticles using the same solution route method followed by annealing. Thin film fabrication is done by air evaporation method using the polymer polyvinyl alcohol (PVA). To analyze the optical and thermal properties for undoped and doped ZnO nanocrystalline thin film by precursor annealing, characterizations such as UV, FTIR, AFM, TGA/DTA, XRD, EDAX and Photoluminescence (PL) were also taken. It was evident that precursor annealing had great influence on thermal and optical properties of thin films while ZnO and AZO film showed low crystallinity and intensity than in the powder form. TGA/DTA suggests pre-annealing effect improves the thermal stability, which ensures that Al ZnO nanoparticle can withstand at high temperature too which is the crucial advantage in the semiconductor devices. UV spectroscopy confirmed the presence of ZnO nanoparticles in the thin film by an absorbance peak observed at 359nm with an energy bandgap of 3.4eV. A peak obtained at 301nm with an energy bandgap of 4.12eV shows a blue shift due to the presence of Al-doped ZnO nanoparticles. Both ZnO and AZO bandgap increased due to precursor annealing. In this research, PL spectrum is also studied in order to determine the optical property of the nanoparticle embedded thin film. From PL spectrum, it is observed that the intensity of the doped ZnO is much more enhanced as the dopant concentration is increased to 1wt.% and 2wt.% of Al in ZnO.
NASA Astrophysics Data System (ADS)
Kawamura, Yumi; Tani, Mai; Hattori, Nozomu; Miyatake, Naomasa; Horita, Masahiro; Ishikawa, Yasuaki; Uraoka, Yukiharu
2012-02-01
We investigated zinc oxide (ZnO) thin films prepared by plasma assisted atomic layer deposition (PA-ALD), and thin-film transistors (TFTs) with the ALD ZnO channel layer for application to next-generation displays. We deposited the ZnO channel layer by PA-ALD at 100 or 300 °C, and fabricated TFTs. The transfer characteristic of the 300 °C-deposited ZnO TFT exhibited high mobility (5.7 cm2 V-1 s-1), although the threshold voltage largely shifted toward the negative (-16 V). Furthermore, we deposited Al2O3 thin film as a gate insulator by PA-ALD at 100 °C for the low-temperature TFT fabrication process. In the case of ZnO TFTs with the Al2O3 gate insulator, the shift of the threshold voltage improved (-0.1 V). This improvement of the negative shift seems to be due to the negative charges of the Al2O3 film deposited by PA-ALD. On the basis of the experimental results, we confirmed that the threshold voltage of ZnO TFTs is controlled by PA-ALD for the deposition of the gate insulator.
NASA Astrophysics Data System (ADS)
Sarkar, A.; Luitel, Homnath; Gogurla, N.; Sanyal, D.
2017-03-01
Annealing effect of granular ZnO has been studied by Doppler broadened electron positron annihilated γ-ray (0.511 MeV) line shape measurement. Ratio curve analysis shows that granular ZnO samples contain both Zn and O vacancies. Such defects exist as agglomerates of several vacancies and start to recover above 400 °C annealing. It has also been observed that due to annealing temperature difference of 125 °C (from 325 °C to 450 °C), huge change occurs in low temperature photoluminescence (PL) of ZnO. Significant reduction of free to bound (FB) transition ~3.315 eV is observed for increasing the annealing temperature. It has been conjectured that ~3.315 eV PL in ZnO is related to particular decoration (unknown) of both Zn and O vacancies. The methodology of revealing defect-property correlation as employed here can also be applied to other types of semiconductors.
Structural analysis of the epitaxial interface Ag/ZnO in hierarchical nanoantennas.
Sanchez, John Eder; Santiago, Ulises; Benitez, Alfredo; Yacamán, Miguel José; González, Francisco Javier; Ponce, Arturo
2016-10-10
Detectors, photo-emitter, and other high order radiation devices work under the principle of directionality to enhance the power of emission/transmission in a particular direction. In order to understand such directionality, it is important to study their coupling mechanism of their active elements. In this work, we present a crystalline orientation analysis of ZnO nanorods grown epitaxially on the pentagonal faces of silver nanowires. The analysis of the crystalline orientation at the metal-semiconductor interface (ZnO/Ag) is performed with precession electron diffraction under assisted scanning mode. In addition, high resolution X-ray diffraction on a Bragg-Brentano configuration has been used to identify the crystalline phases of the arrangement between ZnO rods and silver nanowires. The work presented herein provides a fundamental knowledge to understand the metal-semiconductor behavior related to the receiving/transmitting mechanisms of ZnO/Ag nanoantennas.
Tschaggeny, Charles W [Woods Cross, UT; Jones, Warren F [Idaho Falls, ID; Bamberg, Eberhard [Salt Lake City, UT
2011-09-13
A gimbal is described and which includes a fixed base member defining an axis of rotation; a second member concentrically oriented relative to the axis of rotation; a linear actuator oriented in immediate, adjoining force transmitting relation relative to the base member or to the second member, and which applies force along a linear axis which is tangential to the axis of rotation so as to cause the second member to rotate coaxially relative to the fixed base member; and an object of interest mounted to the second member such that the object of interest is selectively moved relative to the base member about the axis of rotation.
NASA Astrophysics Data System (ADS)
Wang, S.; Mirkhani, V.; Yapabandara, K.; Cheng, R.; Hernandez, G.; Khanal, M. P.; Sultan, M. S.; Uprety, S.; Shen, L.; Zou, S.; Xu, P.; Ellis, C. D.; Sellers, J. A.; Hamilton, M. C.; Niu, G.; Sk, M. H.; Park, M.
2018-04-01
We report on the fabrication and electrical characterization of bottom gate thin-film transistors (TFTs) based on a sol-gel derived ZnO channel layer. The effect of annealing of ZnO active channel layers on the electrical characteristics of the ZnO TFTs was systematically investigated. Photoluminescence (PL) spectra indicate that the crystal quality of the ZnO improves with increasing annealing temperature. Both the device turn-on voltage (Von) and threshold voltage (VT) shift to a positive voltage with increasing annealing temperature. As the annealing temperature is increased, both the subthreshold slope and the interfacial defect density (Dit) decrease. The field effect mobility (μFET) increases with annealing temperature, peaking at 800 °C and decreases upon further temperature increase. An improvement in transfer and output characteristics was observed with increasing annealing temperature. However, when the annealing temperature reaches 900 °C, the TFTs demonstrate a large degradation in both transfer and output characteristics, which is possibly produced by non-continuous coverage of the film. By using the temperature-dependent field effect measurements, the localized sub-gap density of states (DOSs) for ZnO TFTs with different annealing temperatures were determined. The DOSs for the subthreshold regime decrease with increasing annealing temperature from 600 °C to 800 °C and no substantial change was observed with further temperature increase to 900 °C.
NASA Astrophysics Data System (ADS)
Mishra, D. K.; Ahlawat, Anju; Sathe, V. G.
2011-07-01
Nonstoichiometric oriented thin films of LaCoO3-δ of equal thickness and varying oxygen content has been deposited on STO (001) substrate by pulsed laser deposition. X-ray diffraction results show that all films are single phase and c-axis oriented in the (001) direction with in plane tensile strain. In these films strain reduces with increasing oxygen content and Raman study also support this result. Low temperature Raman study shows no change in spin state of Co3+ in temperature range from 300 K to down to 80 K.