Science.gov

Sample records for c-bogen-ct-unterstuetzte 3d-navigation perkutaner

  1. Accuracy and reproducibility of virtual cutting guides and 3D-navigation for osteotomies of the mandible and maxilla

    PubMed Central

    Bernstein, Jonathan M.; Daly, Michael J.; Chan, Harley; Qiu, Jimmy; Goldstein, David; Muhanna, Nidal; de Almeida, John R.; Irish, Jonathan C.

    2017-01-01

    Background We set out to determine the accuracy of 3D-navigated mandibular and maxillary osteotomies with the ultimate aim to integrate virtual cutting guides and 3D-navigation into ablative and reconstructive head and neck surgery. Methods Four surgeons (two attending, two clinical fellows) completed 224 unnavigated and 224 3D-navigated osteotomies on anatomical models according to preoperative 3D plans. The osteotomized bones were scanned and analyzed. Results Median distance from the virtual plan was 2.1 mm unnavigated (IQR 2.6 mm, ≥3 mm in 33%) and 1.2 mm 3D-navigated (IQR 1.1 mm, ≥3 mm in 6%) (P<0.0001); median pitch was 4.5° unnavigated (IQR 7.1°) and 3.5° 3D-navigated (IQR 4.0°) (P<0.0001); median roll was 7.4° unnavigated (IQR 8.5°) and 2.6° 3D-navigated (IQR 3.8°) (P<0.0001). Conclusion 3D-rendering enables osteotomy navigation. 3 mm is an appropriate planning distance. The next steps are translating virtual cutting guides to free bone flap reconstruction and clinical use. PMID:28249001

  2. Posterior tibial slope in medial opening-wedge high tibial osteotomy: 2-D versus 3-D navigation.

    PubMed

    Yim, Ji Hyeon; Seon, Jong Keun; Song, Eun Kyoo

    2012-10-01

    Although opening-wedge high tibial osteotomy (HTO) is used to correct deformities, it can simultaneously alter tibial slope in the sagittal plane because of the triangular configuration of the proximal tibia, and this undesired change in tibial slope can influence knee kinematics, stability, and joint contact pressure. Therefore, medial opening-wedge HTO is a technically demanding procedure despite the use of 2-dimensional (2-D) navigation. The authors evaluated the posterior tibial slope pre- and postoperatively in patients who underwent navigation-assisted opening-wedge HTO and compared posterior slope changes for 2-D and 3-dimensional (3-D) navigation versions. Patients were randomly divided into 2 groups based on the navigation system used: group A (2-D guidance for coronal alignment; 17 patients) and group B (3-D guidance for coronal and sagittal alignments; 17 patients). Postoperatively, the mechanical axis was corrected to a mean valgus of 2.81° (range, 1°-5.4°) in group A and 3.15° (range, 1.5°-5.6°) in group B. A significant intergroup difference existed for the amount of posterior tibial slope change (Δ slope) pre- and postoperatively (P=.04).Opening-wedge HTO using navigation offers accurate alignment of the lower limb. In particular, the use of 3-D navigation results in significantly less change in the posterior tibial slope postoperatively than does the use of 2-D navigation. Accordingly, the authors recommend the use of 3-D navigation systems because they provide real-time intraoperative information about coronal, sagittal, and transverse axes and guide the maintenance of the native posterior tibial slope. Copyright 2012, SLACK Incorporated.

  3. Feasibility of 3D navigator-triggered magnetic resonance cholangiopancreatography with combined parallel imaging and compressed sensing reconstruction at 3T.

    PubMed

    Seo, Nieun; Park, Mi-Suk; Han, Kyunghwa; Kim, Dongeun; King, Kevin F; Choi, Jin-Young; Kim, Honsoul; Kim, Hye Jin; Lee, Minsu; Bae, Heejin; Kim, Myeong-Jin

    2017-03-11

    To assess the feasibility of 3D navigator-triggered magnetic resonance cholangiopancreatography (MRCP) with combined parallel imaging (PI) and compressed sensing (CS). With Institutional Review Board approval, 30 consecutive patients who underwent MRCP for suspected pancreaticobiliary disease were prospectively recruited. All patients underwent 3D navigator-triggered MRCP with conventional PI alone, and with combined PI and CS using a 3T machine. The acquisition time and relative duct-to-periductal contrast ratios (RCs) at three biliary segments were quantitatively compared between the two MRCP methods. Qualitative image parameters were independently evaluated by two blinded radiologists, and were compared between two methods using the Wilcoxon signed-rank test. The mean acquisition time of MRCP with combined PI and CS (131.87 ± 33.60 sec) was significantly shorter compared with that of MRCP with PI (253.63 ± 56.08 sec; P < 0.001). The RC obtained using MRCP with combined PI and CS at two segments was slightly lower compared to that obtained using MRCP with PI (P = 0.007 and 0.002). Both reviewers found no significant differences in duct visualization, overall image quality, and degree of artifacts between the two methods (P ≥ 0.063; P = 0.637; and P = 0.752, respectively). Lesion conspicuity and confidence in duct abnormalities were comparable between two MRCP methods in both readers (P = 0.564 and P > 0.999). Combined PI and CS reconstruction is feasible for 3D navigator-triggered MRCP, providing image quality comparable to that of MRCP with PI alone, in about half the acquisition time. 2 J. Magn. Reson. Imaging 2017. © 2017 International Society for Magnetic Resonance in Medicine.

  4. On-chip Microfluidic Multimodal Swimmer toward 3D Navigation

    PubMed Central

    Barbot, Antoine; Decanini, Dominique; Hwang, Gilgueng

    2016-01-01

    Mobile microrobots have a promising future in various applications. These include targeted drug delivery, local measurement, biopsy or microassembly. Studying mobile microrobots inside microfluidics is an essential step towards such applications. But in this environment that was not designed for the robot, integration process and propulsion robustness still pose technological challenges. In this paper, we present a helical microrobot with three different motions, designed to achieve these goals. These motions are rolling, spintop motion and swimming. Through these multiple motions, microrobots are able to selectively integrate a chip through a microfluidic channel. This enables them to perform propulsion characterizations, 3D (Three Dimensional) maneuverability, particle cargo transport manipulation and exit from the chip. The microrobot selective integration inside microfluidics could lead to various in-vitro biologic or in-vivo biomedical applications. PMID:26791433

  5. Design of a 3D Navigation Technique Supporting VR Interaction

    NASA Astrophysics Data System (ADS)

    Boudoin, Pierre; Otmane, Samir; Mallem, Malik

    2008-06-01

    Multimodality is a powerful paradigm to increase the realness and the easiness of the interaction in Virtual Environments (VEs). In particular, the search for new metaphors and techniques for 3D interaction adapted to the navigation task is an important stage for the realization of future 3D interaction systems that support multimodality, in order to increase efficiency and usability. In this paper we propose a new multimodal 3D interaction model called Fly Over. This model is especially devoted to the navigation task. We present a qualitative comparison between Fly Over and a classical navigation technique called gaze-directed steering. The results from preliminary evaluation on the IBISC semi-immersive Virtual Reality/Augmented Realty EVR@ platform show that Fly Over is a user friendly and efficient navigation technique.

  6. On-chip Microfluidic Multimodal Swimmer toward 3D Navigation

    NASA Astrophysics Data System (ADS)

    Barbot, Antoine; Decanini, Dominique; Hwang, Gilgueng

    2016-01-01

    Mobile microrobots have a promising future in various applications. These include targeted drug delivery, local measurement, biopsy or microassembly. Studying mobile microrobots inside microfluidics is an essential step towards such applications. But in this environment that was not designed for the robot, integration process and propulsion robustness still pose technological challenges. In this paper, we present a helical microrobot with three different motions, designed to achieve these goals. These motions are rolling, spintop motion and swimming. Through these multiple motions, microrobots are able to selectively integrate a chip through a microfluidic channel. This enables them to perform propulsion characterizations, 3D (Three Dimensional) maneuverability, particle cargo transport manipulation and exit from the chip. The microrobot selective integration inside microfluidics could lead to various in-vitro biologic or in-vivo biomedical applications.

  7. Evaluation of an electromagnetic 3D navigation system to facilitate endovascular tasks: a feasibility study.

    PubMed

    Sidhu, R; Weir-McCall, J; Cochennec, F; Riga, C; DiMarco, A; Bicknell, C D

    2012-01-01

    We describe a novel approach to arterial cannulation using the StealthStation(®) Guidance System (Medtronic, USA). This uses electromagnetic technology to track the guidewire, displaying a 3D image of the vessel and guidewire. The study was performed on a 'bench top' simulation model called the Cannulation Suite comprising of a silicone aortic arch model and simulated fluoroscopy. The accuracy of the StealthStation(®) was assessed. 16 participants of varying experience in performing endovascular procedures (novices: 6 participants, ≤5 procedures performed; intermediate: 5 participants, 6-50 procedures performed; experts: 5 participants, >50 procedures performed) underwent a standardised training session in cannulating the left subclavian artery on the model with the conventional method (i.e. with fluoroscopy) and with the StealthStation(®). Each participant was then assessed on cannulating the left subclavian artery using the conventional method and with the StealthStation(®). Performance was video-recorded. The subjects then completed a structured questionnaire assessing the StealthStation(®). The StealthStation(®) was accurate to less than 1 mm [mean (SD) target registration error 0.56 mm (0.91)]. Every participant was able to complete the cannulation task with a significantly lower use of fluoroscopy with the navigation system compared with the conventional method [median 0 s (IQR 0-2) vs median 14 s (IQR 10-19), respectively; p = <0.001]. There was no significant difference between the StealthStation(®) and conventional method for: total procedure time [median 17 s (IQR 9-53) vs median 21 s (IQR 11-32), respectively; p=0.53]; total guidewire hits to the vessel wall [median 0 (IQR 0-1) vs median 0 (IQR 0-1), respectively; p=0.86]; catheter hits to the vessel wall [median 0.5 (IQR 0-2) vs median 0.5 (IQR 0-1), respectively; p=0.13]; and cannulation performance on the global rating scale [median score, 39/40 (IQR 28-39) vs 38/40 (IQR 33-40), respectively; p=0.40]. The intra-class correlation coefficient for agreement between video-assessors for all scores was 0.99. 88% strongly agreed that the StealthStation(®) can potentially decrease exposure of the patient to contrast and radiation. Arterial cannulation is feasible with the StealthStation(®). Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  8. 3D Navigation and Integrated Hazard Display in Advanced Avionics: Workload, Performance, and Situation Awareness

    NASA Technical Reports Server (NTRS)

    Wickens, Christopher D.; Alexander, Amy L.

    2004-01-01

    We examined the ability for pilots to estimate traffic location in an Integrated Hazard Display, and how such estimations should be measured. Twelve pilots viewed static images of traffic scenarios and then estimated the outside world locations of queried traffic represented in one of three display types (2D coplanar, 3D exocentric, and split-screen) and in one of four conditions (display present/blank crossed with outside world present/blank). Overall, the 2D coplanar display best supported both vertical (compared to 3D) and lateral (compared to split-screen) traffic position estimation performance. Costs of the 3D display were associated with perceptual ambiguity. Costs of the split screen display were inferred to result from inappropriate attention allocation. Furthermore, although pilots were faster in estimating traffic locations when relying on memory, accuracy was greatest when the display was available.

  9. Gadomer-17-enhanced 3D navigator-echo MR angiography of the pulmonary arteries in pigs.

    PubMed

    Abolmaali, Nasreddin D; Hietschold, Volker; Appold, Steffen; Ebert, Wolfgang; Vogl, Thomas J

    2002-03-01

    The goal of this study was visualisation and quality assessment of the pulmonary arteries in pigs with modified navigator-echo magnetic resonance angiography using an intravascular contrast agent. Five sedated pigs were examined in a clinical 1.5-T system with modified three-dimensional navigator-echo magnetic resonance angiography (slice thickness 3 mm, pixel size 2.4x1.8 mm2) to evaluate the pulmonary arteries. Using a phased-array four-element thorax coil the entire thorax was scanned before and after intravenous infusion of a gadolinium-based intravascular contrast agent. Assessment of image quality, enhancement-related contrast-to-noise ratio (CNR) measurements and improvement of visibility of peripheral pulmonary vessels was performed. Improvement of quality using Gadomer-17 was found for smaller vessels; pulmonary trunks and the main pulmonary arteries were sufficiently imaged without enhancement. Mean rise of CNR measured in the pulmonary trunks was 28.64% ( P=0.0002), mean rise of CNR in the main pulmonary arteries and the segmental arteries were 79.6% and 148.2%, respectively. Mean distance between the visible peripheral end of 60 sub-segmental arteries and the inner thoracic wall was 12.2 +/- 0.4 mm, and was significantly ( P=0.00002) reduced after contrast infusion to 8.0 +/- 0.4 mm. The combination of inherent flow sensitivity of navigator-echo angiography and Gadomer-17 proved effective for imaging of the pulmonary arteries. In contrast to standard contrast-enhanced pulmonary MRA studies, breath holding is not required. Further studies and the evaluation of findings of patients suffering from pulmonary embolism are needed to evaluate the possible benefits of a higher spatial resolution which is achievable using navigator-echo techniques in contrast to the higher temporal resolution of ultra-fast pulmonary MRA.

  10. GPS/Optical/Inertial Integration for 3D Navigation Using Multi-Copter Platforms

    NASA Technical Reports Server (NTRS)

    Dill, Evan T.; Young, Steven D.; Uijt De Haag, Maarten

    2017-01-01

    In concert with the continued advancement of a UAS traffic management system (UTM), the proposed uses of autonomous unmanned aerial systems (UAS) have become more prevalent in both the public and private sectors. To facilitate this anticipated growth, a reliable three-dimensional (3D) positioning, navigation, and mapping (PNM) capability will be required to enable operation of these platforms in challenging environments where global navigation satellite systems (GNSS) may not be available continuously. Especially, when the platform's mission requires maneuvering through different and difficult environments like outdoor opensky, outdoor under foliage, outdoor-urban and indoor, and may include transitions between these environments. There may not be a single method to solve the PNM problem for all environments. The research presented in this paper is a subset of a broader research effort, described in [1]. The research is focused on combining data from dissimilar sensor technologies to create an integrated navigation and mapping method that can enable reliable operation in both an outdoor and structured indoor environment. The integrated navigation and mapping design is utilizes a Global Positioning System (GPS) receiver, an Inertial Measurement Unit (IMU), a monocular digital camera, and three short to medium range laser scanners. This paper describes specifically the techniques necessary to effectively integrate the monocular camera data within the established mechanization. To evaluate the developed algorithms a hexacopter was built, equipped with the discussed sensors, and both hand-carried and flown through representative environments. This paper highlights the effect that the monocular camera has on the aforementioned sensor integration scheme's reliability, accuracy and availability.

  11. Comparative Results on 3D Navigation of Quadrotor using two Nonlinear Model based Controllers

    NASA Astrophysics Data System (ADS)

    Bouzid, Y.; Siguerdidjane, H.; Bestaoui, Y.

    2017-01-01

    Recently the quadrotors are being increasingly employed in both military and civilian areas where a broad range of nonlinear flight control techniques are successfully implemented. With this advancement, it has become necessary to investigate the efficiency of these flight controllers by studying theirs features and compare their performance. In this paper, the control of Unmanned Aerial Vehicle (UAV) quadrotor, using two different approaches, is presented. The first controller is Nonlinear PID (NLPID) whilst the second one is Nonlinear Internal Model Control (NLIMC) that are used for the stabilization as well as for the 3D trajectory tracking. The numerical simulations have shown satisfactory results using nominal system model or disturbed model for both of them. The obtained results are analyzed with respect to several criteria for the sake of comparison.

  12. 3D Navigation-guided Resection of Giant Ventral Cervical Intradural Schwannoma With 360-Degree Stabilization.

    PubMed

    Hussain, Ibrahim; Navarro-Ramirez, Rodrigo; Lang, Gernot; Härtl, Roger

    2017-02-27

    Giant schwannomas are defined as intradural extramedullary tumors that span >2 vertebral body lengths. Although uncommon, these lesions can cause significant mass effect on the spinal cord and subsequent neurologic compromise. Gross total resection is the goal of operative intervention, however, is extremely challenging in cases where the tumor occupies a ventral, midline position within the lower cervical thecal sac. Using a representative case presentation, we describe an adult male with insidious progression of upper extremity radicular pain and paresthesias, found to have a ventral, solid/cystic C5-C7 giant schwannoma. We demonstrate the step-by-step surgical technique for an anterior approach 2-level cervical corpectomy, microsurgical resection of an intradural giant schwannoma, watertight dural closure, and lastly 360-degrees instrumented stabilization of the cervicothoracic spine. In addition we incorporate the utilization of a portable intraoperative computed tomography for stereotactic localization and 3-dimensional navigation-guided screw implantation. Finally, we discuss various preoperative, perioperative, and postoperative considerations that can have profound impact on successful outcomes.

  13. Utilization of intraoperative 3D navigation for delayed reconstruction of orbitozygomatic complex fractures.

    PubMed

    Morrison, Clinton S; Taylor, Helena O; Sullivan, Stephen R

    2013-05-01

    Reconstructive goals for orbitozygomaticomaxillary complex fractures include restoration of orbital volume, facial projection, and facial width. Delayed reconstruction is made more difficult by malunion, nonunion, bony absorption, loss of the soft tissue envelope, and scar. Three-dimensional intraoperative navigation, widely used in neurosurgery and sinus surgery, can improve the accuracy with which bony reduction is performed. This is particularly useful in the setting of bony absorption and comminution. We report a case of delayed reconstruction of an orbitozygomaticomaxillary complex fracture using intraoperative navigation and review this technology's utility in this setting.

  14. Almost Like Being at Bonneville

    NASA Image and Video Library

    2004-03-17

    NASA Mars Exploration Rover Spirit took this 3-D navigation camera mosaic of the crater called Bonneville. The rover solar panels can be seen in the foreground. 3D glasses are necessary to view this image.

  15. Intraoperative 3D Computed Tomography: Spine Surgery.

    PubMed

    Adamczak, Stephanie E; Bova, Frank J; Hoh, Daniel J

    2017-10-01

    Spinal instrumentation often involves placing implants without direct visualization of their trajectory or proximity to adjacent neurovascular structures. Two-dimensional fluoroscopy is commonly used to navigate implant placement, but with the advent of computed tomography, followed by the invention of a mobile scanner with an open gantry, three-dimensional (3D) navigation is now widely used. This article critically appraises the available literature to assess the influence of 3D navigation on radiation exposure, accuracy of instrumentation, operative time, and patient outcomes. Also explored is the latest technological advance in 3D neuronavigation: the manufacturing of, via 3D printers, patient-specific templates that direct implant placement. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Time-Frequency Computational Model for Echo-Delay Resolution in Sonar Images of the Big Brown Bat, Eptesicus Fuscus

    DTIC Science & Technology

    2005-08-31

    rigs in the ocean, an issue that has become very important following the latest wave of hurricanes . The impact on medical ultrasound is also...auditory system to achieve a combination of 3D navigation and internal object examination that far exceeds the abilities of our current ultrasound and...Specifically, we demonstrate improved underwater sonar resolution and ultrasound imagery. (a) Papers published in peer-reviewed journals (N/A for

  17. Low computation vision-based navigation for a Martian rover

    NASA Technical Reports Server (NTRS)

    Gavin, Andrew S.; Brooks, Rodney A.

    1994-01-01

    Construction and design details of the Mobot Vision System, a small, self-contained, mobile vision system, are presented. This system uses the view from the top of a small, roving, robotic vehicle to supply data that is processed in real-time to safely navigate the surface of Mars. A simple, low-computation algorithm for constructing a 3-D navigational map of the Martian environment to be used by the rover is discussed.

  18. Screw Placement Accuracy for Minimally Invasive Transforaminal Lumbar Interbody Fusion Surgery: A Study on 3-D Neuronavigation-Guided Surgery

    PubMed Central

    Torres, Jorge; James, Andrew R.; Alimi, Marjan; Tsiouris, Apostolos John; Geannette, Christian; Härtl, Roger

    2012-01-01

    Purpose The aim of this study was to assess the impact of 3-D navigation for pedicle screw placement accuracy in minimally invasive transverse lumbar interbody fusion (MIS-TLIF). Methods A retrospective review of 52 patients who had MIS-TLIF assisted with 3D navigation is presented. Clinical outcomes were assessed with the Oswestry Disability Index (ODI), Visual Analog Scales (VAS), and MacNab scores. Radiographic outcomes were assessed using X-rays and thin-slice computed tomography. Result The mean age was 56.5 years, and 172 screws were implanted with 16 pedicle breaches (91.0% accuracy rate). Radiographic fusion rate at a mean follow-up of 15.6 months was 87.23%. No revision surgeries were required. The mean improvement in the VAS back pain, VAS leg pain, and ODI at 11.3 months follow-up was 4.3, 4.5, and 26.8 points, respectively. At last follow-up the mean postoperative disc height gain was 4.92 mm and the mean postoperative disc angle gain was 2.79 degrees. At L5–S1 level, there was a significant correlation between a greater disc space height gain and a lower VAS leg score. Conclusion Our data support that application of 3-D navigation in MIS-TLIF is associated with a high level of accuracy in the pedicle screw placement. PMID:24353961

  19. 3D transrectal ultrasound prostate biopsy using a mechanical imaging and needle-guidance system

    NASA Astrophysics Data System (ADS)

    Bax, Jeffrey; Cool, Derek; Gardi, Lori; Montreuil, Jacques; Gil, Elena; Bluvol, Jeremy; Knight, Kerry; Smith, David; Romagnoli, Cesare; Fenster, Aaron

    2008-03-01

    Prostate biopsy procedures are generally limited to 2D transrectal ultrasound (TRUS) imaging for biopsy needle guidance. This limitation results in needle position ambiguity and an insufficient record of biopsy core locations in cases of prostate re-biopsy. We have developed a multi-jointed mechanical device that supports a commercially available TRUS probe with an integrated needle guide for precision prostate biopsy. The device is fixed at the base, allowing the joints to be manually manipulated while fully supporting its weight throughout its full range of motion. Means are provided to track the needle trajectory and display this trajectory on a corresponding TRUS image. This allows the physician to aim the needle-guide at predefined targets within the prostate, providing true 3D navigation. The tracker has been designed for use with several end-fired transducers that can be rotated about the longitudinal axis of the probe to generate 3D images. The tracker reduces the variability associated with conventional hand-held probes, while preserving user familiarity and procedural workflow. In a prostate phantom, biopsy needles were guided to within 2 mm of their targets, and the 3D location of the biopsy core was accurate to within 3 mm. The 3D navigation system is validated in the presence of prostate motion in a preliminary patient study.

  20. Accuracy of computer-assisted iliosacral screw placement using a hybrid operating room.

    PubMed

    Richter, P H; Gebhard, F; Dehner, C; Scola, A

    2016-02-01

    In recent years hybrid operating rooms were established all over the world. In our setting we combined a 3D flat-panel c-arm (Artis zeego, Siemens) with a navigation system (BrainLab curve, BrainLab). This worldwide unique combination enables the surgeon to visualise an entire pelvis in CT-like image quality with a single 3D-scan. The aim of our study was to investigate, if utilisation of a hybrid operating room increases the accuracy of SI-screws in comparison to standard 3D-navigation. Retrospective, not randomised single centre case series at a level I trauma centre. Inclusion criterion was insertion of a percutaneous iliosacral screw using image-guidance in the hybrid operating room. 61 patients (35 female, 26 male) were included from June 2012 till October 2014. 65 iliosacral screws were inserted. Intraoperative 3D-scans and postoperative scans were examined to investigate screw placement. The results were compared to a preceding study performed in 2012 using conventional 3D-navigation. Statistical calculations were performed with Microsoft Excel 2011 and SPSS. 65 iliosacral screws were implanted. Two different types of screws were implanted: 1. "Standard" iliosacral screws stabilizing one joint/a unilateral fracture. 2. Single SI-screws stabilizing both SI-joints and if present a bilateral fracture. Forty one patients were included in group 1 (screws n=45). There was no perforation in 43 screws, grade 1 perforation in 2 screws. There was no grade 2 or 3 perforation in this group. Compared to the conventional 3D-navigated screws there was a highly significant difference (p<0.001). Twenty patients could be included in group 2. Eleven screws showed a complete intraosseous position. There was grade 1 perforation in 2 screws, grade 2 perforation in 5 screws and grade 3 perforation in 2 screws. Improvements in image quality and enlargement of the display window lead to better intraoperative visualisation of the entire dorsal pelvis. Thereby the accuracy of computer

  1. The accuracy of 3D image navigation with a cutaneously fixed dynamic reference frame in minimally invasive transforaminal lumbar interbody fusion.

    PubMed

    Cho, Ji Young; Chan, Chee Keong; Lee, Sang-Ho; Lee, Ho-Yeon

    2012-01-01

    In contrast to preoperative image-based 3D navigation systems, which require surgeon-dependent registration, an intraoperative cone-beam computed tomography (cb-CT) image-based 3D navigation system allows automatic registration during the acquisition of 3D images intraoperatively. Thus, the need for spinal exposure for point matching is obviated, making a cb-CT image-based navigation system ideal for use in minimally invasive spinal procedures. Conventionally, the dynamic reference frame (DRF) is mounted to an adjacent spinous process or iliac bone through a separate incision. However, the close proximity of the DRF to the surgical area may result in its interfering with the surgical procedure or causing streak artifacts on the navigation images. Cutaneous placement of the DRF overlying the sacral hiatus is one possible solution to these problems, but such a placement does not provide a solid bony fixation point and is distant from the surgical area, both of which factors may hinder the accuracy of the navigation. The purpose of this study was to evaluate the accuracy of a novel idea for DRF placement in a series of mini-open transforaminal lumbar interbody fusion (TLIF) procedures performed with intraoperative cb-CT image-based 3D navigation. From June 2009 to December 2009, 20 patients underwent mini-open TLIF for a total 82 pedicle screws placed in the lumbar spine with cutaneous placement of the DRF overlying the sacral hiatus. The pedicle screws were inserted under navigational guidance using cb-CT data acquired intraoperatively with a Medtronic O-arm. Screw positions were subsequently checked with a final intraoperative cb-CT scan. Nineteen patients underwent single-level fusion (8 at L4-5, 6 at L5-S1, 4 at L3-4, and 1 at L2-3) and one patient underwent two-level fusion (from L3-5). There were 4 (4.9%) pedicle perforations greater than 2 mm out of the 82 pedicle screw insertions in the 20 patients. Two of these breached screws were repositioned and

  2. Inertial navigation system for bladder endoscopy.

    PubMed

    Behrens, Alexander; Grimm, Jonathan; Gross, Sebastian; Aach, Til

    2011-01-01

    The usage of video endoscopes in cystoscopic interventions of the urinary bladder impedes an intuitive navigation. Although image-based solutions such as panorama images can provide extended views of the surgical field, a real-time 3-D navigation is not supported. Furthermore, the integration of common tracking systems in ambulant clinics is often hindered due to low usability and high costs. Thus, we discuss in this paper a first low-cost inertial navigation system. Our evaluation results show that in spite of lower sensor accuracies, mean errors between < 1° and 4° are achieved for solid angles. Using endoscopes with different view angles we apply an extended endoscope model for an adaptive displacement correction. Furthermore, we implement a first guided navigation tool for tumor re-identification in real-time.

  3. [Importance of intraoperative navigation in spinal surgery].

    PubMed

    Richter, P H; Gebhard, F; Kraus, M

    2014-10-01

    The number of spinal operations carried out per year is steadily increasing. Pedicle screw placement is the standard procedure for spinal stabilization but can be associated with severe complications. Intraoperative navigation can increase the accuracy of placement of the screws and a decisive role is played by the improvement in imaging devices. Nowadays, 3D-navigation is performed using intraoperative computed tomography or a flatpanel-3D C-arm. Computer navigation is a crucial aid especially for complex deformities or tumor cases. However, as yet no statistically significant reduction of complications could be shown using navigation compared to conventional procedures. With continuing development of intraoperative imaging and navigation it is hoped that screw positioning can be improved further.

  4. Ablation of Arrhythmias in Patients with Adult Congenital Heart Disease

    PubMed Central

    Lobo, Rodrigo Gallardo; Griffith, Michael

    2014-01-01

    Arrhythmias in adults with congenital heart disease, most commonly related to previous surgical procedures, are a frequent comorbidity in this growing population thanks to the improved outcome of surgical techniques. Re-entrant circuits around areas of scarring and natural barriers, combined with abnormal haemodynamics and the underlying anatomy, are the most common cause for these arrhythmias. They are often poorly tolerated and medical treatment is frequently inadequate. In recent years, catheter ablation has emerged as a successful therapeutic option. New advanced techniques such as the use of modern three-dimensional (3D) navigation systems have contributed to better understanding of the arrhythmia mechanisms and higher success rates of the ablation procedures. In this article we briefly summarise the characteristics of the most common arrhythmias in this patient population and some key aspects in their treatment by catheter ablation. PMID:26835063

  5. The evolution of image-guided lumbosacral spine surgery.

    PubMed

    Bourgeois, Austin C; Faulkner, Austin R; Pasciak, Alexander S; Bradley, Yong C

    2015-04-01

    Techniques and approaches of spinal fusion have considerably evolved since their first description in the early 1900s. The incorporation of pedicle screw constructs into lumbosacral spine surgery is among the most significant advances in the field, offering immediate stability and decreased rates of pseudarthrosis compared to previously described methods. However, early studies describing pedicle screw fixation and numerous studies thereafter have demonstrated clinically significant sequelae of inaccurate surgical fusion hardware placement. A number of image guidance systems have been developed to reduce morbidity from hardware malposition in increasingly complex spine surgeries. Advanced image guidance systems such as intraoperative stereotaxis improve the accuracy of pedicle screw placement using a variety of surgical approaches, however their clinical indications and clinical impact remain debated. Beginning with intraoperative fluoroscopy, this article describes the evolution of image guided lumbosacral spinal fusion, emphasizing two-dimensional (2D) and three-dimensional (3D) navigational methods.

  6. Accuracy analysis of an image-guided system for vertebroplasty spinal therapy based on electromagnetic tracking of instruments

    NASA Astrophysics Data System (ADS)

    Ding, Jienan; Khan, Noureen; Cheng, Patrick; Wilson, Emmanuel; Watson, Vance; Cleary, Kevin; Yaniv, Ziv

    2008-03-01

    Vertebroplasty is a minimally invasive procedure in which bone cement is pumped into a fractured vertebral body that has been weakened by osteoporosis, long-term steroid use, or cancer. In this therapy, a trocar (large bore hollow needle) is inserted through the pedicle of the vertebral body which is a narrow passage and requires great skill on the part of the physician to avoid going outside of the pathway. In clinical practice, this procedure is typically done using 2D X-ray fluoroscopy. To investigate the feasibility of providing 3D image guidance, we developed an image-guided system based on electromagnetic tracking and our open source software platform the Image-Guided Surgery Toolkit (IGSTK). The system includes path planning, interactive 3D navigation, and dynamic referencing. This paper will describe the system and our initial evaluation.

  7. Sperm navigation along helical paths in 3D chemoattractant landscapes

    NASA Astrophysics Data System (ADS)

    Jikeli, Jan F.; Alvarez, Luis; Friedrich, Benjamin M.; Wilson, Laurence G.; Pascal, René; Colin, Remy; Pichlo, Magdalena; Rennhack, Andreas; Brenker, Christoph; Kaupp, U. Benjamin

    2015-08-01

    Sperm require a sense of direction to locate the egg for fertilization. They follow gradients of chemical and physical cues provided by the egg or the oviduct. However, the principles underlying three-dimensional (3D) navigation in chemical landscapes are unknown. Here using holographic microscopy and optochemical techniques, we track sea urchin sperm navigating in 3D chemoattractant gradients. Sperm sense gradients on two timescales, which produces two different steering responses. A periodic component, resulting from the helical swimming, gradually aligns the helix towards the gradient. When incremental path corrections fail and sperm get off course, a sharp turning manoeuvre puts sperm back on track. Turning results from an `off' Ca2+ response signifying a chemoattractant stimulation decrease and, thereby, a drop in cyclic GMP concentration and membrane voltage. These findings highlight the computational sophistication by which sperm sample gradients for deterministic klinotaxis. We provide a conceptual and technical framework for studying microswimmers in 3D chemical landscapes.

  8. The evolution of image-guided lumbosacral spine surgery

    PubMed Central

    Faulkner, Austin R.; Pasciak, Alexander S.; Bradley, Yong C.

    2015-01-01

    Techniques and approaches of spinal fusion have considerably evolved since their first description in the early 1900s. The incorporation of pedicle screw constructs into lumbosacral spine surgery is among the most significant advances in the field, offering immediate stability and decreased rates of pseudarthrosis compared to previously described methods. However, early studies describing pedicle screw fixation and numerous studies thereafter have demonstrated clinically significant sequelae of inaccurate surgical fusion hardware placement. A number of image guidance systems have been developed to reduce morbidity from hardware malposition in increasingly complex spine surgeries. Advanced image guidance systems such as intraoperative stereotaxis improve the accuracy of pedicle screw placement using a variety of surgical approaches, however their clinical indications and clinical impact remain debated. Beginning with intraoperative fluoroscopy, this article describes the evolution of image guided lumbosacral spinal fusion, emphasizing two-dimensional (2D) and three-dimensional (3D) navigational methods. PMID:25992368

  9. Sperm navigation along helical paths in 3D chemoattractant landscapes.

    PubMed

    Jikeli, Jan F; Alvarez, Luis; Friedrich, Benjamin M; Wilson, Laurence G; Pascal, René; Colin, Remy; Pichlo, Magdalena; Rennhack, Andreas; Brenker, Christoph; Kaupp, U Benjamin

    2015-08-17

    Sperm require a sense of direction to locate the egg for fertilization. They follow gradients of chemical and physical cues provided by the egg or the oviduct. However, the principles underlying three-dimensional (3D) navigation in chemical landscapes are unknown. Here using holographic microscopy and optochemical techniques, we track sea urchin sperm navigating in 3D chemoattractant gradients. Sperm sense gradients on two timescales, which produces two different steering responses. A periodic component, resulting from the helical swimming, gradually aligns the helix towards the gradient. When incremental path corrections fail and sperm get off course, a sharp turning manoeuvre puts sperm back on track. Turning results from an 'off' Ca(2+) response signifying a chemoattractant stimulation decrease and, thereby, a drop in cyclic GMP concentration and membrane voltage. These findings highlight the computational sophistication by which sperm sample gradients for deterministic klinotaxis. We provide a conceptual and technical framework for studying microswimmers in 3D chemical landscapes.

  10. Sperm navigation along helical paths in 3D chemoattractant landscapes

    PubMed Central

    Jikeli, Jan F.; Alvarez, Luis; Friedrich, Benjamin M.; Wilson, Laurence G.; Pascal, René; Colin, Remy; Pichlo, Magdalena; Rennhack, Andreas; Brenker, Christoph; Kaupp, U. Benjamin

    2015-01-01

    Sperm require a sense of direction to locate the egg for fertilization. They follow gradients of chemical and physical cues provided by the egg or the oviduct. However, the principles underlying three-dimensional (3D) navigation in chemical landscapes are unknown. Here using holographic microscopy and optochemical techniques, we track sea urchin sperm navigating in 3D chemoattractant gradients. Sperm sense gradients on two timescales, which produces two different steering responses. A periodic component, resulting from the helical swimming, gradually aligns the helix towards the gradient. When incremental path corrections fail and sperm get off course, a sharp turning manoeuvre puts sperm back on track. Turning results from an ‘off' Ca2+ response signifying a chemoattractant stimulation decrease and, thereby, a drop in cyclic GMP concentration and membrane voltage. These findings highlight the computational sophistication by which sperm sample gradients for deterministic klinotaxis. We provide a conceptual and technical framework for studying microswimmers in 3D chemical landscapes. PMID:26278469

  11. Real-time three-dimensional color doppler evaluation of the flow convergence zone for quantification of mitral regurgitation: Validation experimental animal study and initial clinical experience

    NASA Technical Reports Server (NTRS)

    Sitges, Marta; Jones, Michael; Shiota, Takahiro; Qin, Jian Xin; Tsujino, Hiroyuki; Bauer, Fabrice; Kim, Yong Jin; Agler, Deborah A.; Cardon, Lisa A.; Zetts, Arthur D.; hide

    2003-01-01

    BACKGROUND: Pitfalls of the flow convergence (FC) method, including 2-dimensional imaging of the 3-dimensional (3D) geometry of the FC surface, can lead to erroneous quantification of mitral regurgitation (MR). This limitation may be mitigated by the use of real-time 3D color Doppler echocardiography (CE). Our objective was to validate a real-time 3D navigation method for MR quantification. METHODS: In 12 sheep with surgically induced chronic MR, 37 different hemodynamic conditions were studied with real-time 3DCE. Using real-time 3D navigation, the radius of the largest hemispherical FC zone was located and measured. MR volume was quantified according to the FC method after observing the shape of FC in 3D space. Aortic and mitral electromagnetic flow probes and meters were balanced against each other to determine reference MR volume. As an initial clinical application study, 22 patients with chronic MR were also studied with this real-time 3DCE-FC method. Left ventricular (LV) outflow tract automated cardiac flow measurement (Toshiba Corp, Tokyo, Japan) and real-time 3D LV stroke volume were used to quantify the reference MR volume (MR volume = 3DLV stroke volume - automated cardiac flow measurement). RESULTS: In the sheep model, a good correlation and agreement was seen between MR volume by real-time 3DCE and electromagnetic (y = 0.77x + 1.48, r = 0.87, P <.001, delta = -0.91 +/- 2.65 mL). In patients, real-time 3DCE-derived MR volume also showed a good correlation and agreement with the reference method (y = 0.89x - 0.38, r = 0.93, P <.001, delta = -4.8 +/- 7.6 mL). CONCLUSIONS: real-time 3DCE can capture the entire FC image, permitting geometrical recognition of the FC zone geometry and reliable MR quantification.

  12. Tightly Coupled Low Cost 3D RISS/GPS Integration Using a Mixture Particle Filter for Vehicular Navigation

    PubMed Central

    Georgy, Jacques; Noureldin, Aboelmagd

    2011-01-01

    Satellite navigation systems such as the global positioning system (GPS) are currently the most common technique used for land vehicle positioning. However, in GPS-denied environments, there is an interruption in the positioning information. Low-cost micro-electro mechanical system (MEMS)-based inertial sensors can be integrated with GPS and enhance the performance in denied GPS environments. The traditional technique for this integration problem is Kalman filtering (KF). Due to the inherent errors of low-cost MEMS inertial sensors and their large stochastic drifts, KF, with its linearized models, has limited capabilities in providing accurate positioning. Particle filtering (PF) was recently suggested as a nonlinear filtering technique to accommodate for arbitrary inertial sensor characteristics, motion dynamics and noise distributions. An enhanced version of PF called the Mixture PF is utilized in this study to perform tightly coupled integration of a three dimensional (3D) reduced inertial sensors system (RISS) with GPS. In this work, the RISS consists of one single-axis gyroscope and a two-axis accelerometer used together with the vehicle’s odometer to obtain 3D navigation states. These sensors are then integrated with GPS in a tightly coupled scheme. In loosely-coupled integration, at least four satellites are needed to provide acceptable GPS position and velocity updates for the integration filter. The advantage of the tightly-coupled integration is that it can provide GPS measurement update(s) even when the number of visible satellites is three or lower, thereby improving the operation of the navigation system in environments with partial blockages by providing continuous aiding to the inertial sensors even during limited GPS satellite availability. To effectively exploit the capabilities of PF, advanced modeling for the stochastic drift of the vertically aligned gyroscope is used. In order to benefit from measurement updates for such drift, which are

  13. Tightly coupled low cost 3D RISS/GPS integration using a mixture particle filter for vehicular navigation.

    PubMed

    Georgy, Jacques; Noureldin, Aboelmagd

    2011-01-01

    Satellite navigation systems such as the global positioning system (GPS) are currently the most common technique used for land vehicle positioning. However, in GPS-denied environments, there is an interruption in the positioning information. Low-cost micro-electro mechanical system (MEMS)-based inertial sensors can be integrated with GPS and enhance the performance in denied GPS environments. The traditional technique for this integration problem is Kalman filtering (KF). Due to the inherent errors of low-cost MEMS inertial sensors and their large stochastic drifts, KF, with its linearized models, has limited capabilities in providing accurate positioning. Particle filtering (PF) was recently suggested as a nonlinear filtering technique to accommodate for arbitrary inertial sensor characteristics, motion dynamics and noise distributions. An enhanced version of PF called the Mixture PF is utilized in this study to perform tightly coupled integration of a three dimensional (3D) reduced inertial sensors system (RISS) with GPS. In this work, the RISS consists of one single-axis gyroscope and a two-axis accelerometer used together with the vehicle's odometer to obtain 3D navigation states. These sensors are then integrated with GPS in a tightly coupled scheme. In loosely-coupled integration, at least four satellites are needed to provide acceptable GPS position and velocity updates for the integration filter. The advantage of the tightly-coupled integration is that it can provide GPS measurement update(s) even when the number of visible satellites is three or lower, thereby improving the operation of the navigation system in environments with partial blockages by providing continuous aiding to the inertial sensors even during limited GPS satellite availability. To effectively exploit the capabilities of PF, advanced modeling for the stochastic drift of the vertically aligned gyroscope is used. In order to benefit from measurement updates for such drift, which are

  14. ANTS2 package: simulation and experimental data processing for Anger camera type detectors

    NASA Astrophysics Data System (ADS)

    Morozov, A.; Solovov, V.; Martins, R.; Neves, F.; Domingos, V.; Chepel, V.

    2016-04-01

    ANTS2 is a simulation and data processing package developed for position sensitive detectors with Anger camera type readout. The simulation module of ANTS2 is based on ROOT package from CERN, which is used to store the detector geometry and to perform 3D navigation. The module is capable of simulating particle sources, performing particle tracking, generating photons of primary and secondary scintillation, tracing optical photons and generating photosensor signals. The reconstruction module features several position reconstruction methods based on the statistical reconstruction algorithms (including GPU-based implementations), artificial neural networks and k-NN searches. The module can process simulated as well as imported experimental data containing photosensor signals. A custom library for B-spline parameterization of spatial response of photosensors is implemented which can be used to calculate and parameterize the spatial response of a detector. The package includes a graphical user interface with an extensive set of configuration, visualization and analysis tools. ANTS2 is being developed with the focus on the iterative (adaptive) reconstruction of the detector response using flood field irradiation data. The package is implemented in C++ programming language and it is a multiplatform, open source project.

  15. Allen Brain Atlas: an integrated spatio-temporal portal for exploring the central nervous system.

    PubMed

    Sunkin, Susan M; Ng, Lydia; Lau, Chris; Dolbeare, Tim; Gilbert, Terri L; Thompson, Carol L; Hawrylycz, Michael; Dang, Chinh

    2013-01-01

    The Allen Brain Atlas (http://www.brain-map.org) provides a unique online public resource integrating extensive gene expression data, connectivity data and neuroanatomical information with powerful search and viewing tools for the adult and developing brain in mouse, human and non-human primate. Here, we review the resources available at the Allen Brain Atlas, describing each product and data type [such as in situ hybridization (ISH) and supporting histology, microarray, RNA sequencing, reference atlases, projection mapping and magnetic resonance imaging]. In addition, standardized and unique features in the web applications are described that enable users to search and mine the various data sets. Features include both simple and sophisticated methods for gene searches, colorimetric and fluorescent ISH image viewers, graphical displays of ISH, microarray and RNA sequencing data, Brain Explorer software for 3D navigation of anatomy and gene expression, and an interactive reference atlas viewer. In addition, cross data set searches enable users to query multiple Allen Brain Atlas data sets simultaneously. All of the Allen Brain Atlas resources can be accessed through the Allen Brain Atlas data portal.

  16. Comparison of Isocentric C-Arm 3-Dimensional Navigation and Conventional Fluoroscopy for Percutaneous Retrograde Screwing for Anterior Column Fracture of Acetabulum

    PubMed Central

    He, Jiliang; Tan, Guoqing; Zhou, Dongsheng; Sun, Liang; Li, Qinghu; Yang, Yongliang; Liu, Ping

    2016-01-01

    Abstract Percutaneous screw insertion for minimally displaced or reducible acetabular fracture using x-ray fluoroscopy and computer-assisted navigation system has been advocated by some authors. The purpose of this study was to compare intraoperative conditions and clinical results between isocentric C-arm 3-dimensional (Iso-C 3D) fluoroscopy and conventional fluoroscopy for percutaneous retrograde screwing of acetabular anterior column fracture. A prospective cohort study was conducted. A total of 22 patients were assigned to 2 different groups: 10 patients in the Iso-C 3D navigation group and 12 patients in the conventional group. The operative time, fluoroscopic time, time of screw insertion, blood loss, and accuracy were analyzed between the 2 groups. There were significant differences in operative time, screw insertion time, fluoroscopy time, and mean blood loss between the 2 groups. Totally 2 of 12 (16.7%) screws were misplaced in the conventional fluoroscopy group, and all 10 screws were in safe zones in the navigation group. Percutaneous screw fixation using the Iso-C 3D computer-assisted navigation system significantly reduced the intraoperative fluoroscopy time and blood loss in percutaneous screwing for acetabular anterior column fracture. The Iso-C 3D computer-assisted navigation system provided a reliable and effective method for percutaneous screw insertion in acetabular anterior column fractures compared to conventional fluoroscopy. PMID:26765448

  17. 3D segmentation of the true and false lumens on CT aortic dissection images

    NASA Astrophysics Data System (ADS)

    Fetnaci, Nawel; Łubniewski, Paweł; Miguel, Bruno; Lohou, Christophe

    2013-03-01

    Our works are related to aortic dissections which are a medical emergency and can quickly lead to death. In this paper, we want to retrieve in CT images the false and the true lumens which are aortic dissection features. Our aim is to provide a 3D view of the lumens that we can difficultly obtain either by volume rendering or by another visualization tool which only directly gives the outer contour of the aorta; or by other segmentation methods because they mainly directly segment either only the outer contour of the aorta or other connected arteries and organs both. In our work, we need to segment the two lumens separately; this segmentation will allow us to: distinguish them automatically, facilitate the landing of the aortic prosthesis, propose a virtual 3d navigation and do quantitative analysis. We chose to segment these data by using a deformable model based on the fast marching method. In the classical fast marching approach, a speed function is used to control the front propagation of a deforming curve. The speed function is only based on the image gradient. In our CT images, due to the low resolution, with the fast marching the front propagates from a lumen to the other; therefore, the gradient data is insufficient to have accurate segmentation results. In the paper, we have adapted the fast marching method more particularly by modifying the speed function and we succeed in segmenting the two lumens separately.

  18. Allen Brain Atlas: an integrated spatio-temporal portal for exploring the central nervous system

    PubMed Central

    Sunkin, Susan M.; Ng, Lydia; Lau, Chris; Dolbeare, Tim; Gilbert, Terri L.; Thompson, Carol L.; Hawrylycz, Michael; Dang, Chinh

    2013-01-01

    The Allen Brain Atlas (http://www.brain-map.org) provides a unique online public resource integrating extensive gene expression data, connectivity data and neuroanatomical information with powerful search and viewing tools for the adult and developing brain in mouse, human and non-human primate. Here, we review the resources available at the Allen Brain Atlas, describing each product and data type [such as in situ hybridization (ISH) and supporting histology, microarray, RNA sequencing, reference atlases, projection mapping and magnetic resonance imaging]. In addition, standardized and unique features in the web applications are described that enable users to search and mine the various data sets. Features include both simple and sophisticated methods for gene searches, colorimetric and fluorescent ISH image viewers, graphical displays of ISH, microarray and RNA sequencing data, Brain Explorer software for 3D navigation of anatomy and gene expression, and an interactive reference atlas viewer. In addition, cross data set searches enable users to query multiple Allen Brain Atlas data sets simultaneously. All of the Allen Brain Atlas resources can be accessed through the Allen Brain Atlas data portal. PMID:23193282

  19. Building a virtual archive using brain architecture and Web 3D to deliver neuropsychopharmacology content over the Internet.

    PubMed

    Mongeau, R; Casu, M A; Pani, L; Pillolla, G; Lianas, L; Giachetti, A

    2008-05-01

    The vast amount of heterogeneous data generated in various fields of neurosciences such as neuropsychopharmacology can hardly be classified using traditional databases. We present here the concept of a virtual archive, spatially referenced over a simplified 3D brain map and accessible over the Internet. A simple prototype (available at http://aquatics.crs4.it/neuropsydat3d) has been realized using current Web-based virtual reality standards and technologies. It illustrates how primary literature or summary information can easily be retrieved through hyperlinks mapped onto a 3D schema while navigating through neuroanatomy. Furthermore, 3D navigation and visualization techniques are used to enhance the representation of brain's neurotransmitters, pathways and the involvement of specific brain areas in any particular physiological or behavioral functions. The system proposed shows how the use of a schematic spatial organization of data, widely exploited in other fields (e.g. Geographical Information Systems) can be extremely useful to develop efficient tools for research and teaching in neurosciences.

  20. Real-Time Correction of Rigid-Body-Motion-Induced Phase Errors for Diffusion-Weighted Steady State Free Precession Imaging

    PubMed Central

    O’Halloran, R; Aksoy, M; Aboussouan, E; Peterson, E; Van, A; Bammer, R

    2014-01-01

    Purpose Diffusion contrast in diffusion-weighted steady state free precession MRI is generated through the constructive addition of signal from many coherence pathways. Motion-induced phase causes destructive interference which results in loss of signal magnitude and diffusion contrast. In this work, a 3D navigator-based real-time correction of the rigid-body-motion-induced phase errors is developed for diffusion-weighted steady state free precession MRI. Methods The efficacy of the real-time prospective correction method in preserving phase coherence of the steady-state is tested in 3D phantom experiments and 3D scans of healthy human subjects. Results In nearly all experiments, the signal magnitude in images obtained with proposed prospective correction was higher than the signal magnitude in images obtained with no correction. In the human subjects the mean magnitude signal in the data was up to 30 percent higher with prospective motion correction than without. Prospective correction never resulted in a decrease in mean signal magnitude in either the data or in the images. Conclusions The proposed prospective motion correction method is shown to preserve the phase coherence of the steady state in diffusion-weighted steady state free precession MRI, thus mitigating signal magnitude losses that would confound the desired diffusion contrast. PMID:24715414

  1. Tissue-engineered bone grafts for osteoplasty in patients with cleft alveolus.

    PubMed

    Pradel, Winnie; Lauer, Günter

    2012-11-01

    Alveolar bone grafting is an integral part of the treatment concept in cleft palate patients. As an alternative to autogenous bone, tissue-engineered grafts have found some clinical application. The aim of the present study has been to compare ossification in the cleft area using tissue-engineered grafts in a case series of patients with ossification after transplantation of autogenous spongious bone as the gold standard in alveoloplasty. Eight children with complete cleft lips and cleft palates were included in the study. In four children (group A), the cleft defect was filled with tissue-engineered bone (autogenous osteoblasts cultured on demineralized bone matrix Osteovit(®)); as control in another 4 children (group B), the alveoloplasty was performed using spongious iliac bone. Preoperative and 6 months postoperative cone-beam computed tomography was performed, and volumes of the remaining cleft defects were calculated using 3D navigation software. Wound healing was uneventful in both groups. Six months postoperatively the mean volume of the cleft was 0.55±0.24cm(3) after grafting of tissue-engineered bone (group A) and 0.59±0.23cm(3) after transplantation of autogenous spongiosa. In group A, 40.9% of the cleft defect was ossified; in the control group (group B), 36.6%. Tissue-engineered bone is a promising alternative in alveolar bone grafting and no disadvantages were observed in comparison to the gold standard. Copyright © 2012 Elsevier GmbH. All rights reserved.

  2. In vivo cell tracking and quantification method in adult zebrafish

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Alt, Clemens; Li, Pulin; White, Richard M.; Zon, Leonard I.; Wei, Xunbin; Lin, Charles P.

    2012-03-01

    Zebrafish have become a powerful vertebrate model organism for drug discovery, cancer and stem cell research. A recently developed transparent adult zebrafish using double pigmentation mutant, called casper, provide unparalleled imaging power in in vivo longitudinal analysis of biological processes at an anatomic resolution not readily achievable in murine or other systems. In this paper we introduce an optical method for simultaneous visualization and cell quantification, which combines the laser scanning confocal microscopy (LSCM) and the in vivo flow cytometry (IVFC). The system is designed specifically for non-invasive tracking of both stationary and circulating cells in adult zebrafish casper, under physiological conditions in the same fish over time. The confocal imaging part in this system serves the dual purposes of imaging fish tissue microstructure and a 3D navigation tool to locate a suitable vessel for circulating cell counting. The multi-color, multi-channel instrument allows the detection of multiple cell populations or different tissues or organs simultaneously. We demonstrate initial testing of this novel instrument by imaging vasculature and tracking circulating cells in CD41: GFP/Gata1: DsRed transgenic casper fish whose thrombocytes/erythrocytes express the green and red fluorescent proteins. Circulating fluorescent cell incidents were recorded and counted repeatedly over time and in different types of vessels. Great application opportunities in cancer and stem cell researches are discussed.

  3. Robot navigation in cluttered 3-D environments using preference-based fuzzy behaviors.

    PubMed

    Shi, Dongqing; Collins, Emmanuel G; Dunlap, Damion

    2007-12-01

    Autonomous navigation systems for mobile robots have been successfully deployed for a wide range of planar ground-based tasks. However, very few counterparts of previous planar navigation systems were developed for 3-D motion, which is needed for both unmanned aerial and underwater vehicles. A novel fuzzy behavioral scheme for navigating an unmanned helicopter in cluttered 3-D spaces is developed. The 3-D navigation problem is decomposed into several identical 2-D navigation subproblems, each of which is solved by using preference-based fuzzy behaviors. Due to the shortcomings of vector summation during the fusion of the 2-D subproblems, instead of directly outputting steering subdirections by their own defuzzification processes, the intermediate preferences of the subproblems are fused to create a 3-D solution region, representing degrees of preference for the robot movement. A new defuzzification algorithm that steers the robot by finding the centroid of a 3-D convex region of maximum volume in the 3-D solution region is developed. A fuzzy speed-control system is also developed to ensure efficient and safe navigation. Substantial simulations have been carried out to demonstrate that the proposed algorithm can smoothly and effectively guide an unmanned helicopter through unknown and cluttered urban and forest environments.

  4. An Imaging Sensor-Aided Vision Navigation Approach that Uses a Geo-Referenced Image Database

    PubMed Central

    Li, Yan; Hu, Qingwu; Wu, Meng; Gao, Yang

    2016-01-01

    In determining position and attitude, vision navigation via real-time image processing of data collected from imaging sensors is advanced without a high-performance global positioning system (GPS) and an inertial measurement unit (IMU). Vision navigation is widely used in indoor navigation, far space navigation, and multiple sensor-integrated mobile mapping. This paper proposes a novel vision navigation approach aided by imaging sensors and that uses a high-accuracy geo-referenced image database (GRID) for high-precision navigation of multiple sensor platforms in environments with poor GPS. First, the framework of GRID-aided vision navigation is developed with sequence images from land-based mobile mapping systems that integrate multiple sensors. Second, a highly efficient GRID storage management model is established based on the linear index of a road segment for fast image searches and retrieval. Third, a robust image matching algorithm is presented to search and match a real-time image with the GRID. Subsequently, the image matched with the real-time scene is considered to calculate the 3D navigation parameter of multiple sensor platforms. Experimental results show that the proposed approach retrieves images efficiently and has navigation accuracies of 1.2 m in a plane and 1.8 m in height under GPS loss in 5 min and within 1500 m. PMID:26828496

  5. Real-time correction of rigid body motion-induced phase errors for diffusion-weighted steady-state free precession imaging.

    PubMed

    O'Halloran, Rafael; Aksoy, Murat; Aboussouan, Eric; Peterson, Eric; Van, Anh; Bammer, Roland

    2015-02-01

    Diffusion contrast in diffusion-weighted steady-state free precession magnetic resonance imaging (MRI) is generated through the constructive addition of signal from many coherence pathways. Motion-induced phase causes destructive interference which results in loss of signal magnitude and diffusion contrast. In this work, a three-dimensional (3D) navigator-based real-time correction of the rigid body motion-induced phase errors is developed for diffusion-weighted steady-state free precession MRI. The efficacy of the real-time prospective correction method in preserving phase coherence of the steady state is tested in 3D phantom experiments and 3D scans of healthy human subjects. In nearly all experiments, the signal magnitude in images obtained with proposed prospective correction was higher than the signal magnitude in images obtained with no correction. In the human subjects, the mean magnitude signal in the data was up to 30% higher with prospective motion correction than without. Prospective correction never resulted in a decrease in mean signal magnitude in either the data or in the images. The proposed prospective motion correction method is shown to preserve the phase coherence of the steady state in diffusion-weighted steady-state free precession MRI, thus mitigating signal magnitude losses that would confound the desired diffusion contrast. © 2014 Wiley Periodicals, Inc.

  6. Extraction of the 3D Free Space from Building Models for Indoor Navigation

    NASA Astrophysics Data System (ADS)

    Diakité, A. A.; Zlatanova, S.

    2016-10-01

    For several decades, indoor navigation has been exclusively investigated in a 2D perspective, based on floor plans, projection and other 2D representations of buildings. Nevertheless, 3D representations are closer to our reality and offer a more intuitive description of the space configuration. Thanks to recent advances in 3D modelling, 3D navigation is timidly but increasingly gaining in interest through the indoor applications. But, because the structure of indoor environment is often more complex than outdoor, very simplified models are used and obstacles are not considered for indoor navigation leading to limited possibilities in complex buildings. In this paper we consider the entire configuration of the indoor environment in 3D and introduce a method to extract from it the actual navigable space as a network of connected 3D spaces (volumes). We describe how to construct such 3D free spaces from semantically rich and furnished IFC models. The approach combines the geometric, the topological and the semantic information available in a 3D model to isolate the free space from the rest of the components. Furthermore, the extraction of such navigable spaces in building models lacking of semantic information is also considered. A data structure named combinatorial maps is used to support the operations required by the process while preserving the topological and semantic information of the input models.

  7. An Imaging Sensor-Aided Vision Navigation Approach that Uses a Geo-Referenced Image Database.

    PubMed

    Li, Yan; Hu, Qingwu; Wu, Meng; Gao, Yang

    2016-01-28

    In determining position and attitude, vision navigation via real-time image processing of data collected from imaging sensors is advanced without a high-performance global positioning system (GPS) and an inertial measurement unit (IMU). Vision navigation is widely used in indoor navigation, far space navigation, and multiple sensor-integrated mobile mapping. This paper proposes a novel vision navigation approach aided by imaging sensors and that uses a high-accuracy geo-referenced image database (GRID) for high-precision navigation of multiple sensor platforms in environments with poor GPS. First, the framework of GRID-aided vision navigation is developed with sequence images from land-based mobile mapping systems that integrate multiple sensors. Second, a highly efficient GRID storage management model is established based on the linear index of a road segment for fast image searches and retrieval. Third, a robust image matching algorithm is presented to search and match a real-time image with the GRID. Subsequently, the image matched with the real-time scene is considered to calculate the 3D navigation parameter of multiple sensor platforms. Experimental results show that the proposed approach retrieves images efficiently and has navigation accuracies of 1.2 m in a plane and 1.8 m in height under GPS loss in 5 min and within 1500 m.

  8. Total 3D Airo® Navigation for Minimally Invasive Transforaminal Lumbar Interbody Fusion

    PubMed Central

    Lian, Xiaofeng; Berlin, Connor; Moriguchi, Yu; Zhang, Qiwei; Härtl, Roger

    2016-01-01

    Introduction. A new generation of iCT scanner, Airo®, has been introduced. The purpose of this study is to describe how Airo facilitates minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF). Method. We used the latest generation of portable iCT in all cases without the assistance of K-wires. We recorded the operation time, number of scans, and pedicle screw accuracy. Results. From January 2015 to December 2015, 33 consecutive patients consisting of 17 men and 16 women underwent single-level or two-level MIS-TLIF operations in our institution. The ages ranged from 23 years to 86 years (mean, 66.6 years). We treated all the cases in MIS fashion. In four cases, a tubular laminectomy at L1/2 was performed at the same time. The average operation time was 192.8 minutes and average time of placement per screw was 2.6 minutes. No additional fluoroscopy was used. Our screw accuracy rate was 98.6%. No complications were encountered. Conclusions. Airo iCT MIS-TLIF can be used for initial planning of the skin incision, precise screw, and cage placement, without the need for fluoroscopy. “Total navigation” (complete intraoperative 3D navigation without fluoroscopy) can be achieved by combining Airo navigation with navigated guide tubes for screw placement. PMID:27529069

  9. Total 3D Airo® Navigation for Minimally Invasive Transforaminal Lumbar Interbody Fusion.

    PubMed

    Lian, Xiaofeng; Navarro-Ramirez, Rodrigo; Berlin, Connor; Jada, Ajit; Moriguchi, Yu; Zhang, Qiwei; Härtl, Roger

    2016-01-01

    Introduction. A new generation of iCT scanner, Airo®, has been introduced. The purpose of this study is to describe how Airo facilitates minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF). Method. We used the latest generation of portable iCT in all cases without the assistance of K-wires. We recorded the operation time, number of scans, and pedicle screw accuracy. Results. From January 2015 to December 2015, 33 consecutive patients consisting of 17 men and 16 women underwent single-level or two-level MIS-TLIF operations in our institution. The ages ranged from 23 years to 86 years (mean, 66.6 years). We treated all the cases in MIS fashion. In four cases, a tubular laminectomy at L1/2 was performed at the same time. The average operation time was 192.8 minutes and average time of placement per screw was 2.6 minutes. No additional fluoroscopy was used. Our screw accuracy rate was 98.6%. No complications were encountered. Conclusions. Airo iCT MIS-TLIF can be used for initial planning of the skin incision, precise screw, and cage placement, without the need for fluoroscopy. "Total navigation" (complete intraoperative 3D navigation without fluoroscopy) can be achieved by combining Airo navigation with navigated guide tubes for screw placement.

  10. Endovascular navigation based on real/virtual environments cooperation for computer-assisted TEAM procedures

    NASA Astrophysics Data System (ADS)

    Goksu, Cemil; Haigron, Pascal; Acosta, Oscar; Lucas, Antoine

    2004-05-01

    Transfemoral Endovascular Aneurysm Management, the less invasive treatment of Aortic Abdominal Aneurysms (AAA), is a highly specialized procedure, using advanced devices and requiring a high degree of clinical expertise. There is a great need for a navigation guidance system able to make this procedure safer and more precise. In this context of computer-assisted minimally invasive interventional procedures, we propose a new framework based on the cooperation between the real environment where the intervention takes place and a patient-specific virtual environment, which contains a virtual operating room including a C-arm model as well as the 3D preoperative patient data. This approach aims to deal with the problem of lack of knowledge about soft tissue behavior by better exploiting available information before and during the intervention through a cooperative approach. In order to assist the TEAM procedure in standard interventional conditions, we applied this framework to design a 3D navigation guidance system, which has been successfully used during three TEAM interventions in the operating room. Intra-operatively, anatomical feature-based 2D/3D registration between a single 2D fluoroscopic view, reproduced from the pose planned in the virtual environment, and the preoperative CT volume, is performed by means of a chamfer distance map. The 3D localization of the endovascular devices (sheath, guide wire, prosthesis) tracked either interactively or automatically on 2D sequences, is constrained to either the 3D vascular tree or a 3D device model. Moreover, we propose a first solution to take into account the tissue deformations during this particular intervention and to update the virtual environment with the intraoperative data.

  11. Subspacing Based on Connected Opening Spaces and for Different Locomotion Types Using Geometric and Graph Based Representation in Multilayered Space-Event Model (mlsem)

    NASA Astrophysics Data System (ADS)

    Khan, A. A.; Kolbe, T. H.

    2013-09-01

    Indoor navigation has to deal with more issues as compared to outdoor navigation. Those issues include but are not limited to; need more level of detail to process enclosing area around navigating subject or object, consideration of the context of navigation (about locomotion type and its operating environment), and dealing with unconstrained indoor space for accurate results. Because of these complex issues, most of the frameworks for indoor navigation support for only one single type of locomotion, i.e. either walking, driving, or flying. And this decision to select a specific type of locomotion results in restricting the use of representation of indoor space for other types of locomotion e.g. graph-based abstraction of indoor space for driving cannot be used for flying. In this work, we addressed the problem of supporting different types of locomotion in indoor space by determining 3D navigable subspace for the given locomotion type based on its physical constraints. While determining 3D subspace, we focused on some issues that include indoor space representation, precision of subspace computation, and "the consideration of the context of navigation" (about indoor space and the locomotion type). To achieve better representation of indoor space, the subspaces are determined based on the connected opening spaces. And for precise subspace computation according to the given locomotion type, we used the geometric methods i.e. configuration space from robotics field. Furthermore, a semantically enriched 3D indoor virtual model in CityGML format and different locomotion types (flying, driving, and walking) containing information (semantics, geometry, and topology) were considered to examine the context of navigation. Last but not least, the subspacing procedure was presented and implemented in a sound mathematical framework i.e. Multilayered Space-Event Model (MLSEM) as proposed by Becker, Nagel, and Kolbe in 2008 and 2009.

  12. Three-dimensional spatial representation in freely swimming fish.

    PubMed

    Burt de Perera, Theresa; Holbrook, Robert I

    2012-08-01

    Research on spatial cognition has focused on how animals encode the horizontal component of space. However, most animals travel vertically within their environments, particularly those that fly or swim. Pelagic fish move with six degrees of freedom and must integrate these components to navigate accurately--how do they do this? Using an assay based on associative learning of the vertical and horizontal components of space within a rotating Y-maze, we found that fish (Astyanax fasciatus) learned and remembered information from both horizontal and vertical axes when they were presented either separately or as an integrated three-dimensional unit. When information from the two components conflicted, the fish used the previously learned vertical information in preference to the horizontal. This not only demonstrates that the horizontal and vertical components are stored separately in the fishes' representation of space (simplifying the problem of 3D navigation), but also suggests that the vertical axis contains particularly salient spatial cues--presumably including hydrostatic pressure. To explore this latter possibility, we developed a physical theoretical model that shows how fish could determine their absolute depth using pressure. We next considered full volumetric spatial cognition. Astyanax were trained to swim towards a reward in a Y-maze that could be rotated, before the arms were removed during probe trials. The subjects were tracked in three dimensions as they swam freely through the surrounding cubic tank. The results revealed that fish are able to accurately encode metric information in a volume, and that the error accrued in the horizontal and vertical axes whilst swimming in probe trials was similar. Together, these experiments demonstrate that unlike in surface-bound rats, the vertical component of the representation of space is vitally important to fishes. We hypothesise that the representation of space in the brain of vertebrates could ultimately be

  13. The influence of metal artifacts on navigation and the reduction of artifacts by the use of polyether-ether-ketone.

    PubMed

    Citak, M; Kendoff, D; Wanich, T; Look, V; Stuber, V; Geerling, J; Krettek, C; Hüfner, T

    2008-07-01

    Registration is a crucial step in navigation assisted surgery. When performing anatomical pair-point registration, there are several potential sources of error, including inadequate data acquisition, improper segmentation, and distortion resulting from metal artifacts. The aim of this study was to evaluate the influence of metal artifacts on the precision of Iso-C(3D) and fluoroscopy-based navigation, and to assess any changes in precision from the use of a newly developed Schanz screw composed of polyether-ether-ketone (PEEK OPTIMA). A T-shaped test specimen was manufactured from synthetic bone material. It was then scanned with a Siremobil Iso-C(3D) while different types of implant were present in the specimen. Five Iso-C(3D) scans were acquired: one with a steel Schanz screw in the specimen, one with a titanium screw, one with a PEEK screw, one with a 5-hole plate, and one with no screw or plate present. The registration was analyzed by "reverse verification" with a pointer in a purpose-built, manipulable 3D holder. All experiments were then repeated using fluoroscopy-based navigation. Increasing presence of metal in the scan area resulted in an increase in mean error (0.55 mm with the steel Schanz screw, 0.7 mm with the 5-hole plate). Artifacts resulting from the titanium Schanz screw were less than those caused by the stainless steel Schanz screw. While this study demonstrates that metallic artifacts do have an influence on the precision of Iso-C(3D) navigation, such artifacts were not found to be a factor when performing fluoroscopy-based navigation.

  14. Visual feedback mounted on surgical tool: proof of concept

    NASA Astrophysics Data System (ADS)

    Carter, K.; Vaughan, T.; Holden, M.; Gauvin, G.; Pezeshki, P.; Lasso, A.; Ungi, T.; Morin, E.; Rudan, J.; Engel, C. J.; Fichtinger, G.

    2016-03-01

    PURPOSE: When using surgical navigation systems in the operating room, feedback is typically displayed on a computer monitor. The surgeon's attention is usually focused on the tool and the surgical site, so the display is typically out of the direct line of sight. The purpose is to develop a visual feedback device mounted on an electromagnetically tracked electrosurgical cauterizer which will provide navigation information for the surgeon in their field of view. METHODS: A study was conducted to determine the usefulness of the visual feedback in adjunct to the navigation system currently in use. Subjects were asked to follow tumor contours with the tracked cauterizer using 3D screen navigation with the mounted visual feedback and the 3D navigation screen alone. The movements of the cauterizer were recorded. RESULTS: The study showed a significant decrease in the subjects' distance from the tumor margin, a significant increase in the subjects' confidence to avoid cutting the tumor and a statistically significant reduction in the subjects' perception of the need to look at the screen when using the visual feedback device compared to without. DISCUSSION: The LED feedback device helped the subjects feel confident in their ability to identify safe margins and minimize the amount of healthy tissue removed in the tumor resection. CONCLUSION: Good potential for the visual LED feedback has been shown. With additional training, this approach promises to lead to improved resection technique, with fewer cuts into the tumor and less healthy tissue removed.

  15. [Flat detector computed tomography in diagnostic and interventional pediatric cardiology].

    PubMed

    Moesler, J; Dittrich, S; Rompel, O; Glöckler, M

    2013-05-01

    In this study the use of flat detector computed tomography (FD-CT) in the catheterization of patients with congenital heart disease was evaluated. Application reports were created for various issues based on the achieved image quality in diverse anatomical regions. FD-CT was applied in 176 cases during catheterization between January 2010 and April 2012. A five-point Likert scale ("essential" to "misleading") was used to evaluate image quality. All cases were analyzed retrospectively and application reports for the visualization of the aorta, pulmonary arteries, pulmonary veins, semilunar valves, cavopulmonary connections and atrial baffles were generated. Contrast dye consumption and radiation dose were evaluated. During the observation period FD-CT was applied in all 176 cases. The mean patient age was 7.0 years (0.01 - 42.53 years). The clinical value of FD-CT was rated superior to conventional angiography in 96.6 % of the cases and was never rated as "misleading". FD-CT was rated "essential" in 3.4 % of all cases, "very useful" in 77.3 % of all cases, "useful" in 15.9 % of all cases and "not useful" in 3.4 % of all cases. The mean dose-area product was 99 µGym2 (19.3 - 1276.6 µGym2), and the used contrast dye was 1.76 ml/kg (0.9 - 5 ml/kg). Application reports for the visualization of different anatomical regions are demonstrated. FD-CT is a new and auxiliary procedure in diagnostic and interventional catheterization of patients with congenital heart disease. Particularly extracardiac structures can be displayed in three-dimensional high resolution and be used for diagnosis, surgical planning and 3 D navigation. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Segmental Surface Referencing during Intraoperative Three-dimensional Image-Guided Spine Navigation: An Early Validation with Comparison to Automated Referencing

    PubMed Central

    Al-Habib, Amro F.; Al-Akkad, Salah

    2016-01-01

    Study Design Interventional human cadaver study. Objective Intraoperative three-dimensional (3-D)-guided navigation improves spine instrumentation accuracy. However, image acquisition may need to be repeated with segment hypermobility or distant target from reference frame (RF). The current study evaluates the usefulness of internal metal fiducials (IMFs) as surface references in enhancing registration accuracy and avoiding repeating imaging. Methods Six fresh-frozen cadaveric human torsos were utilized. Posterior C1–T2 exposure was done, and three IMFs were inserted per level; intraoperative 3-D images were then acquired. Two registration methods were utilized: autoregistration (AR, group 1) and point registration using IMF (IMFR, group 2). Registration accuracy was checked by identifying IMFs in both groups. Pedicle screws inserted into C2, C4, C5, and C7 based on the two registration methods (three cadavers each) with RF on C7 and then on C2. Results The mean registration error was lower with IMFR compared with AR (0.35 ± 0.5 mm versus 2.02 ± 0.85 mm, p = 0.0001). Overall, 34 pedicle screws were inserted (AR, 18; IMFR, 16). Final screw placement was comparable using both techniques (p = 0.58). Lateral screws violations were observed in four IMFR screws (1 to 2 mm) as compared with five in AR group (2 to 3 mm). Reregistration after moving RF to C2 was possible using surface screws in IMFR group, thus avoiding new 3-D image acquisition. Conclusion During intraoperative 3-D navigation in spine procedures, surface fiducial registration using IMF provided superior accuracy over automated registration. It allowed repeat registration without repeating radiation during long spine segment instrumentations. More studies are needed to clarify both practical and clinical application of this method. PMID:27853660

  17. Navigated Breast Tumor Excision Using Electromagnetically Tracked Ultrasound and Surgical Instruments.

    PubMed

    Ungi, Tamas; Gauvin, Gabrielle; Lasso, Andras; Yeo, Caitlin T; Pezeshki, Padina; Vaughan, Thomas; Carter, Kaci; Rudan, John; Engel, C Jay; Fichtinger, Gabor

    2016-03-01

    Lumpectomy, breast conserving tumor excision, is the standard surgical treatment in early stage breast cancer. A common problem with lumpectomy is that the tumor may not be completely excised, and additional surgery becomes necessary. We investigated if a surgical navigation system using intraoperative ultrasound improves the outcomes of lumpectomy and if such a system can be implemented in the clinical environment. Position sensors were applied on the tumor localization needle, the ultrasound probe, and the cautery, and 3-D navigation views were generated using real-time tracking information. The system was tested against standard wire-localization procedures on phantom breast models by eight surgical residents. Clinical safety and feasibility was tested in six palpable tumor patients undergoing lumpectomy by two experienced surgical oncologists. Navigation resulted in significantly less tissue excised compared to control procedures (10.3 ± 4.4 versus 18.6 ± 8.7 g, p = 0.01) and lower number of tumor-positive margins (1/8 versus 4/8) in the phantom experiments. Excision-tumor distance was also more consistently outside the tumor margins with navigation in phantoms. The navigation system has been successfully integrated in an operating room, and user experience was rated positively by surgical oncologists. Electromagnetic navigation may improve the outcomes of lumpectomy by making the tumor excision more accurate. Breast cancer is the most common cancer in women, and lumpectomy is its first choice treatment. Therefore, the improvement of lumpectomy outcomes has a significant impact on a large patient population.

  18. Real-time synthetic vision cockpit display for general aviation

    NASA Astrophysics Data System (ADS)

    Hansen, Andrew J.; Smith, W. Garth; Rybacki, Richard M.

    1999-07-01

    Low cost, high performance graphics solutions based on PC hardware platforms are now capable of rendering synthetic vision of a pilot's out-the-window view during all phases of flight. When coupled to a GPS navigation payload the virtual image can be fully correlated to the physical world. In particular, differential GPS services such as the Wide Area Augmentation System WAAS will provide all aviation users with highly accurate 3D navigation. As well, short baseline GPS attitude systems are becoming a viable and inexpensive solution. A glass cockpit display rendering geographically specific imagery draped terrain in real-time can be coupled with high accuracy (7m 95% positioning, sub degree pointing), high integrity (99.99999% position error bound) differential GPS navigation/attitude solutions to provide both situational awareness and 3D guidance to (auto) pilots throughout en route, terminal area, and precision approach phases of flight. This paper describes the technical issues addressed when coupling GPS and glass cockpit displays including the navigation/display interface, real-time 60 Hz rendering of terrain with multiple levels of detail under demand paging, and construction of verified terrain databases draped with geographically specific satellite imagery. Further, on-board recordings of the navigation solution and the cockpit display provide a replay facility for post-flight simulation based on live landings as well as synchronized multiple display channels with different views from the same flight. PC-based solutions which integrate GPS navigation and attitude determination with 3D visualization provide the aviation community, and general aviation in particular, with low cost high performance guidance and situational awareness in all phases of flight.

  19. Pediatric pedicle screw placement using intraoperative computed tomography and 3-dimensional image-guided navigation.

    PubMed

    Larson, A Noelle; Santos, Edward R G; Polly, David W; Ledonio, Charles G T; Sembrano, Jonathan N; Mielke, Cary H; Guidera, Kenneth J

    2012-02-01

    A retrospective cohort study reporting the use of intraoperative computed tomography (CT) and image-guided navigation system for the placement of pedicle screws in pediatric compared with adult patients. To evaluate the accuracy of open pedicle screw placement in pediatric patients using intraoperative CT and 3-dimensional (3D) image-guided navigation. Pedicle screws are widely used in children for the correction of spinal deformity. Navigation systems and intraoperative CT are now available as an adjunct to fluoroscopy and anatomic techniques for placing pedicle screws and verifying screw position. From 2007 to 2010, 984 pedicle screws were placed in a consecutive series cohort of 50 pediatric patients for spinal deformity correction with the use of intraoperative CT (O-arm, Medtronic, Inc, Louisville, CO) and a computerized navigation system (Stealth, Medtronic, Inc, Louisville, CO). The primary outcome measure for this study is redirection or removal of screw on the basis of the intraoperative CT imaging. During the study period, 1511 screws were placed in adult patients using the same image guidance system. A total of 984 pedicle screws were implanted using real-time navigation, with a mean of 20 screws per patient (range: 2-34). On the basis of intraoperative CT, 35 screws (3.6%) were revised (27 redirected and 8 removed), representing a 96.4% accuracy rate. No patients returned to the operating room because of screw malposition.Of the 1511 screws placed in adult patients, 28 (1.8%) were revised intraoperatively for malposition on CT imaging, for an overall 98.2% accuracy rate. Screw revision thus was more common in the pediatric population (P = 0.008). However, the pediatric screw accuracy rate is significantly higher than the findings from a recent meta-analysis of predominantly nonnavigated screws in children, reporting a 94.9% accuracy rate (P = 0.03). We report 96.4% accuracy in pediatric pedicle screw placement using intraoperative CT and a 3D navigation

  20. Compressed sensing for rapid late gadolinium enhanced imaging of the left atrium: A preliminary study.

    PubMed

    Kamesh Iyer, Srikant; Tasdizen, Tolga; Burgon, Nathan; Kholmovski, Eugene; Marrouche, Nassir; Adluru, Ganesh; DiBella, Edward

    2016-09-01

    Current late gadolinium enhancement (LGE) imaging of left atrial (LA) scar or fibrosis is relatively slow and requires 5-15min to acquire an undersampled (R=1.7) 3D navigated dataset. The GeneRalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) based parallel imaging method is the current clinical standard for accelerating 3D LGE imaging of the LA and permits an acceleration factor ~R=1.7. Two compressed sensing (CS) methods have been developed to achieve higher acceleration factors: a patch based collaborative filtering technique tested with acceleration factor R~3, and a technique that uses a 3D radial stack-of-stars acquisition pattern (R~1.8) with a 3D total variation constraint. The long reconstruction time of these CS methods makes them unwieldy to use, especially the patch based collaborative filtering technique. In addition, the effect of CS techniques on the quantification of percentage of scar/fibrosis is not known. We sought to develop a practical compressed sensing method for imaging the LA at high acceleration factors. In order to develop a clinically viable method with short reconstruction time, a Split Bregman (SB) reconstruction method with 3D total variation (TV) constraints was developed and implemented. The method was tested on 8 atrial fibrillation patients (4 pre-ablation and 4 post-ablation datasets). Blur metric, normalized mean squared error and peak signal to noise ratio were used as metrics to analyze the quality of the reconstructed images, Quantification of the extent of LGE was performed on the undersampled images and compared with the fully sampled images. Quantification of scar from post-ablation datasets and quantification of fibrosis from pre-ablation datasets showed that acceleration factors up to R~3.5 gave good 3D LGE images of the LA wall, using a 3D TV constraint and constrained SB methods. This corresponds to reducing the scan time by half, compared to currently used GRAPPA methods. Reconstruction of 3D LGE images

  1. Geomatics techniques applied to time series of aerial images for multitemporal geomorphological analysis of the Miage Glacier (Mont Blanc).

    NASA Astrophysics Data System (ADS)

    Perotti, Luigi; Carletti, Roberto; Giardino, Marco; Mortara, Giovanni

    2010-05-01

    The Miage glacier is the major one in the Italian side of the Mont Blanc Massif, the third by area and the first by longitudinal extent among Italian glaciers. It is a typical debris covered glacier, since the end of the L.I.A. The debris coverage reduces ablation, allowing a relative stability of the glacier terminus, which is characterized by a wide and articulated moraine apparatus. For its conservative landforms, the Miage Glacier has a great importance for the analysis of the geomorphological response to recent climatic changes. Thanks to an organized existing archive of multitemporal aerial images (1935 to present) a photogrammetric approach has been applied to detect recent geomorphological changes in the Miage glacial basin. The research team provided: a) to digitize all the available images (still in analogic form) through photogrammetric scanners (very low image distortions devices) taking care of correctly defining the resolution of the acquisition compared to the scale mapping images are suitable for; b) to import digitized images into an appropriate digital photogrammetry software environment; c) to manage images in order, where possible, to carried out the stereo models orientation necessary for 3D navigation and plotting of critical geometric features of the glacier. Recognized geometric feature, referring to different periods, can be transferred to vector layers and imported in a GIS for further comparisons and investigations; d) to produce multi-temporal Digital Elevation Models for glacier volume changes; e) to perform orthoprojection of such images to obtain multitemporal orthoimages useful for areal an planar terrain evaluation and thematic analysis; f) to evaluate both planimetric positioning and height determination accuracies reachable through the photogrammetric process. Users have to known reliability of the measures they can do over such products. This can drive them to define the applicable field of this approach and this can help them to

  2. Clinical Feasibility of 3-Dimensional Magnetic Resonance Cholangiopancreatography Using Compressed Sensing: Comparison of Image Quality and Diagnostic Performance.

    PubMed

    Yoon, Jeong Hee; Lee, Sang Min; Kang, Hyo-Jin; Weiland, Elisabeth; Raithel, Esther; Son, Yohan; Kiefer, Berthold; Lee, Jeong Min

    2017-10-01

    The aim of this study was to evaluate the clinical feasibility of fast 3-dimensional (3D) magnetic resonance cholangiopancreatography (MRCP) using compressed sensing (CS) in comparison with conventional navigator-triggered 3D-MRCP. This retrospective study was approved by our institutional review board, and the requirement of informed consent was waived. A total of 84 patients (male-to-female ratio, 41:43; mean age, 47.3 ± 18.8 years) who underwent conventional 3D navigator-triggered T2-weighted MRCP using sampling perfection with application optimized contrasts (SPACE) and fast 3D MRCP using SPACE with high undersampling combined with CS reconstruction (CS SPACE; CS-MRCP) on a 3 T scanner were included. Among them, 28 patients additionally underwent 3D breath-hold CS-MRCP (BH-CS-MRCP) with 5.7% k-space sampling. Three board-certified radiologists then independently reviewed the examinations for bile duct and pancreatic duct visualization and overall image quality on a 5-point scale, and image sharpness and background suppression on a 4-point scale, with the higher score indicating better image quality. In addition, diagnostic performance for the detection of anatomic variation and diseases of the bile duct, and pancreatic disease were assessed on a per-patient basis in the subgroup of 28 patients who underwent conventional MRCP, CS-MRCP, and BH-CS-MRCP in the same manner. Mean acquisition times of conventional MRCP, CS-MRCP, and BH-CS-MRCP were 7 minutes (419.7 seconds), 3 minutes 47 seconds (227.0 seconds), and 16 seconds, respectively (P < 0.0001, in all comparisons). In all patients, CS-MRCP showed better image sharpness (3.54 ± 0.60 vs 3.37 ± 0.75, P = 0.04) and visualization of the common bile duct (4.55 ± 0.60 vs 4.39 ± 0.78, P = 0.034) and pancreatic duct (3.47 ± 1.22 vs 3.26 ± 1.32, P = 0.025), but lower background suppression (3.00 ± 0.54 vs 3.37 ± 0.58, P < 0.001) than conventional MRCP. Overall image quality was not significantly different

  3. Releasing the digital elevation model for the whole Italian territory: a case study reporting two years of core-data dissemination for Earth Sciences communities and other stakeholders

    NASA Astrophysics Data System (ADS)

    Tarquini, Simone; Nannipieri, Luca

    2014-05-01

    EPOS (European Plate Observing System) is the European initiative for the implementation and integration of European Research Infrastructures in the field of Solid Earth Sciences. In particular, EPOS is aimed at creating a common environment for data exchange for both the scientific community and relevant stakeholders interested in Earth Sciences. In such a context, a service providing access to the complete topography of one of the countries participating in EPOS represents a step forward towards the realization of the EPOS mission. Here we report about two years of activity of a data dissemination service which released (for free) a digital elevation model (DEM) of the whole Italian territory at 10 m-resolution named TINTALY/01. The new TINITALY/01 DEM for the whole Italian territory was completed and presented by INGV in 2007. This DEM was the final result of a project funded by the Italian Ministry of the Environment. TINITALY/01 was completed in two phases: in a first phase, independent elevation models for single regions were derived, and in a second phase, all the regional models were merged into a single, seamless model covering the whole territory of Italy. In early 2012, a web portal was published (http://tinitaly.pi.ingv.it/) through which the above DEM is open for a full web-GIS navigation (3-D navigation in anaglyph mode or standard 2-D hillshade), and where internet navigators can ask for the download of the DEM dataset (in grid format, 10 m-resolution) through the compilation of an online form (http://tinitaly.pi.ingv.it/account_request_form.html). Submission of the form implies stating the destination of use for the data, and acceptance of the policy of use (i.e. no-profit use). After nearly two years from the opening of the portal, the DEM is still browsed by up to 10-20 users per day (about 3000 visits throughout 2013). As of 31 December 2013, about 220 users affiliated to nearly 150 different institutions or associations (i.e. universities

  4. The Engelbourg's ruins: from 3D TLS point cloud acquisition to 3D virtual and historic models

    NASA Astrophysics Data System (ADS)

    Koehl, Mathieu; Berger, Solveig; Nobile, Sylvain

    2014-05-01

    . The 3D model integrated into a GIS is now a precious means of communication for the valuation of the site. Accessible to all, including to the distant people, he allows discover the castle and his history in an educational and relevant way. From an archaeological point of view, the 3D model brings an overall view and a backward movement on the constitution of the site, which a 2D document cannot easily offer. The 3D navigation and the integration of 2D data in the model allow analyze vestiges in another way, contributing to the faster establishment of new hypotheses. Complementary to other methods already exploited in archaeology, the analysis by the 3D vision is, for the scientists, a significant saving of time which they can so dedicate to the more thorough study of certain put aside hypotheses. In parallel, we created several panoramas, and set up a virtual and interactive visit of the site. In the optics to perpetuate this project, and to offer to the future users the ways to continue and to update this study, we tested and set up the methodologies of processing. We were so able to release procedures clear, orderly and applicable as well to the case of Engelbourg as to other similar studies. At least, some hypotheses permits to reconstruct virtually first versions of the original state of the castle.