Science.gov

Sample records for c-c bond cleavage

  1. Photocatalytic C-C Bond Cleavage and Amination of Cycloalkanols by Cerium(III) Chloride Complex.

    PubMed

    Guo, Jing-Jing; Hu, Anhua; Chen, Yilin; Sun, Jianfeng; Tang, Haoming; Zuo, Zhiwei

    2016-12-05

    A general strategy for the cleavage and amination of C-C bonds of cycloalkanols has been achieved through visible-light-induced photoredox catalysis utilizing a cerium(III) chloride complex. This operationally simple methodology has been successfully applied to a wide array of unstrained cyclic alcohols, and represents the first example of catalytic C-C bond cleavage and functionalization of unstrained secondary cycloalkanols.

  2. Facile P-C/C-H Bond-Cleavage Reactivity of Nickel Bis(diphosphine) Complexes.

    PubMed

    Zhang, Shaoguang; Li, Haixia; Appel, Aaron M; Hall, Michael B; Bullock, R Morris

    2016-07-04

    Unusual cleavage of P-C and C-H bonds of the P2 N2 ligand, in heteroleptic [Ni(P2 N2 )(diphosphine)](2+) complexes under mild conditions, results in the formation of an iminium formyl nickelate featuring a C,P,P-tridentate coordination mode. The structures of both the heteroleptic [Ni(P2 N2 )(diphosphine)](2+) complexes and the resulting iminium formyl nickelate have been characterized by NMR spectroscopy and single-crystal X-ray diffraction analysis. Density functional theory (DFT) calculations were employed to investigate the mechanism of the P-C/C-H bond cleavage, which involves C-H bond cleavage, hydride rotation, Ni-C/P-H bond formation, and P-C bond cleavage.

  3. Potential of Metal-Catalyzed C-C Single Bond Cleavage for Organic Synthesis.

    PubMed

    Murakami, Masahiro; Ishida, Naoki

    2016-10-11

    Conventional organic synthesis has been mainly based upon the reactivities of π-bonds and polar σ-bonds. Carbon-carbon single bonds are nonpolar and generally far less reactive. Although they remain intact under most reaction conditions, it is possible to activate and cleave them if suitable organometallic compounds or metal catalysts are applied. Such C-C single bond cleavage reactions are attracting increasing attention in the context of synthetic chemistry because they provide a unique and more straightforward route from readily available substances to targets, while requiring significantly fewer steps. The present Perspective aims to exemplify the potential of metal-catalyzed C-C single bond cleavage for organic synthesis.

  4. Iron-mediated cleavage of C-C bonds in vicinal tricarbonyl compounds in water.

    PubMed

    Mecinović, Jasmin; Hamed, Refaat B; Schofield, Christopher J

    2009-01-01

    Three of a kind: Vicinal tricarbonyl compounds undergo C-C cleavage mediated by ferric ions (see scheme). The observed cleavage of ninhydrin and dehydroascorbic acid has relevance for amino acid detection and the metabolism of vitamin C.

  5. Photo-assisted cyanation of transition metal nitrates coupled with room temperature C-C bond cleavage of acetonitrile.

    PubMed

    Zou, Shihui; Li, Renhong; Kobayashi, Hisayoshi; Liu, Juanjuan; Fan, Jie

    2013-03-07

    It is a challenge to use acetonitrile as a cyanating agent because of the difficulty in cleaving its C-CN bond. Herein, we report a mild photo-assisted route to conduct the cyanation of transition metal nitrates using acetonitrile as the cyanating agent coupled with room-temperature C-C bond cleavage. DFT calculations and experimental observations suggest a radical-involved reaction mechanism, which excludes toxicity from free cyanide ions.

  6. Facile P-C/C-H Bond-Cleavage Reactivity of Nickel Bis(diphosphine) Complexes

    SciTech Connect

    Zhang, Shaoguang; Li, Haixia; Appel, Aaron M.; Hall, Michael B.; Bullock, R. Morris

    2016-06-07

    Unusual cleavage of P-C and C-H bonds of the P2N2 ligand in heteroleptic [Ni(P2N2)(diphosphine)]2+ complexes results in the formation of an iminium formyl nickelate featuring a C,P,P-tridentate coordination mode.

  7. Direct approaches to nitriles via highly efficient nitrogenation strategy through C-H or C-C bond cleavage.

    PubMed

    Wang, Teng; Jiao, Ning

    2014-04-15

    Because of the importance of nitrogen-containing compounds in chemistry and biology, organic chemists have long focused on the development of novel methodologies for their synthesis. For example, nitrogen-containing compounds show up within functional materials, as top-selling drugs, and as bioactive molecules. To synthesize these compounds in a green and sustainable way, researchers have focused on the direct functionalization of hydrocarbons via C-H or C-C bond cleavage. Although researchers have made significant progress in the direct functionalization of simple hydrocarbons, direct C-N bond formation via C-H or C-C bond cleavage remains challenging, in part because of the unstable character of some N-nucleophiles under oxidative conditions. The nitriles are versatile building blocks and precursors in organic synthesis. Recently, chemists have achieved the direct C-H cyanation with toxic cyanide salts in the presence of stoichiometric metal oxidants. In this Account, we describe recent progress made by our group in nitrile synthesis. C-H or C-C bond cleavage is a key process in our strategy, and azides or DMF serve as the nitrogen source. In these reactions, we successfully realized direct nitrile synthesis using a variety of hydrocarbon groups as nitrile precursors, including methyl, alkenyl, and alkynyl groups. We could carry out C(sp(3))-H functionalization on benzylic, allylic, and propargylic C-H bonds to produce diverse valuable synthetic nitriles. Mild oxidation of C═C double-bonds and C≡C triple-bonds also produced nitriles. The incorporation of nitrogen within the carbon skeleton typically involved the participation of azide reagents. Although some mechanistic details remain unclear, studies of these nitrogenation reactions implicate the involvement of a cation or radical intermediate, and an oxidative rearrangement of azide intermediate produced the nitrile. We also explored environmentally friendly oxidants, such as molecular oxygen, to make our

  8. Extended reaction scope of thiamine diphosphate dependent cyclohexane-1,2-dione hydrolase: from C-C bond cleavage to C-C bond ligation.

    PubMed

    Loschonsky, Sabrina; Wacker, Tobias; Waltzer, Simon; Giovannini, Pier Paolo; McLeish, Michael J; Andrade, Susana L A; Müller, Michael

    2014-12-22

    ThDP-dependent cyclohexane-1,2-dione hydrolase (CDH) catalyzes the CC bond cleavage of cyclohexane-1,2-dione to 6-oxohexanoate, and the asymmetric benzoin condensation between benzaldehyde and pyruvate. One of the two reactivities of CDH was selectively knocked down by mutation experiments. CDH-H28A is much less able to catalyze the CC bond formation, while the ability for CC bond cleavage is still intact. The double variant CDH-H28A/N484A shows the opposite behavior and catalyzes the addition of pyruvate to cyclohexane-1,2-dione, resulting in the formation of a tertiary alcohol. Several acyloins of tertiary alcohols are formed with 54-94 % enantiomeric excess. In addition to pyruvate, methyl pyruvate and butane-2,3-dione are alternative donor substrates for CC bond formation. Thus, the very rare aldehyde-ketone cross-benzoin reaction has been solved by design of an enzyme variant.

  9. Aliphatic C-C Bond Cleavage in α-Hydroxy Ketones by a Dioxygen-Derived Nucleophilic Iron-Oxygen Oxidant.

    PubMed

    Bhattacharya, Shrabanti; Rahaman, Rubina; Chatterjee, Sayanti; Paine, Tapan K

    2017-03-17

    A nucleophilic iron-oxygen oxidant, formed in situ in the reaction between an iron(II)-benzilate complex and O2 , oxidatively cleaves the aliphatic C-C bonds of α-hydroxy ketones. In the cleavage reaction, α-hydroxy ketones without any α-C-H bond afford a 1:1 mixture of carboxylic acid and ketone. Isotope labeling studies established that one of the oxygen atoms from dioxygen is incorporated into the carboxylic acid product. Furthermore, the iron(II) complex cleaves an aliphatic C-C bond of 17-α-hydroxyprogesterone affording androstenedione and acetic acid. The O2 -dependent aliphatic C-C bond cleavage of α-hydroxy ketones containing no α-C-H bond bears similarity to the lyase activity of the heme enzyme, cytochrome P450 17A1 (CYP17A1).

  10. Development of a Simple Adjustable Zinc Acid/Base Hybrid Catalyst for C-C and C-O Bond-Forming and C-C Bond-Cleavage Reactions.

    PubMed

    Yamashita, Yasuhiro; Minami, Kodai; Saito, Yuki; Kobayashi, Shū

    2016-09-06

    A newly designed zinc Lewis acid/base hybrid catalyst was developed. By adjusting the Lewis acidity of the zinc center, aldol-type additions of 2-picolylamine Schiff base to aldehydes proceeded smoothly to afford syn-aldol adduct equivalents, trans-N,O-acetal adducts, in high yields with high selectivities. NMR experiments, including microchanneled cell for synthesis monitoring (MICCS) NMR analysis, revealed that anti-aldol adducts were formed at the initial stage of the reactions under kinetic control, but the final products were the trans-(syn)-N,O-acetal adducts that were produced through a retro-aldol process under thermodynamic control. In the whole reaction process, the zinc catalyst played three important roles: i) promotion of the aldol process (C-C bond formation), ii) cyclization process to the N,O-acetal product (C-O bond formation), and iii) retro-aldol process from the anti-aldol adduct to the syn-aldol adduct (C-C bond cleavage and C-C bond formation).

  11. Metal-catalyzed C-C bond cleavage in alkanes: effects of methyl substitution on transition-state structures and stability.

    PubMed

    Flaherty, David W; Hibbitts, David D; Iglesia, Enrique

    2014-07-09

    Methyl substituents at C-C bonds influence hydrogenolysis rates and selectivities of acyclic and cyclic C2-C8 alkanes on Ir, Rh, Ru, and Pt catalysts. C-C cleavage transition states form via equilibrated dehydrogenation steps that replace several C-H bonds with C-metal bonds, desorb H atoms (H*) from saturated surfaces, and form λ H2(g) molecules. Activation enthalpies (ΔH(‡)) and entropies (ΔS(‡)) and λ values for (3)C-(x)C cleavage are larger than for (2)C-(2)C or (2)C-(1)C bonds, irrespective of the composition of metal clusters or the cyclic/acyclic structure of the reactants. (3)C-(x)C bonds cleave through α,β,γ- or α,β,γ,δ-bound transition states, as indicated by the agreement between measured activation entropies and those estimated for such structures using statistical mechanics. In contrast, less substituted C-C bonds involve α,β-bound species with each C atom bound to several surface atoms. These α,β configurations weaken C-C bonds through back-donation to antibonding orbitals, but such configurations cannot form with (3)C atoms, which have one C-H bond and thus can form only one C-M bond. (3)C-(x)C cleavage involves attachment of other C atoms, which requires endothermic C-H activation and H* desorption steps that lead to larger ΔH(‡) values but also larger ΔS(‡) values (by forming more H2(g)) than for (2)C-(2)C and (2)C-(1)C bonds, irrespective of alkane size (C2-C8) or cyclic/acyclic structure. These data and their mechanistic interpretation indicate that low temperatures and high H2 pressures favor cleavage of less substituted C-C bonds and form more highly branched products from cyclic and acyclic alkanes. Such interpretations and catalytic consequences of substitution seem also relevant to C-X cleavage (X = S, N, O) in desulfurization, denitrogenation, and deoxygenation reactions.

  12. Zirconocene-assisted remote cleavage of C-C and C-O bonds: application to acyclic stereodefined metalated hydrocarbons.

    PubMed

    Bruffaerts, J; Pierrot, D; Marek, I

    2016-11-08

    The molding of molecules through remote functionalisation has increasingly become popular as it provides original and flexible synthetic alternatives to classical retrosynthetic analysis. In this Perspective article, we summarise more than a decade of studies in the specific field of remote activation of inert C-C and C-O bonds using the unique abilities of organozirconocene species mainly from our own research group. By demonstrating that these reactions represent novel and powerful entries towards acyclic stereodefined reactive organometallic species, we aim to show the vast opportunities this concept-driven methodology discovery offers.

  13. Simple Bond Cleavage

    SciTech Connect

    Gary S. Groenewold

    2005-08-01

    Simple bond cleavage is a class of fragmentation reactions in which a single bond is broken, without formation of new bonds between previously unconnected atoms. Because no bond making is involved, simple bond cleavages are endothermic, and activation energies are generally higher than for rearrangement eliminations. The rate of simple bond cleavage reactions is a strong function of the internal energy of the molecular ion, which reflects a loose transition state that resembles reaction products, and has a high density of accessible states. For this reason, simple bond cleavages tend to dominate fragmentation reactions for highly energized molecular ions. Simple bond cleavages have negligible reverse activation energy, and hence they are used as valuable probes of ion thermochemistry, since the energy dependence of the reactions can be related to the bond energy. In organic mass spectrometry, simple bond cleavages of odd electron ions can be either homolytic or heterolytic, depending on whether the fragmentation is driven by the radical site or the charge site. Simple bond cleavages of even electron ions tend to be heterolytic, producing even electron product ions and neutrals.

  14. Merging allylic C-H bond activation and C-C bond cleavage en route to the formation of a quaternary carbon stereocenter in acyclic systems.

    PubMed

    Vasseur, Alexandre; Marek, Ilan

    2017-01-01

    This protocol describes a diastereoselective approach for the synthesis of complex molecular architectures containing two stereogenic centers in a 1,4 relationship, one of which being an all-carbon quaternary stereogenic center. Such molecules could be intermediates in the synthesis of steroids, for example. Conceived as a single-flask synthetic sequence from ω-ene cyclopropanes, the protocol involves a concerted allylic C-H and C-C bond activation promoted by the Negishi reagent (Cp2Zr(η(2)-butene)). This zirconium-promenade-based procedure affords bifunctionalized products in high diastereomeric ratios after reaction of ω-ene cyclopropanes with the Negishi complex, followed by a thermal treatment and sequential addition of two different electrophiles. The method proves to be particularly efficient when carbonyl compounds are used as first electrophiles and hydrogen or elemental halides are used as second electrophiles. In addition, it offers the opportunity to create new C-C bonds via remote functionalization of a (sp(3))-C-H bond, a result of a copper or copper/palladium transmetalation step that extends the scope of the process to alkyl, acyl and aromatic halide compounds as second electrophiles. The typical described protocol allows the synthesis of the highly diastereo-enriched 2-((1R*,2S*)-2-butyl-2 propylcyclopropyl)ethanol and may provide a new entry to access complex molecular segments of natural products such as steroids or C30 botryococcene. It requires a simple reaction setup and takes ∼18.5 h to run the reaction and 2 h for isolation and purification.

  15. Diversification of ortho-Fused Cycloocta-2,5-dien-1-one Cores and Eight- to Six-Ring Conversion by σ Bond C-C Cleavage.

    PubMed

    Eccleshare, Lee; Lozada-Rodríguez, Leticia; Cooper, Phillippa; Burroughs, Laurence; Ritchie, John; Lewis, William; Woodward, Simon

    2016-08-22

    Sequential treatment of 2-C6 H4 Br(CHO) with LiC≡CR(1) (R(1) =SiMe3 , tBu), nBuLi, CuBr⋅SMe2 and HC≡CCHClR(2) [R(2) =Ph, 4-CF3 Ph, 3-CNPh, 4-(MeO2 C)Ph] at -50 °C leads to formation of an intermediate carbanion (Z)-1,2-C6 H4 {CA (=O)C≡CB R(1) }{CH=CH(CH(-) )R(2) } (4). Low temperatures (-50 °C) favour attack at CB leading to kinetic formation of 6,8-bicycles containing non-classical C-carbanion enolates (5). Higher temperatures (-10 °C to ambient) and electron-deficient R(2) favour retro σ-bond C-C cleavage regenerating 4, which subsequently closes on CA providing 6,6-bicyclic alkoxides (6). Computational modelling (CBS-QB3) indicated that both pathways are viable and of similar energies. Reaction of 6 with H(+) gave 1,2-dihydronaphthalen-1-ols, or under dehydrating conditions, 2-aryl-1-alkynylnaphthlenes. Enolates 5 react in situ with: H2 O, D2 O, I2 , allylbromide, S2 Me2 , CO2 and lead to the expected C-E derivatives (E=H, D, I, allyl, SMe, CO2 H) in 49-64 % yield directly from intermediate 5. The parents (E=H; R(1) =SiMe3 , tBu; R(2) =Ph) are versatile starting materials for NaBH4 and Grignard C=O additions, desilylation (when R(1) =SiMe) and oxime formation. The latter allows formation of 6,9-bicyclics via Beckmann rearrangement. The 6,8-ring iodides are suitable Suzuki precursors for Pd-catalysed C-C coupling (81-87 %), whereas the carboxylic acids readily form amides under T3P® conditions (71-95 %).

  16. Effects of alkoxy groups on arene rings of lignin β-O-4 model compounds on the efficiencies of single electron transfer-promoted photochemical and enzymatic C-C Bond Cleavage Reactions.

    PubMed

    Lim, Suk Hyun; Nahm, Keepyung; Ra, Choon Sup; Cho, Dae Won; Yoon, Ung Chan; Latham, John A; Dunaway-Mariano, Debra; Mariano, Patrick S

    2013-09-20

    To gain information about how alkoxy substitution in arene rings of β-O-4 structural units within lignin governs the efficiencies/rates of radical cation C1-C2 bond cleavage reactions, single electron transfer (SET) photochemical and lignin peroxidase-catalyzed oxidation reactions of dimeric/tetrameric model compounds have been explored. The results show that the radical cations derived from less alkoxy-substituted dimeric β-O-4 models undergo more rapid C1-C2 bond cleavage than those of more alkoxy-substituted analogues. These findings gained support from the results of DFT calculations, which demonstrate that C1-C2 bond dissociation energies of β-O-4 radical cations decrease as the degree of alkoxy substitution decreases. In SET reactions of tetrameric compounds consisting of two β-O-4 units, containing different degrees of alkoxy substitution, regioselective radical cation C-C bond cleavage was observed to occur in one case at the C1-C2 bond in the less alkoxy-substituted β-O-4 moiety. However, regioselective C1-C2 cleavage in the more alkoxy-substituted β-O-4 moiety was observed in another case, suggesting that other factors might participate in controlling this process. These observations show that lignins containing greater proportions of less rather than more alkoxylated rings as part of β-O-4 units would be more efficiently cleaved by SET mechanisms.

  17. Hydrogenolysis and homologation of linear and branched pentenes on Ru/SiO/sub 2/ catalysts: implication in the mechanism of C-C bond formation and cleavage on metal surfaces

    SciTech Connect

    Rodriguez, E.; Leconte, M.; Basset, J.M.; Tanaka, K.; Tanaka, K.I.

    1988-01-06

    Hydrogenolysis and homologation of 1-pentene to butenes and hexenes take place simultaneously and at the same rate over a Ru/SiO/sub 2/ catalysts at 110/sup 0/C, suggesting that these two reactions are mechanistically related. /sup 13/C labeling experiments indicate that C-C cleavage occurs at the double bond of 1-pentene-1-/sup 13/C leading to unlabeled 1-butene and labeled hexenes. The product distribution in the hydrogenolysis of 1-pentene, 2-pentenes, 3-methyl-1-butene, 2-methyl-2-butene, and 2-methyl-1-butene is accounted for by a carbene-olefin mechanism, which can therefore be considered as a reasonable common path for the formation and cleavage of carbon-carbon bonds on metal surfaces.

  18. Molecular approach to the mechanisms of C-C bond formation and cleavage on metal surfaces: Hydrogenolysis, homologation, and dimerization of ethylene over Ru/SiO sub 2 catalysts

    SciTech Connect

    Rodriguez, E.; Leconte, M.; Basset, J.M.; Tanaka, K. )

    1989-09-01

    At temperatures above ca. 50 C, over Ru/SiO{sub 2} catalysts and in the presence of hydrogen, ethylene undergoes hydrogenation, hydrogenolysis, homologation, and dimerization reactions. The influence of contact times and reaction temperatures on conversions and selectivities has been examined. At low temperatures (C-C bond cleavage and formation; two mechanisms are proposed which involve either metallocarbene insertion-elimination reactions or formation and decomposition of dimetallacyclic intermediates. Several mechanisms are envisioned for dimerization of ethylene; experimental data seem to support a mechanism which involves formation and coupling of two ethylidene species.

  19. Mechanisms of C-C bond formation and cleavage on metal surfaces: Formation of butenes and hexenes from linear and branched pentenes over Ru/SiO sub 2 catalysts

    SciTech Connect

    Rodriguez, E.; Leconte, M.; Basset, J. )

    1991-12-01

    Over Ru/SiO{sub 2} catalyst, at temperatures above 100-150C and in the presence of hydrogen, linear and branched pentenes (1-pentene, cis- and trans-2-pentene, 2-methyl-2-butene, 3-methyl-1-butene, and 2-methyl-1-butene) undergo isomerization, hydrogenation, hydrogenolysis, and homologation. The main primary products of these last two reactions of C-C bond cleavage and formation are methane, butenes, and hexanes. At low temperature (100-150C), the formation of methane is reduced and the major products are C{sub 4} and C{sub 6} olefinic hydrocarbons, which are obtained in roughly comparable amounts. The distribution of the butenes isomers and of the hexenes isomers strongly depends on the structure of the starting pentene (linear or branched, terminal or internal). The results confirm that hydrogenolysis and homologation of a C{sub 5} olefinic hydrocarbon occur at comparable rates and involve: (1) cleavage of mainly a terminal C-C bond of the pentene isomer leading to C{sup 4} and C{sup 1} fragments, (2) reaction of this C{sup 1} fragment with the starting C{sup 5} to give C{sup 6} hydrocarbons, and (or) (3) hydrogenation of the C{sup 1} fragment to methane. Two mechanisms, based on concepts of organometallic chemistry, can account for the results (especially for the distribution of the C{sup 4} and C{sup 6} olefinic isomers): (1) a methylene insertion-deinsertion mechanism or (2) a mechanism that involves formation and decomposition of dimetallacyclic intermediates. Several experimental results seem to be in favor of the last proposed mechanism.

  20. Understanding Rotation about a C=C Double Bond

    ERIC Educational Resources Information Center

    Barrows, Susan E.; Eberlein, Thomas H.

    2005-01-01

    The study focuses on the process and energetic cost of twisting around a C=C double bond and provides instructors with a simple vehicle for rectifying the common misrepresentation of C=C double bonds as rigid and inflexible. Discussions of cis and trans isomers of cycloalkenes are a good entry point for introducing students to the idea of a…

  1. Understanding Rotation about a C=C Double Bond

    NASA Astrophysics Data System (ADS)

    Barrows, Susan E.; Eberlein, Thomas H.

    2005-09-01

    In this article, twisting about the C=C double bond and the consequential pyramidalization of sp 2 carbon atoms in alkenes were examined in a molecular modeling study using trans -2-butene as a model system. According to our trans -2-butene model and other similar work, most of the strength of a π bond is retained upon twisting, even for remarkably large C C=C C dihedral angles (up to 90°). The phenomenon of sp 2 carbon atom pyramidalization and preservation of π bond strength upon twisting a C=C double bond is well established in the literature, but is rarely discussed in introductory textbooks. This absence is noteworthy because profound manifestations of this effect do occur in compounds that are covered in an introductory organic chemistry curriculum. We present a simple method of introducing the concept of a flexible C=C π bond into beginning organic chemistry courses. We report the energetic demands of partial twisting about the C=C bond in 2-butene as calculated using DFT, LMP2, and MCSCF methods. Finally, using the results of these calculations, we assessed the degree of strain introduced by the twisted nature of the C=C bond in trans cycloalkenes.

  2. Amide-directed photoredox-catalysed C-C bond formation at unactivated sp(3) C-H bonds.

    PubMed

    Chu, John C K; Rovis, Tomislav

    2016-11-10

    Carbon-carbon (C-C) bond formation is paramount in the synthesis of biologically relevant molecules, modern synthetic materials and commodity chemicals such as fuels and lubricants. Traditionally, the presence of a functional group is required at the site of C-C bond formation. Strategies that allow C-C bond formation at inert carbon-hydrogen (C-H) bonds enable access to molecules that would otherwise be inaccessible and the development of more efficient syntheses of complex molecules. Here we report a method for the formation of C-C bonds by directed cleavage of traditionally non-reactive C-H bonds and their subsequent coupling with readily available alkenes. Our methodology allows for amide-directed selective C-C bond formation at unactivated sp(3) C-H bonds in molecules that contain many such bonds that are seemingly indistinguishable. Selectivity arises through a relayed photoredox-catalysed oxidation of a nitrogen-hydrogen bond. We anticipate that our findings will serve as a starting point for functionalization at inert C-H bonds through a strategy involving hydrogen-atom transfer.

  3. Amide-directed photoredox-catalysed C-C bond formation at unactivated sp3 C-H bonds

    NASA Astrophysics Data System (ADS)

    Chu, John C. K.; Rovis, Tomislav

    2016-11-01

    Carbon-carbon (C-C) bond formation is paramount in the synthesis of biologically relevant molecules, modern synthetic materials and commodity chemicals such as fuels and lubricants. Traditionally, the presence of a functional group is required at the site of C-C bond formation. Strategies that allow C-C bond formation at inert carbon-hydrogen (C-H) bonds enable access to molecules that would otherwise be inaccessible and the development of more efficient syntheses of complex molecules. Here we report a method for the formation of C-C bonds by directed cleavage of traditionally non-reactive C-H bonds and their subsequent coupling with readily available alkenes. Our methodology allows for amide-directed selective C-C bond formation at unactivated sp3 C-H bonds in molecules that contain many such bonds that are seemingly indistinguishable. Selectivity arises through a relayed photoredox-catalysed oxidation of a nitrogen-hydrogen bond. We anticipate that our findings will serve as a starting point for functionalization at inert C-H bonds through a strategy involving hydrogen-atom transfer.

  4. Alkali metal mediated C-C bond coupling reaction

    NASA Astrophysics Data System (ADS)

    Tachikawa, Hiroto

    2015-02-01

    Metal catalyzed carbon-carbon (C-C) bond formation is one of the important reactions in pharmacy and in organic chemistry. In the present study, the electron and hole capture dynamics of a lithium-benzene sandwich complex, expressed by Li(Bz)2, have been investigated by means of direct ab-initio molecular dynamics method. Following the electron capture of Li(Bz)2, the structure of [Li(Bz)2]- was drastically changed: Bz-Bz parallel form was rapidly fluctuated as a function of time, and a new C-C single bond was formed in the C1-C1' position of Bz-Bz interaction system. In the hole capture, the intermolecular vibration between Bz-Bz rings was only enhanced. The mechanism of C-C bond formation in the electron capture was discussed on the basis of theoretical results.

  5. Alkali metal mediated C-C bond coupling reaction.

    PubMed

    Tachikawa, Hiroto

    2015-02-14

    Metal catalyzed carbon-carbon (C-C) bond formation is one of the important reactions in pharmacy and in organic chemistry. In the present study, the electron and hole capture dynamics of a lithium-benzene sandwich complex, expressed by Li(Bz)2, have been investigated by means of direct ab-initio molecular dynamics method. Following the electron capture of Li(Bz)2, the structure of [Li(Bz)2](-) was drastically changed: Bz-Bz parallel form was rapidly fluctuated as a function of time, and a new C-C single bond was formed in the C1-C1' position of Bz-Bz interaction system. In the hole capture, the intermolecular vibration between Bz-Bz rings was only enhanced. The mechanism of C-C bond formation in the electron capture was discussed on the basis of theoretical results.

  6. C-C bond-forming desulfurizations of sulfoximines.

    PubMed

    Reggelin, M; Slavik, S; Bühle, P

    2008-09-18

    Highly substituted, enantiomerically pure azaheterocyclic ring systems play an important role in medicinal chemistry as potential peptide mimetics. Metalated 2-alkenyl sulfoximines offer an efficient entry to this class of compounds. In this paper, we describe a new means to remove the sulfonimidoyl auxiliary with concomitant formation of a C-C double bond.

  7. Metal-Free Oxidative C-C Bond Formation through C-H Bond Functionalization.

    PubMed

    Narayan, Rishikesh; Matcha, Kiran; Antonchick, Andrey P

    2015-10-12

    The formation of C-C bonds embodies the core of organic chemistry because of its fundamental application in generation of molecular diversity and complexity. C-C bond-forming reactions are well-known challenges. To achieve this goal through direct functionalization of C-H bonds in both of the coupling partners represents the state-of-the-art in organic synthesis. Oxidative C-C bond formation obviates the need for prefunctionalization of both substrates. This Minireview is dedicated to the field of C-C bond-forming reactions through direct C-H bond functionalization under completely metal-free oxidative conditions. Selected important developments in this area have been summarized with representative examples and discussions on their reaction mechanisms.

  8. Activation of Propane C-H and C-C Bonds by Gas-Phase Pt Atom: A Theoretical Study

    PubMed Central

    Li, Fang-Ming; Yang, Hua-Qing; Ju, Ting-Yong; Li, Xiang-Yuan; Hu, Chang-Wei

    2012-01-01

    The reaction mechanism of the gas-phase Pt atom with C3H8 has been systematically investigated on the singlet and triplet potential energy surfaces at CCSD(T)//BPW91/6-311++G(d, p), Lanl2dz level. Pt atom prefers the attack of primary over secondary C-H bonds in propane. For the Pt + C3H8 reaction, the major and minor reaction channels lead to PtC3H6 + H2 and PtCH2 + C2H6, respectively, whereas the possibility to form products PtC2H4 + CH4 is so small that it can be neglected. The minimal energy reaction pathway for the formation of PtC3H6 + H2, involving one spin inversion, prefers to start at the triplet state and afterward proceed along the singlet state. The optimal C-C bond cleavages are assigned to C-H bond activation as the first step, followed by cleavage of a C-C bond. The C-H insertion intermediates are kinetically favored over the C-C insertion intermediates. From C-C to C-H oxidative insertion, the lowering of activation barrier is mainly caused by the more stabilizing transition state interaction ΔE≠int, which is the actual interaction energy between the deformed reactants in the transition state. PMID:22942766

  9. An excursion from normal to inverted C-C bonds shows a clear demarcation between covalent and charge-shift C-C bonds.

    PubMed

    Shaik, Sason; Chen, Zhenhua; Wu, Wei; Stanger, Amnon; Danovich, David; Hiberty, Philippe C

    2009-10-19

    What is the nature of the C-C bond? Valence bond and electron density computations of 16 C-C bonds show two families of bonds that flesh out as a phase diagram. One family, involving ethane, cyclopropane and so forth, is typified by covalent C-C bonding wherein covalent spin-pairing accounts for most of the bond energy. The second family includes the inverted bridgehead bonds of small propellanes, where the bond is neither covalent nor ionic, but owes its existence to the resonance stabilization between the respective structures; hence a charge-shift (CS) bond. The dual family also emerges from calculated and experimental electron density properties. Covalent C-C bonds are characterized by negative Laplacians of the density, whereas CS-bonds display small or positive Laplacians. The positive Laplacian defines a region suffering from neighbouring repulsive interactions, which is precisely the case in the inverted bonding region. Such regions are rich in kinetic energy, and indeed the energy-density analysis reveals that CS-bonds are richer in kinetic energy than the covalent C-C bonds. The large covalent-ionic resonance energy is precisely the mechanism that lowers the kinetic energy in the bonding region and restores equilibrium bonding. Thus, different degrees of repulsive strain create two bonding families of the same chemical bond made from a single atomic constituent. It is further shown that the idea of repulsive strain is portable and can predict the properties of propellanes of various sizes and different wing substituents. Experimentally (M. Messerschmidt, S. Scheins, L. Bruberth, M. Patzel, G. Szeimies, C. Paulman, P. Luger, Angew. Chem. 2005, 117, 3993-3997; Angew. Chem. Int. Ed. 2005, 44, 3925-3928), the C-C bond families are beautifully represented in [1.1.1]propellane, where the inverted C-C is a CS-bond, while the wings are made from covalent C-C bonds. What other manifestations can we expect from CS-bonds? Answers from experiment have the potential

  10. Carbon-carbon bond cleavage and rearrangement of benzene by a trinuclear titanium hydride

    NASA Astrophysics Data System (ADS)

    Hu, Shaowei; Shima, Takanori; Hou, Zhaomin

    2014-08-01

    The cleavage of carbon-carbon (C-C) bonds by transition metals is of great interest, especially as this transformation can be used to produce fuels and other industrially important chemicals from natural resources such as petroleum and biomass. Carbon-carbon bonds are quite stable and are consequently unreactive under many reaction conditions. In the industrial naphtha hydrocracking process, the aromatic carbon skeleton of benzene can be transformed to methylcyclopentane and acyclic saturated hydrocarbons through C-C bond cleavage and rearrangement on the surfaces of solid catalysts. However, these chemical transformations usually require high temperatures and are fairly non-selective. Microorganisms can degrade aromatic compounds under ambient conditions, but the mechanistic details are not known and are difficult to mimic. Several transition metal complexes have been reported to cleave C-C bonds in a selective fashion in special circumstances, such as relief of ring strain, formation of an aromatic system, chelation-assisted cyclometallation and β-carbon elimination. However, the cleavage of benzene by a transition metal complex has not been reported. Here we report the C-C bond cleavage and rearrangement of benzene by a trinuclear titanium polyhydride complex. The benzene ring is transformed sequentially to a methylcyclopentenyl and a 2-methylpentenyl species through the cleavage of the aromatic carbon skeleton at the multi-titanium sites. Our results suggest that multinuclear titanium hydrides could serve as a unique platform for the activation of aromatic molecules, and may facilitate the design of new catalysts for the transformation of inactive aromatics.

  11. Hydrogen induced C-C, C-N, and C-S bond activation on Pt and Ni surfaces

    SciTech Connect

    Gland, J.L.

    1992-12-01

    The work has focussed on hydrogen induced bond activation in adsorbed organic molecules and intermediates containin C-S and C-N and C-C bonds on Ni(100), Ni(111), and Pt(111) surfaces. Fluorescence Yield Near Edge Spectroscopy (FYNES) above the carbon K edge was used for adsorbed organic reactants and in-situ kinetic studies of bond activation. Results indicate that the activation is enhanced on Ni relative to Pt. Methylthiolate and methylamine adsorbed on Pt(111) were studied.

  12. Hydrogen induced C-C, C-N, and C-S bond activation on Pt and Ni surfaces

    SciTech Connect

    Gland, J.L.

    1992-01-01

    The work has focussed on hydrogen induced bond activation in adsorbed organic molecules and intermediates containin C-S and C-N and C-C bonds on Ni(100), Ni(111), and Pt(111) surfaces. Fluorescence Yield Near Edge Spectroscopy (FYNES) above the carbon K edge was used for adsorbed organic reactants and in-situ kinetic studies of bond activation. Results indicate that the activation is enhanced on Ni relative to Pt. Methylthiolate and methylamine adsorbed on Pt(111) were studied.

  13. Microbial cleavage of organic C-S bonds

    DOEpatents

    Kilbane, II, John J.

    1994-01-01

    A microbial process for selective cleavage of organic C--S bonds which may be used for reducing the sulfur content of sulfur-containing organic carbonaceous materials, Microorganisms of Rhodococcus rhodochrous and Bacillus sphaericus have been found which have the ability of selective cleavage of organic C--S bonds. Particularly preferred microorganisms are Rhodococcus rhodochrous strain ATCC 53968 and Bacillus sphaericus strain ATCC 53969 and their derivatives.

  14. Microbial cleavage of organic C-S bonds

    DOEpatents

    Kilbane, J.J. II.

    1994-10-25

    A microbial process is described for selective cleavage of organic C-S bonds which may be used for reducing the sulfur content of sulfur-containing organic carbonaceous materials. Microorganisms of Rhodococcus rhodochrous and Bacillus sphaericus have been found which have the ability of selective cleavage of organic C-S bonds. Particularly preferred microorganisms are Rhodococcus rhodochrous strain ATCC 53968 and Bacillus sphaericus strain ATCC 53969 and their derivatives.

  15. Stereochemistry of enzymatic water addition to C=C bonds.

    PubMed

    Chen, Bi-Shuang; Otten, Linda G; Hanefeld, Ulf

    2015-01-01

    Water addition to carbon-carbon double bonds using hydratases is attracting great interest in biochemistry. Most of the known hydratases are involved in primary metabolism and to a lesser extent in secondary metabolism. New hydratases have recently been added to the toolbox, both from natural sources or artificial metalloenzymes. In order to comprehensively understand how the hydratases are able to catalyse the water addition to carbon-carbon double bonds, this review will highlight the mechanistic and stereochemical studies of the enzymatic water addition to carbon-carbon double bonds, focusing on the syn/anti-addition and stereochemistry of the reaction.

  16. Glutamic Acid Selective Chemical Cleavage of Peptide Bonds.

    PubMed

    Nalbone, Joseph M; Lahankar, Neelam; Buissereth, Lyssa; Raj, Monika

    2016-03-04

    Site-specific hydrolysis of peptide bonds at glutamic acid under neutral aqueous conditions is reported. The method relies on the activation of the backbone amide chain at glutamic acid by the formation of a pyroglutamyl (pGlu) imide moiety. This activation increases the susceptibility of a peptide bond toward hydrolysis. The method is highly specific and demonstrates broad substrate scope including cleavage of various bioactive peptides with unnatural amino acid residues, which are unsuitable substrates for enzymatic hydrolysis.

  17. Site-selective chemical cleavage of peptide bonds.

    PubMed

    Elashal, Hader E; Raj, Monika

    2016-05-07

    Site-selective cleavage of extremely unreactive peptide bonds is a very important chemical modification that provides invaluable information regarding protein sequence, and it acts as a modulator of protein structure and function for therapeutic applications. For controlled and selective cleavage, a daunting task, chemical reagents must selectively recognize or bind to one or more amino acid residues in the peptide chain and selectively cleave a peptide bond. Building on this principle, we have developed an approach that utilizes a chemical reagent to selectively modify the serine residue in a peptide chain and leads to the cleavage of a peptide backbone at the N-terminus of the serine residue. After cleavage, modified residues can be converted back to the original fragments. This method exhibits broad substrate scope and selectively cleaves various bioactive peptides with post-translational modifications (e.g. N-acetylation and -methylation) and mutations (d- and β-amino acids), which are a known cause of age related diseases.

  18. Stille coupling via C–N bond cleavage

    PubMed Central

    Wang, Dong-Yu; Kawahata, Masatoshi; Yang, Ze-Kun; Miyamoto, Kazunori; Komagawa, Shinsuke; Yamaguchi, Kentaro; Wang, Chao; Uchiyama, Masanobu

    2016-01-01

    Cross-coupling is a fundamental reaction in the synthesis of functional molecules, and has been widely applied, for example, to phenols, anilines, alcohols, amines and their derivatives. Here we report the Ni-catalysed Stille cross-coupling reaction of quaternary ammonium salts via C–N bond cleavage. Aryl/alkyl-trimethylammonium salts [Ar/R–NMe3]+ react smoothly with arylstannanes in 1:1 molar ratio in the presence of a catalytic amount of commercially available Ni(cod)2 and imidazole ligand together with 3.0 equivalents of CsF, affording the corresponding biaryl with broad functional group compatibility. The reaction pathway, including C–N bond cleavage step, is proposed based on the experimental and computational findings, as well as isolation and single-crystal X-ray diffraction analysis of Ni-containing intermediates. This reaction should be widely applicable for transformation of amines/quaternary ammonium salts into multi-aromatics. PMID:27686744

  19. Stille coupling via C-N bond cleavage

    NASA Astrophysics Data System (ADS)

    Wang, Dong-Yu; Kawahata, Masatoshi; Yang, Ze-Kun; Miyamoto, Kazunori; Komagawa, Shinsuke; Yamaguchi, Kentaro; Wang, Chao; Uchiyama, Masanobu

    2016-09-01

    Cross-coupling is a fundamental reaction in the synthesis of functional molecules, and has been widely applied, for example, to phenols, anilines, alcohols, amines and their derivatives. Here we report the Ni-catalysed Stille cross-coupling reaction of quaternary ammonium salts via C-N bond cleavage. Aryl/alkyl-trimethylammonium salts [Ar/R-NMe3]+ react smoothly with arylstannanes in 1:1 molar ratio in the presence of a catalytic amount of commercially available Ni(cod)2 and imidazole ligand together with 3.0 equivalents of CsF, affording the corresponding biaryl with broad functional group compatibility. The reaction pathway, including C-N bond cleavage step, is proposed based on the experimental and computational findings, as well as isolation and single-crystal X-ray diffraction analysis of Ni-containing intermediates. This reaction should be widely applicable for transformation of amines/quaternary ammonium salts into multi-aromatics.

  20. Biotic and abiotic carbon to sulfur bond cleavage

    SciTech Connect

    Frost, J.W.

    1991-01-01

    Cleavage of aliphatic organosulfonate carbon to sulfur (C-S) bonds, a critical link in the global biogeochemical sulfur cycle, has been identified in Escherichia coli K-12. Enormous quantities of inorganic sulfate are continuously converted (Scheme I) into methanesulfonic acid 1 and acylated 3-(6-sulfo-{alpha}-D-quinovopyranosyl)-L-glycerol 2. Biocatalytic desulfurization (Scheme I) of 1 and 2, which share the structural feature of an aliphatic carbon bonded to a sulfonic acid sulfur, completes the cycle, Discovery of this desulfurization in E. coli provides an invaluable paradigm for study of a biotic process which, via the biogeochemical cycle, significantly influences the atmospheric concentration of sulfur-containing molecules.

  1. Cross-dehydrogenative coupling (CDC): exploring C-C bond formations beyond functional group transformations.

    PubMed

    Li, Chao-Jun

    2009-02-17

    Synthetic chemists aspire both to develop novel chemical reactions and to improve reaction conditions to maximize resource efficiency, energy efficiency, product selectivity, operational simplicity, and environmental health and safety. Carbon-carbon bond formation is a central part of many chemical syntheses, and innovations in these types of reactions will profoundly improve overall synthetic efficiency. This Account describes our work over the past several years to form carbon-carbon bonds directly from two different C-H bonds under oxidative conditions, cross-dehydrogenative coupling (CDC). We have focused most of our efforts on carbon-carbon bonds formed via the functionalization of sp(3) C-H bonds with other C-H bonds. In the presence of simple and cheap catalysts such as copper and iron salts and oxidants such as hydrogen peroxide, dioxygen, tert-butylhydroperoxide, and 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ), we can directly functionalize various sp(3) C-H bonds by other C-H bonds without requiring preactivation. We demonstrate (1) reaction of alpha-C-H bonds of nitrogen in amines, (2) reaction of alpha-C-H bonds of oxygen in ethers, (3) reaction of allylic and benzylic C-H bonds, and (4) reaction of alkane C-H bonds. These CDC reactions can tolerate a variety of functional groups, and some can occur under aqueous conditions. Depending on the specific transformation, we propose the in situ generation of different intermediates. These methods provide an alternative to the separate steps of prefunctionalization and defunctionalization that have traditionally been part of synthetic design. As a result, these methods will increase synthetic efficiencies at the most fundamental level. On an intellectual level, the development of C-C bond formations based on the reaction of only C-H bonds (possibly in water) challenges us to rethink some of the most fundamental concepts and theories regarding chemical reactivities. A successful reaction requires the

  2. [Hydrogen induced C-C, C-N, and C-S bond activities on Pi and Ni surfaces]: Summary

    SciTech Connect

    Gland, J.L.

    1994-12-31

    This document summarizes research applied to chemical bond activation studies. Topics summarized include: Carbon nitrogen bonds experimentation with aniline on Ni(111), Mi(100), and Pt(111) surfaces; carbon sulfur bonds experimentation with methanethiol, phenylthiol, and dimethyl disulfide on Pt(111) and Ni(111) surfaces; carbon-carbon bonds experimentation on Ni(100), Ni(111) and Pt(111) surfaces; and in-situ fluorescence yield near edge spectroscopy.

  3. Catalyzed hydrolytic cleavage reaction of carbon-carbon bond

    SciTech Connect

    Ioffe, I.I.; Rubinskaya, E.V.

    1986-12-01

    The authors split the carbon-carbon bond for a series of simple and complex organic compounds in neutral aqueous solutions on a heterogeneous metal-containing catalyst, palladium on carbon. The experimental results are given. In each case, the catalytic effect was controlled by a blank experiment, without a catalyst, where there was no decomposition of the substrate. The occurrence of the heterogeneous-catalytic cleavage reaction of the carbon-carbon bonds in the molecules is indicated not only by their extensive conversion, but also by the almost complete depletion of the content of organic carbon, confirmed by a similar decrease in the chemical consumption of oxygen coefficient in the system, which is possible only in the complete decomposition of the organic compounds to gaseous products or with the formation of inappreciable amounts of low-molecular-weight water-soluble compounds.

  4. Facile C(sp(2))-C(sp(2)) bond cleavage in oxalic acid-derived radicals.

    PubMed

    Molt, Robert W; Lecher, Alison M; Clark, Timothy; Bartlett, Rodney J; Richards, Nigel G J

    2015-03-11

    Oxalate decarboxylase (OxDC) catalyzes the Mn-dependent conversion of the oxalate monoanion into CO2 and formate. Many questions remain about the catalytic mechanism of OxDC although it has been proposed that the reaction proceeds via substrate-based radical intermediates. Using coupled cluster theory combined with implicit solvation models we have examined the effects of radical formation on the structure and reactivity of oxalic acid-derived radicals in aqueous solution. Our results show that the calculated solution-phase free-energy barrier for C-C bond cleavage to form CO2 is decreased from 34.2 kcal/mol for oxalic acid to only 9.3 kcal/mol and a maximum of 3.5 kcal/mol for the cationic and neutral oxalic acid-derived radicals, respectively. These studies also show that the C-C σ bonding orbital of the radical cation contains only a single electron, giving rise to an elongated C-C bond distance of 1.7 Å; a similar lengthening of the C-C bond is not observed for the neutral radical. This study provides new chemical insights into the structure and stability of plausible intermediates in the catalytic mechanism of OxDC, and suggests that removal of an electron to form a radical (with or without the concomitant loss of a proton) may be a general strategy for cleaving the unreactive C-C bonds between adjacent sp(2)-hybridized carbon atoms.

  5. C-C Bond Activation and Coupling of Propene Induced by la Atom

    NASA Astrophysics Data System (ADS)

    Hewage, Dilrukshi; Tao, Hong; Silva, Ruchira; Kumari, Sudesh; Yang, Dong-Sheng

    2013-06-01

    A series of La(C_nH_m) complexes with n ≤ 6 and m ≤ 12 were produced by the reactions between propene and La in a supersonic molecular beam source. Their formation and structures were investigated using mass-analyzed threshold ionization (MATI) spectroscopy in combination with theoretical calculations. Previously, we identified the formation of La(C_3H_4) and H-La(C_3H_5) through dehydrogenation and metal insertion mechanisms. In this work, we will discuss the formation of La(CH_2) and La(C_4H_6) by La induced C-C bond activation and coupling. La(CH_2) is formed by the C-C bond breakage and 1,2-hydride shift of propene and is a Schrock-type carbene complex. This complex is then coupled with the C=C bond of a second propene molecule to form La(C_4H_6) by removing two hydrogen atoms. The resultant La(C_4H_6) complex was idetified in two low-energy isomeric forms: one was a metallacycle (isomer A) and the other was lanthanum trimethylenemethane (isomer B). Both La(C_4H_6) isomers are in a doublet ground state, with isomer A in C_s point group and isomer B in C_3_v. Adiabatic ionization energies and several vibrational frequencies of the two complexes were obtained from the sharp MATI spectra.

  6. Building Bridges: Biocatalytic C-C-Bond Formation toward Multifunctional Products.

    PubMed

    Schmidt, Nina G; Eger, Elisabeth; Kroutil, Wolfgang

    2016-07-01

    Carbon-carbon bond formation is the key reaction for organic synthesis to construct the carbon framework of organic molecules. The review gives a selection of biocatalytic C-C-bond-forming reactions which have been investigated during the last 5 years and which have already been proven to be applicable for organic synthesis. In most cases, the reactions lead to products functionalized at the site of C-C-bond formation (e.g., α-hydroxy ketones, aminoalcohols, diols, 1,4-diketones, etc.) or allow to decorate aromatic and heteroaromatic molecules. Furthermore, examples for cyclization of (non)natural precursors leading to saturated carbocycles are given as well as the stereoselective cyclopropanation of olefins affording cyclopropanes. Although many tools are already available, recent research also makes it clear that nature provides an even broader set of enzymes to perform specific C-C coupling reactions. The possibilities are without limit; however, a big library of variants for different types of reactions is required to have the specific enzyme for a desired specific (stereoselective) reaction at hand.

  7. Bronsted-Evans-Polany relationships for C-C bond forming and C-C bond breaking reactions in thiamine-catalyzed decarboxylation of 2-keto acids using density functional theory.

    SciTech Connect

    Assary, R. S.; Broadbelt, L. J.; Curtiss, L. A.

    2012-01-01

    The concept of generalized enzyme reactions suggests that a wide variety of substrates can undergo enzymatic transformations, including those whose biotransformation has not yet been realized. The use of quantum chemistry to evaluate kinetic feasibility is an attractive approach to identify enzymes for the proposed transformation. However, the sheer number of novel transformations that can be generated makes this impractical as a screening approach. Therefore, it is essential to develop structure/activity relationships based on quantities that are more efficient to calculate. In this work, we propose a structure/activity relationship based on the free energy of binding or reaction of non-native substrates to evaluate the catalysis relative to that of native substrates. While Broensted-Evans-Polanyi (BEP) relationships such as that proposed here have found broad application in heterogeneous catalysis, their extension to enzymatic catalysis is limited. We report here on density functional theory (DFT) studies for C-C bond formation and C-C bond cleavage associated with the decarboxylation of six 2-keto acids by a thiamine-containing enzyme (EC 1.2.7.1) and demonstrate a linear relationship between the free energy of reaction and the activation barrier. We then applied this relationship to predict the activation barriers of 17 chemically similar novel reactions. These calculations reveal that there is a clear correlation between the free energy of formation of the transition state and the free energy of the reaction, suggesting that this method can be further extended to predict the kinetics of novel reactions through our computational framework for discovery of novel biochemical transformations.

  8. Brønsted-Evans-Polanyi relationships for C-C bond forming and C-C bond breaking reactions in thiamine-catalyzed decarboxylation of 2-keto acids using density functional theory.

    PubMed

    Assary, Rajeev Surendran; Broadbelt, Linda J; Curtiss, Larry A

    2012-01-01

    The concept of generalized enzyme reactions suggests that a wide variety of substrates can undergo enzymatic transformations, including those whose biotransformation has not yet been realized. The use of quantum chemistry to evaluate kinetic feasibility is an attractive approach to identify enzymes for the proposed transformation. However, the sheer number of novel transformations that can be generated makes this impractical as a screening approach. Therefore, it is essential to develop structure/activity relationships based on quantities that are more efficient to calculate. In this work, we propose a structure/activity relationship based on the free energy of binding or reaction of non-native substrates to evaluate the catalysis relative to that of native substrates. While Brønsted-Evans-Polanyi (BEP) relationships such as that proposed here have found broad application in heterogeneous catalysis, their extension to enzymatic catalysis is limited. We report here on density functional theory (DFT) studies for C-C bond formation and C-C bond cleavage associated with the decarboxylation of six 2-keto acids by a thiamine-containing enzyme (EC 1.2.7.1) and demonstrate a linear relationship between the free energy of reaction and the activation barrier. We then applied this relationship to predict the activation barriers of 17 chemically similar novel reactions. These calculations reveal that there is a clear correlation between the free energy of formation of the transition state and the free energy of the reaction, suggesting that this method can be further extended to predict the kinetics of novel reactions through our computational framework for discovery of novel biochemical transformations.

  9. Carbon-carbon bond cleavage of 1,2-hydroxy ethers b7 vanadium(V) dipicolinate complexes

    SciTech Connect

    Hanson, Susan K; Gordon, John C; Thorn, David L; Scott, Brian L; Baker, R Tom

    2009-01-01

    The development of alternatives to current petroleum-based fuels and chemicals is becoming increasingly important due to concerns over climate change, growing world energy demand, and energy security issues. Using non-food derived biomass to produce renewable feedstocks for chemicals and fuels is a particularly attractive possibility. However, the majority of biomass is in the form of lignocellulose, which is often not fully utilized due to difficulties associated with breaking down both lignin and cellulose. Recently, a number of methods have been reported to transform cellulose directly into more valuable materials such as glucose, sorbitol, 5-(chloromethyl)furfural, and ethylene glycol. Less progress has been made with selective transformations of lignin, which is typically treated in paper and forest industries by kraft pulping (sodium hydroxide/sodium sulfide) or incineration. Our group has begun investigating aerobic oxidative C-C bond cleavage catalyzed by dipicolinate vanadium complexes, with the idea that a selective C-C cleavage reaction of this type could be used to produce valuable chemicals or intermediates from cellulose or lignin. Lignin is a randomized polymer containing methoxylated phenoxy propanol units. A number of different linkages occur naturally; one of the most prevalent is the {beta}-O-4 linkage shown in Figure 1, containing a C-C bond with 1,2-hydroxy ether substituents. While the oxidative C-C bond cleavage of 1,2-diols has been reported for a number of metals, including vanadium, iron, manganese, ruthenium, and polyoxometalate complexes, C-C bond cleavage of 1,2-hydroxy ethers is much less common. We report herein vanadium-mediated cleavage of C-C bonds between alcohol and ether functionalities in several lignin model complexes. In order to explore the scope and potential of vanadium complexes to effect oxidative C-C bond cleavage in 1,2-hydroxy ethers, we examined the reactivity of the lignin model complexes pinacol monomethyl ether (A

  10. Cleavage of an amide bond by a ribozyme

    NASA Technical Reports Server (NTRS)

    Dai, X.; De Mesmaeker, A.; Joyce, G. F.; Miller, S. L. (Principal Investigator)

    1995-01-01

    A variant form of a group I ribozyme, optimized by in vitro evolution for its ability to catalyze magnesium-dependent phosphoester transfer reactions involving DNA substrates, also catalyzes the cleavage of an unactivated alkyl amide when that linkage is presented in the context of an oligodeoxynucleotide analog. Substrates containing an amide bond that joins either two DNA oligos, or a DNA oligo and a short peptide, are cleaved in a magnesium-dependent fashion to generate the expected products. The first-order rate constant, kcat, is 0.1 x 10(-5) min-1 to 1 x 10(-5) min-1 for the DNA-flanked substrates, which corresponds to a rate acceleration of more than 10(3) as compared with the uncatalyzed reaction.

  11. Bond cleavage of lignin model compounds into aromatic monomers using supported metal catalysts in supercritical water

    PubMed Central

    Yamaguchi, Aritomo; Mimura, Naoki; Shirai, Masayuki; Sato, Osamu

    2017-01-01

    More efficient use of lignin carbon is necessary for carbon-efficient utilization of lignocellulosic biomass. Conversion of lignin into valuable aromatic compounds requires the cleavage of C–O ether bonds and C–C bonds between lignin monomer units. The catalytic cleavage of C–O bonds is still challenging, and cleavage of C–C bonds is even more difficult. Here, we report cleavage of the aromatic C–O bonds in lignin model compounds using supported metal catalysts in supercritical water without adding hydrogen gas and without causing hydrogenation of the aromatic rings. The cleavage of the C–C bond in bibenzyl was also achieved with Rh/C as a catalyst. Use of this technique may greatly facilitate the conversion of lignin into valuable aromatic compounds. PMID:28387304

  12. C=C π bond modified graphitic carbon nitride films for enhanced photoelectrochemical cell performance.

    PubMed

    Bian, Juncao; Xi, Lifei; Li, Jianfu; Xiong, Ze; Huang, Chao; Lange, Kathrin; Tang, Jinyao; Shalom, Menny; Zhang, Rui-Qin

    2017-03-08

    Applications of graphitic carbon nitride (g-CN) in photoelectrochemical and optoelectronic devices are still hindered due to the difficulties in synthesis of g-CN films with tunable chemical, physical and catalytic properties. Herein we present a general method to alter the electronic and photoelectrochemical properties of g-CN films by annealing. We found that N atoms can be removed from the g-CN networks after annealing treatment. Assisted by theoretical calculations, we confirm that upon appropriate N removal, the adjacent C atoms will form new C=C π bonds. Detailed calculations demonstrate that the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) are localized at the structure unit with C=C π bonds and the electrons are more delocalized. Valence band X-ray photoelectron spectroscopy spectra together with the absorption spectra unveil that the structure changes result in the alteration of the g-CN energy levels and position of band edges. Our results show that the photocurrent density of the annealed g-CN film is doubled compared with the pristine one, thanks to the better charge separation and transport within the film induced by the new C=C π bonds. An ultrathin TiO2 film (2.2 nm) is applied as stabilizer and the photocurrent density is kept at 0.05 mA/cm2 at 1.23 V vs. reversible hydrogen electrode after two-cycle stability assessment. This work enables the applications of g-CN films in many electronic and optoelectronic devices.

  13. Mechanistic Insights on C-O and C-C Bond Activation and Hydrogen Insertion during Acetic Acid Hydrogenation Catalyzed by Ruthenium Clusters in Aqueous Medium

    SciTech Connect

    Shangguan, Junnan; Olarte, Mariefel V.; Chin, Ya-Huei

    2016-06-07

    Catalytic pathways for acetic acid (CH3COOH) and hydrogen (H2) reactions on dispersed Ru clusters in the aqueous medium and the associated kinetic requirements for C-O and C-C bond cleavages and hydrogen insertion are established from rate and isotopic assessments. CH3COOH reacts with H2 in steps that either retain its carbon backbone and lead to ethanol, ethyl acetate, and ethane (47-95 %, 1-23 %, and 2-17 % carbon selectivities, respectively) or break its C-C bond and form methane (1-43 % carbon selectivities) at moderate temperatures (413-523 K) and H2 pressures (10-60 bar, 298 K). Initial CH3COOH activation is the kinetically relevant step, during which CH3C(O)-OH bond cleaves on a metal site pair at Ru cluster surfaces nearly saturated with adsorbed hydroxyl (OH*) and acetate (CH3COO*) intermediates, forming an adsorbed acetyl (CH3CO*) and hydroxyl (OH*) species. Acetic acid turnover rates increase proportionally with both H2 (10-60 bar) and CH3COOH concentrations at low CH3COOH concentrations (<0.83 M), but decrease from first to zero order as the CH3COOH concentration and the CH3COO* coverages increase and the vacant Ru sites concomitantly decrease. Beyond the initial CH3C(O)-OH bond activation, sequential H-insertions on the surface acetyl species (CH3CO*) lead to C2 products and their derivative (ethanol, ethane, and ethyl acetate) and the competitive C-C bond cleavage of CH3CO* causes the eventual methane formation. The instantaneous carbon selectivities towards C2 species (ethanol, ethane, and ethyl acetate) increase linearly with the concentration of proton-type Hδ+ (derived from carboxylic acid dissociation) and chemisorbed H*. The selectivities towards C2 products decrease with increasing temperature, because of higher observed barriers for C-C bond cleavage than H-insertion. This study offers an interpretation of mechanism and energetics and provides kinetic evidence of carboxylic acid assisted proton-type hydrogen (Hδ+) shuffling during H

  14. Activation of Aromatic C-C Bonds of 2,2'-Bipyridine Ligands.

    PubMed

    Fombona, Sergio; Espinal-Viguri, Maialen; Huertos, Miguel A; Díaz, Jesús; López, Ramón; Menéndez, M Isabel; Pérez, Julio; Riera, Lucía

    2016-11-21

    4,4'-Disubstituted-2,2'-bipyridine ligands coordinated to Mo(II) and Re(I) cationic fragments become dearomatized by an intramolecular nucleophilic attack from a deprotonated N-alkylimidazole ligand in cis disposition. The subsequent protonation of these neutral complexes takes place on a pyridine carbon atom rather than at nitrogen, weakening an aromatic C-C bond and affording a dihydropyridyl moiety. Computational calculations allowed for the rationalization of the formation of the experimentally obtained products over other plausible alternatives.

  15. An erbium-based bifuctional heterogeneous catalyst: a cooperative route towards C-C bond formation.

    PubMed

    Oliverio, Manuela; Costanzo, Paola; Macario, Anastasia; De Luca, Giuseppina; Nardi, Monica; Procopio, Antonio

    2014-07-15

    Heterogeneous bifuctional catalysts are multifunctional synthetic catalysts enabling efficient organic transformations by exploiting two opposite functionalities without mutual destruction. In this paper we report the first Er(III)-based metallorganic heterogeneous catalyst, synthesized by post-calcination MW-assisted grafting and modification of the natural aminoacid L-cysteine. The natural acid-base distance between sites was maintained to assure the cooperation. The applicability of this new bifunctional heterogeneous catalyst to C-C bond formation and the supposed mechanisms of action are discussed as well.

  16. Formation of C-C bonds via ruthenium-catalyzed transfer hydrogenation().

    PubMed

    Moran, Joseph; Krische, Michael J

    2012-01-01

    Ruthenium-catalyzed transfer hydrogenation of diverse π-unsaturated reactants in the presence of aldehydes provides products of carbonyl addition. Dehydrogenation of primary alcohols in the presence of the same π-unsaturated reactants provides identical products of carbonyl addition. In this way, carbonyl addition is achieved from the alcohol or aldehyde oxidation level in the absence of stoichiometric organometallic reagents or metallic reductants. In this account, the discovery of ruthenium-catalyzed C-C bond-forming transfer hydrogenations and the recent development of diastereo- and enantioselective variants are discussed.

  17. The computation of C-C and N-N bond dissociation energies for singly, doubly, and triply bonded systems

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.; Taylor, Peter R.

    1989-01-01

    The bond dissociation energies (D sub e) of C2H2, C2H4, C2H6, N2, N2H2, and N2H4 are studied at various levels of correlation treatment. The convergence of D sub e with respect to the one particle basis is studied at the single reference modified coupled-pair functional (MCPF) level. At all levels of correlation treatment, the errors in the bond dissociation energies increase with the degree of multiple bond character. The multireference configuration interaction (MRCI) D sub e values, corrected for an estimate of higher excitations, are in excellent agreement with those determined using the size extensive averaged coupled pair functional (ACPF) method. It was found that the full valence complete active space self consistent field (CASSCF)/MRCI calculations are reproduced very well by MRCI calculations based on a CASSCF calculation that includes in the active space only those electrons involved in the C-C or N-N bonds. To achieve chemical accuracy (1 kcal/mole) for the D sub e values of the doubly bonded species C2H4 and N2H2 requires one particle basis sets including up through h angular momentum functions (l = 5) and a multireference treatment of electron correlation: still higher levels of calculation are required to achieve chemical accuracy for the triply bonded species C2H2 and N2.

  18. C-S bond cleavage by a polyketide synthase domain

    PubMed Central

    Ma, Ming; Lohman, Jeremy R.; Liu, Tao; Shen, Ben

    2015-01-01

    Leinamycin (LNM) is a sulfur-containing antitumor antibiotic featuring an unusual 1,3-dioxo-1,2-dithiolane moiety that is spiro-fused to a thiazole-containing 18-membered lactam ring. The 1,3-dioxo-1,2-dithiolane moiety is essential for LNM’s antitumor activity, by virtue of its ability to generate an episulfonium ion intermediate capable of alkylating DNA. We have previously cloned and sequenced the lnm gene cluster from Streptomyces atroolivaceus S-140. In vivo and in vitro characterizations of the LNM biosynthetic machinery have since established that: (i) the 18-membered macrolactam backbone is synthesized by LnmP, LnmQ, LnmJ, LnmI, and LnmG, (ii) the alkyl branch at C-3 of LNM is installed by LnmK, LnmL, LnmM, and LnmF, and (iii) leinamycin E1 (LNM E1), bearing a thiol moiety at C-3, is the nascent product of the LNM hybrid nonribosomal peptide synthetase (NRPS)-acyltransferase (AT)-less type I polyketide synthase (PKS). Sulfur incorporation at C-3 of LNM E1, however, has not been addressed. Here we report that: (i) the bioinformatics analysis reveals a pyridoxal phosphate (PLP)-dependent domain, we termed cysteine lyase (SH) domain (LnmJ-SH), within PKS module-8 of LnmJ; (ii) the LnmJ-SH domain catalyzes C-S bond cleavage by using l-cysteine and l-cysteine S-modified analogs as substrates through a PLP-dependent β-elimination reaction, establishing l-cysteine as the origin of sulfur at C-3 of LNM; and (iii) the LnmJ-SH domain, sharing no sequence homology with any other enzymes catalyzing C-S bond cleavage, represents a new family of PKS domains that expands the chemistry and enzymology of PKSs and might be exploited to incorporate sulfur into polyketide natural products by PKS engineering. PMID:26240335

  19. Rhodium-Catalyzed C-C Bond Formation via Heteroatom-Directed C-H Bond Activation

    SciTech Connect

    Colby, Denise; Bergman, Robert; Ellman, Jonathan

    2010-05-13

    Once considered the 'holy grail' of organometallic chemistry, synthetically useful reactions employing C-H bond activation have increasingly been developed and applied to natural product and drug synthesis over the past decade. The ubiquity and relative low cost of hydrocarbons makes C-H bond functionalization an attractive alternative to classical C-C bond forming reactions such as cross-coupling, which require organohalides and organometallic reagents. In addition to providing an atom economical alternative to standard cross - coupling strategies, C-H bond functionalization also reduces the production of toxic by-products, thereby contributing to the growing field of reactions with decreased environmental impact. In the area of C-C bond forming reactions that proceed via a C-H activation mechanism, rhodium catalysts stand out for their functional group tolerance and wide range of synthetic utility. Over the course of the last decade, many Rh-catalyzed methods for heteroatom-directed C-H bond functionalization have been reported and will be the focus of this review. Material appearing in the literature prior to 2001 has been reviewed previously and will only be introduced as background when necessary. The synthesis of complex molecules from relatively simple precursors has long been a goal for many organic chemists. The ability to selectively functionalize a molecule with minimal pre-activation can streamline syntheses and expand the opportunities to explore the utility of complex molecules in areas ranging from the pharmaceutical industry to materials science. Indeed, the issue of selectivity is paramount in the development of all C-H bond functionalization methods. Several groups have developed elegant approaches towards achieving selectivity in molecules that possess many sterically and electronically similar C-H bonds. Many of these approaches are discussed in detail in the accompanying articles in this special issue of Chemical Reviews. One approach that has

  20. The computation of C-C and N-N bond dissociation energies for singly, doubly, and triply bonded systems

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.; Taylor, Peter R.

    1991-01-01

    The bond dissociation energies (De) of C2H2, C2H4, C2H6, N2, N2H2, and N2H4 are studied at various levels of correlation treatment. The convergence of De with respect to the one-particle basis is studied at the single-reference modified coupled-pair-functional (MCPF)level. At all levels of correlation treatment, the errors in the bond dissociation energies increase with the degree of multiple bond character. The multireference configuration-interaction (MRCI) De values, corrected for an estimate of higher excitations, are in excellent agreement with those determined using the size-extensive averaged-coupled-pair-functional (ACPF) method. The full-valence complete-active-space self-consistent-field (CASSCF)/MRCI calculations are reproduced very well by MRCI calculations based on a CASSCF calculation that includes in the active space only those electrons involved in the C-C or N-N bonds.

  1. Kinetics of the C-C bond beta scission reactions in alkyl radicals.

    PubMed

    Ratkiewicz, Artur

    2011-09-07

    High pressure limits of thermal rate constants of four C-C bond beta scission reactions of propyl, 1-butyl, 2-butyl and isobutyl radicals were calculated using the canonical variational transition state theory (CVT) with a multi-dimensional small-curvature tunneling (SCT) correction over the temperature range of 300-3000 K. The CCSD(T)/cc-pVDZ//BH&HLYP/cc-pVDZ method was used to provide necessary potential energy surface information. Rate constants for these reactions were used to extrapolate rate constants for reactions in larger alkyls where experimental data are available using the Reaction Class Transition State Theory (RC-TST). Excellent agreement with experimental data confirms the validity of the RC-TST methodology and the accuracy of the calculated kinetic data in this study.

  2. A Homogeneous, Recyclable Polymer Support for Rh(I)-Catalyzed C-C Bond Formation

    PubMed Central

    Jana, Ranjan; Tunge, Jon A.

    2011-01-01

    A robust and practical polymer-supported, homogeneous, recyclable biphephos rhodium(I) catalyst has been developed for C-C bond formation reactions. Control of polymer molecular weight allowed tuning of the polymer solubility such that the polymer-supported catalyst is soluble in nonpolar solvents and insoluble in polar solvents. Using the supported rhodium catalysts, addition of aryl and vinylboronic acids to the electrophiles such as enones, aldehydes, N-sulfonyl aldimines, and alkynes occurs smoothly to provide products in high yields. Additions of terminal alkynes to enones and industrially relevant hydroformylation reactions have also been successfully carried out. Studies show that the leaching of Rh from the polymer support is low and catalyst recycle can be achieved by simple precipitation and filtration. PMID:21895010

  3. Radical induced disulfide bond cleavage within peptides via ultraviolet irradiation of an electrospray plume.

    PubMed

    Stinson, Craig A; Xia, Yu

    2013-05-21

    Radical induced disulfide bond cleavage in peptides was demonstrated by ultraviolet (UV) radiation of the electrospray ionization (ESI) plume using a low pressure mercury (LP-Hg) lamp. Tandem mass spectrometry and accurate mass measurements confirmed that the primary reaction products were due to disulfide bond cleavage to form thiol (-SH) and sulfinyl radical (-SO˙). Mechanistic studies showed that the 185 nm emission from a LP-Hg lamp was responsible for UV photolysis of atmospheric O2, which further initiated secondary radical formation and subsequent disulfide bond cleavage by radical attack. The radical induced disulfide bond cleavage was found to be analytically useful in providing rich sequence information for naturally occurring peptides containing intrachain disulfide bonds. The utility of this method was also demonstrated for facile disulfide peptide identification and characterization from protein digests.

  4. Transition-metal-free C-C bond forming reactions of aryl, alkenyl and alkynylboronic acids and their derivatives.

    PubMed

    Roscales, S; Csákÿ, A G

    2014-12-21

    Investigation of new methods for the synthesis of C-C bonds is fundamental for the development of new organic drugs and materials. Aryl-, alkenyl- and alkynylboronic acids and their derivatives constitute attractive reagents towards this end, due to their stability, low toxicity and ease of handling. However, these compounds are only moderately nucleophilic. Consequently, the most popular C-C bond forming reactions of these boronic acids, such as the Suzuki-Miyaura, Heck, and Hayashi-Miyaura reactions, or additions to C=O and C=N bonds, require catalysis by transition metals. However, due to the toxicity and cost of transition metals, some new methods for C-C bond formation using aryl-, alkenyl- and alkynylboronic acids under transition-metal-free conditions are beginning to emerge. In this tutorial review, the recent synthetic advances in this field are highlighted and discussed.

  5. Observation of Spontaneous C=C Bond Breaking in the Reaction between Atomic Boron and Ethylene in Solid Neon.

    PubMed

    Jian, Jiwen; Lin, Hailu; Luo, Mingbiao; Chen, Mohua; Zhou, Mingfei

    2016-07-11

    A ground-state boron atom inserts into the C=C bond of ethylene to spontaneously form the allene-like compound H2 CBCH2 on annealing in solid neon. This compound can further isomerize to the propyne-like HCBCH3 isomer under UV light excitation. The observation of this unique spontaneous C=C bond insertion reaction is consistent with theoretical predictions that the reaction is thermodynamically exothermic and kinetically facile. This work demonstrates that the stronger C=C bond, rather than the less inert C-H bond, can be broken to form organoboron species from the reaction of a boron atom with ethylene even at cryogenic temperatures.

  6. Cleavage of a specific bond in troponin C by thrombin.

    PubMed

    Leavis, P C; Rosenfeld, S; Lu, R C

    1978-08-21

    Limited proteolysis of rabbit skeletal troponin C with bovine thrombin yielded two fragments, TH1 (Mr = 11000) containing Ca2+ binding regions I--III and TH2 (Mr = 6000) containing region IV. Determination of the partial sequences of the fragments established the site of cleavage at Arg120-Ala121. Secondary cleavage by thrombin at other arginyl or lysyl residues in troponin C was ruled out by the sequence data and by the amino acid compositions of the two fragments.

  7. Interference energy in C-H and C-C bonds of saturated hydrocarbons: dependence on the type of chain and relationship to bond dissociation energy.

    PubMed

    Vieira, Francisco Senna; Fantuzzi, Felipe; Cardozo, Thiago Messias; Nascimento, Marco Antonio Chaer

    2013-05-16

    Interference energy for C-H and C-C bonds of a set of saturated hydrocarbons is calculated by the generalized product function energy partitioning (GPF-EP) method in order to investigate its sensitivity to the type of chain and also its contribution to the bond dissociation energy. All GPF groups corresponding to chemical bonds are calculated by use of GVB-PP wave functions to ensure the correct description of bond dissociation. The results show that the interference energies are practically the same for all the C-H bonds, presenting only small variations (0.5 kcal.mol(-1)) due to the structural changes in going from linear to branched and cyclic chains. A similar trend is verified for the C-C bonds, the sole exception being the cyclopropane molecule, for which only the C-C bond exhibits a more significant variation. On the other hand, although the interference energy is quantitatively the most important contribution to the bond dissociation energy (DE), one cannot predict DE only from the bond interference energy. Differences in the dissociation energies of C-C and C-H bonds due to structural changes in the saturated hydrocarbons can be mainly attributed to quasi-classical effects.

  8. Catalytic cleavage of ether C-O bonds by pincer iridium complexes.

    PubMed

    Haibach, Michael C; Lease, Nicholas; Goldman, Alan S

    2014-09-15

    The development of efficient catalytic methods to cleave the relatively unreactive C-O bonds of ethers remains an important challenge in catalysis. Building on our group's recent work, we report the dehydroaryloxylation of aryl alkyl ethers using pincer iridium catalysts. This method represents a rare fully atom-economical method for ether C-O bond cleavage.

  9. Cleavage enhancement of specific chemical bonds in DNA-Cisplatin complexes induced by X-rays

    NASA Astrophysics Data System (ADS)

    Zheng, Yi; Yao, Xiaobin; Luo, Xinglan; Fu, Xianzhi

    2014-04-01

    The chemical bond transformation of cisplatin-DNA complexes can be probed efficiently by XPS which provides a concomitant X-ray irradiation source as well. The presence to Pt could considerably increase formation of the SE induced by X-ray and that the further interaction of these LEE with DNA leads to the enhancement of bond cleavages.

  10. Carbon-Carbon Bond Cleavage in Activation of the Prodrug Nabumetone

    PubMed Central

    Varfaj, Fatbardha; Zulkifli, Siti N. A.; Park, Hyoung-Goo; Challinor, Victoria L.; De Voss, James J.

    2014-01-01

    Carbon-carbon bond cleavage reactions are catalyzed by, among others, lanosterol 14-demethylase (CYP51), cholesterol side-chain cleavage enzyme (CYP11), sterol 17β-lyase (CYP17), and aromatase (CYP19). Because of the high substrate specificities of these enzymes and the complex nature of their substrates, these reactions have been difficult to characterize. A CYP1A2-catalyzed carbon-carbon bond cleavage reaction is required for conversion of the prodrug nabumetone to its active form, 6-methoxy-2-naphthylacetic acid (6-MNA). Despite worldwide use of nabumetone as an anti-inflammatory agent, the mechanism of its carbon-carbon bond cleavage reaction remains obscure. With the help of authentic synthetic standards, we report here that the reaction involves 3-hydroxylation, carbon-carbon cleavage to the aldehyde, and oxidation of the aldehyde to the acid, all catalyzed by CYP1A2 or, less effectively, by other P450 enzymes. The data indicate that the carbon-carbon bond cleavage is mediated by the ferric peroxo anion rather than the ferryl species in the P450 catalytic cycle. CYP1A2 also catalyzes O-demethylation and alcohol to ketone transformations of nabumetone and its analogs. PMID:24584631

  11. Carbon-carbon bond cleavage in activation of the prodrug nabumetone.

    PubMed

    Varfaj, Fatbardha; Zulkifli, Siti N A; Park, Hyoung-Goo; Challinor, Victoria L; De Voss, James J; Ortiz de Montellano, Paul R

    2014-05-01

    Carbon-carbon bond cleavage reactions are catalyzed by, among others, lanosterol 14-demethylase (CYP51), cholesterol side-chain cleavage enzyme (CYP11), sterol 17β-lyase (CYP17), and aromatase (CYP19). Because of the high substrate specificities of these enzymes and the complex nature of their substrates, these reactions have been difficult to characterize. A CYP1A2-catalyzed carbon-carbon bond cleavage reaction is required for conversion of the prodrug nabumetone to its active form, 6-methoxy-2-naphthylacetic acid (6-MNA). Despite worldwide use of nabumetone as an anti-inflammatory agent, the mechanism of its carbon-carbon bond cleavage reaction remains obscure. With the help of authentic synthetic standards, we report here that the reaction involves 3-hydroxylation, carbon-carbon cleavage to the aldehyde, and oxidation of the aldehyde to the acid, all catalyzed by CYP1A2 or, less effectively, by other P450 enzymes. The data indicate that the carbon-carbon bond cleavage is mediated by the ferric peroxo anion rather than the ferryl species in the P450 catalytic cycle. CYP1A2 also catalyzes O-demethylation and alcohol to ketone transformations of nabumetone and its analogs.

  12. A Novel Strategy for Biomass Upgrade: Cascade Approach to the Synthesis of Useful Compounds via C-C Bond Formation Using Biomass-Derived Sugars as Carbon Nucleophiles.

    PubMed

    Yamaguchi, Sho; Baba, Toshihide

    2016-07-20

    Due to the depletion of fossil fuels, biomass-derived sugars have attracted increasing attention in recent years as an alternative carbon source. Although significant advances have been reported in the development of catalysts for the conversion of carbohydrates into key chemicals (e.g., degradation approaches based on the dehydration of hydroxyl groups or cleavage of C-C bonds via retro-aldol reactions), only a limited range of products can be obtained through such processes. Thus, the development of a novel and efficient strategy targeted towards the preparation of a range of compounds from biomass-derived sugars is required. We herein describe the highly-selective cascade syntheses of a range of useful compounds using biomass-derived sugars as carbon nucleophiles. We focus on the upgrade of C2 and C3 oxygenates generated from glucose to yield useful compounds via C-C bond formation. The establishment of this novel synthetic methodology to generate valuable chemical products from monosaccharides and their decomposed oxygenated materials renders carbohydrates a potential alternative carbon resource to fossil fuels.

  13. How the glycosyltransferase OGT catalyzes amide bond cleavage

    PubMed Central

    Janetzko, John; Trauger, Sunia A.; Lazarus, Michael B.; Walker, Suzanne

    2016-01-01

    The essential human enzyme O-GlcNAc transferase (OGT), known for modulating the functions of nuclear and cytoplasmic proteins through Ser/Thr glycosylation, was unexpectedly implicated in the proteolytic maturation of the cell cycle regulator host cell factor-1 (HCF-1). Here we show that HCF-1 cleavage occurs via glycosylation of a glutamate side chain followed by on-enzyme formation of an internal pyroglutamate, which undergoes spontaneous backbone hydrolysis. PMID:27618188

  14. Metabolic Engineering to Develop a Pathway for the Selective Cleavage of Carbon-Nitrogen Bonds

    SciTech Connect

    John J. Kilbane II

    2005-10-01

    The objective of the project is to develop a biochemical pathway for the selective cleavage of C-N bonds in molecules found in petroleum. Specifically a novel biochemical pathway will be developed for the selective cleavage of C-N bonds in carbazole. The cleavage of the first C-N bond in carbazole is accomplished by the enzyme carbazole dioxygenase, that catalyzes the conversion of carbazole to 2-aminobiphenyl-2,3-diol. The genes encoding carbazole dioxygenase were cloned from Sphingomonas sp. GTIN11 and from Pseudomonas resinovorans CA10. The selective cleavage of the second C-N bond has been challenging, and efforts to overcome that challenge have been the focus of recent research in this project. Enrichment culture experiments succeeded in isolating bacterial cultures that can metabolize 2-aminobiphenyl, but no enzyme capable of selectively cleaving the C-N bond in 2-aminobiphenyl has been identified. Aniline is very similar to the structure of 2-aminobiphenyl and aniline dioxygenase catalyzes the conversion of aniline to catechol and ammonia. For the remainder of the project the emphasis of research will be to simultaneously express the genes for carbazole dioxygenase and for aniline dioxygenase in the same bacterial host and then to select for derivative cultures capable of using carbazole as the sole source of nitrogen.

  15. Palladium(II)-Catalyzed C-H Bond Activation/C-C and C-O Bond Formation Reaction Cascade: Direct Synthesis of Coumestans.

    PubMed

    Neog, Kashmiri; Borah, Ashwini; Gogoi, Pranjal

    2016-12-02

    A palladium catalyzed cascade reaction of 4-hydroxycoumarins and in situ generated arynes has been developed for the direct synthesis of coumestans. This cascade strategy proceeds via C-H bond activation/C-O and C-C bond formations in a single reaction vessel. This methodology affords moderate to good yields of coumestans and is tolerant of a variety of functional groups including halide. The methodology was applied to the synthesis of natural product flemichapparin C.

  16. Chiral BINOL-derived phosphoric acids: privileged Brønsted acid organocatalysts for C-C bond formation reactions.

    PubMed

    Zamfir, Alexandru; Schenker, Sebastian; Freund, Matthias; Tsogoeva, Svetlana B

    2010-12-07

    BINOL-derived phosphoric acids have emerged during the last five years as powerful chiral Brønsted acid catalysts in many enantioselective processes. The most successful transformations carried out with chiral BINOL phosphates include C-C bond formation reactions. The recent advances have been reviewed in this article with a focus being placed on hydrocyanations, aldol-type, Mannich, Friedel-Crafts, aza-ene-type, Diels-Alder, as well as cascade and multi-component reactions.

  17. Room temperature ring expansion of N-heterocyclic carbenes and B-B bond cleavage of diboron(4) compounds.

    PubMed

    Pietsch, Sabrina; Paul, Ursula; Cade, Ian A; Ingleson, Michael J; Radius, Udo; Marder, Todd B

    2015-06-15

    We report the isolation and detailed structural characterization, by solid-state and solution NMR spectroscopy, of the neutral mono- and bis-NHC adducts of bis(catecholato)diboron (B2 cat2 ). The bis-NHC adduct undergoes thermally induced rearrangement, forming a six-membered -B-C=N-C=C-N-heterocyclic ring via C-N bond cleavage and ring expansion of the NHC, whereas the mono-NHC adduct is stable. Bis(neopentylglycolato)diboron (B2 neop2 ) is much more reactive than B2 cat2 giving a ring expanded product at room temperature, demonstrating that ring expansion of NHCs can be a very facile process with significant implications for their use in catalysis.

  18. Scandium(iii) triflate-promoted serine/threonine-selective peptide bond cleavage.

    PubMed

    Ni, Jizhi; Sohma, Youhei; Kanai, Motomu

    2017-02-01

    The site-selective cleavage of peptide bonds is an important chemical modification that is useful not only for the structural determination of peptides, but also as an artificial modulator of peptide/protein function and properties. Here we report site-selective hydrolysis of peptide bonds at the Ser and Thr positions with a high conversion yield. This chemical cleavage relies on Sc(iii)-promoted N,O-acyl rearrangement and subsequent hydrolysis. The method is applicable to a broad scope of polypeptides with various functional groups, including a post-translationally modified peptide that is unsuitable for enzymatic hydrolysis. The system was further extended to site-selective cleavage of a native protein, Aβ1-42, which is closely related to the onset of Alzheimer's disease.

  19. Carbon-Carbon Bond Cleavage Reaction: Synthesis of Multisubstituted Pyrazolo[1,5-a]pyrimidines.

    PubMed

    Saikia, Pallabi; Gogoi, Sanjib; Boruah, Romesh C

    2015-07-02

    A new carbon-carbon bond cleavage reaction was developed for the efficient synthesis of multisubstituted pyrazolo[1,5-a]pyrimidines. This base induced reaction of 1,3,5-trisubstituted pentane-1,5-diones and substituted pyrazoles afforded good yields of the pyrazolo[1,5-a]pyrimidines.

  20. Biotic and abiotic carbon to sulfur bond cleavage. Final report

    SciTech Connect

    Frost, J.W.

    1994-05-01

    The microbial desulfurization of organosulfur compounds occurs by unprecedented and largely unexplored biochemical processes. A study of such biotic desulfurizations can be expected to give rise to new and useful chemistry and enzymology. The potential value of understanding and harnessing these processes is seen in relation to the need for methods for the removal of organically bound sulfur from coal and the degradation of organic sulfur-containing pollutants. This research effort has been directed towards an examination of desulfurization ability in well characterized microorganisms, the isolation of bacteria with desulfurization ability from natural sources, the characterization and mechanistic evaluation of the observed biocatalytic processes, the development of biomimetic synthetic organic chemistry based on biotic desulfurization mechanisms and the design and preparation of improved coal model compounds for use in microbial selection processes. A systematic approach to studying biodesulfurizations was undertaken in which organosulfur compounds have been broken down into classes based on the oxidation state of the sulfur atom and the structure of the rest of the organic material. Microbes have been evaluated in terms of ability to degrade organosulfur compounds with sulfur in its sulfonic acid oxidation state. These compounds are likely intermediates in coal desulfurization and are present in the environment as persistent pollutants in the form of detergents. It is known that oxygen bonded to sulfur lowers the carbon-sulfur bond energy, providing a thermodynamic basis for starting with this class of compounds.

  1. EGFR induces DNA decomposition via phosphodiester bond cleavage

    PubMed Central

    Tong, Yongpeng; Li, Shuiming; Huang, Chunliu

    2017-01-01

    EGFR may induce DNA degradation. This activity had not been previously described as an EGRF function. To confirm this unexpected activity, testing of EGFR in the presence of ATP and either 5A, 5C, 5G, 5T, or 5U oligonucleotides was performed. HPLC-MS analysis demonstrated that 5A and 5U levels significantly decreased in the presence of EGFR. Furthermore, fragments 4A and 4U were produced in 5A+EGFR+ATP and in 5U+EGFR+ATP reaction mixtures, respectively, but not in EGFR-negative controls. Degradation of Poly(A), Poly(C), Poly(G), Poly(I), Poly(T), and Poly(U) oligomers in the presence of EGFR and ATP correlated with the lower ability of reaction products to pair with complementary oligonucleotides. Gel electrophoresis showed that breakdown products migrated more quickly than controls, especially after addition of paired (complementary) oligomers, Poly(A) and Poly(U). Furthermore, λ DNA reaction products also migrated more quickly after incubation with EGFR. The results suggest that EGFR can induce breakage of certain types of nucleotide phosphodiester bonds, especially within the A residues of DNA or U residues of RNA, to induce DNA or RNA decomposition, respectively. This activity may be important in EGRF signaling, DNA degradation, or repair in normal or cancer cell activities. PMID:28272528

  2. Achieving C-N bond cleavage in dinuclear metal cyanide complexes.

    PubMed

    Cavigliasso, Germán; Christian, Gemma J; Stranger, Robert; Yates, Brian F

    2011-07-28

    Cleavage of cyanide is more difficult to achieve compared to dinitrogen and carbon monoxide, even though these species contain triple bonds of greater strength. In this work, we have used computational methods to investigate thermodynamic and mechanistic aspects of the C-N bond cleavage process in [L(3)M-CN-M'L(3)] systems consisting of a central cyanide unit bound in an end-on fashion to two terminal metal tris-amide complexes. In these systems, [M] is a d(3) transition metal from the 3d, 4d, 5d, or 6d series and groups 4 through 7, and [L] is either [NH(2)], [NMe(2)], [N(i)PrPh], or [N(t)BuAr]. A comparison of various models for the experimentally relevant [L(3)Mo-CN-MoL(3)] system has shown that while the C-N cleavage step appears to be an energetically favourable process, a large barrier exists for the dissociation of [L(3)Mo-CN-MoL(3)]((-)) into [L(3)Mo-C]((-)) and [N-MoL(3)], which possibly explains why C-N bond scission is not observed experimentally. The general structural, bonding, and thermochemical trends across the transition metal series investigated, indicate that the systems exhibiting the greatest degree of C-N activation, and most favourable energetics for C-N cleavage, also possess the most favourable electronic properties, namely, a close match between the relevant π-like orbitals on the metal-based and cyanide fragments. The negative charge on the cyanide fragment leads to significant destabilization of the π* level which needs to be populated through back-donation from the metal centres in order for C-N bond scission to be achieved. Therefore, metal-based systems with high-lying d(π) orbitals are best suited to C-N cleavage. In terms of chemical periodicity, these systems can be identified as the heavier members within a group and the earlier members within a period. As a consequence, Mo complexes are not well suited to cleaving the C-N bond, whereas the Ta analogues are the most favourable systems and should, in principle, be capable of

  3. Ternary Electrocatalysts for Oxidizing Ethanol to Carbon Dioxide: Making Ir Capable of Splitting C-C bond

    SciTech Connect

    Li, Meng; Cullen, David A; Sasaki, Kotaro; Marinkovic, N.; More, Karren Leslie; Adzic, Radoslav R.

    2013-01-01

    Splitting the C-C bond is the main obstacle to electroxidation of ethanol (EOR) to CO2. We recently demonstrated that the ternary PtRhSnO2 electrocatalyst can accomplish that reaction at room temperature with Rh having a unique capability to split the C-C bond. In this article we report the finding that Ir can be induced to split the C-C bond as a component of the ternary catalyst. We synthesized, characterized and compared the properties of several ternary electrocatalysts. Carbon-supported nanoparticle (NP) electrocatalysts comprising a SnO2 NP core decorated with multi-metallic nanoislands (MM = PtIr, PtRh, IrRh, PtIrRh) were prepared using a seeded growth approach. An array of characterization techniques were employed to establish the composition and architecture of the synthesized MM /SnO2 NPs, while electrochemical and in situ infrared reflection absorption spectroscopy studies elucidated trends in activity and the nature of the reaction intermediates and products. Both EOR reactivity and selectivity towards CO2 formation of several of these MM /SnO2/C electrocatalysts are significantly higher compared to conventional Pt/C and Pt/SnO2/C catalysts. We demonstrate that the PtIr/SnO2/C catalyst with high Ir content shows outstanding catalytic property with the most negative EOR onset potential and reasonably good selectivity towards ethanol complete oxidation to CO2. PtRh/SnO2/C catalysts with a moderate Rh content exhibit the highest EOR selectivity, as deduced from infrared studies.

  4. Matching plasmon resonances to the C=C and C-H bonds in estradiol

    NASA Astrophysics Data System (ADS)

    Mbomson, Ifeoma G.; McMeekin, Scott; De La Rue, Richard; Johnson, Nigel P.

    2015-03-01

    We tune nanoantennas to resonate within mid-infrared wavelengths to match the vibrational resonances of C=C and C-H of the hormone estradiol. Modelling and fabrication of the nanoantennas produce plasmon resonances between 2 μm to 7 μm. The hormone estradiol was dissolved in ethanol and evaporated, leaving thickness of a few hundreds of nanometres on top of gold asymmetric split H-like shaped on a fused silica substrate. The reflectance was measured and a red-shift is recorded from the resonators plasmonic peaks. Fourier transform infrared spectroscopy is use to observe enhanced spectra of the stretching modes for the analyte which belongs to alkenyl biochemical group.

  5. Reactivity of mononuclear alkylperoxo copper(II) complex. O-O bond cleavage and C-H bond activation.

    PubMed

    Kunishita, Atsushi; Ishimaru, Hirohito; Nakashima, Satoru; Ogura, Takashi; Itoh, Shinobu

    2008-04-02

    A detailed reactivity study has been carried out for the first time on a new mononuclear alkylperoxo copper(II) complex, which is generated by the reaction of copper(II) complex supported by the bis(pyridylmethyl)amine tridentate ligand containing a phenyl group at the 6-position of the pyridine donor groups and cumene hydroperoxide (CmOOH) in CH3CN. The cumylperoxo copper(II) complex thus obtained has been found to undergo homolytic cleavage of the O-O bond and induce C-H bond activation of exogenous substrates, providing important insights into the catalytic mechanism of copper monooxygenases.

  6. Characterization and Modeling of the Collision Induced Dissociation Patterns of Deprotonated Glycosphingolipids: Cleavage of the Glycosidic Bond

    NASA Astrophysics Data System (ADS)

    Rožman, Marko

    2016-01-01

    Glycosphingolipid fragmentation behavior was investigated by combining results from analysis of a series of negative ion tandem mass spectra and molecular modeling. Fragmentation patterns extracted from 75 tandem mass spectra of mainly acidic glycosphingolipid species (gangliosides) suggest prominent cleavage of the glycosidic bonds with retention of the glycosidic oxygen atom by the species formed from the reducing end (B and Y ion formation). Dominant product ions arise from dissociation of sialic acids glycosidic bonds whereas product ions resulting from cleavage of other glycosidic bonds are less abundant. Potential energy surfaces and unimolecular reaction rates of several low-energy fragmentation pathways leading to cleavage of glycosidic bonds were estimated in order to explain observed dissociation patterns. Glycosidic bond cleavage in both neutral (unsubstituted glycosyl group) and acidic glycosphingolipids was the outcome of the charge-directed intramolecular nucleophilic substitution (SN2) mechanism. According to the suggested mechanism, the nucleophile in a form of carboxylate or oxyanion attacks the carbon at position one of the sugar ring, simultaneously breaking the glycosidic bond and yielding an epoxide. For gangliosides, unimolecular reaction rates suggest that dominant product ions related to the cleavage of sialic acid glycosidic bonds are formed via direct dissociation channels. On the other hand, low abundant product ions related to the dissociation of other glycosidic bonds are more likely to be the result of sequential dissociation. Although results from this study mainly contribute to the understanding of glycosphingolipid fragmentation chemistry, some mechanistic findings regarding cleavage of the glycosidic bond may be applicable to other glycoconjugates.

  7. Yeast ribonuclease III uses a network of multiple hydrogen bonds for RNA binding and cleavage.

    PubMed

    Lavoie, Mathieu; Abou Elela, Sherif

    2008-08-19

    Members of the bacterial RNase III family recognize a variety of short structured RNAs with few common features. It is not clear how this group of enzymes supports high cleavage fidelity while maintaining a broad base of substrates. Here we show that the yeast orthologue of RNase III (Rnt1p) uses a network of 2'-OH-dependent interactions to recognize substrates with different structures. We designed a series of bipartite substrates permitting the distinction between binding and cleavage defects. Each substrate was engineered to carry a single or multiple 2'- O-methyl or 2'-fluoro ribonucleotide substitutions to prevent the formation of hydrogen bonds with a specific nucleotide or group of nucleotides. Interestingly, introduction of 2'- O-methyl ribonucleotides near the cleavage site increased the rate of catalysis, indicating that 2'-OH are not required for cleavage. Substitution of nucleotides in known Rnt1p binding site with 2'- O-methyl ribonucleotides inhibited cleavage while single 2'-fluoro ribonucleotide substitutions did not. This indicates that while no single 2'-OH is essential for Rnt1p cleavage, small changes in the substrate structure are not tolerated. Strikingly, several nucleotide substitutions greatly increased the substrate dissociation constant with little or no effect on the Michaelis-Menten constant or rate of catalysis. Together, the results indicate that Rnt1p uses a network of nucleotide interactions to identify its substrate and support two distinct modes of binding. One mode is primarily mediated by the dsRNA binding domain and leads to the formation of stable RNA/protein complex, while the other requires the presence of the nuclease and N-terminal domains and leads to RNA cleavage.

  8. Mercury Detoxification by Bacteria: Simulations of Transcription Activation and Mercury-Carbon Bond Cleavage

    SciTech Connect

    Guo, Hao-Bo; Parks, Jerry M; Johs, Alexander; Smith, Jeremy C

    2011-01-01

    In this chapter, we summarize recent work from our laboratory and provide new perspective on two important aspects of bacterial mercury resistance: the molecular mechanism of transcriptional regulation by MerR, and the enzymatic cleavage of the Hg-C bond in methylmercury by the organomercurial lyase, MerB. Molecular dynamics (MD) simulations of MerR reveal an opening-and-closing dynamics, which may be involved in initiating transcription of mercury resistance genes upon Hg(II) binding. Density functional theory (DFT) calculations on an active-site model of the enzyme reveal how MerB catalyzes the Hg-C bond cleavage using cysteine coordination and acid-base chemistry. These studies provide insight into the detailed mechanisms of microbial gene regulation and defense against mercury toxicity.

  9. Carbon–carbon bond cleavage for Cu-mediated aromatic trifluoromethylations and pentafluoroethylations

    PubMed Central

    Sugiishi, Tsuyuka; Aikawa, Kohsuke

    2015-01-01

    Summary This short review highlights the copper-mediated fluoroalkylation using perfluoroalkylated carboxylic acid derivatives. Carbon–carbon bond cleavage of perfluoroalkylated carboxylic acid derivatives takes place in fluoroalkylation reactions at high temperature (150–200 °C) or under basic conditions to generate fluoroalkyl anion sources for the formation of fluoroalkylcopper species. The fluoroalkylation reactions, which proceed through decarboxylation or tetrahedral intermediates, are useful protocols for the synthesis of fluoroalkylated aromatics. PMID:26734112

  10. Biodehalogenation: The kinetics and rates of the microbial cleavage of carbon-halogen bonds

    SciTech Connect

    Castro, C.E. . Nematology Dept.)

    1993-09-01

    Specific rate constants associated with defined molecular paths of carbon-halogen bond cleavage from a variety of alkyl halide substrates by six soil organisms are presented. Five aerobes (three pseudomonads, one methylotroph, and one flavobacterium) and one anaerobe (a methanogen) are compared. The rate constants were obtained with resting cells in phosphate buffer at pH 7.4 in the absence of nutrients or other substances. The observed general rate law is d(X[sup [minus

  11. Low-oxidation state indium-catalyzed C-C bond formation.

    PubMed

    Schneider, Uwe; Kobayashi, Shu

    2012-08-21

    The development of innovative metal catalysis for selective bond formation is an important task in organic chemistry. The group 13 metal indium is appealing for catalysis because indium-based reagents are minimally toxic, selective, and tolerant toward various functional groups. Among elements in this group, the most stable oxidation state is typically +3, but in molecules with larger group 13 atoms, the chemistry of the +1 oxidation state is also important. The use of indium(III) compounds in organic synthesis has been well-established as Lewis acid catalysts including asymmetric versions thereof. In contrast, only sporadic examples of the use of indium(I) as a stoichiometric reagent have been reported: to the best of our knowledge, our investigations represent the first synthetic method that uses a catalytic amount of indium(I). Depending on the nature of the ligand or the counteranion to which it is coordinated, indium(I) can act as both a Lewis acid and a Lewis base because it has both vacant p orbitals and a lone pair of electrons. This potential ambiphilicity may offer unique reactivity and unusual selectivity in synthesis and may have significant implications for catalysis, particularly for dual catalytic processes. We envisioned that indium(I) could be employed as a metallic Lewis base catalyst to activate Lewis acidic boron-based pronucleophiles for selective bond formation with suitable electrophiles. Alternatively, indium(I) could serve as an ambiphilic catalyst that activates both reagents at a single center. In this Account, we describe the development of low-oxidation state indium catalysts for carbon-carbon bond formation between boron-based pronucleophiles and various electrophiles. We discovered that indium(I) iodide was an excellent catalyst for α-selective allylations of C(sp(2)) electrophiles such as ketones and hydrazones. Using a combination of this low-oxidation state indium compound and a chiral semicorrin ligand, we developed catalytic

  12. D-β-aspartyl residue exhibiting uncommon high resistance to spontaneous peptide bond cleavage

    NASA Astrophysics Data System (ADS)

    Aki, Kenzo; Okamura, Emiko

    2016-02-01

    Although L-amino acids were selected as main constituents of peptides and proteins during chemical evolution, D-aspartyl (Asp) residue is found in a variety of living tissues. In particular, D-β-Asp is thought to be stable than any other Asp isomers, and this could be a reason for gradual accumulation in abnormal proteins and peptides to modify their structures and functions. It is predicted that D-β-Asp shows high resistance to biomolecular reactions. For instance, less reactivity of D-β-Asp is expected to bond cleavage, although such information has not been provided yet. In this work, the spontaneous peptide bond cleavage was compared between Asp isomers, by applying real-time solution-state NMR to eye lens αΑ-crystallin 51–60 fragment, S51LFRTVLD58SG60 and αΒ-crystallin 61–67 analog, F61D62TGLSG67 consisting of L-α- and D-β-Asp 58 and 62, respectively. Kinetic analysis showed how tough the uncommon D-β-Asp residue was against the peptide bond cleavage as compared to natural L-α-Asp. Differences in pKa and conformation between L-α- and D-β-Asp side chains were plausible factors to determine reactivity of Asp isomers. The present study, for the first time, provides a rationale to explain less reactivity of D-β-Asp to allow abnormal accumulation.

  13. Biotic and abiotic carbon to sulfur bond cleavage. Technical report, July 1, 1991--September 30, 1991

    SciTech Connect

    Frost, J.W.

    1991-12-31

    Cleavage of aliphatic organosulfonate carbon to sulfur (C-S) bonds, a critical link in the global biogeochemical sulfur cycle, has been identified in Escherichia coli K-12. Enormous quantities of inorganic sulfate are continuously converted (Scheme I) into methanesulfonic acid 1 and acylated 3-(6-sulfo-{alpha}-D-quinovopyranosyl)-L-glycerol 2. Biocatalytic desulfurization (Scheme I) of 1 and 2, which share the structural feature of an aliphatic carbon bonded to a sulfonic acid sulfur, completes the cycle, Discovery of this desulfurization in E. coli provides an invaluable paradigm for study of a biotic process which, via the biogeochemical cycle, significantly influences the atmospheric concentration of sulfur-containing molecules.

  14. Short Access to Belt Compounds with Spatially Close C=C Bonds and Their Transannular Reactions.

    PubMed

    Camps, Pelayo; Gómez, Tània; Otermin, Ane; Font-Bardia, Mercè; Estarellas, Carolina; Luque, Francisco Javier

    2015-09-28

    Two domino Diels-Alder adducts were obtained from 3,7-bis(cyclopenta-2,4-dien-1-ylidene)-cis-bicyclo[3.3.0]octane and dimethyl acetylenedicarboxylate or N-methylmaleimide under microwave irradiation. From the first adduct, a C20H24 diene with C2v symmetry was obtained by Zn/AcOH reduction, hydrolysis, oxidative decarboxylation, and selective hydrogenation. Photochemical [2+2] cycloaddition of this diene gave a thermally unstable cyclobutane derivative, which reverts to the diene. However, both the diene and the cyclobutane derivatives could be identified by X-ray diffraction analysis upon irradiation of the diene crystal. New six-membered rings are formed upon the transannular addition of bromine or iodine to the diene. The N-type selectivity of the addition was examined by theoretical calculations, which revealed the distinct susceptibility of the doubly bonded carbon atoms to the bromine attack.

  15. Entropic origin of cobalt-carbon bond cleavage catalysis in adenosylcobalamin-dependent ethanolamine ammonia-lyase.

    PubMed

    Wang, Miao; Warncke, Kurt

    2013-10-09

    Adenosylcobalamin-dependent enzymes accelerate the cleavage of the cobalt-carbon (Co-C) bond of the bound coenzyme by >10(10)-fold. The cleavage-generated 5'-deoxyadenosyl radical initiates the catalytic cycle by abstracting a hydrogen atom from substrate. Kinetic coupling of the Co-C bond cleavage and hydrogen-atom-transfer steps at ambient temperatures has interfered with past experimental attempts to directly address the factors that govern Co-C bond cleavage catalysis. Here, we use time-resolved, full-spectrum electron paramagnetic resonance spectroscopy, with temperature-step reaction initiation, starting from the enzyme-coenzyme-substrate ternary complex and (2)H-labeled substrate, to study radical pair generation in ethanolamine ammonia-lyase from Salmonella typhimurium at 234-248 K in a dimethylsulfoxide/water cryosolvent system. The monoexponential kinetics of formation of the (2)H- and (1)H-substituted substrate radicals are the same, indicating that Co-C bond cleavage rate-limits radical pair formation. Analysis of the kinetics by using a linear, three-state model allows extraction of the microscopic rate constant for Co-C bond cleavage. Eyring analysis reveals that the activation enthalpy for Co-C bond cleavage is 32 ± 1 kcal/mol, which is the same as for the cleavage reaction in solution. The origin of Co-C bond cleavage catalysis in the enzyme is, therefore, the large, favorable activation entropy of 61 ± 6 cal/(mol·K) (relative to 7 ± 1 cal/(mol·K) in solution). This represents a paradigm shift from traditional, enthalpy-based mechanisms that have been proposed for Co-C bond-breaking in B12 enzymes. The catalysis is proposed to arise from an increase in protein configurational entropy along the reaction coordinate.

  16. Disulfide bond cleavage in TEMPO-free radical initiated peptide sequencing mass spectrometry.

    PubMed

    Lee, Minhee; Lee, Younjin; Kang, Minhyuk; Park, Hyeyeon; Seong, Yeonmi; Sung, Bong June; Moon, Bongjin; Oh, Han Bin

    2011-08-01

    The gas-phase free radical initiated peptide sequencing (FRIPS) fragmentation behavior of o-TEMPO-Bz-conjugated peptides with an intra- and intermolecular disulfide bond was investigated using MS(n) tandem mass spectrometry experiments. Investigated peptides included four peptides with an intramolecular cyclic disulfide bond, Bactenecin (RLCRIVVIRVCR), TGF-α (CHSGYVGVRC), MCH (DFDMLRCMLGRVFRPCWQY) and Adrenomedullin (16-31) (CRFGTCTVQKLAHQIY), and two peptides with an intermolecular disulfide bond. Collisional activation of the benzyl radical conjugated peptide cation, which was generated through the release of a TEMPO radical from o-TEMPO-Bz-conjugated peptides upon initial collisional activation, produced a large number of peptide backbone fragments in which the S-S or C-S bond was readily cleaved. The observed peptide backbone fragments included a-, c-, x- or z-types, which indicates that the radical-driven peptide fragmentation mechanism plays an important role in TEMPO-FRIPS mass spectrometry. FRIPS application of the linearly linked disulfide peptides further showed that the S-S or C-S bond was selectively and preferentially cleaved, followed by peptide backbone dissociations. In the FRIPS mass spectra, the loss of •SH or •SSH was also abundantly found. On the basis of these findings, FRIPS fragmentation pathways for peptides with a disulfide bond are proposed. For the cleavage of the S-S bond, the abstraction of a hydrogen atom at C(β) by the benzyl radical is proposed to be the initial radical abstraction/transfer reaction. On the other hand, H-abstraction at C(α) is suggested to lead to C-S bond cleavage, which yields [ion ± S] fragments or the loss of •SH or •SSH.

  17. A density functional theory study on peptide bond cleavage at aspartic residues: direct vs cyclic intermediate hydrolysis.

    PubMed

    Sang-aroon, Wichien; Amornkitbamrung, Vittaya; Ruangpornvisuti, Vithaya

    2013-12-01

    In this work, peptide bond cleavages at carboxy- and amino-sides of the aspartic residue in a peptide model via direct (concerted and step-wise) and cyclic intermediate hydrolysis reaction pathways were explored computationally. The energetics, thermodynamic properties, rate constants, and equilibrium constants of all hydrolysis reactions, as well as their energy profiles were computed at the B3LYP/6-311++G(d,p) level of theory. The result indicated that peptide bond cleavage of the Asp residue occurred most preferentially via the cyclic intermediate hydrolysis pathway. In all reaction pathways, cleavage of the peptide bond at the amino-side occurred less preferentially than at the carboxy-side. The overall reaction rate constants of peptide bond cleavage of the Asp residue at the carboxy-side for the assisted system were, in increasing order: concerted < step-wise < cyclic intermediate.

  18. [Polycationic catalysts for phosphodiester bond cleavage on the basis of 1,4-diazabicyclo[2.2.2]octane].

    PubMed

    Burakova, E A; Kovalev, N A; Kuznetsova, I L; Zenkova, M A; Vlasov, V V; Sil'nikov, V N

    2007-01-01

    A number of tetracationic compounds capable of phosphodiester bond cleavage within a 21 -membered ribooligonucleotide were designed and synthesized. The artificial ribonucleases represent two residues of quaternized 1,4-diazabicyclo[2.2.2]octane bearing alkyl substituents of various lengths and connected with a rigid linker. The efficiency of cleavage of phosphodiester bonds in an RNA target depends on the linker structure and the length of alkyl substituent.

  19. New chemical insights using weakly supported voltammetry: the reductive cleavage of Aryl-Br bonds is reversible.

    PubMed

    Wang, Yijun; Barnes, Edward O; Compton, Richard G

    2012-10-22

    Cyclic voltammetry carried out at a wide range of supporting electrolyte concentrations and compositions can elucidate additional kinetic and mechanistic details of the electrochemical reduction of aryl halides. The cleavage of the C-Br bond is reversible, driven by H abstraction and the second electron transfer. This is a new chemical insight, as the cleavage of such bonds has usually been regarded as irreversible.

  20. A pH-responsive cleavage route based on a metal-organic coordination bond.

    PubMed

    Xing, Lei; Zheng, Haoquan; Che, Shunai

    2011-06-20

    The physical or chemical event that generally causes stimuli responses is limited to the formation or destruction of secondary forces, such as hydrogen bonding, hydrophobic effects, electrostatic interactions, and simple reactions. Here, pH-responsive behavior of metal-organic coordination bonding, which is intrinsic to natural systems (e.g., transferrin recycling in cells), is becoming a strong candidate for a new stimulus-responsive route. We have designed a simple pH-responsive release system by integrating a metal ion and ligand or self-assembling these species with biodegradable host molecules to form nanoparticles with "metal-ligand" or "host-metal-ligand" architectures. The cleavage of either or both the "metal-ligand" or the "host-metal" coordination bond in response to pH variations causes significant damage to the nanoparticles and the subsequent release of ligand molecules under designated pH conditions.

  1. Aerobic synthesis of substituted quinoline from aldehyde and aniline: copper-catalyzed intermolecular C-H active and C-C formative cyclization.

    PubMed

    Yan, Rulong; Liu, Xingxing; Pan, Congming; Zhou, Xiaoqiang; Li, Xiaoni; Kang, Xing; Huang, Guosheng

    2013-09-20

    An efficient method for the direct synthesis of substituted quinolines from anilines and aldehydes through C-H functionalization, C-C/C-N bond formation, and C-C bond cleavage has been developed. The method is simple and practical and employs air as an oxidant.

  2. Ruthenium-Catalyzed Monoalkenylation of Aromatic Ketones by Cleavage of Carbon-Heteroatom Bonds with Unconventional Chemoselectivity.

    PubMed

    Kondo, Hikaru; Akiba, Nana; Kochi, Takuya; Kakiuchi, Fumitoshi

    2015-08-03

    Ruthenium-catalyzed selective monoalkenylation of ortho C-O or C-N bonds of aromatic ketones was achieved. The reaction allowed the direct comparison of the relative reactivities of the cleavage of different carbon-heteroatom bonds, thus suggesting an unconventional chemoselectivity, where smaller, more-electron-donating groups are more easily cleaved. Selective monofunctionalization of C-O bonds in the presence of ortho C-H bonds was also achieved.

  3. Te-Te and Te-C bond cleavage reactions using a monovalent gallanediyl.

    PubMed

    Ganesamoorthy, Chelladurai; Bendt, Georg; Bläser, Dieter; Wölper, Christoph; Schulz, Stephan

    2015-03-21

    LGa (L = [(2,6-i-Pr2-C6H3)NC(Me)]2CH) reacts with elemental tellurium with formation of the Te-bridged compound [LGa-μ-Te]2 1, whereas the reactions with Ph2Te2 and i-Pr2Te occurred with cleavage of the Te-Te and Te-C bond, respectively, and subsequent formation of LGa(TePh)2 2 and LGa(i-Pr)Tei-Pr 3. 1-3 were characterized by heteronuclear NMR ((1)H, (13)C, (125)Te) and IR spectroscopy and their solid state structures were determined by single crystal X-ray analyses.

  4. Bond cleavages of adenosine 5'-triphosphate induced by monochromatic soft X-rays

    NASA Astrophysics Data System (ADS)

    Fujii, K.; Narita, A.; Yokoya, A.

    2014-04-01

    To investigate which type of bond is likely to be cleaved by soft X-ray exposure to an adenosine 5'-triphosphate (ATP), we observed spectral changes in X-ray absorption near edge structure (XANES) around nitrogen and oxygen K-edge of an ATP film by soft X-ray irradiation. Experiments were performed at a synchrotron soft X-ray beamline at SPring-8, Japan. The XANES spectra around the nitrogen and oxygen .K-edge slightly varied by exposure to 560 eV soft X-rays. These changes are originated from the cleavage of C-N bonds between a sugar and a nucleobase site and of C-O, P-O or O-H bond of sugar and phosphate site. From the comparison between the change in XANES intensity of σ* peak at nitrogen and that at oxygen K-edges, it is inferred that the C-O, P-O or O-H bond of sugar and phosphate is much efficiently cleaved than the C-N of N-glycoside bond by the exposure of 560 eV soft X-ray to ATP film.

  5. METABOLIC ENGINEERING TO DEVELOP A PATHWAY FOR THE SELECTIVE CLEAVAGE OF CARBON-NITROGEN BONDS

    SciTech Connect

    John J. Kilbane II

    2004-10-01

    The objective of the project is to develop biochemical pathways for the selective cleavage of C-N bonds in molecules found in petroleum. The initial phase of the project was focused on the isolation or development of an enzyme capable of cleaving the C-N bond in aromatic amides, specifically 2-aminobiphenyl. The objective of the second phase of the research will be to construct a biochemical pathway for the selective removal of nitrogen from carbazole by combining the carA genes from Sphingomonas sp. GTIN11 with the gene(s) encoding an appropriate deaminase. The objective of the final phase of the project will be to develop derivative C-N bond cleaving enzymes that have broader substrate ranges and to demonstrate the use of such strains to selectively remove nitrogen from petroleum. During the first year of the project (October, 2002-September, 2003) enrichment culture experiments resulted in the isolation of microbial cultures that utilize aromatic amides as sole nitrogen sources, several amidase genes were cloned and were included in directed evolution experiments to obtain derivatives that can cleave C-N bonds in aromatic amides, and the carA genes from Sphingomonas sp. GTIN11, and Pseudomonas resinovorans CA10 were cloned in vectors capable of replicating in Escherichia coli. During the second year of the project (October, 2003-September, 2004) enrichment culture experiments succeeded in isolating a mixed bacterial culture that can utilize 2-aminobiphenyl as a sole nitrogen source, directed evolution experiments were focused on the aniline dioxygenase enzyme that is capable of deaminating aniline, and expression vectors were constructed to enable the expression of genes encoding C-N bond cleaving enzymes in Rhodococcus hosts. The construction of a new metabolic pathway to selectively remove nitrogen from carbazole and other molecules typically found in petroleum should lead to the development of a process to improve oil refinery efficiency by reducing the

  6. Aromatic thiol-mediated cleavage of N–O bonds enables chemical ubiquitylation of folded proteins

    PubMed Central

    Weller, Caroline E.; Dhall, Abhinav; Ding, Feizhi; Linares, Edlaine; Whedon, Samuel D.; Senger, Nicholas A.; Tyson, Elizabeth L.; Bagert, John D.; Li, Xiaosong; Augusto, Ohara; Chatterjee, Champak

    2016-01-01

    Access to protein substrates homogenously modified by ubiquitin (Ub) is critical for biophysical and biochemical investigations aimed at deconvoluting the myriad biological roles for Ub. Current chemical strategies for protein ubiquitylation, however, employ temporary ligation auxiliaries that are removed under harsh denaturing conditions and have limited applicability. We report an unprecedented aromatic thiol-mediated N–O bond cleavage and its application towards native chemical ubiquitylation with the ligation auxiliary 2-aminooxyethanethiol. Our interrogation of the reaction mechanism suggests a disulfide radical anion as the active species capable of cleaving the N–O bond. The successful semisynthesis of full-length histone H2B modified by the small ubiquitin-like modifier-3 (SUMO-3) protein further demonstrates the generalizability and compatibility of our strategy with folded proteins. PMID:27680493

  7. Aromatic thiol-mediated cleavage of N-O bonds enables chemical ubiquitylation of folded proteins

    NASA Astrophysics Data System (ADS)

    Weller, Caroline E.; Dhall, Abhinav; Ding, Feizhi; Linares, Edlaine; Whedon, Samuel D.; Senger, Nicholas A.; Tyson, Elizabeth L.; Bagert, John D.; Li, Xiaosong; Augusto, Ohara; Chatterjee, Champak

    2016-09-01

    Access to protein substrates homogenously modified by ubiquitin (Ub) is critical for biophysical and biochemical investigations aimed at deconvoluting the myriad biological roles for Ub. Current chemical strategies for protein ubiquitylation, however, employ temporary ligation auxiliaries that are removed under harsh denaturing conditions and have limited applicability. We report an unprecedented aromatic thiol-mediated N-O bond cleavage and its application towards native chemical ubiquitylation with the ligation auxiliary 2-aminooxyethanethiol. Our interrogation of the reaction mechanism suggests a disulfide radical anion as the active species capable of cleaving the N-O bond. The successful semisynthesis of full-length histone H2B modified by the small ubiquitin-like modifier-3 (SUMO-3) protein further demonstrates the generalizability and compatibility of our strategy with folded proteins.

  8. NHC-Organocatalyzed CAr -O Bond Cleavage: Mild Access to 2-Hydroxybenzophenones.

    PubMed

    Janssen-Müller, Daniel; Singha, Santanu; Lied, Fabian; Gottschalk, Karin; Glorius, Frank

    2017-01-27

    A Truce-Smiles rearrangement of acyl-anion equivalents generated by N-heterocyclic carbene (NHC) catalysis has been achieved. The developed method includes CAr -O, CAr -S, or CAr -N bond cleavage for the formation of a CAr -C bond and enables access to 2-hydroxybenzophenones, an important structural motif that is present in several bioactive natural products. By utilizing this procedure, the alkaloid taxilamine was synthesized in three steps. DFT calculations and control experiments support a classical SN Ar mechanism with a catalyst-bound Meisenheimer-type intermediate. The method features mild reaction conditions, excellent functional-group tolerance, and a broad substrate scope, including various classes of (hetero)arenes.

  9. Rh-Catalyzed C–C Bond Cleavage by Transfer Hydroformylation

    PubMed Central

    Murphy, Stephen K.; Park, Jung-Woo; Cruz, Faben A.; Dong, Vy M.

    2015-01-01

    The dehydroformylation of aldehydes to generate olefins occurs during the biosynthesis of various sterols, including cholesterol in humans. Here, we implement a synthetic version that features the transfer of a formyl group and hydride from an aldehyde substrate to a strained olefin acceptor. A Rh(Xantphos)(benzoate) catalyst activates aldehyde C–H bonds with high chemoselectivity to trigger C–C bond cleavage and generate olefins at low loadings (0.3 to 2 mol%) and temperatures (22 to 80 °C). This mild protocol can be applied to various natural products and was used to achieve a three step synthesis of (+)-yohimbenone. A study of the mechanism reveals that the benzoate counterion acts as a proton-shuttle to enable transfer hydroformylation. PMID:25554782

  10. Reversible extrusion and uptake of HCl molecules by crystalline solids involving coordination bond cleavage and formation.

    PubMed

    Mínguez Espallargas, Guillermo; Brammer, Lee; van de Streek, Jacco; Shankland, Kenneth; Florence, Alastair J; Adams, Harry

    2006-08-02

    Yellow crystalline salts (3-XpyH)2[CuCl4] (3-XpyH = 3-halopyridinium, X = Cl, Br) lose HCl upon exposure to air in an open vessel, yielding quantitatively blue crystalline coordination compounds [CuCl2(3-Xpy)2]. The reaction is prevented if the vessel is sealed, but can be driven forward under such conditions by providing a trapping agent for HCl, such as an aqueous solution of AgNO3. The reaction requires cleavage of Cu-Cl and N-H bonds and formation of Cu-N bonds. The metal coordination geometry also changes from distorted tetrahedral to square planar. Remarkably, the reaction is fully reversible upon exposure of the blue coordination compound to vapor from a concentrated aqueous solution of HCl, and the initial yellow crystalline salt results. The structural changes occurring in these reactions have been followed by X-ray powder diffraction, including Rietveld refinement, of the crystal structures.

  11. Aromatic thiol-mediated cleavage of N-O bonds enables chemical ubiquitylation of folded proteins.

    PubMed

    Weller, Caroline E; Dhall, Abhinav; Ding, Feizhi; Linares, Edlaine; Whedon, Samuel D; Senger, Nicholas A; Tyson, Elizabeth L; Bagert, John D; Li, Xiaosong; Augusto, Ohara; Chatterjee, Champak

    2016-09-29

    Access to protein substrates homogenously modified by ubiquitin (Ub) is critical for biophysical and biochemical investigations aimed at deconvoluting the myriad biological roles for Ub. Current chemical strategies for protein ubiquitylation, however, employ temporary ligation auxiliaries that are removed under harsh denaturing conditions and have limited applicability. We report an unprecedented aromatic thiol-mediated N-O bond cleavage and its application towards native chemical ubiquitylation with the ligation auxiliary 2-aminooxyethanethiol. Our interrogation of the reaction mechanism suggests a disulfide radical anion as the active species capable of cleaving the N-O bond. The successful semisynthesis of full-length histone H2B modified by the small ubiquitin-like modifier-3 (SUMO-3) protein further demonstrates the generalizability and compatibility of our strategy with folded proteins.

  12. Molecular features in complex environment: Cooperative team players during excited state bond cleavage

    PubMed Central

    Thallmair, Sebastian; Roos, Matthias K.; de Vivie-Riedle, Regina

    2016-01-01

    Photoinduced bond cleavage is often employed for the generation of highly reactive carbocations in solution and to study their reactivity. Diphenylmethyl derivatives are prominent precursors in polar and moderately polar solvents like acetonitrile or dichloromethane. Depending on the leaving group, the photoinduced bond cleavage occurs on a femtosecond to picosecond time scale and typically leads to two distinguishable products, the desired diphenylmethyl cations (Ph2CH+) and as competing by-product the diphenylmethyl radicals (Ph2CH•). Conical intersections are the chief suspects for such ultrafast branching processes. We show for two typical examples, the neutral diphenylmethylchloride (Ph2CH–Cl) and the charged diphenylmethyltriphenylphosphonium ions (Ph2CH−PPh3+) that the role of the conical intersections depends not only on the molecular features but also on the interplay with the environment. It turns out to differ significantly for both precursors. Our analysis is based on quantum chemical and quantum dynamical calculations. For comparison, we use ultrafast transient absorption measurements. In case of Ph2CH–Cl, we can directly connect the observed signals to two early three-state and two-state conical intersections, both close to the Franck-Condon region. In case of the Ph2CH−PPh3+, dynamic solvent effects are needed to activate a two-state conical intersection at larger distances along the reaction coordinate. PMID:26958588

  13. NMR-spectroscopic characterization of phosphodiester bond cleavage catalyzed by the minimal hammerhead ribozyme.

    PubMed

    Fürtig, Boris; Richter, Christian; Schell, Peter; Wenter, Philipp; Pitsch, Stefan; Schwalbe, Harald

    2008-01-01

    In order to relate the conformational dynamics of the hammerhead ribozyme to its biological function the cleavage reaction catalyzed by the hammerhead ribozyme was monitored by time-resolved nuclear magnetic resonance (NMR) spectroscopy. For this purpose, the two nucleosides around the scissile phosphodiester bond were selectively (13)C labelled in multi-step organic syntheses starting from uniformly (13)C-labelled glucose. The phosphoamidites were incorporated using phosphoamidite chemistry in the hammerhead substrate strand. In addition, the 2'-OH group on the 5'-side of the hammerhead substrate strand was labelled with a photolabile protecting group. This labelling strategy enabled a detailed characterisation of the nucleotides around the scissile phosphodiester bond in the ground state conformation of the hammerhead ribozyme in the absence and presence of Mg(2+) ions as well as of the product state. Photochemical induction of the reaction in situ was further characterized by time-resolved NMR spectroscopy. The detailed structural and dynamic investigations revealed that the conformation of the hammerhead ribozyme is significantly affected by addition of Mg(2+) leading to an ensemble of conformations where dynamic transitions between energetically similar conformations occur on the ms-timescale in the presence of Mg(2+). The dynamic transitions are localized around the catalytic core. Cleavage from this ensemble cannot be described by mono-exponential kinetics but follows bi-exponential kinetics. A model is described to take into account these experimental data.

  14. Ab initio study of carbon-chlorine bond cleavage in carbon tetrachloride.

    PubMed

    Zhang, Nianliu; Blowers, Paul; Farrell, James

    2005-01-15

    Chlorinated solvents in groundwater are known to undergo reductive dechlorination reactions with Fe(ll)-containing minerals and with corroding metals in permeable-barrier treatment systems. This research investigated the effect of the reaction energy on the reaction pathway for C-Cl bond cleavage in carbon tetrachloride (CCl4). Hartree-Fock, density functional theory, and modified complete basis set ab initio methods were used to study adiabatic electron transfer to aqueous-phase CCl4. The potential energies associated with fragmentation of the carbon tetrachloride anion radical (CCl4-) into a trichloromethyl radical (CCl3) and a chloride ion (Cl-) were explored as a function of the carbon-chlorine bond distance during cleavage. The effect of aqueous solvation was investigated using a continuum conductor-like screening model. Solvation significantly lowered the energies of the reaction products, suggesting that dissociative electron transfer was enhanced by solvation. The potential energy curves in an aqueous medium indicate that reductive cleavage undergoes a change from an inner-sphere to an outer-sphere mechanism as the overall energy change for the reaction is increased. The activation energy for the reaction was found to be a linear function of the overall energy change, and the Marcus-Hush model was used to relate experimentally measured activation energies for CCl4 reduction to overall reaction energies. Experimentally measured activation energies for CCl4 reduction by corroding iron correspond to reaction energies that are insufficiently exergonic for promoting the outer-sphere mechanism. This suggests that the different reaction pathways that have been observed for CCl4 reduction by corroding iron arise from different catalytic interactions with the surface, and not from differences in energy of the transferred electrons.

  15. METABOLIC ENGINEERING TO DEVELOP A PATHWAY FOR THE SELECTIVE CLEAVAGE OF CARBON-NITROGEN BONDS

    SciTech Connect

    John J. Kilbane III

    2003-12-01

    The objective of the project is to develop biochemical pathways for the selective cleavage of C-N bonds in molecules found in petroleum. The initial phase of the project will focus on the isolation or development of an enzyme capable of cleaving the C-N bond in aromatic amides, specifically 2-aminobiphenyl. The objective of the second phase of the research will be to construct a biochemical pathway for the selective removal of nitrogen from carbazole by combining the carA genes from Sphingomonas sp. GTIN11 with the gene(s) encoding an appropriate amidase. The objective of the final phase of the project will be to develop derivative CN bond cleaving enzymes that have broader substrate ranges and to demonstrate the use of such strains to selectively remove nitrogen from petroleum. The project is on schedule and no major difficulties have been encountered. During the first year of the project (October, 2002-September, 2003) enrichment culture experiments have resulted in the isolation of promising cultures that may be capable of cleaving C-N bonds in aromatic amides, several amidase genes have been cloned and are currently undergoing directed evolution to obtain derivatives that can cleave C-N bonds in aromatic amides, and the carA genes from Sphingomonas sp. GTIN11, and Pseudomonas resinovorans CA10 were cloned in vectors capable of replicating in Escherichia coli. Future research will address expression of these genes in Rhodococcus erythropolis. Enrichment culture experiments and directed evolution experiments continue to be a main focus of research activity and further work is required to obtain an appropriate amidase that will selectively cleave C-N bonds in aromatic substrates. Once an appropriate amidase gene is obtained it must be combined with genes encoding an enzyme capable of converting carbazole to 2'aminobiphenyl-2,3-diol: specifically carA genes. The carA genes from two sources have been cloned and are ready for construction of C-N bond cleavage pathway

  16. Heterolytic OO bond cleavage: Functional role of Glu113 during bis-Fe(IV) formation in MauG.

    PubMed

    Geng, Jiafeng; Huo, Lu; Liu, Aimin

    2017-02-01

    The diheme enzyme MauG utilizes H2O2 to perform oxidative posttranslational modification on a protein substrate. A bis-Fe(IV) species of MauG was previously identified as a key intermediate in this reaction. Heterolytic cleavage of the OO bond of H2O2 drives the formation of the bis-Fe(IV) intermediate. In this work, we tested a hypothesis that a glutamate residue, Glu113 in the distal pocket of the pentacoordinate heme of MauG, facilitates heterolytic OO bond cleavage, thereby leading to bis-Fe(IV) formation. This hypothesis was proposed based on sequence alignment and structural comparison with other H2O2-utilizing hemoenzymes, especially those from the diheme enzyme superfamily that MauG belongs to. Electron paramagnetic resonance (EPR) characterization of the reaction between MauG and H2O2 revealed that mutation of Glu113 inhibited heterolytic OO bond cleavage, in agreement with our hypothesis. This result was further confirmed by the HPLC study in which an analog of H2O2, cumene hydroperoxide, was used to probe the pattern of OO bond cleavage. Together, our data suggest that Glu113 functions as an acid-base catalyst to assist heterolytic OO bond cleavage during the early stage of the catalytic reaction. This work advances our mechanistic understanding of the H2O2-activation process during bis-Fe(IV) formation in MauG.

  17. Computational study of the effects of steric hindrance on amide bond cleavage.

    PubMed

    Matsubara, Toshiaki; Ueta, Chikako

    2014-09-25

    The reaction mechanism of amide bond cleavages of the 2,2,6,6-tetramethylpiperidine derivatives, which proceeds in methanol solvent under mild conditions, is examined by the density functional method (B3LYP) using a model substrate. We performed the calculations to clarify the reason why the amide bond is readily broken in the present system, on the basis of an experimentally proposed "proton switching pathway" that is different from the generally known mechanisms. As a result, it was found that the stepwise decomposition of the amide bond by the "proton switching pathway" significantly lowers the energy barrier. The delocalization of the π electron in the -C(═O)-N< part is hindered by the steric effect of the four Me groups of the piperidine so that the acetyl group can easily rotate around the C-N axis and then the α-H migrates to the amide N. The subsequent amide bond dissociation, which is thought to be a rate-determining step in the experiment, was very facile. The reaction is completed by the addition of methanol to the formed ketene. Both the energy barriers of the α-H migration to the amide N and the methanol addition to ketene are largely decreased by the mediation of methanol solvent molecules. The rate-determining step of the entire reaction was found to be the α-H migration.

  18. Lewis Acid Accelerated Aryl Ether Bond Cleavage with Nickel: Orders of Magnitude Rate Enhancement Using AlMe3.

    PubMed

    Kelley, Paul; Edouard, Guy A; Lin, Sibo; Agapie, Theodor

    2016-11-21

    Study of the kinetics of intramolecular aryl ether C-O bond cleavage by Ni was facilitated by access to a family of metal complexes supported by diphosphines with pendant aryl-methyl ethers. The nature of the aryl substituents was found to have little effect on the rate of cleavage. In contrast, soluble Lewis acidic additives accelerate the aryl ether cleavage dramatically. The effect of AlMe3 was studied in detail, and showed an increase in rate by several orders of magnitude. Low temperature NMR spectroscopy studies demonstrate quantitative coordination of ether to Al. From the Lewis acid-bound precursor, the activation parameters for ether cleavage are significantly lower. These findings provide a mechanistic basis for milder catalyst design for the activation of strong bonds.

  19. A Substrate-Assisted Mechanism of Nucleophile Activation in a Ser-His-Asp Containing C-C Bond Hydrolase

    SciTech Connect

    Ruzzini, Antonio C.; Bhowmik, Shiva; Ghosh, Subhangi; Yam, Katherine C.; Bolin, Jeffrey T.; Eltis, Lindsay D.

    2013-11-12

    The meta-cleavage product (MCP) hydrolases utilize a Ser–His–Asp triad to hydrolyze a carbon–carbon bond. Hydrolysis of the MCP substrate has been proposed to proceed via an enol-to-keto tautomerization followed by a nucleophilic mechanism of catalysis. Ketonization involves an intermediate, ESred, which possesses a remarkable bathochromically shifted absorption spectrum. We investigated the catalytic mechanism of the MCP hydrolases using DxnB2 from Sphingomonas wittichii RW1. Pre-steady-state kinetic and LC ESI/MS evaluation of the DxnB2-mediated hydrolysis of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid to 2-hydroxy-2,4-pentadienoic acid and benzoate support a nucleophilic mechanism catalysis. In DxnB2, the rate of ESred decay and product formation showed a solvent kinetic isotope effect of 2.5, indicating that a proton transfer reaction, assigned here to substrate ketonization, limits the rate of acylation. For a series of substituted MCPs, this rate was linearly dependent on MCP pKa2nuc ~ 1). Structural characterization of DxnB2 S105A:MCP complexes revealed that the catalytic histidine is displaced upon substrate-binding. The results provide evidence for enzyme-catalyzed ketonization in which the catalytic His–Asp pair does not play an essential role. The data further suggest that ESred represents a dianionic intermediate that acts as a general base to activate the serine nucleophile. This substrate-assisted mechanism of nucleophilic catalysis distinguishes MCP hydrolases from other serine hydrolases.

  20. Mechanisms of Bond Cleavage during Manganese Oxide and UV Degradation of Glyphosate: Results from Phosphate Oxygen Isotopes and Molecular Simulations.

    PubMed

    Jaisi, Deb P; Li, Hui; Wallace, Adam F; Paudel, Prajwal; Sun, Mingjing; Balakrishna, Avula; Lerch, Robert N

    2016-11-16

    Degradation of glyphosate in the presence of manganese oxide and UV light was analyzed using phosphate oxygen isotope ratios and density function theory (DFT). The preference of C-P or C-N bond cleavage was found to vary with changing glyphosate/manganese oxide ratios, indicating the potential role of sorption-induced conformational changes on the composition of intermediate degradation products. Isotope data confirmed that one oxygen atom derived solely from water was incorporated into the released phosphate during glyphosate degradation, and this might suggest similar nucleophilic substitution at P centers and C-P bond cleavage both in manganese oxide- and UV light-mediated degradation. The DFT results reveal that the C-P bond could be cleaved by water, OH(-) or (•)OH, with the energy barrier opposing bond dissociation being lowest in the presence of the radical species, and that C-N bond cleavage is favored by the formation of both nitrogen- and carbon-centered radicals. Overall, these results highlight the factors controlling the dominance of C-P or C-N bond cleavage that determines the composition of intermediate/final products and ultimately the degradation pathway.

  1. The role of alkane coordination in CH bond cleavage at a Pt(II) center

    PubMed Central

    Chen, George S.; Labinger, Jay A.; Bercaw, John E.

    2007-01-01

    The rates of CH bond activation for various alkanes by [(N–N)Pt(Me)(TFEd3)]+ (N N = ArNC(Me)C(Me)NAr; Ar = 3,5-di-tert-butylphenyl; TFE-d3 = CF3CD2OD) were studied. Both linear and cyclic alkanes give the corresponding alkene-hydride cation [(N–N)Pt(H)(alkene)]+ via (i) rate determining alkane coordination to form a CH σ complex, (ii) oxidative cleavage of the coordinated CH bond to give a platinum(IV) alkyl-methyl-hydride intermediate, (iii) reductive coupling to generate a methane σ complex, (iv) dissociation of methane, and (v) β-H elimination to form the observed product. Second-order rate constants for cycloalkane activation (CnH2n), are proportional to the size of the ring (k ∼ n). For cyclohexane, the deuterium kinetic isotope effect (kH/kD) of 1.28 (5) is consistent with the proposed rate determining alkane coordination to form a CH σ complex. Statistical scrambling of the five hydrogens of the Pt-methyl and the coordinated methylene unit, via rapid, reversible steps ii and iii, and interchange of geminal CH bonds of the methane and cyclohexane CH σ adducts, is observed before loss of methane. PMID:17416678

  2. A mechanistic study of Trichoderma reesei Cel7B catalyzed glycosidic bond cleavage.

    PubMed

    Zhang, Yu; Yan, Shihai; Yao, Lishan

    2013-07-25

    An ONIOM study is performed to illustrate the mechanism of Trichoderma reesei Cel7B catalyzed p-nitrophenyl lactoside hydrolysis. In both the glycosylation and deglycosylation steps, the reaction proceeds in a concerted way, meaning the nucleophilic attack and the glycosidic bond cleavage occur simultaneously. The glycosylation step is rate limiting with a barrier of 18.9 kcal/mol, comparable to the experimental value derived from the kcat measured in this work. The function of four residues R108, Y146, Y170, and D172, which form a hydrogen-bond network involving the substrate, is studied by conservative mutations. The mutants, including R108K, Y146F, Y170F, and D172N, decrease the enzyme activity by about 150-8000-fold. Molecular dynamics simulations show that the mutations disrupt the hydrogen-bond network, cause the substrate to deviate from active binding and hinder either the proton transfer from E201 to O4(+1) or the nucleophilic attack from E196 to C1(-1).

  3. Cleavage enhancement of specific chemical bonds in DNA by cisplatin radiosensitization.

    PubMed

    Xiao, Fangxing; Luo, Xinglan; Fu, Xianzhi; Zheng, Yi

    2013-05-02

    X-ray photoelectron spectroscopy (XPS) is harnessed as an in situ efficient characterization technique for monitoring chemical bond transformation in DNA and cisplatin-DNA complexes under synergic X-ray irradiation. By analyzing the variation of relative peak area of core elements of DNA as a function of irradiation time, we find that the most vulnerable scission sites in DNA are those containing phosphate and glycosidic bonds. Compared to DNA, the effective rate constants of the corresponding phosphodiester and glycosidic bond cleavages for cisplatin-DNA complexes are 1.8 and 1.9 folds larger. These damages and their enhancements are similar to those induced by low energy electrons (LEE). Consistently, the magnitude of the secondary electron distribution produced by the X-rays on the cisplatin-DNA complexes is considerably increased compared to that of pristine DNA. The data suggest that DNA radiosensization by cisplatin results not only from the sensitization of DNA to the action of LEE, but also from an increase the production of LEE at the site of binding of the cisplatin. The results provide new insights into the mechanisms of cisplatin-induced sensitization of DNA under X-ray irradiation, which could be helpful in the design of new cisplatin-based antitumor drugs.

  4. A study on Zr-Ir multiple bonding active for C-H bond cleavage.

    PubMed

    Oishi, Masataka; Oshima, Masato; Suzuki, Hiroharu

    2014-07-07

    Zr-Ir hydrido complexes with ansa-(cyclopentadienyl)(amide) as the supporting ligand in the zirconium fragment, e.g., (L(1)ZrR)(Cp*Ir)(μ-H)3 [L(1) = Me2Si(η(5)-C5Me4)(N(t)Bu), R = Cl (5), Ph (7), Me (10), alkyl, and aryl] were designed, synthesized, and isolated as tractable early-late heterodinuclear complexes. Despite the presence of the three supporting hydride ligands, Zr-Ir distances in the crystal structures of 5, alkyl, and aryl complexes [2.74-2.76 Å] were slightly longer than the sum of the element radii of Zr and Ir [2.719 Å]. These hydrocarbyl complexes displayed the thermolytic C-H activation of a variety of aromatic compounds and several organometallic compounds. Also, the substrate scope and limitation in the Zr-Ir system were studied. The regiochemical outcomes during the C-H activation of pyridine derivatives and methoxyarenes suggested the in situ generation of a Lewis acidic active intermediate, i.e., (L(1)Zr)(Cp*IrH2) (III). The existence of III and relevant σ-complex intermediates {L(1)Zr(η(2)-R-H)}(Cp*IrH2) (IIR) (R = Me, Ph) in the ligand exchange was demonstrated by the direct isolation of a Et3PO-adduct of III (39b) from 7 and kinetic studies. The structure of the direct Zr-Ir bonds in IIPh, IIMe, III, and 39b were probed using computational studies. The unprecedented strong M-M' interactions in the early-late heterobimetallic (ELHB) complexes have been proposed herein.

  5. Biomimetic oxidation with molecular oxygen. Selective carbon-carbon bond cleavage of 1,2-diols by molecular oxygen and dihydropyridine in the presence of iron-porphyrin catalysts

    SciTech Connect

    Okamoto, T.; Sasaki, K.; Oka, S.

    1988-02-17

    The selective carbon-carbon bond cleavage of 1,2-diols in the presence of an iron-porphyrin complex, molecular oxygen, and 1-benzyl-3-carbamoyl-1,4-dihydropyridine is reported. The C-C bonds of aryl-substituted ethane-1,2-diols were cleaved exclusively to aldehydes or ketones as the oxidation products at room temperature. The reaction rates were influenced by the steric hindrance of the substituents both in the catalysts and diols, but no differences in the reactivities were observed between the two stereo isomers (meso and dl) of diols. A kinetic analysis of this bond cleavage reaction is consistent with the reaction mechanism consisting of the initial binding of diol on the active catalyst forming an intermediate complex and its subsequent breakdown in the rate-determining step of the catalytic cycle. The initial binding step is favorable for electron-deficient diols and is influenced by steric hindrance, whereas the rate-determining bond cleavage step is accelerated by electron-rich diols and unaffected by the steric effect. The mechanism of this diol cleavage reaction is discussed on the basis of these observations.

  6. ATP-Dependent C–F Bond Cleavage Allows the Complete Degradation of 4-Fluoroaromatics without Oxygen

    PubMed Central

    Tiedt, Oliver; Mergelsberg, Mario; Boll, Kerstin; Müller, Michael; Adrian, Lorenz; Jehmlich, Nico; von Bergen, Martin

    2016-01-01

    ABSTRACT Complete biodegradation of the abundant and persistent fluoroaromatics requires enzymatic cleavage of an arylic C–F bond, probably the most stable single bond of a biodegradable organic molecule. While in aerobic microorganisms defluorination of fluoroaromatics is initiated by oxygenases, arylic C–F bond cleavage has never been observed in the absence of oxygen. Here, an oxygen-independent enzymatic aryl fluoride bond cleavage is described during the complete degradation of 4-fluorobenzoate or 4-fluorotoluene to CO2 and HF in the denitrifying Thauera aromatica: the ATP-dependent defluorination of 4-fluorobenzoyl-coenzyme A (4-F-BzCoA) to benzoyl-coenzyme A (BzCoA) and HF, catalyzed by class I BzCoA reductase (BCR). Adaptation to growth with the fluoroaromatics was accomplished by the downregulation of a promiscuous benzoate-CoA ligase and the concomitant upregulation of 4-F-BzCoA-defluorinating/dearomatizing BCR on the transcriptional level. We propose an unprecedented mechanism for reductive arylic C–F bond cleavage via a Birch reduction-like mechanism resulting in a formal nucleophilic aromatic substitution. In the proposed anionic 4-fluorodienoyl-CoA transition state, fluoride elimination to BzCoA is favored over protonation to a fluorinated cyclic dienoyl-CoA. PMID:27507824

  7. Light-mediated heterogeneous cross dehydrogenative coupling reactions: metal oxides as efficient, recyclable, photoredox catalysts in C-C bond-forming reactions.

    PubMed

    Rueping, Magnus; Zoller, Jochen; Fabry, David C; Poscharny, Konstantin; Koenigs, René M; Weirich, Thomas E; Mayer, Joachim

    2012-03-19

    Let there be light: A heterogeneous photocatalytic system based on easily recyclable TiO(2) or ZnO allows cross dehydrogenative coupling reactions of tertiary amines. The newly developed protocols have successfully been applied to various C-C and C-P bond-forming reactions to provide nitro amines as well as amino ketones, nitriles and phosphonates.

  8. Hydroxy functionalization of non-activated C-H and C=C bonds: new perspectives for the synthesis of alcohols through biocatalytic processes.

    PubMed

    Gröger, Harald

    2014-03-17

    New perspectives through enzymes: Recent breakthroughs have been achieved in the selective hydroxy functionalization of non-activated C-H and C=C bonds. Enzymes turned out to be suitable catalysts for the ω-hydroxylation of (substituted) alkanes and regioselective hydroxylation of aromatic hydrocarbons with atmospheric oxygen as the oxidant, and the asymmetric addition of water to non-activated alkenes.

  9. An SRLLR motif downstream of the scissile bond enhances enterokinase cleavage efficiency.

    PubMed

    Liew, Oi Wah; Jenny Chong, Pek Ching; Lim, Yok Zuan; Ang, Cui Xia; Amy Lau, Yong Chen; Yandle, Tim G; Brennan, Stephen O

    2007-01-01

    In a previous paper, we reported more efficient enterokinase cleavage at a C-terminal non-target LKGDR(201) site compared with an internally sited canonical recognition site, DDDDK(156). When this non-target site was placed internally to replace DDDDK(156) between the thioredoxin moiety and mouse NT-proCNP(1-50), this site was poorly processed leading us to conclude that efficient processing at LKGDR(201) in the first instance was due to its accessibility at the C-terminus of the fusion protein. Subsequently, we reasoned that treatment of thioredoxin-fused NT-proCNP(1-81) would allow us to retrieve full-length NT-proCNP(1-81) without undue processing at the LKGDR(201) site since this non-target site would now be located internally about 36 residues away from the C-terminus and hence not be hydrolyzed efficiently. Surprisingly, ESI-MS data showed that the LKGDR site in thioredoxin-fused human NT-proCNP(1-81) was still very efficiently cleaved and revealed a new but slow hydrolysis site with the sequence RVDTK/SRAAW to yield a peptide consistent with NT-proCNP(58-81). The evidence obtained from these experiments led us to postulate that efficient cleavage at the non-target LKGDR(201) site was not merely influenced by steric constraints but also by the sequence context downstream of the scissile bond. Hence, we constructed variants of thioredoxin-mouse NT-proCNP(1-50) where SRLLR residues (i.e. those immediately downstream from the LKGDR(201) site in NT-proCNP(1-50)) were systematically added one at a time downstream of the internal DDDDK(156) site. To evaluate the relative effects of site accessibility and downstream sequence context on the efficiency of enterokinase cleavage, we have also replaced the native LKGDR(201) sequence with DDDDK(201). Our results showed that incremental addition of SRLLR residues led to a steady increase in the rate of hydrolysis at DDDDK(156). Further variants comprising DDDDK(156)SS, DDDDK(156)SD and DDDDK(156)RR showed that the minimal

  10. Controllable synthesis of silver and silver sulfide nanocrystals via selective cleavage of chemical bonds

    NASA Astrophysics Data System (ADS)

    Tang, Aiwei; Wang, Yu; Ye, Haihang; Zhou, Chao; Yang, Chunhe; Li, Xu; Peng, Hongshang; Zhang, Fujun; Hou, Yanbing; Teng, Feng

    2013-09-01

    A one-step colloidal process has been adopted to prepare silver (Ag) and silver sulfide (Ag2S) nanocrystals, thus avoiding presynthesis of an organometallic precursor and the injection of a toxic phosphine agent. During the reaction, a layered intermediate compound is first formed, which then acts as a precursor, decomposing into the nanocrystals. The composition of the as-obtained products can be controlled by selective cleavage of S-C bonds or Ag-S bonds. Pure Ag2S nanocrystals can be obtained by directly heating silver acetate (Ag(OAc)) and n-dodecanethiol (DDT) at 200 ° C without any surfactant, and pure Ag nanocrystals can be synthesized successfully if the reaction temperature is reduced to 190 ° C and the amount of DDT is decreased to 1 ml in the presence of a non-coordinating organic solvent (1-octadecene, ODE). Otherwise, the mixture of Ag and Ag2S is obtained by directly heating Ag(OAc) in DDT by increasing the reaction temperature or in a mixture of DDT and ODE at 200 ° C. The formation mechanism has been discussed in detail in terms of selective S-C and Ag-S bond dissociation due to the nucleophilic attack of DDT and the lower bonding energy of Ag-S. Interestingly, some products can easily self-assemble into two- or three-dimensional (2D or 3D) highly ordered superlattice structures on a copper grid without any additional steps. The excess DDT plays a key role in the superlattice structure due to the bundling and interdigitation of the thiolate molecules adsorbed on the as-obtained nanocrystals.

  11. Controllable synthesis of silver and silver sulfide nanocrystals via selective cleavage of chemical bonds.

    PubMed

    Tang, Aiwei; Wang, Yu; Ye, Haihang; Zhou, Chao; Yang, Chunhe; Li, Xu; Peng, Hongshang; Zhang, Fujun; Hou, Yanbing; Teng, Feng

    2013-09-06

    A one-step colloidal process has been adopted to prepare silver (Ag) and silver sulfide (Ag₂S) nanocrystals, thus avoiding presynthesis of an organometallic precursor and the injection of a toxic phosphine agent. During the reaction, a layered intermediate compound is first formed, which then acts as a precursor, decomposing into the nanocrystals. The composition of the as-obtained products can be controlled by selective cleavage of S-C bonds or Ag-S bonds. Pure Ag₂S nanocrystals can be obtained by directly heating silver acetate (Ag(OAc)) and n-dodecanethiol (DDT) at 200 ° C without any surfactant, and pure Ag nanocrystals can be synthesized successfully if the reaction temperature is reduced to 190 ° C and the amount of DDT is decreased to 1 ml in the presence of a non-coordinating organic solvent (1-octadecene, ODE). Otherwise, the mixture of Ag and Ag₂S is obtained by directly heating Ag(OAc) in DDT by increasing the reaction temperature or in a mixture of DDT and ODE at 200 ° C. The formation mechanism has been discussed in detail in terms of selective S-C and Ag-S bond dissociation due to the nucleophilic attack of DDT and the lower bonding energy of Ag-S. Interestingly, some products can easily self-assemble into two- or three-dimensional (2D or 3D) highly ordered superlattice structures on a copper grid without any additional steps. The excess DDT plays a key role in the superlattice structure due to the bundling and interdigitation of the thiolate molecules adsorbed on the as-obtained nanocrystals.

  12. An unusual carbon-carbon bond cleavage reaction during phosphinothricin biosynthesis

    SciTech Connect

    Cicchillo, Robert M; Zhang, Houjin; Blodgett, Joshua A.V.; Whitteck, John T; Li, Gongyong; Nair, Satish K; van derDonk, Wilfred A; Metcalf, William W

    2010-01-12

    Natural products containing phosphorus-carbon bonds have found widespread use in medicine and agriculture. One such compound, phosphinothricin tripeptide, contains the unusual amino acid phosphinothricin attached to two alanine residues. Synthetic phosphinothricin (glufosinate) is a component of two top-selling herbicides (Basta and Liberty), and is widely used with resistant transgenic crops including corn, cotton and canola. Recent genetic and biochemical studies showed that during phosphinothricin tripeptide biosynthesis 2-hydroxyethylphosphonate (HEP) is converted to hydroxymethylphosphonate (HMP). Here we report the in vitro reconstitution of this unprecedented C(sp{sup 3})-C(sp{sup 3}) bond cleavage reaction and X-ray crystal structures of the enzyme. The protein is a mononuclear non-haem iron(II)-dependent dioxygenase that converts HEP to HMP and formate. In contrast to most other members of this family, the oxidative consumption of HEP does not require additional cofactors or the input of exogenous electrons. The current study expands the scope of reactions catalysed by the 2-His-1-carboxylate mononuclear non-haem iron family of enzymes.

  13. Palladium-catalyzed oxidative arylalkylation of activated alkenes: dual C-H bond cleavage of an arene and acetonitrile.

    PubMed

    Wu, Tao; Mu, Xin; Liu, Guosheng

    2011-12-23

    Not one but two: The title reaction proceeds through the dual C-H bond cleavage of both aniline and acetonitrile. The reaction affords a variety of cyano-bearing indolinones in excellent yield. Mechanistic studies demonstrate that this reaction involves a fast arylation of the olefin and a rate-determining C-H activation of the acetonitrile.

  14. An efficient cleavage of the aryl ether C-O bond in supercritical carbon dioxide-water.

    PubMed

    Chatterjee, Maya; Ishizaka, Takayuki; Suzuki, Akira; Kawanami, Hajime

    2013-05-18

    A simple and highly efficient Rh/C catalyzed route for the cleavage of the C-O bond of aromatic ether at 80 °C in the presence of 0.5 MPa of H2 in the scCO2-water medium is reported; CO2 pressure and water play a key role under the tested conditions.

  15. Coupling of the guanosine glycosidic bond conformation and the ribonucleotide cleavage reaction: implications for barnase catalysis.

    PubMed

    Roca, Maite; De Maria, Leonardo; Wodak, Shoshana J; Moliner, Vicente; Tuñón, Iñaki; Giraldo, Jesús

    2008-02-01

    To examine the possible relationship of guanine-dependent GpA conformations with ribonucleotide cleavage, two potential of mean force (PMF) calculations were performed in aqueous solution. In the first calculation, the guanosine glycosidic (Gchi) angle was used as the reaction coordinate, and computations were performed on two GpA ionic species: protonated (neutral) or deprotonated (negatively charged) guanosine ribose O2 '. Similar energetic profiles featuring two minima corresponding to the anti and syn Gchi regions were obtained for both ionic forms. For both forms the anti conformation was more stable than the syn, and barriers of approximately 4 kcal/mol were obtained for the anti --> syn transition. Structural analysis showed a remarkable sensitivity of the phosphate moiety to the conformation of the Gchi angle, suggesting a possible connection between this conformation and the mechanism of ribonucleotide cleavage. This hypothesis was confirmed by the second PMF calculations, for which the O2 '--P distance for the deprotonated GpA was used as reaction coordinate. The computations were performed from two selected starting points: the anti and syn minima determined in the first PMF study of the deprotonated guanosine ribose O2'. The simulations revealed that the O2 ' attack along the syn Gchi was more favorable than that along the anti Gchi: energetically, significantly lower barriers were obtained in the syn than in the anti conformation for the O--P bond formation; structurally, a lesser O2 '--P initial distance, and a better suited orientation for an in-line attack was observed in the syn relative to the anti conformation. These results are consistent with the catalytically competent conformation of barnase-ribonucleotide complex, which requires a guanine syn conformation of the substrate to enable abstraction of the ribose H2 ' proton by the general base Glu73, thereby suggesting a coupling between the reactive substrate conformation and enzyme structure

  16. Mechanistic examination of Cβ-Cγ bond cleavages of tryptophan residues during dissociations of molecular peptide radical cations.

    PubMed

    Song, Tao; Ma, Ching-Yung; Chu, Ivan K; Siu, Chi-Kit; Laskin, Julia

    2013-02-14

    In this study, we used collision-induced dissociation (CID) to examine the gas-phase fragmentations of [G(n)W](•+) (n = 2-4) and [GXW](•+) (X = C, S, L, F, Y, Q) species. The C(β)-C(γ) bond cleavage of a C-terminal decarboxylated tryptophan residue ([M - CO(2)](•+)) can generate [M - CO(2) - 116](+), [M - CO(2) - 117](•+), and [1H-indole](•+) (m/z 117) species as possible product ions. Competition between the formation of [M - CO(2) - 116](+) and [1H-indole](•+) systems implies the existence of a proton-bound dimer formed between the indole ring and peptide backbone. Formation of such a proton-bound dimer is facile via a protonation of the tryptophan γ-carbon atom as suggested by density functional theory (DFT) calculations. DFT calculations also suggested the initially formed ion 2, the decarboxylated species that is active against C(β)-C(γ) bond cleavage, can efficiently isomerize to form a more stable π-radical isomer (ion 9) as supported by Rice-Ramsperger-Kassel-Marcus (RRKM) modeling. The C(β)-C(γ) bond cleavage of a tryptophan residue also can occur directly from peptide radical cations containing a basic residue. CID of [WG(n)R](•+) (n = 1-3) radical cations consistently resulted in predominant formation of [M - 116](+) product ions. It appears that the basic arginine residue tightly sequesters the proton and allows the charge-remote C(β)-C(γ) bond cleavage to prevail over the charge-directed one. DFT calculations predicted that the barrier for the former is 6.2 kcal mol(-1) lower than that of the latter. Furthermore, the pathway involving a salt-bridge intermediate also was accessible during such a bond cleavage event.

  17. Mechanistic Examination of Cβ–Cγ Bond Cleavages of Tryptophan Residues during Dissociations of Molecular Peptide Radical Cations

    SciTech Connect

    Song, Tao; Ma, Ching-Yung; Chu, Ivan K.; Siu, Chi-Kit; Laskin, Julia

    2013-02-14

    In this study, we used collision-induced dissociation (CID) to examine the gas-phase fragmentations of [GnW]•+ (n = 2-4) and [GXW]•+ (X = C, S, L, F, Y, Q) species. The Cβ–Cγ bond cleavage of a C-terminal decarboxylated tryptophan residue ([M - CO2]•+) can generate [M - CO2 - 116]+, [M - CO2 - 117]•+, and [1H-indole]•+ (m/z 117) species as possible product ions. Competition between the formation of [M - CO2 - 116]+ and [1H-indole]•+ systems implies the existence of a proton-bound dimer formed between the indole ring and peptide backbone. Formation of such a proton-bound dimer is facile via a protonation of the tryptophan γ-carbon atom as suggested by density functional theory (DFT) calculations. DFT calculations also suggested the initially formed ion 2--the decarboxylated species that is active against Cβ–Cγ bond cleavage -can efficiently isomerize to form a more-stable -radical isomer (ion 9) as supported by Rice-Ramsperger-Kassel-Marcus (RRKM) modeling. The Cβ–Cγ bond cleavage of a tryptophan residue also can occur directly from peptide radical cations containing a basic residue. CID of [WGnR]•+ (n = 1-3) radical cations consistently resulted in predominant formation of [M-116]+ product ions. It appears that the basic arginine residue tightly sequesters the proton and allows the charge-remote Cβ–Cγ bond cleavage to prevail over the charge-directed one. DFT calculations predicted the barrier for the former is 6.2 kcal mol -1 lower than that of the latter. Furthermore, the pathway involving a salt-bridge intermediate also was accessible during such a bond cleavage event.

  18. Identification of Possible Pathways for C-C Bond Formation during Electrochemical Reduction of CO2: New Theoretical Insights from an Improved Electrochemical Model.

    PubMed

    Goodpaster, Jason D; Bell, Alexis T; Head-Gordon, Martin

    2016-04-21

    We have carried out a periodic Kohn-Sham density functional theory investigation of the pathways by which carbon-carbon bonds could be formed during the electrochemical reduction of CO2 on Cu(100) using a model that includes the effects of the electrochemical potential, solvent, and electrolyte. The electrochemical potential was set by relating the applied potential to the Fermi energy and then calculating the number of electrons required by the simulation cell for that specific Fermi energy. The solvent was included as a continuum dielectric, and the electrolyte was described using a linearized Poisson-Boltzmann model. The calculated potential of zero charge for a variety of surfaces agrees with experiment to within a mean average error of 0.09 V, thereby validating the assumptions of the model. Analysis of the mechanism for C-C bond formation revealed that at low-applied potential, C-C bond formation occurs through a CO dimer. However, at high applied potentials, a large activation barrier blocks this pathway; therefore, C-C bond formation occurs through reaction of adsorbed CHO and CO. Rate parameters determined from our calculations were used to simulate the kinetics of ethene formation during the electrochemical reduction of CO over a Cu(100) surface. An excellent match was observed between previously reported measurements of the partial current for ethene formation as a function of applied voltage and the variation in the partial current for C-C bond formation predicted by our microkinetic model. The electrochemical model reported here is simple, fairly easy to implement, and involves only a small increase in computational cost over calculations neglecting the effects of the electrolyte and the applied field. Therefore, it can be used to study the effects of applied potential and electrolyte composition on the energetics of surface reactions for a wide variety of electrochemical reactions.

  19. Computational Study of Low-Temperature Catalytic C-C Bond Activation of Alkanes for Portable Power

    DTIC Science & Technology

    2013-06-05

    inhibiting the reaction. We found that Fluorinated phosphines are sufficiently π-accepting to satisfy this role. In our next step, we wanted to determine...of butane by Sen’s catalyst, Chepaikin et al. [5] proposed that CH cleavage occurs first. But the resulting catalyst fragment “X” is so electrophilic

  20. Implications of protonation and substituent effects for C-O and O-P bond cleavage in phosphate monoesters.

    PubMed

    Loncke, Paul G; Berti, Paul J

    2006-05-10

    A recent study of phosphate monoesters that broke down exclusively through C-O bond cleavage and whose reactivity was unaffected by protonation of the nonbridging oxygens (Byczynski et al. J. Am. Chem. Soc. 2003, 125, 12541) raised several questions about the reactivity of phosphate monoesters, R-O-P(i). Potential catalytic strategies, particularly with regard to selectively promoting C-O or O-P bond cleavage, were investigated computationally through simple alkyl and aryl phosphate monoesters. Both C-O and O-P bonds lengthened upon protonating the bridging oxygen, R-O(H(+))-P(i), and heterolytic bond dissociation energies, DeltaH(C)(-)(O) and DeltaH(O)(-)(P), decreased. Which bond will break depends on the protonation state of the phosphoryl moiety, P(i), and the identity of the organosubstituent, R. Protonating the bridging oxygen when the nonbridging oxygens were already protonated favored C-O cleavage, while protonating the bridging oxygen of the dianion form, R-O-PO(3)(2)(-), favored O-P cleavage. Alkyl R groups capable of forming stable cations were more prone to C-O bond cleavage, with tBu > iPr > F(2)iPr > Me. The lack of effect on the C-O cleavage rate from protonating nonbridging oxygens could arise from two precisely offsetting effects: Protonating nonbridging oxygens lengthens the C-O bond, making it more reactive, but also decreases the bridging oxygen proton affinity, making it less likely to be protonated and, therefore, less reactive. The lack of effect could also arise without bridging oxygen protonation if the ratio of rate constants with different protonation states precisely matched the ratio of acidity constants, K(a). Calculations used hybrid density functional theory (B3PW91/6-31++G) methods with a conductor-like polarizable continuum model (CPCM) of solvation. Calculations on Me-phosphate using MP2/aug-cc-pVDZ and PBE0/aug-cc-pVDZ levels of theory, and variations on the solvation model, confirmed the reproducibility with different

  1. Transition-metal-free oxidative carboazidation of acrylamides via cascade C-N and C-C bond-forming reactions.

    PubMed

    Qiu, Jun; Zhang, Ronghua

    2014-07-07

    A novel transition-metal-free oxidative carboazidation of acrylamides using inexpensive NaN3 and K2S2O8 was achieved, which not only provided an efficient method to prepare various N3-substituted oxindoles, but also represented a novel strategy for C-N and C-C bond formation via a free-radical cascade process. This transformation exhibits excellent functional group tolerance, affording the desired oxindoles in good to excellent yields.

  2. Bond cleavage reactions in the tripeptide trialanine upon free electron capture

    NASA Astrophysics Data System (ADS)

    Puschnigg, Benjamin; Huber, Stefan E.; Scheier, Paul; Probst, Michael; Denifl, Stephan

    2014-05-01

    In the present study we performed dissociative electron attachment (DEA) measurements with the tripeptide trialanine, C9H17N3O4, utilizing a crossed electron-molecular beam experiment with high electron energy resolution (~100 meV). Anion efficiency yields as a function of the incident electron energy are obtained for the most abundant anions up to electron energies of ~4 eV. Quantum chemical calculations are performed to determine the thermochemical thresholds for the anions observed in the measurements. There is no evidence of a molecular anion with lifetime of mass spectrometric timescales. The dehydrogenated closed shell anion (M-H)- is one of the fragment anions observed for which the calculations show that H-loss is energetically possible from carboxyl, as well as amide groups. In contrast to the dipeptide dialanine and monomer alanine the cleavage of the N-Cα bond in the peptide chain is already possible by attachment of electrons at ~0 eV. Contribution to the Topical Issue "Nano-scale Insights into Ion-beam Cancer Therapy", edited by Andrey V. Solov'yov, Nigel Mason, Paulo Limão-Vieira and Malgorzata Smialek-Telega.

  3. Mechanisms for enzymatic cleavage of the N-glycosidic bond in DNA

    PubMed Central

    Drohat, Alexander C.; Maiti, Atanu

    2014-01-01

    DNA glycosylases remove damaged or enzymatically modified nucleobases from DNA, thereby initiating the base excision repair (BER) pathway, which is found in all forms of life. These ubiquitous enzymes promote genomic integrity by initiating repair of mutagenic and/or cytotoxic lesions that arise continuously due to alkylation, deamination, or oxidation of the normal bases in DNA. Glycosylases also perform essential roles in epigenetic regulation of gene expression, by targeting enzymatically-modified forms of the canonical DNA bases. Monofunctional DNA glycosylases hydrolyze the N-glycosidic bond to liberate the target base, while bifunctional glycosylases mediate glycosyl transfer using an amine group of the enzyme, generating a Schiff base intermediate that facilitates their second activity, cleavage of the DNA backbone. Here we review recent advances in understanding the chemical mechanism of monofunctional DNA glycosylases, with an emphasis on how the reactions are influenced by properties of the nucleobase leaving-group, the moiety that varies across the vast range of substrates targeted by these enzymes. PMID:25181003

  4. Unusual intramolecular [2 + 2] cycloaddition of allyl and vinylidene C=C bonds under mild conditions: a theoretical analysis.

    PubMed

    Braña, Pedro; Gimeno, José; Sordo, José A

    2004-04-02

    A theoretical analysis allows for the rationalization of the recently reported unusual formation under mild conditions of a cyclobutylidene ring from a diastereoselective [2 + 2] intramolecular cycloaddition of two C=C systems. The reaction takes place by heating in dichloromethane the vinylidene complexes [Ru((eta(5),eta(3)-C(9)H(7))[=C=C(R)H][kappa(1)-(P)-PPh(2)(C(3)H(5))](PPh(3))][BF(4)] (R = Ph, p-Me-C(6)H(4)) (1) yielding the bicyclic alkylidene complexes [Ru((eta(5),eta(3)-C(9)H(7))[kappa(2)-(P,C)-(=CC(R)HCH(2)CHCH(2)-PPh(2)](PPh(3))][BF(4)] (2). The proposed mechanism represents an alternative to the classical Woodward-Hoffmann's supra-antara approach.

  5. Proton-driven amide bond-cleavage pathways of gas-phase peptide ions lacking mobile protons.

    PubMed

    Bythell, Benjamin J; Suhai, Sándor; Somogyi, Arpád; Paizs, Béla

    2009-10-07

    The mobile proton model (Dongre, A. R., Jones, J. L., Somogyi, A. and Wysocki, V. H. J. Am. Chem. Soc. 1996, 118 , 8365-8374) of peptide fragmentation states that the ionizing protons play a critical role in the gas-phase fragmentation of protonated peptides upon collision-induced dissociation (CID). The model distinguishes two classes of peptide ions, those with or without easily mobilizable protons. For the former class mild excitation leads to proton transfer reactions which populate amide nitrogen protonation sites. This enables facile amide bond cleavage and thus the formation of b and y sequence ions. In contrast, the latter class of peptide ions contains strongly basic functionalities which sequester the ionizing protons, thereby often hindering formation of sequence ions. Here we describe the proton-driven amide bond cleavages necessary to produce b and y ions from peptide ions lacking easily mobilizable protons. We show that this important class of peptide ions fragments by different means from those with easily mobilizable protons. We present three new amide bond cleavage mechanisms which involve salt-bridge, anhydride, and imine enol intermediates, respectively. All three new mechanisms are less energetically demanding than the classical oxazolone b(n)-y(m) pathway. These mechanisms offer an explanation for the formation of b and y ions from peptide ions with sequestered ionizing protons which are routinely fragmented in large-scale proteomics experiments.

  6. Yttrium-Assisted C-H and C-C Bond Activation of Ethylene Probed by Mass-Analyzed Threshold Ionization Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim, Jong Hyun; Yang, Dong-Sheng

    2016-06-01

    The reaction between Y atom and ethylene (CH2=CH2) was performed in a laser-ablation supersonic molecular beam source. Y(C2H2), Y(C2H4), and Y(C4H6) were observed by time-of-flight mass spectrometry and investigated with mass-analyzed threshold ionization (MATI) spectroscopy and theoretical calculations. Y(C2H2) is formed by hydrogen elimination, Y(C2H4) by simple association, and La(C4H6) by C-C bond coupling and dehydrogenation. Both Y(C2H2) and Y(C2H4) have a C2v triangular structure with a C=C double bond in Y(C2H2) and a C-C single bond in Y(C2H4). Y(C4H6) has a five-membered metallacyclic structure (Cs) with Y binding to the two terminal carbon atoms of butene, which is the exactly same as that of Y(C4H6) formed in the Y + 1-butene reaction. For all three complexes, ionization has a small effect on the metal-carbon bond lengths because the rejected electron has basically a Y 5s character. The adiabatic ionization energies are measured to be 45679(5) wn for Y(C2H2), 45603(5) wn for Y(C2H4) and 43475(5) wn for Y(C4H6). The metal-ligand stretching frequencies of the three complexes are also measured from the MATI spectra.

  7. Characterization of heme environment and mechanism of peroxide bond cleavage in human prostacyclin synthase

    PubMed Central

    Yeh, Hui-Chun; Hsu, Pei-Yung; Wang, Jinn-Shyan; Tsai, Ah-Lim; Wang, Lee-Ho

    2010-01-01

    Prostacyclin is a potent mediator of vasodilation and anti-platelet aggregation. It is synthesized from prostaglandin H2 by prostacyclin synthase (PGIS), a member of Family 8 in the cytochrome P450 superfamily. Unlike most P450s, which require exogenous reducing equivalents and an oxygen molecule for mono-oxygenation, PGIS catalyzes an isomerization with an initial step of endoperoxide bond cleavage of prostaglandin H2 (PGH2). The low abundance of PGIS in natural tissues necessitates heterologous expression for studies of structure/function relationships and reaction mechanism. We report here a high-yield prokaryotic system for expression of enzymatically active human PGIS. The PGIS cDNA is modified by replacing the hydrophobic amino-terminal sequence with the more hydrophilic amino-terminal sequence from P450 2C5 and by adding a four-histidine tag at the carboxyl terminus. The resulting recombinant PGIS associates with host cell membranes and was purified to electrophoretic homogeneity by nickel affinity, hydroxyapatite and CM Sepharose column chromatography. The recombinant PGIS, with a heme:protein ratio of 0.9:1, catalyzes prostacyclin formation at a Km of 13.3 µM PGH2 and a Vmax of 980 per min. The dithionite-reduced PGIS binds CO with an on-rate of 5.6 × 105 M−1 s−1 and an off-rate of 15 s−1. The ferrous–CO complex of PGIS is very short-lived and decays at a rate of 0.7 s−1. Spectral binding assays showed that imidazole binds weakly to PGIS (Kd ~0.5 mM,) but clotrimazole, a bulky and rigid imidazole derivative, binds strongly (Kd ~1 µM). The transient nature of the CO complex and the weak imidazole binding seem to support an earlier proposal that PGIS active site has a limited space, but the tight binding of clotrimazole argues against this view. It appears that the heme distal pocket of PGIS is fairly adaptable to ligands of various structures. UV-visible absorption, magnetic circular dichroism and electron paramagnetic resonance spectra

  8. Bonding and Integration of C-C Composite to Cu-Clad-Molybdenum for Thermal Management Applications

    NASA Technical Reports Server (NTRS)

    Asthana, R.; Singh, M.; Shpargel, T.P.

    2008-01-01

    Two- and three-dimensional carbon-carbon composites with either resin-derived matrix or CVI matrix were joined to Cu-clad-Mo using active Ag-Cu braze alloys for thermal management applications. The joint microstructure and composition were examined using Field-Emission Scanning Electron Microscopy and Energy-Dispersive Spectroscopy, and the joint hardness was characterized using the Knoop microhardness testing. Observations on the infiltration of the composite with molten braze, dissolution of metal substrate, and solute segregation at the C-C surface have been discussed. The thermal response of the integrated assembly is also briefly discussed.

  9. Formation of C-C Bonds via Ruthenium Catalyzed Transfer Hydrogenation: Carbonyl Addition from the Alcohol or Aldehyde Oxidation Level.

    PubMed

    Shibahara, Fumitoshi; Krische, Michael J

    2008-01-01

    Under the conditions of ruthenium catalyzed transfer hydrogenation employing isopropanol as terminal reductant, π-unsaturated compounds (1,3-dienes, allenes, 1,3-enynes and alkynes) reductively couple to aldehydes to furnish products of carbonyl addition. In the absence of isopropanol, π-unsaturated compounds couple directly from the alcohol oxidation level to form identical products of carbonyl addition. Such "alcohol-unsaturate C-C couplings" enable carbonyl allylation, propargylation and vinylation from the alcohol oxidation level in the absence of stoichiometric organometallic reagents or metallic reductants. Thus, direct catalytic C-H functionalization of alcohols at the carbinol carbon is achieved.

  10. Active Metal Brazing and Adhesive Bonding of Titanium to C/C Composites for Heat Rejection System

    NASA Technical Reports Server (NTRS)

    Singh, M.; Shpargel, Tarah; Cerny, Jennifer

    2006-01-01

    Robust assembly and integration technologies are critically needed for the manufacturing of heat rejection system (HRS) components for current and future space exploration missions. Active metal brazing and adhesive bonding technologies are being assessed for the bonding of titanium to high conductivity Carbon-Carbon composite sub components in various shapes and sizes. Currently a number of different silver and copper based active metal brazes and adhesive compositions are being evaluated. The joint microstructures were examined using optical microscopy, and scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (EDS). Several mechanical tests have been employed to ascertain the effectiveness of different brazing and adhesive approaches in tension and in shear that are both simple and representative of the actual system and relatively straightforward in analysis. The results of these mechanical tests along with the fractographic analysis will be discussed. In addition, advantages, technical issues and concerns in using different bonding approaches will also be presented.

  11. Presolvated Low Energy Electron Attachment to Peptide Methyl esters in Aqueous Solution: C-O Bond Cleavage at 77K

    PubMed Central

    Kheir, Jeanette; Chomicz, Lidia; Engle, Alyson; Rak, Janusz; Sevilla, Michael D.

    2013-01-01

    In this study, the reactions of presolvated electrons with glycine methyl ester and N-acetylalanylalanine methyl ester (N-aAAMe) are investigated by electron spin resonance (ESR) spectroscopy and DFT calculations. Electrons were produced by gamma irradiation in neutral 7.5 M LiCl-D2O aqueous glasses at low temperatures. For glycine methyl ester electron addition at 77K results in both N-terminal deamination to form a glycyl radical and C-O ester bond cleavage to form methyl radicals. For samples of N-acetylalanylalanine methyl ester electrons are found to add to the peptide bonds at 77K and cleave the carboxyl ester groups to produce methyl radicals. On annealing to 160K electron adducts at the peptide links undergo chain scission to produce alanyl radicals and further annealing to 170K α-carbon peptide backbone radicals are produced by hydrogen abstraction. DFT calculations for electron addition to the methyl ester portion of N-aAAMe show the cleavage reaction is highly favorable (free energy equals to −30.7 kcal/mol) with the kinetic barrier of only 9.9 kcal/mol. A substantial electron affinity of the ester link (38.0 kcal/mol) provides more than sufficient energy to overcome this small barrier. Protonated peptide bond electron adducts, also show favorable N-C chain cleavage reactions of −12.7 to −15.5 kcal/mol with a barrier from 7.4 to 10.0 kcal/mol. The substantial adiabatic electron affinity (AEA) of the peptide bond and ester groups provides sufficient energy for the bond dissociation. PMID:23406302

  12. Presolvated low energy electron attachment to peptide methyl esters in aqueous solution: C-O bond cleavage at 77 K.

    PubMed

    Kheir, Jeanette; Chomicz, Lidia; Engle, Alyson; Rak, Janusz; Sevilla, Michael D

    2013-03-14

    In this study, the reactions of presolvated electrons with glycine methyl ester and N-acetylalanylalanine methyl ester (N-aAAMe) are investigated by electron spin resonance (ESR) spectroscopy and DFT calculations. Electrons were produced by γ-irradiation in neutral 7.5 M LiCl-D2O aqueous glasses at low temperatures. For glycine methyl ester, electron addition at 77 K results in both N-terminal deamination to form a glycyl radical and C-O ester bond cleavage to form methyl radicals. For samples of N-acetylalanylalanine methyl ester, electrons are found to add to the peptide bonds at 77 K and cleave the carboxyl ester groups to produce methyl radicals. On annealing to 160 K, electron adducts at the peptide links undergo chain scission to produce alanyl radicals and on further annealing to 170 K α-carbon peptide backbone radicals are produced by hydrogen abstraction. DFT calculations for electron addition to the methyl ester portion of N-aAAMe show the cleavage reaction is highly favorable (free energy equals to -30.7 kcal/mol) with the kinetic barrier of only 9.9 kcal/mol. A substantial electron affinity of the ester link (38.0 kcal/mol) provides more than sufficient energy to overcome this small barrier. Protonated peptide bond electron adducts also show favorable N-C chain cleavage reactions of -12.7 to -15.5 kcal/mol with a barrier from 7.4 to 10.0 kcal/mol. The substantial adiabatic electron affinity (AEA) of the peptide bond and ester groups provides sufficient energy for the bond dissociation.

  13. Photodissociation Dynamics of 2-BROMOETHYLNITRITE at 351 NM and C-C Bond Fission in the β - Radical Product

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Chhantyal-Pun, Rabi; Brynteson, Matt D.; Miller, Terry A.; Butler, Laurie J.

    2013-06-01

    We used a crossed laser-molecular beam scattering experiment to investigate the primary photodissociation channels of bromoethylnitrite at 351 nm. Only the O-NO bond fission channel forming the β -bromoethoxy radical and NO, no HBr photoelimination, was detected upon 351 nm photoexcitation,. The subsequent decomposition of the highly vibrational excited β -bromoethoxy radical to formaldehyde + CH{_2}Br was also investigated.

  14. Reactions of the alkoxy radicals formed following OH-addition to alpha-pinene and beta-pinene. C-C bond scission reactions.

    PubMed

    Dibble, T S

    2001-05-09

    The atmospheric degradation pathways of the atmospherically important terpenes alpha-pinene and beta-pinene are studied using density functional theory. We employ the correlation functional of Lee, Yang, and Parr and the three-parameter HF exchange functional of Becke (B3LYP) together with the 6-31G(d) basis set. The C-C bond scission reactions of the beta-hydroxyalkoxy radicals that are formed after OH addition to alpha-pinene and beta-pinene are investigated. Both of the alkoxy radicals formed from the alpha-pinene-OH adduct possess a single favored C-C scission pathway with an extremely low barrier (approximately 3 kcal/mol) leading to the formation of pinonaldehyde. Neither of these pathways produces formaldehyde, and preliminary computational results offer some support for suggestions that 1,5 or 1,6 H-shift (isomerization) reactions of alkoxy radicals contribute to formaldehyde production. In the case of the alkoxy radical formed following OH addition to the methylene group of beta-pinene, there exists two C-C scission reactions with nearly identical barrier heights (approximately 7.5 kcal/mol); one leads to known products (nopinone and formaldehyde) but the ultimate products of the competing reaction are unknown. The single C-C scission pathway of the other alkoxy radical from beta-pinene possesses a very low (approximately 4 kcal/mol) barrier. The kinetically favored C-C scission reactions of all four alkoxy radicals appear to be far faster than expected rates of reaction with O2. The rearrangement of the alpha-pinene-OH adduct, a key step in the proposed mechanism of formation of acetone from alpha-pinene, is determined to possess a barrier of 11.6 kcal/mol. This value is consistent with another computational result and is broadly consistent with the modest acetone yields observed in product yield studies.

  15. Facile C-S, S-H, and S-S bond cleavage using a nickel(0) NHC complex.

    PubMed

    Schaub, Thomas; Backes, Marc; Plietzsch, Oliver; Radius, Udo

    2009-09-21

    [Ni2(iPr2Im)4(COD)] 1 (iPr2Im = 1,3-di(isopropyl)-imidazol-2-ylidene) reacts at room temperature with the thioethers methyl para-tolyl sulfide, ethyl phenyl sulfide, benzothiophene and dibenzothiophene to afford the C-S bond cleavage products [Ni(iPr2Im)2(4-CH3-C6H4)(SMe)] 2, [Ni(iPr2Im)2(C6H5)(SEt)] 3, [Ni(iPr2Im)2(1,8-benzothiophenylato)] 4 and [Ni(iPr2Im)2(C,S-dibenzothiophenylato)] 5. In contrast to the reaction of thioethers or sulfoxides (reported earlier), no C-S bond cleavage was observed for the reaction of 1 with the sulfones bezothiophene-1,1-dioxide and methyl phenyl sulfone. In those cases the stable compounds [Ni(iPr2Im)2(eta2-2,3-benzothiophene-1,1-dioxide)] 6 and [Ni(iPr2Im)2(eta2-MeSO2C6H5)] 7 with a eta2-coordinated sulfone ligand have been isolated. Compound 6 has been structurally characterized. S-H bond cleavage was observed using 2-methyl-2-propanthiol to afford [Ni(iPr2Im)2(H)(StBu)] 8. The reaction of 1 with disulfides led to the dithiolato complexes [Ni(iPr2Im)2(SR)2] (R = tBu 9, Me 10, Ph 11) by S-S bond scission.

  16. Effect of trastuzumab interchain disulfide bond cleavage on Fcγ receptor binding and antibody-dependent tumour cell phagocytosis.

    PubMed

    Suzuki, Mami; Yamanoi, Ayaka; Machino, Yusuke; Ootsubo, Michiko; Izawa, Ken-ichi; Kohroki, Junya; Masuho, Yasuhiko

    2016-01-01

    The Fc domain of human IgG1 binds to Fcγ receptors (FcγRs) to induce effector functions such as phagocytosis. There are four interchain disulfide bonds between the H and L chains. In this study, the disulfide bonds within the IgG1 trastuzumab (TRA), which is specific for HER2, were cleaved by mild S-sulfonation or by mild reduction followed by S-alkylation with three different reagents. The cleavage did not change the binding activities of TRA to HER2-bearing SK-BR-3 cells. The binding activities of TRA to FcγRIIA and FcγRIIB were greatly enhanced by modification with mild reduction and S-alkylation with ICH2CONH2 or N-(4-aminophenyl) maleimide, while the binding activities of TRA to FcγRI and FcγRIIIA were decreased by any of the four modifications. However, the interchain disulfide bond cleavage by the different modifications did not change the antibody-dependent cell-mediated phagocytosis (ADCP) of SK-BR-3 cells by activated THP-1 cells. The order of FcγR expression levels on the THP-1 cells was FcγRII > FcγRI > FcγRIII and ADCP was inhibited by blocking antibodies against FcγRI and FcγRII. These results imply that the effect of the interchain disulfide bond cleavage on FcγRs binding and ADCP is dependent on modifications of the cysteine residues and the FcγR isotypes.

  17. Cu-catalyzed cross-dehydrogenative coupling: A versatile strategy for C-C bond formations via the oxidative activation of sp3 C-H bonds

    NASA Astrophysics Data System (ADS)

    Li, Zhiping; Bohle, D. Scott; Li, Chao-Jun

    2006-06-01

    Cu-catalyzed cross-dehydrogenative coupling (CDC) methodologies were developed based on the oxidative activation of sp3 C-H bonds adjacent to a nitrogen atom. Various sp, sp2, and sp3 C-H bonds of pronucleophiles were used in the Cu-catalyzed CDC reactions. Based on these results, the mechanisms of the CDC reactions also are discussed. C-H activation | catalysis | Baylis-Hillman reaction | Mannich reaction | Friedel-Crafts reaction

  18. Robust C-C bonded porous networks with chemically designed functionalities for improved CO2 capture from flue gas.

    PubMed

    Thirion, Damien; Lee, Joo S; Özdemir, Ercan; Yavuz, Cafer T

    2016-01-01

    Effective carbon dioxide (CO2) capture requires solid, porous sorbents with chemically and thermally stable frameworks. Herein, we report two new carbon-carbon bonded porous networks that were synthesized through metal-free Knoevenagel nitrile-aldol condensation, namely the covalent organic polymer, COP-156 and 157. COP-156, due to high specific surface area (650 m(2)/g) and easily interchangeable nitrile groups, was modified post-synthetically into free amine- or amidoxime-containing networks. The modified COP-156-amine showed fast and increased CO2 uptake under simulated moist flue gas conditions compared to the starting network and usual industrial CO2 solvents, reaching up to 7.8 wt % uptake at 40 °C.

  19. Aromatic Cations from Oxidative Carbon–Hydrogen Bond Cleavage in Bimolecular Carbon–Carbon Bond Forming Reactions

    PubMed Central

    Clausen, Dane J.

    2012-01-01

    Chromenes and isochromenes react quickly with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) to form persistent aromatic oxocarbenium ions through oxidative carbon–hydrogen cleavage. This process is tolerant of electron-donating and electron-withdrawing groups on the benzene ring and additional substitution on the pyran ring. A variety of nucleophiles can be added to these cations to generate a diverse set of structures. PMID:22780559

  20. Selective scission of C-O and C-C bonds in ethanol using bimetal catalysts for the preferential growth of semiconducting SWNT arrays.

    PubMed

    Zhang, Shuchen; Hu, Yue; Wu, Juanxia; Liu, Dan; Kang, Lixing; Zhao, Qiuchen; Zhang, Jin

    2015-01-28

    For the application of single-walled carbon nanotubes (SWNTs) to electronic and optoelectronic devices, techniques to obtain semiconducting SWNT (s-SWNT) arrays are still in their infancy. We have developed herein a rational approach for the preferential growth of horizontally aligned s-SWNT arrays on a ST-cut quartz surface through the selective scission of C-O and C-C bonds of ethanol using bimetal catalysts, such as Cu/Ru, Cu/Pd, and Au/Pd. For a common carbon source, ethanol, a reforming reaction occurs on Cu or Au upon C-C bond breakage and produces C(ads) and CO, while a deoxygenating reaction occurs on Ru or Pd through C-O bond breaking resulting in the production of O(ads) and C2H4. The produced C2H4 by Ru or Pd can weaken the oxidative environment through decomposition and the neutralization of O(ads). When the bimetal catalysts with an appropriate ratio were used, the produced C(ads) and C2H4 can be used as carbon source for SWNT growth, and O(ads) promotes a suitable and durable oxidative environment to inhibit the formation of metallic SWNTs (m-SWNTs). Finally, we successfully obtained horizontally aligned SWNTs on a ST-cut quartz surface with a density of 4-8 tubes/μm and an s-SWNT ratio of about 93% using an Au/Pd (1:1) catalyst. The synergistic effects in bimetallic catalysts provide a new mechanism to control the growth of s-SWNTs.

  1. Intramolecular hydroalkoxylation of non-activated C=C bonds catalysed by zeolites: an experimental and theoretical study.

    PubMed

    Pérez-Mayoral, Elena; Matos, Ines; Nachtigall, Petr; Položij, Miroslav; Fonseca, Isabel; Vitvarová-Procházková, Dana; Čejka, Jiří

    2013-06-01

    The high activity and selectivity of zeolites in the cyclisation of unsaturated alcohols is reported for the first time; the details of a reaction mechanism based on quantum chemical calculations are also provided. The high efficiency of zeolites MFI, BEA and FAU in the cyclisation of unsaturated alcohols (cis-decen-1-ol, 6-methylhept-5-en-2-ol and 2-allylphenol) to afford oxygen-containing heterocyclic rings is demonstrated. The best catalytic performance is found for zeolites with the optimum concentration of Brønsted acid sites (ca. 0.2 mmol g(-1)) and the minimum number of Lewis acid sites. It is proposed that the efficiency of the catalysts is reduced by the existence of the so-called dual site, at which a molecule of unsaturated alcohol can simultaneously interact with two acid sites (an OH group with one and the double bond with the other Brønsted site), which increases the interaction strength. The formation of such adsorption complexes leads to a decrease in the catalyst activity because of (i) an increase in the reaction barrier, (ii) an unfavourable conformation and (iii) diffusion limitations. A new procedure for the preparation of tetrahydrofurans and pyrans over zeolite catalysts provides important oxygen-containing heterocycles with numerous applications.

  2. Small cycloalkane (CN)2C-C(CN)2 structures are highly directional non-covalent carbon-bond donors.

    PubMed

    Bauzá, Antonio; Mooibroek, Tiddo J; Frontera, Antonio

    2014-08-11

    High-level calculations (RI-MP2/def2-TZVP) disclosed that the σ-hole in between two C atoms of cycloalkane X2 CCX2 structures (X=F, CN) is increasingly exposed with decreasing ring size. The interacting energy of complexes of F(-) , HO(-) , N≡C(-) , and H2 CO with cyclopropane and cyclobutane X2 CCX2 derivatives was calculated. For X=F, these energies are small to positive, while for X=CN they are all negative, ranging from -6.8 to -42.3 kcal mol(-1) . These finding are corroborated by a thorough statistical survey of the Cambridge Structural Database (CSD). No clear evidence could be found in support of non-covalent carbon bonding between electron-rich atoms (El.R.) and F2 CCF2 structures. In marked contrast, El.R.⋅⋅⋅(CN)2 CC(CN)2 interactions are abundant and highly directional. Based on these findings, the hydrophobic electrophilic bowl formed by 1,1',2,2'-tetracyano cyclopropane or cyclobutane derivatives is proposed as a new and synthetically accessible supramolecular synthon.

  3. Titanium alkoxyimido (Ti=N-OR) complexes: reductive N-O bond cleavage at the boundary between hydrazide and peroxide ligands.

    PubMed

    Schwarz, Andrew D; Nova, Ainara; Clot, Eric; Mountford, Philip

    2011-05-07

    The first Group 4 alkoxyimido compounds are reported. The Ti=N-O(t)Bu group in Ti(N(2)N(Me))(NO(t)Bu)(py) undergoes facile 2-electron N-O bond cleavage with PhCCMe as the reductant to form a 1,2-diamidoalkene group via two highly selective N-C bond forming events.

  4. Single-site N-N bond cleavage by Mo(IV): possible mechanisms of hydrazido(1-) to nitrido conversion.

    PubMed

    DiFranco, Stephen A; Staples, Richard J; Odom, Aaron L

    2013-02-21

    Mo(NMe(2))(4) and the tridentate, dipyrrolyl ligand H(2)dpma(mes) were found to form 5-coordinate Mo(NMe(2))(2)(dpma(mes)) (1), which exhibits spin-crossover behaviour in solution. The complex is a ground state singlet with a barrier of 1150 cm(-1) for production of the triplet in d(8)-toluene. The complex reacts with 1,1-disubstituted hydrazines or O-benzylhydroxylamine to produce nitrido MoN(NMe(2))(dpma(mes)). The mechanism of the 1,1-dimethylhydrazine reaction with 1 was examined along with the mechanism of substitution of NMe(2) with H(2)NNMe(2) in a diamagnetic zirconium analogue. The proposed mechanism involves production of a hydrazido(1-) intermediate, Mo(NMe(2))(NHNMe(2))(dpma(mes)), which undergoes an α,β-proton shift and N-N bond cleavage with metal oxidation to form the nitrido. The rate law for the reaction was found to be -d[1]/dt = k(obs)[1][hydrazine] by initial rate experiments and examination of the full reaction profile. This conversion from hydrazido(1-) to nitrido is somewhat analogous to the proposed mechanism for O-O bond cleavage in some peroxidases.

  5. The ansa effect in permethylmolybdenocene chemistry: A [Me{sub 2}Si] ansa bridge promotes intermolecular C-H and C-C bond activation

    SciTech Connect

    Churchill, D.; Shin, J.H.; Hascall, T.; Hahn, J.M.; Bridgewater, B.M.; Parkin, G.

    1999-06-21

    Access to the [Me{sub 2}Si] ansa-bridged permethylmolybdenocene system is provided by the synthesis of [Me{sub 2}Si(C{sub 5}Me{sub 4}){sub 2}]MoCl{sub 2} from the reaction of MoCl{sub 5} with a mixture of [Me{sub 2}Si(C{sub 5}Me{sub 4}){sub 2}]Li{sub 2} and NaBH{sub 4}, followed by treatment with CHCl{sub 3}. Comparison with the chemistry of the non-ansa Cp{sup *}{sub 2}MoX{sub 2} system indicates that incorporation of the [Me{sub 2}Si] ansa bridge promotes intermolecular C-H and C-C bond activation reactions.

  6. Luminescent pincer platinum(II) complexes with emission quantum yields up to almost unity: photophysics, photoreductive C-C bond formation, and materials applications.

    PubMed

    Chow, Pui-Keong; Cheng, Gang; Tong, Glenna So Ming; To, Wai-Pong; Kwong, Wai-Lun; Low, Kam-Hung; Kwok, Chi-Chung; Ma, Chensheng; Che, Chi-Ming

    2015-02-09

    Luminescent pincer-type Pt(II)  complexes supported by C-deprotonated π-extended tridentate RC^N^NR' ligands and pentafluorophenylacetylide ligands show emission quantum yields up to almost unity. Femtosecond time-resolved fluorescence measurements and time-dependent DFT calculations together reveal the dependence of excited-state structural distortions of [Pt(RC^N^NR')(CC-C6 F5 )] on the positional isomers of the tridentate ligand. Pt complexes [Pt(R-C^N^NR')(CC-Ar)] are efficient photocatalysts for visible-light-induced reductive CC bond formation. The [Pt(R-C^N^NR')(CC-C6 F5 )] complexes perform strongly as phosphorescent dopants for green- and red-emitting organic light-emitting diodes (OLEDs) with external quantum efficiency values over 22.1 %. These complexes are also applied in two-photon cellular imaging when incorporated into mesoporous silica nanoparticles (MSNs).

  7. Use of a Novel Fluorinated Organosulfur Compound To Isolate Bacteria Capable of Carbon-Sulfur Bond Cleavage

    PubMed Central

    Van Hamme, Jonathan D.; Fedorak, Phillip M.; Foght, Julia M.; Gray, Murray R.; Dettman, Heather D.

    2004-01-01

    The vacuum residue fraction of heavy crudes contributes to the viscosity of these oils. Specific microbial cleavage of C—S bonds in alkylsulfide bridges that form linkages in this fraction may result in dramatic viscosity reduction. To date, no bacterial strains have been shown conclusively to cleave C—S bonds within alkyl chains. Screening for microbes that can perform this activity was greatly facilitated by the use of a newly synthesized compound, bis-(3-pentafluorophenylpropyl)-sulfide (PFPS), as a novel sulfur source. The terminal pentafluorinated aromatic rings of PFPS preclude growth of aromatic ring-degrading bacteria but allow for selective enrichment of strains capable of cleaving C—S bonds. A unique bacterial strain, Rhodococcus sp. strain JVH1, that used PFPS as a sole sulfur source was isolated from an oil-contaminated environment. Gas chromatography-mass spectrometry analysis revealed that JVH1 oxidized PFPS to a sulfoxide and then a sulfone prior to cleaving the C—S bond to form an alcohol and, presumably, a sulfinate from which sulfur could be extracted for growth. Four known dibenzothiophene-desulfurizing strains, including Rhodococcus sp. strain IGTS8, were all unable to cleave the C—S bond in PFPS but could oxidize PFPS to the sulfone via the sulfoxide. Conversely, JVH1 was unable to oxidize dibenzothiophene but was able to use a variety of alkyl sulfides, in addition to PFPS, as sole sulfur sources. Overall, PFPS is an excellent tool for isolating bacteria capable of cleaving subterminal C—S bonds within alkyl chains. The type of desulfurization displayed by JVH1 differs significantly from previously described reaction results. PMID:15006770

  8. Structural Basis of Stereospecificity in the Bacterial Enzymatic Cleavage of β-Aryl Ether Bonds in Lignin*

    PubMed Central

    Helmich, Kate E.; Pereira, Jose Henrique; Gall, Daniel L.; Heins, Richard A.; McAndrew, Ryan P.; Bingman, Craig; Deng, Kai; Holland, Keefe C.; Noguera, Daniel R.; Simmons, Blake A.; Sale, Kenneth L.; Ralph, John; Donohue, Timothy J.; Adams, Paul D.; Phillips, George N.

    2016-01-01

    Lignin is a combinatorial polymer comprising monoaromatic units that are linked via covalent bonds. Although lignin is a potential source of valuable aromatic chemicals, its recalcitrance to chemical or biological digestion presents major obstacles to both the production of second-generation biofuels and the generation of valuable coproducts from lignin's monoaromatic units. Degradation of lignin has been relatively well characterized in fungi, but it is less well understood in bacteria. A catabolic pathway for the enzymatic breakdown of aromatic oligomers linked via β-aryl ether bonds typically found in lignin has been reported in the bacterium Sphingobium sp. SYK-6. Here, we present x-ray crystal structures and biochemical characterization of the glutathione-dependent β-etherases, LigE and LigF, from this pathway. The crystal structures show that both enzymes belong to the canonical two-domain fold and glutathione binding site architecture of the glutathione S-transferase family. Mutagenesis of the conserved active site serine in both LigE and LigF shows that, whereas the enzymatic activity is reduced, this amino acid side chain is not absolutely essential for catalysis. The results include descriptions of cofactor binding sites, substrate binding sites, and catalytic mechanisms. Because β-aryl ether bonds account for 50–70% of all interunit linkages in lignin, understanding the mechanism of enzymatic β-aryl ether cleavage has significant potential for informing ongoing studies on the valorization of lignin. PMID:26637355

  9. Structural Basis of Stereospecificity in the Bacterial Enzymatic Cleavage of β-Aryl Ether Bonds in Lignin.

    PubMed

    Helmich, Kate E; Pereira, Jose Henrique; Gall, Daniel L; Heins, Richard A; McAndrew, Ryan P; Bingman, Craig; Deng, Kai; Holland, Keefe C; Noguera, Daniel R; Simmons, Blake A; Sale, Kenneth L; Ralph, John; Donohue, Timothy J; Adams, Paul D; Phillips, George N

    2016-03-04

    Lignin is a combinatorial polymer comprising monoaromatic units that are linked via covalent bonds. Although lignin is a potential source of valuable aromatic chemicals, its recalcitrance to chemical or biological digestion presents major obstacles to both the production of second-generation biofuels and the generation of valuable coproducts from lignin's monoaromatic units. Degradation of lignin has been relatively well characterized in fungi, but it is less well understood in bacteria. A catabolic pathway for the enzymatic breakdown of aromatic oligomers linked via β-aryl ether bonds typically found in lignin has been reported in the bacterium Sphingobium sp. SYK-6. Here, we present x-ray crystal structures and biochemical characterization of the glutathione-dependent β-etherases, LigE and LigF, from this pathway. The crystal structures show that both enzymes belong to the canonical two-domain fold and glutathione binding site architecture of the glutathione S-transferase family. Mutagenesis of the conserved active site serine in both LigE and LigF shows that, whereas the enzymatic activity is reduced, this amino acid side chain is not absolutely essential for catalysis. The results include descriptions of cofactor binding sites, substrate binding sites, and catalytic mechanisms. Because β-aryl ether bonds account for 50-70% of all interunit linkages in lignin, understanding the mechanism of enzymatic β-aryl ether cleavage has significant potential for informing ongoing studies on the valorization of lignin.

  10. Structural basis of stereospecificity in the bacterial enzymatic cleavage of β-aryl ether bonds in lignin

    DOE PAGES

    Helmich, Kate E.; Pereira, Jose Henrique; Gall, Daniel L.; ...

    2015-12-04

    Here, lignin is a combinatorial polymer comprising monoaromatic units that are linked via covalent bonds. Although lignin is a potential source of valuable aromatic chemicals, its recalcitrance to chemical or biological digestion presents major obstacles to both the production of second-generation biofuels and the generation of valuable coproducts from lignin's monoaromatic units. Degradation of lignin has been relatively well characterized in fungi, but it is less well understood in bacteria. A catabolic pathway for the enzymatic breakdown of aromatic oligomers linked via β-aryl ether bonds typically found in lignin has been reported in the bacterium Sphingobium sp. SYK-6. Here, wemore » present x-ray crystal structures and biochemical characterization of the glutathione-dependent β-etherases, LigE and LigF, from this pathway. The crystal structures show that both enzymes belong to the canonical two-domain fold and glutathione binding site architecture of the glutathione S-transferase family. Mutagenesis of the conserved active site serine in both LigE and LigF shows that, whereas the enzymatic activity is reduced, this amino acid side chain is not absolutely essential for catalysis. The results include descriptions of cofactor binding sites, substrate binding sites, and catalytic mechanisms. Because β-aryl ether bonds account for 50–70% of all interunit linkages in lignin, understanding the mechanism of enzymatic β-aryl ether cleavage has significant potential for informing ongoing studies on the valorization of lignin.« less

  11. Structural basis of stereospecificity in the bacterial enzymatic cleavage of β-aryl ether bonds in lignin

    SciTech Connect

    Helmich, Kate E.; Pereira, Jose Henrique; Gall, Daniel L.; Heins, Richard A.; McAndrew, Ryan P.; Bingman, Craig; Deng, Kai; Holland, Keefe C.; Noguera, Daniel R.; Simmons, Blake A.; Sale, Kenneth L.; Ralph, John; Donohue, Timothy J.; Adams, Paul D.; Phillips, George N.

    2015-12-04

    Here, lignin is a combinatorial polymer comprising monoaromatic units that are linked via covalent bonds. Although lignin is a potential source of valuable aromatic chemicals, its recalcitrance to chemical or biological digestion presents major obstacles to both the production of second-generation biofuels and the generation of valuable coproducts from lignin's monoaromatic units. Degradation of lignin has been relatively well characterized in fungi, but it is less well understood in bacteria. A catabolic pathway for the enzymatic breakdown of aromatic oligomers linked via β-aryl ether bonds typically found in lignin has been reported in the bacterium Sphingobium sp. SYK-6. Here, we present x-ray crystal structures and biochemical characterization of the glutathione-dependent β-etherases, LigE and LigF, from this pathway. The crystal structures show that both enzymes belong to the canonical two-domain fold and glutathione binding site architecture of the glutathione S-transferase family. Mutagenesis of the conserved active site serine in both LigE and LigF shows that, whereas the enzymatic activity is reduced, this amino acid side chain is not absolutely essential for catalysis. The results include descriptions of cofactor binding sites, substrate binding sites, and catalytic mechanisms. Because β-aryl ether bonds account for 50–70% of all interunit linkages in lignin, understanding the mechanism of enzymatic β-aryl ether cleavage has significant potential for informing ongoing studies on the valorization of lignin.

  12. Pd-Catalyzed Autotandem Reactions with N-Tosylhydrazones. Synthesis of Condensed Carbo- and Heterocycles by Formation of a C-C Single Bond and a C═C Double Bond on the Same Carbon Atom.

    PubMed

    Paraja, Miguel; Valdés, Carlos

    2017-04-05

    A new Pd-catalyzed autotandem reaction is introduced that consists of the cross-coupling of a benzyl bromide with a N-tosylhydrazone followed by an intramolecular Heck reaction with an aryl bromide. During the process, a single and a double C-C bond are formed on the same carbon atom. Two different arrangements for the reactive functional groups are possible, rendering great flexibility to the transformation. The same strategy led to 9-methylene-9H-fluorenes, 9-methylene-9H-xanthenes, 9-methylene-9,10-dihydroacridines, and also dihydropyrroloisoquinoline and dihydroindoloisoquinoline derivatives.

  13. Formation of C-C and C-O bonds and oxygen removal in reactions of alkanediols, alkanols, and alkanals on copper catalysts.

    PubMed

    Sad, María E; Neurock, Matthew; Iglesia, Enrique

    2011-12-21

    This study reports evidence for catalytic deoxygenation of alkanols, alkanals, and alkanediols on dispersed Cu clusters with minimal use of external H(2) and with the concurrent formation of new C-C and C-O bonds. These catalysts selectively remove O-atoms from these oxygenates as CO or CO(2) through decarbonylation or decarboxylation routes, respectively, that use C-atoms present within reactants or as H(2)O using H(2) added or formed in situ from CO/H(2)O mixtures via water-gas shift. Cu catalysts fully convert 1,3-propanediol to equilibrated propanol-propanal intermediates that subsequently form larger oxygenates via aldol-type condensation and esterification routes without detectable involvement of the oxide supports. Propanal-propanol-H(2) equilibration is mediated by their chemisorption and interconversion at surfaces via C-H and O-H activation and propoxide intermediates. The kinetic effects of H(2), propanal, and propanol pressures on turnover rates, taken together with measured selectivities and the established chemical events for base-catalyzed condensation and esterification reactions, indicate that both reactions involve kinetically relevant bimolecular steps in which propoxide species, acting as the base, abstract the α-hydrogen in adsorbed propanal (condensation) or attack the electrophilic C-atom at its carbonyl group (esterification). These weakly held basic alkoxides render Cu surfaces able to mediate C-C and C-O formation reactions typically catalyzed by basic sites inherent in the catalyst, instead of provided by coadsorbed organic moieties. Turnover rates for condensation and esterification reactions decrease with increasing Cu dispersion, because low-coordination corner and edge atoms prevalent on small clusters stabilize adsorbed intermediates and increase the activation barriers for the bimolecular kinetically relevant steps required for both reactions.

  14. Oxidative addition of Pd to C-H, C-C and C-Cl bonds: Importance of relativistic effects in DFT calculations

    NASA Astrophysics Data System (ADS)

    Diefenbach, Axel; Bickelhaupt, F. Matthias

    2001-09-01

    To assess the importance of relativistic effects for the quantum chemical description of oxidative addition reactions of palladium to C-H, C-C and C-Cl bonds, we have carried out a systematic study of the corresponding reactions of CH4, C2H6 and CH3Cl with Pd-d10 using nonrelativistic (NR), quasirelativistic (QR), and zeroth-order regularly approximated (ZORA) relativistic density functional theory (DFT) at the BP86/TZ(2)P level. Relativistic effects are important according to both QR and ZORA, the former yielding similar but somewhat more pronounced effects than the latter, more reliable method: activation barriers are reduced by 6-14 kcal/mol and reaction enthalpies become 15-20 kcal/mol more exothermic if one goes from NR to ZORA. This yields, for example, 298 K activation enthalpies ΔH298≠ of -5.0 (C-H), 9.6 (C-C) and -6.0 kcal/mol (C-Cl) relative to the separate reactants at ZORA-BP86/TZ(2)P. In accordance with gas-phase experiments on reactions of Pd with alkanes, we find reaction profiles with pronounced potential wells for reactant complexes (collisionally stabilized and observed in experiments for alkanes larger than CH4) at -11.4 (CH4), -11.6 (C2H6) and -15.6 kcal/mol (CH3Cl) relative to separated reactants [ZORA-BP86/TZ(2)P]. Furthermore, we analyze the height of and the relativistic effects on the activation energies ΔE≠ in terms of the activation strain ΔEstrain≠ of and the transition-state interaction ΔEint≠ between the reactants in the activated complex, with ΔE≠=ΔEstrain≠+ΔEint≠.

  15. Quantum Dynamics in an Explicit Solvent Environment: A Photochemical Bond Cleavage Treated with a Combined QD/MD Approach.

    PubMed

    Thallmair, Sebastian; Zauleck, Julius P P; de Vivie-Riedle, Regina

    2015-05-12

    In quantum chemistry methods to describe environmental effects on different levels of complexity are available in the common program packages. Electrostatic effects of a solvent for example can be included in an implicit or explicit way. For chemical reactions with large structural changes additional mechanical effects come into play. Their treatment within a quantum dynamical context is a major challenge, especially when excited states are involved. Recently, we introduced a method that realizes an implicit description. Here, we present an approach combining quantum dynamics and molecular dynamics. It explicitly incorporates the solvent environment, whereby the electrostatic as well as the dynamic effects are captured. This new method is demonstrated for the ultrafast photoinduced bond cleavage of diphenylmethylphosphonium ions (Ph2CH-PPh3(+)), a common precursor to generate reactive carbocations in solution.

  16. Cα-C bond cleavage of the peptide backbone in MALDI in-source decay using salicylic acid derivative matrices.

    PubMed

    Asakawa, Daiki; Takayama, Mitsuo

    2011-07-01

    The use of 5-formylsalicylic acid (5-FSA) and 5-nitrosalicylic acid (5-NSA) as novel matrices for in-source decay (ISD) of peptides in matrix-assisted laser desorption/ionization (MALDI) is described. The use of 5-FSA and 5-NSA generated a- and x-series ions accompanied by oxidized peptides [M - 2 H + H](+). The preferential formation of a- and x-series ions was found to be dependent on the hydrogen-accepting ability of matrix. The hydrogen-accepting ability estimated from the ratio of signal intensity of oxidized product [M - 2 H + H](+) to that of non-oxidized protonated molecule [M + H](+) of peptide was of the order 5-NSA > 5-FSA > 5-aminosalicylic acid (5-ASA) ≒ 2,5-dihydroxyl benzoic acid (2,5-DHB) ≒ 0. The results suggest that the hydrogen transfer reaction from peptide to 5-FSA and 5-NSA occurs during the MALDI-ISD processes. The hydrogen abstraction from peptides results in the formation of oxidized peptides containing a radical site on the amide nitrogen with subsequent radical-induced cleavage at the Cα-C bond, leading to the formation of a- and x-series ions. The most significant feature of MALDI-ISD with 5-FSA and 5-NSA is the specific cleavage of the Cα-C bond of the peptide backbone without degradation of side-chain and post-translational modifications (PTM). The matrix provides a useful complementary method to conventional MALDI-ISD for amino acid sequencing and site localization of PTMs in peptides.

  17. Photodecomposition profiles of beta-bond cleavage of phenylphenacyl derivatives in the higher triplet excited states during stepwise two-color two-laser flash photolysis.

    PubMed

    Yamaji, Minoru; Cai, Xichen; Sakamoto, Masanori; Fujitsuka, Mamoru; Majima, Tetsuro

    2008-11-13

    Photochemical properties of p-phenylphenacyl derivatives (PP-X) having C-halide, C-S, and C-O bonds in the lowest (T 1) and higher (T n ) triplet excited states were investigated in solution by using single-color and stepwise two-color two-laser flash photolysis techniques. PP-Xs (X = Br, SH, and SPh) undergo beta-bond dissociation in the lowest singlet excited states (S 1) while the C-X bonds of other PP-Xs are stable upon 266-nm laser photolysis. The T 1(pi,pi*) states of PP-X were efficiently produced during 355-nm laser photolysis of benzophenone as a triplet sensitizer. Triplet PP-Xs deactivate to the ground state without photochemical reactions. Upon 430-nm laser photolysis of the T 1 states of PP-X (X = Br, Cl, SH, SPh, OH, OMe, and OPh), decomposition of PP-X in the T n states was found. On the basis of the changes in the transient absorption, quantum yields (Phi dec) of the decomposition of PP-X in the T n states were determined, while bond dissociation energies (BDE) of the C-X bonds were calculated by computations. According to the relationship between the Phi dec and BDE values, it was shown that the decomposition of PP-X in the T n state is due to beta-cleavage of the corresponding C-X bond, and that the state energy of the reactive T n for the C-O bond cleavage differs from that for the C-halide and C-S bond cleavage. The reaction profiles of the C-X bond cleavage of PP-X in the T n states were discussed.

  18. Palladium-Catalyzed Hydrolytic Cleavage of Aromatic C-O Bonds.

    PubMed

    Wang, Meng; Shi, Hui; Camaioni, Donald M; Lercher, Johannes A

    2017-02-13

    Metallic palladium surfaces are highly selective in promoting the reductive hydrolysis of aromatic ethers in aqueous phase at relatively mild temperatures and pressures of H2 . At quantitative conversions, the selectivity to hydrolysis products of PhOR ethers was observed to range from 50 % (R=Ph) to greater than 90 % (R=n-C4 H9 , cyclohexyl, and PhCH2 CH2 ). By analysis of the evolution of products with and without incorporation of H2(18) O, the pathway was concluded to be initiated by palladium metal catalyzed partial hydrogenation of the phenyl group to an enol ether. Water then rapidly adds to the enol ether to form a hemiacetal, which then undergoes elimination to cyclohexanone and phenol/alkanol products. A remarkable feature of the reaction is that the stronger Ph-O bond is cleaved rather than the weaker aliphatic O-R bond.

  19. Ruthenium(IV)-catalyzed isomerization of the C=C bond of o-allylic substrates: a theoretical and experimental study.

    PubMed

    Varela-Álvarez, Adrián; Sordo, José A; Piedra, Estefanía; Nebra, Noel; Cadierno, Victorio; Gimeno, José

    2011-09-12

    A general mechanism to rationalize Ru(IV) -catalyzed isomerization of the C=C bond in O-allylic substrates is proposed. Calculations supporting the proposed mechanism were performed at the MPWB1K/6-311+G(d,p)+SDD level of theory. All experimental observations in different solvents (water and THF) and under different pH conditions (neutral and basic) can be interpreted in terms of the new mechanism. Theoretical analysis of the transformation from precatalyst to catalyst led to structural identification of the active species in different media. The experimentally observed induction period is related to the magnitudes of the energy barriers computed for that process. The theoretical energy profile for the catalytic cycle requires application of relatively high temperatures, as is experimentally observed. Participation of a water molecule in the reaction coordinate is mechanistically essential when the reaction is carried out in aqueous medium. The new mechanistic proposal helped to develop a new experimental procedure for isomerization of allyl ethers to 1-propenyl ethers under neutral aqueous conditions. This process is an unique example of efficient and selective catalytic isomerization of allyl ethers in aqueous medium.

  20. An iron-catalysed C-C bond-forming spirocyclization cascade providing sustainable access to new 3D heterocyclic frameworks

    NASA Astrophysics Data System (ADS)

    Adams, Kirsty; Ball, Anthony K.; Birkett, James; Brown, Lee; Chappell, Ben; Gill, Duncan M.; Lo, P. K. Tony; Patmore, Nathan J.; Rice, Craig. R.; Ryan, James; Raubo, Piotr; Sweeney, Joseph B.

    2016-12-01

    Heterocyclic architectures offer powerful creative possibilities to a range of chemistry end-users. This is particularly true of heterocycles containing a high proportion of sp3-carbon atoms, which confer precise spatial definition upon chemical probes, drug substances, chiral monomers and the like. Nonetheless, simple catalytic routes to new heterocyclic cores are infrequently reported, and methods making use of biomass-accessible starting materials are also rare. Here, we demonstrate a new method allowing rapid entry to spirocyclic bis-heterocycles, in which inexpensive iron(III) catalysts mediate a highly stereoselective C-C bond-forming cyclization cascade reaction using (2-halo)aryl ethers and amines constructed using feedstock chemicals readily available from plant sources. Fe(acac)3 mediates the deiodinative cyclization of (2-halo)aryloxy furfuranyl ethers, followed by capture of the intermediate metal species by Grignard reagents, to deliver spirocycles containing two asymmetric centres. The reactions offer potential entry to key structural motifs present in bioactive natural products.

  1. Acetaldehyde partial oxidation on the Au(111) model catalyst surface: C-C bond activation and formation of methyl acetate as an oxidative coupling product

    NASA Astrophysics Data System (ADS)

    Karatok, Mustafa; Vovk, Evgeny I.; Shah, Asad A.; Turksoy, Abdurrahman; Ozensoy, Emrah

    2015-11-01

    Partial oxidation of acetaldehyde (CH3CHO) on the oxygen pre-covered Au(111) single crystal model catalyst was investigated via Temperature Programmed Desorption (TPD) and Temperature Programmed Reaction Spectroscopy (TPRS) techniques, where ozone (O3) was utilized as the oxygen delivery agent providing atomic oxygen to the reacting surface. We show that for low exposures of O3 and small surface oxygen coverages, two partial oxidation products namely, methyl acetate (CH3COOCH3) and acetic acid (CH3COOH) can be generated without the formation of significant quantities of carbon dioxide. The formation of methyl acetate as the oxidative coupling reaction product implies that oxygen pre-covered Au(111) single crystal model catalyst surface can activate C-C bonds. In addition to the generation of these products; indications of the polymerization of acetaldehyde on the gold surface were also observed as an additional reaction route competing with the partial and total oxidation pathways. The interplay between the partial oxidation, total oxidation and polymerization pathways reveals the complex catalytic chemistry associated with the interaction between the acetaldehyde and atomic oxygen on catalytic gold surfaces.

  2. Characterization of carbon-sulfur bond cleavage by axenic and mixed cultures of Rhodococcus rhodochrous IGTS8

    SciTech Connect

    Kayser, K.J.; Bielaga, B.A.; Jackowski, K.; Oduson, O.; Kilbane, J. II

    1992-12-31

    Growth assays reveal that Rhodococcus rhodochrous IGTS8 can utilize a wide range of organosulfur compounds as the sole source of sulfur. Compounds that are utilized include thiophenes, sulfides, disulfides, mercaptans, sulfoxides, and sulfones. None of the organosulfur compounds tested can serve as a carbon source. A convenient spectrophotometric assay (Gibbs assay) based on the chromogenic reaction of 2,6-dichloroquinone-4-chloroimide with aromatic hydroxyl groups was developed and used in conjunction with GC/MS analysis to examine the kinetics of carbon-sulfur bond cleavage by axenic and mixed cell cultures of Rhodococcus rhodochrous IGTS8. The desulfurization trait is expressed at uniform levels during the mid-exponential phase, reaches a maximum during idiophase, and then declines in stationary-phase cells. Desulfurization rates for dibenzothiophene (DBT) range from 8 to 15 {mu}M of DBT/10{sup 12} cells/hour. Mixtures of genetically marked Rhodococcus rhodochrous IGTS8 and an organisms incapable of cleaning carbon-sulfur bonds in relevant test compounds, Enterobacter cloacae, were prepared in ratios that varied over six orders of magnitude. Growth studies revealed that Enterobacter cloacae was able to gain access to sulfur liberated from organosulfur compounds by IGTS8; however, cell-to-cell contact was required. These data also indicate that the desulfurization activity of IGTS8 cells in mixed cultures may be as much as 200-fold higher than in axenic cultures.

  3. Mechanism of SN2 disulfide bond cleavage by phosphorus nucleophiles. Implications for biochemical disulfide reducing agents.

    PubMed

    Dmitrenko, Olga; Thorpe, Colin; Bach, Robert D

    2007-10-26

    The B3LYP variant of DFT has been used to study the mechanism of S-S bond scission in dimethyl disulfide by a phosphorus nucleophile, trimethylphospine (TMP). The reaction is highly endothermic in the gas phase and requires significant external stabilization of the charged products. DFT calculations (B3LYP) were performed with explicit (water molecules added) and implicit solvent corrections (COSMO model). The transition structures for this SN2 displacement reaction in a number of model systems have been located and fully characterized. The reaction barriers calculated with different approaches for different systems are quite close (around 11 kcal/mol). Remarkably, the calculations suggest that the reaction is almost barrierless with respect to the preorganized reaction complex and that most of the activation energy is required to rearrange the disulfide and TMP to its most effective orientation for the SMe group transfer way. Different reactivities of different phosphorus nucleophiles were suggested to be the result of steric effects, as manifested largely by varying amounts of hindrance to solvation of the initial product phosphonium ion. These data indicate that the gas-phase addition of a phosphine to the disulfide moiety will most likely form a phosphonium cation-thiolate anion salt, in the presence of four or more water molecules, that provide sufficient H-bonding stabilization to allow displacement of the thiolate anion, a normal uncomplicated SN2 transition state is to be expected.

  4. Promotion of exocyclic bond cleavages in the decomposition of 1,3-disilacyclobutane in the presence of a metal filament.

    PubMed

    Badran, I; Shi, Y J

    2015-01-29

    The primary decomposition of 1,3-disilacyclobutane (DSCB) on a tungsten filament and its secondary gas-phase reactions in a hot-wire chemical vapor deposition (CVD) reactor have been studied using laser ionization mass spectrometry. Under the collision-free conditions, DSCB decomposes on the W filament to produce H2 molecules with an activation energy of 43.6 ± 4.1 kJ·mol(-1). With the help of the isotope labeling and chemical trapping methods, the mechanistic details in the secondary gas-phase reactions important in the hot-wire CVD reactor setup have been examined. The dominant pathway has been demonstrated to be the insertion of the cyclic 1,3-disilacyclobut-1-ylidene, generated by exocyclic Si-H bond rupture, into the Si-H bond in DSCB to form 1,1'-bis(1,3-disilacyclobutane) (174 amu). The successful trapping of 1,3-disilacyclobut-1-ylidene by both 1,3-butadiene and trimethylsilane provides compelling evidence for the existence of this cyclic silylene species in the hot-wire CVD reactor with DSCB. Other reactions operating in the reactor include the DSCB cycloreversion to form silene and the ring opening of DSCB via 1,2-H shift to produce silene/methylsilylene and 1-methylsilene/silylene. The introduction of an additional Si atom in the four-membered ring monosilacyclobutane molecule has caused two major changes in the reaction chemistry assumed by DSCB: (1) The endocyclic cycloreversion reactions that dominate in the decomposition of monosilacyclobutane molecules only play a much less important role in the dissociation of DSCB; and (2) the exocyclic bond cleavages are promoted in DSCB due to the ring stabilization caused by the introduction of one additional Si atom.

  5. Mass Spectrometry and Theoretical Studies on N-C Bond Cleavages in the N-Sulfonylamidino Thymine Derivatives

    NASA Astrophysics Data System (ADS)

    Kobetić, Renata; Kazazić, Snježana; Kovačević, Borislav; Glasovac, Zoran; Krstulović, Luka; Bajić, Miroslav; Žinić, Biserka

    2015-05-01

    The reactivity of new biologically active thymine derivatives substituted with 2-(arylsulfonamidino)ethyl group at N1 and N3 position was investigated in the gas phase using CID experiments (ESI-MS/MS) and by density functional theory (DFT) calculations. Both derivatives show similar chemistry in the negative mode with a retro-Michael addition (Path A-) being the most abundant reaction channel, which correlate well with the fluoride induced retro-Michael addition observed in solution. The difference in the fragmentation of N-3 substituted thymine 5 and N-1 substituted thymine 1 in the positive mode relates to the preferred cleavage of the sulfonyl group ( m/z 155, Path B) in N-3 isomer and the formation of the acryl sulfonamidine 3 ( m/z 309) via Path A in N-1 isomer. Mechanistic studies of the cleavage reaction conducted by DFT calculations give the trend of the calculated activation energies that agree well with the experimental observations. A mechanism of the retro-Michael reaction was interpreted as a McLafferty type of fragmentation, which includes Hβ proton shift to one of the neighboring oxygen atoms in a 1,5-fashion inducing N1(N3)-Cα bond scission. This mechanism was found to be kinetically favorable over other tested mechanisms. Significant difference in the observed fragmentation pattern of N-1 and N-3 isomers proves the ESI-MS/MS technique as an excellent method for tracking the fate of similar sulfonamidine drugs. Also, the observed N-1 and/or N-3 thymine alkylation with in situ formed reactive acryl sulfonamidine 3 as a Michael acceptor may open interesting possibilities for the preparation of other N-3 substituted pyrimidines.

  6. CH stretching excitation in the early barrier F + CHD3 reaction inhibits CH bond cleavage.

    PubMed

    Zhang, Weiqing; Kawamata, Hiroshi; Liu, Kopin

    2009-07-17

    Most studies of the impact of vibrational excitation on molecular reactivity have focused on reactions with a late barrier (that is, a transition state resembling the products). For an early barrier reaction, conventional wisdom predicts that a reactant's vibration should not couple efficiently to the reaction coordinate and thus should have little impact on the outcome. We report here an in-depth experimental study of the reactivity effects exerted by reactant C-H stretching excitation in a prototypical early-barrier reaction, F + CHD3. Rather counterintuitively, we find that the vibration hinders the overall reaction rate, inhibits scission of the excited bond itself (favoring the DF + CHD2 product channel), and influences the coproduct vibrational distribution despite being conserved in the CHD2 product. The results highlight substantial gaps in our predictive framework for state-selective polyatomic reactivity.

  7. Fundamentals of tandem mass spectrometry: a dynamics study of simple C-C bond cleavage in collision-activated dissociation of polyatomic ions at low energy.

    PubMed

    Shukla, A K; Qian, K; Anderson, S; Futrell, J H

    1990-02-01

    The loss of methyl radical in collision-activated dissociation (CAD) of acetone and propane molecular ions has been studied at low energy using a tandem hybrid mass spectrometer. Although the two processes are very similar chemically and energetically, very different dynamical features are observed. Acetyl ions from acetone ion are predominantly backward-scattered, with intensity maxima lying inside and outside the elastic scattering circle, confirming our previous observation that electronically excited states are important in low-energy acetone CAD. Ethyl ions from propane ion show a forward-scattered peak maximum at a nonzero scattering angle, which is consistent with generally accepted models for vibrational excitation and redistribution of energy before dissociation. Both processes demonstrate that CAD at low energy proceeds via small-impact-parameter collisions with momentum transfer. Comparison of the present results with higher energy CAD dynamics studies and earlier work leads to some tentative general conclusions about energy transfer in these processes.

  8. Chlorine atom-initiated low-temperature oxidation of prenol and isoprenol: The effect of C=C double bonds on the peroxy radical chemistry in alcohol oxidation

    DOE PAGES

    Welz, Oliver; Savee, John D.; Osborn, David L.; ...

    2014-07-04

    The chlorine atom-initiated oxidation of two unsaturated primary C5 alcohols, prenol (3-methyl-2-buten-1-ol, (CH3)2CCHCH2OH) and isoprenol (3-methyl-3-buten-1-ol, CH2C(CH3)CH2CH2OH), is studied at 550 K and low pressure (8 Torr). The time- and isomer-resolved formation of products is probed with multiplexed photoionization mass spectrometry (MPIMS) using tunable vacuum ultraviolet ionizing synchrotron radiation. The peroxy radical chemistry of the unsaturated alcohols appears much less rich than that of saturated C4 and C5 alcohols. The main products observed are the corresponding unsaturated aldehydes – prenal (3-methyl-2-butenal) from prenol oxidation and isoprenal (3-methyl-3-butenal) from isoprenol oxidation. No significant products arising from QOOH chemistry are observed. Thesemore » results can be qualitatively explained by the formation of resonance stabilized allylic radicals via H-abstraction in the Cl + prenol and Cl + isoprenol initiation reactions. The loss of resonance stabilization upon O2 addition causes the energies of the intermediate wells, saddle points, and products to increase relative to the energy of the initial radicals and O2. These energetic shifts make most product channels observed in the peroxy radical chemistry of saturated alcohols inaccessible for these unsaturated alcohols. The experimental findings are underpinned by quantum-chemical calculations for stationary points on the potential energy surfaces for the reactions of the initial radicals with O2. Under our conditions, the dominant channels in prenol and isoprenol oxidation are the chain-terminating HO2-forming channels arising from radicals, in which the unpaired electron and the –OH group are on the same carbon atom, with stable prenal and isoprenal co-products, respectively. These results suggest that the presence of C=C double bonds in alcohols will reduce low-temperature reactivity during autoignition.« less

  9. Substituent Directed Phototransformations of BN-Heterocycles: Elimination vs Isomerization via Selective B-C Bond Cleavage.

    PubMed

    Yang, Deng-Tao; Mellerup, Soren K; Peng, Jin-Bao; Wang, Xiang; Li, Quan-Song; Wang, Suning

    2016-09-14

    Electron-rich and -poor BN-heterocycles with benzyl-pyridyl backbones and two bulky aryls on the boron (Ar = tipp, BN-1, Ar = MesF, BN-2) have been found to display distinct molecular transformations upon irradiation by UV light. BN-1 undergoes an efficient photoelimination reaction forming a BN-phenanthrene with ΦPE = 0.25, whereas BN-2 undergoes a thermally reversible, stereoselective, and quantitative isomerization to a dark colored BN-1,3,5-cyclooctatriene (BN-1,3,5-COT, BN-2a). This unusual photoisomerization persists for other BN-heterocycles with electron-deficient aryls such as BN-3 with a benzyl-benzothiazolyl backbone and Mes(F) substituents or BN-4 with a benzyl-pyridyl backbone and two C6F5 groups on the boron. The photoisomerization of BN-4 goes beyond BN-1,3,5-COT (BN-4a), forming a new species (BN-1,3,6-COT, BN-4b) via C-F bond cleavage and [1,3]-F atom sigmatropic migration. Computational studies support that BN-4a is an intermediate in the formation of BN-4b. This work establishes that steric and electronic factors can effectively control the transformations of BN-heterocycles, allowing access to important and previously unknown BN-embedded species.

  10. An ab initio Study of Decay Mechanism of Adenine: the Facile Path of the Amino NH Bond Cleavage

    SciTech Connect

    Conti, Irene; Garavelli, Marco; Orlandi, Giorgio

    2007-12-26

    A comprehensive study of the radiationless decay processes of the lowest excited singlet states in the isolated 9H-Adenine has been performed at the CASPT2//CASSCF level. The minimum energy paths of the L{sub a}, L{sub b} and n{pi}* singlet states along different skeletal distortions have been computed and the Conical Intersections (CIs) involving these states have been determined. The fast deactivation path of L{sub a} along a skeletal deformation, which leads to a S{sub 0}/L{sub a} CI, as previously discussed, is confirmed. Moreover, low-lying CIs between S{sub 0} and {pi}{sigma}* singlet states have been characterized, where {sigma}* is the antibonding orbital localized on a N-H bond of the amino ({pi}{sigma}{sub NH2*}) or of the azine group ({pi}{sigma}{sub N9H*}). We have found that the repulsive {pi}{sigma}{sub NH2*} state associated with an amino N-H bond can be populated through a barrierless way. Therefore, the decay path shows a bifurcation leading to two possible ways of radiationless deactivation: on one hand a non-photochemical decay through the S{sub 0}/L{sub a} or S{sub 0}/n{pi}* CIs and on the other hand a photochemical process via the possible access to the S{sub 0}/{pi}{sigma}{sub NH2*} CI that produces N-H cleavage. In this way, we can explain the H atom loss found upon UV excitation. We have considered also the decay of higher energy bright states. We have found that these states can decay also by converting to the repulsive {pi}{sigma}{sub N9H*} state associated with the azine NH bond. This new channel suggests an increase of H-atom photoproduction yield by excitating Adenine with lower wavelength radiations. The study of the decay processes of an Adenine molecule in the double strand d(A)10{center_dot}d(T)10 in water solvent is currently underway: Adenine is treated by the Quantum Mechanical (QM) approach and the remaining molecules are described at the Molecular Mechanics (MM) level. We use the COBRAMM program that is a tunable QM/MM approach

  11. Chlorine atom-initiated low-temperature oxidation of prenol and isoprenol: The effect of C=C double bonds on the peroxy radical chemistry in alcohol oxidation

    SciTech Connect

    Welz, Oliver; Savee, John D.; Osborn, David L.; Taatjes, Craig A.

    2014-07-04

    The chlorine atom-initiated oxidation of two unsaturated primary C5 alcohols, prenol (3-methyl-2-buten-1-ol, (CH3)2CCHCH2OH) and isoprenol (3-methyl-3-buten-1-ol, CH2C(CH3)CH2CH2OH), is studied at 550 K and low pressure (8 Torr). The time- and isomer-resolved formation of products is probed with multiplexed photoionization mass spectrometry (MPIMS) using tunable vacuum ultraviolet ionizing synchrotron radiation. The peroxy radical chemistry of the unsaturated alcohols appears much less rich than that of saturated C4 and C5 alcohols. The main products observed are the corresponding unsaturated aldehydes – prenal (3-methyl-2-butenal) from prenol oxidation and isoprenal (3-methyl-3-butenal) from isoprenol oxidation. No significant products arising from QOOH chemistry are observed. These results can be qualitatively explained by the formation of resonance stabilized allylic radicals via H-abstraction in the Cl + prenol and Cl + isoprenol initiation reactions. The loss of resonance stabilization upon O2 addition causes the energies of the intermediate wells, saddle points, and products to increase relative to the energy of the initial radicals and O2. These energetic shifts make most product channels observed in the peroxy radical chemistry of saturated alcohols inaccessible for these unsaturated alcohols. The experimental findings are underpinned by quantum-chemical calculations for stationary points on the potential energy surfaces for the reactions of the initial radicals with O2. Under our conditions, the dominant channels in prenol and isoprenol oxidation are the chain-terminating HO2-forming channels arising from radicals, in which the unpaired electron and the –OH group are on the same carbon atom, with stable prenal and isoprenal co-products, respectively. These results suggest that the presence of C=C double bonds in alcohols will reduce

  12. Direct C-C Coupling of CO2 and the Methyl Group from CH4 Activation through Facile Insertion of CO2 into Zn-CH3 σ-Bond.

    PubMed

    Zhao, Yuntao; Cui, Chaonan; Han, Jinyu; Wang, Hua; Zhu, Xinli; Ge, Qingfeng

    2016-08-17

    Conversion of CO2 and CH4 to value-added products will contribute to alleviating the green-house gas effect but is a challenge both scientifically and practically. Stabilization of the methyl group through CH4 activation and facile CO2 insertion ensure the realization of C-C coupling. In the present study, we demonstrate the ready C-C coupling reaction on a Zn-doped ceria catalyst. The detailed mechanism of this direct C-C coupling reaction was examined based on the results from density functional theory calculations. The results show that the Zn dopant stabilizes the methyl group by forming a Zn-C bond, thus hindering subsequent dehydrogenation of CH4. CO2 can be inserted into the Zn-C bond in an activated bent configuration, with the transition state in the form of a three-centered Zn-C-C moiety and an activation barrier of 0.51 eV. The C-C coupling reaction resulted in the acetate species, which could desorb as acetic acid by combining with a surface proton. The formation of acetic acid from CO2 and CH4 is a reaction with 100% atom economy, and the implementation of the reaction on a heterogeneous catalyst is of great importance to the utilization of the greenhouse gases. We tested other possible dopants including Al, Ga, Cd, In, and Ni and found a positive correlation between the activation barrier of C-C coupling and the electronegativity of the dopant, although C-H bond activation is likely the dominant reaction on the Ni-doped ceria catalyst.

  13. Processive degradation of unstructured protein by Escherichia coli Lon occurs via the slow, sequential delivery of multiple scissile sites followed by rapid and synchronized peptide bond cleavage events.

    PubMed

    Mikita, Natalie; Cheng, Iteen; Fishovitz, Jennifer; Huang, Jonathan; Lee, Irene

    2013-08-20

    Processive protein degradation is a common feature found in ATP-dependent proteases. This study utilized a physiological substrate of Escherichia coli Lon protease known as the lambda N protein (λN) to initiate the first kinetic analysis of the proteolytic mechanism of this enzyme. To this end, experiments were designed to determine the timing of three selected scissile sites in λN approaching the proteolytic site of ELon and their subsequent cleavages to gain insight into the mechanism by which ATP-dependent proteases attain processivity in protein degradation. The kinetic profile of peptide bond cleavage at different regions of λN was first detected by the iTRAQ/mass spectrometry technique. Fluorogenic λN constructs were then generated as reporter substrates for transient kinetic characterization of the ATP- versus AMPPNP-dependent peptide bond cleavage and the delivery of the scissile sites near the amino- versus carboxyl-terminal of the λN protein to the proteolytic site of ELon. Collectively, our results support a mechanism by which the cleavage of multiple peptide bonds awaits the "almost complete" delivery of all the scissile sites in λN to the proteolytic site in an ATP-dependent manner. Comparing the time courses of delivery to the active site of the selected scissile sites further implicates the existence of a preferred directionality in the final stage of substrate delivery, which begins at the carboxyl-terminal. The subsequent cleavage of the scissile sites in λN, however, appears to lack a specific directionality and occurs at a much faster rate than the substrate delivery step.

  14. Reactions in 1,1,1-trifluoroacetone triggered by low energy electrons (0-10 eV): from simple bond cleavages to complex unimolecular reactions.

    PubMed

    Illenberger, Eugen; Meinke, Martina C

    2014-08-21

    The impact of low energy electrons (0-10 eV) to 1,1,1-trifluoroacetone yields a variety of fragment anions which are formed via dissociative electron attachment (DEA) through three pronounced resonances located at 0.8 eV, near 4 eV, and in the energy range 8-9 eV. The fragment ions arise from different reactions ranging from the direct cleavage of one single or double bond (formation of F(-), CF3(-), O(-), (M-H)(-), and M-F)(-)) to remarkably complex unimolecular reactions associated with substantial geometric and electronic rearrangement in the transitory intermediate (formation of OH(-), FHF(-), (M-HF)(-), CCH(-), and HCCO(-). The ion CCH(-), for example, is formed by an excision of unit from the target molecule through the concerted cleavage of four bonds and recombination to H2O within the neutral component of the reaction.

  15. Three-Component Coupling of Triflyloxy-Substituted Benzocyclobutenones, Organolithium Reagents, and Arynophiles Promoted by Generation of Aryne via Carbon-Carbon Bond Cleavage.

    PubMed

    Uchida, Keisuke; Yoshida, Suguru; Hosoya, Takamitsu

    2017-02-23

    Treatment of benzocyclobutenones bearing a triflyloxy group adjacent to the four-membered ring with organolithium reagents in the presence of arynophiles efficiently affords three-component coupled α-arylketones. Mechanistic studies indicate that the reaction is promoted by generation of the aryne via carbon-carbon bond cleavage of a benzocyclobutenoxide intermediate, which led us to find a fluoride-mediated aryne generation method from triflyloxy-substituted benzocyclobutenone silyl acetal precursors.

  16. Visible Light Copper Photoredox-Catalyzed Aerobic Oxidative Coupling of Phenols and Terminal Alkynes: Regioselective Synthesis of Functionalized Ketones via C≡C Triple Bond Cleavage.

    PubMed

    Sagadevan, Arunachalam; Charpe, Vaibhav Pramod; Ragupathi, Ayyakkannu; Hwang, Kuo Chu

    2017-03-01

    Direct oxidative coupling of phenols and terminal alkynes was achieved at room temperature by a visible-light-mediated copper-catalyzed photoredox process. This method allows regioselective synthesis of hydroxyl-functionalized aryl and alkyl ketones from simple phenols and phenylacetylene via C≡C triple bond cleavage. 47 examples were presented. From a synthetic perspective, this protocol offers an efficient synthetic route for the preparation of pharmaceutical drugs, such as pitofenone and fenofibrate.

  17. Copper-catalyzed aerobic oxidation and cleavage/formation of C-S bond: a novel synthesis of aryl methyl sulfones from aryl halides and DMSO.

    PubMed

    Yuan, Gaoqing; Zheng, Junhua; Gao, Xiaofang; Li, Xianwei; Huang, Liangbin; Chen, Huoji; Jiang, Huanfeng

    2012-08-04

    With atmospheric oxygen as the oxidant, a novel copper(I)-catalyzed synthesis of aryl methyl sulfones from aryl halides and widely available DMSO is described. The procedure tolerates aryl halides with various functional groups (such as methoxy, acetyl, chloro, fluoro and nitro groups), which could afford aryl methyl sulfones in moderate to high yields. The copper-catalyzed aerobic oxidation and the cleavage/formation of C-S bond are the key steps for this transformation.

  18. Reaction of SO2 with pure and metal-doped MgO: Basic principles for the cleavage of S-O bonds

    NASA Astrophysics Data System (ADS)

    Rodriguez, J. A.; Jirsak, T.; González, L.; Evans, J.; Pérez, M.; Maiti, A.

    2001-12-01

    Synchrotron-based high-resolution photoemission, x-ray absorption near-edge spectroscopy, and first-principles density-functional calculations are used to examine the interaction of SO2 with pure and modified surfaces of magnesium oxide. On a MgO(100) single crystal, SO2 reacts with O centers to form SO3 and SO4 species. The bonding interactions with the Mg cations are weak and do not lead to cleavage of S-O bonds. An identical result is found after adsorbing SO2 on pure stoichiometric powders of MgO and other oxides (TiO2, Cr2O3, Fe2O3, NiO, CuO, ZnO, V2O5, CeO2, BaO). In these systems, the occupied cations bands are too stable for effective bonding interactions with the LUMO of SO2. To activate an oxide for S-O bond cleavage, one has to create occupied metal states above the valence band of the oxide. DF calculations predict that in the presence of these "extra" electronic states the adsorption energy of SO2 should increase, and there should be a significant oxide→SO2(LUMO) charge transfer that facilitates the cleavage of the S-O bonds. In this article, we explore three different approaches (formation of O vacancies, promotion with alkali metals, and doping with transition metals) that lead to the activation of SO2 and S-O bond breaking on MgO and oxides in general. Basic principles for a rational design of catalysts with a high efficiency for the destruction of SO2 are presented.

  19. Demonstration of the heterolytic O-O bond cleavage of putative nonheme iron(II)-OOH(R) complexes for Fenton and enzymatic reactions.

    PubMed

    Bang, Suhee; Park, Sora; Lee, Yong-Min; Hong, Seungwoo; Cho, Kyung-Bin; Nam, Wonwoo

    2014-07-21

    One-electron reduction of mononuclear nonheme iron(III) hydroperoxo (Fe(III)-OOH) and iron(III) alkylperoxo (Fe(III)-OOR) complexes by ferrocene (Fc) derivatives resulted in the formation of the corresponding iron(IV) oxo complexes. The conversion rates were dependent on the concentration and oxidation potentials of the electron donors, thus indicating that the reduction of the iron(III) (hydro/alkyl)peroxo complexes to their one-electron reduced iron(II) (hydro/alkyl)peroxo species is the rate-determining step, followed by the heterolytic O-O bond cleavage of the putative iron(II) (hydro/alkyl)peroxo species to give the iron(IV) oxo complexes. Product analysis supported the heterolytic O-O bond-cleavage mechanism. The present results provide the first example showing the one-electron reduction of iron(III) (hydro/alkyl)peroxo complexes and the heterolytic O-O bond cleavage of iron(II) (hydro/alkyl)peroxo species to form iron(IV) oxo intermediates which occur in nonheme iron enzymatic and Fenton reactions.

  20. Cobryketone derived from vitamin B12 via palladium-catalyzed cleavage of the sp3-sp3 carbon-carbon bond.

    PubMed

    Kurcoń, Sylwester; Proinsias, Keith ó; Gryko, Dorota

    2013-04-19

    Heptamethyl cobyrinate was transformed into hexamethyl 8-nor-cobyrinate. The crucial step involved the synthesis of new, vitamin B12 derived cobryketone via palladium-catalyzed cleavage of the sp(3)-sp(3) carbon-carbon bond with the liberation of the ketone. The replacement of sp(3) carbon atom with sp(2) (C═O) at the 8-position produces a bathochromic shift of all absorption bands and makes α and β bands equal as a consequence of the expansion of the existing conjugated system of double bonds.

  1. Selective Gas-Phase Ion/Ion Reactions: Enabling Disulfide Mapping via Oxidation and Cleavage of Disulfide Bonds in Intermolecularly-Linked Polypeptide Ions.

    PubMed

    Pilo, Alice L; McLuckey, Scott A

    2016-09-20

    The selective gas-phase oxidation of disulfide bonds to their thiosulfinate form using ion/ion reactions and subsequent cleavage is demonstrated here. Oxidizing reagent anions are observed to attach to all polypeptides, regardless of amino acid composition. Direct proton transfer yielding a charge-reduced peptide is also frequently observed. Activation of the ion/ion complex between an oxidizing reagent anion and a disulfide-containing peptide cation results in oxygen transfer from the reagent anion to the peptide cation to form the [M+H+O](+) species. This thiosulfinate derivative can undergo one of several rearrangements that result in cleavage of the disulfide bond. Species containing an intermolecular disulfide bond undergo separation of the two chains upon activation. Further activation can be used to generate more sequence information from each chain. These oxidation ion/ion reactions have been used to illustrate the identification of S-glutathionylated and S-cysteinylated peptides, in which low molecular weight thiols are attached to cysteine residues in peptides via disulfide bonds. The oxidation chemistry effectively labels peptide ions with readily oxidized groups, such as disulfide bonds. This enables a screening approach for the identification of disulfide-linked peptides in a disulfide mapping application involving enzymatic digestion. The mixtures of ions generated by tryptic and peptic digestions of lysozyme and insulin, respectively, without prior separation or isolation were subjected both to oxidation and proton transfer ion/ion chemistry to illustrate the identification of peptides in the mixtures with readily oxidized groups.

  2. Mechanism of the Glycosidic Bond Cleavage of Mismatched Thymine in Human Thymine DNA Glycosylase Revealed by Classical Molecular Dynamics and Quantum Mechanical/Molecular Mechanical Calculations.

    PubMed

    Kanaan, Natalia; Crehuet, Ramon; Imhof, Petra

    2015-09-24

    Base excision of mismatched or damaged nucleotides catalyzed by glycosylase enzymes is the first step of the base excision repair system, a machinery preserving the integrity of DNA. Thymine DNA glycosylase recognizes and removes mismatched thymine by cleaving the C1'-N1 bond between the base and the sugar ring. Our quantum mechanical/molecular mechanical calculations of this reaction in human thymine DNA glycosylase reveal a requirement for a positive charge in the active site to facilitate C1'-N1 bond scission: protonation of His151 significantly lowers the free energy barrier for C1'-N1 bond dissociation compared to the situation with neutral His151. Shuttling a proton from His151 to the thymine base further reduces the activation free energy for glycosidic bond cleavage. Classical molecular dynamics simulations of the H151A mutant suggest that the mutation to the smaller, neutral, residue increases the water accessibility of the thymine base, rendering direct proton transfer from the bulk feasible. Quantum mechanical/molecular mechanical calculations of the glycosidic bond cleavage reaction in the H151A mutant show that the activation free energy is slightly lower than in the wild-type enzyme, explaining the experimentally observed higher reaction rates in this mutant.

  3. Oxidative Cleavage of C=S and P=S Bonds at an Al(I) Center: Preparation of Terminally Bound Aluminum Sulfides.

    PubMed

    Chu, Terry; Vyboishchikov, Sergei F; Gabidullin, Bulat; Nikonov, Georgii I

    2016-10-10

    The treatment of cyclic thioureas with the aluminum(I) compound NacNacAl (1; NacNac=[ArNC(Me)CHC(Me)NAr](-) , Ar=2,6-Pr(i)2 C6 H3 ) resulted in oxidative cleavage of the C=S bond and the formation of 3 and 5, the first monomeric aluminum complexes with an Al=S double bond stabilized by N-heterocyclic carbenes. Compound 1 also reacted with triphenylphosphine sulfide in a similar manner, which resulted in cleavage of the P=S bond and production of the adduct [NacNacAl=S(S=PPh3 )] (8). The Al=S double bond in 3 can react with phenyl isothiocyanate to furnish the cycloaddition product 9 and zwitterion 10 as a result of coupling between the liberated carbene and PhN=C=S. All novel complexes were characterized by multinuclear NMR spectroscopy, and the structures of 5, 9, and 10 were confirmed by X-ray diffraction analysis. The nature of the Al=S bond in 5 was also probed by DFT calculations.

  4. Effect of immunoglobulin G (IgG) interchain disulfide bond cleavage on efficacy of intravenous immunoglobulin for immune thrombocytopenic purpura (ITP).

    PubMed

    Machino, Y; Ohta, H; Suzuki, E; Higurashi, S; Tezuka, T; Nagashima, H; Kohroki, J; Masuho, Y

    2010-12-01

    Intravenous immunoglobulin (IVIG) has been used widely to treat immune thrombocytopenic purpura (ITP), but the mechanisms of its action remain unclear. We investigated the affinity for Fcγ receptors (FcγRs) and the thrombocytopenia-ameliorating effect of S-sulfonated gammaglobulin (SGG) and S-alkylated gammaglobulin (AGG), in comparison with unmodified gammaglobulin (GG), in a mouse ITP model. Cleavage of immunoglobulin (Ig)G interchain disulfide bonds by either S-sulfonation or S-alkylation did not decrease the affinity for FcγRIIA (CD32A) and FcγRIIB (CD32B), but did decrease the affinity for FcγRIA (CD64A) and FcγRIIIA (CD16A), presumably because of changes in H-chain configuration. The interchain disulfide bond cleavage decreased the affinity much more for mouse FcγRIV than for mouse FcγRIIB. The ability of AGG to ameliorate ITP was greatly diminished, while SGG, whose disulfide bonds are reconstituted in vivo, was as effective as GG. These results suggest that the interchain disulfide bonds are important for therapeutic effect. It is also suggested that the interaction of IVIG with the inhibitory receptor FcγRIIB is insufficient for effective amelioration of ITP and that, at least in this model, direct binding of IVIG to FcγRIIIA is also required.

  5. Selective Cleavage of the Aryl Ether Bonds in Lignin for Depolymerization by Acidic Lithium Bromide Molten Salt Hydrate under Mild Conditions.

    PubMed

    Yang, Xiaohui; Li, Ning; Lin, Xuliang; Pan, Xuejun; Zhou, Yonghong

    2016-11-09

    The present study demonstrates that the concentrated lithium bromide (LiBr) solution with acid as catalyst was able to selectively cleave the β-O-4 aryl ether bond and lead to lignin depolymerization under mild conditions (e.g., in 60% LiBr with 0.3 M HCl at 110 °C for 2 h). Four industrial lignins from different pulping and biorefining processes, including softwood kraft lignin (SKL), hardwood kraft lignin (HKL), softwood ethanol organosolv lignin (EOL), and acid corncob lignin (ACL), were treated in the LiBr solution. The molecular weight, functional group, and interunit linkages of the lignins were characterized using GPC, FTIR, and NMR. The results indicated that the β-O-4 aryl ether bonds of the lignins were selectively cleaved, and both LiBr and HCl played crucial roles in catalyzing the cleavage of the ether bonds.

  6. Identification and cleavage of breakable single bonds by selective oxidation, reduction, and hydrolysis. Quarterly report No. 13, October 1-December 31, 1981

    SciTech Connect

    Hirschon, A.S.; Zevely, J.; Mayo, F.R.

    1982-02-26

    Bituminous coal is assumed to consist mostly of aggregates of condensed aromatic and aliphatic rings which are connected and made soluble by crosslinks containing single bonds. The objective of this project is to determine the structure of bituminous coal with emphasis on the crosslinks and breakable single bonds. During this past quarter the following studies were conducted on Illinois No. 6 coal: extraction with benzylamine (BnH/sub 2/), ethanolamine, ethylenediamine (EDA), pyridine; saponification of some toluene-insoluble, pyridine-soluble (TIPS) fraction; cleavages by amines; oxidation with aqueous NaOCl of butylated and methylated pyridine-extracted coal; decarboxylation on black acids. The investigations dealt with two kinds of connecting links in coal, which are designated as ester and ether groups. The ester groups are cleaved by strongly basic amines (to give amides) at 25/sup 0/C and by alcoholic KOH at 100/sup 0/C (to give salts and alcohols or phenols). Both esters and ethers are cleaved by HI or ZnCL/sub 2/ in pyridine at or below 50/sup 0/C. The ethers are also cleaved by BnNH/sub 2/, EDA, and EDA/DMSO to nearly the same extent on several days heating at 100/sup 0/C. Although a cleavage of model ethers by amines were not established, the parallel easy reactions of HI and ZnCl/sub 2/ and the slow 100/sup 0/C reactions of amines on coal lead the authors to designate the non-ester cleavages as ether cleavages. (ATT)

  7. Heterolytic cleavage of hydrogen by an iron hydrogenase model: an Fe-H⋅⋅⋅H-N dihydrogen bond characterized by neutron diffraction.

    PubMed

    Liu, Tianbiao; Wang, Xiaoping; Hoffmann, Christina; DuBois, Daniel L; Bullock, R Morris

    2014-05-19

    Hydrogenase enzymes in nature use hydrogen as a fuel, but the heterolytic cleavage of H-H bonds cannot be readily observed in enzymes. Here we show that an iron complex with pendant amines in the diphosphine ligand cleaves hydrogen heterolytically. The product has a strong Fe-H⋅⋅⋅H-N dihydrogen bond. The structure was determined by single-crystal neutron diffraction, and has a remarkably short H⋅⋅⋅H distance of 1.489(10) Å between the protic N-H(δ+) and hydridic Fe-H(δ-) part. The structural data for [Cp(C5F4N)FeH(P(tBu)2N(tBu)2H)](+) provide a glimpse of how the H-H bond is oxidized or generated in hydrogenase enzymes. These results now provide a full picture for the first time, illustrating structures and reactivity of the dihydrogen complex and the product of the heterolytic cleavage of H2 in a functional model of the active site of the [FeFe] hydrogenase enzyme.

  8. Insights into the mechanism of X-ray-induced disulfide-bond cleavage in lysozyme crystals based on EPR, optical absorption and X-ray diffraction studies

    SciTech Connect

    Sutton, Kristin A.; Black, Paul J.; Mercer, Kermit R.; Garman, Elspeth F.; Owen, Robin L.; Snell, Edward H.; Bernhard, William A.

    2013-12-01

    Electron paramagnetic resonance (EPR) and online UV–visible absorption microspectrophotometry with X-ray crystallography have been used in a complementary manner to follow X-ray-induced disulfide-bond cleavage, to confirm a multi-track radiation-damage process and to develop a model of that process. Electron paramagnetic resonance (EPR) and online UV–visible absorption microspectrophotometry with X-ray crystallography have been used in a complementary manner to follow X-ray-induced disulfide-bond cleavage. Online UV–visible spectroscopy showed that upon X-irradiation, disulfide radicalization appeared to saturate at an absorbed dose of approximately 0.5–0.8 MGy, in contrast to the saturating dose of ∼0.2 MGy observed using EPR at much lower dose rates. The observations suggest that a multi-track model involving product formation owing to the interaction of two separate tracks is a valid model for radiation damage in protein crystals. The saturation levels are remarkably consistent given the widely different experimental parameters and the range of total absorbed doses studied. The results indicate that even at the lowest doses used for structural investigations disulfide bonds are already radicalized. Multi-track considerations offer the first step in a comprehensive model of radiation damage that could potentially lead to a combined computational and experimental approach to identifying when damage is likely to be present, to quantitate it and to provide the ability to recover the native unperturbed structure.

  9. Kinetics of the competitive reactions of isomerization and peptide bond cleavage at l-α- and d-β-aspartyl residues in an αA-crystallin fragment.

    PubMed

    Aki, Kenzo; Okamura, Emiko

    2017-01-01

    d-β-aspartyl (Asp) residue has been found in a living body such as aged lens crystallin, although l-α-amino acids are constituents in natural proteins. Isomerization from l-α- to d-β-Asp probably modulates structures to affect biochemical reactions. At Asp residue, isomerization and peptide bond cleavage compete with each other. To gain insight into how fast each reaction proceeds, the analysis requires the consideration of both pathways simultaneously and independently. No information has been provided, however, about these competitive processes because each reaction has been studied separately. The contribution of Asp isomers to the respective pathways has still been veiled. In this work, the two competitive reactions, isomerization and spontaneous peptide bond cleavage at Asp residue, were simultaneously observed and compared in an αA-crystallin fragment, S(51) LFRTVLD(58) SG(60) containing l-α- and d-β-Asp58 isomers. The kinetics showed that the formation of l- and d-succinimide (Suc) intermediate, as a first step of isomerization, was comparable at l-α- and d-β-Asp. Although l-Suc was converted to l-β-Asp, d-Suc was liable to return to the original d-β-Asp, the reverse reaction marked enough to consider d-β-Asp as apparently stable. d-β-Asp was also resistant to the peptide bond cleavage. Such apparent less reactivity is probably the reason for gradual and abnormal accumulation of d-β-Asp in a living body under physiological conditions. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  10. Construction of Fused Pyrrolidines and β-Lactones by Carbene-Catalyzed C-N, C-C, and C-O Bond Formations.

    PubMed

    Wu, Xingxing; Hao, Lin; Zhang, Yuexia; Rakesh, Maiti; Reddi, Rambabu N; Yang, Song; Song, Bao-An; Chi, Yonggui Robin

    2017-03-15

    A carbene-catalyzed intermolecular C-N bond formation, which initiates a highly selective cascade reaction for the synthesis of pyrrolidine fused β-lactones, is disclosed. The nitrogen-containing bicyclic β-lactone products are obtained with good yields and excellent stereoselectivities. Synthetic transformations of the reaction products into useful functional molecules, such as amino catalysts, can be efficiently realized under mild reaction conditions. Mechanistically, this study provides insights into modulating the reactivities of heteroatoms, such as nitrogen atoms, in challenging carbene-catalyzed asymmetric carbon-heteroatom bond-forming reactions.

  11. Synthesis and characterization of conformationally rigid chiral pyridine-N-heterocyclic carbene-based palladacycles with an unexpected Pd-N bond cleavage.

    PubMed

    Ng, Kim Hong; Li, Yongxin; Tan, Wei Xian; Chiang, Minyi; Pullarkat, Sumod A

    2013-03-01

    The versatility of a previously developed method for the synthesis of chiral carbene-based palladacycles is demonstrated through the synthesis of two new chiral pyridine-functionalized N-heterocyclic carbene palladacycles with different wingtip groups. The efficiency in their resolution with different counter anions and different chiral amino acid salt auxiliaries has been studied. The absolute stereochemistries of all the chiral compounds were confirmed by single crystal X-ray crystallography. An unexpected Pd-N bond cleavage that resulted in the racemization of the α-carbon center in these complexes has also been investigated.

  12. Organometallic Modeling of the Hydrodesulfurization (HDS) Process: Rhenium Carbonyl-promoted C-S Bond Cleavage and Hydrogenation of Thiophenes and Benozothiophenes

    SciTech Connect

    Reynolds, Michael A.

    2000-09-21

    Organometallic modeling of the HDS process at single or multiple metal centers is one approach to better understanding the mechanism that govern commercial HDS. Therefore, we have currently been investigating the use of Re2(CO)10 as a potential model system for catalytic HDS with respect to S-binding, ring-opening, and hydrogenation of thiophenes andbenzothiophenes. We have also been investigating the use of UV-light as a method for activating thiophenic molecules towards C-S and C-H bond cleavage.

  13. A copper complex supported by an N2S-tridentate ligand inducing efficient heterolytic O-O bond cleavage of alkylhydroperoxide.

    PubMed

    Tano, Tetsuro; Mieda, Kaoru; Sugimoto, Hideki; Ogura, Takashi; Itoh, Shinobu

    2014-03-28

    We have recently reported a copper(II)-superoxide complex supported by an N3-tridentate ligand (L(N3)), which exhibits a similar structure and reactivity to those of a putative reactive intermediate involved in the catalytic reactions of copper monooxygenases such as peptidylglycine α-hydroxylating monooxygenase (PHM) and dopamine β-monooxygenase (DβM). In this study, we have synthesised and characterised copper complexes supported by a related sulphur-containing ligand (L(N2S)) to get insight into the notable electronic effect of the sulphur donor atom in the reaction with cumene hydroperoxide, inducing efficient heterolytic O-O bond cleavage.

  14. Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and dihydrogen.

    PubMed

    Jia, Hong-Peng; Quadrelli, Elsje Alessandra

    2014-01-21

    Dinitrogen cleavage and hydrogenation by transition-metal centers to produce ammonia is central in industry and in Nature. After an introductory section on the thermodynamic and kinetic challenges linked to N2 splitting, this tutorial review discusses three major classes of transition-metal systems (homogeneous, heterogeneous and biological) capable of achieving dissociation and hydrogenation of dinitrogen. Molecular complexes, solid-state Haber-Bosch catalytic systems, silica-supported tantalum hydrides and nitrogenase will be discussed. Emphasis is focused on the reaction mechanisms operating in the process of dissociation and hydrogenation of dinitrogen, and in particular on the key role played by metal hydride bonds and by dihydrogen in such reactions.

  15. All-carbon quaternary stereogenic centers in acyclic systems through the creation of several C-C bonds per chemical step.

    PubMed

    Marek, Ilan; Minko, Yury; Pasco, Morgane; Mejuch, Tom; Gilboa, Noga; Chechik, Helena; Das, Jaya P

    2014-02-19

    In the past few decades, it has become clear that asymmetric catalysis is one of the most powerful methods for the construction of carbon-carbon as well as carbon-heteroatom bonds in a stereoselective manner. However, when structural complexity increases (i.e., all-carbon quaternary stereogenic center), the difficulty in reaching the desired adducts through asymmetric catalytic reactions leads to a single carbon-carbon bond-forming event per chemical step between two components. Issues of efficiency and convergence should therefore be addressed to avoid extraneous chemical steps. In this Perspective, we present approaches that tackle the stimulating problem of efficiency while answering interesting synthetic challenges. Ideally, if one could create all-carbon quaternary stereogenic centers via the creation of several new carbon-carbon bonds in an acyclic system and in a single-pot operation from simple precursors, it would certainly open new horizons toward solving the synthetic problems. Even more important for any further design, the presence of polyreactive intermediates in synthesis (bismetalated, carbenoid, and oxenoids species) becomes now an indispensable tool, as it creates consecutively the same number of carbon-carbon bonds as in a multi-step process, but in a single-pot operation.

  16. Selective cleavage of an azaGly peptide bond by copper(II). Long-range effect of histidine residue.

    PubMed

    Mhidia, Reda; Melnyk, Oleg

    2010-03-01

    Several reports have highlighted the interest of replacing Gly, a frequent amino acid within bioactive peptides, by azaGly (Agly) to improve their stability, activity or for the design of prodrugs. Because metal catalysis is increasingly used for tailoring peptide molecules, we have studied the stability of Agly peptides in the presence of metal ions. In this study, we show that Cu(II), unlike other metal ions such as Fe(II), Fe(III), Pd(II), or Pt(II), induces the cleavage of Agly peptides at room temperature and pH 7.3. The cleavage occurred in the absence of an anchoring His residue within the peptide but it was accelerated when this amino acid was present in the sequence. The influence of His residue on the cleavage rate was minimal when His and Agly were adjacent, whereas large effects were observed for distant His residues. The reaction between Cu(II) and Agly peptides induced the formation of Cu(I) species, which could be detected using bicinchoninic acid as a probe. The nature of products formed in this reaction allowed suggesting a mechanism for the Cu(II)-induced cleavage of Agly peptides.

  17. Selective disulfide bond cleavage in gold(I) cationized polypeptide ions formed via gas-phase ion/ion cation switching.

    PubMed

    Gunawardena, Harsha P; O'Hair, Richard A J; McLuckey, Scott A

    2006-09-01

    Gaseous multiply protonated disulfide-linked peptides have been subjected to reactions with AuCl2(-) ions to explore the possibility of effecting cation switching of Au+ for two protons and to determine whether cationization by Au+ ions affords selective dissociation of disulfide linkages. The incorporation of Au+ into several model disulfide-linked peptides proved to be straightforward. The primary ion/ion reaction channels were proton transfer, which does not lead to Au+ incorporation, and attachment of AuCl2(-) ions to the polypeptide cation, which does incorporate Au+. Fragmentation of the attachment product, the extent of which varied with peptide and charge state, led to losses of one or more molecules of HCl and, to some extent, cleavage of polypeptides at the disulfide linkage into its two constituent chains. Collisional activation of the intact metal-ion-incorporated peptides showed cleavage of the disulfide linkage to be a major, and in some cases exclusive, process. Cations with protons as the only cationizing agents showed only small contributions from cleavage of the disulfide linkage. These results indicate that Au+ incorporation into a disulfide-linked polypeptide ion is a promising way to effect selective dissociation of disulfide bonds. Cation switching via ion/ion reactions is a convenient means for incorporating gold and is attractive because it avoids the requirement of adding metal salts to the analyte solution.

  18. Tomato carotenoid cleavage dioxygenases 1A and 1B: Relaxed double bond specificity leads to a plenitude of dialdehydes, mono-apocarotenoids and isoprenoid volatiles

    PubMed Central

    Ilg, Andrea; Bruno, Mark; Beyer, Peter; Al-Babili, Salim

    2014-01-01

    The biosynthetic processes leading to many of the isoprenoid volatiles released by tomato fruits are still unknown, though previous reports suggested a clear correlation with the carotenoids contained within the fruit. In this study, we investigated the activity of the tomato (Solanum lycopersicum) carotenoid cleavage dioxygenase (SlCCD1B), which is highly expressed in fruits, and of its homolog SlCCD1A. Using in vitro assays performed with purified recombinant enzymes and by analyzing products formed by the two enzymes in carotene-accumulating Escherichia coli strains, we demonstrate that SlCCD1A and, to a larger extent, SlCCD1B, have a very relaxed specificity for both substrate and cleavage site, mediating the oxidative cleavage of cis- and all-trans-carotenoids as well as of different apocarotenoids at many more double bonds than previously reported. This activity gives rise to a plenitude of volatiles, mono-apocarotenoids and dialdehyde products, including cis-pseudoionone, neral, geranial, and farnesylacetone. Our results provide a direct evidence for a carotenoid origin of these compounds and point to CCD1s as the enzymes catalyzing the formation of the vast majority of tomato isoprenoid volatiles, many of which are aroma constituents. PMID:25057464

  19. Alcohol-Induced C-N Bond Cleavage of Cyclometalated N-Heterocyclic Carbene Ligands with a Methylene-Linked Pendant Imidazolium Ring.

    PubMed

    Zhong, Wei; Fei, Zhaofu; Scopelliti, Rosario; Dyson, Paul J

    2016-08-16

    Reaction of the pentamethylcyclopentadienyl rhodium iodide dimer [Cp*RhI2 ]2 with 1,1'-diphenyl-3,3'-methylenediimidazolium diiodide in non-alcohol solvents, in the presence of base, led to the formation of bis-carbene complex [Cp*Rh(bis-NHC)I]I (bis-NHC=1,1'-diphenyl-4,4'-methylenediimidazoline-5,5'-diylidene). In contrast, when employing alcohols as the solvent in the same reaction, cleavage of a methylene C-N bond is observed, affording ether-functionalized (cyclometalated) carbene ligands coordinated to the metal center and the concomitant formation of complexes with a coordinated imidazole ligand. Studies employing other 1,1'-diimidazolium salts indicate that the cyclometalation step is a prerequisite for the activation/scission of the C-N bond and, based on additional experimental data, a SN 2 mechanism for the reaction is tentatively proposed.

  20. Collision-activated cleavage of a peptide/antibiotic disulfide linkage: possible evidence for intramolecular disulfide bond rearrangement upon collisional activation.

    PubMed

    Fagerquist, Clifton K

    2004-01-01

    Ceftiofur is an important veterinary beta-lactam antibiotic whose bioactive metabolite, desfuroylceftiofur, has a free thiol group. Desfuroylceftiofur (DFC) was reacted with two peptides, [Arg8]-vasopressin and reduced glutathione, both of which have cysteine residues to form disulfide-linked peptide/antibiotic complexes. The products of the reaction, [vasopressin + (DFC-H) + (DFC-H) + H]+, [(vasopressin+H) + (DFC-H) + H]+ and [(glutathione-H) + (DFC-H) + H]+, were analyzed using collision-activated dissociation (CAD) with a quadrupole ion trap tandem mass spectrometer. MS/MS of [vasopressin + (DFC-H) + (DFC-H) + H]+ resulted in facile dissociative loss of one and two covalently bound DFC moieties. Loss of one DFC resulted from either homolytic or heterolytic dissociation of the peptide/antibiotic disulfide bond with equal or unequal partitioning of the two sulfur atoms between the fragment ion and neutral loss. Hydrogen migration preceded heterolytic dissociation. Loss of two DFC moieties from [vasopressin + (DFC-H) + (DFC-H) + H]+ appears to result from collision-activated intramolecular disulfide bond rearrangement (IDBR) to produce cyclic [vasopressin + H]+ (at m/z 1084) as well as other cyclic fragment ions at m/z 1084 +/- 32 and +64. The cyclic structure of these ions could only be inferred as MS/MS may result in rearrangement to non-cyclic structures prior to dissociative loss. IDBR was also detected from MS(3) experiments of [vasopressin + (DFC-H) + (DFC-H) + H]+ fragment ions. MS/MS of [(glutathione-H) + (DFC-H) + H]+ resulted in cleavage of the peptide backbone with retention of the DFC moiety as well as heterolytic cleavage of the peptide/antibiotic disulfide bond to produce the fragment ion: [(DFC-2H) + H]+. These results demonstrate the facile dissociative loss by CAD of DFC moieties covalently attached to peptides through disulfide bonds. Published in 2004 by John Wiley & Sons, Ltd.

  1. Identification and cleavage of breakable single bonds by selective oxidation, reduction, and hydrolysis. Annual report, October 1, 1980-September 30, 1981

    SciTech Connect

    Hirschon, A.S.; Zevely, J.; Mayo, F.R.

    1981-11-12

    The objective of this project is to determine the structure of bituminous coal by determining the proportions of the various kinds of connecting bonds and how they can best be broken. Results obtained during the past quarter are presented for the following tasks: (1) extractions and fractionations of coal products which covers pyridine extraction, fractionation of TIPS fractions, EDA extraction of Illinois No. 6 coal and swelling ratios of coal samples; (2) experiments on breakable single bonds which cover reactions of ethylenediamine and model ethers, reaction of pyridine-extracted coal with Me/sub 3/SiI, Baeyer-Villiger oxidations, reaction to diphenylmethane with 15% HNO/sub 3/, cleavage of TIPS with ZnI/sub 2/, and cleavage of black acids; and (3) oxygen oxidation No. 18. Some of the highlights of these studies are: (1) some model ethers are not cleaved by EDA under extraction conditions; (2) oxidation of diaryl ketones with m-chloroperbenzoic acid and saponification of the resulting esters in promising for identifying ketones, (3) treatment of a black acid with pyridine hydroiodide reduced the acid's molecular weight and increased its solubility in pyridine, but treatment with ZnI/sub 2/ was ineffective; (4) in comparison with 0.1 M K/sub 2/S/sub 2/O/sub 8/, 0.01 M persulfate is relatively ineffective in accelerating oxidation of BnNH/sub 2/-extracted coal in water suspension. 2 figures, 3 tables.

  2. Mechanism of ribonucleotide reductase from Herpes simplex virus type 1. Evidence for 3' carbon-hydrogen bond cleavage and inactivation by nucleotide analogs

    SciTech Connect

    Ator, M.A.; Stubbe, J.; Spector, T.

    1986-03-15

    Isotope effects of 2.5, 2.1, and 1.0 were measured on the conversion of (3'-3H)ADP, (3'-H)UDP, and (5-3H) UDP to the corresponding 2'-deoxynucleotides by herpes simplex virus type 1 ribonucleotide reductase. These results indicate that the reduction of either purine or pyrimidine nucleotides requires cleavage of the 3' carbon-hydrogen bond of the substrate. The substrate analogs 2'-chloro-2'-deoxyuridine 5'-diphosphate (ClUDP), 2'-deoxy-2'-fluorouridine 5'-diphosphate, and 2'-azido-2'-deoxyuridine 5'-diphosphate were time-dependent inactivators of the herpes simplex virus type 1 ribonucleotide reductase. Incubation of (3'-3H)ClUDP with the enzyme was accompanied by time-dependent release of 3H to the solvent. Reaction of (beta-32P)ClUDP with the reductase resulted in the production of inorganic pyrophosphate. These results are consistent with the enzyme-mediated cleavage of the 3' carbon-hydrogen bond of ClUDP and the subsequent conversion of the nucleotide to 2-methylene-3(2H)furanone, as previously reported with the Escherichia coli ribonucleotide reductase.

  3. Evidence of cytochrome P450-catalyzed cleavage of the ether bond of phenoxybutyrate herbicides in Rhodococcus erythropolis K2-3.

    PubMed

    Sträuber, Heike; Müller, Roland H; Babel, Wolfgang

    2003-01-01

    Bacterial strain Rhodococcus erythropolis K2-3 can cleave the ether bond of the phenoxybutyrate herbicides, i.e., 4-(2,4-dichlorophenoxy)butyrate (2,4-DB) and 4-(4-chloro-2-methylphenoxy)butyrate (MCPB), by an enzyme system that is constitutively expressed. The enzyme(s) involved were investigated in this study. The rate of disappearance of 2,4-DB determined in a whole cell assay amounted to 0.6 mmol/h x g(dry mass). Carbon monoxide difference spectra of dithionite-reduced whole cells and crude cell extracts suggested that strain K2-3 contains a soluble cytochrome P450 (P450), named P450(PB-1). The addition of various phenoxybutyrate substrates to crude cell extracts resulted in typical difference spectra following the type I pattern of substrate binding with P450. The rate of 2,4-DB cleavage was reduced by inhibitors of P450: 5 mM metyrapone and carbon monoxide at a CO/O2 ratio of 10 reduced the activity by about 20%, and 70%, respectively. The ether cleaving activity completely disappeared after disruption of the cells and could not be detected in crude extracts. To elucidate the enzymatic basis of this reaction, P450 was partially purified. With the resulting enzyme preparation, 2,4-DB cleavage activity was re-established, becoming measurable after the addition of either phenazine methosulfate or ferredoxin and ferredoxin/NADP oxidoreductase from spinach. We detected no activities attributable to alpha-ketoglutarate-dependent dioxygenase or NAD(P)H-dependent monooxygenase. These results collectively indicate that cleavage of the ether bond of phenoxybutyrate herbicides is catalyzed by P450-mediated activity in this strain. One of the products derived from this reaction is dichlorophenol, and comparative chromatographic analyses suggest that the other product is a C4-carbonic acid, most likely succinic semialdehyde/succinate.

  4. Me-Si bond cleavage of anionic bis(trimethylsilyl)amide in scorpionate-anchored rare earth metal complexes.

    PubMed

    Yi, Weiyin; Zhang, Jie; Chen, Zhenxia; Zhou, Xigeng

    2012-10-15

    A novel Tp(Me2)-supported (Tp(Me2) = tri(3,5-dimethylpyrazolyl)borate) rare earth metal complex promoted Me-Si cleavage of the bis(trimethylsilyl) amide ligand ([(Me(3)Si)(2)N](-)) was observed. Reaction of Tp(Me2)LnCl(2) with 2 equiv of K[(RN)(2)CN(SiMe(3))(2)] (KGua) gave the methylamidinate complexes Tp(Me2)Ln[(RN)(2)CMe][N(SiMe(3))(2)] (R = isopropyl, Ln = Y (1(Y)), Er (1(Er)); R = cyclohexyl, Ln = Y (2(Y))) in moderate yields. In contrast, Tp(Me2)YCl(2)(THF) reacted with 1 equiv of KGua to afford a C-N cleavage product Tp(Me2)Y(Cl)N(SiMe(3))(2)(THF) (4), indicating that this guanidinate ligand is not stable in the yttrium complex with the Tp(Me2) ligand, and a carbodiimide deinsertion takes place easily. The mechanism for the formation of complexes 1 and 2 was also studied by controlling the substrate stoichiometry and the reaction sequence and revealed that the bis(trimethylsilyl)amine anion N(SiMe(3))(2)(-) can undergo two routes of γ-methyl deprotonation and Si-Me cleavage for its functionalizations. All these new complexes were characterized by elemental analysis and spectroscopic methods, and their solid-state structures were also confirmed by single-crystal X-ray diffraction.

  5. The nature of solid-state N-H triplebondO/O-H triplebond N tautomeric competition in resonant systems. Intramolecular proton transfer in low-barrier hydrogen bonds formed by the triplebond O=C-C=N-NH triple bond --> <-- triplebond HO-C=C-N=N triplebond Ketohydrazone-Azoenol system. A variable-temperature X-ray crystallographic and DFT computational study.

    PubMed

    Gilli, Paola; Bertolasi, Valerio; Pretto, Loretta; Lycka, Antonín; Gilli, Gastone

    2002-11-13

    The tautomeric.O=C-C=N-NH triplebond --> <-- HO-C=C-N=N triplebond ketohydrazone-azoenol system may form strong N-H triplebond O/O-H triplebond N intramolecular resonance-assisted H-bonds (RAHBs) which are sometimes of the low-barrier H-bond type (LBHB) with dynamic exchange of the proton in the solid state. The problem of the N-H triplebond O/O-H triplebond N competition in these compounds is studied here through variable-temperature (100, 150, 200, and 295 K) crystal-structure determination of pF = 1-(4-F-phenylazo)2-naphthol and oF = 1-(2-F-phenylazo)2-naphthol, two molecules that, on the ground of previous studies (Gilli, P; Bertolasi, V.; Ferretti, V.; Gilli, G. J. Am. Chem. Soc. 2000, 122, 10405), were expected to represent an almost perfect balance of the two tautomers. According to predictions, the two molecules form remarkably strong bonds (d(N triplebond O) = 2.53-2.55 A) of double-minimum or LBHB type with dynamic N-H triplebond O/ O-H triplebond N exchange in the solid state. The enthalpy differences between the two minima, as measured by van't Hoff methods from the X-ray-determined proton populations, are very small and amount to DeltaH degrees = -0.120 and DeltaH degrees = -0.156 kcal mol(-)(1) in favor of the N-H triplebond O form for pF and oF, respectively. Successive emulation of pF by DFT methods at the B3LYP/6-31+G(d,p)//B3LYP/6-31+G(d,p) level has shown that both energetic and geometric experimental aspects can be almost perfectly reproduced. Generalization of these results was sought by performing DFT calculations at the same level of theory along the complete proton-transfer (PT) pathway for five test molecules designed in such a way that the RAHB formed changes smoothly from weak N-H triplebond O to strong O-H.N through very strong N-H triplebond O/O-H triplebond N bond of LBHB type. A systematic correlation analysis of H-bond energies, H-bond and pi-conjugated fragment geometries, and H-bond Bader's AIM topological properties performed

  6. Selective reduction of C=C double bonds in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of microcystins.

    PubMed

    Deleuze, Christelle; De Pauw, Edwin; Quinton, Loic

    2010-01-01

    Cyanobacteria are photosynthetic bacteria encountered in various aquatic environments. Some of them are able to produce powerful toxins called cyanotoxins. Among cyanotoxins, microcystins (MCs) constitute a group of closely related cyclic heptapeptides. Their sequences are made up of classical amino acids as well as post- translational modified ones. Interestingly, in vivo metabolism of microcystins seems to be greatly dependent on various minor structural differences and particularly those of the seventh amino acid, which can be either dehydroalanine (or a derivative), dehydroaminobutyric acid (or a derivative), serine or alanine. As a consequence, microcystins have been classified on the basis of the nature of this singular amino acid. A major difficulty in the classification of such toxins is that some of them share the same molecular masses and the same molecular formulas. Consequently, a simple mass measurement is not sufficient to determine the structure and the class of a toxin of interest. Heavy and expensive techniques are used to classify them, such as multi-dimensional nuclear magnetic resonance and amino acid analysis. In this work, a new matrix-assisted laser desorption/ionization time-of-flight method leading to an easy classification of MCs is proposed. The methodology relies on the reductive properties of the matrix 1,5-diaminonaphtalene (1,5-DAN) which appears to be able to selectively reduce the double carbon-carbon bond belonging to the seventh amino acid. Moreover, the yield of reduction seems to be influenced by the degree of substitution of this double bond, allowing a discrimination between dehydroalanine and dehydroaminobutyric acid. This selective reduction was confirmed by the study of three synthetic peptides by mass spectrometry and tandem mass spectrometry. According to these results, the use of reductive matrices seems to be promising in the study of microcystins and in their classification. More generally, 1,5-DAN allows the selective

  7. A thiophosphinidene complex as a vehicle in phosphinidene transmetalation: easy formation and cleavage of a P-S bond.

    PubMed

    Alvarez, Belén; Alvarez, M Angeles; Amor, Inmaculada; García, M Esther; Ruiz, Miguel A

    2011-11-07

    A method for the generation of transition metal-phosphorus multiple bonds has been developed using the reactions of a novel thiophosphinidene-bridged dimolybdenum complex with different metal carbonyls. The overall process could be considered as a transmetalation of the phosphinidene ligand involving the activation of P-S and P-Mo bonds.

  8. Does C-C bonding proceed during exposure of adequate metal surfaces to CH{sub 4}? Reply to {open_quotes}Comment by Z. Hlavathy, Z. Paal, and P. Tetenyi{close_quotes}

    SciTech Connect

    Amaraiglio, A.; Pareja, P.; Amariglio, H.

    1997-02-01

    The comments, results, and reflections presented by Hlavathy and co-workers in their Letter aim at demonstrating that C-C bonding between CH{sub x} adspecies, formed upon exposure of Pt to CH{sub 4}, can proceed as well during the exposure itself as during further exposure to H{sub 2}. This possibility was implicitly put forward because they thought that a tight parallelism exists between the interactions of CH{sub 4} and CO with a metal surface, provided that the exposure to CH{sub 4} is carried out at a high enough temperature (450{degrees}C). In both cases these authors assumed that three kinds of carbon, C{sub {alpha}}, C{sub {beta}}, and C{sub {gamma}}, can be formed, C{sub {alpha}} being the main species responsible for the production of CH{sub 4} and of the C{sub 2}, alkanes obtained when the metal was further contacted with H{sub 2} at 100{degrees}C. As they argued that C{sub {alpha}} (also named carbidic carbon) has only metal atoms in its first coordination shell, they were implicitly led it that C-C bonding must take place during the hydrogenation step. The authors have not denied this possibility, but they have suggested that different situations can result from exposures to CH{sub 4} conducted at temperatures much lower than those used by Koerts et al.. 13 refs.

  9. Highly efficient C-C bond-forming reactions in aqueous media catalyzed by monomeric vanadate species in an apatite framework.

    PubMed

    Hara, Takayoshi; Kanai, Satoko; Mori, Kohsuke; Mizugaki, Tomoo; Ebitani, Kohki; Jitsukawa, Koichiro; Kaneda, Kiyotomi

    2006-09-15

    A calcium vanadate apatite (VAp), in which PO4(3-) of hydroxyapatite (HAP), Ca10(PO4)6(OH)2, is completely substituted by VO4(3-) in the apatite framework, was synthesized. Physicochemical analysis of the VAp reveals the presence of isolated VO4 tetrahedron units with a pentavalent oxidation state. The VAp acts as a high-performance heterogeneous base catalyst for various carbon-carbon bond-forming reactions such as Michael and aldol reactions in aqueous media and the H-D exchange reactions using deuterium oxide. For example, a 200-mmol-scale Michael reaction under triphasic conditions proceeded rapidly, with an extremely high turnover number of up to 260 400 and an excellent turnover frequency of 48 s(-1). No vanadium leaching was detected during the above reactions, and the catalyst was readily recycled with no loss of activity.

  10. Basic character of rare earth metal alkoxides. Utilization in catalytic C-C bond-forming reactions and catalytic asymmetric nitroaldol reactions

    SciTech Connect

    Sasai, H.; Suzuki, T.; Arai, S.

    1992-05-20

    In a recent paper, the authors reported that Zr(O-t-Bu){sub 4} was an efficient and convenient basic reagent in organic synthesis. However, all reactions examined were performed with stoichiometric quantities of the reagent. The authors envisioned that rare earth metal alkoxides would be stronger bases than group 4 metal alkoxides due to the lower ionization potential (ca. 5.4-6.4 eV) and the lower electronegativity (1.1-1.3) of rare earth elements; thus, the catalytic use of rare earth metal alkoxides in organic synthesis was expected. Although a variety of rare earth metal alkoxides have been prepared for the last three decades, to the authors knowledge, there have been few reports concerning the basicity of rare earth metal alkoxides. Herein, the authors report several carbon-carbon bond-forming reactions catalyzed by rare earth metal alkoxides and their application to a catalytic asymmetric nitroaldol reaction.

  11. Chlorination-Promoted Skeletal-Cage Transformations of C88 Fullerene by C2 Losses and a C-C Bond Rotation.

    PubMed

    Yang, Shangfeng; Wei, Tao; Scheurell, Kerstin; Kemnitz, Erhard; Troyanov, Sergey I

    2015-10-19

    High-temperature chlorination of fullerene C88 (isomer 33) with VCl4 gives rise to skeletal transformations affording several nonclassical (NC) fullerene chlorides, C86 (NC1)Cl24/26 and C84 (NC2)Cl26 , with one and two heptagons, respectively, in the carbon cages. The branched skeletal transformation including C2 losses as well as a Stone-Wales rearrangement has been comprehensively characterized by the structure determination of two intermediates and three final chlorination products. Quantum-chemical calculations demonstrate that the average energy of the C-Cl bond is significantly increased in chlorides of nonclassical fullerenes with a large number of chlorinated sites of pentagon-pentagon adjacency.

  12. Resonance Raman spectroscopy reveals pH-dependent active site structural changes of lactoperoxidase compound 0 and its ferryl heme O-O bond cleavage products.

    PubMed

    Mak, Piotr J; Thammawichai, Warut; Wiedenhoeft, Dennis; Kincaid, James R

    2015-01-14

    The first step in the enzymatic cycle of mammalian peroxidases, including lactoperoxidase (LPO), is binding of hydrogen peroxide to the ferric resting state to form a ferric-hydroperoxo intermediate designated as Compound 0, the residual proton temporarily associating with the distal pocket His109 residue. Upon delivery of this "stored" proton to the hydroperoxo fragment, it rapidly undergoes O-O bond cleavage, thereby thwarting efforts to trap it using rapid mixing methods. Fortunately, as shown herein, both the peroxo and the hydroperoxo (Compound 0) forms of LPO can be trapped by cryoradiolysis, with acquisition of their resonance Raman (rR) spectra now permitting structural characterization of their key Fe-O-O fragments. Studies were conducted under both acidic and alkaline conditions, revealing pH-dependent differences in relative populations of these intermediates. Furthermore, upon annealing, the low pH samples convert to two forms of a ferryl heme O-O bond-cleavage product, whose ν(Fe═O) frequencies reflect substantially different Fe═O bond strengths. In the process of conducting these studies, rR structural characterization of the dioxygen adduct of LPO, commonly called Compound III, has also been completed, demonstrating a substantial difference in the strengths of the Fe-O linkage of the Fe-O-O fragment under acidic and alkaline conditions, an effect most reasonably attributed to a corresponding weakening of the trans-axial histidyl imidazole linkage at lower pH. Collectively, these new results provide important insight into the impact of pH on the disposition of the key Fe-O-O and Fe═O fragments of intermediates that arise in the enzymatic cycles of LPO, other mammalian peroxidases, and related proteins.

  13. Cleavage of the peptide bond of beta-alanyl-L-histidine (carnosine) induced by a Co(III)-amine complexes: reaction, structure and mechanism.

    PubMed

    Saha, Manas K; Mukhopadhyay, Uday; Bernal, Ivan

    2004-05-07

    Cleavage of the peptide bond occurs when beta]-alanyl-L-histidine (carnosine) reacts with [Co(tren)Cl2]+ (tren = tris(2-aminoethyl)amine) to give [Co(tren)(histidine)](2+) 1 and [Co(tren)(beta-alanine)](2+) 2. [Co(tren)(histidine)](2+) 1 crystallizes in the enantiomorphic space group P2(1)2(1)2(1) and 2 crystallizes in the P2(1)/c space group. The mechanism of the cleavage reactions were studied in detail for the precursor [Co(tren)Cl2]+ and [Co(trien)Cl2]+, which convert into [Co(tren)(OH)2]+/[Co(tren)(OH)(OH2)]2+ and [Co(trien)(OH)2]+/[Co(trien)(OH)(OH2)]2+ in water at basic pH (trien = 1,4,7,10-tetraazadecane). At a slightly basic pH, the initial coordination of the substrate (beta-alanyl-L-histidine) is by the carboxylate group for the reaction with [Co(tren)Cl2]+. This is followed by a rate-limiting nucleophilic attack of the hydroxide group at the beta-alanyl-L-histidine carbonyl group. In a strongly basic reaction medium substrate, binding of the metal was through carboxylate and amine terminals. On the other hand, for the reaction between [cis-beta-Co(trien)Cl2]+ and beta-alanyl-L-histidine, the initial coordination of the substrate takes place via an imidazole ring nitrogen, independently, and followed by a nucleophilic attack of the hydroxide group at the beta-alanyl-L-histidine carbonyl group. The circular dichroism spectrum for 1 suggests that a very small extent of racemization of the amino acid (L-histidine) takes place during the cleavage reaction between [Co(tren)Cl2]+ and beta-alanyl-L-histidine. Reaction between [cis-beta-Co(trien)Cl2]+ and beta-alanyl-L-histidine also causes cleavage of the peptide bond, producing a free beta-alanyl molecule and a cationic fragment [cis-alpha-Co(trien)(histidine)](2+) 3 that crystallizes in the optically active space group P2(1)2(1)2(1). Unlike the previous case an appreciable degree of racemization of the L-histidine takes place during the reaction between [cis-beta-Co(trien)Cl2]+ and beta

  14. Activation of C-O and C-C bonds and formation of novel HAlOH-ether complexes: an EPR study of the reaction of ground-state Al atoms with methylethyl ether and diethyl ether.

    PubMed

    Brunet, François D; Feola, Julie C; Joly, Helen A

    2012-03-15

    Reaction mixtures, containing Al atoms and methylethyl ether (MEE) or diethyl ether (DEE) in an adamantane matrix, were prepared with the aid of a metal-atom reactor known as a rotating cryostat. The EPR spectra of the resulting products were recorded from 77-260 K, at 10 K intervals. Al atoms were found to insert into methyl-O, ethyl-O, and C-C bonds to form CH(3)AlOCH(2)CH(3), CH(3)OAlCH(2)CH(3), and CH(3)OCH(2)AlCH(3), respectively, in the case of MEE while DEE produced CH(3)CH(2)AlOCH(2)CH(3) and CH(3)AlCH(2)OCH(2)CH(3), respectively. From the intensity of the transition lines attributed to the Al atom C-O insertion products of MEE, insertion into the methyl-O bond is preferred. The Al hyperfine interaction (hfi) extracted from the EPR spectra of the C-O insertion products was greater than that of the C-C insertion products, that is, 5.4% greater for the DEE system and 7% greater for the MEE system. The increase in Al hfi is thought to arise from the increased electron-withdrawing ability of the substituents bonded to Al. Besides HAlOH, resulting from the reaction of Al atoms with adventitious water, novel mixed HAlOH:MEE and HAlOH:DEE complexes were identified with the aid of isotopic studies involving H(2)(17)O and D(2)O. The Al and H hfi of HAlOH were found to decrease upon complex formation. These findings are consistent with the nuclear hfi calculated using a density functional theory (DFT) method with close agreement between theory and experiment occurring at the B3LYP level using a 6-311+G(2df,p) basis set.

  15. Palladium catalysts supported on mesoporous molecular sieves bearing nitrogen donor groups: preparation and use in Heck and Suzuki C-C bond-forming reactions.

    PubMed

    Demel, Jan; Lamac, Martin; Cejka, Jirí; Stepnicka, Petr

    2009-01-01

    A series of supported catalysts is prepared by treatment of SBA-15-type mesoporous molecular sieve bearing [triple chemical bond]SiCH(2)CH(2)CH(2)NHCH(2)CH(2)NEt(2) groups with palladium(II) acetate. These catalysts are studied in Suzuki biaryl couplings and in Heck reactions to establish the influence of metal loading and innocent surface modifications (trimethylsilylation). The Suzuki reaction proceeded efficiently with model and practically relevant substrates; the catalyst performance increasing with an increasing degree of metalation (decreasing N/Pd ratio). Catalyst poisoning tests revealed that the reaction takes place in the liquid phase with the catalyst serving as a reservoir of active metal species and also as a stabilizing support once the reaction is performed. In the Heck reactions, on the other hand, the catalyst performance strongly changed with the reaction temperature and with the N/Pd ratio. The material with the lowest metal loading (0.01 mmol palladium per gram of material, N/Pd ratio ca. 100:1) proved particularly attractive in the Heck coupling, being highly active at elevated temperatures, recyclable, and capable of acting as a bifunctional catalyst (i.e., functioning without any external base.

  16. High-valent manganese–oxo valence tautomers and the influence of Lewis/Brönsted acids on C–H bond cleavage

    DOE PAGES

    Baglia, Regina A.; Krest, Courtney M.; Yang, Tzuhsiung; ...

    2016-09-30

    The addition of Lewis or Brönsted acids (LA = Zn(OTf)2, B(C6F5)3, HBArF, TFA) to the high-valent manganese–oxo complex MnV(O)(TBP8Cz) results in the stabilization of a valence tautomer MnIV(O-LA)(TBP8Cz•+). The ZnII and B(C6F5)3 complexes were characterized by manganese K-edge X-ray absorption spectroscopy (XAS). The position of the edge energies and the intensities of the pre-edge (1s to 3d) peaks confirm that the Mn ion is in the +4 oxidation state. Fitting of the extended X-ray absorption fine structure (EXAFS) region reveals 4 N/O ligands at Mn–Nave = 1.89 Å and a fifth N/O ligand at 1.61 Å, corresponding to the terminalmore » oxo ligand. This Mn–O bond length is elongated compared to the MnV(O) starting material (Mn–O = 1.55 Å). The reactivity of MnIV(O-LA)(TBP8Cz•+) toward C–H substrates was examined, and it was found that H• abstraction from C–H bonds occurs in a 1:1 stoichiometry, giving a MnIV complex and the dehydrogenated organic product. The rates of C–H cleavage are accelerated for the MnIV(O-LA)(TBP8Cz•+) valence tautomer as compared to the MnV(O) valence tautomer when LA = ZnII, B(C6F5)3, and HBArF, whereas for LA = TFA, the C–H cleavage rate is slightly slower than when compared to MnV(O). A large, nonclassical kinetic isotope effect of kH/kD = 25–27 was observed for LA = B(C6F5)3 and HBArF, indicating that H-atom transfer (HAT) is the rate-limiting step in the C–H cleavage reaction and implicating a potential tunneling mechanism for HAT. Furthermore, the reactivity of MnIV(O-LA)(TBP8Cz•+) toward C–H bonds depends on the strength of the Lewis acid. The HAT reactivity is compared with the analogous corrole complex MnIV(O–H)(tpfc•+) recently reported.« less

  17. Kinetic and Structural Insight into the Mechanism of BphD, a C-C Bond Hydrolase from the Biphenyl Degradation Pathway†

    PubMed Central

    Horsman, Geoff P.; Ke, Jiyuan; Dai, Shaodong; Seah, Stephen Y. K.; Bolin, Jeffrey T.; Eltis, Lindsay D.

    2008-01-01

    Kinetic and structural analyses of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA) hydrolase from Burkholderia xenovorans LB400 (BphDLB400) provide insight into the catalytic mechanism of this unusual serine hydrolase. Single turnover stopped-flow analysis at 25 °C showed that the enzyme rapidly (1/τ1 ∼ 500 s−1) transforms HOPDA (λmax = 434 nm) to a species with electronic absorption maxima at 473 and 492 nm. The absorbance of this enzyme-bound species (E:S) decayed in a biphasic manner (1/τ2 = 54 s−1, 1/τ3 = 6 s−1 ∼ kcat) with simultaneous biphasic appearance (48 and 8 s−1) of an absorbance band at 270 nm characteristic of one of the products, 2-hydroxypenta-2,4-dienoic acid (HPD). Increasing solution viscosity with glycerol slowed 1/τ1 and 1/τ2, but affected neither 1/τ3 nor kcat, suggesting that 1/τ2 may reflect diffusive HPD dissociation, while 1/τ3 represents an intramolecular event. Product inhibition studies suggested that the other product, benzoate, is released after HPD. Contrary to studies in a related hydrolase, we found no evidence that ketonized HOPDA is partially released prior to hydrolysis, and therefore postulate that the biphasic kinetics reflect one of two mechanisms, pending assignment of E:S (λmax = 492 nm). Crystal structures of wild type, the S112C variant, and S112C incubated with HOPDA were each determined to 1.6 Å resolution. The latter reveals interactions between conserved active site residues and the dienoate moiety of the substrate. Most notably, the catalytic residue His265 is hydrogen-bonded to the 2-hydroxy/oxo substituent of HOPDA, consistent with a role in catalyzing ketonization. The data are more consistent with an acyl-enzyme mechanism than with the formation of a gem-diol intermediate. PMID:16964968

  18. Strong Lewis acid air-stable cationic titanocene perfluoroalkyl(aryl)sulfonate complexes as highly efficient and recyclable catalysts for C-C bond forming reactions.

    PubMed

    Li, Ningbo; Wang, Jinying; Zhang, Xiaohong; Qiu, Renhua; Wang, Xie; Chen, Jinyang; Yin, Shuang-Feng; Xu, Xinhua

    2014-08-14

    A series of strong Lewis acid air-stable titanocene perfluoroalkyl(aryl)sulfonate complexes Cp2Ti(OH2)2(OSO2X)2·THF (X = C8F17, 1·THF; X = C4F9, 2·H2O·THF; X = C6F5, 3) were successfully synthesized by the treatment of Cp2TiCl2 with C8F17SO3Ag, C4F9SO3Ag and C6F5SO3Ag, respectively. In contrast to well-known titanocene bis(triflate), these complexes showed no change in open air over three months. TG-DSC analysis showed that 1·THF, 2·H2O·THF and 3 were thermally stable at 230 °C, 220 °C and 280 °C, respectively. Conductivity measurements showed that these complexes underwent ionic dissociation in CH3CN solution. X-ray analysis results confirmed that 2·H2O·THF and 3 were cationic. ESR spectra showed that the Lewis acidity of 1·THF (1.06 eV) was higher than that of Sc(3+) (1.00 eV) and Y(3+) (0.85 eV). UV/Vis spectra showed a significant red shift due to the strong complex formation between 10-methylacridone and 2·H2O·THF. Fluorescence spectra showed that the Lewis acidity of 2 (λ(em) = 477 nm) was higher than that of Sc(3+) (λ(em) = 474 nm). These complexes showed high catalytic ability in various carbon-carbon bond forming reactions. Moreover, they show good reusability. Compared with 1·THF, 2·H2O·THF and 3 exhibit higher solubility and better catalytic activity, and will find broad applications in organic synthesis.

  19. Cleavage of the Nb=O bond of oxoniobium(V) porphyrins. Synthesis and characterization of novel niobium(V) porphyrins with two distinct catechols

    SciTech Connect

    Kurihara, Masato; Kotoh, Noriyuki; Kojima, Takahiko

    1995-09-13

    A novel catecholato complex, Nb{sup v}(tpp)(cat)(Hcat), where cat and Hcat are two distinct catechol ligands (a bidentate catecholate dianion and a monodentate catecholate monoanion, respectively) and tpp is 5, 10, 15, 20-tetaphenylporphyrin dianion, has been isolated in the reaction of Nb{sup v} (tpp)(O)(AcO) with catechol, where AcO is an acetatoligand. Its molecular structure has been determined by X-ray crystallography. Crystal data: monoclinic, space group P2{sub 1}/c, Z = 4, a = 14.592(3) {Angstrom}, b = 23.46(1) {Angstrom}, c = 14.415(4) {Angstrom}, {beta} = 100.95(2){degrees}, R = 0.079. The heptacoordinate niobium atom is displaced by 1.02 {Angstrom} from the mean plane of the four nitrogen atoms. The structure of the complex in solution and the mechanism of the Nb=O cleavage were investigated by means of {sup 1}H-NMR spectroscopy. The bidentate catechol is oriented in C{sub s} symmetry with respect to the porphyrin plane, and the monodentate catechol is located perpendicularly to both the bidentate catechol and the porphyrin plane. Two intermediates with the bidentate catechol were observed after addition of 2 equiv of catechol to Nb(tmp)(O)(AcO) at -30 {degrees}C, where tmp denotes the 5,10,15,20-tetramesitylporphyrin dianion. These intermediates were determined to be Nb(tmp)(cat)(OH) and Nb(tmp)(cat)(AcO). Thus, the Nb=O bond of Nb(tmp)(O)(AcO) was easily cleaved to create the two intermediates. The authors propose a unique route to the Nb=O cleavage that involves an intramolecular electron transfer from the catechol ligand coordinated at the first stage through a ligand exchange with AcO. Both protonation and electron transfer to the Nb=O moiety play important roles in the Nb=O cleavage.

  20. Protolytic cleavage of Hg-C bonds induced by 1-methyl-1,3-dihydro-2H-benzimidazole-2-selone: synthesis and structural characterization of mercury complexes.

    PubMed

    Palmer, Joshua H; Parkin, Gerard

    2015-04-08

    Multinuclear ((1)H, (77)Se, and (199)Hg) NMR spectroscopy demonstrates that 1-methyl-1,3-dihydro-2H-benzimidazole-2-selone, H(sebenzim(Me)), a structural analogue of the selenoamino acid, selenoneine, binds rapidly and reversibly to the mercury centers of HgX2 (X = Cl, Br, I), while X-ray diffraction studies provide evidence for the existence of adducts of composition [H(sebenzim(Me))]xHgX2 (X = Cl, x = 2, 3, 4; X = I, x = 2) in the solid state. H(sebenzim(Me)) also reacts with methylmercury halides, but the reaction is accompanied by elimination of methane resulting from protolytic cleavage of the Hg-C bond, an observation that is of relevance to the report that selenoneine demethylates CysHgMe, thereby providing a mechanism for mercury detoxification. Interestingly, the structures of [H(sebenzim(Me))]xHgX2 exhibit a variety of different hydrogen bonding patterns resulting from the ability of the N-H groups to form hydrogen bonds with chlorine, iodine, and selenium.

  1. Catalysis and co-catalysis of bond cleavages in coal and coal analogs. Final report, August 1, 1990--January 31, 1994

    SciTech Connect

    Miller, B.

    1994-05-01

    In work prior to the inception of this project, the authors observed that mixtures of phenolic materials and polyalkoxyaromatic molecules were appreciably more effective in catalyzing the decompositions of di-2-naphthyl ether and of di-1-naphthyl sulfide in tetralin solutions at 450{degrees}C than were the phenols by themselves, even though the polyalkoxyaromatic molecules, in the absence of phenolic co- catalysts, show essentially no catalytic activity. This was of appreciable interest in coal research because dinapthyl ether and dinapthyl sulfide have been employed as model compounds for coals in studies aimed at cleaving ether and sulfide bonds similar to those in coals. The authors proposed (R. K. Sharma, K. P. Raman, and B. Miller) that the mixed catalysts used in these studies catalyze cleavages of ether and sulfide bonds by means of a mechanism involving electron transfer from the polyalkoxyaromatics to the substrates, which are activated as electron acceptors by hydrogen bonding to phenols. Since phenols themselves are electron donors, they also proposed that the well known effects of phenols in catalyzing the conversion of coals are due to similar electron transfer mechanisms.

  2. Protolytic Cleavage of Hg–C Bonds Induced by 1-Methyl-1,3-dihydro-2H-benzimidazole-2-selone: Synthesis and Structural Characterization of Mercury Complexes

    PubMed Central

    2016-01-01

    Multinuclear (1H, 77Se, and 199Hg) NMR spectroscopy demonstrates that 1-methyl-1,3-dihydro-2H-benzimidazole-2-selone, H(sebenzimMe), a structural analogue of the selenoamino acid, selenoneine, binds rapidly and reversibly to the mercury centers of HgX2 (X = Cl, Br, I), while X-ray diffraction studies provide evidence for the existence of adducts of composition [H(sebenzimMe)]xHgX2 (X = Cl, x = 2, 3, 4; X = I, x = 2) in the solid state. H(sebenzimMe) also reacts with methylmercury halides, but the reaction is accompanied by elimination of methane resulting from protolytic cleavage of the Hg–C bond, an observation that is of relevance to the report that selenoneine demethylates CysHgMe, thereby providing a mechanism for mercury detoxification. Interestingly, the structures of [H(sebenzimMe)]xHgX2 exhibit a variety of different hydrogen bonding patterns resulting from the ability of the N–H groups to form hydrogen bonds with chlorine, iodine, and selenium. PMID:25822075

  3. The role of glandular kallikrein in the formation of a salivary proline-rich protein A by cleavage of a single bond in salivary protein C.

    PubMed Central

    Wong, R S; Madapallimattam, G; Bennick, A

    1983-01-01

    An enzyme was purified from human parotid saliva that can cleave a single arginine-glycine peptide bond between residues 106 and 107 in human salivary proline-rich protein C, hereby giving rise to another proline-rich protein A, which is also found in saliva. The enzyme was purified 2400-fold. It cleaved salivary protein C at the rate of 59 micrograms of protein/h per microgram of enzyme and had amino acid composition, molecular weight and inhibition characteristics similar to those reported for human salivary kallikrein. Confirmation that the enzyme was kallikrein was demonstrated by its kinin-generating ability. Histochemical evidence indicates that a post-synthetic cleavage of protein C by kallikrein would have to take place during passage of saliva through the secretory ducts. In secreted saliva, cleavage of salivary protein C can only be observed after 72 h incubation. In addition, there is no effect of salivary flow rate on the relative amounts of proteins A and C in saliva. On the basis of the experimental observations, it is proposed that in vivo it is unlikely that kallikrein secreted from ductal cells plays a significant role in converting protein C into protein A. PMID:6553499

  4. Cleavage of carbon-nitrogen bond in 1,3,5-tri-tert-butyl-1,3,5-triazacyclohexane by copper(I) bromide

    NASA Astrophysics Data System (ADS)

    Khatua, Suman; Majumdar, Amit

    2016-09-01

    Reactions of CuCl, CuCl2 and CuBr2 with 1,3,5-tri-tert-butyl-1,3,5-triazacyclohexane (tBu3tach) resulted in the formation of [(tBu3tach-H)+(CuCl2)] (1), [(tBu3tach)(CuCl2)] (2) and [(tBu3tach-H)+(CuBr2)] (3) respectively. Interestingly, CuBr was found to mediate the cleavage of the C-N bonds of tBu3tach in a vast range of solvents, namely, chloroform, dichloromethane, tetrahydrofuran, acetonitrile and methanol to yield [Cu4Br4(tBuNCH2)4] (4) and stands as an example of C-N bond cleavage of 1,3,5-triazacyclohexane rings by copper salts. Compounds 1 and 3 contains amidinium cations and are unstable in solution towards the release of copper. The release of copper from 3 in solution was confirmed by the isolation of the compound, [CuBr(MeCN)] (5). Formation of the amidinium cations [(tBu3tach-H)+] in 1 and 3 may be avoided by the use of PPh3 to yield [(tBu3tach)Cu(PPh3)](PF6) (6), while the coordinated N-tert-butylmethanimine (tBuNCH2) in 4 could be replaced by PPh3 to yield [Cu4Br4(PPh3)4] (7). Complexes 1-7 are characterized by a combination of single crystal X-ray structure determination and/or elemental analysis, NMR, IR, and UV-Vis spectroscopy, and Mass spectrometry.

  5. Identification and cleavage of breakable single bonds by selective oxidation, reduction, and hydrolysis. Quarterly report No. 12, June 1-September 30, 1981

    SciTech Connect

    Hirschon, A.S.; Zevely, J.; Mayo, F.R.

    1981-11-12

    We assume that bituminous coal consists mostly of an aggregate of condensed aromatic and aliphatic rings, connected and made insoluble (but swellable) by crosslinks containing single bonds. The objective of this project is to determine the proportions of the various kinds of connecting links and how they can best be broken - in other words, to determine the structure of bituminous coal, with emphasis on the crosslinks and breakable single bonds. The program began with an investigation of the structure of the TIPS fraction of Illinois No. 6 coal, that is, the two-thirds of the 16% extracted by pyridine that is toluene-insoluble, pyridine-soluble, mostly through changes in molecular weight during cleavage reactions in pyridine solution. The most promising of these cleavage reactions are now being applied to the 84% of coal that is insoluble in pyridine and presents the main problem in coal liquefaction, following the progress of the reactions by formation of soluble material and swelling of the insoluble portion. We found that benzylamine (BnNH/sub 2/) would extract an additional 14% (of the original weight of coal) of material from pyridine-extracted coal, and later that an ethylenediamine/dimethyl sulfoxide (EDA/DMSO) mixture would dissolve another 21% of the original coal. The BnNH/sub 2/ extract is soluble in pyridine. Our best present guess is that the BnNH/sub 2/ extract cleaves most of the ester groups in coal and that EDA/DMSO cleaves the remaining ester and most of the ether groups.

  6. Primary photodissociation pathways of epichlorohydrin and analysis of the C-C bond fission channels from an O(3P)+allyl radical intermediate

    NASA Astrophysics Data System (ADS)

    FitzPatrick, Benjamin L.; Alligood, Bridget W.; Butler, Laurie J.; Lee, Shih-Huang; Lin, Jim-Min, Jr.

    2010-09-01

    This study initially characterizes the primary photodissociation processes of epichlorohydrin, c-(H2COCH)CH2Cl. The three dominant photoproduct channels analyzed are c-(H2COCH)CH2+Cl, c-(H2COCH)+CH2Cl, and C3H4O+HCl. In the second channel, the c-(H2COCH) photofission product is a higher energy intermediate on C2H3O global potential energy surface and has a small isomerization barrier to vinoxy. The resulting highly vibrationally excited vinoxy radicals likely dissociate to give the observed signal at the mass corresponding to ketene, H2CCO. The final primary photodissociation pathway HCl+C3H4O evidences a recoil kinetic energy distribution similar to that of four-center HCl elimination in chlorinated alkenes, so is assigned to production of c-(H2COC)=CH2; the epoxide product is formed with enough vibrational energy to isomerize to acrolein and dissociate. The paper then analyzes the dynamics of the C3H5O radical produced from C-Cl bond photofission. When the epoxide radical photoproduct undergoes facile ring opening, it is the radical intermediate formed in the O(P3)+allyl bimolecular reaction when the O atom adds to an end C atom. We focus on the HCO+C2H4 and H2CO+C2H3 product channels from this radical intermediate in this report. Analysis of the velocity distribution of the momentum-matched signals from the HCO+C2H4 products at m/e=29 and 28 shows that the dissociation of the radical intermediate imparts a high relative kinetic energy, peaking near 20 kcal/mol, between the products. Similarly, the energy imparted to relative kinetic energy in the H2CO+C2H3 product channel of the O(P3)+allyl radical intermediate also peaks at high-recoil kinetic energies, near 18 kcal/mol. The strongly forward-backward peaked angular distributions and the high kinetic energy release result from tangential recoil during the dissociation of highly rotationally excited nascent radicals formed photolytically in this experiment. The data also reveal substantial branching to an HCCH+H3

  7. The Mechanism of N-O Bond Cleavage in Rhodium-Catalyzed C-H Bond Functionalization of Quinoline N-oxides with Alkynes: A Computational Study.

    PubMed

    Li, Yingzi; Liu, Song; Qi, Zisong; Qi, Xiaotian; Li, Xingwei; Lan, Yu

    2015-07-06

    Metal-catalyzed C-H activation not only offers important strategies to construct new bonds, it also allows the merge of important research areas. When quinoline N-oxide is used as an arene source in C-H activation studies, the N-O bond can act as a directing group as well as an O-atom donor. The newly reported density functional theory method, M11L, has been used to elucidate the mechanistic details of the coupling between quinoline N-O bond and alkynes, which results in C-H activation and O-atom transfer. The computational results indicated that the most favorable pathway involves an electrophilic deprotonation, an insertion of an acetylene group into a Rh-C bond, a reductive elimination to form an oxazinoquinolinium-coordinated Rh(I) intermediate, an oxidative addition to break the N-O bond, and a protonation reaction to regenerate the active catalyst. The regioselectivity of the reaction has also been studied by using prop-1-yn-1-ylbenzene as a model unsymmetrical substrate. Theoretical calculations suggested that 1-phenyl-2-quinolinylpropanone would be the major product because of better conjugation between the phenyl group and enolate moiety in the corresponding transition state of the regioselectivity-determining step. These calculated data are consistent with the experimental observations.

  8. Exclusive selectivity in the one-pot formation of C-C and C-Se bonds involving Ni-catalyzed alkyne hydroselenation: optimization of the synthetic procedure and a mechanistic study.

    PubMed

    Orlov, Nikolay V; Chistyakov, Igor V; Khemchyan, Levon L; Ananikov, Valentine P; Beletskaya, Irina P; Starikova, Zoya A

    2014-12-19

    A unique Ni-catalyzed transformation is reported for the one-pot highly selective synthesis of previously unknown monoseleno-substituted 1,3-dienes starting from easily available terminal alkynes and benzeneselenol. The combination of a readily available catalyst precursor, Ni(acac)2, and an appropriately tuned phosphine ligand, PPh2Cy, resulted in the exclusive assembly of the s-gauche diene skeleton via the selective formation of C-C and C-Se bonds. The unusual diene products were stable under regular experimental conditions, and the products maintained the s-gauche geometry both in the solid state and in solution, as confirmed by X-ray analysis and NMR spectroscopy. Thorough mechanistic studies using ESI-MS revealed the key Ni-containing species involved in the reaction.

  9. Primary photodissociation pathways of epichlorohydrin and analysis of the C-C bond fission channels from an O({sup 3}P)+allyl radical intermediate

    SciTech Connect

    FitzPatrick, Benjamin L.; Alligood, Bridget W.; Butler, Laurie J.; Lee, Shih-Huang; Lin, Jim Jr-Min

    2010-09-07

    This study initially characterizes the primary photodissociation processes of epichlorohydrin, c-(H{sub 2}COCH)CH{sub 2}Cl. The three dominant photoproduct channels analyzed are c-(H{sub 2}COCH)CH{sub 2}+Cl, c-(H{sub 2}COCH)+CH{sub 2}Cl, and C{sub 3}H{sub 4}O+HCl. In the second channel, the c-(H{sub 2}COCH) photofission product is a higher energy intermediate on C{sub 2}H{sub 3}O global potential energy surface and has a small isomerization barrier to vinoxy. The resulting highly vibrationally excited vinoxy radicals likely dissociate to give the observed signal at the mass corresponding to ketene, H{sub 2}CCO. The final primary photodissociation pathway HCl+C{sub 3}H{sub 4}O evidences a recoil kinetic energy distribution similar to that of four-center HCl elimination in chlorinated alkenes, so is assigned to production of c-(H{sub 2}COC)=CH{sub 2}; the epoxide product is formed with enough vibrational energy to isomerize to acrolein and dissociate. The paper then analyzes the dynamics of the C{sub 3}H{sub 5}O radical produced from C-Cl bond photofission. When the epoxide radical photoproduct undergoes facile ring opening, it is the radical intermediate formed in the O({sup 3}P)+allyl bimolecular reaction when the O atom adds to an end C atom. We focus on the HCO+C{sub 2}H{sub 4} and H{sub 2}CO+C{sub 2}H{sub 3} product channels from this radical intermediate in this report. Analysis of the velocity distribution of the momentum-matched signals from the HCO+C{sub 2}H{sub 4} products at m/e=29 and 28 shows that the dissociation of the radical intermediate imparts a high relative kinetic energy, peaking near 20 kcal/mol, between the products. Similarly, the energy imparted to relative kinetic energy in the H{sub 2}CO+C{sub 2}H{sub 3} product channel of the O({sup 3}P)+allyl radical intermediate also peaks at high-recoil kinetic energies, near 18 kcal/mol. The strongly forward-backward peaked angular distributions and the high kinetic energy release result from

  10. Silylations of Arenes with Hydrosilanes: From Transition-Metal-Catalyzed C¢X Bond Cleavage to Environmentally Benign Transition-Metal-Free C¢H Bond Activation.

    PubMed

    Xu, Zheng; Xu, Li-Wen

    2015-07-08

    The construction of carbon-silicon bonds is highlighted as an exciting achievement in the field of organosilicon chemistry and green chemistry. Recent developments in this area will enable the sustainable chemical conversion of silicon resources into synthetically useful compounds. Especially, the catalytic silylation through C¢H bond activation without directing groups and hydrogen acceptors is one of the most challenging topics in organic chemistry and green chemistry. These remarkable findings on catalytic silylation can pave the way to a more environmentally benign utilization of earth-abundant silicon-based resources in synthetic chemistry.

  11. Reactions of Fe+ coordinated to the [pi]-donating ligands C2H4, c-C5H5, C6H6 and C60 with N2O and CO: probing the bonding in (C60)Fe+

    NASA Astrophysics Data System (ADS)

    Baranov, Vladimir; Bohme, Diethard K.

    1995-11-01

    Experimental results are reported for gas-phase reactions of Fe+ coordinated to the [pi]-donating ligands C2H4, c-C5H5, C6H6 and C60 with N2O and CO. Reaction rate coefficients and product distributions were measured with the selected-ion flow tube (SIFT) technique operating at 294 ± 3 K and a helium buffer gas pressure of 0.35 ± 0.01 Torr. The measurements provide intrinsic efficiencies for the primary and higher-order ligation of these XFe+ cations with CO and N2O and their corresponding coordination numbers. The coordination numbers are consistent with known ground state electronic structures. Many of the ligated ions were synthesized by ion/molecule ligation reactions in the gas phase for the first time, including XFe(CO)n+ and XFe(N2O)+ with X = C2H4, c-C5H5 and C6H6, (C60)Fe(N2O)+, (C60)FeO+ and (C60)FeO(N2O)+. Also, the measurements provided an experimental assessment of the mode of bonding in (C60)Fe+.

  12. Peptide bond cleavage site determination of novel proteolytic enzymes found in ROS 17/2.8 cell lysates.

    PubMed

    Guidon, P T; Perrin, D; Harrison, P

    1996-02-01

    We have identified proteolytic activities in the rat osteoblastic osteosarcoma cell line ROS 17/2.8 which are capable of cleaving a peptide substrate for protein kinase C-mediated phosphorylation (PSPKC, Pro-Leu-Ser-Arg-Thr-Leu-Ser-Val-Ala-Ala-Lys). Using polyacrylamide gel electrophoresis conditions similar to those used to resolve small molecular weight proteins, the peptide bonds of PSPKC which are cleaved by the proteolytic activities present in ROS 17/2.8 cell lysates have been determined. These activities cleave the Ser-Arg, Thr-Leu, and Ser-Val peptide bonds. To date, no proteolytic activities present in osteoblast cell lysates have been described with the aforementioned peptide bond specificities, suggesting that these activities are novel. The PSPKC-cleaved peptide fragment pattern generated was similar for several different osteoblast cell lysates. Lysates generated from different rat tissues were also able to cleave PSPKC, but the peptide fragment pattern generated by ROS 17/2.8 cell lysates appeared to be unique amongst these tissues.

  13. Reactivity of Tp(Me2) -supported yttrium alkyl complexes toward aromatic N-heterocycles: ring-opening or C-C bond formation directed by C-H activation.

    PubMed

    Yi, Weiyin; Zhang, Jie; Huang, Shujian; Weng, Linhong; Zhou, Xigeng

    2014-01-13

    Unusual chemical transformations such as three-component combination and ring-opening of N-heterocycles or formation of a carbon-carbon double bond through multiple C-H activation were observed in the reactions of Tp(Me2) -supported yttrium alkyl complexes with aromatic N-heterocycles. The scorpionate-anchored yttrium dialkyl complex [Tp(Me2) Y(CH2 Ph)2 (THF)] reacted with 1-methylimidazole in 1:2 molar ratio to give a rare hexanuclear 24-membered rare-earth metallomacrocyclic compound [Tp(Me2) Y(μ-N,C-Im)(η(2) -N,C-Im)]6 (1; Im=1-methylimidazolyl) through two kinds of C-H activations at the C2- and C5-positions of the imidazole ring. However, [Tp(Me2) Y(CH2 Ph)2 (THF)] reacted with two equivalents of 1-methylbenzimidazole to afford a C-C coupling/ring-opening/C-C coupling product [Tp(Me2) Y{η(3) -(N,N,N)-N(CH3 )C6 H4 NHCHC(Ph)CN(CH3 )C6 H4 NH}] (2). Further investigations indicated that [Tp(Me2) Y(CH2 Ph)2 (THF)] reacted with benzothiazole in 1:1 or 1:2 molar ratio to produce a C-C coupling/ring-opening product {(Tp(Me2) )Y[μ-η(2) :η(1) -SC6 H4 N(CHCHPh)](THF)}2 (3). Moreover, the mixed Tp(Me2) /Cp yttrium monoalkyl complex [(Tp(Me2) )CpYCH2 Ph(THF)] reacted with two equivalents of 1-methylimidazole in THF at room temperature to afford a trinuclear yttrium complex [Tp(Me2) CpY(μ-N,C-Im)]3 (5), whereas when the above reaction was carried out at 55 °C for two days, two structurally characterized metal complexes [Tp(Me2) Y(Im-Tp(Me2) )] (7; Im-Tp(Me2) =1-methyl-imidazolyl-Tp(Me2) ) and [Cp3 Y(HIm)] (8; HIm=1-methylimidazole) were obtained in 26 and 17 % isolated yields, respectively, accompanied by some unidentified materials. The formation of 7 reveals an uncommon example of construction of a CC bond through multiple C-H activations.

  14. Insights into the mechanism of X-ray-induced disulfide-bond cleavage in lysozyme crystals based on EPR, optical absorption and X-ray diffraction studies.

    PubMed

    Sutton, Kristin A; Black, Paul J; Mercer, Kermit R; Garman, Elspeth F; Owen, Robin L; Snell, Edward H; Bernhard, William A

    2013-12-01

    Electron paramagnetic resonance (EPR) and online UV-visible absorption microspectrophotometry with X-ray crystallography have been used in a complementary manner to follow X-ray-induced disulfide-bond cleavage. Online UV-visible spectroscopy showed that upon X-irradiation, disulfide radicalization appeared to saturate at an absorbed dose of approximately 0.5-0.8 MGy, in contrast to the saturating dose of ∼0.2 MGy observed using EPR at much lower dose rates. The observations suggest that a multi-track model involving product formation owing to the interaction of two separate tracks is a valid model for radiation damage in protein crystals. The saturation levels are remarkably consistent given the widely different experimental parameters and the range of total absorbed doses studied. The results indicate that even at the lowest doses used for structural investigations disulfide bonds are already radicalized. Multi-track considerations offer the first step in a comprehensive model of radiation damage that could potentially lead to a combined computational and experimental approach to identifying when damage is likely to be present, to quantitate it and to provide the ability to recover the native unperturbed structure.

  15. Solvent dependent branching between C-I and C-Br bond cleavage following 266 nm excitation of CH{sub 2}BrI

    SciTech Connect

    Anderson, Christopher P.; Spears, Kenneth G.; Wilson, Kaitlynn R.; Sension, Roseanne J.

    2013-11-21

    It is well known that ultraviolet photoexcitation of halomethanes results in halogen-carbon bond cleavage. Each halogen-carbon bond has a dominant ultraviolet (UV) absorption that promotes an electron from a nonbonding halogen orbital (n{sub X}) to a carbon-halogen antibonding orbital (σ*{sub C-X}). UV absorption into specific transitions in the gas phase results primarily in selective cleavage of the corresponding carbon-halogen bond. In the present work, broadband ultrafast UV-visible transient absorption studies of CH{sub 2}BrI reveal a more complex photochemistry in solution. Transient absorption spectra are reported spanning the range from 275 nm to 750 nm and 300 fs to 3 ns following excitation of CH{sub 2}BrI at 266 nm in acetonitrile, 2-butanol, and cyclohexane. Channels involving formation of CH{sub 2}Br + I radical pairs, iso-CH{sub 2}Br-I, and iso-CH{sub 2}I-Br are identified. The solvent environment has a significant influence on the branching ratios, and on the formation and stability of iso-CH{sub 2}Br-I. Both iso-CH{sub 2}Br-I and iso-CH{sub 2}I-Br are observed in cyclohexane with a ratio of ∼2.8:1. In acetonitrile this ratio is 7:1 or larger. The observation of formation of iso-CH{sub 2}I-Br photoproduct as well as iso-CH{sub 2}Br-I following 266 nm excitation is a novel result that suggests complexity in the dissociation mechanism. We also report a solvent and concentration dependent lifetime of iso-CH{sub 2}Br-I. At low concentrations the lifetime is >4 ns in acetonitrile, 1.9 ns in 2-butanol and ∼1.4 ns in cyclohexane. These lifetimes decrease with higher initial concentrations of CH{sub 2}BrI. The concentration dependence highlights the role that intermolecular interactions can play in the quenching of unstable isomers of dihalomethanes.

  16. Heterolytic Cleavage of Hydrogen by an Iron Hydrogenase Model: An Fe-H - - - H-N Dihydorgen Bond Characterized by Neutron Diffraction

    SciTech Connect

    Liu, Tianbiao L.; Wang, Xiaoping; Hoffmann, Christina; DuBois, Daniel L.; Bullock, R. Morris

    2014-05-19

    Use of hydrogen as a fuel by [FeFe]-hydrogenase enzymes in nature requires heterolytic cleavage of the H-H bond into a proton (H+) and hydride (H-), a reaction that is also a critical step in homogeneous catalysts for hydrogenation of C=O and C=N bonds. An understanding of the catalytic oxidation of H2 by hydrogenases provides insights into the design of synthetic catalysts that are sought as cost-effective alternatives to the use of the precious metal platinum in fuel cells. Crystallographic studies on the [FeFe]-hydrogenase enzyme were critical to understanding of its reactivity, but the key H-H cleavage step is not readily observed experimentally in natural hydrogenases. Synthetic biomimics have provided evidence for H2 cleavage leading to hydride transfer to the metal and proton transfer to an amine. Limitations on the precise location of hydrogen atoms by x-ray diffraction can be overcome by use of neutron diffraction, though its use is severely limited by the difficulty of obtaining suitable crystals and by the scarcity of neutron sources. Here we show that an iron complex with a pendant amine in the diphosphine ligand cleaves hydrogen heterolytically under mild conditions, leading to [CpC5F4NFeH(PtBu2NtBu2H)]+BArF4-, [PtBu2NtBu2 = 1,5-di(tert-butyl)-3,7-di(tert-butyl)-1,5-diaza-3,7-diphosphacyclooctane; ArF = 3,5-bis(trifluoromethyl)phenyl]. The Fe-H- - - H-N moiety has a strong dihydrogen bond, with a remarkably short H • • • H distance of 1.489(10) Å between the protic N-Hδ+ and hydridic Fe-Hδ-. The structural data for [CpC5F4NFeH(PtBu2NtBu2H)]+ provide a glimpse of how the H-H bond is oxidized or generated in hydrogenase enzymes, with the pendant amine playing a key role as a proton relay. The iron complex [CpC5F4NFeH(PtBu2NtBu2H)]+BArF4- is an electrocatalyst for oxidation of H2 (1 atm) at 22 °C, so the structural data are obtained on a complex that is a functional model for catalysis by [FeFe]-hydrogenase enzymes. This research was supported

  17. X-ray Crystal Structure of a Metalled Double-Helix Generated by Infinite and Consecutive C*-Ag(I) -C* (C*:N(1) -Hexylcytosine) Base Pairs through Argentophilic and Hydrogen Bond Interactions.

    PubMed

    Terrón, Angel; Moreno-Vachiano, Blas; Bauzá, Antonio; García-Raso, Angel; Fiol, Juan Jesús; Barceló-Oliver, Miquel; Molins, Elies; Frontera, Antonio

    2017-02-10

    The synthesis of a metalled double-helix containing exclusively silver-mediated C*-C* base pairs is reported herein (C*=N(1) hexylcytosine). Remarkably, it is the first crystal structure containing infinite and consecutive C*-Ag(I) -C* base pairs that form a double helix. The Ag(I) ion occupies the center between two C* residues with N(3)-Ag bond lengths of 2.1 Å and short Ag(I) -Ag(I) distances (3.1 Å) suggesting an interesting argentophilic attraction as a stabilization source of the helical disposition. The solid-state structure is further stabilized by metal-mediated base-pairs, hydrogen bonding and π-stacking interactions. Moreover, the angle N(3)-Ag-N(3) is almost linear in the [Ag(N(1) hexylcytosine)2 ](+) motif and the bases are not coplanar, thus generating a double-strand helical aggregate in the solid state. The noncovalent and argentophilic interactions have been rationalized based on DFT calculations.

  18. Electron-deficient ruthenium and osmium complexes: From 14-electron species to C-F bond cleavage reactions

    NASA Astrophysics Data System (ADS)

    Huang, Dejian

    1999-12-01

    Stepwise removal of the fluoride from RuRF(CO)L2 gives [RuR(CO)L 2]BAr'4 (L = PtBu 2Me, R = H, CH3, Ph, Ar' = 3,5- bis(trifluoromethyl)phenyl). This 14-electron cation has a saw-horse shape with two bulky L trans and CO and R cis. The two vacant sites are in fact occupied weakly by C-H bonds from the phosphines. [RuH(CO)L2] + has a strong Lewis acidic but weakened π- basic Ru center as it is illustrated by its reactivity pattern towards olefins and alkynes. While organic fluorocarbon is notorious for its inertness due to the strong C-F bond, the α-C-F bond of a transition metal fluorocarbyl complex is activated. The chemistry in Chapter 3 illustrates this argument. Attempts to replace fluoride of MHF(CO)L2 with CF3 using Me 3SiCF3 do not give MH(CF3)(CO)L2, instead, M[HF(CF2)(CO)L2 is isolated. Fast equilibrium exists between RuHF(CF2)(CO)L2 and RuH(CF3)(CO)L 2 but not for OsHF(CF2)(CO)L2, which is converted to OsF2(CFH)(CO)L2 upon heating. In contrast, isomerization of RuHF(CF2)(CO)L2 gives RUF(CF2H)(CO)L 2.

  19. The importance of the Lewis base in lithium mediated metallation and bond cleavage reaction of allyl amines and allyl phosphines.

    PubMed

    Blair, V L; Stevens, M A; Thompson, C D

    2016-06-21

    Metallation of two analogous N- and P-allyl molecules Ph2NCH2CHCH2 and Ph2PCH2CHCH2 with nBuLi have shown contrasting reactivities based on the choice of Lewis donor. With metallation of the alpha carbon atom was achieved regardless of the Lewis donor used while in comparison metallation of showed an unexpected donor denticity dependence with P-C bond clevage induced with the tri-dentate PMDETA. Complementary DFT and solution studies rationalise this outcome.

  20. Selective Monoarylation of Aromatic Ketones and Esters via Cleavage of Aromatic Carbon-Heteroatom Bonds by Trialkylphosphine Ruthenium Catalysts.

    PubMed

    Kondo, Hikaru; Kochi, Takuya; Kakiuchi, Fumitoshi

    2017-02-17

    We report here the ruthenium-catalyzed selective monoarylation of aromatic ketones bearing two ortho carbon-heteroatom (O or N) bonds. Under the newly developed catalyst system consisting of RuHCl(CO)(P(i)Pr3)2, CsF, and styrene, the C-O arylation of 2',6'-dimethoxyacetophenone with a phenylboronate gave the C-O monoarylation product selectively. The selective C-O monoarylation was applicable to a variety of arylboronates and aromatic ketones and proceeds with high regio- and chemoselectivities. A formal synthesis of altertenuol was also achieved using the C-O monoarylation of an aromatic ester as a key step.

  1. Synthesis of diorganoplatinum(IV) complexes by the Ssbnd S bond cleavage with platinum(II) complexes

    NASA Astrophysics Data System (ADS)

    Niroomand Hosseini, Fatemeh; Rashidi, Mehdi; Nabavizadeh, S. Masoud

    2016-12-01

    Reaction of [PtR2(NN)] (R = Me, p-MeC6H4 or p-MeOC6H4; NN = 2,2‧-bipyridine, 4,4‧-dimethyl-2,2‧-bipyridine, 1,10-phenanthroline or 2,9-dimethyl-1,10-phenanthroline) with MeSSMe gives the platinum(IV) complexes cis,trans-[PtR2(SMe)2(NN)]. They are characterized by NMR spectroscopy and elemental analysis. The geometries and the nature of the frontier molecular orbitals of Pt(IV) complexes containing Ptsbnd S bonds are studied by means of the density functional theory.

  2. Molecular Basis of C–N Bond Cleavage by the Glycyl Radical Enzyme Choline Trimethylamine-Lyase

    SciTech Connect

    Bodea, Smaranda; Funk, Michael A.; Balskus, Emily P.; Drennan, Catherine L.

    2016-10-01

    We report that deamination of choline catalyzed by the glycyl radical enzyme choline trimethylamine-lyase (CutC) has emerged as an important route for the production of trimethylamine, a microbial metabolite associated with both human disease and biological methane production. Here, we have determined five high-resolution X-ray structures of wild-type CutC and mechanistically informative mutants in the presence of choline. Within an unexpectedly polar active site, CutC orients choline through hydrogen bonding with a putative general base, and through close interactions between phenolic and carboxylate oxygen atoms of the protein scaffold and the polarized methyl groups of the trimethylammonium moiety. These structural data, along with biochemical analysis of active site mutants, support a mechanism that involves direct elimination of trimethylamine. Lastly, this work broadens our understanding of radical-based enzyme catalysis and will aid in the rational design of inhibitors of bacterial trimethylamine production.

  3. High-valent manganese–oxo valence tautomers and the influence of Lewis/Brönsted acids on C–H bond cleavage

    SciTech Connect

    Baglia, Regina A.; Krest, Courtney M.; Yang, Tzuhsiung; Leeladee, Pannee; Goldberg, David P.

    2016-09-30

    The addition of Lewis or Brönsted acids (LA = Zn(OTf)2, B(C6F5)3, HBArF, TFA) to the high-valent manganese–oxo complex MnV(O)(TBP8Cz) results in the stabilization of a valence tautomer MnIV(O-LA)(TBP8Cz•+). The ZnII and B(C6F5)3 complexes were characterized by manganese K-edge X-ray absorption spectroscopy (XAS). The position of the edge energies and the intensities of the pre-edge (1s to 3d) peaks confirm that the Mn ion is in the +4 oxidation state. Fitting of the extended X-ray absorption fine structure (EXAFS) region reveals 4 N/O ligands at Mn–Nave = 1.89 Å and a fifth N/O ligand at 1.61 Å, corresponding to the terminal oxo ligand. This Mn–O bond length is elongated compared to the MnV(O) starting material (Mn–O = 1.55 Å). The reactivity of MnIV(O-LA)(TBP8Cz•+) toward C–H substrates was examined, and it was found that H abstraction from C–H bonds occurs in a 1:1 stoichiometry, giving a MnIV complex and the dehydrogenated organic product. The rates of C–H cleavage are accelerated for the MnIV(O-LA)(TBP8Cz•+) valence tautomer as compared to the MnV(O) valence tautomer when LA = ZnII, B(C6F5)3, and HBArF, whereas for LA = TFA, the C–H cleavage rate is slightly slower than when compared to MnV(O). A large, nonclassical kinetic isotope effect of kH/kD = 25–27 was observed for LA = B(C6F5)3 and HBArF, indicating that H-atom transfer (HAT) is the rate-limiting step in the C–H cleavage reaction and implicating a potential tunneling mechanism for HAT. Furthermore, the reactivity of MnIV(O-LA)(TBP8Cz•+) toward C–H bonds

  4. OCO and NCO chelated derivatives of heavier group 15 elements. Study on possibility of cyclization reaction via intramolecular ether bond cleavage.

    PubMed

    Dostál, Libor; Jambor, Roman; Růžička, Aleš; Jirásko, Robert; Holeček, Jaroslav; De Proft, Frank

    2011-09-21

    A set of four pincer ligands, either the OCO type ligands L(1-3) [2,6-(ROCH(2))(2)C(6)H(3)](-), where R = Me (L(1)), mesityl (L(2)), t-Bu (L(3)) or novel NCO ligand [2-(Me(2)NCH(2))-6-(t-BuOCH(2))C(6)H(3)](-) was studied. The reaction of L(4)Li with PCl(3) resulted in isolation of [2-(OCH(2))-6-(Me(2)NCH(2))C(6)H(3)]PCl (1) as a result of intramolecular ether bond cleavage and elimination of t-BuCl. The conversion between the organolithium compounds L(1,2,4)Li and AsCl(3) led to the desired chlorides, i.e. (L(1))(2)AsCl (2), L(2)AsCl(2) (3), L(4)AsCl(2) (5), but an analogous reaction using the L(3)Li compound gave [2-(OCH(2))-6-(t-BuOCH(2))C(6)H(3)]AsCl (4) as a result of intramolecular cyclization. The organoantimony chloride L(3)SbCl(2) was shown to undergo very slow cyclization in CDCl(3) again via elimination of t-BuCl giving [2-(OCH(2))-6-(t-BuOCH(2))C(6)H(3)]SbCl (6) and it was demonstrated that this reaction may be accelerated by preparation of L(3)Sb(Cl)(OTf) (7) with more Lewis acidic central atom. On the contrary, both antimony derivatives of the NCO ligand L(4), not only the chloride L(4)SbCl(2) (8) but also the ionic pair containing highly Lewis acidic cation [L(4)SbCl](+)[CB(11)H(12)](-) (9), are stable without any indication for etheral bond cleavage. The situation is rather similar in the case of organobismuth derivatives of L(4), which allowed isolation of compounds L(4)BiCl(2) (10), L(4)Bi(Cl)(OTf) (11) and [L(4)BiCl](+)[CB(11)H(12)](-) (12). All studied compounds were characterized by the help of (1)H and (13)C NMR spectroscopy, ESI mass spectrometry, elemental analysis and (except 1) by single-crystal X-ray diffraction.

  5. Elementary steps of iron catalysis: exploring the links between iron alkyl and iron olefin complexes for their relevance in C-H activation and C-C bond formation.

    PubMed

    Casitas, Alicia; Krause, Helga; Goddard, Richard; Fürstner, Alois

    2015-01-26

    The alkylation of complexes 2 and 7 with Grignard reagents containing β-hydrogen atoms is a process of considerable relevance for the understanding of C-H activation as well as C-C bond formation mediated by low-valent iron species. Specifically, reaction of 2 with EtMgBr under an ethylene atmosphere affords the bis-ethylene complex 1 which is an active precatalyst for prototype [2+2+2] cycloaddition reactions and a valuable probe for mechanistic studies. This aspect is illustrated by its conversion into the bis-alkyne complex 6 as an unprecedented representation of a cycloaddition catalyst loaded with two substrates molecules. On the other hand, alkylation of 2 with 1 equivalent of cyclohexylmagnesium bromide furnished the unique iron alkyl species 11 with a 14-electron count, which has no less than four β-H atoms but is nevertheless stable at low temperature against β-hydride elimination. In contrast, the exhaustive alkylation of 1 with cyclohexylmagnesium bromide triggers two consecutive C-H activation reactions mediated by a single iron center. The resulting complex has a diene dihydride character in solution (15), whereas its structure in the solid state is more consistent with an η(3) -allyl iron hydride rendition featuring an additional agostic interaction (14). Finally, the preparation of the cyclopentadienyl iron complex 25 illustrates how an iron-mediated C-H activation cascade can be coaxed to induce a stereoselective CC bond formation. The structures of all relevant new iron complexes in the solid state are presented.

  6. The Molybdenum Active Site of Formate Dehydrogenase Is Capable of Catalyzing C-H Bond Cleavage and Oxygen Atom Transfer Reactions.

    PubMed

    Hartmann, Tobias; Schrapers, Peer; Utesch, Tillmann; Nimtz, Manfred; Rippers, Yvonne; Dau, Holger; Mroginski, Maria Andrea; Haumann, Michael; Leimkühler, Silke

    2016-04-26

    Formate dehydrogenases (FDHs) are capable of performing the reversible oxidation of formate and are enzymes of great interest for fuel cell applications and for the production of reduced carbon compounds as energy sources from CO2. Metal-containing FDHs in general contain a highly conserved active site, comprising a molybdenum (or tungsten) center coordinated by two molybdopterin guanine dinucleotide molecules, a sulfido and a (seleno-)cysteine ligand, in addition to a histidine and arginine residue in the second coordination sphere. So far, the role of these amino acids in catalysis has not been studied in detail, because of the lack of suitable expression systems and the lability or oxygen sensitivity of the enzymes. Here, the roles of these active site residues is revealed using the Mo-containing FDH from Rhodobacter capsulatus. Our results show that the cysteine ligand at the Mo ion is displaced by the formate substrate during the reaction, the arginine has a direct role in substrate binding and stabilization, and the histidine elevates the pKa of the active site cysteine. We further found that in addition to reversible formate oxidation, the enzyme is further capable of reducing nitrate to nitrite. We propose a mechanistic scheme that combines both functionalities and provides important insights into the distinct mechanisms of C-H bond cleavage and oxygen atom transfer catalyzed by formate dehydrogenase.

  7. Experimental and theoretical investigations of copper (I/II) complexes with triazine-pyrazole derivatives as ligands and their in situ C-N bond cleavage

    NASA Astrophysics Data System (ADS)

    Wang, Ji-Xiao; Wang, Che; Wang, Xuan; Wang, Xin-Yu; Xing, Yong-Heng; Sun, Qiao

    2015-05-01

    Two copper complexes, Cu(SCN)(Mpz∗T-(EtO)2) (1) (Mpz∗T-(EtO)2 = L3) and CuCl(H2O)(Mpz∗T-O2) (2) (Mpz∗T-O2 = L4) were synthesized by the reaction of 2,4,6-tri(3,5-dimethylpyrazol-1-yl)-1,3,5-triazine (L1) or 2,4,6-tri(1H-pyrazol-1-yl)-1,3,5-triazine (L2) with CuCl2·2H2O in anhydrous ethanol and methanol, respectively. The complexes were characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, single crystal X-ray diffraction and X-ray powder diffraction. The structural characterizations and quantum mechanical calculations of the two complexes were analyzed in detail. It was found that an in site reaction occurred during the synthesis process of complexes 1 and 2, likely due to catalytic property of copper ions which leads to the C-N bond cleavage to generate new organic species, namely, Mpz∗T-(EtO)2 (L3) and Mpz∗T-O2 (L4).

  8. Gallium(III)-Containing, Sandwich-Type Heteropolytungstates: Synthesis, Solution Characterization, and Hydrolytic Studies toward Phosphoester and Phosphoanhydride Bond Cleavage.

    PubMed

    Kandasamy, Balamurugan; Vanhaecht, Stef; Nkala, Fiona Marylyn; Beelen, Tessa; Bassil, Bassem S; Parac-Vogt, Tatjana N; Kortz, Ulrich

    2016-09-19

    The gallium(III)-containing heteropolytungstates [Ga4(H2O)10(β-XW9O33)2](6-) (X = As(III), 1; Sb(III), 2) were synthesized in aqueous acidic medium by reaction of Ga(3+) ions with the trilacunary, lone-pair-containing [XW9O33](9-). Polyanions 1 and 2 are isostructural and crystallized as the hydrated sodium salts Na6[Ga4(H2O)10(β-AsW9O33)2]·28H2O (Na-1) and Na6[Ga4(H2O)10(β-SbW9O33)2]·30H2O (Na-2) in the monoclinic space group P21/c, with unit cell parameters a = 16.0218(12) Å, b = 15.2044(10) Å, c = 20.0821(12) Å, and β = 95.82(0)°, as well as a = 16.0912(5) Å, b = 15.2178(5) Å, c = 20.1047(5) Å, and β = 96.2(0)°, respectively. The corresponding tellurium(IV) derivative [Ga4(H2O)10(β-TeW9O33)2](4-) (3) was also prepared, by direct reaction of sodium tungstate, tellurium(IV) oxide, and gallium nitrate. Polyanion 3 crystallized as the mixed rubidium/sodium salt Rb2Na2[Ga4(H2O)10(β-TeW9O33)2]·28H2O (RbNa-3) in the triclinic space group P1̅ with unit cell parameters a = 12.5629(15) Å, b = 13.2208(18) Å, c = 15.474(2) Å, α = 80.52(1)°, β = 84.37(1)°, and γ = 65.83(1)°. All polyanions 1-3 were characterized in the solid state by single-crystal XRD, FT-IR, TGA, and elemental analysis, and polyanion 2 was also characterized in solution by (183)W NMR and UV-vis spectroscopy. Polyanion 2 was used as a homogeneous catalyst toward adenosine triphosphate (ATP) and the DNA model substrate 4-nitrophenylphosphate, monitored by (1)H and (31)P NMR spectroscopy. The encapsulated gallium(III) centers in 2 promote the Lewis acidic synergistic activation of the hydrolysis of ATP and DNA model substrates at a higher rate in near-physiological conditions. A strong interaction of 2 with the P-O bond of ATP was evidenced by changes in chemical shift values and line broadening of the (31)P nucleus in ATP upon addition of the polyanion.

  9. Enhanced Electro-Kinetics of C-C Bond-Splitting during Ethanol Oxidation Reaction using Pt/Rh/Sn Catalyst with a Partially Oxidized Pt and Rh Core and a SnO2 Shell

    DOE PAGES

    Yang, G.; Su, D.; Frenkel, A. I.; ...

    2016-09-04

    Direct ethanol fuel cell (DEFC) is a promising technology for generating electricity via the electro-oxidation of liquid ethanol. Its implementation requires the development of anode catalysts capable of producing CO2 and yielding 12-electron transfer through breaking C-C bond of ethanol. Here we presented comprehensive studies of electro-kinetics of the CO2 generation on Pt/Rh/Sn ternary catalysts. Our studies showed that, for the first time, the tri–phase PtRhOx- SnO2 catalysts with a partially oxidized Pt and Rh core and a SnO2 shell, validated by X-ray absorption analyses and scanning transmission electron microscope-electron energy loss spectroscopy line scan, coincided with a 2.5-fold increasemore » in the CO2 generation rate towards ethanol oxidation reaction, compared with the bi-phase PtRh-SnO2 catalysts with a metallic PtRh alloy core and commercial Pt. These studies provided insight on the design of a new genre of electro-catalysts with a partially oxidized noble metal.« less

  10. Enhanced Electro-Kinetics of C-C Bond-Splitting during Ethanol Oxidation Reaction using Pt/Rh/Sn Catalyst with a Partially Oxidized Pt and Rh Core and a SnO2 Shell

    SciTech Connect

    Yang, G.; Su, D.; Frenkel, A. I.; Teng, X.

    2016-09-04

    Direct ethanol fuel cell (DEFC) is a promising technology for generating electricity via the electro-oxidation of liquid ethanol. Its implementation requires the development of anode catalysts capable of producing CO2 and yielding 12-electron transfer through breaking C-C bond of ethanol. Here we presented comprehensive studies of electro-kinetics of the CO2 generation on Pt/Rh/Sn ternary catalysts. Our studies showed that, for the first time, the tri–phase PtRhOx- SnO2 catalysts with a partially oxidized Pt and Rh core and a SnO2 shell, validated by X-ray absorption analyses and scanning transmission electron microscope-electron energy loss spectroscopy line scan, coincided with a 2.5-fold increase in the CO2 generation rate towards ethanol oxidation reaction, compared with the bi-phase PtRh-SnO2 catalysts with a metallic PtRh alloy core and commercial Pt. These studies provided insight on the design of a new genre of electro-catalysts with a partially oxidized noble metal.

  11. Transition-Metal-Free Deacylative Cleavage of Unstrained C(sp(3))-C(sp(2)) Bonds: Cyanide-Free Access to Aryl and Aliphatic Nitriles from Ketones and Aldehydes.

    PubMed

    Ge, Jing-Jie; Yao, Chuan-Zhi; Wang, Mei-Mei; Zheng, Hong-Xing; Kang, Yan-Biao; Li, Yadong

    2016-01-15

    A transition-metal-free deacylative C(sp(3))-C(sp(2)) bond cleavage for the synthetically practical oxidative amination of ketones and aldehydes to nitriles is first described, using cheap and commercially abundant NaNO2 as the oxidant and the nitrogen source. Various nitriles bearing aryl, heteroaryl, alkyl, and alkenyl groups could be smoothly obtained from ketones and aldehydes in high yields, avoiding highly toxic cyanides or transition metals.

  12. Three new phosphoric triamides with a [C(O)NH]P(O)[N(C)(C)]2 skeleton: a database analysis of C-N-C and P-N-C bond angles.

    PubMed

    Pourayoubi, Mehrdad; Tarahhomi, Atekeh; Rheingold, Arnold L; Golen, James A

    2014-10-01

    In N,N,N',N'-tetraethyl-N''-(4-fluorobenzoyl)phosphoric triamide, C15H25FN3O2P, (I), and N-(2,6-difluorobenzoyl)-N',N''-bis(4-methylpiperidin-1-yl)phosphoric triamide, C19H28F2N3O2P, (II), the C-N-C angle at each tertiary N atom is significantly smaller than the two P-N-C angles. For the other new structure, N,N'-dicyclohexyl-N''-(2-fluorobenzoyl)-N,N'-dimethylphosphoric triamide, C21H33FN3O2P, (III), one C-N-C angle [117.08 (12)°] has a greater value than the related P-N-C angle [115.59 (9)°] at the same N atom. Furthermore, for most of the analogous structures with a [C(=O)NH]P(=O)[N(C)(C)]2 skeleton deposited in the Cambridge Structural Database [CSD; Allen (2002). Acta Cryst. B58, 380-388], the C-N-C angle is significantly smaller than the two P-N-C angles; exceptions were found for four structures with the N-methylcyclohexylamide substituent, similar to (III), one structure with the seven-membered cyclic amide azepan-1-yl substituent and one structure with an N-methylbenzylamide substituent. The asymmetric units of (I), (II) and (III) contain one molecule, and in the crystal structures, adjacent molecules are linked via pairs of N-H···O=P hydrogen bonds to form dimers.

  13. Spectroscopic and kinetic studies of perturbed trinuclear copper clusters: the role of protons in reductive cleavage of the O-O bond in the multicopper oxidase Fet3p.

    PubMed

    Augustine, Anthony J; Quintanar, Liliana; Stoj, Christopher S; Kosman, Daniel J; Solomon, Edward I

    2007-10-31

    The multicopper oxidase Fet3p couples four 1e(-) oxidations of substrate to the 4e(-) reduction of O2 to H2O. Fet3p uses four Cu atoms to accomplish this reaction: the type 1, type 2, and coupled binuclear type 3 sites. The type 2 and type 3 sites together form a trinuclear Cu cluster (TNC) which is the site of O2 reduction. This study focuses on mutants of two residues, E487 and D94, which lie in the second coordination sphere of the TNC and defines the role that each plays in the structural integrity of the TNC, its reactivity with O2, and in the directional movement of protons during reductive cleavage of the O-O bond. The E487D, E487A, and D94E mutants have been studied in the holo and type 1 depleted (T1D) forms. Residue E487, located near the T3 center, is found to be responsible for donation of a proton during the reductive cleavage of the O-O bond in the peroxide intermediate and an inverse kinetic solvent isotope effect, which indicates that this proton is already transferred when the O-O bond is cleaved. Residue D94, near the T2 site, plays a key role in the reaction of the reduced TNC with O2 and drives electron transfer from the T2 Cu to cleave the O-O bond by deprotonating the T2 Cu water ligand. A mechanism is developed where these second sphere residues participate in the proton assisted reductive cleavage of the O-O bond at the TNC.

  14. Formation of a dinuclear copper(II) complex through the cleavage of CN bond of 1-benzoyl-3-(pyridin-2-yl)-1H-pyrazole

    SciTech Connect

    Shardin, Rosidah; Pui, Law Kung; Yamin, Bohari M.; Kassim, Mohammad B.

    2014-09-03

    A simple mononuclear octahedral copper(II) complex was attempted from the reaction of three moles of 1-benzoyl-3-(pyridin-2-yl)-1H-pyrazole and one mole of copper(II) perchlorate hexahydrate in methanol. However, the product of the reaction was confirmed to be a dinuclear copper(II) complex with μ-(3-(pyridin-2-yl)-pyrazolato) and 3-(pyridin-2-yl)-1H-pyrazole ligands attached to each of the Cu(II) centre atom. The copper(II) ion assisted the cleavage of the C{sub benzoyl}N bond afforded a 3-(pyridin-2-yl)-1H-pyrazole molecule. Deprotonation of the 3-(pyridin-2-yl)-1H-pyrazole gave a 3-(pyridin-2-yl)-pyrazolato, which subsequently reacted with the Cu(II) ion to give the (3-(pyridin-2-yl)-pyrazolato)(3-(pyridin-2-yl)-1H-pyrazole)Cu(II) product moiety. The structure of the dinuclear complex was confirmed by x-ray crystallography. The complex crystallized in a monoclinic crystal system with P2(1)/n space group and cell dimensions of a = 12.2029(8) Å, b = 11.4010(7) Å, c = 14.4052(9) Å and β = 102.414(2)°. The compound was further characterized by mass spectrometry, CHN elemental analysis, infrared and UV-visible spectroscopy and the results concurred with the x-ray structure. The presence of d-d transition at 671 nm (ε = 116 dm{sup 3} mol{sup −1} cm{sup −1}) supports the presence of Cu(II) centres.

  15. Formation of a dinuclear copper(II) complex through the cleavage of CN bond of 1-benzoyl-3-(pyridin-2-yl)-1H-pyrazole

    NASA Astrophysics Data System (ADS)

    Shardin, Rosidah; Pui, Law Kung; Yamin, Bohari M.; Kassim, Mohammad B.

    2014-09-01

    A simple mononuclear octahedral copper(II) complex was attempted from the reaction of three moles of 1-benzoyl-3-(pyridin-2-yl)-1H-pyrazole and one mole of copper(II) perchlorate hexahydrate in methanol. However, the product of the reaction was confirmed to be a dinuclear copper(II) complex with μ-{3-(pyridin-2-yl)-pyrazolato} and 3-(pyridin-2-yl)-1H-pyrazole ligands attached to each of the Cu(II) centre atom. The copper(II) ion assisted the cleavage of the CbenzoylN bond afforded a 3-(pyridin-2-yl)-1H-pyrazole molecule. Deprotonation of the 3-(pyridin-2-yl)-1H-pyrazole gave a 3-(pyridin-2-yl)-pyrazolato, which subsequently reacted with the Cu(II) ion to give the {3-(pyridin-2-yl)-pyrazolato}{3-(pyridin-2-yl)-1H-pyrazole}Cu(II) product moiety. The structure of the dinuclear complex was confirmed by x-ray crystallography. The complex crystallized in a monoclinic crystal system with P2(1)/n space group and cell dimensions of a = 12.2029(8) Å, b = 11.4010(7) Å, c = 14.4052(9) Å and β = 102.414(2)°. The compound was further characterized by mass spectrometry, CHN elemental analysis, infrared and UV-visible spectroscopy and the results concurred with the x-ray structure. The presence of d-d transition at 671 nm (ɛ = 116 dm3 mol-1 cm-1) supports the presence of Cu(II) centres.

  16. Irida-β-ketoimines Derived from Hydrazines To Afford Metallapyrazoles or N-N Bond Cleavage: A Missing Metallacycle Disclosed by a Theoretical and Experimental Study.

    PubMed

    Zumeta, Itziar; Mendicute-Fierro, Claudio; Bustos, Itxaso; Huertos, Miguel A; Rodríguez-Diéguez, Antonio; Seco, José M; San Sebastian, Eider; Garralda, María A

    2016-10-17

    Unprecedented metallapyrazoles [IrH2{Ph2P(o-C6H4)CNNHC(o-C6H4)PPh2}] (3) and [IrHCl{Ph2P(o-C6H4)CNNHC(o-C6H4)PPh2}] (4) were obtained by the reaction of the irida-β-ketoimine [IrHCl{(PPh2(o-C6H4CO))(PPh2(o-C6H4CNNH2))H}] (2) in MeOH heated at reflux in the presence and absence of KOH, respectively. In solution, iridapyrazole 3 undergoes a dynamic process due to prototropic tautomerism with an experimental barrier for the exchange of ΔGcoal(⧧) = 53.7 kJ mol(-1). DFT calculations agreed with an intrapyrazole proton transfer process assisted by two water molecules (ΔG = 63.1 kJ mol(-1)). An X-ray diffraction study on 4 indicated electron delocalization in the iridapyrazole ring. The reaction of the irida-β-diketone [IrHCl{(PPh2(o-C6H4CO))2H}] (1) with H2NNRR' in aprotic solvents gave irida-β-ketoimines [IrHCl{(PPh2(o-C6H4CO))(PPh2(o-C6H4CNNRR'))H}] (R = R' = Me (5); R = H, R' = Ph (8)), which can undergo N-N bond cleavage to afford the acyl-amide complex [IrHCl(PPh2(o-C6H4CO))(PPh2(o-C6H4C(O)N(CH3)2))-κP,κO] (6) or [IrHCl(PPh2(o-C6H4CO))(PPh2(o-C6H4CN)-κP)(NH2NHPh-κNH2)] (9) containing o-(diphenylphosphine)benzonitrile and phenylhydrazine, respectively. From a CH2Cl2/CH3OH solution of 9 kept at -18 °C, single crystals of [IrHCl(PPh2(o-C6H4CO))(PPh2(o-C6H4CN)-κP))(HN═NPh-κNH)] (10) containing o-(diphenylphosphine)benzonitrile and phenyldiazene were formed, as shown by X-ray diffraction. The reaction of 1 with methylhydrazine in methanol gave the hydrazine complex [IrCl(PPh2(o-C6H4CO))2(NH2NH(CH3)-κNH2)] (7). Single-crystal X-ray diffraction analysis was performed on 6 and 7.

  17. [Cu30I16(mtpmt)12(μ(10-S4))]: an unusual 30-membered copper(I) cluster derived from the C-S bond cleavage and its use in heterogeneous catalysis.

    PubMed

    Li, Hong-Xi; Zhao, Wei; Li, Hai-Yan; Xu, Zhong-Lin; Wang, Wen-Xia; Lang, Jian-Ping

    2013-05-14

    The Cu(I)-mediated C-S bond cleavage of 5-methyl-4-(p-tolyl)pyrimidine-2-thiol (mtpmtH) gave one 30-nuclear cluster [Cu30I16(mtpmt)12(μ10-S4)], one polymeric complex [(bmtpms)Cu-(μ-I)]n and one tetranuclear complex [(bmptmds){Cu(μ-I)}2]2; the 30-nuclear cluster displayed excellent catalytic performances in the coupling reactions of N-heterocycles and arylboronic acids and could be recycled and reused.

  18. Comparison of the Effects of British Anti-Lewisite (BAL) and Beta Mercapto Ethanol on the Reduction and Cleavage of Disulfide Bonds in IgG and Human Keratinocyte Proteins

    DTIC Science & Technology

    1988-02-01

    34. Din1a.Z’atic representation of anticipated :-su ts I<•:;di.,’¢,i two-dimensionai e cto h rsswhen- sŕ,’ý" l s are trertet with a disulfide redu cer...Development Laboraliory A TTN: SGRD-UBG;-M l ;ort Detrick, Bldg 568 F~rederick, MD 21701-5010 2/88 S~WkWWW ~1W,$~/ b)AlEmm ...Cleavage of Disulfide Bonds in IgG and Human Keratinocyte Proteins Michael A . Deaton, PhD, CPT, MS Charles A . Barba, BS, SP4 Carlos R. Flores, BS, SP4

  19. Stoichiometric and catalytic homologation of olefins on the Fischer-Tropsch catalysts Fe/SiO/sub 2/, Ru/SiO/sub 2/, Os/SiO/sup 2/, and Rh/SiO/sub 2/. Mechanistic implication in the mode of C-C bond formation

    SciTech Connect

    Leconte, M.; Theolier, A.; Rojas, D.; Basset, J.M.

    1984-02-22

    The formation of C/sub 4/ olefinic hydrocarbons both in CO + H/sub 2/ and C/sub 3/H/sub 6/ + H/sub 2/ reactions has been studied to test the assumption that the same mechanism is involved in the C-C bond formation in syn gas conversion and olefin hydrogenation. The yields of linear and branched olefins were measured at various contact times, and initial selectivities were obtained by extrapolation to zero conversion. The catalyst systems studied for the reactions were Fe, Ru, Rh, and Os supported by SiO/sub 2/. The results indicated that the same mechanism was involved in the C-C bond formation starting from CO + H/sub 2/, CH/sub 2/N/sub 2/ + H/sub 2/, or C/sub n/ H/sub 2n/ + H/sub 2/, and the mode of the C-C bond formation was shown to involve the addition of a C/sub 1/ fragment to a C/sub n/ fragment.

  20. Dicationic ring opening reactions of trans-2-phenylcyclopropylamine•HCl: electrophilic cleavage of the distal (C2-C3) bond of cyclopropanes

    PubMed Central

    Lill, Sten O. Nilsson; Naredla, Rajasekhar Reddy; Zielinski, Matthew E.; Knoecer, Larecia; Klumpp, Douglas A.

    2013-01-01

    Electrophilic ring opening of trans-2-phenylcyclopropylamine•HCl occurs at the distal (C2-C3) bond. This is consistent with weakening of the distal bond by the σ-withdrawing ammonium group and charge-charge repulsive effects in the transition state. PMID:23941589

  1. How do halogen bonds (S-O⋯I, N-O⋯I and C-O⋯I) and halogen-halogen contacts (C-I⋯I-C, C-F⋯F-C) subsist in crystal structures? A quantum chemical insight.

    PubMed

    Pandiyan, B Vijaya; Deepa, P; Kolandaivel, P

    2017-01-01

    Thirteen X-ray crystal structures containing various non-covalent interactions such as halogen bonds, halogen-halogen contacts and hydrogen bonds (I⋯N, I⋯F, I⋯I, F⋯F, I⋯H and F⋯H) were considered and investigated using the DFT-D3 method (B97D/def2-QZVP). The interaction energies were calculated at MO62X/def2-QZVP and MP2/aug-cc-pvDZ level of theories. The higher interaction and dispersion energies (2nd crystal) of -9.58 kcal mol(-1) and -7.10 kcal mol(-1) observed for 1,4-di-iodotetrafluorobenzene bis [bis (2-phenylethyl) sulfoxide] structure indicates the most stable geometrical arrangement in the crystal packing. The electrostatic potential values calculated for all crystal structures have a positive σ-hole, which aids understanding of the nature of σ-hole bonds. The significance of the existence of halogen bonds in crystal packing environments was authenticated by replacing iodine atoms by bromine and chlorine atoms. Nucleus independent chemical shift analysis reported on the resonance contribution to the interaction energies of halogen bonds and halogen-halogen contacts. Hirshfeld surface analysis and topological analysis (atoms in molecules) were carried out to analyze the occurrence and strength of all non-covalent interactions. These analyses revealed that halogen bond interactions were more dominant than hydrogen bonding interactions in these crystal structures. Graphical Abstract Molecluar structure of 1,4-Di-iodotetrafluorobenzene bis(thianthrene 5-oxide) moelcule and its corresponding molecular electrostatic potential map for the view of σ-hole.

  2. A broken-symmetry density functional study of structures, energies, and protonation states along the catalytic O-O bond cleavage pathway in ba3 cytochrome c oxidase from Thermus thermophilus.

    PubMed

    Han Du, Wen-Ge; Götz, Andreas W; Yang, Longhua; Walker, Ross C; Noodleman, Louis

    2016-08-21

    Broken-symmetry density functional calculations have been performed on the [Fea3, CuB] dinuclear center (DNC) of ba3 cytochrome c oxidase from Thermus thermophilus in the states of [Fea3(3+)-(HO2)(-)-CuB(2+), Tyr237(-)] and [Fea3(4+)[double bond, length as m-dash]O(2-), OH(-)-CuB(2+), Tyr237˙], using both PW91-D3 and OLYP-D3 functionals. Tyr237 is a special tyrosine cross-linked to His233, a ligand of CuB. The calculations have shown that the DNC in these states strongly favors the protonation of His376, which is above propionate-A, but not of the carboxylate group of propionate-A. The energies of the structures obtained by constrained geometry optimizations along the O-O bond cleavage pathway between [Fea3(3+)-(O-OH)(-)-CuB(2+), Tyr237(-)] and [Fea3(4+)[double bond, length as m-dash]O(2-)HO(-)-CuB(2+), Tyr237˙] have also been calculated. The transition of [Fea3(3+)-(O-OH)(-)-CuB(2+), Tyr237(-)] → [Fea3(4+)[double bond, length as m-dash]O(2-)HO(-)-CuB(2+), Tyr237˙] shows a very small barrier, which is less than 3.0/2.0 kcal mol(-1) in PW91-D3/OLYP-D3 calculations. The protonation state of His376 does not affect this O-O cleavage barrier. The rate limiting step of the transition from state A (in which O2 binds to Fea3(2+)) to state PM ([Fea3(4+)[double bond, length as m-dash]O(2-), OH(-)-CuB(2+), Tyr237˙], where the O-O bond is cleaved) in the catalytic cycle is, therefore, the proton transfer originating from Tyr237 to O-O to form the hydroperoxo [Fea3(3+)-(O-OH)(-)-CuB(2+), Tyr237(-)] state. The importance of His376 in proton uptake and the function of propionate-A/neutral-Asp372 as a gate to prevent the proton from back-flowing to the DNC are also shown.

  3. Mechanistic Insights into Ring Cleavage and Contraction of Benzene over a Titanium Hydride Cluster.

    PubMed

    Kang, Xiaohui; Luo, Gen; Luo, Lun; Hu, Shaowei; Luo, Yi; Hou, Zhaomin

    2016-09-14

    Carbon-carbon bond cleavage of benzene by transition metals is of great fundamental interest and practical importance, as this transformation is involved in the production of fuels and other important chemicals in the industrial hydrocracking of naphtha on solid catalysts. Although this transformation is thought to rely on cooperation of multiple metal sites, molecular-level information on the reaction mechanism has remained scarce to date. Here, we report the DFT studies of the ring cleavage and contraction of benzene by a molecular trinuclear titanium hydride cluster. Our studies suggest that the reaction is initiated by benzene coordination, followed by H2 release, C6H6 hydrometalation, repeated C-C and C-H bond cleavage and formation to give a MeC5H4 unit, and insertion of a Ti atom into the MeC5H4 unit with release of H2 to give a metallacycle product. The C-C bond cleavage and ring contraction of toluene can also occur in a similar fashion, though some details are different due to the presence of the methyl substituent. Obviously, the facile release of H2 from the metal hydride cluster to provide electrons and to alter the charge population at the metal centers, in combination with the flexible metal-hydride connections and dynamic redox behavior of the trimetallic framework, has enabled this unusual transformation to occur. This work has not only provided unprecedented insights into the activation and transformation of benzene over a multimetallic framework but it may also offer help in the design of new molecular catalysts for the activation and transformation of inactive aromatics.

  4. Brazing C-C composites to metals

    SciTech Connect

    Liu, J.Y.; Banerjee, P.; Chin, B.A.

    1994-12-31

    Carbon-carbon composites are attractive for use at high temperature because of their high strength, modulus, chemical stability and resistance to activation by radiation. In these applications, the C-C composite must be joined to itself and to metals. The research described in this paper has led to the invention of a new brazing filler metal from the Cu-Mu-Ti system and the development of a brazing process for joining CC composites to metals. The newly invented brazing filler metal compositions, with controllable melting points ranging from 800{emdash}920{degrees}C has excellent wettability on both C-C composites and metals (stainless steel, Nb, Mo, W, and Zr). Sound joints of C-C composite/metal were produced using the brazing filler metal and the specially developed brazing processes. Finite element analyses were used to predict the residual stress distribution in the brazed joints. Theoretical predictions were confirmed by interlayer experiments. The brazed joints were studied using optical and scanning electron microscopy (SEM) to examine the microstructure and fractured brazed joints. The results showed 100% bonding was obtained using the developed braze metal and brazing procedure.

  5. Transition-metal-free Chemoselective Oxidative C-C Coupling of the sp(3) C-H Bond of Oxindoles with Arenes and Addition to Alkene: Synthesis of 3-Aryl Oxindoles, and Benzofuro- and Indoloindoles.

    PubMed

    Sattar, Moh; Rathore, Vandana; Prasad, Ch Durga; Kumar, Sangit

    2017-04-04

    A transition-metal (TM)-free and halogen-free NaOtBu-mediated oxidative cross-coupling between the sp(3) C-H bond of oxindoles and sp(2) C-H bond of nitroarenes has been developed to access 3-aryl substituted and 3,3-aryldisubstituted oxindoles in DMSO at room temperature in a short time. Interestingly, the sp(3) C-H bond of oxindoles could also react with styrene under TM-free conditions for the practical synthesis of quaternary 3,3-disubstituted oxindoles. The synthesized 3-oxindoles have also been further transformed into advanced heterocycles, that is, benzofuroindoles, indoloindoles, and substituted indoles. Mechanistic experiments of the reaction suggests the formation of an anion intermediate from the sp(3) C-H bond of oxindole by tert-butoxide base in DMSO. The addition of nitrobenzene to the in-situ generated carbanion leads to the 3-(nitrophenyl)oxindolyl carbanion in DMSO which is subsequently oxidized to 3-(nitro-aryl) oxindole by DMSO.

  6. Insight into the mechanism about the initiation, growth and termination of the C-C chain in syngas conversion on the Co(0001) surface: a theoretical study.

    PubMed

    Wen, Guangxiang; Wang, Qiang; Zhang, Riguang; Li, Debao; Wang, Baojun

    2016-10-05

    The initiation, growth and termination mechanism of the C-C chain from syngas on the Co(0001) surface have been investigated using DFT calculations. Our results show that CHx (x = 1-3) formation is easier than CH3OH, both CH and CH2 species are the dominant forms of CHx (x = 1-3), both CH and CH2 species dominantly interact with CHO to form CHCHO and CH2CHO, and realizes the initial C-C chain formation. Then, CHCHO and CH2CHO prefer to be successively hydrogenated to CH3CHO, followed by C-O bond cleavage to give CH3CH; subsequently, CHO insertion into CH3CH can realize the further chain growth to form CH3CHCHO, followed by dissociation and hydrogenation to give CH3CHCH and CH3CH2CHO, respectively; further, CH3CHCH hydrogenation or CH3CH2CHO dissociation via the C-O bond cleavage can form the CH3CH-like species CH3CH2CH intermediate. Thus, the mechanism of a C-C chain growth cycle has been proposed that starts from a CH3CH2CH intermediate, followed by repeating the above C-C chain growth cycle via CH3CH intermediates, and the C-C chain growth to higher C2+ hydrocarbons and oxygenates can be realized, in which RCH2CH prefers to interact with CHO to form RCH2CHCHO, followed by its C-O bond cleavage and its hydrogenation to form R'CHCH (R' = RCH2) and R'CH2CHO (R' = RCH2), respectively, where R'CHCH hydrogenation and C-O bond cleavage of R'CH2CHO will produce R'CH2CH. Moreover, aldehyde intermediates R'CH2CHO are expected to undergo C-O bond cleavage to five R'CH2CH (R' = RCH2) rather than its desorption and its hydrogenation to alcohol. The C-C chain termination occurs at three possible positions along the growth cycle: R'CH2CHO desorption, R'CHCH with successive hydrogenation steps to alkanes or alkenes, and R'CH2CH hydrogenation to alkanes, in which the relative importance of termination of R'CHCH and R'CH2CH with hydrocarbons will depend strongly on the hydrogen coverage on the metal surface. The results of this work not only illustrate the initiation, growth and

  7. Palladium-catalyzed one-pot three- or four-component coupling of aryl iodides, alkynes, and amines through C-N bond cleavage: efficient synthesis of indole derivatives.

    PubMed

    Hao, Wei; Geng, Weizhi; Zhang, Wen-Xiong; Xi, Zhenfeng

    2014-02-24

    An efficient synthesis of N-substituted indole derivatives was realized by combining the Pd-catalyzed one-pot multicomponent coupling approach with cleavage of the C(sp(3))-N bonds. Three or four components of aryl iodides, alkynes, and amines were involved in this coupling process. The cyclopentadiene-phosphine ligand showed high efficiency. A variety of aryl iodides, including cyclic and acyclic tertiary amino aryl iodides, and substituted 1-bromo-2-iodobenzene derivatives could be used. Both symmetric and unsymmetric alkynes substituted with alkyl, aryl, or trimethylsilyl groups could be applied. Cyclic secondary amines such as piperidine, morpholine, 4-methylpiperidine, 1-methylpiperazine, 2-methylpiperidine, and acyclic amines including secondary and primary amines all showed good reactivity. Further application of the resulting indole derivatives was demonstrated by the synthesis of benzosilolo[2,3-b]indole.

  8. Cleavage experiments with deoxythymidine 3',5'-bis-(p-nitrophenyl phosphate) suggest that the homing endonuclease I-PpoI follows the same mechanism of phosphodiester bond hydrolysis as the non-specific Serratia nuclease.

    PubMed

    Friedhoff, P; Franke, I; Krause, K L; Pingoud, A

    1999-01-25

    We show here that two nucleases, Serratia nuclease and I-PpoI, with contrasting specificities, i.e. non-specific vs. highly sequence specific, share a structurally similar active site region with conservation of the catalytically relevant histidine and asparagine residues. On the basis of a comparison of the available structures and biochemical data for wild type and mutant variants of Serratia nuclease and I-PpoI we propose that both enzymes have a common catalytic mechanism, a proposition that is supported by our finding that both enzymes accept deoxythymidine 3',5'-bis-(p-nitrophenyl phosphate) as a substrate and cleave it in an identical manner. According to this mechanism a histidine residue functions as a general base and Mg2+ bound to an asparagine residue as a Lewis acid in phosphodiester bond cleavage.

  9. Preparing (Multi)Fluoroarenes as Building Blocks for Synthesis: Nickel-Catalyzed Borylation of Polyfluoroarenes via C-F Bond Cleavage.

    PubMed

    Zhou, Jing; Kuntze-Fechner, Maximilian W; Bertermann, Rüdiger; Paul, Ursula S D; Berthel, Johannes H J; Friedrich, Alexandra; Du, Zhenting; Marder, Todd B; Radius, Udo

    2016-04-27

    The [Ni(IMes)2]-catalyzed transformation of fluoroarenes into arylboronic acid pinacol esters via C-F bond activation and transmetalation with bis(pinacolato)diboron (B2pin2) is reported. Various partially fluorinated arenes with different degrees of fluorination were converted into their corresponding boronate esters.

  10. Is the 2,3-carbon-carbon bond of indole really inert to oxidative cleavage by Oxone?--synthesis of isatoic anhydrides from indoles.

    PubMed

    Nelson, Amber C; Kalinowski, Emily S; Czerniecki, Nikolas J; Jacobson, Taylor L; Grundt, Peter

    2013-11-21

    A recent report has indicated that the oxidizing agent Oxone does not possess the ability to cleave the 2,3-carbon-carbon bond of indole. Work in our laboratory shows that this is not the case. Indole and a variety of aryl ring substituted derivatives readily react to form synthetically important isatoic anhydrides.

  11. Catalytic activation of carbon-carbon bonds in cyclopentanones.

    PubMed

    Xia, Ying; Lu, Gang; Liu, Peng; Dong, Guangbin

    2016-11-24

    In the chemical industry, molecules of interest are based primarily on carbon skeletons. When synthesizing such molecules, the activation of carbon-carbon single bonds (C-C bonds) in simple substrates is strategically important: it offers a way of disconnecting such inert bonds, forming more active linkages (for example, between carbon and a transition metal) and eventually producing more versatile scaffolds. The challenge in achieving such activation is the kinetic inertness of C-C bonds and the relative weakness of newly formed carbon-metal bonds. The most common tactic starts with a three- or four-membered carbon-ring system, in which strain release provides a crucial thermodynamic driving force. However, broadly useful methods that are based on catalytic activation of unstrained C-C bonds have proven elusive, because the cleavage process is much less energetically favourable. Here we report a general approach to the catalytic activation of C-C bonds in simple cyclopentanones and some cyclohexanones. The key to our success is the combination of a rhodium pre-catalyst, an N-heterocyclic carbene ligand and an amino-pyridine co-catalyst. When an aryl group is present in the C3 position of cyclopentanone, the less strained C-C bond can be activated; this is followed by activation of a carbon-hydrogen bond in the aryl group, leading to efficient synthesis of functionalized α-tetralones-a common structural motif and versatile building block in organic synthesis. Furthermore, this method can substantially enhance the efficiency of the enantioselective synthesis of some natural products of terpenoids. Density functional theory calculations reveal a mechanism involving an intriguing rhodium-bridged bicyclic intermediate.

  12. Immunolocalization of the cleavage of the aggrecan core protein at the Asn341-Phe342 bond, as an indicator of the location of the metalloproteinases active in the lysis of the rat growth plate.

    PubMed

    Lee, E R; Lamplugh, L; Leblond, C P; Mordier, S; Magny, M C; Mort, J S

    1998-09-01

    In view of the extensive lysis of hyaline cartilage known to take place during endochondral bone formation, the current study was designed to test the hypothesis that metalloproteinases are the agents that mediate this lysis. Since these enzymes have been shown in vitro to cleave the core protein of the major proteoglycan of cartilage, aggrecan, at the Asn341-Phe342 bond, an immunohistochemical method has been developed to find out whether or not there are sites in the growth plate of the rat tibia where cleavage of this bond takes place. The cleavage of aggrecan by metalloproteinases is followed by the retention of the fragment known as G1, for it includes the G1 domain. Since the G1 fragment terminates in the amino acid residues ...FVDIPEN, we prepared an antiserum against FVDIPEN, confirmed its specificity, then applied it to the growth plate of 21-day-old rat tibia in the hope of localizing the G1 fragments. The antiserum specificity was shown by its recognition of the ...FVDIPEN sequence at the C-terminus of peptides and of G1 fragments produced by aggrecan cleavage. When the antiserum was applied to Western blots of guanidinium chloride extracts prepared from epiphyseal growth plate, it recognized two species (56 and 52 kDa), which differed only in the degree of glycosylation. These fragments were comparable in size to the G1 fragments generated by the action of recombinant metalloproteinase in vitro, thus confirming antiserum specificity for these fragments. Applying the antiserum to cryosections of 21-day-old rat tibiae revealed immunostaining at two intensities within the growth plate matrix: a strong staining was observed in a 1-5 microm-wide layer designated "peripheral" matrix, which borders the epiphyseal and metaphyseal marrow spaces as well as the perichondrium, while a weak staining was found in the rest of the plate, designated "central" matrix. The abundance of G1 fragments terminating in ...FVDIPEN in the peripheral matrix indicates that this is

  13. Synthesis and [2 + 2] cycloaddition of bimethyleneketene acetals. Reaction with C[sub 60] and facile hydrolysis of the C-C bond connected to C[sub 60

    SciTech Connect

    Yamago, Shigeru; Takeichi, Atsuo; Nakamura, Eiichi )

    1994-02-09

    We report here that the O-alkylated enolates of cyclopropanecarboxylates (dimethyleneketene acetals 3) can be prepared from readily available precursors, and that they are extemely reactive, serving as useful surrogates of the elusive parent enolates. Their utility is illustrated by the [2 + 2] cycloaddition to electron-deficient olefins, which, after hydrolytic workup, gives rise to the Michael addition products: a type of reaction product previously unavailable. We also found that 3 reacts smoothly with C[sub 60] to give the [2 + 2] adduct 5 and, most remarkably, that the asterisked C[minus]C [sigma] bond in 5 directly connected to the fullerene core is hydrolytically unstable and can be quantitatively cleaved with aqueous acid. 15 refs., 1 tab.

  14. An Iron-Catalyzed Bond-Making/Bond-Breaking Cascade Merges Cycloisomerization and Cross-Coupling Chemistry.

    PubMed

    Echeverria, Pierre-Georges; Fürstner, Alois

    2016-09-05

    Treatment of readily available enynes with alkyl-Grignard reagents in the presence of catalytic amounts of Fe(acac)3 engenders a remarkably facile and efficient reaction cascade that results in the net formation of two new C-C bonds while a C-Z bond in the substrate backbone is broken. Not only does this new manifold lend itself to the extrusion of heteroelements (Z=O, NR), but it can even be used for the cleavage of activated C-C bonds. The reaction likely proceeds via metallacyclic intermediates, the iron center of which gains ate character before reductive elimination occurs. The overall transformation represents a previously unknown merger of cycloisomerization and cross-coupling chemistry. It provides ready access to highly functionalized 1,3-dienes comprising a stereodefined tetrasubstituted alkene unit, which are difficult to make by conventional means.

  15. Room-temperature activation of methane and dry re-forming with CO2 on Ni-CeO2 (111) surfaces: Effect of Ce3+ sites and metal–support interactions on C–H bond cleavage

    DOE PAGES

    Lustemberg, Pablo G.; Ramírez, Pedro J.; Liu, Zongyuan; ...

    2016-10-27

    The results of core-level photoemission indicate that Ni-CeO2(111) surfaces with small or medium coverages of nickel are able to activate methane at 300 K, producing adsorbed CHx and COx (x = 2, 3) groups. Calculations based on density functional theory predict a relatively low activation energy of 0.6–0.7 eV for the cleavage of the first C–H bond in the adsorbed methane molecule. Ni and O centers of ceria work in a cooperative way in the dissociation of the C–H bond at room temperature, where a low Ni loading is crucial for the catalyst activity and stability. The strong electronic perturbationsmore » in the Ni nanoparticles produced by the ceria supports of varying natures, such as stoichiometric and reduced, result in a drastic change in their chemical properties toward methane adsorption and dissociation as well as the dry reforming of methane reaction. Lastly, the coverage of Ni has a drastic effect on the ability of the system to dissociate methane and catalyze the dry re-forming process.« less

  16. Cleavage of ether, ester, and tosylate C(sp3)-O bonds by an iridium complex, initiated by oxidative addition of C-H bonds. Experimental and computational studies.

    PubMed

    Kundu, Sabuj; Choi, Jongwook; Wang, David Y; Choliy, Yuriy; Emge, Thomas J; Krogh-Jespersen, Karsten; Goldman, Alan S

    2013-04-03

    A pincer-ligated iridium complex, (PCP)Ir (PCP = κ(3)-C6H3-2,6-[CH2P(t-Bu)2]2), is found to undergo oxidative addition of C(sp(3))-O bonds of methyl esters (CH3-O2CR'), methyl tosylate (CH3-OTs), and certain electron-poor methyl aryl ethers (CH3-OAr). DFT calculations and mechanistic studies indicate that the reactions proceed via oxidative addition of C-H bonds followed by oxygenate migration, rather than by direct C-O addition. Thus, methyl aryl ethers react via addition of the methoxy C-H bond, followed by α-aryloxide migration to give cis-(PCP)Ir(H)(CH2)(OAr), followed by iridium-to-methylidene hydride migration to give (PCP)Ir(CH3)(OAr). Methyl acetate undergoes C-H bond addition at the carbomethoxy group to give (PCP)Ir(H)[κ(2)-CH2OC(O)Me] which then affords (PCP-CH2)Ir(H)(κ(2)-O2CMe) (6-Me) in which the methoxy C-O bond has been cleaved, and the methylene derived from the methoxy group has migrated into the PCP Cipso-Ir bond. Thermolysis of 6-Me ultimately gives (PCP)Ir(CH3)(κ(2)-O2CR), the net product of methoxy group C-O oxidative addition. Reaction of (PCP)Ir with species of the type ROAr, RO2CMe or ROTs, where R possesses β-C-H bonds (e.g., R = ethyl or isopropyl), results in formation of (PCP)Ir(H)(OAr), (PCP)Ir(H)(O2CMe), or (PCP)Ir(H)(OTs), respectively, along with the corresponding olefin or (PCP)Ir(olefin) complex. Like the C-O bond oxidative additions, these reactions also proceed via initial activation of a C-H bond; in this case, C-H addition at the β-position is followed by β-migration of the aryloxide, carboxylate, or tosylate group. Calculations indicate that the β-migration of the carboxylate group proceeds via an unusual six-membered cyclic transition state in which the alkoxy C-O bond is cleaved with no direct participation by the iridium center.

  17. Structural insights into the role of iron–histidine bond cleavage in nitric oxide-induced activation of H-NOX gas sensor proteins

    PubMed Central

    Herzik, Mark A.; Jonnalagadda, Rohan; Kuriyan, John; Marletta, Michael A.

    2014-01-01

    Heme-nitric oxide/oxygen (H-NOX) binding domains are a recently discovered family of heme-based gas sensor proteins that are conserved across eukaryotes and bacteria. Nitric oxide (NO) binding to the heme cofactor of H-NOX proteins has been implicated as a regulatory mechanism for processes ranging from vasodilation in mammals to communal behavior in bacteria. A key molecular event during NO-dependent activation of H-NOX proteins is rupture of the heme–histidine bond and formation of a five-coordinate nitrosyl complex. Although extensive biochemical studies have provided insight into the NO activation mechanism, precise molecular-level details have remained elusive. In the present study, high-resolution crystal structures of the H-NOX protein from Shewanella oneidensis in the unligated, intermediate six-coordinate and activated five-coordinate, NO-bound states are reported. From these structures, it is evident that several structural features in the heme pocket of the unligated protein function to maintain the heme distorted from planarity. NO-induced scission of the iron–histidine bond triggers structural rearrangements in the heme pocket that permit the heme to relax toward planarity, yielding the signaling-competent NO-bound conformation. Here, we also provide characterization of a nonheme metal coordination site occupied by zinc in an H-NOX protein. PMID:25253889

  18. Ultrafast α -CC bond cleavage of acetone upon excitation to 3p and 3d Rydberg states by femtosecond time-resolved photoelectron imaging

    NASA Astrophysics Data System (ADS)

    Hüter, O.; Temps, F.

    2016-12-01

    The radiationless electronic relaxation and α -CC bond fission dynamics of jet-cooled acetone in the S1 (n π* ) state and in high-lying 3p and 3d Rydberg states have been investigated by femtosecond time-resolved mass spectrometry and photoelectron imaging. The S1 state was accessed by absorption of a UV pump photon at selected wavelengths between λ = 320 and 250 nm. The observed acetone mass signals and the S1 photoelectron band decayed on sub-picosecond time scales, consistent with a recently proposed ultrafast structural relaxation of the molecules in the S1 state away from the Franck-Condon probe window. No direct signatures could be observed by the experiments for CC dissociation on the S1 potential energy hypersurface in up to 1 ns. The observed acetyl mass signals at all pump wavelengths turned out to be associated with absorption by the molecules of one or more additional pump and/or probe photons. In particular, absorption of a second UV pump photon by the S1 (n π* ) state was found to populate a series of high-lying states belonging to the n = 3 Rydberg manifold. The respective transitions are favored by much larger cross sections compared to the S1 ← S0 transition. The characteristic energies revealed by the photoelectron images allowed for assignments to the 3p and 3dyz states. At two-photon excitation energies higher than 8.1 eV, an ultrafast reaction pathway for breaking the α -CC bond in 50-90 fs via the 3dyz Rydberg state and the elusive π π* state was observed, explaining the formation of acetyl radicals after femtosecond laser excitation of acetone at these wavelengths.

  19. Substrate and Lewis Acid Coordination Promote O-O Bond Cleavage of an Unreactive L2Cu(II)2(O2(2-)) Species to Form L2Cu(III)2(O)2 Cores with Enhanced Oxidative Reactivity.

    PubMed

    Garcia-Bosch, Isaac; Cowley, Ryan E; Díaz, Daniel E; Peterson, Ryan L; Solomon, Edward I; Karlin, Kenneth D

    2017-03-01

    Copper-dependent metalloenzymes are widespread throughout metabolic pathways, coupling the reduction of O2 with the oxidation of organic substrates. Small-molecule synthetic analogs are useful platforms to generate L/Cu/O2 species that reproduce the structural, spectroscopic, and reactive properties of some copper-/O2-dependent enzymes. Landmark studies have shown that the conversion between dicopper(II)-peroxo species (L2Cu(II)2(O2(2-)) either side-on peroxo, (S)P, or end-on trans-peroxo, (T)P) and dicopper(III)-bis(μ-oxo) (L2Cu(III)2(O(2-))2: O) can be controlled through ligand design, reaction conditions (temperature, solvent, and counteranion), or substrate coordination. We recently published ( J. Am. Chem. Soc. 2012 , 134 , 8513 , DOI: 10.1021/ja300674m ) the crystal structure of an unusual (S)P species [(MeAN)2Cu(II)2(O2(2-))](2+) ((S)P(MeAN), MeAN: N-methyl-N,N-bis[3-(dimethylamino)propyl]amine) that featured an elongated O-O bond but did not lead to O-O cleavage or reactivity toward external substrates. Herein, we report that (S)P(MeAN) can be activated to generate O(MeAN) and perform the oxidation of external substrates by two complementary strategies: (i) coordination of substituted sodium phenolates to form the substrate-bound O(MeAN)-RPhO(-) species that leads to ortho-hydroxylation in a tyrosinase-like fashion and (ii) addition of stoichiometric amounts (1 or 2 equiv) of Lewis acids (LA's) to form an unprecedented series of O-type species (O(MeAN)-LA) able to oxidize C-H and O-H bonds. Spectroscopic, computational, and mechanistic studies emphasize the unique plasticity of the (S)P(MeAN) core, which combines the assembly of exogenous reagents in the primary (phenolates) and secondary (Lewis acids association to the MeAN ligand) coordination spheres with O-O cleavage. These findings are reminiscent of the strategy followed by several metalloproteins and highlight the possible implication of O-type species in copper-/dioxygen-dependent enzymes such as

  20. Spontaneous formation in the dark, and visible light-induced cleavage, of a Ru-S bond in water: a thermodynamic and kinetic study.

    PubMed

    Bahreman, Azadeh; Limburg, Bart; Siegler, Maxime A; Bouwman, Elisabeth; Bonnet, Sylvestre

    2013-08-19

    In this work the thermal and photochemical reactivity of a series of ruthenium complexes [Ru(terpy)(N-N)(L)](X)2 (terpy = 2,2';6',2″-terpyridine, L = 2-(methylthio)ethanol (Hmte) or water, and X is Cl(-) or PF6(-)) with four different bidentate chelates N-N = bpy (2,2'-bipyridine), biq (2,2'-biquinoline), dcbpy (6,6'-dichloro-2,2'-bipyridine), or dmbpy (6,6'-dimethyl-2,2'-bipyridine), is described. For each chelate N-N the thermodynamic constant of the dark equilibrium between the aqua- and Hmte- complexes, the Hmte photosubstitution quantum yield, and the rate constants of the thermal interconversion between the aqua and Hmte complexes were measured at room temperature. By changing the steric hindrance and electronic properties of the spectator N-N ligand along the series bpy, biq, dcbpy, dmbpy the dark reactivity clearly shifts from a nonlabile equilibrium with N-N = bpy to a very labile thermal equilibrium with N-N = dmbpy. According to variable-temperature rate constant measurements in the dark near pH = 7 the activation enthalpies for the thermal substitution of H2O by Hmte are comparable for all ruthenium complexes, whereas the activation entropies are negative for bpy and biq, and positive for dcbpy and dmbpy complexes. These data are indicative of a change in the substitution mechanism, being interchange associative with nonhindered or poorly hindered chelates (bpy, biq), and interchange dissociative for more bulky ligands (dcbpy, dmbpy). For the most labile dmbpy system, the thermal equilibrium is too fast to allow significant modification of the composition of the mixture using light, and for the nonhindered bpy complex the photosubstitution of Hmte by H2O is possible but thermal binding of Hmte to the aqua complex does not occur at room temperature. By contrast, with N-N = biq or dcbpy the thermodynamic and kinetic parameters describing the formation and breakage of the Ru-S bond lie in a range where the bond forms spontaneously in the dark, but is

  1. Solar photochemical oxidation of alcohols using catalytic hydroquinone and copper nanoparticles under oxygen: oxidative cleavage of lignin models.

    PubMed

    Mitchell, Lorna J; Moody, Christopher J

    2014-11-21

    Alcohols are converted into to their corresponding carbonyl compounds using catalytic amounts of 1,4-hydroquinone with a copper nanoparticle electron transfer mediator with oxygen as the terminal oxidant in acetone as solvent under visible light irradiation. These conditions employing biorenewable hydroquinone as reagent were developed from initial experiments using stoichiometric amounts of 1,4-benzoquinone as oxidant. A range of benzylic and aliphatic primary and secondary alcohols are oxidized, affording the corresponding aldehydes or ketones in moderate to excellent yields. The methodology is also applicable to the oxidative degradation of lignin model compounds that undergo C-C bond cleavage to give simple aromatic compounds.

  2. Cleavage of peptide bonds bearing ionizable amino acids at P{sub 1} by serine proteases with hydrophobic S{sub 1} pocket

    SciTech Connect

    Qasim, Mohammad A.; Song, Jikui; Markley, John L.; Laskowski, Michael

    2010-10-01

    Research highlights: {yields} Large pK shifts in ionizable groups when buried in the protein interior. {yields} Substrate dependent shifts in pH optimum for serine proteases. {yields} Lys side chain is a stronger acid in serine protease S{sub 1} pocket than Asp side chain. -- Abstract: Enzymatic hydrolysis of the synthetic substrate succinyl-Ala-Ala-Pro-Xxx-pNA (where Xxx = Leu, Asp or Lys) catalyzed by bovine chymotrypsin (CHYM) or Streptomyces griseus protease B (SGPB) has been studied at different pH values in the pH range 3-11. The pH optima for substrates having Leu, Asp, and Lys have been found to be 7.5-8.0, 5.5-6.0, and {approx}10, respectively. At the normally reported pH optimum (pH 7-8) of CHYM and SGPB, the substrate with Leu at the reactive site is more than 25,000-fold more reactive than that with Asp. However, when fully protonated, Asp is nearly as good a substrate as Leu. The pK values of the side chains of Asp and Lys in the hydrophobic S{sub 1} pocket of CHYM and SGPB have been calculated from pH-dependent hydrolysis data and have been found to be about 9 for Asp and 7.4 and 9.7 for Lys for CHYM and SGPB, respectively. The results presented in this communication suggest a possible application of CHYM like enzymes in cleaving peptide bonds contributed by acidic amino acids between pH 5 and 6.

  3. Synthesis and reaction of monomeric germanium(II) and lead(II) dimethylamide and the synthesis of germanium(II) hydrazide by cleavage of one N-H bond of hydrazine.

    PubMed

    Jana, Anukul; Roesky, Herbert W; Schulzke, Carola; Samuel, Prinson P; Döring, Alexander

    2010-06-21

    The beta-diketiminate substituted germanium(II) and lead(II) dimethylamides, LGeNMe(2) (1) and LPbNMe(2) (2), [L = CH{(CMe)(2)(2,6-iPr(2)C(6)H(3)N)(2)}] have been synthesized by the reaction of LiNMe(2) with LGeCl and LPbCl respectively. Reaction of compound 1 with an equivalent amount of elemental sulfur leads to the germanium analogue of thioamide, LGe(S)NMe(2) (3). 2 reacts with 2-benzoyl pyridine (PhCOPy-2) to form the lead(II) alkoxide LPbOC(NMe(2))Ph(2-Py) (4) by nucleophilic addition of "NMe(2)" to the carbon oxygen double bond. The reaction of stable N-heterocyclic germylene L(1)Ge [L(1) = CH{(C=CH(2))(CMe)(2,6-iPr(2)C(6)H(3)N)(2)}] with hydrazine yields the germanium(II) substituted hydrazide LGeNHNH(2) (5) by cleavage of one N-H bond of hydrazine. Finally, attempts to isolate lead(II) hydride LPbH from the reaction of 2 with phenylsilane (PhSiH(3)) failed, and instead LPbN(2,6-iPr(2)C(6)H(3)){C(CH(3))CHC(CH(3))=N(2,6-iPr(2)C(6)H(3))} (6) was obtained in very low yield. We are able to prove this only by single crystal X-ray structural analysis. Compounds 1, 2, 3, 4, and 5 were characterized by microanalysis, electron impact (EI) mass spectrometry, and multinuclear NMR spectroscopy. Furthermore compounds 1, 2, 5, and 6 were characterized by single crystal X-ray structural analysis, with the result that they are exhibiting monomeric structures in the solid state with trigonal-pyramidal environment at the metal center and a stereochemically active lone pair.

  4. In-situ and theoretical studies for the dissociation of water on an active Ni/CeO₂ catalyst: Importance of strong metal-support interactions for the cleavage of O-H bonds

    DOE PAGES

    Carrasco, Javier; Rodriguez, Jose A.; Lopez-Duran, David; ...

    2015-03-23

    Water dissociation is crucial in many catalytic reactions on oxide-supported transition-metal catalysts. Here, supported by experimental and density-functional theory results, we elucidate the effect of the support on O-H bond cleavage activity for nickel/ceria systems. Ambient-pressure O1s photoemission spectra at low Ni loadings on CeO₂(111) reveal a substantially larger amount of OH groups as compared to the bare support. Our computed activation energy barriers for water dissociation show an enhanced reactivity of Ni adatoms on CeO₂(111) compared with pyramidal Ni₄ particles with one Ni atom not in contact with the support, and extended Ni(111) surfaces. At the origin of thismore » support effect is the ability of ceria to stabilize oxidized Ni²⁺ species by accommodating electrons in localized f-states. The fast dissociation of water on Ni/CeO₂ has a dramatic effect on the activity and stability of this system as a catalyst for the water-gas shift and ethanol steam reforming reactions.« less

  5. In-situ and theoretical studies for the dissociation of water on an active Ni/CeO₂ catalyst: Importance of strong metal-support interactions for the cleavage of O-H bonds

    SciTech Connect

    Carrasco, Javier; Rodriguez, Jose A.; Lopez-Duran, David; Liu, Zongyuan; Duchon, Tomas; Evans, Jaime; Senanayake, Sanjaya D.; Crumlin, Ethan J.; Matolin, Vladimir; Ganduglia-Pirovano, M. Veronica

    2015-03-23

    Water dissociation is crucial in many catalytic reactions on oxide-supported transition-metal catalysts. Here, supported by experimental and density-functional theory results, we elucidate the effect of the support on O-H bond cleavage activity for nickel/ceria systems. Ambient-pressure O1s photoemission spectra at low Ni loadings on CeO₂(111) reveal a substantially larger amount of OH groups as compared to the bare support. Our computed activation energy barriers for water dissociation show an enhanced reactivity of Ni adatoms on CeO₂(111) compared with pyramidal Ni₄ particles with one Ni atom not in contact with the support, and extended Ni(111) surfaces. At the origin of this support effect is the ability of ceria to stabilize oxidized Ni²⁺ species by accommodating electrons in localized f-states. The fast dissociation of water on Ni/CeO₂ has a dramatic effect on the activity and stability of this system as a catalyst for the water-gas shift and ethanol steam reforming reactions.

  6. Chemical Bonding of Polymer on Carbon Nanotube

    DTIC Science & Technology

    2001-04-01

    vetIcal displacement of CNT z dl:streched length of C-C bond in polymer .Z dLI: streching of C-C bond within polymer SdL2: streched length Of C-C...bond at interface - dL2: streching of C-C bond at intedace of B of polymer/CNT ’ n polymer-CNT at first bonding site E 1 1 I dL3: streching of C-C bond

  7. Iminopropadienones RN=C=C=C=O and bisiminopropadienes RN=C=C=C=NR: matrix infrared spectra and anharmonic frequency calculations.

    PubMed

    Bégué, Didier; Baraille, Isabelle; Andersen, Heidi Gade; Wentrup, Curt

    2013-10-28

    Methyliminopropadienone MeN=C=C=C=O 1a was generated by flash vacuum thermolysis from four different precursors and isolated in solid argon. The matrix-isolation infrared spectrum is dominated by unusually strong anharmonic effects resulting in complex fine structure of the absorptions due to the NCCCO moiety in the 2200 cm(-1) region. Doubling and tripling of the corresponding absorption bands are observed for phenyliminopropadienone PhN=C=C=C=O 1b and bis(phenylimino)propadiene PhN=C=C=C=NPh 9, respectively. Anharmonic vibrational frequency calculations allow the identification of a number of overtones and combination bands as the cause of the splittings for each molecule. This method constitutes an important tool for the characterization of reactive intermediates and unusual molecules by matrix-isolation infrared spectroscopy.

  8. Cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow; Mary Ann D.; Dahlberg, James E.

    2010-11-09

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  9. Cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor L.; Brow, Mary Ann D.; Dahlberg, James E.

    2007-12-11

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  10. Preferential activation of primary C-H bonds in the reactions of small alkanes with the diatomic MgO(+*) cation.

    PubMed

    Schröder, Detlef; Roithová, Jana; Alikhani, Esmail; Kwapien, Karolina; Sauer, Joachim

    2010-04-06

    The C-H bond activation of small alkanes by the gaseous MgO(+*) cation is probed by mass spectrometric means. In addition to H-atom abstraction from methane, the MgO(+*) cation reacts with ethane, propane, n- and iso-butane through several pathways, which can all be assigned to the occurrence of initial C-H bond activations. Specifically, the formal C-C bond cleavages observed are assigned to C-H bond activation as the first step, followed by cleavage of a beta-C-C bond concomitant with release of the corresponding alkyl radical. Kinetic modeling of the observed product distributions reveals a high preference of MgO(+*) for the attack of primary C-H bonds. This feature represents a notable distinction of the main-group metal oxide MgO(+*) from various transition-metal oxide cations, which show a clear preference for the attack of secondary C-H bonds. The results of complementary theoretical calculations indicate that the C-H bond activation of larger alkanes by the MgO(+*) cation is subject to pronounced kinetic control.

  11. 98. Catalog HHistory 1, C.C.C., 19 Tree Planting, Negative No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    98. Catalog H-History 1, C.C.C., 19 Tree Planting, Negative No. P 474c (Photographer and date unknown) TRANSPLANTING TREE. - Skyline Drive, From Front Royal, VA to Rockfish Gap, VA , Luray, Page County, VA

  12. 99. Catalog HHistory 1, C.C.C., 23 Guard Rail Construction, Negative ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    99. Catalog H-History 1, C.C.C., 23 Guard Rail Construction, Negative No. P455e (Photographer and date unknown) GUARD RAIL INSTALLATION. - Skyline Drive, From Front Royal, VA to Rockfish Gap, VA , Luray, Page County, VA

  13. 100. Catalog HHistory 1, C.C.C., 34 Landscaping, Negative No. P ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    100. Catalog H-History 1, C.C.C., 34 Landscaping, Negative No. P 733c (Photographer and date unknown) SLOPE MAINTENANCE WORK BY CCC. - Skyline Drive, From Front Royal, VA to Rockfish Gap, VA , Luray, Page County, VA

  14. 101. Catalog HHistory 1, C.C.C., 34 Landscaping, Negative No. 1340 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    101. Catalog H-History 1, C.C.C., 34 Landscaping, Negative No. 1340 (Photographer and date unknown) BANK BLENDING WORK BY CCC. - Skyline Drive, From Front Royal, VA to Rockfish Gap, VA , Luray, Page County, VA

  15. Manganese(I)-Catalyzed Dispersion-Enabled C-H/C-C Activation.

    PubMed

    Meyer, Tjark H; Liu, Weiping; Feldt, Milica; Wuttke, Axel; Mata, Ricardo A; Ackermann, Lutz

    2017-03-20

    C-H/C-C Functionalizations were achieved with the aid of a versatile manganese(I) catalyst. Thus, an organometallic manganese-catalyzed C-H activation set the stage for silver-free C-H/C-C transformations with ample substrate scope and excellent levels of chemo-, site-, and diastereo-selectivities. The robust nature of the manganese(I) catalysis regime was reflected by the first C-H/C-C functionalization on amino acids under racemization-free reaction conditions. Detailed experimental and computational mechanistic studies provided strong evidence for a facile C-H activation and a rate-determining C-C cleavage, with considerable contribution from London dispersion interactions.

  16. Emergent mechanistic diversity of enzyme-catalysed beta-diketone cleavage.

    PubMed

    Grogan, Gideon

    2005-06-15

    The enzymatic cleavage of C-C bonds in beta-diketones is, comparatively, a little studied biochemical process, but one that has important relevance to human metabolism, bioremediation and preparative biocatalysis. In recent studies, four types of enzymes have come to light that cleave C-C bonds in the beta-diketone functionality using different chemical mechanisms. OPH [oxidized poly(vinyl alcohol) hydrolase from Pseudomonas sp. strain VM15C], which cleaves nonane-4,6-dione to butyrate and pentan-2-one is a serine-triad hydrolase. Dke1 (diketone-cleaving enzyme from Acinetobacter johnsonii) is a dioxygenase, cleaving acetylacetone to methylglyoxal and acetate. Fumarylacetoacetate hydrolase cleaves fumarylacetoacetate to fumarate and acetoacetate using a water molecule, activated by a catalytic His/Asp dyad, aided by a calcium ion that both chelates the enol acid form of the substrate and indirectly positions the water for nucleophilic attack at a carbonyl group. 6-oxocamphor hydrolase cleaves nonenolizable cyclic beta-diketones and is a homologue of the crotonase superfamily, employing a catalytic His/Asp dyad to activate a water molecule for nucleophilic attack at a carbonyl group on one prochiral face of the diketone substrate, effecting desymmetrizations of symmetrical substrates.

  17. Activation and cleavage of the N-N bond in side-on bound [L₂M-NN-ML₂] (L = NH₂, NMe₂, N(i)Pr₂, C₅H₅, C₅Me₄H) dinitrogen complexes of transition metals from groups 4 through 9.

    PubMed

    Cavigliasso, Germán; Wilson, Laurence; McAlpine, Sarlae; Attar, Mariam; Stranger, Robert; Yates, Brian F

    2010-05-21

    The activation and cleavage of the N-N bond in side-on bound [L₂M-NN-ML₂] (L = NH₂, NMe₂, N(i)Pr₂, C₅H₅, C₅Me₄H) dinitrogen complexes of transition metals in groups 4 through 9 have been investigated using density functional theory. Emphasis has been placed on Ti, Zr, and Hf (group 4) complexes due to their experimental relevance. Calculations on these species have shown that for cases when the structural configuration corresponds to the terminal [ML₂] fragments adopting a perpendicular orientation with respect to the central [N-N] unit, a considerably higher degree of N-N activation is predicted relative to that observed in the experimentally characterized cyclopentadienyl analogues and in related systems involving end-on dinitrogen coordination. An examination of the orbital interactions between the metal-based fragments and the dinitrogen unit shows that both σ and π bonding are important in the side-on binding mode, in contrast to the end-on mode where metal-nitrogen π interactions are dominant. This analysis also reveals that the model amide systems possess the orbital properties identified as necessary for successful N-N hydrogenation. A significant result obtained for the amide complexes containing metals from groups 5 (V, Nb, Ta), 6 (Cr, Mo, W), and 7 (Mn, Tc, Re), is the presence of metal-metal bonding in configurations that are considerably distorted from planarity. As a consequence, these complexes exhibit strongly enhanced stability relative to species where metal-metal bonding is absent. In contrast, the d² metal-based configurations in the group 4 complexes of Ti, Zr, and Hf are unable to provide the six electrons required for complete reductive cleavage of the dinitrogen unit which is necessary to allow the metal centres to approach one another sufficiently for metal-metal bond formation.

  18. Mapping the Globe with C & C Technologies

    NASA Astrophysics Data System (ADS)

    Kleiner, A. A.

    2001-12-01

    C & C Technologies is an international survey and mapping company with an entrepreneurial spirit that is evident throughout. C & C was recently awarded the MTS (Marine Technology Society) ROV Committee Corporate Excellence Award in recognition of their pioneering spirit displayed by the introduction of the HUGIN 3000 Autonomous Underwater Vehicle (AUV) to the offshore industry. This presentation will outline the wide variety of global mapping projects that C & C has performed for government, private sector, and academia. These include high-resolution mapping of Cater Lake, the Panama Canal, Antarctica, Lake Tahoe, and the HUGIN 3000ś discovery of the German submarine U-166 in 5000 feet of water in the Gulf of Mexico. Adacemic disciplines required to support these technical challenges will be characterized and job opportunities in this emerging field will be addressed.

  19. Low-energy reaction rate constants for the Ni+-assisted decomposition of acetaldehyde: observation of C-H and C-C activation.

    PubMed

    Dee, S Jason; Castleberry, Vanessa A; Villarroel, Otsmar J; Laboren, Ivanna E; Bellert, Darrin J

    2010-02-04

    Rate constants for the low-energy Ni(+)-assisted dissociative reaction of acetaldehyde have been measured under jet-cooled conditions in the gas phase. The rate constants are acquired through monitoring the time dependence of fragment Ni(+)CO formation. The decomposition of the precursor Ni(+)-acetaldehyde cluster ion proceeds via consecutive, parallel reaction coordinates that originate with the Ni(+)-assisted cleavage of either a C-C or an aldehyde C-H bond. The energies used to initiate these reactions are well below that required to cleave sigma-bonds in the isolated acetaldehyde molecule. Direct measurement of the reaction kinetics over a range of energies indicates that the rate-limiting step in the dissociative mechanism changes at cluster ion internal energies = 17,200 +/- 400 cm(-1). Arguments are presented that this energy marks the closure of the dissociative coordinate that initiates with C-H sigma-bond activation and thus provides a measure of the activation energy of this dissociative pathway.

  20. Selective cleavage of pepsin by molybdenum metallopeptidase

    SciTech Connect

    Yenjai, Sudarat; Malaikaew, Pinpinat; Liwporncharoenvong, Teerayuth; Buranaprapuk, Apinya

    2012-03-02

    Graphical abstract: Molybdenum metallopeptidase: the Mo(VI) cluster with six molybdenum cations has the ability to cleave protein under mild conditions (37 Degree-Sign C, pH 7) without reducing agents. The reaction required only low concentration of ammonium heptamolybdatetetrahydrate ((NH{sub 4}){sub 6}Mo{sub 7}O{sub 24}{center_dot}4H{sub 2}O) (0.125 mM). The reaction undergoes possibly via a hydrolytic mechanism. This is the first demonstration of protein cleavage by a molybdenum cluster. Highlights: Black-Right-Pointing-Pointer This is the first demonstration of protein cleavage by a Mo(VI) cluster with six molybdenum cations. Black-Right-Pointing-Pointer The cleavage reaction undergoes at mild conditions. Black-Right-Pointing-Pointer No need of reducing agents. Black-Right-Pointing-Pointer Only low concentration of Mo(VI) cluster and short time of incubation are needed. -- Abstract: In this study, the cleavage of protein by molybdenum cluster is reported for the first time. The protein target used is porcine pepsin. The data presented in this study show that pepsin is cleaved to at least three fragments with molecular weights of {approx}23, {approx}19 and {approx}16 kDa when the mixture of the protein and ammonium heptamolybdate tetrahydrate ((NH{sub 4}){sub 6}Mo{sub 7}O{sub 24}{center_dot}4H{sub 2}O) was incubated at 37 Degree-Sign C for 24 h. No self cleavage of pepsin occurs at 37 Degree-Sign C, 24 h indicating that the reaction is mediated by the metal ions. N-terminal sequencing of the peptide fragments indicated three cleavage sites of pepsin between Leu 112-Tyr 113, Leu 166-Leu 167 and Leu 178-Asn 179. The cleavage reaction occurs after incubation of the mixture of pepsin and (NH{sub 4}){sub 6}Mo{sub 7}O{sub 24}{center_dot}4H{sub 2}O) only for 2 h. However, the specificity of the cleavage decreases when incubation time is longer than 48 h. The mechanism for cleavage of pepsin is expected to be hydrolytic chemistry of the amide bonds in the protein

  1. Joining C/C composite to copper using active Cu-3.5Si braze

    NASA Astrophysics Data System (ADS)

    Shen, Yuanxun; Li, Zhenglin; Hao, Chuanyong; Zhang, Jinsong

    2012-02-01

    A simple technique was developed to join C/C composite to Cu using active Cu-3.5Si braze for nuclear thermal applications. The brazing alloy exhibited good wettability on C/C substrate due to the reaction layer formed at the interface. A strong interfacial bond of the brazing alloy on C/C with the formation of TiC + SiC + Ti 5Si 3 reaction layer was obtained. The produced CC/Cu/CuCrZr joint exhibited shear strength as high as 79 MPa and excellent thermal resistance during the thermal shock tests.

  2. 104. Catalog HHistory 1, C.C.C., 73 Picnic Furniture Construction, Negative ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    104. Catalog H-History 1, C.C.C., 73 Picnic Furniture Construction, Negative No. 8821 ca. 1936 WOOD UTILIZATION. COMPLETED RUSTIC BENCH MADE BY CCC ENROLLEES AT CAMP NP-3 FOR USE AT PARKING OVERLOOKS AND PICNIC GROUNDS. NOTE SAW IN BACKGROUND USED FOR HALVING CHESTNUT. - Skyline Drive, From Front Royal, VA to Rockfish Gap, VA , Luray, Page County, VA

  3. 102. Catalog HHistory 1, C.C.C., 34 Landscaping, Negative No. 6040a ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    102. Catalog H-History 1, C.C.C., 34 Landscaping, Negative No. 6040a (Photographer and date unknown) BEAUTIFICATION PROGRAM STARTED AS SOON AS GRADING ALONG THE DRIVE WAS COMPLETED. CCC CAMP 3 SHOWN PLANTING LAUREL. - Skyline Drive, From Front Royal, VA to Rockfish Gap, VA , Luray, Page County, VA

  4. 103. Catalog HHistory 1, C.C.C., 58 Landscaping, Negative No. 870 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    103. Catalog H-History 1, C.C.C., 58 Landscaping, Negative No. 870 10 ca. 1936 PROPAGATION AND PLANTING. ROOTED PLANTS TRANSPLANTED FROM HOT BEDS TO CANS TO SHADED BEDS IN PREPARATION FOR PLANTING ON ROAD SLOPES. NURSERY AT NORTH ENTRANCE. - Skyline Drive, From Front Royal, VA to Rockfish Gap, VA , Luray, Page County, VA

  5. Anomalous absorption in c-C_3H and c-C_3D radicals

    NASA Astrophysics Data System (ADS)

    Chandra, S.; Shinde, S. V.; Kegel, W. H.; Sedlmayr, E.

    Yamamoto et al. (1987) reported the first detection of the c-C_3H radical in TMC-1 through its transition 2_1 2 rightarrow 1_1 1 at 91.5 GHz. The column density of c-C_3H in TMC-1 was estimated to be 6 times 10^12 cm^-2, which is about one order of magnitude lower than that of the c-C_3H_2 which is ubiquitous in galactic objects. Mangum & Wootten (1990) detected c-C_3H through the transition 1_1 0 rightarrow 1_1 1 at 14.8 GHz in 12 additional galactic objects. The most probable production mechanism of both the c-C_3H and c-C_3H_2 in dark clouds is a common dissociation reaction of the C_3H_3^+ ion (Adams & Smith 1987). Although the c-C_3H is 0.8 eV less stable than its isomer l-C_3H, finding of comparable column densities of both the isomers in TMC-1 suggests that the formation rate for both, c-C_3H and l-C_3H, are of about the same order in the cosmic objects. The existence of a metastable isomer under interstellar conditions is a well known phenomenon in astronomy. The aim of this investigation is a quantitative estimate of relative line intensities under NLTE conditions. For wide ranges of physical parameters, where these molecules may be found, we have solved a set of statistical equilibrium equations coupled with the equations of radiative transfer in an on-the-spot approximation. For c-C_3H, we accounted for 51 energy levels connected by 207 radiative transitions and for c-C_3D, we accounted for 51 energy levels connected by 205 radiative transitions. Our results show that the 3_3 1 rightarrow 3_3 0 transition of c-C_3H and c-C_3D may be found in absorption against the cosmic microwave background (CMB). Furthermore, we found population inversion for the 1_1 0 rightarrow 1_1 1 transition. These findings may be useful in identifying these molecules in other cosmic objects, as well as for the determination of physical parameters in these objects.

  6. Addition, cycloaddition, and metathesis reactions of the cationic carbyne complexes [Cp(CO)[sub 2]Mn[triple bond]CCH[sub 2]R][sup +] and neutral vinylidene complexes Cp(CO)[sub 2]M=C=C(H)R (M = Mn, Re)

    SciTech Connect

    Terry, M.R.; Mercando, L.A.; Kelley, C.; Geoffroy, G.L. ); Nombel, P.; Lugan, N.; Mathieu, R. ); Ostrander, R.L.; Owens-Waltermire, B.E.; Rheingold, A.L. )

    1994-03-01

    The cationic alkylidyne complexes [Cp(CO)[sub 2]M=VCCH[sub 2]R][sup +] (M = Re, R = H; M = Mn, R = H, Me, Ph) undergo facile deprotonation to give the corresponding neutral vinylidene complexes Cp(CO)[sub 2]M=C=C(H)R. For [Cp(CO)[sub 2]Re=VCCH[sub 3

  7. Mirrors fabricated with slightly oxidized C/C composites

    NASA Astrophysics Data System (ADS)

    Wang, Yongjie; Xu, Liang; Ding, Jiaoteng; Xie, Yongjie; Ma, Zhen

    2016-10-01

    Up to now, traditional materials, such as glass, metal and SiC ceramic, gradually begin to be unsatisfied development of the future mirrors. Designable carbon fiber reinforced composites became optimized material for large aperture lightweight mirrors. Carbon/carbon composites exhibit low thermal expansion and no moisture-absorption expansion problem, therefore, they get particular attention in the space reflector field. Ni was always employed as optical layer in the mirror, however, the coating behaved poor bond with substrate and often peeled off during optical processing. In order to solve this problem, slight oxidation was carried on the C/C composites before Ni plated. The Ni coating exhibited stronger coherence and better finish performance. Finally, a 100mm diameter plane mirror was successful fabricated.

  8. Tyrosine Deprotonation Yields Abundant and Selective Backbone Cleavage in Peptide Anions upon Negative Electron transfer Dissociation and Ultraviolet Photodissociation

    PubMed Central

    Shaw, Jared B.; Ledvina, Aaron R.; Zhang, Xing; Julian, Ryan R.; Brodbelt, Jennifer S.

    2012-01-01

    Tyrosine deprotonation in peptides yields preferential electron detachment upon NETD or UVPD, resulting in prominent N – Cα bond cleavage N-terminal to the tyrosine residue. UVPD of iodo-tyrosine modified peptides was used to generate localized radicals on neutral tyrosine side chains by homolytic cleavage of the C – I bond. Subsequent collisional activation of the radical species yielded the same preferential cleavage of the adjacent N-terminal N – Cα bond. LC-MS/MS analysis of a tryptic digest of BSA demonstrated that these cleavages are regularly observed for peptides when using high pH mobile phases. PMID:22970927

  9. Tyrosine deprotonation yields abundant and selective backbone cleavage in peptide anions upon negative electron transfer dissociation and ultraviolet photodissociation.

    PubMed

    Shaw, Jared B; Ledvina, Aaron R; Zhang, Xing; Julian, Ryan R; Brodbelt, Jennifer S

    2012-09-26

    Tyrosine deprotonation in peptides yields preferential electron detachment upon NETD or UVPD, resulting in prominent N-Cα bond cleavage N-terminal to the tyrosine residue. UVPD of iodo-tyrosine-modified peptides was used to generate localized radicals on neutral tyrosine side chains by homolytic cleavage of the C-I bond. Subsequent collisional activation of the radical species yielded the same preferential cleavage of the adjacent N-terminal N-Cα bond. LC-MS/MS analysis of a tryptic digest of BSA demonstrated that these cleavages are regularly observed for peptides when using high-pH mobile phases.

  10. Hydrogen Induced C-C, C-N, & C-S Bond Activation on Pt & Ni Surfaces

    SciTech Connect

    Gland, J. L.

    2004-07-29

    The primary reactions investigated were chosen based on their importance in fuel and chemical production as well as in environmental remediation, and include reactions for hydrodesulfurization (HDS), hydrodenitrogenation (HDN), carbon-carbon hydrogenolysis, and hydrocarbon oxidation.

  11. Structural Phase Transformation (F. C. C. - B. C. C.) in F. C. C. Metals and Their Stability on the Path of Transformation

    NASA Astrophysics Data System (ADS)

    Öztekýn, Yasemin; Çolakoðlu, Kemal

    1997-08-01

    Because of its importance in Solid-State Physics, Metalurgy, Solid Mechanics and geophysics, theoretical strength calculations are performed to locate the stress-free b.c.c phase on three f.c.c metals (Ca, Pb, Ir). Internal energies correspponding to the unstresed b.c.c. and f.c.c. phase, and the required stress and energy changes for f.c.c.-b.c.c. transformation for these crystals are computed. To determine the range of stability (G stability), the Born criterion is used by calculating the values of deformation connecting the stress-free b.c.c. and stress-free f.c.c. phases of Ca, Pb and Ir. The studied crystals are subjected to unconstrained (100) uniaxial tension in all computations, and E.G.E.P. (Extended generalized exponantial potential) model is used to carry out these calculations.

  12. Three-coordinate NiII: tracing the origin of an unusual, facile Si-C(sp3) bond cleavage in [(tBu2PCH2SiMe2)2N]Ni+.

    PubMed

    Fullmer, Benjamin C; Fan, Hongjun; Pink, Maren; Huffman, John C; Tsvetkov, Nikolay P; Caulton, Kenneth G

    2011-03-02

    All attempts to synthesize (PNP)Ni(OTf) form instead ((t)Bu(2)PCH(2)SiMe(2)NSiMe(2)OTf)Ni(CH(2)P(t)Bu(2)). Abstraction of F(-) from (PNP)NiF by even a catalytic amount of BF(3) causes rearrangement of the (transient) (PNP)Ni(+) to analogous ring-opened [((t)Bu(2)PCH(2)SiMe(2)NSiMe(2)F)]Ni(CH(2)P(t)Bu(2)). Abstraction of Cl(-) from (PNP)NiCl with NaB(C(6)H(3)(CF(3))(2))(4) in CH(2)Cl(2) or C(6)H(5)F gives (PNP)NiB(C(6)H(3)(CF(3))(2))(4), the key intermediate in these reactions is (PNP)Ni(+), [(PNP)Ni](+), in which one Si-C bond (together with N and two P) donates to Ni. This makes this Si-C bond subject to nucleophilic attack by F(-), triflate, and alkoxide/ether (from THF). This σ(Si-C) complex binds CO in the time of mixing and also binds chloride, both at nickel. Evidence is offered of a "self-healing" process, where the broken Si-C bond can be reformed in an equilibrium process. (PNP)Ni(+) reacts rapidly with H(2) to give (PN(H)P)NiH(+), which can be deprotonated to form (PNP)NiH. A variety of nucleophilic attacks (and THF polymerization) on the coordinated Si-C bond are envisioned to occur perpendicular to the Si-C bond, based on the character of the LUMO of (PNP)Ni(+).

  13. Efficient promotion of phosphate diester cleavage by a face-to-face cyclodextrin dimer without metal.

    PubMed

    Hu, Ping; Liu, Gao-Feng; Ji, Liang-Nian; Mao, Zong-Wan

    2012-06-04

    An organic face-to-face cyclodextrin dimer promotes the cleavage of bis(4-nitrophenyl) phosphate efficiently in neutral pH without the addition of metal. Both of the phosphate diester bonds can be cleaved.

  14. Homolytic, Heterolytic, Mesolytic - As You Like It: Steering the Cleavage of a HC(sp(3) )-C(sp(3) )H Bond in Bis(1H-2,1-benzazaborole) Derivatives.

    PubMed

    Hejda, Martin; Lyčka, Antonín; Mikysek, Tomáš; Jambor, Roman; Růžička, Aleš; Vinklárek, Jaromír; Wilfer, Claudia; Hoffmann, Alexander; Herres-Pawlis, Sonja; Dostál, Libor

    2016-10-17

    A set of (3,3')-bis(1-Ph-2-R-1H-2,1-benzazaborole) compounds, in which R=tBu (Bab-tBu)2 , R=Dipp (Bab-Dipp)2 or R=tBu and Dipp (Bab-Dipp)(Bab-tBu), was synthesized and fully characterized using (1) H, (11) B, (13) C, and (15) N NMR spectroscopy as well as single-crystal X-ray diffraction analysis. The central HC(sp(3) )-C(sp(3) )H bond with restricted rotation at the junction of both 1H-2,1-benzazaborole rings displayed an intriguing reactivity. It was demonstrated that this bond is easily mesolytically cleaved using alkali metals to form the respective aromatic 1Ph-2R-1H-2,1-benzazaborolyl anions M(+) (THF)n (Bab-tBu)(-) (M=Li, Na, K) and K(+) (THF)n (Bab-Dipp)(-) . Furthermore, the central HC(sp(3) )-C(sp(3) )H bond of bis(1H-2,1-benzazaborole)s is also homolytically cleaved either by heating or photochemical means, giving corresponding 1Ph-2R-1H-2,1-benzazaborolyl radicals (Bab-tBu)(.) and (Bab-Dipp)(.) , which rapidly self-terminate. Nevertheless, their formation was unambiguously established by NMR analysis of the reaction mixtures containing products of the self-termination of the radicals after heating or irradiation. (Bab-Dipp)(.) radical was also characterized using EPR spectroscopy. Importantly, it turned out that the essentially non-polarized HC(sp(3) )-C(sp(3) )H bond in (Bab-tBu)2 is also cleaved heterolytically with 2 equiv of MeLi, giving the mixture of Li(+) (SOL)n (Bab-tBu)(-) (SOL=THF or Et2 O) and lithium methyl-substituted borate complex Li(+) (SOL)n (Bab-tBu-Me)(-) in a diastereoselective fashion.

  15. OH cleavage from tyrosine: debunking a myth

    PubMed Central

    Bury, Charles S.; Carmichael, Ian; Garman, Elspeth F

    2017-01-01

    During macromolecular X-ray crystallography experiments, protein crystals held at 100 K have been widely reported to exhibit reproducible bond scission events at doses on the order of several MGy. With the objective to mitigate the impact of radiation damage events on valid structure determination, it is essential to correctly understand the radiation chemistry mechanisms at play. OH-cleavage from tyrosine residues is regularly cited as amongst the most available damage pathways in protein crystals at 100 K, despite a lack of widespread reports of this phenomenon in protein crystal radiation damage studies. Furthermore, no clear mechanism for phenolic C—O bond cleavage in tyrosine has been reported, with the tyrosyl radical known to be relatively robust and long-lived in both aqueous solutions and the solid state. Here, the initial findings of Tyr –OH group damage in a myrosinase protein crystal have been reviewed. Consistent with that study, at increasing doses, clear electron density loss was detectable local to Tyr –OH groups. A systematic investigation performed on a range of protein crystal damage series deposited in the Protein Data Bank has established that Tyr –OH electron density loss is not generally a dominant damage pathway in protein crystals at 100 K. Full Tyr aromatic ring displacement is here proposed to account for instances of observable Tyr –OH electron density loss, with the original myrosinase data shown to be consistent with such a damage model. Systematic analysis of the effects of other environmental factors, including solvent accessibility and proximity to di­sulfide bonds or hydrogen bond interactions, is also presented. Residues in known active sites showed enhanced sensitivity to radiation-induced disordering, as has previously been reported. PMID:28009542

  16. Room-temperature activation of methane and dry re-forming with CO2 on Ni-CeO2 (111) surfaces: Effect of Ce3+ sites and metal–support interactions on C–H bond cleavage

    SciTech Connect

    Lustemberg, Pablo G.; Ramírez, Pedro J.; Liu, Zongyuan; Gutierrez, Ramon A.; Grinter, David G.; Carrasco, Javier; Senanayake, Sanjaya D.; Rodriguez, Jose A.; Ganduglia-Pirovano, M. Veronica

    2016-10-27

    The results of core-level photoemission indicate that Ni-CeO2(111) surfaces with small or medium coverages of nickel are able to activate methane at 300 K, producing adsorbed CHx and COx (x = 2, 3) groups. Calculations based on density functional theory predict a relatively low activation energy of 0.6–0.7 eV for the cleavage of the first C–H bond in the adsorbed methane molecule. Ni and O centers of ceria work in a cooperative way in the dissociation of the C–H bond at room temperature, where a low Ni loading is crucial for the catalyst activity and stability. The strong electronic perturbations in the Ni nanoparticles produced by the ceria supports of varying natures, such as stoichiometric and reduced, result in a drastic change in their chemical properties toward methane adsorption and dissociation as well as the dry reforming of methane reaction. Lastly, the coverage of Ni has a drastic effect on the ability of the system to dissociate methane and catalyze the dry re-forming process.

  17. Anomalous absorption in c-C3H and c-C3D radicals

    NASA Astrophysics Data System (ADS)

    Chandra, S.; Shinde, S. V.; Kegel, W. H.; Sedlmayr, E.

    2007-05-01

    Context: The c-C3H radical was first detected in TMC-1 by Yamamoto et al. (1987, ApJ, 322, L55), who observed the 2{12} → 1{11} transition at 91.5 GHz in emission. Mangum & Wootten (1990, A&A, 239, 319) observed the 1{10} → 1{11} transition at 14.8 GHz in emission in 12 additional galactic objects. Aims: The aim of this investigation is a quantitative estimate of relative line intensities under NLTE conditions. Methods: For wide ranges of physical parameters, where these molecules may be found, we have solved a set of statistical equilibrium equations coupled with the equations of radiative transfer in an on-the-spot approximation. For c-C3H, we accounted for 51 energy levels connected by 207 radiative transitions, and for c-C3D, we accounted for 51 energy levels connected by 205 radiative transitions. Results: Our results show that the 3{31} → 3{30} transition of c-C3H and c-C3D may be found in absorption against the cosmic microwave background (CMB). Furthermore, we found population inversion for the 1{10} → 1{11} transition. These findings may be useful in identifying these molecules in other cosmic objects, as well as for the determination of physical parameters in these objects. Tables 1-3 and Figs. 4, 5 are only available in electronic form at http://www.aanda.org

  18. Ring cleavage of sulfur heterocycles: how does it happen?

    PubMed

    Bressler, D C; Norman, J A; Fedorak, P M

    Sulfur heterocycles are common constituents of petroleum and liquids derived from coal, and they are found in some secondary metabolites of microorganisms and plants. They exist primarily as saturated rings and thiophenes. There are two major objectives driving investigations of the microbial metabolism of organosulfur compounds. One is the quest to develop a process for biodesulfurization of fossil fuels, and the other is to understand the fates of organosulfur compounds in petroleum- or creosote-contaminated environments which is important in assessing bioremediation processes. For these processes to be successful, cleavage of different types of sulfur heterocyclic rings is paramount. This paper reviews the evidence for microbial ring cleavage of a variety of organosulfur compounds and discusses the few well-studied cases which have shown that the C-S bond is most susceptible to breakage leading to disruption of the ring. In most cases, the introduction of one or more oxygen atom(s) onto the adjacent C atom and/or onto the S atom weakens the C-S bond, facilitating its cleavage. Although much is known about the thiophene ring cleavage in dibenzothiophene, there is still a great deal to be learned about the cleavage of other sulfur heterocycles.

  19. Thermodynamic and kinetic study of cleavage of the N-O bond of N-oxides by a vanadium(III) complex: enhanced oxygen atom transfer reaction rates for adducts of nitrous oxide and mesityl nitrile oxide.

    PubMed

    Palluccio, Taryn D; Rybak-Akimova, Elena V; Majumdar, Subhojit; Cai, Xiaochen; Chui, Megan; Temprado, Manuel; Silvia, Jared S; Cozzolino, Anthony F; Tofan, Daniel; Velian, Alexandra; Cummins, Christopher C; Captain, Burjor; Hoff, Carl D

    2013-07-31

    Thermodynamic, kinetic, and computational studies are reported for oxygen atom transfer (OAT) to the complex V(N[t-Bu]Ar)3 (Ar = 3,5-C6H3Me2, 1) from compounds containing N-O bonds with a range of BDEs spanning nearly 100 kcal mol(-1): PhNO (108) > SIPr/MesCNO (75) > PyO (63) > IPr/N2O (62) > MesCNO (53) > N2O (40) > dbabhNO (10) (Mes = mesityl; SIPr = 1,3-bis(diisopropyl)phenylimidazolin-2-ylidene; Py = pyridine; IPr = 1,3-bis(diisopropyl)phenylimidazol-2-ylidene; dbabh = 2,3:5,6-dibenzo-7-azabicyclo[2.2.1]hepta-2,5-diene). Stopped flow kinetic studies of the OAT reactions show a range of kinetic behavior influenced by both the mode and strength of coordination of the O donor and its ease of atom transfer. Four categories of kinetic behavior are observed depending upon the magnitudes of the rate constants involved: (I) dinuclear OAT following an overall third order rate law (N2O); (II) formation of stable oxidant-bound complexes followed by OAT in a separate step (PyO and PhNO); (III) transient formation and decay of metastable oxidant-bound intermediates on the same time scale as OAT (SIPr/MesCNO and IPr/N2O); (IV) steady-state kinetics in which no detectable intermediates are observed (dbabhNO and MesCNO). Thermochemical studies of OAT to 1 show that the V-O bond in O≡V(N[t-Bu]Ar)3 is strong (BDE = 154 ± 3 kcal mol(-1)) compared with all the N-O bonds cleaved. In contrast, measurement of the N-O bond in dbabhNO show it to be especially weak (BDE = 10 ± 3 kcal mol(-1)) and that dissociation of dbabhNO to anthracene, N2, and a (3)O atom is thermodynamically favorable at room temperature. Comparison of the OAT of adducts of N2O and MesCNO to the bulky complex 1 show a faster rate than in the case of free N2O or MesCNO despite increased steric hindrance of the adducts.

  20. Cleavage of an RNA model catalyzed by dinuclear Zn(II) complexes containing rate-accelerating pendants. Comparison of the catalytic benefits of H-bonding and hydrophobic substituents.

    PubMed

    Mohamed, Mark F; Brown, R Stan

    2010-12-17

    The transesterification of a simple RNA model, 2-hydroxypropyl p-nitrophenyl phosphate (2, HpNPP) promoted by seven dinuclear Zn(II) catalysts (3,4,5,6,7,8,9:Zn(II)2:(-OCH3)) based on the bis[bis(2-substituted-pyridinyl-6-methyl)]amine ligand system was investigated in methanol under sspH-controlled conditions at 25.0 ± 0.1 °C. The two metal complexing ligands were joined together via the amino N connected to a m-xylyl linker (3, 4, 5, 6, 7) where the 2-pyridinyl substituent = H, CH3, (CH)4, NH2, and NH(C═O)CH3, respectively, and a propyl linker (8, 9) where the ring substituent = H and CH3. All of the dinuclear complexes except 8:Zn(II)2 exhibit saturation kinetics for the kobs versus [catalyst] plots from which one can determine catalyst:substrate binding constants (KM), the catalytic rate constants for their decomposition (kcat), and the second order catalytic rate constants (k2cat = kcat/KM). In the case of 8:Zn(II)2, the plots of kobs versus [catalyst] as a function of sspH are linear, and the catalytic rate constants (k2cat) are defined as the gradients of the plots. Analysis of all of the data at the sspH optimum for each reaction indicates that the presence of the amino and acetamido H-bonding groups and the CH3 group provides similar increases of the kcat terms of 25−50 times that exhibited by the parent complex 3:Zn(II)2. However, in terms of substrate catalyst binding (KM), there is no clear trend that H-bonding groups or the CH3 group provides stronger binding than the parent complex. In terms of the overall second order catalytic rate constant, the CH3, amino, and NH(C═O)CH3 groups provide 20, 10, and 68 times the k2cat observed for the parent complex. In the case of 9:Zn(II)2, the presence of the methyl groups provides a 1000-fold increase in activity (judged by k2cat) over the parent complex 8:Zn(II)2. The results are interpreted to indicate that H-bonding effects may be important for catalysis and less so for substrate binding, but the

  1. Evaluation by Rocket Combustor of C/C Composite Cooled Structure Using Metallic Cooling Tubes

    NASA Astrophysics Data System (ADS)

    Takegoshi, Masao; Ono, Fumiei; Ueda, Shuichi; Saito, Toshihito; Hayasaka, Osamu

    In this study, the cooling performance of a C/C composite material structure with metallic cooling tubes fixed by elastic force without chemical bonding was evaluated experimentally using combustion gas in a rocket combustor. The C/C composite chamber was covered by a stainless steel outer shell to maintain its airtightness. Gaseous hydrogen as a fuel and gaseous oxygen as an oxidizer were used for the heating test. The surface of these C/C composites was maintained below 1500 K when the combustion gas temperature was about 2800 K and the heat flux to the combustion chamber wall was about 9 MW/m2. No thermal damage was observed on the stainless steel tubes that were in contact with the C/C composite materials. The results of the heating test showed that such a metallic tube-cooled C/C composite structure is able to control the surface temperature as a cooling structure (also as a heat exchanger) as well as indicated the possibility of reducing the amount of coolant even if the thermal load to the engine is high. Thus, application of this metallic tube-cooled C/C composite structure to reusable engines such as a rocket-ramjet combined-cycle engine is expected.

  2. Densification Behavior and Performances of C/C Composites Derived from Various Carbon Matrix Precursors

    NASA Astrophysics Data System (ADS)

    Shao, H. C.; Xia, H. Y.; Liu, G. W.; Qiao, G. J.; Xiao, Z. C.; Su, J. M.; Zhang, X. H.; Li, Y. J.

    2014-01-01

    Three types of carbon/carbon (C/C) composites were manufactured by densifying the needled carbon fiber preform through resin and pitch impregnation/carbonization repeatedly, as well as propylene pyrolysis by chemical vapor infiltration plus carbonization after the resin impregnation/carbonization. The densification behavior and performances (involving electric, thermal, and mechanical properties, as well as impurity) of the C/C composites were investigated systematically. The results show that besides the processing and testing conditions, the electric resistivity, thermal conductivity (TC), coefficient of thermal expansion (CTE), strength, and fracture, as well as impurity content and composition of the C/C composites were closely related to the fiber orientation, interfacial bonding between carbon fiber and carbon matrix, material characteristics of the three precursors and the resulting matrix carbons. In particular, the resin-carbon matrix C/C (RC/C) composites had the highest electric resistivity, tensile, and flexural strength, as well as impurity content. Meanwhile, the pitch-carbon matrix C/C (PC/C) composites possessed the highest TC and CTE in the parallel and vertical direction. And most of the performances of pyro-carbon/resin carbon matrix C/C composites were between those of the RC/C and PC/C composites except the impurity content.

  3. Alpha and omega of carotenoid cleavage.

    PubMed

    Lakshman, M R

    2004-01-01

    molecular oxygen and is activated by ferrous ions. It is highly specific for 15:15' ethylenic bond of carotenoids although it has fairly broad specificity towards a number of carotenoids with at least one intact beta-ionone ring. The dioxygenase was recently cloned from Drosophila melanogaster and from the chicken intestine. The recombinant protein was found to form retinal as the sole cleavage product of beta-carotene. No apo-carotenoids were formed. Therefore, it is unequivocally proven that the major, if not the sole, pathway of beta-carotene cleavage to vitamin A is by oxidative cleavage of the central ethylenic bond of beta-carotene to yield two molecules of retinal. Most recently, human dioxygenase has also been cloned. Thus, the wisdom, vision and epoch-making mission of Jim Olson in the science of beta-carotene metabolism have been accomplished. I have no doubt that the impact of his original discovery of the dioxygenase and its importance in vitamin A nutriture should be forthcoming in the near future.

  4. Autyomatic Differentiation of C/C++

    SciTech Connect

    Beata Winnicka, Boyana Norris

    2005-11-14

    Automatic differentiation (AD) tools mechanize the process of developing code for the computation of derivatives. AD avoids the inaccuracies inherent in numerical approximations. Furthermore, sophisticated AD algoirthms can often produce c ode that is more reliable and more efficient than code written by an expert programmer. ADIC is the first and only AD tool for C and C++ based on compiler technology. This compiler foundation makes possible analyses and optimizations not available in toos based on operator overloading. The earliest implementations of ADIC included support for ANSI C applications, ADIC 2.0 lverages EDG, a commercial C/C++ parser, to provide robust C++ differentiation support. Modern AD tools, including ADIC are implemented in a modular way, aiming to isolate language-dependent program analyses and semantic transformations. The component design leads to much higher implementation quality because the different components can be implemented by experts in each of the different domains involved. For example, a compiler expert can focus on parsing, canonicalizing, and unparising C and C++, while an expert in graph theory and algorithms can produce new differentiation modules without having to worry about the complexity of parsing and generating C++ code. Thsi separation of concerns was achieved through the use of language-independent program analysis interfaces (in collaboration with researcgers at Rice University) and a language-independent XML representation of the computational portions of programs (XAIF). In addition to improved robustness and faster development times, this design naturally enables the reuse of program analysis algorithms and differentiation modules in compiler-based AD tools for other languages. In fact, the analysis and differention components are used in both ADIC and the Open AD Fortran front-end (based on Rice's Open64 compiler.

  5. A computational study on the N-heterocyclic carbene-catalyzed Csp(2)-Csp(3) bond activation/[4+2] cycloaddition cascade reaction of cyclobutenones with imines: a new application of the conservation principle of molecular orbital symmetry.

    PubMed

    Wang, Yang; Wu, Bohua; Zhang, Haoyang; Wei, Donghui; Tang, Mingsheng

    2016-07-20

    A comprehensive density functional theory (DFT) investigation has been performed to interrogate the mechanisms and stereoselectivities of the Csp(2)-Csp(3) single bond activation of cyclobutenones and their [4+2] cycloaddition reaction with imines via N-heterocyclic carbene (NHC) organocatalysis. According to our calculated results, the fundamental reaction pathway contains four steps: nucleophilic addition of NHC to cyclobutenone, C-C bond cleavage for the formation of an enolate intermediate, [4+2] cycloaddition of the enolate intermediate with isatin imine, and the elimination of the NHC catalyst. In addition, the calculated results also reveal that the second reaction step is the rate-determining step, whereas the third step is the regio- and stereo-selectivity determining step. For the regio- and stereo-selectivity determining step, all four possible attack modes were considered. The addition of the C[double bond, length as m-dash]N bond in isatin imine to the dienolate intermediate is more energy favorable than the addition of the C[double bond, length as m-dash]O bond to a dienolate intermediate. Moreover, the Re face addition of the C[double bond, length as m-dash]N bond in isatin imine to the Re face of the dienolate intermediate leading to the SS configuration N-containing product was demonstrated to be most energy favorable, which is mainly due to the stronger second-order perturbation energy value in the corresponding transition state. Furthermore, by tracking the frontier molecular orbital (FMO) changes in the rate-determining C-C bond cleavage step, we found that the reaction obeys the conservation principle of molecular orbital symmetry. We believe that the present work would provide valuable insights into this kind of reaction.

  6. Molybdenum complexes of 1,2-bis(diphenylphosphino)benzene. Mononuclear molybdenum(II) species formed by facile metal-metal bond cleavage of the (Mo-/sup 4/Mo)/sup 4+/ core

    SciTech Connect

    Bakir, M.; Cotton, F.A.; Cudahy, M.M.; Simpson, C.Q.; Smith, T.J.; Vogel, E.F.; Walton, R.A.

    1988-07-27

    The quadruply bonded dimolybdenum(II) complexes K/sub 4/Mo/sub 2/Cl/sub 8/, (NH/sub 4/)/sub 5/MoCl/sub 9/ /times/ H/sub 2/O, and (NH/sub 4/)/sub 4/Mo/sub 2/Br/sub 8/ react with 1,2-C/sub 6/H/sub 4/(PPh/sub 2/)/sub 2/(dppbe) in methanol at room temperature to afford /alpha/-Mo/sub 2/X/sub 4/(dppbe)/sub 2/ complexes (X = Cl, Br), which do not isomerize to the /beta/ isomers. Under more forcing reactions conditions (refluxing 1-propanol), these same reactions give mononuclear trans-MoX/sub 2/(dppbe)/sub 2/ in good yield (ca. 50%) together with some (MoOX(dppbe)/sub 2/)X /times/ nH/sub 2/O. An alternative synthetic strategy for the preparation of /alpha/-Mo/sub 2/X/sub 4/(dppbe)/sub 2/ involves the reaction of Mo/sub 2/(O/sub 2/CCH/sub 3/)/sub 4/ with dppbe and Me/sub 3/SiX in THF. The compound MoCl/sub 2/(dppbe)/sub 2/ forms crystals in space group P2/sub 1//n, with the following unit cell parameters: a = 10.884 (2) /angstrom/, b = 12.753 (2) /angstrom/, c = 18.141 (4) /angstrom/, /beta/ = 91.43 (2)/degree/, V = 2517 (2) /angstrom//sup 3/, and Z = 2. The centrosymmetric trans molecule has Mo-Cl = 2.410 (1) /angstrom/, Mo-P = 2.481 (1), 2.511 (1) /angstrom/, and P-Mo-P(intra-ring) = 78.68 (4)/degree/. 25 refs., 1 fig., 4 tabs.

  7. Structural and Biochemical Characterization of a Copper-Binding Mutant of the Organomercurial Lyase MerB: Insight into the Key Role of the Active Site Aspartic Acid in Hg-Carbon Bond Cleavage and Metal Binding Specificity.

    PubMed

    Wahba, Haytham M; Lecoq, Lauriane; Stevenson, Michael; Mansour, Ahmed; Cappadocia, Laurent; Lafrance-Vanasse, Julien; Wilkinson, Kevin J; Sygusch, Jurgen; Wilcox, Dean E; Omichinski, James G

    2016-02-23

    In bacterial resistance to mercury, the organomercurial lyase (MerB) plays a key role in the detoxification pathway through its ability to cleave Hg-carbon bonds. Two cysteines (C96 and C159; Escherichia coli MerB numbering) and an aspartic acid (D99) have been identified as the key catalytic residues, and these three residues are conserved in all but four known MerB variants, where the aspartic acid is replaced with a serine. To understand the role of the active site serine, we characterized the structure and metal binding properties of an E. coli MerB mutant with a serine substituted for D99 (MerB D99S) as well as one of the native MerB variants containing a serine residue in the active site (Bacillus megaterium MerB2). Surprisingly, the MerB D99S protein copurified with a bound metal that was determined to be Cu(II) from UV-vis absorption, inductively coupled plasma mass spectrometry, nuclear magnetic resonance, and electron paramagnetic resonance studies. X-ray structural studies revealed that the Cu(II) is bound to the active site cysteine residues of MerB D99S, but that it is displaced following the addition of either an organomercurial substrate or an ionic mercury product. In contrast, the B. megaterium MerB2 protein does not copurify with copper, but the structure of the B. megaterium MerB2-Hg complex is highly similar to the structure of the MerB D99S-Hg complexes. These results demonstrate that the active site aspartic acid is crucial for both the enzymatic activity and metal binding specificity of MerB proteins and suggest a possible functional relationship between MerB and its only known structural homologue, the copper-binding protein NosL.

  8. Accurate Dissociation of Chemical Bonds Using DFT-in-DFT Embedding Theory with External Orbital Orthogonality.

    PubMed

    Tamukong, Patrick K; Khait, Yuriy G; Hoffmann, Mark R

    2017-01-12

    Our recent density functional theory (DFT)-in-DFT embedding protocol, which enforces intersubsystem (or external orbital) orthogonality, is used for the first time to investigate covalent bond dissociation and is shown to do so accurately. Full potential energy curves for the dissociation of a H-O bond in H2O and the C-C bond in H3C-CH3 have been constructed using the new embedding method, as have the challenging ionic bonds in LiH and LiF, and were found to match the reference Kohn-Sham (KS)-DFT curves to at least one part in 10(6). The added constraint of external orbital orthogonality allows for the formulation of an embedding protocol that does not rely on approximate kinetic energy functionals for the evaluation of the so-called nonadditive kinetic potential, does not introduce compensatory potentials, and does not require a total system calculation at any stage. The present work extends the demonstrated applicability of the external orthogonality variant of embedding theory by more than a factor of 2 to the interaction strength range of strong single bonds. In particular, it is demonstrated that homolytic cleavage of both covalent and ionic bonds into radicals can be accomplished.

  9. Mechanism and specificity of RNA cleavage by chemical ribonucleases.

    PubMed

    Beloglazova, N; Vlassov, A; Konevetc, D; Sil'nikov, V; Zenkova, M; Giege, R; Vlassov, V

    1999-01-01

    Cleaving of model RNA substrates by chemical ribonucleases constructed by conjugation of 1,4 diazabicyclo[2,2,2]octane with histamine and histidine was investigated. Similarly to RNase A, the chemical RNases produce fragments with 5' hydroxy-group and 3'-cyclophosphate. The cleavage occurs as the catalytic reaction: more than 150 phosphodiester bonds in RNA can be cleaved by one molecule of RNase mimic.

  10. New insight into the cleavage reaction of Nostoc sp. strain PCC 7120 carotenoid cleavage dioxygenase in natural and nonnatural carotenoids.

    PubMed

    Heo, Jinsol; Kim, Se Hyeuk; Lee, Pyung Cheon

    2013-06-01

    Carotenoid cleavage dioxygenases (CCDs) are enzymes that catalyze the oxidative cleavage of carotenoids at a specific double bond to generate apocarotenoids. In this study, we investigated the activity and substrate preferences of NSC3, a CCD of Nostoc sp. strain PCC 7120, in vivo and in vitro using natural and nonnatural carotenoid structures. NSC3 cleaved β-apo-8'-carotenal at 3 positions, C-13 C-14, C-15 C-15', and C-13' C-14', revealing a unique cleavage pattern. NSC3 cleaves the natural structure of carotenoids 4,4'-diaponeurosporene, 4,4'-diaponeurosporen-4'-al, 4,4'-diaponeurosporen-4'-oic acid, 4,4'-diapotorulene, and 4,4'-diapotorulen-4'-al to generate novel cleavage products (apo-14'-diaponeurosporenal, apo-13'-diaponeurosporenal, apo-10'-diaponeurosporenal, apo-14'-diapotorulenal, and apo-10'-diapotorulenal, respectively). The study of carotenoids with natural or nonnatural structures produced by using synthetic modules could provide information valuable for understanding the cleavage reactions or substrate preferences of other CCDs in vivo and in vitro.

  11. New Insight into the Cleavage Reaction of Nostoc sp. Strain PCC 7120 Carotenoid Cleavage Dioxygenase in Natural and Nonnatural Carotenoids

    PubMed Central

    Heo, Jinsol; Kim, Se Hyeuk

    2013-01-01

    Carotenoid cleavage dioxygenases (CCDs) are enzymes that catalyze the oxidative cleavage of carotenoids at a specific double bond to generate apocarotenoids. In this study, we investigated the activity and substrate preferences of NSC3, a CCD of Nostoc sp. strain PCC 7120, in vivo and in vitro using natural and nonnatural carotenoid structures. NSC3 cleaved β-apo-8′-carotenal at 3 positions, C-13C-14, C-15C-15′, and C-13′C-14′, revealing a unique cleavage pattern. NSC3 cleaves the natural structure of carotenoids 4,4′-diaponeurosporene, 4,4′-diaponeurosporen-4′-al, 4,4′-diaponeurosporen-4′-oic acid, 4,4′-diapotorulene, and 4,4′-diapotorulen-4′-al to generate novel cleavage products (apo-14′-diaponeurosporenal, apo-13′-diaponeurosporenal, apo-10′-diaponeurosporenal, apo-14′-diapotorulenal, and apo-10′-diapotorulenal, respectively). The study of carotenoids with natural or nonnatural structures produced by using synthetic modules could provide information valuable for understanding the cleavage reactions or substrate preferences of other CCDs in vivo and in vitro. PMID:23524669

  12. Enhanced RNA cleavage within bulge-loops by an artificial ribonuclease

    PubMed Central

    Kuznetsova, Irina L.; Zenkova, Marina A.; Gross, Hans J.; Vlassov, Valentin V.

    2005-01-01

    Cleavage of phosphodiester bonds by small ribonuclease mimics within different bulge-loops of RNA was investigated. Bulge-loops of different size (1–7 nt) and sequence composition were formed in a 3′ terminal fragment of influenza virus M2 RNA (96 nt) by hybridization of complementary oligodeoxynucleotides. Small bulges (up to 4 nt) were readily formed upon oligonucleotide hybridization, whereas hybridization of the RNA to the oligonucleotides designed to produce larger bulges resulted in formation of several alternative structures. A synthetic ribonuclease mimic displaying Pyr–Pu cleavage specificity cleaved CpA motifs located within bulges faster than similar motifs within the rest of the RNA. In the presence of 10 mM MgCl2, 75% of the cleavage products resulted from the attack of this motif. Thus, selective RNA cleavage at a single target phosphodiester bond was achieved by using bulge forming oligonucleotides and a small ribonuclease A mimic. PMID:15731340

  13. Synthesis and characterization of the dimercury(I)-linked compound [PPn]4[(Re7C(CO)21Hg)2]. Oxidative cleavage of the mercury-mercury bond leading to carbidoheptarhenate complexes of mercury(II), including [PPN][Re7C(CO)21Hg(S=C(NME2)2)].

    PubMed

    Wright, C A; Brand, U; Shapley, J R

    2001-09-10

    The reaction of [PPN](3)[Re(7)C(CO)(21)] with Hg(2)(NO(3))(2).2H(2)O in dichloromethane formed the complex [PPN](4)[(Re(7)C(CO)(21)Hg)(2)] ([PPN](4)[1]), isolated in 60% yield. Analogous salts of [1](4-) with [PPh(4)](+) and [NEt(4)](+) were also prepared. The crystal structure of [PPN](4)[1] showed that two carbidoheptarhenate cores are linked by a dimercury(I) unit (d(Hg-Hg) = 2.610(4) A), with each individual mercury atom face-bridging. Oxidative cleavage of the Hg-Hg bond in [1](4-) was effected by 4-bromophenyl disulfide to form [Re(7)C(CO)(21)HgSC(6)H(4)Br](2-) ([4](2-)), by I(2) to form [Re(7)C(CO)(21)HgI](2-) ([5](2-)), and by Br(2) to form [Re(7)C(CO)(21)HgBr](2-) ([6](2-)). Oxidation of [1](4-) by ferrocenium ion (2 equiv) in the presence of tetramethylthiourea resulted in the derivative [Re(7)C(CO)(21)HgSC(NMe(2))(2)](-) ([7](-)). The molecular structure of [PPN][7] was determined by X-ray crystallography. This is the first example of a carbidoheptarhenate-mercury complex with a neutral ligand on mercury, and ligand exchange was demonstrated by displacement with triethylphosphine. Complex [7](-) can also be prepared by protonating [Re(7)C(CO)(21)HgO(2)CCH(3)](2-) in the presence of tetramethylthiourea. Cyclic voltammetry data to calibrate and compare the redox properties of compounds [1](4-) and [7](-) have been measured.

  14. Efficient nickel mediated carbon-carbon bond cleavage of organonitriles.

    PubMed

    Schaub, Thomas; Döring, Christian; Radius, Udo

    2007-05-28

    The reactions of the nickel complex [Ni(2)(iPr(2)Im)4(COD)] 1 with organonitriles smoothly and irreversibly proceed via intermediates with eta(2)-coordinated organonitrile ligands such as [Ni(iPr(2)Im)2(eta(2)-(CN)-PhCN)] 2 and [Ni(iPr(2)Im)2(eta(2)-(CN)-pTolCN)] 4 to yield aryl cyanide complexes of the type trans-[Ni(iPr(2)Im)2(CN)(Ar)] (Ar = Ph 3, pTol 5, 4-CF(3)C(6)H(4) 6, 2,4-(OMe)2C(6)H(3) 7, 2-C(4)H(3)O 8, 2-C(5)H(4)N 9). The compounds 3, 7, 9 and have been structurally characterized. For the conversion of 2 to 3 a free activation enthalpy DeltaG++(328 K) of 103.47 +/- 0.79 kJ mol(-1) was calculated from time dependent NMR spectroscopy. The analogous reaction of arylnitriles with electron releasing substituents or heteroaromatic organonitriles is significantly faster compared to the reaction with benzonitrile or toluonitrile. The reactions of 1 with acetonitrile or trimethylsilyl cyanide afforded [Ni(iPr(2)Im)2(CN)(Me)] 10 and structurally characterized [Ni(iPr(2)Im)2(CN)(SiMe(3))] 11. The usage of an organonitrile with a longer alkyl chain, adiponitrile, yielded [Ni(iPr(2)Im)2(eta(2)-(CN)-NCC(4)H(8)CN)] 12 as well as the C-CN activation product [Ni(iPr(2)Im)2(CN)(C(4)H(8)CN)]13 in thermal and photochemical reactions, although this pathway seems to be significantly interfered with by decomposition pathways under the formation of the dicyanide complex [Ni(iPr(2)Im)(2)(CN)(2)] 14.

  15. Nonenzymatic oxidative cleavage of peptide bonds in apoprotein B-100.

    PubMed

    Fong, L G; Parthasarathy, S; Witztum, J L; Steinberg, D

    1987-12-01

    Incubation of low density lipoprotein (LDL) with endothelial cells converts it to a form that is avidly degraded by macrophages via the acetyl LDL receptor. This modification has previously been shown to be accompanied by extensive breakdown of the major LDL protein (apoB-100) to smaller peptides. ApoB-100 is known to undergo partial degradation during isolation and purification which is commonly attributed to proteolytic enzymes derived from plasma or to contaminant bacteria. In the present studies addition of any of ten different inhibitors of proteolytic enzymes failed to inhibit the endothelial cell-induced degradation of LDL apoB-100 or its subsequent enhanced rate of degradation by macrophages (termed biological modification). Conversely, deliberate digestion of LDL with any of five well-characterized proteolytic enzymes degraded apoB-100 extensively but did not cause biological modification. The disappearance of intact apoB-100 during incubation with endothelial cells paralleled the formation of thiobarbituric acid (TBA)-reactive substances and the breakdown could be completely prevented by the addition of antioxidants or metal chelators. Finally, the incubation of LDL with a free radical-generating system (dihydroxyfumaric acid and Fe3+-ADP) in the absence of cells resulted in the breakdown of apoB-100. These results suggest that the breakdown of apoB-100 during oxidative modification of LDL, whether cell-induced or catalyzed by transition metals, is not mediated by proteolytic enzymes but rather is linked to oxidative attack on the polypeptide chain, either directly or secondary to peroxidation of closely associated LDL lipids.

  16. Serine-selective aerobic cleavage of peptides and a protein using a water-soluble copper-organoradical conjugate.

    PubMed

    Seki, Yohei; Tanabe, Kana; Sasaki, Daisuke; Sohma, Youhei; Oisaki, Kounosuke; Kanai, Motomu

    2014-06-16

    The site-specific cleavage of peptide bonds is an important chemical modification of biologically relevant macromolecules. The reaction is not only used for routine structural determination of peptides, but is also a potential artificial modulator of protein function. Realizing the substrate scope beyond the conventional chemical or enzymatic cleavage of peptide bonds is, however, a formidable challenge. Here we report a serine-selective peptide-cleavage protocol that proceeds at room temperature and near neutral pH value, through mild aerobic oxidation promoted by a water-soluble copper-organoradical conjugate. The method is applicable to the site-selective cleavage of polypeptides that possess various functional groups. Peptides comprising D-amino acids or sensitive disulfide pairs are competent substrates. The system is extendable to the site-selective cleavage of a native protein, ubiquitin, which comprises more than 70 amino acid residues.

  17. Pt/Mo2C/C-cp as a highly active and stable catalyst for ethanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Lin, Lili; Sheng, Wenchao; Yao, Siyu; Ma, Ding; Chen, Jingguang G.

    2017-03-01

    A Pt/Mo2C/C-cp electrocatalyst with optimized Ptsbnd Mo2C chemical bonding is synthesized and evaluated for the ethanol oxidation reaction (EOR). The chemical bonding of Mo2C to Pt particles renders exceptional EOR activity at low potentials, which is 15 and 2.5 times higher than Pt/C and commercial 40% PtRu/C, respectively, at 0.6 V (vs. RHE). The stability of the Pt/Mo2C/C-cp electrocatalyst is comparable to the commercial 40% PtRu/C catalyst. CO stripping test demonstrates the existence of highly active sites for CO oxidation on the Pt/Mo2C/C-cp catalyst. In-situ infrared spectroscopic studies of EOR reveal that the excellent anti-poisoning ability of the Pt/Mo2C/C-cp catalyst is related to the relatively weak binding of carbonyl intermediates over the Pt/Mo2C/C-cp catalysts.

  18. Dinitrogen cleavage and hydrogenation by a trinuclear titanium polyhydride complex.

    PubMed

    Shima, Takanori; Hu, Shaowei; Luo, Gen; Kang, Xiaohui; Luo, Yi; Hou, Zhaomin

    2013-06-28

    Both the Haber-Bosch and biological ammonia syntheses are thought to rely on the cooperation of multiple metals in breaking the strong N≡N triple bond and forming an N-H bond. This has spurred investigations of the reactivity of molecular multimetallic hydrides with dinitrogen. We report here the reaction of a trinuclear titanium polyhydride complex with dinitrogen, which induces dinitrogen cleavage and partial hydrogenation at ambient temperature and pressure. By (1)H and (15)N nuclear magnetic resonance, x-ray crystallographic, and computational studies of some key reaction steps and products, we have determined that the dinitrogen (N2) reduction proceeds sequentially through scission of a N2 molecule bonded to three Ti atoms in a μ-η(1):η(2):η(2)-end-on-side-on fashion to give a μ2-N/μ3-N dinitrido species, followed by intramolecular hydrogen migration from Ti to the μ2-N nitrido unit.

  19. Kinetic analysis of the cleavage of natural and synthetic substrates by the Serratia nuclease.

    PubMed

    Friedhoff, P; Meiss, G; Kolmes, B; Pieper, U; Gimadutdinow, O; Urbanke, C; Pingoud, A

    1996-10-15

    The extracellular nuclease from Serratia marcescens is a non-specific endonuclease that hydrolyzes double-stranded and single-stranded DNA and RNA with high specific activity. Steady-state and presteady-state kinetic cleavage experiments were performed with natural and synthetic DNA and RNA substrates to understand the mechanism of action of the Serratia nuclease. Most of the natural substrates are cleaved with similar Kcat and K(m) values, the Kcat/K(m) ratios being comparable to that of staphylococcal nuclease. Substrates with extreme structural features, like poly(dA).poly(dT) or poly(dG).poly(dC), are cleaved by the Serratia nuclease with a 50 times higher or 10 times lower K(m), respectively, as salmon testis DNA. Neither with natural DNA or RNA nor synthetic oligodeoxynucleotide substrates did we observe substrate inhibition for the Serratia nuclease as reported recently. Experiments with short oligodeoxynucleotides confirmed previous results that for moderately good cleavage activity the substrate should contain at least five phosphate residues. Shorter substrates are still cleaved by the Serratia nuclease, albeit at a rate reduced by a factor of more than 100. Cleavage experiments with oligodeoxynucleotides substituted by a single phosphorothioate group showed that the negative charge of the pro-Rp-oxygen of the phosphate group 3' adjacent to the scissile phosphodiester bond is essential for cleavage, as only the Rp-phosphorothioate supports cleavage at the 5' adjacent phosphodiester bond. Furthermore, the modified bond itself is only cleaved in the Rp-diastereomer, albeit 1000 times more slowly than the corresponding unmodified phosphodiester bond, which offers the possibility to determine the stereochemical outcome of cleavage. Pre-steady-state cleavage experiments demonstrate that it is not dissociation of products but association of enzyme and substrate or the cleavage of the phosphodiester bond that is the rate-limiting step of the reaction. Finally

  20. Localization of double bonds in triacylglycerols using high-performance liquid chromatography/atmospheric pressure chemical ionization ion-trap mass spectrometry.

    PubMed

    Háková, Eva; Vrkoslav, Vladimír; Míková, Radka; Schwarzová-Pecková, Karolina; Bosáková, Zuzana; Cvačka, Josef

    2015-07-01

    A method for localizing double bonds in triacylglycerols using high-performance liquid chromatography-tandem mass spectrometry with atmospheric pressure chemical ionization (APCI) was developed. The technique was based on collision-induced dissociation or pulsed Q collision-induced dissociation of the C3H5N(+•) adducts ([M + 55](+•)) formed in the presence of acetonitrile in the APCI source. The spectra were investigated using a large series of standards obtained from commercial sources and prepared by randomization. The fragmentation spectra made it possible to determine (i) the total number of carbons and double bonds in the molecule, (ii) the number of carbons and double bonds in acyls, (iii) the acyl in the sn-2 position on the glycerol backbone, and (iv) the double-bond positions in acyls. The double-bond positions were determined based on two types of fragments (alpha and omega ions) formed by cleavages of C-C bonds vinylic to the original double bond. The composition of the acyls and their positions on glycerol were established from the masses and intensities of the ions formed by the elimination of fatty acids from the [M + 55](+•) precursor. The method was applied for the analysis of triacylglycerols in olive oil and vernix caseosa.

  1. Testing of DLR C/C-SiC and C/C for HIFiRE 8 Scramjet Combustor

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Capriotti, Diego P.; Reimer, Thomas; Kutemeyer, Marius; Smart, Michael K.

    2014-01-01

    Ceramic Matrix Composites (CMCs) have been proposed for use as lightweight hot structures in scramjet combustors. Previous studies have calculated significant weight savings by utilizing CMCs (active and passive) versus actively cooled metallic scramjet structures. Both a carbon/carbon (C/C) and a carbon/carbon-silicon carbide (C/C-SiC) material fabricated by DLR (Stuttgart, Germany) are being considered for use in a passively cooled combustor design for Hypersonic International Flight Research Experimentation (HIFiRE) 8, a joint Australia / Air Force Research Laboratory hypersonic flight program, expected to fly at Mach 7 for approximately 30 sec, at a dynamic pressure of 55 kilopascals. Flat panels of the DLR C/C and C/C-SiC materials were installed downstream of a hydrogen-fueled, dual-mode scramjet combustor and tested for several minutes at conditions simulating flight at Mach 5 and Mach 6. Gaseous hydrogen fuel was used to fuel the scramjet combustor. The test panels were instrumented with embedded Type K and Type S thermocouples. Zirconia felt insulation was used during some of the tests to reduce heat loss from the back surface and thus increase the heated surface temperature of the C/C-SiC panel approximately 177 C (350 F). The final C/C-SiC panel was tested for three cycles totaling over 135 sec at Mach 6 enthalpy. Slightly more erosion was observed on the C/C panel than the C/C-SiC panels, but both material systems demonstrated acceptable recession performance for the HIFiRE 8 flight.

  2. Internal friction and gas desorption of {C}/{C} composites

    NASA Astrophysics Data System (ADS)

    Serizawa, H.; Sato, S.; Kohyama, A.

    1994-09-01

    {C}/{C} composites are the most promising candidates as high heat flux component materials, where temperature dependence of mechanical properties and gas desorption behavior at elevated temperature are important properties. At the beginning, the newly developed internal friction measurement apparatus, which enables the accurate measurement of dynamic elastic properties up to 1373 K along with the measurement of gas desorption behavior, was used. The materials studied were unidirectional (UD) {C}/{C} composites reinforced with mesophase pitch-based carbon fibers, which were heat treated at temperatures ranging from 1473 to 2773 K which produced a variety of graphitized microstructures. Two-dimensional (2D) {C}/{C} composites reinfored with flat woven fabrics of PAN type carbon fibers were also studied. These materials were heat treated at 1873 K. From the temperature spectrum of internal friction of 2D {C}/{C} composites, these internal friction peaks were detected and were related to gas desorption. Also the temperature dependence of Young's modulus of UD {C}/{C} composites, negative and positive dependence of Young's modulus were observed reflecting microstructure changes resulting from the heat treatments.

  3. Kinetics of the C-C bond beta scission reactions in alkyl radical reaction class.

    PubMed

    Ratkiewicz, Artur; Truong, Thanh N

    2012-06-28

    Kinetics of the β-scission in alkyl radical reaction class was studied using the reaction class transition state theory (RC-TST) combined with the linear energy relationship (LER) and the barrier height grouping (BHG) approach. All necessary parameters were derived from first-principle density functional calculations for a representative set of 21 reactions. Different error analyses and comparisons with available literature data were made. Direct comparison with available experimental data indicates that the RC-TST/LER, where only reaction energy is needed, can predict rate constants for any reaction in this reaction class with excellent accuracy. Specifically for this reaction class, the RC-TST/LER method has less than 60% systematic errors on average in the predicted rate constants when compared to explicit rate calculations.

  4. In Pursuit of an Ideal C-C Bond-Forming Reaction

    PubMed Central

    RajanBabu, T. V.

    2009-01-01

    Attempts to introduce the highly versatile vinyl group into other organic molecules in a chemo-, regio- and stereoselective fashion via catalytic activation of ethylene provided challenging opportunities to explore new ligand and salt effects in homogeneous catalysis. This review provides a personal account of the development of enantioselective reactions involving ethylene. PMID:19606231

  5. Deoxygenative C-C Bond-Forming Processes via a Net Four-Electron Reductive Coupling.

    PubMed

    Todd, David P; Thompson, Benjamin B; Nett, Alex J; Montgomery, John

    2015-10-14

    The nickel-catalyzed coupling of enones or enals with alkynes in the presence of silane and titanium alkoxide reductants provides direct access to skipped diene products. The process involves a net four-electron reductive coupling and proceeds with deoxygenation of the starting enone or enal. A new class of well-defined nickel(0) precatalysts bearing an unhindered N-heterocyclic carbene ligand, which was developed in optimization of the process, is essential for the efficiency of the transformation. The strategy allows the high reactivity of α,β-unsaturated carbonyl substrates to be utilized in couplings with simultaneous extrusion of the oxygen atom, thus enabling a traceless strategy for alkene installation.

  6. General and Efficient C-C Bond Forming Photoredox Catalysis with Semiconductor Quantum Dots.

    PubMed

    Caputo, Jill A; Frenette, Leah C; Zhao, Norman; Sowers, Kelly L; Krauss, Todd D; Weix, Daniel J

    2017-03-29

    Photoredox catalysis has become an essential tool in organic synthesis because it enables new routes to important molecules. However, the best available molecular catalysts suffer from high catalyst loadings and rely on precious metals. Here we show that colloidal nanocrystal quantum dots (QDs) can serve as efficient and robust, precious-metal free, photoassisted redox catalysts. A single-sized CdSe quantum dot (3.0 ± 0.2 nm) can replace several different dye catalysts needed for five different photoredox reactions (β-alkylation, β-aminoalkylation, dehalogenation, amine arylation, and decarboxylative radical formation). Even without optimization of the QDs or the reaction conditions, efficiencies rivaling those of the best available metal dyes were obtained.

  7. Tuning of the copper-thioether bond in tetradentate N₃S(thioether) ligands; O-O bond reductive cleavage via a [Cu(II)₂(μ-1,2-peroxo)]²⁺/[Cu(III)₂(μ-oxo)₂]²⁺ equilibrium.

    PubMed

    Kim, Sunghee; Ginsbach, Jake W; Billah, A Imtiaz; Siegler, Maxime A; Moore, Cathy D; Solomon, Edward I; Karlin, Kenneth D

    2014-06-04

    Current interest in copper/dioxygen reactivity includes the influence of thioether sulfur ligation, as it concerns the formation, structures, and properties of derived copper-dioxygen complexes. Here, we report on the chemistry of {L-Cu(I)}2-(O2) species L = (DMM)ESE, (DMM)ESP, and (DMM)ESDP, which are N3S(thioether)-based ligands varied in the nature of a substituent on the S atom, along with a related N3O(ether) (EOE) ligand. Cu(I) and Cu(II) complexes have been synthesized and crystallographically characterized. Copper(I) complexes are dimeric in the solid state, [{L-Cu(I)}2](B(C6F5)4)2, however are shown by diffusion-ordered NMR spectroscopy to be mononuclear in solution. Copper(II) complexes with a general formulation [L-Cu(II)(X)](n+) {X = ClO4(-), n = 1, or X = H2O, n = 2} exhibit distorted square pyramidal coordination geometries and progressively weaker axial thioether ligation across the series. Oxygenation (-130 °C) of {((DMM)ESE)Cu(I)}(+) results in the formation of a trans-μ-1,2-peroxodicopper(II) species [{((DMM)ESE)Cu(II)}2(μ-1,2-O2(2-))](2+) (1(P)). Weakening the Cu-S bond via a change to the thioether donor found in (DMM)ESP leads to the initial formation of [{((DMM)ESP)Cu(II)}2(μ-1,2-O2(2-))](2+) (2(P)) that subsequently isomerizes to a bis-μ-oxodicopper(III) complex, [{((DMM)ESP)Cu(III)}2(μ-O(2-))2](2+) (2(O)), with 2(P) and 2(O) in equilibrium (K(eq) = [2(O)]/[2(P)] = 2.6 at -130 °C). Formulations for these Cu/O2 adducts were confirmed by resonance Raman (rR) spectroscopy. This solution mixture is sensitive to the addition of methylsulfonate, which shifts the equilibrium toward the bis-μ-oxo isomer. Further weakening of the Cu-S bond in (DMM)ESDP or substitution with an ether donor in (DMM)EOE leads to only a bis-μ-oxo species (3(O) and 4(O), respectively). Reactivity studies indicate that the bis-μ-oxodicopper(III) species (2(O), 3(O)) and not the trans-peroxo isomers (1(P) and 2(P)) are responsible for the observed ligand

  8. Characterization of Brazed Joints of C-C Composite to Cu-clad-Molybdenum

    NASA Technical Reports Server (NTRS)

    Singh, M.; Asthana, R.

    2008-01-01

    Carbon-carbon composites with either pitch+CVI matrix or resin-derived matrix were joined to copper-clad molybdenum using two active braze alloys, Cusil-ABA (1.75% Ti) and Ticusil (4.5% Ti). The brazed joints revealed good interfacial bonding, preferential precipitation of Ti at the composite/braze interface, and a tendency toward de-lamination in resin-derived C-C composite due to its low inter-laminar shear strength. Extensive braze penetration of the inter-fiber channels in the pitch+CVI C-C composites was observed. The relatively low brazing temperatures (<950 C) precluded melting of the clad layer and restricted the redistribution of alloying elements but led to metallurgically sound composite joints. The Knoop microhardness (HK) distribution across the joint interfaces revealed sharp gradients at the Cu-clad-Mo/braze interface and higher hardness in Ticusil (approx.85-250 HK) than in Cusil-ABA (approx.50-150 HK). These C-C/Cu-clad-Mo joints with relatively low thermal resistance may be promising for thermal management applications.

  9. Bent Bonds and Multiple Bonds.

    ERIC Educational Resources Information Center

    Robinson, Edward A.; Gillespie, Ronald J.

    1980-01-01

    Considers carbon-carbon multiple bonds in terms of Pauling's bent bond model, which allows direct calculation of double and triple bonds from the length of a CC single bond. Lengths of these multiple bonds are estimated from direct measurements on "bent-bond" models constructed of plastic tubing and standard kits. (CS)

  10. The theoretical design of neutral planar tetracoordinate carbon molecules with C(C)(4) substructures.

    PubMed

    Wang, Zhi-Xiang; Schleyer, Paul von Ragué

    2002-10-09

    Using a new charge-compensation strategy, we designed neutral molecules with perfectly planar C(C)(4)-type tetracoordinate carbon arrangements (ptC) employing DFT computations. These designs, based on the planar preference of methane dications, replace two remote carbons in spiroalkaplanes by borons or two remote hydrogens by BH(3) groups; the two formally anionic boron units which result compensate the formal double positive charge on the central ptC's. The LUMOs correspond to the "wasted" lone pair HOMOs of the alkaplanes. As compared to the latter, pi occupancies on the central carbon are much smaller (less than 0.7e), and the IPs are much larger. The newly predicted compounds utilize all of the electrons more effectively. There are no lone pairs, and the ptC-C bond lengths are ca. 1.50 A. The Wiberg bond index sums of the ptC's are near 3.2, and the boron sums are close to 4.

  11. Surface chain cleavage behavior of PBIA fiber induced by direct fluorination

    NASA Astrophysics Data System (ADS)

    Cheng, Zheng; Wu, Peng; Li, Baoyin; Chen, Teng; Liu, Yang; Ren, Mengmeng; Wang, Zaoming; Lai, Wenchuan; Wang, Xu; Liu, Xiangyang

    2016-10-01

    The surface chain cleavage behavior of PBIA fiber induced by direct fluorination was reported based on the analysis of physical and chemical changes on the fiber surface. The chain cleavage product was obtained to evaluate the chemical reaction during the fluorination process, and its impact on composites performance was also involved. DSC, FTIR spectra, UV-vis absorption spectra and H1NMR were utilized to analyze the chemical structure and composition of the chain cleavage product. The results show gaseous fluorine is most likely to attack the benzimidazole and amide bond in PBIA unit, which was also demonstrated by molecular simulation. Owing to the polar groups contained in chain cleavage products, the wettability of epoxy resin to fiber has been improved, leading to an 11.5% increase of adhesive strength of fiber-epoxy composite.

  12. Specificity of hammerhead ribozyme cleavage.

    PubMed Central

    Hertel, K J; Herschlag, D; Uhlenbeck, O C

    1996-01-01

    To be effective in gene inactivation, the hammerhead ribozyme must cleave a complementary RNA target without deleterious effects from cleaving non-target RNAs that contain mismatches and shorter stretches of complementarity. The specificity of hammerhead cleavage was evaluated using HH16, a well-characterized ribozyme designed to cleave a target of 17 residues. Under standard reaction conditions, HH16 is unable to discriminate between its full-length substrate and 3'-truncated substrates, even when six fewer base pairs are formed between HH16 and the substrate. This striking lack of specificity arises because all the substrates bind to the ribozyme with sufficient affinity so that cleavage occurs before their affinity differences are manifested. In contrast, HH16 does exhibit high specificity towards certain 3'-truncated versions of altered substrates that either also contain a single base mismatch or are shortened at the 5' end. In addition, the specificity of HH16 is improved in the presence of p7 nucleocapsid protein from human immunodeficiency virus (HIV)-1, which accelerates the association and dissociation of RNA helices. These results support the view that the hammerhead has an intrinsic ability to discriminate against incorrect bases, but emphasizes that the high specificity is only observed in a certain range of helix lengths. Images PMID:8670879

  13. Mechanism for catechol ring cleavage by non-heme iron intradiol dioxygenases: a hybrid DFT study.

    PubMed

    Borowski, Tomasz; Siegbahn, Per E M

    2006-10-04

    The mechanism of the catalytic reaction of protocatechuate 3,4-dioxygenase (3,4-PCD), a representative intradiol dioxygenase, was studied with the hybrid density functional method B3LYP. First, a smaller model involving only the iron first-shell ligands (His460, His462, and Tyr408) and the substrates (catechol and dioxygen) was used to probe various a priori plausible reaction mechanisms. Then, an extended model involving also the most important second-shell groups (Arg457, Gln477, and Tyr479) was used for the refinement of the preselected mechanisms. The computational results suggest that the chemical reactions constituting the catalytic cycle of intradiol dioxygenases involve: (1) binding of the substrate as a dianion, in agreement with experimental suggestions, (2) binding of dioxygen to the metal aided by an electron transfer from the substrate to O(2), (3) formation of a bridging peroxo intermediate and its conformational change, which opens the coordination site trans to His462, (4) binding of a neutral XOH ligand (H(2)O or Tyr447) at the open site, (5) proton transfer from XOH to the neighboring peroxo ligand yielding the hydroperoxo intermediate, (6) a Criegee rearrangement leading to the anhydride intermediate, and (7) hydrolysis of the anhydride to the final acyclic product. One of the most important results obtained is that the Criegee mechanism requires an in-plane orientation of the four atoms (two oxygen and two carbon atoms) mainly involved in the reaction. This orientation yields a good overlap between the two sigma orbitals involved, C-C sigma and O-O sigma, allowing an efficient electron flow between them. Another interesting result is that under some conditions, a homolytic O-O bond cleavage might compete with the Criegee rearrangement. The role of the second-shell residues and the substituent effects are also discussed.

  14. Oxidative cleavage with hydrogen peroxide: preparation of polycarboxylic acids from cyclic olefins.

    PubMed

    Fujitani, Kango; Mizutani, Toshihiro; Oida, Tatsuo; Kawase, Tokuzo

    2009-01-01

    Oxidative cleavage of carbon-carbon double bonds of cyclic olefins with hydrogen peroxide in the presence of heteropolyacids has been investigated as a clean and environmentally friendly preparation of polycarboxylic acids. In the presence of 12-tungstophospholic acid (H(3)PW(12)O(40)), adipic acid was obtained in 95% yield from cyclohexene in lipophilic phase and hydrogen peroxide in aqueous phase. In addition, 1,2,3,4-butanetetracarboxylic acid was also obtained in 87% yield from 1,2,3,6-tetrahydrophtharic acid anhydride, while endic acid anhydride did not afford corresponding 2,3,6-cyclopentanetetracarboxylic acid but only lactone compound was obtained. In this oxidation process, oxidative cleavage of carbon-carbon double bonds would proceed as the sequential reactions in which the rate determining step is oxidative cleavage of vicinal-diol compounds.

  15. Unusual nickel-mediated C-S cleavage of alkyl and aryl sulfoxides.

    PubMed

    Schaub, Thomas; Backes, Marc; Radius, Udo

    2007-05-28

    The first examples of transition metal mediated C-S cleavage of sulfoxides containing sp2- and sp3-hybridized carbon bonds attached to the sulfur atom and the first example of a structurally characterized complex featuring an oxygen-bound sulfinyl ligand are presented.

  16. Thermodynamic properties of carbon in b.c.c. and f.c.c. iron-silicon-carbon solid solutions.

    NASA Technical Reports Server (NTRS)

    Chraska, P.; Mclellan, R. B.

    1971-01-01

    The equilibrium between hydrogen-methane gas mixtures and Fe-Si-C solid solutions has been investigated both as a function of temperature and carburizing gas composition. The thermodynamic properties of the carbon atoms in both b.c.c. and f.c.c. solid solution have been derived from the equilibrium measurements. The results found have been compared with those of earlier investigations and with the predictions of recent theoretical models on ternary solid solutions containing both substitutional and interstitial solute atoms.

  17. Determinants of chymotrypsin C cleavage specificity in the calcium binding loop of human cationic trypsinogen

    PubMed Central

    Szabó, András; Sahin-Tóth, Miklós

    2013-01-01

    SUMMARY The pancreatic serine protease chymotrypsin C (CTRC) cleaves the Leu81-Glu82 peptide bond in the calcium binding loop of human cationic trypsinogen and thereby promotes its degradation. This serves as a protective mechanism against ectopic trypsinogen activation in the pancreas. In the present study we demonstrate that cleavage of the Leu81-Glu82 peptide bond by CTRC is highly specific and other human pancreatic chymotrypsins (CTRB1, CTRB2, CTRL1) and elastases (ELA2A, ELA3A, ELA3B) do not catalyze this reaction. To elucidate the mechanistic basis for CTRC specificity, we surveyed the primary (P1) cleavage preference of these pancreatic proteases on peptide substrates. We found that CTRC cleaved after a P1 Leu with at least 10-fold higher catalytic efficiency than other enzymes tested. To assess extended subsite interactions, we introduced Ala-mutations into human cationic trypsinogen at the P3, P1' P3' and P4' amino-acid positions, where P1-P1' corresponds to Leu81-Glu82. Interestingly, CTRC mediated cleavage was stimulated 3-fold by mutation E82A and unaffected by mutations E79A and N84A, but all three mutations compromised specificity and resulted in increased cleavage by ELA2A. Mutation E85A decreased CTRC cleavage by 2-fold. Remarkably, other chymotrypsins and elastases did not cleave human cationic trypsinogen even with the L81F or L81A mutations, which introduced favorable P1 residues for these enzymes. We conclude that specific cleavage of the Leu81-Glu82 peptide bond in human cationic trypsinogen by CTRC is primarily determined by its distinctively high activity on leucyl peptide bonds, whereas the P1' Glu82, P3' Asn84 and P4' Glu85 residues serve as additional specificity determinants. PMID:23035638

  18. Interligand C-C Coupling between α-Methyl N-Heterocycles and bipy or phen at Rhenium Tricarbonyl Complexes.

    PubMed

    Arévalo, Rebeca; Riera, Lucía; Pérez, Julio

    2017-04-03

    Intramolecular C-C coupling between N-bonded 1,2-dimethylimidazole, 2-methyloxazoline, or 2-methylpyridine and either 2,2'-bipyridine (bipy) or 1,10-phenanthroline (phen) ligands results from α-methyl group deprotonation in the coordination sphere of Re(CO)3 fragments. The nucleophilic CH2 group generated by the deprotonation attacks the 6 (bipy) or 2 (phen) positions of the diimines, dearomatizing the involved pyridine ring and generating new asymmetric, fac-capping tridentate ligands.

  19. Microstructure and cleavage in lath martensitic steels.

    PubMed

    Morris, John W; Kinney, Chris; Pytlewski, Ken; Adachi, Y

    2013-02-01

    In this paper we discuss the microstructure of lath martensitic steels and the mechanisms by which it controls cleavage fracture. The specific experimental example is a 9Ni (9 wt% Ni) steel annealed to have a large prior austenite grain size, then examined and tested in the as-quenched condition to produce a relatively coarse lath martensite. The microstructure is shown to approximate the recently identified 'classic' lath martensite structure: prior austenite grains are divided into packets, packets are subdivided into blocks, and blocks contain interleaved laths whose variants are the two Kurjumov-Sachs relations that share the same Bain axis of the transformation. When the steel is fractured in brittle cleavage, the laths in the block share {100} cleavage planes and cleave as a unit. However, cleavage cracks deflect or blunt at the boundaries between blocks with different Bain axes. It follows that, as predicted, the block size governs the effective grain size for cleavage.

  20. Microstructure and cleavage in lath martensitic steels

    NASA Astrophysics Data System (ADS)

    Morris, John W., Jr.; Kinney, Chris; Pytlewski, Ken; Adachi, Y.

    2013-02-01

    In this paper we discuss the microstructure of lath martensitic steels and the mechanisms by which it controls cleavage fracture. The specific experimental example is a 9Ni (9 wt% Ni) steel annealed to have a large prior austenite grain size, then examined and tested in the as-quenched condition to produce a relatively coarse lath martensite. The microstructure is shown to approximate the recently identified ‘classic’ lath martensite structure: prior austenite grains are divided into packets, packets are subdivided into blocks, and blocks contain interleaved laths whose variants are the two Kurjumov-Sachs relations that share the same Bain axis of the transformation. When the steel is fractured in brittle cleavage, the laths in the block share {100} cleavage planes and cleave as a unit. However, cleavage cracks deflect or blunt at the boundaries between blocks with different Bain axes. It follows that, as predicted, the block size governs the effective grain size for cleavage.

  1. [Study on spectral emissivity of C/C composites].

    PubMed

    Zhu, Bo; Cao, Wei-Wei; Jing, Min; Dong, Xing-Guang; Wang, Cheng-Guo

    2009-11-01

    Different types of C/C composites were prepared by conventional molding, and the changes in normal spectral emissivity of samples were tested. The testing results show that spectral emissivity of C/C composite reinforced by short cut carbon fibers is generally higher than the sample reinforced by carbon cloth in the entire 2500-13000nm wavelength region. The structure of short cut carbon fibers is relatively loose and the number of material particles is less than other samples in unit volume, which increases the penetration depth of electromagnetic waves. This is the reason for higher normal spectral emissivity and better heat radiation property. Meanwhile, the test results of normal spectral emissivity for fiber perform and C/C composite samples show that the spectral emissivity of resin carbon is better than fiber carbon because of the difference in microstructure for the two kinds of carbon materials. Laser Raman spectroscopy was employed to analyze the microstructures of different carbon materials, and the results show that because sp3 and sp2 hybrid states of carbon atoms in resin carbon produced more vibration modes, the resin carbon also has higher normal spectral emissivity and better characteristics of heat radiation.

  2. Pistol ribozyme adopts a pseudoknot fold facilitating site-specific in-line cleavage

    PubMed Central

    Ren, Aiming; Vušurović, Nikola; Gebetsberger, Jennifer; Gao, Pu; Juen, Michael; Kreutz, Christoph; Micura, Ronald; Patel, Dinshaw J.

    2016-01-01

    The field of small self-cleaving nucleolytic ribozymes has been invigorated by the recent discovery of the twister, twister-sister, pistol and hatchet ribozymes. We report on the crystal structure of the env25 pistol ribozyme, which adopts a compact tertiary architecture stabilized by an embedded pseudoknot fold. The G-U cleavage site adopts a splayed-apart conformation with in-line alignment of the modeled 2′-O of G for attack on the adjacent to-be-cleaved P-O5′ bond. Highly conserved residues G40 (N1 position) and A32 (N3 and 2′-OH positions) are aligned to act as general base and general acid respectively to accelerate cleavage chemistry, with their roles confirmed from cleavage assays on mutants, and an increased pKa of 4.7 for A32. Our structure of the pistol ribozyme defines how the overall and local topologies dictate the in-line alignment at the G-U cleavage site, with cleavage assays on mutants identifying key residues participating in acid-base catalyzed cleavage chemistry. PMID:27398999

  3. Thiaphosphiranes and Their Complexes: Systematic Study on Ring Strain and Ring Cleavage Reactions.

    PubMed

    Espinosa Ferao, Arturo; Streubel, Rainer

    2016-10-03

    A computational study on energies and geometries of a representative set of thiaphosphirane derivatives 1a-e and their W(CO)5 (W) and BH3 (B) complexes is reported. A particular focus was put on ring-opening reactions of κP- (2) and κS-complex isomers (3). Concerning the ring strain energy, a general trend was observed for compounds 1a,d, 2Wa,d, and 2Ba,d: (i) substituted rings are less strained than the parent compounds, and (ii) κP-complexation with a W(CO)5 group (2Wa,d) significantly increases the ring strain (5.63 and 4.38 kcal/mol) which is exceeded in the case of κP-BH3 complexation (2Ba,d) (7.14 and 7.22 kcal/mol). To unveil the thermal endocyclic bond weakness, a variety of bond strength related descriptors such as bond distance, relaxed force constants k(0), Bader's quantitative theory of atoms-in-molecules parameters such as the electron density ρ(r) and its Laplacian at bond critical points, and several bond order quantities (Wiberg bond index, Mayer bond order, and Löwdin bond order) were calculated. Heterolytic ring-opening reactions were investigated, revealing some general trends: (i) the strongest donor substituent at carbon significantly lowers relative energies for both the P-C and C-S bond cleavage products as well as the corresponding transition states, (ii) κP-complexes are more stable than the corresponding κS-complexes, for cyclic and acyclic species, and (iii) P-to-S haptotropic shifts in P-C bond cleavage products are disfavored processes, whereas it is more favored for C-S bond cleavage products. Other rearrangement products, being within energetic reach, were located on the potential energy surface. Two deserve particular mention as one stems from a combined H2 elimination and C-S bond cleavage of 2Bb and the other represents a first case of peribicyclic reaction leading to 7B'.

  4. On the mechanism of RNA phosphodiester backbone cleavage in the absence of solvent

    PubMed Central

    Riml, Christian; Glasner, Heidelinde; Rodgers, M. T.; Micura, Ronald; Breuker, Kathrin

    2015-01-01

    Ribonucleic acid (RNA) modifications play an important role in the regulation of gene expression and the development of RNA-based therapeutics, but their identification, localization and relative quantitation by conventional biochemical methods can be quite challenging. As a promising alternative, mass spectrometry (MS) based approaches that involve RNA dissociation in ‘top-down’ strategies are currently being developed. For this purpose, it is essential to understand the dissociation mechanisms of unmodified and posttranscriptionally or synthetically modified RNA. Here, we have studied the effect of select nucleobase, ribose and backbone modifications on phosphodiester bond cleavage in collisionally activated dissociation (CAD) of positively and negatively charged RNA. We found that CAD of RNA is a stepwise reaction that is facilitated by, but does not require, the presence of positive charge. Preferred backbone cleavage next to adenosine and guanosine in CAD of (M+nH)n+ and (M−nH)n− ions, respectively, is based on hydrogen bonding between nucleobase and phosphodiester moieties. Moreover, CAD of RNA involves an intermediate that is sufficiently stable to survive extension of the RNA structure and intramolecular proton redistribution according to simple Coulombic repulsion prior to backbone cleavage into c and y ions from phosphodiester bond cleavage. PMID:25904631

  5. Cleavage plane determination in amphibian eggs.

    PubMed

    Sawai, T; Yomota, A

    1990-01-01

    In the present study using eggs of Cynops pyrrhogaster and Xenopus laevis, we examined (1) structural changes in the cytoplasm before the appearance of the cleavage furrow using a cytochemical method, (2) the time of cleavage plane determination depending on the mitotic apparatus (MA), by changing the shape of the eggs, and (3) the time of arrival of the "cleavage stimulus" at the cortex, by injecting colchicine solution or removing cytoplasm. Results were as follows: (1) In amphibian eggs the diastema was formed after development of the MA, appearing between the two asters after the MA had begun to degenerate. (2) The cleavage plane was preliminarily determined by the MA in the meta- to anaphase of karyokinesis. At this time, however, the egg cortex had not yet received the "cleavage stimulus" indispensable for furrow formation. (3) The egg cortex was really prepared to establish the furrow just after the edge of the diastema arrived at the cortex, when the MA had already degenerated. These results imply that the cleavage plane of the amphibian eggs is determined in two steps: the first, depending on the MA, is the determination of the direction of the growth of the diastema, and the second is the arrival of the "cleavage stimulus" at the cortex in association with the diastema.

  6. Iron-Catalyzed C-C Cross-Couplings Using Organometallics.

    PubMed

    Guérinot, Amandine; Cossy, Janine

    2016-08-01

    Over the last decades, iron-catalyzed cross-couplings have emerged as an important tool for the formation of C-C bonds. A wide variety of alkenyl, aryl, and alkyl (pseudo)halides have been coupled to organometallic reagents, the most currently used being Grignard reagents. Particular attention has been devoted to the development of iron catalysts for the functionalization of alkyl halides that are generally challenging substrates in classical cross-couplings. The high functional group tolerance of iron-catalyzed cross-couplings has encouraged organic chemists to use them in the synthesis of bioactive compounds. Even if some points remain obscure, numerous studies have been carried out to investigate the mechanism of iron-catalyzed cross-coupling and several hypotheses have been proposed.

  7. Hydrolytic cleavage of DNA-model substrates promoted by polyoxovanadates.

    PubMed

    Steens, Nele; Ramadan, Ahmed M; Absillis, Gregory; Parac-Vogt, Tatjana N

    2010-01-14

    Hydrolysis of 4-nitrophenyl phosphate (NPP) and bis-4-nitrophenyl phosphate (BNPP), two commonly used DNA model substrates, was examined in vanadate solutions by means of (1)H, (31)P and (51)V NMR spectroscopy. The hydrolysis of the phosphoester bond in NPP at 50 degrees C and pH 5.0 proceeds with a rate constant of 1.74 x 10(-5) s(-1). The cleavage of the phosphoester bond in BNPP at 70 degrees C and pH 5.0 proceeds with a rate constant of 3.32 x 10(-6) s(-1), representing an acceleration of four orders of magnitude compared to the uncatalyzed cleavage. Inorganic phosphate and nitrophenol (NP) were the only products of hydrolysis. The NMR spectra did not show evidence of any paramagnetic species, excluding the possibility of V(V) reduction to V(IV), indicating that the cleavage of the phosphoester bond is purely hydrolytic. The pH dependence of k(obs) revealed that the hydrolysis proceeds fastest in solutions of pH 5.5. Comparison of the rate profile with the concentration profile of polyoxovanadates shows a striking overlap of the k(obs) profile with the concentration of decavanadate (V(10)). Kinetic experiments at 37 degrees C using a fixed amount of NPP and increasing amounts of V(10) permitted the calculation of catalytic (k(c) = 5.67 x 10(-6) s(-1)) and formation constants for the NPP-V(10) complex (K(f) = 71.53 M(-1)). Variable temperature (31)P NMR spectra of a reaction mixture revealed broadening and shifting of the (31)P resonance upon addition of increasing amounts of decavanadate and upon increasing temperature, implying the dynamic exchange process between free and bound NPP at higher temperatures. The origin of the hydrolytic activity of V(10) is most likely due its high lability and its dissociation into smaller fragments which may allow the attachment of NPP and BNPP into the polyoxovanadate framework.

  8. Cleavage at Arg-1689 influences heavy chain cleavages during thrombin-catalyzed activation of factor VIII.

    PubMed

    Newell, Jennifer L; Fay, Philip J

    2009-04-24

    The procofactor, factor VIII, is activated by thrombin or factor Xa-catalyzed cleavage at three P1 residues: Arg-372, Arg-740, and Arg-1689. The catalytic efficiency for thrombin cleavage at Arg-740 is greater than at either Arg-1689 or Arg-372 and influences reaction rates at these sites. Because cleavage at Arg-372 appears rate-limiting and dependent upon initial cleavage at Arg-740, we investigated whether cleavage at Arg-1689 influences catalysis at this step. Recombinant B-domainless factor VIII mutants, R1689H and R1689Q were prepared and stably expressed to slow and eliminate cleavage, respectively. Specific activity values for the His and Gln mutations were approximately 50 and approximately 10%, respectively, that of wild type. Thrombin activation of the R1689H variant showed an approximately 340-fold reduction in the rate of Arg-1689 cleavage, whereas the R1689Q variant was resistant to thrombin cleavage at this site. Examination of heavy chain cleavages showed approximately 4- and 11-fold reductions in A2 subunit generation and approximately 3- and 7-fold reductions in A1 subunit generation for the R1689H and R1689Q mutants, respectively. These results suggest a linkage between light chain cleavage and cleavages in heavy chain. Results obtained evaluating proteolysis of the factor VIII mutants by factor Xa revealed modest rate reductions (<5-fold) in generating A2 and A1 subunits and in cleaving light chain at Arg-1721 from either variant, suggesting little dependence upon prior cleavage at residue 1689 as compared with thrombin. Overall, these results are consistent with a competition between heavy and light chains for thrombin exosite binding and subsequent proteolysis with binding of the former chain preferred.

  9. Proteolytic Cleavage Driven by Glycosylation*

    PubMed Central

    Kötzler, Miriam P.; Withers, Stephen G.

    2016-01-01

    Proteolytic processing of human host cell factor 1 (HCF-1) to its mature form was recently shown, unexpectedly, to occur in a UDP-GlcNAc-dependent fashion within the transferase active site of O-GlcNAc-transferase (OGT) (Lazarus, M. B., Jiang, J., Kapuria, V., Bhuiyan, T., Janetzko, J., Zandberg, W. F., Vocadlo, D. J., Herr, W., and Walker, S. (2013) Science 342, 1235–1239). An interesting mechanism involving formation and then intramolecular rearrangement of a covalent glycosyl ester adduct of the HCF-1 polypeptide was proposed to account for this unprecedented proteolytic activity. However, the key intermediate remained hypothetical. Here, using a model enzyme system for which the formation of a glycosyl ester within the enzyme active site has been shown unequivocally, we show that ester formation can indeed lead to proteolysis of the adjacent peptide bond, thereby providing substantive support for the mechanism of HCF-1 processing proposed. PMID:26515062

  10. Sticker Bonding.

    ERIC Educational Resources Information Center

    Frazier, Laura Corbin

    2000-01-01

    Introduces a science activity on the bonding of chemical compounds. Assigns students the role of either a cation or anion and asks them to write the ions they may bond with. Assesses students' understanding of charge, bonding, and other concepts. (YDS)

  11. Sequence-specific cleavage of single-stranded DNA: oligodeoxynucleotide-EDTA X Fe(II).

    PubMed Central

    Dreyer, G B; Dervan, P B

    1985-01-01

    The synthesis of a DNA hybridization probe 19 nucleotides in length, equipped with the metal chelator EDTA at C-5 of thymidine in position 10 (indicated by T*) is described. DNA-EDTA 1 has the sequence 5'-T-A-A-C-G-C-A-G-T*-C-A-G-G-C-A-C-C-G-T-3', which is complementary to a 19-nucleotide sequence in the plasmid pBR322. In the presence of Fe(II), O2, and dithiothreitol, DNA-EDTA 1 affords specific cleavage (25 degrees C, pH 7.4, 60 min) at its complementary sequence in a heat-denatured 167-base-pair restriction fragment. Cleavage occurs over a range of 16 nucleotides at the site of hybridization of 1, presumably due to a diffusible reactive species. No other cleavage sites are observed in the 167-base-pair restriction fragment. The procedure used to synthesize DNA-EDTA probes is based on the incorporation of a thymidine modified at C-5 with the triethyl ester of EDTA. By using routine phosphoramidite procedures, thymidine-EDTA can be incorporated into oligodeoxynucleotides of any desired length and sequence. Because the efficiency of the DNA cleavage reaction is dependent on the addition of both Fe(II) and reducing agent (dithiothreitol), the initiation of the cleavage reaction can be controlled. These DNA-EDTA X Fe(II) probes should be useful for the sequence-specific cleavage of single-stranded DNA (and most likely RNA) under mild conditions. Images PMID:3919391

  12. Undirected, Homogeneous C–H Bond Functionalization: Challenges and Opportunities

    PubMed Central

    2016-01-01

    The functionalization of C–H bonds has created new approaches to preparing organic molecules by enabling new strategic “disconnections” during the planning of a synthetic route. Such functionalizations also have created the ability to derivatize complex molecules by modifying one or more of the many C–H bonds. For these reasons, researchers are developing new types of functionalization reactions of C–H bonds and new applications of these processes. These C–H bond functionalization reactions can be divided into two general classes: those directed by coordination to an existing functional group prior to the cleavage of the C–H bond (directed) and those occurring without coordination prior to cleavage of the C–H bond (undirected). The undirected functionalizations of C–H bonds are much less common and more challenging to develop than the directed reactions. This outlook will focus on undirected C–H bond functionalization, as well as related reactions that occur by a noncovalent association of the catalyst prior to C–H bond cleavage. The inherent challenges of conducting undirected functionalizations of C–H bonds and the methods for undirected functionalization that are being developed will be presented, along with the factors that govern selectivity in these reactions. Finally, this outlook discusses future directions for research on undirected C–H functionalization, with an emphasis on the limitations that must be overcome if this type of methodology is to become widely used in academia and in industry. PMID:27294201

  13. Iron-dependent oxidative inactivation with affinity cleavage of pyruvate kinase.

    PubMed

    Murakami, Keiko; Tsubouchi, Ryoko; Fukayama, Minoru; Qiao, Shanlou; Yoshino, Masataka

    2009-07-01

    Treatment of rabbit muscle pyruvate kinase with iron/ascorbate caused an inactivation with the cleavage of peptide bond. The inactivation or fragmentation of the enzyme was prevented by addition of Mg2+, catalase, and mannitol, but ADP and PEP the substrates did not show any effect. Protective effect of catalase and mannitol suggests that hydroxyl radical produced through the ferrous ion-dependent reduction of oxygen is responsible for the inactivation/fragmentation of the enzyme. SDS-PAGE and TOF-MS analysis confirmed five pairs of fragments, which were determined to result from the cleavage of the Lys114-Gly115, Glu117-Ile118, Asp177-Gly178, Gly207-Val208, and Phe243-Ile244 bonds of the enzyme by amino-terminal sequencing analysis. Protection of the enzyme by Mg2+ implies the identical binding sites of Fe2+ and Mg2+, but the cleavage sites were discriminated from the cofactor Mg2+-binding sites. Considering amino acid residues interacting with metal ions and tertiary structure, Fe2+ ion may bind to Asp177 neighboring to Gly207 and Glu117 neighboring to Lys114 and Phe243, causing the peptide cleavage by hydroxyl radical. Iron-dependent oxidative inactivation/fragmentation of pyruvate kinase can explain the decreased glycolytic flux under aerobic conditions. Intracellular free Mg2+ concentrations are responsible for the control of cellular respiration and glycolysis.

  14. [([superscript t]Bu[subscript 2]PCH[subscript 2]SiMe[subscript 2])[subscript 2]N]Rh[superscript I]? Rapidly Reversible H-C(sp[superscript 3]) and H−C(sp[superscript 2]) Bond Cleavage by Rhodium(I)

    SciTech Connect

    Verat, Alexander Y.; Pink, Maren; Fan, Hongjun; Tomaszewski, John; Caulton, Kenneth G.

    2008-10-03

    The product of the reaction of (tBu{sub 2}PCH{sub 2}SiMe{sub 2}){sub 2}N{sup -} (MgCl{sup +} salt) with [RhCl(cyclooctene){sub 2}]{sub 2} is a Rh{sup III} complex where one {sup t}Bu methyl C-H bond has oxidatively added to Rh: (PNP*)RhH. This is in rapid exchange among all 9 x 4 C-H bonds of the four {sup t}Bu groups. (PNP*)RhH undergoes oxidative addition equilibrium with the C-H bonds of benzene at {approx}10{sup 3} s{sup -1} at 25 C and oxidatively adds the ring C-H of other arenes. (PNP*)RhH forms {eta}{sup 2}-olefin complexes with several olefins and dehydrogenates allylic C-H bonds to form (PNP)Rh(H){sub 2}.

  15. Catalysts of DNA Strand Cleavage at Apurinic/Apyrimidinic Sites

    PubMed Central

    Minko, Irina G.; Jacobs, Aaron C.; de Leon, Arnie R.; Gruppi, Francesca; Donley, Nathan; Harris, Thomas M.; Rizzo, Carmelo J.; McCullough, Amanda K.; Lloyd, R. Stephen

    2016-01-01

    Apurinic/apyrimidinic (AP) sites are constantly formed in cellular DNA due to instability of the glycosidic bond, particularly at purines and various oxidized, alkylated, or otherwise damaged nucleobases. AP sites are also generated by DNA glycosylases that initiate DNA base excision repair. These lesions represent a significant block to DNA replication and are extremely mutagenic. Some DNA glycosylases possess AP lyase activities that nick the DNA strand at the deoxyribose moiety via a β- or β,δ-elimination reaction. Various amines can incise AP sites via a similar mechanism, but this non-enzymatic cleavage typically requires high reagent concentrations. Herein, we describe a new class of small molecules that function at low micromolar concentrations as both β- and β,δ-elimination catalysts at AP sites. Structure-activity relationships have established several characteristics that appear to be necessary for the formation of an iminium ion intermediate that self-catalyzes the elimination at the deoxyribose ring. PMID:27363485

  16. Sequence-specific cleavage of dsRNA by Mini-III RNase.

    PubMed

    Głów, Dawid; Pianka, Dariusz; Sulej, Agata A; Kozłowski, Łukasz P; Czarnecka, Justyna; Chojnowski, Grzegorz; Skowronek, Krzysztof J; Bujnicki, Janusz M

    2015-03-11

    Ribonucleases (RNases) play a critical role in RNA processing and degradation by hydrolyzing phosphodiester bonds (exo- or endonucleolytically). Many RNases that cut RNA internally exhibit substrate specificity, but their target sites are usually limited to one or a few specific nucleotides in single-stranded RNA and often in a context of a particular three-dimensional structure of the substrate. Thus far, no RNase counterparts of restriction enzymes have been identified which could cleave double-stranded RNA (dsRNA) in a sequence-specific manner. Here, we present evidence for a sequence-dependent cleavage of long dsRNA by RNase Mini-III from Bacillus subtilis (BsMiniIII). Analysis of the sites cleaved by this enzyme in limited digest of bacteriophage Φ6 dsRNA led to the identification of a consensus target sequence. We defined nucleotide residues within the preferred cleavage site that affected the efficiency of the cleavage and were essential for the discrimination of cleavable versus non-cleavable dsRNA sequences. We have also determined that the loop α5b-α6, a distinctive structural element in Mini-III RNases, is crucial for the specific cleavage, but not for dsRNA binding. Our results suggest that BsMiniIII may serve as a prototype of a sequence-specific dsRNase that could possibly be used for targeted cleavage of dsRNA.

  17. Targeting allosteric disulphide bonds in cancer.

    PubMed

    Hogg, Philip J

    2013-06-01

    Protein action in nature is generally controlled by the amount of protein produced and by chemical modification of the protein, and both are often perturbed in cancer. The amino acid side chains and the peptide and disulphide bonds that bind the polypeptide backbone can be post-translationally modified. Post-translational cleavage or the formation of disulphide bonds are now being identified in cancer-related proteins and it is timely to consider how these allosteric bonds could be targeted for new therapies.

  18. Does Cleavage Work at Work? Men, but Not Women, Falsely Believe Cleavage Sells a Weak Product

    ERIC Educational Resources Information Center

    Glick, Peter; Chrislock, Karyna; Petersik, Korinne; Vijay, Madhuri; Turek, Aleksandra

    2008-01-01

    We examined whether men, but not women, would be distracted by a female sales representative's exposed cleavage, leading to greater perceived efficacy for a weak, but not for a strong product. A community sample of 88 men and 97 women viewed a video of a female pharmaceutical sales representative who (a) had exposed cleavage or dressed modestly…

  19. Isomerization of the diphosphine ligand 3,4-bis(diphenylphosphino)-5-methoxy-2(5H)-furanone (bmf) at a triosmium cluster and P C bond cleavage in the unsaturated cluster 1,1-Os3(CO)9(bmf): Synthesis and X-ray diffraction structures of the isomeric Os3(CO)10(bmf) clusters and HOs3(CO)8( -C6H4)[ -PhPCC(Ph2P)CH(OMe)OC(O)

    SciTech Connect

    Kandala, Srikanth; Yang, Li; Campana, Charles F.; Nesterov, Vladimir; Richmond, Michael G.

    2010-07-01

    The labile cluster 1,2-Os3(CO)10(MeCN)2 (1) reacts with the chiral diphosphine ligand 3,4-bis(diphenylphosphino)-5-methoxy-2(5H)-furanone (bmf) to furnish 1,2-Os3(CO)10(bmf) (2a) in high yield. Heating cluster 2a over the temperature range 358 383 K under CO leads to isomerization of the bmf ligand and formation of the diphosphine-chelated cluster 1,1-Os3(CO)10(bmf) (2b) and an equilibrium mixture consisting of 2a and 2b in a 15:85 ratio. Extended thermolysis of an equilibrium mixture of Os3(CO)10(bmf) is accompanied by CO loss and ortho-metalation of an aryl ring to afford an inseparable mixture of three diastereomeric hydride clusters HOs3(CO)9(C29H23O3P2) (3a c). Thermolysis of HOs3(CO)9(C29H23O3P2) (3a c) in refluxing toluene leads to P C bond cleavage and formation of the benzyne-substituted clusters HOs3(CO)8( -C6H4)( -C23H19O3P2) (4a,b) as a 4:1 mixture of diastereomers. The unequivocal identity of the major benzyne-substituted cluster has been determined by X-ray diffraction analysis, where the activation of one of the phenyl groups situated to the furanone carbonyl group in the bmf ligand has been established. The isomerization and activation of the bmf ligand are contrasted with other Os3(CO)10(diphosphine) derivatives prepared by our groups.

  20. Structural basis of cohesin cleavage by separase

    PubMed Central

    Lin, Zhonghui; Luo, Xuelian; Yu, Hongtao

    2016-01-01

    Accurate chromosome segregation requires timely dissolution of chromosome cohesion after chromosomes are properly attached to the mitotic spindle. Separase is absolutely essential for cohesion dissolution in organisms from yeast to man1,2. It cleaves the kleisin subunit of cohesin and opens the cohesin ring to allow chromosome segregation. Cohesin cleavage is spatiotemporally controlled by separase-associated regulatory proteins, including the inhibitory chaperone securin3–6, and by phosphorylation of both the enzyme and substrates7–12. Dysregulation of this process causes chromosome missegregation and aneuploidy, contributing to cancer and birth defects. Despite its essential functions, atomic structures of separase have not been determined. Here, we report crystal structures of the separase protease domain from Chaetomium thermophilum, alone or covalently bound to unphosphorylated and phosphorylated inhibitory peptides derived from a cohesin cleavage site. These structures reveal how separase recognizes cohesin and how cohesin phosphorylation by polo-like kinase 1 (Plk1) enhances cleavage. Consistent with a previous cellular study13, mutating two securin residues in a conserved motif that partially matches the separase cleavage consensus converts securin from a separase inhibitor to a substrate. Our study establishes atomic mechanisms of substrate cleavage by separase and suggests competitive inhibition by securin. PMID:27027290

  1. A Simple Test to Determine the Effectiveness of Different Braze Compositions for Joining Ti-Tubes to C/C Composite Plates

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Singh, Mrityunjay; Shpargel, Tarah; Asthana, Rajiv

    2006-01-01

    A simple tube-plate joint tensile test was implemented to compare the effectiveness of commercial brazes, namely, TiCuNi, TiCuSil, and Cu-ABA, used for bonding Ti-tubes joined to C-C composite plates. The different braze systems yielded different; yet, repeatable results. The Cu-ABA system proved to have about twice the load-carrying ability of the other two systems due to the fact that the bonded area between the braze material and the C-C plate was largest for this system. The orientation of the surface fiber tows also had a significant effect on load-carrying ability with tows oriented perpendicular to the tube axis displaying the highest failure loads. Increasing the process load and modifying the surface of the C-C plate by grooving out channels for the Ti-Tube to nest in resulted in increased load-carrying ability for the TiCuSil and Cu-ABA systems due to increased bonded area and better penetration of the braze material into the C-C composite.

  2. Surface-catalyzed C-C covalent coupling strategies toward the synthesis of low-dimensional carbon-based nanostructures.

    PubMed

    Fan, Qitang; Gottfried, J Michael; Zhu, Junfa

    2015-08-18

    Carbon-based nanostructures have attracted tremendous interest because of their versatile and tunable properties, which depend on the bonding type of the constituting carbon atoms. Graphene, as the most prominent representative of the π-conjugated carbon-based materials, consists entirely of sp(2)-hybridized carbon atoms and exhibits a zero band gap. Recently, countless efforts were made to open and tune the band gap of graphene for its applications in semiconductor devices. One promising method is periodic perforation, resulting in a graphene nanomesh (GNM), which opens the band gap while maintaining the exceptional transport properties. However, the typically employed lithographic approach for graphene perforation is difficult to control at the atomic level. The complementary bottom-up method using surface-assisted carbon-carbon (C-C) covalent coupling between organic molecules has opened up new possibilities for atomically precise fabrication of conjugated nanostructures like GNM and graphene nanoribbons (GNR), although with limited maturity. A general drawback of the bottom-up approach is that the desired structure usually does not represent the global thermodynamic minimum. It is therefore impossible to improve the long-range order by postannealing, because once the C-C bond formation becomes reversible, graphene as the thermodynamically most stable structure will be formed. This means that only carefully chosen precursors and reaction conditions can lead to the desired (non-graphene) material. One of the most popular and frequently used organic reactions for on-surface C-C coupling is the Ullmann reaction of aromatic halides. While experimentally simple to perform, the irreversibility of the C-C bond formation makes it a challenge to obtain long-range ordered nanostructures. With no postreaction structural improvement possible, the assembly process must be optimized to result in defect-free nanostructures during the initial reaction, requiring complete

  3. Nanomechanical cleavage of molybdenum disulphide atomic layers.

    PubMed

    Tang, Dai-Ming; Kvashnin, Dmitry G; Najmaei, Sina; Bando, Yoshio; Kimoto, Koji; Koskinen, Pekka; Ajayan, Pulickel M; Yakobson, Boris I; Sorokin, Pavel B; Lou, Jun; Golberg, Dmitri

    2014-04-03

    The discovery of two-dimensional materials became possible due to the mechanical cleavage technique. Despite its simplicity, the as-cleaved materials demonstrated surprising macro-continuity, high crystalline quality and extraordinary mechanical and electrical properties that triggered global research interest. Here such cleavage processes and associated mechanical behaviours are investigated by a direct in situ transmission electron microscopy probing technique, using atomically thin molybdenum disulphide layers as a model material. Our technique demonstrates layer number selective cleavage, from a monolayer to double layer and up to 23 atomic layers. In situ observations combined with molecular dynamics simulations reveal unique layer-dependent bending behaviours, from spontaneous rippling (<5 atomic layers) to homogeneous curving (~ 10 layers) and finally to kinking (20 or more layers), depending on the competition of strain energy and interfacial energy.

  4. Nanomechanical cleavage of molybdenum disulphide atomic layers

    NASA Astrophysics Data System (ADS)

    Tang, Dai-Ming; Kvashnin, Dmitry G.; Najmaei, Sina; Bando, Yoshio; Kimoto, Koji; Koskinen, Pekka; Ajayan, Pulickel M.; Yakobson, Boris I.; Sorokin, Pavel B.; Lou, Jun; Golberg, Dmitri

    2014-04-01

    The discovery of two-dimensional materials became possible due to the mechanical cleavage technique. Despite its simplicity, the as-cleaved materials demonstrated surprising macro-continuity, high crystalline quality and extraordinary mechanical and electrical properties that triggered global research interest. Here such cleavage processes and associated mechanical behaviours are investigated by a direct in situ transmission electron microscopy probing technique, using atomically thin molybdenum disulphide layers as a model material. Our technique demonstrates layer number selective cleavage, from a monolayer to double layer and up to 23 atomic layers. In situ observations combined with molecular dynamics simulations reveal unique layer-dependent bending behaviours, from spontaneous rippling (<5 atomic layers) to homogeneous curving (~ 10 layers) and finally to kinking (20 or more layers), depending on the competition of strain energy and interfacial energy.

  5. Cleavage fracture in bainitic and martensitic microstructures

    SciTech Connect

    Zhang, X.Z.; Knott, J.F.

    1999-09-29

    This paper addresses the mechanisms of cleavage fracture in the pressure-vessel steel A533B. Microstructures of single bainite microstructures exhibit a higher propensity for brittle cleavage fracture than do those of auto-tempered martensites. The K{sub 1c} values of mixed microstructures are determined by the statistical distribution of the two phases and the range of the values is bounded by limits set by those for the single-phase microstructures. The results are explained in terms of the RKR model, which involves a local cleavage stress {sigma}*{sub F} and a distance ahead of the macrocrack tip, X, as two critical parameters. It is found that the carbides or carbide colonies act as critical microcrack nuclei, and hence play a key role in determining the fracture toughness, although packet boundaries in bainite may give rise to pop-in arrests in displacement-controlled tests.

  6. Limited caspase cleavage of human BAP31.

    PubMed

    Määttä, J; Hallikas, O; Welti, S; Hildén, P; Schröder, J; Kuismanen, E

    2000-11-10

    Human BAP31 was cleaved at both of its two identical caspase cleavage sites in two previously reported models of apoptosis. We show here that only the most carboxy-terminal site is cleaved during apoptosis induced in HeLa cells by tunicamycin, tumor necrosis factor and cycloheximide, or staurosporine. Similar results were obtained in HL-60 cells using Fas/APO-1 antibodies, or cycloheximide. This limited cleavage, which is inhibited by several caspase inhibitors, removes eight amino acids from human BAP31 including the KKXX coat protein I binding motif. Ectopic expression of the resulting cleavage product induces redistribution of mannosidase II from the Golgi and prevents endoplasmic reticulum to Golgi transport of virus glycoproteins.

  7. Understanding regioselective cleavage in peptide hydrolysis by a palladium(II) aqua complex: a theoretical point of view.

    PubMed

    Yeguas, Violeta; Campomanes, Pablo; López, Ramón; Díaz, Natalia; Suárez, Dimas

    2010-07-01

    Hydrolytic cleavage of the oligopeptides Ace-Ala-Lys-Tyr-Gly approximately Gly-Met-Ala-Ala-Arg-Ala and Ace-Lys-Gly-Gly-Ala-Gly approximately Pro-Met-Ala-Ala-Arg-Gly by [Pd(H(2)O)(4)](2+) was theoretically investigated by using molecular dynamics simulations and quantum mechanical calculations. The Pd anchorage to the peptide sequence is crucial to provoke the cleavage of the second bond upstream from the anchored methionine. For both cases, the most favorable reaction mechanism is a three-step route. The first step coincides with the experimental suggestion found for the Gly approximately Pro-Met sequence on a cleavage caused by an external attack of a water molecule to a complex in trans conformation of the scissile Gly approximately Gly and Gly approximately Pro peptide bonds. However, our results uncover the important role played by the presence of a Pd-coordinated water molecule, which simultaneously interacts with the carbonyl oxygen atom of the Gly amino acid in the Gly approximately Gly and Gly approximately Pro bonds. In accordance with experimental facts, the rise of the hydrolysis reaction rate when the Pro amino acid is located in the scissile peptide bond was also corroborated. The findings obtained at a molecular level from the present computations not only are relevant to rationalize the previously reported experiments but also could be of importance in designing new Pd(II) complexes for the regioselective cleavage of peptides and proteins.

  8. JMS Proxy and C/C++ Client SDK

    NASA Technical Reports Server (NTRS)

    Wolgast, Paul; Pechkam, Paul

    2007-01-01

    JMS Proxy and C/C++ Client SDK (JMS signifies "Java messaging service" and "SDK" signifies "software development kit") is a software package for developing interfaces that enable legacy programs (here denoted "clients") written in the C and C++ languages to communicate with each other via a JMS broker. This package consists of two main components: the JMS proxy server component and the client C library SDK component. The JMS proxy server component implements a native Java process that receives and responds to requests from clients. This component can run on any computer that supports Java and a JMS client. The client C library SDK component is used to develop a JMS client program running in each affected C or C++ environment, without need for running a Java virtual machine in the affected computer. A C client program developed by use of this SDK has most of the quality-of-service characteristics of standard Java-based client programs, including the following: Durable subscriptions; Asynchronous message receipt; Such standard JMS message qualities as "TimeToLive," "Message Properties," and "DeliveryMode" (as the quoted terms are defined in previously published JMS documentation); and Automatic reconnection of a JMS proxy to a restarted JMS broker.

  9. Degradation of diphenyl ether in Sphingobium phenoxybenzoativorans SC_3 is initiated by a novel ring-cleavage dioxygenase.

    PubMed

    Cai, Shu; Chen, Li-Wei; Ai, Yu-Chun; Qiu, Ji-Guo; Wang, Cheng-Hong; Shi, Chao; He, Jian; Cai, Tian-Ming

    2017-03-10

    Sphingobium phenoxybenzoativorans SC_3 degrades and utilizes diphenyl ether (DE) and 2-carboxy DE as its sole carbon and energy source. In this study, we report the degradation of DE and 2-carboxy DE initiated by a novel ring-cleavage angular dioxygenase (Dpe) in the strain. Dpe functions at the angular carbon and its adjacent carbon (C1a, C2) of a benzene ring in DE (or the 2-carboxy benzene ring in 2-carboxy DE) and cleaves the C1a-C2 bond (decarboxylation is simultaneously happened for 2-carboxy DE), yielding 2,4-hexadienal phenyl ester, which is subsequently hydrolyzed to muconic acid semialdehyde and phenol. Dpe is a type IV Rieske non-heme iron oxygenase (RHO) and consists of three components: a hetero-oligomer oxygenase, a [2Fe-2S]-type ferredoxin and a GR (glutathione reductase)-type reductase. Genetic analyses revealed that dpeA1A2 plays an essential role in degradation and utilization of DE and 2-carboxy DE in S. phenoxybenzoativorans SC_3. Enzymatic study showed that transformation of one molecule of DE needs two molecules of oxygen and two molecules of NADH, supporting the assumption that the cleavage of DE catalyzed by Dpe is a continuous two-step dioxygenation process: DE is dioxygenated at C1a, C2 to form an hemiacetal-like intermediates, which is further dioxygenated resulting the cleavage of the C1a-C2 bond to form one molecule of 2,4-hexadienal phenyl ester and two molecules of H2O. This study extends our knowledge of the mode and mechanism of ring-cleavage of aromatic compounds.IMPORTANCE Benzene ring-cleavage, catalyzed by dioxygenase, is the key and speed limiting step in the aerobic degradation of aromatic compounds. Previously reported ring-cleavage of DEs, the benzene ring needs to be firstly dihydroxylated at lateral position, and subsequently dehydrogenated and opened through extradiol cleavage. This process requires three enzymes (two dioxygenases and one dehydrogenase). In this study, we identified a novel angular dioxygenase (Dpe) in S

  10. σ-Bond Prevents Short π-Bonds: A Detailed Theoretical Study on the Compounds of Main Group and Transition Metal Complexes

    NASA Astrophysics Data System (ADS)

    Pathak, Biswarup; Umayal, Muthaiah; Jemmis, Eluvathingal D.

    The unusual shortness of the bond length in several main group and transition metal compounds is explained on the basis of their π-alone bonding. The detailed electronic structure calculation on C2, HBBH, and Fe2(CO)6 shows that each of them has two π-alone bonds (unsupported by an underlying σ-bond), whereas B2 has two-half π-bonds. The C-C bond length in C2 is 1.240 Å, shorter than any C-C double (σ + π, in C2H4, C-C=1.338 Å) bonded species. The B-B bond distance in B2 (1.590 Å, two half-π bonds) is shorter than any B-B single σ-bonded (~1.706 Å) species. The calculated Fe-Fe bond distance of 2.002 Å in Fe2(CO)6 is shorter than those of some experimentally known M-M single bonded compounds in the range of 2.904-3.228 Å. Here, our detailed studies on the second and third row diatomics (five, six, seven and eight valence electrons species) and transition metal complexes show that π-alone bonds left to themselves are shorter than σ-bonds; in many ways, σ-bonds prevent π-bonds from adopting their optimal shorter distances.

  11. The dual role of oxygen functions in coal pretreatment and liquefaction: Crosslinking and cleavage reactions. Seventh quarterly report, September 30, 1992--December 31, 1992

    SciTech Connect

    Serio, M.A.; Kroo, E.; Charpenay, S.; Solomon, P.R.

    1992-12-31

    The work during the past quarter under Task 2 has focused on the investigation of FT-IR methods for measuring carboxyl and phenolic functions. Fourier transform infrared (FT-IR) spectra of coal contain a wealth of information that can be utilized in the development of quantitative analysis routines based on least squares curvefitting. Because of the importance of the carboxylate groups in retrogressive reactions, recent efforts have focused on the C=O stretching region. Raw and modified coal samples (acid washed, demineralized, and cation exchanged) were analyzed in order to validate the proposed band assignments in the C=O stretching region. This parameter set differentiates free carbonyl (B2) and hydrogen-bonded carbonyl (B4) from carboxylic acid carbonyl (B3) and carboxylate (B7). One test of these assignments, which are based on literature data, is to plot B3 versus B7. This should be linear, assuming that the sum of the free carboxyl and carboxylate groups is constant and that the intensity of the overlapped aromatic ring band in B7 is also constant. This relationship was found to hold for a set of raw, acid washed, and acid washed/cation-exchanged Zap coals. The work under Task 3 has involved (1) completion of the synthesis of the -C-C-0- linked, methoxy substituted lignin-network polymer, -- C{sub 6}H{sub 3}(o-OMe)-O-CH{sub 2}CH{sub 2}]{sub {eta}} -- polymer, (2) Analysis of the polymer via depolymerization under pyrolysis-FIMS (Py-FIMS) conditions, and (3) testing of several routes to selective cleavage of the O-Methyl bond so that the relative crosslinking tendencies of the methylated and unmethylated versions of the polymer could be determined.

  12. Identification of an Acyl-Enzyme Intermediate in a meta-Cleavage Product Hydrolase Reveals the Versatility of the Catalytic Triad

    SciTech Connect

    Ruzzini, Antonio C.; Ghosh, Subhangi; Horsman, Geoff P.; Foster, Leonard J.; Bolin, Jeffrey T.; Eltis, Lindsay D.

    2012-03-14

    Meta-cleavage product (MCP) hydrolases are members of the {alpha}/{beta}-hydrolase superfamily that utilize a Ser-His-Asp triad to catalyze the hydrolysis of a C-C bond. BphD, the MCP hydrolase from the biphenyl degradation pathway, hydrolyzes 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA) to 2-hydroxypenta-2,4-dienoic acid (HPD) and benzoate. A 1.6 {angstrom} resolution crystal structure of BphD H265Q incubated with HOPDA revealed that the enzyme's catalytic serine was benzoylated. The acyl-enzyme is stabilized by hydrogen bonding from the amide backbone of 'oxyanion hole' residues, consistent with formation of a tetrahedral oxyanion during nucleophilic attack by Ser112. Chemical quench and mass spectrometry studies substantiated the formation and decay of a Ser112-benzoyl species in wild-type BphD on a time scale consistent with turnover and incorporation of a single equivalent of {sup 18}O into the benzoate produced during hydrolysis in H{sub 2}{sup 18}O. Rapid-scanning kinetic studies indicated that the catalytic histidine contributes to the rate of acylation by only an order of magnitude, but affects the rate of deacylation by over 5 orders of magnitude. The orange-colored catalytic intermediate, ES{sup red}, previously detected in the wild-type enzyme and proposed herein to be a carbanion, was not observed during hydrolysis by H265Q. In the newly proposed mechanism, the carbanion abstracts a proton from Ser112, thereby completing tautomerization and generating a serinate for nucleophilic attack on the C6-carbonyl. Finally, quantification of an observed pre-steady-state kinetic burst suggests that BphD is a half-site reactive enzyme. While the updated catalytic mechanism shares features with the serine proteases, MCP hydrolase-specific chemistry highlights the versatility of the Ser-His-Asp triad.

  13. Luminescent Iridium(III) Complexes Supported by N-Heterocyclic Carbene-based C^C^C-Pincer Ligands and Aromatic Diimines

    PubMed Central

    Chung, Lai-Hon; Lo, Hoi-Shing; Ng, Sze-Wing; Ma, Dik-Lung; Leung, Chung-Hang; Wong, Chun-Yuen

    2015-01-01

    Iridium(III) hydrido complexes containing N-heterocyclic carbene (NHC)-based pincer ligand 1,3-bis(1-butylimidazolin-2-ylidene)phenyl anion (C1^C^C1) or 1,3-bis(3-butylbenzimidazolin-2-ylidene)phenyl anion (C2^C^C2) and aromatic diimine (2,2′-bipyridine (bpy), 1,10-phenanthroline (phen), 4,4′-dimethyl-2,2′-bipyridine (Me2bpy), or dipyrido-[3,2-f:2′,3′-h]-quinoxaline (dpq)) in the form of [Ir(C^C^C)(N^N)(H)]+ have been prepared. Crystal structures for these complexes show that the Ir–CNHC distances are 2.043(5)–2.056(5) Å. The hydride chemical shifts for complexes bearing C1^C^C1 (−20.6 to −20.3 ppm) are more upfield than those with C2^C^C2 (−19.5 and −19.2 ppm), revealing that C1^C^C1 is a better electron donor than C2^C^C2. Spectroscopic comparisons and time-dependent density functional theory (TD-DFT) calculations suggest that the lowest-energy electronic transition associated with these complexes (λ = 340–530 nm (ε ≤ 103 dm3 mol−1 cm−1)) originate from a dπ(IrIII) → π*(N^N) metal-to-ligand charge transfer transition, where the dπ(IrIII) level contain significant contribution from the C^C^C ligands. All these complexes are emissive in the yellow-spectral region (553–604 nm in CH3CN and CH2Cl2) upon photo-excitation with quantum yields of 10−3–10−1. PMID:26487542

  14. A Novel Strategy for Preparation of Si-HA Coatings on C/C Composites by Chemical Liquid Vaporization Deposition/Hydrothermal Treatments

    NASA Astrophysics Data System (ADS)

    Xin-Bo, Xiong; Xin-Ye, Ni; Ya-Yun, Li; Cen-Cen, Chu; Ji-Zhao, Zou; Xie-Rong, Zeng

    2016-08-01

    A novel strategy for the preparation of Si-doped hydroxyapatite (Si-HA) coatings on H2O2-treated carbon/carbon composites (C/C) was developed. HA coating was prepared on C/C through chemical liquid vaporization deposition (CLVD)/hydrothermal treatment. HA coating was immersed in an H2SiO3 solution at an autoclave at 413 K for transformation into Si-HA coating. The effects of H2SiO3 mass contents on the phase, morphology, and composition of the Si-HA coatings were studied through SEM, EDS,XRD, and FTIR. Their bonding performance to C/C was measured through a scratch test. Under the optimal content condition, the in vitro skull osteoblast response behaviors of the Si-HA coating were evaluated. Results showed that SiO32‑ could enter into the HA lattice and occupy the PO43‑ sites. Doped SiO32‑ significantly improved the bonding performance of the HA coating to C/C in comparison with the untreated HA. The adhesive strength of the coatings initially increased and then decreased with increasing H2SiO3 content. Meanwhile, the cohesive strength of the Si-HA coatings was almost nearly identical. The Si-HA coating achieved at a content of 90% H2SiO3 exhibited the best bonding performance, and its osteoblast compatibility in vitro was superior to that of the untreated HA coating on C/C through CLVD/hydrothermal treatment.

  15. A Novel Strategy for Preparation of Si-HA Coatings on C/C Composites by Chemical Liquid Vaporization Deposition/Hydrothermal Treatments.

    PubMed

    Xin-Bo, Xiong; Xin-Ye, Ni; Ya-Yun, Li; Cen-Cen, Chu; Ji-Zhao, Zou; Xie-Rong, Zeng

    2016-08-05

    A novel strategy for the preparation of Si-doped hydroxyapatite (Si-HA) coatings on H2O2-treated carbon/carbon composites (C/C) was developed. HA coating was prepared on C/C through chemical liquid vaporization deposition (CLVD)/hydrothermal treatment. HA coating was immersed in an H2SiO3 solution at an autoclave at 413 K for transformation into Si-HA coating. The effects of H2SiO3 mass contents on the phase, morphology, and composition of the Si-HA coatings were studied through SEM, EDS,XRD, and FTIR. Their bonding performance to C/C was measured through a scratch test. Under the optimal content condition, the in vitro skull osteoblast response behaviors of the Si-HA coating were evaluated. Results showed that SiO3(2-) could enter into the HA lattice and occupy the PO4(3-) sites. Doped SiO3(2-) significantly improved the bonding performance of the HA coating to C/C in comparison with the untreated HA. The adhesive strength of the coatings initially increased and then decreased with increasing H2SiO3 content. Meanwhile, the cohesive strength of the Si-HA coatings was almost nearly identical. The Si-HA coating achieved at a content of 90% H2SiO3 exhibited the best bonding performance, and its osteoblast compatibility in vitro was superior to that of the untreated HA coating on C/C through CLVD/hydrothermal treatment.

  16. A Novel Strategy for Preparation of Si-HA Coatings on C/C Composites by Chemical Liquid Vaporization Deposition/Hydrothermal Treatments

    PubMed Central

    Xin-bo, Xiong; Xin-ye, Ni; Ya-yun, Li; Cen-cen, Chu; Ji-zhao, Zou; Xie-rong, Zeng

    2016-01-01

    A novel strategy for the preparation of Si-doped hydroxyapatite (Si-HA) coatings on H2O2-treated carbon/carbon composites (C/C) was developed. HA coating was prepared on C/C through chemical liquid vaporization deposition (CLVD)/hydrothermal treatment. HA coating was immersed in an H2SiO3 solution at an autoclave at 413 K for transformation into Si-HA coating. The effects of H2SiO3 mass contents on the phase, morphology, and composition of the Si-HA coatings were studied through SEM, EDS,XRD, and FTIR. Their bonding performance to C/C was measured through a scratch test. Under the optimal content condition, the in vitro skull osteoblast response behaviors of the Si-HA coating were evaluated. Results showed that SiO32− could enter into the HA lattice and occupy the PO43− sites. Doped SiO32− significantly improved the bonding performance of the HA coating to C/C in comparison with the untreated HA. The adhesive strength of the coatings initially increased and then decreased with increasing H2SiO3 content. Meanwhile, the cohesive strength of the Si-HA coatings was almost nearly identical. The Si-HA coating achieved at a content of 90% H2SiO3 exhibited the best bonding performance, and its osteoblast compatibility in vitro was superior to that of the untreated HA coating on C/C through CLVD/hydrothermal treatment. PMID:27492664

  17. Enhancing the specificity of the enterokinase cleavage reaction to promote efficient cleavage of a fusion tag.

    PubMed

    Shahravan, S Hesam; Qu, Xuanlu; Chan, I-San; Shin, Jumi A

    2008-06-01

    In our work with designed minimalist proteins based on the bZIP motif, we have found our His-tagged proteins to be prone to inclusion body formation and aggregation; we suspect this problem is largely due to the His tag, known to promote aggregation. Using AhR6-C/EBP, a hybrid of the AhR basic region and C/EBP leucine zipper, as representative of our bZIP-like protein family, we attempted removal of the His tag with enterokinase (EK) but obtained the desired cleavage product in very small yield. EK is known for proteolysis at noncanonical sites, and most cleavage occurred at unintended sites. We manipulated experimental conditions to improve specificity of proteolysis and analyzed the cleavage products; no effect was observed after changing pH, temperature, or the amount of EK. We then suspected the accessibility of the EK site was impeded due to protein aggregation. We found that the easily implemented strategy of addition of urea (1-4 M) greatly improved EK cleavage specificity at the canonical site and reduced adventitious cleavage. We believe that this enhancement in specificity is due to a more "open" protein structure, in which the now accessible canonical target can compete effectively with adventitious cleavage sites of related sequence.

  18. Measurements of ψ (3686 )→K-Λ Ξ¯ ++c .c . and ψ (3686 )→γ K-Λ Ξ¯ ++c .c .

    NASA Astrophysics Data System (ADS)

    Ablikim, M.; Achasov, M. N.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Baldini Ferroli, R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Bondarenko, O.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Cronin-Hennessy, D.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; de Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Fava, L.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. Y.; Gao, Y.; Gao, Z.; Garzia, I.; Geng, C.; Goetzen, K.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Han, Y. L.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, Z. Y.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. M.; Huang, G. S.; Huang, H. P.; Huang, J. S.; Huang, X. T.; Huang, Y.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. L.; Jiang, L. W.; Jiang, X. S.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kühn, W.; Kupsc, A.; Lai, W.; Lange, J. S.; Lara, M.; Larin, P.; Leng, C.; Li, C. H.; Li, Cheng; Li, D. M.; Li, F.; Li, G.; Li, H. B.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. M.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B. J.; Liu, C. X.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, X. X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqiang; Liu, Zhiqing; Loehner, H.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, R. Q.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lv, M.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, Q. M.; Ma, S.; Ma, T.; Ma, X. N.; Ma, X. Y.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Moriya, K.; Muchnoi, N. Yu.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Pu, Y. N.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Y.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ren, H. L.; Ripka, M.; Rong, G.; Ruan, X. D.; Santoro, V.; Sarantsev, A.; Savrié, M.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Toth, D.; Ullrich, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, Q. J.; Wang, S. G.; Wang, W.; Wang, X. F.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Wei, J. B.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, Z.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. X.; Yang, L.; Yang, Y.; Yang, Y. X.; Ye, H.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, H. W.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. H.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, H. S.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, Li; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.; Besiii Collaboration

    2015-05-01

    Using a sample of 1.06 ×1 08ψ (3686 ) events produced in e+e- collisions at √{s }=3.686 GeV and collected with the BESIII detector at the BEPCII collider, we present studies of the decays ψ (3686 )→K-Λ Ξ¯ ++c .c . and ψ (3686 )→γ K-Λ Ξ¯ ++c .c . . We observe two hyperons, Ξ (1690 )- and Ξ (1820 )- , in the K-Λ invariant mass distribution in the decay ψ (3686 )→K-Λ Ξ¯ ++c .c . with significances of 4.9 σ and 6.2 σ , respectively. The branching fractions of ψ (3686 )→K-Λ Ξ¯ ++c .c . , ψ (3686 )→K-Σ0Ξ¯ ++c .c . , ψ (3686 )→γ χc J→γ K-Λ Ξ¯ ++c .c . (J =0 , 1, 2), and ψ (3686 )→Ξ (1690 /1820 )-Ξ¯ ++c .c . with subsequent decay Ξ (1690 /1820 )-→K-Λ are measured for the first time.

  19. Mechanisms of catalytic cleavage of benzyl phenyl ether in aqueous and apolar phases

    SciTech Connect

    He, Jiayue; Lu, Lu; Zhao, Chen; Mei, Donghai; Lercher, Johannes A.

    2014-03-01

    Catalytic pathways for the cleavage of ether bonds in benzyl phenyl ether (BPE) in liquid phase using Ni- and zeolite-based catalysts are explored. In the absence of catalysts, the C-O bond is selectively cleaved in water by hydrolysis, forming phenol and benzyl alcohol as intermediates, followed by alkylation. The hydronium ions catalyzing the reactions are provided by the dissociation of water at 523 K. Upon addition of HZSM-5, rates of hydrolysis and alkylation are markedly increased in relation to proton concentrations. In the presence of Ni/SiO2, the selective hydrogenolysis dominates for cleaving the Caliphatic-O bond. Catalyzed by the dual-functional Ni/HZSM-5, hydrogenolysis occurs as the major route rather than hydrolysis (minor route). In apolar undecane, the non-catalytic thermal pyrolysis route dominates. Hydrogenolysis of BPE appears to be the major reaction pathway in undecane in the presence of Ni/SiO2 or Ni/HZSM-5, almost completely suppressing radical reactions. Density functional theory (DFT) calculations strongly support the proposed C-O bond cleavage mechanisms on BPE in aqueous and apolar phases. These calculations show that BPE is initially protonated and subsequently hydrolyzed in the aqueous phase. Finally, DFT calculations suggest that the radical reactions in non-polar solvents lead to primary benzyl and phenoxy radicals in undecane, which leads to heavier condensation products as long as metals are absent for providing dissociated hydrogen.

  20. Application of immobilized bovine enterokinase in repetitive fusion protein cleavage for the production of mucin 1.

    PubMed

    Kubitzki, Tina; Minör, Daniel; Mackfeld, Ursula; Oldiges, Marco; Noll, Thomas; Lütz, Stephan

    2009-11-01

    Bovine enterokinase is a serine protease that catalyzes the hydrolysis of peptide bonds and plays a key role in mammalian metabolism. Because of its high specificity towards the amino acid sequence (Asp)(4)-Lys, enterokinase is a potential tool for the cleavage of fusion proteins, which are gaining more importance in biopharmaceutical production. A candidate for adaptive cancer immunotherapy is mucin 1, which is produced recombinantly as a fusion protein in CHO cells. Here, we present the first repetitive application of immobilized enterokinase for the cleavage of the mucin fusion protein. The immobilization enables a facile biocatalytic process due to simplified separation of the biocatalyst and the target protein. Immobilized enterokinase was applied in a maximum of 18 repetitive reactions. The enzyme utilization (total turnover number) was increased significantly 419-fold compared to unbound enzyme by both immobilization and optimization of process conditions. Slight enzyme inactivation throughout the reaction cycles was observed, but was compensated by adjusting the process time accordingly. Thus, complete fusion protein cleavage was achieved. Furthermore, we obtained isolated mucin 1 with a purity of more than 90% by applying a simple and efficient purification process. The presented results demonstrate enterokinase to be an attractive tool for fusion protein cleavage.

  1. Short RNA duplexes guide sequence-dependent cleavage by human Dicer.

    PubMed

    Bergeron, Lucien; Perreault, Jean-Pierre; Abou Elela, Sherif

    2010-12-01

    Dicer is a member of the double-stranded (ds) RNA-specific ribonuclease III (RNase III) family that is required for RNA processing and degradation. Like most members of the RNase III family, Dicer possesses a dsRNA binding domain and cleaves long RNA duplexes in vitro. In this study, Dicer substrate selectivity was examined using bipartite substrates. These experiments revealed that an RNA helix possessing a 2-nucleotide (nt) 3'-overhang may bind and direct sequence-specific Dicer-mediated cleavage in trans at a fixed distance from the 3'-end overhang. Chemical modifications of the substrate indicate that the presence of the ribose 2'-hydroxyl group is not required for Dicer binding, but some located near the scissile bonds are needed for RNA cleavage. This suggests a flexible mechanism for substrate selectivity that recognizes the overall shape of an RNA helix. Examination of the structure of natural pre-microRNAs (pre-miRNAs) suggests that they may form bipartite substrates with complementary mRNA sequences, and thus induce seed-independent Dicer cleavage. Indeed, in vitro, natural pre-miRNA directed sequence-specific Dicer-mediated cleavage in trans by supporting the formation of a substrate mimic.

  2. Blocking aggrecanase cleavage in the aggrecan interglobular domain abrogates cartilage erosion and promotes cartilage repair

    PubMed Central

    Little, Christopher B.; Meeker, Clare T.; Golub, Suzanne B.; Lawlor, Kate E.; Farmer, Pamela J.; Smith, Susan M.; Fosang, Amanda J.

    2007-01-01

    Aggrecan loss from cartilage in arthritis is mediated by aggrecanases. Aggrecanases cleave aggrecan preferentially in the chondroitin sulfate–2 (CS-2) domain and secondarily at the E373↓374A bond in the interglobular domain (IGD). However, IGD cleavage may be more deleterious for cartilage biomechanics because it releases the entire CS-containing portion of aggrecan. Recent studies identifying aggrecanase-2 (ADAMTS-5) as the predominant aggrecanase in mouse cartilage have not distinguished aggrecanolysis in the IGD from aggrecanolysis in the CS-2 domain. We generated aggrecan knockin mice with a mutation that rendered only the IGD resistant to aggrecanases in order to assess the contribution of this specific cleavage to cartilage pathology. The knockin mice were viable and fertile. Aggrecanase cleavage in the aggrecan IGD was not detected in knockin mouse cartilage in situ nor following digestion with ADAMTS-5 or treatment of cartilage explant cultures with IL-1α. Blocking cleavage in the IGD not only diminished aggrecan loss and cartilage erosion in surgically induced osteoarthritis and a model of inflammatory arthritis, but appeared to stimulate cartilage repair following acute inflammation. We conclude that blocking aggrecanolysis in the aggrecan IGD alone protects against cartilage erosion and may potentiate cartilage repair. PMID:17510707

  3. Enantioselective cleavage of supercoiled plasmid DNA catalyzed by chiral macrocyclic lanthanide(III) complexes.

    PubMed

    Krężel, Artur; Lisowski, Jerzy

    2012-02-01

    The enantiomers of the Sm (III), Eu (III) and Yb (III) complexes [LnL(NO(3))(2)](NO(3)) of a chiral hexaazamacrocycle were tested as catalysts for the hydrolytic cleavage of supercoiled plasmid DNA. The catalytic activity was remarkably enantioselective; while the [LnL(SSSS)(NO(3))(2)](NO(3)) enantiomers promoted the cleavage of plasmid pBR322 from the supercoiled form (SC) to the nicked form (NC), the [LnL(RRRR)(NO(3))(2)](NO(3)) enantiomers were inactive. Kinetics of plasmid DNA hydrolysis was also investigated by agarose electrophoresis and it indicated typical single-exponential cleavage reaction. The hydrolytic mechanism of DNA cleavage was confirmed by the successful ligation of hydrolysis product by T4 ligase. The NMR study of the solutions of the complexes in various buffers indicated that the complexes exist as monomeric cationic complexes [LnL(H(2)O)(3)](3+) in slightly acidic solutions and as dimeric cationic complexes [Ln(2)L(2)(μ-OH)(2)(H(2)O)(2)](4+) in slightly basic 8mM solutions, with the latter form being a possible catalyst for hydrolysis of phosphodiester bonds.

  4. Cleavage Specificity Analysis of Six Type II Transmembrane Serine Proteases (TTSPs) Using PICS with Proteome-Derived Peptide Libraries

    PubMed Central

    Béliveau, François; Leduc, Richard; Overall, Christopher M.

    2014-01-01

    Background Type II transmembrane serine proteases (TTSPs) are a family of cell membrane tethered serine proteases with unclear roles as their cleavage site specificities and substrate degradomes have not been fully elucidated. Indeed just 52 cleavage sites are annotated in MEROPS, the database of proteases, their substrates and inhibitors. Methodology/Principal Finding To profile the active site specificities of the TTSPs, we applied Proteomic Identification of protease Cleavage Sites (PICS). Human proteome-derived database searchable peptide libraries were assayed with six human TTSPs (matriptase, matriptase-2, matriptase-3, HAT, DESC and hepsin) to simultaneously determine sequence preferences on the N-terminal non-prime (P) and C-terminal prime (P’) sides of the scissile bond. Prime-side cleavage products were isolated following biotinylation and identified by tandem mass spectrometry. The corresponding non-prime side sequences were derived from human proteome databases using bioinformatics. Sequencing of 2,405 individual cleaved peptides allowed for the development of the family consensus protease cleavage site specificity revealing a strong specificity for arginine in the P1 position and surprisingly a lysine in P1′ position. TTSP cleavage between R↓K was confirmed using synthetic peptides. By parsing through known substrates and known structures of TTSP catalytic domains, and by modeling the remainder, structural explanations for this strong specificity were derived. Conclusions Degradomics analysis of 2,405 cleavage sites revealed a similar and characteristic TTSP family specificity at the P1 and P1′ positions for arginine and lysine in unfolded peptides. The prime side is important for cleavage specificity, thus making these proteases unusual within the tryptic-enzyme class that generally has overriding non-prime side specificity. PMID:25211023

  5. Copper-dependent inhibition and oxidative inactivation with affinity cleavage of yeast glutathione reductase.

    PubMed

    Murakami, Keiko; Tsubouchi, Ryoko; Fukayama, Minoru; Yoshino, Masataka

    2014-06-01

    Effects of copper on the activity and oxidative inactivation of yeast glutathione reductase were analyzed. Glutathione reductase from yeast was inhibited by cupric ion and more potently by cuprous ion. Copper ion inhibited the enzyme noncompetitively with respect to the substrate GSSG and NADPH. The Ki values of the enzyme for Cu(2+) and Cu(+) ion were determined to be 1 and 0.35 μM, respectively. Copper-dependent inactivation of glutathione reductase was also analyzed. Hydrogen peroxide and copper/ascorbate also caused an inactivation with the cleavage of peptide bond of the enzyme. The inactivation/fragmentation of the enzyme was prevented by addition of catalase, suggesting that hydroxyl radical produced through the cuprous ion-dependent reduction of oxygen is responsible for the inactivation/fragmentation of the enzyme. SDS-PAGE and TOF-MS analysis confirmed eight fragments, which were further determined to result from the cleavage of the Met17-Ser18, Asn20-Thr21, Glu251-Gly252, Ser420-Pro421, Pro421-Thr422 bonds of the enzyme by amino-terminal sequencing analysis. Based on the kinetic analysis and no protective effect of the substrates, GSSG and NADPH on the copper-mediated inactivation/fragmentation of the enzyme, copper binds to the sites apart from the substrate-sites, causing the peptide cleavage by hydroxyl radical. Copper-dependent oxidative inactivation/fragmentation of glutathione reductase can explain the prooxidant properties of copper under the in vivo conditions.

  6. Reaction between radicals and N-alkoxyamines As coordinated cleavage with fragmentation

    NASA Astrophysics Data System (ADS)

    Denisov, E. T.; Shestakov, A. F.

    2015-08-01

    Quantum chemical calculations of the enthalpy and activation energy of two reactions with MeO{2/⊙} attacking the CH- and CH2-groups of 2,2,6,6-tetramethylpiperidineoxy-2'-butane are performed. It is shown that the cleavage of hydrogen atoms is accompanied by coordinated breaking of N-O-bonds in the former case and C-O-bonds in the latter. Based on the obtained results, a new scheme is proposed for the cyclic mechanism behind the cleavage of chains on nitroxyl radicals in oxidizing hydrocarbons and polymers that agrees with experimental data. At the center of this cyclic mechanism lies the fast exothermic reaction between peroxyl radicals and N-alkoxyamine with the cleavage of H atoms and the coordinated fragmentation of molecules. Using the model of intersecting parabolas, an algorithm for calculating the enthalpies, activation energies, and rate constants of these reactions with the participation of alkyl, alkoxy, aminyl, peroxyl, phenoxyl, thiyl, and hydroxyl radicals is proposed.

  7. Unexpected Trypsin Cleavage at Ubiquitinated Lysines

    PubMed Central

    2015-01-01

    Unexpected tryptic cleavage has been characterized at modified K48 residues in polyubiquitins. In particular, the tryptic products of all seven of the lysine-linked dimers of ubiquitin and of three trimers—linear Ub–48Ub–48Ub, linear Ub–63Ub–63Ub, and the branched trimer [Ub]2–6,48Ub—have been analyzed. In addition to the peptide products expected under commonly used tryptic conditions, we observe that peptides are formed with an unexpected ε-glycinylglycinyl-Lys carboxyl terminus when the site of linkage is Lys48. Trypsin from three different commercial sources exhibited this aberration. Initial cleavage at R74 is proposed in a distal ubiquitin to produce a glycinylglycinyl-lysine residue which is bound by trypsin. PMID:26182167

  8. Theoretical study of the bond dissociation energies of methanol

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Walch, Stephen P.

    1992-01-01

    A theoretical study of the bond dissociation energies for H2O and CH3OH is presented. The C-H and O-H bond energies are computed accurately with the modified coupled-pair functional method using a large basis set. For these bonds, an accuracy of +/- 2 kcal/mol is achieved, which is consistent with the C-H and C-C single bond energies of other molecules. The C-O bond is much more difficult to compute accurately because it requires higher levels of correlation treatment and more extensive one-particle basis sets.

  9. On the Relative Merits of Non-Orthogonal and Orthogonal Valence Bond Methods Illustrated on the Hydrogen Molecule

    ERIC Educational Resources Information Center

    Angeli, Celestino; Cimiraglia, Renzo; Malrieu, Jean-Paul

    2008-01-01

    Valence bond (VB) is one of the cornerstone theories of quantum chemistry. Even if in practical applications the molecular orbital (MO) approach has obtained more attention, some basic chemical concepts (such as the nature of the chemical bond and the failure of the single determinant-based MO methods in describing the bond cleavage) are normally…

  10. Roles of tryptophan residue and disulfide bond in the variable lid region of oxidized polyvinyl alcohol hydrolase.

    PubMed

    Yang, Yu; Ko, Tzu-Ping; Liu, Long; Li, Jianghua; Huang, Chun-Hsiang; Chen, Jian; Guo, Rey-Ting; Du, Guocheng

    2014-09-26

    Oxidized polyvinyl alcohol hydrolase (OPH) catalyzes the cleavage of C-C bond in β-diketone. It belongs to the α/β-hydrolase family and contains a unique lid region that covers the active site. The lid is the most variable region when pOPH from Pseudomonas sp. VM15C and sOPH from Sphingopyxis sp. 113P3 are compared. The wild-type enzymes and the pOPH mutants W255A, W255Y and W255F were analyzed for lipase activity by using p-nitrophenyl (pNP) esters as the substrates. The wild-type enzymes showed increased Km and decreased kcat/Km with the acyl chain length, and the mutants showed reduced kcat/Km for pNP acetate, indicating the importance of Trp255 in sequestering the active site from solvent. The significantly lower activity for pNP butyrate can be a result of product inhibition, as suggested by the complex crystal structures, in which butyric acid, DMSO or PEG occupied the same substrate-binding cleft. The mutant activity was retained with pNP caprylate and pNP laurate as the substrates, reflecting the amphipathic nature of the cleft. Moreover, the disulfide bond formation of Cys257/267 is important for the activity of pOPH, but it is not essential for sOPH, which has a shorter lid structure.

  11. Carotenoid Cleavage Oxygenases from Microbes and Photosynthetic Organisms: Features and Functions

    PubMed Central

    Ahrazem, Oussama; Gómez-Gómez, Lourdes; Rodrigo, María J.; Avalos, Javier; Limón, María Carmen

    2016-01-01

    Apocarotenoids are carotenoid-derived compounds widespread in all major taxonomic groups, where they play important roles in different physiological processes. In addition, apocarotenoids include compounds with high economic value in food and cosmetics industries. Apocarotenoid biosynthesis starts with the action of carotenoid cleavage dioxygenases (CCDs), a family of non-heme iron enzymes that catalyze the oxidative cleavage of carbon–carbon double bonds in carotenoid backbones through a similar molecular mechanism, generating aldehyde or ketone groups in the cleaving ends. From the identification of the first CCD enzyme in plants, an increasing number of CCDs have been identified in many other species, including microorganisms, proving to be a ubiquitously distributed and evolutionarily conserved enzymatic family. This review focuses on CCDs from plants, algae, fungi, and bacteria, describing recent progress in their functions and regulatory mechanisms in relation to the different roles played by the apocarotenoids in these organisms. PMID:27792173

  12. Carotenoid Cleavage Oxygenases from Microbes and Photosynthetic Organisms: Features and Functions.

    PubMed

    Ahrazem, Oussama; Gómez-Gómez, Lourdes; Rodrigo, María J; Avalos, Javier; Limón, María Carmen

    2016-10-26

    Apocarotenoids are carotenoid-derived compounds widespread in all major taxonomic groups, where they play important roles in different physiological processes. In addition, apocarotenoids include compounds with high economic value in food and cosmetics industries. Apocarotenoid biosynthesis starts with the action of carotenoid cleavage dioxygenases (CCDs), a family of non-heme iron enzymes that catalyze the oxidative cleavage of carbon-carbon double bonds in carotenoid backbones through a similar molecular mechanism, generating aldehyde or ketone groups in the cleaving ends. From the identification of the first CCD enzyme in plants, an increasing number of CCDs have been identified in many other species, including microorganisms, proving to be a ubiquitously distributed and evolutionarily conserved enzymatic family. This review focuses on CCDs from plants, algae, fungi, and bacteria, describing recent progress in their functions and regulatory mechanisms in relation to the different roles played by the apocarotenoids in these organisms.

  13. General access to taiwaniaquinoids based on a hypothetical abietane C7-C8 cleavage biogenetic pathway.

    PubMed

    Tapia, Rubén; Guardia, Juan J; Alvarez, Esteban; Haidöur, Ali; Ramos, Jose M; Alvarez-Manzaneda, Ramón; Chahboun, Rachid; Alvarez-Manzaneda, Enrique

    2012-01-06

    A new strategy for synthesizing taiwaniaquinoids, a group of terpenoids with an unusual rearranged 5(6→7) or 6-nor-5(6→7)abeo-abietane skeleton, which exhibit promising biological activities, is reported. The procedure, based on the cleavage of the C7-C8 double bond of abietane diterpenes, is the only one yet reported for synthesizing C(20) taiwaniaquinoids bearing a carbon function on the cyclopentane B ring; it is also applicable to the synthesis of the wide variety of existing taiwaniaquinoids. Utilizing this, (-)-taiwaniaquinone A, F, G, and H, (-)-taiwaniaquinol B, and (-)-dichroanone have been synthesized from (+)-abietic acid. The versatility of this strategy allows us to propose the abietane C7-C8 cleavage as a possible biosynthetic pathway to this type of rearranged diterpenes; this proposal seems to be supported by phytochemical evidence.

  14. Etching of porous and solid SiO2 in Ar /c-C4F8, O2/c-C4F8 and Ar /O2/c-C4F8 plasmas

    NASA Astrophysics Data System (ADS)

    Sankaran, Arvind; Kushner, Mark J.

    2005-01-01

    C-C4F8-based plasmas are used for selective etching of high aspect ratio (HAR) trenches in SiO2 and other dielectrics for microelectronics fabrication. Additives such as Ar and O2 are often used to optimize the process. Understanding the fundamentals of these processes is critical to extending technologies developed for solid SiO2 to porous SiO2, as used in low-dielectric constant insulators. To investigate these issues, reaction mechanisms developed for etching of solid and porous SiO2 in fluorocarbon plasmas and for etching of organic polymers in O2 plasmas have been incorporated into a feature profile model capable of addressing two-phase porous materials. The reaction mechanism was validated by comparison to experiments for blanket etching of solid and porous SiO2 in Ar /c-C4F8 and O2/c-C4F8 plasmas using inductively coupled plasma reactors. We found that the blanket etch rates of both solid and porous SiO2 had maxima as a function of Ar and O2 addition to c-C4F8 at mole fractions corresponding to an optimum thickness of the overlying polymer layer. Larger Ar and O2 additions were required to optimize the etch rate for porous SiO2. Whereas etch stops occurred during etching of HAR features in solid and porous SiO2 using pure c-C4F8 plasmas, Ar and O2 addition facilitated etching by reducing the polymer thickness, though with some loss of critical dimensions. Mixtures of Ar /O2/c-C4F8 can be used to manage this tradeoff.

  15. Yankee bonds

    SciTech Connect

    Delaney, P. )

    1993-10-01

    Yankee and Euromarket bonds may soon find their way into the financing of power projects in Latin America. For developers seeking long-term commitments under build, own, operate, and transfer (BOOT) power projects in Latin America, the benefits are substantial.

  16. Intein-Promoted Cyclization of Aspartic Acid Flanking the Intein Leads to Atypical N-Terminal Cleavage.

    PubMed

    Minteer, Christopher J; Siegart, Nicolle M; Colelli, Kathryn M; Liu, Xinyue; Linhardt, Robert J; Wang, Chunyu; Gomez, Alvin V; Reitter, Julie N; Mills, Kenneth V

    2017-02-28

    Protein splicing is a post-translational reaction facilitated by an intein, or intervening protein, which involves the removal of the intein and the ligation of the flanking polypeptides, or exteins. A DNA polymerase II intein from Pyrococcus abyssi (Pab PolII intein) can promote protein splicing in vitro on incubation at high temperature. Mutation of active site residues Cys1, Gln185, and Cys+1 to Ala results in an inactive intein precursor, which cannot promote the steps of splicing, including cleavage of the peptide bond linking the N-extein and intein (N-terminal cleavage). Surprisingly, coupling the inactivating mutations to a change of the residue at the C-terminus of the N-extein (N-1 residue) from the native Asn to Asp reactivates N-terminal cleavage at pH 5. Similar "aspartic acid effects" have been observed in other proteins and peptides but usually only occur at lower pH values. In this case, however, the unusual N-terminal cleavage is abolished by mutations to catalytic active site residues and unfolding of the intein, indicating that this cleavage effect is mediated by the intein active site and the intein fold. We show via mass spectrometry that the reaction proceeds through cyclization of Asp resulting in anhydride formation coupled to peptide bond cleavage. Our results add to the richness of the understanding of the mechanism of protein splicing and provide insight into the stability of proteins at moderately low pH. The results also explain, and may help practitioners avoid, a side reaction that may complicate intein applications in biotechnology.

  17. Scope and Mechanisms of Frustrated Lewis Pair Catalyzed Hydrogenation Reactions of Electron-Deficient C=C Double Bonds.

    PubMed

    Morozova, Varvara; Mayer, Peter; Berionni, Guillaume

    2015-11-23

    Several phosphonium and ammonium triarylborohydrides, which are intermediates in hydrogenation reactions catalyzed by frustrated Lewis pairs, were synthesized in high yield under mild conditions from triaryl boranes, ammonium or phosphonium halides, and triethylsilane. The kinetics and mechanisms of the reactions of these hydridoborate salts with benzhydrylium ions, iminium ions, quinone methides, and Michael acceptors were investigated, and their nucleophilicity was determined and compared with that of other hydride donors.

  18. A first principles study on CVD graphene growth on copper surfaces: C-C bonding reactions at graphene edges

    NASA Astrophysics Data System (ADS)

    Tajima, Nobuo; Kaneko, Tomoaki; Nara, Jun; Takahisa, Ohno

    2015-03-01

    Graphene has attracted considerable research interest owing to its potential application to future electronic devices. Large area and high quality graphene is needed for device applications. Chemical vapor deposition (CVD) using a copper surface with a hydrocarbon source is one of the practical methods to produce graphene. This method is appropriate for creating large area graphene with low cost, and the graphene growth control to obtain a high quality product is a remaining challenge. The carbon atom nucleation and cluster growth processes in the CVD reactions have been studied extensively as key steps that affect the graphene growth behavior. We have been studying the carbon atom reactions in these processes by theoretical approaches In the present study, we have focused on the later stage of CVD reaction, that is, carbon atom reactions at graphene edges by which carbon clusters grow in the Cu-CVD We have found that these reactions have energy barriers of ~1 eV. First principles simulation code PHASE http://www.ciss.iis.u-tokyo.ac.jp/riss/english/project/device/) was used in the theoretical calculations.

  19. Reversible Sigma C-C Bond Formation Between Phenanthroline Ligands Activated by (C5Me5)2Yb

    SciTech Connect

    Nocton, Grégory; Lukens, Wayne W.; Booth, Corwin H.; Rozenel, Sergio S.; Medling, Scott A.; Maron, Laurent; Andersen, Richard A.

    2014-06-26

    The electronic structure and associated magnetic properties of the 1,10-phenanthroline adducts of Cp*2Yb are dramatically different from those of the 2,2?-bipyridine adducts. The monomeric phenanthroline adducts are ground state triplets that are based upon trivalent Yb(III), f13, and (phen ) that are only weakly exchange coupled, which is in contrast to the bipyridine adducts whose ground states are multiconfigurational, open-shell singlets in which ytterbium is intermediate valent ( J. Am. Chem. Soc 2009, 131, 6480; J. Am. Chem. Soc 2010, 132, 17537). The origin of these different physical properties is traced to the number and symmetry of the LUMO and LUMO+1 of the heterocyclic diimine ligands. The bipy has only one 1 orbital of b1 symmetry of accessible energy, but phen has two orbitals of b1 and a2 symmetry that are energetically accessible. The carbon p-orbitals have different nodal properties and coefficients and their energies, and therefore their populations change depending on the position and number of methyl substitutions on the ring. A chemical ramification of the change in electronic structure is that Cp 2Yb(phen) is a dimer when crystallized from toluene solution, but a monomer when sublimed at 180190 C. When 3,8-Me2phenanthroline is used, the adduct Cp*2Yb(3,8-Me2phen) exists in the solution in a dimer monomer equilibrium in which G is near zero. The adducts with 3-Me, 4-Me, 5-Me, 3,8-Me2, and 5,6-Me2-phenanthroline are isolated and characterized by solid state X-ray crystallography, magnetic susceptibility and LIII-edge XANES spectroscopy as a function of temperature and variable-temperature 1H NMR spectroscopy.

  20. Multicomponent synthesis of chiral bidentate unsymmetrical unsaturated N-heterocyclic carbenes: copper-catalyzed asymmetric C-C bond formation.

    PubMed

    Jahier-Diallo, Claire; Morin, Marie S T; Queval, Pierre; Rouen, Mathieu; Artur, Isabelle; Querard, Pierre; Toupet, Loic; Crévisy, Christophe; Baslé, Olivier; Mauduit, Marc

    2015-01-12

    A multicomponent strategy was applied to the synthesis of chiral bidentate unsaturated hydroxyalkyl- and carboxyalkyl-N-heterocyclic carbene (NHC) precursors. The newly developed low-cost chiral ligands derived from amino alcohols and amino acids were evaluated in copper-catalyzed asymmetric conjugated addition and asymmetric allylic alkylation, which afforded the desired tertiary and quaternary carbon stereocenters with excellent regio- and enantioselectivities (up to 99:1 e.r.).

  1. Hyperthermophilic aldolases as biocatalyst for C-C bond formation: rhamnulose 1-phosphate aldolase from Thermotoga maritima.

    PubMed

    Oroz-Guinea, Isabel; Sánchez-Moreno, Israel; Mena, Montaña; García-Junceda, Eduardo

    2015-04-01

    The TM1072 gene from Thermotoga maritima codifies for a putative form of a rhamnulose-1-phosphate aldolase (Rha-1PA Tm). To investigate this enzyme further, its gene was cloned and expressed in Escherichia coli. The purified enzyme was activated by Co(2+) as a divalent metal ion cofactor, instead of Zn(2+) as its E. coli homologue, and exhibited a maximum of activity at 95 °C. Furthermore, the enzyme displayed a high stability against extreme reaction conditions, retaining 90 % of its activity in the presence of 40 % of acetonitrile and showing a half-life greater than 3 h at 115 °C. The kinetic parameters at room temperature (R/T) were also studied; the K M was calculated to be 3.6 ± 0.33 mM, while k cat/K M was found to be 0.7 × 10(3) s(-1) M(-1). Given these characteristics, Rha-1PA Tm is an attractive enzyme for use as a biocatalyst for industrial applications, offering intriguing possibilities for practical biocatalysis.

  2. Boron-mediated sequential alkyne insertion and C-C coupling reactions affording extended π-conjugated molecules

    NASA Astrophysics Data System (ADS)

    Shoji, Yoshiaki; Tanaka, Naoki; Muranaka, Sho; Shigeno, Naoki; Sugiyama, Haruka; Takenouchi, Kumiko; Hajjaj, Fatin; Fukushima, Takanori

    2016-09-01

    C-C bond coupling reactions illustrate the wealth of organic transformations, which are usually mediated by organotransition metal complexes. Here, we show that a borafluorene with a B-Cl moiety can mediate sequential alkyne insertion (1,2-carboboration) and deborylation/Csp2-Csp2 coupling reactions, leading to aromatic molecules. The first step, which affords a borepin derivative, proceeds very efficiently between the borafluorene and various alkynes by simply mixing these two components. The second step is triggered by a one-electron oxidation of the borepin derivative, which results in the formation of a phenanthrene framework. When an excess amount of oxidant is used in the second step, the phenanthrene derivatives can be further transformed in situ to afford dibenzo[g,p]chrysene derivatives. The results presented herein will substantially expand the understanding of main group chemistry and provide a powerful synthetic tool for the construction of a wide variety of extended π-conjugated systems.

  3. Pd loaded amphiphilic COF as catalyst for multi-fold Heck reactions, C-C couplings and CO oxidation

    PubMed Central

    Mullangi, Dinesh; Nandi, Shyamapada; Shalini, Sorout; Sreedhala, Sheshadri; Vinod, Chathakudath P.; Vaidhyanathan, Ramanathan

    2015-01-01

    COFs represent a class of polymers with designable crystalline structures capable of interacting with active metal nanoparticles to form excellent heterogeneous catalysts. Many valuable ligands/monomers employed in making coordination/organic polymers are prepared via Heck and C-C couplings. Here, we report an amphiphilic triazine COF and the facile single-step loading of Pd0 nanoparticles into it. An 18–20% nano-Pd loading gives highly active composite working in open air at low concentrations (Conc. Pd(0) <0.05 mol%, average TON 1500) catalyzing simultaneous multiple site Heck couplings and C-C couplings using ‘non-boronic acid’ substrates, and exhibits good recyclability with no sign of catalyst leaching. As an oxidation catalyst, it shows 100% conversion of CO to CO2 at 150 °C with no loss of activity with time and between cycles. Both vapor sorptions and contact angle measurements confirm the amphiphilic character of the COF. DFT-TB studies showed the presence of Pd-triazine and Pd-Schiff bond interactions as being favorable. PMID:26057044

  4. Pd loaded amphiphilic COF as catalyst for multi-fold Heck reactions, C-C couplings and CO oxidation.

    PubMed

    Mullangi, Dinesh; Nandi, Shyamapada; Shalini, Sorout; Sreedhala, Sheshadri; Vinod, Chathakudath P; Vaidhyanathan, Ramanathan

    2015-06-09

    COFs represent a class of polymers with designable crystalline structures capable of interacting with active metal nanoparticles to form excellent heterogeneous catalysts. Many valuable ligands/monomers employed in making coordination/organic polymers are prepared via Heck and C-C couplings. Here, we report an amphiphilic triazine COF and the facile single-step loading of Pd(0) nanoparticles into it. An 18-20% nano-Pd loading gives highly active composite working in open air at low concentrations (Conc. Pd(0) <0.05 mol%, average TON 1500) catalyzing simultaneous multiple site Heck couplings and C-C couplings using 'non-boronic acid' substrates, and exhibits good recyclability with no sign of catalyst leaching. As an oxidation catalyst, it shows 100% conversion of CO to CO2 at 150 °C with no loss of activity with time and between cycles. Both vapor sorptions and contact angle measurements confirm the amphiphilic character of the COF. DFT-TB studies showed the presence of Pd-triazine and Pd-Schiff bond interactions as being favorable.

  5. In-line alignment and Mg2+ coordination at the cleavage site of the env22 twister ribozyme

    PubMed Central

    Ren, Aiming; Košutić, Marija; Rajashankar, Kanagalaghatta R.; Frener, Marina; Santner, Tobias; Westhof, Eric; Micura, Ronald; Patel, Dinshaw J.

    2015-01-01

    Small self-cleaving nucleolytic ribozymes contain catalytic domains that accelerate site-specific cleavage/ligation of phosphodiester backbones. We report on the 2.9-Å crystal structure of the env22 twister ribozyme, which adopts a compact tertiary fold stabilized by co-helical stacking, double-pseudoknot formation and long-range pairing interactions. The U-A cleavage site adopts a splayed-apart conformation with the modeled 2′-O of U positioned for in-line attack on the adjacent to-be-cleaved P-O5′ bond. Both an invariant guanosine and a Mg2+ are directly coordinated to the non-bridging phosphate oxygens at the U-A cleavage step, with the former positioned to contribute to catalysis and the latter to structural integrity. The impact of key mutations on cleavage activity identified an invariant guanosine that contributes to catalysis. Our structure of the in-line aligned env22 twister ribozyme is compared with two recently-reported twister ribozymes structures, which adopt similar global folds, but differ in conformational features around the cleavage site. PMID:25410397

  6. 77 FR 10004 - C$ cMoney, Inc.; Order of Suspension of Trading

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-21

    ... COMMISSION C$ cMoney, Inc.; Order of Suspension of Trading February 16, 2012. It appears to the Securities... securities of C$ cMoney, Inc. (``cMoney'') because of questions regarding the accuracy of assertions by cMoney, and by others, in press releases to investors and other public statements concerning, among...

  7. 76 FR 44800 - Election of Reduced Research Credit Under Section 280C(c)(3)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-27

    ... [TD 9539] RIN 1545-BI09 Election of Reduced Research Credit Under Section 280C(c)(3) AGENCY: Internal... dates of applicability, see Sec. 1.280C- 4(c). FOR FURTHER INFORMATION CONTACT: David Selig, (202) 622... research credit under section 280C(c)(3). On July 16, 2009, a notice of proposed rulemaking...

  8. Testing of DLR C/C-SiC for HIFiRE 8 Scramjet Combustor

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Capriotti, Diego P.; Reimer, Thomas; Kutemeyer, Marius; Smart, Michael

    2013-01-01

    Ceramic Matrix Composites (CMCs) have been proposed for hot structures in scramjet combustors. Previous studies have calculated significant weight savings by utilizing CMCs (active and passive) versus actively cooled metallic scramjet structures. Both a C/C and a C/C-SiC material system fabricated by DLR (Stuttgart, Germany) are being considered for use in a passively cooled combustor design for HIFiRE 8, a joint Australia / AFRL hypersonic flight program, expected to fly at Mach 7 for approximately 30 sec, at a dynamic pressure of 55 kPa. Flat panels of the DLR C/C and the C/C-SiC were tested in the NASA Langley Direct Connect Rig (DCR) at Mach 5 and Mach 6 enthalpy for several minutes. Gaseous hydrogen fuel was used to fuel the scramjet combustor. The test panels were instrumented with embedded Type K and Type S thermocouples. Zirconia felt insulation was used in some of the tests to increase the surface temperature of the C/C-SiC panel for approximately 350degF. The final C/C-SiC panel was tested for 3 cycles totaling over 135 sec at Mach 6 enthalpy. Slightly more erosion was observed on the C/C panel than the C/C-SiC panels, but both material systems demonstrated acceptable recession performance for the HIFiRE 8 flight.

  9. Ablation Resistance of C/C Composites with Atmospheric Plasma-Sprayed W Coating

    NASA Astrophysics Data System (ADS)

    Zhou, Zhe; Wang, Yuan; Gong, Jieming; Ge, Yicheng; Peng, Ke; Ran, Liping; Yi, Maozhong

    2016-12-01

    To improve the ablation resistance of carbon/carbon (C/C) composites, tungsten (W) coating with thickness of 1.2 mm was applied by atmospheric plasma spraying. The antiablation property of the coated composites was evaluated by oxyacetylene flame ablation experiments. The phase composition of the coating was investigated by a combination of x-ray diffraction analysis and scanning electron microscopy with energy-dispersive x-ray spectroscopy analysis. The ablation resistance of the coated C/C substrates was compared with that of uncoated C/C composites and C/C-CuZr composites after ablation for 30 s. The properties of the coated C/C composites after ablation time of 10, 30, 60, 90, 120, and 180 s were further studied. The results indicated that the mass and linear ablation rates of the W-coated C/C composites were lower than those of uncoated C/C or C/C-CuZr composites after ablation for 30 s. The coating exhibited heat stability after 120 s of ablation, with mass loss and linear ablation rates of 7.39 × 10-3 g/s and 3.50 × 10-3 mm/s, respectively. However, the W coating became ineffective and failed after ablation for 180 s. Three ablation regions could be identified, in which the ablation mechanism of the coating changed from thermochemical to thermophysical erosion to mechanical scouring with increasing ablation time.

  10. Diffusion bonding

    DOEpatents

    Anderson, Robert C.

    1976-06-22

    1. A method for joining beryllium to beryllium by diffusion bonding, comprising the steps of coating at least one surface portion of at least two beryllium pieces with nickel, positioning a coated surface portion in a contiguous relationship with an other surface portion, subjecting the contiguously disposed surface portions to an environment having an atmosphere at a pressure lower than ambient pressure, applying a force upon the beryllium pieces for causing the contiguous surface portions to abut against each other, heating the contiguous surface portions to a maximum temperature less than the melting temperature of the beryllium, substantially uniformly decreasing the applied force while increasing the temperature after attaining a temperature substantially above room temperature, and maintaining a portion of the applied force at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions.

  11. Activity dependent CAM cleavage and neurotransmission

    PubMed Central

    Conant, Katherine; Allen, Megan; Lim, Seung T.

    2015-01-01

    Spatially localized proteolysis represents an elegant means by which neuronal activity dependent changes in synaptic structure, and thus experience dependent learning and memory, can be achieved. In vitro and in vivo studies suggest that matrix metalloproteinase and adamalysin activity is concentrated at the cell surface, and emerging evidence suggests that increased peri-synaptic expression, release and/or activation of these proteinases occurs with enhanced excitatory neurotransmission. Synaptically expressed cell adhesion molecules (CAMs) could therefore represent important targets for neuronal activity-dependent proteolysis. Several CAM subtypes are expressed at the synapse, and their cleavage can influence the efficacy of synaptic transmission through a variety of non-mutually exclusive mechanisms. In the following review, we discuss mechanisms that regulate neuronal activity-dependent synaptic CAM shedding, including those that may be calcium dependent. We also highlight CAM targets of activity-dependent proteolysis including neuroligin and intercellular adhesion molecule-5 (ICAM-5). We include discussion focused on potential consequences of synaptic CAM shedding, with an emphasis on interactions between soluble CAM cleavage products and specific pre- and post-synaptic receptors. PMID:26321910

  12. Autocatalytic cyclization of an excised intervening sequence RNA is a cleavage-ligation reaction.

    PubMed

    Zaug, A J; Grabowski, P J; Cech, T R

    The intervening sequence (IVS) of the Tetrahymena ribosomal RNA precursor is excised as a linear RNA molecule which subsequently cyclizes itself in a protein-independent reaction. Cyclization involves cleavage of the linear IVS RNA 15 nucleotides from its 5' end and formation of a phosphodiester bond between the new 5' phosphate and the original 3'-hydroxyl terminus of the IVS. This recombination mechanism is analogous to that by which splicing of the precursor RNA is achieved. The circular molecules appear to have no direct function in RNA splicing, and we propose the cyclization serves to prevent unwanted RNA from driving the splicing reactions backwards.

  13. Mechanochemistry: one bond at a time.

    PubMed

    Liang, Jian; Fernández, Julio M

    2009-07-28

    Single-molecule force-clamp spectroscopy offers a novel platform for mechanically denaturing proteins by applying a constant force to a polyprotein. A powerful emerging application of the technique is that, by introducing a disulfide bond in each protein module, the chemical kinetics of disulfide bond cleavage under different stretching forces can be probed at the single-bond level. Even at forces much lower than that which can rupture the chemical bond, the breaking of the S-S bond at the presence of various chemical reducing agents is significantly accelerated. Our previous work demonstrated that the rate of thiol/disulfide exchange reaction is force-dependent and well-described by an Arrhenius term of the form r = A(exp((FΔx(r) - E(a))/k(B)T)[nucleophile]). From Arrhenius fits to the force dependency of the reduction rate, we measured the bond elongation parameter, Δx(r), along the reaction coordinate to the transition state of the S(N)2 reaction cleaved by different nucleophiles and enzymes, never before observed by any other technique. For S-S cleavage by various reducing agents, obtaining the Δx(r) value can help depicting the energy landscapes and elucidating the mechanisms of the reactions at the single-molecule level. Small nucleophiles, such as 1,4-dl-dithiothreitol (DTT), tris(2-carboxyethyl)phosphine (TCEP), and l-cysteine, react with the S-S bond with monotonically increasing rates under the applied force, while thioredoxin enzymes exhibit both stretching-favored and -resistant reaction-rate regimes. These measurements demonstrate the power of the single-molecule force-clamp spectroscopy approach in providing unprecedented access to chemical reactions.

  14. A Dynamic Pathway for Stone-Wales Bond Rotation on Carbon Nanotubes through Diamond-Like Bonds

    NASA Technical Reports Server (NTRS)

    Wei, Chen-Yu; Srivastava, Deepak; Cho, Kyeong-Jae; Menon, Madhu

    2003-01-01

    A new lower energy barrier with a two-step pathway of Stone-Wales (SW) ,ond rotation on carbon nanotubes (CNTs) is found through molecular dynamics (MD) simulations of CNTs under tension. The first step involves going over to a stable sp3-like metastable configuration with half rotated and partially tilted C-C bond. The second step involves going over to the fully rotated C-C bond with the formation of a SW defect in the nanotube. The energy barrier for this two-step dynamic pathway is significantly lower than the previously known static barrier for in-plane rotation of the C-C bond on a tensile strained (> 4%) CNT.

  15. First-Principles Calculations of the Ideal Cleavage Energy of Bulk Niobium(111)/ α-Alumina(0001) Interfaces

    NASA Astrophysics Data System (ADS)

    Batirev, I. G.; Alavi, A.; Finnis, M. W.; Deutsch, T.

    1999-02-01

    We report ab initio calculations of the work of adhesion for O- and Al-terminated Nb(111)/ α-alumina(0001) interfaces. Strong ionic bonds formed by Nb4 d --> O2 p electron donation account for the high adhesive strength of O-terminated interfaces. However, cleavage preferentially occurs between metal atoms at both O- and Al-terminated interfaces, and their adhesion has both covalent and ionic character.

  16. [On the Features of Embryonic Cleavage in Diverse Fish Species].

    PubMed

    Desnitskiy, A G

    2015-01-01

    Literature on the earliest steps of fish embryogenesis (including a number of "non-model" species) has been considered. The main attention has been paid to the loss of cleavage division synchrony and the first latitudinal cleavage furrow. In teleostean embryos, the features of their meroblastic cleavage are not rigidly associated with egg size. The midblastula transition (in a form clearly enough) occurs in some chondrostean and teleostean fishes, but it has not been detected in the representatives of sarcopterygian and chondrichthyan fishes.

  17. Early cleavage in Phoronis muelleri (Phoronida) displays spiral features.

    PubMed

    Pennerstorfer, Markus; Scholtz, Gerhard

    2012-01-01

    The view that early cleavage in Phoronida follows a radial pattern is widely accepted. However, data supporting this characterization are ambiguous. Studies have been repeatedly reporting variation between individual embryos, and the occurrence of embryos exhibiting oblique divisions or nonradial cell arrangements. Such embryos were often considered to represent variation within radial cleavage, or artificial appearances. Cleavage in Phoronis muelleri was previously characterized as "derived radial," but also oblique spindles and cell elongations, and shifted cell arrangements were observed. We studied the early cleavage in P. muelleri applying 4D microscopy, fluorescent staining, and confocal laser scanning microscopy. To deal with the problem of variation we provide statistical evaluations of our data. These show that oblique divisions do not represent variational abnormalities. In fact, they reveal that most cells divide obliquely from the third cleavage onwards. What is more, in almost all cells the axis of the third cleavage is inclined dextrally. The fourth cleavage is even stronger sinistrally pronounced. Subsequently, the pattern of alternating cleavage orientation is largely restricted to animal and vegetal blastomeres. As a result of the obliqueness of divisions, four cells encircle the poles in most embryos. Cross furrows are occasionally present. We found no indications for radial cleavage in P. muelleri. In contrast, the observed cleavage displays several characters consistent with the pattern of spiral cleavage. A close relation of phoronid and spiralian cleavage is also suggested by molecular phylogenies, allying both groups in the Lophotrochozoa. We suggest our findings to represent morphological support for this lophotrochozoan/spiralian affinity of Phoronida.

  18. Pi Bond Orders and Bond Lengths

    ERIC Educational Resources Information Center

    Herndon, William C.; Parkanyi, Cyril

    1976-01-01

    Discusses three methods of correlating bond orders and bond lengths in unsaturated hydrocarbons: the Pauling theory, the Huckel molecular orbital technique, and self-consistent-field techniques. (MLH)

  19. Structural Basis for Accelerated Cleavage of Bovine Pancreatic Trypsin Inhibitor (BPTI) by Human Mesotrypsin

    SciTech Connect

    Salameh,M.; Soares, A.; Hockla, A.; Radisky, E.

    2008-01-01

    Human mesotrypsin is an isoform of trypsin that displays unusual resistance to polypeptide trypsin inhibitors and has been observed to cleave several such inhibitors as substrates. Whereas substitution of arginine for the highly conserved glycine 193 in the trypsin active site has been implicated as a critical factor in the inhibitor resistance of mesotrypsin, how this substitution leads to accelerated inhibitor cleavage is not clear. Bovine pancreatic trypsin inhibitor (BPTI) forms an extremely stable and cleavage-resistant complex with trypsin, and thus provides a rigorous challenge of mesotrypsin catalytic activity toward polypeptide inhibitors. Here, we report kinetic constants for mesotrypsin and the highly homologous (but inhibitor sensitive) human cationic trypsin, describing inhibition by, and cleavage of BPTI, as well as crystal structures of the mesotrypsin-BPTI and human cationic trypsin-BPTI complexes. We find that mesotrypsin cleaves BPTI with a rate constant accelerated 350-fold over that of human cationic trypsin and 150,000-fold over that of bovine trypsin. From the crystal structures, we see that small conformational adjustments limited to several side chains enable mesotrypsin-BPTI complex formation, surmounting the predicted steric clash introduced by Arg-193. Our results show that the mesotrypsin-BPTI interface favors catalysis through (a) electrostatic repulsion between the closely spaced mesotrypsin Arg-193 and BPTI Arg-17, and (b) elimination of two hydrogen bonds between the enzyme and the amine leaving group portion of BPTI. Our model predicts that these deleterious interactions accelerate leaving group dissociation and deacylation.

  20. H-H, C-H, and C-C NMR spin-spin coupling constants calculated by the FP-INDO method for aromatic hydrocarbons

    NASA Technical Reports Server (NTRS)

    Long, S. A. T.; Memory, J. D.

    1978-01-01

    The FP-INDO (finite perturbation-intermediate neglect of differential overlap) method is used to calculate the H-H, C-H, and C-C coupling constants in hertz for molecules of six different benzenoid hydrocarbons: benzene, naphthalene, biphenyl, anthracene, phenanthrene, and pyrene. The calculations are based on both the actual and the average molecular geometries. It is found that only the actual molecular geometries can always yield the correct relative order of values for the H-H coupling constants. For the calculated C-C coupling constants, as for the calculated C-H coupling constants, the signs are positive (negative) for an odd (even) number of bonds connecting the two nuclei. Agreements between the calculated and experimental values of the coupling constants for all six molecules are comparable to those reported previously for other molecules.

  1. Brittle to ductile transition in cleavage fracture

    SciTech Connect

    Argon, A.S.; Berg, Q.

    1992-09-30

    The problem of interpretation of fracture transition from brittle to ductile or vice versa is the subject of study. An instrumented tapered double cantilever beam (TDCB) has been developed as a definitive tool in the study of the intrinsic mechanism in single crystalline samples. In this experiment, the crack velocity is directly proportional to actuator velocity. In experiments performed on TDCB shaped Si single crystals, oriented for cleavage on either [l brace]111[r brace] or [l brace]110[r brace] planes, a number of troubling features of jerky carck extension were encountered. Evidence suggests that nucleation of dislocation loops from crack tip is easier than moving these dislocations away from crack tip. 14 refs, 1 fig.

  2. Transition Metals Catalyzed Element-Cyano Bonds Activations

    PubMed Central

    Wang, Rui; Falck, John R.

    2014-01-01

    Cyano group as a versatile functionalized intermediate has been explored for several decades, as it readily transfers to many useful functionalization groups such as amine, amide, acid, etc., which make it possess high popularization and use value in organic synthesis. Reactions involved with element-cyano bond cleavage can provide not only a new cyano group but also a freshly functionalized skeleton in one-pot, consequently making it of high importance. The highlights reviewed herein include H-CN, Si-CN, C-CN, B-CN, Sn-CN, Ge-CN, S-CN, Halo-CN, N-CN, and O-CN bonds cleavages and will summarize progress in such an important research area. This review article will focus on transition metal catalyzed reactions involving element-cyano bond activation. PMID:25558119

  3. Cleavage of nicotinamide adenine dinucleotide by the ribosome-inactivating protein from Momordica charantia.

    PubMed

    Vinkovic, M; Dunn, G; Wood, G E; Husain, J; Wood, S P; Gill, R

    2015-09-01

    The interaction of momordin, a type 1 ribosome-inactivating protein from Momordica charantia, with NADP(+) and NADPH has been investigated by X-ray diffraction analysis of complexes generated by co-crystallization and crystal soaking. It is known that the proteins of this family readily cleave the adenine-ribose bond of adenosine and related nucleotides in the crystal, leaving the product, adenine, bound to the enzyme active site. Surprisingly, the nicotinamide-ribose bond of oxidized NADP(+) is cleaved, leaving nicotinamide bound in the active site in the same position but in a slightly different orientation to that of the five-membered ring of adenine. No binding or cleavage of NADPH was observed at pH 7.4 in these experiments. These observations are in accord with current views of the enzyme mechanism and may contribute to ongoing searches for effective inhibitors.

  4. Bonded Lubricants

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Another spinoff to the food processing industry involves a dry lubricant developed by General Magnaplate Corp. of Linden, N.J. Used in such spacecraft as Apollo, Skylab and Viking, the lubricant is a coating bonded to metal surfaces providing permanent lubrication and corrosion resistance. The coating lengthens equipment life and permits machinery to be operated at greater speed, thus increasing productivity and reducing costs. Bonded lubricants are used in scores of commercia1 applications. They have proved particularly valuable to food processing firms because, while increasing production efficiency, they also help meet the stringent USDA sanitation codes for food-handling equipment. For example, a cookie manufacturer plagued production interruptions because sticky batter was clogging the cookie molds had the brass molds coated to solve the problem. Similarly, a pasta producer faced USDA action on a sanitation violation because dough was clinging to an automatic ravioli-forming machine; use of the anti-stick coating on the steel forming plates solved the dual problem of sanitation deficiency and production line downtime.

  5. Search for the weak decays J /ψ →Ds(*)-e+νe+c .c .

    NASA Astrophysics Data System (ADS)

    Ablikim, M.; Achasov, M. N.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Ferroli, R. Baldini; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Bondarenko, O.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Chu, Y. P.; Cibinetto, G.; Cronin-Hennessy, D.; Dai, H. L.; Dai, J. P.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; de Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Fava, L.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fu, C. D.; Gao, Q.; Gao, Y.; Garzia, I.; Goetzen, K.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, T.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Han, Y. L.; Harris, F. A.; He, K. L.; He, Z. Y.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. M.; Huang, G. S.; Huang, H. P.; Huang, J. S.; Huang, X. T.; Huang, Y.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. L.; Jiang, L. W.; Jiang, X. S.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kuehn, W.; Kupsc, A.; Lai, W.; Lange, J. S.; Lara, M.; Larin, P.; Li, C. H.; Li, Cheng; Li, D. M.; Li, F.; Li, G.; Li, H. B.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, P. R.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. M.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B. J.; Liu, C. L.; Liu, C. X.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, X. X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqiang; Liu, Zhiqing; Loehner, H.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, R. Q.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lv, M.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, Q. M.; Ma, S.; Ma, T.; Ma, X. N.; Ma, X. Y.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Moeini, H.; Morales, C. Morales; Moriya, K.; Muchnoi, N. Yu.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Ping, J. L.; Ping, R. G.; Poling, R.; Pu, Y. N.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Y.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ren, H. L.; Ripka, M.; Rong, G.; Ruan, X. D.; Santoro, V.; Sarantsev, A.; Savrié, M.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Shepherd, M. R.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Spruck, B.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Toth, D.; Ullrich, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, Q. J.; Wang, S. G.; Wang, W.; Wang, X. F.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Wei, D. H.; Wei, J. B.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, Z.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. X.; Yang, L.; Yang, Y.; Yang, Y. X.; Ye, H.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, H. W.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. H.; Zhang, X. J.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, Li; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zou, B. S.; Zou, J. H.; Besiii Collaboration

    2014-12-01

    Using a sample of 2.25 ×1 08 J /ψ events collected with the BESIII detector at the BEPCII collider, we search for the J /ψ semileptonic weak decay J /ψ →Ds-e+νe+c .c . with a much higher sensitivity than previous searches. We also perform the first search for J /ψ →Ds*-e+νe+c .c . No significant excess of a signal above background is observed in either channel. At the 90% confidence level, the upper limits are determined to be B (J /ψ →Ds-e+νe+c .c .)<1.3 ×1 0-6 and B (J /ψ →Ds* -e+νe+c .c .)<1.8 ×1 0-6 , respectively. Both are consistent with Standard Model predictions.

  6. 21. Historic American Buildings Survey Copyright C.C. Pierce Original: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Historic American Buildings Survey Copyright - C.C. Pierce Original: About 1902 Re-photo: April 1940 QUANDRANGLE (view from north) - Mission Nuestra Senora de la Soledad, Soledad, Monterey County, CA

  7. Combustion Gas Heating Tests of C/C Composites Coated with SiC Layer

    NASA Astrophysics Data System (ADS)

    Sato, Masaki; Moriya, Shin-ichi; Sato, Masahiro; Tadano, Makoto; Kusaka, Kazuo; Hasegawa, Keiichi; Kumakawa, Akinaga; Yoshida, Makoto

    2008-02-01

    In order to examine the applicability of carbon fiber/carbon matrix composites coated with a silicon carbide layer (C/C-SiCs) to an advanced nozzle for the future reusable rocket engines, two series of combustion gas heating tests were conducted using a small rocket combustor. In the first series of heating tests, five different kinds of C/C-SiCs were tested with specimens in the shape of a square plate for material screening. In the second series of heating tests, two selected C/C-SiCs were tested with specimens in the shape of a small nozzle. The effectiveness of an interlayer between a C/C composite and a SiC layer, which was introduced to improve the durability based on the concept of functionally graded materials (FGMs), can be observed. The typical damage mode was also pointed out in the results of heating test using the small nozzle specimens.

  8. 5. Historic American Buildings Survey C.C. Woodburn, Photographer. January 12, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Historic American Buildings Survey C.C. Woodburn, Photographer. January 12, 1934 DETAIL OF ENTRANCE (WEST ELEVATION) - Ferdinand Daniel Pulver House, County Road F-70 Vicinity, Vandalia, Jasper County, IA

  9. C/C composite brake disk nondestructive evaluation by IR thermography

    NASA Astrophysics Data System (ADS)

    Chu, Tsuchin P.; Poudel, Anish; Filip, Peter

    2012-06-01

    This paper discusses the non-destructive evaluation of thick Carbon/Carbon (C/C) composite aircraft brake disks by using transient infrared thermography (IRT) approach. Thermal diffusivity measurement technique was applied to identify the subsurface anomalies in thick C/C brake disks. In addition, finite element analysis (FEA) modeling tool was used to determine the transient thermal response of the C/C disks that were subjected to flash heating. For this, series of finite element models were built and thermal responses with various thermal diffusivities subjected to different heating conditions were investigated. Experiments were conducted to verify the models by using custom built in-house IRT system and commercial turnkey system. The analysis and experimental results showed good correlation between thermal diffusivity value and anomalies within the disk. It was demonstrated that the step-heating transient thermal approach could be effectively applied to obtain the whole field thermal diffusivity value of C/C composites.

  10. The Oxygenase CAO-1 of Neurospora crassa Is a Resveratrol Cleavage Enzyme

    PubMed Central

    Díaz-Sánchez, Violeta; F. Estrada, Alejandro; Limón, M. Carmen; Al-Babili, Salim

    2013-01-01

    The genome of the ascomycete Neurospora crassa encodes CAO-1 and CAO-2, two members of the carotenoid cleavage oxygenase family that target double bonds in different substrates. Previous studies demonstrated the role of CAO-2 in cleaving the C40 carotene torulene, a key step in the synthesis of the C35 apocarotenoid pigment neurosporaxanthin. In this work, we investigated the activity of CAO-1, assuming that it may provide retinal, the chromophore of the NOP-1 rhodopsin, by cleaving β-carotene. For this purpose, we tested CAO-1 activity with carotenoid substrates that were, however, not converted. In contrast and consistent with its sequence similarity to family members that act on stilbenes, CAO-1 cleaved the interphenyl Cα-Cβ double bond of resveratrol and its derivative piceatannol. CAO-1 did not convert five other similar stilbenes, indicating a requirement for a minimal number of unmodified hydroxyl groups in the stilbene background. Confirming its biological function in converting stilbenes, adding resveratrol led to a pronounced increase in cao-1 mRNA levels, while light, a key regulator of carotenoid metabolism, did not alter them. Targeted Δcao-1 mutants were not impaired by the presence of resveratrol, a phytoalexin active against different fungi, which did not significantly affect the growth and development of wild-type Neurospora. However, under partial sorbose toxicity, the Δcao-1 colonies exhibited faster radial growth than control strains in the presence of resveratrol, suggesting a moderate toxic effect of resveratrol cleavage products. PMID:23893079

  11. Alkali Metal Control over N–N Cleavage in Iron Complexes

    PubMed Central

    2015-01-01

    Though N2 cleavage on K-promoted Fe surfaces is important in the large-scale Haber–Bosch process, there is still ambiguity about the number of Fe atoms involved during the N–N cleaving step and the interactions responsible for the promoting ability of K. This work explores a molecular Fe system for N2 reduction, particularly focusing on the differences in the results obtained using different alkali metals as reductants (Na, K, Rb, Cs). The products of these reactions feature new types of Fe–N2 and Fe-nitride cores. Surprisingly, adding more equivalents of reductant to the system gives a product in which the N–N bond is not cleaved, indicating that the reducing power is not the most important factor that determines the extent of N2 activation. On the other hand, the results suggest that the size of the alkali metal cation can control the number of Fe atoms that can approach N2, which in turn controls the ability to achieve N2 cleavage. The accumulated results indicate that cleaving the triple N–N bond to nitrides is facilitated by simultaneous approach of least three low-valent Fe atoms to a single molecule of N2. PMID:25412468

  12. A novel carotenoid cleavage activity involved in the biosynthesis of Citrus fruit-specific apocarotenoid pigments

    PubMed Central

    Rodrigo, María J.; Alquézar, Berta; Al-Babili, Salim

    2013-01-01

    Citrus is the first tree crop in terms of fruit production. The colour of Citrus fruit is one of the main quality attributes, caused by the accumulation of carotenoids and their derivative C30 apocarotenoids, mainly β-citraurin (3-hydroxy-β-apo-8′-carotenal), which provide an attractive orange-reddish tint to the peel of oranges and mandarins. Though carotenoid biosynthesis and its regulation have been extensively studied in Citrus fruits, little is known about the formation of C30 apocarotenoids. The aim of this study was to the identify carotenoid cleavage enzyme(s) [CCD(s)] involved in the peel-specific C30 apocarotenoids. In silico data mining revealed a new family of five CCD4-type genes in Citrus. One gene of this family, CCD4b1, was expressed in reproductive and vegetative tissues of different Citrus species in a pattern correlating with the accumulation of C30 apocarotenoids. Moreover, developmental processes and treatments which alter Citrus fruit peel pigmentation led to changes of β-citraurin content and CCD4b1 transcript levels. These results point to the involvement of CCD4b1 in β-citraurin formation and indicate that the accumulation of this compound is determined by the availability of the presumed precursors zeaxanthin and β-cryptoxanthin. Functional analysis of CCD4b1 by in vitro assays unequivocally demonstrated the asymmetric cleavage activity at the 7′,8′ double bond in zeaxanthin and β-cryptoxanthin, confirming its role in C30 apocarotenoid biosynthesis. Thus, a novel plant carotenoid cleavage activity targeting the 7′,8′ double bond of cyclic C40 carotenoids has been identified. These results suggest that the presented enzyme is responsible for the biosynthesis of C30 apocarotenoids in Citrus which are key pigments in fruit coloration. PMID:24006419

  13. A novel carotenoid cleavage activity involved in the biosynthesis of Citrus fruit-specific apocarotenoid pigments.

    PubMed

    Rodrigo, María J; Alquézar, Berta; Alós, Enriqueta; Medina, Víctor; Carmona, Lourdes; Bruno, Mark; Al-Babili, Salim; Zacarías, Lorenzo

    2013-11-01

    Citrus is the first tree crop in terms of fruit production. The colour of Citrus fruit is one of the main quality attributes, caused by the accumulation of carotenoids and their derivative C30 apocarotenoids, mainly β-citraurin (3-hydroxy-β-apo-8'-carotenal), which provide an attractive orange-reddish tint to the peel of oranges and Mandarins. Though carotenoid biosynthesis and its regulation have been extensively studied in Citrus fruits, little is known about the formation of C30 apocarotenoids. The aim of this study was to the identify carotenoid cleavage enzyme(s) [CCD(s)] involved in the peel-specific C30 apocarotenoids. In silico data mining revealed a new family of five CCD4-type genes in Citrus. One gene of this family, CCD4b1, was expressed in reproductive and vegetative tissues of different Citrus species in a pattern correlating with the accumulation of C30 apocarotenoids. Moreover, developmental processes and treatments which alter Citrus fruit peel pigmentation led to changes of β-citraurin content and CCD4b1 transcript levels. These results point to the involvement of CCD4b1 in β-citraurin formation and indicate that the accumulation of this compound is determined by the availability of the presumed precursors zeaxanthin and β-cryptoxanthin. Functional analysis of CCD4b1 by in vitro assays unequivocally demonstrated the asymmetric cleavage activity at the 7',8' double bond in zeaxanthin and β-cryptoxanthin, confirming its role in C30 apocarotenoid biosynthesis. Thus, a novel plant carotenoid cleavage activity targeting the 7',8' double bond of cyclic C40 carotenoids has been identified. These results suggest that the presented enzyme is responsible for the biosynthesis of C30 apocarotenoids in Citrus which are key pigments in fruit coloration.

  14. DNAzyme hybridization, cleavage, degradation, and sensing in undiluted human blood serum.

    PubMed

    Zhou, Wenhu; Chen, Qingyun; Huang, Po-Jung Jimmy; Ding, Jinsong; Liu, Juewen

    2015-04-07

    RNA-cleaving DNAzymes provide a unique platform for developing biosensors. However, a majority of the work has been performed in clean buffer solutions, while the activity of some important DNAzymes in biological sample matrices is still under debate. Two RNA-cleaving DNAzymes (17E and 10-23) are the most widely used. In this work, we carefully studied a few key aspects of the 17E DNAzyme in human blood serum, including hybridization, cleavage activity, and degradation kinetics. Since direct fluorescence monitoring is difficult due to the opacity of serum, denaturing and nondenaturing gel electrophoresis were combined for studying the interaction between serum proteins and DNAzymes. The 17E DNAzyme retains its activity in 90% human blood serum with a cleavage rate of 0.04 min(-1), which is similar to that in the PBS buffer (0.06 min(-1)) with a similar ionic strength. The activity in serum can be accelerated to 0.3 min(-1) with an additional 10 mM Ca(2+). As compared to 17E, the 10-23 DNAzyme produces negligible cleavage in serum. Degradation of both the substrate and the DNAzyme strand is very slow in serum, especially at room temperature. Degradation occurs mainly at the fluorophore label (linked to DNA via an amide bond) instead of the DNA phosphodiester bonds. Serum proteins can bind more tightly to the 17E DNAzyme complex than to the single-stranded substrate or enzyme. The 17E DNAzyme hybridizes extremely fast in serum. With this understanding, the detection of DNA using the 17E DNAzyme is demonstrated in serum.

  15. Zymogen activation confers thermodynamic stability on a key peptide bond and protects human cationic trypsin from degradation.

    PubMed

    Szabó, András; Radisky, Evette S; Sahin-Tóth, Miklós

    2014-02-21

    Human cationic trypsinogen, precursor of the digestive enzyme trypsin, can be rapidly degraded to protect the pancreas when pathological conditions threaten, while trypsin itself is impressively resistant to degradation. For either form, degradation is controlled by two necessary initial proteolytic events: cleavage of the Leu81-Glu82 peptide bond by chymotrypsin C (CTRC) and cleavage of the Arg122-Val123 peptide bond by trypsin. Here we demonstrate that the Leu81-Glu82 peptide bond of human cationic trypsin, but not trypsinogen, is thermodynamically stable, such that cleavage by CTRC leads to an equilibrium mixture containing 10% cleaved and 90% uncleaved trypsin. When cleaved trypsin was incubated with CTRC, the Leu81-Glu82 peptide bond was re-synthesized to establish the same equilibrium. The thermodynamic stability of the scissile peptide bond was not dependent on CTRC or Leu-81, as re-synthesis was also accomplished by other proteases acting on mutated cationic trypsin. The Leu81-Glu82 peptide bond is located within a calcium binding loop, and thermodynamic stability of the bond was strictly dependent on calcium and on the calcium-coordinated residue Glu-85. Trypsinolytic cleavage of the Arg122-Val123 site was also delayed in trypsin relative to trypsinogen in a calcium-dependent manner, but for this bond cleavage was modulated by kinetic rather than thermodynamic control. Our results reveal that the trypsinogen to trypsin conformational switch modulates cleavage susceptibility of nick sites by altering both the thermodynamics and kinetics of cleavage to protect human cationic trypsin from premature degradation.

  16. First Detection of c-C3H2 in a Circumstellar Disk

    NASA Astrophysics Data System (ADS)

    Qi, Chunhua; Öberg, Karin I.; Wilner, David J.; Rosenfeld, Katherine A.

    2013-03-01

    We report the first detection of c-C3H2 in a circumstellar disk. The c-C3H2 J = 6-5 line (217.882 GHz) is detected and imaged through Atacama Large Millimeter Array (ALMA) Science Verification observations toward the disk around the Herbig Ae star HD 163296 at 0.''8 resolution. The emission is consistent with that arising from a Keplerian rotating disk. Two additional c-C3H2 transitions are also tentatively detected, bolstering the identification of this species, but with insufficient signal-to-noise ratio to constrain the spatial distribution. Using a previously developed model for the physical structure of this disk, we fit a radial power-law distribution model to the c-C3H2 6-5 emission and find that c-C3H2 is present in a ring structure from an inner radius of about 30 AU to an outer radius of about 165 AU. The column density is estimated to be 1012-1013 cm-2. The clear detection and intriguing ring structure suggest that c-C3H2 has the potential to become a useful probe of radiation penetration in disks.

  17. Selective and Nonselective Cleavages in Positive and Negative CID of the Fragments Generated from In-Source Decay of Intact Proteins in MALDI-MS

    NASA Astrophysics Data System (ADS)

    Takayama, Mitsuo; Sekiya, Sadanori; Iimuro, Ryunosuke; Iwamoto, Shinichi; Tanaka, Koichi

    2014-01-01

    Selective and nonselective cleavages in ion trap low-energy collision-induced dissociation (CID) experiments of the fragments generated from in-source decay (ISD) with matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) of intact proteins are described in both positive and negative ion modes. The MALDI-ISD spectra of the proteins demonstrate common, discontinuous, abundant c- and z'-ions originating from cleavage at the N-Cα bond of Xxx-Asp/Asn and Gly-Xxx residues in both positive- and negative-ion modes. The positive ion CID of the c- and z'-ions resulted in product ions originating from selective cleavage at Asp-Xxx, Glu-Xxx and Cys-Xxx residues. Nonselective cleavage product ions rationalized by the mechanism of a "mobile proton" are also observed in positive ion CID spectra. Negative ion CID of the ISD fragments results in complex product ions accompanied by the loss of neutrals from b-, c-, and y-ions. The most characteristic feature of negative ion CID is selective cleavage of the peptide bonds of acidic residues, Xxx-Asp/Glu/Cys. A definite influence of α-helix on the CID product ions was not obtained. However, the results from positive ion and negative ion CID of the MALDI-ISD fragments that may have long α-helical domains suggest that acidic residues in helix-free regions tend to degrade more than those in helical regions.

  18. Site specificity of DSP-PP cleavage by BMP1.

    PubMed

    Yang, Robert T; Lim, Glendale L; Yee, Colin T; Fuller, Robert S; Ritchie, Helena H

    2014-08-01

    Bone morphogenic protein 1 (BMP1), a metalloproteinase, is known to cleave a wide variety of extracellular matrix proteins, suggesting that a consensus substrate cleavage amino acid sequence might exist. However, while such a consensus sequence has been proposed based on P4 to P4' (i.e. the four amino acids flanking either side of the BMP1 cleavage site; P4P3P2P1|P1'P2'P3'P4') sequence homologies between two BMP1 substrates, dentin matrix protein 1 and dentin sialoprotein phosphophoryn (DSP-PP) (i.e. xMQx|DDP), no direct testing has so far been attempted. Using an Sf9 cell expression system, we have been able to produce large amounts of uncleaved DSP-PP. Point mutations introduced into this recombinant DSP-PP were then tested for their effects on DSP-PP cleavage by either Sf9 endogenous tolloid-related protein 1 (TLR-1) or by its human homolog, BMP1. Here, we have measured DSP-PP cleavage efficiencies after modifications based on P4-P4' sequence comparisons with dentin matrix protein 1, as well as for prolysyl oxidase and chordin, two other BMP1 substrates. Our results demonstrate that any mutations within or outside of the DSP-PP P4 to P4' cleavage site can block, impair or accelerate DSP-PP cleavage, and suggest that its BMP1 cleavage site is highly conserved in order to regulate its cleavage efficiency, possibly with additional assistance from its conserved exosites. Thus, BMP1 cleavage cannot be based on a consensus substrate cleavage site.

  19. Oxidative addition of methane and benzene C--H bonds to rhodium center: A DFT study

    NASA Astrophysics Data System (ADS)

    Bi, Siwei; Zhang, Zhenwei; Zhu, Shufen

    2006-11-01

    A density functional theory study on mechanisms of the oxidative addition of methane and benzene C-H bonds to the rhodium center containing Cp and PMe 3 ligands has been performed. Our calculated results confirm that the C-H bond cleavage from a sigma complex to a hydride alkyl complex is the rate-determining step. Compared with the case of methane C-H bond, the oxidative addition of benzene C-H bond is more favorable kinetically and thermodynamically. Stronger backdonation from metal center to the σ ∗ antibonding orbital of benzene C-H bond is responsible for the observations.

  20. Distinct oxidative cleavage and modification of bovine [Cu- Zn]-SOD by an ascorbic acid/Cu(II) system: Identification of novel copper binding site on SOD molecule.

    PubMed

    Uehara, Hiroshi; Luo, Shen; Aryal, Baikuntha; Levine, Rodney L; Rao, V Ashutosh

    2016-05-01

    We investigated the combined effect of ascorbate and copper [Asc/Cu(II)] on the integrity of bovine [Cu-Zn]-superoxide dismutase (bSOD1) as a model system to study the metal catalyzed oxidation (MCO) and fragmentation of proteins. We found Asc/Cu(II) mediates specific cleavage of bSOD1 and generates 12.5 and 3.2kDa fragments in addition to oxidation/carbonylation of the protein. The effect of other tested transition metals, a metal chelator, and hydrogen peroxide on the cleavage and oxidation indicated that binding of copper to a previously unknown site on SOD1 is responsible for the Asc/Cu(II) specific cleavage and oxidation. We utilized tandem mass spectrometry to identify the specific cleavage sites of Asc/Cu(II)-treated bSOD1. Analyses of tryptic- and AspN-peptides have demonstrated the cleavage to occur at Gly31 with peptide bond breakage with Thr30 and Ser32 through diamide and α-amidation pathways, respectively. The three-dimensional structure of bSOD1 reveals the imidazole ring of His19 localized within 5Å from the α-carbon of Gly31 providing a structural basis that copper ion, most likely coordinated by His19, catalyzes the specific cleavage reaction.

  1. A dense and strong bonding collagen film for carbon/carbon composites

    NASA Astrophysics Data System (ADS)

    Cao, Sheng; Li, Hejun; Li, Kezhi; Lu, Jinhua; Zhang, Leilei

    2015-08-01

    A strong bonding collagen film was successfully prepared on carbon/carbon (C/C) composites. The surface conditions of the modified C/C composites were detected by contact angle measurements, scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and Raman spectra. The roughness, optical morphology, bonding strength and biocompatibility of collagen films at different pH values were detected by confocal laser scanning microscope (CLSM), universal test machine and cytology tests in vitro. After a 4-h modification in 30% H2O2 solution at 100 °C, the contact angle on the surface of C/C composites was decreased from 92.3° to 65.3°. Large quantities of hydroxyl, carboxyl and carbonyl functional groups were formed on the surface of the modified C/C composites. Then a dense and continuous collagen film was prepared on the modified C/C substrate. Bonding strength between collagen film and C/C substrate was reached to 8 MPa level when the pH value of this collagen film was 2.5 after the preparing process. With 2-day dehydrathermal treatment (DHT) crosslinking at 105 °C, the bonding strength was increased to 12 MPa level. At last, the results of in vitro cytological test showed that this collagen film made a great improvement on the biocompatibility on C/C composites.

  2. 3-Keto-5-aminohexanoate Cleavage Enzyme

    PubMed Central

    Bellinzoni, Marco; Bastard, Karine; Perret, Alain; Zaparucha, Anne; Perchat, Nadia; Vergne, Carine; Wagner, Tristan; de Melo-Minardi, Raquel C.; Artiguenave, François; Cohen, Georges N.; Weissenbach, Jean; Salanoubat, Marcel; Alzari, Pedro M.

    2011-01-01

    The exponential increase in genome sequencing output has led to the accumulation of thousands of predicted genes lacking a proper functional annotation. Among this mass of hypothetical proteins, enzymes catalyzing new reactions or using novel ways to catalyze already known reactions might still wait to be identified. Here, we provide a structural and biochemical characterization of the 3-keto-5-aminohexanoate cleavage enzyme (Kce), an enzymatic activity long known as being involved in the anaerobic fermentation of lysine but whose catalytic mechanism has remained elusive so far. Although the enzyme shows the ubiquitous triose phosphate isomerase (TIM) barrel fold and a Zn2+ cation reminiscent of metal-dependent class II aldolases, our results based on a combination of x-ray snapshots and molecular modeling point to an unprecedented mechanism that proceeds through deprotonation of the 3-keto-5-aminohexanoate substrate, nucleophilic addition onto an incoming acetyl-CoA, intramolecular transfer of the CoA moiety, and final retro-Claisen reaction leading to acetoacetate and 3-aminobutyryl-CoA. This model also accounts for earlier observations showing the origin of carbon atoms in the products, as well as the absence of detection of any covalent acyl-enzyme intermediate. Kce is the first representative of a large family of prokaryotic hypothetical proteins, currently annotated as the “domain of unknown function” DUF849. PMID:21632536

  3. Lesion Recognition and Cleavage by Endonuclease V

    PubMed Central

    Lin, Jun; Gao, Honghai; Schallhorn, Kathryn A.; Harris, Rebecca M.; Cao, Weiguo; Ke, Pu Chun

    2008-01-01

    Endonuclease V (endo V) recognizes and cleaves deoxyinosine in deaminated DNA. These enzymatic activities are precursors of DNA repair and are fueled by metal ions such as Ca2+ and Mg2+, with the former being associated with protein binding and the latter with DNA cleavage. Using the technique of fluorescence resonance energy transfer (FRET) we determined the single-molecule kinetics of endo V in a catalytic cycle using a substrate of deoxyinosine-containing single-stranded DNA (ssDNA). The ssDNA was labeled with TAMRA, a fluorescence donor, while the endo V was labeled with Cy5, a fluorescence acceptor. The time lapses of FRET, resulting from the sequential association, recognition, and dissociation of the deoxyinosine by the endo V, were determined at 5.9 s, 14.5 s, and 9.1 s, respectively, in the presence of Mg2+. In contrast, the process of deoxyinosine recognition appeared little affected by the metal type. The prolonged association and dissociation events in the presence of the Ca2+-Mg2+ combination, as compared to that of Mg2+ alone, support the hypothesis that endo V has two metal binding sites to regulate its enzymatic activities. PMID:17521169

  4. Measurement of the cleavage energy of graphite

    PubMed Central

    Wang, Wen; Dai, Shuyang; Li, Xide; Yang, Jiarui; Srolovitz, David J.; Zheng, Quanshui

    2015-01-01

    The basal plane cleavage energy (CE) of graphite is a key material parameter for understanding many of the unusual properties of graphite, graphene and carbon nanotubes. Nonetheless, a wide range of values for the CE has been reported and no consensus has yet emerged. Here we report the first direct, accurate experimental measurement of the CE of graphite using a novel method based on the self-retraction phenomenon in graphite. The measured value, 0.37±0.01 J m−2 for the incommensurate state of bicrystal graphite, is nearly invariant with respect to temperature (22 °C≤T≤198 °C) and bicrystal twist angle, and insensitive to impurities from the atmosphere. The CE for the ideal ABAB graphite stacking, 0.39±0.02 J m−2, is calculated based on a combination of the measured CE and a theoretical calculation. These experimental measurements are also ideal for use in evaluating the efficacy of competing theoretical approaches. PMID:26314373

  5. Peptidase specificity from the substrate cleavage collection in the MEROPS database and a tool to measure cleavage site conservation

    PubMed Central

    Rawlings, Neil D.

    2016-01-01

    One peptidase can usually be distinguished from another biochemically by its action on proteins, peptides and synthetic substrates. Since 1996, the MEROPS database (http://merops.sanger.ac.uk) has accumulated a collection of cleavages in substrates that now amounts to 66,615 cleavages. The total number of peptidases for which at least one cleavage is known is 1700 out of a total of 2457 different peptidases. This paper describes how the cleavages are obtained from the scientific literature, how they are annotated and how cleavages in peptides and proteins are cross-referenced to entries in the UniProt protein sequence database. The specificity profiles of 556 peptidases are shown for which ten or more substrate cleavages are known. However, it has been proposed that at least 40 cleavages in disparate proteins are required for specificity analysis to be meaningful, and only 163 peptidases (6.6%) fulfil this criterion. Also described are the various displays shown on the website to aid with the understanding of peptidase specificity, which are derived from the substrate cleavage collection. These displays include a logo, distribution matrix, and tables to summarize which amino acids or groups of amino acids are acceptable (or not acceptable) in each substrate binding pocket. For each protein substrate, there is a display to show how it is processed and degraded. Also described are tools on the website to help with the assessment of the physiological relevance of cleavages in a substrate. These tools rely on the hypothesis that a cleavage site that is conserved in orthologues is likely to be physiologically relevant, and alignments of substrate protein sequences are made utilizing the UniRef50 database, in which in each entry sequences are 50% or more identical. Conservation in this case means substitutions are permitted only if the amino acid is known to occupy the same substrate binding pocket from at least one other substrate cleaved by the same peptidase. PMID

  6. Familial Alzheimer’s mutations within APPTM increase Aβ42 production by enhancing accessibility of ɛ-cleavage site

    NASA Astrophysics Data System (ADS)

    Chen, Wen; Gamache, Eric; Rosenman, David J.; Xie, Jian; Lopez, Maria M.; Li, Yue-Ming; Wang, Chunyu

    2014-01-01

    The high Aβ42/Aβ40 production ratio is a hallmark of familial Alzheimer’s disease, which can be caused by mutations in the amyloid precursor protein (APP). The C-terminus of Aβ is generated by γ-secretase cleavage within the transmembrane domain of APP (APPTM), a process that is primed by an initial ɛ-cleavage at either T48 or L49, resulting in subsequent production of Aβ42 or Aβ40, respectively. Here we solve the dimer structures of wild-type APPTM (AAPTM WT) and mutant APPTM (FAD mutants V44M) with solution NMR. The right-handed APPTM helical dimer is mediated by GXXXA motif. From the NMR structural and dynamic data, we show that the V44M and V44A mutations can selectively expose the T48 site by weakening helical hydrogen bonds and increasing hydrogen-deuterium exchange rate (kex). We propose a structural model in which FAD mutations (V44M and V44A) can open the T48 site γ-secretase for the initial ɛ-cleavage, and consequently shift cleavage preference towards Aβ42.

  7. Quantification of DNA cleavage specificity in Hi-C experiments.

    PubMed

    Meluzzi, Dario; Arya, Gaurav

    2016-01-08

    Hi-C experiments produce large numbers of DNA sequence read pairs that are typically analyzed to deduce genomewide interactions between arbitrary loci. A key step in these experiments is the cleavage of cross-linked chromatin with a restriction endonuclease. Although this cleavage should happen specifically at the enzyme's recognition sequence, an unknown proportion of cleavage events may involve other sequences, owing to the enzyme's star activity or to random DNA breakage. A quantitative estimation of these non-specific cleavages may enable simulating realistic Hi-C read pairs for validation of downstream analyses, monitoring the reproducibility of experimental conditions and investigating biophysical properties that correlate with DNA cleavage patterns. Here we describe a computational method for analyzing Hi-C read pairs to estimate the fractions of cleavages at different possible targets. The method relies on expressing an observed local target distribution downstream of aligned reads as a linear combination of known conditional local target distributions. We validated this method using Hi-C read pairs obtained by computer simulation. Application of the method to experimental Hi-C datasets from murine cells revealed interesting similarities and differences in patterns of cleavage across the various experiments considered.

  8. The VHSE-based prediction of proteasomal cleavage sites.

    PubMed

    Xie, Jiangan; Xu, Zhiling; Zhou, Shangbo; Pan, Xianchao; Cai, Shaoxi; Yang, Li; Mei, Hu

    2013-01-01

    Prediction of proteasomal cleavage sites has been a focus of computational biology. Up to date, the predictive methods are mostly based on nonlinear classifiers and variables with little physicochemical meanings. In this paper, the physicochemical properties of 14 residues both upstream and downstream of a cleavage site are characterized by VHSE (principal component score vector of hydrophobic, steric, and electronic properties) descriptors. Then, the resulting VHSE descriptors are employed to construct prediction models by support vector machine (SVM). For both in vivo and in vitro datasets, the performance of VHSE-based method is comparatively better than that of the well-known PAProC, MAPPP, and NetChop methods. The results reveal that the hydrophobic property of 10 residues both upstream and downstream of the cleavage site is a dominant factor affecting in vivo and in vitro cleavage specificities, followed by residue's electronic and steric properties. Furthermore, the difference in hydrophobic potential between residues flanking the cleavage site is proposed to favor substrate cleavages. Overall, the interpretable VHSE-based method provides a preferable way to predict proteasomal cleavage sites.

  9. Use of Cleavage as an Aid in the Optical Determination of Minerals.

    ERIC Educational Resources Information Center

    Ehlers, Ernest G.

    1980-01-01

    Described is the use of cleavage as an aid to microscopic determination of unknown minerals by immersion methods. Cleavages are examined in relation to fragment shapes, types of extinction, and cleavage-optical relationships. (Author/DS)

  10. Determination of the Proteolytic Cleavage Sites of the Amyloid Precursor-Like Protein 2 by the Proteases ADAM10, BACE1 and γ-Secretase

    PubMed Central

    Hogl, Sebastian; Kuhn, Peer-Hendrik; Colombo, Alessio; Lichtenthaler, Stefan F.

    2011-01-01

    Regulated intramembrane proteolysis of the amyloid precursor protein (APP) by the protease activities α-, β- and γ-secretase controls the generation of the neurotoxic amyloid β peptide. APLP2, the amyloid precursor-like protein 2, is a homolog of APP, which shows functional overlap with APP, but lacks an amyloid β domain. Compared to APP, less is known about the proteolytic processing of APLP2, in particular in neurons, and the cleavage sites have not yet been determined. APLP2 is cleaved by the β-secretase BACE1 and additionally by an α-secretase activity. The two metalloproteases ADAM10 and ADAM17 have been suggested as candidate APLP2 α-secretases in cell lines. Here, we used RNA interference and found that ADAM10, but not ADAM17, is required for the constitutive α-secretase cleavage of APLP2 in HEK293 and SH-SY5Y cells. Likewise, in primary murine neurons knock-down of ADAM10 suppressed APLP2 α-secretase cleavage. Using mass spectrometry we determined the proteolytic cleavage sites in the APLP2 sequence. ADAM10 was found to cleave APLP2 after arginine 670, whereas BACE1 cleaves after leucine 659. Both cleavage sites are located in close proximity to the membrane. γ-secretase cleavage was found to occur at different peptide bonds between alanine 694 and valine 700, which is close to the N-terminus of the predicted APLP2 transmembrane domain. Determination of the APLP2 cleavage sites enables functional studies of the different APLP2 ectodomain fragments and the production of cleavage-site specific antibodies for APLP2, which may be used for biomarker development. PMID:21695060

  11. Specific oxidative cleavage of carotenoids by VP14 of maize

    SciTech Connect

    Schwartz, S.H.; Zeevaart, J.A.D.; Gage, D.A.; Tan, Bao Cai

    1997-06-20

    The plant growth regulator abscisic acid (ABA) is formed by the oxidative cleavage of an epoxy-carotenoid. The synthesis of other apocarotenoids, such as vitamin A in animals, may occur by a similar mechanism. In ABA biosynthesis, oxidative cleavage is the first committed reaction and is believed to be the key regulatory step. A new ABA-deficient mutant of maize has been identified and the corresponding gene, Vp14, has been cloned. The recombinant VP14 protein catalyzes the cleavage of 9-cis-epoxy-carotenoids to form C{sub 25} apo-aldehydes and xanthoxin, a precursor of ABA in higher plants.

  12. Detection of nucleic acid sequences by invader-directed cleavage

    DOEpatents

    Brow, Mary Ann D.; Hall, Jeff Steven Grotelueschen; Lyamichev, Victor; Olive, David Michael; Prudent, James Robert

    1999-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The 5' nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof. The present invention further relates to methods and devices for the separation of nucleic acid molecules based by charge.

  13. Active Metal Brazing and Characterization of Brazed Joints in C-C and C-SiC Composites to Copper-Clad-Molybdenum System

    NASA Technical Reports Server (NTRS)

    Singh, M.; Asthana, R.

    2008-01-01

    Carbon/carbon composites with CVI and resin-derived matrices, and C/SiC composites reinforced with T-300 carbon fibers in a CVI SiC matrix were joined to Cu-clad Mo using two Ag-Cu braze alloys, Cusil-ABA (1.75% Ti) and Ticusil (4.5% Ti). The brazed joints revealed good interfacial bonding, preferential precipitation of Ti at the composite/braze interface, and a tendency toward delamination in resin-derived C/C composite. Extensive braze penetration of the inter-fiber channels in the CVI C/C composites was observed. The Knoop microhardness (HK) distribution across the C/C joints indicated sharp gradients at the interface, and a higher hardness in Ticusil than in Cusil-ABA. For the C/SiC composite to Cu-clad-Mo joints, the effect of composite surface preparation revealed that ground samples did not crack whereas unground samples cracked. Calculated strain energy in brazed joints in both systems is comparable to the strain energy in a number of other ceramic/metal systems. Theoretical predictions of the effective thermal resistance suggest that such joined systems may be promising for thermal management applications.

  14. Rubber oxygenase and latex clearing protein cleave rubber to different products and use different cleavage mechanisms.

    PubMed

    Birke, Jakob; Jendrossek, Dieter

    2014-08-01

    Two types of enzyme for oxidative cleavage of poly(cis-1,4-isoprene) are known. One is rubber oxygenase (RoxA) that is secreted by Xanthomonas sp. strain 35Y and a few other Gram-negative rubber-degrading bacteria during growth on polyisoprene. RoxA was studied in the past, and the recently solved structure showed a structural relationship to bacterial cytochrome c peroxidases (J. Seidel et al., Proc. Natl. Acad. Sci. U. S. A. 110:13833-13838, 2013, http://dx.doi.org/10.1073/pnas.1305560110). The other enzyme is latex-clearing protein (Lcp) that is secreted by rubber-degrading actinomycetes, but Lcp has not yet been purified. Here, we expressed Lcp of Streptomyces sp. strain K30 in a ΔroxA background of Xanthomonas sp. strain 35Y and purified native (untagged) Lcp. The specific activities of Lcp and RoxA were 0.70 and 0.48 U/mg, respectively. Lcp differed from RoxA in the absence of heme groups and other characteristics. Notably, Lcp degraded polyisoprene via endo-type cleavage to tetra-C20 and higher oligo-isoprenoids with aldehyde and keto end groups, whereas RoxA used an exo-type cleavage mechanism to give the main end product 12-oxo-4,8-dimethyltrideca-4,8-diene-1-al (ODTD). RoxA was able to cleave isolated Lcp-derived oligo-isoprenoid molecules to ODTD. Inhibitor studies, spectroscopic investigations and metal analysis gave no indication for the presence of iron, other metals, or cofactors in Lcp. Our results suggest that Lcp could be a member of the growing group of cofactor-independent oxygenases and differs in the cleavage mechanism from heme-dependent RoxA. In conclusion, RoxA and Lcp represent two different answers to the same biochemical problem, the cleavage of polyisoprene, a polymer that has carbon-carbon double bonds as the only functional groups for enzymatic attack.

  15. Effect of Cu particles on the ablation properties of C/C composites

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Li, Hejun; Shi, Xiaohong; Feng, Wei; Feng, Bo; Sun, Can

    2013-11-01

    To improve the ablation property, Cu particles were introduced into carbon/carbon (C/C) composites through liquid precursor infiltration combined with in-situ reaction. Compared to pure C/C composites, the modified composites displayed better mechanical property and ablation resistance under oxyacetylene torch when the Cu content was below 8 wt. %. For C/C-Cu composites with 8 wt. % Cu, a 14% decline of linear ablation rate was obtained while defective fibers and laminar matrix survived after ablation. Analyses of ablation behavior depending on ablation time indicated that overflowing of Cu gas weakened the scouring of ablation gas and the Cu gas reduced the partial pressure of oxidizing species, which led to the improved ablation property.

  16. Chemical Bonds II

    ERIC Educational Resources Information Center

    Sanderson, R. T.

    1972-01-01

    The continuation of a paper discussing chemical bonding from a bond energy viewpoint, with a number of examples of single and multiple bonds. (Part I appeared in volume 1 number 3, pages 16-23, February 1972.) (AL)

  17. A glucuronoyl esterase from Acremonium alcalophilum cleaves native lignin-carbohydrate ester bonds.

    PubMed

    Arnling Bååth, Jenny; Giummarella, Nicola; Klaubauf, Sylvia; Lawoko, Martin; Olsson, Lisbeth

    2016-08-01

    The Glucuronoyl esterases (GE) have been proposed to target lignin-carbohydrate (LC) ester bonds between lignin moieties and glucuronic acid side groups of xylan, but to date, no direct observations of enzymatic cleavage on native LC ester bonds have been demonstrated. In the present investigation, LCC fractions from spruce and birch were treated with a recombinantly produced GE originating from Acremonium alcalophilum (AaGE1). A combination of size exclusion chromatography and (31) P NMR analyses of phosphitylated LCC samples, before and after AaGE1 treatment provided the first evidence for cleavage of the LC ester linkages existing in wood.

  18. What Determines Bond Costs. Municipal Bonds Series.

    ERIC Educational Resources Information Center

    Young, Douglas; And Others

    Public officials in small towns who participate infrequently in the bond market need information about bond financing. This publication, one in a series of booklets published by the Western Rural Development Center using research gathered between 1967-77, discusses factors influencing the marketability and cost of bond financing for towns and…

  19. Spontaneous Si-C bond cleavage in (Triphos(Si))-nickel complexes.

    PubMed

    Petuker, Anette; Mebs, Stefan; Schuth, Nils; Gerschel, Philipp; Reback, Matthew L; Mallick, Bert; van Gastel, Maurice; Haumann, Michael; Apfel, Ulf-Peter

    2017-01-17

    Herein, we report on the versatile reactions of CH3C(CH2PPh2)3 as well as CH3Si(CH2PPh2)3 derived Ni-complexes. While Ni[CH3C(CH2PPh2)3] complexes reveal high stability, the Ni[CH3Si(CH2PPh2)3] analogs show rapid decomposition at room temperature and afford the unprecedented pseudo-tetrahedral phosphino methanide complex 5. We provide a detailed electronic structure of 5 from X-ray absorption and emission spectroscopy data analysis in combination with DFT calculations, as well as from comparison with structurally related complexes. A mechanistic study for the formation of complex 5 by reaction with BF4(-) is presented, based on a comparison of experimental data with quantum chemical calculations. We also show a simple route towards isolable Ni(i)-complexes on the gram scale.

  20. Electrochemical Reduction of Trivalent Organophosphorus Compounds: Mechanism and Products from Phosphorus-Heteroatom Bond Cleavage.

    DTIC Science & Technology

    1986-08-19

    nitrate in acetonitrile separated from the catholyte by a microporous Vycor frit. In a typical experiment the anolyte solution consisted of 200 ml of dry...grams (0.004 moles) of chlorodiphenylphosphine. The anolyte and catholyte solutions were circulated from separate flasks by ECO Model 920 Teflon Pumps