Sample records for c-h activation step

  1. Synthesis of antiviral tetrahydrocarbazole derivatives by photochemical and acid-catalyzed C-H functionalization via intermediate peroxides (CHIPS).

    PubMed

    Gulzar, Naeem; Klussmann, Martin

    2014-06-20

    The direct functionalization of C-H bonds is an important and long standing goal in organic chemistry. Such transformations can be very powerful in order to streamline synthesis by saving steps, time and material compared to conventional methods that require the introduction and removal of activating or directing groups. Therefore, the functionalization of C-H bonds is also attractive for green chemistry. Under oxidative conditions, two C-H bonds or one C-H and one heteroatom-H bond can be transformed to C-C and C-heteroatom bonds, respectively. Often these oxidative coupling reactions require synthetic oxidants, expensive catalysts or high temperatures. Here, we describe a two-step procedure to functionalize indole derivatives, more specifically tetrahydrocarbazoles, by C-H amination using only elemental oxygen as oxidant. The reaction uses the principle of C-H functionalization via Intermediate PeroxideS (CHIPS). In the first step, a hydroperoxide is generated oxidatively using visible light, a photosensitizer and elemental oxygen. In the second step, the N-nucleophile, an aniline, is introduced by Brønsted-acid catalyzed activation of the hydroperoxide leaving group. The products of the first and second step often precipitate and can be conveniently filtered off. The synthesis of a biologically active compound is shown.

  2. Synthesis of phenanthridinones from N-methoxybenzamides and arenes by multiple palladium-catalyzed C-H activation steps at room temperature.

    PubMed

    Karthikeyan, Jaganathan; Cheng, Chien-Hong

    2011-10-10

    Many steps make light work: substituted phenanthridinones can be obtained with high regioselectivity and in very good yields by palladium-catalyzed cyclization reactions of N-methoxybenzamides with arenes. The reaction proceeds through multiple oxidative C-H activation and C-C/C-N formation steps in one pot at room temperature, and thus provides a simple method for generating bioactive phenanthridinones. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Recent Developments in C-H Activation for Materials Science in the Center for Selective C-H Activation.

    PubMed

    Zhang, Junxiang; Kang, Lauren J; Parker, Timothy C; Blakey, Simon B; Luscombe, Christine K; Marder, Seth R

    2018-04-16

    Abstract : Organic electronics is a rapidly growing field driven in large part by the synthesis of ∏-conjugated molecules and polymers. Traditional aryl cross-coupling reactions such as the Stille and Suzuki have been used extensively in the synthesis of ∏-conjugated molecules and polymers, but the synthesis of intermediates necessary for traditional cross-couplings can include multiple steps with toxic and hazardous reagents. Direct arylation through C-H bond activation has the potential to reduce the number of steps and hazards while being more atom-economical. Within the Center for Selective C-H Functionalization (CCHF), we have been developing C-H activation methodology for the synthesis of ∏-conjugated materials of interest, including direct arylation of difficult-to-functionalize electron acceptor intermediates and living polymerization of ∏-conjugated polymers through C-H activation.

  4. Effect of Pd surface structure on the activation of methyl acetate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Lijun; Xu, Ye

    2011-01-01

    The activation of methyl acetate (CH3COOCH3; MA) has been studied using periodic density functional theory calculations to probe the effect of Pd surface structure on the selectivity in MA activation. The adsorption of MA, dehydrogenated derivatives, enolate (CH2COOCH3; ENL) and methylene acetate (CH3COOCH2; MeA), and several dissociation products (including acetate, acetyl, ketene, methoxy, formaldehyde, CO, C, O, and H); and C-H and C-O (mainly in the RCO-OR position) bond dissociation in MA, ENL, and MeA, are calculated on Pd(111) terrace, step, and kink; and on Pd(100) terrace and step. The adsorption of most species is not strongly affected between (111)-more » to (100)-type surfaces, but is clearly enhanced by step/kink compared to the corresponding terrace. Going from terrace to step edge and from (111)- to (100)-type surfaces both stabilize the transition states of C-O bond dissociation steps. Going from terrace to step edge also stabilizes the transition states of C-H bond dissociation steps, but going from (111)- to (100)-type surfaces does not clearly do so. We propose that compared to the Pd(111) terrace, the Pd(100) terrace is more selective for C-O bond dissociation that is desirable for alcohol formation, whereas the Pd step edges are more selective for C-H bond dissociation.« less

  5. C-H Activation and Alkyne Annulation via Automatic or Intrinsic Directing Groups: Towards High Step Economy.

    PubMed

    Zheng, Liyao; Hua, Ruimao

    2018-06-01

    Direct transformation of carbon-hydrogen bond (C-H) has emerged to be a trend for construction of molecules from building blocks with no or less prefunctionalization, leading high atom and step economy. Directing group (DG) strategy is widely used to achieve higher reactivity and selectivity, but additional steps are usually needed for installation and/or cleavage of DGs, limiting step economy of the overall transformation. To meet this challenge, we proposed a concept of automatic DG (DG auto ), which is auto-installed and/or auto-cleavable. Multifunctional oxime and hydrazone DG auto were designed for C-H activation and alkyne annulation to furnish diverse nitrogen-containing heterocycles. Imidazole was employed as an intrinsic DG (DG in ) to synthesize ring-fused and π-extended functional molecules. The alkyne group in the substrates can also be served as DG in for ortho-C-H activation to afford carbocycles. In this account, we intend to give a review of our progress in this area and brief introduction of other related advances on C-H functionalization using DG auto or DG in strategies. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Ab initio molecular dynamics of solvation effects on reactivity at electrified interfaces

    DOE PAGES

    Herron, Jeffrey A.; Morikawa, Yoshitada; Mavrikakis, Manos

    2016-08-08

    Using ab initio molecular dynamics (as implemented in periodic, self-consistent (GGA-PBE) density functional theory (DFT) we investigated the mechanism of methanol electro-oxidation on Pt(111). We investigated the role of solvation and electrode potential on the energetics of the first proton transfer step, methanol electro-oxidation to methoxy (CH 3O) or hydroxymethyl (CH 2OH). The results show that solvation weakens the adsorption of methoxy to uncharged Pt(111), while the binding energy of methanol and hydroxymethyl are not significantly affected. The free energies of activation for breaking the C-H and O-H bonds in methanol were calculated through a Blue Moon Ensemble using constrainedmore » ab initio molecular dynamics. Calculated barriers for these elementary steps on unsolvated, uncharged Pt(111) are similar to results for climbing-image nudged elastic band calculations from the literature. Solvation reduces the barrier for both C-H and O-H bond activation steps with respect to their vapor phase values, though the effect is more pronounced for C-H bond activation due to less disruption of the hydrogen-bond network. The calculated activation energy barriers show that breaking the C-H bond of methanol is more facile than the O-H bond on solvated negatively biased, or uncharged Pt(111). Furthermore, with positive bias, O-H bond activation is enhanced, becoming slightly more facile than C-H bond activation.« less

  7. Experimental and theoretical study on activation of the C-H bond in pyridine by [M(m)]- (M = Cu, Ag, Au, m = 1-3).

    PubMed

    Liu, Xiao-Jing; Hamilton, I P; Han, Ke-Li; Tang, Zi-Chao

    2010-09-21

    Activation of the C-H bond of pyridine by [M(m)](-) (M = Cu, Ag, Au, m = 1-3) is investigated by experiment and theory. Complexes of coinage metal clusters and the pyridyl group, [M(m)-C(5)H(4)N](-), are produced from reactions between metal clusters formed by laser ablation of coinage metal samples and pyridine molecules seeded in argon carrier gas. We examine the structure and formation mechanism of these pyridyl-coinage metal complexes. Our study shows that C(5)H(4)N bonds to the metal clusters through a M-C sigma bond and [M(m)-C(5)H(4)N](-) is produced via a stepwise mechanism. The first step is a direct insertion reaction between [M(m)](-) and C(5)H(5)N with activation of the C-H bond to yield the intermediate [HM(m)-C(5)H(4)N](-). The second step is H atom abstraction by a neutral metal atom to yield [M(m)-C(5)H(4)N](-).

  8. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters.

    PubMed

    Chin, Ya-Huei Cathy; Buda, Corneliu; Neurock, Matthew; Iglesia, Enrique

    2011-10-12

    Kinetic and isotopic data and density functional theory treatments provide evidence for the elementary steps and the active site requirements involved in the four distinct kinetic regimes observed during CH(4) oxidation reactions using O(2), H(2)O, or CO(2) as oxidants on Pt clusters. These four regimes exhibit distinct rate equations because of the involvement of different kinetically relevant steps, predominant adsorbed species, and rate and equilibrium constants for different elementary steps. Transitions among regimes occur as chemisorbed oxygen (O*) coverages change on Pt clusters. O* coverages are given, in turn, by a virtual O(2) pressure, which represents the pressure that would give the prevalent steady-state O* coverages if their adsorption-desorption equilibrium was maintained. The virtual O(2) pressure acts as a surrogate for oxygen chemical potentials at catalytic surfaces and reflects the kinetic coupling between C-H and O═O activation steps. O* coverages and virtual pressures depend on O(2) pressure when O(2) activation is equilibrated and on O(2)/CH(4) ratios when this step becomes irreversible as a result of fast scavenging of O* by CH(4)-derived intermediates. In three of these kinetic regimes, C-H bond activation is the sole kinetically relevant step, but occurs on different active sites, which evolve from oxygen-oxygen (O*-O*), to oxygen-oxygen vacancy (O*-*), and to vacancy-vacancy (*-*) site pairs as O* coverages decrease. On O*-saturated cluster surfaces, O*-O* site pairs activate C-H bonds in CH(4) via homolytic hydrogen abstraction steps that form CH(3) groups with significant radical character and weak interactions with the surface at the transition state. In this regime, rates depend linearly on CH(4) pressure but are independent of O(2) pressure. The observed normal CH(4)/CD(4) kinetic isotope effects are consistent with the kinetic-relevance of C-H bond activation; identical (16)O(2)-(18)O(2) isotopic exchange rates in the presence or absence of CH(4) show that O(2) activation steps are quasi-equilibrated during catalysis. Measured and DFT-derived C-H bond activation barriers are large, because of the weak stabilization of the CH(3) fragments at transition states, but are compensated by the high entropy of these radical-like species. Turnover rates in this regime decrease with increasing Pt dispersion, because low-coordination exposed Pt atoms on small clusters bind O* more strongly than those that reside at low-index facets on large clusters, thus making O* less effective in H-abstraction. As vacancies (*, also exposed Pt atoms) become available on O*-covered surfaces, O*-* site pairs activate C-H bonds via concerted oxidative addition and H-abstraction in transition states effectively stabilized by CH(3) interactions with the vacancies, which lead to much higher turnover rates than on O*-O* pairs. In this regime, O(2) activation becomes irreversible, because fast C-H bond activation steps scavenge O* as it forms. Thus, O* coverages are set by the prevalent O(2)/CH(4) ratios instead of the O(2) pressures. CH(4)/CD(4) kinetic isotope effects are much larger for turnovers mediated by O*-* than by O*-O* site pairs, because C-H (and C-D) activation steps are required to form the * sites involved in C-H bond activation. Turnover rates for CH(4)-O(2) reactions mediated by O*-* pairs decrease with increasing Pt dispersion, as in the case of O*-O* active structures, because stronger O* binding on small clusters leads not only to less reactive O* atoms, but also to lower vacancy concentrations at cluster surfaces. As O(2)/CH(4) ratios and O* coverages become smaller, O(2) activation on bare Pt clusters becomes the sole kinetically relevant step; turnover rates are proportional to O(2) pressures and independent of CH(4) pressure and no CH(4)/CD(4) kinetic isotope effects are observed. In this regime, turnover rates become nearly independent of Pt dispersion, because the O(2) activation step is essentially barrierless. In the absence of O(2), alternate weaker oxidants, such as H(2)O or CO(2), lead to a final kinetic regime in which C-H bond dissociation on *-* pairs at bare cluster surfaces limit CH(4) conversion rates. Rates become first-order in CH(4) and independent of coreactant and normal CH(4)/CD(4) kinetic isotope effects are observed. In this case, turnover rates increase with increasing dispersion, because low-coordination Pt atoms stabilize the C-H bond activation transition states more effectively via stronger binding to CH(3) and H fragments. These findings and their mechanistic interpretations are consistent with all rate and isotopic data and with theoretical estimates of activation barriers and of cluster size effects on transition states. They serve to demonstrate the essential role of the coverage and reactivity of chemisorbed oxygen in determining the type and effectiveness of surface structures in CH(4) oxidation reactions using O(2), H(2)O, or CO(2) as oxidants, as well as the diversity of rate dependencies, activation energies and entropies, and cluster size effects that prevail in these reactions. These results also show how theory and experiments can unravel complex surface chemistries on realistic catalysts under practical conditions and provide through the resulting mechanistic insights specific predictions for the effects of cluster size and surface coordination on turnover rates, the trends and magnitude of which depend sensitively on the nature of the predominant adsorbed intermediates and the kinetically relevant steps.

  9. Ligand-accelerated activation of strong C-H bonds of alkanes by a (salen)ruthenium(VI)-nitrido complex.

    PubMed

    Man, Wai-Lun; Lam, William W Y; Kwong, Hoi-Ki; Yiu, Shek-Man; Lau, Tai-Chu

    2012-09-03

    Kinetic and mechanistic studies on the intermolecular activation of strong C-H bonds of alkanes by a (salen)ruthenium(VI) nitride were performed. The initial, rate-limiting step, the hydrogen atom transfer (HAT) from the alkane to Ru(VI)≡N, generates Ru(V)=NH and RC·HCH(2)R. The following steps involve N-rebound and desaturation. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy

    PubMed Central

    Zheng, Jie; Sheng, Wenchao; Zhuang, Zhongbin; Xu, Bingjun; Yan, Yushan

    2016-01-01

    Understanding how pH affects the activity of hydrogen oxidation reaction (HOR) and hydrogen evolution reaction (HER) is key to developing active, stable, and affordable HOR/HER catalysts for hydroxide exchange membrane fuel cells and electrolyzers. A common linear correlation between hydrogen binding energy (HBE) and pH is observed for four supported platinum-group metal catalysts (Pt/C, Ir/C, Pd/C, and Rh/C) over a broad pH range (0 to 13), suggesting that the pH dependence of HBE is metal-independent. A universal correlation between exchange current density and HBE is also observed on the four metals, indicating that they may share the same elementary steps and rate-determining steps and that the HBE is the dominant descriptor for HOR/HER activities. The onset potential of CO stripping on the four metals decreases with pH, indicating a stronger OH adsorption, which provides evidence against the promoting effect of adsorbed OH on HOR/HER. PMID:27034988

  11. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy.

    PubMed

    Zheng, Jie; Sheng, Wenchao; Zhuang, Zhongbin; Xu, Bingjun; Yan, Yushan

    2016-03-01

    Understanding how pH affects the activity of hydrogen oxidation reaction (HOR) and hydrogen evolution reaction (HER) is key to developing active, stable, and affordable HOR/HER catalysts for hydroxide exchange membrane fuel cells and electrolyzers. A common linear correlation between hydrogen binding energy (HBE) and pH is observed for four supported platinum-group metal catalysts (Pt/C, Ir/C, Pd/C, and Rh/C) over a broad pH range (0 to 13), suggesting that the pH dependence of HBE is metal-independent. A universal correlation between exchange current density and HBE is also observed on the four metals, indicating that they may share the same elementary steps and rate-determining steps and that the HBE is the dominant descriptor for HOR/HER activities. The onset potential of CO stripping on the four metals decreases with pH, indicating a stronger OH adsorption, which provides evidence against the promoting effect of adsorbed OH on HOR/HER.

  12. The effect of anatase TiO2 surface structure on the behavior of ethanol adsorption and its initial dissociation step: A DFT study

    NASA Astrophysics Data System (ADS)

    Zhang, Riguang; Liu, Zhixue; Ling, Lixia; Wang, Baojun

    2015-10-01

    The perfect and defective surfaces of anatase TiO2 including (1 0 1) and (0 0 1) surfaces have been chosen to probe into the effect of anatase TiO2 surface structure on the behavior of ethanol adsorption and initial dissociation step. Here, the results are obtained by density functional theory (DFT) calculation together with the periodic slab model. Our results show that the surface structure of anatase TiO2 can obviously affect the behavior of ethanol adsorption and the catalytic activity of its initial dissociation step; firstly, on the perfect and defective surfaces of anatase (1 0 1), ethanol dominantly exists in the form of molecule adsorption; however, ethanol is the dissociative adsorption on the hydroxylated anatase (0 0 1), and the coexistences of molecular and dissociation adsorption modes on the perfect anatase (0 0 1). On the other hand, the initial dissociation step of ethanol with molecule adsorption prefers to begin with its O-H bond cleavage leading to CH3CH2O and H species rather than the cleavage of its α-C-H, β-C-H, C-C and C-O bonds, namely, the preferable O-H bond cleavage for the initial dissociation step of ethanol is independent of the surface structure of anatase TiO2; however, the corresponding catalytic activity of ethanol initial dissociation step with the O-H bond cleavage on different anatase TiO2 surfaces is in the following order: hydroxylated (0 0 1) > perfect (0 0 1) > defective (1 0 1) > perfect (1 0 1), suggesting that the catalytic activity for the initial dissociation step of ethanol is sensitive to the surface structure of anatase TiO2, and the hydroxylated (0 0 1) is the most favorable surface. Among these surfaces, the most favorable product for the initial dissociation step of ethanol is CH3CH2O species.

  13. Mechanistic Insight into Ketone α-Alkylation with Unactivated Olefins via C-H Activation Promoted by Metal-Organic Cooperative Catalysis (MOCC): Enriching the MOCC Chemistry.

    PubMed

    Dang, Yanfeng; Qu, Shuanglin; Tao, Yuan; Deng, Xi; Wang, Zhi-Xiang

    2015-05-20

    Metal-organic cooperative catalysis (MOCC) has been successfully applied for hydroacylation of olefins with aldehydes via directed C(sp(2))-H functionalization. Most recently, it was reported that an elaborated MOCC system, containing Rh(I) catalyst and 7-azaindoline (L1) cocatalyst, could even catalyze ketone α-alkylation with unactivated olefins via C(sp(3))-H activation. Herein we present a density functional theory study to understand the mechanism of the challenging ketone α-alkylation. The transformation uses IMesRh(I)Cl(L1)(CH2═CH2) as an active catalyst and proceeds via sequential seven steps, including ketone condensation with L1, giving enamine 1b; 1b coordination to Rh(I) active catalyst, generating Rh(I)-1b intermediate; C(sp(2))-H oxidative addition, leading to a Rh(III)-H hydride; olefin migratory insertion into Rh(III)-H bond; reductive elimination, generating Rh(I)-1c(alkylated 1b) intermediate; decoordination of 1c, liberating 1c and regenerating Rh(I) active catalyst; and hydrolysis of 1c, furnishing the final α-alkylation product 1d and regenerating L1. Among the seven steps, reductive elimination is the rate-determining step. The C-H bond preactivation via agostic interaction is crucial for the bond activation. The mechanism rationalizes the experimental puzzles: why only L1 among several candidates performed perfectly, whereas others failed, and why Wilkinson's catalyst commonly used in MOCC systems performed poorly. Based on the established mechanism and stimulated by other relevant experimental reactions, we attempted to enrich MOCC chemistry computationally, exemplifying how to develop new organic catalysts and proposing L7 to be an alternative for L1 and demonstrating the great potential of expanding the hitherto exclusive use of Rh(I)/Rh(III) manifold to Co(0)/Co(II) redox cycling in developing MOCC systems.

  14. 1,4-Iron Migration for Expedient Allene Annulations through Iron-Catalyzed C-H/N-H/C-O/C-H Functionalizations.

    PubMed

    Mo, Jiayu; Müller, Thomas; Oliveira, João C A; Ackermann, Lutz

    2018-06-25

    C-H activation bears great potential for enabling sustainable molecular syntheses in a step- and atom-economical manner, with major advances having been realized with precious 4d and 5d transition metals. In contrast, we employed earth abundant, nontoxic iron catalysts for versatile allene annulations through a unique C-H/N-H/C-O/C-H functionalization sequence. The powerful iron catalysis occurred under external-oxidant-free conditions even at room temperature, while detailed mechanistic studies revealed an unprecedented 1,4-iron migration regime for facile C-H activations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Time resolved infrared studies of C-H bond activation by organometallics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asplund, M.C.

    This work describes how step-scan Fourier Transform Infrared spectroscopy and visible and near infrared ultrafast lasers have been applied to the study of the photochemical activation of C-H bonds in organometallic systems, which allow for the selective breaking of C-H bonds in alkanes. The author has established the photochemical mechanism of C-H activation by Tp{sup *}Rh(CO){sub 2}(Tp{sup *} = HB-Pz{sup *}{sub 3}, Pz = 3,5-dimethylpyrazolyl) in alkane solution. The initially formed monocarbonyl forms a weak solvent complex, which undergoes a change in Tp{sup *} ligand connectivity. The final C-H bond breaking step occurs at different time scales depending on themore » structure of the alkane. In linear solvents, the time scale is <50 ns and cyclic alkanes is {approximately}200 ps. The reactivity of the Tp{sup *}Rh(CO){sub 2} system has also been studied in aromatic solvents. Here the reaction proceeds through two different pathways, with very different time scales. The first proceeds in a manner analogous to alkanes and takes <50 ns. The second proceeds through a Rh-C-C complex, and takes place on a time scale of 1.8 {micro}s.« less

  16. Carbon-Hydrogen (C-H) Bond Activation at PdIV: A Frontier in C-H Functionalization Catalysis.

    PubMed

    Topczewski, Joseph J; Sanford, Melanie S

    2015-01-01

    The direct functionalization of carbon-hydrogen (C-H) bonds has emerged as a versatile strategy for the synthesis and derivatization of organic molecules. Among the methods for C-H bond activation, catalytic processes that utilize a Pd II /Pd IV redox cycle are increasingly common. The C-H activation step in most of these catalytic cycles is thought to occur at a Pd II centre. However, a number of recent reports have suggested the feasibility of C-H cleavage occurring at Pd IV complexes. Importantly, these latter processes often result in complementary reactivity and selectivity relative to analogous transformations at Pd II . This Mini Review highlights proposed examples of C-H activation at Pd IV centres. Applications of this transformation in catalysis as well as mechanistic details obtained from stoichiometric model studies are discussed. Furthermore, challenges and future perspectives for the field are reviewed.

  17. Direct C-H Arylation Meets Perovskite Solar Cells: Sn-Free Synthesis Shortcut to High Performance Hole-Transporting Materials.

    PubMed

    Chang, Yu-Chieh; Lee, Kun-Mu; Lai, Chia-Hsin; Liu, Ching-Yuan

    2018-03-30

    In contrast to the traditional multistep synthesis, we demonstrate herein a two-step synthesis-shortcut to triphenylamine-based hole-transporting materials (HTMs) through sequential direct C-H arylations. These hole-transporting molecules are fabricated in perovskite-based solar cells (PSCs), exhibiting promising efficiencies up to 17.69%, which is comparable to PSCs utilizing the commercially available spiro-OMeTAD as HTM. This is the first report describing the use of step-saving C-H activations/arylations in the facile synthesis of small-molecule HTMs for perovskite solar cells. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C-H activation

    NASA Astrophysics Data System (ADS)

    Marcinkowski, Matthew D.; Darby, Matthew T.; Liu, Jilei; Wimble, Joshua M.; Lucci, Felicia R.; Lee, Sungsik; Michaelides, Angelos; Flytzani-Stephanopoulos, Maria; Stamatakis, Michail; Sykes, E. Charles H.

    2018-03-01

    The recent availability of shale gas has led to a renewed interest in C-H bond activation as the first step towards the synthesis of fuels and fine chemicals. Heterogeneous catalysts based on Ni and Pt can perform this chemistry, but deactivate easily due to coke formation. Cu-based catalysts are not practical due to high C-H activation barriers, but their weaker binding to adsorbates offers resilience to coking. Using Pt/Cu single-atom alloys (SAAs), we examine C-H activation in a number of systems including methyl groups, methane and butane using a combination of simulations, surface science and catalysis studies. We find that Pt/Cu SAAs activate C-H bonds more efficiently than Cu, are stable for days under realistic operating conditions, and avoid the problem of coking typically encountered with Pt. Pt/Cu SAAs therefore offer a new approach to coke-resistant C-H activation chemistry, with the added economic benefit that the precious metal is diluted at the atomic limit.

  19. Helicobacter pylori neutrophil activating protein as target for new drugs against H. pylori inflammation.

    PubMed

    Choli-Papadopoulou, Theodora; Kottakis, Filippos; Papadopoulos, Georgios; Pendas, Stefanos

    2011-06-07

    Helicobacter pylori (H. pylori) infection is among the most common human infections and the major risk factor for peptic ulcer disease and gastric cancer. Within this work we present the implication of C-terminal region of H. pylori neutrophil activating protein in the stimulation of neutrophil activation as well as the evidence that the C-terminal region of H. pylori activating protein is indispensable for neutrophil adhesion to endothelial cells, a step necessary to H. pylori inflammation. In addition we show that arabino galactan proteins derived from chios mastic gum, the natural resin of the plant Pistacia lentiscus var. Chia inhibit neutrophil activation in vitro.

  20. Cobalt catalyzed carbonylation of unactivated C(sp3)–H bonds† †Electronic supplementary information (ESI) available. CCDC 1507203 (2t) & 1507204 (2a). For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c6sc05026c Click here for additional data file. Click here for additional data file.

    PubMed Central

    Barsu, Nagaraju; Bolli, Shyam Kumar

    2017-01-01

    A general efficient regioselective cobalt catalyzed carbonylation of unactivated C(sp3)–H bonds of aliphatic amides was demonstrated using atmospheric (1–2 atm) carbon monoxide as a C1 source. This straightforward approach provides access to α-spiral succinimide regioselectively in a good yield. Cobalt catalyzed sp3 C–H bond carbonylation is reported for the first time including the functionalization of (β)-C–H bonds of α-1°, 2°, 3° carbons and even internal (β)-C–H bonds. Our initial mechanistic investigation reveals that the C–H activation step is irreversible and will possibly be the rate determining step. PMID:28451350

  1. NiCu single atom alloys catalyze the C—H bond activation in the selective non- oxidative ethanol dehydrogenation reaction

    DOE PAGES

    Shan, Junjun; Liu, Jilei; Li, Mengwei; ...

    2017-12-29

    Here, NiCu single atom alloy (SAA) nanoparticles supported on silica are reported to catalyze the non-oxidative dehydrogenation of ethanol, selectively to acetaldehyde and hydrogen products by facilitating the C—H bond cleavage. The activity and selectivity of the NiCu SAA catalysts were compared to monometallic copper and to PtCu and PdCu single atom alloys, in a flow reactor at moderate temperatures. In-situ DRIFTS showed that the silica support facilitates the O—H bond cleavage of ethanol to form ethoxy intermediates over all the supported alloy catalysts. However, these remain unreactive up to 250°C for the Cu/SiO 2 monometallic nanoparticles, while in themore » NiCu SAA, acetaldehyde is formed at much lower temperatures, below 150°C. In situ DRIFTS was also used to identify the C—H activation step as the rate determining step of this reaction on all the copper catalysts we examined. The presence of atomically dispersed Ni in Cu significantly lowers the C—H bond activation barrier, whereas Pt and Pd atoms were found less effective. This work provides direct evidence that the C—H bond cleavage is the rate determining step in ethanol dehydrogenation over this type catalyst.« less

  2. NiCu single atom alloys catalyze the C—H bond activation in the selective non- oxidative ethanol dehydrogenation reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shan, Junjun; Liu, Jilei; Li, Mengwei

    Here, NiCu single atom alloy (SAA) nanoparticles supported on silica are reported to catalyze the non-oxidative dehydrogenation of ethanol, selectively to acetaldehyde and hydrogen products by facilitating the C—H bond cleavage. The activity and selectivity of the NiCu SAA catalysts were compared to monometallic copper and to PtCu and PdCu single atom alloys, in a flow reactor at moderate temperatures. In-situ DRIFTS showed that the silica support facilitates the O—H bond cleavage of ethanol to form ethoxy intermediates over all the supported alloy catalysts. However, these remain unreactive up to 250°C for the Cu/SiO 2 monometallic nanoparticles, while in themore » NiCu SAA, acetaldehyde is formed at much lower temperatures, below 150°C. In situ DRIFTS was also used to identify the C—H activation step as the rate determining step of this reaction on all the copper catalysts we examined. The presence of atomically dispersed Ni in Cu significantly lowers the C—H bond activation barrier, whereas Pt and Pd atoms were found less effective. This work provides direct evidence that the C—H bond cleavage is the rate determining step in ethanol dehydrogenation over this type catalyst.« less

  3. Mechanistic Insights on C-O and C-C Bond Activation and Hydrogen Insertion during Acetic Acid Hydrogenation Catalyzed by Ruthenium Clusters in Aqueous Medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shangguan, Junnan; Olarte, Mariefel V.; Chin, Ya-Huei

    Catalytic pathways for acetic acid (CH3COOH) and hydrogen (H2) reactions on dispersed Ru clusters in the aqueous medium and the associated kinetic requirements for C-O and C-C bond cleavages and hydrogen insertion are established from rate and isotopic assessments. CH3COOH reacts with H2 in steps that either retain its carbon backbone and lead to ethanol, ethyl acetate, and ethane (47-95 %, 1-23 %, and 2-17 % carbon selectivities, respectively) or break its C-C bond and form methane (1-43 % carbon selectivities) at moderate temperatures (413-523 K) and H2 pressures (10-60 bar, 298 K). Initial CH3COOH activation is the kinetically relevantmore » step, during which CH3C(O)-OH bond cleaves on a metal site pair at Ru cluster surfaces nearly saturated with adsorbed hydroxyl (OH*) and acetate (CH3COO*) intermediates, forming an adsorbed acetyl (CH3CO*) and hydroxyl (OH*) species. Acetic acid turnover rates increase proportionally with both H2 (10-60 bar) and CH3COOH concentrations at low CH3COOH concentrations (<0.83 M), but decrease from first to zero order as the CH3COOH concentration and the CH3COO* coverages increase and the vacant Ru sites concomitantly decrease. Beyond the initial CH3C(O)-OH bond activation, sequential H-insertions on the surface acetyl species (CH3CO*) lead to C2 products and their derivative (ethanol, ethane, and ethyl acetate) and the competitive C-C bond cleavage of CH3CO* causes the eventual methane formation. The instantaneous carbon selectivities towards C2 species (ethanol, ethane, and ethyl acetate) increase linearly with the concentration of proton-type Hδ+ (derived from carboxylic acid dissociation) and chemisorbed H*. The selectivities towards C2 products decrease with increasing temperature, because of higher observed barriers for C-C bond cleavage than H-insertion. This study offers an interpretation of mechanism and energetics and provides kinetic evidence of carboxylic acid assisted proton-type hydrogen (Hδ+) shuffling during H-insertion steps in the aqueous phase, unlike those in the vapor phase, during the hydrogenation of acetic acid on Ru clusters.« less

  4. Splitting a C-O bond in dialkylethers with bis(1,2,4-tri-t-butylcyclopentadienyl) cerium-hydride does not occur by a sigma-bond metathesis pathway: a combined experimental and DFT computational study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werkema, Evan; Yahia, Ahmed; Maron, Laurent

    2010-04-06

    Addition of diethylether to [1,2,4(Me3C)3C5H2]2CeH, abbreviated Cp'2CeH, gives Cp'2CeOEt and ethane. Similarly, di-n-propyl- or di-n-butylether gives Cp'2Ce(O-n-Pr) and propane or Cp'2Ce(O-n-Bu) and butane, respectively. Using Cp'2CeD, the propane and butane contain deuterium predominantly in their methyl groups. Mechanisms, formulated on the basis of DFT computational studies, show that the reactions begin by an alpha or beta-CH activation with comparable activation barriers but only the beta-CH activation intermediate evolves into the alkoxide product and an olefin. The olefin then inserts into the Ce-H bond forming the alkyl derivative, Cp'2CeR, that eliminates alkane. The alpha-CH activation intermediate is in equilibrium with themore » starting reagents, Cp'2CeH and the ether, which accounts for the deuterium label in the methyl groups of the alkane. The one-step sigma-bond metathesis mechanism has a much higher activation barrier than either of the two-step mechanisms.« less

  5. Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C–H activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcinkowski, Matthew D.; Darby, Matthew T.; Liu, Jilei

    The recent availability of shale gas has led to a renewed interest in C-H bond activation as the first step towards synthesis of fuels and fine chemicals. Heterogeneous catalysts based on Ni and Pt can perform this chemistry, but deactivate easily due to coke formation. Cu- based catalysts are not practical for this chemistry due to high C-H activation barriers, but their weaker binding to adsorbates offers resilience to coking. Utilizing Pt/Cu single atom alloys (SAAs) we examine C-H activation in a number of systems including methyl groups, methane, and butane using a combination of simulations, surface science, and catalysismore » studies. We find that Pt/Cu SAAs activate C-H bonds more efficiently than Cu, are stable for days under realistic operating conditions, and avoid the problem of coking typically encountered with Pt. Pt/Cu SAAs therefore offer a new approach to coke resistant C-H activation chemistry with the added economic benefit that the precious metal is diluted at the atomic limit.« less

  6. Remote C-H Functionalization by a Palladium-Catalyzed Transannular Approach.

    PubMed

    De Sarkar, Suman

    2016-08-26

    Now within reach: In the remote C-H arylation of alicyclic amines the key step is the transannular coordination of the palladium catalyst (see picture, DG=directing group). This strategy is convenient for the late-stage functionalization of complex bioactive molecules in order to probe structure-activity relationships. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The mechanism of transition-metal (Cu or Pd)-catalyzed synthesis of benzimidazoles from amidines: theoretical investigation.

    PubMed

    Li, Juan; Gu, Honghong; Wu, Caihong; Du, Lijuan

    2014-11-28

    In this study, the Cu(OAc)2- and [PdCl2(PhCN)2]-catalyzed syntheses of benzimidazoles from amidines were theoretically investigated using density functional theory calculations. For the Cu-catalyzed system, our calculations supported a four-step-pathway involving C-H activation of an arene with Cu(II) via concerted metalation-deprotonation (CMD), followed by oxidation of the Cu(II) intermediate and deprotonation of the imino group by Cu(III), and finally reductive elimination from Cu(III). In our calculations, the barriers for the CMD step and the oxidation step are the same. The results are different from the ones reported by Fu et al. in which the whole reaction mechanism includes three steps and the CMD step is rate determining. On the basis of the calculation results for the [PdCl2(PhCN)2]-catalyzed system, C-H bond breaking by CMD occurs first, followed by the rate-determining C-N bond formation and N-H deprotonation. Pd(III) species is not involved in the [PdCl2(PhCN)2]-catalyzed syntheses of benzimidazoles from amidines.

  8. Preparation and characterization of activated carbon from acorn shell by physical activation with H2O-CO2 in two-step pretreatment.

    PubMed

    Şahin, Ömer; Saka, Cafer

    2013-05-01

    Activated carbons have been prepared by physical activation with H2O-CO2 in two-step pre-treatment including ZnCl2-HCl from acorn shell at 850 °C. The active carbons were characterized by N2 adsorption at 77 K. Adsorption capacity was demonstrated by the iodine numbers. The surface chemical characteristics of activated carbons were determined by FTIR spectroscopic method. The microstructure of the activated carbons prepared was examined by scanning electron microscopy. The maximum BET surface area of the obtained activated carbon was found to be around 1779 m(2)/g. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Formal oxidative addition of a C-H bond by a 16e iridium(i) complex involves metal-ligand cooperation.

    PubMed

    Kumar, Amit; Feller, Moran; Ben-David, Yehoshoa; Diskin-Posner, Yael; Milstein, David

    2018-05-10

    The first example of oxidative addition of a C-H bond to a square planar d8-Iridium complex, without any external additive, such as an acid, is described. Our mechanistic investigations show that metal-ligand cooperation through aromatization-dearomatization of the lutidine backbone is involved in this process, and that the actual C-H activation step occurs through an Ir(iii) intermediate.

  10. Recent Results from Epitaxial Growth on Step Free 4H-SiC Mesas

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Trunek, Andrew J.; Spry, David J.; Powell, J. Anthony; Du, Hui; Skowronski, Marek; Bassim, Nabil D.; Mastro, Michael A.; Twigg, Mark E.; Holm, Ronald T.; hide

    2006-01-01

    This paper updates recent progress made in growth, characterization, and understanding of high quality homoepitaxial and heteroepitaxial films grown on step-free 4H-SiC mesas. First, we report initial achievement of step-free 4H-SiC surfaces with carbon-face surface polarity. Next, we will describe further observations of how step-free 4H-SiC thin lateral cantilever evolution is significantly impacted by crystal faceting behavior that imposes non-uniform film thickness on cantilever undersides. Finally, recent investigations of in-plane lattice constant mismatch strain relief mechanisms observed for heteroepitaxial growth of 3C-SiC as well as 2H-AlN/GaN heterofilms on step-free 4H-SiC mesas will be reviewed. In both cases, the complete elimination of atomic heterointerface steps on the mesa structure enables uniquely well-ordered misfit dislocation arrays to form near the heterointerfaces with remarkable lack of dislocations threading vertically into the heteroepilayers. In the case of 3C-SiC heterofilms, it has been proposed that dislocation half-loops nucleate at mesa edges and glide laterally along the step-free 3C/4H interfaces. In contrast, 3C-SiC and 2H-AlN/GaN heterofilms grown on 4H-SiC mesas with steps exhibit highly disordered interface misfit dislocation structure coupled with 100X greater density of dislocations threading through the thickness of the heteroepilayers. These results indicate that the presence of steps at the heteroepitaxial interface (i.e., on the initial heteroepitaxial nucleation surface) plays a highly important role in the defect structure, quality, and relaxation mechanisms of single-crystal heteroepitaxial films.

  11. Accelerated step-temperature aging of Al/x/Ga/1-x/As heterojunction laser diodes

    NASA Technical Reports Server (NTRS)

    Kressel, H.; Ettenberg, M.; Ladany, I.

    1978-01-01

    Double-heterojunction A2(0.3)Ga(0.7)As/Al(0.08)Ga(0.92)As lasers (oxide-striped and Al2O3 facet coated) were subjected to step-temperature aging from 60 to 100 C. The change in threshold current and spontaneous output was monitored at 22 C. The average time required for a 20% pulsed threshold current increase ranges from about 500 h, when operating at 100 C, to about 5000 h at a 70 C ambience. At 22 C, the extrapolated time is about 1 million h. The time needed for a 50% spontaneous emission reduction is of the same order of magnitude. The resulting activation energies are approximately 0.95 eV for laser degradation and approximately 1.1 eV for the spontaneous output decrease

  12. Metal-promoted binuclear C-H activation of ethylene and formation of a novel heterobimetallic Ir-Pt complex. X-ray crystal structure of ((Ph sub 3 P) sub 2 (CO)Ir(. mu. -H)(. mu. -. eta. sup 2 :. eta. sup 1 -CH double bond CH sub 2 )Pt(PPh sub 3 ) sub 2 ) sup + CF sub 3 SO sub 3 sup minus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yohsin; Stang, P.J.; Arif, A.M.

    1990-07-04

    Heterobimetallic complexes containing asymmetric metal-metal bonds as well as homogeneous C-H bond activation by organometallic compounds are of considerable current interest largely because of their relevance to catalysis. Although coordination of an alkene to transition metal systems is generally considered a necessary activation step in many catalytic and stoichiometric organometallic reactions, little is known about alkene C-H bond activation of precomplexed olefin substrates. In this paper the authors report the first intermolecular example of olefin C-H activation by a second, different metal system of a precomplexed {pi}-ethylene transition-metal complex and the concomitant formation of a novel alkene-bridged heterobimetallic Ir-Pt complex.

  13. Carbon-hydrogen activation of cycloalkanes by cyclopentadienylcarbonylrhodium--a lifetime enigma.

    PubMed

    Pitts, Amanda L; Wriglesworth, Alisdair; Sun, Xue-Zhong; Calladine, James A; Zarić, Snežana D; George, Michael W; Hall, Michael B

    2014-06-18

    Carbon-hydrogen bond activation reactions of four cycloalkanes (C5H10, C6H12, C7H14, and C8H16) by the Cp'Rh(CO) fragments (Cp' = η(5)-C5H5 (Cp) or η(5)-C5Me5 (Cp*)) were modeled theoretically by combining density functional and coupled cluster theories, and their reaction rates were measured by fast time-resolved infrared spectroscopy. The reaction has two steps, starting with the formation of a σ-complex intermediate, followed by oxidative addition of the C-H bond by the rhodium. A range of σ-complex stabilities among the electronically unique C-H bonds in a cycloalkane were calculated and are related to the individual strengths of the C-H bond's interactions with the Rh fragment and the steric repulsion that is incurred upon forming the specific σ-complex. The unexpectedly large increase in the lifetimes of the σ-complexes from cyclohexane to cycloheptane was predicted to be due to the large range of stabilities of the different σ-complexes found for cycloheptane. The reaction lifetimes were simulated with two mechanisms, with and without migrations among the different σ-complexes, to determine if ring migrations prior to C-H activation were influencing the rate. Both mechanisms predicted similar lifetimes for cyclopentane, cyclohexane, and, to a lesser extent, cycloheptane, suggesting ring migrations do not have a large impact on the rate of C-H activation for these cycloalkanes. For cyclooctane, the inclusion of ring migrations in the reaction mechanism led to a more accurate prediction of the lifetime, indicating that ring migrations did have an effect on the rate of C-H activation for this alkane, and that migration among the σ-complexes is faster than the C-H activation for this larger cycloalkane.

  14. Formation of C-C and C-O bonds and oxygen removal in reactions of alkanediols, alkanols, and alkanals on copper catalysts.

    PubMed

    Sad, María E; Neurock, Matthew; Iglesia, Enrique

    2011-12-21

    This study reports evidence for catalytic deoxygenation of alkanols, alkanals, and alkanediols on dispersed Cu clusters with minimal use of external H(2) and with the concurrent formation of new C-C and C-O bonds. These catalysts selectively remove O-atoms from these oxygenates as CO or CO(2) through decarbonylation or decarboxylation routes, respectively, that use C-atoms present within reactants or as H(2)O using H(2) added or formed in situ from CO/H(2)O mixtures via water-gas shift. Cu catalysts fully convert 1,3-propanediol to equilibrated propanol-propanal intermediates that subsequently form larger oxygenates via aldol-type condensation and esterification routes without detectable involvement of the oxide supports. Propanal-propanol-H(2) equilibration is mediated by their chemisorption and interconversion at surfaces via C-H and O-H activation and propoxide intermediates. The kinetic effects of H(2), propanal, and propanol pressures on turnover rates, taken together with measured selectivities and the established chemical events for base-catalyzed condensation and esterification reactions, indicate that both reactions involve kinetically relevant bimolecular steps in which propoxide species, acting as the base, abstract the α-hydrogen in adsorbed propanal (condensation) or attack the electrophilic C-atom at its carbonyl group (esterification). These weakly held basic alkoxides render Cu surfaces able to mediate C-C and C-O formation reactions typically catalyzed by basic sites inherent in the catalyst, instead of provided by coadsorbed organic moieties. Turnover rates for condensation and esterification reactions decrease with increasing Cu dispersion, because low-coordination corner and edge atoms prevalent on small clusters stabilize adsorbed intermediates and increase the activation barriers for the bimolecular kinetically relevant steps required for both reactions. © 2011 American Chemical Society

  15. Ethylene decomposition over Pt(100): A mechanism study from first principle calculation

    NASA Astrophysics Data System (ADS)

    Wang, Yuchun; Dong, Xiuqin; Yu, Yingzhe; Zhang, Minhua

    2016-12-01

    First principle based density functional theory was used to calculate the complete step-by-step decomposition network of ethylene (C2H4) over Pt(100) as a model for understanding the carbon deposition of olefin hydrocarbon over transition metal surface. We discussed the structural and energetic properties of all the Csbnd H and Csbnd C bond cleavage reactions in order to fully understand the formation pathway of carbon monomer. It is easier for Csbnd H bond cleavage reactions to take place, as the activation barrier of these reactions is relatively lower than that of Csbnd C bond cleavage as a whole. However, vinyl (CH2CH) is likely to be the precursor of Csbnd C bond scission, as the activation barrier of Csbnd C bond cleavage reaction of CH2CH is much lower than that of CH2CH dehydrogenation and the reaction is exothermic by 0.15 eV. CC was another form of depositional carbon on Pt(100), as it is easy to form but difficult to decompose. Finally we proposed six possible routes of carbon monomer formation.

  16. Remote site-selective C-H activation directed by a catalytic bifunctional template

    NASA Astrophysics Data System (ADS)

    Zhang, Zhipeng; Tanaka, Keita; Yu, Jin-Quan

    2017-03-01

    In chemical syntheses, the activation of carbon-hydrogen (C-H) bonds converts them directly into carbon-carbon or carbon-heteroatom bonds without requiring any prior functionalization. C-H activation can thus substantially reduce the number of steps involved in a synthesis. A single specific C-H bond in a substrate can be activated by using a ‘directing’ (usually a functional) group to obtain the desired product selectively. The applicability of such a C-H activation reaction can be severely curtailed by the distance of the C-H bond in question from the directing group, and by the shape of the substrate, but several approaches have been developed to overcome these limitations. In one such approach, an understanding of the distal and geometric relationships between the functional groups and C-H bonds of a substrate has been exploited to achieve meta-selective C-H activation by using a covalently attached, U-shaped template. However, stoichiometric installation of this template has not been feasible in the absence of an appropriate functional group on which to attach it. Here we report the design of a catalytic, bifunctional nitrile template that binds a heterocyclic substrate via a reversible coordination instead of a covalent linkage. The two metal centres coordinated to this template have different roles: one reversibly anchors substrates near the catalyst, and the other cleaves remote C-H bonds. Using this strategy, we demonstrate remote, site-selective C-H olefination of heterocyclic substrates that do not have the necessary functional groups for covalently attaching templates.

  17. Remote site-selective C-H activation directed by a catalytic bifunctional template.

    PubMed

    Zhang, Zhipeng; Tanaka, Keita; Yu, Jin-Quan

    2017-03-23

    In chemical syntheses, the activation of carbon-hydrogen (C-H) bonds converts them directly into carbon-carbon or carbon-heteroatom bonds without requiring any prior functionalization. C-H activation can thus substantially reduce the number of steps involved in a synthesis. A single specific C-H bond in a substrate can be activated by using a 'directing' (usually a functional) group to obtain the desired product selectively. The applicability of such a C-H activation reaction can be severely curtailed by the distance of the C-H bond in question from the directing group, and by the shape of the substrate, but several approaches have been developed to overcome these limitations. In one such approach, an understanding of the distal and geometric relationships between the functional groups and C-H bonds of a substrate has been exploited to achieve meta-selective C-H activation by using a covalently attached, U-shaped template. However, stoichiometric installation of this template has not been feasible in the absence of an appropriate functional group on which to attach it. Here we report the design of a catalytic, bifunctional nitrile template that binds a heterocyclic substrate via a reversible coordination instead of a covalent linkage. The two metal centres coordinated to this template have different roles: one reversibly anchors substrates near the catalyst, and the other cleaves remote C-H bonds. Using this strategy, we demonstrate remote, site-selective C-H olefination of heterocyclic substrates that do not have the necessary functional groups for covalently attaching templates.

  18. Activation of carbon-hydrogen bonds via 1,2-addition across M-X (X = OH or NH(2)) bonds of d(6) transition metals as a potential key step in hydrocarbon functionalization: a computational study.

    PubMed

    Cundari, Thomas R; Grimes, Thomas V; Gunnoe, T Brent

    2007-10-31

    Recent reports of 1,2-addition of C-H bonds across Ru-X (X = amido, hydroxo) bonds of TpRu(PMe3)X fragments {Tp = hydridotris(pyrazolyl)borate} suggest opportunities for the development of new catalytic cycles for hydrocarbon functionalization. In order to enhance understanding of these transformations, computational examinations of the efficacy of model d6 transition metal complexes of the form [(Tab)M(PH3)2X]q (Tab = tris-azo-borate; X = OH, NH2; q = -1 to +2; M = TcI, Re(I), Ru(II), Co(III), Ir(III), Ni(IV), Pt(IV)) for the activation of benzene C-H bonds, as well as the potential for their incorporation into catalytic functionalization cycles, are presented. For the benzene C-H activation reaction steps, kite-shaped transition states were located and found to have relatively little metal-hydrogen interaction. The C-H activation process is best described as a metal-mediated proton transfer in which the metal center and ligand X function as an activating electrophile and intramolecular base, respectively. While the metal plays a primary role in controlling the kinetics and thermodynamics of the reaction coordinate for C-H activation/functionalization, the ligand X also influences the energetics. On the basis of three thermodynamic criteria characterizing salient energetic aspects of the proposed catalytic cycle and the detailed computational studies reported herein, late transition metal complexes (e.g., Pt, Co, etc.) in the d6 electron configuration {especially the TabCo(PH3)2(OH)+ complex and related Co(III) systems} are predicted to be the most promising for further catalyst investigation.

  19. Efficient generation of H2 by splitting water with an isothermal redox cycle.

    PubMed

    Muhich, Christopher L; Evanko, Brian W; Weston, Kayla C; Lichty, Paul; Liang, Xinhua; Martinek, Janna; Musgrave, Charles B; Weimer, Alan W

    2013-08-02

    Solar thermal water-splitting (STWS) cycles have long been recognized as a desirable means of generating hydrogen gas (H2) from water and sunlight. Two-step, metal oxide-based STWS cycles generate H2 by sequential high-temperature reduction and water reoxidation of a metal oxide. The temperature swings between reduction and oxidation steps long thought necessary for STWS have stifled STWS's overall efficiency because of thermal and time losses that occur during the frequent heating and cooling of the metal oxide. We show that these temperature swings are unnecessary and that isothermal water splitting (ITWS) at 1350°C using the "hercynite cycle" exhibits H2 production capacity >3 and >12 times that of hercynite and ceria, respectively, per mass of active material when reduced at 1350°C and reoxidized at 1000°C.

  20. Rhodium(III)-Catalyzed Activation of C(sp3)-H Bonds and Subsequent Intermolecular Amidation at Room Temperature.

    PubMed

    Huang, Xiaolei; Wang, Yan; Lan, Jingbo; You, Jingsong

    2015-08-03

    Disclosed herein is a Rh(III)-catalyzed chelation-assisted activation of unreactive C(sp3)-H bonds, thus enabling an intermolecular amidation to provide a practical and step-economic route to 2-(pyridin-2-yl)ethanamine derivatives. Substrates with other N-donor groups are also compatible with the amidation. This protocol proceeds at room temperature, has a relatively broad functional-group tolerance and high selectivity, and demonstrates the potential of rhodium(III) in the promotive functionalization of unreactive C(sp3)-H bonds. A rhodacycle having a SbF6(-) counterion was identified as a plausible intermediate. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. In situ one-step hydrothermal synthesis of oxygen-containing groups-modified g-C3N4 for the improved photocatalytic H2-evolution performance

    NASA Astrophysics Data System (ADS)

    Wu, Xinhe; Chen, Fengyun; Wang, Xuefei; Yu, Huogen

    2018-01-01

    Surface modification of g-C3N4 is one of the most effective strategies to boost its photocatalytic H2-evolution performance via promoting the interfacial catalytic reactions. In this study, an in situ one-step hydrothermal method was developed to prepare the oxygen-containing groups-modified g-C3N4 (OG/g-C3N4) by a facile and green hydrothermal treatment of bulk g-C3N4 in pure water without any additives. It was found that the hydrothermal treatment (180 °C) not only could greatly increase the specific surface area (from 2.3 to 69.8 m2 g-1), but also caused the formation of oxygen-containing groups (sbnd OH and Cdbnd O) on the OG/g-C3N4 surface, via the interlayer delamination and intralayer depolymerization of bulk g-C3N4. Photocatalytic experimental results indicated that after hydrothermal treatment, the resultant OG/g-C3N4 samples showed an obviously improved H2-evolution performance. Especially, when the hydrothermal time was 6 h, the resultant OG/g-C3N4(6 h) exhibited the highest photocatalytic activity, which was clearly higher than that of the bulk g-C3N4 by a factor of ca. 7. In addition to the higher specific surface area, the enhanced H2-evolution rate of OG/g-C3N4 photocatalysts can be mainly attributed to the formation of oxygen-containing groups, which possibly works as the effective H2-evolution active sites. Considering the facie and green synthesis method, the present work may provide a new insight for the development of highly efficient photocatalytic materials.

  2. Methoxy-Directed Aryl-to-Aryl 1,3-Rhodium Migration

    PubMed Central

    Zhang, Jing; Liu, Jun-Feng; Ugrinov, Angel; Pillai, Anthony F. X.; Sun, Zhong-Ming; Zhao, Pinjing

    2015-01-01

    Through-space metal/hydrogen shift is an important strategy for transition metal-catalyzed C-H bond activation. Here we describe the synthesis and characterization of a Rh(I) 2,6-dimethoxybenzoate complex that underwent stoichiometric rearrangement via a highly unusual 1,3- rhodium migration. This aryl-to-aryl 1,3-Rh/H shift was also demonstrated in a Rh(I)-catalyzed decarboxylative conjugate addition to form a C-C bond at a meta position instead of the ipso-carboxyl position. A deuterium-labeling study under the conditions of Rh(I)-catalyzed protodecarboxylation revealed the involvement of an ortho-methoxy group in a multi-step pathway of consecutive sp3 and sp2 C-H bond activations. PMID:24171626

  3. Hyperpolarization-activated current (I(h)) in vestibular calyx terminals: characterization and role in shaping postsynaptic events.

    PubMed

    Meredith, Frances L; Benke, Tim A; Rennie, Katherine J

    2012-12-01

    Calyx afferent terminals engulf the basolateral region of type I vestibular hair cells, and synaptic transmission across the vestibular type I hair cell/calyx is not well understood. Calyces express several ionic conductances, which may shape postsynaptic potentials. These include previously described tetrodotoxin-sensitive inward Na(+) currents, voltage-dependent outward K(+) currents and a K(Ca) current. Here, we characterize an inwardly rectifying conductance in gerbil semicircular canal calyx terminals (postnatal days 3-45), sensitive to voltage and to cyclic nucleotides. Using whole-cell patch clamp, we recorded from isolated calyx terminals still attached to their type I hair cells. A slowly activating, noninactivating current (I(h)) was seen with hyperpolarizing voltage steps negative to the resting potential. External Cs(+) (1-5 mM) and ZD7288 (100 μM) blocked the inward current by 97 and 83 %, respectively, confirming that I(h) was carried by hyperpolarization-activated, cyclic nucleotide gated channels. Mean half-activation voltage of I(h) was -123 mV, which shifted to -114 mV in the presence of cAMP. Activation of I(h) was well described with a third order exponential fit to the current (mean time constant of activation, τ, was 190 ms at -139 mV). Activation speeded up significantly (τ=136 and 127 ms, respectively) when intracellular cAMP and cGMP were present, suggesting that in vivo I(h) could be subject to efferent modulation via cyclic nucleotide-dependent mechanisms. In current clamp, hyperpolarizing current steps produced a time-dependent depolarizing sag followed by either a rebound afterdepolarization or an action potential. Spontaneous excitatory postsynaptic potentials (EPSPs) became larger and wider when I(h) was blocked with ZD7288. In a three-dimensional mathematical model of the calyx terminal based on Hodgkin-Huxley type ionic conductances, removal of I(h) similarly increased the EPSP, whereas cAMP slightly decreased simulated EPSP size and width.

  4. Density functional theory mechanistic study of the reduction of CO2 to CH4 catalyzed by an ammonium hydridoborate ion pair: CO2 activation via formation of a formic acid entity.

    PubMed

    Wen, Mingwei; Huang, Fang; Lu, Gang; Wang, Zhi-Xiang

    2013-10-21

    Density functional theory computations have been applied to gain insight into the CO2 reduction to CH4 with Et3SiH, catalyzed by ammonium hydridoborate 1 ([TMPH](+)[HB(C6F5)3](-), where TMP = 2,2,6,6-tetramethylpiperidine) and B(C6F5)3. The study shows that CO2 is activated through the concerted transfer of H(δ+) and H(δ-) of 1 to CO2, giving a complex (IM2) with a well-formed HCOOH entity, followed by breaking of the O-H bond of the HCOOH entity to return H(δ+) to TMP, resulting in an intermediate 2 ([TMPH](+)[HC(═O)OB(C6F5)3)](-)), with CO2 being inserted into the B-H bond of 1. However, unlike CO2 insertion into transition-metal hydrides, the direct insertion of CO2 into the B-H bond of 1 is inoperative. The computed CO2 activation mechanism agrees with the experimental synthesis of 2 via reacting HCOOH with TMP/B(C6F5)3. Subsequent to the CO2 activation and B(C6F5)3-mediated hydrosilylation of 2 to regenerate the catalyst (1), giving HC(═O)OSiEt3 (5), three hydride-transfer steps take place, sequentially transferring H(δ-) of Et3SiH to 5 to (Et3SiO)2CH2 (6, the product of the first hydride-transfer step) to Et3SiOCH3 (7, the product of the second hydride-transfer step) and finally resulting in CH4. These hydride transfers are mediated by B(C6F5)3 via two SN2 processes without involving 1. B(C6F5)3 acts as a hydride carrier that, with the assistance of a nucleophilic attack of 5-7, first grabs H(δ-) from Et3SiH (the first SN2 process), giving HB(C6F5)3(-), and then leave H(δ-) of HB(C6F5)3(-) to the electrophilic C center of 5-7 (the second SN2 process). The SN2 processes utilize the electrophilic and nucleophilic characteristics possessed by the hydride acceptors (5-7). The hydride-transfer mechanism is different from that in the CO2 reduction to methanol catalyzed by N-heterocyclic carbene (NHC) and PCP-pincer nickel hydride ([Ni]H), where the characteristic of possessing a C═O double bond of the hydride acceptors is utilized for hydride transfer. The mechanistic differences elucidate why the present system can completely reduce CO2 to CH4, whereas NHC and [Ni]H catalysts can only mediate the reduction of CO2 to [Si]OCH3 and catBOCH3, respectively. Understanding this could help in the development of catalysts for selective CO2 reduction to CH4 or methanol.

  5. Synthesis of m-Alkylphenols via a Ruthenium-Catalyzed C-H Bond Functionalization of Phenol Derivatives.

    PubMed

    Li, Gang; Gao, Panpan; Lv, Xulu; Qu, Chen; Yan, Qingkai; Wang, Ya; Yang, Suling; Wang, Junjie

    2017-05-19

    The first example of the synthesis of m-alkylphenols via a ruthenium-catalyzed C Ar -H bond functionalization of phenol derivatives with sec/tert-alkyl bromides is reported. Mechanistic studies indicated that the m-C Ar -H bond alkylation may involve a radical process and that a six-membered ruthenacycle complex was the active catalyst. Moreover, this approach can provide an expedited strategy for the atom-/step-economical synthesis of many noteworthy pharmaceuticals and other functional molecules.

  6. Growth and Characterization of 3C-SiC and 2H-AIN/GaN Films and Devices Produced on Step-Free 4H-SiC Mesa Substrates

    NASA Technical Reports Server (NTRS)

    Neudeck, P. G.; Du, H.; Skowronski, M.; Spry, D. J.; Trunek, A. J.

    2007-01-01

    While previously published experimental results have shown that the step-free (0 0 0 1) 4H-SiC mesa growth surface uniquely enables radical improvement of 3C-SiC and 2H-AlN/GaN heteroepitaxial film quality (greater than 100-fold reduction in extended defect densities), important aspects of the step-free mesa heterofilm growth processes and resulting electronic device benefits remain to be more fully elucidated. This paper reviews and updates recent ongoing studies of 3C-SiC and 2H-AlN/GaN heteroepilayers grown on top of 4H-SiC mesas. For both 3C-SiC and AlN/GaN films nucleated on 4H-SiC mesas rendered completely free of atomic-scale surface steps, TEM studies reveal that relaxation of heterofilm strain arising from in-plane film/substrate lattice constant mismatch occurs in a remarkably benign manner that avoids formation of threading dislocations in the heteroepilayer. In particular, relaxation appears to occur via nucleation and inward lateral glide of near-interfacial dislocation half-loops from the mesa sidewalls. Preliminary studies of homojunction diodes implemented in 3C-SiC and AlN/GaN heterolayers demonstrate improved electrical performance compared with much more defective heterofilms grown on neighbouring stepped 4H-SiC mesas. Recombination-enhanced dislocation motion known to degrade forward-biased 4H-SiC bipolar diodes has been completely absent from our initial studies of 3C-SiC diodes, including diodes implemented on defective 3C-SiC heterolayers grown on stepped 4H-SiC mesas.

  7. Highly Active and Selective Hydrogenation of CO2 to Ethanol by Ordered Pd-Cu Nanoparticles.

    PubMed

    Bai, Shuxing; Shao, Qi; Wang, Pengtang; Dai, Qiguang; Wang, Xingyi; Huang, Xiaoqing

    2017-05-24

    Carbon dioxide (CO 2 ) hydrogenation to ethanol (C 2 H 5 OH) is considered a promising way for CO 2 conversion and utilization, whereas desirable conversion efficiency remains a challenge. Herein, highly active, selective and stable CO 2 hydrogenation to C 2 H 5 OH was enabled by highly ordered Pd-Cu nanoparticles (NPs). By tuning the composition of the Pd-Cu NPs and catalyst supports, the efficiency of CO 2 hydrogenation to C 2 H 5 OH was well optimized with Pd 2 Cu NPs/P25 exhibiting high selectivity to C 2 H 5 OH of up to 92.0% and the highest turnover frequency of 359.0 h -1 . Diffuse reflectance infrared Fourier transform spectroscopy results revealed the high C 2 H 5 OH production and selectivity of Pd 2 Cu NPs/P25 can be ascribed to boosting *CO (adsorption CO) hydrogenation to *HCO, the rate-determining step for the CO 2 hydrogenation to C 2 H 5 OH.

  8. Ruthenium(II)-catalysed remote C-H alkylations as a versatile platform to meta-decorated arenes

    NASA Astrophysics Data System (ADS)

    Li, Jie; Korvorapun, Korkit; de Sarkar, Suman; Rogge, Torben; Burns, David J.; Warratz, Svenja; Ackermann, Lutz

    2017-06-01

    The full control of positional selectivity is of prime importance in C-H activation technology. Chelation assistance served as the stimulus for the development of a plethora of ortho-selective arene functionalizations. In sharp contrast, meta-selective C-H functionalizations continue to be scarce, with all ruthenium-catalysed transformations currently requiring difficult to remove or modify nitrogen-containing heterocycles. Herein, we describe a unifying concept to access a wealth of meta-decorated arenes by a unique arene ligand effect in proximity-induced ruthenium(II) C-H activation catalysis. The transformative nature of our strategy is mirrored by providing a step-economical entry to a range of meta-substituted arenes, including ketones, acids, amines and phenols--key structural motifs in crop protection, material sciences, medicinal chemistry and pharmaceutical industries.

  9. Experimental and DFT computational study of β-Me and β-H elimination coupled with proton transfer: From amides to enamides in Cp* 2MX (M = La, Ce)

    DOE PAGES

    Rozenel, Sergio S.; Perrin, Lionel; Eisenstein, Odile; ...

    2016-10-26

    The thermal rearrangement of the f-block metallocene amides Cp* 2MNR 1R 2, where R 1 is CHMe 2, R 2 is either CHMe 2 or CMe 3, and M is either La or Ce, to the corresponding enamides Cp* 2MNR 1[C(Me)=CH 2] and H 2 or CH 4, respectively, occurs when the solid amides are heated in sealed evacuated ampules at 160–180 °C for 1–2 weeks. The net reaction is a β-H or β-Me elimination followed by a γ-abstraction of a proton at the group from which the β-elimination occurs. When R 1 is either SiMe 3 or SiMe 2CMemore » 3 and R 2 is CMe 3, the enamide Cp* 2MNR 1[C(Me)=CH 2] is isolated, the result of β-Me elimination, but when R 2 is CHMe 2, the enamides Cp* 2MNR 1[C(Me)=CH 2] and Cp* 2NR 1[C(H)=CH 2] are isolated, the result of β-H and β-Me elimination. In the latter cases, both enamides are formed in similar amounts and the rates of the β-H and β-Me elimination steps must be similar. A two-step mechanism is developed from DFT calculations. The first step is migration of a hydride or a methyl anion to the Cp* 2M fragment, forming M–H or M–Me bonds as the N=C bond in the intermediate imine forms. Furthermore, the enamide evolves from the metal-coordinated imine by abstraction of a proton from the γ-carbon of the intermediate imine. The two elementary steps involve significant geometrical changes within the N αC βC γ set of atoms during the two-step elimination process that are in large part responsible for the relatively high activation barriers for the net reaction, which may be classified as a proton-coupled hydride or methyl anion transfer reaction.« less

  10. Experimental and DFT computational study of β-Me and β-H elimination coupled with proton transfer: From amides to enamides in Cp* 2MX (M = La, Ce)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozenel, Sergio S.; Perrin, Lionel; Eisenstein, Odile

    The thermal rearrangement of the f-block metallocene amides Cp* 2MNR 1R 2, where R 1 is CHMe 2, R 2 is either CHMe 2 or CMe 3, and M is either La or Ce, to the corresponding enamides Cp* 2MNR 1[C(Me)=CH 2] and H 2 or CH 4, respectively, occurs when the solid amides are heated in sealed evacuated ampules at 160–180 °C for 1–2 weeks. The net reaction is a β-H or β-Me elimination followed by a γ-abstraction of a proton at the group from which the β-elimination occurs. When R 1 is either SiMe 3 or SiMe 2CMemore » 3 and R 2 is CMe 3, the enamide Cp* 2MNR 1[C(Me)=CH 2] is isolated, the result of β-Me elimination, but when R 2 is CHMe 2, the enamides Cp* 2MNR 1[C(Me)=CH 2] and Cp* 2NR 1[C(H)=CH 2] are isolated, the result of β-H and β-Me elimination. In the latter cases, both enamides are formed in similar amounts and the rates of the β-H and β-Me elimination steps must be similar. A two-step mechanism is developed from DFT calculations. The first step is migration of a hydride or a methyl anion to the Cp* 2M fragment, forming M–H or M–Me bonds as the N=C bond in the intermediate imine forms. Furthermore, the enamide evolves from the metal-coordinated imine by abstraction of a proton from the γ-carbon of the intermediate imine. The two elementary steps involve significant geometrical changes within the N αC βC γ set of atoms during the two-step elimination process that are in large part responsible for the relatively high activation barriers for the net reaction, which may be classified as a proton-coupled hydride or methyl anion transfer reaction.« less

  11. Hot filament CVD of boron nitride films

    DOEpatents

    Rye, Robert R.

    1992-01-01

    Using a hot filament (.apprxeq.1400.degree. C.) to activate borazine (B.sub.3 N.sub.3 H.sub.6) molecules for subsequent reaction with a direct line-of-sight substrate, transparent boron ntiride films as thick as 25,000 angstroms are grown for a substrate temperature as low as 100.degree. C. The minimum temperature is determined by radiative heating from the adjacent hot filament. The low temperature BN films show no indication of crystallinity with X-ray diffraction (XRD). X-ray photoelectron spectra (XPS) show the films to have a B:N ratio of 0.97:1 with no other XPS detectable impurities above the 0.5% level. Both Raman and infrared (IR) spectroscopy are characteristic of h-BN with small amounts of hydrogen detected as N-H and B-H bands in the IR spectrum. An important feature of this method is the separation and localization of the thermal activation step at the hot filament from the surface reaction and film growth steps at the substrate surface. This allows both higher temperature thermal activation and lower temperature film growth.

  12. Locomotor training improves reciprocal and nonreciprocal inhibitory control of soleus motoneurons in human spinal cord injury

    PubMed Central

    Smith, Andrew C.; Mummidisetty, Chaithanya K.

    2015-01-01

    Pathologic reorganization of spinal networks and activity-dependent plasticity are common neuronal adaptations after spinal cord injury (SCI) in humans. In this work, we examined changes of reciprocal Ia and nonreciprocal Ib inhibition after locomotor training in 16 people with chronic SCI. The soleus H-reflex depression following common peroneal nerve (CPN) and medial gastrocnemius (MG) nerve stimulation at short conditioning-test (C-T) intervals was assessed before and after training in the seated position and during stepping. The conditioned H reflexes were normalized to the unconditioned H reflex recorded during seated. During stepping, both H reflexes were normalized to the maximal M wave evoked at each bin of the step cycle. In the seated position, locomotor training replaced reciprocal facilitation with reciprocal inhibition in all subjects, and Ib facilitation was replaced by Ib inhibition in 13 out of 14 subjects. During stepping, reciprocal inhibition was decreased at early stance and increased at midswing in American Spinal Injury Association Impairment Scale C (AIS C) and was decreased at midstance and midswing phases in AIS D after training. Ib inhibition was decreased at early swing and increased at late swing in AIS C and was decreased at early stance phase in AIS D after training. The results of this study support that locomotor training alters postsynaptic actions of Ia and Ib inhibitory interneurons on soleus motoneurons at rest and during stepping and that such changes occur in cases with limited or absent supraspinal inputs. PMID:25609110

  13. Formation of a Ruthenium-Arene Complex, Cyclometallation with a Substituted Benzylamine, and Insertion of an Alkyne

    ERIC Educational Resources Information Center

    Chetcuti, Michael J.; Ritleng, Vincent

    2007-01-01

    The three step synthesis is presented to allow the functionalization of an aromatic amine by forming new C-C and C-N bonds via an intramolecular C-H activation under mild conditions. The reactions are stoichiometric and allow the students to isolate the different organometallic intermediates.

  14. Catalytic alkylation of remote C-H bonds enabled by proton-coupled electron transfer

    NASA Astrophysics Data System (ADS)

    Choi, Gilbert J.; Zhu, Qilei; Miller, David C.; Gu, Carol J.; Knowles, Robert R.

    2016-11-01

    Despite advances in hydrogen atom transfer (HAT) catalysis, there are currently no molecular HAT catalysts that are capable of homolysing the strong nitrogen-hydrogen (N-H) bonds of N-alkyl amides. The motivation to develop amide homolysis protocols stems from the utility of the resultant amidyl radicals, which are involved in various synthetically useful transformations, including olefin amination and directed carbon-hydrogen (C-H) bond functionalization. In the latter process—a subset of the classical Hofmann-Löffler-Freytag reaction—amidyl radicals remove hydrogen atoms from unactivated aliphatic C-H bonds. Although powerful, these transformations typically require oxidative N-prefunctionalization of the amide starting materials to achieve efficient amidyl generation. Moreover, because these N-activating groups are often incorporated into the final products, these methods are generally not amenable to the direct construction of carbon-carbon (C-C) bonds. Here we report an approach that overcomes these limitations by homolysing the N-H bonds of N-alkyl amides via proton-coupled electron transfer. In this protocol, an excited-state iridium photocatalyst and a weak phosphate base cooperatively serve to remove both a proton and an electron from an amide substrate in a concerted elementary step. The resultant amidyl radical intermediates are shown to promote subsequent C-H abstraction and radical alkylation steps. This C-H alkylation represents a catalytic variant of the Hofmann-Löffler-Freytag reaction, using simple, unfunctionalized amides to direct the formation of new C-C bonds. Given the prevalence of amides in pharmaceuticals and natural products, we anticipate that this method will simplify the synthesis and structural elaboration of amine-containing targets. Moreover, this study demonstrates that concerted proton-coupled electron transfer can enable homolytic activation of common organic functional groups that are energetically inaccessible using traditional HAT-based approaches.

  15. Catalytic alkylation of remote C-H bonds enabled by proton-coupled electron transfer.

    PubMed

    Choi, Gilbert J; Zhu, Qilei; Miller, David C; Gu, Carol J; Knowles, Robert R

    2016-11-10

    Despite advances in hydrogen atom transfer (HAT) catalysis, there are currently no molecular HAT catalysts that are capable of homolysing the strong nitrogen-hydrogen (N-H) bonds of N-alkyl amides. The motivation to develop amide homolysis protocols stems from the utility of the resultant amidyl radicals, which are involved in various synthetically useful transformations, including olefin amination and directed carbon-hydrogen (C-H) bond functionalization. In the latter process-a subset of the classical Hofmann-Löffler-Freytag reaction-amidyl radicals remove hydrogen atoms from unactivated aliphatic C-H bonds. Although powerful, these transformations typically require oxidative N-prefunctionalization of the amide starting materials to achieve efficient amidyl generation. Moreover, because these N-activating groups are often incorporated into the final products, these methods are generally not amenable to the direct construction of carbon-carbon (C-C) bonds. Here we report an approach that overcomes these limitations by homolysing the N-H bonds of N-alkyl amides via proton-coupled electron transfer. In this protocol, an excited-state iridium photocatalyst and a weak phosphate base cooperatively serve to remove both a proton and an electron from an amide substrate in a concerted elementary step. The resultant amidyl radical intermediates are shown to promote subsequent C-H abstraction and radical alkylation steps. This C-H alkylation represents a catalytic variant of the Hofmann-Löffler-Freytag reaction, using simple, unfunctionalized amides to direct the formation of new C-C bonds. Given the prevalence of amides in pharmaceuticals and natural products, we anticipate that this method will simplify the synthesis and structural elaboration of amine-containing targets. Moreover, this study demonstrates that concerted proton-coupled electron transfer can enable homolytic activation of common organic functional groups that are energetically inaccessible using traditional HAT-based approaches.

  16. Two-State Reactivity in Low-Valent Iron-Mediated C-H Activation and the Implications for Other First-Row Transition Metals.

    PubMed

    Sun, Yihua; Tang, Hao; Chen, Kejuan; Hu, Lianrui; Yao, Jiannian; Shaik, Sason; Chen, Hui

    2016-03-23

    C-H bond activation/functionalization promoted by low-valent iron complexes has recently emerged as a promising approach for the utilization of earth-abundant first-row transition metals to carry out this difficult transformation. Herein we use extensive density functional theory and high-level ab initio coupled cluster calculations to shed light on the mechanism of these intriguing reactions. Our key mechanistic discovery for C-H arylation reactions reveals a two-state reactivity (TSR) scenario in which the low-spin Fe(II) singlet state, which is initially an excited state, crosses over the high-spin ground state and promotes C-H bond cleavage. Subsequently, aryl transmetalation occurs, followed by oxidation of Fe(II) to Fe(III) in a single-electron transfer (SET) step in which dichloroalkane serves as an oxidant, thus promoting the final C-C coupling and finalizing the C-H functionalization. Regeneration of the Fe(II) catalyst for the next round of C-H activation involves SET oxidation of the Fe(I) species generated after the C-C bond coupling. The ligand sphere of iron is found to play a crucial role in the TSR mechanism by stabilization of the reactive low-spin state that mediates the C-H activation. This is the first time that the successful TSR concept conceived for high-valent iron chemistry is shown to successfully rationalize the reactivity for a reaction promoted by low-valent iron complexes. A comparative study involving other divalent middle and late first-row transition metals implicates iron as the optimum metal in this TSR mechanism for C-H activation. It is predicted that stabilization of low-spin Mn(II) using an appropriate ligand sphere should produce another promising candidate for efficient C-H bond activation. This new TSR scenario therefore emerges as a new strategy for using low-valent first-row transition metals for C-H activation reactions.

  17. Facile One-Step Synthesis of Hybrid Graphitic Carbon Nitride and Carbon Composites as High-Performance Catalysts for CO2 Photocatalytic Conversion.

    PubMed

    Wang, Yangang; Bai, Xia; Qin, Hengfei; Wang, Fei; Li, Yaguang; Li, Xi; Kang, Shifei; Zuo, Yuanhui; Cui, Lifeng

    2016-07-13

    Utilizing and reducing carbon dioxide is a key target in the fight against global warming. The photocatalytic performance of bulk graphitic carbon nitride (g-C3N4) is usually limited by its low surface area and rapid charge carrier recombination. To develop g-C3N4 more suitable for photocatalysis, researchers have to enlarge its surface area and accelerate the charge carrier separation. In this work, novel hybrid graphitic carbon nitride and carbon (H-g-C3N4/C) composites with various carbon contents have been developed for the first time by a facile one-step pyrolysis method using melamine and natural soybean oil as precursors. The effect of carbon content on the structure of H-g-C3N4/C composites and the catalytic activity for the photoreduction of CO2 with H2O were investigated. The results indicated that the introduction of carbon component can effectively improve the textural properties and electronic conductivity of the composites, which exhibited imporved photocatalytic activity for the reduction of CO2 with H2O in comparison with bulk g-C3N4. The highest CO and CH4 yield of 22.60 μmol/g-cat. and 12.5 μmol/g-cat., respectively, were acquired on the H-g-C3N4/C-6 catalyst with the carbon content of 3.77 wt % under 9 h simulated solar irradiation, which were more than twice as high as that of bulk g-C3N4. The remarkably increased photocatalytic performance arises from the synergistic effect of hybrid carbon and g-C3N4.

  18. Bioorthogonal Diversification of Peptides through Selective Ruthenium(II)-Catalyzed C-H Activation.

    PubMed

    Schischko, Alexandra; Ren, Hongjun; Kaplaneris, Nikolaos; Ackermann, Lutz

    2017-02-01

    Methods for the chemoselective modification of amino acids and peptides are powerful techniques in biomolecular chemistry. Among other applications, they enable the total synthesis of artificial peptides. In recent years, significant momentum has been gained by exploiting palladium-catalyzed cross-coupling for peptide modification. Despite major advances, the prefunctionalization elements on the coupling partners translate into undesired byproduct formation and lengthy synthetic operations. In sharp contrast, we herein illustrate the unprecedented use of versatile ruthenium(II)carboxylate catalysis for the step-economical late-stage diversification of α- and β-amino acids, as well as peptides, through chemo-selective C-H arylation under racemization-free reaction conditions. The ligand-accelerated C-H activation strategy proved water-tolerant and set the stage for direct fluorescence labelling as well as various modes of peptide ligation with excellent levels of positional selectivity in a bioorthogonal fashion. The synthetic utility of our approach is further demonstrated by twofold C-H arylations for the complexity-increasing assembly of artificial peptides within a multicatalytic C-H activation manifold. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. CFD Growth of 3C-SiC on 4H/6H Mesas

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Trunek, Andrew J.; Spry, David J.; Powell, J. Anthony; Du, Hui; Skowronski, Marek; Huang, XianRong; Dudley, Michael

    2006-01-01

    This article describes growth and characterization of the highest quality reproducible 3C-SiC heteroepitaxial films ever reported. By properly nucleating 3C-SiC growth on top of perfectly on-axis (0001) 4H-SiC mesa surfaces completely free of atomic scale steps and extended defects, growth of 3C-SiC mesa heterofilms completely free of extended crystal defects can be achieved. In contrast, nucleation and growth of 3C-SiC mesa heterofilms on top of 4H-SiC mesas with atomic-scale steps always results in numerous observable dislocations threading through the 3C-SiC epilayer. High-resolution X-ray diffraction and transmission electron microscopy measurements indicate non-trivial in-plane lattice mismatch between the 3C and 4H layers. This mismatch is somewhat relieved in the step-free mesa case via misfit dislocations confined to the 3C/4H interfacial region without dislocations threading into the overlying 3C-SiC layer. These results indicate that the presence or absence of steps at the 3C/4H heteroepitaxial interface critically impacts the quality, defect structure, and relaxation mechanisms of single-crystal heteroepitaxial 3C-SiC films.

  20. Cooperative Light-Activated Iodine and Photoredox Catalysis for the Amination of Csp3 -H Bonds.

    PubMed

    Becker, Peter; Duhamel, Thomas; Stein, Christopher J; Reiher, Markus; Muñiz, Kilian

    2017-06-26

    An unprecedented method that makes use of the cooperative interplay between molecular iodine and photoredox catalysis has been developed for dual light-activated intramolecular benzylic C-H amination. Iodine serves as the catalyst for the formation of a new C-N bond by activating a remote Csp3 -H bond (1,5-HAT process) under visible-light irradiation while the organic photoredox catalyst TPT effects the reoxidation of the molecular iodine catalyst. To explain the compatibility of the two involved photochemical steps, the key N-I bond activation was elucidated by computational methods. The new cooperative catalysis has important implications for the combination of non-metallic main-group catalysis with photocatalysis. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  1. Synthesis of the active form of loxoprofen by using allylic substitutions in two steps.

    PubMed

    Hyodo, Tomonori; Kiyotsuka, Yohei; Kobayashi, Yuichi

    2009-03-05

    High regioselectivity for allylic substitution of the cyclopentenyl picolinate 5 with benzylcopper reagent was attained with ZnBr(2), and the finding was applied to the p-BrC(6)H(4)CH(2) reagent. The cyclopentene moiety in the product was reduced to the cyclopentane, and the p-BrC(6)H(4) was converted to the "Cu"C(6)H(4) for the second allylic substitution with picolinate 8 to furnish the title compound after oxidative cleavage of the resulting olefin moiety.

  2. Selective Hydrogen Atom Abstraction through Induced Bond Polarization: Direct α-Arylation of Alcohols through Photoredox, HAT, and Nickel Catalysis.

    PubMed

    Twilton, Jack; Christensen, Melodie; DiRocco, Daniel A; Ruck, Rebecca T; Davies, Ian W; MacMillan, David W C

    2018-05-04

    The combination of nickel metallaphotoredox catalysis, hydrogen atom transfer catalysis, and a Lewis acid activation mode, has led to the development of an arylation method for the selective functionalization of alcohol α-hydroxy C-H bonds. This approach employs zinc-mediated alcohol deprotonation to activate α-hydroxy C-H bonds while simultaneously suppressing C-O bond formation by inhibiting the formation of nickel alkoxide species. The use of Zn-based Lewis acids also deactivates other hydridic bonds such as α-amino and α-oxy C-H bonds. This approach facilitates rapid access to benzylic alcohols, an important motif in drug discovery. A 3-step synthesis of the drug Prozac exemplifies the utility of this new method. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Direct Synthesis of Protoberberine Alkaloids by Rh-Catalyzed C-H Bond Activation as the Key Step.

    PubMed

    Jayakumar, Jayachandran; Cheng, Chien-Hong

    2016-01-26

    A one-pot reaction of substituted benzaldehydes with alkyne-amines by a Rh-catalyzed C-H activation and annulation to afford various natural and unnatural protoberberine alkaloids is reported. This reaction provides a convenient route for the generation of a compound library of protoberberine salts, which recently have attracted great attention because of their diverse biological activities. In addition, pyridinium salt derivatives can also be formed in good yields from α,β-unsaturated aldehydes and amino-alkynes. This reaction proceeds with excellent regioselectivity and good functional group compatibility under mild reaction conditions by using O2 as the oxidant. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Cot, a novel kinase of histone H3, induces cellular transformation through up-regulation of c-fos transcriptional activity.

    PubMed

    Choi, Hong Seok; Kang, Bong Seok; Shim, Jung-Hyun; Cho, Yong-Yeon; Choi, Bu Young; Bode, Ann M; Dong, Zigang

    2008-01-01

    Post-translational modification of histones is critical for gene expression, mitosis, cell growth, apoptosis, and cancer development. Thus, finding protein kinases that are responsible for the phosphorylation of histones at critical sites is considered an important step in understanding the process of histone modification. The serine/threonine kinase Cot is a member of the mitogen-activated protein kinase (MAPK) kinase kinase family. We show here that Cot can phosphorylate histone H3 at Ser-10 in vivo and in vitro, and that the phosphorylation of histone H3 at Ser-10 is required for Cot-induced cell transformation. We found that activated Cot is recruited to the c-fos promoter resulting in increased activator protein-1 (AP-1) transactivation. The formation of the Cot-c-fos promoter complex was also apparent when histone H3 was phosphorylated at Ser-10. Furthermore, the use of dominant negative mutants of histone H3 revealed that Cot was required for phosphorylation of histone H3 at Ser-10 to induce neoplastic cell transformation. These results revealed an important function of Cot as a newly discovered histone H3 kinase. Moreover, the transforming ability of Cot results from the coordinated activation of histone H3, which ultimately converges on the regulation of the transcriptional activity of the c-fos promoter, followed by AP-1 transactivation activity.

  5. Detailed reaction mechanism of macrophomate synthase. Extraordinary enzyme catalyzing five-step transformation from 2-pyrones to benzoates.

    PubMed

    Watanabe, K; Mie, T; Ichihara, A; Oikawa, H; Honma, M

    2000-12-08

    Macrophomate synthase from the fungus Macrophoma commelinae IFO 9570 is a Mg(II)-dependent dimeric enzyme that catalyzes an extraordinary, complex five-step chemical transformation from 2-pyrone and oxalacetate to benzoate involving decarboxylation, C-C bond formation, and dehydration. The catalytic mechanism of the whole pathway was investigated in three separate chemical steps. In the first decarboxylation step, the enzyme loses oxalacetate decarboxylation activity upon incubation with EDTA. Activity is fully restored by addition of Mg(II) and is not restored with other divalent metal cations. The dissociation constant of 0.93 x 10(-)(7) for Mg(II) and atomic absorption analysis established a 1:1 stoichiometric complex. Inhibition of pyruvate formation with 2-pyrone revealed that the actual product in the first step is a pyruvate enolate, which undergoes C-C bond formation in the presence of 2-pyrone. Incubation of substrate analogs provided aberrant adducts that were produced via C-C bond formation and rearrangement. This strongly indicates that the second step is two C-C bond formations, affording a bicyclic intermediate. Based on the stereospecificity, involvement of a Diels-Alder reaction at the second step is proposed. Incubation of the stereospecifically deuterium-labeled malate with 2-pyrones in the presence of malate dehydrogenase provided information for the stereochemical course of the reaction catalyzed by macrophomate synthase, indicating that the first decarboxylation provides pyruvate (Z)-[3-(2)H]enolate and that dehydration at the final step occurs with anti-elimination accompanied by concomitant decarboxylation. Examination of kinetic parameters in the individual steps suggests that the third step is the rate-determining step of the overall transformation.

  6. Computational Study of Pincer Iridium Catalytic Systems: C-H, N-H, and C-C Bond Activation and C-C Coupling Reactions

    NASA Astrophysics Data System (ADS)

    Zhou, Tian

    Computational chemistry has achieved vast progress in the last decades in the field, which was considered to be only experimental before. DFT (density functional theory) calculations have been proven to be able to be applied to large systems, while maintaining high accuracy. One of the most important achievements of DFT calculations is in exploring the mechanism of bond activation reactions catalyzed by organometallic complexes. In this dissertation, we discuss DFT studies of several catalytic systems explored in the lab of Professor Alan S. Goldman. Headlines in the work are: (1) (R4PCP)Ir alkane dehydrogenation catalysts are highly selective and different from ( R4POCOP)Ir catalysts, predicting different rate-/selectivity-determining steps; (2) The study of the mechanism for double C-H addition/cyclometalation of phenanthrene or biphenyl by (tBu4PCP)Ir(I) and ( iPr4PCP)Ir illustrates that neutral Ir(III) C-H addition products can undergo a very facile second C-H addition, particularly in the case of sterically less-crowded Ir(I) complexes; (3) (iPr4PCP)Ir pure solid phase catalyst is highly effective in producing high yields of alpha-olefin products, since the activation enthalpy for dehydrogenation is higher than that for isomerization via an allyl pathway; higher temperatures favor the dehydrogenation/isomerization ratio; (4) (PCP)Ir(H)2(N2H4) complex follows a hydrogen transfer mechanism to undergo both dehydrogenation to form N 2 and H2, as well as hydrogen transfer followed by N-N bond cleavage to form NH3, N2, and H2; (5) The key for the catalytic effect of solvent molecule in CO insertion reaction for RMn(CO)5 is hydrogen bond assisted interaction. The basicity of the solvent determines the strength of the hydrogen bond interaction during the catalytic path and determines the catalytic power of the solvent; and (6) Dehydrogenative coupling of unactivated C-H bonds (intermolecular vinyl-vinyl, intramolecular vinyl-benzyl) is catalyzed by precursors of the (iPr4 PCP)Ir fragment. The key step for this mechanism is a Ir(III) vinyl hydride complex undergoing addition of a styrenyl ortho C-H bond to give an Ir(III) metalloindene plus H2.

  7. A General Cp*CoIII -Catalyzed Intramolecular C-H Activation Approach for the Efficient Total Syntheses of Aromathecin, Protoberberine, and Tylophora Alkaloids.

    PubMed

    Lerchen, Andreas; Knecht, Tobias; Koy, Maximilian; Daniliuc, Constantin G; Glorius, Frank

    2017-09-07

    Herein, we report a Cp*Co III -catalyzed C-H activation approach as the key step to create highly valuable isoquinolones and pyridones as building blocks that can readily be applied in the total syntheses of a variety of aromathecin, protoberberine, and tylophora alkaloids. This particular C-H activation/annulation reaction was achieved with several terminal as well as internal alkyne coupling partners delivering a broad scope with excellent functional group tolerance. The synthetic applicability of this protocol reported herein was demonstrated in the total syntheses of two Topo-I-Inhibitors and two 8-oxyprotoberberine cores that can be further elaborated into the tetrahydroprotoberberine and the protoberberine alkaloid core. Moreover these building blocks were also transformed to six different tylophora alkaloids in expedient fashion. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Characterization of 3C-SiC Films Grown on 4H- and 6H-SiC Substrate Mesas During Step-Free Surface Heteroepitaxy

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Powel J. Anthony; Spry, David J.; Trunek, Andrew J.; Huang, Xianrong; Vetter, William M.; Dudley, Michael; Skowronski, Marek; Liu, Jinqiang

    2002-01-01

    This paper reports detailed structural characterization of 3C-SiC heteroepitaxial films grown on 4H- and 6H-SiC mesa surfaces. 3C-SiC heterofilms grown by the "step-free surface heteroepitaxy" process, free of double-positioning boundary (DPB) and stacking-fault (SF) defects, were compared to less-optimized 3C-SiC heterofilms using High Resolution X-ray Diffraction (HRXRD), High Resolution Cross-sectional Transmission Electron Microscopy (HRXTEM), molten potassium hydroxide (KOH) etching, and dry thermal oxidation. The results suggest that step free surface heteroepitaxy enables remarkably benign partial lattice mismatch strain relief during heterofilm growth.

  9. Diastereoselective Carbocyclization of 1,6-Heptadienes Triggered by Rhodium-Catalyzed Activation of an Olefinic C=H Bond**

    PubMed Central

    Aïssa, Christophe; Ho, Kelvin Y T; Tetlow, Daniel J; Pin-Nó, María

    2014-01-01

    The use of α,ω-dienes as functionalization reagents for olefinic carbon–hydrogen bonds has been rarely studied. Reported herein is the rhodium(I)-catalyzed rearrangement of prochiral 1,6-heptadienes into [2,2,1]-cycloheptane derivatives with concomitant creation of at least three stereogenic centers and complete diastereocontrol. Deuterium-labeling studies and the isolation of a key intermediate are consistent with a group-directed C=H bond activation, followed by two consecutive migratory insertions, with only the latter step being diastereoselective. PMID:24634225

  10. Effective myotube formation in human adipose tissue-derived stem cells expressing dystrophin and myosin heavy chain by cellular fusion with mouse C2C12 myoblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eom, Young Woo; Biomedical Research Institute, Lifeliver Co., Ltd., Suwon; Lee, Jong Eun

    2011-04-29

    Highlights: {yields} hASCs were differentiated into skeletal muscle cells by treatment with 5-azacytidine, FGF-2, and the supernatant of cultured hASCs. {yields} Dystrophin and MyHC were expressed in late differentiation step by treatment with the supernatant of cultured hASCs. {yields} hASCs expressing dystrophin and MyHC contributed to myotube formation during co-culture with mouse myoblast C2C12 cells. -- Abstract: Stem cell therapy for muscular dystrophies requires stem cells that are able to participate in the formation of new muscle fibers. However, the differentiation steps that are the most critical for this process are not clear. We investigated the myogenic phases of humanmore » adipose tissue-derived stem cells (hASCs) step by step and the capability of myotube formation according to the differentiation phase by cellular fusion with mouse myoblast C2C12 cells. In hASCs treated with 5-azacytidine and fibroblast growth factor-2 (FGF-2) for 1 day, the early differentiation step to express MyoD and myogenin was induced by FGF-2 treatment for 6 days. Dystrophin and myosin heavy chain (MyHC) expression was induced by hASC conditioned medium in the late differentiation step. Myotubes were observed only in hASCs undergoing the late differentiation step by cellular fusion with C2C12 cells. In contrast, hASCs that were normal or in the early stage were not involved in myotube formation. Our results indicate that stem cells expressing dystrophin and MyHC are more suitable for myotube formation by co-culture with myoblasts than normal or early differentiated stem cells expressing MyoD and myogenin.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zongyuan; Senanayake, Sanjaya D.; Rodriguez, Jose A.

    Bulk metallic nickel is a poor catalyst for the reforming of oxygenates being deactivated by the deposition of coke. In contrast, Ni-ceria is an active system for the catalytic extraction of H 2 from the ethanol steam reforming reaction (ESR, C 2H 5OH + 3H 2O ↔ 2CO 2 + 6H 2). Numerous studies, with model (well-defined crystal surfaces) and technical (high surface area powders) catalysts, have been devoted to understand the fundamental role of each catalyst component, the performance of adjacent sites in the metal-oxide interface, and the complex mechanistic steps that convert two oxygenated reactants (ethanol and Hmore » 2O) into H 2. The size and low loading of Ni on ceria facilitate metal-oxide support interactions that probably enhance the reactivity of the system. To establish the precise role of both Ni and Ce is challenging. However it is clear that both Ni and Ce are associated with the dissociation of H 2O (OH + H), while ceria readily adsorbs and partially dissociates ethanol (i.e. ethoxy formation). The most difficult step of Csingle bondC bond dissociation likely occurs only on Ni or at the Ni-Ce interface. H 2O and OH remain as important agents for the prevention of excess C build up during the Csingle bondH/Csingle bondC dissociation process. Often, deactivation upon C build up, is a direct result of Ni sintering and decoupling of the Ni-Ce interactions. One strategy to maintain good activity and stability is to protect the Ni-Ce interaction, and this can be achieved through the use of solid solutions (Ce 1–xNi xO 2–y) or by employing stabilizing agents such as W (Ni xW yCe zO 2). In this paper, we present and discuss the most recent work for the ESR reaction and show the important role of ceria which participates directly in the reaction and also enhances catalytic activity through metal-support interactions.« less

  12. Growth of Defect-Free 3C-SiC on 4H- and 6H-SiC Mesas Using Step-Free Surface Heteroepitaxy

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Powell, J. Anthony; Trunek, Andrew J.; Huang, Xianrong R.; Dudley, Michael

    2001-01-01

    A new growth process, herein named step-free surface heteroepitaxy, has achieved 3CSiC films completely free of double positioning boundaries and stacking faults on 4H-SiC and 6H-SiC substrate mesas. The process is based upon the initial 2-dimensional nucleation and lateral expansion of a single island of 3C-SiC on a 4H- or 6H-SiC mesa surface that is completely free of bilayer surface steps. Our experimental results indicate that substrate-epilayer in-plane lattice mismatch (delta a/a = 0.0854% for 3C/4H) is at least partially relieved parallel to the interface in the initial bilayers of the heterofilm, producing an at least partially relaxed 3C-SiC film without dislocations that undesirably thread through the thickness of the epilayer. This result should enable realization of improved 3C-SiC devices.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, Donghai; Lebarbier, Vanessa M.; Rousseau, Roger

    In a combined experimental and first-principles density functional theory (DFT) study, benzene steam reforming (BSR) over MgAl 2O 4 supported Rh and Ir catalysts was investigated. Experimentally, it has been found that both highly dispersed Rh and Ir clusters (1-2 nm) on the MgAl 2O 4 spinel support are stable during the BSR in the temperature range of 700-850°C. Compared to the Ir/MgAl 2O 4 catalyst, the Rh/MgAl 2O 4 catalyst is more active with higher benzene turnover frequency and conversion. At typical steam conditions with the steam-to-carbon ratio > 12, the benzene conversion is only a weak function ofmore » the H 2O concentration in the feed. This suggests that the initial benzene decomposition step rather than the benzene adsorption is most likely the rate-determined step in BSR over supported Rh and Ir catalysts. In order to understand the differences between the two catalysts, we followed with a comparative DFT study of initial benzene decomposition pathways over two representative model systems for each supported metal (Rh and Ir) catalysts. A periodic terrace (111) surface and an amorphous 50-atom metal cluster with a diameter of 1.0 nm were used to represent the two supported model catalysts under low and high dispersion conditions. Our DFT results show that the decreasing catalyst particle size enhances the benzene decomposition on supported Rh catalysts by lowering both C-C and C-H bond scission. The activation barriers of the C-C and the C-H bond scission decrease from 1.60 and 1.61 eV on the Rh(111) surface to 1.34 and 1.26 eV on the Rh50 cluster. For supported Ir catalysts, the decreasing particle size only affects the C-C scission. The activation barrier of the C-C scission of benzene decreases from 1.60 eV on the Ir(111) surface to 1.35 eV on the Ir50 cluster while the barriers of the C-H scission are practically the same. The experimentally measured higher BSR activity on the supported highly dispersed Rh catalyst can be rationalized by the thermodynamic limitation for the very first C-C bond scission of benzene on the small Ir50 catalyst. The C-C bond scission of benzene on the small Ir50 catalyst is highly endothermic although the barrier is competitive with the barriers of both the C-C and the C-H bond-breakings on the small Rh50 catalyst. The calculations also imply that, for the supported Rh catalysts the C-C and C-H bond scissions are competitive, independently of the Rh cluster sizes. After the initial dissociation step via either the C-C or the C-H bond scission, the C-H bond breaking seems to be more favorable rather than the C-C bond breaking on the larger Rh terrace surface. This work was financially supported by the United States Department of Energy’s Office of Biomass Program’s. Computing time was granted by a user project at the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.« less

  14. 31P and 13C NMR analyses of the energy metabolism of the thermophilic anaerobe Clostridium thermocellum.

    PubMed

    Tolman, C J; Kanodia, S; Roberts, M F

    1987-08-15

    The energy metabolism of an anaerobic obligate thermophile, Clostridium thermocellum, has been examined as a function of incubation temperature using 31P NMR spectroscopy. Specifically investigated were the generation and availability of ATP as a function of temperature, activation energies for key processes in energy metabolism including formation of a pH gradient across the cell membrane, transport of key nutrients, and initial steps in glycolysis, and the existence of a membrane phase transition in the intact organism. Cells generate ATP via glycolysis at all temperatures examined; hence, limitation of the energy supply is not directly responsible for the lack of growth of this organism at low temperatures. Estimations of activation energies show a distinct hierarchy in the ATP-utilizing reactions examined. Conservation of ATP hydrolysis energy as delta pH has the lowest activation energy (less than or equal to 4 kcal/mol), two transport processes exhibit 10 kcal/mol activation energies, and early phosphorylation steps in glycolysis have significantly higher activation energies (approximately 25 kcal/mol). Neither the membrane-bound ATPase responsible for formation of the pH gradient nor the permease involved in phosphate transport shows evidence of a change in behavior around the phase transition temperature determined for extracted lipids of C. thermocellum. Line widths of inorganic phosphate do show a break in behavior around 35-40 degrees C. Possible explanations for this behavior are discussed.

  15. Effect of pH on simultaneous saccharification and isomerization by glucoamylase and glucose isomerase.

    PubMed

    Mishra, Abha; Debnath Das, Meera

    2002-01-01

    pH and temperature play critical roles in multistep enzymatic conversions. In such conversions, the optimal pH for individual steps differs greatly. In this article, we describe the production of glucoamylase (from Aspergillus oryzae MTCC152 in solid-state fermentation) and glucose isomerase (from Streptomyces griseus NCIM2020 in submerged fermentation), used in industries for producing high-fructose syrup. Optimum pH for glucoamylase was found to be 5.0. For glucose isomerase, the optimum pH ranged between 7.0 and 8.5, depending on the type of buffer used. Optimum temperature for glucoamylase and glucose isomerase was 50 and 60 degrees C, respectively. When both the enzymatic conversions were performed simultaneously at a compromised pH of 6.5, both the enzymes showed lowered activity. We also studied the kinetics at different pHs, which allows the two-step reaction to take place simultaneously. This was done by separating two steps by a thin layer of urease. Ammonia generated by the hydrolysis of urea consumed the hydrogen ions, thereby allowing optimal activity of glucose isomerase at an acidic pH of 5.0.

  16. Facile Synthesis and Superior Catalytic Activity of Nano-TiN@N-C for Hydrogen Storage in NaAlH4.

    PubMed

    Zhang, Xin; Ren, Zhuanghe; Lu, Yunhao; Yao, Jianhua; Gao, Mingxia; Liu, Yongfeng; Pan, Hongge

    2018-05-09

    Herein, we synthesize successfully ultrafine TiN nanoparticles (<3 nm in size) embedded in N-doped carbon nanorods (nano-TiN@N-C) by a facile one-step calcination process. The prepared nano-TiN@N-C exhibits superior catalytic activity for hydrogen storage in NaAlH 4 . Adding 7 wt % nano-TiN@N-C induces more than 100 °C reduction in the onset dehydrogenation temperature of NaAlH 4 . Approximately 4.9 wt % H 2 is rapidly released from the 7 wt % nano-TiN@N-C-containing NaAlH 4 at 140 °C within 60 min, and the dehydrogenation product is completely hydrogenated at 100 °C within 15 min under 100 bar of hydrogen, exhibiting significantly improved desorption/absorption kinetics. No capacity loss is observed for the nano-TiN@N-C-containing sample within 25 de-/hydrogenation cycles because nano-TiN functions as an active catalyst instead of a precursor. A severe structural distortion with extended bond lengths and reduced bond strengths for Al-H bonding when the [AlH 4 ] - group adsorbs on the TiN cluster is demonstrated for the first time by density functional theory calculations, which well-explains the reduced de-/hydrogenation temperatures of the nano-TiN@N-C-containing NaAlH 4 . These findings provide new insights into designing and synthesizing high-performance catalysts for hydrogen storage in complex hydrides.

  17. Structural requirements and reaction pathways in dimethyl ether combustion catalyzed by supported Pt clusters.

    PubMed

    Ishikawa, Akio; Neurock, Matthew; Iglesia, Enrique

    2007-10-31

    The identity and reversibility of the elementary steps required for catalytic combustion of dimethyl ether (DME) on Pt clusters were determined by combining isotopic and kinetic analyses with density functional theory estimates of reaction energies and activation barriers to probe the lowest energy paths. Reaction rates are limited by C-H bond activation in DME molecules adsorbed on surfaces of Pt clusters containing chemisorbed oxygen atoms at near-saturation coverages. Reaction energies and activation barriers for C-H bond activation in DME to form methoxymethyl and hydroxyl surface intermediates show that this step is more favorable than the activation of C-O bonds to form two methoxides, consistent with measured rates and kinetic isotope effects. This kinetic preference is driven by the greater stability of the CH3OCH2* and OH* intermediates relative to chemisorbed methoxides. Experimental activation barriers on Pt clusters agree with density functional theory (DFT)-derived barriers on oxygen-covered Pt(111). Measured DME turnover rates increased with increasing DME pressure, but decreased as the O2 pressure increased, because vacancies (*) on Pt surfaces nearly saturated with chemisorbed oxygen are required for DME chemisorption. DFT calculations show that although these surface vacancies are required, higher oxygen coverages lead to lower C-H activation barriers, because the basicity of oxygen adatoms increases with coverage and they become more effective in hydrogen abstraction from DME. Water inhibits reaction rates via quasi-equilibrated adsorption on vacancy sites, consistent with DFT results indicating that water binds more strongly than DME on vacancies. These conclusions are consistent with the measured kinetic response of combustion rates to DME, O2, and H2O, with H/D kinetic isotope effects, and with the absence of isotopic scrambling in reactants containing isotopic mixtures of 18O2-16O2 or 12CH3O12CH3-13CH3O13CH3. Turnover rates increased with Pt cluster size, because small clusters, with more coordinatively unsaturated surface atoms, bind oxygen atoms more strongly than larger clusters and exhibit lower steady-state vacancy concentrations and a consequently smaller number of adsorbed DME intermediates involved in kinetically relevant steps. These effects of cluster size and metal-oxygen bond energies on reactivity are ubiquitous in oxidation reactions requiring vacancies on surfaces nearly saturated with intermediates derived from O2.

  18. Probing the Carbon-Hydrogen Activation of Alkanes Following Photolysis of Tp'Rh(CNR)(carbodiimide): A Computational and Time-Resolved Infrared Spectroscopic Study.

    PubMed

    Guan, Jia; Wriglesworth, Alisdair; Sun, Xue Zhong; Brothers, Edward N; Zarić, Snežana D; Evans, Meagan E; Jones, William D; Towrie, Michael; Hall, Michael B; George, Michael W

    2018-02-07

    Carbon-hydrogen bond activation of alkanes by Tp'Rh(CNR) (Tp' = Tp = trispyrazolylborate or Tp* = tris(3,5-dimethylpyrazolyl)borate) were followed by time-resolved infrared spectroscopy (TRIR) in the υ(CNR) and υ(B-H) spectral regions on Tp*Rh(CNCH 2 CMe 3 ), and their reaction mechanisms were modeled by density functional theory (DFT) on TpRh(CNMe). The major intermediate species were: κ 3 -η 1 -alkane complex (1); κ 2 -η 2 -alkane complex (2); and κ 3 -alkyl hydride (3). Calculations predict that the barrier between 1 and 2 arises from a triplet-singlet crossing and intermediate 2 proceeds over the rate-determining C-H activation barrier to give the final product 3. The activation lifetimes measured for the Tp*Rh(CNR) and Tp*Rh(CO) fragments with n-heptane and four cycloalkanes (C 5 H 10 , C 6 H 12 , C 7 H 14 , and C 8 H 16 ) increase with alkanes size and show a dramatic increase between C 6 H 12 and C 7 H 14 . A similar step-like behavior was observed previously with CpRh(CO) and Cp*Rh(CO) fragments and is attributed to the wider difference in C-H bonds that appear at C 7 H 14 . However, Tp'Rh(CNR) and Tp'Rh(CO) fragments have much longer absolute lifetimes compared to those of CpRh(CO) and Cp*Rh(CO) fragments, because the reduced electron density in dechelated κ 2 -η 2 -alkane Tp' complexes stabilizes the d 8 Rh(I) in a square-planar geometry and weakens the metal's ability for oxidative addition of the C-H bond. Further, the Tp'Rh(CNR) fragment has significantly slower rates of C-H activation in comparison to the Tp'Rh(CO) fragment for the larger cycloalkanes, because the steric bulk of the neopentyl isocyanide ligand hinders the rechelation in κ 2 -Tp'Rh(CNR)(cycloalkane) species and results in the C-H activation without the assistance of the rechelation.

  19. Photo-induced oxidant-free oxidative C-H/N-H cross-coupling between arenes and azoles

    NASA Astrophysics Data System (ADS)

    Niu, Linbin; Yi, Hong; Wang, Shengchun; Liu, Tianyi; Liu, Jiamei; Lei, Aiwen

    2017-02-01

    Direct cross-coupling between simple arenes and heterocyclic amines under mild conditions is undoubtedly important for C-N bonds construction. Selective C(sp2)-H amination is more valuable. Herein we show a selective C(sp2)-H amination of arenes (alkyl-substituted benzenes, biphenyl and anisole derivatives) accompanied by hydrogen evolution by using heterocyclic azoles as nitrogen sources. The reaction is selective for C(sp2)-H bonds, providing a mild route to N-arylazoles. The KIE (kinetic isotope effect) experiment reveals the cleavage of C-H bond is not involved in the rate-determining step. Kinetic studies indicate the first-order behaviour with respect to the arene component. It is interesting that this system works without the need for any sacrificial oxidant and is highly selective for C(sp2)-H activation, whereas C(sp3)-H bonds are unaffected. This study may have significant implications for the functionalization of methylarenes which are sensitive to oxidative conditions.

  20. C-H activations at iridium(I) square-planar complexes promoted by a fifth ligand.

    PubMed

    Martín, Marta; Torres, Olga; Oñate, Enrique; Sola, Eduardo; Oro, Luis A

    2005-12-28

    In the presence of ligands such as acetonitrile, ethylene, or propylene, the Ir(I) complex [Ir(1,2,5,6-eta-C8H12)(NCMe)(PMe3)]BF4 (1) transforms into the Ir(III) derivatives [Ir(1-kappa-4,5,6-eta-C8H12)(NCMe)(L)(PMe3)]BF4 (L = NCMe, 2; eta2-C2H4, 3; eta2-C3H6, 4), respectively, through a sequence of C-H oxidative addition and insertion elementary steps. The rate of this transformation depends on the nature of L and, in the case of NCMe, the pseudo-first-order rate constants display a dependence upon ligand concentration suggesting the formation of five-coordinate reaction intermediates. A similar reaction between 1 and vinyl acetate affords the Ir(III) complex [Ir(1-kappa-4,5,6-eta-C8H12){kappa-O-eta2-OC(Me)OC2H3}(PMe3)]BF4 (7) via the isolable five-coordinate Ir(I) compound [Ir(1,2,5,6-eta-C8H12){kappa-O-eta2-OC(Me)OC2H3}(PMe3)]BF4 (6). DFT (B3LYP) calculations in model complexes show that reactions initiated by acetonitrile or ethylene five-coordinate adducts involve C-H oxidative addition transition states of lower energy than that found in the absence of these ligands. Key species in these ligand-assisted transformations are the distorted (nonsquare-planar) intermediates preceding the intramolecular C-H oxidative addition step, which are generated after release of one cyclooctadiene double bond from the five-coordinate species. The feasibility of this mechanism is also investigated for complexes [IrCl(L)(PiPr3)2] (L = eta2-C2H4, 27; eta2-C3H6, 28). In the presence of NCMe, these complexes afford the C-H activation products [IrClH(CH=CHR)(NCMe)(PiPr3)2] (R = H, 29; Me, 30) via the common cyclometalated intermediate [IrClH{kappa-P,C-P(iPr)2CH(CH3)CH2}(NCMe)(PiPr3)] (31). The most effective C-H oxidative addition mechanism seems to involve three-coordinate intermediates generated by photochemical release of the alkene ligand. However, in the absence of light, the reaction rates display dependences upon NCMe concentration again indicating the intermediacy of five-coordinate acetonitrile adducts.

  1. Building robust architectures of carbon-wrapped transition metal nanoparticles for high catalytic enhancement of the 2LiBH4-MgH2 system for hydrogen storage cycling performance

    NASA Astrophysics Data System (ADS)

    Huang, Xu; Xiao, Xuezhang; Shao, Jie; Zhai, Bing; Fan, Xiulin; Cheng, Changjun; Li, Shouquan; Ge, Hongwei; Wang, Qidong; Chen, Lixin

    2016-08-01

    Nanoscale catalyst doping is regarded as one of the most effective strategies to improve the kinetics performance of hydrogen storage materials, but the agglomeration of nanoparticles is usually unavoidable during the repeated de/rehydrogenation processes. Herein, hierarchically structured catalysts (Fe/C, Co/C and Ni/C) were designed and fabricated to overcome the agglomeration issue of nanocatalysts applied to the 2LiBH4-MgH2 system for the first time. Uniform transition metal (TM) nanoparticles (~10 nm) wrapped by few layers of carbon are synthesized by pyrolysis of the corresponding metal-organic frameworks (MOFs), and introduced into the 2LiBH4-MgH2 reactive hydride composites (RHCs) by ball milling. The particular features of the carbon-wrapped architecture effectively avoid the agglomeration of the TM nanoparticles during hydrogen storage cycling, and high catalysis is maintained during the subsequent de/rehydrogenation processes. After de/rehydrogenation cycling, FeB, CoB and MgNi3B2 can be formed as the catalytically active components with a particle size of 5-15 nm, which show a homogeneous distribution in the hydride matrix. Among the three catalysts, in situ-formed MgNi3B2 shows the best catalytic efficiency. The incubation period of the Fe/C, Co/C and Ni/C-doped 2LiBH4-MgH2 system between the two dehydrogenation steps was reduced to about 8 h, 4 h and 2 h, respectively, which is about 8 h, 12 h and 14 h shorter than that of the undoped 2LiBH4-MgH2 sample. In addition, the two-step dehydrogenation peak temperatures of the Ni/C-doped 2LiBH4-MgH2 system drop to 323.4 °C and 410.6 °C, meanwhile, the apparent activation energies of dehydrogenated MgH2 and LiBH4 decrease by 58 kJ mol-1 and 71 kJ mol-1, respectively. In particular, the cycling hydrogen desorption of the Ni/C-doped 2LiBH4-MgH2 sample exhibits very good stability compared with the undoped sample. The present approach, which ideally addresses the agglomeration of nanoparticles with efficient catalysis on the RHCs, provides a new inspiration to practical hydrogen storage application for high performance complex hydrides.Nanoscale catalyst doping is regarded as one of the most effective strategies to improve the kinetics performance of hydrogen storage materials, but the agglomeration of nanoparticles is usually unavoidable during the repeated de/rehydrogenation processes. Herein, hierarchically structured catalysts (Fe/C, Co/C and Ni/C) were designed and fabricated to overcome the agglomeration issue of nanocatalysts applied to the 2LiBH4-MgH2 system for the first time. Uniform transition metal (TM) nanoparticles (~10 nm) wrapped by few layers of carbon are synthesized by pyrolysis of the corresponding metal-organic frameworks (MOFs), and introduced into the 2LiBH4-MgH2 reactive hydride composites (RHCs) by ball milling. The particular features of the carbon-wrapped architecture effectively avoid the agglomeration of the TM nanoparticles during hydrogen storage cycling, and high catalysis is maintained during the subsequent de/rehydrogenation processes. After de/rehydrogenation cycling, FeB, CoB and MgNi3B2 can be formed as the catalytically active components with a particle size of 5-15 nm, which show a homogeneous distribution in the hydride matrix. Among the three catalysts, in situ-formed MgNi3B2 shows the best catalytic efficiency. The incubation period of the Fe/C, Co/C and Ni/C-doped 2LiBH4-MgH2 system between the two dehydrogenation steps was reduced to about 8 h, 4 h and 2 h, respectively, which is about 8 h, 12 h and 14 h shorter than that of the undoped 2LiBH4-MgH2 sample. In addition, the two-step dehydrogenation peak temperatures of the Ni/C-doped 2LiBH4-MgH2 system drop to 323.4 °C and 410.6 °C, meanwhile, the apparent activation energies of dehydrogenated MgH2 and LiBH4 decrease by 58 kJ mol-1 and 71 kJ mol-1, respectively. In particular, the cycling hydrogen desorption of the Ni/C-doped 2LiBH4-MgH2 sample exhibits very good stability compared with the undoped sample. The present approach, which ideally addresses the agglomeration of nanoparticles with efficient catalysis on the RHCs, provides a new inspiration to practical hydrogen storage application for high performance complex hydrides. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr04100k

  2. Mechanistic Studies of Cobalt-Catalyzed C(sp2)-H Borylation of Five-Membered Heteroarenes with Pinacolborane.

    PubMed

    Obligacion, Jennifer V; Chirik, Paul J

    2017-07-07

    Studies into the mechanism of cobalt-catalyzed C(sp 2 )-H borylation of five-membered heteroarenes with pinacolborane (HBPin) as the boron source established the catalyst resting state as the trans -cobalt(III) dihydride boryl, ( iPr PNP)Co(H) 2 (BPin) ( iPr PNP = 2,6-( i Pr 2 PCH 2 ) 2 (C 5 H 3 N)), at both low and high substrate conversions. The overall first-order rate law and observation of a normal deuterium kinetic isotope effect on the borylation of benzofuran versus benzofuran-2- d 1 support H 2 reductive elimination from the cobalt(III) dihydride boryl as the turnover-limiting step. These findings stand in contrast to that established previously for the borylation of 2,6-lutidine with the same cobalt precatalyst, where borylation of the 4-position of the pincer occurred faster than the substrate turnover and arene C-H activation by a cobalt(I) boryl is turnover-limiting. Evaluation of the catalytic activity of different cobalt precursors in the C-H borylation of benzofuran with HBPin established that the ligand design principles for C- H borylation depend on the identities of both the arene and the boron reagent used: electron-donating groups improve catalytic activity of the borylation of pyridines and arenes with B 2 Pin 2 , whereas electron-withdrawing groups improve catalytic activity of the borylation of five-membered heteroarenes with HBPin. Catalyst deactivation by P-C bond cleavage from a cobalt(I) hydride was observed in the C-H borylation of arene substrates with C-H bonds that are less acidic than those of five-membered heteroarenes using HBPin and explains the requirement of B 2 Pin 2 to achieve synthetically useful yields with these arene substrates.

  3. Theoretical Insights into Methane C–H Bond Activation on Alkaline Metal Oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aljama, Hassan; Nørskov, Jens K.; Abild-Pedersen, Frank

    Here, we investigate the role of alkaline metal oxides (AMO) (MgO, CaO, and SrO) in activating the C–H bond in methane. We also use Density Functional Theory (DFT) and microkinetic modeling to study the catalytic elementary steps in breaking the C–H bond in methane and creating the methyl radical, a precursor prior to creating C2 products. We also study the effects of surface geometry on the catalytic activity of AMO by examining terrace and step sites. We observe that the process of activating methane depends strongly on the structure of the AMO. When the AMO surface is doped with anmore » alkali metal, the transition state (TS) structure has a methyl radical-like behavior, where the methyl radical interacts weakly with the AMO surface. In this case, the TS energy scales with the hydrogen binding energy. On pure AMO, the TS interacts with AMO surface oxygen as well as the metal atom on the surface, and consequently the TS energy scales with the binding energy of hydrogen and methyl. We study the activity of AMO using a mean-field microkinetic model. The results indicate that terrace sites have similar catalytic activity, with the exception of MgO(100). Step sites bind hydrogen more strongly, making them more active, and this confirms previously reported experimental results. We map the catalytic activity of AMO using a volcano plot with two descriptors: the methyl and the hydrogen binding energies, with the latter being a more significant descriptor. The microkinetic model results suggest that C–H bond dissociation is not always the rate-limiting step. At weak hydrogen binding, the reaction is limited by C–H bond activation. At strong hydrogen binding, the reaction is limited due to poisoning of the active site. We found an increase in activity of AMO as the basicity increased. Finally, the developed microkinetic model allows screening for improved catalysts using simple calculations of the hydrogen binding energy.« less

  4. Theoretical Insights into Methane C–H Bond Activation on Alkaline Metal Oxides

    DOE PAGES

    Aljama, Hassan; Nørskov, Jens K.; Abild-Pedersen, Frank

    2017-07-17

    Here, we investigate the role of alkaline metal oxides (AMO) (MgO, CaO, and SrO) in activating the C–H bond in methane. We also use Density Functional Theory (DFT) and microkinetic modeling to study the catalytic elementary steps in breaking the C–H bond in methane and creating the methyl radical, a precursor prior to creating C2 products. We also study the effects of surface geometry on the catalytic activity of AMO by examining terrace and step sites. We observe that the process of activating methane depends strongly on the structure of the AMO. When the AMO surface is doped with anmore » alkali metal, the transition state (TS) structure has a methyl radical-like behavior, where the methyl radical interacts weakly with the AMO surface. In this case, the TS energy scales with the hydrogen binding energy. On pure AMO, the TS interacts with AMO surface oxygen as well as the metal atom on the surface, and consequently the TS energy scales with the binding energy of hydrogen and methyl. We study the activity of AMO using a mean-field microkinetic model. The results indicate that terrace sites have similar catalytic activity, with the exception of MgO(100). Step sites bind hydrogen more strongly, making them more active, and this confirms previously reported experimental results. We map the catalytic activity of AMO using a volcano plot with two descriptors: the methyl and the hydrogen binding energies, with the latter being a more significant descriptor. The microkinetic model results suggest that C–H bond dissociation is not always the rate-limiting step. At weak hydrogen binding, the reaction is limited by C–H bond activation. At strong hydrogen binding, the reaction is limited due to poisoning of the active site. We found an increase in activity of AMO as the basicity increased. Finally, the developed microkinetic model allows screening for improved catalysts using simple calculations of the hydrogen binding energy.« less

  5. 20 CFR 655.1114 - Element IV-What are the timely and significant steps an H-1C employer must take to recruit and...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... significant steps an H-1C employer must take to recruit and retain U.S. nurses? 655.1114 Section 655.1114... Workers as Registered Nurses? § 655.1114 Element IV—What are the timely and significant steps an H-1C employer must take to recruit and retain U.S. nurses? (a) The fourth attestation element requires that the...

  6. Energy cost of stepping in place while watching television commercials.

    PubMed

    Steeves, Jeremy A; Thompson, Dixie L; Bassett, David R

    2012-02-01

    Modifying sedentary television (TV) watching behaviors by stepping in place during commercials (TV commercial stepping) could increase physical activity and energy expenditure. The study's purpose was to determine the energy cost of TV commercial stepping and to quantify the amount of activity (number of steps and minutes) performed during 1 h of TV commercial stepping. In part 1, 23 adults (27.8 ± 7.0 yr) had their energy expenditure measured at rest, sitting, standing, stepping in place, and walking at 3.0 mph on the treadmill. The second part of this study involved 1 h of sedentary TV viewing and 1 h of TV commercial stepping. Actual steps were counted with a hand tally counter. There were no differences (P = 0.76) between the caloric requirements of reclining rest (79 ± 16 kcal·h(-1)) and sedentary TV viewing (81 ± 19 kcal·h(-1)). However, stepping in place (258 ± 76 kcal·h(-1)), walking at 3.0 mph on the treadmill (304 ± 71 kcal·h(-1)), and 1 h of TV commercial stepping (148 ± 40 kcal·h(-1)) had a higher caloric requirement than either reclining rest or sedentary TV viewing (P < 0.001). One hour of TV commercial stepping resulted in an average of 25.2 ± 2.6 min of physical activity and 2111 ± 253 steps. Stepping in place during commercials can increase the energy cost and amount of activity performed during TV viewing.

  7. Palladium-catalyzed cyclocoupling of 2-halobiaryls with isocyanides via the cleavage of carbon-hydrogen bonds.

    PubMed

    Tobisu, Mamoru; Imoto, Shinya; Ito, Sana; Chatani, Naoto

    2010-07-16

    To demonstrate the utility of isocyanides in catalytic C-H bond functionalization reactions, a palladium-catalyzed cyclocoupling reaction of 2-halobiaryls with isocyanides was developed. The reaction afforded an array of fluorenone imine derivatives via the cleavage of a C-H bond at the 2'-position of 2-halobiaryls. The use of 2,6-disubstituted phenyl isocyanide was crucial for this catalytic cyclocoupling reaction to proceed. The reaction was applicable to heterocyclic and vinylic substrates, allowing the construction of a wide range of ring system. The large kinetic isotope effect observed (k(H)/k(D) = 5.3) indicates that C-H bond activation was the turnover-limiting step in this catalysis.

  8. Carboxylate-assisted C–H activation of phenylpyridines with copper, palladium and ruthenium: a mass spectrometry and DFT study† †Electronic supplementary information (ESI) available: Details on the mass-spectrometry experiments and theoretical calculations, Hammett studies, potential energy surfaces, energies, optimized Gaussian geometries and laser-power dependence during the IRMPD spectra measurements. See DOI: 10.1039/c5sc01729g

    PubMed Central

    Gray, A.; Tsybizova, A.

    2015-01-01

    The C–H activation of 2-phenylpyridine, catalyzed by copper(ii), palladium(ii) and ruthenium(ii) carboxylates, was studied in the gas phase. ESI-MS, infrared multiphoton dissociation spectroscopy and quantum chemical calculations were combined to investigate the intermediate species in the reaction. Collision induced dissociation (CID) experiments and DFT calculations allowed estimation of the energy required for this C–H activation step and the subsequent acetic acid loss. Hammett plots constructed from the CID experiments using different copper carboxylates as catalysts revealed that the use of stronger acids accelerates the C–H activation step. The reasoning can be traced from the associated transition structures that suggest a concerted mechanism and the key effect of the carbon–metal bond pre-formation. Carboxylates derived from stronger acids make the metal atom more electrophilic and therefore shift the reaction towards the formation of C–H activated products. PMID:29861892

  9. Real-time investigation of human topoisomerase I reaction kinetics using an optical sensor: a fast method for drug screening and determination of active enzyme concentrations

    NASA Astrophysics Data System (ADS)

    Kristoffersen, Emil L.; Jørgensen, Line A.; Franch, Oskar; Etzerodt, Michael; Frøhlich, Rikke; Bjergbæk, Lotte; Stougaard, Magnus; Ho, Yi-Ping; Knudsen, Birgitta R.

    2015-05-01

    Human DNA topoisomerase I (hTopI) is a nuclear enzyme that catalyzes relaxation of super helical tension that arises in the genome during essential DNA metabolic processes. This is accomplished through a common reaction mechanism shared among the type IB topoisomerase enzymes, including eukaryotic and poxvirus topoisomerase I. The mechanism of hTopI is specifically targeted in cancer treatment using camptothecin derivatives. These drugs convert the hTopI activity into a cellular poison, and hence the cytotoxic effects of camptothecin derivatives correlate with the hTopI activity. Therefore, fast and reliable techniques for high throughput measurements of hTopI activity are of high clinical interest. Here we demonstrate potential applications of a fluorophore-quencher based DNA sensor designed for measurement of hTopI cleavage-ligation activities, which are the catalytic steps affected by camptothecin. The kinetic analysis of the hTopI reaction with the DNA sensor exhibits a characteristic burst profile. This is the result of a two-step ping-pong reaction mechanism, where a fast first reaction, the one creating the signal, is followed by a slower second reaction necessary for completion of the catalytic cycle. Hence, the burst profile holds information about two reactions in the enzymatic mechanism. Moreover, it allows the amount of active enzyme in the reaction to be determined. The presented results pave the way for future high throughput drug screening and the potential of measuring active hTopI concentrations in clinical samples for individualized treatment.Human DNA topoisomerase I (hTopI) is a nuclear enzyme that catalyzes relaxation of super helical tension that arises in the genome during essential DNA metabolic processes. This is accomplished through a common reaction mechanism shared among the type IB topoisomerase enzymes, including eukaryotic and poxvirus topoisomerase I. The mechanism of hTopI is specifically targeted in cancer treatment using camptothecin derivatives. These drugs convert the hTopI activity into a cellular poison, and hence the cytotoxic effects of camptothecin derivatives correlate with the hTopI activity. Therefore, fast and reliable techniques for high throughput measurements of hTopI activity are of high clinical interest. Here we demonstrate potential applications of a fluorophore-quencher based DNA sensor designed for measurement of hTopI cleavage-ligation activities, which are the catalytic steps affected by camptothecin. The kinetic analysis of the hTopI reaction with the DNA sensor exhibits a characteristic burst profile. This is the result of a two-step ping-pong reaction mechanism, where a fast first reaction, the one creating the signal, is followed by a slower second reaction necessary for completion of the catalytic cycle. Hence, the burst profile holds information about two reactions in the enzymatic mechanism. Moreover, it allows the amount of active enzyme in the reaction to be determined. The presented results pave the way for future high throughput drug screening and the potential of measuring active hTopI concentrations in clinical samples for individualized treatment. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01474c

  10. Cobalt-Catalyzed C(sp(2))-H Borylation: Mechanistic Insights Inspire Catalyst Design.

    PubMed

    Obligacion, Jennifer V; Semproni, Scott P; Pappas, Iraklis; Chirik, Paul J

    2016-08-24

    A comprehensive study into the mechanism of bis(phosphino)pyridine (PNP) cobalt-catalyzed C-H borylation of 2,6-lutidine using B2Pin2 (Pin = pinacolate) has been conducted. The experimentally observed rate law, deuterium kinetic isotope effects, and identification of the catalyst resting state support turnover limiting C-H activation from a fully characterized cobalt(I) boryl intermediate. Monitoring the catalytic reaction as a function of time revealed that borylation of the 4-position of the pincer in the cobalt catalyst was faster than arene borylation. Cyclic voltammetry established the electron withdrawing influence of 4-BPin, which slows the rate of C-H oxidative addition and hence overall catalytic turnover. This mechanistic insight inspired the next generation of 4-substituted PNP cobalt catalysts with electron donating and sterically blocking methyl and pyrrolidinyl substituents that exhibited increased activity for the C-H borylation of unactivated arenes. The rationally designed catalysts promote effective turnover with stoichiometric quantities of arene substrate and B2Pin2. Kinetic studies on the improved catalyst, 4-(H)2BPin, established a change in turnover limiting step from C-H oxidative addition to C-B reductive elimination. The iridium congener of the optimized cobalt catalyst, 6-(H)2BPin, was prepared and crystallographically characterized and proved inactive for C-H borylation, a result of the high kinetic barrier for reductive elimination from octahedral Ir(III) complexes.

  11. Conversion of CO2 and C2H6 to propanoic acid over a Au-exchanged MCM-22 zeolite.

    PubMed

    Sangthong, Winyoo; Probst, Michael; Limtrakul, Jumras

    2014-02-24

    Finding novel catalysts for the direct conversion of CO2 to fuels and chemicals is a primary goal in energy and environmental research. In this work, density functional theory (DFT) is used to study possible reaction mechanisms for the conversion of CO2 and C2H6 to propanoic acid over a gold-exchanged MCM-22 zeolite catalyst. The reaction begins with the activation of ethane to produce a gold ethyl hydride intermediate. Hydrogen transfers to the framework oxygen leads then to gold ethyl adsorbed on the Brønsted-acid site. The energy barriers for these steps of ethane activation are 9.3 and 16.3 kcal mol(-1), respectively. Two mechanisms of propanoic acid formation are investigated. In the first one, the insertion of CO2 into the Au-H bond of the first intermediate yields gold carboxyl ethyl as subsequent intermediate. This is then converted to propanoic acid by forming the relevant C-C bond. The activation energy of the rate-determining step of this pathway is 48.2 kcal mol(-1). In the second mechanism, CO2 interacts with gold ethyl adsorbed on the Brønsted-acid site. Propanoic acid is formed via protonation of CO2 by the Brønsted acid and the simultaneous formation of a bond between CO2 and the ethyl group. The activation energy there is 44.2 kcal mol(-1), favoring this second pathway at least at low temperatures. Gold-exchanged MCM-22 zeolite can therefore, at least in principle, be used as the catalyst for producing propanoic acid from CO2 and ethane. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Cluster size selectivity in the product distribution of ethene dehydrogenation on niobium clusters.

    PubMed

    Parnis, J Mark; Escobar-Cabrera, Eric; Thompson, Matthew G K; Jacula, J Paul; Lafleur, Rick D; Guevara-García, Alfredo; Martínez, Ana; Rayner, David M

    2005-08-18

    Ethene reactions with niobium atoms and clusters containing up to 25 constituent atoms have been studied in a fast-flow metal cluster reactor. The clusters react with ethene at about the gas-kinetic collision rate, indicating a barrierless association process as the cluster removal step. Exceptions are Nb8 and Nb10, for which a significantly diminished rate is observed, reflecting some cluster size selectivity. Analysis of the experimental primary product masses indicates dehydrogenation of ethene for all clusters save Nb10, yielding either Nb(n)C2H2 or Nb(n)C2. Over the range Nb-Nb6, the extent of dehydrogenation increases with cluster size, then decreases for larger clusters. For many clusters, secondary and tertiary product masses are also observed, showing varying degrees of dehydrogenation corresponding to net addition of C2H4, C2H2, or C2. With Nb atoms and several small clusters, formal addition of at least six ethene molecules is observed, suggesting a polymerization process may be active. Kinetic analysis of the Nb atom and several Nb(n) cluster reactions with ethene shows that the process is consistent with sequential addition of ethene units at rates corresponding approximately to the gas-kinetic collision frequency for several consecutive reacting ethene molecules. Some variation in the rate of ethene pick up is found, which likely reflects small energy barriers or steric constraints associated with individual mechanistic steps. Density functional calculations of structures of Nb clusters up to Nb(6), and the reaction products Nb(n)C2H2 and Nb(n)C2 (n = 1...6) are presented. Investigation of the thermochemistry for the dehydrogenation of ethene to form molecular hydrogen, for the Nb atom and clusters up to Nb6, demonstrates that the exergonicity of the formation of Nb(n)C2 species increases with cluster size over this range, which supports the proposal that the extent of dehydrogenation is determined primarily by thermodynamic constraints. Analysis of the structural variations present in the cluster species studied shows an increase in C-H bond lengths with cluster size that closely correlates with the increased thermodynamic drive to full dehydrogenation. This correlation strongly suggests that all steps in the reaction are barrierless, and that weakening of the C-H bonds is directly reflected in the thermodynamics of the overall dehydrogenation process. It is also demonstrated that reaction exergonicity in the initial partial dehydrogenation step must be carried through as excess internal energy into the second dehydrogenation step.

  13. Catalytic properties of a CoMo/Al[sub 2]O[sub 3] catalyst presulfided with alkyl polysulfides: Comparison with conventional sulfiding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gestel, J. van; Leglise, J.; Duchet, J.C.

    1994-02-01

    A CoMo/Al[sub 2]O[sub 3] hydrotreating catalyst has been sulfided in different ways: (i) by conventional in situ sulfiding in a high-pressure reactor with a H[sub 2]S/H[sub 2] or dimethyldisulfide (DMDS)/H[sub 2] mixture at 350[degrees]C and 4 MPa; or (ii) by a preliminary presulfidation with di-tert-nonyl or di-tert-dodecyl pentasulfides followed by one of the above conventional in situ sulfidations. The presulfidation was performed in two steps: impregnation of the oxidic catalyst with the polysulfide and then thermal treatment under flowing nitrogen at 130[degrees]C. The catalysts were evaluated for their catalytic properties at 280-350[degrees]C and 4 MPa for the simultaneous hydrodesulfurization ofmore » thiophene and hydrogenation of cyclohexene. Compared to H[sub 2]S/H[sub 2], in situ DMDS/H[sub 2] sulfiding of the CoMo/Al[sub 2]O[sub 3] catalyst enhanced the C-S hydrogenolysis at 280[degrees]C but not the hydrogenation; however, the apparent activation energy for hydrogenation was markedly increased. The presulfidation with the polysulfides following by H[sub 2]S/H[sub 2] sulfidation yielded improved activities at 280[degrees]C for both hydrogenation and C-S bond breakage and did not influence the apparent activation energies. The highest activities were obtained by combining presulfiding and DMDS/H[sub 2] sulfidation. These results are discussed in terms of the genesis of the supported sulfide phase with various sulfur species. 40 refs., 2 figs., 2 tabs.« less

  14. Merging allylic carbon-hydrogen and selective carbon-carbon bond activation.

    PubMed

    Masarwa, Ahmad; Didier, Dorian; Zabrodski, Tamar; Schinkel, Marvin; Ackermann, Lutz; Marek, Ilan

    2014-01-09

    Since the nineteenth century, many synthetic organic chemists have focused on developing new strategies to regio-, diastereo- and enantioselectively build carbon-carbon and carbon-heteroatom bonds in a predictable and efficient manner. Ideal syntheses should use the least number of synthetic steps, with few or no functional group transformations and by-products, and maximum atom efficiency. One potentially attractive method for the synthesis of molecular skeletons that are difficult to prepare would be through the selective activation of C-H and C-C bonds, instead of the conventional construction of new C-C bonds. Here we present an approach that exploits the multifold reactivity of easily accessible substrates with a single organometallic species to furnish complex molecular scaffolds through the merging of otherwise difficult transformations: allylic C-H and selective C-C bond activations. The resulting bifunctional nucleophilic species, all of which have an all-carbon quaternary stereogenic centre, can then be selectively derivatized by the addition of two different electrophiles to obtain more complex molecular architecture from these easily available starting materials.

  15. Merging allylic carbon-hydrogen and selective carbon-carbon bond activation

    NASA Astrophysics Data System (ADS)

    Masarwa, Ahmad; Didier, Dorian; Zabrodski, Tamar; Schinkel, Marvin; Ackermann, Lutz; Marek, Ilan

    2014-01-01

    Since the nineteenth century, many synthetic organic chemists have focused on developing new strategies to regio-, diastereo- and enantioselectively build carbon-carbon and carbon-heteroatom bonds in a predictable and efficient manner. Ideal syntheses should use the least number of synthetic steps, with few or no functional group transformations and by-products, and maximum atom efficiency. One potentially attractive method for the synthesis of molecular skeletons that are difficult to prepare would be through the selective activation of C-H and C-C bonds, instead of the conventional construction of new C-C bonds. Here we present an approach that exploits the multifold reactivity of easily accessible substrates with a single organometallic species to furnish complex molecular scaffolds through the merging of otherwise difficult transformations: allylic C-H and selective C-C bond activations. The resulting bifunctional nucleophilic species, all of which have an all-carbon quaternary stereogenic centre, can then be selectively derivatized by the addition of two different electrophiles to obtain more complex molecular architecture from these easily available starting materials.

  16. Functional analysis of the missense APOC3 mutation Ala23Thr associated with human hypotriglyceridemia.

    PubMed

    Sundaram, Meenakshi; Zhong, Shumei; Bou Khalil, Maroun; Zhou, Hu; Jiang, Zhenghui G; Zhao, Yang; Iqbal, Jahangir; Hussain, M Mahmood; Figeys, Daniel; Wang, Yuwei; Yao, Zemin

    2010-06-01

    We have shown that expression of apolipoprotein (apo) C-III promotes VLDL secretion from transfected McA-RH7777 cells under lipid-rich conditions. To determine structural elements within apoC-III that confer to this function, we contrasted wild-type apoC-III with a mutant Ala23Thr originally identified in hypotriglyceridemia subjects. Although synthesis of [(3)H]glycerol-labeled TAG was comparable between cells expressing wild-type apoC-III (C3wt cells) or Ala23Thr mutant (C3AT cells), secretion of [(3)H]TAG from C3AT cells was markedly decreased. The lowered [(3)H]TAG secretion was associated with an inability of C3AT cells to assemble VLDL(1). Moreover, [(3)H]TAG within the microsomal lumen in C3AT cells was 60% higher than that in C3wt cells, yet the activity of microsomal triglyceride-transfer protein in C3AT cells was not elevated. The accumulated [(3)H]TAG in C3AT microsomal lumen was mainly associated with lumenal IDL/LDL-like lipoproteins. Phenotypically, this [(3)H]TAG fractionation profiling resembled what was observed in cells treated with brefeldin A, which at low dose specifically blocked the second-step VLDL(1) maturation. Furthermore, lumenal [(35)S]Ala23Thr protein accumulated in IDL/LDL fractions and was absent in VLDL fractions in C3AT cells. These results suggest that the presence of Ala23Thr protein in lumenal IDL/LDL particles might prevent effective fusion between lipid droplets and VLDL precursors. Thus, the current study reveals an important structural element residing within the N-terminal region of apoC-III that governs the second step VLDL(1) maturation.

  17. Using a non-spin flip model to rationalize the irregular patterns observed in the activation of the C-H and Si-H bonds of small molecules by CpMCO (M = Co, Rh) complexes.

    PubMed

    Castro, Guadalupe; Colmenares, Fernando

    2017-09-20

    The activation of the C-H and Si-H bonds of CH(CH 3 ) 3 and SiH(CH 3 ) 3 molecules by organometallic compounds CpMCO (M = Co, Rh) has been investigated through DFT and CASSCF-MRMP2 calculations. In particular, we have analyzed the pathways joining the lowest-lying triplet and singlet states of the reactants with the products arising from the insertion of the metal atom into the C-H or Si-H bonds of the organic molecules. Channels connecting the reactants with the inserted structure Cp(CO)H-M-C(CH 3 ) 3 through the oxidative addition of the C-H bond of the organic molecule to the metal fragment were found only for the reaction CpRhCO + CH(CH 3 ) 3 . However, inserted structures could also be obtained for the interactions of SiH(CH 3 ) 3 with CpCoCO and CpRhCO by two sequential reactions involving the formation and rebounding of the radical fragments Cp(CO)H-M + Si(CH 3 ) 3 . According to this two-step reaction scheme, the complex CpCoCO is unable to activate the C-H bond of the CH(CH 3 ) 3 molecule due to the high energy at which the radical fragments Cp(CO)H-M + C(CH 3 ) 3 are located. The picture attained for these interactions is consistent with the available experimental data for this kind of reaction and allows rationalization of the differences in the reactivity patterns determined for them without using spin-flip models, as has been proposed in previous studies.

  18. Elucidating the interaction between Ni and CeO x in ethanol steam reforming catalysts: A perspective of recent studies over model and powder systems

    DOE PAGES

    Liu, Zongyuan; Senanayake, Sanjaya D.; Rodriguez, Jose A.

    2016-11-15

    Bulk metallic nickel is a poor catalyst for the reforming of oxygenates being deactivated by the deposition of coke. In contrast, Ni-ceria is an active system for the catalytic extraction of H 2 from the ethanol steam reforming reaction (ESR, C 2H 5OH + 3H 2O ↔ 2CO 2 + 6H 2). Numerous studies, with model (well-defined crystal surfaces) and technical (high surface area powders) catalysts, have been devoted to understand the fundamental role of each catalyst component, the performance of adjacent sites in the metal-oxide interface, and the complex mechanistic steps that convert two oxygenated reactants (ethanol and Hmore » 2O) into H 2. The size and low loading of Ni on ceria facilitate metal-oxide support interactions that probably enhance the reactivity of the system. To establish the precise role of both Ni and Ce is challenging. However it is clear that both Ni and Ce are associated with the dissociation of H 2O (OH + H), while ceria readily adsorbs and partially dissociates ethanol (i.e. ethoxy formation). The most difficult step of Csingle bondC bond dissociation likely occurs only on Ni or at the Ni-Ce interface. H 2O and OH remain as important agents for the prevention of excess C build up during the Csingle bondH/Csingle bondC dissociation process. Often, deactivation upon C build up, is a direct result of Ni sintering and decoupling of the Ni-Ce interactions. One strategy to maintain good activity and stability is to protect the Ni-Ce interaction, and this can be achieved through the use of solid solutions (Ce 1–xNi xO 2–y) or by employing stabilizing agents such as W (Ni xW yCe zO 2). In this paper, we present and discuss the most recent work for the ESR reaction and show the important role of ceria which participates directly in the reaction and also enhances catalytic activity through metal-support interactions.« less

  19. Cross-Coupling of α-Carbonyl Sulfoxonium Ylides with C-H Bonds.

    PubMed

    Barday, Manuel; Janot, Christopher; Halcovitch, Nathan R; Muir, James; Aïssa, Christophe

    2017-10-09

    The functionalization of carbon-hydrogen bonds in non-nucleophilic substrates using α-carbonyl sulfoxonium ylides has not been so far investigated, despite the potential safety advantages that such reagents would provide over either diazo compounds or their in situ precursors. Described herein are the cross-coupling reactions of sulfoxonium ylides with C(sp 2 )-H bonds of arenes and heteroarenes in the presence of a rhodium catalyst. The reaction proceeds by a succession of C-H activation, migratory insertion of the ylide into the carbon-metal bond, and protodemetalation, the last step being turnover-limiting. The method is applied to the synthesis of benz[c]acridines when allied to an iridium-catalyzed dehydrative cyclization. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A theoretical study of the dynamic behavior of alkane hydroxylation by a compound I model of cytochrome P450.

    PubMed

    Yoshizawa, K; Kamachi, T; Shiota, Y

    2001-10-10

    Dynamic aspects of alkane hydroxylation mediated by Compound I of cytochrome P450 are discussed from classical trajectory calculations at the B3LYP level of density functional theory. The nuclei of the reacting system are propagated from a transition state to a reactant or product direction according to classical dynamics on a Born-Oppenheimer potential energy surface. Geometric and energetic changes in both low-spin doublet and high-spin quartet states are followed along the ethane to ethanol reaction pathway, which is partitioned into two chemical steps: the first is the H-atom abstraction from ethane by the iron-oxo species of Compound I and the second is the rebound step in which the resultant iron-hydroxo complex and the ethyl radical intermediate react to form the ethanol complex. Molecular vibrations of the C-H bond being dissociated and the O-H bond being formed are significantly activated before and after the transition state, respectively, in the H-atom abstraction. The principal reaction coordinate that can represent the first chemical step is the C-H distance or the O-H distance while other geometric parameters remain almost unchanged. The rebound process begins with the iron-hydroxo complex and the ethyl radical intermediate and ends with the formation of the ethanol complex, the essential process in this reaction being the formation of the C-O bond. The H-O-Fe-C dihedral angle corresponds to the principal reaction coordinate for the rebound step. When sufficient kinetic energy is supplied to this rotational mode, the rebound process should efficiently take place. Trajectory calculations suggest that about 200 fs is required for the rebound process under specific initial conditions, in which a small amount of kinetic energy (0.1 kcal/mol) is supplied to the transition state exactly along the reaction coordinate. An important issue about which normal mode of vibration is activated during the hydroxylation reaction is investigated in detail from trajectory calculations. A large part of the kinetic energy is distributed to the C-H and O-H stretching modes before and after the transition state for the H-atom abstraction, respectively, and a small part of the kinetic energy is distributed to the Fe-O and Fe-S stretching modes and some characteristic modes of the porphyrin ring. The porphyrin marker modes of nu(3) and nu(4) that explicitly involve Fe-N stretching motion are effectively enhanced in the hydroxylation reaction. These vibrational modes of the porphyrin ring can play an important role in the energy transfer during the enzymatic process.

  1. Trehalose delays the reversible but not the irreversible thermal denaturation of cutinase.

    PubMed

    Baptista, R P; Cabral, J M; Melo, E P

    2000-12-20

    The effect of trehalose (0.5 M) on the thermal stability of cutinase in the alkaline pH range was studied. The thermal unfolding induced by increasing temperature was analyzed in the absence and in the presence of trehalose according to a two-state model (which assumes that only the folded and unfolded states of cutinase were present). Trehalose delays the reversible unfolding. The midpoint temperature of the unfolding transition (Tm) increases by 4.0 degrees C and 2. 6 degrees C at pH 9.2 and 10.5, respectively, in the presence of trehalose. At pH 9.2 the thermal unfolding occurs at higher temperatures (Tm is 52.6 degrees C compared to 42.0 degrees C at pH 10.5) and a refolding yield of around 80% was obtained upon cooling. This pH value was chosen to study the irreversible inactivation (long-term stability) of cutinase. Temperatures in the transition range from folded to unfolded state were selected and the rate constants of irreversible inactivation determined. Inactivation followed first-order kinetics and trehalose reduced the observed rate constants of inactivation, pointing to a stabilizing effect on the irreversible inactivation step of thermal denaturation. However, if the contribution of reversible unfolding on the irreversible inactivation of cutinase was taken into account, i.e., considering the fraction of cutinase molecules in the reversible unfolded conformation, the intrinsic rate constants can be calculated. Based on the intrinsic rate constants it was concluded that trehalose does not delay the irreversible inactivation. This conclusion was further supported by comparing the activation energy of the irreversible inactivation in the absence and in the presence of trehalose. The apparent activation energy in the absence and in the presence of trehalose were 67 and 99 Kcal/mol, respectively. The activation energy calculated from intrinsic rate constants was higher in the absence (30 Kcal/mol) than in the presence of trehalose (16 Kcal/mol), showing that kinetics of the irreversible inactivation step increased in the presence of trehalose. In fact, trehalose stabilized only the reversible step of thermal denaturation of cutinase.

  2. Pyrroloindolone synthesis via a Cp*Co(III)-catalyzed redox-neutral directed C-H alkenylation/annulation sequence.

    PubMed

    Ikemoto, Hideya; Yoshino, Tatsuhiko; Sakata, Ken; Matsunaga, Shigeki; Kanai, Motomu

    2014-04-09

    A unique synthetic utility of a Cp*Co(III) catalyst in comparison with related Cp*Rh(III) catalysts is described. A C2-selective indole alkenylation/annulation sequence proceeded smoothly with catalytic amount of a [Cp*Co(III)(C6H6)](PF6)2 complex and KOAc. Intramolecular addition of an alkenyl-Cp*Co species to a carbamoyl moiety gave pyrroloindolones in 58-89% yield in one pot. Clear difference was observed between the catalytic activity of the Cp*Co(III) complex and those of Cp*Rh(III) complexes, highlighting the unique nucleophilic activity of the organocobalt species. The Cp*Co(III) catalysis was also suitable for simple alkenylation process of N-carbamoyl indoles, and broad range of alkynes, including terminal alkynes, were applicable to give C2-alkenylated indoles in 50-99% yield. Mechanistic studies on C-H activation step under Cp*Co(III) catalysis with the aid of an acetate unit as well as evaluation of the difference between organo-Co(III) species and organo-Rh(III) species are also described.

  3. Theoretical survey of the reaction between osmium and acetaldehyde

    NASA Astrophysics Data System (ADS)

    Dai, Guo-Liang; Wang, Chuan-Feng

    2012-05-01

    The mechanism of the reaction of osmium atom with acetaldehyde has been investigated with a DFT approach. All the stationary points are determined at the UB3LYP/ sdd/6-311++G** level of the theory. Both ground and excited state potential energy surfaces are investigated in detail. The present results show that the title reaction start with the formation of a CH3CHO-metal complex followed by C-C, aldehyde C-H, C-O, and methyl C-H activation. These reactions can lead to four different products (HOsCH3 + CO, OsCO + CH4, OsCOCH3 + H, and OsO + C2H4). The minimum energy reaction path is found to involve the spin inversion in the initial reaction step. This potential energy curve-crossing dramatically affects reaction exothermic. The present results may be helpful in understanding the mechanism of the title reaction and further experimental investigation of the reaction.

  4. One-Step Nickel Foam Assisted Synthesis of Holey G-Carbon Nitride Nanosheets for Efficient Visible-light Photocatalytic H2 Evolution.

    PubMed

    Fang, Zhenyuan; Hong, Yuanzhi; Li, Di; Luo, Bifu; Mao, Baodong; Shi, Weidong

    2018-06-01

    Graphitic carbon nitride (g-C3N4) with layered structure represents one of the most promising metal-free photocatalysts. As yet, the direct one-step synthesis of ultrathin g-C3N4 nanosheets remains a challenge. Here, few-layered holey g-C3N4 nanosheets (CNS) were fabricated by simply introducing a piece of nickel foam over the precursors during the heating process. The as-prepared CNS with unique structural advantages exhibited superior photocatalytic water splitting activity (1871.09 µmol h-1 g-1) than bulk g-C3N4 (BCN) under visible light (λ>420 nm) (≈31 fold). Its outstanding photocatalytic performance originated from the high specific surface area (240.34 m2 g-1) and mesoporous structure, which endows CNS with more active sites, efficient exciton dissociation and prolonged charge carrier lifetime. Moreover, the obvious up-shift of the conduction band leads to a larger thermodynamic driving force for photocatalytic proton reduction. This methodology not only had the advantages for the direct and green synthesis of g-C3N4 nanosheets, but also paved a new avenue to modify molecular structure and textural of g-C3N4 for advanced applications.

  5. Selective sensing of ozone and the chemically active gaseous species of the troposphere by using the C20 fullerene and graphene segment.

    PubMed

    Vessally, Esmail; Siadati, Seyyed Amir; Hosseinian, Akram; Edjlali, Ladan

    2017-01-01

    OZONE is a key species in forming a layer in the atmosphere of earth that brings vita for our planet and supports the complex life. This three-atom molecule in the ozone-layer, is healing the earth's ecosystem by protecting it from dangerous rays of the sun. Until this molecule is in the stratosphere, it would support the natural order of the life; but, when it appears in our environment, damages will begin against us. In this project, we have tried to find a new way for beaconing ozone species in our environment via physical adsorption by the C 20 fullerene and graphene segment as a sensor. To find the selectivity of this nano-sized segment in sensing ozone (O 3 ), compared to the usual chemically active gasses of the troposphere like O 2 , N 2 , CO 2 , H 2 O, CH 4 , H 2 , and CO, the density of state (DOS) plots were analyzed, for each interacting species. The results showed that ozone could significantly change the electrical conductivity of C 20 fullerene, for each adsorption step. Thus, this fullerene could clearly sense ozone in different adsorption steps; while, the graphene segment could do this only at the second step adsorption (/ΔE g-B /=0.016eV) (at the first adsorption step the /ΔE g-A / is 0.00eV). Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Homoepitaxial and Heteroepitaxial Growth on Step-Free SiC Mesas

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Powell, J. Anthony

    2004-01-01

    This article describes the initial discovery and development of new approaches to SiC homoepitaxial and heteroepitaxial growth. These approaches are based upon the previously unanticipated ability to effectively supress two-dimensional nucleation of 3C-SiC on large basal plane terraces that form between growth steps when epitaxy is carried out on 4H- and 6H-SiC nearly on-axis substrates. After subdividing the growth surface into mesa regions, pure stepflow homoeptixay with no terrace nucleation was then used to grow all existing surface steps off the edges of screw-dislocation-free mesas, leaving behind perfectly on-axis (0001) basal plane mesa surfaces completely free of atomic-scale steps. Step-free mesa surfaces as large as 0.4 mm x 0.4 mm were experimentally realized, with the yield and size of step-free mesas being initally limited by substrate screw dislocations. Continued epitaxial growth following step-free surface formation leads to the formation of thin lateral cantilevers that extend the step-free surface area from the top edge of the mesa sidewalls. By selecting a proper pre-growth mesa shape and crystallographic orientation, the rate of cantilever growth can be greatly enhanced in a web growth process that has been used to (1) enlarge step-free surface areas and (2) overgrow and laterally relocate micropipes and screw dislocations. A new growth process, named step-free surface heteroepitaxy, has been developed to achieve 3C-SiC films on 4H- and 6H-SiC substrate mesas completely free of double positioning boundary and stacking fault defects. The process is based upon the controlled terrace nucleation and lateral expansion of a single island of 3C-SiC across a step-free mesa surface. Experimental results indicate that substrateepilayer lattice mismatch is at least partially relieved parallel to the interface without dislocations that undesirably thread through the thickness of the epilayer. These results should enable realization of improved SiC homojunction and heterojunction devices. In addition, these experiments offer important insights into the nature of polytypism during SiC crystal growth.

  7. Building robust architectures of carbon-wrapped transition metal nanoparticles for high catalytic enhancement of the 2LiBH4-MgH2 system for hydrogen storage cycling performance.

    PubMed

    Huang, Xu; Xiao, Xuezhang; Shao, Jie; Zhai, Bing; Fan, Xiulin; Cheng, Changjun; Li, Shouquan; Ge, Hongwei; Wang, Qidong; Chen, Lixin

    2016-08-21

    Nanoscale catalyst doping is regarded as one of the most effective strategies to improve the kinetics performance of hydrogen storage materials, but the agglomeration of nanoparticles is usually unavoidable during the repeated de/rehydrogenation processes. Herein, hierarchically structured catalysts (Fe/C, Co/C and Ni/C) were designed and fabricated to overcome the agglomeration issue of nanocatalysts applied to the 2LiBH4-MgH2 system for the first time. Uniform transition metal (TM) nanoparticles (∼10 nm) wrapped by few layers of carbon are synthesized by pyrolysis of the corresponding metal-organic frameworks (MOFs), and introduced into the 2LiBH4-MgH2 reactive hydride composites (RHCs) by ball milling. The particular features of the carbon-wrapped architecture effectively avoid the agglomeration of the TM nanoparticles during hydrogen storage cycling, and high catalysis is maintained during the subsequent de/rehydrogenation processes. After de/rehydrogenation cycling, FeB, CoB and MgNi3B2 can be formed as the catalytically active components with a particle size of 5-15 nm, which show a homogeneous distribution in the hydride matrix. Among the three catalysts, in situ-formed MgNi3B2 shows the best catalytic efficiency. The incubation period of the Fe/C, Co/C and Ni/C-doped 2LiBH4-MgH2 system between the two dehydrogenation steps was reduced to about 8 h, 4 h and 2 h, respectively, which is about 8 h, 12 h and 14 h shorter than that of the undoped 2LiBH4-MgH2 sample. In addition, the two-step dehydrogenation peak temperatures of the Ni/C-doped 2LiBH4-MgH2 system drop to 323.4 °C and 410.6 °C, meanwhile, the apparent activation energies of dehydrogenated MgH2 and LiBH4 decrease by 58 kJ mol(-1) and 71 kJ mol(-1), respectively. In particular, the cycling hydrogen desorption of the Ni/C-doped 2LiBH4-MgH2 sample exhibits very good stability compared with the undoped sample. The present approach, which ideally addresses the agglomeration of nanoparticles with efficient catalysis on the RHCs, provides a new inspiration to practical hydrogen storage application for high performance complex hydrides.

  8. Activation Energy of the Low-pH-Induced Lamellar to Bicontinuous Cubic Phase Transition in Dioleoylphosphatidylserine/Monoolein.

    PubMed

    Oka, Toshihiko; Saiki, Takahiro; Alam, Jahangir Md; Yamazaki, Masahito

    2016-02-09

    Electrostatic interaction is an important factor for phase transitions between lamellar liquid-crystalline (Lα) and inverse bicontinuous cubic (QII) phases. We investigated the effect of temperature on the low-pH-induced Lα to double-diamond cubic (QII(D)) phase transition in dioleoylphosphatidylserine (DOPS)/monoolein (MO) using time-resolved small-angle X-ray scattering with a stopped-flow apparatus. Under all conditions of temperature and pH, the Lα phase was directly transformed into an intermediate inverse hexagonal (HII) phase, and subsequently the HII phase slowly converted to the QII(D) phase. We obtained the rate constants of the initial step (i.e., the Lα to HII phase transition) and of the second step (i.e., the HII to QII(D) phase transition) using the non-negative matrix factorization method. The rate constant of the initial step increased with temperature. By analyzing this result, we obtained the values of its apparent activation energy, Ea (Lα → HII), which did not change with temperature but increased with an increase in pH. In contrast, the rate constant of the second step decreased with temperature at pH 2.6, although it increased with temperature at pH 2.7 and 2.8. These results indicate that the value of Ea (HII → QII(D)) at pH 2.6 increased with temperature, but the values of Ea (HII → QII(D)) at pH 2.7 and 2.8 were constant with temperature. The values of Ea (HII → QII(D)) were smaller than those of Ea (Lα → HII) at the same pH. We analyzed these results using a modified quantitative theory on the activation energy of phase transitions of lipid membranes proposed initially by Squires et al. (Squires, A. M.; Conn, C. E.; Seddon, J. M.; Templer, R. H. Soft Matter 2009, 5, 4773). On the basis of these results, we discuss the mechanism of this phase transition.

  9. Mesoporous-activated carbon prepared from chitosan flakes via single-step sodium hydroxide activation for the adsorption of methylene blue.

    PubMed

    Marrakchi, F; Ahmed, M J; Khanday, W A; Asif, M; Hameed, B H

    2017-05-01

    In this work, mesoporous-activated carbon (CSAC) was prepared from chitosan flakes (CS) via single-step sodium hydroxide activation for the adsorption of methylene blue (MB). CSAC was prepared using different impregnation ratios of NaOH:CS (1:1, 2:1, 3:1, and 4:1) at 800°C for 90min. The adsorption performance of CSAC was evaluated for MB at different adsorption variables, such MB initial concentrations (25-400mg/L), solution pH (3-11), and temperature (30-50°C). The adsorption isotherm data of CSAC-MB were well fitted to Langmuir model with a maximum adsorption capacity 143.53mg/g at 50°C. Best representation of kinetic data was obtained by the pseudo-second order model. CSAC exhibited excellent adsorption uptake for MB and can potentially be used for other cationic dyes. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Double Z-scheme ZnO/ZnS/g-C3N4 ternary structure for efficient photocatalytic H2 production

    NASA Astrophysics Data System (ADS)

    Dong, Zhifang; Wu, Yan; Thirugnanam, Natarajan; Li, Gonglin

    2018-02-01

    In the present work, a novel ZnO/ZnS/g-C3N4 ternary nanocomposite with double Z-scheme heterojunction has been designed via a two-step facile chemical conversion route. The spherical ZnS nanoparticles were uniformly loaded onto ZnO nanoflowers surface. And then the ZnO/ZnS nanocomposite was further hybridized with g-C3N4 nanosheets. Ternary ZnO/ZnS/g-C3N4 nanocomposite displays the largest specific surface area (about 76.2 m2/g), which provides plentiful activated sites for photocatalytic reaction. Furthermore, the ternary material exhibits the highest methylene blue photodegradation rate of about 0.0218 min-1 and the optimum photocatalytic H2 production (1205 μmol/g) over water splitting at 4 h under solar light irradiation. Moreover, it showed the highest photocurrent effect and the minimum charge-transfer resistance. These results implied that the higher photoactivity of ZnO/ZnS/g-C3N4 nanocomposite could be attributed to the multi-steps charge transfer and effective electron-hole separation in the double Z-scheme system.

  11. Variability of total step activity in children with cerebral palsy: influence of definition of a day on participant retention within the study.

    PubMed

    Wilson, Nichola C; Mudge, Suzie; Stott, N Susan

    2016-08-20

    Activity monitoring is important to establish accurate daily physical activity levels in children with cerebral palsy (CP). However, few studies address issues around inclusion or exclusion of step count data; in particular, how a valid day should be defined and what impact different lengths of monitoring have on retention of participant data within a study. This study assessed how different 'valid day' definitions influenced inclusion of participant data in final analyses and the subsequent variability of the data. Sixty-nine children with CP were fitted with a StepWatch™ Activity Monitor and instructed to wear it for a week. Data analysis used two broad definitions of a day, based on either number of steps in a 24 h monitoring period or the number of hours of recorded activity in a 24 h monitoring period. Eight children either did not use the monitor, or used it for only 1 day. The remaining 61 children provided 2 valid days of monitoring defined as >100 recorded steps per 24 h period and 55 (90 %) completed 2 valid days of monitoring with ≥10 h recorded activity per 24 h period. Performance variability in daily step count was lower across 2 days of monitoring when a valid day was defined as ≥10 h recorded activity per 24 h period (ICC = 0.765) and, higher when the definition >100 recorded steps per 24 h period (ICC = 0.62). Only 46 participants (75 %) completed 5 days of monitoring with >100 recorded steps per 24 h period and only 23 (38 %) achieved 5 days of monitoring with ≥10 h recorded activity per 24 h period. Datasets of participants who functioned at GMFCS level II were differentially excluded when the criteria for inclusion in final analysis was 5 valid days of ≥10 h recorded activity per 24 h period, leaving datasets available for only 8 of 32 participant datasets retained in the study. We conclude that changes in definition of a valid day have significant impacts on both inclusion of participant data in final analysis and measured variability of total step count.

  12. Sustained Axenic Metabolic Activity by the Obligate Intracellular Bacterium Coxiella burnetii▿ †

    PubMed Central

    Omsland, Anders; Cockrell, Diane C.; Fischer, Elizabeth R.; Heinzen, Robert A.

    2008-01-01

    Growth of Coxiella burnetii, the agent of Q fever, is strictly limited to colonization of a viable eukaryotic host cell. Following infection, the pathogen replicates exclusively in an acidified (pH 4.5 to 5) phagolysosome-like parasitophorous vacuole. Axenic (host cell free) buffers have been described that activate C. burnetii metabolism in vitro, but metabolism is short-lived, with bacterial protein synthesis halting after a few hours. Here, we describe a complex axenic medium that supports sustained (>24 h) C. burnetii metabolic activity. As an initial step in medium development, several biological buffers (pH 4.5) were screened for C. burnetii metabolic permissiveness. Based on [35S]Cys-Met incorporation, C. burnetii displayed optimal metabolic activity in citrate buffer. To compensate for C. burnetii auxotrophies and other potential metabolic deficiencies, we developed a citrate buffer-based medium termed complex Coxiella medium (CCM) that contains a mixture of three complex nutrient sources (neopeptone, fetal bovine serum, and RPMI cell culture medium). Optimal C. burnetii metabolism occurred in CCM with a high chloride concentration (140 mM) while the concentrations of sodium and potassium had little effect on metabolism. CCM supported prolonged de novo protein and ATP synthesis by C. burnetii (>24 h). Moreover, C. burnetii morphological differentiation was induced in CCM as determined by the transition from small-cell variant to large-cell variant. The sustained in vitro metabolic activity of C. burnetii in CCM provides an important tool to investigate the physiology of this organism including developmental transitions and responses to antimicrobial factors associated with the host cell. PMID:18310349

  13. First-principles analysis of C2H2 molecule diffusion and its dissociation process on the ferromagnetic bcc-Fe110 surface.

    PubMed

    Ikeda, Minoru; Yamasaki, Takahiro; Kaneta, Chioko

    2010-09-29

    Using the projector-augmented plane wave method, we study diffusion and dissociation processes of C(2)H(2) molecules on the ferromagnetic bcc-Fe(110) surface and investigate the formation process of graphene created by C(2)H(2) molecules. The most stable site for C(2)H(2) on the Fe surface is a hollow site and its adsorption energy is - 3.5 eV. In order to study the diffusion process of the C(2)H(2) molecule, the barrier height energies for the C atom, C(2)-dimer and CH as well as the C(2)H(2) molecule are estimated using the nudged elastic band method. The barrier height energy for C(2)H(2) is 0.71 eV and this indicates that the C(2)H(2) diffuses easily on this FM bcc-Fe(110) surface. We further investigate the two step dissociation process of C(2)H(2) on Fe. The first step is the dissociation of C(2)H(2) into C(2)H and H, and the second step is that of C(2)H into C(2) and H. Their dissociation energies are 0.9 and 1.2 eV, respectively. These energies are relatively small compared to the dissociation energy 7.5 eV of C(2)H(2) into C(2)H and H in the vacuum. Thus, the Fe surface shows catalytic effects. We further investigate the initial formation process of graphene by increasing the coverage of C(2)H(2). The formation process of the benzene molecule on the FM bcc(110) surface is also discussed. We find that there exists a critical coverage of C(2)H(2) which characterizes the beginning of the formation of the graphene.

  14. Association rate constants for reactions between resonance-stabilized radicals: C 3H 3 + C 3H 3, C 3H 3 + C 3H 5, and C 3H 5 + C 3H 5

    DOE PAGES

    Georgievskii, Yuri; Miller, James A.; Klippenstein, Stephen J.

    2007-05-18

    Reactions between resonance-stabilized radicals play an important role in combustion chemistry. The theoretical prediction of rate coefficients and product distributions for such reactions is complicated by the fact that the initial complex-formation steps and some dissociation steps are barrierless. In this work, direct variable reaction coordinate transition state theory (VRC-TST) is used to predict accurately the association rate constants for the self and cross reactions of propargyl and allyl radicals. For each reaction, a set of multifaceted dividing surfaces is used to account for the multiple possible addition channels. Because of their resonant nature the geometric relaxation of the radicalsmore » is important. Here, the effect of this relaxation is explicitly calculated with the UB3LYP/cc-pvdz method for each mutual orientation encountered in the configurational integrals over the transition state dividing surfaces. The final energies are obtained from CASPT2/cc-pvdz calculations with all π-orbitals in the active space. Evaluations along the minimum energy path suggest that basis set corrections are negligible. The VRC-TST approach was also used to calculate the association rate constant and the corresponding number of states for the C 6H 5 + H → C 6H 6 exit channel of the C 3H 3 + C 3H 3 reaction, which is also barrierless. For this reaction, the interaction energies were evaluated with the CASPT2(2e,2o)/cc-pvdz method and a 1-D correction is included on the basis of CAS+1+2+QC/aug-cc-pvtz calculations for the CH 3 + H reference system. For the C 3H 3 + C 3H 3 reaction, the VRC-TST results for the energy and angular momentum resolved numbers of states in the entrance channels and in the C 6H 5 + H exit channel are incorporated in a master equation simulation to determine the temperature and pressure dependence of the phenomenological rate coefficients. The rate constants for the C 3H 3 + C 3H 3 and C 3H 5 + C 3H 5 self-reactions compare favorably with the available experimental data. Finally, to our knowledge there are no experimental rate data for the C 3H 3 + C 3H 5 reaction.« less

  15. Photosynthetic dioxygen formation studied by time-resolved delayed fluorescence measurements--method, rationale, and results on the activation energy of dioxygen formation.

    PubMed

    Buchta, Joachim; Grabolle, Markus; Dau, Holger

    2007-06-01

    The analysis of the time-resolved delayed fluorescence (DF) measurements represents an important tool to study quantitatively light-induced electron transfer as well as associated processes, e.g. proton movements, at the donor side of photosystem II (PSII). This method can provide, inter alia, insights in the functionally important inner-protein proton movements, which are hardly detectable by conventional spectroscopic approaches. The underlying rationale and experimental details of the method are described. The delayed emission of chlorophyll fluorescence of highly active PSII membrane particles was measured in the time domain from 10 mus to 60 ms after each flash of a train of nanosecond laser pulses. Focusing on the oxygen-formation step induced by the third flash, we find that the recently reported formation of an S4-intermediate prior to the onset of O-O bond formation [M. Haumann, P. Liebisch, C. Müller, M. Barra, M. Grabolle, H. Dau, Science 310, 1019-1021, 2006] is a multiphasic process, as anticipated for proton movements from the manganese complex of PSII to the aqueous bulk phase. The S4-formation involves three or more likely sequential steps; a tri-exponential fit yields time constants of 14, 65, and 200 mus (at 20 degrees C, pH 6.4). We determine that S4-formation is characterized by a sizable difference in Gibbs free energy of more than 90 meV (20 degrees C, pH 6.4). In the second part of the study, the temperature dependence (-2.7 to 27.5 degrees C) of the rate constant of dioxygen formation (600/s at 20 degrees C) was investigated by analysis of DF transients. If the activation energy is assumed to be temperature-independent, a value of 230 meV is determined. There are weak indications for a biphasicity in the Arrhenius plot, but clear-cut evidence for a temperature-dependent switch between two activation energies, which would point to the existence of two distinct rate-limiting steps, is not obtained.

  16. Characteristics of deacetylation and depolymerization of β-chitin from jumbo squid (Dosidicus gigas) pens.

    PubMed

    Jung, Jooyeoun; Zhao, Yanyun

    2011-09-27

    This study evaluated the deacetylation characteristics of β-chitin from jumbo squid (Dosidicus gigas) pens by using strongly alkaline solutions of NaOH or KOH. Taguchi design was employed to investigate the effect of reagent concentration, temperature, time, and treatment step on molecular mass (MM) and degree of deacetylation (DDA) of the chitosan obtained. The optimal treatment conditions for achieving high MM and DDA of chitosan were identified as: 40% NaOH at 90°C for 6h with three separate steps (2h+2h+2h) or 50% NaOH at 90°C for 6h with one step, or 50% KOH at 90°C for 4h with three steps (1h+1h+2h) or 6h with one step. The most important factor affecting DDA and MM was temperature and time, respectively. The chitosan obtained was then further depolymerized by cellulase or lysozyme with cellulase giving a higher degradation ratio, lower relative viscosity, and a larger amount of reducing-end formations than that of lysozyme due to its higher susceptibility. This study demonstrated that jumbo squid pens are a good source of materials to produce β-chitosan with high DDA and a wide range of MM for various potential applications. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Evaluation of bacterial kill when modelling the bronchopulmonary pharmacokinetic profile of moxifloxacin and levofloxacin against parC-containing isolates of Streptococcus pneumoniae.

    PubMed

    Deryke, C Andrew; Du, Xiaoli; Nicolau, David P

    2006-09-01

    The increasingly recognized prevalence of first-step parC mutants in Streptococcus pneumoniae and the development of de novo resistance while on fluoroquinolone therapy are of concern. Previous work by our group demonstrated the ability of moxifloxacin, but not levofloxacin, to eradicate parC mutants. The objective of this experiment was to determine whether these fluoroquinolone antibiotics provided equivalent bacterial kill when similar AUC/MICs were examined. An in vitro pharmacodynamic model was used to simulate the epithelial lining fluid (ELF) concentrations following oral administration of levofloxacin 500 mg once daily and moxifloxacin 400 mg once daily in older adults. In addition, a range of AUC/MICs were also modelled, including levofloxacin 750 mg once daily. Five different S. pneumoniae containing first-step parC mutations and one isolate without mutations were tested for 48 h and time-kill curves were constructed. Samples at 0, 24 and 48 h were collected for phenotypic and genotypic profiling. HPLC was used to verify that target exposures were achieved. The isolate without a parC mutation displayed a 4 log reduction in cfu after treatment with levofloxacin 500 mg and did not select for resistance. In all five isolates containing first-step parC mutations, resistance emerged within 48 h with a > or =16-fold increase in MIC and the acquisition of a gyrA mutant. Increasing the exposure of levofloxacin to approximately 750 mg dose still led to > or =16-fold increase in MIC at 48 h in two of the four isolates containing parC mutations. On the other hand, moxifloxacin 400 mg sustained bacterial killing against the two isolates tested without the selection of resistant mutants. It appears that the critical AUC/MIC necessary to prevent the acquisition of resistance for levofloxacin is 200 and approximately 400 for moxifloxacin. Due to suboptimal exposures, once-daily oral regimens of levofloxacin at both 500 and 750 mg inconsistently led to bactericidal activity and the frequent acquisition of a second-step gyrA mutation in S. pneumoniae isolates already containing a first-step parC mutation. Conversely, once-daily moxifloxacin 400 mg provides exposures that vastly exceed the apparent efficacy breakpoint and did not select for second-step mutants until exposures were decreased 4-fold. As a result of these data and the emerging literature involving mutations in the pneumococcus, caution should be exercised when the respiratory fluoroquinolones are used to treat patients infected with S. pneumoniae suspected of having parC mutations.

  18. A first-principles study of CO hydrogenation into methane on molybdenum carbides catalysts

    NASA Astrophysics Data System (ADS)

    Qi, Ke-Zhen; Wang, Gui-Chang; Zheng, Wen-Jun

    2013-08-01

    The reaction mechanisms for the CO hydrogenation to produce CH4 on both fcc-Mo2C (100) and hcp-Mo2C (101) surfaces are investigated using density functional theory calculations with the periodic slab model. Through systematic calculations for the mechanisms of the CO hydrogenation on the two surfaces, we found that the reaction mechanisms are the same on both fcc and hcp Mo2C catalysts, that is, CO → HCO → H2CO → H2COH → CH2 → CH3 → CH4. The activation energy of the rate-determining step (CH3 + H → CH4) on fcc-Mo2C (100) (0.84 eV) is lower than that on hcp-Mo2C (101) (1.20 eV), and that is why catalytic activity of fcc-Mo2C is higher than hcp-Mo2C for CO hydrogenation. Our calculated results are consistent with the experimental observations. The activity difference of these two surfaces mainly comes from the co-adsorption energy difference between initial state (IS) and transition state (TS), that is, the co-adsorption energy difference between IS and TS is - 0.04 eV on fcc Mo2C (100), while it is as high as 0.68 eV on hcp Mo2C (101), and thus leading to the lower activation barrier for the reaction of CH3 + H → CH4 on fcc-Mo2C (100) compared to that of hcp-Mo2C (101).

  19. In situ one-pot fabrication of g-C3N4 nanosheets/NiS cocatalyst heterojunction with intimate interfaces for efficient visible light photocatalytic H2 generation

    NASA Astrophysics Data System (ADS)

    He, Kelin; Xie, Jun; Li, Mingli; Li, Xin

    2018-02-01

    Constructing high-quality earth-abundant semionconductor/cocatalyst heterojunction remains a grand challenge in the promising fields of photocatalytic solar fuel H2 production. Herein, an intimate g-C3N4 nanosheet/NiS cocatalyst heterojunction is fabricated by in situ one-step calcination of urea, thiourea and nickel acetate. Interestingly, thiourea could act as both the precursor of g-C3N4 and the sulfur source of NiS. The H2-evolution activity of as-obtained photocatalysts was tested in a triethanolamine (TEOA) scavenger solution under visible light irradiation. Transmission electron microscopy (TEM) and energy dispersive X-ray (EDX) mapping analysis clearly demonstrated that the NiS catalyst nanoparticles could be in situ fabricated and homogeneously distributed on the surface of g-C3N4 nanosheets without an obvious aggregation. The maximum H2-production rate of 29.68 μmol h-1 could be achieved, which is nearly comparable to that of 0.5 wt% Pt loaded sample. It is believed that the intimate heterojunction interfaces between NiS nanoparticles and g-C3N4 nanosheets could be in situ constructed by high temperature calcination, which achieved the improved charge separation, the enhanced oxidation ability of TEOA and the accelerated the sluggish H2-evolution kinetics, thus resulting in the remarkably enhanced hydrogen evolution. Therefore, our study provides insights into constructing high-quality robust g-C3N4-based heterojunction material for photocatalytic applications by using a simple one-step in-situ calcination technique.

  20. Carbon-fluorine bond activation coupled with carbon-hydrogen bond formation alpha to iridium: kinetics, mechanism, and diastereoselectivity.

    PubMed

    Garratt, Shaun A; Hughes, Russell P; Kovacik, Ivan; Ward, Antony J; Willemsen, Stefan; Zhang, Donghui

    2005-11-09

    Reactions of iridium(fluoroalkyl)hydride complexes CpIr(PMe(3))(CF(2)R(F))Y (R(F) = F, CF(3); Y = H, D) with LutHX (Lut = 2,6-dimethylpyridine; X = Cl, I) results in C-F activation coupled with hydride migration to give CpIr(PMe(3))(CYFR(F))X as variable mixtures of diastereomers. Solution conformations and relative diastereomer configurations of the products have been determined by (19)F{(1)H}HOESY NMR to be (S(C), S(Ir))(R(C), R(Ir)) for the kinetic diastereomer and (R(C), S(Ir))(S(C), R(Ir)) for its thermodynamic counterpart. Isotope labeling experiments using LutDCl/CpIr(PMe(3))(CF(2)R(F))H and CpIr(PMe(3))(CF(2)R(F))D/LutHCl) showed that, unlike a previously studied system, H/D exchange is faster than protonation of the alpha-CF bond, giving an identical mixture of product isotopologues from both reaction mixtures. The kinetic rate law shows a first-order dependence on the concentration of iridium substrate, but a half-order dependence on that of LutHCl; this is interpreted to mean that LutHCl dissociates to give HCl as the active protic source for C-F bond activation. Detailed kinetic studies are reported, which demonstrate that lack of complete diastereoselectivity is not a function of the C-F bond activation/H migration steps but that a cationic intermediate plays a double role in loss of diastereoselectivity; the intermediate can undergo epimerization at iridium before being trapped by halide and can also catalyze the epimerization of kinetic diastereomer product to thermodynamic product. A detailed mechanism is proposed and simulations performed to fit the kinetic data.

  1. Efficient heterologous expression and one-step purification of fully active c-terminal histidine-tagged uridine monophosphate kinase from Mycobacterium tuberculosis.

    PubMed

    Penpassakarn, Praweenuch; Chaiyen, Pimchai; Palittapongarnpim, Prasit

    2011-11-01

    Tuberculosis has long been recognized as one of the most significant public health problems. Finding novel antituberculous drugs is always a necessary approach for controlling the disease. Mycobacterium tuberculosis pyrH gene (Rv2883c) encodes for uridine monophosphate kinase (UMK), which is a key enzyme in the uridine nucleotide interconversion pathway. The enzyme is essential for M. tuberculosis to sustain growth and hence is a potential drug target. In this study, we have developed a rapid protocol for production and purification of M. tuberculosis UMK by cloning pyrH (Rv2883c) of M. tuberculosis H37Rv with the addition of 6-histidine residues to the C-terminus of the protein, and expressing in E. coli BL21-CodonPlus (DE3)-RIPL using an auto-induction medium. The enzyme was efficiently purified by a single-step TALON cobalt affinity chromatography with about 8 fold increase in specific activity, which was determined by a coupled assay with the pyruvate kinase and lactate dehydrogenase. The molecular mass of monomeric UMK was 28.2 kDa and that of the native enzyme was 217 kDa. The enzyme uses UMP as a substrate but not CMP and TMP and activity was enhanced by GTP. Measurements of enzyme kinetics revealed the kcat value of 7.6 +/- 0.4 U mg(-1) or 0.127 +/- 0.006 sec(-1).The protocol reported here can be used for expression of M. tuberculosis UMK in large quantity for formulating a high throughput target-based assay for screening anti-tuberculosis UMK compounds.

  2. Glucose- and cellulose-derived Ni/C-SO3H catalysts for liquid phase phenol hydrodeoxygenation.

    PubMed

    Kasakov, Stanislav; Zhao, Chen; Baráth, Eszter; Chase, Zizwe A; Fulton, John L; Camaioni, Donald M; Vjunov, Aleksei; Shi, Hui; Lercher, Johannes A

    2015-01-19

    Sulfonated carbons were explored as functionalized supports for Ni nanoparticles to hydrodeoxygenate (HDO) phenol. Both hexadecane and water were used as solvents. The dual-functional Ni catalysts supported on sulfonated carbon (Ni/C-SO3H) showed high rates for phenol hydrodeoxygenation in liquid hexadecane, but not in water. Glucose and cellulose were precursors to the carbon supports. Changes in the carbons resulting from sulfonation of the carbons resulted in variations of carbon sheet structures, morphologies and the surface concentrations of acid sites. While the C-SO3H supports were active for cyclohexanol dehydration in hexadecane and water, Ni/C-SO3H only catalysed the reduction of phenol to cyclohexanol in water. The state of 3-5 nm grafted Ni particles was analysed by in situ X-ray absorption spectroscopy. The results show that the metallic Ni was rapidly formed in situ without detectable leaching to the aqueous phase, suggesting that just the acid functions on Ni/C-SO3H are inhibited in the presence of water. Using in situ IR spectroscopy, it was shown that even in hexadecane, phenol HDO is limited by the dehydration step. Thus, phenol HDO catalysis was further improved by physically admixing C-SO3H with the Ni/C-SO3H catalyst to balance the two catalytic functions. The minimum addition of 7 wt % C-SO3H to the most active of the Ni/C-SO3H catalysts enabled nearly quantitative conversion of phenol and the highest selectivity (90%) towards cyclohexane in 6 h, at temperatures as low as 473 K, suggesting that the proximity to Ni limits the acid properties of the support. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeston, Jake Simon

    A general introduction is given to place the subsequent chapters in context for the nonspecialist. Results are presented from a low temperature infrared (IR) flash kinetic study of C-H bond activation via photoinduced reaction of Cp*Rh(CO) 2 (1) with linear and cyclic alkanes in liquid krypton and liquid xenon solution. No reaction was observed with methane; for all other hydrocarbons studied, the rate law supports fragmentation of the overall reaction into an alkane binding step followed by an oxidative addition step. For the binding step, larger alkanes within each series (linear and cyclic) interact more strongly than smaller alkanes withmore » the Rh center. The second step, oxidative addition of the C-H bond across Rh, exhibits very little variance in the series of linear alkanes, while in the cyclic series the rate decreases with increasing alkane size. Results are presented from an IR flash kinetic study of the photoinduced chemistry of Tp*Rh(CO) 2 (5; Tp* = hydridotris(3,5-dimethylpyrazolyl)borato) in liquid xenon solution at –50 °C. IR spectra of the solution taken 2 μs after 308 nm photolysis exhibit two transient bands at 1972-1980 cm -1 and 1992-2000 cm -1, respectively. These bands were assigned to (η 3-Tp*)Rh(CO)•Xe and (η 2-Tp*)Rh(CO)•Xe solvates on the basis of companion studies using Bp*Rh(CO) 2 (9; Bp* = dihydridobis(3,5-dimethyl pyrazolyl)borato). Preliminary kinetic data for reaction of 5 with cyclohexane in xenon solution indicate that both transient bands still appear and that their rates of decay correlate with formation of the product Tp*Rh(CO)(C 6H 11)(H). The preparation and reactivity of the new complex Bp*Rh(CO)(pyridine) (11) are described. The complex reacts with CH 3I to yield the novel Rh carbene hydride complex HB(Me 2pz) 2Rh(H)(I)(C 5H 5N)(C(O)Me) (12), resulting from formal addition of CH 3I across the Rh-C bond concomitant with hydride transfer from B to Rh. Thermolysis of 12 induces migration of the Rh hydride to the α-carbon to give HB(Me 2pz) 2Rh(I)(C 5H 5N)(CH(O)Me) (13). Both 12 and 13 have been structurally characterized by X-ray diffraction. Results are presented from a picosecond pump-probe study designed to measure the impact of added xenon on the singlet-to-triplet intersystem crossing rates of diarylcarbenes. Within the error margins of the measurements, no effect of added xenon was observed.« less

  4. Reactions of butadiyne. 1: The reaction with hydrogen atoms

    NASA Technical Reports Server (NTRS)

    Schwanebeck, W.; Warnatz, J.

    1984-01-01

    The reaction of hydrogen (H) atoms with butadiene (C4H2) was studied at room temperature in a pressure range between w mbar and 10 mbar. The primary step was an addition of H to C4H2 which is in its high pressure range at p 1 mbar. Under these conditions the following addition of a second H atom lies in the transition region between low and high pressure range. Vibrationally excited C4H4 can be deactivated to form buten-(1)-yne-(3)(C4H4) or decomposes into two C2H2 molecules. The rate constant at room temperature for primary step is given. The second order rate constant for the consumption of buten-(1)-yne-(3) is an H atom excess at room temperature is given.

  5. The synthesis and dynamics research of new curing agent for epoxy resin

    NASA Astrophysics Data System (ADS)

    Peng, Yongli; Huang, Hengyu; Sun, Yong

    2017-05-01

    Two-step synthesis of trimellitic anhydride trimellitic anhydride n - butyl ester (TMNB) was introduced which could be used as an epoxy resin curing agent. The kinetics of the curing reaction was analyzed by N-order model and autocatalytic model. The curing kinetics parameters, the results show that the curing activation energy (Ea) of this system was 35.79kJ / mol. The kinetic equation of curing was d/a d t =2.1061 ×104e x p (-35.79/R T ) α0.5163(l-α ) 0.366 . Combined with β-1 / T extrapolation and experimental adjustment to obtain the resin system curing process: 75°C for 1h, 140°C for 3h, 160°C for 2h.

  6. Understanding the Relationship Between Kinetics and Thermodynamics in CO 2 Hydrogenation Catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeletic, Matthew S.; Hulley, Elliott B.; Helm, Monte L.

    Linear free-energy relationships have been identified that link the kinetic activity for catalytic hydrogenation of CO2 to formate with the thermodynamic driving force for the rate-limiting steps of catalysis. Cobalt and rhodium bis(diphosphine) complexes with different hydricities (G°H-), acidities (pKa), and free energies for H2 addition (G°H2) were examined. Catalytic CO2 hydrogenation was studied under 1.8 and 20 atm of pressure (1:1 CO2:H2) at room temperature in tetrahydrofuran with a spread of turnover frequencies (TOF) ranging from 0 to 74,000 h-1. The catalysis was followed by 1H and 31P NMR in real time under all conditions to yield information aboutmore » the rate determining step. Catalysts exhibiting the highest activities were found to have hydride transfer and hydrogen addition steps that were each downhill by approximately 6 to 7 kcal/mol, and the deprotonation step was thermoneutral. The research by M.S.J., A.M.A., E.S.W., and J.C.L. was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The research by E.B.H., M.L.H., and M.T.M. (X-ray crystallography, synthesis) was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. The authors thank Dr. Samantha A. Burgess for assistance in collecting cyclic voltammetry data. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.« less

  7. Radicalization and Radical Catalysis of Biomass Sugars: Insights from First-principles Studies.

    PubMed

    Yang, Gang; Zhu, Chang; Zou, Xianli; Zhou, Lijun

    2016-07-13

    Ab initio and density functional calculations are conducted to investigate the radicalization processes and radical catalysis of biomass sugars. Structural alterations due to radicalization generally focus on the radicalized sites, and radicalization affects H-bonds in D-fructofuranose more than in D-glucopyranose, potentially with outcome of new H-bonds. Performances of different functionals and basis sets are evaluated for all radicalization processes, and enthalpy changes and Gibbs free energies for these processes are presented with high accuracy, which can be referenced for subsequent experimental and theoretical studies. It shows that radicalization can be utilized for direct transformation of biomass sugars, and for each sugar, C rather than O sites are always preferred for radicalization, thus suggesting the possibility to activate C-H bonds of biomass sugars. Radical catalysis is further combined with Brønsted acids, and it clearly states that functionalization fundamentally regulates the catalytic effects of biomass sugars. In presence of explicit water molecules, functionalization significantly affects the activation barriers and reaction energies of protonation rather than dehydration steps. Tertiary butyl and phenyl groups with large steric hindrances or hydroxyl and amino groups resulting in high stabilities for protonation products drive the protonation steps to occur facilely at ambient conditions.

  8. Large-scale uniform bilayer graphene prepared by vacuum graphitization of 6H-SiC(0001) substrates

    NASA Astrophysics Data System (ADS)

    Wang, Qingyan; Zhang, Wenhao; Wang, Lili; He, Ke; Ma, Xucun; Xue, Qikun

    2013-03-01

    We report on the preparation of large-scale uniform bilayer graphenes on nominally flat Si-polar 6H-SiC(0001) substrates by flash annealing in ultrahigh vacuum. The resulting graphenes have a single thickness of one bilayer and consist of regular terraces separated by the triple SiC bilayer steps on the 6H-SiC(0001) substrates. In situ scanning tunneling microscopy reveals that suppression of pit formation on terraces and uniformity of SiC decomposition at step edges are the key factors to the uniform thickness. By studying the surface morphologies prepared under different annealing rates, it is found that the annealing rate is directly related to SiC decomposition, diffusion of the released Si/C atoms and strain relaxation, which together determine the final step structure and density of defects.

  9. Large-scale uniform bilayer graphene prepared by vacuum graphitization of 6H-SiC(0001) substrates.

    PubMed

    Wang, Qingyan; Zhang, Wenhao; Wang, Lili; He, Ke; Ma, Xucun; Xue, Qikun

    2013-03-06

    We report on the preparation of large-scale uniform bilayer graphenes on nominally flat Si-polar 6H-SiC(0001) substrates by flash annealing in ultrahigh vacuum. The resulting graphenes have a single thickness of one bilayer and consist of regular terraces separated by the triple SiC bilayer steps on the 6H-SiC(0001) substrates. In situ scanning tunneling microscopy reveals that suppression of pit formation on terraces and uniformity of SiC decomposition at step edges are the key factors to the uniform thickness. By studying the surface morphologies prepared under different annealing rates, it is found that the annealing rate is directly related to SiC decomposition, diffusion of the released Si/C atoms and strain relaxation, which together determine the final step structure and density of defects.

  10. Entry of Botulinum Neurotoxin Subtypes A1 and A2 into Neurons.

    PubMed

    Kroken, Abby R; Blum, Faith C; Zuverink, Madison; Barbieri, Joseph T

    2017-01-01

    Botulinum neurotoxins (BoNTs) are the most toxic proteins for humans but also are common therapies for neurological diseases. BoNTs are dichain toxins, comprising an N-terminal catalytic domain (LC) disulfide bond linked to a C-terminal heavy chain (HC) which includes a translocation domain (H N ) and a receptor binding domain (H C ). Recently, the BoNT serotype A (BoNT/A) subtypes A1 and A2 were reported to possess similar potencies but different rates of cellular intoxication and pathology in a mouse model of botulism. The current study measured H C A1 and H C A2 entry into rat primary neurons and cultured Neuro2A cells. We found that there were two sequential steps during the association of BoNT/A with neurons. The initial step was ganglioside dependent, while the subsequent step involved association with synaptic vesicles. H C A1 and H C A2 entered the same population of synaptic vesicles and entered cells at similar rates. The primary difference was that H C A2 had a higher degree of receptor occupancy for cells and neurons than HcA1. Thus, H C A2 and H C A1 share receptors and entry pathway but differ in their affinity for receptor. The initial interaction of H C A1 and H C A2 with neurons may contribute to the unique pathologies of BoNT/A1 and BoNT/A2 in mouse models. Copyright © 2016 American Society for Microbiology.

  11. Regio- and stereodivergent antibiotic oxidative carbocyclizations catalysed by Rieske oxygenase-like enzymes

    NASA Astrophysics Data System (ADS)

    Sydor, Paulina K.; Barry, Sarah M.; Odulate, Olanipekun M.; Barona-Gomez, Francisco; Haynes, Stuart W.; Corre, Christophe; Song, Lijiang; Challis, Gregory L.

    2011-05-01

    Oxidative cyclizations, exemplified by the biosynthetic assembly of the penicillin nucleus from a tripeptide precursor, are arguably the most synthetically powerful implementation of C-H activation reactions in nature. Here, we show that Rieske oxygenase-like enzymes mediate regio- and stereodivergent oxidative cyclizations to form 10- and 12-membered carbocyclic rings in the key steps of the biosynthesis of the antibiotics streptorubin B and metacycloprodigiosin, respectively. These reactions represent the first examples of oxidative carbocyclizations catalysed by non-haem iron-dependent oxidases and define a novel type of catalytic activity for Rieske enzymes. A better understanding of how these enzymes achieve such remarkable regio- and stereocontrol in the functionalization of unactivated hydrocarbon chains will greatly facilitate the development of selective man-made C-H activation catalysts.

  12. Glucose- and Cellulose-Derived Ni/C-SO3H Catalysts for Liquid Phase Phenol Hydrodeoxygenation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasakov, Stanislav; Zhao, Chen; Barath, Eszter

    2015-01-19

    Sulfonated carbons were explored as functionalized supports for Ni nanoparticles to hydrodeoxygenate (HDO) phenol. Both hexadecane and water were used as solvents. The dual-functional Ni catalysts supported on sulfonated carbon (Ni/C-SO3H) showed high rates for phenol hydrodeoxygenation in liquid hexadecane, but not in water. Glucose and cellulose were precursors to the carbon supports. Changes in the carbons resulting from sulfonation of the carbons resulted in variations of carbon sheet structures, morphologies and the surface concentrations of acid sites. While the C-SO3H supports were active for cyclohexanol dehydration in hexadecane and water, Ni/C-SO3H only catalyzed the reduction of phenol to cyclohexanolmore » in water. The state of 3 – 5 nm grafted Ni particles was analyzed by in situ X-ray absorption spectroscopy. The results show that the metallic Ni was rapidly formed in situ without detectable leaching to the aqueous phase, suggesting that just the acid functions on Ni/C-SO3H are inhibited in presence of water. Using in situ IR spectroscopy, it was shown that even in hexadecane, phenol HDO is limited by the dehydration step. Thus, phenol HDO catalysis was further improved by physically admixing C-SO3H with the Ni/C-SO3H catalyst to balance the two catalytic functions. The minimum addition of 7 wt.% C-SO3H to the most active of the Ni/C-SO3H catalysts enabled nearly quantitative conversion of phenol and the highest selectivity (90%) towards cyclohexane in 6 h, at temperatures as low as 473 K, suggesting that the proximity to Ni limits the acid properties of the support.« less

  13. Tuning the reactivity of Fe(V)(O) toward C-H bonds at room temperature: effect of water.

    PubMed

    Singh, Kundan K; Tiwari, Mrityunjay k; Ghosh, Munmun; Panda, Chakadola; Weitz, Andrew; Hendrich, Michael P; Dhar, Basab B; Vanka, Kumar; Sen Gupta, Sayam

    2015-02-16

    The presence of an Fe(V)(O) species has been postulated as the active intermediate for the oxidation of both C-H and C═C bonds in the Rieske dioxygenase family of enzymes. Understanding the reactivity of these high valent iron-oxo intermediates, especially in an aqueous medium, would provide a better understanding of these enzymatic reaction mechanisms. The formation of an Fe(V)(O) complex at room temperature in an aqueous CH3CN mixture that contains up to 90% water using NaOCl as the oxidant is reported here. The stability of Fe(V)(O) decreases with increasing water concentration. We show that the reactivity of Fe(V)(O) toward the oxidation of C-H bonds, such as those in toluene, can be tuned by varying the amount of water in the H2O/CH3CN mixture. Rate acceleration of up to 60 times is observed for the oxidation of toluene upon increasing the water concentration. The role of water in accelerating the rate of the reaction has been studied using kinetic measurements, isotope labeling experiments, and density functional theory (DFT) calculations. A kinetic isotope effect of ∼13 was observed for the oxidation of toluene and d8-toluene showing that C-H abstraction was involved in the rate-determining step. Activation parameters determined for toluene oxidation in H2O/CH3CN mixtures on the basis of Eyring plots for the rate constants show a gain in enthalpy with a concomitant loss in entropy. This points to the formation of a more-ordered transition state involving water molecules. To further understand the role of water, we performed a careful DFT study, concentrating mostly on the rate-determining hydrogen abstraction step. The DFT-optimized structure of the starting Fe(V)(O) and the transition state indicates that the rate enhancement is due to the transition state's favored stabilization over the reactant due to enhanced hydrogen bonding with water.

  14. Early phenylpropanoid biosynthetic steps in Cannabis sativa: link between genes and metabolites.

    PubMed

    Docimo, Teresa; Consonni, Roberto; Coraggio, Immacolata; Mattana, Monica

    2013-06-28

    Phenylalanine ammonia-lyase (PAL), Cinnamic acid 4-hydroxylase (C4H) and 4-Coumarate: CoA ligase (4CL) catalyze the first three steps of the general phenylpropanoid pathway whereas chalcone synthase (CHS) catalyzes the first specific step towards flavonoids production. This class of specialized metabolites has a wide range of biological functions in plant development and defence and a broad spectrum of therapeutic activities for human health. In this study, we report the isolation of hemp PAL and 4CL cDNA and genomic clones. Through in silico analysis of their deduced amino acid sequences, more than an 80% identity with homologues genes of other plants was shown and phylogenetic relationships were highlighted. Quantitative expression analysis of the four above mentioned genes, PAL and 4CL enzymatic activities, lignin content and NMR metabolite fingerprinting in different Cannabis sativa tissues were evaluated. Furthermore, the use of different substrates to assay PAL and 4CL enzymatic activities indicated that different isoforms were active in different tissues. The diversity in secondary metabolites content observed in leaves (mainly flavonoids) and roots (mainly lignin) was discussed in relation to gene expression and enzymatic activities data.

  15. Early Phenylpropanoid Biosynthetic Steps in Cannabis sativa: Link between Genes and Metabolites

    PubMed Central

    Docimo, Teresa; Consonni, Roberto; Coraggio, Immacolata; Mattana, Monica

    2013-01-01

    Phenylalanine ammonia-lyase (PAL), Cinnamic acid 4-hydroxylase (C4H) and 4-Coumarate: CoA ligase (4CL) catalyze the first three steps of the general phenylpropanoid pathway whereas chalcone synthase (CHS) catalyzes the first specific step towards flavonoids production. This class of specialized metabolites has a wide range of biological functions in plant development and defence and a broad spectrum of therapeutic activities for human health. In this study, we report the isolation of hemp PAL and 4CL cDNA and genomic clones. Through in silico analysis of their deduced amino acid sequences, more than an 80% identity with homologues genes of other plants was shown and phylogenetic relationships were highlighted. Quantitative expression analysis of the four above mentioned genes, PAL and 4CL enzymatic activities, lignin content and NMR metabolite fingerprinting in different Cannabis sativa tissues were evaluated. Furthermore, the use of different substrates to assay PAL and 4CL enzymatic activities indicated that different isoforms were active in different tissues. The diversity in secondary metabolites content observed in leaves (mainly flavonoids) and roots (mainly lignin) was discussed in relation to gene expression and enzymatic activities data. PMID:23812081

  16. Rethinking the old antiviral drug moroxydine: Discovery of novel analogues as anti-hepatitis C virus (HCV) agents.

    PubMed

    Magri, Andrea; Reilly, Roisin; Scalacci, Nicolò; Radi, Marco; Hunter, Michael; Ripoll, Manon; Patel, Arvind H; Castagnolo, Daniele

    2015-11-15

    The discovery of a novel class of HCV inhibitors is described. The new amidinourea compounds were designed as isosteric analogues of the antiviral drug moroxydine. The two derivatives 11g and 11h showed excellent HCV inhibition activity and viability and proved to inhibit a step(s) of the RNA replication. The new compounds have been synthesized in only three synthetic steps from cheap building blocks and in high yields, thus turning to be promising drug candidates in the development of cheaper HCV treatments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Direct methylation procedure for converting fatty amides to fatty acid methyl esters in feed and digesta samples.

    PubMed

    Jenkins, T C; Thies, E J; Mosley, E E

    2001-05-01

    Two direct methylation procedures often used for the analysis of total fatty acids in biological samples were evaluated for their application to samples containing fatty amides. Methylation of 5 mg of oleamide (cis-9-octadecenamide) in a one-step (methanolic HCl for 2 h at 70 degrees C) or a two-step (sodium methoxide for 10 min at 50 degrees C followed by methanolic HCl for 10 min at 80 degrees C) procedure gave 59 and 16% conversions of oleamide to oleic acid, respectively. Oleic acid recovery from oleamide was increased to 100% when the incubation in methanolic HCl was lengthened to 16 h and increased to 103% when the incubation in methoxide was modified to 24 h at 100 degrees C. However, conversion of oleamide to oleic acid in an animal feed sample was incomplete for the modified (24 h) two-step procedure but complete for the modified (16 h) one-step procedure. Unsaturated fatty amides in feed and digesta samples can be converted to fatty acid methyl esters by incubation in methanolic HCl if the time of exposure to the acid catalyst is extended from 2 to 16 h.

  18. C3N4-H5PMo10V2O40: a dual-catalysis system for reductant-free aerobic oxidation of benzene to phenol

    NASA Astrophysics Data System (ADS)

    Long, Zhouyang; Zhou, Yu; Chen, Guojian; Ge, Weilin; Wang, Jun

    2014-01-01

    Hydroxylation of benzene is a widely studied atom economical and environmental benign reaction for producing phenol, aiming to replace the existing three-step cumene process. Aerobic oxidation of benzene with O2 is an ideal and dream process, but benzene and O2 are so inert that current systems either require expensive noble metal catalysts or wasteful sacrificial reducing agents; otherwise, phenol yields are extremely low. Here we report a dual-catalysis non-noble metal system by simultaneously using graphitic carbon nitride (C3N4) and Keggin-type polyoxometalate H5PMo10V2O40 (PMoV2) as catalysts, showing an exceptional activity for reductant-free aerobic oxidation of benzene to phenol. The dual-catalysis mechanism results in an unusual route to create phenol, in which benzene is activated on the melem unit of C3N4 and O2 by the V-O-V structure of PMoV2. This system is simple, highly efficient and thus may lead the one-step production of phenol from benzene to a more practical pathway.

  19. C3N4-H5PMo10V2O40: a dual-catalysis system for reductant-free aerobic oxidation of benzene to phenol

    PubMed Central

    Long, Zhouyang; Zhou, Yu; Chen, Guojian; Ge, Weilin; Wang, Jun

    2014-01-01

    Hydroxylation of benzene is a widely studied atom economical and environmental benign reaction for producing phenol, aiming to replace the existing three-step cumene process. Aerobic oxidation of benzene with O2 is an ideal and dream process, but benzene and O2 are so inert that current systems either require expensive noble metal catalysts or wasteful sacrificial reducing agents; otherwise, phenol yields are extremely low. Here we report a dual-catalysis non-noble metal system by simultaneously using graphitic carbon nitride (C3N4) and Keggin-type polyoxometalate H5PMo10V2O40 (PMoV2) as catalysts, showing an exceptional activity for reductant-free aerobic oxidation of benzene to phenol. The dual-catalysis mechanism results in an unusual route to create phenol, in which benzene is activated on the melem unit of C3N4 and O2 by the V-O-V structure of PMoV2. This system is simple, highly efficient and thus may lead the one-step production of phenol from benzene to a more practical pathway. PMID:24413448

  20. Ultrafast studies of organometallic photochemistry: The mechanism of carbon-hydrogen bond activation in solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bromberg, S.E.

    1998-05-01

    When certain organometallic compounds are photoexcited in room temperature alkane solution, they are able to break or activate the C-H bonds of the solvent. Understanding this potentially practical reaction requires a detailed knowledge of the entire reaction mechanism. Because of the dynamic nature of chemical reactions, time-resolved spectroscopy is commonly employed to follow the important events that take place as reactants are converted to products. For the organometallic reactions examined here, the electronic/structural characteristics of the chemical systems along with the time scales for the key steps in the reaction make ultrafast UV/Vis and IR spectroscopy along with nanosecond Step-Scanmore » FTIR spectroscopy the ideal techniques to use for this study. An initial study of the photophysics of (non-activating) model metal carbonyls centering on the photodissociation of M(CO){sub 6} (M = Cr, W, Mo) was carried out in alkane solutions using ultrafast IR spectroscopy. Next, picosecond UV/vis studies of the C-H bond activation reaction of Cp{sup *}M(CO){sub 2} (M = Rh, Ir), conducted in room temperature alkane solution, are described in an effort to investigate the origin of the low quantum yield for bond cleavage ({approximately}1%). To monitor the chemistry that takes place in the reaction after CO is lost, a system with higher quantum yield is required. The reaction of Tp{sup *}Rh(CO){sub 2} (Tp{sup *} = HB-Pz{sub 3}{sup *}, Pz{sup *} = 3,5-dimethylpyrazolyl) in alkanes has a quantum yield of {approximately}30%, making time resolved spectroscopic measurements possible. From ultrafast IR experiments, two subsequently formed intermediates were observed. The nature of these intermediates are discussed and the first comprehensive reaction mechanism for a photochemical C-H activating organometallic complex is presented.« less

  1. Involvement of hippocampal cAMP/cAMP-dependent protein kinase signaling pathways in a late memory consolidation phase of aversively motivated learning in rats

    PubMed Central

    Bernabeu, Ramon; Bevilaqua, Lia; Ardenghi, Patricia; Bromberg, Elke; Schmitz, Paulo; Bianchin, Marino; Izquierdo, Ivan; Medina, Jorge H.

    1997-01-01

    cAMP/cAMP-dependent protein kinase (PKA) signaling pathway has been recently proposed to participate in both the late phase of long term potentiation in the hippocampus and in the late, protein synthesis-dependent phase of memory formation. Here we report that a late memory consolidation phase of an inhibitory avoidance learning is regulated by an hippocampal cAMP signaling pathway that is activated, at least in part, by D1/D5 receptors. Bilateral infusion of SKF 38393 (7.5 μg/side), a D1/D5 receptor agonist, into the CA1 region of the dorsal hippocampus, enhanced retention of a step-down inhibitory avoidance when given 3 or 6 h, but not immediately (0 h) or 9 h, after training. In contrast, full retrograde amnesia was obtained when SCH 23390 (0.5 μg/side), a D1/D5 receptor antagonist, was infused into the hippocampus 3 or 6 h after training. Intrahippocampal infusion of 8Br-cAMP (1.25 μg/side), or forskolin (0.5 μg/side), an activator of adenylyl cyclase, enhanced memory when given 3 or 6 h after training. KT5720 (0.5 μg/side), a specific inhibitor of PKA, hindered memory consolidation when given immediately or 3 or 6 h posttraining. Rats submitted to the avoidance task showed learning-specific increases in hippocampal 3H-SCH 23390 binding and in the endogenous levels of cAMP 3 and 6 h after training. In addition, PKA activity and P-CREB (phosphorylated form of cAMP responsive element binding protein) immunoreactivity increased in the hippocampus immediately and 3 and 6 h after training. Together, these findings suggest that the late phase of memory consolidation of an inhibitory avoidance is modulated cAMP/PKA signaling pathways in the hippocampus. PMID:9192688

  2. Diastereoselective carbocyclization of 1,6-heptadienes triggered by rhodium-catalyzed activation of an olefinic C-H bond.

    PubMed

    Aïssa, Christophe; Ho, Kelvin Y T; Tetlow, Daniel J; Pin-Nó, María

    2014-04-14

    The use of α,ω-dienes as functionalization reagents for olefinic carbon-hydrogen bonds has been rarely studied. Reported herein is the rhodium(I)-catalyzed rearrangement of prochiral 1,6-heptadienes into [2,2,1]-cycloheptane derivatives with concomitant creation of at least three stereogenic centers and complete diastereocontrol. Deuterium-labeling studies and the isolation of a key intermediate are consistent with a group-directed C-H bond activation, followed by two consecutive migratory insertions, with only the latter step being diastereoselective. © 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  3. Methane steam reforming rates over Pt, Rh and Ni(111) accounting for H tunneling and for metal lattice vibrations

    NASA Astrophysics Data System (ADS)

    German, Ernst D.; Sheintuch, Moshe

    2017-02-01

    Microkinetic models of methane steam reforming (MSR) over bare platinum and rhodium (111) surfaces are analyzed in present work using calculated rate constants. The individual rate constants are classified into three different sets: (i) rate constants of adsorption and desorption steps of CH4, H2O, CO and of H2; (ii) rate constants of dissociation and formation of A-H bonds (A = C, O, and H), and (iii) rate constants of dissociation and formation of C-O bond. The rate constants of sets (i) and (iii) are calculated using transition state theory and published thermochemical data. The rate constants of H-dissociation reactions (set (ii)) are calculated in terms of a previously-developed approach that accounts for thermal metal lattice vibrations and for H tunneling through a potential barrier of height which depends on distance of AH from a surface. Pre-exponential factors of several group (ii) steps were calculated to be usually lower than the traditional kBT/h due to tunneling effect. Surface composition and overall MSR rates over platinum and rhodium surfaces are compared with those over nickel surface showing that operating conditions strongly affect on the activity order of the catalysts.

  4. Characterization of the nature of photosynthetic recovery of wheat seedlings from short-term dark heat exposures and analysis of the mode of acclimation to different light intensities.

    PubMed

    Kreslavski, Vladimir; Tatarinzev, Nikolai; Shabnova, Nadezhda; Semenova, Galina; Kosobryukhov, Anatoli

    2008-10-09

    The nature of photosynthetic recovery was investigated in 10-d-old wheat (Triticum aestivum L., cv. Moskovskaya-35) seedlings exposed to temperatures of 40 and 42 degrees C for 20 min and to temperature 42 degrees C for 40 min in the dark. The aftereffect of heat treatment was monitored by growing the heat-treated plants in low/moderate/high light at 20 degrees C for 72h. The net photosynthetic rates (P(N)) and the fluorescence ratios F(v)/F(m) were evaluated in intact primary leaves and the rates of cyclic and non-cyclic photophosphorylation were measured in the isolated thylakoids. At least two temporally separated steps were identified in the path of recovery from heat stress at 40 and 42 degrees C in the plants growing in high and moderate/high light, respectively. Both photochemical activity of the photosystem II (PSII) and the activity of CO(2) assimilation system were lowered during the first step in comparison with the corresponding activities immediately after heat treatment. During the second step, the photosynthetic activities completely or partly recovered. Recovery from heat stress at 40 degrees C was accompanied by an appreciably higher rate of cyclic photophosphorylation in comparison with control non-heated seedlings. In pre-heated seedlings, the tolerance of the PSII to photoinhibition was higher than in non-treated ones. The mode of acclimation to different light intensities after heat exposures is analyzed.

  5. Silylene extrusion from organosilanes via double geminal Si-H bond activation by a Cp*Ru(kappa2-P,N)+ complex: observation of a key stoichiometric step in the glaser-tilley alkene hydrosilylation mechanism.

    PubMed

    Rankin, Matthew A; MacLean, Darren F; Schatte, Gabriele; McDonald, Robert; Stradiotto, Mark

    2007-12-26

    Treatment of Cp*RuCl(kappa2-P,N-2b) (2b = 2-NMe2-3-PiPr2-indene) with TlSO3CF3 produced the cyclometalated complex [4]+SO3CF3- in 94% isolated yield. Exposure of [4]+X- (X = B(C6F5)4 or SO3CF3) to Ph2SiH2 (10 equiv) or PhSiH3 afforded the corresponding [Cp*(mu-P,N-2b)(H)2Ru=SiRPh]+X- complexes, [5]+X- (R = Ph; X = B(C6F5)4, 82%; X = SO3CF3, 39%) and [6]+X- (R = H; X = B(C6F5)4, 94%; X = SO3CF3, 95%). Notably, these transformations represent the first documented examples of Ru-mediated silylene extrusion via double geminal Si-H bond activation of an organosilane-a key step in the recently proposed Glaser-Tilley (G-T) alkene hydrosilylation mechanism. Treatment of [5]+B(C6F5)4- with KN(SiMe3)2 or [6]+SO3CF3- with NaN(SiMe3)2 afforded the corresponding zwitterionic Cp*(mu-2-NMe2-3-PiPr2-indenide)(H)2Ru=SiRPh complex in 69% (R = Ph, 7) or 86% (R = H, 8) isolated yield. Both [6]+X- and 8 proved unreactive toward 1-hexene and styrene and provided negligible catalytic turnover in the attempted metal-mediated hydrosilylation of these substrates with PhSiH3, thereby providing further empirical evidence for the required intermediacy of base-free Ru=Si species in the G-T mechanism. Isomerization of the P,N-indene ligand backbone in [6]+X-, giving rise to [Cp*(mu-1-PiPr2-2-NMe2-indene)(H)2Ru=SiHPh]+X- ([9]+X-), was observed. In the case of [9]+SO3CF3-, net intramolecular addition of the Ru=Si-H group across the styrene-like C=C unit within the ligand backbone to give 10 (96% isolated yield) was observed. Crystallographic characterization data are provided for [4]+X-, [5]+X-, [6]+X-, 8, and 10.

  6. One step N-glycosylation by filamentous fungi biofilm in bioreactor of a new phosphodiesterase-3 inhibitor tetrazole.

    PubMed

    de Melo Souza, Paula L; Arruda, Evilanna L; Pazini, Francine; Menegatti, Ricardo; Vaz, Boniek G; Lião, Luciano M; de Oliveira, Valéria

    2016-07-01

    An efficient and rapid process for N-glycosylation of 5-(1-(3-fluorophenyl)-1H-pyrazol-4-yl)-2H-tetrazole-LQFM 021 (1), a new synthetic derivative of pyrazole with phosphodiesterase-3 (PDE-3) inhibitory action, vasorelaxant activity and low toxicity catalyzed by filamentous fungi biofilm in bioreactor was successfully developed. A maximum N-glycosyl yield of 68% was obtained with Cunninghamella echinulata ATCC 9244 biofilm in bioreactor with conditions of 25mgml(-1) of 1 in PDSM medium at 28°C for 96h. After extraction with ethyl acetate, the derivative was identified by Ultrahigh Resolution Mass Spectrometry and (1)H-(13)C HSQC/HMBC. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Thermal formation of hydroxynitriles, precursors of hydroxyacids in astrophysical ice analogs: Acetone ((CH3)2Cdbnd O) and hydrogen cyanide (HCN) reactivity

    NASA Astrophysics Data System (ADS)

    Fresneau, Aurélien; Danger, Grégoire; Rimola, Albert; Duvernay, Fabrice; Theulé, Patrice; Chiavassa, Thierry

    2015-11-01

    Reactivity in astrophysical environments is still poorly understood. In this contribution, we investigate the thermal reactivity of interstellar ice analogs containing acetone ((CH3)2CO), ammonia (NH3), hydrogen cyanide (HCN) and water (H2O) by means of infrared spectroscopy and mass spectrometry techniques, complemented by quantum chemical calculations. We show that no reaction occurs in H2O:HCN:(CH3)2CO ices. Nevertheless, HCN does indeed react with acetone once activated by NH3 into CN- to form 2-hydroxy-2-methylpropanenitrile (HOsbnd C(CH3)2sbnd CN), with a calculated activation energy associated with the rate determining step of about 51 kJ mol-1. This reaction inhibits the formation of 2-aminopropan-2-ol (HOsbnd C(CH3)2sbnd NH2) from acetone and NH3, even in the presence of water, which is the first step of the Strecker synthesis to form 2-aminoisobutyric acid (NH2C(CH3)2COOH). However, HOsbnd C(CH3)2sbnd CN formation could be part of an alternative chemical pathway leading to 2-hydroxy-2-methyl-propanoic acid (HOC(CH3)2COOH), which could explain the presence of hydroxy acids in some meteorites.

  8. Size and Site Dependence of the Catalytic Activity of Iridium Clusters toward Ethane Dehydrogenation.

    PubMed

    Ge, Yingbin; Jiang, Hao; Kato, Russell; Gummagatta, Prasuna

    2016-12-01

    This research focuses on optimizing transition metal nanocatalyst immobilization and activity to enhance ethane dehydrogenation. Ethane dehydrogenation, catalyzed by thermally stable Ir n (n = 8, 12, 18) atomic clusters that exhibit a cuboid structure, was studied using the B3LYP method with triple-ζ basis sets. Relativistic effects and dispersion corrections were included in the calculations. In the dehydrogenation reaction Ir n + C 2 H 6 → H-Ir n -C 2 H 5 → (H) 2 -Ir n -C 2 H 4 , the first H-elimination is the rate-limiting step, primarily because the reaction releases sufficient heat to facilitate the second H-elimination. The catalytic activity of the Ir clusters strongly depends on the Ir cluster size and the specific catalytic site. Cubic Ir 8 is the least reactive toward H-elimination in ethane: Ir 8 + C 2 H 6 → H-Ir 8 -C 2 H 5 has a large (65 kJ/mol) energy barrier, whereas Ir 12 (3 × 2 × 2 cuboid) and Ir 18 (3 × 3 × 2 cuboid) lower this energy barrier to 22 and 3 kJ/mol, respectively. The site dependence is as prominent as the size effect. For example, the energy barrier for the Ir 18 + C 2 H 6 → H-Ir 18 -C 2 H 5 reaction is 3, 48, and 71 kJ/mol at the corner, edge, or face-center sites of the Ir 18 cuboid, respectively. Energy release due to Ir cluster insertion into an ethane C-H bond facilitates hydrogen migration on the Ir cluster surface, and the second H-elimination of ethane. In an oxygen-rich environment, oxygen molecules may be absorbed on the Ir cluster surface. The oxygen atoms bonded to the Ir cluster surface may slightly increase the energy barrier for H-elimination in ethane. However, the adsorption of oxygen and its reaction with H atoms on the Ir cluster releases sufficient heat to yield an overall thermodynamically favored reaction: Ir n + C 2 H 6 + 1 / 2 O 2 → Ir n + C 2 H 4 + H 2 O. These results will be useful toward reducing the energy cost of ethane dehydrogenation in industry.

  9. In-silico docking based design and synthesis of [1H,3H] imidazo[4,5-b] pyridines as lumazine synthase inhibitors for their effective antimicrobial activity.

    PubMed

    Harer, Sunil L; Bhatia, Manish S

    2014-10-01

    The imidazopyridine moiety is important pharmacophore that has proven to be useful for a number of biologically relevant targets, also reported to display antibacterial, antifungal, antiviral properties. Riboflavin biosynthesis involving catalytic step of Lumazine synthase is absent in animals and human, but present in microorganism, one of marked advantage of this study. Still, this path is not exploited as antiinfective target. Here, we proposed different interactions between [1H,3H] imidazo[4,5-b] pyridine test ligands and target protein Lumazine synthase (protein Data Bank 2C92), one-step synthesis of title compounds and further evaluation of them for in vitro antimicrobial activity. Active pocket of the target protein involved in the interaction with the test ligands molecules was found using Biopredicta tools in VLifeMDS 4.3 Suite. In-silico docking suggests H-bonding, hydrophobic interaction, charge interaction, aromatic interaction, and Vanderwaal forces responsible for stabilizing enzyme-inhibitor complex. Disc diffusion assay method was used for in vitro antimicrobial screening. Investigation of possible interaction between test ligands and target lumazine synthase of Mycobacterium tuberculosis suggested 1i and 2f as best fit candidates showing hydrogen bonding, hydrophobic, aromatic and Vanderwaal's forces. Among all derivatives 1g, 1j, 1k, 1l, 2a, 2c, 2d, 2e, 2h, and 2j exhibited potent activities against bacteria and fungi compared to the standard Ciprofloxacin and Fluconazole, respectively. The superiority of 1H imidazo [4,5-b] pyridine compounds having R' = Cl >No2 > NH2 at the phenyl/aliphatic moiety resident on the imidazopyridine, whereas leading 3H imidazo[4,5-b] pyridine compounds containing R/Ar = Cl > No2 > NH2> OCH3 substituents on the 2(nd) position of imidazole.

  10. In-silico docking based design and synthesis of [1H,3H] imidazo[4,5-b] pyridines as lumazine synthase inhibitors for their effective antimicrobial activity

    PubMed Central

    Harer, Sunil L.; Bhatia, Manish S.

    2014-01-01

    Purpose: The imidazopyridine moiety is important pharmacophore that has proven to be useful for a number of biologically relevant targets, also reported to display antibacterial, antifungal, antiviral properties. Riboflavin biosynthesis involving catalytic step of Lumazine synthase is absent in animals and human, but present in microorganism, one of marked advantage of this study. Still, this path is not exploited as antiinfective target. Here, we proposed different interactions between [1H,3H] imidazo[4,5-b] pyridine test ligands and target protein Lumazine synthase (protein Data Bank 2C92), one-step synthesis of title compounds and further evaluation of them for in vitro antimicrobial activity. Materials and Methods: Active pocket of the target protein involved in the interaction with the test ligands molecules was found using Biopredicta tools in VLifeMDS 4.3 Suite. In-silico docking suggests H-bonding, hydrophobic interaction, charge interaction, aromatic interaction, and Vanderwaal forces responsible for stabilizing enzyme-inhibitor complex. Disc diffusion assay method was used for in vitro antimicrobial screening. Results and Discussion: Investigation of possible interaction between test ligands and target lumazine synthase of Mycobacterium tuberculosis suggested 1i and 2f as best fit candidates showing hydrogen bonding, hydrophobic, aromatic and Vanderwaal's forces. Among all derivatives 1g, 1j, 1k, 1l, 2a, 2c, 2d, 2e, 2h, and 2j exhibited potent activities against bacteria and fungi compared to the standard Ciprofloxacin and Fluconazole, respectively. The superiority of 1H imidazo [4,5-b] pyridine compounds having R’ = Cl >No2 > NH2 at the phenyl/aliphatic moiety resident on the imidazopyridine, whereas leading 3H imidazo[4,5-b] pyridine compounds containing R/Ar = Cl > No2 > NH2> OCH3 substituents on the 2nd position of imidazole. PMID:25400412

  11. A novel one-step Helicobacter pylori saliva antigen test.

    PubMed

    Yang, Bi-Ling; Yeh, Chun; Kwong, Wei-Gang; Lee, Shou-Dong

    2015-02-01

    A rapid, reliable, and sufficiently accurate test for diagnosing Helicobacter pylori infection is required for screening dyspeptic patients before a referral for endoscopy. The purpose of this article is two-fold: first, to evaluate the accuracy of a one-step H. pylori saliva antigen (HPS) test; and second, to compare noninvasive and invasive H. pylori tests in Taiwanese population. A total of 104 consecutive dyspeptic patients admitted for gastroenterology into the outpatient department underwent a one-step HPS test, rapid urease test, histology, and (13)C-urea breath test (13)C-UBT (proto C-13 urea kit). The accuracy of the HPS test was compared with a gold standard defined by at least two positive H. pylori test results from three H. pylori tests (histology, rapid urease test, and (13)C-UBT). The 104 patients eligible for analysis (mean age: 58 years, range 22-87 years), 21 (20%) were gold standard positive. Among them, the positive of the one-step H. pylori saliva Ag test, rapid urease test, (13)C-UBT, histology were (52; 50%), (17; 16%), (27; 25%) and (22; 21%) respectively. The sensitivity and specificity of the HPS tests, rapid urease test, (13)C-UBTs, and histology were 71.43% and 55.42%, 76.19% and 98.80%, 100% and 92.77%, and 85.71% and 95.18%, respectively, relative to the gold standard. The one-step HPS test exhibited a sensitivity of 71.43%, nearly equivalent to that of the rapid urea test. The one-step HPS test exhibited a high sensitivity and low specificity compared with the other tests, indicating that it is not sufficiently accurate for use in a clinical setting for diagnosing H. pylori infection. However, the test is simple to use (requiring only a saliva sample), inexpensive, and noninvasive in its application, and thus appealing for use in population-based prevalence surveys of the epidemiology of H. pylori infection. Copyright © 2014. Published by Elsevier Taiwan.

  12. Novel 2-step synthetic indole compound 1,1,3-tri(3-indolyl)cyclohexane inhibits cancer cell growth in lung cancer cells and xenograft models.

    PubMed

    Lee, Ching-Hsiao; Yao, Ching-Fa; Huang, Sin-Ming; Ko, Shengkai; Tan, Yi-Hung; Lee-Chen, Guey-Jen; Wang, Yi-Ching

    2008-08-15

    The clinical responses to chemotherapy in lung cancer patients are unsatisfactory. Thus, the development of more effective anticancer drugs for lung cancer is urgently needed. A 2-step novel synthetic compound, referred to as 1,1,3-tri(3-indolyl)cyclohexane (3-indole), was generated in high purity and yield. 3-Indole was tested for its biologic activity in A549, H1299, H1435, CL1-1, and H1437 lung cancer cells. Animal studies were also performed. The data indicate that 3-indole induced apoptosis in various lung cancer cells. Increased cytochrome-c release from mitochondria to cytosol, decreased expression of antiapoptotic Bcl-2, and increased expression of proapoptotic Bax were observed. In addition, 3-indole stimulated caspases-3, -9, and to a lesser extent caspase-8 activities in cancer cells, suggesting that the intrinsic mitochondria pathway was the potential mechanism involved in 3-indole-induced apoptosis. 3-Indole-induced a concentration-dependent mitochondrial membrane potential dissipation and an increase in reactive oxygen species (ROS) production. Activation of c-Jun N-terminal kinase (JNK) and triggering of DNA damage were also apparent. Note that 3-indole-induced JNK activation and DNA damage can be partially suppressed by an ROS inhibitor. Apoptosis induced by 3-indole could be abrogated by ROS or JNK inhibitors, suggesting the importance of ROS and JNK stress-related pathways in 3-indole-induced apoptosis. Moreover, 3-indole showed in vivo antitumor activities against human xenografts in murine models. On the basis of its potent anticancer activity in cell and animal models, the data suggest that this 2-step synthetic 3-indole compound of high purity and yield is a potential candidate to be tested as a lead pharmaceutical compound for cancer treatment. 2008 American Cancer Society

  13. Hidden Hydride Transfer as a Decisive Mechanistic Step in the Reactions of the Unligated Gold Carbide [AuC]+ with Methane under Ambient Conditions.

    PubMed

    Li, Jilai; Zhou, Shaodong; Schlangen, Maria; Weiske, Thomas; Schwarz, Helmut

    2016-10-10

    The reactivity of the cationic gold carbide [AuC] + (bearing an electrophilic carbon atom) towards methane has been studied using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). The product pairs generated, that is, Au + /C 2 H 4 , [Au(C 2 H 2 )] + /H 2 , and [C 2 H 3 ] + /AuH, point to the breaking and making of C-H, C-C, and H-H bonds under single-collision conditions. The mechanisms of these rather efficient reactions have been elucidated by high-level quantum-chemical calculations. As a major result, based on molecular orbital and NBO-based charge analysis, an unprecedented hydride transfer from methane to the carbon atom of [AuC] + has been identified as a key step. Also, the origin of this novel mechanistic scenario has been addressed. The mechanistic insights derived from this study may provide guidance for the rational design of carbon-based catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A Laccase with Antiproliferative and HIV-I Reverse Transcriptase Inhibitory Activities from the Mycorrhizal Fungus Agaricus placomyces

    PubMed Central

    Sun, Jian; Chen, Qing-Jun; Cao, Qing-Qin; Wu, Ying-Ying; Xu, Li-Jing; Zhu, Meng-Juan; Ng, Tzi-Bun; Wang, He-Xiang; Zhang, Guo-Qing

    2012-01-01

    A novel 68 kDa laccase was purified from the mycorrhizal fungus Agaricus placomyces by utilizing a procedure that comprised three successive steps of ion exchange chromatography and gel filtration as the final step. The monomeric enzyme exhibited the N-terminal amino acid sequence of DVIGPQAQVTLANQD, which showed only a low extent of homology to sequences of other fungal laccases. The optimal temperature for A. placomyces laccase was 30°C, and optimal pH values for laccase activity towards the substrates 2,7′-azinobis[3-ethylbenzothiazolone-6-sulfonic acid] diammonium salt (ABTS) and hydroquinone were 5.2 and 6.8, respectively. The laccase displayed, at 30°C and pH 5.2, Km values of 0.392 mM towards hydroquinone and 0.775 mM towards ABTS. It potently suppressed proliferation of MCF 7 human breast cancer cells and Hep G2 hepatoma cells and inhibited human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) activity with an IC50 of 1.8 μM, 1.7 μM, and 1.25 μM, respectively, signifying that it is an antipathogenic protein. PMID:23093860

  15. Effectiveness of a smartphone app in increasing physical activity amongst male adults: a randomised controlled trial.

    PubMed

    Harries, Tim; Eslambolchilar, Parisa; Rettie, Ruth; Stride, Chris; Walton, Simon; van Woerden, Hugo C

    2016-09-02

    Smartphones are ideal for promoting physical activity in those with little intrinsic motivation for exercise. This study tested three hypotheses: H1 - receipt of social feedback generates higher step-counts than receipt of no feedback; H2 - receipt of social feedback generates higher step-counts than only receiving feedback on one's own walking; H3 - receipt of feedback on one's own walking generates higher step-counts than no feedback (H3). A parallel group randomised controlled trial measured the impact of feedback on steps-counts. Healthy male participants (n = 165) aged 18-40 were given phones pre-installed with an app that recorded steps continuously, without the need for user activation. Participants carried these with them as their main phones for a two-week run-in and six-week trial. Randomisation was to three groups: no feedback (control); personal feedback on step-counts; group feedback comparing step-counts against those taken by others in their group. The primary outcome measure, steps per day, was assessed using longitudinal multilevel regression analysis. Control variables included attitude to physical activity and perceived barriers to physical activity. Fifty-five participants were allocated to each group; 152 completed the study and were included in the analysis: n = 49, no feedback; n = 53, individual feedback; n = 50, individual and social feedback. The study provided support for H1 and H3 but not H2. Receipt of either form of feedback explained 7.7 % of between-subject variability in step-count (F = 6.626, p < 0.0005). Compared to the control, the expected step-count for the individual feedback group was 60 % higher (effect on log step-count = 0.474, 95 % CI = 0.166-0.782) and that for the social feedback group, 69 % higher (effect on log step-count = 0.526, 95 % CI = 0.212-0.840). The difference between the two feedback groups (individual vs social feedback) was not statistically significant. Always-on smartphone apps that provide step-counts can increase physical activity in young to early-middle-aged men but the provision of social feedback has no apparent incremental impact. This approach may be particularly suitable for inactive people with low levels of physical activity; it should now be tested with this population.

  16. Improving the Elevated-Temperature Properties by Two-Step Heat Treatments in Al-Mn-Mg 3004 Alloys

    NASA Astrophysics Data System (ADS)

    Liu, K.; Ma, H.; Chen, X. Grant

    2018-05-01

    In the present work, two-step heat treatments with preheating at different temperatures (175 °C, 250 °C, and 330 °C) as the first step followed by the peak precipitation treatment (375 °C/48 h) as the second step were performed in Al-Mn-Mg 3004 alloys to study their effects on the formation of dispersoids and the evolution of the elevated-temperature strength and creep resistance. During the two-step heat treatments, the microhardness is gradually increased with increasing time to a plateau after 24 hours when first treated at 250 °C and 330 °C, while there is a minor decrease with time when first treated at 175 °C. Results show that both the yield strength (YS) and creep resistance at 300 °C reach the peak values after the two-step treatment of 250 °C/24 h + 375 °C/48 h. The formation of dispersoids is greatly related to the type and size of pre-existing Mg2Si precipitated during the preheating treatments. It was found that coarse rodlike β ' -Mg2Si strongly promotes the nucleation of dispersoids, while fine needle like β ″-Mg2Si has less influence. Under optimized two-step heat treatment and modified alloying elements, the YS at 300 °C can reach as high as 97 MPa with the minimum creep rate of 2.2 × 10-9 s-1 at 300 °C in Al-Mn-Mg 3004 alloys, enabling them as one of the most promising candidates in lightweight aluminum alloys for elevated-temperature applications.

  17. Photo-driven redox-neutral decarboxylative carbon-hydrogen trifluoromethylation of (hetero)arenes with trifluoroacetic acid.

    PubMed

    Lin, Jin; Li, Zhi; Kan, Jian; Huang, Shijun; Su, Weiping; Li, Yadong

    2017-02-06

    Catalytic oxidative C-H bond functionalization reactions that proceed without requiring stoichiometric amounts of external oxidants or pre-functionalized oxidizing reagents could maximize the atom- and step-economy in chemical syntheses. However, such a transformation remains elusive. Here, we report that a photo-driven catalytic process enables decarboxylative C-H trifluoromethylation of (hetero)arenes with trifluoroacetic acid as a trifluoromethyl source in good yields in the presence of an external oxidant in far lower than stoichiometric amounts (for example, 0.2 equivalents of Na 2 S 2 O 8 ) using Rh-modified TiO 2 nanoparticles as a photocatalyst, in which H 2 release is an important driving force for the reaction. Our findings not only provide an approach to accessing valuable decarboxylative C-H trifluoromethylations via activation of abundant but inert trifluoroacetic acid towards oxidative decarboxylation and trifluoromethyl radical formation, but also demonstrate that a photo-driven catalytic process is a promising way to achieve external oxidant-free C-H functionalization reactions.

  18. Photo-driven redox-neutral decarboxylative carbon-hydrogen trifluoromethylation of (hetero)arenes with trifluoroacetic acid

    NASA Astrophysics Data System (ADS)

    Lin, Jin; Li, Zhi; Kan, Jian; Huang, Shijun; Su, Weiping; Li, Yadong

    2017-02-01

    Catalytic oxidative C-H bond functionalization reactions that proceed without requiring stoichiometric amounts of external oxidants or pre-functionalized oxidizing reagents could maximize the atom- and step-economy in chemical syntheses. However, such a transformation remains elusive. Here, we report that a photo-driven catalytic process enables decarboxylative C-H trifluoromethylation of (hetero)arenes with trifluoroacetic acid as a trifluoromethyl source in good yields in the presence of an external oxidant in far lower than stoichiometric amounts (for example, 0.2 equivalents of Na2S2O8) using Rh-modified TiO2 nanoparticles as a photocatalyst, in which H2 release is an important driving force for the reaction. Our findings not only provide an approach to accessing valuable decarboxylative C-H trifluoromethylations via activation of abundant but inert trifluoroacetic acid towards oxidative decarboxylation and trifluoromethyl radical formation, but also demonstrate that a photo-driven catalytic process is a promising way to achieve external oxidant-free C-H functionalization reactions.

  19. Reactional mechanisms of the chemical vapour deposition of SiC-based ceramics from {CH3SiCl3}/{H2} gas precursor

    NASA Astrophysics Data System (ADS)

    Loumagne, F.; Langlais, F.; Naslain, R.

    1995-10-01

    The kinetics of SiC-based ceramics deposition from CH 3SiCl 3{( MTS) }/{H2} gas precursor has been investigated over a range of reduced pressure and low temperature, where kinetics are controlled by chemical reactions. Overall kinetic laws have been determined from the measurement of the apparent activation energy and the influence of MTS, H 2, CH 4 and HCl. The kinetics of SiC deposition highly depends on both the dilution ratio α = {P H2}/{P MTS} and the total pressure. For 3 ≤ α ≤ 10 and T = 825°C, the reaction order with respect to MTS equals 2. At T = 925°C, it becomes nil in the low pressure range and 1 for P ≥ 10 kPa, whereas at 825 and 925°C, PH 2 has no influence on the growth rate. The apparent reaction orders are explained on the basis of a Langmuir-Hinshelwood model. The limiting step is evidenced as being HCl elimination by both SiCl and CH bonds breaking.

  20. Phospholipase activities associated with the tonoplast from Acer pseudoplatanus cells: identification of a phospholipase A1 activity.

    PubMed

    Tavernier, E; Pugin, A

    1995-02-15

    The study of phospholipase activities associated with the tonoplast of Acer pseudoplatanus was performed in vitro with sn-2-[14C]acylphosphatidylcholine (PC) as a substrate. The hydrolysis of radiolabelled PC into [14C]phosphatidic acid and [14C]lyso-PC demonstrated the presence of phospholipase D and A1 activities, respectively, associated with the tonoplast of Acer pseudoplatanus. The vacuolar sap did not show any significant phospholipase activity. In a second step, the properties of the phospholipase A1 activity was studied using tonoplast endogenous PC labelled in vivo with [14C]choline as a substrate. The phospholipase A1 showed an optimal activity at pH about 6-6.5, did not necessarily require divalent cations, but was stimulated by Mg2+ and particularly by Ca2+. This work presents the first evidence for the presence of phospholipases A1 in plant cells.

  1. Carbonyl Activation by Borane Lewis Acid Complexation: Transition States of H2 Splitting at the Activated Carbonyl Carbon Atom in a Lewis Basic Solvent and the Proton-Transfer Dynamics of the Boroalkoxide Intermediate.

    PubMed

    Heshmat, Mojgan; Privalov, Timofei

    2017-07-06

    By using transition-state (TS) calculations, we examined how Lewis acid (LA) complexation activates carbonyl compounds in the context of hydrogenation of carbonyl compounds by H 2 in Lewis basic (ethereal) solvents containing borane LAs of the type (C 6 F 5 ) 3 B. According to our calculations, LA complexation does not activate a ketone sufficiently enough for the direct addition of H 2 to the O=C unsaturated bond; but, calculations indicate a possibly facile heterolytic cleavage of H 2 at the activated and thus sufficiently Lewis acidic carbonyl carbon atom with the assistance of the Lewis basic solvent (i.e., 1,4-dioxane or THF). For the solvent-assisted H 2 splitting at the carbonyl carbon atom of (C 6 F 5 ) 3 B adducts with different ketones, a number of TSs are computed and the obtained results are related to insights from experiment. By using the Born-Oppenheimer molecular dynamics with the DFT for electronic structure calculations, the evolution of the (C 6 F 5 ) 3 B-alkoxide ionic intermediate and the proton transfer to the alkoxide oxygen atom were investigated. The results indicate a plausible hydrogenation mechanism with a LA, that is, (C 6 F 5 ) 3 B, as a catalyst, namely, 1) the step of H 2 cleavage that involves a Lewis basic solvent molecule plus the carbonyl carbon atom of thermodynamically stable and experimentally identifiable (C 6 F 5 ) 3 B-ketone adducts in which (C 6 F 5 ) 3 B is the "Lewis acid promoter", 2) the transfer of the solvent-bound proton to the oxygen atom of the (C 6 F 5 ) 3 B-alkoxide intermediate giving the (C 6 F 5 ) 3 B-alcohol adduct, and 3) the S N 2-style displacement of the alcohol by a ketone or a Lewis basic solvent molecule. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. New Palladium-Catalyzed Approaches to Heterocycles and Carbocycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Qinhua

    2004-12-19

    The tert-butylimines of o-(1-alkynyl)benzaldehydes and analogous pyridinecarbaldehydes have been cyclized under very mild reaction conditions in the presence of I 2, ICl, PhSeCl, PhSCl and p-O 2NC 6H 4SCl to give the corresponding halogen-, selenium- and sulfur-containing disubstituted isoquinolines and naphthyridines, respectively. Monosubstituted isoquinolines and naphthyridines have been synthesized by the metal-catalyzed ring closure of these same iminoalkynes. This methodology accommodates a variety of iminoalkynes and affords the anticipated heterocycles in moderate to excellent yields. The Pd(II)-catalyzed cyclization of 2-(1-alkynyl)arylaldimines in the presence of various alkenes provides an efficient way to synthesize a variety of 4-(1-alkenyl)-3-arylisoquinolines in moderate to excellentmore » yields. The introduction of an ortho-methoxy group on the arylaldimine promotes the Pd-catalyzed cyclization and stabilizes the resulting Pd(II) intermediate, improving the yields of the isoquinoline products. Highly substituted naphthalenes have been synthesized by the palladium-catalyzed annulation of a variety of internal alkynes, in which two new carbon-carbon bonds are formed in a single step under relatively mild reaction conditions. This method has also been used to synthesize carbazoles, although a higher reaction temperature is necessary. The process involves arylpalladation of the alkyne, followed by intramolecular Heck olefination and double bond isomerization. This method accommodates a variety of functional groups and affords the anticipated highly substituted naphthalenes and carbazoles in good to excellent yields. Novel palladium migratiodarylation methodology for the synthesis of complex fused polycycles has been developed, in which one or more sequential Pd-catalyzed intramolecular migration processes involving C-H activation are employed. The chemistry works best with electron-rich aromatics, which is in agreement with the idea that these palladium-catalyzed C-H activation reactions parallel electrophilic aromatic substitution. A relatively efficient synthesis of cyclopropanes has been developed using palladium-catalyzed C-H activation chemistry, in which two new carbon-carbon bonds are formed in a single step. This method involves the palladium-catalyzed activation of relatively unreactive C-H bonds, and provides a very efficient way to synthesize cyclopropapyrrolo[1,2-a]indoles, analogues of the mitomycin antibiotics.« less

  3. Characterisation and molecular dynamic simulations of J15 asparaginase from Photobacterium sp. strain J15.

    PubMed

    Yaacob, Mohd Adilin; Hasan, Wan Atiqah Najiah Wan; Ali, Mohd Shukuri Mohamad; Rahman, Raja Noor Zaliha Raja Abdul; Salleh, Abu Bakar; Basri, Mahiran; Leow, Thean Chor

    2014-01-01

    Genome mining revealed a 1011 nucleotide-long fragment encoding a type I L-asparaginase (J15 asparaginase) from the halo-tolerant Photobacterium sp. strain J15. The gene was overexpressed in pET-32b (+) vector in E. coli strain Rosetta-gami B (DE3) pLysS and purified using two-step chromatographic methods: Ni(2+)-Sepharose affinity chromatography and Q-Sepharose anion exchange chromatography. The final specific activity and yield of the enzyme achieved from these steps were 20 U/mg and 49.2%, respectively. The functional dimeric form of J15-asparaginase was characterised with a molecular weight of ~70 kDa. The optimum temperature and pH were 25°C and pH 7.0, respectively. This protein was stable in the presence of 1 mM Ni(2+) and Mg(2+), but it was inhibited by Mn(2+), Fe(3+) and Zn(2+) at the same concentration. J15 asparaginase actively hydrolysed its native substrate, l-asparagine, but had low activity towards l-glutamine. The melting temperature of J15 asparaginase was ~51°C, which was determined using denatured protein analysis of CD spectra. The Km, Kcat, Kcat/Km of J15 asparaginase were 0.76 mM, 3.2 s(-1), and 4.21 s(-1) mM(-1), respectively. Conformational changes of the J15 asparaginase 3D structure at different temperatures (25°C, 45°C, and 65°C) were analysed using Molecular Dynamic simulations. From the analysis, residues Tyr₂₄ , His₂₂, Gly₂₃, Val₂₅ and Pro₂₆ may be directly involved in the 'open' and 'closed' lid-loop conformation, facilitating the conversion of substrates during enzymatic reactions. The properties of J15 asparaginase, which can work at physiological pH and has low glutaminase activity, suggest that this could be a good candidate for reducing toxic effects during cancer treatment.

  4. A manganese catalase from Thermomicrobium roseum with peroxidase and catecholase activity.

    PubMed

    Baginski, Robin; Sommerhalter, Monika

    2017-01-01

    An enzyme with catechol oxidase activity was identified in Thermomicrobium roseum extracts via solution assays and activity-stained SDS-PAGE. Yet, the genome of T. roseum does not harbor a catecholase gene. The enzyme was purified with two anion exchange chromatography steps and ultimately identified to be a manganese catalase with additional peroxidase and catecholase activity. Catalase activity (6280 ± 430 IU/mg) clearly dominated over pyrogallol peroxidase (231 ± 53 IU/mg) and catecholase (3.07 ± 0.56 IU/mg) activity as determined at 70 °C. Most enzyme kinetic properties were comparable to previously characterized manganese catalase enzymes. Catalase activity was highest at alkaline pH values and showed inhibition by excess substrate and chloride. The apparent K m and k cat values were 20 mM and 2.02 × 10 4  s -1 subunit -1 at 25 °C and pH 7.0.

  5. Murai Reaction on Furfural Derivatives Enabled by Removable N,N'-Bidentate Directing Groups.

    PubMed

    Pezzetta, Cristofer; Veiros, Luis F; Oble, Julie; Poli, Giovanni

    2017-06-22

    Furfural and related compounds are industrially relevant building blocks obtained from lignocellulosic biomass. To enhance the added value of these renewable resources, a Ru-catalyzed hydrofurylation of alkenes, involving a directed C-H activation at C3 of the furan ring, was developed. A thorough experimental study revealed that a bidentate amino-imine directing group enabled the desired coupling. Removal of the directing group occurred during the purification step, directly releasing the C3-functionalized furfurals. Development of the reaction as well as optimization and scope of the method were described. A mechanism was proposed on the basis of DFT calculations. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vyas, S.N.; Patwardhan, S.R.; Vijayalakshmi, S.

    Adsorption on carbon molecular sieves (CMS) prepared by coke deposition has become an interesting area of adsorption due to its microporous nature and favorable separation factor on size and shape selectivity basis for many gaseous systems. In the present work CMS was synthesized from coconut shell through three major steps, namely, carbonization, activation, and coke deposition by hydrocarbon cracking. The crushed, washed, and sieved granules of coconut shell (particle size 2--3 mm) were pretreated with sodium silicate solution and oven-dried at 150 C to create the inorganic sites necessary for coke deposition. Carbonization and activation of the dried granules weremore » carried out at 800 C, for 30 min each. The activated char thus produced was subjected to hydrocarbon cracking at 600 C for periods varying from 30 to 180 min. The product samples were characterized in terms of adsorption isotherm, kinetic adsorption curve, surface area, pore volume, pore size distribution, and characteristic energy for adsorption by using O[sub 2], N[sub 2], C[sub 2]H[sub 2], CO[sub 2], C[sub 3]H[sub 6], and CH[sub 4].« less

  7. Optimization of Lipase-Mediated Synthesis of 1-Nonene Oxide Using Phenylacetic Acid and Hydrogen Peroxide

    PubMed Central

    Abdulmalek, Emilia; Arumugam, Mahashanon; Basri, Mahiran; Rahman, Mohd Basyaruddin Abdul

    2012-01-01

    Herein, an efficient epoxidation of 1-nonene is described. In a simple epoxidation system, commercially available Novozym 435, an immobilized Candida antarctica lipase B, and hydrogen peroxide (H2O2) were utilized to facilitate the in situ oxidation of phenylacetic acid to the corresponding peroxy acid which then reacted with 1-nonene to give 1-nonene oxide with high yield and selectivity. The aliphatic terminal alkene was epoxidised efficiently in chloroform to give an excellent yield (97%–99%) under the optimum reaction conditions, including temperature (35 °C), initial H2O2 concentration (30%), H2O2 amount (4.4 mmol), H2O2 addition rate (one step), acid amount (8.8 mmol), and stirring speed (250 rpm). Interestingly, the enzyme was stable under the single-step addition of H2O2 with a catalytic activity of 190.0 Ug−1. The entire epoxidation process was carried out within 12 h using a conventional water bath shaker. PMID:23202943

  8. Salinity Effects on Strategies of Glycogen Utilization in Livers of Euryhaline Milkfish (Chanos chanos) under Hypothermal Stress

    PubMed Central

    Chang, Chia-Hao; Huang, Jian-Jun; Yeh, Chun-Yi; Tang, Cheng-Hao; Hwang, Lie-Yueh; Lee, Tsung-Han

    2018-01-01

    The fluctuation of temperature affects many physiological responses in ectothermic organisms, including feed intake, growth, reproduction, and behavior. Changes in environmental temperatures affect the acquisition of energy, whereas hepatic glycogen plays a central role in energy supply for the homeostasis of the entire body. Glycogen phosphorylase (GP), which catalyzes the rate-limiting step in glycogenolysis, is also an indicator of environmental stress. Here, we examined the effects of salinity on glycogen metabolism in milkfish livers under cold stress. A reduction of feed intake was observed in both freshwater (FW) and seawater (SW) milkfish under cold adaptation. At normal temperature (28°C), compared to the FW milkfish, the SW milkfish exhibited greater mRNA abundance of the liver isoform of GP (Ccpygl), higher GP activity, and less glycogen content in the livers. Upon hypothermal (18°C) stress, hepatic Ccpygl mRNA expression of FW milkfish surged at 3 h, declined at 6 and 12 h, increased again at 24 h, and increased significantly after 96 h. Increases in GP protein, GP activity, and the phosphorylation state and the breakdown of glycogen were also found in FW milkfish livers after 12 h of exposure at 18°C. Conversely, the Ccpygl transcript levels in SW milkfish were downregulated after 1 h of exposure at 18°C, whereas the protein abundance of GP, GP activity, and glycogen content were not significantly altered. Taken together, under 18°C cold stress, FW milkfish exhibited an acute response with the breakdown of hepatic glycogen for maintaining energy homeostasis of the entire body, whereas no change was observed in the hepatic glycogen content and GP activity of SW milkfish because of their greater tolerance to cold conditions. PMID:29483878

  9. Salinity Effects on Strategies of Glycogen Utilization in Livers of Euryhaline Milkfish (Chanos chanos) under Hypothermal Stress.

    PubMed

    Chang, Chia-Hao; Huang, Jian-Jun; Yeh, Chun-Yi; Tang, Cheng-Hao; Hwang, Lie-Yueh; Lee, Tsung-Han

    2018-01-01

    The fluctuation of temperature affects many physiological responses in ectothermic organisms, including feed intake, growth, reproduction, and behavior. Changes in environmental temperatures affect the acquisition of energy, whereas hepatic glycogen plays a central role in energy supply for the homeostasis of the entire body. Glycogen phosphorylase (GP), which catalyzes the rate-limiting step in glycogenolysis, is also an indicator of environmental stress. Here, we examined the effects of salinity on glycogen metabolism in milkfish livers under cold stress. A reduction of feed intake was observed in both freshwater (FW) and seawater (SW) milkfish under cold adaptation. At normal temperature (28°C), compared to the FW milkfish, the SW milkfish exhibited greater mRNA abundance of the liver isoform of GP ( Ccpygl ), higher GP activity, and less glycogen content in the livers. Upon hypothermal (18°C) stress, hepatic Ccpygl mRNA expression of FW milkfish surged at 3 h, declined at 6 and 12 h, increased again at 24 h, and increased significantly after 96 h. Increases in GP protein, GP activity, and the phosphorylation state and the breakdown of glycogen were also found in FW milkfish livers after 12 h of exposure at 18°C. Conversely, the Ccpygl transcript levels in SW milkfish were downregulated after 1 h of exposure at 18°C, whereas the protein abundance of GP, GP activity, and glycogen content were not significantly altered. Taken together, under 18°C cold stress, FW milkfish exhibited an acute response with the breakdown of hepatic glycogen for maintaining energy homeostasis of the entire body, whereas no change was observed in the hepatic glycogen content and GP activity of SW milkfish because of their greater tolerance to cold conditions.

  10. Membrane protein complexes catalyze both 4- and 3-hydroxylation of cinnamic acid derivatives in monolignol biosynthesis

    PubMed Central

    Chen, Hsi-Chuan; Li, Quanzi; Shuford, Christopher M.; Liu, Jie; Muddiman, David C.; Sederoff, Ronald R.; Chiang, Vincent L.

    2011-01-01

    The hydroxylation of 4- and 3-ring carbons of cinnamic acid derivatives during monolignol biosynthesis are key steps that determine the structure and properties of lignin. Individual enzymes have been thought to catalyze these reactions. In stem differentiating xylem (SDX) of Populus trichocarpa, two cinnamic acid 4-hydroxylases (PtrC4H1 and PtrC4H2) and a p-coumaroyl ester 3-hydroxylase (PtrC3H3) are the enzymes involved in these reactions. Here we present evidence that these hydroxylases interact, forming heterodimeric (PtrC4H1/C4H2, PtrC4H1/C3H3, and PtrC4H2/C3H3) and heterotrimeric (PtrC4H1/C4H2/C3H3) membrane protein complexes. Enzyme kinetics using yeast recombinant proteins demonstrated that the enzymatic efficiency (Vmax/km) for any of the complexes is 70–6,500 times greater than that of the individual proteins. The highest increase in efficiency was found for the PtrC4H1/C4H2/C3H3-mediated p-coumaroyl ester 3-hydroxylation. Affinity purification-quantitative mass spectrometry, bimolecular fluorescence complementation, chemical cross-linking, and reciprocal coimmunoprecipitation provide further evidence for these multiprotein complexes. The activities of the recombinant and SDX plant proteins demonstrate two protein-complex–mediated 3-hydroxylation paths in monolignol biosynthesis in P. trichocarpa SDX; one converts p-coumaric acid to caffeic acid and the other converts p-coumaroyl shikimic acid to caffeoyl shikimic acid. Cinnamic acid 4-hydroxylation is also mediated by the same protein complexes. These results provide direct evidence for functional involvement of membrane protein complexes in monolignol biosynthesis. PMID:22160716

  11. PacC and pH–dependent transcriptome of the mycotrophic fungus Trichoderma virens

    PubMed Central

    2013-01-01

    Background In fungi, environmental pH is an important signal for development, and successful host colonization depends on homeostasis. Surprisingly, little is known regarding the role of pH in fungal-fungal interactions. Species of Trichoderma grow as soil saprobes but many are primarily mycotrophic, using other fungi as hosts. Therefore, Trichoderma spp. are studied for their potential in biocontrol of plant diseases. Particularly in alkaline soil, pH is a critical limiting factor for these biofungicides, whose optimal growth pH is 4–6. Gaining an understanding of pH adaptability is an important step in broadening the activity spectrum of these economically important fungi. Results We studied the pH-responsive transcription factor PacC by gene knockout and by introduction of a constitutively active allele (pacCc). ΔpacC mutants exhibited reduced growth at alkaline pH, while pacCc strains grew poorly at acidic pH. In plate confrontation assays ΔpacC mutants showed decreased ability to compete with the plant pathogens Rhizoctonia solani and Sclerotium rolfsii. The pacCc strain exhibited an overgrowth of R. solani that was comparable to the wild type, but was unable to overgrow S. rolfsii. To identify genes whose expression is dependent on pH and pacC, we designed oligonucleotide microarrays from the transcript models of the T. virens genome, and compared the transcriptomes of wild type and mutant cultures exposed to high or low pH. Transcript levels from several functional classes were dependent on pacC, on pH, or on both. Furthermore, the expression of a set of pacC-dependent genes was increased in the constitutively-active pacCc strain, and was pH-independent in some, but not all cases. Conclusions PacC is important for biocontrol-related antagonism of other fungi by T. virens. As much as 5% of the transcriptome is pH-dependent, and of these genes, some 25% depend on pacC. Secondary metabolite biosynthesis and ion transport are among the relevant gene classes. We suggest that ΔpacC mutants may have lost their full biocontrol potential due to their inability to adapt to alkaline pH, to perceive ambient pH, or both. The results raise the novel possibility of genetically manipulating Trichoderma in order to improve adaptability and biocontrol at alkaline pH. PMID:23445374

  12. Mechanism of Oxidation of Ethane to Ethanol at Iron(IV)-Oxo Sites in Magnesium-Diluted Fe2(dobdc).

    PubMed

    Verma, Pragya; Vogiatzis, Konstantinos D; Planas, Nora; Borycz, Joshua; Xiao, Dianne J; Long, Jeffrey R; Gagliardi, Laura; Truhlar, Donald G

    2015-05-06

    The catalytic properties of the metal-organic framework Fe2(dobdc), containing open Fe(II) sites, include hydroxylation of phenol by pure Fe2(dobdc) and hydroxylation of ethane by its magnesium-diluted analogue, Fe0.1Mg1.9(dobdc). In earlier work, the latter reaction was proposed to occur through a redox mechanism involving the generation of an iron(IV)-oxo species, which is an intermediate that is also observed or postulated (depending on the case) in some heme and nonheme enzymes and their model complexes. In the present work, we present a detailed mechanism by which the catalytic material, Fe0.1Mg1.9(dobdc), activates the strong C-H bonds of ethane. Kohn-Sham density functional and multireference wave function calculations have been performed to characterize the electronic structure of key species. We show that the catalytic nonheme-Fe hydroxylation of the strong C-H bond of ethane proceeds by a quintet single-state σ-attack pathway after the formation of highly reactive iron-oxo intermediate. The mechanistic pathway involves three key transition states, with the highest activation barrier for the transfer of oxygen from N2O to the Fe(II) center. The uncatalyzed reaction, where nitrous oxide directly oxidizes ethane to ethanol is found to have an activation barrier of 280 kJ/mol, in contrast to 82 kJ/mol for the slowest step in the iron(IV)-oxo catalytic mechanism. The energetics of the C-H bond activation steps of ethane and methane are also compared. Dehydrogenation and dissociation pathways that can compete with the formation of ethanol were shown to involve higher barriers than the hydroxylation pathway.

  13. Selective Hydrodeoxygenation of 5-Hydroxymethylfurfural to 2,5-Dimethylfuran over Heterogeneous Iron Catalysts.

    PubMed

    Li, Jiang; Liu, Jun-Ling; Liu, He-Yang; Xu, Guang-Yue; Zhang, Jun-Jie; Liu, Jia-Xing; Zhou, Guang-Lin; Li, Qin; Xu, Zhi-Hao; Fu, Yao

    2017-04-10

    This work provided the first example of selective hydrodeoxygenation of 5-hydroxymethylfurfural (HMF) to 2,5-dimethylfuran (DMF) over heterogeneous Fe catalysts. A catalyst prepared by the pyrolysis of an Fe-phenanthroline complex on activated carbon at 800 °C was demonstrated to be the most active heterogeneous Fe catalyst. Under the optimal reaction conditions, complete conversion of HMF was achieved with 86.2 % selectivity to DMF. The reaction pathway was investigated thoroughly, and the hydrogenation of the C=O bond in HMF was demonstrated to be the rate-determining step during the hydrodeoxygenation, which could be accelerated greatly by using alcohol solvents as additional H-donors. The excellent stability of the Fe catalyst, which was probably a result of the well-preserved active species and the pore structure of the Fe catalyst in the presence of H 2 , was demonstrated in batch and continuous flow fixed-bed reactors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Purification and characterization of a fibrinolytic enzyme from tempeh bongkrek as an alternative of thrombolytic agents

    NASA Astrophysics Data System (ADS)

    Sasmita, I. R. A.; Sutrisno, A.; Zubaidah, E.; Wardani, A. K.

    2018-03-01

    Tempeh is one of Indonesia’s traditional foods that contain fibrinolytic enzymes. Tempeh bongkrek shows very strong activity among various tempeh. The fibrinolytic enzymes of bongkrek tempeh are obtained by steps of purification i.e, ammonium sulphate precipitation, ion exchange chromatography and gel filtration chromatography. The fibrinolytic enzymes has been successfully purified with a yield of 4.37%, specific activity of 3,361 U / mg and purification fold of 44.02. SDS PAGE analysis showed that the enzyme was purified in to single band with estimated molecular mass of 75.82 kDa. The purified enzyme has optimum pH of 7 and optimum temperature of 50°C and pH stability between pH 4 - 7 with temperature stability from 30°-50°C. The fibrinolytic activity is increased with addition of CaCl2 but inhibited with CuSO4, phenylmethylsulfonyl fluoride (PMSF), sodium dodecyl sulfate (SDS), and ethylenediaminetetraacetic acid (EDTA).

  15. FT-Raman study of quinine aqueous solutions with varying pH: 2D correlation study

    NASA Astrophysics Data System (ADS)

    Wesełucha-Birczyńska, Aleksandra

    2007-01-01

    Quinine (C 20H 24N 2O 2) is one of the best known, for its antimalarial activity, Cinchona alkaloid. In the current study 2D correlation method was applied to analyze FT-Raman spectra of quinine aqueous solutions with varying pH, which was regarded as an external perturbation. Protonation appears to be the main cause leading to the emergence of cross peaks in the synchronous and asynchronous correlation maps. One should know that protonation process is an important step associated with quinine antimalarial activity. Methoxy group manifests its presence by creation of the respective correlation peaks and seems to be significant for quinine mode of action.

  16. Large-Scale Purification, Characterization, and Spore Outgrowth Inhibitory Effect of Thurincin H, a Bacteriocin Produced by Bacillus thuringiensis SF361.

    PubMed

    Wang, Gaoyan; Manns, David C; Guron, Giselle K; Churey, John J; Worobo, Randy W

    2014-06-01

    Large-scale purification of the highly hydrophobic bacteriocin thurincin H was accomplished via a novel and simple two-step method: ammonia sulfate precipitation and C18 solid-phase extraction. The inhibition spectrum and stability of thurincin H as well as its antagonistic activity against Bacillus cereus F4552 spores were further characterized. In the purification method, secreted proteins contained in the supernatant of a 40 h incubated culture of B. thuringiensis SF361 were precipitated by 68 % ammonia sulfate and purified by reverse-phase chromatography, with a yield of 18.53 mg/l of pure thurincin H. Silver-stained SDS-PAGE, high-performance liquid chromatography, and liquid chromatography-mass spectrometry confirmed the high purity of the prepared sample. Thurincin H exhibited a broad antimicrobial activity against 22 tested bacterial strains among six different genera including Bacillus, Carnobacterium, Geobacillus, Enterococcus, Listeria, and Staphylococcus. There was no detectable activity against any of the selected yeast or fungi. The bacteriocin activity was stable for 30 min at 50 °C and decreased to undetectable levels within 10 min at temperatures above 80 °C. Thurincin H is also stable from pH 2-7 for at least 24 h at room temperature. Thurincin H is germicidal against B. cereus spores in brain heart infusion broth, but not in Tris-NaCl buffer. The efficient purification method enables the large-scale production of pure thurincin H. The broad inhibitory spectrum of this bacteriocin may be of interest as a potential natural biopreservative in the food industry, particularly in post-processed and ready-to-eat food.

  17. Radicalization and Radical Catalysis of Biomass Sugars: Insights from First-principles Studies

    PubMed Central

    Yang, Gang; Zhu, Chang; Zou, Xianli; Zhou, Lijun

    2016-01-01

    Ab initio and density functional calculations are conducted to investigate the radicalization processes and radical catalysis of biomass sugars. Structural alterations due to radicalization generally focus on the radicalized sites, and radicalization affects H-bonds in D-fructofuranose more than in D-glucopyranose, potentially with outcome of new H-bonds. Performances of different functionals and basis sets are evaluated for all radicalization processes, and enthalpy changes and Gibbs free energies for these processes are presented with high accuracy, which can be referenced for subsequent experimental and theoretical studies. It shows that radicalization can be utilized for direct transformation of biomass sugars, and for each sugar, C rather than O sites are always preferred for radicalization, thus suggesting the possibility to activate C-H bonds of biomass sugars. Radical catalysis is further combined with Brønsted acids, and it clearly states that functionalization fundamentally regulates the catalytic effects of biomass sugars. In presence of explicit water molecules, functionalization significantly affects the activation barriers and reaction energies of protonation rather than dehydration steps. Tertiary butyl and phenyl groups with large steric hindrances or hydroxyl and amino groups resulting in high stabilities for protonation products drive the protonation steps to occur facilely at ambient conditions. PMID:27405843

  18. Antibody-catalyzed benzoin oxidation as a mechanistic probe for nucleophilic catalysis by an active site lysine.

    PubMed

    Sklute, Genia; Oizerowich, Rachel; Shulman, Hagit; Keinan, Ehud

    2004-05-03

    Aldolase antibody 24H6, which was obtained by reactive immunization against a 1,3-diketone hapten, is shown to catalyze additional reactions, including H/D exchange and oxidation reactions. Comparison of the H/D exchange reaction at the alpha-position of a wide range of aldehydes and ketones by 24H6 and by other aldolase antibodies, such as 38C2, pointed at the significantly larger size of the 24H6 active site. This property allowed for the catalysis of the oxidation of substituted benzoins to benzils by potassium ferricyanide. This reaction was used as a mechanistic probe to learn about the initial steps of the 24H6-catalyzed aldol condensation reaction. The Hammett correlation (rho=4.7) of log(k(cat)) versus the substituent constant, sigma, revealed that the reaction involves rapid formation of a Schiff base intermediate from the ketone and an active site lysine residue. The rate-limiting step in this oxidation reaction is the conversion of the Schiff base to an enamine intermediate. In addition, linear correlation (rho=3.13) was found between log(K(M)) and sigma, indicating that electronic rather than steric factors are dominant in the antibody-substrate binding phenomenon and confirming that the reversible formation of a Schiff base intermediate comprises part of the substrate-binding mechanism.

  19. Physiological and fermentation properties of Bacillus coagulans and a mutant lacking fermentative lactate dehydrogenase activity.

    PubMed

    Su, Yue; Rhee, Mun Su; Ingram, Lonnie O; Shanmugam, K T

    2011-03-01

    Bacillus coagulans, a sporogenic lactic acid bacterium, grows optimally at 50-55 °C and produces lactic acid as the primary fermentation product from both hexoses and pentoses. The amount of fungal cellulases required for simultaneous saccharification and fermentation (SSF) at 55 °C was previously reported to be three to four times lower than for SSF at the optimum growth temperature for Saccharomyces cerevisiae of 35 °C. An ethanologenic B. coagulans is expected to lower the cellulase loading and production cost of cellulosic ethanol due to SSF at 55 °C. As a first step towards developing B. coagulans as an ethanologenic microbial biocatalyst, activity of the primary fermentation enzyme L-lactate dehydrogenase was removed by mutation (strain Suy27). Strain Suy27 produced ethanol as the main fermentation product from glucose during growth at pH 7.0 (0.33 g ethanol per g glucose fermented). Pyruvate dehydrogenase (PDH) and alcohol dehydrogenase (ADH) acting in series contributed to about 55% of the ethanol produced by this mutant while pyruvate formate lyase and ADH were responsible for the remainder. Due to the absence of PDH activity in B. coagulans during fermentative growth at pH 5.0, the l-ldh mutant failed to grow anaerobically at pH 5.0. Strain Suy27-13, a derivative of the l-ldh mutant strain Suy27, that produced PDH activity during anaerobic growth at pH 5.0 grew at this pH and also produced ethanol as the fermentation product (0.39 g per g glucose). These results show that construction of an ethanologenic B. coagulans requires optimal expression of PDH activity in addition to the removal of the LDH activity to support growth and ethanol production.

  20. A novel five-lipoxygenase activity protein inhibitor labeled with carbon-14 and deuterium.

    PubMed

    Latli, Bachir; Hrapchak, Matt; Gao, Joe J; Busacca, Carl A; Senanayake, Chris H

    2015-07-01

    2-[4-(3-{(1R)-1-[4-(2-Aminopyrimidin-5-yl)phenyl]-1-cyclopropylethyl}-1,2,4-oxadiazol-5-yl)-1H-pyrazol-1-yl]-N,N-dimethylacetamide (1), is a novel and selective five-lipoxygenase activity protein (FLAP) inhibitor with excellent pharmacokinetics properties. The availability of a key chiral intermediate allowed the synthesis of [(14) C]-(1) in six radiochemical steps and in 47% overall radiochemical yield with a specific activity of 51 mCi/mmol using carbon-14 zinc cyanide. 2-Chloro-N,N-dimethyl-(2)H6-acetamide was prepared and condensed with a penultimate intermediate to give [(2)H6]-(1) in very high yield and in more than 99% isotopic enrichment. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Efficient hydrodeoxygenation of biomass-derived ketones over bifunctional Pt-polyoxometalate catalyst.

    PubMed

    Alotaibi, Mshari A; Kozhevnikova, Elena F; Kozhevnikov, Ivan V

    2012-07-21

    Acidic heteropoly salt Cs(2.5)H(0.5)PW(12)O(40) doped with Pt nanoparticles is a highly active and selective catalyst for one-step hydrogenation of methyl isobutyl and diisobutyl ketones to the corresponding alkanes in the gas phase at 100 °C with 97-99% yield via metal-acid bifunctional catalysis.

  2. Validity of the Stages of Change in Steps instrument (SoC-Step) for achieving the physical activity goal of 10,000 steps per day.

    PubMed

    Rosenkranz, Richard R; Duncan, Mitch J; Caperchione, Cristina M; Kolt, Gregory S; Vandelanotte, Corneel; Maeder, Anthony J; Savage, Trevor N; Mummery, W Kerry

    2015-11-30

    Physical activity (PA) offers numerous benefits to health and well-being, but most adults are not sufficiently physically active to afford such benefits. The 10,000 steps campaign has been a popular and effective approach to promote PA. The Transtheoretical Model posits that individuals have varying levels of readiness for health behavior change, known as Stages of Change (Precontemplation, Contemplation, Preparation, Action, and Maintenance). Few validated assessment instruments are available for determining Stages of Change in relation to the PA goal of 10,000 steps per day. The purpose of this study was to assess the criterion-related validity of the SoC-Step, a brief 10,000 steps per day Stages of Change instrument. Participants were 504 Australian adults (176 males, 328 females, mean age = 50.8 ± 13.0 years) from the baseline sample of the Walk 2.0 randomized controlled trial. Measures included 7-day accelerometry (Actigraph GT3X), height, weight, and self-reported intention, self-efficacy, and SoC-Step: Stages of Change relative to achieving 10,000 steps per day. Kruskal-Wallis H tests with pairwise comparisons were used to determine whether participants differed by stage, according to steps per day, general health, body mass index, intention, and self-efficacy to achieve 10,000 steps per day. Binary logistic regression was used to test the hypothesis that participants in Maintenance or Action stages would have greater likelihood of meeting the 10,000 steps goal, in comparison to participants in the other three stages. Consistent with study hypotheses, participants in Precontemplation had significantly lower intention scores than those in Contemplation (p = 0.003) or Preparation (p < 0.001). Participants in Action or Maintenance stages were more likely to achieve ≥10,000 steps per day (OR = 3.11; 95 % CI = 1.66,5.83) compared to those in Precontemplation, Contemplation, or Preparation. Intention (p < 0.001) and self-efficacy (p < 0.001) to achieve 10,000 steps daily differed by stage, and participants in the Maintenance stage had higher general health status and lower body mass index than those in Precontemplation, Contemplation and Preparation stages (p < 0.05). This brief SoC-Step instrument appears to have good criterion-related validity for determining Stages of Change related to the public health goal of 10,000 steps per day. Australian New Zealand Clinical Trials Registry reference: ACTRN12611000157976 World Health Organization Universal Trial Number: U111-1119-1755.

  3. Antioxidant Activity of Oxygen Evolving Enhancer Protein 1 Purified from Capsosiphon fulvescens.

    PubMed

    Kim, Eun-Young; Choi, Youn Hee; Lee, Jung Im; Kim, In-Hye; Nam, Taek-Jeong

    2015-06-01

    This study was conducted to determine the antioxidant activity of a protein purified from Capsosiphon fulvescens. The purification steps included sodium acetate (pH 6) extraction and diethylaminoethyl-cellulose, reversed phase Shodex C4P-50 column chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis indicated that the molecular weight of the purified protein was 33 kDa. The N-terminus and partial peptide amino acid sequence of this protein was identical to the sequence of oxygen evolving enhancer (OEE) 1 protein. The antioxidant activity of the OEE 1 was determined in vitro using a scavenging test with 4 types of reactive oxygen species (ROS), including the 2,2-diphenyl-1-picrylhydrazyl radical, hydroxyl radical, superoxide anion, and hydrogen peroxide (H2 O2 ). OEE 1 had higher H2 O2 scavenging activity, which proved to be the result of enzymatic antioxidants rather than nonenzymatic antioxidants. In addition, OEE 1 showed less H2 O2 -mediated ROS formation in HepG2 cells. In conclusion, this study demonstrates that OEE 1 purified from C. fulvescens is an excellent antioxidant. © 2015 Institute of Food Technologists®

  4. Dry (CO2) reforming of methane over Pt catalysts studied by DFT and kinetic modeling

    NASA Astrophysics Data System (ADS)

    Niu, Juntian; Du, Xuesen; Ran, Jingyu; Wang, Ruirui

    2016-07-01

    Dry reforming of methane (DRM) is a well-studied reaction that is of both scientific and industrial importance. In order to design catalysts that minimize the deactivation and improve the selectivity and activity for a high H2/CO yield, it is necessary to understand the elementary reaction steps involved in activation and conversion of CO2 and CH4. In our present work, a microkinetic model based on density functional theory (DFT) calculations is applied to explore the reaction mechanism for methane dry reforming on Pt catalysts. The adsorption energies of the reactants, intermediates and products, and the activation barriers for the elementary reactions involved in the DRM process are calculated over the Pt(1 1 1) surface. In the process of CH4 direct dissociation, the kinetic results show that CH dissociative adsorption on Pt(1 1 1) surface is the rate-determining step. CH appears to be the most abundant species on the Pt(1 1 1) surface, suggesting that carbon deposition is not easy to form in CH4 dehydrogenation on Pt(1 1 1) surface. In the process of CO2 activation, three possible reaction pathways are considered to contribute to the CO2 decomposition: (I) CO2* + * → CO* + O*; (II) CO2* + H* → COOH* + * → CO* + OH*; (III) CO2* + H* → mono-HCOO* + * → bi-HCOO* + * [CO2* + H* → bi-HCOO* + *] → CHO* + O*. Path I requires process to overcome the activation barrier of 1.809 eV and the forward reaction is calculated to be strongly endothermic by 1.430 eV. In addition, the kinetic results also indicate this process is not easy to proceed on Pt(1 1 1) surface. While the CO2 activation by H adsorbed over the catalyst surface to form COOH intermediate (Path II) is much easier to be carried out with the lower activation barrier of 0.746 eV. The Csbnd O bond scission is the rate-determining step along this pathway and the process needs to overcome the activation barrier of 1.522 eV. Path III reveals the CO2 activation through H adsorbed over the catalyst surface to form HCOO intermediate firstly. This reaction requires a quite high activation barrier and is a strongly endothermic process leading to a very low forward rate constant. In conclusion, Path II is the dominant reaction pathway in CO2 activation. Additionally, there are two pathways of CH oxidation by O: (A) CH* + O* → CHO* + * → CO* + H*; (B) CH* + O* → COH* + * → CO* + H*. Both the activation barriers and kinetic results demonstrate that Path A is the prior reaction pathway. Furthermore, in the two pathways of CH oxidation by OH: (C) CH* + OH* → CHOH* + * → CHO* + H*; (D) CH* + OH* → CHOH* + * → COH* + H*. Path C is easier to proceed. In conclusion, the main reaction pathway in CH oxidation according to the mechanism: CH* + OH* → CHOH* + * → CHO* + H* → CO* + 2H*. These results could provide some useful information for the operation of DRM over Pt catalysts, and are helpful to understand the mechanisms of DRM from the atomic scale.

  5. Novel Cyclosilazane-Type Silicon Precursor and Two-Step Plasma for Plasma-Enhanced Atomic Layer Deposition of Silicon Nitride.

    PubMed

    Park, Jae-Min; Jang, Se Jin; Lee, Sang-Ick; Lee, Won-Jun

    2018-03-14

    We designed cyclosilazane-type silicon precursors and proposed a three-step plasma-enhanced atomic layer deposition (PEALD) process to prepare silicon nitride films with high quality and excellent step coverage. The cyclosilazane-type precursor, 1,3-di-isopropylamino-2,4-dimethylcyclosilazane (CSN-2), has a closed ring structure for good thermal stability and high reactivity. CSN-2 showed thermal stability up to 450 °C and a sufficient vapor pressure of 4 Torr at 60 °C. The energy for the chemisorption of CSN-2 on the undercoordinated silicon nitride surface as calculated by density functional theory method was -7.38 eV. The PEALD process window was between 200 and 500 °C, with a growth rate of 0.43 Å/cycle. The best film quality was obtained at 500 °C, with hydrogen impurity of ∼7 atom %, oxygen impurity less than 2 atom %, low wet etching rate, and excellent step coverage of ∼95%. At 300 °C and lower temperatures, the wet etching rate was high especially at the lower sidewall of the trench pattern. We introduced the three-step PEALD process to improve the film quality and the step coverage on the lower sidewall. The sequence of the three-step PEALD process consists of the CSN-2 feeding step, the NH 3 /N 2 plasma step, and the N 2 plasma step. The H radicals in NH 3 /N 2 plasma efficiently remove the ligands from the precursor, and the N 2 plasma after the NH 3 plasma removes the surface hydrogen atoms to activate the adsorption of the precursor. The films deposited at 300 °C using the novel precursor and the three-step PEALD process showed a significantly improved step coverage of ∼95% and an excellent wet etching resistance at the lower sidewall, which is only twice as high as that of the blanket film prepared by low-pressure chemical vapor deposition.

  6. Oxidation mechanism of formic acid on the bismuth adatom-modified Pt(111) surface.

    PubMed

    Perales-Rondón, Juan Victor; Ferre-Vilaplana, Adolfo; Feliu, Juan M; Herrero, Enrique

    2014-09-24

    In order to improve catalytic processes, elucidation of reaction mechanisms is essential. Here, supported by a combination of experimental and computational results, the oxidation mechanism of formic acid on Pt(111) electrodes modified by the incorporation of bismuth adatoms is revealed. In the proposed model, formic acid is first physisorbed on bismuth and then deprotonated and chemisorbed in formate form, also on bismuth, from which configuration the C-H bond is cleaved, on a neighbor Pt site, yielding CO2. It was found computationally that the activation energy for the C-H bond cleavage step is negligible, which was also verified experimentally.

  7. Thyrotropin-induced hydrogen peroxide production in FRTL-5 thyroid cells is mediated not by adenosine 3',5'-monophosphate, but by Ca2+ signaling followed by phospholipase-A2 activation and potentiated by an adenosine derivative.

    PubMed

    Kimura, T; Okajima, F; Sho, K; Kobayashi, I; Kondo, Y

    1995-01-01

    The production of hydrogen peroxide (H2O2) as an essential process for iodide organification is a key reaction in TSH-induced thyroid hormone synthesis. Here we characterize the signal transduction pathway involved in TSH-induced H2O2 production in FRTL-5 thyroid cells. At higher than 1 nM TSH, N6-(L-2-phenylisopropyl)adenosine (PIA), an adenosine receptor agonist having, by itself, no influence on H2O2 generation, potentiated this TSH action, whereas the TSH increase and PIA addition reduced cAMP accumulation. RO 20-1724, a phosphodiesterase inhibitor, amplified the TSH-induced cAMP accumulation, but did not change H2O2 generation in the whole range of TSH used. Ca(2+)-mobilizing agonists, GTP and ATP, also induced H2O2 production without stimulating cAMP accumulation. Chelation of intracellular Ca2+ markedly inhibited the TSH action, but intracellular Ca2+ increases by either thapsigargin or ionomycin mimicking it. All of the findings show the participation of Ca2+, but not cAMP, in the action of TSH. Desensitization of protein kinase-C (PKC) did not influence the receptor-mediated H2O2 production, suggesting the reduced importance of PKC activation compared to Ca2+ signaling to the reaction. A rise in intracellular Ca2+ independent of receptor activation also induced H2O2 production as well as arachidonate release, and both were potentiated by PIA. In addition, inhibitors of phospholipase-A2 and the arachidonate metabolic pathway depressed H2O2 generation, suggesting the participation of an arachidonate cascade in the Ca(2+)-dependent H2O2 production. Lipoxygenase inhibitors depressed the Ca2+ action without influencing arachidonate release, suggesting the involvement of a lipoxygenase product(s) of arachidonate in the Ca(2+)-signaling mechanism. In conclusion, in FRTL-5 cells, TSH-induced H2O2 production is mediated not by cAMP, but by the phospholipase-C/Ca2+ cascade, possibly followed by the Ca(2+)-dependent phospholipase-A2/arachidonate cascade. PIA amplifies TSH-induced H2O2 production at the steps of phospholipase-C and phospholipase-A2 activation in a pertussis toxin-sensitive manner.

  8. β-Selective C-H arylation of pyrroles leading to concise syntheses of lamellarins C and I.

    PubMed

    Ueda, Kirika; Amaike, Kazuma; Maceiczyk, Richard M; Itami, Kenichiro; Yamaguchi, Junichiro

    2014-09-24

    The first general β-selective C-H arylation of pyrroles has been developed by using a rhodium catalyst. This C-H arylation reaction, which is retrosynthetically straightforward but results in unusual regioselectivity, could result in de novo syntheses of pyrrole-derived natural products and pharmaceuticals. As such, we have successfully synthesized polycyclic marine pyrrole alkaloids, lamellarins C and I, by using this β-selective arylation of pyrroles with aryl iodides (C-H/C-I coupling) and a new double C-H/C-H coupling as key steps.

  9. Cytostatic action of aspirin and its effect on mitomycin C activity. A study in vitro under irradiation

    NASA Astrophysics Data System (ADS)

    Kammerer, Cornelia; Getoff, Nikola

    2001-04-01

    Experiments in vitro using E. coli bacteria (AB 1157) proved that aspirin possesses a cytostatic ability under various experimental condition (pH=7.4) in airfree, aerated as well as in media containing N 2O (converting e aq- into OH- radicals). In the last case the highest effect of aspirin was observed. The combination of aspirin with the well-known cytostaticum, mitomycin C (MMC) leads in airfree as well as in aerated media to a significant decrease of the MMC activity. However, the mixture of aspirin and MMC in the presence of N 2O causes a synergistic effect, resulting in an enhancement of the MMC activity by a factor of 1.5. Probable reaction steps are presented and discussed. Using the pulse radiolysis method the rate constants for the reactions of e aq-, H and OH- species with aspirin were also determined.

  10. The minimum activation peptide from ilvH can activate the catalytic subunit of AHAS from different species.

    PubMed

    Zhao, Yuefang; Niu, Congwei; Wen, Xin; Xi, Zhen

    2013-04-15

    Acetohydroxyacid synthases (AHASs), which catalyze the first step in the biosynthesis of branched-chain amino acids, are composed of a catalytic subunit (CSU) and a regulatory subunit (RSU). The CSU harbors the catalytic site, and the RSU is responsible for the activation and feedback regulation of the CSU. Previous results from Chipman and co-workers and our lab have shown that heterologous activation can be achieved among isozymes of Escherichia coli AHAS. It would be interesting to find the minimum peptide of ilvH (the RSU of E. coli AHAS III) that could activate other E. coli CSUs, or even those of ## species. In this paper, C-terminal, N-terminal, and C- and N-terminal truncation mutants of ilvH were constructed. The minimum peptide to activate ilvI (the CSU of E. coli AHAS III) was found to be ΔN 14-ΔC 89. Moreover, this peptide could not only activate its homologous ilvI and heterologous ilvB (CSU of E. coli AHAS I), but also heterologously activate the CSUs of AHAS from Saccharomyces cerevisiae, Arabidopsis thaliana, and Nicotiana plumbaginifolia. However, this peptide totally lost its ability for feedback regulation by valine, thus suggesting different elements for enzymatic activation and feedback regulation. Additionally, the apparent dissociation constant (Kd ) of ΔN 14-ΔC 89 when binding CSUs of different species was found to be 9.3-66.5 μM by using microscale thermophoresis. The ability of this peptide to activate different CSUs does not correlate well with its binding ability (Kd ) to these CSUs, thus implying that key interactions by specific residues is more important than binding ability in promoting enzymatic reactions. The high sequence similarity of the peptide ΔN 14-ΔC 89 to RSUs across species hints that this peptide represents the minimum activation motif in RSU and that it regulates all AHASs. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Isolation of hydroquinone (benzene-1,4-diol) metabolite from halotolerant Bacillus methylotrophicus MHC10 and its inhibitory activity towards bacterial pathogens.

    PubMed

    Jeyanthi, Venkadapathi; Anbu, Periasamy; Vairamani, Mariappanadar; Velusamy, Palaniyandi

    2016-03-01

    A halotolerant bacterial isolate-MHC10 with broad spectrum antibacterial activity against clinical pathogens was isolated from saltpans located in Tuticorin and Chennai (India). 16S rRNA gene analysis of MHC10 revealed close similarity to that of Bacillus methylotrophicus. The culture conditions of B. methylotrophicus MHC10 strain were optimized for antibacterial production using different carbon and nitrogen sources, as well as varying temperature, pH, sodium chloride (NaCl) concentrations and incubation periods. The maximum antibacterial activity of B. methylotrophicus MHC10 was attained when ZMB was optimized with 1 % (w/v) glucose, 0.1 % (w/v) soybean meal which corresponded to a C/N ratio of 38.83, temperature at 37 °C, pH 7.0 and 8 % NaCl. The activity remained stable between 72 and 96 h and then drastically decreased after 96 h. Solvent extraction followed by chromatographic purification steps led to the isolation of hydroquinone (benzene-1,4-diol). The structure of the purified compound was elucidated based on FTIR, (1)H NMR, and (13)C NMR spectroscopy. The compound exhibited efficient antibacterial activity against both Gram-positive and Gram-negative bacterial pathogens. The minimum inhibitory concentration (MIC) for Gram-positive pathogens ranged from 15.625 to 62.5 µg/mL(-1), while it was between 7.81 and 250 µg/mL(-1) for Gram-negative bacterial pathogens. This is the first report of hydroquinone produced by halotolerant B. methylotrophicus exhibiting promising antibacterial activity.

  12. Bond strength durability of self-etching adhesives and resin cements to dentin.

    PubMed

    Chaves, Carolina de Andrade Lima; de Melo, Renata Marques; Passos, Sheila Pestana; Camargo, Fernanda Pelógia; Bottino, Marco Antonio; Balducci, Ivan

    2009-01-01

    To evaluate the microtensile bond strength (microTBS) of one- (Xeno III, Dentsply) and two-step (Tyrian-One Step Plus, Bisco) self-etching adhesive systems bonded to dentin and cemented to chemically cured (C&B Metabond) or light-cured paste of a dual-cure resin cement (Variolink II, Ivoclar) within a short (24 h) and long period of evaluation (90 days). Forty recently extracted human molars had their roots removed and their occlusal dentin exposed and ground wet with 600-grit SiC paper. After application of one of the adhesives, the resin cement was applied to the bonded surface and a composite resin block was incrementally built up to a height of 5 mm (n=10). The restored teeth were stored in distilled water at 37 degrees C for 7 days. The teeth were then cut along two axes (x and y), producing beam-shaped specimens with 0.8 mm(2) cross-sectional area, which were subjected to microTBS testing at a crosshead speed of 0.05 mm/min and stressed to failure after 24 h or 90 days of storage in water. The microTBS data in MPa were subjected to three-way analysis of variance and Tukey's test (alpha= 0.05). The interaction effect for all three factors was statistically significant (three-way ANOVA, p<0.001). All eight experimental means (MPa) were compared by the Tukey's test (p<0.05) and the following results were obtained: Tyrian-One Step Plus /C&B/24 h (22.4+/-7.3); Tyrian-One Step Plus /Variolink II/24 h (39.4+/-11.6); Xeno III/C&B/24 h (40.3+/-12.9); Xeno III/Variolink II/24 h (25.8+/-10.5); Tyrian-One Step Plus /C&B/90 d (22.1+/-12.8) Tyrian-One Step Plus/VariolinkII/90 d (24.2+/-14.2); Xeno III/C&B/90 d (27.0+/-13.5); Xeno III/Variolink II/90 d (33.0+/-8.9). Xeno III/Variolink II was the luting agent/adhesive combination that provided the most promising bond strength after 90 days of storage in water.

  13. Investigation of diamond deposition by chemical vapor transport with hydrogen

    NASA Astrophysics Data System (ADS)

    Piekarczyk, Wladyslaw; Messier, Russell F.; Roy, Rustum; Engdahl, Chris

    1990-12-01

    The carbon-hydrogen chemical vapor transport system was examined in accordance with a four-stage transport model. A result of this examination is that graphite co-deposition could be avoided when diamond is deposited from gas solutions under-saturated with respect to diamond. Actual deposition experiments showed that this unusual requirement can be fulfilled but only for the condition that the transport distance between the carbon source and the substrate surface is short. In such a case diamond can be deposited equally from super-saturated as well as from under-saturated gas solutions. On the basis of thermodynamic considerations a possible explanation of this unusual phenomenon is given. It is shown that there is a possibility of deposition of diamond from both super-saturated as well as under-saturated gas solutions but only on the condition that they are in a non-equilibrium state generally called the activated state. A model of the diamond deposition process consisting of two steps is proposed. In the first step diamond and graphite are deposited simultaneously. The most important carbon deposition reaction is C2H2(g) + 2 H(g) C(diamond graphite) + CH(g). The amount of co-deposited graphite is not a direct function of the saturation state of the gas phase. In the second step graphite is etched according to the most probable reaction C(graphite) + 4 H(g) CH4(g). Atomic hydrogen in a super-equilibrium concentration is necessary not only to etch graphite but also to precipitate and graphite. 1.

  14. Diamond deposition by chemical vapor transport with hydrogen in a closed system

    NASA Astrophysics Data System (ADS)

    Piekarczyk, W.; Messier, R.; Roy, R.; Engdahl, C.

    1990-11-01

    The carbon-hydrogen chemical vapor transport system was examined in accordance with a four-stage transport model. A result of this examination is that graphite co-deposition could be avoided when diamond is deposited from gas solutions undersaturated with regard to diamond. Actual deposition experiments showed that this unusual requirement can be fulfilled but only for the condition that the transport distance between the carbon source and the substrate surface is short. In such a case diamond can be deposited equally from supersaturated as well as from undersaturated gas solutions. On the basis of thermodynamic considerations, a possible explanation of this unusual phenomenon is given. It is shown that there is a possibility of deposition of diamond from both supersaturated and undersaturated gas solutions but only on the condition that they are in a non-equilibrium state generally called the activated state. A model of the diamond deposition process consisting of two steps is proposed. In the first step diamond and graphite are deposited simultaneously. The most important carbon deposition reaction is C 2H 2(g)+2H(g) = C(diamond+graphite) +CH 4(g). The amount of co-deposited graphite is not a direct function of the saturation state of the gas phase. In the second step graphite is etched according to the most probable reaction C(graphite)+4H(g) = CH 4(g). Atomic hydrogen in a concentration exceeding equilibrium is necessary not only to etch graphite, but also to precipitate diamond and graphite.

  15. Purification and Biochemical Characterization of a Neutral Serine Protease from Trichoderma harzianum. Use in Antibacterial Peptide Production from a Fish By-Product Hydrolysate.

    PubMed

    Aissaoui, Neyssene; Chobert, Jean-Marc; Haertlé, Thomas; Marzouki, M Nejib; Abidi, Ferid

    2017-06-01

    This study reports the purification and biochemical characterization of an extracellular neutral protease from the fungus Trichoderma harzianum. The protease (Th-Protease) was purified from the culture supernatant to homogeneity by a three-step procedure with 14.2% recovery and 9.06-fold increase in specific activity. The purified enzyme appeared as a single protein band after sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with a molecular mass of about 20 kDa. The optimum pH and temperature for the proteolytic activity were pH 7.0 and 40 °C, respectively. The enzyme was then investigated for its potential application in the production of antibacterial peptides. Interestingly, Scorpaena notata viscera protein hydrolysate prepared using the purified serine protease (Th-Protease) showed remarkable in vitro antibacterial activities. A peptide with a high antibacterial activity was further purified by a three-step procedure, and its sequence was identified as FPIGMGHGSRPA. The result of this study offers a promising alternative to produce natural antibacterial peptides from fish protein hydrolysate.

  16. Thermodynamic properties of an extremely rapid protein folding reaction.

    PubMed

    Schindler, T; Schmid, F X

    1996-12-24

    The cold-shock protein CspB from Bacillus subtilis is a very small beta-barrel protein, which folds with a time constant of 1 ms (at 25 degrees C) in a U reversible N two-state reaction. To elucidate the energetics of this extremely fast reaction we investigated the folding kinetics of CspB as a function of both temperature and denaturant concentration between 2 and 45 degrees C and between 1 and 8 M urea. Under all these conditions unfolding and refolding were reversible monoexponential reactions. By using transition state theory, data from 327 kinetic curves were jointly analyzed to determine the thermodynamic activation parameters delta H H2O++, delta S H2O++, delta G H2O++, and delta C p H2O++ for unfolding and refolding and their dependences on the urea concentration. 90% of the total change in heat capacity and 96% of the change in the m value (m = d delta G/d[urea]) occur between the unfolded state and the activated state. This suggests that for CspB the activated state of folding is unusually well structured and almost equivalent to the native protein in its interactions with the solvent. As a consequence of this native-like activated state a strong temperature-dependent enthalpy/entropy compensation is observed for the refolding kinetics, and the barrier to refolding shifts from being largely enthalpic at low temperature to largely entropic at high temperature. This shift originates not from the changes in the folding protein chains itself, but from the changes in the protein-solvent interactions. We speculate that the absence of intermediates and the native-like activated state in the folding of CspB are correlated with the small size and the structural type of this protein. The stabilization of a small beta-sheet as in CspB requires extensive non-local interactions, and therefore incomplete sheets are unstable. As a consequence, the critical activated state is reached only very late in folding. The instability of partially folded structure is a means to avoid misfolding prior to the rate-limiting step, and a native-like activated state reduces the risk of non-productive side reactions during the final steps to the native state.

  17. Atomic-scale planarization of 4H-SiC (0001) by combination of thermal oxidation and abrasive polishing

    NASA Astrophysics Data System (ADS)

    Deng, Hui; Endo, Katsuyoshi; Yamamura, Kazuya

    2013-09-01

    Thermal oxidation (TO) and abrasive polishing were combined for atomic-scale planarization of 4H-SiC. It was found that the oxide/SiC interface was atomically flat regardless of the thickness of the oxide. The specimen prepared by TO was dipped in HF solution to remove the oxide. However, owing to the residual silicon oxycarbide (Si-C-O), the step/terrace structure of 4H-SiC could not be observed. Nanoindentation tests revealed that the hardness of Si-C-O was much lower than that of SiC. A thermally oxidized SiC surface was polished using CeO2 abrasives, which resulted in an atomically flat surface with a well-ordered two-bilayer step/terrace structure.

  18. Endogenous bax translocation in SH-SY5Y human neuroblastoma cells and cerebellar granule neurons undergoing apoptosis.

    PubMed

    McGinnis, K M; Gnegy, M E; Wang, K K

    1999-05-01

    Changes at the mitochondria are an early, required step in apoptosis in various cell types. We used western blot analysis to demonstrate that the proapoptotic protein Bax translocated from the cytosolic to the mitochondrial fraction in SH-SY5Y human neuroblastoma cells undergoing staurosporine- or EGTA-mediated apoptosis. Levels of mitochondrial Bax increased 15 min after staurosporine treatment. In EGTA-treated cells, increased levels of mitochondrial Bax were seen at 4 h, consistent with a slower onset of apoptosis in EGTA versus staurosporine treatments. We also demonstrate the concomitant translocation of cytochrome c from the mitochondrial to the cytosolic fractions. We correlated these translocations with changes in caspase-3-like activity. An increase in caspase-3-like activity was evident 2 h after staurosporine treatment. Inhibition of the mitochondrial permeability transition had no effect on Bax translocation or caspase-3-like activity in staurosporine-treated SH-SY5Y cells. In primary cultures of cerebellar granule neurons undergoing low K(+)-mediated apoptosis, Bax translocation to the mitochondrial fraction was evident at 3 h. Cytochrome c release into the cytosol was not significant until 8 h after treatment. These data support a model of apoptosis in which Bax acts directly at the mitochondria to allow the release of cytochrome c.

  19. Optimized expression of prolyl aminopeptidase in Pichia pastoris and its characteristics after glycosylation.

    PubMed

    Yang, Hongyu; Zhu, Qiang; Zhou, Nandi; Tian, Yaping

    2016-11-01

    Prolyl aminopeptidases are specific exopeptidases that catalyze the hydrolysis of the N-terminus proline residue of peptides and proteins. In the present study, the prolyl aminopeptidase gene (pap) from Aspergillus oryzae JN-412 was optimized through the codon usage of Pichia pastoris. Both the native and optimized pap genes were inserted into the expression vector pPIC9 K and were successfully expressed in P. pastoris. Additionally, the activity of the intracellular enzyme expressed by the recombinant optimized pap gene reached 61.26 U mL(-1), an activity that is 2.1-fold higher than that of the native gene. The recombinant enzyme was purified by one-step elution through Ni-affinity chromatography. The optimal temperature and pH of the purified PAP were 60 °C and 7.5, respectively. Additionally, the recombinant PAP was recovered at a yield greater than 65 % at an extremely broad range of pH values from 6 to 10 after treatment at 50 °C for 6 h. The molecular weight of the recombinant PAP decreased from 50 kDa to 48 kDa after treatment with a deglycosylation enzyme, indicating that the recombinant PAP was completely glycosylated. The glycosylated PAP exhibited high thermo-stability. Half of the activity remained after incubation at 50 °C for 50 h, whereas the remaining activity of PAP expressed in E. coli was only 10 % after incubation at 50 °C for 1 h. PAP could be activated by the appropriate salt concentration and exhibited salt tolerance against NaCl at a concentration up to 5 mol L(-1).

  20. Synthesis and Release of Cyclic Adenosine 3′:5′-Monophosphate by Ochromonas malhamensis1

    PubMed Central

    Bressan, Ray A.; Handa, Avtar K.; Quader, Hartmut; Filner, Philip

    1980-01-01

    The chrysophycean alga, Ochromonas malhamensis Pringsheim, was shown to synthesize cyclic adenosine 3′:5′-monophosphate (cAMP) and to release it into the culture medium. Cells contained 3 to 3,000 picomoles per gram fresh weight; medium contained up to 20 times the amount in the cells. Putative [32P]cAMP was purified from cultures supplied [32P]phosphate. The compound was identified as [32P]cAMP by co-chromatography with authentic cAMP through 10 serial steps; by chemical deamination at the same rate as authentic cAMP, to a 32P compound with the chromatographic behavior of cIMP; and by its conversion through the action of cyclic nucleotide phosphodiesterase to a 32P compound with the chromatographic behavior of 5′-AMP. A two-step procedure involving chromatography on alumina and on Dowex 50 purified the unlabeled compound from cells or medium sufficiently for it to be assayable by competitive inhibition of binding of [3H]cAMP to cAMP-binding protein (Gilman assay) or by stimulation of cAMP-dependent protein kinase. The activity was destroyed by cyclic nucleotide phosphodiesterase with the same kinetics as authentic cAMP, provided that an endogenous inhibitor of the phosphodiesterase was first removed by an additional purification step. Images PMID:16661154

  1. Substrate and Enzyme Specificity of the Kinetic Isotope Effects Associated with the Dioxygenation of Nitroaromatic Contaminants.

    PubMed

    Pati, Sarah G; Kohler, Hans-Peter E; Pabis, Anna; Paneth, Piotr; Parales, Rebecca E; Hofstetter, Thomas B

    2016-07-05

    Compound-specific isotope analysis (CSIA) is a promising approach for tracking biotransformation of organic pollutants, but isotope fractionation associated with aromatic oxygenations is only poorly understood. We investigated the dioxygenation of a series of nitroaromatic compounds to the corresponding catechols by two enzymes, namely, nitrobenzene and 2-nitrotoluene dioxygenase (NBDO and 2NTDO) to elucidate the enzyme- and substrate-specificity of C and H isotope fractionation. While the apparent (13)C- and (2)H-kinetic isotope effects of nitrobenzene, nitrotoluene isomers, 2,6-dinitrotoluene, and naphthalene dioxygenation by NBDO varied considerably, the correlation of C and H isotope fractionation revealed a common mechanism for nitrobenzene and nitrotoluenes. Similar observations were made for the dioxygenation of these substrates by 2NTDO. Evaluation of reaction kinetics, isotope effects, and commitment-to-catalysis based on experiment and theory showed that rates of dioxygenation are determined by the enzymatic O2 activation and aromatic C oxygenation. The contribution of enzymatic O2 activation to the reaction rate varies for different nitroaromatic substrates of NBDO and 2NTDO. Because aromatic dioxygenation by nonheme iron dioxygenases is frequently the initial step of biodegradation, O2 activation kinetics may also have been responsible for the minor isotope fractionation reported for the oxygenation of other aromatic contaminants.

  2. Decoration of Chondroitin Polysaccharide with Threonine: Synthesis, Conformational Study, and Ice-Recrystallization Inhibition Activity.

    PubMed

    Laezza, Antonio; Casillo, Angela; Cosconati, Sandro; Biggs, Caroline I; Fabozzi, Antonio; Paduano, Luigi; Iadonisi, Alfonso; Novellino, Ettore; Gibson, Matthew I; Randazzo, Antonio; Corsaro, Maria M; Bedini, Emiliano

    2017-08-14

    Several threonine (Thr)- and alanine (Ala)-rich antifreeze glycoproteins (AFGPs) and polysaccharides act in nature as ice recrystallization inhibitors. Among them, the Thr-decorated capsular polysaccharide (CPS) from the cold-adapted Colwellia psychrerythraea 34H bacterium was recently investigated for its cryoprotectant activity. A semisynthetic mimic thereof was here prepared from microbial sourced chondroitin through a four-step strategy, involving a partial protection of the chondroitin polysaccharide as a key step for gaining an unprecedented quantitative amidation of its glucuronic acid units. In-depth NMR and computational analysis suggested a fairly linear conformation for the semisynthetic polysaccharide, for which the antifreeze activity by a quantitative ice recrystallization inhibition assay was measured. We compared the structure-activity relationships for the Thr-derivatized chondroitin and the natural Thr-decorated CPS from C. psychrerythraea.

  3. Kinetic and spectroscopic studies of the [palladium(Ar-bian)]-catalyzed semi-hydrogenation of 4-octyne.

    PubMed

    Kluwer, Alexander M; Koblenz, Tehila S; Jonischkeit, Thorsten; Woelk, Klaus; Elsevier, Cornelis J

    2005-11-09

    The kinetics of the stereoselective semi-hydrogenation of 4-octyne in THF by the highly active catalyst [Pd{(m,m'-(CF(3))(2)C(6)H(3))-bian}(ma)] (2) (bian = bis(imino)acenaphthene; ma = maleic anhydride) has been investigated. The rate law under hydrogen-rich conditions is described by r = k[4-octyne](0.65)[Pd][H(2)], showing first order in palladium and dihydrogen and a broken order in substrate. Parahydrogen studies have shown that a pairwise transfer of hydrogen atoms occurs in the rate-limiting step. In agreement with recent theoretical results, the proposed mechanism consists of the consecutive steps: alkyne coordination, heterolytic dihydrogen activation (hydrogenolysis of one Pd-N bond), subsequent hydro-palladation of the alkyne, followed by addition of N-H to palladium, reductive coupling of vinyl and hydride and, finally, substitution of the product alkene by the alkyne substrate. Under hydrogen-limiting conditions, side reactions occur, that is, formation of catalytically inactive palladacycles by oxidative alkyne coupling. Furthermore, it has been shown that (Z)-oct-4-ene is the primary reaction product, from which the minor product (E)-oct-4-ene is formed by an H(2)-assisted, palladium-catalyzed isomerization reaction.

  4. Fast growth of n-type 4H-SiC bulk crystal by gas-source method

    NASA Astrophysics Data System (ADS)

    Hoshino, Norihiro; Kamata, Isaho; Tokuda, Yuichiro; Makino, Emi; Kanda, Takahiro; Sugiyama, Naohiro; Kuno, Hironari; Kojima, Jun; Tsuchida, Hidekazu

    2017-11-01

    Fast growth of n-type 4H-SiC crystals was attempted using a high-temperature gas-source method. High growth rates exceeding 9 mm/h were archived at a seed temperature of 2550 °C, although the formation of macro-step bunching caused doping fluctuation and voids in the grown crystal. We investigated a trade-off between growth-rate enhancement and macro-step formation and how to improve the trade-off. By controlling the growth conditions, the growth of highly nitrogen-doped 4H-SiC crystals without the doping fluctuation and void formation were accomplished under a high growth rate exceeding 3 mm/h, maintaining the density of threading screw dislocations in the same level with the seed crystal. The influence of growth parameters on nitrogen incorporations into grown crystals was also surveyed.

  5. Ischemic postconditioning: from receptor to end-effector.

    PubMed

    Cohen, Michael V; Downey, James M

    2011-03-01

    Ischemic preconditioning, a robust cardioprotective intervention, has limited clinical efficacy because it must be initiated before myocardial ischemia. Conversely, ischemic postconditioning, repeated brief reocclusions of a coronary artery after release of prolonged coronary occlusion, provides cardioprotection in clinically feasible settings, that is, coronary angioplasty. Ischemic postconditioning's signaling is being investigated to identify pharmacological triggers that could be used without angioplasty. In initial minutes of reperfusion H(+) washes out of previously ischemic cells. pH rises enabling mitochondrial permeability transition pores (MPTPs) to form leading to cessation of ATP production and cell necrosis. Coronary reocclusions maintain sufficient acidosis to keep MPTP closed while signaling is initiated that can generate endogenous antagonists of MPTP formation even after cellular pH normalizes. Reintroduction of oxygen generates reactive oxygen species that activate protein kinase C to increase sensitivity of adenosine A(2b) receptors allowing adenosine released from ischemic cells to bind leading to activation of phosphatidylinositol 3-kinase and extracellular signal-regulated kinase 1/2. Phosphatidylinositol 3-kinase activation results in phosphorylation of Akt promoting activation of nitric oxide synthase and nitric oxide production, which inhibits glycogen synthase kinase-3β, perhaps the final cytosolic signaling step before inhibition of MPTP formation. Interference with MPTP may be the final step that determines cell salvage.

  6. C–H and O 2 activation at a Pt(II) center enabled by a novel sulfonated CNN pincer ligand

    DOE PAGES

    Watts, David; Wang, Daoyong; Adelberg, Mackenzie; ...

    2016-09-21

    A novel sulfonated CNN pincer ligand has been designed to support CH and O 2 activation at a Pt(II) center. The derived cycloplatinated aqua complex 7 was found to be one of the most active reported homogeneous Pt catalysts for H/D exchange between studied arenes (benzene, benzene-d 6, toluene-d 8, p-xylene, and mesitylene) and 2,2,2-trifluoroethanol (TFE) or 2,2,2-trifluoroethanol-d; the TON for C 6D 6 as a substrate is >250 after 48 h at 80 °C. The reaction is very selective; no benzylic CH bond activation was observed. The per-CH-bond reactivity diminishes in the series benzene (19) > toluene ( p-CH:more » m-CH: o-CH = 1:0.9:0.2) > xylene (2.9) > mesitylene (1.1). The complex 7 reacts slowly in TFE solutions under ambient light but not in the dark with O 2 to selectively produce a Pt(IV) trifluoroethoxo derivative. The H/D exchange reaction kinetics and results of the DFT study suggest that complex 7, and not its TFE derivatives, is the major species responsible for the arene CH bond activation. Lastly, the reaction deuterium kinetic isotope effect, k H/k D = 1.7, the reaction selectivity, and reaction kinetics modeling suggest that the CH bond cleavage step is rate-determining.« less

  7. Computational design of variants for cephalosporin C acylase from Pseudomonas strain N176 with improved stability and activity.

    PubMed

    Tian, Ye; Huang, Xiaoqiang; Li, Qing; Zhu, Yushan

    2017-01-01

    In this report, redesigning cephalosporin C acylase from the Pseudomonas strain N176 revealed that the loss of stability owing to the introduced mutations at the active site can be recovered by repacking the nearby hydrophobic core regions. Starting from a quadruple mutant M31βF/H57βS/V68βA/H70βS, whose decrease in stability is largely owing to the mutation V68βA at the active site, we employed a computational enzyme design strategy that integrated design both at hydrophobic core regions for stability enhancement and at the active site for activity improvement. Single-point mutations L154βF, Y167βF, L180βF and their combinations L154βF/L180βF and L154βF/Y167βF/L180βF were found to display improved stability and activity. The two-point mutant L154βF/L180βF increased the protein melting temperature (T m ) by 11.7 °C and the catalytic efficiency V max /K m by 57 % compared with the values of the starting quadruple mutant. The catalytic efficiency of the resulting sixfold mutant M31βF/H57βS/V68βA/H70βS/L154βF/L180βF is recovered to become comparable to that of the triple mutant M31βF/H57βS/H70βS, but with a higher T m . Further experiments showed that single-point mutations L154βF, L180βF, and their combination contribute no stability enhancement to the triple mutant M31βF/H57βS/H70βS. These results verify that the lost stability because of mutation V68βA at the active site was recovered by introducing mutations L154βF and L180βF at hydrophobic core regions. Importantly, mutation V68βA in the six-residue mutant provides more space to accommodate the bulky side chain of cephalosporin C, which could help in designing cephalosporin C acylase mutants with higher activities and the practical one-step enzymatic route to prepare 7-aminocephalosporanic acid at industrial-scale levels.

  8. Unearthing a Well-Defined Highly Active Bimetallic W/Ti Precatalyst Anchored on a Single Silica Surface for Metathesis of Propane.

    PubMed

    Samantaray, Manoja K; Kavitake, Santosh; Morlanés, Natalia; Abou-Hamad, Edy; Hamieh, Ali; Dey, Raju; Basset, Jean-Marie

    2017-03-08

    Two compatible organometallic complexes, W(Me) 6 (1) and TiNp 4 (2), were successively anchored on a highly dehydroxylated single silica support (SiO 2-700 ) to synthesize the well-defined bimetallic precatalyst [(≡Si-O-)W(Me) 5 (≡Si-O-)Ti(Np) 3 ] (4). Precatalyst 4 was characterized at the molecular level using advanced surface organometallic chemistry (SOMC) characterization techniques. The strong autocorrelation observed between methyl of W and Ti in 1 H- 1 H multiple-quantum NMR spectra demonstrates that W and Ti species are in close proximity to each other. The bimetallic precatalyst 4, with a turnover number (TON) of 9784, proved to be significantly more efficient than the silica-supported monometallic catalyst [(≡Si-O-)W(Me) 5 ] (3), with a TON of 98, for propane metathesis at 150 °C in a flow reactor. The dramatic improvement in the activity signifies the cooperativity between Ti and W and indicates that the key step of alkane metathesis (C-H bond activation followed by β-H elimination) occurs on Ti, followed by olefin metathesis, which occurs on W. We have demonstrated the influence and importance of proximity of Ti to W for achieving such a significantly high activity. This is the first report demonstrating the considerably high activity (TON = 9784) in propane metathesis at moderate temperature (150 °C) using a well-defined bimetallic system prepared via the SOMC approach.

  9. An ammonium sulfate sensitive endoxylanase produced by Streptomyces.

    PubMed

    Simkhada, Jaya Ram; Yoo, Hah Young; Park, Don Hee; Choi, Yun Hee; Lee, Hyo Jeong; Kim, Seung Wook; Yoo, Jin Cheol

    2013-06-01

    Streptomyces sp. CSWu2 was newly isolated and identified from Korean soil. In culture medium, the strain produced a highly active endoxylanase (Xynwu2), which was purified to homogeneity by a single-step chromatography on Poros-HQ. The xylanase was ~38 kDa and its activity was maximal at 65 °C and pH 11.0. It was stable up to 60 °C and from pH 8.0 to 12.0, and its activity was slightly enhanced by nonionic detergents, but inhibited by EDTA, EGTA, and divalent metal ions. Intriguingly, Xynwu2 was highly sensitive to ammonium sulfate, but its completely suppressed activity was recovered by desalting out. Xynwu2 produced xylose and xylobiose as principal end products from xylan, suggesting an endoxylanase nature. Importantly, scanning electron microscopy showed Xynwu2 efficiently degraded corncobs, an agro-industrial waste material. We believe that Xynwu2 is a potential candidate for converting lignocellulosic waste material into simple sugars which could be used to produce bioethanol and other value-added products.

  10. Optimization and antioxidant activity of polysaccharides from Plantago depressa.

    PubMed

    Han, Na; Wang, Lin; Song, Zehai; Lin, Junyu; Ye, Chun; Liu, Zhihui; Yin, Jun

    2016-12-01

    Polysaccharide from the herb of Plantago depressa (PDP) was obtained through ethanol precipitation preceded by a water extraction step. The optimum extraction yield of 5.68±0.46% was obtained with the treatment of raw material in water (w/v, 1:25.34) at 80.44°C during 1.97h, 3.28 times. Under these conditions, obtained yield value was in total agreement with value predicted by the model executed by Box-Behnken design (BBD). Following analysis by IR, HPLC-UV, MS and 1 H NMR, the composition of PDP was found to be l-rhamnose, galactose, arabinose, glucose and d-galacturonic acid. The maximum tolerated dose of PDP was 10g/kg. The antioxidant activity of PDP was investigated using five tests and it was found that PDP was able to scavenge hydroxyl, DPPH and ABTS radicals, besides their β-carotene bleaching inhibitory activity. In particular, in the test of β-carotene bleaching inhibition, PDP displayed higher activity than Vitamin C. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Control of O-H bonds at a-IGZO/SiO2 interface by long time thermal annealing for highly stable oxide TFT

    NASA Astrophysics Data System (ADS)

    Jeon, Jae Kwon; Um, Jae Gwang; Lee, Suhui; Jang, Jin

    2017-12-01

    We report two-step annealing, high temperature and sequent low temperature, for amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) to improve its stability and device performance. The annealing is carried out at 300 oC in N2 ambient for 1 h (1st step annealing) and then at 250 oC in vacuum for 10 h (2nd step annealing). It is found that the threshold voltage (VTH) changes from 0.4 V to -2.0 V by the 1st step annealing and to +0.6 V by 2nd step annealing. The mobility changes from 18 cm2V-1s-1 to 25 cm2V-1s-1 by 1st step and decreases to 20 cm2V-1s-1 by 2nd step annealing. The VTH shift by positive bias temperature stress (PBTS) is 3.7 V for the as-prepared TFT, and 1.7 V for the 1st step annealed TFT, and 1.3 V for the 2nd step annealed TFT. The XPS (X-ray photoelectron spectroscopy) depth analysis indicates that the reduction in O-H bonds at the top interface (SiO2/a-IGZO) by 2nd step annealing appears, which is related to the positive VTH shift and smaller VTH shift by PBTS.

  12. Nanosecond step-scan FT-infrared absorption spectroscopy in photochemistry and catalysis

    NASA Astrophysics Data System (ADS)

    Frei, H.

    1998-06-01

    Time-resolved step-scan FT-IR absorption spectroscopy has been expanded to a resolution of 20 nanosecond. Following a description of the experimental set-up, applications in four research areas are presented. In the first project, we discuss a reversible isomerization, namely the bacteriorhodopsin photocycle. Main results are the discovery of 2 processes with distinct kinetics on the nanosecond time scale not detected by previous spectroscopic techniques, and observation of an instantaneous response of the protein environment to chromophore dynamics within the nanosecond laser pulse duration. In a second project, alkane C-H bond activation by a transition metal complex in room temperature solution is investigated and the first measurement of the formation of a C-H insertion product reported (alkyl hydride). Then, a nanosecond study of a pericyclic reaction, the ring-opening of cyclohexadiene, is discussed. The fourth example describes the first observation of a transient molecule in a zeolite matrix, a triplet excited quinone, by time-resolved infrared spectroscopy.

  13. Identification of a novel phospholipase D with high transphosphatidylation activity and its application in synthesis of phosphatidylserine and DHA-phosphatidylserine.

    PubMed

    Mao, Xiangzhao; Liu, Qianqian; Qiu, Yongqian; Fan, Xiaoqin; Han, Qingqing; Liu, Yanjun; Zhang, Lujia; Xue, Changhu

    2017-05-10

    Phosphatidylserine (PS) and docosahexaenoic acid-phosphatidylserine (DHA-PS) have significant nutritional and biological functions, which are extensively used in functional food industries. Phospholipase D (PLD)-mediated transphosphatidylation of phosphatidylcholine (PC) or DHA-PC with l-serine, is an effective method for PS and DHA-PS preparation. However, because of the hydrolysis activity of PLD, PC and DHA-PC would be converted to the undesirable byproduct, phosphatidic acid (PA) and DHA-PA. In this study, a novel phospholipase D (PLD a2 ) was firstly cloned from Acinetobacter radioresistens a2 with high transphosphatidylation activity and no hydrolysis activity. In the PLD-catalyzed synthesis process (12h), both the transphosphatidylation conversion rate and selectivity of PS and DHA-PS were about 100%, which is the only PLD enzyme reported with this superiority up till now. In comparison with the majority of other known PLDs, PLD a2 exerted the highest activity at neutral pH, and it was stable from pH 4.0 to pH 9.0. In addition, PLD a2 had excellent thermal stability, with an optimum reaction temperature of 40°C and keeping more than 80% activity from 20°C to 60°C. The high catalytic selectivity mechanism of PLD a2 was explained by utilizing homology modeling, two-step docking, and binding energy and conformation analysis. PLD a2 ensured a stable supply of the biocatalyst with its most preponderant transphosphatidylation activity and PS selectivity, and had great potential in phospholipids industrial production. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Ortho effects in quantitative structure-activity relationships for acetylcholinesterase inhibition by aryl carbamates.

    PubMed

    Lin, Gialih; Liu, Yu-Chen; Lin, Yan-Fu; Wu, Yon-Gi

    2004-10-01

    Ortho-substituted phenyl-N-butyl carbamates (1-9) are characterized as "pseudo-pseudo-substrate" inhibitors of acetylcholinesterase. Since the inhibitors protonate at pH 7.0 buffer solution, the virtual inhibition constants (K'is) of the protonated inhibitors are calculated from the equation, - logK'i = - logKi - logKb. The logarithms of the inhibition constant (Ki), the carbamylation constant (k(c)), and the bimolecular inhibition constant (k(i)) for the enzyme inhibitions by carbamates 1-9 are multiply linearly correlated with the Hammett para-substituent constant (sigma(p)), the Taft-Kutter-Hansch ortho steric constant (E(S)), and the Swan-Lupton ortho polar constant (F). Values of rho, delta, and f for the - logKi-, logk(c)-, and logk(i)-correlations are -0.6, -0.16, 0.7; 0.11, 0.03, -0.3; and - 0.5, - 0.12, 0.4, respectively. The Ki step further divides into two steps: 1) the pre-equilibrium protonation of the inhibitors, Kb step and 2) formation of a negatively charged enzyme-inhibitor Michaelis-Menten complex--virtual inhibition, K'i step. The Ki step has little ortho steric enhancement effect; moreover, the k(c)step is insensitive to the ortho steric effect. The f value of 0.7 for the Ki step indicates that ortho electron-withdrawing substituents of the inhibitors accelerate the inhibition reactions from the ortho polar effect; however, the f value of -0.3 for the k(c)step implies that ortho electron-withdrawing substituents of the inhibitors lessen the inhibition reactions from the ortho polar effect.

  15. The roles of prefrontal and posterior parietal cortex in algebra problem solving: a case of using cognitive modeling to inform neuroimaging data.

    PubMed

    Danker, Jared F; Anderson, John R

    2007-04-15

    In naturalistic algebra problem solving, the cognitive processes of representation and retrieval are typically confounded, in that transformations of the equations typically require retrieval of mathematical facts. Previous work using cognitive modeling has associated activity in the prefrontal cortex with the retrieval demands of algebra problems and activity in the posterior parietal cortex with the transformational demands of algebra problems, but these regions tend to behave similarly in response to task manipulations (Anderson, J.R., Qin, Y., Sohn, M.-H., Stenger, V.A., Carter, C.S., 2003. An information-processing model of the BOLD response in symbol manipulation tasks. Psychon. Bull. Rev. 10, 241-261; Qin, Y., Carter, C.S., Silk, E.M., Stenger, A., Fissell, K., Goode, A., Anderson, J.R., 2004. The change of brain activation patterns as children learn algebra equation solving. Proc. Natl. Acad. Sci. 101, 5686-5691). With this study we attempt to isolate activity in these two regions by using a multi-step algebra task in which transformation (parietal) is manipulated in the first step and retrieval (prefrontal) is manipulated in the second step. Counter to our initial predictions, both brain regions were differentially active during both steps. We designed two cognitive models, one encompassing our initial assumptions and one in which both processes were engaged during both steps. The first model provided a poor fit to the behavioral and neural data, while the second model fit both well. This simultaneously emphasizes the strong relationship between retrieval and representation in mathematical reasoning and demonstrates that cognitive modeling can serve as a useful tool for understanding task manipulations in neuroimaging experiments.

  16. Bacterial versus fungal laccase: potential for micropollutant degradation

    PubMed Central

    2013-01-01

    Relatively high concentrations of micropollutants in municipal wastewater treatment plant (WWTP) effluents underscore the necessity to develop additional treatment steps prior to discharge of treated wastewater. Microorganisms that produce unspecific oxidative enzymes such as laccases are a potential means to improve biodegradation of these compounds. Four strains of the bacterial genus Streptomyces (S. cyaneus, S. ipomoea, S. griseus and S. psammoticus) and the white-rot fungus Trametes versicolor were studied for their ability to produce active extracellular laccase in biologically treated wastewater with different carbon sources. Among the Streptomyces strains evaluated, only S. cyaneus produced extracellular laccase with sufficient activity to envisage its potential use in WWTPs. Laccase activity produced by T. versicolor was more than 20 times greater, the highest activity being observed with ash branches as the sole carbon source. The laccase preparation of S. cyaneus (abbreviated LSc) and commercial laccase from T. versicolor (LTv) were further compared in terms of their activity at different pH and temperatures, their stability, their substrate range, and their micropollutant oxidation efficiency. LSc and LTv showed highest activities under acidic conditions (around pH 3 to 5), but LTv was active over wider pH and temperature ranges than LSc, especially at near-neutral pH and between 10 and 25°C (typical conditions found in WWTPs). LTv was also less affected by pH inactivation. Both laccase preparations oxidized the three micropollutants tested, bisphenol A, diclofenac and mefenamic acid, with faster degradation kinetics observed for LTv. Overall, T. versicolor appeared to be the better candidate to remove micropollutants from wastewater in a dedicated post-treatment step. PMID:24152339

  17. Characterization of a thermostable β-glucuronidase from Thermotoga maritima expressed in Arabidopsis thaliana.

    PubMed

    Xu, Jing; Tian, Yong-Sheng; Peng, Ri-He; Zhu, Bo; Gao, Jian-Jie; Yao, Quan-Hong

    2012-09-01

    TmGUSI, a gene identical to that encoding a thermostable β-glucuronidase in the hyperthermophilic anaerobe Thermotoga maritima, has been synthesized using a PCR-based two-step DNA synthesis and codon optimization for plants, and expressed in both Escherichia coli and Arabidopsis thaliana. TmGUSI expressed in transformed E. coli cells exhibited maximum hydrolytic activity at 65 °C and pH 6.5 and retained more than 80% activity after incubation at 85 °C for 30 min. TmGUSI activity in transgenic A. thaliana plants containing TmGUSI was also stable over the temperature range 65-80 °C. Our data suggest that β-glucuronidase from T. maritima can serve as a useful thermostable marker in higher plants.

  18. Mechanisms of formation of 8-oxoguanine due to reactions of one and two OH* radicals and the H2O2 molecule with guanine: A quantum computational study.

    PubMed

    Jena, N R; Mishra, P C

    2005-07-28

    Mechanisms of formation of the mutagenic product 8-oxoguanine (8OG) due to reactions of guanine with two separate OH* radicals and with H2O2 were investigated at the B3LYP/6-31G, B3LYP/6-311++G, and B3LYP/AUG-cc-pVDZ levels of theory. Single point energy calculations were carried out with the MP2/AUG-cc-pVDZ method employing the optimized geometries at the B3LYP/AUG-cc-pVDZ level. Solvent effect was treated using the PCM and IEF-PCM models. Reactions of two separate OH* radicals and H2O2 with the C2 position of 5-methylimidazole (5MI) were investigated taking 5MI as a model to study reactions at the C8 position of guanine. The addition reaction of an OH* radical at the C8 position of guanine is found to be nearly barrierless while the corresponding adduct is quite stable. The reaction of a second OH* radical at the C8 position of guanine leading to the formation of 8OG complexed with a water molecule can take place according to two different mechanisms, involving two steps each. According to one mechanism, at the first step, 8-hydroxyguanine (8OHG) complexed with a water molecule is formed ,while at the second step, 8OHG is tautomerized to 8OG. In the other mechanism, at the first step, an intermediate complexed (IC) with a water molecule is formed, the five-membered ring of which is open, while at the second step, the five-membered ring is closed and a hydrogen bonded complex of 8OG with a water molecule is formed. The reaction of H2O2 with guanine leading to the formation of 8OG complexed with a water molecule can also take place in accordance with two different mechanisms having two steps each. At the first step of one mechanism, H2O2 is dissociated into two OH* groups that react with guanine to form the same IC as that formed in the reaction with two separate OH* radicals, and the subsequent step of this mechanism is also the same as that of the reaction of guanine with two separate OH* radicals. At the first step of the other mechanism of the reaction of guanine with H2O2, the latter molecule is dissociated into a hydrogen atom and an OOH* group which become bonded to the N7 and C8 atoms of guanine, respectively. At the second step of this mechanism, the OOH* group is dissociated into an oxygen atom and an OH* group, the former becomes bonded to the C8 atom of guanine while the latter abstracts the H8 atom bonded to C8, thus producing 8OG complexed with a water molecule. Solvent effects of the aqueous medium on certain reaction barriers and released energies are appreciable. 5MI works as a satisfactory model for a qualitative study of the reactions of two separate OH* radicals or H2O2 occurring at the C8 position of guanine.

  19. Structural and photodynamic properties of the anti-cancer drug irinotecan in aqueous solutions of different pHs.

    PubMed

    di Nunzio, Maria Rosaria; Douhal, Yasmin; Organero, Juan Angel; Douhal, Abderrazzak

    2018-05-23

    This work reports on photophysical studies of the irinotecan (IRT) anti-cancer drug in water solutions of different acidities (pH = 1.11-9.46). We found that IRT co-exists as mono-cationic (C1), di-cationic (C2), or neutral (N) forms. The population of each prototropic species depends on the pH of the solution. At pH = 1.11-3.01, the C1 and C2 structures are stabilized. At pH = 7.00, the most populated species is C1, while at pH values larger than 9.46 the N form is the most stable species. In the 1.11-2.61 pH range, the C1* emission is efficiently quenched by protons to give rise to the emission from C2*. The dynamic quenching constant, KD, is ∼32 M-1. While the diffusion governs the rate of excited-state proton-transfer (ESPT) under these conditions, the reaction rate increases with the proton concentration. A two-step diffusive Debye-Smoluchowski model was applied at pH = 1.11-2.61 to describe the protonation of C1*. The ESPT time constants derived for C1* are 382 and 1720 ps at pH = 1.11 and 1.95, respectively. We found that one proton species is involved in the protonation of C1* to give C2*, in the analyzed acidic pH range. Under alkaline conditions (pH = 9.46), the N form is the most stable structure of IRT. These results indicate the influence of the pH of the medium on the structural and dynamical properties of IRT in water solution. They may help to provide a better understanding on the relationship between the structure and biological activity of IRT.

  20. Purification and Characterization of a Novel Thermo-Alkali-Stable Catalase from Thermus brockianus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Vicki Sue; Schaller, Kastli Dianne; Apel, William Arnold

    2003-10-01

    A novel thermo-alkali-stable catalase from Thermus brockianus was purified and characterized. The protein was purified from a T. brockianus cell extract in a three-step procedure that resulted in 65-fold purification to a specific activity of 5300 U/mg. The enzyme consisted of four identical subunits of 42.5 kDa as determined by SDS-PAGE and a total molecular mass measured by gel filtration of 178 kDa. The catalase was active over a temperature range from 30 to 94 C and a pH range from 6 to 10, with optimum activity occurring at 90 C and pH 8. At pH 8, the enzyme wasmore » extremely stable at elevated temperatures with half-lives of 330 h at 80 C and 3 h at 90 C. The enzyme also demonstrated excellent stability at 70 C and alkaline pH with measured half-lives of 510 h and 360 h at pHs of 9 and 10, respectively. The enzyme had an unusual pyridine hemochrome spectrum and appears to utilize eight molecules of heme c per tetramer rather than protoheme IX present in the majority of catalases studied to date. The absorption spectrum suggested that the heme iron of the catalase was in a 6-coordinate low spin state rather than the typical 5-coordinate high spin state. A Km of 35.5 mM and a Vmax of 20.3 mM/min·mg protein for hydrogen peroxide was measured, and the enzyme was not inhibited by hydrogen peroxide at concentrations up to 450 mM. The enzyme was strongly inhibited by cyanide and the traditional catalase inhibitor 3-amino-1,2,4-triazole. The enzyme also showed no peroxidase activity to peroxidase substrates o-dianisidine and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), a trait of typical monofunctional catalases. However, unlike traditional monofunctional catalases, the T. brockianus catalase was easily reduced by dithionite, a characteristic of catalase-peroxidases. The above properties indicate that this catalase has potential for applications in industrial bleaching processes to remove residual hydrogen peroxide from process streams.« less

  1. Engineering the l-Arabinose Isomerase from Enterococcus Faecium for d-Tagatose Synthesis.

    PubMed

    de Sousa, Marylane; Manzo, Ricardo M; García, José L; Mammarella, Enrique J; Gonçalves, Luciana R B; Pessela, Benevides C

    2017-12-06

    l-Arabinose isomerase (EC 5.3.1.4) (l-AI) from Enterococcus faecium DBFIQ E36 was overproduced in Escherichia coli by designing a codon-optimized synthetic araA gene. Using this optimized gene, two N- and C-terminal His-tagged-l-AI proteins were produced. The cloning of the two chimeric genes into regulated expression vectors resulted in the production of high amounts of recombinant N -His-l-AI and C -His-l-AI in soluble and active forms. Both His-tagged enzymes were purified in a single step through metal-affinity chromatography and showed different kinetic and structural characteristics. Analytical ultracentrifugation revealed that C -His-l-AI was preferentially hexameric in solution, whereas N -His-l-AI was mainly monomeric. The specific activity of the N -His-l-AI at acidic pH was higher than that of C -His-l-AI and showed a maximum bioconversion yield of 26% at 50 °C for d-tagatose biosynthesis, with Km and Vmax parameters of 252 mM and 0.092 U mg -1 , respectively. However, C -His-l-AI was more active and stable at alkaline pH than N -His-l-AI. N -His-l-AI follows a Michaelis-Menten kinetic, whereas C -His-l-AI fitted to a sigmoidal saturation curve.

  2. A Novel Mechanism for Resistance to the Antimetabolite N-Phosphonoacetyl-l-Aspartate by Helicobacter pylori

    PubMed Central

    Burns, Brendan P.; Mendz, George L.; Hazell, Stuart L.

    1998-01-01

    The mechanism of resistance to N-phosphonoacetyl-l-aspartate (PALA), a potent inhibitor of aspartate carbamoyltransferase (which catalyzes the first committed step of de novo pyrimidine biosynthesis), in Helicobacter pylori was investigated. At a 1 mM concentration, PALA had no effects on the growth and viability of H. pylori. The inhibitor was taken up by H. pylori cells and the transport was saturable, with a Km of 14.8 mM and a Vmax of 19.1 nmol min−1 μl of cell water−1. By 31P nuclear magnetic resonance (NMR) spectroscopy, both PALA and phosphonoacetate were shown to have been metabolized in all isolates of H. pylori studied. A main metabolic end product was identified as inorganic phosphate, suggesting the presence of an enzyme activity which cleaved the carbon-phosphorus (C-P) bonds. The kinetics of phosphonate group cleavage was saturable, and there was no evidence for substrate inhibition at higher concentrations of either compound. C-P bond cleavage activity was temperature dependent, and the activity was lost in the presence of the metal chelator EDTA. Other cleavages of PALA were observed by 1H NMR spectroscopy, with succinate and malate released as main products. These metabolic products were also formed when N-acetyl-l-aspartate was incubated with H. pylori lysates, suggesting the action of an aspartase. Studies of the cellular location of these enzymes revealed that the C-P bond cleavage activity was localized in the soluble fraction and that the aspartase activity appeared in the membrane-associated fraction. The results suggested that the two H. pylori enzymes transformed the inhibitor into noncytotoxic products, thus providing the bacterium with a mechanism of resistance to PALA toxicity which appears to be unique. PMID:9791105

  3. Hydrogen-bonded networks of [Fe(bpp)2]2+ spin crossover complexes and dicarboxylate anions: structural and photomagnetic properties.

    PubMed

    Jornet-Mollá, Verónica; Duan, Yan; Giménez-Saiz, Carlos; Waerenborgh, João C; Romero, Francisco M

    2016-11-28

    The paper reports the syntheses, crystal structures, thermal and (photo)magnetic properties of spin crossover salts of formula [Fe(bpp) 2 ](C 6 H 8 O 4 )·4H 2 O (1·4H 2 O), [Fe(bpp) 2 ](C 8 H 4 O 4 )·2CH 3 OH·H 2 O (2·2MeOH·H 2 O) and [Fe(bpp) 2 ](C 8 H 4 O 4 )·5H 2 O (2·5H 2 O) (bpp = 2,6-bis(pyrazol-3yl)pyridine; C 6 H 8 O 4 = adipate dianion; C 8 H 4 O 4 = terephthalate dianion). The salts exhibit an intricate network of hydrogen bonds between low-spin iron(ii) complexes and carboxylate dianions, with solvent molecules sitting in the voids. Desolvation is accompanied by a low-spin (LS) to high-spin (HS) transformation in the materials. The dehydrated phase 2 undergoes a two-step transition with a second step showing thermal hysteresis (T 1/2 ↑ = 139 K and T 1/2 ↓ = 118 K). 2 displays a quantitative LS to HS photomagnetic conversion, with a T(LIESST) value of 63 K.

  4. Process for the combined removal of SO.sub.2 and NO.sub.x from flue gas

    DOEpatents

    Chang, Shih-Ger; Liu, David K.; Griffiths, Elizabeth A.; Littlejohn, David

    1988-01-01

    The present invention in one aspect relates to a process for the simultaneous removal of NO.sub.x and SO.sub.2 from a fluid stream comprising mixtures thereof and in another aspect relates to the separation, use and/or regeneration of various chemicals contaminated or spent in the process and which includes the steps of: (A) contacting the fluid stream at a temperature of between about 105.degree. and 180.degree. C. with a liquid aqueous slurry or solution comprising an effective amount of an iron chelate of an amino acid moiety having at least one --SH group; (B) separating the fluid stream from the particulates formed in step (A) comprising the chelate of the amino acid moiety and fly ash; (C) washing and separating the particulates of step (B) with an aqueous solution having a pH value of between about 5 to 8; (D) subsequently washing and separating the particulates of step (C) with a strongly acidic aqueous solution having a pH value of between about 1 to 3; (E) washing and separating the particulates of step (D) with an basic aqueous solution having a pH value of between about 9 to 12; (F) optionally adding additional amino acid moiety, iron (II) and alkali to the aqueous liquid from step (D) to produce an aqueous solution or slurry similar to that in step (A) having a pH value of between about 4 to 12; and (G) recycling the aqueous slurry of step (F) to the contacting zone of step (A). Steps (D) and (E) can be carried out in the reverse sequence, however the preferred order is (D) and then (E). In another preferred embodiment the present invention provides a process for the removal of NO.sub.x, SO.sub.2 and particulates from a fluid stream which includes the steps of (A) injecting into a reaction zone an aqueous solution itself comprising (i) an amino acid moiety selected from those described above; (ii) iron (II) ion; and (iii) an alkali, wherein the aqueous solution has a pH of between about 4 and 11; followed by solids separation and washing as is described in steps (B), (C), (D) and (E) above. The overall process is useful to reduce acid rain components from combustion gas sources.

  5. Rh(I) -Catalyzed Intramolecular Carbonylative C-H/C-I Coupling of 2-Iodobiphenyls Using Furfural as a Carbonyl Source.

    PubMed

    Furusawa, Takuma; Morimoto, Tsumoru; Nishiyama, Yasuhiro; Tanimoto, Hiroki; Kakiuchi, Kiyomi

    2016-08-19

    Synthesis of fluoren-9-ones by a Rh-catalyzed intramolecular C-H/C-I carbonylative coupling of 2-iodobiphenyls using furfural as a carbonyl source is presented. The findings indicate that the rate-determining step is not a C-H bond cleavage but, rather, the oxidative addition of the C-I bond to a Rh(I) center. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Purification and Properties of a New L-Sorbose Dehydrogenase Accelerative Protein from Bacillus megaterium Bred by Ion-Beam Implantation

    NASA Astrophysics Data System (ADS)

    Zhao, Shiguang; Yao, Liming; Su, Caixin; Wang, Tao; Wang, Jun; Tang, Mingli; Yu, Zengliang

    2008-06-01

    Bacillus megaterium BM302 bred by ion-beam implantation produces L-sorbose dehydrogenase accelerative protein (SAP) to accelerate the activity of L-sorbose dehydrogenase (SDH) of Gluconobacter oxydans in the 2-keto-L-gulonic acid (2KLG) fermentation from L-sorbose by the mixed culture of B. megaterium BM302 and G. oxydans. The SAP purified by three chromatographic steps gave 35-fold purification with a yield of 13% and a specific activity of 5.21 units/mg protein. The molecular weight of the purified SAP was about 58 kDa. The SDH accelerative activity of SAP at pH 7 and 50°C was the highest. Additionally, it retained 60% activity at a pH range of 6.5 ~ 10 and was stable at 20°C ~ 60°C. After 0.32-unit SAP was added to the single cultured G. oxydans strains, the SDH activity was apparently accelerated and the 2KLG yield of GO29, GO112, G0 and GI13 was enhanced 2.1, 3.3, 3.5 and 2.9 folds respectively over that of the strains without the addition of SAP.

  7. Structural, optical and photocatalytic properties of visible light driven zinc oxide hybridized two-dimensional π-conjugated polymeric g-C3N4 composite

    NASA Astrophysics Data System (ADS)

    Murugesan, Pramila; Girichandran, Nandalal; Narayanan, Sheeba; Manickam, Matheswaran

    2018-01-01

    Zinc oxide (ZnO) hybridized with graphitic carbon nitride (g-C3N4) composite was prepared via one step calcination method and well characterized using various physiochemical techniques. The prepared composite exhibits excellent photocatalytic activity and stability for decolorization of methylene blue (MB) dye solution under visible light irradiation. Effect of various rate determining parameters such as catalyst loading, initial dye concentration and pH on the decolorization of MB has been analyzed. The optimum conditions for efficient color removal were found to be 7, 10 ppm and 2 g/L for pH, dye concentration and catalyst dosage respectively. The intermediate compounds formed during the decolorization process were evaluated by GCMS spectra. It was inferred that the ZnO/g-C3N4 (98.83%) composite exhibits highest decolorization efficiency as compare with pure g-C3N4 (35.21%). Such enhancement of photocataytic activity is mainly attributed to the efficient separation of photo induced electron hole pairs via Z-scheme model composed of ZnO and g-C3N4.

  8. Citrate-capped superparamagnetic iron oxide (Fe3O4-CA) nanocatalyst for synthesis of pyrimidine derivative compound as antioxidative agent

    NASA Astrophysics Data System (ADS)

    Cahyana, A. H.; Pratiwi, D.; Ardiansah, B.

    2017-04-01

    The development of a recyclable catalyst based on magnetic nanoparticles has attracted an increasing interest as the emerging application in the heterogeneous catalyst field. Superparamagnetic iron oxide nanoparticle with citric acid as capping agent was successfully obtained from iron (III) chloride solution via two steps synthesis. The first step involving the formation of magnetite nanoparticle by bioreduction using Sargassum Sp, then its surface was modified by adding citric acid solution in the second step. The structural, surface morphology and magnetic properties of the nanocatalyst were investigated by various instrumentations such as scanning electron microscope with energy dispersive (SEM-EDS), and particle size analyser (PSA). Fe3O4-CA was then applied as reusable catalyst for Knoevenagel condensation of barbituric acid and cinnamaldehyde to produce (E)-5-(3-phenylallylidene)pyrimidine-2,4,6(1H,3H,5H)-trione. The optimum condition of this reaction was achieved by using 7.5% mole of catalyst at 50°C for 6 h to give 83% yield. Some spectroscopy techniques such as UV-Vis, FTIR, LC-MS and 1H-NMR were used to confirm the product’s structure. Furthermore, the synthesized compound has an attractive antioxidant activity based on the in-vitro analysis using DPPH method.

  9. Mechanisms of selective cleavage of C–O bonds in di-aryl ethers in aqueous phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Jiayue; Zhao, Chen; Mei, Donghai

    2014-01-01

    A novel route for cleaving the C-O aryl ether bonds of p-substituted H-, CH 3-, and OH- diphenyl ethers has been explored over Ni/SiO 2 catalysts at very mild conditions. The C-O bond of diphenyl ether is cleaved by parallel hydrogenolysis and hydrolysis (hydrogenolysis combined with HO* addition) on Ni. The rates as a function of H 2 pressure from 0 to 10 MPa indicate that the rate-determining step is the C-O bond cleavage on Ni. H* atoms compete with the organic reactant for adsorption leading to a maximum in the rate with increasing H 2 pressure. In contrast tomore » diphenyl ether, hydrogenolysis is the exclusive route for cleaving an ether C-O bond of di-p-tolyl ether to form p-cresol and toluene. 4,4'-dihydroxydiphenyl ether undergoes sequential surface hydrogenolysis, first to phenol and HOC 6H 4O* (adsorbed), which is then cleaved to phenol (C 6H 5O* with added H*) and H 2O (O* with two added H*) in a second step. Density function theory supports the operation of this pathway. Notably, addition of H* to HOC 6H 4O* is less favorable than a further hydrogenolytic C-O bond cleavage. The TOFs of three aryl ethers with Ni/SiO 2 in water followed the order 4,4'-dihydroxydiphenyl ether (69 h -1) > diphenyl ether (26 h -1) > di-p-tolyl ether (1.3 h -1), in line with the increasing apparent activation energies, ranging from 93 kJ∙mol -1 (4,4'-dihydroxydiphenyl ether) < diphenyl ether (98 kJ∙mol -1) to di-p-tolyl ether (105 kJ∙mol -1). D.M. thanks the support from the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) and by the National Energy Research Scientific Computing Center (NERSC). EMSL is a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and sponsored by DOE’s Office of Biological and Environmental Research.« less

  10. Potent and selective inhibitors of 11β-hydroxysteroid dehydrogenase type 1 labeled with carbon-13 and carbon-14.

    PubMed

    Latli, Bachir; Hrapchak, Matt; Savoie, Jolaine; Zhan, Yongda; Busacca, Carl A; Senanayake, Chris H

    2017-07-01

    (S)-6-(2-Hydroxy-2-methylpropyl)-3-((S)-1-(4-(1-methyl-2-oxo-1,2-dihydropyridin-4-yl)phenyl)ethyl)-6-phenyl-1,3-oxazinan-2-one (1) and (4aR,9aS)-1-(1H-benzo[d]midazole-5-carbonyl)-2,3,4,4a,9,9a-hexahydro-1-H-indeno[2,1-b]pyridine-6-carbonitrile hydrochloride (2) are potent and selective inhibitor of 11β-hydroxysteroid dehydrogenase type 1 enzyme. These 2 drug candidates developed for the treatment of type-2 diabetes were prepared labeled with carbon-13 and carbon-14 to enable drug metabolism, pharmacokinetics, bioanalytical, and other studies. In the carbon-13 synthesis, benzoic- 13 C 6 acid was converted in 7 steps and in 16% overall yield to [ 13 C 6 ]-(1). Aniline- 13 C 6 was converted in 7 steps to 1H-benzimidazole-1-2,3,4,5,6- 13 C 6 -5-carboxylic acid and then coupled to a tricyclic chiral indenopiperidine to afford [ 13 C 6 ]-(2) in 19% overall yield. The carbon-14 labeled (1) was prepared efficiently in 2 radioactive steps in 41% overall yield from an advanced intermediate using carbon-14 labeled methyl magnesium iodide and Suzuki-Miyaura cross coupling via in situ boronate formation. As for the synthesis of [ 14 C]-(2), 1H-benzimidazole-5-carboxylic- 14 C acid was first prepared in 4 steps using potassium cyanide- 14 C, then coupled to the chiral indenopiperidine using amide bond formation conditions in 26% overall yield. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Photocatalytic C60-amorphous TiO2 composites prepared by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Justh, Nóra; Firkala, Tamás; László, Krisztina; Lábár, János; Szilágyi, Imre Miklós

    2017-10-01

    Nanocomposites of TiO2 and single fullerene (C60) molecule are prepared by atomic layer deposition (ALD). To create nucleation sites for the ALD reaction, the bare fullerene is functionalized by H2SO4/HNO3 treatment, which results in C60-SO3H. After a NaOH washing step the intermediate hydrolyzes into C60sbnd OH. This process and the consecutive ALD growth of TiO2 are monitored with FTIR, TG/DTA-MS, EDX, Raman, FTIR, XRD, and TEM measurements. Although the TiO2 grown by ALD at 80 and 160 °C onto fullerol is amorphous it enhances the decomposition of methyl orange under UV exposure. This study proves that amorphous TiO2 grown by low temperature ALD has photocatalytic activity, and it can be used e.g. as self-cleaning coatings also on heat sensitive substrates.

  12. A Trypanosoma cruzi-secreted 80 kDa proteinase with specificity for human collagen types I and IV.

    PubMed Central

    Santana, J M; Grellier, P; Schrével, J; Teixeira, A R

    1997-01-01

    Specific interactions between parasites and extracellular matrix components are an important mechanism in the dissemination of Chagas' disease. Binding of the extracellular matrix proteins to Trypanosoma cruzi receptors has been described as a significant step in this phenomenon. In this study, a specific proteinase activity was identified in cell-free extracts of amastigote, trypomastigote and epimastigote forms of T. cruzi using the collagenase fluorogenic substrate N-Suc-Gly-Pro-Leu-Gly-Pro-7-amido-4-methylcoumarin. Isolation of this activity was achieved by a four-step FPLC procedure. Optimal enzyme activity was found to occur at pH 8.0 and was associated with a single T. cruzi 80 kDa protein (Tc 80 proteinase) on SDS/PAGE under reducing conditions. An internal peptide sequence of Tc 80 proteinase was obtained (AGDNYTPPE), and no similarity was found to previously described proteinases of T. cruzi. This enzyme activity is strongly inhibited by HgCl2, tosyl-lysylchloromethane ('TLCK') p-chloromercuribenzoate and benzyloxycarbonyl-Phe-Ala-diazomethane. The purified enzyme was able to hydrolyse purified human [14C]collagen types I and IV at neutral pH, but not 14C-labelled BSA, rat laminin, rabbit IgG or small proteins such as insulin or cytochrome c. In addition, Tc 80 proteinase activity was found to be secreted by T. cruzi forms infective to mammalian cells. Furthermore we demonstrated that purified Tc 80 proteinase mediates native collagen type I hydrolysis in rat mesentery. This feature is compared with that of Clostridium histolyticum collagenase. These findings suggest that Tc 80 proteinase may facilitate T. cruzi host-cell infection by degrading the collagens of the extracellular matrix and could represent a good target for Chagas' disease chemotherapy. PMID:9224638

  13. Fabrication and characterization of mesoporous activated carbon from Lemna minor using one-step H3PO4 activation for Pb(II) removal

    NASA Astrophysics Data System (ADS)

    Huang, Yang; Li, Shunxing; Lin, Haibin; Chen, Jianhua

    2014-10-01

    A low cost and locally available material, Lemna minor, was used to fabricate activated carbon using H3PO4 activation. After H3PO4 activation, the L. minor activated carbons (LACs) possess high mesoporosity (92.2%) and a surface area of 531.9 m2/g according to Brunauer-Emmett-Teller (BET) analysis. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectrometer (XPS) analyses reveal the presence of rich hydroxyl, carboxyl, amide and phosphate functional groups on the LACs surface, leading to facile Pb(II) binding to the surface through strong chemisorptive bonds or ion-exchange. The kinetic and equilibrium data were well described by pseudo-first-order model and Langmuir isotherm, with the maximum monolayer adsorption capacity (qm) 170.9 mg/g at 25 °C. The intra-particle diffusion mechanism was partially responsible for the adsorption. The adsorption process was spontaneous and endothermic with negative ΔG and positive ΔH. The Pb(II)-loaded LACs could be easily regenerated using 0.1-M HCl and reused for seven cycles without significant adsorption capacity reduction. The maximum percentage removal rate for Pb(II) (20 mg/L) was found to be 91.8% within 30 min, at optimum conditions of pH 6.0 and 25 °C. These suggested that the low-cost LACs could be used as a potential adsorbent in the treatment of lead-contaminated water.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watts, David; Wang, Daoyong; Adelberg, Mackenzie

    A novel sulfonated CNN pincer ligand has been designed to support CH and O 2 activation at a Pt(II) center. The derived cycloplatinated aqua complex 7 was found to be one of the most active reported homogeneous Pt catalysts for H/D exchange between studied arenes (benzene, benzene-d 6, toluene-d 8, p-xylene, and mesitylene) and 2,2,2-trifluoroethanol (TFE) or 2,2,2-trifluoroethanol-d; the TON for C 6D 6 as a substrate is >250 after 48 h at 80 °C. The reaction is very selective; no benzylic CH bond activation was observed. The per-CH-bond reactivity diminishes in the series benzene (19) > toluene ( p-CH:more » m-CH: o-CH = 1:0.9:0.2) > xylene (2.9) > mesitylene (1.1). The complex 7 reacts slowly in TFE solutions under ambient light but not in the dark with O 2 to selectively produce a Pt(IV) trifluoroethoxo derivative. The H/D exchange reaction kinetics and results of the DFT study suggest that complex 7, and not its TFE derivatives, is the major species responsible for the arene CH bond activation. Lastly, the reaction deuterium kinetic isotope effect, k H/k D = 1.7, the reaction selectivity, and reaction kinetics modeling suggest that the CH bond cleavage step is rate-determining.« less

  15. Crystal Structure of a Human IκB Kinase β Asymmetric Dimer

    PubMed Central

    Liu, Shenping; Misquitta, Yohann R.; Olland, Andrea; Johnson, Mark A.; Kelleher, Kerry S.; Kriz, Ron; Lin, Laura L.; Stahl, Mark; Mosyak, Lidia

    2013-01-01

    Phosphorylation of inhibitor of nuclear transcription factor κB (IκB) by IκB kinase (IKK) triggers the degradation of IκB and migration of cytoplasmic κB to the nucleus where it promotes the transcription of its target genes. Activation of IKK is achieved by phosphorylation of its main subunit, IKKβ, at the activation loop sites. Here, we report the 2.8 Å resolution crystal structure of human IKKβ (hIKKβ), which is partially phosphorylated and bound to the staurosporine analog K252a. The hIKKβ protomer adopts a trimodular structure that closely resembles that from Xenopus laevis (xIKKβ): an N-terminal kinase domain (KD), a central ubiquitin-like domain (ULD), and a C-terminal scaffold/dimerization domain (SDD). Although hIKKβ and xIKKβ utilize a similar dimerization mode, their overall geometries are distinct. In contrast to the structure resembling closed shears reported previously for xIKKβ, hIKKβ exists as an open asymmetric dimer in which the two KDs are further apart, with one in an active and the other in an inactive conformation. Dimer interactions are limited to the C-terminal six-helix bundle that acts as a hinge between the two subunits. The observed domain movements in the structures of IKKβ may represent trans-phosphorylation steps that accompany IKKβ activation. PMID:23792959

  16. BOND STRENGTH DURABILITY OF SELF-ETCHING ADHESIVES AND RESIN CEMENTS TO DENTIN

    PubMed Central

    Chaves, Carolina de Andrade Lima; de Melo, Renata Marques; Passos, Sheila Pestana; Camargo, Fernanda Pelógia; Bottino, Marco Antonio; Balducci, Ivan

    2009-01-01

    Objectives: To evaluate the microtensile bond strength (μTBS) of one- (Xeno III, Dentsply) and two-step (Tyrian-One Step Plus, Bisco) self-etching adhesive systems bonded to dentin and cemented to chemically cured (C&B Metabond) or light-cured paste of a dual-cure resin cement (Variolink II, Ivoclar) within a short (24 h) and long period of evaluation (90 days). Material and Methods: Forty recently extracted human molars had their roots removed and their occlusal dentin exposed and ground wet with 600-grit SiC paper. After application of one of the adhesives, the resin cement was applied to the bonded surface and a composite resin block was incrementally built up to a height of 5 mm (n=10). The restored teeth were stored in distilled water at 37°C for 7 days. The teeth were then cut along two axes (x and y), producing beam-shaped specimens with 0.8 mm2 cross-sectional area, which were subjected to μTBS testing at a crosshead speed of 0.05 mm/min and stressed to failure after 24 h or 90 days of storage in water. The μTBS data in MPa were subjected to three-way analysis of variance and Tukey's test (α= 0.05). Results: The interaction effect for all three factors was statistically significant (three-way ANOVA, p<0.001). All eight experimental means (MPa) were compared by the Tukey's test (p<0.05) and the following results were obtained: Tyrian-One Step Plus/C&B/24 h (22.4±7.3); Tyrian-One Step Plus/Variolink II/24 h (39.4±11.6); Xeno III/C&B/24 h (40.3±12.9); Xeno III/Variolink II/24 h (25.8±10.5); Tyrian-One Step Plus/C&B/90 d (22.1±12.8) Tyrian-One Step Plus/VariolinkII/90 d (24.2±14.2); Xeno III/C&B/90 d (27.0±13.5); Xeno III/Variolink II/ 90 d (33.0±8.9). Conclusions: Xeno III/Variolink II was the luting agent/adhesive combination that provided the most promising bond strength after 90 days of storage in water. PMID:19466243

  17. Activation Thermodynamics and H/D Kinetic Isotope Effect of the Hox to HredH+ Transition in [FeFe] Hydrogenase.

    PubMed

    Ratzloff, Michael W; Wilker, Molly B; Mulder, David W; Lubner, Carolyn E; Hamby, Hayden; Brown, Katherine A; Dukovic, Gordana; King, Paul W

    2017-09-20

    Molecular complexes between CdSe nanocrystals and Clostridium acetobutylicum [FeFe] hydrogenase I (CaI) enabled light-driven control of electron transfer for spectroscopic detection of redox intermediates during catalytic proton reduction. Here we address the route of electron transfer from CdSe→CaI and activation thermodynamics of the initial step of proton reduction in CaI. The electron paramagnetic spectroscopy of illuminated CdSe:CaI showed how the CaI accessory FeS cluster chain (F-clusters) functions in electron transfer with CdSe. The H ox →H red H + reduction step measured by Fourier-transform infrared spectroscopy showed an enthalpy of activation of 19 kJ mol -1 and a ∼2.5-fold kinetic isotope effect. Overall, these results support electron injection from CdSe into CaI involving F-clusters, and that the H ox →H red H + step of catalytic proton reduction in CaI proceeds by a proton-dependent process.

  18. The General Base in the Thymidylate Synthase Catalyzed Proton Abstraction

    PubMed Central

    Ghosh, Ananda K.; Islam, Zahidul; Krueger, Jonathan; Abeysinghe, Don Thelma; Kohen, Amnon

    2015-01-01

    The enzyme thymidylate synthase (TSase), an important chemotherapeutic drug target, catalyzes the formation of 2′-deoxythymidine-5′-monophosphate (dTMP), a precursor of one of the DNA building blocks. TSase catalyzes a multi-step mechanism that includes the abstraction of a proton from the C5 of the substrate 2′-deoxyuridine-5′-monophosphate (dUMP). Previous studies on ecTSase proposed that an active-site residue, Y94 serves the role of the general base abstracting this proton. However, since Y94 is neither very basic, nor connected to basic residues, nor located close enough to the pyrimidine proton to be abstracted, the actual identity of this base remains enigmatic. Based on crystal structures, an alternative hypothesis is that the nearest potential proton-acceptor of C5 of dUMP is a water molecule that is part of a hydrogen bond (H-bond) network comprised of several water molecules and several protein residues including H147, E58, N177, and Y94. Here, we examine the role of the residue Y94 in the proton abstraction step by removing its hydroxyl group (Y94F mutant). We investigated the effect of the mutation on the temperature dependence of intrinsic kinetic isotope effects (KIEs) and found that these KIEs are more temperature dependent than those of the wild-type enzyme (WT). These results suggest that the phenolic –OH of Y94 is a component of the transition state for the proton abstraction step. The findings further support the hypothesis that no single functional group is the general base, but a network of bases and hydroxyls (from water molecules and tyrosine) sharing H-bonds across the active site can serve the role of the general base to remove the pyrimidine proton. PMID:25912171

  19. Co-expression of D-glucose isomerase and D-psicose 3-epimerase: development of an efficient one-step production of D-psicose.

    PubMed

    Men, Yan; Zhu, Yueming; Zeng, Yan; Izumori, Ken; Sun, Yuanxia; Ma, Yanhe

    2014-10-01

    D-Psicose has been attracting attention in recent years because of its alimentary activities and is used as an ingredient in a range of foods and dietary supplements. To develop a one-step enzymatic process of D-psicose production, thermoactive D-glucose isomerase and the D-psicose 3-epimerase obtained from Bacillus sp. and Ruminococcus sp., respectively, were successfully co-expressed in Escherichia coli BL21 strain. The substrate of one-step enzymatic process was D-glucose. The co-expression system exhibited maximum activity at 65 °C and pH 7.0. Mg(2+) could enhance the output of D-psicose by 2.32 fold to 1.6 g/L from 10 g/L of D-glucose. When using high-fructose corn syrup (HFCS) as substrate, 135 g/L D-psicose was produced under optimum conditions. The mass ratio of D-glucose, D-fructose, and D-psicose was almost 3.0:2.7:1.0, when the reaction reached equilibrium after an 8h incubation time. This co-expression system approaching to produce D-psicose has potential application in food and beverage products, especially softdrinks. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Enantioselective functionalization of allylic C-H bonds following a strategy of functionalization and diversification.

    PubMed

    Sharma, Ankit; Hartwig, John F

    2013-11-27

    We report the enantioselective functionalization of allylic C-H bonds in terminal alkenes by a strategy involving the installation of a temporary functional group at the terminal carbon atom by C-H bond functionalization, followed by the catalytic diversification of this intermediate with a broad scope of reagents. The method consists of a one-pot sequence of palladium-catalyzed allylic C-H bond oxidation under neutral conditions to form linear allyl benzoates, followed by iridium-catalyzed allylic substitution. This overall transformation forms a variety of chiral products containing a new C-N, C-O, C-S, or C-C bond at the allylic position in good yield with a high branched-to-linear selectivity and excellent enantioselectivity (ee ≤97%). The broad scope of the overall process results from separating the oxidation and functionalization steps; by doing so, the scope of nucleophile encompasses those sensitive to direct oxidative functionalization. The high enantioselectivity of the overall process is achieved by developing an allylic oxidation that occurs without acid to form the linear isomer with high selectivity. These allylic functionalization processes are amenable to an iterative sequence leading to (1,n)-functionalized products with catalyst-controlled diastereo- and enantioselectivity. The utility of the method in the synthesis of biologically active molecules has been demonstrated.

  1. Surveying through Text Message: Planning, Programming, and Analyzing

    DTIC Science & Technology

    2009-04-01

    12 7. Trivia Task with steps programmed. ................................................................. 12 8. Import users subscreen...enable the system to process the answers and send the questions automatically, the Trivia Task was activated. 12 Administration Once the Trivia ...r e s e a r c h a t w o r k N P R S T Navy Personnel Research, Studies, and Technology 5720 Integrity Drive • Millington, Tennessee 38055-1000

  2. Potential application of waste from castor bean (Ricinus communis L.) for production for xylanase of interest in the industry.

    PubMed

    Herculano, Polyanna Nunes; Moreira, Keila Aparecida; Bezerra, Raquel Pedrosa; Porto, Tatiana Souza; de Souza-Motta, Cristina Maria; Porto, Ana Lúcia Figueiredo

    2016-12-01

    Xylanases activity (XY) from Aspergillus japonicus URM5620 produced by Solid-State Fermentation (SSF) of castor press cake (Ricinus communis) on different conditions of production and extraction by PEG/citrate aqueous two-phase system (ATPS) were investigated. XY production was influenced by substrate amount (5-10 g), initial moisture (15-35 %), pH (4.0-6.0) and temperature (25-35 °C), obtaining the maximum activity of 29,085 ± 1808 U g ds -1 using 5.0 g of substrate with initial moisture of 15 % at 25 °C and pH 6.0, after 120 h of fermentation. The influence of PEG molar mass (1000-8000 g mol -1 ), phase concentrations (PEG 20.0-24.0 % w/w and sodium citrate 15-20 % w/w) and pH (6.0-8.0) on partition coefficient, purification factor, yield and selectivity of XY were determinate. Enzyme partitioning into the PEG rich phase was favored by M PEG 8000 (g mol -1 ), C PEG 24 % (w/w), C C 20 % (w/w) and pH 8.0, resulting in partition coefficient of 50.78, activity yield of 268 %, 7.20-fold purification factor and selectivity of 293. A. japonicus URM5620 has a potential role in the development of a bioprocess for the XY production using low-cost media. In addition, the present study proved it is feasible to extract xylanase from SSF by adopting the one step ATPS consisting of PEG/citrate.

  3. Design, facile synthesis, and evaluation of novel spiro- and pyrazolo[1,5-c]quinazolines as cholinesterase inhibitors: Molecular docking and MM/GBSA studies.

    PubMed

    Gálvez, Jaime; Polo, Stivens; Insuasty, Braulio; Gutiérrez, Margarita; Cáceres, Daniela; Alzate-Morales, Jans H; De-la-Torre, Pedro; Quiroga, Jairo

    2018-03-07

    Given the wide spectrum of biological uses of pyrazolo[1,5-c]quinazoline and spiro-quinazoline derivatives as anticancer, anti-inflammatory analgesic agents, and their therapeutic applications in neurodegenerative disorders, it is compulsory to find easy, efficient, and simple methods to obtain and chemically diversify these families of compounds, thereby improving their biological applications. In this paper, we report the design and eco-friendly two-step synthesis of novel, fused spiro-pyrazolo[1,5-c]quinazoline derivatives as cholinesterase inhibitors. In addition, we studied their protein-ligand interactions via molecular docking and MM/GBSA calculations for a further rational design of more potent inhibitors. In first step, 2-(1H-pyrazol-5-yl)anilines were obtained through microwave (MW) assisted solvent-free/catalyst-free conditions and the second step involved the synthesis of the spiro-pyrazolo[1,5-c]quinazolines by a cyclocondensation reaction between 2-(1H-pyrazol-5-yl)anilines and cyclic ketones, or acetophenones, using stirring at room temperature. The compounds were obtained in high purity, good yields (50-97%), and at varying reaction times. The spiro-compounds were evaluated as acetylcholinesterase and butyrylcholinesterase inhibitors (AChEIs/BuChEIs) respectively, and the most potent compound exhibited a moderate AChE inhibitory activity (5f: IC 50  = 84 μM). Molecular docking studies indicated that the binding mode of the compound 5f share common characteristics with the galantamine/donepezil-AChE complexes. Moreover, free binding energy (ΔG) calculations showed a good agreement with the experimental biological activity values. Our theoretical results indicated that halogen bond interactions could be involved with differential potency of these compounds and provide a new starting point to design novel pyrazolo[1,5-c]quinazolines as new anti-Alzheimer agents. Copyright © 2018. Published by Elsevier Ltd.

  4. A low-temperature polygalacturonase from P. occitanis: characterization and application in juice clarification.

    PubMed

    Sassi, Azza Hadj; Tounsi, Hajer; Trigui-Lahiani, Hèla; Bouzouita, Rihab; Romdhane, Zamen Ben; Gargouri, Ali

    2016-10-01

    An extracellular endo-polygalacturonase (PGase) was purified, after a single purification step, from the constitutive and hyperpectinolytic CT1 mutant of Penicillium occitanis. This enzyme named PG2 has a molecular weight of 42kDa. It was optimally active at 35°C and pH6 with more than 85% of activity at pH7 in contrast to the majority of fungal PGase, generally acting at 50°C and pH5. The specific activity obtained was among the highest ones, 31397.26U/mg. The PGase activity increased with the decrease of the degree of methylation (DM) of pectin, but it was also able to degrade the highly methyl-esterified substrates, 70% (DM) and 90% (DM), with almost 80% and 40% of residual activity respectively. Interestingly, PG2 is completely inhibited by DEPC, suggesting the implication of a Histidine residue in the active site. The sequencing of P. occitanis whole genome allowed us to identify the pga2 gene encoding PG2 and to localize the His residue, target of DEPC, while it was absent in the PG1 that resisted to DEPC. Besides that, the potentialities of PG2 have been put in use in juice clarification of pear, banana and citrus juice. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Step edge influence on barrier height and contact area in vertical heterojunctions between epitaxial graphene and n-type 4H-SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tadjer, M. J., E-mail: marko.tadjer.ctr@nrl.navy.mil; Nyakiti, L. O.; Robinson, Z.

    2014-02-17

    Vertical rectifying contacts of epitaxial graphene grown by Si sublimation on the Si-face of 4H-SiC epilayers were investigated. Forward bias preferential conduction through the step edges was correlated by linear current density normalization. This phenomenon was observed on samples with 2.7–5.8 monolayers of epitaxial graphene as determined by X-ray photoelectron spectroscopy. A modified Richardson plot was implemented to extract the barrier height (0.81 eV at 290 K, 0.99 eV at 30 K) and the electrically dominant SiC step length of a Ti/Al contact overlapping a known region of approximately 0.52 μm wide SiC terraces.

  6. Mechanistic Details and Reactivity Descriptors in Oxidation and Acid Catalysis of Methanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deshlahra, Prashant; Carr, Robert T.; Chai, Song-Hai

    2015-02-06

    Acid and redox reaction rates of CH₃OH-O₂ mixtures on polyoxometalate (POM) clusters, together with isotopic, spectroscopic, and theoretical assessments of catalyst properties and reaction pathways, were used to define rigorous descriptors of reactivity and to probe the compositional effects for oxidative dehydrogenation (ODH) and dehydration reactions. ³¹P-MAS NMR, transmission electron microscopy and titrations of protons with di-tert-butylpyridine during catalysis showed that POM clusters retained their Keggin structure upon dispersion on SiO₂ and after use in CH₃OH reactions. The effects of CH₃OH and O₂ pressures and of D-substitution on ODH rates show that C-H activation in molecularly adsorbed CH₃OH is themore » sole kinetically relevant step and leads to reduced centers as intermediates present at low coverages; their concentrations, measured from UV-vis spectra obtained during catalysis, are consistent with the effects of CH₃OH/O₂ ratios predicted from the elementary steps proposed. First-order ODH rate constants depend strongly on the addenda atoms (Mo vs W) but weakly on the central atom (P vs Si) in POM clusters, because C-H activation steps inject electrons into the lowest unoccupied molecular orbitals (LUMO) of the clusters, which are the d-orbitals at Mo⁶⁺ and W⁶⁺ centers. H-atom addition energies (HAE) at O-atoms in POM clusters represent the relevant theoretical probe of the LUMO energies and of ODH reactivity. The calculated energies of ODH transition states at each O-atom depend linearly on their HAE values with slopes near unity, as predicted for late transition states in which electron transfer and C-H cleavage are essentially complete. HAE values averaged over all accessible O-atoms in POM clusters provide the appropriate reactivity descriptor for oxides whose known structures allow accurate HAE calculations. CH₃OH dehydration proceeds via parallel pathways mediated by late carbenium-ion transition states; effects of composition on dehydration reactivity reflect changes in charge reorganizations and electrostatic forces that stabilize protons at Brønsted acid sites.« less

  7. Adsorption of gluconate and uranyl on C-S-H phases: Combination of wet chemistry experiments and molecular dynamics simulations for the binary systems

    NASA Astrophysics Data System (ADS)

    Androniuk, Iuliia; Landesman, Catherine; Henocq, Pierre; Kalinichev, Andrey G.

    2017-06-01

    As a first step in developing better molecular scale understanding of the effects of organic additives on the adsorption and mobility of radionuclides in cement under conditions of geological nuclear waste repositories, two complementary approaches, wet chemistry experiments and molecular dynamics (MD) computer simulations, were applied to study the sorption behaviour of two simple model systems: gluconate and uranyl on calcium silicate hydrate phases (C-S-H) - the principal mineral component of hardened cement paste (HCP). Experimental data on sorption and desorption kinetics and isotherms of adsorption for gluconate/C-S-H and U(VI)/C-S-H binary systems were collected and quantitatively analysed for C-S-H samples synthesised with various Ca/Si ratios (0.83, 1.0, 1.4) corresponding to various stages of HCP aging and degradation. Gluconate labelled with 14C isotope was used in order to improve the sensitivity of analytical detection technique (LSC) at particularly low concentrations (10-8-10-5 mol/L). There is a noticeable effect of Ca/Si ratio on the gluconate sorption on C-S-H, with stronger sorption at higher Ca/Si ratios. Sorption of organic anions on C-S-H is mediated by the presence of Ca2+ at the interface and strongly depends on the surface charge and Ca2+ concentration. In parallel, classical MD simulations of the same model systems were performed in order to identify specific surface sorption sites most actively involved in the sorption of gluconate and uranyl on C-S-H and to clarify molecular mechanisms of adsorption.

  8. Mild Aromatic Palladium-Catalyzed Protodecarboxylation: Kinetic Assessment of the Decarboxylative Palladation and the Protodepalladation Steps

    PubMed Central

    Dickstein, Joshua S.; Curto, John M.; Gutierrez, Osvaldo; Mulrooney, Carol A.; Kozlowski, Marisa C.

    2013-01-01

    Mechanism studies of a mild palladium catalyzed decarboxylation of aromatic carboxylic acids are described. In particular, reaction orders and activation parameters for the two stages of the transformation were determined. These studies guided development of a catalytic system capable of turnover. Further evidence reinforces that the second stage, protonation of the aryl palladium intermediate, is the rate-determining step of the reaction. The first step, decarboxylative palladation is proposed to occur through an intramolecular electrophilic palladation pathway, which is supported by computational and mechansim studies. In contrast to the reverse reaction (C-H insertion), the data support an electrophilic aromatic substitution mechanism involving a stepwise intramolecular protonation sequence for the protodepalladation portion of the reaction. PMID:23590518

  9. Improvement of ACE inhibitory activity of casein hydrolysate by Maillard reaction with xylose.

    PubMed

    Hong, Xu; Meng, Jun; Lu, Rong-Rong

    2015-01-01

    The Maillard reaction is widely used to improve the functional properties or biological activities of food. The purpose of this study was to investigate the effect of the Maillard reaction on angiotensin I converting enzyme (ACE) inhibitory activity in a casein hydrolysate-xylose system. Two-step hydrolysis was used to prepare casein ACE inhibitory peptides. Maillard reaction products (MRPs) were prepared by heating hydrolyzed casein with xylose at pH 8.0, 110 °C for up to 16 h. The results showed that the content of free amino group decreased (P < 0.05); however, browning intensity and absorbance at 294 nm increased because of the Maillard reaction (P < 0.05). The ACE inhibitory activity improved greatly within 2 h (from 63.48% to 90.23%), which was mainly due to carbonyl ammonia condensation reaction in the MRPs. The study shows that the Maillard reaction under appropriate conditions can improve the ACE inhibitory activity of casein hydrolysate effectively. © 2014 Society of Chemical Industry.

  10. Activation Thermodynamics and H/D Kinetic Isotope Effect of the H ox to H red H + Transition in [FeFe] Hydrogenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratzloff, Michael W.; Wilker, Molly B.; Mulder, David W.

    Molecular complexes between CdSe nanocrystals and Clostridium acetobutylicum [FeFe] hydrogenase I (CaI) enabled light-driven control of electron transfer for spectroscopic detection of redox intermediates during catalytic proton reduction. Here in this paper we address the route of electron transfer from CdSe→CaI and activation thermodynamics of the initial step of proton reduction in CaI. The electron paramagnetic spectroscopy of illuminated CdSe:CaI showed how the CaI accessory FeS cluster chain (F-clusters) functions in electron transfer with CdSe. The H ox→H redH + reduction step measured by Fourier-transform infrared spectroscopy showed an enthalpy of activation of 19 kJ mol -1 and a ~2.5-foldmore » kinetic isotope effect. Overall these results support electron injection from CdSe into CaI involving F-clusters, and that the H ox→H redH + step of catalytic proton reduction in CaI proceeds by a proton-dependent process.« less

  11. Activation Thermodynamics and H/D Kinetic Isotope Effect of the H ox to H red H + Transition in [FeFe] Hydrogenase

    DOE PAGES

    Ratzloff, Michael W.; Wilker, Molly B.; Mulder, David W.; ...

    2017-08-29

    Molecular complexes between CdSe nanocrystals and Clostridium acetobutylicum [FeFe] hydrogenase I (CaI) enabled light-driven control of electron transfer for spectroscopic detection of redox intermediates during catalytic proton reduction. Here in this paper we address the route of electron transfer from CdSe→CaI and activation thermodynamics of the initial step of proton reduction in CaI. The electron paramagnetic spectroscopy of illuminated CdSe:CaI showed how the CaI accessory FeS cluster chain (F-clusters) functions in electron transfer with CdSe. The H ox→H redH + reduction step measured by Fourier-transform infrared spectroscopy showed an enthalpy of activation of 19 kJ mol -1 and a ~2.5-foldmore » kinetic isotope effect. Overall these results support electron injection from CdSe into CaI involving F-clusters, and that the H ox→H redH + step of catalytic proton reduction in CaI proceeds by a proton-dependent process.« less

  12. Toward High-Performance and Low-Cost Hydrogen Evolution Reaction Electrocatalysts: Nanostructuring Cobalt Phosphide (CoP) Particles on Carbon Fiber Paper.

    PubMed

    Yu, Shu Hearn; Chua, Daniel H C

    2018-05-02

    In this communication, we facily fabricated nanostructured CoP particles (150 to 200 nm) on carbon fiber paper (CFP) for hydrogen evolution reaction (HER) by a simple two-step process via a green route. In the first step, crystalline Co 3 O 4 nanocubes (150-200 nm) were loaded on CFP through a hydrothermal process at low temperature (120 °C). Interestingly, crystalline Co 3 O 4 nanocubes with a size 150-200 nm exhibited different growth mechanisms in contrast to the crystalline Co 3 O 4 nanocubes with a size <100 nm reported earlier. In the second step, these crystalline Co 3 O 4 nanocubes were converted to catalytically active CoP particles through chemical vapor deposition (CVD) phosphorization (denoted as CoP/CFP-H). Remarkably, CoP/CFP-H exhibited a low Tafel slope of 49.7 mV/dec and only required overpotentials of 128.1, 144.4, and 190.8 mV to drive geometric current densities of -10, -20, and -100 mA cm -2 , respectively. Besides, the CoP/CFP-H also demonstrated an excellent durability in an acidic environment under 2000 sweeps at a high scan rate (100 mV s -1 ) and a 24 h chronopotentiometry testing. For comparison, CoP was also fabricated through the electrodeposition method, followed by CVD phosphorization (denoted as CoP/CFP-E). It was found that the latter had exhibited inferior activity compared to CoP/CFP-H. The good performances of CoP/CFP-H are essentially due to the rational designs of electrode: (i) the applications of highly HER active CoP electrocatalyst, (ii) the intimate contact of nanostructured CoP on carbon fibers, and (iii) the large electrochemical surface area at electrocatalyst/electrolyte interface due to the large retaining of particles features after phosphorization. Notably, the intermediate Co 3 O 4 /CFP can serve as a platform to develop other cobalt-based functional materials.

  13. Characterization of recombinantly expressed dihydroxy-acid dehydratase from Sulfobus solfataricus-A key enzyme for the conversion of carbohydrates into chemicals.

    PubMed

    Carsten, Jörg M; Schmidt, Anja; Sieber, Volker

    2015-10-10

    Dihydroxyacid dehydratases (DHADs) are excellent biocatalysts for the defunctionalization of biomass. Here, we report on the recombinant production of DHAD from Sulfolobus solfataricus (SsDHAD) in E. coli and its characterization with special focus on activity toward non-natural substrates, thermo-stability, thermo-inactivation kinetics and activation capabilities and its application within multi-step cascades for chemicals production. Using a simple heat treatment of cell lysate as major purification step we achieved a specific activity of 4.4 units per gram cell mass toward the substrate d-gluconate. The optimal temperature and pH value for this reaction are 77°C and pH 6.2. The inhibitory concentration (IC50, 50% residual activity) of different alcohols was determined to be 15% (v/v) for ethanol, 4.5% (v/v) for butanol and 4% (v/v) for isobutanol. Besides d-gluconate and the natural substrate 2,3-dihydroxyisovalerate (DHIV) SsDHAD is able to convert the C3-sugar-acid d-glycerate to pyruvate, a reaction, which does not occur in natural metabolic pathways, with a specific activity of 10.7±0.4mU/mg. The specific activity of the enzyme can be increased 3-fold by incubation with 2-mercaptoethanol. The activation has no impact on temperature dependence, but modulates the thermo-inactivation tolerance at 50°C. The total turnover numbers for all of the three reactions was found to be 35.5×10(3)±1.0×10(3) for the conversion of d-gluconate to 2-keto-3-deoxygluconate (KDG), 28.2×10(3)±0.8×10(3) for DHIV to 2-ketovalerate (KIV) and 943±0.28×10(2) for d-glycerate to pyruvate. With activated SsDHAD these values could be further increased 5- and 4-fold for the d-gluconate and d-glycerate conversion, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. [The dynamics of behavioral and neuroreceptor effects after acute and long-term noopept administration in C57BL/6 and BALB/c mice].

    PubMed

    Kovalev, G I; Kondrakhin, E A; Salimov, R M; Neznamov, G G

    2014-01-01

    The effect of acute, 7-fold and 14-fold noopept (1 mg/kg/day) administration on the dynamics of anxiolitic and nootropic behavioral effects in cross-maze, as well as their correlations with NMDA- and BDZ-receptor density was studied in inbred mice strains, differing in exploratory and emotional status--C57BL/6 and BALB/c. The dipeptide failed to affect the anxiety and exploration activity in C57BL/6 mice at each of 3 steps of experimental session. In this strain the B(max) values of [3H]-MK-801 and [3H]-Flunitrazepam binding changed only after single administration. In respect to BALB/c mice noopept induced both the anxiolitic and nootropic effects reaching their maximum on 7th day. In BALB/c strain the dynamics of hippocampal NMDA-receptor binding corresponds to the dynamics of exploratory efficacy whereas the dynamics of BDZ-receptors in prefrontal cortex was reciprocally to dynamics of anxiety level.

  15. Purification and characterization of polyphenol oxidase from cauliflower (Brassica oleracea L.).

    PubMed

    Rahman, Andi Nur Faidah; Ohta, Mayumi; Nakatani, Kazuya; Hayashi, Nobuyuki; Fujita, Shuji

    2012-04-11

    Polyphenol oxidase (PPO) of cauliflower was purified to 282-fold with a recovery rate of 8.1%, using phloroglucinol as a substrate. The enzyme appeared as a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The estimated molecular weight of the enzyme was 60 and 54 kDa by SDS-PAGE and gel filtration, respectively. The purified enzyme, called phloroglucinol oxidase (PhO), oxidized phloroglucinol (K(m) = 3.3 mM) and phloroglucinolcarboxylic acid. The enzyme also had peroxidase (POD) activity. At the final step, the activity of purified cauliflower POD was 110-fold with a recovery rate of 3.2%. The PhO and POD showed the highest activity at pH 8.0 and 4.0 and were stable in the pH range of 3.0-11.0 and 5.0-8.0 at 5 °C for 20 h, respectively. The optimum temperature was 55 °C for PhO and 20 °C for POD. The most effective inhibitor for PhO was sodium diethyldithiocarbamate at 10 mM (IC(50) = 0.64 and K(i) = 0.15 mM), and the most effective inhibitor for POD was potassium cyanide at 1.0 mM (IC(50) = 0.03 and K(i) = 29 μM).

  16. Lanthanum-mediated dehydrogenation of butenes: Spectroscopy and formation of La(C4H6) isomers

    NASA Astrophysics Data System (ADS)

    Cao, Wenjin; Hewage, Dilrukshi; Yang, Dong-Sheng

    2018-01-01

    La atom reactions with 1-butene, 2-butene, and isobutene are carried out in a laser-vaporization molecular beam source. The three reactions yield the same La-hydrocarbon products from the dehydrogenation and carbon-carbon bond cleavage and coupling of the butenes. The dehydrogenated species La(C4H6) is the major product, which is characterized with mass-analyzed threshold ionization (MATI) spectroscopy and quantum chemical computations. The MATI spectrum of La(C4H6) produced from the La+1-butene reaction exhibits two band systems, whereas the MATI spectra produced from the La+2-butene and isobutene reactions display only a single band system. Each of these spectra shows a strong origin band and several vibrational progressions. The two band systems from the spectrum of the 1-butene reaction are assigned to the ionization of two isomers: La[C(CH2)3] (Iso A) and La(CH2CHCHCH2) (Iso B), and the single band system from the spectra of the 2-butene and isobutene reactions is attributed to Iso B and Iso A, respectively. The ground electronic states are 2A1 (C3v) for Iso A and 2A' (Cs) for Iso B. The ionization of the doublet state of each isomer removes a La 6s-based electron and leads to the 1A1 ion of Iso A and the 1A' ion of Iso B. The formation of both isomers consists of La addition to the C=C double bond, La insertion into two C(sp3)—H bonds, and H2 elimination. In addition to these steps, the formation of Iso A from the La+1-butene reaction may involve the isomerization of 1-butene to isobutene prior to the C—H bond activation, whereas the formation of Iso B from the La+trans-2-butene reaction may include the trans- to cis-butene isomerization after the C—H bond activation.

  17. Validity of Activity Monitor Step Detection Is Related to Movement Patterns.

    PubMed

    Hickey, Amanda; John, Dinesh; Sasaki, Jeffer E; Mavilia, Marianna; Freedson, Patty

    2016-02-01

    There is a need to examine step-counting accuracy of activity monitors during different types of movements. The purpose of this study was to compare activity monitor and manually counted steps during treadmill and simulated free-living activities and to compare the activity monitor steps to the StepWatch (SW) in a natural setting. Fifteen participants performed laboratory-based treadmill (2.4, 4.8, 7.2 and 9.7 km/h) and simulated free-living activities (eg, cleaning room) while wearing an activPAL, Omron HJ720-ITC, Yamax Digi- Walker SW-200, 2 ActiGraph GT3Xs (1 in "low-frequency extension" [AGLFE] and 1 in "normal-frequency" mode), an ActiGraph 7164, and a SW. Participants also wore monitors for 1-day in their free-living environment. Linear mixed models identified differences between activity monitor steps and the criterion in the laboratory/free-living settings. Most monitors performed poorly during treadmill walking at 2.4 km/h. Cleaning a room had the largest errors of all simulated free-living activities. The accuracy was highest for forward/rhythmic movements for all monitors. In the free-living environment, the AGLFE had the largest discrepancy with the SW. This study highlights the need to verify step-counting accuracy of activity monitors with activities that include different movement types/directions. This is important to understand the origin of errors in step-counting during free-living conditions.

  18. Evidence of high *OH radical quenching efficiency by vitamin B6.

    PubMed

    Matxain, Jon M; Padro, Daniel; Ristilä, Mikael; Strid, Ake; Eriksson, Leif A

    2009-07-23

    Molecules acting as antioxidants capable of scavenging reactive oxygen species (ROS) are of the utmost importance in the living cell. The antioxidative properties of pyridoxine (vitamin B6) have recently been discovered. Previous theoretical calculations have shown a high reactivity of pyridoxine toward hydroxyl radicals, where the latter preferably abstract H from either carbon of the two methanol substituents (C8 or C9). In this study, we have explored the reactivity of pyridoxine toward further hydroxyl radicals, considering as the first step the H abstraction from either C8 or C9, also including addition reactions and cyclization. Many of the reactions display similar DeltaG, and hence, the quenching of hydroxyl radicals by pyridoxine may undergo different pathways leading to a mix of products. In addition, we observe that pyridoxine, under high hydroxyl radical concentrations, may scavenge up to eight radicals, supporting its observed high antioxidant activity.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Dong; Xu, Pinghong; Browning, Nigel D.

    The initial steps of rhodium cluster formation from zeolite-supported mononuclear Rh(C2H4)2 complexes in H2 at 373 K and 1 bar were investigated by infrared and extended X-ray absorption fine structure spectroscopies and scanning transmission electron microscopy (STEM). The data show that ethylene ligands on the rhodium react with H2 to give supported rhodium hydrides and trigger the formation of rhodium clusters. STEM provided the first images of the smallest rhodium clusters (Rh2) and their further conversion into larger clusters. The samples were investigated in a plug-flow reactor as catalysts for the conversion of ethylene + H2 in a molar ratiomore » of 4:1 at 1 bar and 298 K, with the results showing how the changes in catalyst structure affect the activity and selectivity; the rhodium clusters are more active for hydrogenation of ethylene than the single-site complexes, which are more selective for dimerization of ethylene to give butenes« less

  20. A potent IκB kinase-β inhibitor labeled with carbon-14 and deuterium.

    PubMed

    Latli, Bachir; Eriksson, Magnus; Hrapchak, Matt; Busacca, Carl A; Senanayake, Chris H

    2016-06-30

    3-Amino-4-(1,1-difluoro-propyl)-6-(4-methanesulfonyl-piperidin-1-yl)-thieno[2,3-b]pyridine-2-carboxylic acid amide (1) is a potent IκB Kinase-β (IKK-β) inhibitor. The efficient preparations of this compound labeled with carbon-14 and deuterium are described. The carbon-14 synthesis was accomplished in six radiochemical steps in 25% overall yield. The key transformations were the modified Guareschi-Thorpe condensation of 2-cyano-(14) C-acetamide and a keto-ester followed by chlorination to 2,6-dichloropyridine derivative in one pot. The isolated dichloropyridine was then converted in three steps in one pot to [(14) C]-(1). The carbon-14 labeled (1) was isolated with a specific activity of 54.3 mCi/mmol and radiochemical purity of 99.8%. The deuterium labeled (1) was obtained in eight steps and in 57% overall chemical yield using 4-hydroxypiperidine-2,2,3,3,4,5,5,6,6-(2) H9 . The final three steps of this synthesis were run in one pot. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Two step novel hydrogen system using additives to enhance hydrogen release from the hydrolysis of alane and activated aluminum

    DOEpatents

    Zidan, Ragaiy; Teprovich, Joseph A.; Motyka, Theodore

    2015-12-01

    A system for the generation of hydrogen for use in portable power systems is set forth utilizing a two-step process that involves the thermal decomposition of AlH.sub.3 (10 wt % H.sub.2) followed by the hydrolysis of the activated aluminum (Al*) byproduct to release additional H.sub.2. Additionally, a process in which water is added directly without prior history to the AlH.sub.3:PA composite is also disclosed.

  2. Rhodium-Catalyzed C-C Bond Formation via Heteroatom-Directed C-H Bond Activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colby, Denise; Bergman, Robert; Ellman, Jonathan

    2010-05-13

    Once considered the 'holy grail' of organometallic chemistry, synthetically useful reactions employing C-H bond activation have increasingly been developed and applied to natural product and drug synthesis over the past decade. The ubiquity and relative low cost of hydrocarbons makes C-H bond functionalization an attractive alternative to classical C-C bond forming reactions such as cross-coupling, which require organohalides and organometallic reagents. In addition to providing an atom economical alternative to standard cross - coupling strategies, C-H bond functionalization also reduces the production of toxic by-products, thereby contributing to the growing field of reactions with decreased environmental impact. In the areamore » of C-C bond forming reactions that proceed via a C-H activation mechanism, rhodium catalysts stand out for their functional group tolerance and wide range of synthetic utility. Over the course of the last decade, many Rh-catalyzed methods for heteroatom-directed C-H bond functionalization have been reported and will be the focus of this review. Material appearing in the literature prior to 2001 has been reviewed previously and will only be introduced as background when necessary. The synthesis of complex molecules from relatively simple precursors has long been a goal for many organic chemists. The ability to selectively functionalize a molecule with minimal pre-activation can streamline syntheses and expand the opportunities to explore the utility of complex molecules in areas ranging from the pharmaceutical industry to materials science. Indeed, the issue of selectivity is paramount in the development of all C-H bond functionalization methods. Several groups have developed elegant approaches towards achieving selectivity in molecules that possess many sterically and electronically similar C-H bonds. Many of these approaches are discussed in detail in the accompanying articles in this special issue of Chemical Reviews. One approach that has seen widespread success involves the use of a proximal heteroatom that serves as a directing group for the selective functionalization of a specific C-H bond. In a survey of examples of heteroatom-directed Rh catalysis, two mechanistically distinct reaction pathways are revealed. In one case, the heteroatom acts as a chelator to bind the Rh catalyst, facilitating reactivity at a proximal site. In this case, the formation of a five-membered metallacycle provides a favorable driving force in inducing reactivity at the desired location. In the other case, the heteroatom initially coordinates the Rh catalyst and then acts to stabilize the formation of a metal-carbon bond at a proximal site. A true test of the utility of a synthetic method is in its application to the synthesis of natural products or complex molecules. Several groups have demonstrated the applicability of C-H bond functionalization reactions towards complex molecule synthesis. Target-oriented synthesis provides a platform to test the effectiveness of a method in unique chemical and steric environments. In this respect, Rh-catalyzed methods for C-H bond functionalization stand out, with several syntheses being described in the literature that utilize C-H bond functionalization in a key step. These syntheses are highlighted following the discussion of the method they employ.« less

  3. Metallic glassy Zr70Ni20Pd10 powders for improving the hydrogenation/dehydrogenation behavior of MgH2

    PubMed Central

    El-Eskandarany, M. Sherif

    2016-01-01

    Because of its low density, storage of hydrogen in the gaseous and liquids states possess technical and economic challenges. One practical solution for utilizing hydrogen in vehicles with proton-exchange fuel cells membranes is storing hydrogen in metal hydrides. Magnesium hydride (MgH2) remains the best hydrogen storage material due to its high hydrogen capacity and low cost of production. Due to its high activation energy and poor hydrogen sorption/desorption kinetics at moderate temperatures, the pure form of MgH2 is usually mechanically treated by high-energy ball mills and catalyzed with different types of catalysts. These steps are necessary for destabilizing MgH2 to enhance its kinetics behaviors. In the present work, we used a small mole fractions (5 wt.%) of metallic glassy of Zr70Ni20Pd10 powders as a new enhancement agent to improve its hydrogenation/dehydrogenation behaviors of MgH2. This short-range ordered material led to lower the decomposition temperature of MgH2 and its activation energy by about 121 °C and 51 kJ/mol, respectively. Complete hydrogenation/dehydrogenation processes were successfully achieved to charge/discharge about 6 wt.%H2 at 100 °C/200 °C within 1.18 min/3.8 min, respectively. In addition, this new nanocomposite system shows high performance of achieving continuous 100 hydrogen charging/discharging cycles without degradation. PMID:27220994

  4. Room-Temperature Oxidation of Formaldehyde by Layered Manganese Oxide: Effect of Water.

    PubMed

    Wang, Jinlong; Zhang, Pengyi; Li, Jinge; Jiang, Chuanjia; Yunus, Rizwangul; Kim, Jeonghyun

    2015-10-20

    Layered manganese oxide, i.e., birnessite was prepared via the reaction of potassium permanganate with ammonium oxalate. The water content in the birnessite was adjusted by drying/calcining the samples at various temperatures (30 °C, 100 °C, 200 °C, 300 °C, and 500 °C). Thermogravimetry-mass spectroscopy showed three types of water released from birnessite, which can be ascribed to physically adsorbed H2O, interlayer H2O and hydroxyl, respectively. The activity of birnessite for formaldehyde oxidation was positively associated with its water content, i.e., the higher the water content, the better activity it has. In-situ DRIFTS and step scanning XRD analysis indicate that adsorbed formaldehyde, which is promoted by bonded water via hydrogen bonding, is transformed into formate and carbonate with the consumption of hydroxyl and bonded water. Both bonded water and water in air can compensate the consumed hydroxyl groups to sustain the mineralization of formaldehyde at room temperature. In addition, water in air stimulates the desorption of carbonate via water competitive adsorption, and accordingly the birnessite recovers its activity. This investigation elucidated the role of water in oxidizing formaldehyde by layered manganese oxides at room temperature, which may be helpful for the development of more efficient materials.

  5. A process for the preparation of cysteine from cystine

    DOEpatents

    Chang, Shih-Ger; Liu, David K.; Griffiths, Elizabeth A.; Littlejohn, David

    1989-01-01

    The present invention in one aspect relates to a process for the simultaneous removal of NO.sub.x and SO.sub.2 from a fluid stream comprising mixtures thereof and in another aspect relates to the separation, use and/or regeneration of various chemicals contaminated or spent in the process and which includes the steps of: (A) contacting the fluid stream at a temperature of between about 105.degree. and 180.degree. C. with a liquid aqueous slurry or solution comprising an effective amount of an iron chelate of an amino acid moiety having at least one --SH group; (B) separating the fluid stream from the particulates formed in step (A) comprising the chelate of the amino acid moiety and fly ash; (C) washing and separating the particulates of step (B) with an aqeous solution having a pH value of between about 5 to 8; (D) subsequently washing and separating the particulates of step (C) with a strongly acidic aqueous solution having a pH value of between about 1 to 3; (E) washing and separating the particulates of step (D) with an basic aqueous solution having a pH value of between about 9 to 12; (F) optionally adding additional amino acid moiety, iron (II) and alkali to the aqueous liquid from step (D) to produce an aqueous solution or slurry similar to that in step (A) having a pH value of between about 4 to 12; and (G) recycling the aqueous slurry of step (F) to the contacting zone of step (A). Steps (D) and (E) can be carried out in the reverse sequence, however the preferred order is (D) and then (E). In a preferred embodiment the present invention provides an improved process for the preparation (regeneration) of cysteine from cystine, which includes reacting an aqueous solution of cystine at a pH of between about 9 to 13 with a reducing agent selected from hydrogen sulfide or alkali metal sulfides, sulfur dioxide, an alkali metal sulfite or mixtures thereof for a time and at a temperature effective to cleave and reduce the cystine to cysteine with subsequent recovery of the cysteine. In another preferred embodiment the present invention provides a process for the removal of NO.sub.x, SO.sub.2 and particulates from a fluid stream which includes the steps of (A) injecting into a reaction zone an aqueous solution itself comprising (i) an amino acid moiety selected from those described above; (ii) iron (II) ion; and (iii) an alkali, wherein the aqueous solution has a pH of between about 4 and 11; followed by solids separation and washing as is described in steps (B), (C), (D) and (E) above. The overall process is useful to reduce acid rain components from combustion gas sources.

  6. H2, He, and CO2 line-broadening coefficients, pressure shifts and temperature-dependence exponents for the HITRAN database. Part 1: SO2, NH3, HF, HCl, OCS and C2H2

    NASA Astrophysics Data System (ADS)

    Wilzewski, Jonas S.; Gordon, Iouli E.; Kochanov, Roman V.; Hill, Christian; Rothman, Laurence S.

    2016-01-01

    To increase the potential for use of the HITRAN database in astronomy, experimental and theoretical line-broadening coefficients, line shifts and temperature-dependence exponents of molecules of planetary interest broadened by H2, He, and CO2 have been assembled from available peer-reviewed sources. The collected data were used to create semi-empirical models so that every HITRAN line of the studied molecules has corresponding parameters. Since H2 and He are major constituents in the atmospheres of gas giants, and CO2 predominates in atmospheres of some rocky planets with volcanic activity, these spectroscopic data are important for remote sensing studies of planetary atmospheres. In this paper we make the first step in assembling complete sets of these parameters, thereby creating datasets for SO2, NH3, HF, HCl, OCS and C2H2.

  7. A dual affinity-tag strategy for the expression and purification of human linker histone H1.4 in Escherichia coli.

    PubMed

    Ryan, Daniel P; Tremethick, David J

    2016-04-01

    Linker histones are an abundant and critical component of the eukaryotic chromatin landscape. They play key roles in regulating the higher order structure of chromatin and many genetic processes. Higher eukaryotes possess a number of different linker histone subtypes and new data are consistently emerging that indicate these subtypes are functionally distinct. We were interested in studying one of the most abundant human linker histone subtypes, H1.4. We have produced recombinant full-length H1.4 in Escherichia coli. An N-terminal Glutathione-S-Transferase tag was used to promote soluble expression and was combined with a C-terminal hexahistidine tag to facilitate a simple non-denaturing two-step affinity chromatography procedure that results in highly pure full-length H1.4. The purified H1.4 was shown to be functional via in vitro chromatin assembly experiments and remains active after extended storage at -80 °C. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Mechanism of SO2 removal by carbon

    USGS Publications Warehouse

    Lizzio, Anthony A.; DeBarr, Joseph A.

    1997-01-01

    The reaction of SO2 with carbon (C) in the presence of O2 and H2O involves a series of reactions that leads to the formation of sulfuric acid as the final product. The rate-determining step in the overall process is the oxidation of SO2 to SO3. Three SO2 oxidation reactions are possible. Adsorbed SO2 (C−SO2) can react either with gas phase O2 or with adsorbed oxygen (C−O complex) to form sulfur trioxide (SO3), or gas phase SO2 can react directly with the C−O complex. In optimizing the SO2 removal capabilities of carbon, most studies only assume a given mechanism for SO2 adsorption and conversion to H2SO4 to be operable. The appropriate SO2 oxidation step and role of the C−O complex in this mechanism remain to be determined. The ultimate goal of this study was to prepare activated char from Illinois coal with optimal properties for low-temperature (80−150°C) removal of sulfur dioxide from coal combustion flue gas. The SO2 adsorption capacity of activated char was found to be inversely proportional to the amount of oxygen adsorbed on its surface. A temperature-programmed desorption technique was developed to titrate those sites responsible for adsorption of SO2 and conversion to H2SO4. On the basis of these results, a mechanism for SO2 removal by carbon was proposed. The derived rate expression showed SO2 adsorption to be dependent only on the fundamental rate constant and concentration of carbon atoms designated as free sites. Recent studies indicate a similar relationship exists between the rate of carbon gasification (in CO2 or H2O) and the number of reactive sites as determined by transient kinetics experiments. Utilizing the concept of active or free sites, it was possible to produce a char from Illinois coal having an SO2 adsorption capacity surpassing that of a commercial catalytic activated carbon.

  9. Partial purification and characterization of a novel histidine decarboxylase from Enterobacter aerogenes DL-1.

    PubMed

    Zou, Yu; Hu, Wenzhong; Jiang, Aili; Tian, Mixia

    2015-08-18

    Histidine decarboxylase (HDC) from Enterobacter aerogenes DL-1 was purified in a three-step procedure involving ammonium sulfate precipitation, Sephadex G-100, and DEAE-Sepharose column chromatography. The partially purified enzyme showed a single protein band of 52.4 kD on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The optimum pH for HDC activity was 6.5, and the enzyme was stable between pH 4 and 8. Enterobacter aerogenes HDC had optimal activity at 40°C and retained most of its activity between 4 and 50°C. HDC activity was reduced in the presence of numerous tested compounds. Particularly with SDS, it significantly (p < 0.01) inhibited enzyme activity. Conversely, Ca(2+) and Mn(2+) showed prominent activation effects (p < 0.01) with activity increasing to 117.20% and 123.42%, respectively. The Lineweaver-Burk plot showed that K m and V max values of the enzyme for L-histidine were 0.21 mM and 71.39 µmol/min, respectively. In comparison with most HDCs from other microorganisms and animals, HDC from E. aerogenes DL-1 displayed higher affinity and greater reaction velocity toward L-histidine.

  10. [Photodissociation of Acetylene and Acetone using Step-Scan Time-Resolved FTIR Emission Spectroscopy

    NASA Technical Reports Server (NTRS)

    McLaren, Ian A.; Wrobel, Jacek D.

    1997-01-01

    The photodissociation of acetylene and acetone was investigated as a function of added quenching gas pressures using step-scan time-resolved FTIR emission spectroscopy. Its main components consist of Bruker IFS88, step-scan Fourier Transform Infrared (FTIR) spectrometer coupled to a flow cell equipped with Welsh collection optics. Vibrationally excited C2H radicals were produced from the photodissociation of acetylene in the unfocused experiments. The infrared (IR) emission from these excited C2H radicals was investigated as a function of added argon pressure. Argon quenching rate constants for all C2H emission bands are of the order of 10(exp -13)cc/molecule.sec. Quenching of these radicals by acetylene is efficient, with a rate constant in the range of 10(exp -11) cc/molecule.sec. The relative intensity of the different C2H emission bands did not change with the increasing argon or acetylene pressure. However, the overall IR emission intensity decreased, for example, by more than 50% when the argon partial pressure was raised from 0.2 to 2 Torr at fixed precursor pressure of 160mTorr. These observations provide evidence for the formation of a metastable C2H2 species, which are collisionally quenched by argon or acetylene. Problems encountered in the course of the experimental work are also described.

  11. Step Free Surface Heteroepitaxy of 3C-SiC Layers on Patterned 4H/6H-SiC Mesas and Cantilevers

    NASA Technical Reports Server (NTRS)

    Neudeck, P. G.; Powell, J. A.; Trunek, A. J.; Spry, D. J.

    2004-01-01

    The off-axis approach to SiC epitaxial growth has not prevented many substrate crystal defects from propagating into SiC epilayers, and does not permit the realization of SiC heteropolytype devices. This paper reviews recent advancements in SiC epitaxial growth that begin to overcome the above shortcomings for arrays of device-sized mesas patterned into on-axis 4H/6HSiC wafers. These on-axis mesa growth techniques have produced 4H/6H-SiC homoepilayers and 3C-SiC heteroepilayers with substantially lower dislocation densities. The results should enable improved homojunction and heterojunction silicon carbide prototype devices.

  12. Recovery behavior of high purity cubic SiC polycrystals by post-irradiation annealing up to 1673 K after low temperature neutron irradiation

    NASA Astrophysics Data System (ADS)

    Idris, Mohd Idzat; Yamazaki, Saishun; Yoshida, Katsumi; Yano, Toyohiko

    2015-10-01

    Two kinds of high purity cubic (β) SiC polycrystals, PureBeta-SiC and CVD-SiC, were irradiated in the BR2 reactor (Belgium) up to a fluence of 2.0-2.5 × 1024 (E > 0.1 MeV) at 333-363 K. Changes in macroscopic lengths were examined by post-irradiation thermal annealing using a precision dilatometer up to 1673 K with a step-heating method. The specimen was held at each temperature step for 6 h and the change in length of the specimen was recorded during each isothermal annealing step from 373 K to 1673 K with 50 K increments. The recovery curves were analyzed with the first order model, and rate constants at each annealing step were obtained. Recovery of defects, induced by neutron irradiation in high purity β-SiC, has four stages of different activation energies. At 373-573 K, the activation energy of PureBeta-SiC and CVD-SiC was in the range of 0.17-0.24 eV and 0.12-0.14 eV; 0.002-0.04 eV and 0.006-0.04 eV at 723-923 K; 0.20-0.27 eV and 0.26-0.31 eV at 923-1223 K; and 1.37-1.38 eV and 1.26-1.29 eV at 1323-1523 K, respectively. Below ∼1223 K the recombination occurred possibly for closely positioned C and Si Frenkel pairs, and no long range migration is deemed essential. Nearly three-fourths of recovery, induced by neutron irradiation, occur by this mechanism. In addition, at 1323-1523 K, recombination of slightly separated C Frenkel pairs and more long-range migration of Si interstitials may have occurred for PureBeta-SiC and CVD-SiC specimens. Migration of both vacancies may be restricted up to ∼1523 K. Comparing to hexagonal α-SiC, high purity β-SiC recovered more quickly in the lower annealing temperature range of less than 873 K, in particular less than 573 K.

  13. CO2 Conversion into Esters by Fluoride-Mediated Carboxylation of Organosilanes and Halide Derivatives.

    PubMed

    Frogneux, Xavier; von Wolff, Niklas; Thuéry, Pierre; Lefèvre, Guillaume; Cantat, Thibault

    2016-02-24

    A one-step conversion of CO2 into heteroaromatic esters is presented under metal-free conditions. Using fluoride anions as promoters for the C-Si bond activation, pyridyl, furanyl, and thienyl organosilanes are successfully carboxylated with CO2 in the presence of an electrophile. The mechanism of this unprecedented reaction has been elucidated based on experimental and computational results, which show a unique catalytic influence of CO2 in the C-Si bond activation of pyridylsilanes. The methodology is applied to 18 different esters, and it has enabled the incorporation of CO2 into a polyester material for the first time. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Thermal desorption of CO and H2 from degassed 304 and 347 stainless steel

    NASA Technical Reports Server (NTRS)

    Rezaie-Serej, S.; Outlaw, R. A.

    1994-01-01

    Thermal desorption spectroscopy (TDS), along with Auger electron spectroscopy, was used to study the desorption of H2 and CO from baked 304 and 347 stainless-steel samples exposed only to residual gases. Both 347 and 304 samples gave identical TDS spectra. The spectra for CO contained a sharp leading peak centered in the temperature range 410-440C and an exponentially increasing part for temperatures higher than 500C, with a small peak around 600C appearing as a shoulder. The leading peak followed a second-order desorption behavior with an activation energy of 28+/-2 kcal/mol, suggesting that the rate-limiting step for this peak is most likely a surface reaction that produces the CO molecules in the surface layer. The amount of desorbed CO corresponding to this peak was approximately 0.5X10(exp 14) molecules/cm(exp 2) . The exponentially rising part of the CO spectrum appeared to originate from a bulk diffusion process. The TDS spectrum for H2 consisted of a main peak centered also in the temperature range 410-440C, with two small peaks appearing as shoulders at approximately 500 and 650C. The main peak in this case also displayed a second-order behavior with an activation energy of 14+/-2 kcal/mol. The amount of desorbed H2, approximately 1.9X 10(exp 15) molecules/cm(exp 2) , appeared to be independent of the concentration of hydrogen in the bulk, indicating that the majority of the desorbed H2 originated from the surface layer.

  15. Production of the catalytic core of human peptidylglycine α-hydroxylating monooxygenase (hPHMcc) in Escherichia coli

    PubMed Central

    Handa, Sumit; Spradling, Tyler J.; Dempsey, Daniel R.; Merkler, David J.

    2013-01-01

    Most mammalian bioactive peptides possess a C-terminal amino acid amide moiety. The presence of the C-terminal amide is a significant impediment to the recombinant production of α-amidated peptides. α-Amidated peptides are produced in vivo by the enzymatic cleavage of a precursor with a C-terminal glycine residue. Peptidylglycine α-hydroxylating monooxygenase catalyzes the key step in the oxidation of the glycine-extended precursors to the α-amidated peptide. Herein, we detail the production of the catalytic core of human peptidylglycine α-hydroxylating monooxygenase (hPHMcc) in Escherichia coli possessing a N-terminal fusion to thioredoxin (Trx). Trx was fused to hPHMcc to enhance the yield of the resulting 52 kDa protein as a soluble and catalytically active enzyme. The Trx-hPHMcc-His6 fusion was purified to homogeneity and exhibited steady-state kinetic parameters that were similar to purified rat PHMcc. The bacterial production of recombinant hPHMcc will foster efforts to generate α-amidated peptides by the co-expression of hPHMcc and the α-amidated peptide precursors in E. coli or the in vitro amidation of recombinantly expressed α-amidated peptide precursors. PMID:22554821

  16. Immobilization of glucose oxidase into polyaniline nanofiber matrix for biofuel cell applications.

    PubMed

    Kim, Hyeongseok; Lee, Inseon; Kwon, Yongchai; Kim, Byoung Chan; Ha, Su; Lee, Jung-heon; Kim, Jungbae

    2011-05-15

    Glucose oxidase (GOx) was immobilized into the porous matrix of polyaniline nanofibers in a three-step process, consisting of enzyme adsorption, precipitation, and crosslinking (EAPC). EAPC was highly active and stable when compared to the control samples of enzyme adsorption (EA) and enzyme adsorption and crosslinking (EAC) with no step of enzyme precipitation. The GOx activity of EAPC was 9.6 and 4.2 times higher than those of EA and EAC, respectively. Under rigorous shaking at room temperature for 56 days, the relative activities of EA, EAC and EAPC, defined as the percentage of residual activity to the initial activity, were 22%, 19% and 91%, respectively. When incubated at 50°C under shaking for 4h, EAPC showed a negligible decrease of GOx activity while the relative activities of EA and EAC were 45% and 48%, respectively. To demonstrate the feasible application of EAPC in biofuel cells, the enzyme anodes were prepared and used for home-built air-breathing biofuel cells. The maximum power densities of biofuel cells with EA and EAPC anodes were 57 and 292 μW/cm(2), respectively. After thermal treatment at 60°C for 4h, the maximum power density of EA and EAPC anodes were 32 and 315 μW/cm(2), representing 56% and 108% of initially obtained maximum power densities, respectively. Because the lower power densities and short lifetime of biofuel cells are serious problems against their practical applications, the present results with EAPC anode has opened up a new potential for the realization of practical biofuel cell applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Transition Metal Catalyzed Hydroarylation of Multiple Bonds: Exploration of Second Generation Ruthenium Catalysts and Extension to Copper Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T. Brent Gunnoe

    2011-02-17

    Catalysts provide foundational technology for the development of new materials and can enhance the efficiency of routes to known materials. New catalyst technologies offer the possibility of reducing energy and raw material consumption as well as enabling chemical processes with a lower environmental impact. The rising demand and expense of fossil resources has strained national and global economies and has increased the importance of accessing more efficient catalytic processes for the conversion of hydrocarbons to useful products. The goals of the research are to develop and understand single-site homogeneous catalysts for the conversion of readily available hydrocarbons into useful materials.more » A detailed understanding of these catalytic reactions could lead to the development of catalysts with improved activity, longevity and selectivity. Such transformations could reduce the environmental impact of hydrocarbon functionalization, conserve energy and valuable fossil resources and provide new technologies for the production of liquid fuels. This project is a collaborative effort that incorporates both experimental and computational studies to understand the details of transition metal catalyzed C-H activation and C-C bond forming reactions with olefins. Accomplishments of the current funding period include: (1) We have completed and published studies of C-H activation and catalytic olefin hydroarylation by TpRu{l_brace}P(pyr){sub 3}{r_brace}(NCMe)R (pyr = N-pyrrolyl) complexes. While these systems efficiently initiate stoichiometric benzene C-H activation, catalytic olefin hydroarylation is hindered by inhibition of olefin coordination, which is a result of the steric bulk of the P(pyr){sub 3} ligand. (2) We have extended our studies of catalytic olefin hydroarylation by TpRu(L)(NCMe)Ph systems to L = P(OCH{sub 2}){sub 3}CEt. Thus, we have now completed detailed mechanistic studies of four systems with L = CO, PMe{sub 3}, P(pyr){sub 3} and P(OCH{sub 2}){sub 3}CEt, which has provided a comprehensive understanding of the impact of steric and electronic parameters of 'L' on the catalytic hydroarylation of olefins. (3) We have completed and published a detailed mechanistic study of stoichiometric aromatic C-H activation by TpRu(L)(NCMe)Ph (L = CO or PMe{sub 3}). These efforts have probed the impact of functionality para to the site of C-H activation for benzene substrates and have allowed us to develop a detailed model of the transition state for the C-H activation process. These results have led us to conclude that the C-H bond cleavage occurs by a {sigma}-bond metathesis process in which the C-H transfer is best viewed as an intramolecular proton transfer. (4) We have completed studies of Ru complexes possessing the N-heterocyclic carbene IMes (IMes = 1,3-bis-(2,4,6-trimethylphenyl)imidazol-2-ylidene). One of these systems is a unique four-coordinate Ru(II) complex that catalyzes the oxidative hydrophenylation of ethylene (in low yields) to produce styrene and ethane (utilizing ethylene as the hydrogen acceptor) as well as the hydrogenation of olefins, aldehydes and ketones. These results provide a map for the preparation of catalysts that are selective for oxidative olefin hydroarylation. (5) The ability of TpRu(PMe{sub 3})(NCMe)R systems to activate sp{sup 3} C-H bonds has been demonstrated including extension to subsequent C-C bond forming steps. These results open the door to the development of catalysts for the functionalization of more inert C-H bonds. (6) We have discovered that Pt(II) complexes supported by simple nitrogen-based ligands serve as catalysts for the hydroarylation of olefins. Given the extensive studies of Pt-based catalytic C-H activation, we believe these results will provide an entry point into an array of possible catalysts for hydrocarbon functionalization.« less

  18. Purification and biochemical characterization of methionine aminopeptidase (MetAP) from Mycobacterium smegmatis mc2155.

    PubMed

    Narayanan, Sai Shyam; Ramanujan, Ajeena; Krishna, Shyam; Nampoothiri, Kesavan Madhavan

    2008-12-01

    The methionine aminopeptidase (MetAP) catalyzes the removal of amino terminal methionine from newly synthesized polypeptide. MetAP from Mycobacterium smegmatis mc(2) 155 was purified from the culture lysate in four sequential steps to obtain a final purification fold of 22. The purified enzyme exhibited a molecular weight of approximately 37 kDa on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Activity staining was performed to detect the methionine aminopeptidase activity on native polyacrylamide gel. The enzyme was characterized biochemically, using L-methionine p-nitroanilide as substrate. The enzyme was found to have a temperature and pH optimum of 50 degrees C and 8.5, respectively, and was found to be stable at 50 degrees C with half-life more than 8 h. The enzyme activity was enhanced by Mg(2+) and Co(2+) and was inhibited by Fe(2+) and Cu(2+). The enzyme activity inhibited by EDTA is restored in presence of Mg(2+) suggesting the possible role of Mg(2+) as metal cofactor of the enzyme in vitro.

  19. Effect of Double Aging Heat Treatment on the Short-Term Creep Behavior of the Inconel 718

    NASA Astrophysics Data System (ADS)

    Caliari, Felipe Rocha; Candioto, Kátia Cristiane Gandolpho; Couto, Antônio Augusto; Nunes, Carlos Ângelo; Reis, Danieli Aparecida Pereira

    2016-06-01

    This research studies the effect of double aging heat treatment on the short-term creep behavior of the superalloy Inconel 718. The superalloy, received in the solution treated state, was subjected to an aging treatment which comprises a solid solution at 1095 °C for 1 h, a first aging step of 955 °C for 1 h, then aged at 720 and 620 °C, 8 h each step. Creep tests at constant load mode, under temperatures of 650, 675, 700 °C and stress of 510, 625 and 700 MPa, were performed before and after heat treatment. The results indicate that after the double aging heat treatment creep resistance is increased, influenced by the presence of precipitates γ' and γ″ and its interaction with the dislocations, by grain size growth (from 8.20 to 7.23 ASTM) and the increase of hardness by approximately 98%. Creep parameters of primary and secondary stages have been determined. There is a breakdown relationship between dot{\\upvarepsilon }_{{s}} and stress at 650 °C of Inconel 718 as received, around 600 MPa. By considering the internal stress values, effective stress exponent, effective activation energy, and TEM images of Inconel 718 double aged, it is suggested that the creep mechanism is controlled by the interaction of dislocations with precipitates. The fracture mechanism of Inconel 718 as received is transgranular (coalescence of dimples) and mixed (transgranular-intergranular), whereas the Inconel 718 double aged condition crept surfaces evidenced the intergranular fracture mechanism.

  20. The promotional effects of cesium promoter on higher alcohol synthesis from syngas over cesium-promoted Cu/ZnO/Al2O3 catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Jie; Cai, Qiuxia; Wan, Yan

    In this study, the promotional effects of cesium promoter on higher alcohol (C2+OH) synthesis from syngas over Cs-Cu/ZnO/Al2O3 catalysts were investigated using a combined experimental and theoretical density functional theory (DFT) calculation method. In the presence of cesium, the C2+OH productivity increases from 77.1 g•kgcat-1•h-1 to 157.3 g•kgcat-1•h-1 at 583 K due to the enhancement of the initial C–C bond formation. Detailed analysis of chain growth probabilities (CGPs) confirms that initial C–C bond formation is the rate-determining step in the temperature range of 543-583 K. Addition of cesium promoter significantly increases the productivities of 2-methyl-1-propanol, while the CGPs values (C3*more » to 2-methyl-C3*) is almost unaffected. With the assistance of cesium promoter, the CGPs of the initial C–C bond formation step (C1* to C2*) could be increased from 0.13 to 0.25 at 583 K. DFT calculations indicate that the initial C–C bond formation is mainly contributed by the HCO+HCO coupling reaction over the ZnCu(211) model surface. In the presence of the Cs2O, the stabilities of key reaction intermediates such as HCO and H2CO are enhanced which facilitates both HCO+HCO and HCO+H2CO coupling reaction steps with lower activation barriers over the Cs2O-ZnCu(211) surface. The promotional effects of cesium on the C2+OH productivity are also benefited from the competitive CH+HCO coupling reaction over CH hydrogenation that leads to lower alkane formation. In addition, Bader charge analysis suggests that the presence of cesium ions would facilitate the nucleophilic reaction between HCO and H2CO for initial C–C bond formation. This work was supported by the National Natural Science Foundation of China (No. 91545114 and No. 91545203). We appreciate the joint PhD scholarship support from the China Scholarship Council. The authors would also like to thank the support from Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM). DM was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. Computing time was granted by the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). EMSL is a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and sponsored by DOE’s Office of Biological and Environmental Research. PNNL is a multiprogram national laboratory operated for DOE by Battelle Memorial Institute. We also appreciate the support from Sinochem Quanzhou Petrochemical Co. Ltd.« less

  1. Critical Nuclei Size, Rate, and Activation Energy of H2 Gas Nucleation.

    PubMed

    German, Sean R; Edwards, Martin A; Ren, Hang; White, Henry S

    2018-03-21

    Electrochemical measurements of the nucleation rate of individual H 2 bubbles at the surface of Pt nanoelectrodes (radius = 7-41 nm) are used to determine the critical size and geometry of H 2 nuclei leading to stable bubbles. Precise knowledge of the H 2 concentration at the electrode surface, C H 2 surf , is obtained by controlled current reduction of H + in a H 2 SO 4 solution. Induction times of single-bubble nucleation events are measured by stepping the current, to control C H 2 surf , while monitoring the voltage. We find that gas nucleation follows a first-order rate process; a bubble spontaneously nucleates after a stochastic time delay, as indicated by a sudden voltage spike that results from impeded transport of H + to the electrode. Hundreds of individual induction times, at different applied currents and using different Pt nanoelectrodes, are used to characterize the kinetics of phase nucleation. The rate of bubble nucleation increases by four orders of magnitude (0.3-2000 s -1 ) over a very small relative change in C H 2 surf (0.21-0.26 M, corresponding to a ∼0.025 V increase in driving force). Classical nucleation theory yields thermodynamic radii of curvature for critical nuclei of 4.4 to 5.3 nm, corresponding to internal pressures of 330 to 270 atm, and activation energies for nuclei formation of 14 to 26 kT, respectively. The dependence of nucleation rate on H 2 concentration indicates that nucleation occurs by a heterogeneous mechanism, where the nuclei have a contact angle of ∼150° with the electrode surface and contain between 35 and 55 H 2 molecules.

  2. Platinum transfer from hCTR1 to Atox1 is dependent on the type of platinum complex.

    PubMed

    Wu, Xuelei; Yuan, Siming; Wang, Erqiong; Tong, Yang; Ma, Guolin; Wei, Kaiju; Liu, Yangzhong

    2017-05-24

    In spite of their wide application, the cellular uptake of platinum based anticancer drugs is still unclear. The copper transport protein, hCTR1, is proposed to facilitate the cellular uptake of cisplatin, whereas organic cation transport (OCT) is more important for oxaliplatin. It has been reported that both N-terminal and C-terminal metal binding motifs of hCTR1 are highly reactive to cisplatin, which is the initial step of protein assisted cellular uptake of cisplatin. It is still unknown how the platinum drugs in hCTR1 transfer to cytoplasmic media, and whether various platinum complexes possess different activities in this process. Herein, we investigated the reaction of the platinated C-terminal metal binding motif of hCTR1 (C8) with the down-stream protein Atox1. Results show that Atox1 is highly reactive to the platinated C8 adducts of cisplatin and transplatin, whereas the oxaliplatin/C8 adduct is much less reactive. The platinum transfer from C8 to Atox1 occurs in the reaction, which results in the protein unfolding of Atox1. These results demonstrated that the platinated intracellular-domain of hCTR1 is reactive to Atox1, and the reactivity is dependent on the ligand and the coordination structure of platinum complexes. The different reactivity is consistent with the hypothesis that hCTR1 is more significant in the transport of cisplatin than that of oxaliplatin.

  3. The contribution of cationic conductances to the potential of rod photoreceptors.

    PubMed

    Moriondo, Andrea; Rispoli, Giorgio

    2010-05-01

    The contribution of cationic conductances in shaping the rod photovoltage was studied in light adapted cells recorded under whole-cell voltage- or current-clamp conditions. Depolarising current steps (of size comparable to the light-regulated current) produced monotonic responses when the prepulse holding potential (V (h)) was -40 mV (i.e. corresponding to the membrane potential in the dark). At V (h) = -60 mV (simulating the steady-state response to an intense background of light) current injections <35 pA (mimicking a light decrement) produced instead an initial depolarisation that declined to a plateau, and voltage transiently overshot V (h) at the stimulus offset. Current steps >40 pA produced a steady depolarisation to approximately -16 mV at both V (h). The difference between the responses at the two V (h) was primarily generated by the slow delayed-rectifier-like K(+) current (I (Kx)), which therefore strongly affects both the photoresponse rising and falling phase. The steady voltage observed at both V (h) in response to large current injections was instead generated by Ca-activated K(+) channels (I (KCa)), as previously found. Both I (Kx) and I (KCa) oppose the cation influx, occurring at the light stimulus offset through the cGMP-gated channels and the voltage-activated Ca(2+) channels (I (Ca)). This avoids that the cation influx could erratically depolarise the rod past its normal resting value, thus allowing a reliable dim stimuli detection, without slowing down the photovoltage recovery kinetics. The latter kinetics was instead accelerated by the hyperpolarisation-activated, non-selective current (I (h)) and I (Ca). Blockade of all K(+) currents with external TEA unmasked a I (Ca)-dependent regenerative behaviour.

  4. Diamond deposition in a hot-filament reactor using different hydrocarbon precursor gases

    NASA Astrophysics Data System (ADS)

    May, P. W.; Everitt, N. M.; Trevor, C. G.; Ashfold, M. N. R.; Rosser, K. N.

    1993-07-01

    A hot-filament reactor was used to deposit polycrystalline diamond films upon single-crystal Si substrates using hydrocarbon/H 2 gas mixtures. We studied the effect upon the deposition process and resulting film properties by varying the hydrocarbon gas from C 1H x to C 4H x alkanes. This was done maintaining a constant carbon-to-hydrogen ratio, but using a substantially lower-than- normal filament temperature (1500°C) in order to highlight differences in activation barriers and in the chemistry of the diamond-forming step. It was found that with increasing hydrocarbon chain length the deposition rate decreased, from a value of about 0.4 μm h -1 for methane/H 2 mixtures to less than 0.07 μm h -1 for butane/H 2. This was accompanied by an increase in the relative proportion of amorphous carbon to diamond present in the films. After one hour deposition the diamond grain size remained constant at about 20 nm, irrespective of the precursor gas. The measured Knoop hardness of the films also decreased when using process gases other than methane. We also studied the effect of changing the bond order in C 2H x precursor gases (ethane, ethene, ethyne) but found that this had no effect on either the deposition rate or the film quality.

  5. Praseodymium hydroxide and oxide nanorods and Au/Pr6O11 nanorod catalysts for CO oxidation.

    PubMed

    Huang, P X; Wu, F; Zhu, B L; Li, G R; Wang, Y L; Gao, X P; Zhu, H Y; Yan, T Y; Huang, W P; Zhang, S M; Song, D Y

    2006-02-02

    Praseodymium hydroxide nanorods were synthesized by a two-step approach: First, metallic praseodymium was used to form praseodymium chloride, which reacted subsequently with KOH solution to produce praseodymium hydroxide. In the second step the hydroxide was treated with a concentrated alkaline solution at 180 degrees C for 45 h, yielding nanorods as shown by the scanning and transmission electron microscopy images. The results of X-ray diffraction and energy-dispersive X-ray spectroscopy experiments indicate that these nanorods are pure praseodymium hydroxide with a hexagonal structure, which can be converted into praseodymium oxide (Pr6O11) nanorods of a face-centered cubic structure after calcination at 600 degrees C for 2 h in air. Gold was loaded on the praseodymium oxide nanorods using HAuCl4 as the gold source, and NaBH4 was used to reduce the gold species to metallic nanoparticles with sizes of 8-12 nm on the nanorod surface. These Au/Pr6O11 nanorods exhibit superior catalytic activity for CO oxidation.

  6. Chemical Inactivation of the Cinnamate 4-Hydroxylase Allows for the Accumulation of Salicylic Acid in Elicited Cells1

    PubMed Central

    Schoch, Guillaume A.; Nikov, Georgi N.; Alworth, William L.; Werck-Reichhart, Danièle

    2002-01-01

    The cinnamate (CA) 4-hydroxylase (C4H) is a cytochrome P450 that catalyzes the second step of the main phenylpropanoid pathway, leading to the synthesis of lignin, pigments, and many defense molecules. Salicylic acid (SA) is an essential trigger of plant disease resistance. Some plant species can synthesize SA from CA by a mechanism not yet understood. A set of specific inhibitors of the C4H, including competitive, tight-binding, mechanism-based irreversible, and quasi-irreversible inhibitors have been developed with the main objective to redirect cinnamic acid to the synthesis of SA. Competitive inhibitors such as 2-hydroxy-1-naphthoic acid and the heme-coordinating compound 3-(4-pyridyl)-acrylic acid allowed strong inhibition of C4H activity in a tobacco (Nicotiana tabacum cv Bright Yellow [BY]) cell suspension culture. This inhibition was however rapidly relieved either because of substrate accumulation or because of inhibitor metabolism. Substrate analogs bearing a methylenedioxo function such as piperonylic acid (PIP) or a terminal acetylene such as 4-propynyloxybenzoic acid (4PB), 3-propynyloxybenzoic acid, and 4-propynyloxymethylbenzoic acid are potent mechanism-based inactivators of the C4H. PIP and 4PB, the best inactivators in vitro, were also efficient inhibitors of the enzyme in BY cells. Inhibition was not reversed 46 h after cell treatment. Cotreatment of BY cells with the fungal elicitor β-megaspermin and PIP or 4PB led to a dramatic increase in SA accumulation. PIP and 4PB do not trigger SA accumulation in nonelicited cells in which the SA biosynthetic pathway is not activated. Mechanism-based C4H inactivators, thus, are promising tools for the elucidation of the CA-derived SA biosynthetic pathway and for the potentiation of plant defense. PMID:12376665

  7. Purification and characterization of an extracellular cellulase from Anoxybacillus gonensis O9 isolated from geothermal area in Turkey.

    PubMed

    Genc, Berna; Nadaroglu, Hayrunnisa; Adiguzel, Ahmet; Baltaci, Ozkan

    2015-11-01

    In the present study, cellulase was purified and characterized from Anoxybacillus gonensis (Gen bank Number: KM596794) which was isolated and characterized from Agri Diyadin Hot spring. It was found to synthesize cellulase which had a wide range of industrial applications. Twenty four-hour-cultured bacteria induced cellulase production and specific activities during the purification steps were 1.47, 81.06 and 109.4 EU mg(-1) protein at crude extract, ammonium sulphate precipitated and DEAE-Sephadex purification steps. The highest enzyme activity was observed at 50°C and the optimum range of pH was 3-10. Molecular weight of enzyme was determined approximately 40kDa. The kinetic parameters of cellulase against carboxymethylcellulose (CMC) were 153.4 pmol min(-1) mg for Vmax and 0.46mM for Km. Among effectors of the enzyme, Zn2+, Ca2+, Co2+ and EDTA decreased enzyme activity.

  8. Mechanism of Nitrogenase H 2 Formation by Metal-Hydride Protonation Probed by Mediated Electrocatalysis and H/D Isotope Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khadka, Nimesh; Milton, Ross D.; Shaw, Sudipta

    Nitrogenase catalyzes the reduction of dinitrogen (N2) to ammonia (NH3) with obligatory reduction of protons (H+) to dihydrogen (H2) through a mechanism involving reductive elimination of two [Fe-H-Fe] bridging hydrides at its active site FeMo-cofactor. The overall rate-limiting step is associated with ATP-driven electron delivery from Fe protein, precluding isotope effect measurements on substrate reduction steps. Here, we use mediated bioelectrocatalysis to drive electron delivery to MoFe protein without Fe protein and ATP hydrolysis, thereby eliminating the normal rate-limiting step. The ratio of catalytic current in mixtures of H2O and D2O, the proton inventory, changes linearly with the D2O/H2O ratio,more » revealing that a single H/D is involved in the rate limiting step. Kinetic models, along with measurements that vary the electron/proton delivery rate and use different substrates, reveal that the rate-limiting step under these conditions is the H2 formation reaction. Altering the chemical environment around the active site FeMo-cofactor in the MoFe protein either by substituting nearby amino acids or transferring the isolated FeMo-cofactor into a different peptide matrix, changes the net isotope effect, but the proton inventory plot remains linear, consistent with an unchanging rate-limiting step. Density functional theory predicts a transition state for H2 formation where the proton from S-H+ moves to the hydride in Fe-H-, predicting the number and magnitude of the observed H/D isotope effect. This study not only reveals the mechanism of H2 formation, but also illustrates a strategy for mechanistic study that can be applied to other enzymes and to biomimetic complexes.« less

  9. Apoptosis induced in an early step of African swine fever virus entry into vero cells does not require virus replication.

    PubMed

    Carrascosa, Angel L; Bustos, María J; Nogal, María L; González de Buitrago, Gonzalo; Revilla, Yolanda

    2002-03-15

    Permissive Vero cells develop apoptosis, as characterized by DNA fragmentation, caspases activation, cytosolic release of mitochondrial cytochrome c, and flow cytometric analysis of DNA content, upon infection with African swine fever virus (ASFV). To determine the step in virus replication that triggers apoptosis, we used UV-inactivated virus, inhibitors of protein and nucleic acid synthesis, and lysosomotropic drugs that block virus uncoating. ASFV-induced apoptosis was accompanied by caspase-3 activation, which was detected even in the presence of either cytosine arabinoside or cycloheximide, indicating that viral DNA replication and protein synthesis were not required to activate the apoptotic process. The activation of caspase-3 was released from chloroquine inhibition 2 h after virus absorption, while the infection with UV-inactivated ASFV did not induce the activation of the caspase cascade. We conclude that ASFV induces apoptosis in the infected cell by an intracellular pathway probably triggered during the process of virus uncoating.

  10. Adsorption characteristics of arsenic from micro-polluted water by an innovative coal-based mesoporous activated carbon.

    PubMed

    Li, Wei-Guang; Gong, Xu-Jin; Wang, Ke; Zhang, Xin-Ran; Fan, Wen-Biao

    2014-08-01

    An innovative coal-based mesoporous activated carbon (NCPAC) was prepared by re-agglomeration, oxidation and two-step activation using coal-blending as precursor. Adsorption capacities of As(III) and As(V) ions (<0.5mg/L) onto NCPAC as a function of pH, adsorbent dose, initial arsenic concentrations, contact time, and adsorption isotherms at 7°C was investigated. The innovative methods promoted total pore volume (1.087cm(3)/g), mesoporosity (64.31%), iodine numbers (1104mg/g), methylene blue (251.8mg/g) and ash contents (15.26%). The adsorption capacities of NCPAC for As(III) and As(V) were found to be strongly dependent on pH and contact time. The optimal pH value was 6. The equilibrium time was 60min for adsorption of As(III) and As(V) by NCPAC. The Langmuir model fitted the experimental data well for both As(III) (R(2)=0.9980) and As(V) (R(2)=0.9988). Maximum adsorption capacities of As(III) and As(V) (C0=0.50mg/L) by NCPAC were 1.491 and 1.760mg/g, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Suppression of Rotational Twins in Epitaxial B 12P 2 on 4H-SiC

    DOE PAGES

    Frye, C. D.; Saw, C. K.; Padavala, Balabalaji; ...

    2017-12-22

    B 12P2 was grown epitaxially on (0001) 4H-SiC using two different substrate miscuts: a standard 4° miscut toward the [more » $$11\\bar{20}$$] and a custom miscut 4° toward the [$$1\\bar{10}0$$]. Epitaxy on substrates miscut to the [$$11\\bar{20}$$] resulted in highly twinned B 12P 2 films with a rotational twin density of approximately 70% twin orientation I and 30% twin orientation II. In contrast, epitaxy on substrates tilted toward the [$$1\\bar{10}0$$] produced films of >99% twin orientation I. A H 2 etch model is used to explain the 4H-SiC surface morphology for each miscut prior to epitaxy and demonstrate how the surface steps influence the nucleation of B 12P 2 twin orientations. Surface steps on substrates miscut to the [$$11\\bar{20}$$] tend to be zig-zagged with steps rotated 60° from one another producing B 12P 2 crystals that nucleate in orientations rotated by 60°, hence forming rotationally twinned films. In conclusion, steps on substrates tilted to the [$$1\\bar{10}0$$] tend to be parallel resulting in crystallographically aligned B 12P 2 nucleation.« less

  12. Suppression of Rotational Twins in Epitaxial B 12P 2 on 4H-SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frye, C. D.; Saw, C. K.; Padavala, Balabalaji

    B 12P2 was grown epitaxially on (0001) 4H-SiC using two different substrate miscuts: a standard 4° miscut toward the [more » $$11\\bar{20}$$] and a custom miscut 4° toward the [$$1\\bar{10}0$$]. Epitaxy on substrates miscut to the [$$11\\bar{20}$$] resulted in highly twinned B 12P 2 films with a rotational twin density of approximately 70% twin orientation I and 30% twin orientation II. In contrast, epitaxy on substrates tilted toward the [$$1\\bar{10}0$$] produced films of >99% twin orientation I. A H 2 etch model is used to explain the 4H-SiC surface morphology for each miscut prior to epitaxy and demonstrate how the surface steps influence the nucleation of B 12P 2 twin orientations. Surface steps on substrates miscut to the [$$11\\bar{20}$$] tend to be zig-zagged with steps rotated 60° from one another producing B 12P 2 crystals that nucleate in orientations rotated by 60°, hence forming rotationally twinned films. In conclusion, steps on substrates tilted to the [$$1\\bar{10}0$$] tend to be parallel resulting in crystallographically aligned B 12P 2 nucleation.« less

  13. The X-linked juvenile retinoschisis protein retinoschisin is a novel regulator of mitogen-activated protein kinase signalling and apoptosis in the retina.

    PubMed

    Plössl, Karolina; Weber, Bernhard H F; Friedrich, Ulrike

    2017-04-01

    X-linked juvenile retinoschisis (XLRS) is a hereditary retinal dystrophy in young males, caused by mutations in the RS1 gene. The function of the encoded protein, termed retinoschisin, and the molecular mechanisms underlying XLRS pathogenesis are still unresolved, although a direct interaction partner of the secreted retinoschisin, the retinal Na/K-ATPase, was recently identified. Earlier gene expression studies in retinoschisin-deficient (Rs1h -/Y ) mice provided a first indication of pathological up-regulation of mitogen-activated protein (MAP) kinase signalling in disease pathogenesis. To further investigate the role for retinoschisin in MAP kinase regulation, we exposed Y-79 cells and murine Rs1h -/Y retinae to recombinant retinoschisin and the XLRS-associated mutant RS1-C59S. Although normal retinoschisin stably bound to retinal cells, RS1-C59S exhibited a strongly reduced binding affinity. Simultaneously, exposure to normal retinoschisin significantly reduced phosphorylation of C-RAF and MAP kinases ERK1/2 in Y-79 cells and murine Rs1h -/Y retinae. Expression of MAP kinase target genes C-FOS and EGR1 was also down-regulated in both model systems. Finally, retinoschisin treatment decreased pro-apoptotic BAX-2 transcript levels in Y-79 cells and Rs1h -/Y retinae. Upon retinoschisin treatment, these cells showed increased resistance against apoptosis, reflected by decreased caspase-3 activity (in Y-79 cells) and increased photoreceptor survival (in Rs1h -/Y retinal explants). RS1-C59S did not influence C-RAF or ERK1/2 activation, C-FOS or EGR1 expression, or apoptosis. Our data imply that retinoschisin is a novel regulator of MAP kinase signalling and exerts an anti-apoptotic effect on retinal cells. We therefore discuss that disturbances of MAP kinase signalling by retinoschisin deficiency could be an initial step in XLRS pathogenesis. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  14. Unified mechanism of alkali and alkaline earth catalyzed gasification reactions of carbon by CO2 and H2O

    USGS Publications Warehouse

    Chen, S.G.; Yang, R.T.

    1997-01-01

    From molecular orbital calculations, a unified mechanism is proposed for the gasification reactions of graphite by CO2 and H2O, both uncatalyzed and catalyzed by alkali and alkaline earth catalysts. In this mechanism, there are two types of oxygen intermediates that are bonded to the active edge carbon atoms: an in-plane semiquinone type, Cf(O), and an off-plane oxygen bonded to two saturated carbon atoms that are adjacent to the semiquinone species, C(O)Cf(O). The rate-limiting step is the decomposition of these intermediates by breaking the C-C bonds that are connected to Cf(O). A new rate equation is derived for the uncatalyzed reactions, and that for the catalyzed reactions is readily available from the proposed mechanism. The proposed mechanism can account for several unresolved experimental observations: TPD and TK (transient kinetics) desorption results of the catalyzed systems, the similar activation energies for the uncatalyzed and catalyzed reactions, and the relative activities of the alkali and alkaline earth elements. The net charge of the edge carbon active site is substantially changed by gaining electron density from the alkali or alkaline earth element (by forming C-O-M, where M stands for metal). The relative catalytic activities of these elements can be correlated with their abilities of donating electrons and changing the net charge of the edge carbon atom. As shown previously (Chen, S. G.; Yang, R. T. J. Catal. 1993, 141, 102), only clusters of the alkali compounds are active. This derives from the ability of the clusters to dissociate CO2 and H2O to form O atoms and the mobility of the dissociated O atoms facilitated by the clusters.

  15. Integrated experimental and technoeconomic evaluation of two-stage Cu-catalyzed alkaline-oxidative pretreatment of hybrid poplar.

    PubMed

    Bhalla, Aditya; Fasahati, Peyman; Particka, Chrislyn A; Assad, Aline E; Stoklosa, Ryan J; Bansal, Namita; Semaan, Rachel; Saffron, Christopher M; Hodge, David B; Hegg, Eric L

    2018-01-01

    When applied to recalcitrant lignocellulosic feedstocks, multi-stage pretreatments can provide more processing flexibility to optimize or balance process outcomes such as increasing delignification, preserving hemicellulose, and maximizing enzymatic hydrolysis yields. We previously reported that adding an alkaline pre-extraction step to a copper-catalyzed alkaline hydrogen peroxide (Cu-AHP) pretreatment process resulted in improved sugar yields, but the process still utilized relatively high chemical inputs (catalyst and H 2 O 2 ) and enzyme loadings. We hypothesized that by increasing the temperature of the alkaline pre-extraction step in water or ethanol, we could reduce the inputs required during Cu-AHP pretreatment and enzymatic hydrolysis without significant loss in sugar yield. We also performed technoeconomic analysis to determine if ethanol or water was the more cost-effective solvent during alkaline pre-extraction and if the expense associated with increasing the temperature was economically justified. After Cu-AHP pretreatment of 120 °C NaOH-H 2 O pre-extracted and 120 °C NaOH-EtOH pre-extracted biomass, approximately 1.4-fold more total lignin was solubilized (78% and 74%, respectively) compared to the 30 °C NaOH-H 2 O pre-extraction (55%) carried out in a previous study. Consequently, increasing the temperature of the alkaline pre-extraction step to 120 °C in both ethanol and water allowed us to decrease bipyridine and H 2 O 2 during Cu-AHP and enzymes during hydrolysis with only a small reduction in sugar yields compared to 30 °C alkaline pre-extraction. Technoeconomic analysis indicated that 120 °C NaOH-H 2 O pre-extraction has the lowest installed ($246 million) and raw material ($175 million) costs compared to the other process configurations. We found that by increasing the temperature of the alkaline pre-extraction step, we could successfully lower the inputs for pretreatment and enzymatic hydrolysis. Based on sugar yields as well as capital, feedstock, and operating costs, 120 °C NaOH-H 2 O pre-extraction was superior to both 120 °C NaOH-EtOH and 30 °C NaOH-H 2 O pre-extraction.

  16. Integrated experimental and technoeconomic evaluation of two-stage Cu-catalyzed alkaline–oxidative pretreatment of hybrid poplar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhalla, Aditya; Fasahati, Peyman; Particka, Chrislyn A.

    When applied to recalcitrant lignocellulosic feedstocks, multi-stage pretreatments can provide more processing flexibility to optimize or balance process outcomes such as increasing delignification, preserving hemicellulose, and maximizing enzymatic hydrolysis yields. We previously reported that adding an alkaline pre-extraction step to a copper-catalyzed alkaline hydrogen peroxide (Cu-AHP) pretreatment process resulted in improved sugar yields, but the process still utilized relatively high chemical inputs (catalyst and H 2O 2) and enzyme loadings. We hypothesized that by increasing the temperature of the alkaline pre-extraction step in water or ethanol, we could reduce the inputs required during Cu-AHP pretreatment and enzymatic hydrolysis without significantmore » loss in sugar yield. We also performed technoeconomic analysis to determine if ethanol or water was the more cost-effective solvent during alkaline pre-extraction and if the expense associated with increasing the temperature was economically justified. After Cu-AHP pretreatment of 120 °C NaOH-H 2O pre-extracted and 120 °C NaOH-EtOH pre-extracted biomass, approximately 1.4-fold more total lignin was solubilized (78% and 74%, respectively) compared to the 30 °C NaOH-H 2O pre-extraction (55%) carried out in a previous study. Consequently, increasing the temperature of the alkaline pre-extraction step to 120 °C in both ethanol and water allowed us to decrease bipyridine and H 2O 2 during Cu-AHP and enzymes during hydrolysis with only a small reduction in sugar yields compared to 30 °C alkaline pre-extraction. Technoeconomic analysis indicated that 120 °C NaOH-H 2O pre-extraction has the lowest installed ($246 million) and raw material (175 million) costs compared to the other process configurations. We found that by increasing the temperature of the alkaline pre-extraction step, we could successfully lower the inputs for pretreatment and enzymatic hydrolysis. Based on sugar yields as well as capital, feedstock, and operating costs, 120 °C NaOH-H 2O pre-extraction was superior to both 120 °C NaOH-EtOH and 30 °C NaOH-H 2O pre-extraction.« less

  17. Integrated experimental and technoeconomic evaluation of two-stage Cu-catalyzed alkaline–oxidative pretreatment of hybrid poplar

    DOE PAGES

    Bhalla, Aditya; Fasahati, Peyman; Particka, Chrislyn A.; ...

    2018-05-17

    When applied to recalcitrant lignocellulosic feedstocks, multi-stage pretreatments can provide more processing flexibility to optimize or balance process outcomes such as increasing delignification, preserving hemicellulose, and maximizing enzymatic hydrolysis yields. We previously reported that adding an alkaline pre-extraction step to a copper-catalyzed alkaline hydrogen peroxide (Cu-AHP) pretreatment process resulted in improved sugar yields, but the process still utilized relatively high chemical inputs (catalyst and H 2O 2) and enzyme loadings. We hypothesized that by increasing the temperature of the alkaline pre-extraction step in water or ethanol, we could reduce the inputs required during Cu-AHP pretreatment and enzymatic hydrolysis without significantmore » loss in sugar yield. We also performed technoeconomic analysis to determine if ethanol or water was the more cost-effective solvent during alkaline pre-extraction and if the expense associated with increasing the temperature was economically justified. After Cu-AHP pretreatment of 120 °C NaOH-H 2O pre-extracted and 120 °C NaOH-EtOH pre-extracted biomass, approximately 1.4-fold more total lignin was solubilized (78% and 74%, respectively) compared to the 30 °C NaOH-H 2O pre-extraction (55%) carried out in a previous study. Consequently, increasing the temperature of the alkaline pre-extraction step to 120 °C in both ethanol and water allowed us to decrease bipyridine and H 2O 2 during Cu-AHP and enzymes during hydrolysis with only a small reduction in sugar yields compared to 30 °C alkaline pre-extraction. Technoeconomic analysis indicated that 120 °C NaOH-H 2O pre-extraction has the lowest installed ($246 million) and raw material (175 million) costs compared to the other process configurations. We found that by increasing the temperature of the alkaline pre-extraction step, we could successfully lower the inputs for pretreatment and enzymatic hydrolysis. Based on sugar yields as well as capital, feedstock, and operating costs, 120 °C NaOH-H 2O pre-extraction was superior to both 120 °C NaOH-EtOH and 30 °C NaOH-H 2O pre-extraction.« less

  18. Systematic study on the influence of the morphology of α-MoO{sub 3} in the selective oxidation of propylene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuh, Kirsten; Kleist, Wolfgang; Høj, Martin

    2015-08-15

    A variety of morphologically different α-MoO{sub 3} samples were prepared by hydrothermal synthesis and applied in the selective oxidation of propylene. Their catalytic performance was compared to α-MoO{sub 3} prepared by flame spray pyrolysis (FSP) and a classical synthesis route. Hydrothermal synthesis from ammonium heptamolybdate (AHM) and nitric acid at pH 1–2 led to ammonium containing molybdenum oxide phases that were completely transformed into α-MoO{sub 3} after calcination at 550 °C. A one-step synthesis of α-MoO{sub 3} rods was possible starting from MoO{sub 3}·2H{sub 2}O with acetic acid or nitric acid and from AHM with nitric acid at 180 °C.more » Particularly, if nitric acid was used during synthesis, the rod-like morphology of the samples could be stabilized during calcination at 550 °C and the following catalytic activity tests, which was beneficial for the catalytic performance in propylene oxidation. Characterization studies using X-ray diffraction (XRD), scanning electron microscopy (SEM) and Raman spectroscopy showed that those samples, which retained their rod-like morphology during the activity tests, yielded the highest propylene conversion. - Graphical abstract: Hydrothermal synthesis from MoO{sub 3}·2H{sub 2}O in the presence of HNO{sub 3} led to rod-shaped particles which mainly expose (1 0 0) facets which are the most active surfaces. - Highlights: • Hydrothermal synthesis of MoO3 resulted in either rod or slab shaped particles depending on pH. • At pH<0 rods stable towards calcination and catalytic activity testing were formed. • Rod shaped particles had significantly higher activity than slab shaped ones. • The rod shaped particles mainly expose the (1 0 0) facets which are the most active surfaces. • Total surface area is not main determining factor for catalytic activity.« less

  19. Electro-kinetic Separation of Rare Earth Elements Using a Redox-Active Ligand.

    PubMed

    Fang, Huayi; Cole, Bren E; Qiao, Yusen; Bogart, Justin A; Cheisson, Thibault; Manor, Brian C; Carroll, Patrick J; Schelter, Eric J

    2017-10-16

    Purification of rare earth elements is challenging due to their chemical similarities. All of the deployed separation methods rely on thermodynamic properties, such as distribution equilibria in solvent extraction. Rare-earth-metal separations based on kinetic differences have not been examined. Herein, we demonstrate a new approach for rare-earth-element separations by exploiting differences in the oxidation rates within a series of rare earth compounds containing the redox-active ligand [{2-(tBuN(O))C 6 H 4 CH 2 } 3 N] 3- . Using this method, a single-step separation factor up to 261 was obtained for the separation of a 50:50 yttrium-lutetium mixture. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Catalytic Upgrading of 5-Hydroxymethylfurfural to Drop-in Biofuels by Solid Base and Bifunctional Metal-Acid Catalysts.

    PubMed

    Bohre, Ashish; Saha, Basudeb; Abu-Omar, Mahdi M

    2015-12-07

    Design and synthesis of effective heterogeneous catalysts for the conversion of biomass intermediates into long chain hydrocarbon precursors and their subsequent deoxygenation to hydrocarbons is a viable strategy for upgrading lignocellulose into distillate range drop-in biofuels. Herein, we report a two-step process for upgrading 5-hydroxymethylfurfural (HMF) to C9 and C11 fuels with high yield and selectivity. The first step involves aldol condensation of HMF and acetone with a water tolerant solid base catalyst, zirconium carbonate (Zr(CO3 )x ), which gave 92 % C9 -aldol product with high selectivity at nearly 100 % HMF conversion. The as-synthesised Zr(CO3 )x was analysed by several analytical methods for elucidating its structural properties. Recyclability studies of Zr(CO3 )x revealed a negligible loss of its activity after five consecutive cycles over 120 h of operation. Isolated aldol product from the first step was hydrodeoxygenated with a bifunctional Pd/Zeolite-β catalyst in ethanol, which showed quantitative conversion of the aldol product to n-nonane and 1-ethoxynonane with 40 and 56 % selectivity, respectively. 1-Ethoxynonane, a low oxygenate diesel range fuel, which we report for the first time in this paper, is believed to form through etherification of the hydroxymethyl group of the aldol product with ethanol followed by opening of the furan ring and hydrodeoxygenation of the ether intermediate. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Physical Activity Offsets the Negative Effects of a High Fructose Diet

    PubMed Central

    Bidwell, Amy J; Fairchild, Timothy J; Redmond, Jessica; Wang, Long; Keslacy, Stefan; Kanaley, Jill A

    2014-01-01

    Objective To determine the interaction between a high fructose diet and PA levels on postprandial lipidemia and inflammation in normal weight, recreationally active individuals. METHODS Twenty-two men and women (age: 21.2 ± 0.6 yrs; BMI = 22.5 ± 0.6 kg/m2) consumed an additional 75 g of fructose for 14 days on two separate occasions: high physical activity (~12,500 steps/day: FR+Active) and low PA (~ 4,500 steps/day; FR+Inactive). A fructose-rich test meal was given prior to and at the end of each intervention. Blood was sampled at baseline and for 6 h after the meal for triglycerides (TG), very-low density lipoproteins (VLDL), total cholesterol (TC), glucose, insulin, tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6) and c-reactive protein (CRP). RESULTS Log transformed TG AUC significantly increased from pre (10.1 ± 0.1 mg/dL x min for 6 h) to post (10.3 ± 0.08 mg/dL x min for 6 h; p = 0.04) in the FR+Inactive intervention with an 88% increase in Δpeak[TG] (p=0.009) and an 84% increase in Δpeak[VLDL] (p=0.002). Δpeak[IL-6] also increased by 116% after FR+Inactive intervention (p=0.009). Insulin tAUC significantly decreased after FR+Active intervention (p=0.04) with no change in AUC after the FR+Inactive intervention. No changes were observed in glucose, TNF-α and CRP concentrations (p>0.05). CONCLUSIONS Low physical activity during a period of high fructose intake augments fructose-induced postprandial lipidemia and inflammation while high PA minimizes these fructose-induced metabolic disturbances. Even within a young healthy population, maintenance of high PA (>12500 steps/day) decreases susceptibility to cardiovascular risk factors associated with elevated fructose consumption. PMID:24848492

  2. High-performance for hydrogen evolution and pollutant degradation of reduced graphene oxide/two-phase g-C3N4 heterojunction photocatalysts.

    PubMed

    Song, Chengjie; Fan, Mingshan; Shi, Weidong; Wang, Wei

    2018-05-01

    We have successfully synthesized the composites of two-phase g-C 3 N 4 heterojunction photocatalysts by one-step method. And the reduced graphene oxide/two-phase g-C 3 N 4 heterojunction photocatalyst was fabricated via a facile hydrothermal reduction method. The characterization results indicated that the two-phase g-C 3 N 4 was integrated closely, and the common phenomenon of agglomeration for g-C 3 N 4 was significantly reduced. Moreover, the oxidized graphene was reduced successfully in the composites and the graphene was overlaid on the surface or the interlayers of g-C 3 N 4 heterojunction composite uniformly. In addition, we have carried out the photocatalytic activity experiments by H 2 evolution and rhodamine B removal, tetracycline removal under the visible light irradiation. The results revealed that the composite has improved the separation efficiency a lot than the pure photocatalyst. The photocurrent test demonstrated that the recombination of electrons and holes were efficiently inhibited as well as enhanced the photocatalytic activity. The 0.4% rGO loaded samples, 0.4% rGOCN2, own the best performance. Its rate of H 2 evolution was 15 times as high as that of the pure g-C 3 N 4 .

  3. Magnetic properties of mechanically alloyed Mn-Al-C powders

    NASA Astrophysics Data System (ADS)

    Kohmoto, O.; Kageyama, N.; Kageyama, Y.; Haji, H.; Uchida, M.; Matsushima, Y.

    2011-01-01

    We have prepared supersaturated-solution Mn-Al-C alloy powders by mechanical alloying using a planetary high-energy mill. The starting materials were pure Mn, Al and C powers. The mechanically-alloyed powders were subjected to a two-step heating. Although starting particles are Al and Mn with additive C, the Al peak disappears with MA time. With increasing MA time, transition from α-Mn to β-Mn does not occur; the α-Mn structure maintains. At 100 h, a single phase of supersaturated-solution α-Mn is obtained. The lattice constant of α-Mn decreases with increasing MA time. From the Scherrer formula, the crystallite size at 500 h is obtained as 200Å, which does not mean amorphous state. By two-step heating, high magnetization (66 emu/g) was obtained from short-time-milled powders (t=10 h). The precursor of the as-milled powder is not a single phase α-Mn but contains small amount of fcc Al. After two-step heating, the powder changes to τ-phase. Although the saturation magnetization increases, the value is less than that by conventional bulk MnAl (88 emu/g). Meanwhile, long-time-milled powder of single α-Mn phase results in low magnetization (5.2 emu/g) after two-step heating.

  4. Carboxylate-assisted ruthenium-catalyzed alkyne annulations by C-H/Het-H bond functionalizations.

    PubMed

    Ackermann, Lutz

    2014-02-18

    To improve the atom- and step-economy of organic syntheses, researchers would like to capitalize upon the chemistry of otherwise inert carbon-hydrogen (C-H) bonds. During the past decade, remarkable progress in organometallic chemistry has set the stage for the development of increasingly viable metal catalysts for C-H bond activation reactions. Among these methods, oxidative C-H bond functionalizations are particularly attractive because they avoid the use of prefunctionalized starting materials. For example, oxidative annulations that involve sequential C-H and heteroatom-H bond cleavages allow for the modular assembly of regioselectively decorated heterocycles. These structures serve as key scaffolds for natural products, functional materials, crop protecting agents, and drugs. While other researchers have devised rhodium or palladium complexes for oxidative alkyne annulations, my laboratory has focused on the application of significantly less expensive, yet highly selective ruthenium complexes. This Account summarizes the evolution of versatile ruthenium(II) complexes for annulations of alkynes via C-H/N-H, C-H/O-H, or C-H/N-O bond cleavages. To achieve selective C-H bond functionalizations, we needed to understand the detailed mechanism of the crucial C-H bond metalation with ruthenium(II) complexes and particularly the importance of carboxylate assistance in this process. As a consequence, our recent efforts have resulted in widely applicable methods for the versatile preparation of differently decorated arenes and heteroarenes, providing access to among others isoquinolones, 2-pyridones, isoquinolines, indoles, pyrroles, or α-pyrones. Most of these reactions used Cu(OAc)2·H2O, which not only acted as the oxidant but also served as the essential source of acetate for the carboxylate-assisted ruthenation manifold. Notably, the ruthenium(II)-catalyzed oxidative annulations also occurred under an ambient atmosphere of air with cocatalytic amounts of Cu(OAc)2·H2O. Moreover, substrates displaying N-O bonds served as "internal oxidants" for the syntheses of isoquinolones and isoquinolines. Detailed experimental mechanistic studies have provided strong support for a catalytic cycle that relies on initial carboxylate-assisted C-H bond ruthenation, followed by coordinative insertion of the alkyne, reductive elimination, and reoxidation of the thus formed ruthenium(0) complex.

  5. Synthesis of deleobuvir, a potent hepatitis C virus polymerase inhibitor, and its major metabolites labeled with carbon-13 and carbon-14.

    PubMed

    Latli, Bachir; Hrapchak, Matt; Chevliakov, Maxim; Li, Guisheng; Campbell, Scot; Busacca, Carl A; Senanayake, Chris H

    2015-05-30

    Deleobuvir, (2E)-3-(2-{1-[2-(5-bromopyrimidin-2-yl)-3-cyclopentyl-1-methyl-1H-indole-6-carboxamido]cyclobutyl}-1-methyl-1H-benzimidazol-6-yl)prop-2-enoic acid (1), is a non-nucleoside, potent, and selective inhibitor of hepatitis C virus NS5B polymerase. Herein, we describe the detailed synthesis of this compound labeled with carbon-13 and carbon-14. The synthesis of its three major metabolites, namely, the reduced double bond metabolite (2) and the acyl glucuronide derivatives of (1) and (2), is also reported. Aniline-(13) C6 was the starting material to prepare butyl (E)-3-(3-methylamino-4-nitrophenyl-(13) C6 )acrylate [(13) C6 ]-(11) in six steps. This intermediate was then used to obtain [(13) C6 ]-(1) and [(13) C6 ]-(2) in five and four more steps, respectively. For the radioactive synthesis, potassium cyanide-(14) C was used to prepare 1-cylobutylaminoacid [(14) C]-(23) via Buchrer-Bergs reaction. The carbonyl chloride of this acid was then used to access both [(14) C]-(1) and [(14) C]-(2) in four steps. The acyl glucuronide derivatives [(13) C6 ]-(3), [(13) C6 ]-(4) and [(14) C]-(3) were synthesized in three steps from the acids [(13) C6 ]-(1), [(13) C6 ]-(2) and [(14) C]-(1) using known procedures. Copyright © 2015 John Wiley & Sons, Ltd.

  6. CO-CO coupling on Cu facets: Coverage, strain and field effects

    DOE PAGES

    Sandberg, Robert B.; Montoya, Joseph H.; Chan, Karen; ...

    2016-08-21

    We present a DFT study on the effect of coverage, strain, and electric field on CO-CO coupling energetics on Cu (100), (111), and (211). Our calculations indicate that CO-CO coupling is facile on all three facets in the presence of a cation-induced electric field in the Helmholtz plane, with the lowest barrier on Cu(100). The CO dimerization pathway is therefore expected to play a role in C 2 formation at potentials negative of the Cu potential of zero charge, corresponding to CO 2/CO reduction conditions at high pH. Both increased *CO coverage and tensile strain further improve C-C coupling energeticsmore » on Cu (111) and (211). Since CO dimerization is facile on all 3 Cu facets, subsequent surface hydrogenation steps may also play an important role in determining the overall activity towards C 2 products. Adsorption of *CO, *H, and *OH on the 3 facets were investigated with a Pourbaix analysis. Here, the (211) facet has the largest propensity to co-adsorb *CO and *H, which would favor surface hydrogenation following CO dimerization.« less

  7. Purification, immobilization and characterization of tannase from Penicillium variable.

    PubMed

    Sharma, Shashi; Agarwal, Lata; Saxena, Rajendra Kumar

    2008-05-01

    Tannase from Penicillium variable IARI 2031 was purified by a two-step purification strategy comprising of ultra-filtration using 100 kDa molecular weight cutoff and gel-filtration using Sephadex G-200. A purification fold of 135 with 91% yield of tannase was obtained. The enzyme has temperature and pH optima of 50 degrees C and 5 degrees C, respectively. However, the functional temperature range is from 25 to 80 degrees C and functional pH range is from 3.0 to 8.0. This tannase could successfully be immobilized on Amberlite IR where it retains about 85% of the initial catalytic activity even after ninth cycle of its use. Based on the Michaelis-Menten constant (Km) of tannase, tannic acid is the best substrate with Km of 32 mM and Vmax of 1.11 micromol ml(-1)min(-1). Tannase is inhibited by phenyl methyl sulphonyl fluoride (PMSF) and N-ethylmaleimide retaining only 28.1% and 19% residual activity indicating that this enzyme belongs to the class of serine hydrolases. Tannase in both crude and crude lyophilized forms is stable for one year retaining more than 60% residual activity.

  8. Zinc(II) complexes with heterocyclic ether, acid and amide. Crystal structure, spectral, thermal and antibacterial activity studies

    NASA Astrophysics Data System (ADS)

    Jabłońska-Wawrzycka, Agnieszka; Rogala, Patrycja; Czerwonka, Grzegorz; Hodorowicz, Maciej; Stadnicka, Katarzyna

    2016-02-01

    The reaction of zinc salts with heterocyclic ether (1-ethoxymethyl-2-methylimidazole (1-ExMe-2-MeIm)), acid (pyridine-2,3-dicarboxylic acid (2,3-pydcH2)) and amide (3,5-dimethylpyrazole-1-carboxamide (3,5-DMePzCONH2)) yielded three new zinc complexes formulated as [Zn(1-ExMe-2-MeIm)2Cl2] 1, fac-[Zn(H2O)6][Zn(2,3-pydcH)3]22 and [Zn(3,5-DMePz)2(NCO)2] 3. Complexes of 1 and 3 are four-coordinated with a tetrahedron as coordination polyhedron. However, compound 2 forms an octahedral cation-anion complex. The complex 3 was prepared by eliminating of the carboxamide group from the ligand and then the 3,5-dimethylpyrazole (3,5-DMePz) and isocyanates formed were employed as new ligands. The IR and X-ray studies have confirmed a bidentate fashion of coordination of the 2,3-pydcH and monodentate fashion of coordination of the 1-ExMe-2-MeIm and 3,5-DMePz to the Zn(II) ions. The crystal packing of Zn(II) complexes are stabilized by intermolecular classical hydrogen bonds of O-H⋯O and N-H⋯O types. The most interesting feature of the supramolecular architecture of complexes is the existence of C-H⋯O, C-H⋯Cl and C-H⋯π interactions and π⋯π stacking, which also contributes to structural stabilisation. The correlation between crystal structure and thermal stability of zinc complexes is observed. In all compounds the fragments of ligands donor-atom containing go in the last steps. Additionally, antimicrobial activities of compounds were carried out against certain Gram-positive and Gram-negative bacteria and counts of CFU (colony forming units) were also determined. The achieved results confirmed a significant antibacterial activity of some tested zinc complexes. On the basis of the Δ log CFU values the antibacterial activity of zinc complexes follows the order: 3 > 2 > 1. Influence a number of N-donor atoms in zinc environment on antibacterial activity is also observed.

  9. Enhanced bacterial efflux system is the first step to the development of metronidazole resistance in Helicobacter pylori.

    PubMed

    Tsugawa, Hitoshi; Suzuki, Hidekazu; Muraoka, Hiroe; Ikeda, Fumiaki; Hirata, Kenro; Matsuzaki, Juntaro; Saito, Yoshimasa; Hibi, Toshifumi

    2011-01-14

    Although metronidazole (Mtz) is an important component of Helicobacter pylori eradication regimens, it has been pointed out that the increasing use of Mtz may result in increase in the incidence of Mtz-resistant strains. The present study was designed to examine the initial mechanism of resistance acquisition of H. pylori to Mtz. After 10 Mtz-susceptible strains were cultured on plates containing sub-inhibitory concentrations of Mtz, the MIC of Mtz for 9 of the 10 strains increased to levels of the Mtz-resistant strains. In the Mtz-resistance-induced strains, the expression of the TolC efflux pump (hefA) was significantly increased under Mtz exposure, without the reduction of the Mtz-reductive activity. Our finding suggests that overexpression of hefA may be the initial step in the acquisition of Mtz resistance in H. pylori. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Plasma fibronectin: three steps to purification and stability.

    PubMed

    Poulouin, L; Gallet, O; Rouahi, M; Imhoff, J M

    1999-10-01

    Large amounts of soluble fibronectin were easily purified from cryoprecipitated or fresh citrated human blood plasma by a three-step combination of gelatin and heparin-cellufine affinity chromatography. The elution conditions were optimized to obtain a homogeneous fraction on SDS-PAGE and Western blot under reducing condition. No proteolytic activities were detected by zymography at acidic or neutral pH. Furthermore, the fibronectin preparation was stable over time up to 456 h at 37 degrees C in the presence of calcium, zinc, or mercury. This preparation of very stable fibronectin, called highly purified fibronectin (hpFN), gave a yield of 7.00 +/- 0.77 mg of fibronectin per gram of cryoprecipitated plasma and 0.16 mg of fibronectin per milliliter of fresh citrated, giving a yield of 32 to 53% (from presumed fibronectin concentration). This preparation may be useful for cellular tests and interaction analysis. Copyright 1999 Academic Press.

  11. Habitual physical activity and health in the elderly: the Nakanojo Study.

    PubMed

    Aoyagi, Yukitoshi; Shephard, Roy J

    2010-07-01

    This article provides a detailed overview of both factors influencing habitual physical activity, and relationships between such activity and health in the elderly. Current cross-sectional data from the Nakanojo Study, which we have been carrying out since 2000, indicate substantial associations between the overall health of participants, and both the year-averaged daily step count and the year-averaged daily duration of effort undertaken at an intensity >3 metabolic equivalents (MET). In men, the extent of health is associated more closely with the daily duration of activity >3 MET than with the daily step count, whereas in women the association is closer for the step count than for the duration of activity >3 MET. In both sexes, the threshold amount of physical activity associated with better health is greater for physical than for mental benefits: >8000 vs >4000 steps/day and/or >20 vs >5 min/day at >3 MET, respectively. In other words, physical health is better in those spending at least 20 min/day in moderate walking (at a pace of around 1.4 m/s [5 km/h]) and a further >60 min of light activity per day. In contrast, better mental health is associated with much smaller amounts of deliberate physical activity. Both the intensity and the total volume of physical activity are influenced by meteorological factors, particularly precipitation and mean ambient temperature. Activity decreases exponentially to about 4000 steps/day as precipitation increases. Excluding the influence of rainfall, the daily step count peaks at a mean outdoor temperature of around 17 degrees C; above and especially below such readings, physical activity decreases as a quadratic function of temperature. Seasonal changes in the microclimate should thus be considered when designing interventions intended to increase the habitual physical activity of older adults. Based on these findings, we are now developing preventive tactics that should contribute to health promotion, disease prevention and thus a reduction in medical expenses for elderly people.

  12. Synthesis and Pharmacological Evaluation of Some New Pyrimidine Derivatives Containing 1,2,4-Triazole

    PubMed Central

    Khanage, Shantaram Gajanan; Raju, S. Appala; Mohite, Popat Baban; Pandhare, Ramdas Bhanudas

    2012-01-01

    Purpose: An efficient method has been described for synthesis of 6-(substituted aryl)-4-(3,5-diphenyl-1H-1,2,4-triazol-1-yl)-1, 6-dihydropyrimidine-2-thiol, as a beneficial antimicrobial, anticonvulsant and anticancer agents. Methods: The clalcones of title compounds were synthesized in three steps and subsequently these chalcones were further reacted with thiourea in the presence of KOH in ethanol, which led to the formation of dihydropyrimidine derivatives (4a-j). Compounds 4a-j were screened for their in vitro antimicrobial activity by agar well method and their anticonvulsant activity by the MES model. Anticancer activity of two newly synthesized heterocycles were evaluated at National Cancer Institute (NCI) Maryland, USA against 60 cell lines of different human tumor at a single dose of 10-5 M. Results: Compound 4b, 4c, 4d, 4i and 4j were exhibited significant antimicrobial potential against tested strains at 50μg/ml and 100μg/ml concentrations. Out of the ten compounds studied 4a, 4b, 4c, 4h and 4j showed comparable MES activity to Phenytoin and Carbamazepine after 0.5h. Tested compounds did not showed to be more potent than standard drugs after 4h. Compound 4a and 4d were found active on Non-Small Cell Lung Cancer (HOP-92). Conclusion: Ten noveldihydropyrimidine analogues has been synthesized, characterized and found to bepromising antibacterial, anticonvulsant and antitumor agents. PMID:24312796

  13. Follicular thyroglobulin induces cathepsin H expression and activity in thyrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oda, Kenzaburo; Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho, Higashimurayama, Tokyo 189-0002; Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Toho University, 5-21-16 Omorinishi, Ota, Tokyo 143-8540

    Thyroglobulin (Tg) stored in thyroid follicles exerts a potent negative-feedback effect on each step of pre-hormone biosynthesis, including Tg gene transcription and iodine uptake and organification, by suppressing the expression of specific transcription factors that regulate these steps. Pre-hormones are stored in the follicular colloid before being reabsorbed. Following lysosomal proteolysis of its precursor, thyroid hormone (TH) is released from thyroid follicles. Although the suppressive effects of follicular Tg on each step of pre-hormone biosynthesis have been extensively characterized, whether follicular Tg accumulation also affects hormone reabsorption, proteolysis, and secretion is unclear. In this study we explored whether follicular Tgmore » can regulate the expression and function of the lysosomal endopeptidases cathepsins. We found that in the rat thyroid cell line FRTL-5 follicular Tg induced cathepsin H mRNA and protein expression, as well as cathepsin H enzyme activity. Double immunofluorescence staining showed that Tg endocytosis promoted cathepsin H translocalization into lysosomes where it co-localized with internalized Tg. These results suggest that cathepsin H is an active participant in lysosome-mediated pre-hormone degradation, and that follicular Tg stimulates mobilization of pre-hormones by activating cathepsin H-associated proteolysis pathways. - Highlights: • Follicular Tg increases cathepsin H mRNA and protein levels in rat thyroid cells. • Follicular Tg increases cathepsin H enzyme activity in rat thyroid cells. • After Tg stimulation cathepsin H co-localizes to lysosomes with follicular Tg. • Cathepsin H promotes hormone secretion by lysosome-mediated mechanisms.« less

  14. Metastability of a-SiOx:H thin films for c-Si surface passivation

    NASA Astrophysics Data System (ADS)

    Serenelli, L.; Martini, L.; Imbimbo, L.; Asquini, R.; Menchini, F.; Izzi, M.; Tucci, M.

    2017-01-01

    The adoption of a-SiOx:H films obtained by PECVD in heterojunction solar cells is a key to further increase their efficiency, because of its transparency in the UV with respect to the commonly used a-Si:H. At the same time this layer must guarantee high surface passivation of the c-Si to be suitable in high efficiency solar cell manufacturing. On the other hand the application of amorphous materials like a-Si:H and SiNx on the cell frontside expose them to the mostly energetic part of the sun spectrum, leading to a metastability of their passivation properties. Moreover as for amorphous silicon, thermal annealing procedures are considered as valuable steps to enhance and stabilize thin film properties, when performed at opportune temperature. In this work we explored the reliability of a-SiOx:H thin film layers surface passivation on c-Si substrates under UV exposition, in combination with thermal annealing steps. Both p- and n-type doped c-Si substrates were considered. To understand the effect of UV light soaking we monitored the minority carriers lifetime and Sisbnd H and Sisbnd O bonding, by FTIR spectra, after different exposure times to light coming from a deuterium lamp, filtered to UV-A region, and focused on the sample to obtain a power density of 50 μW/cm2. We found a certain lifetime decrease after UV light soaking in both p- and n-type c-Si passivated wafers according to a a-SiOx:H/c-Si/a-SiOx:H structure. The role of a thermal annealing, which usually enhances the as-deposited SiOx passivation properties, was furthermore considered. In particular we monitored the UV light soaking effect on c-Si wafers after a-SiOx:H coating by PECVD and after a thermal annealing treatment at 300 °C for 30 min, having selected these conditions on the basis of the study of the effect due to different temperatures and durations. We correlated the lifetime evolution and the metastability effect of thermal annealing to the a-SiOx:H/c-Si interface considering the evolution of hydrogen in the film revealed by FTIR spectra, and we developed a model for the effect of both treatments on the Sisbnd H bonding and the metastability shown in the lifetime of a-SiOx:H/c-Si/a-SiOx:H structure. We found that, after UV exposure, thermal annealing steps can be used as a tool for the c-Si passivation recovery and enhancement.

  15. Syngas production over La 0.9Ni yAl 11.95-yO 19-δ catalysts during C 14-alkane partial oxidation: Effects of sulfur and polycyclic aromatic hydrocarbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, Todd H.

    Partial oxidation studies were conducted over a series of Ni-substituted lanthanum hexaaluminate catalysts, La 0.9Ni yAl 11.95-yO 19-δ (y = 1.0, 0.8, 0.4 and 0.2) to evaluate the effect of higher alkane, sulfur and polycyclic aromatic hydrocarbons using tetradecane (n-C 14), dibenzothiophene (DBT) and 1-methylnapthalene (1-MN) as model reaction compounds. XRD showed the Ni-substituted lanthanum hexaaluminate catalysts to have magnetoplumbite structure. Lattice parameters along the a,b-axis are shown to increase systematically with increasing Ni substitution. The unit cell is also shown to increase systematically with Ni substitution providing clear evidence of Ni 2+ substitution for Al 3+ in the lanthanummore » hexaaluminate lattice. Catalytic activity and product yields were evaluated by temperature programmed surface reaction (TPSR) using n-C 14 partial oxidation as a probe reaction. Between 750 and 900°C, H 2 and CO yields are shown to increase with increasing Ni surface sites while aromatic and olefin yields are shown to decrease. Step response experiments were performed to show the effect of 0.1 wt% 1-MN addition on catalytic activity and performance. As expected, at lower Ni substitution, thermal chemistry predominates suggesting fewer available active Ni sites. At the conditions tested, the site blocking effect is shown to be reversible at all levels of Ni substitution. Similar catalytic behaviors are observed with step response experiments to 50 ppm w/w dibenzothiophene (DBT) where site blocking is shown to produce a concomitantly greater effect on catalytic performance and active site occlusion with catalysts that have less active sites. The step response to DBT is also observed to be reversible. Post analysis of the used catalysts shows that coke deposition is greater on the catalysts with lower Ni substitution.« less

  16. Syngas production over La 0.9Ni yAl 11.95-yO 19-δ catalysts during C 14-alkane partial oxidation: Effects of sulfur and polycyclic aromatic hydrocarbons

    DOE PAGES

    Gardner, Todd H.

    2018-02-07

    Partial oxidation studies were conducted over a series of Ni-substituted lanthanum hexaaluminate catalysts, La 0.9Ni yAl 11.95-yO 19-δ (y = 1.0, 0.8, 0.4 and 0.2) to evaluate the effect of higher alkane, sulfur and polycyclic aromatic hydrocarbons using tetradecane (n-C 14), dibenzothiophene (DBT) and 1-methylnapthalene (1-MN) as model reaction compounds. XRD showed the Ni-substituted lanthanum hexaaluminate catalysts to have magnetoplumbite structure. Lattice parameters along the a,b-axis are shown to increase systematically with increasing Ni substitution. The unit cell is also shown to increase systematically with Ni substitution providing clear evidence of Ni 2+ substitution for Al 3+ in the lanthanummore » hexaaluminate lattice. Catalytic activity and product yields were evaluated by temperature programmed surface reaction (TPSR) using n-C 14 partial oxidation as a probe reaction. Between 750 and 900°C, H 2 and CO yields are shown to increase with increasing Ni surface sites while aromatic and olefin yields are shown to decrease. Step response experiments were performed to show the effect of 0.1 wt% 1-MN addition on catalytic activity and performance. As expected, at lower Ni substitution, thermal chemistry predominates suggesting fewer available active Ni sites. At the conditions tested, the site blocking effect is shown to be reversible at all levels of Ni substitution. Similar catalytic behaviors are observed with step response experiments to 50 ppm w/w dibenzothiophene (DBT) where site blocking is shown to produce a concomitantly greater effect on catalytic performance and active site occlusion with catalysts that have less active sites. The step response to DBT is also observed to be reversible. Post analysis of the used catalysts shows that coke deposition is greater on the catalysts with lower Ni substitution.« less

  17. Threshold collision-induced dissociation and theoretical study of protonated azobenzene

    NASA Astrophysics Data System (ADS)

    Rezaee, Mohammadreza; McNary, Christopher P.; Armentrout, P. B.

    2017-10-01

    Protonated azobenzene (AB), H+(C6H5N2C6H5), has been studied using threshold collision-induced dissociation in a guided ion beam tandem mass spectrometer. Product channels observed are C6H5N2+ + C6H6 and C6H5+ + N2 + C6H6. The experimental kinetic energy-dependent cross sections were analyzed using a statistical model that accounts for internal and kinetic energy distributions of the reactants, multiple collisions, and kinetic shifts. From this analysis, the activation energy barrier height of 2.02 ± 0.11 eV for benzene loss is measured. To identify the transition states (TSs) and intermediates (IMs) for these dissociations, relaxed potential energy surface (PES) scans were performed at the B3LYP/aug-cc-pVTZ level of theory. The PES indicates that there is a substantial activation energy along the dissociation reaction coordinate that is the rate-limiting step for benzene loss and at some levels of theory, for subsequent N2 loss as well. Relative energies of the reactant, TSs, IMs, and products were calculated at B3LYP, wB97XD, M06, PBEPBE, and MP2(full) levels of theory using both 6-311++G(2d,2p) and aug-cc-pVTZ basis sets. Comparison of the experimental results with theoretical values from various computational methods indicates how well these theoretical methods can predict thermochemical properties. In addition to these density functional theory and MP2 methods, several high accuracy multi-level calculations such as CBS-QB3, G3, G3MP2, G3B3MP2, G4, and G4MP2 were performed to determine the thermochemical properties of AB including the proton affinity and gas-phase basicity, and to compare the performance of different theoretical methods.

  18. Adsorption of thiophene on silica-supported Mo clusters

    NASA Astrophysics Data System (ADS)

    Komarneni, M.; Kadossov, E.; Justin, J.; Lu, M.; Burghaus, U.

    2010-07-01

    The adsorption/decomposition kinetics/dynamics of thiophene has been studied on silica-supported Mo and MoS x clusters. Two-dimensional cluster formation at small Mo exposures and three-dimensional cluster growth at larger exposures would be consistent with the Auger electron spectroscopy (AES) data. Thermal desorption spectroscopy (TDS) indicates two reaction pathways. H 4C 4S desorbs molecularly at 190-400 K. Two TDS features were evident and could be assigned to molecularly on Mo sites, and S sites adsorbed thiophene. Assuming a standard preexponential factor (ν = 1 × 10 13/s) for first-order kinetics, the binding energies for adsorption on Mo (sulfur) sites amount to 90 (65) kJ/mol for 0.4 ML Mo exposure and 76 (63) kJ/mol for 2 ML Mo. Thus, smaller clusters are more reactive than larger clusters for molecular adsorption of H 4C 4S. The second reaction pathway, the decomposition of thiophene, starts at 250 K. Utilizing multimass TDS, H 2, H 2S, and mostly alkynes are detected in the gas phase as decomposition products. H 4C 4S bond activation results in partially sulfided Mo clusters as well as S and C residuals on the surface. S and C poison the catalyst. As a result, with an increasing number of H 4C 4S adsorption/desorption cycles, the uptake of molecular thiophene decreases as well as the H 2 and H 2S production ceases. Thus, silica-supported sulfided Mo clusters are less reactive than metallic clusters. The poisoned catalyst can be partially reactivated by annealing in O 2. However, Mo oxides also appear to form, which passivate the catalyst further. On the other hand, while annealing a used catalyst in H/H 2, it is poisoned even more (i.e., the S AES signal increases). By means of adsorption transients, the initial adsorption probability, S0, of C 4H 4S has been determined. At thermal impact energies ( Ei = 0.04 eV), S0 for molecular adsorption amounts to 0.43 ± 0.03 for a surface temperature of 200 K. S0 increases with Mo cluster size, obeying the capture zone model. The temperature dependence of S0( Ts) consists of two regions consistent with molecular adsorption of thiophene at low temperatures and its decomposition above 250 K. Fitting S0( Ts) curves allows one to determine the bond activation energy for the first elementary decomposition step of C 4H 4S, which amounts to (79 ± 2) kJ/mol and (52 ± 4) kJ/mol for small and large Mo clusters, respectively. Thus, larger clusters are more active for decomposing C 4H 4S than are smaller clusters.

  19. Use of radiolabeled substrates to determine the desaturase and elongase activities involved in eicosapentaenoic acid and docosahexaenoic acid biosynthesis in the marine microalga Pavlova lutheri.

    PubMed

    Guihéneuf, Freddy; Ulmann, Lionel; Mimouni, Virginie; Tremblin, Gérard

    2013-06-01

    The marine flagellate Pavlova lutheri is a microalga known to be rich in long-chain polyunsaturated fatty acids (LC-PUFAs) and able to produce large amounts of n-3 fatty acids, such as eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3). As no previous study had attempted to measure the metabolic step of fatty acid synthesis in this alga, we used radiolabeled precursors to explore the various desaturation and elongation steps involved in LC-PUFA biosynthesis pathways. The incorporation of (14)C-labeled palmitic ([1-(14)C] 16:0) and dihomo-γ-linolenic ([1-(14)C] 20:3n-6) acids as ammonium salts within the cells was monitored during incubation periods lasting 3, 10 or 24h. Total lipids and each of the fatty acids were also monitored during these incubation periods. A decrease in the availability and/or accessibility of the radiolabeled substrates was observed over the incubation time. This decrease with incubation time observed using [1-(14)C] 16:0 and [1-(14)C] 20:3n-6 as substrates was used to monitor the conversion of (14)C-labeled arachidonic acid ([1-(14)C] 20:4n-6) into longer and more unsaturated fatty acids, such as 20:5n-3 and 22:6n-3, over shorter incubation times (1 and 3h). A metabolic relationship between the n-6 and n-3 fatty acid series was demonstrated in P. lutheri by measuring the Δ17-desaturation activity involved in the conversion of eicosatetraenoic acid to 20:5n-3. Our findings suggest that the biosynthesis pathway leading to n-3 LC-PUFA involves fatty acids of the n-6 family, which act as precursors in the biosynthesis of 20:5n-3 and 22:6n-3. This preliminary work provides a method for studying microalgal LC-PUFA biosynthesis pathways and desaturase and elongase activities in vivo using externally-radiolabeled fatty acid precursors as substrates. The use of the [1-(14)C] 20:4n-6 substrate also highlighted the relationships between the n-6 and the n-3 fatty acid series (e.g. Δ17-desaturation), and the final elongation and desaturation steps required for n-3 LC-PUFA formation in P. lutheri. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Preparation of 7-hydroxy-2-oxoindolin-3-ylacetic acid and its [13C2], [5-n-3H], and [5-n-3H]-7-O-glucosyl analogues for use in the study of indol-3-ylacetic acid catabolism

    NASA Technical Reports Server (NTRS)

    Lewer, P.; Bandurski, R. S. (Principal Investigator)

    1987-01-01

    An improved synthesis of 7-hydroxy-2-oxoindolin-3-ylacetic acid via the base-induced condensation reaction between oxalate esters and 7-benzyloxyindolin-2-one is described. 7-Benzyloxyindolin-2-one was prepared in four steps and 50% overall yield from 3-hydroxy-2-nitrotoluene. The yield of the title compound from 7-benzyloxyindolin-2-one was 56%. This route was used to prepare 7-hydroxy-2-oxoindolin-3-yl[13C2]acetic acid in 30% yield from [13C2]oxalic acid dihydrate. The method could not be extended to the preparation of the corresponding [14C2]-compound. However, an enzyme preparation from Zea mays roots catalysed the conversion of carrier-free [5-n-3H]indol-3-ylacetic acid with a specific activity of 16.7 Ci mmol-1 to a mixture of 7-hydroxy-2-oxo[5-n-3H]indolin-3-ylacetic acid and its [5-n-3H]-7-O-glucoside in ca. 3 and 40% radiochemical yield respectively. The glucoside was converted into the 7-hydroxy compound in 80% yield by means of beta-glucosidase.

  1. Plasticity of laccase generated by homeologous recombination in yeast.

    PubMed

    Cusano, Angela M; Mekmouche, Yasmina; Meglecz, Emese; Tron, Thierry

    2009-10-01

    Laccase-encoding sequences sharing 65-71% identity were shuffledin vivo by homeologous recombination. Yeast efficiently repaired linearized plasmids containing clac1, clac2 or clac5 Trametes sp. C30 cDNAs using a clac3 PCR fragment. From transformants secreting active variants, three chimeric laccases (LAC131, LAC232 and LAC535), each resulting from double crossovers, were purified, and their apparent kinetic parameters were determined using 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) and syringaldazine (SGZ) as substrates. At acidic pH, the apparent kinetic parameters of the chimera were not distinguishable from each other or from those obtained for the LAC3 enzyme used as reference. On the other hand, the pH tolerance of the variants was visibly extended towards alkaline pH values. Compared to the parental LAC3, a 31-fold increase in apparent k(cat) was observed for LAC131 at pH 8. This factor is one of the highest ever observed for laccase in a single mutagenesis step.

  2. Highly Cooperative Tetrametallic Ruthenium-μ-Oxo-μ-Hydroxo Catalyst for the Alcohol Oxidation Reaction

    PubMed Central

    Yi, Chae S.; Zeczycki, Tonya N.; Guzei, Ilia A.

    2008-01-01

    The tetrametallic ruthenium-oxo-hydroxo-hydride complex {[(PCy3)(CO)RuH]4(μ4-O)(μ3-OH)(μ2-OH)} (1) was synthesized in two steps from the monomeric complex (PCy3)(CO)RuHCl (2). The tetrameric complex 1 was found to be a highly effective catalyst for the transfer dehydrogenation of alcohols. Complex 1 showed a different catalytic activity pattern towards primary and secondary benzyl alcohols, as indicated by the Hammett correlation for the oxidation reaction of p-X-C6H4CH2OH (ρ = −0.45) and p-X-C6H4CH(OH)CH3 (ρ = +0.22) (X = OMe, CH3, H, Cl, CF3). Both a sigmoidal curve from the plot of initial rate vs [PhCH(OH)CH3] (K0.5 = 0.34 M; Hill coefficient, n = 4.2±0.1) and the phosphine inhibition kinetics revealed the highly cooperative nature of the complex for the oxidation of secondary alcohols. PMID:18726005

  3. Step-scan differential Fourier transform infrared photoacoustic spectroscopy (DFTIR-PAS): a spectral deconvolution method for weak absorber detection in the presence of strongly overlapping background absorptions.

    PubMed

    Liu, Lixian; Mandelis, Andreas; Huan, Huiting; Michaelian, Kirk H

    2017-04-01

    The determination of small absorption coefficients of trace gases in the atmosphere constitutes a challenge for analytical air contaminant measurements, especially in the presence of strongly absorbing backgrounds. A step-scan differential Fourier transform infrared photoacoustic spectroscopy (DFTIR-PAS) method was developed to suppress the coherent external noise and spurious photoacoustic (PA) signals caused by strongly absorbing backgrounds. The infrared absorption spectra of acetylene (C2H2) and local air were used to verify the performance of the step-scan DFTIR-PAS method. A linear amplitude response to C2H2 concentrations from 100 to 5000 ppmv was observed, leading to a theoretical detection limit of 5 ppmv. The differential mode was capable of eliminating the coherent noise and dominant background gas signals, thereby revealing the presence of the otherwise hidden C2H2 weak absorption. Thus, the step-scan DFTIR-PAS modality was demonstrated to be an effective approach for monitoring weakly absorbing gases with absorption bands overlapped by strongly absorbing background species.

  4. Novel double prodrugs of the iron chelator N,N'-bis(2-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED): Synthesis, characterization, and investigation of activation by chemical hydrolysis and oxidation.

    PubMed

    Thiele, Nikki A; Abboud, Khalil A; Sloan, Kenneth B

    2016-08-08

    The development of iron chelators suitable for the chronic treatment of diseases where iron accumulation and subsequent oxidative stress are implicated in disease pathogenesis is an active area of research. The clinical use of the strong chelator N,N'-bis(2-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED) and its alkyl ester prodrugs has been hindered by poor oral bioavailability and lack of conversion to the parent chelator, respectively. Here, we present novel double prodrugs of HBED that have the carboxylate and phenolate donors of HBED masked with carboxylate esters and boronic acids/esters, respectively. These double prodrugs were successfully synthesized as free bases (7a-f) or as dimesylate salts (8a-c,e), and were characterized by (1)H, (13)C, and (11)B NMR; MP; MS; and elemental analysis. The crystal structure of 8a was solved. Three of the double prodrugs (8a-c) were selected for further investigation into their abilities to convert to HBED by stepwise hydrolysis and H2O2 oxidation. The serial hydrolysis of the pinacol and methyl esters of N,N'-bis(2-boronic acid pinacol ester benzyl)ethylenediamine-N,N'-diacetic acid methyl ester dimesylate (8a) was verified by LC-MS. The macro half-lives for the hydrolyses of 8a-c, measured by UV, ranged from 3.8 to 26.3 h at 37 °C in pH 7.5 phosphate buffer containing 50% MeOH. 9, the product of hydrolysis of 8a-c and the intermediate in the conversion pathway, showed little-to-no affinity for iron or copper in UV competition experiments. 9 underwent a serial oxidative deboronation by H2O2 in N-methylmorpholine buffer to generate HBED (k = 10.3 M(-1) min(-1)). The requirement of this second step, oxidation, before conversion to the active chelator is complete may confer site specificity when only localized iron chelation is needed. Overall, these results provide proof of principle for the activation of the double prodrugs by chemical hydrolysis and H2O2 oxidation, and merit further investigation into the protective capabilities of the prodrugs against H2O2-induced cell death. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Density functional theory and RRKM calculations of decompositions of the metastable E-2,4-pentadienal molecular ions.

    PubMed

    Solano Espinoza, Eduardo A; Vallejo Narváez, Wilmer E

    2010-07-01

    The potential energy profiles for the fragmentations that lead to [C(5)H(5)O](+) and [C(4)H(6)](+*) ions from the molecular ions [C(5)H(6)O](+*) of E-2,4-pentadienal were obtained from calculations at the UB3LYP/6-311G + + (3df,3pd)//UB3LYP/6-31G(d,p) level of theory. Kinetic barriers and harmonic frequencies obtained by the density functional method were then employed in Rice-Ramsperger-Kassel-Marcus calculations of individual rate coefficients for a large number of reaction steps. The pre-equilibrium and rate-controlling step approximations were applied to different regions of the complex potential energy surface, allowing the overall rate of decomposition to be calculated and discriminated between three rival pathways: C-H bond cleavage, decarbonylation and cyclization. These processes should have to compete for an equilibrated mixture of four conformers of the E-2,4-pentadienal ions. The direct dissociation, however, can only become important in the high-energy regime. In contrast, loss of CO and cyclization are observable processes in the metastable kinetic window. The former involves a slow 1,2-hydrogen shift from the carbonyl group that is immediately followed by the formation of an ion-neutral complex which, in turn, decomposes rapidly to the s-trans-1,3-butadiene ion [C(4)H(6)](+*). The predominating metastable channel is the second one, that is, a multi-step ring closure which starts with a rate-limiting cis-trans isomerization. This process yields a mixture of interconverting pyran ions that dissociates to the pyrylium ions [C(5)H(5)O](+). These results can be used to rationalize the CID mass spectrum of E-2,4-pentadienal in a low-energy regime. 2010 John Wiley & Sons, Ltd.

  6. Theoretical analysis of factors controlling the nonalternating CO/C(2)H(4) copolymerization.

    PubMed

    Haras, Alicja; Michalak, Artur; Rieger, Bernhard; Ziegler, Tom

    2005-06-22

    A [P-O]Pd catalyst based on o-alkoxy derivatives of diphenylphosphinobenzene sulfonic acid (I) has recently been shown by Drent et al. to perform nonalternating CO/C(2)H(4) copolymerization with subsequent incorporation of ethylene units into the polyketone chain. The origin of the nonalternation is investigated in a theoretical study of I, where calculated activation barriers and reaction heats of all involved elementary steps are used to generate a complete kinetic model. The kinetic model is able to account for the observed productivity and degree of nonalternation as a function of temperature. Consistent with the energy changes obtained for the real catalyst model, the selectivity toward a nonalternating distribution of both comonomers appears to be mainly a result of a strong destabilization of the Pd-acyl complex.

  7. Single-step purification and characterization of an extreme halophilic, ethanol tolerant and acidophilic xylanase from Aureobasidium pullulans NRRL Y-2311-1 with application potential in the food industry.

    PubMed

    Yegin, Sirma

    2017-04-15

    An extracellular xylanase from Aureobasidium pullulans NRRL Y-2311-1 produced on wheat bran was purified by a single-step chromatographic procedure. The enzyme had a molecular weight of 21.6kDa. The optimum pH and temperature for xylanase activity were 4.0 and 30-50°C, respectively. The enzyme was stable in the pH range of 3.0-8.0. The inactivation energy of the enzyme was calculated as 218kJmol -1 . The xylanase was ethanol tolerant and kept complete activity in the presence of 10% ethanol. Likewise, it retained almost complete activity at a concentration range of 0-20% NaCl. In general, the enzyme was resistant to several metal ions and reagents. Mg 2+ , Zn 2+ , Cu 2+ , K 1+ , EDTA and β-mercaptoethanol resulted in enhanced xylanase activity. The K m and V max values on beechwood xylan were determined to be 19.43mgml -1 and 848.4Uml -1 , respectively. The enzyme exhibits excellent characteristics and could, therefore, be a promising candidate for application in food and bio-industries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Poly(-β-hydroxybutyrate) (PHB) depolymerase PHAZ Pen from Penicillium expansum: purification, characterization and kinetic studies.

    PubMed

    Gowda U S, Vaishnavi; Shivakumar, Srividya

    2015-12-01

    Very few studies have been dedicated to R-hydroxyacids (R-HA) production using extracellular polyhydroxyalkanoate depolymerases (ePhaZs). Penicillium expansum produced maximum extracellular polyhydroxybutyrate depolymerase (~6 U/mL) by 72 h when grown in mineral salt medium containing 0.2 % w/v PHB, pH 5.0, at 30 °C and 200 rpm shaking conditions. Partial purification of the extracellular poly(-β-hydroxybutyrate) depolymerase PHAZ Pen from P. expansum by two steps using ammonium sulphate (80 % saturation) and affinity chromatography using concanavalin A yielded 22.76-fold purity and 43.15 % recovery of protein. The enzyme composed of a single polypeptide chain of apparent molecular mass of 20 kDa, as determined by SDS-PAGE, stained positive for glycoprotein by periodic-schiff base (PAS) staining. Optimum enzyme activity was detected between pH 4.0 and 6.0 at 45-50 °C with pH 5.0 and 50 °C supporting maximum activity. The enzyme was stable between pH 4.0 and 6.0 at 55 °C for 1 h with a residual activity of almost 70-80 %. The enzyme was completely inhibited by 1 mM DTT/1 mM HgCl 2 and N-ethylmaleimide (10 mM) indicating the importance of essential disulphide bonds (cystine residues) and tyrosine for enzyme activity or probably for maintaining the native enzyme structure. Among the various divalent and trivalent metal ions, mercuric chloride, ferric citrate and ferrous sulphate inhibited enzyme activity. The enzyme showed substrate specificity towards only PHB and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and no other lipid or other p-nitrophenyl fatty acids or with polycaprolactone, showing that it was a true depolymerase and not any lipase or cutinase. Preliminary investigation revealed β-hydroxybutyrate as the end product of PHB hydrolysis by P. expansum, suggesting that the enzyme acted principally as an exo-type hydrolase. The above properties when compared with other fungal PHB depolymerases reported till date suggest the distinct nature of the PHB depolymerase of P. expansum.

  9. Synthesis, linear and nonlinear optical properties of phosphonato-substituted bithiophenes derived from 2,2'-biphenol.

    PubMed

    Freeman, Jason L; Zhao, Qun; Zhang, Yuanli; Wang, Jianwei; Lawson, Christopher M; Gray, Gary M

    2013-10-21

    Two new series of phosphonato-substituted bithiophenes, BpP(X)(C4H2S)2H and BpP(X)(C4H2S)2P(X)Bp (Bp = 2,2'-C12H8O2, X = O, S, Se), have been synthesized and characterized using linear absorption and emission spectra, and third-order nonlinear absorption measurements at 430 nm with 27 ps laser pulses. The compounds were synthesized in three steps: (1) reacting lithiated bithiophene with (Et2N)2PCl; (2) reacting the product from the first step with biphenol; and (3) reacting the product from the second step with the appropriate chalcogen. The X-ray crystal structures of two of the compounds, BpP(O)(C4H2S)2P(O)Bp and BpP(Se)(C4H2S)2P(Se)Bp, are reported and show a number of intermolecular π-π interactions. The linear absorption spectra, emission spectra, and emission quantum yields show distinct trends with respect to the chalcogen and the number of phosphorus substituents attached to the 2,2'-bithiophene ring. The compounds show emission maxima at wavelengths ranging from 380-400 nm and, BpP(S)(C4H2S)2H shows a 23-fold increase in fluorescence quantum yield relative to that of 2,2'-bithiophene. Fluorescence lifetimes and radiative and non-radiative decay rate constants for the first singlet excited state have been extracted from the quantum yields using time-dependent DFT calculations. Nonlinear transmission measurements indicate that all of the compounds show nonlinear absorption at 430 nm with 27 ps laser pulses in spite of their low solubilities. Notably, the nonlinear absorption threshold of a 0.16 mol L(-1) CH2Cl2 solution of BpP(Se)(C4H2S)2H is 0.9 J cm(-2). The excellent emission quantum yields and good nonlinear absorptions make these compounds promising candidates for optical power limiting applications and as host materials for violet-blue organic light emitting diodes.

  10. Insight into Temperature Dependence of GTPase Activity in Human Guanylate Binding Protein-1

    PubMed Central

    Rahman, Safikur; Deep, Shashank; Sau, Apurba Kumar

    2012-01-01

    Interferon-γ induced human guanylate binding protein-1(hGBP1) belongs to a family of dynamin related large GTPases. Unlike all other GTPases, hGBP1 hydrolyzes GTP to a mixture of GDP and GMP with GMP being the major product at 37°C but GDP became significant when the hydrolysis reaction was carried out at 15°C. The hydrolysis reaction in hGBP1 is believed to involve with a number of catalytic steps. To investigate the effect of temperature in the product formation and on the different catalytic complexes of hGBP1, we carried out temperature dependent GTPase assays, mutational analysis, chemical and thermal denaturation studies. The Arrhenius plot for both GDP and GMP interestingly showed nonlinear behaviour, suggesting that the product formation from the GTP-bound enzyme complex is associated with at least more than one step. The negative activation energy for GDP formation and GTPase assay with external GDP together indicate that GDP formation occurs through the reversible dissociation of GDP-bound enzyme dimer to monomer, which further reversibly dissociates to give the product. Denaturation studies of different catalytic complexes show that unlike other complexes the free energy of GDP-bound hGBP1 decreases significantly at lower temperature. GDP formation is found to be dependent on the free energy of the GDP-bound enzyme complex. The decrease in the free energy of this complex at low temperature compared to at high is the reason for higher GDP formation at low temperature. Thermal denaturation studies also suggest that the difference in the free energy of the GTP-bound enzyme dimer compared to its monomer plays a crucial role in the product formation; higher stability favours GMP but lower favours GDP. Thus, this study provides the first thermodynamic insight into the effect of temperature in the product formation of hGBP1. PMID:22859948

  11. ATP-mediated intrinsic peroxidase-like activity of Fe3O4-based nanozyme: One step detection of blood glucose at physiological pH.

    PubMed

    Vallabani, N V Srikanth; Karakoti, Ajay S; Singh, Sanjay

    2017-05-01

    Fe 3 O 4 nanoparticles (Fe 3 O 4 NPs), demonstrating peroxidase-like activity has garnered attention in the detection of several biomolecules, therefore, emerged as an excellent nano-biosensing agent. The intrinsic peroxidase-like activity of Fe 3 O 4 NPs at acidic pH is the fundamental action driving the oxidation of substrates like TMB, resulting in a colorimetric product formation used in the detection of biomolecules. Hence, the detection sensitivity essentially depends on the ability of oxidation by Fe 3 O 4 NPs in presence of H 2 O 2 . However, the limited sensitivity and pH condition constraint have been identified as the major drawbacks in the detection of biomolecules at physiological pH. Herein, we report overwhelming of the fundamental limitation of acidic pH and tuning the peroxidase-like activity of Fe 3 O 4 NPs at physiological pH by using ATP. In presence of ATP, Fe 3 O 4 NPs exhibited enhanced peroxidase-like activity over a wide range of pH and temperatures. Mechanistically, it was found that the ability of ATP to participate in single electron transfer reaction, through complexation with Fe 3 O 4 NPs, results in the generation of hydroxyl radicals which are responsible for enhanced peroxidase activity at physiological pH. We utilized this ATP-mediated enhanced peroxidase-like activity of Fe 3 O 4 NPs for single step detection of glucose with a colorimetric detection limit of 50μM. Further, we extended this single step detection method to monitor glucose level in human blood serum and detected in a time span of <5min at pH 7.4. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Synthesis, structure and catalytic properties of CNN pincer palladium(II) and ruthenium(II) complexes with N-substituted-2-aminomethyl-6-phenylpyridines.

    PubMed

    Wang, Tao; Hao, Xin-Qi; Zhang, Xiao-Xue; Gong, Jun-Fang; Song, Mao-Ping

    2011-09-21

    N-substituted-2-aminomethyl-6-phenylpyridines 2a-c have been easily prepared from commercially available 6-bromo-2-picolinaldehyde in two steps. Reaction of 2a-c with PdCl(2) in toluene in the presence of triethylamine gave the CNN pincer Pd(II) complexes 3a-c in 18-28% yields. The CNN pincer Ru(II) complex 5 containing a Ru-NHR functionality could be obtained in a 71% yield by treatment of 2c with a Ru(II) precursor instead of PdCl(2). Additionally, the related CNN pincer Ru(II) complex 7 containing a Ru-NH(2) functionality has been synthesized by the reaction of 2-aminomethyl-6-phenylpyridine with the same Ru(II) precursor in a 68% yield. All the new compounds were characterized by elemental analysis (MS for ligands), (1)H, (13)C NMR, (31)P{(1)H} NMR (for Ru complexes) and IR spectra. Molecular structures of Pd complex 3c as well as Ru complexes 5 and 7 have been determined by X-ray single-crystal diffraction. The obtained Pd complexes 3a-c were effective catalysts for the allylation of aldehydes as well as for three-component allylation of aldehydes, arylamines and allyltributyltin and their activity was found to be much higher than a related NCN Pd(II) pincer in the allylation of aldehyde. On the other hand, the two new CNN pincer Ru(II) complexes 5 and 7 displayed excellent catalytic activity in the transfer hydrogenation of ketones in refluxing 2-propanol with the latter being much more active. The final TOF values were up to 4510 h(-1) with 0.01 mol% of 5 and 220,800 h(-1) with 0.005 mol% of 7, respectively. This journal is © The Royal Society of Chemistry 2011

  13. Synthesis of two potent glucocorticoid receptor agonists labeled with carbon-14 and stable isotopes.

    PubMed

    Latli, Bachir; Reeves, Jonathan T; Tan, Zhulin; Hrapchak, Matt; Song, Jinhua J; Busacca, Carl B; Senanayake, Chris H

    2015-01-01

    Two potent glucocorticoid receptor agonists were prepared labeled with carbon-14 and with stable isotopes to perform drug metabolism, pharmacokinetics, and bioanalytical studies. Carbon-14 labeled (1) was obtained from an enantiopure alkyne (5) via a Sonogashira coupling to a previously reported 5-amino-4-iodo-[2-(14)C]pyrimidine [(14)C]-(6), followed by a base-mediated cyclization (1) in 72% overall radiochemical yield. Carbon-14 labeled (2) was prepared in five steps employing a key benzoic acid intermediate [(14)C]-(13), which was synthesized in one pot from enolization of trifluoromethylketone (12), followed by bromine-magnesium exchange and then electrophile trapping reaction with [(14)C]-carbon dioxide. A chiral auxiliary (S)-1-(4-methoxyphenyl)ethylamine was then coupled to this acid to give [(14)C]-(15). Propargylation and separation of diastereoisomers by crystallizations gave the desired diastereomer [(14)C]-(17) in 34% yield. Sonogashira coupling to iodopyridine (10) followed by cyclization to the azaindole [(14)C]-(18) and finally removal of the chiral auxiliary gave [(14)C]-(2) in 7% overall yield. For stable isotope syntheses, [(13)C6]-(1) was obtained in three steps using [(13)C4]-(6) and trimethylsilylacetylene-[(13)C2] in 26% yield, while [(2)H5]-(2) was obtained by first preparing the iodopyridine [(2)H5]-(10) in five steps. Then, Sonogashira coupling to chiral alkyne (24) and cyclization gave [(2)H5]-(2) in 42% overall yield. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Catalytically active alkaline molten globular enzyme: Effect of pH and temperature on the structural integrity of 5-aminolevulinate synthase*

    PubMed Central

    Stojanovski, Bosko M.; Breydo, Leonid; Hunter, Gregory A.; Uversky, Vladimir N.; Ferreira, Gloria C.

    2014-01-01

    5-Aminolevulinate synthase (ALAS), a pyridoxal-5′phosphate (PLP)-dependent enzyme, catalyzes the first step of heme biosynthesis in mammals. Circular dichroism (CD) and fluorescence spectroscopies were used to examine the effects of pH (1.0–3.0 and 7.5–10.5) and temperature (20 and 37 °C) on the structural integrity of ALAS. The secondary structure, as deduced from far-UV CD, is mostly resilient to pH and temperature changes. Partial unfolding was observed at pH 2.0, but further decreasing pH resulted in acid-induced refolding of the secondary structure to nearly native levels. The tertiary structure rigidity, monitored by near-UV CD, is lost under acidic and specific alkaline conditions (pH 10.5 and pH 9.5/37 °C), where ALAS populates a molten globule state. As the enzyme becomes less structured with increased alkalinity, the chiral environment of the internal aldimine is also modified, with a shift from a 420 nm to 330 nm dichroic band. Under acidic conditions, the PLP cofactor dissociates from ALAS. Reaction with 8-anilino-1-naphtalenesulfonic acid corroborates increased exposure of hydrophobic clusters in the alkaline and acidic molten globules, although the reaction is more pronounced with the latter. Furthermore, quenching the intrinsic fluorescence of ALAS with acrylamide at pH 1.0 and 9.5 yielded subtly different dynamic quenching constants. The alkaline molten globule state of ALAS is catalytically active (pH 9.5/37 °C), although the kcat value is significantly decreased. Finally, the binding of 5-aminolevulinate restricts conformational fluctuations in the alkaline molten globule. Overall, our findings prove how the structural plasticity of ALAS contributes to reaching a functional enzyme. PMID:25240868

  15. Hydrogen tunneling links protein dynamics to enzyme catalysis.

    PubMed

    Klinman, Judith P; Kohen, Amnon

    2013-01-01

    The relationship between protein dynamics and function is a subject of considerable contemporary interest. Although protein motions are frequently observed during ligand binding and release steps, the contribution of protein motions to the catalysis of bond making/breaking processes is more difficult to probe and verify. Here, we show how the quantum mechanical hydrogen tunneling associated with enzymatic C-H bond cleavage provides a unique window into the necessity of protein dynamics for achieving optimal catalysis. Experimental findings support a hierarchy of thermodynamically equilibrated motions that control the H-donor and -acceptor distance and active-site electrostatics, creating an ensemble of conformations suitable for H-tunneling. A possible extension of this view to methyl transfer and other catalyzed reactions is also presented. The impact of understanding these dynamics on the conceptual framework for enzyme activity, inhibitor/drug design, and biomimetic catalyst design is likely to be substantial.

  16. A new TRAF-like protein from B. oleracea ssp. botrytis with lectin activity and its effect on macrophages.

    PubMed

    Duarte, Christiane E M; Abranches, Monise V; Silva, Patrick F; de Paula, Sérgio O; Cardoso, Silvia A; Oliveira, Leandro L

    2017-01-01

    Lectins are involved in a wide range of biological mechanisms, like immunomodulatory agent able to activate the innate immunity. In this study, we purified and characterized a new lectin from cauliflower (Brassica oleracea ssp. botrytis - BOL) by three sequential chromatographic steps and confirmed the purity by SDS-PAGE. Additionally, we evaluated the role of the lectin in innate immunity by a phagocytosis assay, production of H 2 O 2 and NO. BOL was characterized like a non-glycosylated protein that showed a molecular mass of ∼34kDa in SDS-PAGE. Its N-terminal sequence (ETRAFREERPSSKIVTIAG) did not reveal any similarity to the other lectins; nevertheless, it showed 100% homology to a putative TRAF-like protein from Brassica rapa and Brassica napus. This is a first report of the TRAF-protein with lectinic activity. The BOL retained its complete hemagglutination activity from 4°C up to 60°C, with stability being more apparent between pH 7.0 and 8.0. Moreover, the lectin was able to stimulate phagocytosis and induce the production of H 2 O 2 and NO. Therefore, BOL can be explored as an immunomodulatory agent by being able to activate the innate immunity and favor antigen removal. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Synthesis, Improved Antisense Activity and Structural Rationale for the Divergent RNA Affinities of 3;#8242;-Fluoro Hexitol Nucleic Acid (FHNA and Ara-FHNA) Modified Oligonucleotides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egli, Martin; Pallan, Pradeep S.; Allerson, Charles R.

    The synthesis, biophysical, structural, and biological properties of both isomers of 3'-fluoro hexitol nucleic acid (FHNA and Ara-FHNA) modified oligonucleotides are reported. Synthesis of the FHNA and Ara-FHNA thymine phosphoramidites was efficiently accomplished starting from known sugar precursors. Optimal RNA affinities were observed with a 3'-fluorine atom and nucleobase in a trans-diaxial orientation. The Ara-FHNA analog with an equatorial fluorine was found to be destabilizing. However, the magnitude of destabilization was sequence-dependent. Thus, the loss of stability is sharply reduced when Ara-FHNA residues were inserted at pyrimidine-purine (Py-Pu) steps compared to placement within a stretch of pyrimidines (Py-Py). Crystal structuresmore » of A-type DNA duplexes modified with either monomer provide a rationalization for the opposing stability effects and point to a steric origin of the destabilization caused by the Ara-FHNA analog. The sequence dependent effect can be explained by the formation of an internucleotide C-F {hor_ellipsis} H-C pseudo hydrogen bond between F3' of Ara-FHNA and C8-H of the nucleobase from the 3'-adjacent adenosine that is absent at Py-Py steps. In animal experiments, FHNA-modified antisense oligonucleotides formulated in saline showed a potent downregulation of gene expression in liver tissue without producing hepatotoxicity. Our data establish FHNA as a useful modification for antisense therapeutics and also confirm the stabilizing influence of F(Py) {hor_ellipsis} H-C(Pu) pseudo hydrogen bonds in nucleic acid structures.« less

  18. Calorimetric Study of the Activation of Hydrogen by Tris(pentafluorophenyl)borane and Trimesitylphosphine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houghton, Adrian Y.; Autrey, Tom

    The mechanism of H2 activation by B(C6F5)3 and P(mes)3 was investigated by isothermal reaction calorimetry, and the heat curves generated were modelled in Berkeley Madonna. The reaction is treated as a single, termolecular step, and an Eyring analysis gave activation parameters of ΔH‡ = 13.6(9) kJ mol-1 and ΔS‡ = -204(85) J K-1 mol-1. The enthalpy of the reaction was found to be -141 kJ mol-1. The kinetic isotope effect was measured as 1.1, consistent with a four-center transition state containing two isotopically exchangeable atoms.

  19. Sequential pH-dependent adsorption of ionic amphiphilic diblock copolymer micelles and choline oxidase onto conductive substrates: toward the design of biosensors.

    PubMed

    Sigolaeva, Larisa V; Günther, Ulrike; Pergushov, Dmitry V; Gladyr, Snezhana Yu; Kurochkin, Ilya N; Schacher, Felix H

    2014-07-01

    This work examines the fabrication regime and the properties of polymer-enzyme thin-films adsorbed onto conductive substrates (graphite or gold). The films are formed via two-steps, sequential adsorption of poly(n-butylmethacrylate)-block-poly(N,N-dimethylaminoethyl methacrylate) (PnBMA-b-PDMAEMA) diblock copolymer micelles (1st step of adsorption), followed by the enzyme choline oxidase (ChO) (2nd step of adsorption). The solution properties of both adsorbed components are studied and the pH-dependent step-by-step fabrication of polymer-enzyme biosensor coatings reveals rather drastic differences in their enzymatic activities in dependence on the pH of both adsorption steps. The resulting hybrid thin-films represent highly active biosensors for choline with a low detection limit of 30 nM and a good linearity in a range between 30 nM and 100 μM. The sensitivity is found to be 175 μA mM(-1) cm(-2) and the operational stability of the polymer-enzyme thin-films can be additionally improved via enzyme-to-enzyme crosslinking with glutaraldehyde. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Biogenesis of the bacterial cbb3 cytochrome c oxidase: Active subcomplexes support a sequential assembly model.

    PubMed

    Durand, Anne; Bourbon, Marie-Line; Steunou, Anne-Soisig; Khalfaoui-Hassani, Bahia; Legrand, Camille; Guitton, Audrey; Astier, Chantal; Ouchane, Soufian

    2018-01-19

    The cbb 3 oxidase has a high affinity for oxygen and is required for growth of bacteria, including pathogens, in oxygen-limited environments. However, the assembly of this oxidase is poorly understood. Most cbb 3 are composed of four subunits: the catalytic CcoN subunit, the two cytochrome c subunits (CcoO and CcoP) involved in electron transfer, and the small CcoQ subunit with an unclear function. Here, we address the role of these four subunits in cbb 3 biogenesis in the purple bacterium Rubrivivax gelatinosus Analyses of membrane proteins from different mutants revealed the presence of active CcoNQO and CcoNO subcomplexes and also showed that the CcoP subunit is not essential for their assembly. However, CcoP was required for the oxygen reduction activity in the absence of CcoQ. We also found that CcoQ is dispensable for forming an active CcoNOP subcomplex in membranes. CcoNOP exhibited oxygen reductase activity, indicating that the cofactors (hemes b and copper for CcoN and cytochromes c for CcoO and CcoP) were present within the subunits. Finally, we discovered the presence of a CcoNQ subcomplex and showed that CcoN is the required anchor for the assembly of the full CcoNQOP complex. On the basis of these findings, we propose a sequential assembly model in which the CcoQ subunit is required for the early maturation step: CcoQ first associates with CcoN before the CcoNQ-CcoO interaction. CcoP associates to CcoNQO subcomplex in the late maturation step, and once the CcoNQOP complex is fully formed, CcoQ is released for degradation by the FtsH protease. This model could be conserved in other bacteria, including the pathogenic bacteria lacking the assembly factor CcoH as in R. gelatinosus . © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. A Novel Laccase with Potent Antiproliferative and HIV-1 Reverse Transcriptase Inhibitory Activities from Mycelia of Mushroom Coprinus comatus

    PubMed Central

    Zhao, Shuang; Rong, Cheng-Bo; Kong, Chang; Liu, Yu; Xu, Feng; Miao, Qian-Jiang; Wang, Shou-Xian; Wang, He-Xiang

    2014-01-01

    A novel laccase was isolated and purified from fermentation mycelia of mushroom Coprinus comatus with an isolation procedure including three ion-exchange chromatography steps on DEAE-cellulose, CM-cellulose, and Q-Sepharose and one gel-filtration step by fast protein liquid chromatography on Superdex 75. The purified enzyme was a monomeric protein with a molecular weight of 64 kDa. It possessed a unique N-terminal amino acid sequence of AIGPVADLKV, which has considerably high sequence similarity with that of other fungal laccases, but is different from that of C. comatus laccases reported. The enzyme manifested an optimal pH value of 2.0 and an optimal temperature of 60°C using 2,2′-azinobis(3-ethylbenzothiazolone-6-sulfonic acid) diammonium salt (ABTS) as the substrate. The laccase displayed, at pH 2.0 and 37°C, K m values of 1.59 mM towards ABTS. It potently suppressed proliferation of tumor cell lines HepG2 and MCF7, and inhibited human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) with an IC50 value of 3.46 μM, 4.95 μM, and 5.85 μM, respectively, signifying that it is an antipathogenic protein. PMID:25540778

  2. In situ dehydration behavior of zeolite-like pentagonite: A single-crystal X-ray study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danisi, Rosa Micaela, E-mail: rosa.danisi@krist.unibe.ch; Armbruster, Thomas; Lazic, Biljana

    2013-01-15

    The structural modifications upon heating of pentagonite, Ca(VO)(Si{sub 4}O{sub 10}){center_dot}4H{sub 2}O (space group Ccm2{sub 1}, a=10.3708(2), b=14.0643(2), c=8.97810(10) A, V=1309.53(3) A{sup 3}) were investigated by in situ temperature dependent single-crystal X-ray structure refinements. Diffraction data of a sample from Poona district (India) have been measured in steps of 25 up to 250 Degree-Sign C and in steps of 50 Degree-Sign C between 250 and 400 Degree-Sign C. Pentagonite has a porous framework structure made up by layers of silicate tetrahedra connected by V{sup 4+}O{sub 5} square pyramids. Ca and H{sub 2}O molecules are extraframework occupants. Room temperature diffraction data allowedmore » refinement of H positions. The hydrogen-bond system links the extraframework occupants to the silicate layers and also interconnects the H{sub 2}O molecules located inside the channels. Ca is seven-fold coordinated forming four bonds to O of the tetrahedral framework and three bonds to extraframework H{sub 2}O. The H{sub 2}O molecule at O9 showing a high displacement parameter is not bonded to Ca. The dehydration in pentagonite proceeds in three steps. At 100 Degree-Sign C the H{sub 2}O molecule at O8 was released while O9 moved towards Ca. As a consequence the displacement parameter of H{sub 2}O at O9 halved compared to that at room temperature. The unit-cell volume decreased to 1287.33(3) A{sup 3} leading to a formula with 3H{sub 2}O per formula unit (pfu). Ca remained seven-fold coordinated. At 175 Degree-Sign C Ca(VO)(Si{sub 4}O{sub 10}){center_dot}3H{sub 2}O transformed into a new phase with 1H{sub 2}O molecule pfu characterized by doubling of the c axis and the monoclinic space group Pn. Severe bending of specific T--O--T angles led to contraction of the porous three-dimensional framework. In addition, H{sub 2}O at O9 was expelled while H{sub 2}O at O7 approached a position in the center of the channel. The normalized volume decreased to 1069.44(9) A{sup 3}. The Ca coordination reduced from seven- to six-fold. At 225 Degree-Sign C a new anhydrous phase with space group Pna2{sub 1} but without doubling of c had formed. Release of H{sub 2}O at O7 caused additional contraction of T--O--T angles and volume reduction (V=1036.31(9) A{sup 3}). Ca adopted five-fold coordination. During heating excursion up to 400 Degree-Sign C this anhydrous phase remained preserved. Between room temperature and 225 Degree-Sign C the unit-cell volume decreased by 21% due to dehydration. The dehydration steps compare well with the thermo-gravimetric data reported in the literature. - Graphical abstract: Pentagonite structure at room temperature and at 225 Degree-Sign C. Highlights: Black-Right-Pointing-Pointer We investigate the relationship between the removal of H{sub 2}O molecules and structural modifications of the framework of pentagonite. Black-Right-Pointing-Pointer Pentagonite undergoes phase transitions upon heating. Black-Right-Pointing-Pointer We analyze similarities and differences between pentagonite and related structures.« less

  3. H 2 Desorption from MgH 2 Surfaces with Steps and Catalyst-Dopants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reich, Jason M.; Wang, Lin-Lin; Johnson, Duane D.

    2014-03-10

    Light-metal hydrides, like MgH 2, remain under scrutiny as prototypes for reversible H-storage materials. For MgH 2, we assess hydrogen desorption/adsorption properties (enthalpy and kinetic barriers) for stepped, catalyst-doped surfaces occurring, e.g., from ball-milling in real samples. Employing density functional theory and simulated annealing in a slab model, we studied initial H 2 desorption from stepped surfaces with(out) titanium (Ti) catalytic dopant. Extensive simulated annealing studies were performed to find the dopant’s site preferences. For the most stable initial and final (possibly magnetic) states, nudged elastic band (NEB) calculations were performed to determine the H 2-desorption activation energy. We usedmore » a moment-transition NEB method to account for the dopant’s transition to the lowest-energy magnetic state at each image along the band. We identify a dopant-related surface-desorption mechanism that reloads via bulk H diffusion. While reproducing the observed bulk enthalpy of desorption, we find a decrease of 0.24 eV (a 14% reduction) in the activation energy on doped stepped surface; together with a 22% reduction on a doped flat surface, this brackets the assessed 18% reduction in kinetic barrier for ball-milled MgH 2 samples with low concentration of Ti from experiment.« less

  4. Purification and characterization of a liver-derived beta-N-Acetylhexosaminidase from marine mammal Sotalia fluviatilis.

    PubMed

    Gomes Júnior, J E; Souza, D S L; Nascimento, R M; Lima, A L M; Melo, J A T; Rocha, T L; Miller, R N G; Franco, O L; Grossi-de-Sa, M F; Abreu, L R D

    2010-04-01

    A beta-N-Acetylhexosaminidase (EC 3.2.1.52) was purified from hepatic extracts of Sotalia fluviatilis, order Cetacea. The protein was purified by using ammonium sulfate fractionation and four subsequent chromatographies (Biogel A 1.5 m, Chitin, Deae-Biogel and hydroxyapatite resins). After these purification steps, the enzyme was purified 380.5-fold with an 8.4% yield. The molecular mass (10 kDa) was estimated by SDS-PAGE and MALDI-TOF analysis. A Km of 2.72 mM and Vmax 9.5 x 10(-6) micromol/(min x mg) were found for this enzyme, determined by p-nitrophenyl-beta-D: -hexosaminide substrate digestion. Optimal pH and temperature for beta-N-Acetylhexosaminidase activity were 5.0 and 60 degrees C, respectively. Enzyme activity was inhibited by sodium selenate (Na(2)SeO(4)), mercuric chloride (HgCl(2)) and sodium dodecyl sulfate (C(12)H(25)SO(4)Na), and activated by zinc, calcium, barium and lithium ions. Characterization of the beta-N-Acetylhexosaminidase in Sotalia fluviatilis can be a basis for physiological studies in this species.

  5. Purification and Antithrombotic Potential of a Fibrinolytic Enzyme from Shiitake Culinary- Medicinal Mushroom, Lentinus edodes GNA01 (Agaricomycetes).

    PubMed

    Choi, Jun-Hui; Kim, Kyung-Je; Kim, Seung

    2018-01-01

    We purified Lentinus edodes GNA01 fibrinolytic enzyme (LEFE) and identified it as a novel metalloprotease. LEFE was purified to homogeneity through a 2-step procedure, with an 8.28-fold increase in specific activity and 5.3% recovery. The molecular mass of LEFE was approximately 38 kDa, based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Its optimal pH, optimal temperature, pH stability, and thermal stability were 5, 30°C, 6-7, and 40°C, respectively. LEFE was inhibited by zinc and magnesium ions, and by EDTA and EGTA, indicating that LEFE is a metalloprotease. The protease exhibited fibrinolytic activity and a degradative effect on clot formation and blood clots. The protease prolonged activated partial thromboplastin time, prothrombin time, and coagulation time as induced by platelet aggregators (collagen and epinephrine). Taken together, our results indicate that L. edodes GNA01 produces a metalloprotease/fibrinolytic enzyme and that this enzyme might be applied as a new thrombolytic and antithrombotic agent for thrombosis-related cardiovascular disorders.

  6. How fast do hydrocarbons condense in Titan's atmosphere? Insights from the laboratory

    NASA Astrophysics Data System (ADS)

    Biennier, L.; Bourgalais, J.; Capron, M.; Roussel, V.; Le Picard, S. D.

    2014-04-01

    Titan's dense atmosphere shows a complex photochemistry initiated by the dissociation of its two most abundant components, nitrogen N2 and methane CH4. This cold chemistry generates a plethora of hydrocarbons and nitriles and takes part in the production of a thick haze. According to a recent scenario constructed from Cassini-Huygens measurements, the chemical reactions and physical processes occurring at high altitudes near 1000 km could be the haze source [1]. This haze material could act as a nucleus for the condensation of organic vapors in Titan's stratosphere and troposphere. However, the pathways leading to the formation and growth of haze aerosols remain far to be well understood. Hydrocarbons, which are formed in Titan's cold atmosphere, starting with ethane C2H6, ethylene C2H4, acetylene C2H2, propane C3H8… up to benzene C6H6, play also some active role in aerosol production, cloud processes, rain generation and Titan's lakes formation. Our goal is to study in the laboratory the kinetics of the first steps of condensation of these hydrocarbon molecules. Several studies have investigated the phase of e.g. ethane and propane and their spectral signatures. At the exception of our recent studies on the dimerization of pyrene C16H10 [2] and anthracene C14H10 [3] performed over the 50-300 K temperature range, there is however no other work on the first elementary steps of the kinetics of nucleation for hydrocarbons. Here we present the first experimental kinetics study of the dimerization of a small hydrocarbon: propane C3H8. We have performed experiments to identify the temperature range over which small propane clusters form in saturated uniform supersonic flows. Using our unique reactor based on a Laval nozzle [4], the kinetics of the formation has also been investigated over the 15-300 K temperature range. The chemical species present in the reactor are probed by a time of flight mass spectrometer equipped with an electron gun for soft ionization of the neutral reagents and products. The experimental data is combined with state-of-the-art theoretical calculations that employ careful consideration of the intermolecular interaction energies and intermolecular dynamics to estimate the binding energy, equilibrium constant, and rate coefficients. This work aims at putting some constraints on the role of small hydrocarbon condensation in the formation of haze particles in the dense atmosphere of Titan.

  7. Catalyst evaluation for high-purity H2 production by sorption-enhanced steam-methane reforming coupled to a Ca/Cu process

    NASA Astrophysics Data System (ADS)

    Navarro, M. V.; López, J. M.; García, T.; Grasa, G.; Murillo, R.

    2017-09-01

    The operational limits of a commercial nickel-based catalyst under the conditions of a sorption-enhanced steam-methane reforming process coupled to a Ca/Cu chemical loop are investigated for high-purity H2 production in a cyclic operation. The performance of the reforming catalyst is tested by means of a high number of oxidation-reduction-reforming cycles. After 100 oxidation-reduction cycles, this catalyst retains its exceptional reforming activity. The methane conversion values are close to the thermodynamic equilibrium under very demanding conditions: temperature between 500 °C - 700 °C and mass hourly space velocity of 8.8 kgCH4 h-1 kgcat-1. After 200 cycles, the sample shows reduction in its reforming activity in line with a lower dispersion of the Ni species. Sintering of Ni nanocrystals is evidenced during the oxidation-reduction multi-cycles. The performance of the catalyst after 200 oxidation-reduction cycles mixed with a CaO-based CO2 sorbent is studied under optimal conditions calculated for the sorption-enhanced reforming process coupled to a Ca/Cu cycle (temperature of 650 °C, steam/methane ratio of 4, sorbent/catalyst ratio of 4 and space velocity of 0.75 kgCH4 h-1 kgcat-1). Remarkably, an equilibrium value over 92 vol.% H2 concentration is achieved, highlighting this catalyst as a promising candidate for the next steps of the process development.

  8. In Vitro Stretch Injury Induces Time- and Severity-Dependent Alterations of STEP Phosphorylation and Proteolysis in Neurons

    PubMed Central

    Mesfin, Mahlet N.; von Reyn, Catherine R.; Mott, Rosalind E.; Putt, Mary E.

    2012-01-01

    Abstract Striatal-enriched tyrosine phosphatase (STEP) has been identified as a component of physiological and pathophysiological signaling pathways mediated by N-methyl-d-aspartate (NMDA) receptor/calcineurin/calpain activation. Activation of these pathways produces a subsequent change in STEP isoform expression or activation via dephosphorylation. In this study, we evaluated changes in STEP phosphorylation and proteolysis in dissociated cortical neurons after sublethal and lethal mechanical injury using an in vitro stretch injury device. Sublethal stretch injury produces minimal changes in STEP phosphorylation at early time points, and increased STEP phosphorylation at 24 h that is blocked by the NMDA-receptor antagonist APV, the calcineurin-inhibitor FK506, and the sodium channel blocker tetrodotoxin. Lethal stretch injury produces rapid STEP dephosphorylation via NR2B-containing NMDA receptors, but not calcineurin, and a subsequent biphasic phosphorylation pattern. STEP61 expression progressively increases after sublethal stretch with no change in calpain-mediated STEP33 formation, while lethal stretch injury results in STEP33 formation via a NR2B-containing NMDA receptor pathway within 1 h of injury. Blocking calpain activation in the initial 30 min after stretch injury increases the ratio of active STEP in cells and blocks STEP33 formation, suggesting that STEP is an early substrate of calpain after mechanical injury. There is a strong correlation between the amount of STEP33 formed and the degree of cell death observed after lethal stretch injury. In summary, these data demonstrate that previously characterized pathways of STEP regulation via the NMDA receptor are generally conserved in mechanical injury, and suggest that calpain-mediated cleavage of STEP33 should be further examined as an early marker of neuronal fate after stretch injury. PMID:22435660

  9. On the tandem Morita-Baylis-Hillman/transesterification processes. Mechanistic insights for the role of protic solvents

    NASA Astrophysics Data System (ADS)

    Carpanez, Arthur G.; Coelho, Fernando; Amarante, Giovanni W.

    2018-02-01

    Despite the remarkable rate acceleration under protic solvents such as alcohols and water, the use of acrylates as activated alkenes places a problem due to the possibility of ester hydrolysis or transesterification. Therefore, the tandem transesterification/Morita-Baylis-Hillman (MBH) reactions were investigated by ESI(+)-MS/(MS) and 1H NMR techniques. For the first time, the MBH back-reaction was fully examined by ESI(+)-MS/(MS) using labelling reagents revealed the complex equilibrium involving the Michael-type addition step of DABCO to acrylate. C- and O-protonation were observed at this stage, showing the transesterification process occurs previous to the aldol step, which is the rate-determining step of the mechanism. At this stage, a short-lived tetrahedral intermediate might be involved and should be considered in these processes.

  10. Low-Temperature Silicon Epitaxy by Remote, Plasma - Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Habermehl, Scott Dwight

    The dynamics of low temperature Si homoepitaxial and heteroepitaxial growth, by remote plasma enhanced chemical vapor deposition, RPECVD, have been investigated. For the critical step of pre-deposition surface preparation of Si(100) surfaces, the attributes of remote plasma generated atomic H are compared to results obtained with a rapid thermal desorption, RTD, technique and a hybrid H-plasma/RTD technique. Auger electron spectroscopy, AES, and electron diffraction analysis indicate the hybrid technique to be very effective at surface passivation, while the RTD process promotes the formation of SiC precipitates, which induce defective epitaxial growth. For GaP and GaAs substrates, the use of atomic H exposure is investigated as a surface passivation technique. AES shows this technique to be effective at producing atomically clean surfaces. For processing at 400^circrm C, the GaAs(100) surface is observed to reconstruct to a c(8 x 2)Ga symmetry while, at 530^ circrm C the vicinal GaP(100) surface, miscut 10^circ , is observed to reconstruct to a (1 x n) type symmetry; an unreconstructed (1 x 1) symmetry is observed for GaP(111). Differences in the efficiency with which native oxides are removed from the surface are attributed to variations in the local atomic bonding order of group V oxides. The microstructure of homoepitaxial Si films, deposited at temperatures of 25-450^circ rm C and pressures of 50-500 mTorr, is catalogued. Optimized conditions for the deposition of low defect, single crystal films are identified. The existence of two pressure dependent regimes for process activation are observed. In-situ mass spectral analysis indicates that the plasma afterglow is dominated by monosilane ions below 200 mTorr, while above 200 mTorr, low mass rm H_{x} ^+ (x = 1,2,3) and rm HHe^+ ions dominate. Consideration of the growth rate data indicates that downstream dissociative silane ionization, in the lower pressure regime, is responsible for an enhanced surface H abstraction rate. The observed increase in growth rate is concluded to be a manifestation of increased deposition site activation, resulting from the enhanced H abstraction mechanism. Secondary ion mass spectrometry measurements, of H incorporation in the Si films, yield an "effective" activation energy for the abstraction of surface H. A shift in the activation energy between 50 mTorr (0.7 eV) and 500 mTorr (0.3 eV) supports the conclusions for an ion-induced H abstraction mechanism. From this, a chemical sputtering reaction is proposed, whereby impinging ions react with chemisorbed H to form volatile species. Heteroepitaxial Si thin films are deposited upon GaP and GaAs surfaces. AES is used to evaluate the growth mode of Si on GaP(111) and vicinal GaP(100). In both instances, the data indicates a modified layer-plus-island growth mechanism, with possible interfacial alloy mixing. High quality epitaxial growth is observed to proceed on vicinal GaP(100) surfaces beyond the predicted critical thickness for strain relief of 140 A. For GaP(111), defective structures are observed well below the predicted critical thickness. This discrepancy is attributed to low precursor surface diffusion kinetics that are accommodated by the presence of steps on the vicinal surface. For deposition of Si on GaAs(100), disordered structure is observed within the first few monolayers of growth, which is in agreement with the predicted critical thickness for this system of approximately 10 A.

  11. An active-site phenylalanine directs substrate binding and C-H cleavage in the alpha-ketoglutarate-dependent dioxygenase TauD.

    PubMed

    McCusker, Kevin P; Klinman, Judith P

    2010-04-14

    Enzymes that cleave C-H bonds are often found to depend on well-packed hydrophobic cores that influence the distance between the hydrogen donor and acceptor. Residue F159 in taurine alpha-ketoglutarate dioxygenase (TauD) is demonstrated to play an important role in the binding and orientation of its substrate, which undergoes a hydrogen atom transfer to the active site Fe(IV)=O. Mutation of F159 to smaller hydrophobic side chains (L, V, A) leads to substantially reduced rates for substrate binding and for C-H bond cleavage, as well as increased contribution of the chemical step to k(cat) under steady-state turnover conditions. The greater sensitivity of these substrate-dependent processes to mutation at position 159 than observed for the oxygen activation process supports a previous conclusion of modularity of function within the active site of TauD (McCusker, K. P.; Klinman, J. P. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 19791-19795). Extraction of intrinsic deuterium kinetic isotope effects (KIEs) using single turnover transients shows 2- to 4-fold increase in the size of the KIE for F159V in relation to wild-type and F159L. It appears that there is a break in behavior following removal of a single methylene from the side chain of F159L to generate F159V, whereby the protein active site loses its ability to restore the internuclear distance between substrate and Fe(IV)=O that supports optimal hydrogenic wave function overlap.

  12. Kinetic aspects of chain growth in Fischer-Tropsch synthesis.

    PubMed

    Filot, Ivo A W; Zijlstra, Bart; Broos, Robin J P; Chen, Wei; Pestman, Robert; Hensen, Emiel J M

    2017-04-28

    Microkinetics simulations are used to investigate the elementary reaction steps that control chain growth in the Fischer-Tropsch reaction. Chain growth in the FT reaction on stepped Ru surfaces proceeds via coupling of CH and CR surface intermediates. Essential to the growth mechanism are C-H dehydrogenation and C hydrogenation steps, whose kinetic consequences have been examined by formulating two novel kinetic concepts, the degree of chain-growth probability control and the thermodynamic degree of chain-growth probability control. For Ru the CO conversion rate is controlled by the removal of O atoms from the catalytic surface. The temperature of maximum CO conversion rate is higher than the temperature to obtain maximum chain-growth probability. Both maxima are determined by Sabatier behavior, but the steps that control chain-growth probability are different from those that control the overall rate. Below the optimum for obtaining long hydrocarbon chains, the reaction is limited by the high total surface coverage: in the absence of sufficient vacancies the CHCHR → CCHR + H reaction is slowed down. Beyond the optimum in chain-growth probability, CHCR + H → CHCHR and OH + H → H 2 O limit the chain-growth process. The thermodynamic degree of chain-growth probability control emphasizes the critical role of the H and free-site coverage and shows that at high temperature, chain depolymerization contributes to the decreased chain-growth probability. That is to say, during the FT reaction chain growth is much faster than chain depolymerization, which ensures high chain-growth probability. The chain-growth rate is also fast compared to chain-growth termination and the steps that control the overall CO conversion rate, which are O removal steps for Ru.

  13. Observations of Screw Dislocation Driven Growth and Faceting During CVD Homoepitaxy on 4H-SiC On-Axis Mesa Arrays

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Trunek, Andrew J.; Powell, J. Anthony; Picard, Yoosuf N.; Twigg, Mark E.

    2009-01-01

    Previous studies of (0001) homoepitaxial growth carried out on arrays of small-area mesas etched into on-axis silicon-face 4H-SiC wafers have demonstrated that spiral growth emanating from at least one screw dislocation threading the mesa is necessary in order for a mesa to grow taller in the <0001> (c-axis vertical) direction while maintaining 4H stacking sequence [1]. However, even amongst mesas containing the screw dislocation step source necessary for vertical c-axis growth, we have observed striking differences in the height and faceting that evolve during prolonged homoepitaxial growths. This paper summarizes Atomic Force Microscopy (AFM), Electron Channeling Contrast Imaging (ECCI), Scanning Electron Microscopy (SEM), and optical microscopy observations of this phenomenon. These observations support our initially proposed model [2] that the observed large variation (for mesas where 3C-SiC nucleation has not occurred) is related to the lateral positioning of a screw dislocation step source within each etched mesa. When the screw dislocation step source is located close enough to the developing edge/sidewall facet of a mesa, the c-axis growth rate and facet angle are affected by the resulting interaction. In particular, the intersection (or near intersection) of the inward-sloping mesa sidewall facet with the screw dislocation appears to impede the rate at which the spiral provides new steps required for c-axis growth. Also, the inward slope of the sidewall facet during growth (relative to other sidewalls of the same mesa not near the screw dislocation) seems to be impeded by the screw dislocation. In contrast, mesas whose screw dislocations are centrally located grow vertically, but inward sloping sidewall facets shrink the area of the top (0001) growth surface almost to the point of vanishing.

  14. Synthesis of a Crushed Fullerene C60H24 through Sixfold Palladium‐Catalyzed Arylation

    PubMed Central

    Dorel, Ruth; de Mendoza, Paula; Calleja, Pilar; Pascual, Sergio; González‐Cantalapiedra, Esther; Cabello, Noemí

    2016-01-01

    The synthesis of a new C 3v‐symmetric crushed fullerene C60H24 (5) has been accomplished in three steps from truxene through sixfold palladium‐catalyzed intramolecular arylation of a syn‐trialkylated truxene precursor. Laser irradiation of 5 induces cyclodehydrogenation processes that result in the formation of C60, as detected by LDI‐MS. PMID:27774038

  15. Direct synthesis of Fe3 C-functionalized graphene by high temperature autoclave pyrolysis for oxygen reduction.

    PubMed

    Hu, Yang; Jensen, Jens Oluf; Zhang, Wei; Huang, Yunjie; Cleemann, Lars N; Xing, Wei; Bjerrum, Niels J; Li, Qingfeng

    2014-08-01

    We present a novel approach to direct fabrication of few-layer graphene sheets with encapsulated Fe3 C nanoparticles from pyrolysis of volatile non-graphitic precursors without any substrate. This one-step autoclave approach is facile and potentially scalable for production. Tested as an electrocatalyst, the graphene-based composite exhibited excellent catalytic activity towards the oxygen reduction reaction in alkaline solution with an onset potential of ca. 1.05 V (vs. the reversible hydrogen electrode) and a half-wave potential of 0.83 V, which is comparable to the commercial Pt/C catalyst. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Rate Controlling Step in the Reduction of Iron Oxides; Kinetics and Mechanism of Wüstite-Iron Step in H2, CO and H2/CO Gas Mixtures

    NASA Astrophysics Data System (ADS)

    El-Geassy, Abdel-Hady A.

    2017-09-01

    Wüstite (W1 and W2) micropellets (150-50 μm) were prepared from the reduction of pure Fe2O3 and 2.1% SiO2-doped Fe2O3 in 40%CO/CO2 gas mixture at 1000°C which were then isothermally reduced in H2, CO and H2/CO gas mixtures at 900-1100°C. The reduction reactions was followed by Thermogravimetric Analysis (TG) technique. The effect of gas composition, gas pressure and temperature on the rate of reduction was investigated. The different phases formed during the reduction were chemically and physically characterized. In SiO2-doped wüstite, fayalite (Fe2SiO3) was identified. At the initial reduction stages, the highest rate was obtained in H2 and the lowest was in CO gas. In H2/CO gas mixtures, the measured rate did not follow a simple additive equation. The addition of 5% H2 to CO led to a measurable increase in the rate of reduction compared with that in pure CO. Incubation periods were observed at the early reduction stages of W1 in CO at lower gas pressure (<0.25 atm). In SiO2-doped wüstite, reaction rate minimum was detected in H2 and H2-rich gas mixtures at 925-950°C. The influence of addition of H2 to CO or CO to H2 on the reduction reactions, nucleation and grain growth of iron was intensively studied. Unlike in pure wüstite, the presence of fayalite enhances the reduction reactions with CO and CO-rich gas mixtures. The chemical reaction equations of pure wüstite with CO are given showing the formation of carbonyl-like compound [Fem(CO2)n]*. The apparent activation energy values, at the initial stages, ranged from 53.75 to 133.97 kJ/mole indicating different reaction mechanism although the reduction was designed to proceed by the interfacial chemical reaction.

  17. Kinetics of oxygen-enhanced water gas shift on bimetallic catalysts and the roles of metals and support

    NASA Astrophysics Data System (ADS)

    Kugai, Junichiro

    The post-processing of reformate is an important step in producing hydrogen (H2) with low carbon monoxide (CO) for low temperature fuel cells from syn-gas. However, the conventional process consists of three steps, i.e. two steps of water gas shift (WGS) and preferential oxidation (PROX) of CO, and it is not suitable for mobile applications due to the large volume of water gas shift (WGS) catalysts and conditioning and/or regeneration necessary for these catalysts. Aiming at replacing those three steps by a simple one-step process, small amount of oxygen was added to WGS (the reaction called oxygen-enhanced water gas shift or OWGS) to promote the reaction kinetics and low pyrophoric ceria-supported bimetallic catalysts were employed for stable performance in this reaction. Not only CO conversion, but also H2 yield was found to increase by the O2 addition on CeO2-supported catalysts. The characteristics of OWGS, high H2 production rate at 200 to 300°C at short contact time where unreacted O2 exists, evidenced the impact of O2 addition on surface species on the catalyst. Around 1.5 of reaction order in CO for various CeO2-supported metal catalysts for OWGS compared to reaction orders in CO ranging from -0.1 to 0.6 depending on metal species for WGS shows O2 addition decreases CO coverage to free up the active sites for co-reactant (H2O) adsorption and activation. Among the monometallic and bimetallic catalysts, Pt-Cu and Pd-Cu bimetallic catalysts were superior to monometallic catalysts in OWGS. These bimetallic components were found to form alloys where noble metal is surrounded mainly by Cu to have strong interaction between noble metal and copper resulting in high OWGS activity and low pyrophoric property. The metal loadings were optimized for CeO2-supported Pd-Cu bimetallic system and 2 wt% Pd with 5 -- 10 wt% Cu were found to be the optimum for the present OWGS condition. In the kinetic study, Pd in Pd-Cu was shown to increase the active sites for H2O dissociation and/or the subsequent reaction with chemisorbed CO as well as Pd keeps Cu in reduced state. Cu was found to keep Pd dispersed, suppress H2 activation on Pd, and facilitate CO 2 desorption from catalyst surface. While composition and structure of metal have large impacts on OWGS performance, CeO2 was shown to create new sites for H2O activation at metal-ceria interfacial region in concert with metal. These new sites strongly activate H2O to drive OWGS and WGS compared to the pure metallic sites which are present in majority on Al2O3-supported catalyst. The observed two regimes of turnover rate, the one dependent on catalyst surface area and the other independent of surface area, strongly suggested bifunctional reaction pathway where the reaction rate is determined by activation of H2O and by association of chemisorbed CO and H 2O. The associative route was also evidenced by pulse response study where the reaction occurs only when CO and H2O pulses are supplied together, and thus pre-adsorbed species such as formate and carbonate identified by FT-IR are proven to be spectators. No correlation between WGS rate and isotopic exchange rate of molecularly adsorbed D2O with H 2 showed H2O dissociation is necessary for WGS to occur. Long duration tests revealed CeO2-supported Pd-Cu, Pt-Cu and Cu catalysts are stable in OWGS condition compared to Pt, Pd, and Al 2O3-supported Pd-Cu catalysts which exhibited continuous deactivation during about 70 hours of test. The addition of Cu prevents agglomeration of monometallic Pd and carbonate formation on monometallic Pt during the reaction. The better activity and stability of Pd-Cu and Pt-Cu bimetallic catalysts in the realistic OWGS condition were ascribed to the unique active sites consisting of highly dispersed Pd in Cu or Pt in Cu on CeO2, which are good for H2O activation with low reaction inhibition by the product gases. Pt monometallic catalyst showed and highest activity in OWGS in the absence of product gases, but this was found vulnerable in the presence of product gases due to strong adsorption of H2 and CO2 on this catalyst. (Abstract shortened by UMI.)

  18. Flavonoids exhibit diverse effects on CYP11B1 expression and cortisol synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Li-Chuan; Li, Lih-Ann, E-mail: lihann@nhri.org.tw

    2012-02-01

    CYP11B1 catalyzes the final step of cortisol biosynthesis. The effects of flavonoids on transcriptional expression and enzyme activity of CYP11B1 were investigated using the human adrenocortical H295R cell model. All tested nonhydroxylated flavones including 3′,4′-dimethoxyflavone, α-naphthoflavone, and β-naphthoflavone upregulated CYP11B1 expression and cortisol production, whereas apigenin and quercetin exhibited potent cytotoxicity and CYP11B1 repression at high concentrations. Nonhydroxylated flavones stimulated CYP11B1-catalyzed cortisol formation at transcriptional level. Resveratrol increased endogenous and substrate-supported cortisol production like nonhydroxylated flavones tested, but it had no effect on CYP11B1 gene expression and enzyme activity. Resveratrol appeared to alter cortisol biosynthesis at an earlier step. Themore » Ad5 element situated in the − 121/− 106 region was required for basal and flavone-induced CYP11B1 expression. Overexpression of COUP-TFI did not improve the responsiveness of Ad5 to nonhydroxylated flavones. Although COUP-TFI overexpression increased CYP11B1 and CYP11B2 promoter activation, its effect was not mediated through the common Ad5 element. Treating cells with PD98059 (a flavone-type MEK1 inhibitor) increased CYP11B1 promoter activity, but not involving ERK signaling because phosphorylation of ERK1/2 remained unvarying throughout the course of treatment. Likewise, AhR was not responsible for the CYP11B1-modulating effects of flavonoids because inconsistency with their effects on AhR activation. 3′,4′-dimethoxyflavone and 8-Br-cAMP additively activated CYP11B1 promoter activity. H-89 reduced 3′,4′-dimethoxyflavone-induced CYP11B1 promoter activation but to a lesser extent as compared to its inhibition on cAMP-induced transactivation. Our data suggest that constant exposure to nonhydroxylated flavones raises a potential risk of high basal and cAMP-induced cortisol synthesis in consequence of increased CYP11B1 expression. -- Highlights: ► Nonhydroxylated flavones stimulate basal cortisol synthesis and CYP11B1 expression. ► The Ad5 element is required for nonhydroxylated flavone-elicited CYP11B1 induction. ► COUP-TFI elevates CYP11B1 and CYP11B2 transactivation but not through Ad5. ► AhR, ERK, and PKA are not involved in nonhydroxylated flavone-mediated regulation. ► Resveratrol affects cortisol biosynthesis at a step earlier than CYP11B1.« less

  19. Sum frequency generation spectroscopy study of hydrogenated stepped Si(111) surfaces made by molecular hydrogen exposure

    NASA Astrophysics Data System (ADS)

    Hien, K. T. T.; Sattar, M. A.; Miyauchi, Y.; Mizutani, G.; Rutt, H. N.

    2017-09-01

    Hydrogen adsorption on stepped Si(111) surfaces 9.5° miscut in the [ 1 ̅ 1 ̅ 2 ] direction has been investigated in situ in a UHV chamber with a base pressure of 10-8 Pa. The H-Si(111)1×1 surface was prepared by exposing the wafer to ultra-pure hydrogen gas at a pressure of 470 Pa. Termination of hydrogen on terraces and steps was observed by sum frequency generation (SFG) with several polarization combinations such as ppp, ssp, pps, spp, psp, sps, pss and sss. Here the 1st, 2nd and 3rd symbols indicate SFG, visible and IR polarizations, respectively. ppp and ssp-SFG clearly showed only two modes: the Si-H stretching vibration terrace mode at 2082 cm-1 (A) and the vertical step dihydride vibration mode at 2094 cm-1 (C1). Interesting points are the appearance of the C1 mode in contrast to the previous SFG spectrum of the H-Si(111)1×1 surface with the same miscut surface angle prepared by wet chemical etching. We suggest that the formation of step dihydride and its orientation on the Si(111) stepped surfaces depend strongly on the preparation method.

  20. Optimization of pyrochlore catalysts for the dry reforming of methane

    NASA Astrophysics Data System (ADS)

    Polo Garzon, Felipe

    The conversion of methane into syngas (a mixture of CO and H2), which can be further converted into a variety of chemicals and particularly liquid fuels, is of growing importance given recent increases in methane production world-wide. Furthermore, since using CO2 as the co-feed offers many environmental advantages, dry reforming of methane (DRM, CH4 + CO2 [special character omitted] 2CO + 2H 2) has received renewed attention. In recent years, experimentalists have shown that the Rh-substituted lanthanum zirconate pyrochlore (LRhZ) material is catalytically active for DRM, exhibits long-term thermal stability and resists deactivation; however, previous to this doctoral work, a detailed understanding of the reaction mechanism on pyrochlore catalyst surfaces was still scarce, making it difficult to optimize this material. In this work, initial computational efforts employing density functional theory (DFT) showed the plane (111) of the LRhZ crystal structure as the one catalytically active for DRM. In addition, the primary reaction pathway was identified, along with two rate determining steps (RDSs), the CH2 oxygenation step and the CHO dehydrogenation step, which lie on the CH 4 dehydrogenation/oxygenation path. The mechanistic understanding of DRM over LRhZ was further developed using steady-state isotopic transient kinetic analysis (SSITKA). Reversible adsorption of CO2 on the surface was observed, along with short surface residence times (< 0.6 s) at 650 and 800 °C, and increasing turnover frequencies with temperature. Comparisons between isotopic responses supported the DFT-derived reaction mechanism. Furthermore, isotopic transient kinetics confirmed that all metal atoms (Rh, Zr and La) on the surface are involved in the reaction mechanism, as previously pointed by DFT calculations. A DFT-based microkinetic model that predicts the reaction performance at different conditions was built. The model was validated against experimental data, showing remarkable agreement, which further confirmed the reliability of the DFT data. Computational analysis of one of the RDSs (the CHO dehydrogenation step) suggested Pd as an effective co-dopant to reduce the activation barrier of this step. This bimetallic Rh-Pd-substituted lanthanum zirconate pyrochlore (Rh-Pd-LZ) was synthesized, characterized and tested. The Rh-Pd-LZ catalyst successfully increased conversions at high temperatures while providing H 2 to CO ratios close to unity; thus fostering DRM and inhibiting the competing reaction, the reverse water gas shift reaction (RWGS, CO2 + H2 [special character omitted] CO + H2O). The Rh-Pd-LZ catalyst outperformed the initial catalyst, the LRhZ, at high temperatures.

  1. Vapor-phase catalytic oxidesulfurization (ODS) of organosulfur compounds over supported metal oxide catalysts

    NASA Astrophysics Data System (ADS)

    Choi, Sukwon

    Sulfur in transportation fuels remains a leading source of SOx emissions from vehicle engines and is a major source of air pollution. The very low levels of sulfur globally mandated for transportation fuels in the near future cannot be achieved by current practices of hydrodesulfurization (HDS) for sulfur removal, which operate under severe conditions (high T, P) and use valuable H2. Novel vapor-phase catalytic oxidesulfurization (ODS) processes of selectively oxidizing various organosulfur compounds (carbonyl sulfide, carbon disulfide, methanethiol, dimethyl sulfide (DMS), dimethyl disulfide (DMDS), thiophene, 2,5-dimenthylthiophene) typically found in various industrial streams (e.g., petroleum refining, pulp and paper) into valuable chemical intermediates (H 2CO, CO, H2, maleic anhydride and concentrated SO2) has been extensively studied. This research has primarily focused on establishing the fundamental kinetics and mechanisms of these selective oxidation reactions over well-defined supported metal oxide catalysts. The selective oxidation reactions of COS + O2 → CO + SO2; 2CS2 + 5O2 → 2CO + 4SO2; CH3SH + 2O 2 → H2CO + SO2 + H2O; C4 H4S + 3O2 → C4H2O 3 + H2O + SO2; were studied. Raman spectroscopy revealed that the supported metal oxide phases were 100% dispersed on the oxide substrate. All the catalysts were highly active and selective for the oxidesulfurization of carbonyl sulfide, carbon disulfide, methanethiol, and thiophene between 290--330°C, 230--270°C, 350--400°C, and 250--400°C, respectively and did not deactivate. The TOFs (turnover frequency, normalized activity per active catalytic site) for all ODS reactions over supported vanadia catalysts, only containing molecularly dispersed surface vanadia species, varied within one order of magnitude and revealed the V-O-Support bridging bond was involved in the critical rate-determining kinetic steps. The surface reaction mechanism for each reaction was revealed by in situ IR (infrared) and temperature programmed surface reaction-mass spectroscopy (TPSR-MS). The systematic investigation of vapor-phase oxidesulfurization (ODS) reactions of organosulfur compounds over catalytic supported metal oxides revealed the facile S-O exchange mechanisms allow for the efficient removal of sulfur while producing value-added chemicals and represents the discovery of a new series of catalytic reactions.

  2. Antiacanthain A: New proteases isolated from Bromelia antiacantha Bertol. (Bromeliaceae).

    PubMed

    Vallés, Diego; Cantera, Ana M B

    2018-07-01

    Crude extract (CE) from pulp of Bromelia antiacantha Bertol. mature fruit, contains at least 3 cysteine proteases with proteolytic activity. By single step cation exchange chromatography (Hi-trap SP-HP) of partially purified CE, the protease with the lowest pI, Antiacanthain A (AntA), was isolated. It showed maximum activity at pH9, and 75% of remaining activity was maintained over a wide pH range (pH6-10). The AntA activity exhibits a constant increase up to 70°C. Maintains almost 100% of its activity at 45 at pH6 and 9. A 60% of AntA was active by titration with specific inhibitor, E64. Amidasic activity was studied with pyroglutamyl-phenyl-leucyl-paranitroaniline (PFLNA) substrate having higher AntA catalytic efficiency of (k cat /K m =470s -1 M -1 ) relative to stem bromelain (k cat /K m =305s -1 M -1 ). Esterase activity using p-nitrophenyl esters of N-α-CBZ-l-Lysine (z-L-LysONp) showed a 10-fold higher catalytic efficiency for AntA (k cat /K m =6376s -1 M -1 ) relative to stem bromelain (k cat /K m =688s -1 M -1 ). Incubation with 8M Urea did not affect AntA activity and remained unchanged for 18h, with 6M GndHCl resulted in a 41% decrease in activity after 30min incubation, maintained this activity 18h. AntA exhibits high sequence identity with proteases of the Bromeliaceae family. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Strength improvement and purification of Yb 2Si 2O 7-SiC nanocomposites by surface oxidation treatment

    DOE PAGES

    Nguyen, Son T.; Nakayama, Tadachika; Suematsu, Hisayuki; ...

    2017-04-03

    A two-step processing was developed to prepare Yb 2Si 2O 7-SiC nanocomposites. Yb 2Si 2O 7-Yb 2SiO 5-SiC composites were first fabricated by a solid state reaction/hot-pressing method. The composites were then annealed at 1250°C in air for 2 h to activate the oxidation of SiC, which effectively transformed the Yb 2SiO 5 into Yb 2Si 2O 7. The surface cracks purposely induced can be fully healed during the oxidation treatment. The treated composites have improved flexural strength compared to their pristine composites. As a result, the mechanism for crack-healing and silicate transformation have been proposed and discussed in detail.

  4. Direct Access to 2,3,4,6-Tetrasubstituted Tetrahydro-2H-pyrans via Tandem SN2'-Prins Cyclization.

    PubMed

    Scoccia, Jimena; Pérez, Sixto J; Sinka, Victoria; Cruz, Daniel A; López-Soria, Juan M; Fernández, Israel; Martín, Víctor S; Miranda, Pedro O; Padrón, Juan I

    2017-09-15

    A new, direct, and diastereoselective synthesis of activated 2,3,4,6-tetrasubstituted tetrahydro-2H-pyrans is described. In this reaction, iron(III) catalyzed an S N 2'-Prins cyclization tandem process leading to the creation of three new stereocenters in one single step. These activated tetrahydro-2H-pyran units are easily derivatizable through CuAAC conjugations in order to generate multifunctionalized complex molecules. DFT calculations support the in situ S N 2' reaction as a preliminary step in the Prins cyclization.

  5. Electrochemical and Density Functional Theory Study on the Reactivity of Fisetin and Its Radicals: Implications on in Vitro Antioxidant Activity

    NASA Astrophysics Data System (ADS)

    Marković, Zoran S.; Mentus, Slavko V.; Dimitrić Marković, Jasmina M.

    2009-12-01

    Antioxidative properties of naturally occurring flavon-3-ol, fisetin, were examined by both cyclic voltammetry and quantum-chemical based calculations. The three voltametrically detectable consecutive steps, reflected the fisetin molecular structure, catecholic structural unit in the ring B, C3-OH, and C7-OH groups in the rings C and A. Oxidation potential values, used as quantitative parameter in determining its oxidation capability, indicated good antioxidative properties found with this molecule. Oxidation of the C3'C4' dixydroxy moiety at the B ring occurred first at the lowest positive potentials. The first oxidation step induced fast intramolecular transformations in which the C3 hydroxy group disappeared and the product of this transformation participated in the second oxidation step. The highest potential of oxidation was attributed to the oxidation of C7 hydroxy group. The structural and electronic features of fisetin were investigated at the B3LYP/6-311++G** level of theory. Particularly, the interest was focused on the C3' and C4'-OH sites in the B ring and on C3-OH site in the C ring. The calculated bond dissociation enthalpy values for all OH sites of fisetin clearly indicated the importance of the B ring and C3' and C4'-OH group. The importance of keto-enol tautomerism has also been considered. The analysis also included the Mulliken spin density distribution for the radicals formed after H removal on each OH site. The results showed the higher values of the BDE on the C7-OH and C3-OH sites.

  6. Activation of methyl acetate on Pd(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Lijun; Xu, Ye

    2010-01-01

    The absorption and activation of methyl acetate (CH{sub 3}COOCH{sub 3}), one of the simplest carboxylic esters, on Pd(111) have been studied using self-consistent periodic density functional theory calculations. Methyl acetate adsorbs weakly through the carbonyl oxygen. Its activation occurs via dehydrogenation, instead of direct C-O bond dissociation, on clean Pd(111): It is much more difficult to dissociate the C--O bonds ({epsilon}{sub a} ? 2.0 eV for the carbonyl and acetate-methyl bonds; {epsilon}{sub a} = 1.0 eV for the acetyl-methoxy bond) than to dissociate the C-H bonds to produce enolate (CH{sub 2}COOCH{sub 3}; {epsilon}{sub a} = 0.74 eV) or methylene acetatemore » (CH{sub 3}COOCH{sub 2}; {epsilon}{sub a} = 0.82 eV). The barriers for C-H and C-O bond dissociation are directly calculated for enolate and methylene acetate, and estimated for further dehydrogenated derivatives (CH{sub 3}COOCH, CH{sub 2}COOCH{sub 2}, and CHCOOCH{sub 3}) based on the Bronsted-Evans-Polanyi linear energy relations formed by the calculated steps. The enolate pathway leads to successive dehydrogenation to CCOOCH{sub 3}, whereas methylene acetate readily dissociates to yield acetyl. The selectivity for dissociating the acyl-alkoxy C-O bond, which is desired for alcohol formation, is therefore fundamentally limited by the facility of dehydrogenation under vacuum/low-pressure conditions on Pd(111).« less

  7. Morphology and electronic properties of silicon carbide surfaces

    NASA Astrophysics Data System (ADS)

    Nie, Shu

    2007-12-01

    Several issues related to SiC surfaces are studied in the thesis using scanning tunneling microscopy/spectroscopy (STM/S) and atomic force microscopy (AFM). Specific surfaces examined include electropolished SiC, epitaxial graphene on SiC, and vicinal (i.e. slightly miscut from a low-index direction) SiC that have been subjected to high temperature hydrogen-etching. The electropolished surfaces are meant to mimic electrochemically etched SiC, which forms a porous network. The chemical treatment of the surface is similar between electropolishing and electrochemical etching, but the etching conditions are slightly different such that the former produces a flat surface (that is amenable to STM study) whereas the latter produces a complex 3-dimensional porous network. We have used these porous SiC layers as semi-permeable membranes in a biosensor, and we find that the material is quite biocompatible. The purpose of the STM/STS study is to investigate the surface properties of the SiC on the atomic scale in an effort to explain this biocompatibility. The observed tunneling spectra are found to be very asymmetric, with a usual amount of current at positive voltages but no observable current at negative voltages. We propose that this behavior is due to surface charge accumulating on an incompletely passivated surface. Measurements on SiC surfaces prepared by various amounts of hydrogen-etching are used to support this interpretation. Comparison with tunneling computations reveals a density of about 10 13 cm-2 fixed charges on both the electro-polished and the H-etched surfaces. The relatively insulating nature observed on the electro-polished SiC surface may provide an explanation for the biocompatibility of the surface. Graphene, a monolayer of carbon, is a new material for electronic devices. Epitaxial graphene on SiC is fabricated by the Si sublimation method in which a substrate is heated up to about 1350°C in ultra-high vacuum (UHV). The formation of the graphene is monitored using low-energy electron diffraction (LEED) and Auger electron spectroscopy, and the morphology of the graphitized surface is studied using AFM and STM. Use of H-etched SiC substrates enables a relatively flat surface morphology, although residual steps remain due to unintentional miscut of the wafers. Additionally, some surface roughness in the form of small pits is observed, possibly due to the fact that the surface treatments (H-etching and UHV annealing) having been performed in separate vacuum chambers with an intervening transfer through air. Field-effect transistors have been fabricated with our graphene layers; they show a relatively strong held effect at room temperature, with an electron mobility of 535 cm 2/Vs. This value is somewhat lower than that believed to be theoretically possible for this material, and one possible reason may be the nonideal morphology of the surface (i.e. because of the observed steps and pits). Tunneling spectra of the graphene reveal semi-metallic behavior, consistent with that theoretically expected for an isolated layer of graphene. However, additional discrete states are observed in the spectra, possibly arising from bonding at the graphene/SiC interface. The observation of these states provides important input towards an eventual determination of the complete interface structure, and additionally, such states may be relevant in determining the electron mobility of the graphene. Stepped vicinal SIC{0001} substrates are useful templates for epitaxial growth of various types of layers: thick layers of compound semiconductor (in which the steps help preserving the stacking arrangement in the overlayer), monolayers of graphene, or submonolayer semiconductor layers that form quantum wires along the step edges. Step array produced by H-etching of vicinal SiC (0001) and (0001¯) with various miscut angles have been studied by AFM. H-etching is found to produce full unit-cell-high steps on the (0001) Si-face surfaces, but half unit-cell-high steps on the (0001¯) C-face surfaces. These observations are consistent with an asymmetry in the surface energy (i.e. etch rate) of the two types of step terminations occurring on the different surfaces. For high miscut angles, facet formation is observed on the vicinal Si-face, but less so on the C-face. This difference is interpreted in terms of a lower surface energy of the C-face. In terms of applying the stepped surfaces as a template, a much better uniformity in the step-step separation is found for the C-face surfaces.

  8. Kinetic and spectroscopic studies of the molybdenum-copper CO dehydrogenase from Oligotropha carboxidovorans.

    PubMed

    Zhang, Bo; Hemann, Craig F; Hille, Russ

    2010-04-23

    Carbon monoxide dehydrogenase from the aerobic bacterium Oligotropha carboxidovorans catalyzes the oxidation of CO to CO(2), yielding two electrons and two H(+). The steady-state kinetics of the enzyme exhibit a pH optimum of 7.2 with a k(cat) of 93.3 s(-1) and K(m) of 10.7 microM at 25 degrees C. k(red) for the reductive half-reaction agrees well with k(cat) and exhibits a similar pH optimum, indicating that the rate-limiting step of overall turnover is likely in the reductive half-reaction. No dependence on CO concentration was observed in the rapid reaction kinetics, however, suggesting that CO initially binds rapidly to the enzyme, possibly at the Cu(I) of the active site, prior to undergoing oxidation. A Mo(V) species that exhibits strong coupling to the copper of the active center (I = 3/2) has been characterized by EPR. The signal is further split when [(13)C]CO is used to generate it, demonstrating that substrate (or product) is a component of the signal-giving species. Finally, resonance Raman spectra of CODH reveal the presence of FAD, Fe/S clusters, and a [CuSMoO(2)] coordination in the active site, consistent with earlier x-ray absorption and crystallographic results.

  9. Biochemical Characterization of An Arginine-Specific Alkaline Trypsin from Bacillus licheniformis.

    PubMed

    Gong, Jin-Song; Li, Wei; Zhang, Dan-Dan; Xie, Min-Feng; Yang, Biao; Zhang, Rong-Xian; Li, Heng; Lu, Zhen-Ming; Xu, Zheng-Hong; Shi, Jin-Song

    2015-12-17

    In the present study, we isolated a trypsin-producing strain DMN6 from the leather waste and identified it as Bacillus licheniformis through a two-step screening strategy. The trypsin activity was increased up to 140 from 20 U/mL through culture optimization. The enzyme was purified to electrophoretic homogeneity with a molecular mass of 44 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the specific activity of purified enzyme is 350 U/mg with Nα-Benzoyl-L-arginine ethylester as the substrate. The optimum temperature and pH for the trypsin are 65 °C and pH 9.0, respectively. Also, the enzyme can be significantly activated by Ba(2+). This enzyme is relatively stable in alkaline environment and displays excellent activity at low temperatures. It could retain over 95% of enzyme activity after 180 min of incubation at 45 °C. The distinguished activity under low temperature and prominent stability enhance its catalytic potential. In the current work, the open reading frame was obtained with a length of 1371 nucleotides that encoded a protein of 456 amino acids. These data would warrant the B. licheniformis trypsin as a promising candidate for catalytic application in collagen preparation and leather bating through further protein engineering.

  10. Connecting nitrogenase intermediates with the kinetic scheme for N2 reduction by a relaxation protocol and identification of the N2 binding state

    PubMed Central

    Lukoyanov, Dmitriy; Barney, Brett M.; Dean, Dennis R.; Seefeldt, Lance C.; Hoffman, Brian M.

    2007-01-01

    A major obstacle to understanding the reduction of N2 to NH3 by nitrogenase has been the impossibility of synchronizing electron delivery to the MoFe protein for generation of specific enzymatic intermediates. When an intermediate is trapped without synchronous electron delivery, the number of electrons, n, it has accumulated is unknown. Consequently, the intermediate is untethered from kinetic schemes for reduction, which are indexed by n. We show that a trapped intermediate itself provides a “synchronously prepared” initial state, and its relaxation to the resting state at 253 K, conditions that prevent electron delivery to MoFe protein, can be analyzed to reveal n and the nature of the relaxation reactions. The approach is applied to the “H+/H− intermediate” (A) that appears during turnover both in the presence and absence of N2 substrate. A exhibits an S = ½ EPR signal from the active-site iron–molybdenum cofactor (FeMo-co) to which are bound at least two hydrides/protons. A undergoes two-step relaxation to the resting state (C): A → B → C, where B has an S = 3/2 FeMo-co. Both steps show large solvent kinetic isotope effects: KIE ≈ 3–4 (85% D2O). In the context of the Lowe–Thorneley kinetic scheme for N2 reduction, these results provide powerful evidence that H2 is formed in both relaxation steps, that A is the catalytically central state that is activated for N2 binding by the accumulation of n = 4 electrons, and that B has accumulated n = 2 electrons. PMID:17251348

  11. Generation of highly purified neural stem cells from human adipose-derived mesenchymal stem cells by Sox1 activation.

    PubMed

    Feng, Nianhua; Han, Qin; Li, Jing; Wang, Shihua; Li, Hongling; Yao, Xinglei; Zhao, Robert Chunhua

    2014-03-01

    Neural stem cells (NSCs) are ideal candidates in stem cell-based therapy for neurodegenerative diseases. However, it is unfeasible to get enough quantity of NSCs for clinical application. Generation of NSCs from human adipose-derived mesenchymal stem cells (hAD-MSCs) will provide a solution to this problem. Currently, the differentiation of hAD-MSCs into highly purified NSCs with biological functions is rarely reported. In our study, we established a three-step NSC-inducing protocol, in which hAD-MSCs were induced to generate NSCs with high purity after sequentially cultured in the pre-inducing medium (Step1), the N2B27 medium (Step2), and the N2B27 medium supplement with basic fibroblast growth factor and epidermal growth factor (Step3). These hAD-MSC-derived NSCs (adNSCs) can form neurospheres and highly express Sox1, Pax6, Nestin, and Vimentin; the proportion was 96.1% ± 1.3%, 96.8% ± 1.7%, 96.2% ± 1.3%, and 97.2% ± 2.5%, respectively, as detected by flow cytometry. These adNSCs can further differentiate into astrocytes, oligodendrocytes, and functional neurons, which were able to generate tetrodotoxin-sensitive sodium current. Additionally, we found that the neural differentiation of hAD-MSCs were significantly suppressed by Sox1 interference, and what's more, Step1 was a key step for the following induction, probably because it was associated with the initiation and nuclear translocation of Sox1, an important transcriptional factor for neural development. Finally, we observed that bone morphogenetic protein signal was inhibited, and Wnt/β-catenin signal was activated during inducing process, and both signals were related with Sox1 expression. In conclusion, we successfully established a three-step inducing protocol to derive NSCs from hAD-MSCs with high purity by Sox1 activation. These findings might enable to acquire enough autologous transplantable NSCs for the therapy of neurodegenerative diseases in clinic.

  12. C-H bond activation of hydrocarbons by an imidozirconocene complex.

    PubMed

    Hoyt, Helen M; Michael, Forrest E; Bergman, Robert G

    2004-02-04

    Monomeric imidozirconocene complexes of the type Cp2(L)Zr=NCMe3 (Cp = cyclopentadienyl, L = Lewis base) have been shown to activate the carbon-hydrogen bonds of benzene, but not the C-H bonds of saturated hydrocarbons. To our knowledge, this singularly important class of C-H activation reactions has heretofore not been observed in imidometallocene systems. The M=NR bond formed on heating the racemic ethylenebis(tetrahydro)indenyl methyl tert-butyl amide complex, however, cleanly and quantitatively activates a wide range of n-alkane, alkene, and arene C-H bonds. Mechanistic experiments support the proposal of intramolecular elimination of methane followed by a concerted addition of the hydrocarbon C-H bond. Products formed by activation of sp2 C-H bonds are generally more thermodynamically stable than those formed by activation of sp3 C-H bonds, and those resulting from reaction at primary C-H bonds are preferred over secondary sp3 C-H activation products. There is also evidence that thermodynamic selectivity among C-H bonds is sterically rather than electronically controlled.

  13. LiCoPO4 cathode from a CoHPO4·xH2O nanoplate precursor for high voltage Li-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Daiwon; Li, Xiaolin; Henderson, Wesley A.

    2016-02-01

    Highly crystalline LiCoPO4/C cathode has been synthesized without any impurities via single step solid-state reaction using CoHPO4xH2O nanoplates as a precursor obtained by simple precipitation route. The electrochemical test shows specific capacity as high as 125mAh/g at charge/discharge rate of C/10. Synthesis approach for obtaining CoHPO4xH2O nanoplate precursor and final LiCoPO4/C cathode using single step solid-state reaction have been characterized using X-ray diffraction, thermos gravimetric analyses (TGA) – differential scanning calorimetry (DSC), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The electrochemical test and cycling stability using different electrolytes, additive and separator have been investigated.

  14. Hydrolysis of surimi wastewater for production of transglutaminase by Enterobacter sp. C2361 and Providencia sp. C1112.

    PubMed

    H-Kittikun, Aran; Bourneow, Chaiwut; Benjakul, Soottawat

    2012-12-01

    Surimi wastewater (SWW) is an industrial wastewater, released during the washing step of surimi preparation from minced fish, that causes environmental problem. In this study, SWW produced from ornate threadfin bream (Nemipterus hexodon) was hydrolysed and used to cultivate Enterobacter sp. C2361 and Providencia sp. C1112 for the production of microbial transglutaminase (MTGase, EC 2.3.2.13). The SWW was repeatedly used to wash the fish mince that gained a final protein content of 3.20% (w/v). The commercial protease, Delvolase was the most appropriate protease used to produce fish protein hydrolysate (FPH) from SWW. The FPH at 40% degree of hydrolysis was used instead of a peptone portion in the SPY medium (3.0% starch, 2.0% peptone, 0.2% yeast extract, 0.2% MgSO(4), 0.2% K(2)HPO(4) and 0.2% KH(2)HPO(4), pH 7.0) to cultivate the tested strains at 37°C, shaking speed at 150rpm. Providencia sp. C1112 produced higher MTGase activity (1.78±0.05U/ml) than Streptoverticillium mobaraense (1.61±0.02U/ml) at 18h of cultivation in FPH medium. On the other hand, the Enterobacter sp. C2361 produced lower MTGase activity (1.18±0.03U/ml). Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. In pursuit of the rhabdophane crystal structure: from the hydrated monoclinic LnPO4.0.667H2O to the hexagonal LnPO4 (Ln = Nd, Sm, Gd, Eu and Dy)

    NASA Astrophysics Data System (ADS)

    Mesbah, Adel; Clavier, Nicolas; Elkaim, Erik; Szenknect, Stéphanie; Dacheux, Nicolas

    2017-05-01

    The dehydration process of the hydrated rhabdophane LnPO4.0.667H2O (Ln = La to Dy) was thoroughly studied over the combination of in situ high resolution synchrotron powder diffraction and TGA experiments. In the case of SmPO4.0.667H2O (monoclinic, C2), a first dehydration step was identified around 80 °C leading to the formation of SmPO4.0.5H2O (Monoclinic, C2) with Z =12 and a =17.6264(1) Å, b =6.9704(1) Å, c =12.1141(1) Å, β=133.74(1) °, V =1075.33(1) Å3. In agreement with the TGA and dilatometry experiments, all the water molecules were evacuated above 220 °C yielding to the anhydrous form, which crystallizes in the hexagonal P3121 space group with a =7.0389(1) Å, c =6.3702(1) Å and V =273.34(1) Å3. This study was extended to selected LnPO4.0.667H2O samples (Ln= Nd, Gd, Eu, Dy) and the obtained results confirmed the existence of two dehydration steps before the stabilization of the anhydrous form, with the transitory formation of LnPO4.0.5H2O.

  16. Toll-like receptor 4 orchestrates neutrophil recruitment into airways during the first hours of Bordetella pertussis infection.

    PubMed

    Moreno, Griselda; Errea, Agustina; Van Maele, Laurye; Roberts, Roy; Léger, Hélène; Sirard, Jean Claude; Benecke, Arndt; Rumbo, Martin; Hozbor, Daniela

    2013-01-01

    Most of the knowledge on the impact of Bordetella pertussis lipo-oligosaccharide (LOS) on the infectious process was obtained when the bacteria was established within the host. The aim of the present work was to determine the role of TLR4 at a very early step of the infectious process. To this end we used a transcriptomic approach on B. pertussis intranasal infection model in C3H/HeN, a TLR4-competent mouse strain, and C3H/HeJ, a TLR4-deficient mouse strain. The expression of approximately 140 genes was significantly changed 2 h post-infection in the C3H/HeN animals compared to the C3H/HeJ animals, which were essentially non-responders at this early time point. Pathways specific for immunity and defense, chemokine- and cytokine-mediated functions and TLR signaling, were activated upon infection in the TLR4 competent mice either at 2 h or 24 h. Furthermore, we observed that TLR4 signaling is absolutely required to promote the rapid recruitment of neutrophils into the airways. Interestingly, the depletion of those neutrophils impacted on B. pertussis lung counts in the first three days, thereby exacerbating the lung infection. In summary, we determined that TLR4 is a central player in initial neutrophil recruitment and orchestration of the very early innate defense against B. pertussis. Copyright © 2013 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  17. Partial purification of saccharifying and cell wall-hydrolyzing enzymes from malt in waste from beer fermentation broth.

    PubMed

    Khattak, Waleed Ahmad; Kang, Minkyung; Ul-Islam, Mazhar; Park, Joong Kon

    2013-06-01

    A number of hydrolyzing enzymes that are secreted from malt during brewing, including cell wall-hydrolyzing, saccharide-hydrolyzing, protein-degrading, lipid-hydrolyzing, and polyphenol and thiol-hydrolyzing enzymes, are expected to exist in an active form in waste from beer fermentation broth (WBFB). In this study, the existence of these enzymes was confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis, after which enzyme extract was partially purified through a series of purification steps. The hydrolyzing enzyme activity was then measured under various conditions at each purification step using carboxymethyl cellulose as a substrate. The best hydrolyzing activities of partially purified enzymes were found at pH 4.5 and 50 °C in a citrate buffer system. The enzymes showed highest thermal stability at 30 °C when exposed for prolonged time. As the temperature increased gradually from 25 to 70 °C, yeast cells in the chemically defined medium with enzyme extract lost their cell wall and viability earlier than those without enzyme extract. Cell wall degradation and the release of cell matrix into the culture media at elevated temperature (45-70 °C) in the presence of enzyme extract were monitored through microscopic pictures. Saccharification enzymes from malt were relatively more active in the original WBFB than supernatant and diluted sediments. The presence of hydrolyzing enzymes from malt in WBFB is expected to play a role in bioethanol production using simultaneous saccharification and fermentation without the need for additional enzymes, nutrients, or microbial cells via a cell-free enzyme system.

  18. Structure and mechanism of human UDP-xylose synthase: evidence for a promoting role of sugar ring distortion in a three-step catalytic conversion of UDP-glucuronic acid.

    PubMed

    Eixelsberger, Thomas; Sykora, Sabine; Egger, Sigrid; Brunsteiner, Michael; Kavanagh, Kathryn L; Oppermann, Udo; Brecker, Lothar; Nidetzky, Bernd

    2012-09-07

    UDP-xylose synthase (UXS) catalyzes decarboxylation of UDP-D-glucuronic acid to UDP-xylose. In mammals, UDP-xylose serves to initiate glycosaminoglycan synthesis on the protein core of extracellular matrix proteoglycans. Lack of UXS activity leads to a defective extracellular matrix, resulting in strong interference with cell signaling pathways. We present comprehensive structural and mechanistic characterization of the human form of UXS. The 1.26-Å crystal structure of the enzyme bound with NAD(+) and UDP reveals a homodimeric short-chain dehydrogenase/reductase (SDR), belonging to the NDP-sugar epimerases/dehydratases subclass. We show that enzymatic reaction proceeds in three chemical steps via UDP-4-keto-D-glucuronic acid and UDP-4-keto-pentose intermediates. Molecular dynamics simulations reveal that the D-glucuronyl ring accommodated by UXS features a marked (4)C(1) chair to B(O,3) boat distortion that facilitates catalysis in two different ways. It promotes oxidation at C(4) (step 1) by aligning the enzymatic base Tyr(147) with the reactive substrate hydroxyl and it brings the carboxylate group at C(5) into an almost fully axial position, ideal for decarboxylation of UDP-4-keto-D-glucuronic acid in the second chemical step. The protonated side chain of Tyr(147) stabilizes the enolate of decarboxylated C(4) keto species ((2)H(1) half-chair) that is then protonated from the Si face at C(5), involving water coordinated by Glu(120). Arg(277), which is positioned by a salt-link interaction with Glu(120), closes up the catalytic site and prevents release of the UDP-4-keto-pentose and NADH intermediates. Hydrogenation of the C(4) keto group by NADH, assisted by Tyr(147) as catalytic proton donor, yields UDP-xylose adopting the relaxed (4)C(1) chair conformation (step 3).

  19. A DFT Investigation of the Mechanism of Propene Ammoxidation over α-Bismuth Molybdate

    DOE PAGES

    Licht, Rachel B.; Bell, Alexis T.

    2016-11-17

    We investigated the mechanisms and energetics for the propene oxidation and ammoxidation occurring on the (010) surface of Bi 2 Mo 3 O 12 using density functional theory (DFT). An energetically feasible sequence of elementary steps for propene oxidation to acrolein, propene ammoxidation to acrylonitrile, and acrolein ammoxidation to acrylonitrile is proposed. Consistent with experimental findings, the rate-limiting step for both propene oxidation and ammoxidation is the initial hydrogen abstraction from the methyl group of propene, which is calculated to have an apparent activation energy of 27.3 kcal/mol. The allyl species produced in this reaction is stabilized as an allylmore » alkoxide, which can then undergo hydrogen abstraction to form acrolein or react with ammonia adsorbed on under-coordinated surface Bi 3+ cations to form allylamine. Dehydrogenation of allylamine is shown to produce acrylonitrile, whereas reaction with additional adsorbed ammonia leads to the formation of acetonitrile and hydrogen cyanide. The dehydrogenation of allyalkoxide species is found to have a significantly higher activation barrier than reaction with adsorbed ammonia, consistent with the observation that very little acrolein is produced when ammonia is present. Finally, we found that rapid reoxidation of the catalyst surface to release wate the driving force for all reactions involving the cleavage of C-H or N-H bonds, because practically all of these steps are endothermic. (Chemical Equation Presented).« less

  20. Probing the Compound I-like reactivity of a bare high-valent oxo iron porphyrin complex: the oxidation of tertiary amines.

    PubMed

    Chiavarino, Barbara; Cipollini, Romano; Crestoni, Maria Elisa; Fornarini, Simonetta; Lanucara, Francesco; Lapi, Andrea

    2008-03-12

    The mechanisms of oxidative N-dealkylation of amines by heme enzymes including peroxidases and cytochromes P450 and by functional models for the active Compound I species have long been studied. A debated issue has concerned in particular the character of the primary step initiating the oxidation sequence, either a hydrogen atom transfer (HAT) or an electron transfer (ET) event, facing problems such as the possible contribution of multiple oxidants and complex environmental effects. In the present study, an oxo iron(IV) porphyrin radical cation intermediate 1, [(TPFPP)*+ Fe(IV)=O]+ (TPFPP = meso-tetrakis (pentafluorophenyl)porphinato dianion), functional model of Compound I, has been produced as a bare species. The gas-phase reaction with amines (A) studied by ESI-FT-ICR mass spectrometry has revealed for the first time the elementary steps and the ionic intermediates involved in the oxidative activation. Ionic products are formed involving ET (A*+, the amine radical cation), formal hydride transfer (HT) from the amine ([A(-H)]+, an iminium ion), and oxygen atom transfer (OAT) to the amine (A(O), likely a carbinolamine product), whereas an ionic product involving a net initial HAT event is never observed. The reaction appears to be initiated by an ET event for the majority of the tested amines which included tertiary aliphatic and aromatic amines as well as a cyclic and a secondary amine. For a series of N,N-dimethylanilines the reaction efficiency for the ET activated pathways was found to correlate with the ionization energy of the amine. A stepwise pathway accounts for the C-H bond activation resulting in the formal HT product, namely a primary ET process forming A*+, which is deprotonated at the alpha-C-H bond forming an N-methyl-N-arylaminomethyl radical, A(-H)*, readily oxidized to the iminium ion, [A(-H)]+. The kinetic isotope effect (KIE) for proton transfer (PT) increases as the acidity of the amine radical cation increases and the PT reaction to the base, the ferryl group of (TPFPP)Fe(IV)=O, approaches thermoneutrality. The ET reaction displayed by 1 with gaseous N,N-dimethylaniline finds a counterpart in the ET reactivity of FeO+, reportedly a potent oxidant in the gas phase, and with the barrierless ET process for a model (P)*+ Fe(IV)=O species (where P is the porphine dianion) as found by theoretical calculations. Finally, the remarkable OAT reactivity of 1 with C6F5N(CH3)2 may hint to a mechanism along a route of diverse spin multiplicity.

  1. An atmospheric pressure chemical ionization study of the positive and negative ion chemistry of the hydrofluorocarbons 1,1-difluoroethane (HFC-152a) and 1,1,1,2-tetrafluoroethane (HFC-134a) and of perfluoro-n-hexane (FC-72) in air plasma at atmospheric pressure.

    PubMed

    Marotta, Ester; Paradisi, Cristina; Scorrano, Gianfranco

    2004-07-01

    A report is given on the ionization/dissociation behavior of the title compounds within air plasmas produced by electrical corona discharges at atmospheric pressure: both positive and negative ions were investigated at different temperatures using atmospheric pressure chemical ionization mass spectrometry (APCI-MS). CHF(2)CH(3) (HFC-152a) undergoes efficient ionic oxidation to C(2)H(5)O(+), in which the oxygen comes from water present in the plasma. In contrast, CF(3)CH(2)F (HFC-134a) does not produce any characteristic positive ion under APCI conditions, its presence within the plasma being revealed only as a neutral ligand in ion-molecule complexes with ions of the background (H(3)O(+) and NO(+)). Analogously, the perfluorocarbon FC-72 (n-C(6)F(14)) does not produce significant positive ions at 30 degrees C: at high temperature, however, it undergoes dissociative ionization to form many product ions including C(3)F(6)(+), C(2)F(4)(+), C(n)F(2n+1)(+) and a few families of oxygen containing cations (C(n)F(2n+1)OH(2)(+), C(n)F(2n)OH(+), C(n)F(2n-1)O(+), C(n)F(2n-1)O(2)H(2)(+), C(n)F(2n-2)O(2)H(+)) which are suggested to derive from C(n)F(2n+1)(+) in a cascade of steps initiated by condensation with water followed by steps of HF elimination and H(2)O addition. Negative ions formed from the fluoroethanes CHF(2)CH(3) and CF(3)CH(2)F (M) include complexes with ions of the background, O(2)(-)(M), O(3)(-)(M) and some higher complexes involving also water, and complexes of the fluoride ion, F(-)(H(2)O), F(-)(M) and higher complexes with both M and H(2)O also together. The interesting product O(2)(-)(HF) is also formed from 1,1-difluoroethane. In contrast to the HFCs, perfluoro-n-hexane gives stable molecular anions, M(-), which at low source temperature or in humidified air are also detected as hydrates, M(-)(H(2)O). In addition, in humidified air F(-)(H(2)O)(n) complexes are also formed. The reactions leading to all major positive and negative product ions are discussed also with reference to available thermochemical data and relevant literature reports. The effects on both positive and negative APCI spectra due to ion activation via increasing V(cone) are also reported and discussed: several interesting endothermic processes are observed under these conditions. The results provide important information on the role of ionic reactions in non-thermal plasma processes.

  2. Radical Cation Salt-initiated Aerobic C-H Phosphorylation of N-Benzylanilines: Synthesis of a-Aminophosphonates.

    PubMed

    Jia, Xiao Dong; Liu, Xiaofei; Yuan, Yu; Li, Pengfei; Hou, Wentao; He, Kaixuan

    2018-06-03

    A radical cation salt-initiated phosphorylation of N-benzylanilines was realized through the aerobic oxidation of sp3 C-H bond, providing a series of α-aminophosphonates in high yields. The investigation of the reaction scope revealed that this mild catalyst system is superior in good functional group tolerance and high reaction efficiency. The mechanistic study implied that the cleavage of the sp3 C-H bond was involved in the rate-determining step. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. 3,4-Dihydroxyphenylacetate 2,3-dioxygenase from Pseudomonas aeruginosa: An Fe(II)-containing enzyme with fast turnover

    PubMed Central

    Kamutira, Philaiwarong; Watthaisong, Pratchaya; Thotsaporn, Kittisak; Tongsook, Chanakan; Juttulapa, Maneerat; Nijvipakul, Sarayut; Chaiyen, Pimchai

    2017-01-01

    3,4-dihydroxyphenylacetate (DHPA) dioxygenase (DHPAO) from Pseudomonas aeruginosa (PaDHPAO) was overexpressed in Escherichia coli and purified to homogeneity. As the enzyme lost activity over time, a protocol to reactivate and conserve PaDHPAO activity has been developed. Addition of Fe(II), DTT and ascorbic acid or ROS scavenging enzymes (catalase or superoxide dismutase) was required to preserve enzyme stability. Metal content and activity analyses indicated that PaDHPAO uses Fe(II) as a metal cofactor. NMR analysis of the reaction product indicated that PaDHPAO catalyzes the 2,3-extradiol ring-cleavage of DHPA to form 5-carboxymethyl-2-hydroxymuconate semialdehyde (CHMS) which has a molar absorptivity of 32.23 mM-1cm-1 at 380 nm and pH 7.5. Steady-state kinetics under air-saturated conditions at 25°C and pH 7.5 showed a Km for DHPA of 58 ± 8 μM and a kcat of 64 s-1, indicating that the turnover of PaDHPAO is relatively fast compared to other DHPAOs. The pH-rate profile of the PaDHPAO reaction shows a bell-shaped plot that exhibits a maximum activity at pH 7.5 with two pKa values of 6.5 ± 0.1 and 8.9 ± 0.1. Study of the effect of temperature on PaDHPAO activity indicated that the enzyme activity increases as temperature increases up to 55°C. The Arrhenius plot of ln(k’cat) versus the reciprocal of the absolute temperature shows two correlations with a transition temperature at 35°C. Two activation energy values (Ea) above and below the transition temperature were calculated as 42 and 14 kJ/mol, respectively. The data imply that the rate determining steps of the PaDHPAO reaction at temperatures above and below 35°C may be different. Sequence similarity network analysis indicated that PaDHPAO belongs to the enzyme clusters that are largely unexplored. As PaDHPAO has a high turnover number compared to most of the enzymes previously reported, understanding its biochemical and biophysical properties should be useful for future applications in biotechnology. PMID:28158217

  4. First Total Syntheses and Antimicrobial Evaluation of Penicimonoterpene, a Marine-Derived Monoterpenoid, and Its Various Derivatives

    PubMed Central

    Zhao, Jian-Chun; Li, Xiao-Ming; Gloer, James B.; Wang, Bin-Gui

    2014-01-01

    The first total synthesis of marine-derived penicimonoterpene (±)-1 has been achieved in four steps from 6-methylhept-5-en-2-one using a Reformatsky reaction as the key step to construct the basic carbon skeleton. A total of 24 new derivatives of 1 have also been designed and synthesized. Their structures were characterized by analysis of their 1H NMR, 13C NMR and HRESIMS data. Some of them showed significant antibacterial activity against Aeromonas hydrophila, Escherichia coli, Micrococcus luteus, Staphylococcus aureus, Vibrio anguillarum, V. harveyi and/or V. parahaemolyticus, and some showed activity against plant-pathogenic fungi (Alternaria brassicae, Colletotrichum gloeosporioides and/or Fusarium graminearum). Some of the derivatives exhibited antimicrobial MIC values ranging from 0.25 to 4 μg/mL, which were stronger than those of the positive control. Notably, Compounds 3b and 10 showed extremely high selectively against plant-pathogenic fungus F. graminearum (MIC 0.25 μg/mL) and pathogenic bacteria E. coli (MIC 1 μg/mL), implying their potential as antimicrobial agents. SAR analysis of 1 and its derivatives indicated that modification of the carbon-carbon double bond at C-6/7, of groups on the allylic methylene unit and of the carbonyl group at C-1, effectively enhanced the antimicrobial activity. PMID:24897384

  5. Purification and some kinetic properties of catalase from parsley (Petroselinum hortense Hoffm., Apiaceae) leaves.

    PubMed

    Oztürk, Lokman; Bülbül, Metin; Elmastas, Mahfuz; Ciftçi, Mehmet

    2007-01-01

    In this study, catalase (CAT: EC 1.11.1.6) was purified from parsley (Petroselinum hortense) leaves; analysis of the kinetic behavior and some properties of the enzyme were investigated. The purification consisted of three steps, including preparation of homogenate, ammonium sulfate fractionation, and fractionation by DEAE-Sephadex A50 ion exchange chromatography. The enzyme was obtained with a yield of 9.5% and had a specific activity of 1126 U (mg proteins)(-1). The overall purification was about 5.83-fold. A temperature of 4 degrees C was maintained during the purification process. Enzyme activity was spectrophotometrically measured at 240 nm. In order to control the purification of the enzyme, SDS-polyacrylamide gel electrophoresis was carried out in 4% and 10% acryl amide for stacking and running gel, respectively. SDS-polyacrylamide gel electrophoresis showed a single band for the enzyme. The molecular weight was found to be 183.29 kDa by Sephadex G-200 gel filtration chromatography. The stable pH, optimum pH, and ionic strength were determined for phosphate and Tris-HCl buffer systems. In addition, K(M) and V(max) values for H(2)O(2), at optimum pH and 25 degrees C, were determined by means of Lineweaver-Burk plots.

  6. Regioselective Formation of α-Vinylpyrroles from the Ruthenium-Catalyzed Coupling Reaction of Pyrroles and Terminal Alkynes Involving C–H Bond Activation

    PubMed Central

    Gao, Ruili; Yi, Chae S.

    2010-01-01

    The cationic ruthenium catalyst, Ru3(CO)12/NH4PF6, was found to be highly effective for the intermolecular coupling reaction of pyrroles and terminal alkynes to give gem-selective α-vinylpyrroles. The carbon isotope effect on the α-pyrrole carbon and the Hammett correlation from a series of para-substituted N-arylpyrroles (ρ = −0.90) indicate a rate-limiting C–C bond formation step of the coupling reaction. PMID:20384382

  7. Probing the Active Surface Sites for CO Reduction on Oxide-Derived Copper Electrocatalysts

    DOE PAGES

    Verdaguer-Casadevall, Arnau; Li, Christina W.; Johansson, Tobias P.; ...

    2015-07-30

    CO electroreduction activity on oxide-derived Cu (OD-Cu) was found to correlate with metastable surface features that bind CO strongly. OD-Cu electrodes prepared by H 2 reduction of Cu 2O precursors reduce CO to acetate and ethanol with nearly 50% Faradaic efficiency at moderate overpotential. Temperature-programmed desorption of CO on OD-Cu revealed the presence of surface sites with strong CO binding that are distinct from the terraces and stepped sites found on polycrystalline Cu foil. After annealing at 350 °C, the surface-area corrected current density for CO reduction is 44-fold lower and the Faradaic efficiency is less than 5%. These changesmore » are accompanied by a reduction in the proportion of strong CO binding sites. Here, we propose that the active sites for CO reduction on OD-Cu surfaces are strong CO binding sites that are supported by grain boundaries. Uncovering these sites is a first step toward understanding the surface chemistry necessary for efficient CO electroreduction.« less

  8. Dynamic characteristics of 4H-SiC drift step recovery diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, P. A., E-mail: Pavel.Ivanov@mail.ioffe.ru; Kon’kov, O. I.; Samsonova, T. P.

    The dynamic characteristics of 4H-SiC p{sup +}–p–n{sub 0}–n{sup +} diodes are experimentally studied in the pulsed modes characteristic of the operation of drift step recovery diodes (DSRD-mode). The effect of the subnanosecond termination of the reverse current maintained by electron-hole plasma preliminarily pumped by a forward current pulse is analyzed in detail. The influence exerted on the DSRD effect by the amplitude of reverse-voltage pulses, the amplitude and duration of forward-current pulses, and the time delay between the forward and reverse pulses is demonstrated and accounted for.

  9. Towards a rational design of ruthenium CO2 hydrogenation catalysts by Ab initio metadynamics.

    PubMed

    Urakawa, Atsushi; Iannuzzi, Marcella; Hutter, Jürg; Baiker, Alfons

    2007-01-01

    Complete reaction pathways relevant to CO2 hydrogenation by using a homogeneous ruthenium dihydride catalyst ([Ru(dmpe)2H2], dmpe=Me2PCH2CH2PMe2) have been investigated by ab initio metadynamics. This approach has allowed reaction intermediates to be identified and free-energy profiles to be calculated, which provide new insights into the experimentally observed reaction pathway. Our simulations indicate that CO2 insertion, which leads to the formation of formate complexes, proceeds by a concerted insertion mechanism. It is a rapid and direct process with a relatively low activation barrier, which is in agreement with experimental observations. Subsequent H2 insertion into the formate--Ru complex, which leads to the formation of formic acid, instead occurs via an intermediate [Ru(eta2-H2)] complex in which the molecular hydrogen coordinates to the ruthenium center and interacts weakly with the formate group. This step has been identified as the rate-limiting step. The reaction completes by hydrogen transfer from the [Ru(eta2-H2)] complex to the formate oxygen atom, which forms a dihydrogen-bonded Ru--HHO(CHO) complex. The activation energy for the H2 insertion step is lower for the trans isomer than for the cis isomer. A simple measure of the catalytic activity was proposed based on the structure of the transition state of the identified rate-limiting step. From this measure, the relationship between catalysts with different ligands and their experimental catalytic activities can be explained.

  10. Cumulated Activity Comparison of 64Cu-/177Lu-Labeled Anti-Epidermal Growth Factor Receptor Antibody in Esophageal Squamous Cell Carcinoma Model.

    PubMed

    Laffon, Eric; Thumerel, Matthieu; Jougon, Jacques; Marthan, Roger

    2017-06-01

    This work aimed at estimating the kinetic parameters, and hence cumulated activity (A C ), of a diagnostic/therapeutic convergence radiopharmaceutical, namely 64 Cu-/ 177 Lu-labeled antibody ( 64 Cu-/ 177 Lu-cetuximab), that acts as anti-epidermal growth factor receptor. Methods: In mice bearing esophageal squamous cell carcinoma tumors, to estimate uptake (K), release rate constant (k R ), and hence A C , a kinetic model analysis was applied to recently published biodistribution data of immuno-PET imaging with 64 Cu-cetuximab and of small-animal SPECT/CT imaging with 177 Lu-cetuximab, including blood and TE-8 tumor. Results: K, k R , and A C were estimated to be 0.0566/0.0593 g⋅h -1 ⋅g -1 , 0.0150/0.0030 h -1 , and 2.3 × 10 10 /4.1 × 10 12 disintegrations (per gram of TE-8 tumor), with an injected activity of 3.70/12.95 MBq, for 64 Cu-/ 177 Lu-cetuximab, respectively. Conclusion: A model is available for comparing kinetic parameters and A C of the companion diagnostic/therapeutic 64 Cu-/ 177 Lu-cetuximab that may be considered as a step for determining whether one can really use the former to predict dosimetry of the latter. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  11. Complement Regulator Factor H Mediates a Two-step Uptake of Streptococcus pneumoniae by Human Cells*

    PubMed Central

    Agarwal, Vaibhav; Asmat, Tauseef M.; Luo, Shanshan; Jensch, Inga; Zipfel, Peter F.; Hammerschmidt, Sven

    2010-01-01

    Streptococcus pneumoniae, a human pathogen, recruits complement regulator factor H to its bacterial cell surface. The bacterial PspC protein binds Factor H via short consensus repeats (SCR) 8–11 and SCR19–20. In this study, we define how bacterially bound Factor H promotes pneumococcal adherence to and uptake by epithelial cells or human polymorphonuclear leukocytes (PMNs) via a two-step process. First, pneumococcal adherence to epithelial cells was significantly reduced by heparin and dermatan sulfate. However, none of the glycosaminoglycans affected binding of Factor H to pneumococci. Adherence of pneumococci to human epithelial cells was inhibited by monoclonal antibodies recognizing SCR19–20 of Factor H suggesting that the C-terminal glycosaminoglycan-binding region of Factor H mediates the contact between pneumococci and human cells. Blocking of the integrin CR3 receptor, i.e. CD11b and CD18, of PMNs or CR3-expressing epithelial cells reduced significantly the interaction of pneumococci with both cell types. Similarly, an additional CR3 ligand, Pra1, derived from Candida albicans, blocked the interaction of pneumococci with PMNs. Strikingly, Pra1 inhibited also pneumococcal uptake by lung epithelial cells but not adherence. In addition, invasion of Factor H-coated pneumococci required the dynamics of host-cell actin microfilaments and was affected by inhibitors of protein-tyrosine kinases and phosphatidylinositol 3-kinase. In conclusion, pneumococcal entry into host cells via Factor H is based on a two-step mechanism. The first and initial contact of Factor H-coated pneumococci is mediated by glycosaminoglycans expressed on the surface of human cells, and the second step, pneumococcal uptake, is integrin-mediated and depends on host signaling molecules such as phosphatidylinositol 3-kinase. PMID:20504767

  12. Concise Syntheses of bis-Strychnos Alkaloids (-)-Sungucine, (-)-Isosungucine, and (-)-Strychnogucine B from (-)-Strychnine.

    PubMed

    Zhao, Senzhi; Teijaro, Christiana N; Chen, Heng; Sirasani, Gopal; Vaddypally, Shivaiah; Zdilla, Michael J; Dobereiner, Graham E; Andrade, Rodrigo B

    2016-08-08

    The first chemical syntheses of complex, bis-Strychnos alkaloids (-)-sungucine (1), (-)-isosungucine (2), and (-)-strychnogucine B (3) from (-)-strychnine (4) is reported. Key steps included (1) the Polonovski-Potier activation of strychnine N-oxide; (2) a biomimetic Mannich coupling to forge the signature C23-C5' bond that joins two monoterpene indole monomers; and (3) a sequential HBr/NaBH3 CN-mediated reduction to fashion the ethylidene moieties in 1-3. DFT calculations were employed to rationalize the regiochemical course of reactions involving strychnine congeners. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Low temperature catalysts for methanol production

    DOEpatents

    Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.; Mahajan, D.

    1986-10-28

    A catalyst and process useful at low temperatures (below about 160 C) and preferably in the range 80--120 C used in the production of methanol from carbon monoxide and hydrogen are disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH--RONa-M(OAc)[sub 2] where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1-6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is NiC (where M = Ni and R = tertiary amyl). Mo(CO)[sub 6] is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  14. Purification and characterization of alpha-amylase from Bacillus licheniformis CUMC305

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, T.; Chandra, A.K.

    Alpha-amylase produced by Bacillus licheniformis CUMC305 was purified 212-fold with a 42% yield through a series of four steps. The purified enzyme was homogeneous as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and discontinuous gel electrophoresis. The purified enzyme showed maximal activity at 90 degrees C and pH 9.0, and 91% of this activity remained at 100 degrees C. In the presence of substrate (soluble starch), the alpha-amylase enzyme was fully stable after a 4-hour incubation at 100 degrees C. The enzyme showed 100% stability in the pH range 7 to 9; 95% stability at pH 10; and 84, 74,more » 68, and 50% stability at pH values of 6, 5, 4, and 3, respectively, after 18 hours of treatment. The activation energy for this enzyme was calculated as 5.1 x 10 to the power of 5 J/mol. The molecular weight was estimated to be 28,000 by sodium dodecyl sulfate-gel electrophoresis. The relative rates of hydrolysis of soluble starch, amylose, amylopectin, and glycogen were 1.27, 1.8, 1.94, and 2.28 mg/ml, respectively. Vmax values for hydrolysis of these substrates were calculated as 0.738, 1.08, 0.8, and 0.5 mg of maltose/ml per min, respectively. Of the cations, Na+, Ca(2+), and Mg(2+), showed stimulatory effect, wheras Hg(2+), Cu(2+), Ni(2+), Zn(2+), Ag+, Fe(2+), Co(2+), Cd(2+), Al(3+), and Mn(2+) were inhibitory. Of the anions, azide, F-, SO/sub 3/(2-), SO/sub 4/(3-), S/sub 2/O/sub 3/(2-), MoO/sub 4/(2-), and Wo/sub 4/(2-) showed an excitant effect. p-Chloromercuribenzoic acid and sodium iodoacetate were inhibitory, whereas cysteine, reduced glutathione, thiourea, beta-mercaptoethanol, and sodium glycerophosphate afforded protection to enzyme activity. Alpha-amylase was fairly resistant to EDTA treatment at 30 degrees C, but heating at 90 degrees C in presence of EDTA resulted in the complete loss of enzyme activity. (Refs. 32).« less

  15. Measurements of Breakdown Field and Forward Current Stability in 3C-SiC P-N Junction Diodes Grown on Step-Free 4H-SiC

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Spry, David J.; Trunek, Andrew J.

    2005-01-01

    This paper reports on initial fabrication and electrical characterization of 3C-SiC p-n junction diodes grown on step-free 4H-SiC mesas. Diodes with n-blocking-layer doping ranging from approx. 2 x 10(exp 16)/cu cm to approx.. 5 x 10(exp 17)/cu cm were fabricated and tested. No optimization of junction edge termination or ohmic contacts was employed. Room temperature reverse characteristics of the best devices show excellent low-leakage behavior, below previous 3C-SiC devices produced by other growth techniques, until the onset of a sharp breakdown knee. The resulting estimated breakdown field of 3C-SiC is at least twice the breakdown field of silicon, but is only around half the breakdown field of <0001> 4H-SiC for the doping range studied. Initial high current stressing of 3C diodes at 100 A/sq cm for more than 20 hours resulted in less than 50 mV change in approx. 3 V forward voltage. 3C-SiC, pn junction, p+n diode, rectifier, reverse breakdown, breakdown field,heteroepitaxy, epitaxial growth, electroluminescence, mesa, bipolar diode

  16. Study on Potential Changes in Geological and Disposal Environment Caused by 'Natural Phenomena' on a HLW Disposal System

    NASA Astrophysics Data System (ADS)

    Kawamura, M.; Umeda, K.; Ohi, T.; Ishimaru, T.; Niizato, T.; Yasue, K.; Makino, H.

    2007-12-01

    We have developed a formal evaluation method to assess the potential impact of natural phenomena (earthquakes and faulting; volcanism; uplift, subsidence, denudation and sedimentation; climatic and sea-level changes) on a High Level Radioactive Waste (HLW) Disposal System. In 2000, we had developed perturbation scenarios in a generic and conservative sense and illustrated the potential impact on a HLW disposal system. As results of the development of perturbation scenarios, two points were highlighted for consideration in subsequent work: improvement of the scenarios from the viewpoints of reality, transparency, traceability and consistency and avoiding extreme conservatism. Subsequently, we have thus developed a new procedure for describing such perturbation scenarios based on further studies of the characteristics of these natural perturbation phenomena in Japan. The approach to describing the perturbation scenario is effectively developed in five steps: Step 1: Description of potential process of phenomena and their impacts on the geological environment. Step 2: Characterization of potential changes of geological environment in terms of T-H-M-C (Thermal - Hydrological - Mechanical - Chemical) processes. The focus is on specific T-H-M-C parameters that influence geological barrier performance, utilizing the input from Step 1. Step 3: Classification of potential influences, based on similarity of T-H-M-C perturbations. This leads to development of perturbation scenarios to serve as a basis for consequence analysis. Step 4: Establishing models and parameters for performance assessment. Step 5: Calculation and assessment. This study focuses on identifying key T-H-M-C process associated with perturbations at Step 2. This framework has two advantages. First one is assuring maintenance of traceability during the scenario construction processes, facilitating the production and structuring of suitable records. The second is providing effective elicitation and organization of information from a wide range of investigations of earth sciences within a performance assessment context. In this framework, scenario development work proceeds in a stepwise manner, to ensure clear identification of the impact of processes associated with these phenomena on a HLW disposal system. Output is organized to create credible scenarios with required transparency, consistency, traceability and adequate conservatism. In this presentation, the potential impact of natural phenomena in the viewpoint of performance assessment for HLW disposal will be discussed and modeled using the approach.

  17. Active sites and mechanisms for H2O2 decomposition over Pd catalysts

    PubMed Central

    Plauck, Anthony; Stangland, Eric E.; Dumesic, James A.; Mavrikakis, Manos

    2016-01-01

    A combination of periodic, self-consistent density functional theory (DFT-GGA-PW91) calculations, reaction kinetics experiments on a SiO2-supported Pd catalyst, and mean-field microkinetic modeling are used to probe key aspects of H2O2 decomposition on Pd in the absence of cofeeding H2. We conclude that both Pd(111) and OH-partially covered Pd(100) surfaces represent the nature of the active site for H2O2 decomposition on the supported Pd catalyst reasonably well. Furthermore, all reaction flux in the closed catalytic cycle is predicted to flow through an O–O bond scission step in either H2O2 or OOH, followed by rapid H-transfer steps to produce the H2O and O2 products. The barrier for O–O bond scission is sensitive to Pd surface structure and is concluded to be the central parameter governing H2O2 decomposition activity. PMID:27006504

  18. Room-Temperature C-H Functionalization Sequence under Benchtop Conditions for the Undergraduate Chemistry Laboratory

    ERIC Educational Resources Information Center

    Chen, Shuming

    2018-01-01

    An iridium(III)-mediated C-H functionalization sequence involving a concerted cyclometalation-deprotonation/migratory insertion pathway is reported for the undergraduate chemistry laboratory. The air- and water-stable iridacycle intermediates are readily isolated and characterized by NMR spectroscopy. Both steps of the experiment are performed at…

  19. Carbon-Hydrogen Activation in Zerovalent Bis(1,5-cyclooctadiene) Complexes of the First Row Transition Metals: A Theoretical Study.

    PubMed

    Hu, Jia; Feng, Hao; Xie, Yaoming; King, R Bruce; Schaefer, Henry F

    2018-03-29

    Stepwise interaction of first row transition metal atoms with 1,5-cyclooctadiene to give (C 8 H 12 ) 2 M complexes is studied using the M06-L/DZP density functional method. The experimentally known (C 8 H 12 ) 2 Ni is the thermodynamically most favorable complex, with a predicted geometry consistent with its experimental structure as determined by X-ray crystallography. The other transition metal atoms from scandium to zinc also interact exothermically with 1,5-cyclooctadiene to give (C 8 H 12 ) 2 M derivatives, but these exhibit lower symmetry than the S 4 symmetry exhibited by (C 8 H 12 ) 2 Ni. Carbon-hydrogen activation of CH 2 groups in a C 8 H 12 ligand is predicted for most systems. Thus, conversion of (η 2,2 -C 8 H 12 ) 2 M to (η 3,2 -C 8 H 11 )(η 2,1 -C 8 H 13 )M, through a hydride intermediate (η 3,2 -C 8 H 11 )(η 2,2 -C 8 H 12 )MH, is predicted for scandium, vanadium, chromium, manganese, and cobalt. For titanium with a low-lying empty orbital, further C-H activation through a hydride intermediate (η 6 -C 8 H 10 )(η 2,1 -C 8 H 13 )TiH is predicted, leading ultimately to (η 6 -C 8 H 10 )(η 1,1 -C 8 H 14 )Ti, in which the hexahapto η 6 -C 8 H 10 ligand is shown by NICS to be aromatic. These two C-H activation processes on a titanium center represent the dehydrogenation of 1,5-cyclooctadiene to 1,3,5-cyclooctatriene with the second 1,5-cyclooctadiene ligand as the hydrogen acceptor. For zinc C-H activation terminates at (η 1 -C 8 H 11 )(C 8 H 12 )ZnH, which has a C-Zn-H three-center bond. No energetically favorable C-H activation processes are predicted for the iron, nickel, and copper (η 2,2 -C 8 H 12 ) 2 M derivatives.

  20. Monte Carlo study of the hetero-polytypical growth of cubic on hexagonal silicon carbide polytypes

    NASA Astrophysics Data System (ADS)

    Camarda, Massimo

    2012-08-01

    In this article we use three dimensional kinetic Monte Carlo simulations on super-lattices to study the hetero-polytypical growth of cubic silicon carbide polytype (3C-SiC) on misoriented hexagonal (4H and 6H) substrates. We analyze the quality of the 3C-SiC film varying the polytype, the miscut angle and the initial surface morphology of the substrate. We find that the use of 6H misoriented (4°-10° off) substrates, with step bunched surfaces, can strongly improve the quality of the cubic epitaxial film whereas the 3C/4H growth is affected by the generation of dislocations, due to the incommensurable periodicity of the 3C (3) and the 4H (4) polytypes. For these reasons, a proper pre-growth treatment of 6H misoriented substrates can be the key for the growth of high quality, twin free, 3C-SiC films.

  1. Crystallization process of zeolite rho prepared by hydrothermal synthesis using 18-crown-6 ether as organic template.

    PubMed

    Araki, Sadao; Kiyohara, Yasato; Tanaka, Shunsuke; Miyake, Yoshikazu

    2012-06-15

    There are many viewpoints on the formation mechanisms for zeolites, but the details are not clear. An understanding of the elementary steps for their formation is important for the development of large-scale membranes and efficient manufacturing processes. In this study, the effects of silicon, aluminum, and the incorporation of 18-crown-6 (18C6) ether, on the formation of zeolite rho, using 18C6 as the structure directing agent (SDA) have been investigated by using field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray fluorescence spectrometry (EDX), nuclear magnetic resonance spectroscopy (NMR), thermo gravimetric analysis (TGA), and the pH measurement. These results suggested that a zeolite rho has four synthesis steps; (1) 0-3 h, the dehydration and condensation reaction between the silica and alumina to form amorphous aluminosilicates; (2) 3-20 h, the particle growth and aggregation process for the amorphous aluminosilicates; (3) 20-48 h, the crystallization and crystal growth of zeolite rho, with the incorporation of 18C6; and (4) 48-96 h, gentle growth with an increase in Na/Si ratio and a change in rate for the bounding state between the silica- and the alumina-based species. We consider the above to reflect the four steps for the formation of zeolite rho. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Four-coordinate, 14-electron Ru(II) complexes: unusual trigonal pyramidal geometry enforced by bis(phosphino)silyl ligation.

    PubMed

    MacInnis, Morgan C; McDonald, Robert; Ferguson, Michael J; Tobisch, Sven; Turculet, Laura

    2011-08-31

    Unprecedented diamagnetic, four-coordinate, formally 14-electron (Cy-PSiP)RuX (Cy-PSiP = [κ(3)-(2-R(2)PC(6)H(4))(2)SiMe](-); X = amido, alkoxo) complexes that do not require agostic stabilization and that adopt a highly unusual trigonal pyramidal coordination geometry are reported. The tertiary silane [(2-Cy(2)PC(6)H(4))(2)SiMe]H ((Cy-PSiP)H) reacted with 0.5 [(p-cymene)RuCl(2)](2) in the presence of Et(3)N and PCy(3) to afford [(Cy-PSiP)RuCl](2) (1) in 74% yield. Treatment of 1 with KO(t)Bu led to the formation of (Cy-PSiP)RuO(t)Bu (2, 97% yield), which was crystallographically characterized and shown to adopt a trigonal pyramidal coordination geometry in the solid state. Treatment of 1 with NaN(SiMe(3))(2) led to the formation of (Cy-PSiP)RuN(SiMe(3))(2) (3, 70% yield), which was also found to adopt a trigonal pyramidal coordination geometry in the solid state. The related anilido complexes (Cy-PSiP)RuNH(2,6-R(2)C(6)H(3)) (4, R = H; 5, R = Me) were also prepared in >90% yields by treating 1 with LiNH(2,6-R(2)C(6)H(3)) (R = H, Me) reagents. The solid state structure of 5 indicates a monomeric trigonal pyramidal complex that features a C-H agostic interaction. Complexes 2 and 3 were found to react readily with 1 equiv of H(2)O to form the dimeric hydroxo-bridged complex [(Cy-PSiP)RuOH](2) (6, 94% yield), which was crystallographically characterized. Complexes 2 and 3 also reacted with 1 equiv of PhOH to form the new 18-electron η(5)-oxocyclohexadienyl complex (Cy-PSiP)Ru(η(5)-C(6)H(5)O) (7, 84% yield). Both amido and alkoxo (Cy-PSiP)RuX complexes reacted with H(3)B·NHRR' reagents to form bis(σ-B-H) complexes of the type (Cy-PSiP)RuH(η(2):η(2)-H(2)BNRR') (8, R = R' = H; 9, R = R' = Me; 10, R = H, R' = (t)Bu), which illustrates that such four-coordinate (Cy-PSiP)RuX (X = amido, alkoxo) complexes are able to undergo multiple E-H (E = main group element) bond activation steps. Computational methods were used to investigate structurally related PCP, PPP, PNP, and PSiP four-coordinate Ru complexes and confirmed the key role of the strongly σ-donating silyl group of the PSiP ligand set in enforcing the unusual trigonal pyramidal coordination geometry featured in complexes 2-5, thus substantiating a new strategy for the synthesis of low-coordinate Ru species. The mechanism of the activation of ammonia-borane by such low-coordinate (R-PSiP)RuX (X = amido, alkoxo) species was also studied computationally and was determined to proceed most likely in a stepwise fashion via intramolecular deprotonation of ammonia and subsequent borane B-H bond oxidative addition steps.

  3. Oxidative aliphatic C-H fluorination with manganese catalysts and fluoride ion

    PubMed Central

    Liu, Wei; Huang, Xiongyi; Groves, John T

    2014-01-01

    Fluorination is a reaction that is useful in improving the chemical stability and changing the binding affinity of biologically active compounds. The protocol described here can be used to replace aliphatic, C(sp3)-H hydrogen in small molecules with fluorine. Notably, isolated methylene groups and unactivated benzylic sites are accessible. The method uses readily available manganese porphyrin and manganese salen catalysts and various fluoride ion reagents, including silver fluoride (AgF), tetrabutylammonium fluoride and triethylamine trihydrofluoride (TREAT·HF), as the source of fluorine. Typically, the reactions afford 50–70% yield of mono-fluorinated products in one step. Two representative examples, the fragrance component celestolide and the nonsteroidal anti-inflammatory drug ibuprofen, are described; they produced useful isolated quantities (250–300 mg, ~50% yield) of fluorinated material over periods of 1–8 h. The procedures are performed in a typical fume hood using ordinary laboratory glassware. No special precautions to rigorously exclude water are required. PMID:24177292

  4. Why not procrastinate? Development and validation of a new active procrastination scale.

    PubMed

    Choi, Jin Nam; Moran, Sarah V

    2009-04-01

    Procrastination has been studied as a dysfunctional, self-effacing behavior that ultimately results in undesirable outcomes. However, A. H. C. Chu and J. N. Choi (2005) found a different form of procrastination (i.e., active procrastination) that leads to desirable outcomes. The construct of active procrastination has a high potential to expand the time management literature and is likely to be adopted by researchers in multiple areas of psychology. To facilitate the research on this new construct and its further integration into the literature, the authors developed and validated a new, expanded measure of active procrastination that reliably assesses its four dimensions. Using this new measure of active procrastination, they further examined its nomological network. The new 16-item measure is a critical step toward further empirical investigation of active procrastination.

  5. Synthesis, in vitro β-glucuronidase inhibitory activity and in silico studies of novel (E)-4-Aryl-2-(2-(pyren-1-ylmethylene)hydrazinyl)thiazoles.

    PubMed

    Salar, Uzma; Khan, Khalid Mohammed; Syed, Shazia; Taha, Muhammad; Ali, Farman; Ismail, Nor Hadiani; Perveen, Shahnaz; Wadood, Abdul; Ghufran, Mehreen

    2017-02-01

    Current research is based on the synthesis of novel (E)-4-aryl-2-(2-(pyren-1-ylmethylene)hydrazinyl)thiazole derivatives (3-15) by adopting two steps route. First step was the condensation between the pyrene-1-carbaldehyde (1) with the thiosemicarbazide to afford pyrene-1-thiosemicarbazone intermediate (2). While in second step, cyclization between the intermediate (2) and phenacyl bromide derivatives or 2-bromo ethyl acetate was carried out. Synthetic derivatives were structurally characterized by spectroscopic techniques such as EI-MS, 1 H NMR and 13 C NMR. Stereochemistry of the iminic double bond was confirmed by NOESY analysis. All pure compounds 2-15 were subjected for in vitro β-glucuronidase inhibitory activity. All molecules were exhibited excellent inhibition in the range of IC 50 =3.10±0.10-40.10±0.90μM and found to be even more potent than the standard d-saccharic acid 1,4-lactone (IC 50 =48.38±1.05μM). Molecular docking studies were carried out to verify the structure-activity relationship. A good correlation was perceived between the docking study and biological evaluation of active compounds. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Catalytic Growth of Macroscopic Carbon Nanofibers Bodies with Activated Carbon

    NASA Astrophysics Data System (ADS)

    Abdullah, N.; Rinaldi, A.; Muhammad, I. S.; Hamid, S. B. Abd.; Su, D. S.; Schlogl, R.

    2009-06-01

    Carbon-carbon composite of activated carbon and carbon nanofibers have been synthesized by growing Carbon nanofiber (CNF) on Palm shell-based Activated carbon (AC) with Ni catalyst. The composites are in an agglomerated shape due to the entanglement of the defective CNF between the AC particles forming a macroscopic body. The macroscopic size will allow the composite to be used as a stabile catalyst support and liquid adsorbent. The preparation of CNT/AC nanocarbon was initiated by pre-treating the activated carbon with nitric acid, followed by impregnation of 1 wt% loading of nickel (II) nitrate solutions in acetone. The catalyst precursor was calcined and reduced at 300° C for an hour in each step. The catalytic growth of nanocarbon in C2H4/H2 was carried out at temperature of 550° C for 2 hrs with different rotating angle in the fluidization system. SEM and N2 isotherms show the level of agglomeration which is a function of growth density and fluidization of the system. The effect of fluidization by rotating the reactor during growth with different speed give a significant impact on the agglomeration of the final CNF/AC composite and thus the amount of CNFs produced. The macrostructure body produced in this work of CNF/AC composite will have advantages in the adsorbent and catalyst support application, due to the mechanical and chemical properties of the material.

  7. Methyl-coenzyme M reductase from methanogenic archaea: isotope effects on label exchange and ethane formation with the homologous substrate ethyl-coenzyme M.

    PubMed

    Scheller, Silvan; Goenrich, Meike; Thauer, Rudolf K; Jaun, Bernhard

    2013-10-09

    Ethyl-coenzyme M (CH3CH2-S-CH2CH2-SO3(-), Et-S-CoM) serves as a homologous substrate for the enzyme methyl-coenzyme M reductase (MCR) resulting in the product ethane instead of methane. The catalytic reaction proceeds via an intermediate that already contains all six C-H bonds of the product. Because product release occurs after a second, rate-limiting step, many cycles of intermediate formation and reconversion to substrate occur before a substantial amount of ethane is released. In deuterated buffer, the intermediate becomes labeled, and C-H activation in the back reaction rapidly leads to labeled Et-S-CoM, which enables intermediate formation to be detected. Here, we present a comprehensive analysis of this pre-equilibrium. (2)H- and (13)C-labeled isotopologues of Et-S-CoM were used as the substrates, and the time course of each isotopologue was followed by NMR spectroscopy. A kinetic simulation including kinetic isotope effects allowed determination of the primary and α- and β-secondary isotope effects for intermediate formation and for the C-H/C-D bond activation in the ethane-containing intermediate. The values obtained are in accordance with those found for the native substrate Me-S-CoM (see preceding publication, Scheller, S.; Goenrich, M.; Thauer, R. K.; Jaun, B. J. Am. Chem. Soc. 2013, 135, DOI: 10.1021/ja406485z) and thus imply the same catalytic mechanism for both substrates. The experiment by Floss and co-workers, demonstrating a net inversion of configuration to chiral ethane with CH3CDT-S-CoM as the substrate, is compatible with the observed rapid isotope exchange if the isotope effects measured here are taken into account.

  8. Thermodynamics, kinetics, and mechanics of cesium sorption in cement paste: A multiscale assessment

    NASA Astrophysics Data System (ADS)

    Arayro, Jack; Dufresne, Alice; Zhou, Tingtao; Ioannidou, Katerina; Ulm, Josef-Franz; Pellenq, Roland; Béland, Laurent Karim

    2018-05-01

    Cesium-137 is a common radioactive byproduct found in nuclear spent fuel. Given its 30 year half life, its interactions with potential storage materials—such as cement paste—is of crucial importance. In this paper, simulations are used to establish the interaction of calcium silicate hydrates (C-S-H)—the main binding phase of cement paste—with Cs at the nano- and mesoscale. Different C-S-H compositions are explored, including a range of Ca/Si ratios from 1.0 to 2.0. These calculations are based on a set of 150 atomistic models, which qualitatively and quantitatively reproduce a number of experimentally measured features of C-S-H—within limits intrinsic to the approximations imposed by classical molecular dynamics and the steps followed when building the models. A procedure where hydrated Ca2 + ions are swapped for Cs1 + ions shows that Cs adsorption in the C-S-H interlayer is preferred to Cs adsorption at the nanopore surface when Cs concentrations are lower than 0.19 Mol/kg. Interlayer sorption decreases as the Ca/Si ratio increases. The activation relaxation technique nouveau is used to access timescales out of the reach of traditional molecular dynamics (MD). It indicates that characteristic diffusion time for Cs1 + in the C-S-H interlayer is on the order of a few hours. Cs uptake in the interlayer has little impact on the elastic response of C-S-H. It leads to swelling of the C-S-H grains, but mesoscale calculations that access length scales out of the range of MD indicate that this leads to practically negligible expansive pressures for Cs concentrations relevant to nuclear waste repositories.

  9. Poster 4: Investigating the first steps of hydrocarbon condensation in the laboratory and in Titan's atmosphere

    NASA Astrophysics Data System (ADS)

    Biennier, Ludovic; Bourgalais, Jeremy; Benidar, Abdessamad; Le Picard, Sebastien

    2016-06-01

    Hydrocarbons formed in Titan's cold atmosphere, starting with ethane C2H6, ethylene C2H4, acetylene C2H2, propane C3H8,... up to benzene C6H6, play some role in aerosol production, cloud processes, rain generation and Titan's lakes formation. We have started to study in the laboratory the kinetics of the first steps of condensation of these hydrocarbons. Rate coefficients are very sensitive to the description of the potential interaction surfaces of the molecules involved. Combined theoretical and experimental studies at the molecular level of the homogenous nucleation of various small molecules should improve greatly our fundamental understanding. This knowledge will serve as a model for studying more complex nucleation processes actually taking places in planetary atmospheres. Here we present the first experimental kinetic study of the dimerization of two small hydrocarbons: ethane C2H6 and propane C3H8. We have performed experiments to identify the temperature and partial densities ranges over which small hydrocarbon clusters form in saturated uniform supersonic flows. Using our unique reactor based on a Laval nozzle expansions, the kinetics of the formation has also been investigated down to 23 K. The chemical species present in the reactor are probed by a time of flight mass spectrometer equipped with an electron gun for soft ionization of the neutral reagents and products. This work aims at putting some constraints on the role of small hydrocarbon condensation in the formation of haze particles in the dense atmosphere of Titan.

  10. Mechanistic Studies at the Interface Between Organometallic Chemistry and Homogeneous Catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casey, Charles P

    Mechanistic Studies at the Interface Between Organometallic Chemistry and Homogeneous Catalysis Charles P. Casey, Principal Investigator Department of Chemistry, University of Wisconsin - Madison, Madison, Wisconsin 53706 Phone 608-262-0584 FAX: 608-262-7144 Email: casey@chem.wisc.edu http://www.chem.wisc.edu/main/people/faculty/casey.html Executive Summary. Our goal was to learn the intimate mechanistic details of reactions involved in homogeneous catalysis and to use the insight we gain to develop new and improved catalysts. Our work centered on the hydrogenation of polar functional groups such as aldehydes and ketones and on hydroformylation. Specifically, we concentrated on catalysts capable of simultaneously transferring hydride from a metal center and a proton frommore » an acidic oxygen or nitrogen center to an aldehyde or ketone. An economical iron based catalyst was developed and patented. Better understanding of fundamental organometallic reactions and catalytic processes enabled design of energy and material efficient chemical processes. Our work contributed to the development of catalysts for the selective and mild hydrogenation of ketones and aldehydes; this will provide a modern green alternative to reductions by LiAlH4 and NaBH4, which require extensive work-up procedures and produce waste streams. (C5R4OH)Ru(CO)2H Hydrogenation Catalysts. Youval Shvo described a remarkable catalytic system in which the key intermediate (C5R4OH)Ru(CO)2H (1) has an electronically coupled acidic OH unit and a hydridic RuH unit. Our efforts centered on understanding and improving upon this important catalyst for reduction of aldehydes and ketones. Our mechanistic studies established that the reduction of aldehydes by 1 to produce alcohols and a diruthenium bridging hydride species occurs much more rapidly than regeneration of the ruthenium hydride from the diruthenium bridging hydride species. Our mechanistic studies require simultaneous transfer of hydride from ruthenium to the aldehyde carbon and of a proton from the CpOH unit to the aldehyde oxygen and support reduction of the aldehyde without its prior coordination to ruthenium. Another important step in the catalysis is the regeneration of 1 from reaction of H2 with the stable diruthenium bridging hydride complex 2. Studies of the microscopic reverse of this process (hydrogen evolution from 1 which occurs at 80°C) in the presence of alcohol (the product of aldehyde hydrogenation) have shown that a dihydrogen complex is formed reversibly at a rate much faster than hydrogen evolution. Kinetic and theoretical studies in collaboration with Professor Qiang Cui of Wisconsin indicated an important role for alcohol in mediating transfer of hydrogen to ruthenium. One key to developing more active catalysts was to destabilize the bridging hydride intermediate 2 to prevent its formation or to speed its conversion to a reactive monohydride 1 by reaction with H2. We found several successful ways to destabilize the bridging hydride and to obtain more active catalysts. Most recently, we discovered related iron catalysts for hydrogenation that do not form dimers; the cost advantage of iron catalysts is spectacular. Iron Catalysts. In an exciting development, we found that a related iron complex is also a very active ketone hydrogenation catalyst. This hydrogenation catalyst shows high chemoselectivity for aldehydes, ketones, and imines and isolated C=C, CºC, C-X, -NO2, epoxides, and ester functions are unaffected by the hydrogenation conditions. Mechanistic studies have established a reversible hydrogen transfer step followed by rapid dihydrogen activation. The same iron complex also catalyzes transfer hydrogenation of ketones.« less

  11. Hydrogenation of benzaldehyde via electrocatalysis and thermal catalysis on carbon-supported metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Yang; Sanyal, Udishnu; Pangotra, Dhananjai

    Abstract Selective reduction of benzaldehyde to benzyl alcohol on C-supported Pt, Rh, Pd, and Ni in aqueous phase was conducted using either directly H2 (thermal catalytic hydrogenation, TCH) or in situ electrocatalytically generated hydrogen (electrocatalytic hydrogenation, ECH). In TCH, the intrinsic activity of the metals at room temperature and 1 bar H2 increased in the sequence Rh/C < Pt/C < Pd/C, while Ni/C is inactive at these conditions due to surface oxidation in the absence of cathodic potential. The reaction follows a Langmuir-Hinshelwood mechanism with the second hydrogen addition to the adsorbed hydrocarbon being the rate-determining step. All tested metalsmore » were active in ECH of benzaldehyde, although hydrogenation competes with the hydrogen evolution reaction (HER). The minimum cathodic potentials to obtain appreciable ECH rates were identical to the onset potentials of HER. Above this onset, the relative rates of H reacting to H2 and H addition to the hydrocarbon determines the selectivity to ECH and TCH. Accordingly, the selectivity of the metals towards ECH increases in the order Ni/C < Pt/C < Rh/C < Pd/C. Pd/C shows exceptionally high ECH selectivity due to its surprisingly low HER reactivity under the reaction conditions. Acknowledgements The authors would like to thank the groups of Hubert A. Gasteiger at the Technische Universität München of Jorge Gascon at the Delft University of Technology for advice and valuable discussions. The authors are grateful to Nirala Singh, Erika Ember, Gary Haller, and Philipp Rheinländer for fruitful discussions. We are also grateful to Marianne Hanzlik for TEM measurements and to Xaver Hecht and Martin Neukamm for technical support. Y.S. would like to thank the Chinese Scholarship Council for the financial support. The research described in this paper is part of the Chemical Transformation Initiative at Pacific Northwest National Laboratory (PNNL), conducted under the Laboratory Directed Research and Development Program at PNNL, a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy.« less

  12. Synthesis of H/Bentonite and Ni/Al2O3-bentonite and its application to produce biogasoline from nyamplung seed (Calophyllum inophillum Linn) oil by catalytic hydrocracking

    NASA Astrophysics Data System (ADS)

    Marini, A. T.; Wijaya, K.; Sasongko, N. A.

    2018-03-01

    Hydrocracking process of Nyamplung (Calophyllum inophillum Linn) seed oil to produce biogasoline using H/bentonite and Ni/Al2O3-bentonite that pillared by Al2O3 as catalyst had been conducted. Bentonite was activated by acidification using HF 1% and H2SO4 0.5 M. Ni metal was impregnated into bentonite with two steps reaction; therewas intercalation with Al2O3kegging ion and Ni metal impregnation using NiCl2 metal salt. Catalysts were characterized by infrared spectrophotometer (FTIR), X-ray diffraction (XRD), X-ray fluorescence (XRF), BET, TEM and ammonia adsorption. Hydrocracking reaction was variated by Ni/Al2O3-bentonite and H/bentonite with ratio catalyst/oil 1:100. Biocrude was prepared by extraction by using ethanol 96%. Hydrocracking oil products were further analyzed by GC-MS. The results show that the acidity of bentonite by activation using HF 1% and H2SO4 0.5 M has been increased from 62.58 to 64.62 mmol/g. Impregnation process also increased the acidity of bentonite from 62.58 to 64.89 mmol/g. Activation using HF 1% and H2SO4 0.5 M, intercalation by Al2O3 and impregnation by Ni metal were increasing the crystallinity, surface area, total volume pore and average pore size of bentonite. These techniques were also causeddealumination of bentonite. The hydrocracking process successfully synthesized hydrocarbons with a number of carbon chain between C5-C20 which include bio-gasoline group compounds. Moreover, catalytic processes by H/bentonite and Ni/Al2O3-bentonite also successfully produced 39.83% and 60.37% of biogasoline yields, respectively.

  13. Relationship between the structures of flavonoids and oxygen radical absorbance capacity values: a quantum chemical analysis.

    PubMed

    Zhang, Di; Liu, Yixiang; Chu, Le; Wei, Ying; Wang, Dan; Cai, Shengbao; Zhou, Feng; Ji, Baoping

    2013-02-28

    Various radical-scavenging activities (RSA) assessment assays are based on discrete mechanisms and on using different radical sources. Few studies have analyzed the structural significance of flavonoids in their peroxyl radical activities in the oxygen radical absorbance capacity (ORAC) assay. In this study, the RSA of 13 flavonoids in two ORAC assays with different probes (fluorescein and pyrogallol red) were investigated. Neither O-H bond dissociation enthalpy nor ionization potential values of flavonoids correlated with ORAC values. The proton affinity (PA) and electron transfer enthalpy (ETE) values, which were obtained via the sequential proton-loss electron-transfer mechanism, were significantly associated with the ORAC(pyrogallol Red) and ORAC(fluorescein) assays, respectively. Thus, PA represented the kinetic aspect of RSA, whereas ETE reflected the RSA extent. The PA values and the most acidic sites of flavonoids were affected by intramolecular electronic interactions, H-bonding, 3-hydroxyl group in the C ring, and conjugation systems. The stability of the deprotonated flavonoid determined the ETE value. Apart from the PA and ETE values in the first oxidation step of flavonoids, the PA and ETE values in the second oxidation step also affected the ORAC values of flavonoids.

  14. One-step synthesis of high-yield biodiesel from waste cooking oils by a novel and highly methanol-tolerant immobilized lipase.

    PubMed

    Wang, Xiumei; Qin, Xiaoli; Li, Daoming; Yang, Bo; Wang, Yonghua

    2017-07-01

    This study reported a novel immobilized MAS1 lipase from marine Streptomyces sp. strain W007 for synthesizing high-yield biodiesel from waste cooking oils (WCO) with one-step addition of methanol in a solvent-free system. Immobilized MAS1 lipase was selected for the transesterification reactions with one-step addition of methanol due to its much more higher biodiesel yield (89.50%) when compared with the other three commercial immobilized lipases (<10%). The highest biodiesel yield (95.45%) was acquired with one-step addition of methanol under the optimized conditions. Moreover, it was observed that immobilized MAS1 lipase retained approximately 70% of its initial activity after being used for four batch cycles. Finally, the obtained biodiesel was further characterized using FT-IR, 1 H and 13 C NMR spectroscopy. These findings indicated that immobilized MAS1 lipase is a promising catalyst for biodiesel production from WCO with one-step addition of methanol under high methanol concentration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Exercise Therapy for Management of Type 2 Diabetes Mellitus: Superior Efficacy of Activity Monitors over Pedometers.

    PubMed

    Miyauchi, Masaaki; Toyoda, Masao; Kaneyama, Noriko; Miyatake, Han; Tanaka, Eitaro; Kimura, Moritsugu; Umezono, Tomoya; Fukagawa, Masafumi

    2016-01-01

    We compared the efficacy of activity monitor (which displays exercise intensity and number of steps) versus that of pedometer in exercise therapy for patients with type 2 diabetes. The study subjects were divided into the activity monitor group ( n = 92) and pedometer group ( n = 95). The primary goal was improvement in hemoglobin A1c (HbA1c). The exercise target was set at 8,000 steps/day and 20 minutes of moderate-intensity exercise (≥3.5 metabolic equivalents). The activity monitor is equipped with a triple-axis accelerometer sensor capable of measuring medium-intensity walking duration, number of steps, walking distance, calorie consumption, and total calorie consumption. The pedometer counts the number of steps. Blood samples for laboratory tests were obtained during the visits. The first examination was conducted at the start of the study and repeated at 2 and 6 months. A significant difference in the decrease in HbA1c level was observed between the two groups at 2 months. The results suggest that the use of activity level monitor that displays information on exercise intensity, in addition to the number of steps, is useful in exercise therapy as it enhances the concept of exercise therapy and promotes lowering of HbA1c in diabetic patients.

  16. Development and Validation of a New Reliable Method for the Diagnosis of Avian Botulism.

    PubMed

    Le Maréchal, Caroline; Rouxel, Sandra; Ballan, Valentine; Houard, Emmanuelle; Poezevara, Typhaine; Bayon-Auboyer, Marie-Hélène; Souillard, Rozenn; Morvan, Hervé; Baudouard, Marie-Agnès; Woudstra, Cédric; Mazuet, Christelle; Le Bouquin, Sophie; Fach, Patrick; Popoff, Michel; Chemaly, Marianne

    2017-01-01

    Liver is a reliable matrix for laboratory confirmation of avian botulism using real-time PCR. Here, we developed, optimized, and validated the analytical steps preceding PCR to maximize the detection of Clostridium botulinum group III in avian liver. These pre-PCR steps included enrichment incubation of the whole liver (maximum 25 g) at 37°C for at least 24 h in an anaerobic chamber and DNA extraction using an enzymatic digestion step followed by a DNA purification step. Conditions of sample storage before analysis appear to have a strong effect on the detection of group III C. botulinum strains and our results recommend storage at temperatures below -18°C. Short-term storage at 5°C is possible for up to 24 h, but a decrease in sensitivity was observed at 48 h of storage at this temperature. Analysis of whole livers (maximum 25 g) is required and pooling samples before enrichment culturing must be avoided. Pooling is however possible before or after DNA extraction under certain conditions. Whole livers should be 10-fold diluted in enrichment medium and homogenized using a Pulsifier® blender (Microgen, Surrey, UK) instead of a conventional paddle blender. Spiked liver samples showed a limit of detection of 5 spores/g liver for types C and D and 250 spores/g for type E. Using the method developed here, the analysis of 268 samples from 73 suspected outbreaks showed 100% specificity and 95.35% sensitivity compared with other PCR-based methods considered as reference. The mosaic type C/D was the most common neurotoxin type found in examined samples, which included both wild and domestic birds.

  17. Development and Validation of a New Reliable Method for the Diagnosis of Avian Botulism

    PubMed Central

    Le Maréchal, Caroline; Rouxel, Sandra; Ballan, Valentine; Houard, Emmanuelle; Poezevara, Typhaine; Bayon-Auboyer, Marie-Hélène; Souillard, Rozenn; Morvan, Hervé; Baudouard, Marie-Agnès; Woudstra, Cédric; Mazuet, Christelle; Le Bouquin, Sophie; Fach, Patrick; Popoff, Michel; Chemaly, Marianne

    2017-01-01

    Liver is a reliable matrix for laboratory confirmation of avian botulism using real-time PCR. Here, we developed, optimized, and validated the analytical steps preceding PCR to maximize the detection of Clostridium botulinum group III in avian liver. These pre-PCR steps included enrichment incubation of the whole liver (maximum 25 g) at 37°C for at least 24 h in an anaerobic chamber and DNA extraction using an enzymatic digestion step followed by a DNA purification step. Conditions of sample storage before analysis appear to have a strong effect on the detection of group III C. botulinum strains and our results recommend storage at temperatures below -18°C. Short-term storage at 5°C is possible for up to 24 h, but a decrease in sensitivity was observed at 48 h of storage at this temperature. Analysis of whole livers (maximum 25 g) is required and pooling samples before enrichment culturing must be avoided. Pooling is however possible before or after DNA extraction under certain conditions. Whole livers should be 10-fold diluted in enrichment medium and homogenized using a Pulsifier® blender (Microgen, Surrey, UK) instead of a conventional paddle blender. Spiked liver samples showed a limit of detection of 5 spores/g liver for types C and D and 250 spores/g for type E. Using the method developed here, the analysis of 268 samples from 73 suspected outbreaks showed 100% specificity and 95.35% sensitivity compared with other PCR-based methods considered as reference. The mosaic type C/D was the most common neurotoxin type found in examined samples, which included both wild and domestic birds. PMID:28076405

  18. One-step gas-solid reaction synthesis of W@WS2 nanorattles and their novel catalytic activity.

    PubMed

    Wen, Yan; Zhang, Haijun; Zhang, Shaowei

    2014-11-07

    W@WS2 nanorattles were synthesised by heating a mixture of WO3 nanoparticles and S at a relatively low temperature between 750 and 950 °C in H2/Ar. In addition to the temperature, the competition between the H2 reduction and the S sulphidation sub-reactions dominated the reaction mechanisms and the morphologies of final products. Based on this, several types of nanostructures, including WS2 nanoflakes, inorganic fullerene-like nanoparticles and W@WS2 nanorattles (with desirable core size and shell thickness), could be selectively prepared by simply tailoring the processing parameters. Moreover, it was found for the first time that as-prepared W@WS2 nanorattles exhibited excellent catalytic activities which were close to or even better than their much more costive Au-based counterparts.

  19. One-step gas-solid reaction synthesis of W@WS2 nanorattles and their novel catalytic activity

    NASA Astrophysics Data System (ADS)

    Wen, Yan; Zhang, Haijun; Zhang, Shaowei

    2014-10-01

    W@WS2 nanorattles were synthesised by heating a mixture of WO3 nanoparticles and S at a relatively low temperature between 750 and 950 °C in H2/Ar. In addition to the temperature, the competition between the H2 reduction and the S sulphidation sub-reactions dominated the reaction mechanisms and the morphologies of final products. Based on this, several types of nanostructures, including WS2 nanoflakes, inorganic fullerene-like nanoparticles and W@WS2 nanorattles (with desirable core size and shell thickness), could be selectively prepared by simply tailoring the processing parameters. Moreover, it was found for the first time that as-prepared W@WS2 nanorattles exhibited excellent catalytic activities which were close to or even better than their much more costive Au-based counterparts.

  20. Reduction of structural defects in thick 4H-SiC epitaxial layers grown on 4° off-axis substrates

    NASA Astrophysics Data System (ADS)

    Yazdanfar, M.; Ivanov, I. G.; Pedersen, H.; Kordina, O.; Janzén, E.

    2013-06-01

    By carefully controlling the surface chemistry of the chemical vapor deposition process for silicon carbide (SiC), 100 μm thick epitaxial layers with excellent morphology were grown on 4° off-axis SiC substrates at growth rates exceeding 100 μm/h. In order to reduce the formation of step bunching and structural defects, mainly triangular defects, the effect of varying parameters such as growth temperature, C/Si ratio, Cl/Si ratio, Si/H2 ratio, and in situ pre-growth surface etching time are studied. It was found that an in-situ pre growth etch at growth temperature and pressure using 0.6% HCl in hydrogen for 12 min reduced the structural defects by etching preferentially on surface damages of the substrate surface. By then applying a slightly lower growth temperature of 1575 °C, a C/Si ratio of 0.8, and a Cl/Si ratio of 5, 100 μm thick, step-bunch free epitaxial layer with a minimum triangular defect density and excellent morphology could be grown, thus enabling SiC power device structures to be grown on 4° off axis SiC substrates.

  1. l-Arabinose Isomerase and d-Xylose Isomerase from Lactobacillus reuteri: Characterization, Coexpression in the Food Grade Host Lactobacillus plantarum, and Application in the Conversion of d-Galactose and d-Glucose

    PubMed Central

    2014-01-01

    The l-arabinose isomerase (l-AI) and the d-xylose isomerase (d-XI) encoding genes from Lactobacillus reuteri (DSMZ 17509) were cloned and overexpressed in Escherichia coli BL21 (DE3). The proteins were purified to homogeneity by one-step affinity chromatography and characterized biochemically. l-AI displayed maximum activity at 65 °C and pH 6.0, whereas d-XI showed maximum activity at 65 °C and pH 5.0. Both enzymes require divalent metal ions. The genes were also ligated into the inducible lactobacillal expression vectors pSIP409 and pSIP609, the latter containing a food grade auxotrophy marker instead of an antibiotic resistance marker, and the l-AI- and d-XI-encoding sequences/genes were coexpressed in the food grade host Lactobacillus plantarum. The recombinant enzymes were tested for applications in carbohydrate conversion reactions of industrial relevance. The purified l-AI converted d-galactose to d-tagatose with a maximum conversion rate of 35%, and the d-XI isomerized d-glucose to d-fructose with a maximum conversion rate of 48% at 60 °C. PMID:24443973

  2. Insights into proton translocation in cbb3 oxidase from MD simulations.

    PubMed

    Carvalheda, Catarina A; Pisliakov, Andrei V

    2017-05-01

    Heme-copper oxidases are membrane protein complexes that catalyse the final step of the aerobic respiration, namely the reduction of oxygen to water. The energy released during catalysis is coupled to the active translocation of protons across the membrane, which contributes to the establishment of an electrochemical gradient that is used for ATP synthesis. The distinctive C-type (or cbb 3 ) cytochrome c oxidases, which are mostly present in proteobacteria, exhibit a number of unique structural and functional features, including high catalytic activity at low oxygen concentrations. At the moment, the functioning mechanism of C-type oxidases, in particular the proton transfer/pumping mechanism presumably via a single proton channel, is still poorly understood. In this work we used all-atom molecular dynamics simulations and continuum electrostatics calculations to obtain atomic-level insights into the hydration and dynamics of a cbb 3 oxidase. We provide the details of the water dynamics and proton transfer pathways for both the "chemical" and "pumped" protons, and show that formation of protonic connections is strongly affected by the protonation state of key residues, namely H243, E323 and H337. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Ambient pressure XPS and IRRAS investigation of ethanol steam reforming on Ni–CeO 2(111) catalysts: An in situ study of C–C and O–H bond scission

    DOE PAGES

    Liu, Zongyuan; Duchon, Tomas; Wang, Huanru; ...

    2016-03-31

    Ambient-Pressure X-ray Photoelectron Spectroscopy (AP-XPS) and Infrared Reflection Absorption Spectroscopy (AP-IRRAS) have been used to elucidate the active sites and mechanistic steps associated with the ethanol steam reforming reaction (ESR) over Ni–CeO 2(111) model catalysts. Our results reveal that surface layers of the ceria substrate are both highly reduced and hydroxylated under reaction conditions while the small supported Ni nanoparticles are present as Ni 0/NixC. A multifunctional, synergistic role is highlighted in which Ni, CeO x and the interface provide an ensemble effect in the active chemistry that leads to H 2. Ni 0 is the active phase leading tomore » both C–C and C–H bond cleavage in ethanol and it is also responsible for carbon accumulation. On the other hand, CeO x is important for the deprotonation of ethanol/water to ethoxy and OH intermediates. The active state of CeO x is a Ce 3+(OH) x compound that results from extensive reduction by ethanol and the efficient dissociation of water. Additionally, we gain an important insight into the stability and selectivity of the catalyst by its effective water dissociation, where the accumulation of surface carbon can be mitigated by the increased presence of surface OH groups. As a result, the co-existence and cooperative interplay of Ni 0 and Ce 3+(OH) x through a metal–support interaction facilitate oxygen transfer, activation of ethanol/water as well as the removal of coke.« less

  4. Construction of Polarized Carbon-Nickel Catalytic Surfaces for Potent, Durable, and Economic Hydrogen Evolution Reactions.

    PubMed

    Zhou, Min; Weng, Qunhong; Popov, Zakhar I; Yang, Yijun; Antipina, Liubov Yu; Sorokin, Pavel B; Wang, Xi; Bando, Yoshio; Golberg, Dmitri

    2018-05-22

    Electrocatalytic hydrogen evolution reaction (HER) in alkaline solution is hindered by its sluggish kinetics toward water dissociation. Nickel-based catalysts, as low-cost and effective candidates, show great potentials to replace platinum (Pt)-based materials in the alkaline media. The main challenge regarding this type of catalysts is their relatively poor durability. In this work, we conceive and construct a charge-polarized carbon layer derived from carbon quantum dots (CQDs) on Ni 3 N nanostructure (Ni 3 N@CQDs) surfaces, which simultaneously exhibit durable and enhanced catalytic activity. The Ni 3 N@CQDs shows an overpotential of 69 mV at a current density of 10 mA cm -2 in a 1 M KOH aqueous solution, lower than that of Pt electrode (116 mV) at the same conditions. Density functional theory (DFT) simulations reveal that Ni 3 N and interfacial oxygen polarize charge distributions between originally equal C-C bonds in CQDs. The partially negatively charged C sites become effective catalytic centers for the key water dissociation step via the formation of new C-H bond (Volmer step) and thus boost the HER activity. Furthermore, the coated carbon is also found to protect interior Ni 3 N from oxidization/hydroxylation and therefore guarantees its durability. This work provides a practical design of robust and durable HER electrocatalysts based on nonprecious metals.

  5. RP-HPLC-fluorescence analysis of aliphatic aldehydes: application to aldehyde-generating enzymes HACL1 and SGPL1

    PubMed Central

    Mezzar, Serena; de Schryver, Evelyn; Van Veldhoven, Paul P.

    2014-01-01

    Long-chain aldehydes are commonly produced in various processes, such as peroxisomal α-oxidation of long-chain 3-methyl-branched and 2-hydroxy fatty acids and microsomal breakdown of phosphorylated sphingoid bases. The enzymes involved in the aldehyde-generating steps of these processes are 2-hydroxyacyl-CoA lyase (HACL1) and sphingosine-1-phosphate lyase (SGPL1), respectively. In the present work, nonradioactive assays for these enzymes were developed employing the Hantzsch reaction. Tridecanal (C13-al) and heptadecanal (C17-al) were selected as model compounds and cyclohexane-1,3-dione as 1,3-diketone, and the fluorescent derivatives were analyzed by reversed phase (RP)-HPLC. Assay mixture composition, as well as pH and heating, were optimized for C13-al and C17-al. Under optimized conditions, these aldehydes could be quantified in picomolar range and different long-chain aldehyde derivatives were well resolved with a linear gradient elution by RP-HPLC. Aldehydes generated by recombinant enzymes could easily be detected via this method. Moreover, the assay allowed to document activity or deficiency in tissue homogenates and fibroblast lysates without an extraction step. In conclusion, a simple, quick, and cheap assay for the study of HACL1 and SGPL1 activities was developed, without relying on expensive mass spectrometric detectors or radioactive substrates. PMID:24323699

  6. A search for presolar organic matter in meteorite

    NASA Technical Reports Server (NTRS)

    Yang, J.; Epstein, S.

    1985-01-01

    The D/H ratios and the C-13/C-12 ratios of acid-insoluble organic matter of 4 meteorites, Ochansk (H4), Plainview (H5), Gladstone (H6) and Odessa (IA), were measured. delta-D values for hydrogen extracted by stepwise combustion were negative, down to -280 deg/infinity. delta-C-13 values were also negative except in the case of the carbon coming off at the highest temperature steps for Plainview and Odessa meteorites. The concentrations of C-13-rich carbon were 3-5 orders of magnitude smaller than those found in Murchison meteorite, suggesting that relic grains of stellar condensates were mostly destroyed in the meteorites examined.

  7. Electron induced surface reactions of (η5-C5H5)Fe(CO)2Mn(CO)5, a potential heterobimetallic precursor for focused electron beam induced deposition (FEBID).

    PubMed

    Unlu, Ilyas; Spencer, Julie A; Johnson, Kelsea R; Thorman, Rachel M; Ingólfsson, Oddur; McElwee-White, Lisa; Fairbrother, D Howard

    2018-03-14

    Electron-induced surface reactions of (η 5 -C 5 H 5 )Fe(CO) 2 Mn(CO) 5 were explored in situ under ultra-high vacuum conditions using X-ray photoelectron spectroscopy and mass spectrometry. The initial step involves electron-stimulated decomposition of adsorbed (η 5 -C 5 H 5 )Fe(CO) 2 Mn(CO) 5 molecules, accompanied by the desorption of an average of five CO ligands. A comparison with recent gas phase studies suggests that this precursor decomposition step occurs by a dissociative ionization (DI) process. Further electron irradiation decomposes the residual CO groups and (η 5 -C 5 H 5 , Cp) ligand, in the absence of any ligand desorption. The decomposition of CO ligands leads to Mn oxidation, while electron stimulated Cp decomposition causes all of the associated carbon atoms to be retained in the deposit. The lack of any Fe oxidation is ascribed to either the presence of a protective carbonaceous matrix around the Fe atoms created by the decomposition of the Cp ligand, or to desorption of both CO ligands bound to Fe in the initial decomposition step. The selective oxidation of Mn in the absence of any Fe oxidation suggests that the fate of metal atoms in mixed-metal precursors for focused electron beam induced deposition (FEBID) will be sensitive to the nature and number of ligands in the immediate coordination sphere. In related studies, the composition of deposits created from (η 5 -C 5 H 5 )Fe(CO) 2 Mn(CO) 5 under steady state deposition conditions, representative of those used to create nanostructures in electron microscopes, were measured and found to be qualitatively consistent with predictions from the UHV surface science studies.

  8. Kinetic and crystallographic studies of Escherichia coli UDP-N-acetylmuramate:L-alanine ligase.

    PubMed Central

    Emanuele, J. J.; Jin, H.; Jacobson, B. L.; Chang, C. Y.; Einspahr, H. M.; Villafranca, J. J.

    1996-01-01

    Uridine diphosphate-N-acetylmuramate:L-alanine ligase (EC 6.3.2.8, UNAM:L-Ala ligase or MurC gene product) catalyzes the ATP-dependent ligation of the first amino acid to the sugar moiety of the peptidoglycan precursor. This is an essential step in cell wall biosynthesis for both gram-positive and gram-negative bacteria. Optimal assay conditions for initial velocity studies have been established. Steady-state assays were carried out to determine the effect of various parameters on enzyme activity. Factors studies included: cation specificity, ionic strength, buffer composition and pH. At 37 degrees C and pH 8.0, kcat was equal to 980 +/- 40 min-1, while K(m) values for ATP, UNAM, and L-alanine were, 130 +/- 10, 44 +/- 3, and 48 +/- 6 microM, respectively. Of the metals tested only Mn, Mg, and Co were able to support activity. Sodium chloride, potassium chloride, ammonium chloride, and ammonium sulfate had no effect on activity up to 75 mM levels. The enzyme, in appropriate buffer, was stable enough to be assayed over the pH range of 5.6 to 10.1. pH profiles of Vmax/K(m) for the three substrates and of Vmax were obtained. Crystallization experiments with the enzyme produced two crystal forms. One of these has been characterized by X-ray diffraction as monoclinic, space group C2, with cell dimensions a = 189.6, b = 92.1, c = 75.2 A, beta = 105 degrees, and two 54 kDa molecules per asymmetric unit. It was discovered that the enzyme will hydrolyze ATP in the absence of L-alanine. This L-alanine independent activity is dependent upon the concentrations of both ATP and UNAM; kcat for this activity is less than 4% of the biosynthetic activity measured in the presence of saturating levels of L-alanine. Numerous L-alanine analogs tested were shown to stimulate ATP hydrolysis. A number of these L-alanine analogs produced novel products as accessed by HPLC and mass spectral analysis. All of the L-alanine analogs tested as inhibitors were competitive versus L-alanine. PMID:8976565

  9. Enforced hematopoietic cell E- and L-selectin ligand (HCELL) expression primes transendothelial migration of human mesenchymal stem cells.

    PubMed

    Thankamony, Sai P; Sackstein, Robert

    2011-02-08

    According to the multistep model of cell migration, chemokine receptor engagement (step 2) triggers conversion of rolling interactions (step 1) into firm adhesion (step 3), yielding transendothelial migration. We recently reported that glycosyltransferase-programmed stereosubstitution (GPS) of CD44 on human mesenchymal stem cells (hMSCs) creates the E-selectin ligand HCELL (hematopoietic cell E-selectin/L-selectin ligand) and, despite absence of CXCR4, systemically administered HCELL(+)hMSCs display robust osteotropism visualized by intravital microscopy. Here we performed studies to define the molecular effectors of this process. We observed that engagement of hMSC HCELL with E-selectin triggers VLA-4 adhesiveness, resulting in shear-resistant adhesion to ligand VCAM-1. This VLA-4 activation is mediated via a Rac1/Rap1 GTPase signaling pathway, resulting in transendothelial migration on stimulated human umbilical vein endothelial cells without chemokine input. These findings indicate that hMSCs coordinately integrate CD44 ligation and integrin activation, circumventing chemokine-mediated signaling, yielding a step 2-bypass pathway of the canonical multistep paradigm of cell migration.

  10. Phytochemistry of cimicifugic acids and associated bases in Cimicifuga racemosa root extracts.

    PubMed

    Gödecke, Tanja; Nikolic, Dejan; Lankin, David C; Chen, Shao-Nong; Powell, Sharla L; Dietz, Birgit; Bolton, Judy L; van Breemen, Richard B; Farnsworth, Norman R; Pauli, Guido F

    2009-01-01

    Earlier studies reported serotonergic activity for cimicifugic acids (CA) isolated from Cimicifuga racemosa. The discovery of strongly basic alkaloids, cimipronidines, from the active extract partition and evaluation of previously employed work-up procedures has led to the hypothesis of strong acid/base association in the extract. Re-isolation of the CAs was desired to permit further detailed studies. Based on the acid/base association hypothesis, a new separation scheme of the active partition was required, which separates acids from associated bases. A new 5-HT(7) bioassay guided work-up procedure was developed that concentrates activity into one partition. The latter was subjected to a new two-step centrifugal partitioning chromatography (CPC) method, which applies pH zone refinement gradient (pHZR CPC) to dissociate the acid/base complexes. The resulting CA fraction was subjected to a second CPC step. Fractions and compounds were monitored by (1)H NMR using a structure-based spin-pattern analysis facilitating dereplication of the known acids. Bioassay results were obtained for the pHZR CPC fractions and for purified CAs. A new CA was characterised. While none of the pure CAs was active, the serotonergic activity was concentrated in a single pHZR CPC fraction, which was subsequently shown to contain low levels of the potent 5-HT(7) ligand, N(omega)-methylserotonin. This study shows that CAs are not responsible for serotonergic activity in black cohosh. New phytochemical methodology (pHZR CPC) and a sensitive dereplication method (LC-MS) led to the identification of N(omega)-methylserotonin as serotonergic active principle. Copyright (c) 2009 John Wiley & Sons, Ltd.

  11. Theoretical aspects of methyl acetate and methanol activation on MgO(100) and (501) catalyst surfaces with application in FAME production

    NASA Astrophysics Data System (ADS)

    Man, Isabela-Costinela; Soriga, Stefan Gabriel; Parvulescu, Vasile

    2017-01-01

    Density functional theory (DFT) calculations were carried out to study the activation of methyl acetate and methanol on MgO(100) and MgO(501) surfaces and integrated in the context of transesterification, interesterification and glycerolysis reactions used in biodiesel industry. First results indicate the importance of including of dispersion forces in the calculations. On MgO(100) the reverse reactions steps of Csbnd O and Csbnd H dissociations and on MgO(501) the same reverse reaction step of Csbnd H dissociations of methyl acetate are energetically favorable, while the dissociation of Csbnd O bond into methoxide and acetate fragments on the edge of MgO(501) was found to be exothermic with a low activation energy. For methanol, the dissociation of Osbnd H bond on MgO(100) surface in the presence of the second coadsorbed methanol molecule becomes more energetically favoured compared to the isolated molecule, due to the fact that the methoxide fragment is stabilized by intermolecular hydrogen bonding. This is reflected by the decrease of the activation energy of the forward reaction step and the increase of the activation energy of the backward reaction step, increasing the probability to have dissociated molecules among the undissociated ones. These results represent a step forward for better understanding from atomistic point of view the paths of these reactions on these surfaces for the corresponding catalytic processes.

  12. Structure of the Ergothioneine-Biosynthesis Amidohydrolase EgtC.

    PubMed

    Vit, Allegra; Mashabela, Gabriel T; Blankenfeldt, Wulf; Seebeck, Florian P

    2015-07-06

    The ubiquitous sulfur metabolite ergothioneine is biosynthesized by oxidative attachment of a sulfur atom to the imidazole ring of Nα-trimethylhistidine. Most actinobacteria, including Mycobacterium tuberculosis, use γ-glutamyl cysteine as a sulfur donor. In subsequent steps the carbon scaffold of γ-glutamyl cysteine is removed by the glutamine amidohydrolase EgtC and the β-lyase EgtE. We determined the crystal structure of EgtC from Mycobacterium smegmatis in complex with its physiological substrate. The set of active site residues that define substrate specificity in EgtC are highly conserved, even in homologues that are not involved in ergothioneine production. This conservation is compounded by the phylogenetic distribution of EgtC-like enzymes indicates that their last common ancestor might have emerged for a purpose other than ergothioneine production. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Bi-reforming of methane from any source with steam and carbon dioxide exclusively to metgas (CO-2H2) for methanol and hydrocarbon synthesis.

    PubMed

    Olah, George A; Goeppert, Alain; Czaun, Miklos; Prakash, G K Surya

    2013-01-16

    A catalyst based on nickel oxide on magnesium oxide (NiO/MgO) thermally activated under hydrogen is effective for the bi-reforming with steam and CO(2) (combined steam and dry reforming) of methane as well as natural gas in a tubular flow reactor at elevated pressures (5-30 atm) and temperatures (800-950 °C). By adjusting the CO(2)-to-steam ratio in the gas feed, the H(2)/CO ratio in the produced syn-gas could be easily adjusted in a single step to the desired value of 2 for methanol and hydrocarbon synthesis.

  14. Methanogenesis at low temperatures by microflora of tundra wetland soil.

    PubMed

    Kotsyurbenko, O R; Nozhevnikova, A N; Soloviova, T I; Zavarzin, G A

    1996-01-01

    Active methanogenesis from organic matter contained in soil samples from tundra wetland occurred even at 6 degrees C. Methane was the only end product in balanced microbial community with H2/CO2 as a substrate, besides acetate was produced as an intermediate at temperatures below 10 degrees C. The activity of different microbial groups of methanogenic community in the temperature range of 6-28 degrees C was investigated using 5% of tundra soil as inoculum. Anaerobic microflora of tundra wetland fermented different organic compounds with formation of hydrogen, volatile fatty acids (VFA) and alcohols. Methane was produced at the second step. Homoacetogenic and methanogenic bacteria competed for such substrates as hydrogen, formate, carbon monoxide and methanol. Acetogens out competed methanogens in an excess of substrate and low density of microbial population. Kinetic analysis of the results confirmed the prevalence of hydrogen acetogenesis on methanogenesis. Pure culture of acetogenic bacteria was isolated at 6 degrees C. Dilution of tundra soil and supply with the excess of substrate disbalanced the methanoigenic microbial community. It resulted in accumulation of acetate and other VFA. In balanced microbial community obviously autotrophic methanogens keep hydrogen concentration below a threshold for syntrophic degradation of VFA. Accumulation of acetate- and H2/CO2-utilising methanogens should be very important in methanogenic microbial community operating at low temperatures.

  15. Production and physicochemical properties of recombinant Lactobacillus plantarum tannase.

    PubMed

    Curiel, José Antonio; Rodríguez, Héctor; Acebrón, Iván; Mancheño, José Miguel; De Las Rivas, Blanca; Muñoz, Rosario

    2009-07-22

    Tannase is an enzyme with important biotechnological applications in the food industry. Previous studies have identified the tannase encoding gene in Lactobacillus plantarum and also have reported the description of the purification of recombinant L. plantarum tannase through a protocol involving several chromatographic steps. Here, we describe the high-yield production of pure recombinant tannase (17 mg/L) by a one-step affinity procedure. The purified recombinant tannase exhibits optimal activity at pH 7 and 40 degrees C. Addition of Ca(2+) to the reaction mixture greatly increased tannase activity. The enzymatic activity of tannase was assayed against 18 simple phenolic acid esters. Only esters derived from gallic acid and protocatechuic acid were hydrolyzed. In addition, tannase activity was also assayed against the tannins tannic acid, gallocatechin gallate, and epigallocatechin gallate. Despite L. plantarum tannase representing a novel family of tannases, which shows no significant similarity to tannases from fungal sources, both families of enzymes shared similar substrate specificity range. The physicochemical characteristics exhibited by L. plantarum recombinant tannase make it an adequate alternative to the currently used fungal tannases.

  16. Enzymatic hydrolysis of p-nitroacetanilide: mechanistic studies of the aryl acylamidase from Pseudomonas fluorescens.

    PubMed

    Stein, Ross L

    2002-01-22

    Aryl acylamidase (EC 3.1.5.13; AAA) catalyzes the hydrolysis of p-nitroacetanilide (PNAA) via the standard three-step mechanism of serine hydrolases: binding of substrate (K(s)), acylation of active-site serine (k(acyl)), and hydrolytic deacylation (k(deacyl)). Key mechanistic findings that emerged from this study include that (1) AAA requires a deprotonated base with a pK(a) of 8.3 for expression of full activity toward PNAA. Limiting values of kinetic parameters at high pH are k(c) = 7 s(-1), K(m) = 20 microM, and k(c)/K(m) = 340 000 M(-1) s(-1). (2) At pH 10, where all the isotope effects were conducted, k(c) is equally rate-limited by k(acyl) and k(deacyl). (3) The following isotope effects were determined: (D)()2(O)(k(c)/K(m)) = 1.7 +/- 0.2, (D)()2(O)k(c) = 3.5 +/- 0.3, and (beta)(D)(k(c)/K(m)) = 0.83 +/- 0.04, (beta)(D)k(c) = 0.96 +/- 0.01. These values, together with proton inventories for k(c)/K(m) and k(c), suggest the following mechanism: (i) The initial binding of substrate to enzyme to form the Michaelis complex is accompanied by solvation changes that generate solvent deuterium isotope effects originating from hydrogen ion fractionation at multiple sites on the enzyme surface. (ii) From within the Michaelis complex, the active site serine attacks the carbonyl carbon of PNAA with general-base catalysis to form a substantially tetrahedral transition state enroute to the acyl-enzyme. (iii) Finally, deacylation occurs through a process involving a rate-limiting solvent isotope effect, generating conformational change of the acyl-enzyme that positions the carbonyl bond in a polarizing environment that is optimal for attack by water.

  17. An active recombinant cocoonase from the silkworm Bombyx mori: bleaching, degumming and sericin degrading activities.

    PubMed

    Unajak, Sasimanas; Aroonluke, Suradet; Promboon, Amornrat

    2015-04-01

    Cocoonase is a serine protease produced by silk moths and used for softening the cocoons so that they can escape. Degumming is one of the important steps in silk processing. This research aimed to produce an active recombinant Bombyx mori cocoonase (BmCoc) for the silk degumming process. A recombinant BmCoc was successfully expressed in a Pichia pastoris system. The purified enzyme showed specific activity of 227 U mg(-1) protein, 2.4-fold purification, 95% yield and a molecular weight of 26 kDa. The enzyme exhibited optimal temperature at 40 °C and optimal pH at 8, and showed thermal stability at 25-45 °C and pH stability at 5-9. The recombinant enzyme exhibited sericin degumming ability and color bleaching characteristics, and did not affect the fibroin fiber. The enzyme also degraded sericin substrate with a product size about 30-70 kDa. In this study, we successfully produced the active recombinant BmCoc in P. pastoris with promising functions for the Thai silk degumming process, which includes degumming, sericin degrading and color bleaching activities. Our data clearly indicated that the recombinant enzyme had proteolytic activity on sericin but not on fibroin proteins. The recombinant BmCoc has proven to be suitable for numerous applications in the silk industry. © 2014 Society of Chemical Industry.

  18. Synthesis, characterization and properties of some divalent metal(II) complexes: Their electrochemical, catalytic, thermal and antimicrobial activity studies

    NASA Astrophysics Data System (ADS)

    Tümer, Mehmet; Ekinci, Duygu; Tümer, Ferhan; Bulut, Akif

    2007-07-01

    In this study, we synthesized the amine compound 2-(2-aminoethyliminomethyl)phenol (H 3A) as the starting material, and then we prepared the polydentate Schiff base ligands from the reactions of the amine compound (H 3A) with phtaldialdehyde (H 2L), 4-methyl-2,6-di-formlyphenol (H 3L 1) and 4- t-butyl-2,6-di-formylphenol (H 3L 2) in the ethanol solution. Moreover, the complexes Cd(II), Cu(II), Co(II), Ni(II), Zn(II) and Sn(II) of the ligands H 2L, H 3L 1 and H 3L 2 have been prepared. All compounds have been characterized by the analytical and spectroscopic methods. In addition, the magnetic susceptibility and molar conductance measurements have been made. The catalytic properties of the mono- and binuclear Co(II) and Cu(II) complexes have been studied on the 3,5-di- tert-butylcatechol (3,5-DTBC) and ascorbic acid (aa) as a substrate. The oxidative C-C coupling properties of the Co(II) and Cu(II) complexes have been investigated on the sterically hindered 2,6-di- tert-butylphenol (dtbp). The antimicrobial activity properties of the ligands and their mono- and binuclear complexes have been studied against the bacteria and fungi. The results have been compared to the antibacterial and fungi drugs. The TGA curves show that the decomposition takes place in three steps for all complexes. Electrochemical properties of the complexes Cu(II) and Ni(II) have been investigated for the first time in acetonitrile by cyclic voltammetry.

  19. Purification of peroxidase from Horseradish (Armoracia rusticana) roots.

    PubMed

    Lavery, Christopher B; Macinnis, Morgan C; Macdonald, M Jason; Williams, Joanna Bassey; Spencer, Colin A; Burke, Alicia A; Irwin, David J G; D'Cunha, Godwin B

    2010-08-11

    Peroxidase (EC 1.11.1.7) from horseradish ( Armoracia rusticana ) roots was purified using a simple, rapid, three-step procedure: ultrasonication, ammonium sulfate salt precipitation, and hydrophobic interaction chromatography on phenyl Sepharose CL-4B. The preparation gave an overall yield of 71%, 291-fold purification, and a high specific activity of 772 U mg(-1) protein. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the purified enzyme was homogeneous and had a molecular weight of approximately 40 kDa. The isolated enzyme had an isoelectric point of 8.8 and a Reinheitszahl value of 3.39 and was stable when stored in the presence of glycerol at -20 degrees C, with >95% retention of original enzyme activity for at least 6 months. Maximal activity of purified horseradish peroxidase (HRP) was obtained under different optimized conditions: substrate (guaiacol and H(2)O(2)) concentrations (0.5 and 0.3 mM, respectively), type of buffer (50 mM phosphate buffer), pH (7.0), time (1.0 min), and temperature of incubation (30 degrees C). In addition, the effect of HRP and H(2)O(2) in a neutral-buffered aqueous solution for the oxidation of phenol and 2-chlorophenol substrates was also studied. Different conditions including concentrations of phenol/2-chlorophenol, H(2)O(2), and enzyme, time, pH, and temperature were standardized for the maximal activity of HRP with these substrates; under these optimal conditions 89.6 and 91.4% oxidations of phenol and 2-chlorophenol were obtained, respectively. The data generated from this work could have direct implications in studies on the commercial production of this biotechnologically important enzyme and its stability in different media.

  20. 2'-Deoxyribosyltransferase from Leishmania mexicana, an efficient biocatalyst for one-pot, one-step synthesis of nucleosides from poorly soluble purine bases.

    PubMed

    Crespo, N; Sánchez-Murcia, P A; Gago, F; Cejudo-Sanches, J; Galmes, M A; Fernández-Lucas, Jesús; Mancheño, José Miguel

    2017-10-01

    Processes catalyzed by enzymes offer numerous advantages over chemical methods although in many occasions the stability of the biocatalysts becomes a serious concern. Traditionally, synthesis of nucleosides using poorly water-soluble purine bases, such as guanine, xanthine, or hypoxanthine, requires alkaline pH and/or high temperatures in order to solubilize the substrate. In this work, we demonstrate that the 2'-deoxyribosyltransferase from Leishmania mexicana (LmPDT) exhibits an unusually high activity and stability under alkaline conditions (pH 8-10) across a broad range of temperatures (30-70 °C) and ionic strengths (0-500 mM NaCl). Conversely, analysis of the crystal structure of LmPDT together with comparisons with hexameric, bacterial homologues revealed the importance of the relationships between the oligomeric state and the active site architecture within this family of enzymes. Moreover, molecular dynamics and docking approaches provided structural insights into the substrate-binding mode. Biochemical characterization of LmPDT identifies the enzyme as a type I NDT (PDT), exhibiting excellent activity, with specific activity values 100- and 4000-fold higher than the ones reported for other PDTs. Interestingly, LmPDT remained stable during 36 h at different pH values at 40 °C. In order to explore the potential of LmPDT as an industrial biocatalyst, enzymatic production of several natural and non-natural therapeutic nucleosides, such as vidarabine (ara A), didanosine (ddI), ddG, or 2'-fluoro-2'-deoxyguanosine, was carried out using poorly water-soluble purines. Noteworthy, this is the first time that the enzymatic synthesis of 2'-fluoro-2'-deoxyguanosine, ara G, and ara H by a 2'-deoxyribosyltransferase is reported.

  1. Cavitation assisted synthesis of fatty acid methyl esters from sustainable feedstock in presence of heterogeneous catalyst using two step process.

    PubMed

    Dubey, Sumit M; Gole, Vitthal L; Gogate, Parag R

    2015-03-01

    The present work reports the intensification aspects for the synthesis of fatty acid methyl esters (FAME) from a non-edible high acid value Nagchampa oil (31 mg of KOH/g of oil) using two stage acid esterification (catalyzed by H₂SO₄) followed by transesterification in the presence of heterogeneous catalyst (CaO). Intensification aspects of both stages have been investigated using sonochemical reactors and the obtained degree of intensification has been established by comparison with the conventional approach based on mechanical agitation. It has been observed that reaction temperature for esterification reduced from 65 to 40 °C for the ultrasonic approach whereas there was a significant reduction in the optimum reaction time for transesterification from 4h for the conventional approach to 2.5h for the ultrasound assisted approach. Also the reaction temperature reduced marginally from 65 to 60 °C and yield increased from 76% to 79% for the ultrasound assisted approach. Energy requirement and activation energy for both esterification and transesterification was lower for the ultrasound based approach as compared to the conventional approach. The present work has clearly established the intensification obtained due to the use of ultrasound and also illustrated the two step approach for the synthesis of FAME from high acid value feedstock based on the use of heterogeneous catalyst for the transesterification step. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Production of Hydroxyl Radical via the Activation of Hydrogen Peroxide by Hydroxylamine.

    PubMed

    Chen, Liwei; Li, Xuchun; Zhang, Jing; Fang, Jingyun; Huang, Yanmin; Wang, Ping; Ma, Jun

    2015-09-01

    The production of the hydroxyl radical (HO·) is important in environmental chemistry. This study reports a new source of HO· generated solely from hydrogen peroxide (H2O2) activated by hydroxylamine (HA). Electron paramagnetic resonance analysis and the oxidation of a HO· probe, benzoic acid, were used to confirm the production of HO·. The production of HO· increased with increasing concentrations of either HA or H2O2 as well as decreasing pH. The second-order rate constant for the reaction was (2.2 ± 0.2) × 10(-4) M(-1) s(-1). HO· was probably produced in two steps: the activation of H2O2 by protonated HA and then reaction between the H2O2 and the intermediate protonated aminoxyl radical generated in the first step. Such a two-step oxidation can possibly be ascribed to the ionizable hydroxyl moiety in the molecular structure of HA, as is suggested by comparing the reactivity of a series of HA derivatives in HO· production. The results shed light on a previously unknown source of HO· formation, which broadens the understanding of its role in environmental processes.

  3. Manganese-catalysed benzylic C(sp3)-H amination for late-stage functionalization

    NASA Astrophysics Data System (ADS)

    Clark, Joseph R.; Feng, Kaibo; Sookezian, Anasheh; White, M. Christina

    2018-06-01

    Reactions that directly install nitrogen into C-H bonds of complex molecules are significant because of their potential to change the chemical and biological properties of a given compound. Although selective intramolecular C-H amination reactions are known, achieving high levels of reactivity while maintaining excellent site selectivity and functional-group tolerance remains a challenge for intermolecular C-H amination. Here, we report a manganese perchlorophthalocyanine catalyst [MnIII(ClPc)] for intermolecular benzylic C-H amination of bioactive molecules and natural products that proceeds with unprecedented levels of reactivity and site selectivity. In the presence of a Brønsted or Lewis acid, the [MnIII(ClPc)]-catalysed C-H amination demonstrates unique tolerance for tertiary amine, pyridine and benzimidazole functionalities. Mechanistic studies suggest that C-H amination likely proceeds through an electrophilic metallonitrene intermediate via a stepwise pathway where C-H cleavage is the rate-determining step of the reaction. Collectively, these mechanistic features contrast with previous base-metal-catalysed C-H aminations and provide new opportunities for tunable selectivities.

  4. Manganese-catalysed benzylic C(sp3)-H amination for late-stage functionalization.

    PubMed

    Clark, Joseph R; Feng, Kaibo; Sookezian, Anasheh; White, M Christina

    2018-06-01

    Reactions that directly install nitrogen into C-H bonds of complex molecules are significant because of their potential to change the chemical and biological properties of a given compound. Although selective intramolecular C-H amination reactions are known, achieving high levels of reactivity while maintaining excellent site selectivity and functional-group tolerance remains a challenge for intermolecular C-H amination. Here, we report a manganese perchlorophthalocyanine catalyst [MnIII(ClPc)] for intermolecular benzylic C-H amination of bioactive molecules and natural products that proceeds with unprecedented levels of reactivity and site selectivity. In the presence of a Brønsted or Lewis acid, the [MnIII(ClPc)]-catalysed C-H amination demonstrates unique tolerance for tertiary amine, pyridine and benzimidazole functionalities. Mechanistic studies suggest that C-H amination likely proceeds through an electrophilic metallonitrene intermediate via a stepwise pathway where C-H cleavage is the rate-determining step of the reaction. Collectively, these mechanistic features contrast with previous base-metal-catalysed C-H aminations and provide new opportunities for tunable selectivities.

  5. Low temperature annealed amorphous indium gallium zinc oxide (a-IGZO) as a pH sensitive layer for applications in field effect based sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Narendra; Samtel Centre for Display Technologies, Indian Institute of Technology Kanpur, Kanpur-208016; Kumar, Jitendra

    The use of a-IGZO instead of the conventional high-k dielectrics as a pH sensitive layer could lead to the simplification of fabrication steps of field effect based devices. In this work, the pH sensitivities of a-IGZO films directly deposited over a SiO{sub 2}/Si surface were studied utilizing electrolyte-insulator-semiconductor (EIS) structures. Annealing of the films was found to affect the sensitivity of the devices and the device with the film annealed at 400 {sup o}C in N{sub 2} ambience showed the better sensitivity, which reduced with further increase in the annealing temperature to 500 {sup o}C. The increased pH sensitivity withmore » the film annealed at 400 {sup o}C in N{sub 2} gas was attributed to the enhanced lattice oxygen ions (based on the XPS data) and improved C-V characteristics, while the decrease in sensitivity at an increased annealing temperature of 500 {sup o}C was attributed to defects in the films as well as the induced traps at the IGZO/SiO{sub 2} interface based on the stretched accumulation and the peak in the inversion region of C-V curves. This study could help to develop a sensor where the material (a-IGZO here) used as the active layer in a thin film transistors (TFTs) possibly could also be used as the pH sensitive layer without affecting the TFT characteristics, and thus obviating the need of high-K dielectrics for sensitivity enhancement.« less

  6. Post-activation of in situ Bsbnd F codoped g-C3N4 for enhanced photocatalytic H2 evolution

    NASA Astrophysics Data System (ADS)

    Cui, Yanjuan; Wang, Hao; Yang, Chuanfeng; Li, Ming; Zhao, Yimeng; Chen, Fangyan

    2018-05-01

    Porous graphitic carbon nitride polymer (p-CN-BF) with enhanced photoproduction of H2 from water was prepared by a two-step treatment process including in-situ Boron and fluorine codoping using [Emim]BF4 as dopants followed by post-calcination in air. Several techniques were employed to characterize the modified structure and elucidate the doping state of B and F. It was shown that in-situ doping method is necessary for efficient doping of heteroatoms into the molecular composition of CN. The difference of doping state of B and F was that B doping primary existing in the inside skeleton of CN, but F doping merely presents in the surface layer. The inside doped B made for the enhanced visible light absorption and the production of uniform porous structure during post-sintering process. By the synergistic effect of Bsbnd F codoping and post-activation, p-CN-BF showed much enhanced photoelectron generation, transmission and separation, therefore, it performs high photocatalytic activity for H2 evolution (351 μmol h-1), which was 13 and 5 times higher than samples only modified by Bsbnd F codoping (CN-BF) or post-annealing (P-CN).

  7. Europium-Labeled Synthetic C3a Protein as a Novel Fluorescent Probe for Human Complement C3a Receptor.

    PubMed

    Dantas de Araujo, Aline; Wu, Chongyang; Wu, Kai-Chen; Reid, Robert C; Durek, Thomas; Lim, Junxian; Fairlie, David P

    2017-06-21

    Measuring ligand affinity for a G protein-coupled receptor is often a crucial step in drug discovery. It has been traditionally determined by binding putative new ligands in competition with native ligand labeled with a radioisotope of finite lifetime. Competing instead with a lanthanide-based fluorescent ligand is more attractive due to greater longevity, stability, and safety. Here, we have chemically synthesized the 77 residue human C3a protein and conjugated its N-terminus to europium diethylenetriaminepentaacetate to produce a novel fluorescent protein (Eu-DTPA-hC3a). Time-resolved fluorescence analysis has demonstrated that Eu-DTPA-hC3a binds selectively to its cognate G protein-coupled receptor C3aR with full agonist activity and similar potency and selectivity as native C3a in inducing calcium mobilization and phosphorylation of extracellular signal-regulated kinases in HEK293 cells that stably expressed C3aR. Time-resolved fluorescence analysis for saturation and competitive binding gave a dissociation constant (K d ) of 8.7 ± 1.4 nM for Eu-DTPA-hC3a and binding affinities for hC3a (pK i of 8.6 ± 0.2 and K i of 2.5 nM) and C3aR ligands TR16 (pK i of 6.8 ± 0.1 and K i of 138 nM), BR103 (pK i of 6.7 ± 0.1 and K i of 185 nM), BR111 (pK i of 6.3 ± 0.2 and K i of 544 nM) and SB290157 (pK i of 6.3 ± 0.1 and K i of 517 nM) via displacement of Eu-DTPA-hC3a from hC3aR. The macromolecular conjugate Eu-DTPA-hC3a is a novel nonradioactive probe suitable for studying ligand-C3aR interactions with potential value in accelerating drug development for human C3aR in physiology and disease.

  8. Joint neutron crystallographic and NMR solution studies of Tyr residue ionization and hydrogen bonding: Implications for enzyme-mediated proton transfer

    PubMed Central

    Michalczyk, Ryszard; Unkefer, Clifford J.; Bacik, John-Paul; Schrader, Tobias E.; Ostermann, Andreas; Kovalevsky, Andrey Y.; McKenna, Robert; Fisher, Suzanne Zoë

    2015-01-01

    Human carbonic anhydrase II (HCA II) uses a Zn-bound OH−/H2O mechanism to catalyze the reversible hydration of CO2. This catalysis also involves a separate proton transfer step, mediated by an ordered solvent network coordinated by hydrophilic residues. One of these residues, Tyr7, was previously shown to be deprotonated in the neutron crystal structure at pH 10. This observation indicated that Tyr7 has a perturbed pKa compared with free tyrosine. To further probe the pKa of this residue, NMR spectroscopic measurements of [13C]Tyr-labeled holo HCA II (with active-site Zn present) were preformed to titrate all Tyr residues between pH 5.4–11.0. In addition, neutron studies of apo HCA II (with Zn removed from the active site) at pH 7.5 and holo HCA II at pH 6 were conducted. This detailed interrogation of tyrosines in HCA II by NMR and neutron crystallography revealed a significantly lowered pKa of Tyr7 and how pH and Tyr proximity to Zn affect hydrogen-bonding interactions. PMID:25902526

  9. Hydrodesulfurization on Transition Metal Catalysts: Elementary Steps of C-S Bond Activation and Consequences of Bifunctional Synergies

    NASA Astrophysics Data System (ADS)

    Yik, Edwin Shyn-Lo

    The presence of heteroatoms (e.g. S, N) in crude oil poses formidable challenges in petroleum refining processes as a result of their irreversible binding on catalytically active sites at industrially relevant conditions. With increasing pressures from legislation that continues to lower the permissible levels of sulfur content in fuels, hydrodesulfurization (HDS), the aptly named reaction for removing heteroatoms from organosulfur compounds, has become an essential feedstock pretreatment step to remove deleterious species from affecting downstream processing. Extensive research in the area has identified the paradigm catalysts for desulfurization; MoSx or WSx, promoted with Co or Ni metal; however, despite the vast library of both empirical and fundamental studies, a clear understanding of site requirements, the elementary steps of C-S hydrogenolysis, and the properties that govern HDS reactivity and selectivity have been elusive. While such a lack of rigorous assessments has not prevented technological advancements in the field of HDS catalysis, fundamental interpretations can inform rational catalyst and process design, particularly in light of new requirements for "deep" desulfurization and in the absence of significant hydrotreatment catalyst developments in recent decades. We report HDS rates of thiophene, which belongs to a class of compounds that are most resistant to sulfur removal (i.e. substituted alkyldibenzothiophenes), over a range of industrially relevant temperatures and pressures, measured at differential conditions and therefore revealing their true kinetic origins. These rates, normalized by the number of exposed metal atoms, on various SiO 2-supported, monometallic transition metals (Re, Ru, Pt), range several orders of magnitude. Under relevant HDS conditions, Pt and Ru catalysts form a layer of chemisorbed sulfur on surfaces of a metallic bulk, challenging reports that assume the latter exists as its pyrite sulfide phase during reaction. While convergence to a single phase is expected and predictable from thermodynamics at a given temperature and sulfur chemical potential, metastability of two phases can exist. We demonstrate, through extensive characterization and kinetic evidence, such behaviors exist in Re, where structural disparities between its phases lead to kinetic hurdles that prevent interconversions between layered ReSx nanostructures and sulfur-covered Re metal clusters. Such features allowed, for the first time, direct comparisons of reaction rates at identical conditions on two disparate phases of the same transition metal identity. Rigorous assessments of kinetic and selectivity data indicated that more universal mechanistic features persist across all catalysts studied, suggesting that differences in their catalytic activity were the result of different densities of HDS sites, which appeared to correlate with their respective metal-sulfur bond energies. Kinetic responses and product distributions indicated that the consumption of thiophene proceeds by the formation of a partially-hydrogenated surface intermediate, which subsequently produces tetrahydrothiophene (THT) and butene/butane (C4) via primary routes on similar types of sites. These sites are formed from desorption of weakly-bound sulfur adatoms on sulfur-covered metal surfaces, which can occur when the heat of sulfur adsorption is sufficiently low at high sulfur coverage as a result of increased sulfur-sulfur repulsive interactions. Relative stabilities and differences in the molecularity of the respective transition states that form THT and C4 dictate product distributions. THT desulfurization to form C4 occurs via readsorption and subsequent dehydrogenation, evidenced by secondary rates that exhibited negative H2 dependences. These behaviors suggest that C-S bond activation occurs on a partially (un)saturated intermediate, analogous to behaviors observed in C-C bond scission reactions of linear and cycloalkanes on hydrogen-covered metal surfaces. Our interpretations place HDS in a specific class of more general C-X hydrogenolysis reactions, including hydrodeoxygenation (HDO) that has gained popular appeal in recent biomass conversion processes. These hydrodearomatization routes, hydrogenolysis and hydrogenation, act as probes for studying hydrogen spillover, a frequently observed phenomenon in bifunctional systems. Indeed, we observe enhancements solely in the rates of thiophene hydrogenation when monofunctional catalysts, which generate equilibrated concentrations of surface H-species, are mixed with materials (e.g. Al 2O3) that cannot dissociate H2. Conventional mechanisms that suggest gas phase or surface diffusion of atomic H-species (or H +-e- pairs) are implausible across distances along insulating surfaces (i.e. SiO2, Al2O3). We propose, with kinetic-transport models that are consistent with all observed behaviors, that mobility of active H-species occurs through gas phase diffusion of thiophene-derived molecular H-carriers, whose formation rate on HDS sites can control maximum spillover enhancements. This synergy is disrupted when the ability of thiophene to form these H-carriers is suppressed, leading to an absence of spillover-mediated rates and further challenging any diffusive roles of atomic H-species. Such implications help guide optimal designs of bifunctional cascades to permit the uninhibited access and egress of larger molecules within both catalytic functions. (Abstract shortened by UMI.).

  10. Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis

    DOE PAGES

    Kitano, Masaaki; Kanbara, Shinji; Inoue, Yasunori; ...

    2015-03-30

    We actively sough novel approaches to efficient ammonia synthesis at an ambient pressure so as to reduce the cost of ammonia production and to allow for compact production facilities. It is accepted that the key is the development of a high-performance catalyst that significantly enhances dissociation of the nitrogen-nitrogen triple bond, which is generally considered a rate-determining step. Here we examine the kinetics of nitrogen and hydrogen isotope exchange and hydrogen adsorption/desorption reactions for a recently discovered efficient catalyst for ammonia synthesis --ruthenium-loaded 12CaO∙7AI 2O 3 electride (Ru/C12A7:more » $$\\bar{e}$$ )--and find that the rate controlling step of ammonia synthesis over Ru/C12A7:$$\\bar{e}$$ is not dissociation of the nitrogen-nitrogen triple bond but the subsequent formation of N-H n species. A mechanism of ammonia synthesis involving reversible storage and release of hydrogen atoms on the Ru/C12A7:$$\\bar{e}$$ surface is proposed on the basis of observed hydrogen adsorption/desorption kinetics.« less

  11. Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitano, Masaaki; Kanbara, Shinji; Inoue, Yasunori

    We actively sough novel approaches to efficient ammonia synthesis at an ambient pressure so as to reduce the cost of ammonia production and to allow for compact production facilities. It is accepted that the key is the development of a high-performance catalyst that significantly enhances dissociation of the nitrogen-nitrogen triple bond, which is generally considered a rate-determining step. Here we examine the kinetics of nitrogen and hydrogen isotope exchange and hydrogen adsorption/desorption reactions for a recently discovered efficient catalyst for ammonia synthesis --ruthenium-loaded 12CaO∙7AI 2O 3 electride (Ru/C12A7:more » $$\\bar{e}$$ )--and find that the rate controlling step of ammonia synthesis over Ru/C12A7:$$\\bar{e}$$ is not dissociation of the nitrogen-nitrogen triple bond but the subsequent formation of N-H n species. A mechanism of ammonia synthesis involving reversible storage and release of hydrogen atoms on the Ru/C12A7:$$\\bar{e}$$ surface is proposed on the basis of observed hydrogen adsorption/desorption kinetics.« less

  12. Synthesis of 1-octacosanol and GC-C-IRMS discrimination of samples from different origin.

    PubMed

    Cravotto, Giancarlo; Calcio Gaudino, Emanuela; Barge, Alessandro; Binello, Arianna; Albertino, Andrea; Aghemo, Costanza

    2010-03-01

    Lately, long-chain primary alcohols have been investigated in depth on account of their biological activities. In particular, 1-octacosanol (C(28)H(57)OH), the main component of policosanol, the hypolipidaemic fatty alcohol mixture obtained from sugar cane wax, has been the subject of a multitude of pharmacological studies. The aim of this work was to search a convenient synthetic protocol for the preparation of 1-octacosanol in a gram scale. The key step was a Wittig reaction between the octadecyltriphenylphosphonium ylide and the methyl 10-oxodecanoate. Some steps were further improved by power ultrasound and microwave irradiation, either alone or in combination. Our methodology is suitable for a rapid generation of homologues by varying the chain length in the alkyl halide. Due to the high commercial value, a series of 1-octacosanol samples, either isolated from natural sources or from synthesis (different origin and suppliers), were analysed by gas chromatography-combustion-isotopic ratio mass spectrometry (GC-C-IRMS) and according to the carbon isotopic content, classified on the basis of their origin.

  13. Electroremovable Traceless Hydrazides for Cobalt-Catalyzed Electro-Oxidative C-H/N-H Activation with Internal Alkynes.

    PubMed

    Mei, Ruhuai; Sauermann, Nicolas; Oliveira, João C A; Ackermann, Lutz

    2018-06-27

    Electrochemical oxidative C-H/N-H activations have been accomplished with a versatile cobalt catalyst in terms of [4 + 2] annulations of internal alkynes. The electro-oxidative C-H activation manifold proved viable with an undivided cell setup under exceedingly mild reaction conditions at room temperature using earth-abundant cobalt catalysts. The electrochemical cobalt catalysis prevents the use of transition metal oxidants in C-H activation catalysis, generating H 2 as the sole byproduct. Detailed mechanistic studies provided strong support for a facile C-H cobaltation by an initially formed cobalt(III) catalyst. The subsequent alkyne migratory insertion was interrogated by mass spectrometry and DFT calculations, providing strong support for a facile C-H activation and the formation of a key seven-membered cobalta(III) cycle in a regioselective fashion. Key to success for the unprecedented use of internal alkynes in electrochemical C-H/N-H activations was represented by the use of N-2-pyridylhydrazides, for which we developed a traceless electrocleavage strategy by electroreductive samarium catalysis at room temperature.

  14. Cryopreservation of gametophytes of Laminaria japonica (Phaeophyta) using encapsulation-dehydration with two-step cooling method

    NASA Astrophysics Data System (ADS)

    Zhang, Quansheng; Cong, Yizhou; Qu, Shancun; Luo, Shiju; Yang, Guanpin

    2008-02-01

    Gametophytes of Laminaria japonica were cryopreserved in liquid nitrogen using encapsulation-dehydration with two-step cooling method. Gametophytes cultured at 10°C and under continuous irradiance of 30 μmol m-2 s-1 for 3 weeks were encapsulated in calcium alginate beads. The beads were dehydrated in 0.4 molL-1 sucrose prepared with seawater for 6 h, desiccated in an incubator set at 10°C and 70% relative humidity for 4 h, pre-frozen at either -40°C or -60°C for 30 min, and stored in liquid nitrogen for >24 h. As high as 43% of survival rate was observed when gametophytes were thawed by placing the beads in 40°C seawater and re-hydrated in 0.05 molL-1 citrate sodium prepared using 30‰ NaCl 7 d later. More cells of male gametophytes survived the whole procedure in comparison with female gametophytes. The cells of gametophytes surviving the preservation were able to grow asexually and produce morphologically normal sporophytes.

  15. Dimethylammonium hexanoate stabilized rhodium(0) nanoclusters identified as true heterogeneous catalysts with the highest observed activity in the dehydrogenation of dimethylamine-borane.

    PubMed

    Zahmakiran, Mehmet; Ozkar, Saim

    2009-09-21

    Herein we report the discovery of a superior dimethylamine-borane dehydrogenation catalyst, more active than the prior best heterogeneous catalyst (Jaska, C. A.; Manners, I. J. Am. Chem. Soc. 2004, 126, 9776) reported to date for the dehydrogenation of dimethylamine-borane. The new catalyst system consists of rhodium(0) nanoclusters stabilized by C(5)H(11)COO(-) anions and Me(2)H(2)N(+) cations and can reproducibly be formed from the reduction of rhodium(II) hexanoate during dehydrogenation of dimethylamine-borane at room temperature. Rhodium(0) nanoclusters in an average particle size of 1.9 +/- 0.6 nm Rh(0)(approximately 190) nanoclusters) provide 1040 turnovers over 26 h with a record initial turnover frequency (TOF) of 60 h(-1) (the average TOF value is 40 h(-1)) in the dehydrogenation of dimethylamine-borane, yielding 100% of the cyclic product (Me(2)NBH(2))(2) at room temperature. The work reported here also includes the full experimental details of the following major components: (i) Characterization of dimethylammonium hexanoate stabilized rhodium(0) nanoclusters by using TEM, STEM, EDX, XRD, UV-vis, XPS, FTIR, (1)H, (13)C, and (11)B NMR spectroscopy, and elemental analysis. (ii) Collection of a wealth of previously unavailable kinetic data to determine the rate law and activation parameters for catalytic dehydrogenation of dimethylamine-borane. (iii) Monitoring of the formation kinetics of the rhodium(0) nanoclusters by a fast dimethylamine-borane dehydrogenation catalytic reporter reaction (Watzky, M. A.; Finke, R. G. J. Am. Chem. Soc. 1997, 119, 10382) at various [Me(2)NH.BH(3)]/[Rh] ratios and temperatures. Significantly, sigmoidal kinetics of catalyst formation was found to be well fit to the two-step, slow nucleation and then autocatalytic surface growth mechanism, A --> B (rate constant k(1)) and A + B --> 2B (rate constant k(2)), in which A is [Rh(C(5)H(11)CO(2))(2)](2) and B is the growing, catalytically active rhodium(0) nanoclusters. (iv) Mercury(0) and CS(2) poisoning and nanofiltration experiments to determine whether the dehydrogenation of dimethylamine-borane catalyzed by the dimethylammonium hexanoate stabilized rhodium(0) nanoclusters is homogeneous or heterogeneous catalysis.

  16. An innovative biocatalyst for production of ethanol from xylose in a continuous bioreactor.

    PubMed

    Silva, C R; Zangirolami, T C; Rodrigues, J P; Matugi, K; Giordano, R C; Giordano, R L C

    2012-01-05

    The use of the hemicellulose fraction of biomass may be important for the feasibility of the production of second generation bioethanol. Wild strains of Saccharomyces cerevisiae are widely used in industry for production of 1st generation ethanol, and the robustness of this yeast is an important advantage in large scale applications. Isomerization of xylose to xylulose is an essential step in this process. This reaction is catalyzed by glucose isomerase (GI). A new biocatalyst is presented here for the simultaneous isomerization and fermentation (SIF) of xylose. GI from Streptomyces rubiginosus was immobilized in chitosan, through crosslinking with glutaraldehyde, and the support containing the immobilized GI (IGI-Ch) was co-immobilized with S. cerevisiae, in calcium alginate gel. The immobilization experiments led to high immobilized protein loads (30-68 mg × g(support)(-1)), high yields (circa of 100%) and high recovered enzyme activity (>90%). The IGI-Ch derivative with maximum activity presented 1700 IU × g(catalyst)(-1), almost twice the activity of a commercial immobilized GI, GENSWEET(®) IGI-HF. At typical operational conditions for xylose SIF operation (pH 5, 30-35 °C, presence of nutrients and ethanol concentrations in the medium up to 70 L(-1)), both derivatives, IGI-Ch and GENSWEET(®) IGI-HF retained app. 90% of the initial activity after 120 h, while soluble GI was almost completely inactive at pH 5, 30 °C. The isomerization xylose/xylulose, catalyzed by IGI-Ch, reached the equilibrium in batch experiments after 4h, with 12,000 IU × L(-1) (7 g(der) × L(-1)), at pH 5 and 30 °C, in the presence of fermentation nutrients. After co-immobilization of IGI-Ch with yeast in alginate gel, this biocatalyst succeeded in producing 12 g × L(-1) of ethanol, 9.5 g × L(-1) of xylitol, 2.5 g × L(-1) of glycerol and 1.9 g × L(-1) of acetate after consumption of 50 g × L(-1) of xylose, in 48 h, using 32.5 × 10(3) IU × L(-1) and 20 g(yeast) × L(-1), at 35 °C and initial pH 5.3. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. CO activation pathways and the mechanism of Fischer–Tropsch synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ojeda, Manuel; Nabar, Rahul P.; Nilekar, Anand U.

    2010-06-15

    Unresolved mechanistic details of monomer formation in Fischer–Tropsch synthesis (FTS) and of its oxygen rejection routes are addressed here by combining kinetic and theoretical analyses of elementary steps on representative Fe and Co surfaces saturated with chemisorbed CO. These studies provide experimental and theoretical evidence for hydrogen-assisted CO activation as the predominant kinetically-relevant step on Fe and Co catalysts at conditions typical of FTS practice. H2 and CO kinetic effects on FTS rates and oxygen rejection selectivity (as H2O or CO2) and density functional theory estimates of activation barriers and binding energies are consistent with H-assisted CO dissociation, but notmore » with the previously accepted kinetic relevance of direct CO dissociation and chemisorbed carbon hydrogenation elementary steps. H-assisted CO dissociation removes O-atoms as H2O, while direct dissociation forms chemisorbed oxygen atoms that desorb as CO2. Direct CO dissociation routes are minor contributors to monomer formation on Fe and may become favored at high temperatures on alkali-promoted catalysts, but not on Co catalysts, which remove oxygen predominantly as H2O because of the preponderance of Hassisted CO dissociation routes. The merging of experiment and theory led to the clarification of persistent mechanistic issues previously unresolved by separate experimental and theoretical inquiries.« less

  18. Structure of the beta-galactosidase gene from Thermus sp. strain T2: expression in Escherichia coli and purification in a single step of an active fusion protein.

    PubMed

    Vian, A; Carrascosa, A V; García, J L; Cortés, E

    1998-06-01

    The nucleotide sequence of both the bgaA gene, coding for a thermostable beta-galactosidase of Thermus sp. strain T2, and its flanking regions was determined. The deduced amino acid sequence of the enzyme predicts a polypeptide of 645 amino acids (Mr, 73,595). Comparative analysis of the open reading frames located in the flanking regions of the bgaA gene revealed that they might encode proteins involved in the transport and hydrolysis of sugars. The observed homology between the deduced amino acid sequences of BgaA and the beta-galactosidase of Bacillus stearothermophilus allows us to classify the new enzyme within family 42 of glycosyl hydrolases. BgaA was overexpressed in its active form in Escherichia coli, but more interestingly, an active chimeric beta-galactosidase was constructed by fusing the BgaA protein to the choline-binding domain of the major pneumococcal autolysin. This chimera illustrates a novel approach for producing an active and thermostable hybrid enzyme that can be purified in a single step by affinity chromatography on DEAE-cellulose, retaining the catalytic properties of the native enzyme. The chimeric enzyme showed a specific activity of 191,000 U/mg at 70 degrees C and a Km value of 1.6 mM with o-nitrophenyl-beta-D-galactopyranoside as a substrate, and it retained 50% of its initial activity after 1 h of incubation at 70 degrees C.

  19. Two-step ion-exchange chromatographic purification combined with reversed-phase chromatography to isolate C-peptide for mass spectrometric analysis.

    PubMed

    Kabytaev, Kuanysh; Durairaj, Anita; Shin, Dmitriy; Rohlfing, Curt L; Connolly, Shawn; Little, Randie R; Stoyanov, Alexander V

    2016-02-01

    A liquid chromatography with mass spectrometry on-line platform that includes the orthogonal techniques of ion exchange and reversed phase chromatography is applied for C-peptide analysis. Additional improvement is achieved by the subsequent application of cation- and anion-exchange purification steps that allow for isolating components that have their isoelectric points in a narrow pH range before final reversed-phase mass spectrometry analysis. The utility of this approach for isolating fractions in the desired "pI window" for profiling complex mixtures is discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Selective C-acylation of 2-aminoimidazo[1,2-a]pyridine: application to the synthesis of imidazopyridine-fused [1,3]diazepinones.

    PubMed

    Masurier, Nicolas; Aruta, Roberta; Gaumet, Vincent; Denoyelle, Séverine; Moreau, Emmanuel; Lisowski, Vincent; Martinez, Jean; Maillard, Ludovic T

    2012-04-06

    A series of 20 optically pure 3,4-dihydro-5H-pyrido[1',2':1,2]imidazo[4,5-d][1,3]diazepin-5-ones which form a new family of azaheterocycle-fused [1,3]diazepines were synthesized in four steps with 17-66% overall yields. The key step consists of a selective C-acylation reaction of easily accessible 2-aminoimidazo[1,2-a]pyridine at C-3.

  1. An experimental study of furan adsorption and decomposition on vicinal palladium surfaces using scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Loui, A.; Chiang, S.

    2018-04-01

    The intact adsorption and decomposition of furan (C4H4O) on vicinal palladium surfaces with (111)-oriented terraces has been studied by scanning tunneling microscopy (STM) over a range of temperatures. STM images at 225 K show that furan molecules lie flat and prefer to adsorb at upper step edges. At 225 K, furan molecules adsorbed on "narrow" terraces of 20 to 45 Å in width appear to diffuse more readily than those adsorbed on "wide" terraces of 160 to 220 Å. A distinct population of smaller features appears in STM images on "narrow" terraces at 288 K and on "wide" terraces at 415 K and is identified with the C3H3 decomposition product, agreeing with prior studies which demonstrated that furan dissociates on Pd(111) to yield carbon monoxide (CO) and a C3H3 moiety in the 280 to 320 K range. Based on our direct visualization of this reaction using STM, we propose a spatial mechanism in which adsorption of furan at upper step edges allows catalysis of the dissociation, followed by diffusion of the product to lower step edges.

  2. Enzyme encapsulation in silica gel prepared by polylysine and its catalytic activity

    NASA Astrophysics Data System (ADS)

    Kawachi, Yuki; Kugimiya, Shin-ichi; Nakamura, Hitomi; Kato, Katsuya

    2014-09-01

    Enzymes used in industrial applications are often immobilized onto different types of supports because they are sensitive to pH, temperature, and various other environmental conditions. However, many of the current immobilization approaches face problems such as the requirement of tedious multi-step procedures, loss of enzyme activity during immobilization, and poor reusability. In this study, we chose poly-L-lysine (Ki) as a catalyst for silica mineralization and attempted a one-step "leave to stand" synthesis method under mild conditions, so as to simultaneously maintain both high enzymatic activity and reusability. To examine the effect of Kx on the enzymatic reaction of lipase, we performed hydrolysis of 2-octylacetate without adding a silica precursor. Results indicate that Kx hardly exerts adverse influence on the enzymatic activity of lipase. The lipase encapsulated in the silica gel prepared by leave to stand (Gelstand) retained 70% of the activity compared to the free solution, which is two times higher than that obtained by mixing (Gelmix). However, the Km value was found to be similar to that of free enzymes. These results suggest that the leave to stand is a suitable procedure for immobilization, without any decrease in the mass transfer of substrate. The Gel-stand sample retained 100% activity even after the 5th cycle, and retained above 95% of its activity after 4 h of heat treatment at 65 °C. Using phenyltriethoxysilane as a silica precursor, tertiary structural stability of enzyme was obtained, and its Kcat value was improved when compared to a free solution.

  3. Identification of the fatty acid activation site on human ClC-2.

    PubMed

    Cuppoletti, John; Tewari, Kirti P; Chakrabarti, Jayati; Malinowska, Danuta H

    2017-06-01

    Fatty acids (including lubiprostone and cobiprostone) are human ClC-2 (hClC-2) Cl - channel activators. Molecular and cellular mechanisms underlying this activation were examined. Role of a four-amino acid PKA activation site, RGET 691 , of hClC-2 was investigated using wild-type (WT) and mutant (AGET, RGEA, and AGAA) hClC-2 expressed in 293EBNA cells as well as involvement of PKA, intracellular cAMP concentration ([cAMP] i ), EP 2 , or EP 4 receptor agonist activity. All fatty acids [lubiprostone, cobiprostone, eicosatetraynoic acid (ETYA), oleic acid, and elaidic acid] caused significant rightward shifts in concentration-dependent Cl - current activation (increasing EC 50 s) with mutant compared with WT hClC-2 channels, without changing time and voltage dependence, current-voltage rectification, or methadone inhibition of the channel. As with lubiprostone, cobiprostone activation of hClC-2 occurred with PKA inhibitor (myristoylated protein kinase inhibitor) present or when using double PKA activation site (RRAA 655 /RGEA 691 ) mutant. Cobiprostone did not activate human CFTR. Fatty acids did not increase [cAMP] i in hClC-2/293EBNA or T84 cells. Using T84 CFTR knockdown cells, cobiprostone increased hClC-2 Cl - currents without increasing [cAMP] i, while PGE 2 and forskolin-IBMX increased both. Fatty acids were not agonists of EP 2 or EP 4 receptors. L-161,982, a supposed EP 4 -selective inhibitor, had no effect on lubiprostone-activated hClC-2 Cl - currents but significantly decreased T84 cell barrier function measured by transepithelial resistance and fluorescent dextran transepithelial movement. The present findings show that RGET 691 of hClC-2 (possible binding site) plays an important functional role in fatty acid activation of hClC-2. PKA, [cAMP] i , and EP 2 or EP 4 receptors are not involved. These studies provide the molecular basis for fatty acid regulation of hClC-2. Copyright © 2017 the American Physiological Society.

  4. Reaction mechanism of chalcone isomerase. pH dependence, diffusion control, and product binding differences.

    PubMed

    Jez, Joseph M; Noel, Joseph P

    2002-01-11

    Chalcone isomerase (CHI) catalyzes the intramolecular cyclization of bicyclic chalcones into tricyclic (S)-flavanones. The activity of CHI is essential for the biosynthesis of flavanone precursors of floral pigments and phenylpropanoid plant defense compounds. We have examined the spontaneous and CHI-catalyzed cyclization reactions of 4,2',4',6'-tetrahydroxychalcone, 4,2',4'-trihydroxychalcone, 2',4'-dihydroxychalcone, and 4,2'-dihydroxychalcone into the corresponding flavanones. The pH dependence of flavanone formation indicates that both the non-enzymatic and enzymatic reactions first require the bulk phase ionization of the substrate 2'-hydroxyl group and subsequently on the reactivity of the newly formed 2'-oxyanion during C-ring formation. Solvent viscosity experiments demonstrate that at pH 7.5 the CHI-catalyzed cyclization reactions of 4,2',4',6'-tetrahydroxychalcone, 4,2',4'-trihydroxychalcone, and 2',4'-dihydroxychalcone are approximately 90% diffusion-controlled, whereas cyclization of 4,2'-dihydroxychalcone is limited by a chemical step that likely reflects the higher pK(a) of the 2'-hydroxyl group. At pH 6.0, the reactions with 4,2',4',6'-tetrahydroxychalcone and 4,2',4'-trihydroxychalcone are approximately 50% diffusion-limited, whereas the reactions of both dihydroxychalcones are limited by chemical steps. Comparisons of the 2.1-2.3 A resolution crystal structures of CHI complexed with the products 7,4'-dihydroxyflavanone, 7-hydroxyflavanone, and 4'-hydroxyflavanone show that the 7-hydroxyflavanones all share a common binding mode, whereas 4'-hydroxyflavanone binds in an altered orientation at the active site. Our functional and structural studies support the proposal that CHI accelerates the stereochemically defined intramolecular cyclization of chalcones into biologically active (2S)-flavanones by selectively binding an ionized chalcone in a conformation conducive to ring closure in a diffusion-controlled reaction.

  5. Fractionation of metals by sequential extraction procedures (BCR and Tessier) in soil exposed to fire of wide temperature range

    NASA Astrophysics Data System (ADS)

    Fajkovic, Hana; Rončević, Sanda; Nemet, Ivan; Prohić, Esad; Leontić-Vazdar, Dana

    2017-04-01

    Forest fire presents serious problem, especially in Mediterranean Region. Effects of fire are numerous, from climate change and deforestation to loss of soil organic matter and changes in soil properties. One of the effects, not well documented, is possible redistribution and/or remobilisation of pollutants previously deposited in the soil, due to the new physical and chemical soil properties and changes in equilibrium conditions. For understanding and predicting possible redistribution and/or remobilisation of potential pollutants from soil, affected by fire different in temperature, several laboratory investigations were carried out. To evaluate the influence of organic matter on soil under fire, three soil samples were analysed and compared: (a) the one with added coniferous organic matter; (b) deciduous organic matter (b) and (c) soil without additional organic matter. Type of organic matter is closely related to pH of soil, as pH is influencing the mobility of some pollutants, e.g. metals. For that reason pH was also measured through all experimental steps. Each of mentioned soil samples (a, b and c) were heated at 1+3 different temperatures (25°C, 200°C, 500°C and 850°C). After heating, whereby fire effect on soil was simulated, samples were analysed by BCR protocol with the addition of a first step of sequential extraction procedure by Tessier and analysis of residual by aqua regia. Element fractionation of heavy metals by this procedure was used to determine the amounts of selected elements (Al, Cd, Cr, Co, Cu, Fe, Mn, Ni, Pb and Zn). Selected metal concentrations were determined using inductively coupled plasma atomic emission spectrometer. Further on, loss of organic matter was calculated after each heating procedure as well as the mineral composition. The mineral composition was determined using an X-ray diffraction. From obtained results, it can be concluded that temperature has an influence on concentration of elements in specific step of sequential extraction procedures. The first step of Tessier and BCR extraction of samples heated at 250°C and 500°C showed increasing trend of elemental concentrations. Results of these steps are especially important since they indicate mobile fraction of the elements (exchangeable, water- and acid-soluble fraction), which can easily affect the environment. Extraction procedures of samples combusted at 850°C showed that decrease in measured elemental content occurred. Some correlation is also noticed between type of organic matter, pH and concentration of analysed elements.

  6. The Relationship of the Silicon Surface Roughness and Gate Oxide Integrity in NH4OH/H2O2 Mixtures

    NASA Astrophysics Data System (ADS)

    Meuris, M.; Verhaverbeke, S.; Mertens, P. W.; Heyns, M. M.; Hellemans, L.; Bruynseraede, Y.; Philipossian, A.

    1992-11-01

    In this study some recent findings on the cleaning action of the NH4OH/H2O2 (SC1) step in a pre-gate oxidation cleaning (RCA cleaning) are given. An important parameter in this mixture is the NH4OH/H2O2 ratio. The Fe contamination on the silicon surface after this cleaning step is found to increase upon decreasing the NH4OH/H2O2 ratio. This can be attributed to the incorporation of Fe in the chemical oxide, grown by the hydrogen peroxide. The particle removal efficiency of the cleaning step is found to decrease upon decreasing the NH4OH/H2O2 ratio. On the other hand, using a lower NH4OH concentration results in a less severe silicon surface roughening. It is demonstrated in this study that the NH4OH/H2O2 ratio during the SC1 step of the cleaning is the determining parameter for the breakdown properties of a gate oxide. A (0.25/1/5) NH4OH/H2O2/H2O mixture at 75°C in our experimental conditions is suggested to be the best compromise between particle removal and surface roughness during the SC1 step.

  7. Twenty-four Hours of Sleep, Sedentary Behavior, and Physical Activity with Nine Wearable Devices.

    PubMed

    Rosenberger, Mary E; Buman, Matthew P; Haskell, William L; McConnell, Michael V; Carstensen, Laura L

    2016-03-01

    Getting enough sleep, exercising, and limiting sedentary activities can greatly contribute to disease prevention and overall health and longevity. Measuring the full 24-h activity cycle-sleep, sedentary behavior (SED), light-intensity physical activity (LPA), and moderate-to-vigorous physical activity (MVPA)-may now be feasible using small wearable devices. This study compared nine devices for accuracy in a 24-h activity measurement. Adults (n = 40, 47% male) wore nine devices for 24 h: ActiGraph GT3X+, activPAL, Fitbit One, GENEactiv, Jawbone Up, LUMOback, Nike Fuelband, Omron pedometer, and Z-Machine. Comparisons (with standards) were made for total sleep time (Z-machine), time spent in SED (activPAL), LPA (GT3X+), MVPA (GT3X+), and steps (Omron). Analysis included mean absolute percent error, equivalence testing, and Bland-Altman plots. Error rates ranged from 8.1% to 16.9% for sleep, 9.5% to 65.8% for SED, 19.7% to 28.0% for LPA, 51.8% to 92% for MVPA, and 14.1% to 29.9% for steps. Equivalence testing indicated that only two comparisons were significantly equivalent to standards: the LUMOback for SED and the GT3X+ for sleep. Bland-Altman plots indicated GT3X+ had the closest measurement for sleep, LUMOback for SED, GENEactiv for LPA, Fitbit for MVPA, and GT3X+ for steps. Currently, no device accurately captures activity data across the entire 24-h day, but the future of activity measurement should aim for accurate 24-h measurement as a goal. Researchers should continue to select measurement devices on the basis of their primary outcomes of interest.

  8. Anticancer activity of synthetic bis(indolyl)methane-ortho-biaryls against human cervical cancer (HeLa) cells.

    PubMed

    Jamsheena, Vellekkatt; Shilpa, Ganesan; Saranya, Jayaram; Harry, Nissy Ann; Lankalapalli, Ravi Shankar; Priya, Sulochana

    2016-03-05

    Bis(indolyl)methane appended biaryls were designed, synthesized and evaluated in human cervical cancer cell lines (HeLa) for their anticancer activities and compared against normal rat cardiac myoblasts (H9C2) cells. Compounds 1-12 were synthesized, with variations in one of the phenyl unit, in a single step by condensation of biaryl-2-carbaldehydes with indole in the presence of para-toluenesulfonic acid. Compound 1 exhibited a GI50 value of 11.00 ± 0.707 μM and the derivatives, compounds 4 and 11 showed a GI50 value of 8.33 ± 0.416 μM and 9.13 ± 0.177 μM respectively in HeLa cells and was found to be non-toxic to H9C2 cells up to 20 μM. Furthermore, compounds 1, 4 and 11 induced caspase dependent cellular apoptosis in a concentration-dependent manner, reduced mitochondrial membrane potential, inhibited the cell migration and downregulated the production of MMP-2 and MMP-9 in HeLa cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. One-step production of immobilized alpha-amylase in recombinant Escherichia coli.

    PubMed

    Rasiah, Indira A; Rehm, Bernd H A

    2009-04-01

    Industrial enzymes are often immobilized via chemical cross-linking onto solid supports to enhance stability and facilitate repeated use in bioreactors. For starch-degrading enzymes, immobilization usually places constraints on enzymatic conversion due to the limited diffusion of the macromolecular substrate through available supports. This study describes the one-step immobilization of a highly thermostable alpha-amylase (BLA) from Bacillus licheniformis and its functional display on the surface of polyester beads inside engineered Escherichia coli. An optimized BLA variant (Termamyl) was N-terminally fused to the polyester granule-forming enzyme PhaC of Cupriavidus necator. The fusion protein lacking the signal sequence mediated formation of stable polyester beads exhibiting alpha-amylase activity. The alpha-amylase beads were assessed with respect to alpha-amylase activity, which was demonstrated qualitatively and quantitatively. The immobilized alpha-amylase showed Michaelis-Menten enzyme kinetics exerting a V(max) of about 506 mU/mg of bead protein with a K(m) of about 5 microM, consistent with that of free alpha-amylase. The stability of the enzyme at 85 degrees C and the capacity for repeated usage in a starch liquefaction process were also demonstrated. In addition, structural integrity and functionality of the beads at extremes of pH and temperature, demonstrating their suitability for industrial use, were confirmed by electron microscopy and protein/enzyme analysis. This study proposes a novel, cost-effective method for the production of immobilized alpha-amylase in a single step by using the polyester granules forming protein PhaC as a fusion partner in engineered E. coli.

  10. One-Step Production of Immobilized α-Amylase in Recombinant Escherichia coli▿ †

    PubMed Central

    Rasiah, Indira A.; Rehm, Bernd H. A.

    2009-01-01

    Industrial enzymes are often immobilized via chemical cross-linking onto solid supports to enhance stability and facilitate repeated use in bioreactors. For starch-degrading enzymes, immobilization usually places constraints on enzymatic conversion due to the limited diffusion of the macromolecular substrate through available supports. This study describes the one-step immobilization of a highly thermostable α-amylase (BLA) from Bacillus licheniformis and its functional display on the surface of polyester beads inside engineered Escherichia coli. An optimized BLA variant (Termamyl) was N-terminally fused to the polyester granule-forming enzyme PhaC of Cupriavidus necator. The fusion protein lacking the signal sequence mediated formation of stable polyester beads exhibiting α-amylase activity. The α-amylase beads were assessed with respect to α-amylase activity, which was demonstrated qualitatively and quantitatively. The immobilized α-amylase showed Michaelis-Menten enzyme kinetics exerting a Vmax of about 506 mU/mg of bead protein with a Km of about 5 μM, consistent with that of free α-amylase. The stability of the enzyme at 85°C and the capacity for repeated usage in a starch liquefaction process were also demonstrated. In addition, structural integrity and functionality of the beads at extremes of pH and temperature, demonstrating their suitability for industrial use, were confirmed by electron microscopy and protein/enzyme analysis. This study proposes a novel, cost-effective method for the production of immobilized α-amylase in a single step by using the polyester granules forming protein PhaC as a fusion partner in engineered E. coli. PMID:19201981

  11. Cyclam Derivatives with a Bis(phosphinate) or a Phosphinato-Phosphonate Pendant Arm: Ligands for Fast and Efficient Copper(II) Complexation for Nuclear Medical Applications.

    PubMed

    David, Tomáš; Kubíček, Vojtěch; Gutten, Ondrej; Lubal, Přemysl; Kotek, Jan; Pietzsch, Hans-Jürgen; Rulíšek, Lubomír; Hermann, Petr

    2015-12-21

    Cyclam derivatives bearing one geminal bis(phosphinic acid), -CH2PO2HCH2PO2H2 (H2L(1)), or phosphinic-phosphonic acid, -CH2PO2HCH2PO3H2 (H3L(2)), pendant arm were synthesized and studied as potential copper(II) chelators for nuclear medical applications. The ligands showed good selectivity for copper(II) over zinc(II) and nickel(II) ions (log KCuL = 25.8 and 27.7 for H2L(1) and H3L(2), respectively). Kinetic study revealed an unusual three-step complex formation mechanism. The initial equilibrium step leads to out-of-cage complexes with Cu(2+) bound by the phosphorus-containing pendant arm. These species quickly rearrange to an in-cage complex with cyclam conformation II, which isomerizes to another in-cage complex with cyclam conformation I. The first in-cage complex is quantitatively formed in seconds (pH ≈5, 25 °C, Cu:L = 1:1, cM ≈ 1 mM). At pH >12, I isomers undergo nitrogen atom inversion, leading to III isomers; the structure of the III-[Cu(HL(2))] complex in the solid state was confirmed by X-ray diffraction analysis. In an alkaline solution, interconversion of the I and III isomers is mutual, leading to the same equilibrium isomeric mixture; such behavior has been observed here for the first time for copper(II) complexes of cyclam derivatives. Quantum-chemical calculations showed small energetic differences between the isomeric complexes of H3L(2) compared with analogous data for isomeric complexes of cyclam derivatives with one or two methylphosphonic acid pendant arm(s). Acid-assisted dissociation proved the kinetic inertness of the complexes. Preliminary radiolabeling of H2L(1) and H3L(2) with (64)Cu was fast and efficient, even at room temperature, giving specific activities of around 70 GBq of (64)Cu per 1 μmol of the ligand (pH 6.2, 10 min, ca. 90 equiv of the ligand). These specific activities were much higher than those of H3nota and H4dota complexes prepared under identical conditions. The rare combination of simple ligand synthesis, very fast copper(II) complex formation, high thermodynamic stability, kinetic inertness, efficient radiolabeling, and expected low bone tissue affinity makes such ligands suitably predisposed to serve as chelators of copper radioisotopes in nuclear medicine.

  12. Activated carbons from potato peels: The role of activation agent and carbonization temperature of biomass on their use as sorbents for bisphenol A uptake from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Arampatzidou, An; Deliyanni, Eleni A.

    2015-04-01

    Activated carbons prepared from potato peels, a solid waste by product, and activated with different activating chemicals, have been studied for the adsorption of an endocrine disruptor (Bisphenol-A) from aqueous solutions. The potato peels biomass was activated with phosphoric acid, KOH and ZnCl2. The different activating chemicals were tested in order the better activation agent to be found. The carbons were carbonized by pyrolysis, in one step procedure, at three different temperatures in order the role of the temperature of carbonization to be pointed out. The porous texture and the surface chemistry of the prepared activated carbons were characterized by Nitrogen adsorption (BET), Scanning Electron Microscope (SEM), thermal analysis (DTA) and Fourier Transform Infrared Spectroscopy (FTIR). Batch experiments were performed to investigate the effect of pH, the adsorbent dose, the initial bisphenol A concentration and temperature. Equilibrium adsorption data were analyzed by Langmuir and Freundlich isotherms. The thermodynamic parameters such as the change of enthalpy (ΔH0), entropy (ΔS0) and Gibb's free energy (ΔG0) of adsorption systems were also evaluated. The adsorption capacity calculated from the Langmuir isotherm was found to be 450 mg g-1 at an initial pH 3 at 25 °C for the phosphoric acid activated carbon, that make the activated carbon a promising adsorbent material.

  13. Structural Analysis of ADP-Glucose Pyrophosphorylase From the Bacterium Agrobacterium Tumefaciens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cupp-Vickery, J.R.; Igarashi, R.Y.; Perez, M.

    2009-05-14

    ADP-glucose pyrophosphorylase (ADPGlc PPase) catalyzes the conversion of glucose 1-phosphate and ATP to ADP-glucose and pyrophosphate. As a key step in glucan synthesis, the ADPGlc PPases are highly regulated by allosteric activators and inhibitors in accord with the carbon metabolism pathways of the organism. Crystals of Agrobacterium tumefaciens ADPGlc PPase were obtained using lithium sulfate as a precipitant. A complete anomalous selenomethionyl derivative X-ray diffraction data set was collected with unit cell dimensions a = 85.38 {angstrom}, b = 93.79 {angstrom}, and c = 140.29 {angstrom} ({alpha} = {beta} = {gamma} = 90{sup o}) and space group I{sub 222}. Themore » A. tumefaciens ADPGlc PPase model was refined to 2.1 {angstrom} with an R{sub factor} = 22% and R{sub free} = 26.6%. The model consists of two domains: an N-terminal {alpha}{beta}{alpha} sandwich and a C-terminal parallel {beta}-helix. ATP and glucose 1-phosphate were successfully modeled in the proposed active site, and site-directed mutagenesis of conserved glycines in this region (G20, G21, and G23) resulted in substantial loss of activity. The interface between the N- and the C-terminal domains harbors a strong sulfate-binding site, and kinetic studies revealed that sulfate is a competitive inhibitor for the allosteric activator fructose 6-phosphate. These results suggest that the interface between the N- and C-terminal domains binds the allosteric regulator, and fructose 6-phosphate was modeled into this region. The A. tumefaciens ADPGlc PPase/fructose 6-phosphate structural model along with sequence alignment analysis was used to design mutagenesis experiments to expand the activator specificity to include fructose 1,6-bisphosphate. The H379R and H379K enzymes were found to be activated by fructose 1,6-bisphosphate.« less

  14. Preparation of visible-light-activated metal complexes and their use in photoredox/nickel dual catalysis.

    PubMed

    Kelly, Christopher B; Patel, Niki R; Primer, David N; Jouffroy, Matthieu; Tellis, John C; Molander, Gary A

    2017-03-01

    Visible-light-activated photoredox catalysts provide synthetic chemists with the unprecedented capability to harness reactive radicals through discrete, single-electron transfer (SET) events. This protocol describes the synthesis of two transition metal complexes, [Ir{dF(CF 3 ) 2 ppy} 2 (bpy)]PF 6 (1a) and [Ru(bpy) 3 ](PF 6 ) 2 (2a), that are activated by visible light. These photoredox catalysts are SET agents that can be used to facilitate transformations ranging from proton-coupled electron-transfer-mediated cyclizations to C-C bond constructions, dehalogenations, and H-atom abstractions. These photocatalysts have been used in the synthesis of medicinally relevant compounds for drug discovery, as well as the degradation of biological polymers to access fine chemicals. These catalysts are prepared from IrCl 3 and RuCl 3 , respectively, in three chemical steps. These steps can be described as a series of two ligand modifications followed by an anion metathesis. Using the cost-effective, scalable procedures described here, the ruthenium-based photocatalyst 2a can be synthesized in a 78% overall yield (∼8.1 g), and the iridium-based photocatalyst 1a can be prepared in a 56% overall yield (∼4.4 g). The total time necessary for the complete protocols ranges from ∼2 d for 2a to 5-7 d for 1a. Procedures for applying each catalyst in representative photoredox/Ni cross-coupling to form C sp 3-C sp 2 bonds using the appropriate radical precursor-organotrifluoroborates with 1a and bis(catecholato)alkylsilicates with 2a-are described. In addition, more traditional photoredox-mediated transformations are included as diagnostic tests for catalytic activity.

  15. Catalytically active alkaline molten globular enzyme: Effect of pH and temperature on the structural integrity of 5-aminolevulinate synthase.

    PubMed

    Stojanovski, Bosko M; Breydo, Leonid; Hunter, Gregory A; Uversky, Vladimir N; Ferreira, Gloria C

    2014-12-01

    5-Aminolevulinate synthase (ALAS), a pyridoxal-5'phosphate (PLP)-dependent enzyme, catalyzes the first step of heme biosynthesis in mammals. Circular dichroism (CD) and fluorescence spectroscopies were used to examine the effects of pH (1.0-3.0 and 7.5-10.5) and temperature (20 and 37°C) on the structural integrity of ALAS. The secondary structure, as deduced from far-UV CD, is mostly resilient to pH and temperature changes. Partial unfolding was observed at pH2.0, but further decreasing pH resulted in acid-induced refolding of the secondary structure to nearly native levels. The tertiary structure rigidity, monitored by near-UV CD, is lost under acidic and specific alkaline conditions (pH10.5 and pH9.5/37°C), where ALAS populates a molten globule state. As the enzyme becomes less structured with increased alkalinity, the chiral environment of the internal aldimine is also modified, with a shift from a 420nm to 330nm dichroic band. Under acidic conditions, the PLP cofactor dissociates from ALAS. Reaction with 8-anilino-1-naphthalenesulfonic acid corroborates increased exposure of hydrophobic clusters in the alkaline and acidic molten globules, although the reaction is more pronounced with the latter. Furthermore, quenching the intrinsic fluorescence of ALAS with acrylamide at pH1.0 and 9.5 yielded subtly different dynamic quenching constants. The alkaline molten globule state of ALAS is catalytically active (pH9.5/37°C), although the kcat value is significantly decreased. Finally, the binding of 5-aminolevulinate restricts conformational fluctuations in the alkaline molten globule. Overall, our findings prove how the structural plasticity of ALAS contributes to reaching a functional enzyme. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. A Molecular Dynamics (MD) and Quantum Mechanics/Molecular Mechanics (QM/MM) study on Ornithine Cyclodeaminase (OCD): a tale of two iminiums.

    PubMed

    Ion, Bogdan F; Bushnell, Eric A C; Luna, Phil De; Gauld, James W

    2012-10-11

    Ornithine cyclodeaminase (OCD) is an NAD+-dependent deaminase that is found in bacterial species such as Pseudomonas putida. Importantly, it catalyzes the direct conversion of the amino acid L-ornithine to L-proline. Using molecular dynamics (MD) and a hybrid quantum mechanics/molecular mechanics (QM/MM) method in the ONIOM formalism, the catalytic mechanism of OCD has been examined. The rate limiting step is calculated to be the initial step in the overall mechanism: hydride transfer from the L-ornithine's C(α)-H group to the NAD+ cofactor with concomitant formation of a C(α)=NH(2)+ Schiff base with a barrier of 90.6 kJ mol-1. Importantly, no water is observed within the active site during the MD simulations suitably positioned to hydrolyze the C(α)=NH(2)+ intermediate to form the corresponding carbonyl. Instead, the reaction proceeds via a non-hydrolytic mechanism involving direct nucleophilic attack of the δ-amine at the C(α)-position. This is then followed by cleavage and loss of the α-NH(2) group to give the Δ1-pyrroline-2-carboxylate that is subsequently reduced to L-proline.

  17. Two-step bioleaching of copper and gold from discarded printed circuit boards (PCB).

    PubMed

    Işıldar, Arda; van de Vossenberg, Jack; Rene, Eldon R; van Hullebusch, Eric D; Lens, Piet N L

    2016-11-01

    An effective strategy for environmentally sound biological recovery of copper and gold from discarded printed circuit boards (PCB) in a two-step bioleaching process was experimented. In the first step, chemolithotrophic acidophilic Acidithiobacillus ferrivorans and Acidithiobacillus thiooxidans were used. In the second step, cyanide-producing heterotrophic Pseudomonas fluorescens and Pseudomonas putida were used. Results showed that at a 1% pulp density (10g/L PCB concentration), 98.4% of the copper was bioleached by a mixture of A. ferrivorans and A. thiooxidans at pH 1.0-1.6 and ambient temperature (23±2°C) in 7days. A pure culture of P. putida (strain WCS361) produced 21.5 (±1.5)mg/L cyanide with 10g/L glycine as the substrate. This gold complexing agent was used in the subsequent bioleaching step using the Cu-leached (by A. ferrivorans and A. thiooxidans) PCB material, 44.0% of the gold was mobilized in alkaline conditions at pH 7.3-8.6, and 30°C in 2days. This study provided a proof-of-concept of a two-step approach in metal bioleaching from PCB, by bacterially produced lixiviants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Purification, Characterization, and Optimum Conditions of Fermencin SD11, a Bacteriocin Produced by Human Orally Lactobacillus fermentum SD11.

    PubMed

    Wannun, Phirawat; Piwat, Supatcharin; Teanpaisan, Rawee

    2016-06-01

    Fermencin SD11, a bacteriocin produced by human orally Lactobacillus fermentum SD11, was purified, characterized, and optimized in conditions for bacterial growth and bacteriocin production. Fermencin SD11 was purified using three steps of ammonium sulfate precipitation, gel filtration chromatography, and reverse-phase high-performance liquid chromatography. The molecular weight was found to be 33,000 Da using SDS-PAGE and confirmed as 33,593.4 Da by liquid chromatography-mass spectrometry. Fermencin SD11 exhibited activity against a wide range of oral pathogens including cariogenic and periodontogenic pathogens and Candida. The active activity was stable between 60 - 80 °C in a pH range of 3.0 to 7.0. It was sensitive to proteolytic enzymes (proteinase K and trypsin), but it was not affected by α-amylase, catalase, lysozyme, and saliva. The optimum conditions for growth and bacteriocin production of L. fermentum SD11 were cultured at acidic with pH of 5.0-6.0 at 37 or 40 °C under aerobic or anaerobic conditions for 12 h. It is promising that L. fermentum SD11 and its bacteriocin may be an alternative approach for promoting oral health or prevention of oral diseases, e.g., dental caries and periodontitis, which would require further clinical trials.

  19. Microwave-induced cracking of pyrolytic tars coupled to microwave pyrolysis for syngas production.

    PubMed

    Beneroso, D; Bermúdez, J M; Montes-Morán, M A; Arenillas, A; Menéndez, J A

    2016-10-01

    Herein a new process is proposed to produce a syngas-rich gas fraction (>80vol% H2+CO) from biowaste based on microwave heating within two differentiated steps in order to avoid tars production. The first step consists of the microwave pyrolysis of biowaste induced by a char-based susceptor at 400-800°C; tars, char and syngas-rich gas fractions being produced. The tars are then fed into the second step where a portion of the char from the first step is used as a bed material in a 0.3:1wt% ratio. This bed is heated up by microwaves up to 800°C, allowing thermal cracking of tars and additional syngas (>90vol% H2+CO) being then produced. This new concept arises as an alternative technology to the gasification of biowastes for producing syngas with no need for catalysts or gasifying reagents to minimise tars production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Transcriptional activation of peroxisome proliferator-activated receptor-{gamma} requires activation of both protein kinase A and Akt during adipocyte differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sang-pil; Ha, Jung Min; Yun, Sung Ji

    2010-08-13

    Research highlights: {yields} Elevated cAMP activates both PKA and Epac. {yields} PKA activates CREB transcriptional factor and Epac activates PI3K/Akt pathway via Rap1. {yields} Akt modulates PPAR-{gamma} transcriptional activity in concert with CREB. -- Abstract: Peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}) is required for the conversion of pre-adipocytes. However, the mechanism underlying activation of PPAR-{gamma} is unclear. Here we showed that cAMP-induced activation of protein kinase A (PKA) and Akt is essential for the transcriptional activation of PPAR-{gamma}. Hormonal induction of adipogenesis was blocked by a phosphatidylinositol 3-kinase (PI3K) inhibitor (LY294002), by a protein kinase A (PKA) inhibitor (H89), and by amore » Rap1 inhibitor (GGTI-298). Transcriptional activity of PPAR-{gamma} was markedly enhanced by 3-isobutyl-1-methylxanthine (IBMX), but not insulin and dexamethasone. In addition, IBMX-induced PPAR-{gamma} transcriptional activity was blocked by PI3K/Akt, PKA, or Rap1 inhibitors. 8-(4-Chlorophenylthio)-2'-O-methyl-cAMP (8-pCPT-2'-O-Me-cAMP) which is a specific agonist for exchanger protein directly activated by cAMP (Epac) significantly induced the activation of Akt. Furthermore, knock-down of Akt1 markedly attenuated PPAR-{gamma} transcriptional activity. These results indicate that both PKA and Akt signaling pathways are required for transcriptional activation of PPAR-{gamma}, suggesting post-translational activation of PPAR-{gamma} might be critical step for adipogenic gene expression.« less

  1. Expression, Purification, Crystallization And Preliminary X-Ray Studies of a Prolyl-4-Hydroxylase Protein From Bacillus Anthracis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, M.A.; Scott, E.E.; Limburg, J.

    2009-05-26

    Collagen prolyl-4-hydroxylase (C-P4H) catalyzes the hydroxylation of specific proline residues in procollagen, which is an essential step in collagen biosynthesis. A new form of P4H from Bacillus anthracis (anthrax-P4H) that shares many characteristics with the type I C-P4H from human has recently been characterized. The structure of anthrax-P4H could provide important insight into the chemistry of C-P4Hs and into the function of this unique homodimeric P4H. X-ray diffraction data of selenomethionine-labeled anthrax-P4H recombinantly expressed in Escherichia coli have been collected to 1.4 {angstrom} resolution.

  2. Utilization of crude karanj (Pongamia pinnata) oil as a potential feedstock for the synthesis of fatty acid methyl esters.

    PubMed

    Khayoon, M S; Olutoye, M A; Hameed, B H

    2012-05-01

    Methyl esters were synthesized from crude karanj oil (CKO) by single step esterification with methanol using sulfuric acid (H(2)SO(4)) and phosphoric acid (H(3)PO(4)) as catalysts in a homogeneous batch process. H(3)PO(4) was less active than H(2)SO(4) during the process as it presented very low ester yields (<20%) for the various molar ratios of fatty acid to alcohol studied. With H(2)SO(4) as catalyst, the yield was as high as 89.8% at 65°C after 5h. The fatty acids profile of the oil (palmitic acid: ≈ 12%; stearic acid: ≈ 8%; oleic acid: ≈ 52% and linolenic acid of 17%) and the different reactivities of the acids were responsible for the observed differences in conversion to methyl esters. The findings attained with this study might contribute to the economic utilization of a non-edible feedstock. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Physician step prescription and monitoring to improve ARTERial health (SMARTER): A randomized controlled trial in patients with type 2 diabetes and hypertension.

    PubMed

    Dasgupta, Kaberi; Rosenberg, Ellen; Joseph, Lawrence; Cooke, Alexandra B; Trudeau, Luc; Bacon, Simon L; Chan, Deborah; Sherman, Mark; Rabasa-Lhoret, Rémi; Daskalopoulou, Stella S

    2017-05-01

    There are few proven strategies to enhance physical activity and cardiometabolic profiles in patients with type 2 diabetes and hypertension. We examined the effects of physician-delivered step count prescriptions and monitoring. Participants randomized to the active arm were provided with pedometers and they recorded step counts. Over a 1-year period, their physicians reviewed their records and provided a written step count prescription at each clinic visit. The overall goal was a 3000 steps/day increase over 1 year (individualized rate of increase). Control arm participants were advised to engage in physical activity 30 to 60 min/day. We evaluated effects on step counts, carotid femoral pulse wave velocity (cfPWV, primary) and other cardiometabolic indicators including haemoglobin A1c in diabetes (henceforth abbreviated as A1c) and Homeostasis Model Assessment-Insulin Resistance (HOMA-IR) in participants not receiving insulin therapy. A total of 79% completed final evaluations (275/347; mean age, 60 years; SD, 11). Over 66% of participants had type 2 diabetes and over 90% had hypertension. There was a net 20% increase in steps/day in active vs control arm participants (1190; 95% CI, 550-1840). Changes in cfPWV were inconclusive; active vs control arm participants with type 2 diabetes experienced a decrease in A1c (-0.38%; 95% CI, -0.69 to -0.06). HOMA-IR also declined in the active arm vs the control arm (ie, assessed in all participants not treated with insulin; -0.96; 95% CI, -1.72 to -0.21). A simple physician-delivered step count prescription strategy incorporated into routine clinical practice led to a net 20% increase in step counts; however, this was below the 3000 steps/day targeted increment. While conclusive effects on cfPWV were not observed, there were improvements in both A1c and insulin sensitivity. Future studies will evaluate an amplified intervention to increase impact. © 2017 The Authors. Diabetes, Obesity and Metabolism published by John Wiley & Sons Ltd.

  4. Oxidative C-H/C-H Cross-Coupling Reactions between N-Acylanilines and Benzamides Enabled by a Cp*-Free RhCl3/TFA Catalytic System.

    PubMed

    You, Jingsong; Shi, Yang; Zhang, Luoqiang; Lan, Jingbo; Zhang, Min; Zhou, Fulin; Wei, Wenlong

    2018-06-03

    Using the dual chelation-assisted strategy, a completely regiocontrolled oxidative C-H/C-H cross-coupling reaction between an N-acylaniline and a benzamide has been accomplished for the first time, which enables a step-economical and highly efficient pathway to 2-amino-2'-carboxybiaryl scaffolds from readily available substrates. A Cp*-free RhCl3/TFA catalytic system has been developed to replace the generally used [Cp*RhCl2]2/AgSbF6 (Cp* = pentamethyl cyclopentadienyl) in oxidative C-H/C-H cross-coupling reactions between two (hetero)arenes. The RhCl3/TFA system avoids the use of expensive Cp* ligand and AgSbF6. As an illustrative example, the protocol developed herein greatly streamlines access to naturally occurring benzo[c]phenanthridine alkaloid oxynitidine in an excellent overall yield. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Methane Conversion to Ethylene and Aromatics on PtSn Catalysts

    DOE PAGES

    Gerceker, Duygu; Motagamwala, Ali Hussain; Rivera-Dones, Keishla R.; ...

    2017-02-03

    Pt and PtSn catalysts supported on SiO 2 and H-ZSM-5 were studied for methane conversion under nonoxidative conditions. Addition of Sn to Pt/SiO 2 increased the turnover frequency for production of ethylene by a factor of 3, and pretreatment of the catalyst at 1123 K reduced the extent of coke formation. Pt and PtSn catalysts supported on H-ZSM-5 zeolite were prepared to improve the activity and selectivity to non-coke products. Ethylene formation rates were 20 times faster over a PtSn(1:3)/H-ZSM-5 catalyst with SiO 2:Al 2O 3 = 280 in comparison to those over PtSn(3:1)/SiO 2. H-ZSM-5-supported catalysts were also activemore » for the formation of aromatics, and the rates of benzene and naphthalene formation were increased by using more acidic H-ZSM-5 supports. These catalysts operate through a bifunctional mechanism, in which ethylene is first produced on highly dispersed PtSn nanoparticles and then is subsequently converted to benzene and naphthalene on Brønsted acid sites within the zeolite support. The most active and stable PtSn catalyst forms carbon products at a rate, 2.5 mmol of C/((mol of Pt) s), which is comparable to that of state-of-the-art Mo/H-ZSM-5 catalysts with same metal loading operated under similar conditions (1.8 mmol of C/((mol of Mo) s)). Scanning transmission electron microscopy measurements suggest the presence of smaller Pt nanoparticles on H-ZSM-5-supported catalysts, in comparison to SiO 2-supported catalysts, as a possible source of their high activity. As a result, a microkinetic model of methane conversion on Pt and PtSn surfaces, built using results from density functional theory calculations, predicts higher coupling rates on bimetallic and stepped surfaces, supporting the experimental observations that relate the high catalytic activity to small PtSn particles.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerceker, Duygu; Motagamwala, Ali Hussain; Rivera-Dones, Keishla R.

    Pt and PtSn catalysts supported on SiO 2 and H-ZSM-5 were studied for methane conversion under nonoxidative conditions. Addition of Sn to Pt/SiO 2 increased the turnover frequency for production of ethylene by a factor of 3, and pretreatment of the catalyst at 1123 K reduced the extent of coke formation. Pt and PtSn catalysts supported on H-ZSM-5 zeolite were prepared to improve the activity and selectivity to non-coke products. Ethylene formation rates were 20 times faster over a PtSn(1:3)/H-ZSM-5 catalyst with SiO 2:Al 2O 3 = 280 in comparison to those over PtSn(3:1)/SiO 2. H-ZSM-5-supported catalysts were also activemore » for the formation of aromatics, and the rates of benzene and naphthalene formation were increased by using more acidic H-ZSM-5 supports. These catalysts operate through a bifunctional mechanism, in which ethylene is first produced on highly dispersed PtSn nanoparticles and then is subsequently converted to benzene and naphthalene on Brønsted acid sites within the zeolite support. The most active and stable PtSn catalyst forms carbon products at a rate, 2.5 mmol of C/((mol of Pt) s), which is comparable to that of state-of-the-art Mo/H-ZSM-5 catalysts with same metal loading operated under similar conditions (1.8 mmol of C/((mol of Mo) s)). Scanning transmission electron microscopy measurements suggest the presence of smaller Pt nanoparticles on H-ZSM-5-supported catalysts, in comparison to SiO 2-supported catalysts, as a possible source of their high activity. As a result, a microkinetic model of methane conversion on Pt and PtSn surfaces, built using results from density functional theory calculations, predicts higher coupling rates on bimetallic and stepped surfaces, supporting the experimental observations that relate the high catalytic activity to small PtSn particles.« less

  7. Compound 13, an α1-selective small molecule activator of AMPK, inhibits Helicobacter pylori-induced oxidative stresses and gastric epithelial cell apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Hangyong; Zhu, Huanghuang; Lin, Zhou

    Half of the world's population experiences Helicobacter pylori (H. pylori) infection, which is a main cause of gastritis, duodenal and gastric ulcer, and gastric cancers. In the current study, we investigated the potential role of compound 13 (C13), a novel α1-selective small molecule activator of AMP-activated protein kinase (AMPK), against H. pylori-induced cytotoxicity in cultured gastric epithelial cells (GECs). We found that C13 induced significant AMPK activation, evidenced by phosphorylation of AMPKα1 and ACC (acetyl-CoA carboxylase), in both primary and transformed GECs. Treatment of C13 inhibited H. pylori-induced GEC apoptosis. AMPK activation was required for C13-mediated GEC protection. Inhibition ofmore » AMPK kinase activity by the AMPK inhibitor Compound C, or silencing AMPKα1 expression by targeted-shRNAs, alleviated C13-induced GEC protective activities against H. pylori. Significantly, C13 inhibited H. pylori-induced reactive oxygen species (ROS) production in GECs. C13 induced AMPK-dependent expression of anti-oxidant gene heme oxygenase (HO-1) in GECs. Zinc protoporphyrin (ZnPP) and tin protoporphyrin (SnPP), two HO-1 inhibitors, not only suppressed C13-mediated ROS scavenging activity, but also alleviated its activity in GECs against H. pylori. Together, these results indicate that C13 inhibits H. pylori-induced ROS production and GEC apoptosis through activating AMPK–HO–1 signaling. - Highlights: • We synthesized compound 13 (C13), a α1-selective small molecule AMPK activator. • C13-induced AMPK activation requires α1 subunit in gastric epithelial cells (GECs). • C13 enhances Helicobacter pylori-induced pro-survival AMPK activation to inhibit GEC apoptosis. • C13 inhibits H. pylori-induced reactive oxygen species (ROS) production in GECs. • AMPK-heme oxygenase (HO-1) activation is required for C13-mediated anti-oxidant activity.« less

  8. Quantitative assessment of hTERT mRNA expression in dysplastic nodules of HBV-related hepatocarcinogenesis.

    PubMed

    Oh, Bong-Kyeong; Kim, Young-Joo; Park, Young Nyun; Choi, Jinsub; Kim, Kyung Sik; Park, Chanil

    2006-04-01

    Telomerase reverse transcriptase (hTERT) is the rate-limiting determinant of telomerase, which is critical for carcinogenesis. Dysplastic nodules (DNs) appear to be preneoplastic lesions of hepatocellular carcinomas (HCCs). In this study, in order to characterize DNs, hTERT mRNA, hTERT gene dosage, and mRNA for c-myc, a transcriptional activator of hTERT were studied in human multi-step hepatocarcinogenesis. Fifty four hepatic nodules including 5 large regenerative nodules, 14 low-grade DNs, 7 high-grade DNs, 11 DNs with HCC foci and 17 HCCs, 23 livers with chronic hepatitis/cirrhosis, and 6 normal livers were examined. Transcript levels were measured by real-time quantitative RT-PCR and gene dosages by real-time PCR and Southern blotting. The hTERT mRNA levels increased with the progression of hepatocarcinogenesis, and a significant induction in the transition between low- and high-grade DNs was seen. Most high-grade DNs strongly expressed hTERT mRNA at levels similar to those of HCCs. Twenty-one percent of low-grade DNs had high levels of hTERT mRNA, up to those of high-grade DNs and there was no difference in the pathological features between low-grade DNs with and without increased hTERT mRNA levels. No correlation was found between hTERT mRNA levels, hTERT gene dosage, and c-myc mRNA levels. These results suggest that the induction of hTERT mRNA is an important early event and that its measurement by real-time quantitative RT-PCR is a useful tool to detect premalignant/malignant tendencies in hepatic nodules. However, hTERT gene dosage and c-myc expression are not the main mechanisms regulating hTERT expression in hepatocarcinogenesis.

  9. Heterologous, Expression, and Characterization of Thermostable Glucoamylase Derived from Aspergillus flavus NSH9 in Pichia pastoris

    PubMed Central

    Karim, Kazi Muhammad Rezaul; Hossain, Md. Anowar; Sing, Ngieng Ngui; Mohd Sinang, Fazia; Hussain, Mohd Hasnain Md.; Roslan, Hairul Azman

    2016-01-01

    A novel thermostable glucoamylase cDNA without starch binding domain (SBD) of Aspergillus flavus NSH9 was successfully identified, isolated, and overexpressed in Pichia pastoris GS115. The complete open reading frame of glucoamylase from Aspergillus flavus NSH9 was identified by employing PCR that encodes 493 amino acids lacking in the SBD. The first 17 amino acids were presumed to be a signal peptide. The cDNA was cloned into Pichia pastoris and the highest expression of recombinant glucoamylase (rGA) was observed after 8 days of incubation period with 1% methanol. The molecular weight of the purified rGA was about 78 kDa and exhibited optimum catalytic activity at pH 5.0 and temperature of 70°C. The enzyme was stable at higher temperature with 50% of residual activity observed after 20 min at 90°C and 100°C. Low concentration of metal (Mg++, Fe++, Zn++, Cu++, and Pb++) had positive effect on rGA activity. This rGA has the potential for use and application in the saccharification steps, due to its thermostability, in the starch processing industries. PMID:27504454

  10. Two-Step Sintering Behavior of Sol-Gel Derived Dense and Submicron-Grained YIG Ceramics

    NASA Astrophysics Data System (ADS)

    Chen, Ruoyuan; Zhou, Jijun; Zheng, Liang; Zheng, Hui; Zheng, Peng; Ying, Zhihua; Deng, Jiangxia

    2018-04-01

    In this work, dense and submicron-grain yttrium iron garnet (YIG, Y3Fe5O12) ceramics were fabricated by a two-step sintering (TSS) method using nano-size YIG powder prepared by a citrate sol-gel method. The densification, microstructure, magnetic properties and ferromagnetic resonance (FMR) linewidth of the ceramics were investigated. The sample prepared at 1300°C in T 1, 1225°C in T 2 and 18 h holding time has a density higher than 98% of the theoretical value and exhibits a homogeneous microstructure with fine grain size (0.975 μm). In addition, the saturation magnetization ( M S) of this sample reaches 27.18 emu/g. High density and small grain size can also achieve small FMR linewidth. Consequently, these results show that the sol-gel process combined with the TSS process can effectively suppress grain-boundary migration while maintaining active grain-boundary diffusion to obtain dense and fine-grained YIG ceramics with appropriate magnetic properties.

  11. One-step synthesis, wettability and foaming properties of high-performance non-ionic hydro-fluorocarbon hybrid surfactants

    NASA Astrophysics Data System (ADS)

    Peng, Ying-ying; Lu, Feng; Tong, Qing-Xiao

    2018-03-01

    In this work, a series of non-ionic hydro-fluorocarbon hybrid surfactants (C9F19CONH(CH2)3N(CmH2m+1)2, abbreviated as C9F19AM (m = 1), C9F19AE (m = 2) and C9F19AB (m = 4) were easily synthesized by one-step reaction and characterized by 1HNMR, 19FNMR and MS spectroscopy. Unlike conventional non-ionic surfactants (most hydrophilic units consisted of hydroxy or ether groups), their hydrophilic groups were composed of amide group, an eco-friendly unit. The surface activity, wettability, thermal stability and foaming performance were investigated. The results showed that the C9F19AE (C9F19CONH(CH2)3N[CH2CH3]2) had superior surface and interface activities, which could reduce the surface tension of water down to 15.37 mN/m and the interfacial tension (cyclohexane/water/surfactants) to 5.8 mN/m with a low cmc (critical micelle concentration) of 0.12 mmol/L. Through the calculation of Amin (the minimum area occupied per-surfactant molecule), we speculated this higher surface activity was related to the compatibility between hydrocarbon and fluorocarbon chains. When used as wetting and foaming agents, the C9F19AE also outperformed great advantages over conventional non-ionic fluorocarbon and hydrocarbon surfactants, which could decrease the contact angle of water on PTFE plate from 107.7° to 3.6°, and increase the foam integrated value F to 536 500 ± 3066.5 mL s. Moreover, the decomposition temperature (Td) of C9F19AE could reach up to 173 °C. This work demonstrates a valuable strategy to develop a kind of high-efficiency foaming agent via facile synthesis.

  12. Doping effects of Yb 3+ on the crystal structures, nanoparticle properties and electrical behaviors of ZrO 2 derived from a facile urea-based hydrothermal route

    NASA Astrophysics Data System (ADS)

    Zhang, Ya-Wen; Sun, Xiao; Xu, Gang; Yan, Chun-Hua

    2004-06-01

    Weakly-agglomerated nanocrystalline (ZrO 2) 1- x(Yb 2O 3) x ( x=0.02-0.2) powders with high surface area (109-151 m 2 g -1) were synthesized by a two-step hydrothermal process in the presence of urea: a stock solution of metal nitrates and urea was heated at 80 °C for 24 h and then at 180 °C for 48 h. For x=0.04-0.2, the as-derived powders were an assembly of uniform nanoparticles with well-defined edges in the size between 6.1-8.4 nm. Before and after calcination at 800 °C, the lattice parameters, microstrain and surface area of the (ZrO 2) 1- x(Yb 2O 3) x samples tended to increase with Yb 3+ concentration; while, the average crystallite size decreased correspondingly. In the Arrhenius plots over the measurement temperature range of 400-800 °C, the bulk ionic conductivity of the compacts sintered at 1400 °C for 24 h showed a maximum value at the composition of x=0.08 in cubic structure, with an activation energy of 0.89 eV. At 800 °C, σb=0.049 S cm -1 for x=0.08.

  13. Time spent in sedentary posture is associated with waist circumference and cardiovascular risk.

    PubMed

    Tigbe, W W; Granat, M H; Sattar, N; Lean, M E J

    2017-05-01

    The relationship between metabolic risk and time spent sitting, standing and stepping has not been well established. The present study aimed to determine associations of objectively measured time spent siting, standing and stepping, with coronary heart disease (CHD) risk. A cross-sectional study of healthy non-smoking Glasgow postal workers, n=111 (55 office workers, 5 women, and 56 walking/delivery workers, 10 women), who wore activPAL physical activity monitors for 7 days. Cardiovascular risks were assessed by metabolic syndrome categorisation and 10-year PROCAM (prospective cardiovascular Munster) risk. Mean (s.d.) age was 40 (8) years, body mass index 26.9 (3.9) kg m -2 and waist circumference 95.4 (11.9) cm. Mean (s.d.) high-density lipoprotein cholesterol (HDL cholesterol) 1.33 (0.31), low-density lipoprotein cholesterol 3.11 (0.87), triglycerides 1.23 (0.64) mmol l -1 and 10-year PROCAM risk 1.8 (1.7)%. The participants spent mean (s.d.) 9.1 (1.8) h per day sedentary, 7.6 (1.2) h per day sleeping, 3.9 (1.1) h per day standing and 3.3 (0.9) h per day stepping, accumulating 14 708 (4984) steps per day in 61 (25) sit-to-stand transitions per day. In univariate regressions-adjusting for age, sex, family history of CHD, shift worked, job type and socioeconomic status-waist circumference (P=0.005), fasting triglycerides (P=0.002), HDL cholesterol (P=0.001) and PROCAM risk (P=0.047) were detrimentally associated with sedentary time. These associations remained significant after further adjustment for sleep, standing and stepping in stepwise regression models. However, after further adjustment for waist circumference, the associations were not significant. Compared with those without the metabolic syndrome, participants with the metabolic syndrome were significantly less active-fewer steps, shorter stepping duration and longer time sitting. Those with no metabolic syndrome features walked >15 000 steps per day or spent >7 h per day upright. Longer time spent in sedentary posture is significantly associated with higher CHD risk and larger waist circumference.

  14. High temperature pyrolysis of vinylacetylene

    NASA Astrophysics Data System (ADS)

    Braun-Unkhoff, M.; Kurz, A.; Frank, P.

    1990-07-01

    The thermal decomposition of vinylacetylene has been studied behind reflected shock waves in the temperature range 1350-1870 K at total pressures between 1.7 and 7.4 bar. Initial concentrations of the hydrogen in argon ranged between 1 to 300 ppm. The following species were measured: H-atoms by ARAS, C2H2, C4H2 and C4H4 by molecular vuv-absorption. The combination of very low initial concentrations with a sensitive detection technique allowed to perform the experiments under conditions where only very few elementary reaction steps determine the progress of reaction. It was found that C4H4 decomposes simultaneously into different product channels: C4H4→C2H2+C2H2 k1a=3.4ṡ1013 exp(-38820/T) s-1 C4H4+Ar→C4H3+H+Ar k1b=1.1ṡ1020exp(-49990/T) cm3 mol-1 s-1 C4H4→C4H2+H2 k1c=1.3ṡ1015exp(-47670/T) s-1. From variation of the total pressure it has been deduced that reaction pathways R1a and R1c proceed with rates not far from the high-pressure limiting values and that reaction R1b proceeds close to the low-pressure limiting rate constant values.

  15. p-TSA-promoted syntheses of 5H-benzo[h] thiazolo[2,3-b]quinazoline and indeno[1,2-d] thiazolo[3,2-a]pyrimidine analogs: molecular modeling and in vitro antitumor activity against hepatocellular carcinoma.

    PubMed

    Keshari, Amit K; Singh, Ashok K; Raj, Vinit; Rai, Amit; Trivedi, Prakruti; Ghosh, Balaram; Kumar, Umesh; Rawat, Atul; Kumar, Dinesh; Saha, Sudipta

    2017-01-01

    In our efforts to address the rising incidence of hepatocellular carcinoma (HCC), we have made a commitment to the synthesis of novel molecules to combat Hep-G2 cells. A facile and highly efficient one-pot, multicomponent reaction has been successfully devised utilizing a p -toluenesulfonic acid ( p -TSA)-catalyzed domino Knoevenagel/Michael/intramolecular cyclization approach for the synthesis of novel 5H-benzo[h]thiazolo[2,3-b]quinazoline and indeno[1,2-d] thiazolo[3,2-a]pyrimidine analogs bearing a bridgehead nitrogen atom. This domino protocol constructed one new ring by the concomitant formation of multiple bonds (C-C, C-N, and C=N) involving multiple steps without the use of any metal catalysts in one-pot, with all reactants effi-ciently exploited. All the newly synthesized compounds were authenticated by means of Fourier transform infrared spectroscopy, liquid chromatography-mass spectrometry, proton nuclear magnetic resonance spectroscopy, and carbon-13 nuclear magnetic resonance spectroscopy, together with elemental analysis, and their antitumor activity was evaluated in vitro on a Hep-G2 human cancer cell line by sulforhodamine B assay. Computational molecular modeling studies were carried out on cancer-related targets, including interleukin-2, interleukin-6, Caspase-3, and Caspase-8. Two compounds (4A and 6A) showed growth inhibitory activity comparable to the positive control Adriamycin, with growth inhibition of 50% <10 μg/mL. The results of the comprehensive structure-activity relationship study confirmed the assumption that two or more electronegative groups on the phenyl ring attached to the thiazolo[2,3-b]quinazoline system showed the optimum effect. The in silico simulations suggested crucial hydrogen bond and π-π stacking interactions, with a good ADMET (absorption, distribution, metabolism, excretion, and toxicity) profile and molecular dynamics, in order to explore the molecular targets of HCC which were in complete agreement with the in vitro findings. Considering their significant anticancer activity, 4A and 6A are potential drug candidates for the management of HCC.

  16. Ruthenium-Catalyzed Cascade C—H Functionalization of Phenylacetophenones**

    PubMed Central

    Mehta, Vaibhav P; García-López, José-Antonio; Greaney, Michael F

    2014-01-01

    Three orthogonal cascade C—H functionalization processes are described, based on ruthenium-catalyzed C—H alkenylation. 1-Indanones, indeno indenes, and indeno furanones were accessed through cascade pathways by using arylacetophenones as substrates under conditions of catalytic [{Ru(p-cymene)Cl2}2] and stoichiometric Cu(OAc)2. Each transformation uses C—H functionalization methods to form C—C bonds sequentially, with the indeno furanone synthesis featuring a C—O bond formation as the terminating step. This work demonstrates the power of ruthenium-catalyzed alkenylation as a platform reaction to develop more complex transformations, with multiple C—H functionalization steps taking place in a single operation to access novel carbocyclic structures. PMID:24453063

  17. Physical activity monitoring in COPD: compliance and associations with clinical characteristics in a multicenter study.

    PubMed

    Waschki, Benjamin; Spruit, Martijn A; Watz, Henrik; Albert, Paul S; Shrikrishna, Dinesh; Groenen, Miriam; Smith, Cayley; Man, William D-C; Tal-Singer, Ruth; Edwards, Lisa D; Calverley, Peter M A; Magnussen, Helgo; Polkey, Michael I; Wouters, Emiel F M

    2012-04-01

    Little is known about COPD patients' compliance with physical activity monitoring and how activity relates to disease characteristics in a multi-center setting. In a prospective study at three Northern European sites physical activity and clinical disease characteristics were measured in 134 COPD patients (GOLD-stage II-IV; BODE index 0-9) and 46 controls. Wearing time, steps per day, and the physical activity level (PAL) were measured by a multisensory armband over a period of 6 consecutive days (in total, 144 h). A valid measurement period was defined as ≥22 h wearing time a day on at least 5 days. The median wearing time was 142 h:17 min (99%), 141 h:1 min (98%), and 142 h:24 min (99%), respectively in the three centres. A valid measurement period was reached in 94%, 97%, and 94% of the patients and did not differ across sites (P = 0.53). The amount of physical activity did not differ across sites (mean steps per day, 4725 ± 3212, P = 0.58; mean PAL, 1.45 ± 0.20, P = 0.48). Multivariate linear regression analyses revealed significant associations of FEV1, 6-min walk distance, quadriceps strength, fibrinogen, health status, and dyspnoea with both steps per day and PAL. Previously unrecognized correlates of activity were grade of fatigue, degree of emphysema, and exacerbation rate. The excellent compliance with wearing a physical activity monitor irrespective of study site and consistent associations with relevant disease characteristics support the use of activity monitoring as a valid outcome in multi-center studies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Time trends in leisure time physical activity and physical fitness in the elderly: five-year follow-up of the Spanish National Health Survey (2006-2011).

    PubMed

    Casado-Pérez, Carmen; Hernández-Barrera, Valentín; Jiménez-García, Rodrigo; Fernández-de-las-Peñas, Cesar; Carrasco-Garrido, Pilar; López-de-Andrés, Ana; Jimenez-Trujillo, Ma Isabel; Palacios-Ceña, Domingo

    2015-04-01

    To estimate the trends in the practice of leisure time physical activity, walking up 10 steps, and walking for 1h, during the years 2006-2011, in elderly Spanish people. Observational study, retrospective analysis of Spanish National Health Surveys. We analysed data collected from the Spanish National Health Surveys conducted in 2006 (n=30,072) and 2011 (n=21,007), through self-reported information. The number of subjects aged ≥65 years included in the current study was n=5756 in 2006 (19.14%) and n=4617 in 2011 (21.97%). We included responses from adults aged 65 years and older. The main variables included leisure-time physical activity, walking up 10 steps, and walking for 1h. We analysed socio-demographic characteristics, individuals' self-rated health status, lifestyle habits, co-morbid conditions and disability using multivariable logistic regression models. The total number of subjects was 10,373 (6076 women, 4297 men). The probability of self-reported capacity was significantly higher in 2006 than in 2011 for leisure-time physical activity, walking up 10 steps, and walking for 1h for both sexes (women: OR 2.20, 95%IC 1.91-5.55; OR 2.50, 95%IC 1.99-3.14; OR 1.04, 95%IC 1.01-1.07; men: OR 2.20, 95%IC 1.91-2.55; OR 2.01, 95%IC 1.40-2.89; OR 1.05, 95%IC 1.0-1.1) respectively. Both sexes were associated with a significantly lower probability of performing leisure-time physical activity, walking up 10 steps, and walking for 1h. Additionally, those over 80 years of age, on average, showed a poor or very poor perception of their health and presented with some type of disability. A decrease in the proportion of respondents who self-reported undertaking leisure-time physical activity, walking up 10 steps, and walking for 1h was observed in the Spanish population of over 65 years between 2006 and 2011. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Structural Model for the Flip-Flop Action in Thiamin Pyrophosphate-Dependent Human Pyruvate Dehydrogenase

    NASA Technical Reports Server (NTRS)

    Ciszak, Ewa; Dominiak, Paulina

    2003-01-01

    The derivative of vitamin B1 thiamin pyrophosphate (TPP) is a cofactor of enzymes performing catalysis in pathways of energy production, including (i) decarboxylation of alpha-keto acids followed by (ii) transketolation. These enzymes have shown a common mechanism of TPP activation by imposing an active V-conformation of this coenzyme that brings the N4 atom of the aminopyrimidine ring to the distance required for the intramolecular C-H N hydrogen-bonding with the C2- atom of the thiazolium ring. The reactive C2 atom of TPP is the nucleophile that attacks the carbonyl carbon of different substrates used by the TPP-dependent enzymes. The structure of the heterotetrameric human pyruvate dehydrogenase (Elp) recently determined in our laboratory (1) revealed the association pattern of the subunits and the specifics of two chemically equivalent cofactor binding sites. Dynamic nonequivalence of these two cofactor sites directs the flip-flop action of this enzyme, depending upon which two active sites effect each other (2). The crystal structure derived from the holo-form of Elp provided the basis for the model of the flip-flop action of Elp in which different steps of the catalytic reaction are performed in each of the two cofactor sites at any given moment, where these steps are governed by the concerted shuttle-like motion of the subunits. It is further proposed that balancing a hydrogen-bond network and related cofactor geometry determine the continuity of catalytic events.

  20. Thiadiazole derivatives as New Class of β-glucuronidase inhibitors.

    PubMed

    Salar, Uzma; Taha, Muhammad; Ismail, Nor Hadiani; Khan, Khalid Mohammed; Imran, Syahrul; Perveen, Shahnaz; Wadood, Abdul; Riaz, Muhammad

    2016-04-15

    Thiadiazole derivatives 1-24 were synthesized via a single step reaction and screened for in vitro β-glucuronidase inhibitory activity. All the synthetic compounds displayed good inhibitory activity in the range of IC50=2.16 ± 0.01-58.06 ± 1.60 μM as compare to standard d-saccharic acid 1,4-lactone (IC50=48.4 ± 1.25 μM). Molecular docking study was conducted in order to establish the structure-activity relationship (SAR) which demonstrated that thiadiazole as well as both aryl moieties (aryl and N-aryl) involved to exhibit the inhibitory potential. All the synthetic compounds were characterized by spectroscopic techniques (1)H, (13)C NMR, and EIMS. Copyright © 2016 Elsevier Ltd. All rights reserved.

Top