Sample records for c-jun gene expression

  1. STRAP regulates c-Jun ubiquitin-mediated proteolysis and cellular proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiner, Jennifer; Ye, Fei; Kashikar, Nilesh D.

    2011-04-08

    Highlights: {yields} STRAP is specifically correlated with c-Jun expression and activation in fibroblasts. {yields} STRAP inhibits c-Jun ubiquitylation in vivo and prolongs the half-life of c-Jun. {yields} STRAP expression increases expression of the AP-1 target gene, cyclin D1, and promotes cell autonomous growth. -- Abstract: STRAP is a ubiquitous WD40 protein that has been implicated in tumorigenesis. Previous studies suggest that STRAP imparts oncogenic characteristics to cells by promoting ERK and pRb phosphorylation. While these findings suggest that STRAP can activate mitogenic signaling pathways, the effects of STRAP on other MAPK pathways have not been investigated. Herein, we report thatmore » STRAP regulates the expression of the c-Jun proto-oncogene in mouse embryonic fibroblasts. Loss of STRAP expression results in reduced phospho-c-Jun and total c-Jun but does not significantly reduce the level of two other early response genes, c-Myc and c-Fos. STRAP knockout also decreases expression of the AP-1 target gene, cyclin D1, which is accompanied by a reduction in cell growth. No significant differences in JNK activity or basal c-Jun mRNA levels were observed between wild type and STRAP null fibroblasts. However, proteasomal inhibition markedly increases c-Jun expression in STRAP knockout MEFs and STRAP over-expression decreases the ubiquitylation of c-Jun in 293T cells. Loss of STRAP accelerates c-Jun turnover in fibroblasts and ectopic over-expression of STRAP in STRAP null fibroblasts increases c-Jun expression. Collectively, our findings indicate that STRAP regulates c-Jun stability by decreasing the ubiquitylation and proteosomal degradation of c-Jun.« less

  2. c-jun gene expression in human cells exposed to either ionizing radiation or hydrogen peroxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collart, F.R.; Horio, M.; Huberman, E.

    1993-06-01

    We investigated the role of reactive oxygen intermediates (ROIs) and protein kinase C (PKC) in radiation- and H{sub 2}O{sub 2}-evoked c-jun gene expression in human HL-205 cells. This induction of c-jun gene expression could be prevented by pretreatment of the cells with Nacetylcysteine (an antioxidant) or H7 (a PKC and PKA inhibitor) but not by HA1004, a PKA inhibitor, suggesting a role for ROls and PKC in mediating c-jun gene expression. We also investigated potential differences in c-jun gene expression in a panel of normal and tumor cells untreated or treated with ionizing radiation or H{sub 2}O{sub 2}. Treatment withmore » radiation or H{sub 2}O{sub 2} produced a varied response, from some reduction to an increase of more than an order of magnitude in the steady-state level of c-jun mRNA. These data indicate that although induction of c-jun may be a common response to ionizing radiation and H{sub 2}O{sub 2}, this response was reduced or absent in some cell types.« less

  3. Parathyroid hormone induces c-fos and c-jun messenger RNA in rat osteoblastic cells

    NASA Technical Reports Server (NTRS)

    Clohisy, J. C.; Scott, D. K.; Brakenhoff, K. D.; Quinn, C. O.; Partridge, N. C.

    1992-01-01

    PTH is a potent regulator of osteoblast gene expression, yet the nuclear events that mediate PTH action are poorly understood. We were interested in identifying immediate early genes which may regulate PTH-altered gene expression in the osteoblast. Therefore, we examined the effects of PTH on c-fos and c-jun gene expression in a rat osteoblastic cell line (UMR 106-01). Under control conditions, c-fos and c-jun mRNAs were present at low basal levels. After PTH treatment, c-fos mRNA abundance dramatically increased, with a maximal and transient response at 30 min. PTH also stimulated an increase in c-jun mRNA, but in a biphasic manner, with maximal levels at 30 min and 2 h. These responses were dose dependent, not altered by cotreatment with the protein synthesis inhibitor cycloheximide, and preceded PTH-induced expression of matrix metallo-proteinase-1 mRNA. Nuclear run-on assays demonstrated an increased rate of c-fos and c-jun transcription after PTH exposure. To determine the signal transduction pathways involved, second messenger analogs were tested for their ability to mimic the effects of PTH. 8-Bromo-cAMP and phorbol 12-myristate 13-acetate (PMA) caused increases in the abundance of c-fos and c-jun transcripts. Ionomycin had no effect on the expression of these genes. Pretreatment of the cells with PMA resulted in a decrease in basal c-jun expression, but did not alter the PTH-mediated increase in c-fos, c-jun, or matrix metalloproteinase-1 mRNAs.(ABSTRACT TRUNCATED AT 250 WORDS).

  4. Persistent induction of c-fos and c-jun expression by asbestos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heintz, N.H.; Mossman, B.T.; Janssen, Y.M.

    To investigate the mechanisms of asbestos-induced carcinogenesis, expression of c-fos and c-jun protooncogenes was examined in rat pleural mesothelial cells and hamster tracheal epithelial cells after exposure to crocidolite or chrysotile asbestos. In contrast to phorbol 12-myristate 13-acetate, which induces rapid and transient increases in c-fos and c-jun mRNA, asbestos causes 2- to 5-fold increases in c-fos and c-jun mRNA that persist for at least 24 hr in mesothelial cells. The induction of c-fos and c-jun mRNA by asbestos in mesothelial cells is dose-dependent and is most pronounced with crocidolite, the type of asbestos most pathogenic in the causation ofmore » pleural mesothelioma. Induction of c-jun gene expression by asbestos occurs in tracheal epithelial cells but is not accompanied by a corresponding induction of c-fos gene expression. In both cell types, asbestos induces increases in protein factors that bind specifically to the DNA sites that mediate gene expression by the AP-1 family of transcription factors. The persistent induction of AP-1 transcription factors by asbestos suggests a model of asbestos-induced carcinogenesis involving chronic stimulation of cell proliferation through activation of the early response gene pathway that includes c-jun and/or c-fos. 30 refs., 5 figs.« less

  5. Specific c-Jun target genes in malignant melanoma.

    PubMed

    Schummer, Patrick; Kuphal, Silke; Vardimon, Lily; Bosserhoff, Anja K; Kappelmann, Melanie

    2016-05-03

    A fundamental event in the development and progression of malignant melanoma is the de-regulation of cancer-relevant transcription factors. We recently showed that c-Jun is a main regulator of melanoma progression and, thus, is the most important member of the AP-1 transcription factor family in this disease. Surprisingly, no cancer-related specific c-Jun target genes in melanoma were described in the literature, so far. Therefore, we focused on pre-existing ChIP-Seq data (Encyclopedia of DNA Elements) of 3 different non-melanoma cell lines to screen direct c-Jun target genes. Here, a specific c-Jun antibody to immunoprecipitate the associated promoter DNA was used. Consequently, we identified 44 direct c-Jun targets and a detailed analysis of 6 selected genes confirmed their deregulation in malignant melanoma. The identified genes were differentially regulated comparing 4 melanoma cell lines and normal human melanocytes and we confirmed their c-Jun dependency. Direct interaction between c-Jun and the promoter/enhancer regions of the identified genes was confirmed by us via ChIP experiments. Interestingly, we revealed that the direct regulation of target gene expression via c-Jun can be independent of the existence of the classical AP-1 (5´-TGA(C/G)TCA-3´) consensus sequence allowing for the subsequent down- or up-regulation of the expression of these cancer-relevant genes. In summary, the results of this study indicate that c-Jun plays a crucial role in the development and progression of malignant melanoma via direct regulation of cancer-relevant target genes and that inhibition of direct c-Jun targets through inhibition of c-Jun is a potential novel therapeutic option for treatment of malignant melanoma.

  6. Expression of nuclear proto-oncogenes in isoproterenol-induced cardiac hypertrophy.

    PubMed

    Brand, T; Sharma, H S; Schaper, W

    1993-11-01

    Rat hearts infused with the beta-adrenergic agonist isoproterenol were examined for the expression of several nuclear proto-oncogenes (c-fos, fosB, c-jun, junB, and junD) and the immediate early gene Egr-1. During the first 24 h after the start of infusion, a strong but transient expression of c-fos was observed. Expression of c-jun and junD were not elevated whereas junB was. By using specific antagonists to the alpha- (prazosin) and beta-adrenergic receptor (propranolol), a beta-adrenoceptor-specific blockade of the isoproterenol-mediated nuclear response was demonstrated. In situ hybridization localized c-fos expression to cardiac myocytes. Labelling was distributed focally in the left and right ventricles, and was strong and homogeneous in the atria. In contrast to beta-adrenergic stimulation, alpha-adrenoceptor stimulation with phenylephrine and norepinephrine caused the induction of c-jun and Egr-1 in addition to the proto-oncogenes induced by isoproterenol. Thus distinct programs of early response gene expression were expressed in response to alpha- versus beta-adrenergic stimulation.

  7. Regulation of hemeoxygenase-1 gene expression by Nrf2 and c-Jun in tertiary butylhydroquinone-stimulated rat primary astrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jin-Sun; Kim, Hee-Sun, E-mail: hskimp@ewha.ac.kr

    2014-05-16

    Highlights: • tBHQ increased HO-1 mRNA and protein levels in rat primary astrocytes. • tBHQ enhanced HO-1 gene transcription in an ARE-dependent manner. • tBHQ increased the nuclear translocation and DNA binding of Nrf2 and c-Jun to ARE. • Nrf2 and c-Jun are involved in the differential modulation of HO-1 expression. • Nrf2 and c-Jun regulate HO-1 expression via their coordinated interaction. - Abstract: Hemeoxygenase-1 (HO-1) is a phase II antioxidant enzyme that is primarily involved in detoxification and cytoprotection in a variety of tissues. However, the mechanism underlying HO-1 gene expression remains unclear. In the present study, we investigatedmore » the regulation of HO-1 expression in primary cultured astrocytes by using the natural antioxidant compound tertiary butylhydroquinone (tBHQ). We found that tBHQ increased HO-1 mRNA and protein levels. Promoter analysis revealed that tBHQ enhanced HO-1 gene transcription in an antioxidant response element (ARE)-dependent manner. In addition, tBHQ increased the nuclear translocation and DNA binding of Nrf2 and c-Jun to ARE. Small interfering RNA (siRNA) experiments demonstrated that Nrf2 and c-Jun are involved in the differential modulation of HO-1 expression. Thus, Nrf2 knockdown reduced the basal level of HO-1 expression but did not affect the fold induction by tBHQ. On the other hand, knockdown of c-Jun diminished tBHQ-mediated induction of HO-1 without affecting basal expression. The data suggest that Nrf2 generally modulates the basal expression of HO-1, while c-Jun mediates HO-1 induction in response to tBHQ. The results of co-immunoprecipitation assays demonstrated a physical interaction between Nrf2 and c-Jun in tBHQ-treated astrocytes. The results suggest that Nrf2 and c-Jun regulate HO-1 expression via their coordinated interaction in tBHQ-treated rat primary astrocytes.« less

  8. Overexpression of c-jun, junB, or junD affects cell growth differently.

    PubMed

    Castellazzi, M; Spyrou, G; La Vista, N; Dangy, J P; Piu, F; Yaniv, M; Brun, G

    1991-10-15

    The coding sequences of murine c-jun, junB, or junD, which code for proteins with practically identical dimerization and DNA binding properties, were introduced into a nondefective retroviral vector, and the phenotype of primary avian fibroblasts chronically infected with each of these viruses was studied. Cells expressing c-jun grew in low-serum medium and developed into colonies in agar, two properties characteristic of in vitro transformation. Cells expressing junB grew in agar, with a reduced efficiency as compared to c-jun, but did not grow in low-serum medium. Finally, no effect of junD expression on cell growth was observed. These different phenotypes suggest that these three closely related transcription factors play distinct roles during normal cell growth. Analysis of c-jun deletion mutants and of c-jun/junB and c-jun/junD chimeric genes showed that the N-terminal portion (amino acids 2-168) of the c-Jun protein that is involved in transcriptional activation is required for efficient transformation. On the contrary, cells expressing a truncated mouse c-Jun lacking this N-terminal domain grew slower than normal embryo fibroblasts. The reduced growth rate may be related to the finding that expression of the intact or the truncated mouse c-jun repressed the endogenous avian c-Jun homologue, suggesting that functional c-Jun product is required for normal cell growth.

  9. Overexpression of c-jun, junB, or junD affects cell growth differently.

    PubMed Central

    Castellazzi, M; Spyrou, G; La Vista, N; Dangy, J P; Piu, F; Yaniv, M; Brun, G

    1991-01-01

    The coding sequences of murine c-jun, junB, or junD, which code for proteins with practically identical dimerization and DNA binding properties, were introduced into a nondefective retroviral vector, and the phenotype of primary avian fibroblasts chronically infected with each of these viruses was studied. Cells expressing c-jun grew in low-serum medium and developed into colonies in agar, two properties characteristic of in vitro transformation. Cells expressing junB grew in agar, with a reduced efficiency as compared to c-jun, but did not grow in low-serum medium. Finally, no effect of junD expression on cell growth was observed. These different phenotypes suggest that these three closely related transcription factors play distinct roles during normal cell growth. Analysis of c-jun deletion mutants and of c-jun/junB and c-jun/junD chimeric genes showed that the N-terminal portion (amino acids 2-168) of the c-Jun protein that is involved in transcriptional activation is required for efficient transformation. On the contrary, cells expressing a truncated mouse c-Jun lacking this N-terminal domain grew slower than normal embryo fibroblasts. The reduced growth rate may be related to the finding that expression of the intact or the truncated mouse c-jun repressed the endogenous avian c-Jun homologue, suggesting that functional c-Jun product is required for normal cell growth. Images PMID:1924349

  10. Activations of c-fos/c-jun signaling are involved in the modulation of hypothalamic superoxide dismutase (SOD) and neuropeptide Y (NPY) gene expression in amphetamine-mediated appetite suppression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, Y.-S.; Yang, S.-F.; Chiou, H.-L.

    2006-04-15

    Amphetamine (AMPH) is known as an anorectic agent. The mechanism underlying the anorectic action of AMPH has been attributed to its inhibitory action on hypothalamic neuropeptide Y (NPY), an appetite stimulant in the brain. This study was aimed to examine the molecular mechanisms behind the anorectic effect of AMPH. Results showed that AMPH treatment decreased food intake, which was correlated with changes of NPY mRNA level, but increased c-fos, c-jun and superoxide dismutase (SOD) mRNA levels in hypothalamus. To determine if c-fos or c-jun was involved in the anorectic response of AMPH, infusions of antisense oligonucleotide into the brain weremore » performed at 1 h before daily AMPH treatment in freely moving rats, and the results showed that c-fos or c-jun knockdown could block this anorectic response and restore NPY mRNA level. Moreover, c-fos or c-jun knockdown could partially block SOD mRNA level that might involve in the modulation of NPY gene expression. It was suggested that c-fos/c-jun signaling might involve in the central regulation of AMPH-mediated feeding suppression via the modulation of NPY gene expression.« less

  11. Heterogeneity in c-jun gene expression in normal and malignant cells exposed to either ionizing radiation or hydrogen peroxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collart, F.R.; Horio, M.; Huberman, E.

    1995-05-01

    We investigated the role of reactive oxygen intermediates and protein kinase C in the induction of expression of the c-jun gene in human ML-2 leukemic cells and normal human DET-551 fibroblasts by comparing the effects of exposure to either ionizing radiation or H{sub 2}O{sub 2} in the presence or absence of appropriate inhibitors. In these cell types, the radiation-and H{sub 2}O{sub 2}-mediated increase in c-jun mRNA levels could be prevented by pretreatment of the cells with N-acetylcysteine, and antioxidant, or H7, an inhibitor of protein kinase C and protein kinase A, but not by HA1004, a specific inhibitor of proteinmore » kinase A and G. These results suggest a role for protein kinase C and reactive oxygen intermediates in the induction of c-jun gene expression in both normal and tumor cells. We also investigated potential differences in c-jun gene expression induced by radiation or H{sub 2}O{sub 2} in normal and tumor cells by examining steady-state c-jun mRNA levels in a number of human fibroblast, leukemia, melanoma, sarcoma and carcinoma cell types. We observed heterogeneity in the steady-state level of c-jun mRNA in both the untreated normal and tumor cells and in such cells exposed to ionizing radiation or to H{sub 2}O{sub 2}. Exposure to radiation produced a varied response which ranged from little or no induction to an increase in the steady-state level of the c-jun mRNA of more than two orders of magnitude. Exposure to H{sub 2}O{sub 2} gave a pattern similar to that of ionizing radiation. The basis for the differential induction in response to these agents may be attributable to either cell lineage or genetic heterogeneity or a combination of these two parameters. 30 refs., 7 figs., 1 tab.« less

  12. Memory retrieval after contextual fear conditioning induces c-Fos and JunB expression in CA1 hippocampus.

    PubMed

    Strekalova, T; Zörner, B; Zacher, C; Sadovska, G; Herdegen, T; Gass, P

    2003-02-01

    Using specific polyclonal antisera against c-Fos, JunB, c-Jun and JunD, we tried to identify the candidate transcription factors of the immediate early gene family which may contribute to the molecular processes during contextual memory reconsolidation. For that purpose we analyzed the expression of these proteins in the hippocampus after contextual memory retrieval in a mouse model of fear conditioning. A single exposure to a foot shock of 0.8 mA was sufficient to induce robust contextual fear conditioning in C57BI/6N mice. In these mice context dependent memory retrieval evoked a marked induction of c-Fos and JunB, but not of c-Jun and JunD, in pyramidal CA1 neurons of the dorsal hippocampus. In contrast, mice exposed and re-exposed only to the context, without foot shock, did not show behavioral signs of contextual fear conditioning and exhibited significantly less expression of c-Fos and JunB in CA1 neurons. Mice which received a foot shock but were not re-exposed to the context revealed no immediate early gene induction. These results demonstrate that contextual memory retrieval is associated with de novo synthesis of specific members of the Fos/Jun transcription factor family. Therefore we suggest that these genes may contribute to plasticity and reconsolidation accompanying the retrieval process. The specific activation of CA1 neurons during the retrieval of contextual fear associations supports the postulated concept of a mnemonic role of this hippocampal subsector during the retrieval of contextual informations.

  13. Astrocyte Elevated Gene 1 Interacts with Acetyltransferase p300 and c-Jun To Promote Tumor Aggressiveness

    PubMed Central

    Liu, Liping; Guan, Hongyu; Li, Yun; Ying, Zhe; Wu, Jueheng; Zhu, Xun; Song, Libing

    2016-01-01

    ABSTRACT Astrocyte elevated gene 1 (AEG-1) is an oncoprotein that strongly promotes the development and progression of cancers. However, the detailed underlying mechanisms through which AEG-1 enhances tumor development and progression remain to be determined. In this study, we identified c-Jun and p300 to be novel interacting partners of AEG-1 in gliomas. AEG-1 promoted c-Jun transcriptional activity by interacting with the c-Jun/p300 complex and inducing c-Jun acetylation. Furthermore, the AEG-1/c-Jun/p300 complex was found to bind the promoter of c-Jun downstream targeted genes, consequently establishing an acetylated chromatin state that favors transcriptional activation. Importantly, AEG-1/p300-mediated c-Jun acetylation resulted in the development of a more aggressive malignant phenotype in gliomas through a drastic increase in glioma cell proliferation and angiogenesis in vitro and in vivo. Consistently, the AEG-1 expression levels in clinical glioma specimens correlated with the status of c-Jun activation. Taken together, our results suggest that AEG-1 mediates a novel epigenetic mechanism that enhances c-Jun transcriptional activity to induce glioma progression and that AEG-1 might be a novel, potential target for the treatment of gliomas. PMID:27956703

  14. One-step affinity tag purification of full-length recombinant human AP-1 complexes from bacterial inclusion bodies using a polycistronic expression system

    PubMed Central

    Wang, Wei-Ming; Lee, A-Young; Chiang, Cheng-Ming

    2008-01-01

    The AP-1 transcription factor is a dimeric protein complex formed primarily between Jun (c-Jun, JunB, JunD) and Fos (c-Fos, FosB, Fra-1, Fra-2) family members. These distinct AP-1 complexes are expressed in many cell types and modulate target gene expression implicated in cell proliferation, differentiation, and stress responses. Although the importance of AP-1 has long been recognized, the biochemical characterization of AP-1 remains limited in part due to the difficulty in purifying full-length, reconstituted dimers with active DNA-binding and transcriptional activity. Using a combination of bacterial coexpression and epitope-tagging methods, we successfully purified all 12 heterodimers (3 Jun × 4 Fos) of full-length human AP-1 complexes as well as c-Jun/c-Jun, JunD/JunD, and c-Jun/JunD dimers from bacterial inclusion bodies using one-step nickel-NTA affinity tag purification following denaturation and renaturation of coexpressed AP-1 subunits. Coexpression of two constitutive components in a dimeric AP-1 complex helps stabilize the proteins when compared with individual protein expression in bacteria. Purified dimeric AP-1 complexes are functional in sequence-specific DNA binding, as illustrated by electrophoretic mobility shift assays and DNase I footprinting, and are also active in transcription with in vitro-reconstituted human papillomavirus (HPV) chromatin containing AP-1-binding sites in the native configuration of HPV nucleosomes. The availability of these recombinant full-length human AP-1 complexes has greatly facilitated mechanistic studies of AP-1-regulated gene transcription in many biological systems. PMID:18329890

  15. Pregnane and Xenobiotic Receptor gene expression in liver cells is modulated by Ets-1 in synchrony with transcription factors Pax5, LEF-1 and c-jun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumari, Sangeeta; Saradhi, Mallampati; Rana, Manjul

    2015-01-15

    Nuclear receptor PXR is predominantly expressed in liver and intestine. Expression of PXR is observed to be dysregulated in various metabolic disorders indicating its involvement in disease development. However, information available on mechanisms of PXR self-regulation is fragmentary. The present investigation identifies some of the regulatory elements responsible for its tight regulation and low cellular expression. Here, we report that the PXR-promoter is a target for some key transcription factors like PU.1/Ets-1, Pax5, LEF-1 and c-Jun. Interestingly, we observed that PXR-promoter responsiveness to Pax5, LEF-1 and c-Jun, is considerably enhanced by Ets transcription factors (PU.1 and Ets-1). Co-transfection of cellsmore » with Ets-1, LEF-1 and c-Jun increased PXR-promoter activity by 5-fold and also induced expression of endogenous human PXR. Site-directed mutagenesis and transfection studies revealed that two Ets binding sites and two of the three LEF binding sites in the PXR-promoter are functional and have a positive effect on PXR transcription. Results suggest that expression of Ets family members, in conjunction with Pax5, LEF-1 and c-Jun, lead to coordinated up-regulation of PXR gene transcription. Insights obtained on the regulation of PXR gene have relevance in offering important cues towards normal functioning as well as development of several metabolic disorders via PXR signaling. - Highlights: • The study identified cis-regulatory elements in the nuclear receptor PXR promoter. • Several trans-acting factors modulating the PXR-promoter have been identified. • PU.1/Ets-1, Pax5, LEF-1, c-Jun, LyF-VI and NF-1 act as modulators of the PXR-promoter. • Ets-1 in conjunction with LEF-1 and c-Jun exhibit 5-fold activation of the PXR-promoter. • Insights into PXR-regulation have relevance in normal and pathological conditions.« less

  16. Inhibition of transcriptional activity of c-JUN by SIRT1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao Zhanguo; Ye Jianping

    2008-11-28

    c-JUN is a major component of heterodimer transcription factor AP-1 (Activator Protein-1) that activates gene transcription in cell proliferation, inflammation and stress responses. SIRT1 (Sirtuin 1) is a histone deacetylase that controls gene transcription through modification of chromatin structure. However, it is not clear if SIRT1 regulates c-JUN activity in the control of gene transcription. Here, we show that SIRT1 associated with c-JUN in co-immunoprecipitation of whole cell lysate, and inhibited the transcriptional activity of c-JUN in the mammalian two hybridization system. SIRT1 was found in the AP-1 response element in the matrix metalloproteinase-9 (MMP9) promoter DNA leading to inhibitionmore » of histone 3 acetylation as shown in a ChIP assay. The SIRT1 signal was reduced by the AP-1 activator PMA, and induced by the SIRT1 activator Resveratrol in the promoter DNA. SIRT1-mediaetd inhibition of AP-1 was demonstrated in the MMP9 gene expression at the gene promoter, mRNA and protein levels. In mouse embryonic fibroblast (MEF) with SIRT1 deficiency (SIRT1{sup -/-}), mRNA and protein of MMP9 were increased in the basal condition, and the inhibitory activity of Resveratrol was significantly attenuated. Glucose-induced MMP9 expression was also inhibited by SIRT1 in response to Resveratrol. These data consistently suggest that SIRT1 directly inhibits the transcriptional activity of AP-1 by targeting c-JUN.« less

  17. Voxel-based analysis of the immediate early gene, c-jun, in the honey bee brain after a sucrose stimulus.

    PubMed

    McNeill, M S; Robinson, G E

    2015-06-01

    Immediate early genes (IEGs) have served as useful markers of brain neuronal activity in mammals, and more recently in insects. The mammalian canonical IEG, c-jun, is part of regulatory pathways conserved in insects and has been shown to be responsive to alarm pheromone in honey bees. We tested whether c-jun was responsive in honey bees to another behaviourally relevant stimulus, sucrose, in order to further identify the brain regions involved in sucrose processing. To identify responsive regions, we developed a new method of voxel-based analysis of c-jun mRNA expression. We found that c-jun is expressed in somata throughout the brain. It was rapidly induced in response to sucrose stimuli, and it responded in somata near the antennal and mechanosensory motor centre, mushroom body calices and lateral protocerebrum, which are known to be involved in sucrose processing. c-jun also responded to sucrose in somata near the lateral suboesophageal ganglion, dorsal optic lobe, ventral optic lobe and dorsal posterior protocerebrum, which had not been previously identified by other methods. These results demonstrate the utility of voxel-based analysis of mRNA expression in the insect brain. © 2015 The Royal Entomological Society.

  18. Characterization of the mouse junD promoter--high basal level activity due to an octamer motif.

    PubMed Central

    de Groot, R P; Karperien, M; Pals, C; Kruijer, W

    1991-01-01

    The product of the junD gene belongs to the Jun/Fos family of nuclear DNA binding transcription factors. This family regulates the expression of TPA responsive genes by binding to the TPA responsive element (TRE). Unlike its counterparts c-jun and junB, junD expression is hardly inducible by growth factors and phorbol esters. In fact, junD is constitutively expressed at high levels in a wide variety of cells. To unravel the molecular mechanisms underlying constitutive junD expression, we have cloned and characterized the mouse junD promoter. We show that the high constitutive expression is caused by multiple cis-acting elements in its promoter, including an SP1 binding site, an octamer motif, a CAAT box, a Zif268 binding site and a TRE-like sequence. The octamer motif is the major determinant of junD promoter activity, while somewhat smaller contributions are made by the TRE and Zif268 binding site. The SP1 and CAAT box are shown to be of minor importance. The junD TRE is in its behavior indistinguishable from previously identified TREs. However, the junD promoter is not TPA inducible due to the presence of the octamer motif. Images PMID:1714380

  19. Expression of c-Jun and Bcl-2 family proteins in apoptotic photoreceptors of RCS rats.

    PubMed

    Katai, Naomichi; Yanagidaira, Tomoko; Senda, Nami; Murata, Toshinori; Yoshimura, Nagahisa

    2006-01-01

    To determine if c-Jun and Bcl-2 family proteins play a role in photoreceptor apoptosis in Royal College of Surgeons (RCS) rats. RCS and Sprague-Dawley rats were used. Cryosections of retinas harvested at various postnatal periods were immunostained with antibodies against c-Jun, Bcl-2, and Bax. Double staining with TdT-dUTP nick-end labeling (TUNEL) or propidium iodide (PI) and antibodies was also done. To study the time course of gene and protein expression, semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR) and immunoblotting analyses were carried out. TUNEL-positive photoreceptors of RCS rats were stained strongly with antibodies against c-Jun and Bax. The number of immunoreactive cells increased on days 21 and 28 after birth (P21 and P28) and decreased on P45. Semiquantitative RT-PCR analysis showed that mRNAs for c-Jun and Bax were upregulated at P21 and P28, but those for Bcl-2 were unchanged. On immunoblotting, a 43-kDa band was revealed by the anti-c-Jun antibody and a 21-kDa band, by the anti-Bax antibody. Protein expression of c-Jun and Bax were increased at both P21 and P28. The temporal profiles of immunoreactivity, protein expression, and mRNA expression were similar. c-Jun and Bax may play a role in photoreceptor apoptosis in RCS rats.

  20. Prostaglandin E2 stimulates normal bronchial epithelial cell growth through induction of c-Jun and PDK1, a kinase implicated in oncogenesis.

    PubMed

    Fan, Yu; Wang, Ye; Wang, Ke

    2015-12-18

    Cyclooxygenase-2-derived prostaglandin E2 (PGE2), a bioactive eicosanoid, has been implicated in many biological processes including reproduction, inflammation and tumor growth. We previously showed that PGE2 stimulated lung cancer cell growth and progression through PGE2 receptor EP2/EP4-mediated kinase signaling pathways. However, the role of PGE2 in controlling lung airway epithelial cell phenotype remains unknown. We evaluated the effects of c-Jun and 3-phosphoinositede dependent protein kinase-1 (PDK1) in mediating epithelial cell hyperplasia induced by PGE2. The bronchial epithelial cell lines BEAS-2B and HBEc14-KT were cultured and then treated with PGE2. PDK1 small interfering RNA (siRNA) and a PDK1 inhibitor, an antagonist of the PGE2 receptor subtype EP4 and EP4 siRNA, c-Jun siRNA, and overexpressions of c-Jun and PDK1 have been used to evaluate the effects on cell proliferation. We demonstrated that PGE2 increased normal bronchial epithelial cell proliferation through induction of PDK1, an ankyrin repeat-containing Ser/Thr kinase implicated in the induction of apoptosis and the suppression of tumor growth. PDK1 siRNA and a PDK1 inhibitor blocked the effects of PGE2 on normal cell growth. The PGE2-induced PDK1 expression was blocked by an antagonist of the PGE2 receptor subtype EP4 and by EP4 siRNA. In addition, we showed that induction of PDK1 by PGE2 was associated with induction of the transcription factor, c-Jun protein. Silencing of c-Jun using siRNA and point mutations of c-Jun sites in the PDK1 gene promoter resulted in blockade of PDK1 expression and promoter activity induced by PGE2. In contrast, overexpression of c-Jun induced PDK1 gene promoter activity and expression followed increased cell proliferation. PGE2 increases normal bronchial epithelial cell proliferation through increased PDK1 gene expression that is dependent on EP4 and induction of c-Jun. Therewith, our data suggest a new role of c-Jun and PDK1 in mediating epithelial cell hyperplasia induced by PGE2.

  1. The AP-1 Transcription Factor c-Jun Promotes Arthritis by Regulating Cyclooxygenase-2 and Arginase-1 Expression in Macrophages.

    PubMed

    Hannemann, Nicole; Jordan, Jutta; Paul, Sushmita; Reid, Stephen; Baenkler, Hanns-Wolf; Sonnewald, Sophia; Bäuerle, Tobias; Vera, Julio; Schett, Georg; Bozec, Aline

    2017-05-01

    Activation of proinflammatory macrophages is associated with the inflammatory state of rheumatoid arthritis. Their polarization and activation are controlled by transcription factors such as NF-κB and the AP-1 transcription factor member c-Fos. Surprisingly, little is known about the role of the AP-1 transcription factor c-Jun in macrophage activation. In this study, we show that mRNA and protein levels of c-Jun are increased in macrophages following pro- or anti-inflammatory stimulations. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment cluster analyses of microarray data using wild-type and c-Jun-deleted macrophages highlight the central function of c-Jun in macrophages, in particular for immune responses, IL production, and hypoxia pathways. Mice deficient for c-Jun in macrophages show an amelioration of inflammation and bone destruction in the serum-induced arthritis model. In vivo and in vitro gene profiling, together with chromatin immunoprecipitation analysis of macrophages, revealed direct activation of the proinflammatory factor cyclooxygenase-2 and indirect inhibition of the anti-inflammatory factor arginase-1 by c-Jun. Thus, c-Jun regulates the activation state of macrophages and promotes arthritis via differentially regulating cyclooxygenase-2 and arginase-1 levels. Copyright © 2017 by The American Association of Immunologists, Inc.

  2. Progression of Chronic Liver Inflammation and Fibrosis Driven by Activation of c-JUN Signaling in Sirt6 Mutant Mice*

    PubMed Central

    Xiao, Cuiying; Wang, Rui-Hong; Lahusen, Tyler J.; Park, Ogyi; Bertola, Adeline; Maruyama, Takashi; Reynolds, Della; Chen, Qiang; Xu, Xiaoling; Young, Howard A.; Chen, Wan-Jun; Gao, Bin; Deng, Chu-Xia

    2012-01-01

    The human body has a remarkable ability to regulate inflammation, a biophysical response triggered by virus infection and tissue damage. Sirt6 is critical for metabolism and lifespan; however, its role in inflammation is unknown. Here we show that Sirt6-null (Sirt6−/−) mice developed chronic liver inflammation starting at ∼2 months of age, and all animals were affected by 7–8 months of age. Deletion of Sirt6 in T cells or myeloid-derived cells was sufficient to induce liver inflammation and fibrosis, albeit to a lesser degree than that in the global Sirt6−/− mice, suggesting that Sirt6 deficiency in the immune cells is the cause. Consistently, macrophages derived from the bone marrow of Sirt6−/− mice showed increased MCP-1, IL-6, and TNFα expression levels and were hypersensitive to LPS stimulation. Mechanistically, SIRT6 interacts with c-JUN and deacetylates histone H3 lysine 9 (H3K9) at the promoter of proinflammatory genes whose expression involves the c-JUN signaling pathway. Sirt6-deficient macrophages displayed hyperacetylation of H3K9 and increased occupancy of c-JUN in the promoter of these genes, leading to their elevated expression. These data suggest that Sirt6 plays an anti-inflammatory role in mice by inhibiting c-JUN-dependent expression of proinflammatory genes. PMID:23076146

  3. Bile acid regulates c-Jun expression through the orphan nuclear receptor SHP induction in gastric cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Won Il; Park, Min Jung; An, Jin Kwang

    2008-05-02

    Bile reflux is considered to be one of the most important causative factors in gastric carcinogenesis, due to the attendant inflammatory changes in the gastric mucosa. In this study, we have assessed the molecular mechanisms inherent to the contribution of bile acid to the transcriptional regulation of inflammatory-related genes. In this study, we demonstrated that bile acid induced the expression of the SHP orphan nuclear receptor at the transcriptional level via c-Jun activation. Bile acid also enhanced the protein interaction of NF-{kappa}B and SHP, thereby resulting in an increase in c-Jun expression and the production of the inflammatory cytokine, TNF{alpha}.more » These results indicate that bile acid performs a critical function in the regulation of the induction of inflammatory-related genes in gastric cells, and that bile acid-mediated gene expression provides a pre-clue for the development of gastric cellular malformation.« less

  4. Dimeric combinations of MafB, cFos and cJun control the apoptosis-survival balance in limb morphogenesis.

    PubMed

    Suda, Natsuno; Itoh, Takehiko; Nakato, Ryuichiro; Shirakawa, Daisuke; Bando, Masashige; Katou, Yuki; Kataoka, Kohsuke; Shirahige, Katsuhiko; Tickle, Cheryll; Tanaka, Mikiko

    2014-07-01

    Apoptosis is an important mechanism for sculpting morphology. However, the molecular cascades that control apoptosis in developing limb buds remain largely unclear. Here, we show that MafB was specifically expressed in apoptotic regions of chick limb buds, and MafB/cFos heterodimers repressed apoptosis, whereas MafB/cJun heterodimers promoted apoptosis for sculpting the shape of the limbs. Chromatin immunoprecipitation sequencing in chick limb buds identified potential target genes and regulatory elements controlled by Maf and Jun. Functional analyses revealed that expression of p63 and p73, key components known to arrest the cell cycle, was directly activated by MafB and cJun. Our data suggest that dimeric combinations of MafB, cFos and cJun in developing chick limb buds control the number of apoptotic cells, and that MafB/cJun heterodimers lead to apoptosis via activation of p63 and p73. © 2014. Published by The Company of Biologists Ltd.

  5. Tissue-specific deletion of c-Jun in the pancreas has limited effects on pancreas formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Kaoru; Miyatsuka, Takeshi; Tanaka, Ayako

    2007-11-30

    It is well known that activating protein-1 (AP-1) is involved in a variety of cellular functions such as proliferation, differentiation, apoptosis, and oncogenesis. AP-1 is a dimer complex consisting of different subunits, and c-Jun is known to be one of its major components. In addition, it has been shown that mice lacking c-Jun are embryonic lethal and that c-Jun is essential for liver and heart development. However, the role of c-Jun in the pancreas is not well known. The aim of this study was to examine the possible role of c-Jun in the pancreas. First, c-Jun was strongly expressed inmore » pancreatic duct-like structures at an embryonic stage, while a lower level of expression was observed in some part of the adult pancreas, implying that c-Jun might play a role during pancreas development. Second, to address this point, we generated pancreas-specific c-Jun knock-out mice (Ptf1a-Cre; c-Jun{sup flox/flox} mice) by crossing Ptf1a-Cre knock-in mice with c-Jun floxed mice. Ptf1a is a pancreatic transcription factor and its expression is confined to pancreatic stem/progenitor cells, which give rise to all three types of pancreatic tissue: endocrine, exocrine, and duct. Contrary to our expectation, however, there was no morphological difference in the pancreas between Ptf1a-Cre; c-Jun{sup flox/flox} and control mice. In addition, there was no difference in body weight, pancreas weight, and the expression of various pancreas-related factors (insulin, glucagon, cytokeratin, and amylase) between the two groups. Furthermore, there was no difference in glucose tolerance between Ptf1a-Cre; c-Jun{sup flox/flox} and control mice. Taken together, although we cannot exclude the possibility that c-Jun ablation is compensated by some unknown factors, c-Jun appears to be dispensable for pancreas development at least after ptf1a gene promoter is activated.« less

  6. Peptide-DNA conjugates as tailored bivalent binders of the oncoprotein c-Jun.

    PubMed

    Pazos, Elena; Portela, Cecilia; Penas, Cristina; Vázquez, M Eugenio; Mascareñas, José L

    2015-05-21

    We describe a ds-oligonucleotide-peptide conjugate that is able to efficiently dismount preformed DNA complexes of the bZIP regions of oncoproteins c-Fos and c-Jun (AP-1), and therefore might be useful as disrupters of AP-1-mediated gene expression pathways.

  7. c-myc, c-fos, and c-jun regulation in the regenerating livers of normal and H-2K/c-myc transgenic mice.

    PubMed Central

    Morello, D; Fitzgerald, M J; Babinet, C; Fausto, N

    1990-01-01

    We investigated the mechanisms of regulation of c-myc, c-fos, and c-jun at the early stages of liver regeneration in mice. We show that the transient increase in steady-state levels of c-myc mRNA at the start of liver regeneration is most probably regulated by posttranscriptional mechanisms. Although there was a marked increase in c-myc transcriptional initiation shortly after partial hepatectomy, a block in elongation prevented the completion of most transcripts. To gain further information on the mechanism of regulation of c-myc expression during liver regeneration, we used transgenic mice harboring the human c-myc gene driven by the H-2K promoter. In these animals, the murine c-myc responded to the growth stimulus generated by partial hepatectomy, whereas the expression of the transgene was constitutive and did not change in the regenerating liver. However, the mRNA from both genes increased markedly after cycloheximide injection, suggesting that the regulation of c-myc mRNA abundance in the regenerating liver differs from that occurring after protein synthesis inhibition. Furthermore, we show that in normal mice c-fos and c-jun mRNA levels and transcriptional rates increase within 30 min after partial hepatectomy. c-fos transcriptional elongation was restricted in nongrowing liver, but the block was partially relieved in the regenerating liver. Nevertheless, for both c-fos and c-jun, changes in steady-state mRNA detected after partial hepatectomy were much greater than the transcriptional increase. In the regenerating liver of H-2K/c-myc mice, c-fos and c-jun expression was diminished, whereas mouse c-myc expression was enhanced in comparison with that in nontransgenic animals. Images PMID:2111449

  8. JunD/AP-1 Antagonizes the Induction of DAPK1 To Promote the Survival of v-Src-Transformed Cells.

    PubMed

    Maślikowski, Bart M; Wang, Lizhen; Wu, Ying; Fielding, Ben; Bédard, Pierre-André

    2017-01-01

    The increase in AP-1 activity is a hallmark of cell transformation by tyrosine kinases. Previously, we reported that blocking AP-1 using the c-Jun dominant negative mutant TAM67 induced senescence, adipogenesis, or apoptosis in v-Src-transformed chicken embryo fibroblasts (CEFs) whereas inhibition of JunD by short hairpin RNA (shRNA) specifically induced apoptosis. To investigate the role of AP-1 in Src-mediated transformation, we undertook a gene profiling study to characterize the transcriptomes of v-Src-transformed CEFs expressing either TAM67 or the JunD shRNA. Our study revealed a cluster of 18 probe sets upregulated exclusively in response to AP-1/JunD impairment and v-Src transformation. Four of these probe sets correspond to genes involved in the interferon pathway. One gene in particular, death-associated protein kinase 1 (DAPK1), is a C/EBPβ-regulated mediator of apoptosis in gamma interferon (IFN-γ)-induced cell death. Here, we show that inhibition of DAPK1 abrogates cell death in v-Src-transformed cells expressing the JunD shRNA. Chromatin immunoprecipitation data indicated that C/EBPβ was recruited to the DAPK1 promoter while the expression of a dominant negative mutant of C/EBPβ abrogated the induction of DAPK1 in response to the inhibition of AP-1. In contrast, as determined by chromatin immunoprecipitation (ChIP) assays, JunD was not detected on the DAPK1 promoter under any conditions, suggesting that JunD promotes survival by indirectly antagonizing the expression of DAPK1 in v-Src transformed cells. Transformation by the v-Src oncoprotein causes extensive changes in gene expression in primary cells such as chicken embryo fibroblasts. These changes, determining the properties of transformed cells, are controlled in part at the transcriptional level. Much attention has been devoted to transcription factors such as AP-1 and NF-κB and the control of genes associated with a more aggressive phenotype. In this report, we describe a novel mechanism of action determined by the JunD component of AP-1, a factor enhancing cell survival in v-Src-transformed cells. We show that the loss of JunD results in the aberrant activation of a genetic program leading to cell death. This program requires the activation of the tumor suppressor death-associated protein kinase 1 (DAPK1). Since DAPK1 is phosphorylated and inhibited by v-Src, these results highlight the importance of this kinase and the multiple mechanisms controlled by v-Src to antagonize the tumor suppressor function of DAPK1. Copyright © 2016 American Society for Microbiology.

  9. BDNF restores the expression of Jun and Fos inducible transcription factors in the rat brain following repetitive electroconvulsive seizures.

    PubMed

    Hsieh, T F; Simler, S; Vergnes, M; Gass, P; Marescaux, C; Wiegand, S J; Zimmermann, M; Herdegen, T

    1998-01-01

    The expression of inducible transcription factors was studied following repetitive electroconvulsive seizures (ECS), c-Fos, c-Jun, JunB, and JunD immunoreactivities were investigated following a single (1 x ECS) or repetitive ECS evoked once per day for 4, 5, or 10 days (4 x ECS, 5 x ECS, or 10 x ECS). Animals were killed 3 or 12 h following the last ECS. Three hours after 1 x ECS, c-Fos was expressed throughout the cortex and hippocampus. After 5 x ECS and 10 x ECS, c-Fos was reexpressed in the CA4 area, but was completely absent in the other hippocampal areas and cortex. In these areas, c-Fos became only reinducible when the time lag between two ECS stimuli was 5 days. In contrast to c-Fos, intense JunB expression was inducible in the cortex and hippocampus, but not CA4 subfield, after 1 x ECS, 5 x ECS, and 10 x ECS. Repetitive ECS did not effect c-Jun and JunD expression. In a second model of systemic excitation of the brain, repetitive daily injection of kainic acid for 4 days completely failed to express c-Fos, c-Jun, and JunB after the last application whereas injection of kainic acid once per week did not alter the strong expressions compared to a single application of kainic acid. In order to study the maintenance of c-Fos expression during repetitive seizures, brain-derived neurotrophic factor (BDNF) was applied in parallel for 5 or 10 days via miniosmotic pumps and permanent cannula targeted at the hippocampus or the parietal cortex. Infusion of BDNF completely reinduced c-Fos expression during 5 x ECS or 10 x ECS in the cortex ipsilaterally to the cannula and, to a less extent, also increased the expression of c-Jun and JunB when compared to saline-treated controls. BDNF had no effect on the expression patterns in the hippocampus. ECS with or without BDNF infusion did not change the expression patterns of the constitutive transcription factors ATF-2, CREB, and SRF. These data demonstrate that various transcription factors substantially differ in their response to acute and chronic neural stimulation. Repetitive pathophysiological excitation decreases the transcriptional actions of neurons over days in the adult brain, and this decrement can be prevented by BDNF restoring the neuroplasticity at the level of gene transcription.

  10. Fibroblast growth factor and cyclic AMP (cAMP) synergistically activate gene expression at a cAMP response element.

    PubMed Central

    Tan, Y; Low, K G; Boccia, C; Grossman, J; Comb, M J

    1994-01-01

    Growth factors and cyclic AMP (cAMP) are known to activate distinct intracellular signaling pathways. Fibroblast growth factor (FGF) activates ras-dependent kinase cascades, resulting in the activation of MAP kinases, whereas cAMP activates protein kinase A. In this study, we report that growth factors and cAMP act synergistically to stimulate proenkephalin gene expression. Positive synergy between growth factor- and cAMP-activated signaling pathways on gene expression has not been previously reported, and we suggest that these synergistic interactions represent a useful model for analyzing interactions between these pathways. Transfection and mutational studies indicate that both FGF-dependent gene activation and cAMP-dependent gene activation require cAMP response element 2 (CRE-2), a previously characterized cAMP-dependent regulatory element. Furthermore, multiple copies of this element are sufficient to confer FGF regulation upon a minimal promoter, indicating that FGF and cAMP signaling converge upon transcription factors acting at CRE-2. Among many different ATF/AP-1 factors tested, two factors, ATF-3 and c-Jun, stimulate proenkephalin transcription in an FGF- or Ras-dependent fashion. Finally, we show that ATF-3 and c-Jun form heterodimeric complexes in SK-N-MC cells and that the levels of both proteins are increased in response to FGF but not cAMP. Together, these results indicate that growth factor- and cAMP-dependent signaling pathways converge at CRE-2 to synergistically stimulate gene expression and that ATF-3 and c-Jun regulate proenkephalin transcription in response to both growth factor- and cAMP-dependent intracellular signaling pathways. Images PMID:7935470

  11. Anti-proliferative activities of finasteride in benign prostate epithelial cells require stromal fibroblasts and c-Jun gene.

    PubMed

    Wang, Kai; Jin, Song; Fan, Dongdong; Wang, Mingshuai; Xing, Nianzeng; Niu, Yinong

    2017-01-01

    This study aimed to identify the role of mouse fibroblast-mediated c-Jun and IGF-1 signaling in the therapeutic effect of finasteride on benign prostatic epithelial cells. BPH-1 cells, alone or with fibroblasts (c-Jun+/+ or c-Jun-/-), were implanted subcutaneously in male nude mice who were then treated with finasteride. The degrees of cell proliferation, apoptosis, and sizes of the xenografts were determined. BPH-1 cells were grown alone or co-cultured with mouse fibroblasts in the presence of finasteride and the level of IGF-1 secreted into the medium by the fibroblasts was determined. The proliferation-associated signaling pathway in BPH-1 cells was also evaluated. Fibroblasts and c-Jun promoted xenograft growth, stimulated Ki-67 expression, and inhibited BPH-1 apoptosis. Finasteride did not induce the shrinkage of xenografts in the combined-grafted groups despite repressing Ki-67 expression and inducing cell apoptosis. The addition of c-Jun-/- fibroblasts did not promote xenograft growth. In the absence of c-Jun and fibroblasts, finasteride did not alter xenograft growth, Ki-67 expression, or cell apoptosis. The in vitro results demonstrated that when BPH-1 cells were grown in monoculture, treatment with finasteride did not induce cell death and stimulated the expression of pro-proliferative signaling molecules, while in the presence of fibroblasts containing c-Jun, finasteride treatment repressed epithelial cell proliferation, the level of IGF-1 in the medium, and the activation of downstream pro-proliferative signaling pathways. Taken together, our results suggest that fibroblasts, c-Jun, and IGF-1 play key roles in mediating stromal-epithelial interactions that are required for the therapeutic effects of finasteride in benign prostate epithelial cells.

  12. Anti-proliferative activities of finasteride in benign prostate epithelial cells require stromal fibroblasts and c-Jun gene

    PubMed Central

    Fan, Dongdong; Wang, Mingshuai; Xing, Nianzeng; Niu, Yinong

    2017-01-01

    This study aimed to identify the role of mouse fibroblast-mediated c-Jun and IGF-1 signaling in the therapeutic effect of finasteride on benign prostatic epithelial cells. BPH-1 cells, alone or with fibroblasts (c-Jun+/+ or c-Jun-/-), were implanted subcutaneously in male nude mice who were then treated with finasteride. The degrees of cell proliferation, apoptosis, and sizes of the xenografts were determined. BPH-1 cells were grown alone or co-cultured with mouse fibroblasts in the presence of finasteride and the level of IGF-1 secreted into the medium by the fibroblasts was determined. The proliferation-associated signaling pathway in BPH-1 cells was also evaluated. Fibroblasts and c-Jun promoted xenograft growth, stimulated Ki-67 expression, and inhibited BPH-1 apoptosis. Finasteride did not induce the shrinkage of xenografts in the combined-grafted groups despite repressing Ki-67 expression and inducing cell apoptosis. The addition of c-Jun-/- fibroblasts did not promote xenograft growth. In the absence of c-Jun and fibroblasts, finasteride did not alter xenograft growth, Ki-67 expression, or cell apoptosis. The in vitro results demonstrated that when BPH-1 cells were grown in monoculture, treatment with finasteride did not induce cell death and stimulated the expression of pro-proliferative signaling molecules, while in the presence of fibroblasts containing c-Jun, finasteride treatment repressed epithelial cell proliferation, the level of IGF-1 in the medium, and the activation of downstream pro-proliferative signaling pathways. Taken together, our results suggest that fibroblasts, c-Jun, and IGF-1 play key roles in mediating stromal-epithelial interactions that are required for the therapeutic effects of finasteride in benign prostate epithelial cells. PMID:28196103

  13. c-Jun-N-terminal phosphorylation regulates DNMT1 expression and genome wide methylation in gliomas

    PubMed Central

    Heiland, Dieter H; Ferrarese, Roberto; Claus, Rainer; Dai, Fangping; Masilamani, Anie P; Kling, Eva; Weyerbrock, Astrid; Kling, Teresia; Nelander, Sven; Carro, Maria S

    2017-01-01

    High-grade gliomas (HGG) are the most common brain tumors, with an average survival time of 14 months. A glioma-CpG island methylator phenotype (G-CIMP), associated with better clinical outcome, has been described in low and high-grade gliomas. Mutation of IDH1 is known to drive the G-CIMP status. In some cases, however, the hypermethylation phenotype is independent of IDH1 mutation, suggesting the involvement of other mechanisms. Here, we demonstrate that DNMT1 expression is higher in low-grade gliomas compared to glioblastomas and correlates with phosphorylated c-Jun. We show that phospho-c-Jun binds to the DNMT1 promoter and causes DNA hypermethylation. Phospho-c-Jun activation by Anisomycin treatment in primary glioblastoma-derived cells attenuates the aggressive features of mesenchymal glioblastomas and leads to promoter methylation and downregulation of key mesenchymal genes (CD44, MMP9 and CHI3L1). Our findings suggest that phospho-c-Jun activates an important regulatory mechanism to control DNMT1 expression and regulate global DNA methylation in Glioblastoma. PMID:28036297

  14. c-Jun-N-terminal phosphorylation regulates DNMT1 expression and genome wide methylation in gliomas.

    PubMed

    Heiland, Dieter H; Ferrarese, Roberto; Claus, Rainer; Dai, Fangping; Masilamani, Anie P; Kling, Eva; Weyerbrock, Astrid; Kling, Teresia; Nelander, Sven; Carro, Maria S

    2017-01-24

    High-grade gliomas (HGG) are the most common brain tumors, with an average survival time of 14 months. A glioma-CpG island methylator phenotype (G-CIMP), associated with better clinical outcome, has been described in low and high-grade gliomas. Mutation of IDH1 is known to drive the G-CIMP status. In some cases, however, the hypermethylation phenotype is independent of IDH1 mutation, suggesting the involvement of other mechanisms. Here, we demonstrate that DNMT1 expression is higher in low-grade gliomas compared to glioblastomas and correlates with phosphorylated c-Jun. We show that phospho-c-Jun binds to the DNMT1 promoter and causes DNA hypermethylation. Phospho-c-Jun activation by Anisomycin treatment in primary glioblastoma-derived cells attenuates the aggressive features of mesenchymal glioblastomas and leads to promoter methylation and downregulation of key mesenchymal genes (CD44, MMP9 and CHI3L1). Our findings suggest that phospho-c-Jun activates an important regulatory mechanism to control DNMT1 expression and regulate global DNA methylation in Glioblastoma.

  15. c-Jun controls the efficiency of MAP kinase signaling by transcriptional repression of MAP kinase phosphatases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprowles, Amy; Robinson, Dan; Wu Yimi

    2005-08-15

    The mammalian JNK signaling pathway regulates the transcriptional response of cells to environmental stress, including UV irradiation. This signaling pathway is composed of a classical MAP kinase cascade; activation results in phosphorylation of the transcription factor substrates c-Jun and ATF2, and leads to changes in gene expression. The defining components of this pathway are conserved in the fission yeast S. pombe, where the genetic studies have shown that the ability of the JNK homolog Spc1 to be activated in response to UV irradiation is dependent on the presence of the transcription factor substrate Atf1. We have used genetic analysis tomore » define the role of c-Jun in activation of the mammalian JNK signaling pathway. Our results show that optimal activation of JNK requires the presence of its transcription factor substrate c-Jun. Mutational analysis shows that the ability of c-Jun to support efficient activation of JNK requires the ability of Jun to bind DNA, suggesting a transcriptional mechanism. Consistent with this, we show that c-Jun represses the expression of several MAP kinase phosphatases. In the absence of c-Jun, the increased expression of MAP kinase phosphatases leads to impaired activation of the ERK, JNK, and p38 MAP kinases after pathway activation. The results show that one function of c-Jun is to regulate the efficiency of signaling by the ERK, p38, and JNK MAP kinases, a function that is likely to affect cellular responses to many different stimuli.« less

  16. Ketamine inhibits tumor necrosis factor-{alpha} and interleukin-6 gene expressions in lipopolysaccharide-stimulated macrophages through suppression of toll-like receptor 4-mediated c-Jun N-terminal kinase phosphorylation and activator protein-1 activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, G.-J.; Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan

    2008-04-01

    Our previous study showed that ketamine, an intravenous anesthetic agent, has anti-inflammatory effects. In this study, we further evaluated the effects of ketamine on the regulation of tumor necrosis factor-{alpha} (TNF-{alpha}) and interlukin-6 (IL-6) gene expressions and its possible signal-transducing mechanisms in lipopolysaccharide (LPS)-activated macrophages. Exposure of macrophages to 1, 10, and 100 {mu}M ketamine, 100 ng/ml LPS, or a combination of ketamine and LPS for 1, 6, and 24 h was not cytotoxic to macrophages. A concentration of 1000 {mu}M of ketamine alone or in combined treatment with LPS caused significant cell death. Administration of LPS increased cellular TNF-{alpha}more » and IL-6 protein levels in concentration- and time-dependent manners. Meanwhile, treatment with ketamine concentration- and time-dependently alleviated the enhanced effects. LPS induced TNF-{alpha} and IL-6 mRNA syntheses. Administration of ketamine at a therapeutic concentration (100 {mu}M) significantly inhibited LPS-induced TNF-{alpha} and IL-6 mRNA expressions. Application of toll-like receptor 4 (TLR4) small interfering (si)RNA into macrophages decreased cellular TLR4 levels. Co-treatment of macrophages with ketamine and TLR4 siRNA decreased the LPS-induced TNF-{alpha} and IL-6 productions more than alone administration of TLR4 siRNA. LPS stimulated phosphorylation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos from the cytoplasm to nuclei. However, administration of ketamine significantly decreased LPS-induced activation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos. LPS increased the binding of nuclear extracts to activator protein-1 consensus DNA oligonucleotides. Administration of ketamine significantly ameliorated LPS-induced DNA binding activity of activator protein-1. Therefore, a clinically relevant concentration of ketamine can inhibit TNF-{alpha} and IL-6 gene expressions in LPS-activated macrophages. The suppressive mechanisms occur through suppression of TLR4-mediated sequential activations of c-Jun N-terminal kinase and activator protein-1.« less

  17. Ketamine inhibits tumor necrosis factor-alpha and interleukin-6 gene expressions in lipopolysaccharide-stimulated macrophages through suppression of toll-like receptor 4-mediated c-Jun N-terminal kinase phosphorylation and activator protein-1 activation.

    PubMed

    Wu, Gone-Jhe; Chen, Ta-Liang; Ueng, Yune-Fang; Chen, Ruei-Ming

    2008-04-01

    Our previous study showed that ketamine, an intravenous anesthetic agent, has anti-inflammatory effects. In this study, we further evaluated the effects of ketamine on the regulation of tumor necrosis factor-alpha (TNF-alpha) and interlukin-6 (IL-6) gene expressions and its possible signal-transducing mechanisms in lipopolysaccharide (LPS)-activated macrophages. Exposure of macrophages to 1, 10, and 100 microM ketamine, 100 ng/ml LPS, or a combination of ketamine and LPS for 1, 6, and 24 h was not cytotoxic to macrophages. A concentration of 1000 microM of ketamine alone or in combined treatment with LPS caused significant cell death. Administration of LPS increased cellular TNF-alpha and IL-6 protein levels in concentration- and time-dependent manners. Meanwhile, treatment with ketamine concentration- and time-dependently alleviated the enhanced effects. LPS induced TNF-alpha and IL-6 mRNA syntheses. Administration of ketamine at a therapeutic concentration (100 microM) significantly inhibited LPS-induced TNF-alpha and IL-6 mRNA expressions. Application of toll-like receptor 4 (TLR4) small interfering (si)RNA into macrophages decreased cellular TLR4 levels. Co-treatment of macrophages with ketamine and TLR4 siRNA decreased the LPS-induced TNF-alpha and IL-6 productions more than alone administration of TLR4 siRNA. LPS stimulated phosphorylation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos from the cytoplasm to nuclei. However, administration of ketamine significantly decreased LPS-induced activation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos. LPS increased the binding of nuclear extracts to activator protein-1 consensus DNA oligonucleotides. Administration of ketamine significantly ameliorated LPS-induced DNA binding activity of activator protein-1. Therefore, a clinically relevant concentration of ketamine can inhibit TNF-alpha and IL-6 gene expressions in LPS-activated macrophages. The suppressive mechanisms occur through suppression of TLR4-mediated sequential activations of c-Jun N-terminal kinase and activator protein-1.

  18. c-Jun localizes to the nucleus independent of its phosphorylation by and interaction with JNK and vice versa promotes nuclear accumulation of JNK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schreck, Ilona; Al-Rawi, Marco; Mingot, Jose-Manuel

    2011-04-22

    Highlights: {yields} HSP70, Ku70 and 80 as well as importin 8 are novel interactors of c-Jun. {yields} Nuclear accumulation of c-Jun does not require its functions as a transcription factor. {yields} Nuclear accumulation of c-Jun does not require the interaction with its kinase JNK. {yields} Nuclear accumulation of JNK is regulated by interaction with c-Jun. -- Abstract: In order to activate gene expression, transcription factors such as c-Jun have to reside in the nucleus. The abundance of c-Jun in the nucleus correlates with the activity of its target genes. As a consequence of excessive c-Jun activation, cells undergo apoptosis ormore » changes in differentiation whereas decreased c-Jun function can reduce proliferation. In the present study we addressed how nuclear accumulation of the transcription factor c-Jun is regulated. First, we analyzed which functions of c-Jun are required for efficient nuclear accumulation. Mutants of c-Jun deficient in dimerization or DNA-binding show no defect in nuclear transport. Furthermore, c-Jun import into the nucleus of living cells occurred when the c-Jun phosphorylation sites were mutated as well in cells that lack the major c-Jun kinase, JNK, suggesting that c-Jun transport into the nucleus does not require JNK signaling. Conversely, however, binding of c-Jun seemed to enhance nuclear accumulation of JNK. In order to identify proteins that might be relevant for the nuclear translocation of c-Jun we searched for novel binding partners by a proteomic approach. In addition to the heat shock protein HSP70 and the DNA damage repair factors Ku70 and 80, we isolated human importin 8 as a novel interactor of c-Jun. Interaction of Imp 8 with c-Jun in human cells was confirmed by co-immunoprecipitation experiments. Nuclear accumulation of c-Jun does not require its functions as a transcription factor or the interaction with its kinase JNK. Interestingly, nuclear accumulation of JNK is regulated by interaction with c-Jun. Unraveling the mechanisms of c-Jun and JNK transport to the nucleus and its regulation will improve our understanding of their role in biological and pathophysiological processes.« less

  19. C/EBPβ LIP and c-Jun synergize to regulate expression of the murine progesterone receptor.

    PubMed

    Wang, Weizhong; Do, Han Ngoc; Aupperlee, Mark D; Durairaj, Srinivasan; Flynn, Emily E; Miksicek, Richard J; Haslam, Sandra Z; Schwartz, Richard C

    2018-06-02

    CCAAT/enhancer binding protein β (C/EBPβ) is required for murine mammary ductal morphogenesis and alveologenesis. Progesterone is critical for proliferation and alveologenesis in adult mammary glands, and there is a similar requirement for progesterone receptor isoform B (PRB) in alveologenesis. We examined C/EBPβ regulation of PR expression. All three C/EBPβ isoforms, including typically inhibitory LIP, transactivated the PR promoter. LIP, particularly, strongly synergized with c-Jun to drive PR transcription. Endogenous C/EBPβ and c-Jun stimulated a PR promoter-reporter and these two factors showed promoter occupancy on the endogenous PR gene. Additionally, LIP overexpression elevated endogenous PR protein expression. In pregnancy, both PRB and the relative abundance of LIP among C/EBPβ isoforms increase. Consistent with a role in PRB expression, in vivo C/EBPβ and PR isoform A expression showed mutually exclusive localization in mammary epithelium, while C/EBPβ and PRB largely co-localized. We suggest a critical role for C/EBPβ, particularly LIP, in PRB expression. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Failed Degradation of JunB Contributes to Overproduction of Type I Collagen and Development of Dermal Fibrosis in Patients With Systemic Sclerosis

    PubMed Central

    Ponticos, Markella; Papaioannou, Ioannis; Xu, Shiwen; Holmes, Alan M; Khan, Korsa; Denton, Christopher P; Bou-Gharios, George; Abraham, David J

    2015-01-01

    Objective The excessive deposition of extracellular matrix, including type I collagen, is a key aspect in the pathogenesis of connective tissue diseases such as systemic sclerosis (SSc; scleroderma). To further our understanding of the mechanisms governing the dysregulation of type I collagen production in SSc, we investigated the role of the activator protein 1 (AP-1) family of transcription factors in regulating COL1A2 transcription. Methods The expression and nuclear localization of AP-1 family members (c-Jun, JunB, JunD, Fra-1, Fra-2, and c-Fos) were examined by immunohistochemistry and Western blotting in dermal biopsy specimens and explanted skin fibroblasts from patients with diffuse cutaneous SSc and healthy controls. Gene activation was determined by assessing the interaction of transcription factors with the COL1A2 enhancer using transient transfection of reporter gene constructs, electrophoretic mobility shift assays, chromatin immunoprecipitation analysis, and RNA interference involving knockdown of individual AP-1 family members. Inhibition of fibroblast mammalian target of rapamycin (mTOR), Akt, and glycogen synthase kinase 3β (GSK-3β) signaling pathways was achieved using small-molecule pharmacologic inhibitors. Results Binding of JunB to the COL1A2 enhancer was observed, with its coalescence directed by activation of gene transcription through the proximal promoter. Knockdown of JunB reduced enhancer activation and COL1A2 expression in response to transforming growth factor β. In SSc dermal fibroblasts, increased mTOR/Akt signaling was associated with inactivation of GSK-3β, leading to blockade of JunB degradation and, thus, constitutively high expression of JunB. Conclusion In patients with SSc, the accumulation of JunB resulting from altered mTOR/Akt signaling and a failure of proteolytic degradation underpins the aberrant overexpression of type I collagen. These findings identify JunB as a potential target for antifibrotic therapy in SSc. PMID:25303440

  1. Analysis of proto-oncogene and heat-shock protein gene expression in human derived cell-lines exposed in vitro to an intermittent 1.9 GHz pulse-modulated radiofrequency field.

    PubMed

    Chauhan, Vinita; Mariampillai, Anusiyanthan; Gajda, Greg B; Thansandote, Artnarong; McNamee, James P

    2006-05-01

    Several studies have reported that radiofrequency (RF) fields, as emitted by mobile phones, may cause changes in gene expression in cultured human cell-lines. The current study was undertaken to evaluate this possibility in two human-derived immune cell-lines. HL-60 and Mono-Mac-6 (MM6) cells were individually exposed to intermittent (5 min on, 10 min off) 1.9 GHz pulse-modulated RF fields at a average specific absorption rate (SAR) of 1 and 10 W/kg at 37 +/- 0.5 degrees C for 6 h. Concurrent negative and positive (heat-shock for 1 h at 43 degrees C) controls were conducted with each experiment. Immediately following RF field exposure (T = 6 h) and 18 h post-exposure (T = 24 h), cell pellets were collected from each of the culture dishes and analyzed for transcript levels of proto-oncogenes (c-jun, c-myc and c-fos) and the stress-related genes (heat shock proteins (HSP) HSP27 and HSP70B) by quantitative reverse transcriptase polymerase chain reaction (RT-PCR). No significant effects were observed in mRNA expression of HSP27, HSP70, c-jun, c-myc or c-fos between the sham and RF-exposed groups, in either of the two cell-lines. However, the positive (heat-shock) control group displayed a significant elevation in the expression of HSP27, HSP70, c-fos and c-jun in both cell-lines at T = 6 and 24 h, relative to the sham and negative control groups. This study found no evidence that exposure of cells to non-thermalizing levels of 1.9 GHz pulse-modulated RF fields can cause any detectable change in stress-related gene expression.

  2. Tax Protein-induced Expression of Antiapoptotic Bfl-1 Protein Contributes to Survival of Human T-cell Leukemia Virus Type 1 (HTLV-1)-infected T-cells*♦

    PubMed Central

    Macaire, Héloïse; Riquet, Aurélien; Moncollin, Vincent; Biémont-Trescol, Marie-Claude; Duc Dodon, Madeleine; Hermine, Olivier; Debaud, Anne-Laure; Mahieux, Renaud; Mesnard, Jean-Michel; Pierre, Marlène; Gazzolo, Louis; Bonnefoy, Nathalie; Valentin, Hélène

    2012-01-01

    Human T lymphotropic virus type 1 (HTLV-1) is the etiologic agent of adult T-cell leukemia/lymphoma (ATLL). ATLL is a severe malignancy with no effective treatment. HTLV-1 regulatory proteins Tax and HTLV-1 basic leucine zipper factor (HBZ) play a major role in ATLL development, by interfering with cellular functions such as CD4+ T-cell survival. In this study, we observed that the expression of Bfl-1, an antiapoptotic protein of the Bcl-2 family, is restricted to HTLV-1-infected T-cell lines and to T-cells expressing both Tax and HBZ proteins. We showed that Tax-induced bfl-1 transcription through the canonical NF-κB pathway. Moreover, we demonstrated that Tax cooperated with c-Jun or JunD, but not JunB, transcription factors of the AP-1 family to stimulate bfl-1 gene activation. By contrast, HBZ inhibited c-Jun-induced bfl-1 gene activation, whereas it increased JunD-induced bfl-1 gene activation. We identified one NF-κB, targeted by RelA, c-Rel, RelB, p105/p50, and p100/p52, and two AP-1, targeted by both c-Jun and JunD, binding sites in the bfl-1 promoter of T-cells expressing both Tax and HBZ. Analyzing the potential role of antiapoptotic Bcl-2 proteins in HTLV-1-infected T-cell survival, we demonstrated that these cells are differentially sensitive to silencing of Bfl-1, Bcl-xL, and Bcl-2. Indeed, both Bfl-1 and Bcl-xL knockdowns decreased the survival of HTLV-1-infected T-cell lines, although no cell death was observed after Bcl-2 knockdown. Furthermore, we demonstrated that Bfl-1 knockdown sensitizes HTLV-1-infected T-cells to ABT-737 or etoposide treatment. Our results directly implicate Bfl-1 and Bcl-xL in HTLV-1-infected T-cell survival and suggest that both Bfl-1 and Bcl-xL represent potential therapeutic targets for ATLL treatment. PMID:22553204

  3. Yeast one-hybrid system used to identify the binding proteins for rat glutathione S-transferase P enhancer I.

    PubMed

    Liao, Ming-Xiang; Liu, Dong-Yuan; Zuo, Jin; Fang, Fu-De

    2002-03-01

    To detect the trans-factors specifically binding to the strong enhancer element (GPEI) in the upstream of rat glutathione S-transferase P (GST-P) gene. Yeast one-hybrid system was used to screen rat lung MATCHMAKER cDNA library to identify potential trans-factors that can interact with core sequence of GPEI(cGPEI). Electrophoresis mobility shift assay (EMSA) was used to analyze the binding of transfactors to cGPEI. cDNA fragments coding for the C-terminal part of the transcription factor c-Jun and rat adenine nucleotide translocator (ANT) were isolated. The binding of c-Jun and ANT to GPEI core sequence were confirmed. Rat c-jun transcriptional factor and ANT may interact with cGPEI. They could play an important role in the induced expression of GST-P gene.

  4. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    1997-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  5. Oncoprotein protein kinase antibody kit

    DOEpatents

    Karin, Michael [San Diego, CA; Hibi, Masahiko [San Diego, CA; Lin, Anning [La Jolla, CA

    2008-12-23

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  6. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning; Davis, Roger; Derijard, Benoit

    2003-02-04

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  7. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    1997-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  8. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    1998-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  9. Oxalate exposure provokes HSP 70 response in LLC-PK1 cells, a line of renal epithelial cells: protective role of HSP 70 against oxalate toxicity.

    PubMed

    Koul, Sweaty; Huang, Meiyi; Bhat, Sidarth; Maroni, Paul; Meacham, Randall B; Koul, Hari K

    2008-02-01

    We investigated the effects of oxalate on immediate early genes (IEGs) and stress protein HSP 70, commonly induced genes in response to a variety of stresses. LLC-PK1 cells were exposed to oxalate. Gene transcription and translation were monitored by Northern and Western blot analysis. RNA and DNA synthesis were assessed by [(3)H]-uridine and [(3)H]-thymidine incorporation, respectively. Oxalate exposure selectively increased the levels of mRNA encoding IEGs c-myc and c-jun as well as stress protein HSP 70. While expression of c-myc and c-jun was rapid (within 15 min to 2 h) and transient, HSP 70 expression was delayed (approximately 8 h) and stable. Furthermore, oxalate exposure resulted in delayed induction of generalized transcription by 18 h and reinitiation of the DNA synthesis by 24 h of oxalate exposure. Moreover, we show that prior induction of HSP 70 by mild hypertonic exposure protected the cells from oxalate toxicity. To the best of our knowledge this is the first study to demonstrate rapid IEG response and delayed heat-shock response to oxalate toxicity and protective role of HSP 70 against oxalate toxicity to renal epithelial cells. Oxalate, a metabolic end product, induces IEGs c-myc and c-jun and a delayed HSP 70 expression; While IEG expression may regulate additional genetic responses to oxalate, increased HSP 70 expression would serve an early protective role during oxalate stress.

  10. Graded Elevation of c-Jun in Schwann Cells In Vivo: Gene Dosage Determines Effects on Development, Remyelination, Tumorigenesis, and Hypomyelination.

    PubMed

    Fazal, Shaline V; Gomez-Sanchez, Jose A; Wagstaff, Laura J; Musner, Nicolo; Otto, Georg; Janz, Martin; Mirsky, Rhona; Jessen, Kristján R

    2017-12-13

    Schwann cell c-Jun is implicated in adaptive and maladaptive functions in peripheral nerves. In injured nerves, this transcription factor promotes the repair Schwann cell phenotype and regeneration and promotes Schwann-cell-mediated neurotrophic support in models of peripheral neuropathies. However, c-Jun is associated with tumor formation in some systems, potentially suppresses myelin genes, and has been implicated in demyelinating neuropathies. To clarify these issues and to determine how c-Jun levels determine its function, we have generated c-Jun OE/+ and c-Jun OE/OE mice with graded expression of c-Jun in Schwann cells and examined these lines during development, in adulthood, and after injury using RNA sequencing analysis, quantitative electron microscopic morphometry, Western blotting, and functional tests. Schwann cells are remarkably tolerant of elevated c-Jun because the nerves of c-Jun OE/+ mice, in which c-Jun is elevated ∼6-fold, are normal with the exception of modestly reduced myelin thickness. The stronger elevation of c-Jun in c-Jun OE/OE mice is, however, sufficient to induce significant hypomyelination pathology, implicating c-Jun as a potential player in demyelinating neuropathies. The tumor suppressor P19 ARF is strongly activated in the nerves of these mice and, even in aged c-Jun OE/OE mice, there is no evidence of tumors. This is consistent with the fact that tumors do not form in injured nerves, although they contain proliferating Schwann cells with strikingly elevated c-Jun. Furthermore, in crushed nerves of c-Jun OE/+ mice, where c-Jun levels are overexpressed sufficiently to accelerate axonal regeneration, myelination and function are restored after injury. SIGNIFICANCE STATEMENT In injured and diseased nerves, the transcription factor c-Jun in Schwann cells is elevated and variously implicated in controlling beneficial or adverse functions, including trophic Schwann cell support for neurons, promotion of regeneration, tumorigenesis, and suppression of myelination. To analyze the functions of c-Jun, we have used transgenic mice with graded elevation of Schwann cell c-Jun. We show that high c-Jun elevation is a potential pathogenic mechanism because it inhibits myelination. Conversely, we did not find a link between c-Jun elevation and tumorigenesis. Modest c-Jun elevation, which is beneficial for regeneration, is well tolerated during Schwann cell development and in the adult and is compatible with restoration of myelination and nerve function after injury. Copyright © 2017 Fazal, Gomez-Sanchez et al.

  11. Graded Elevation of c-Jun in Schwann Cells In Vivo: Gene Dosage Determines Effects on Development, Remyelination, Tumorigenesis, and Hypomyelination

    PubMed Central

    Fazal, Shaline V.; Wagstaff, Laura J.; Musner, Nicolo; Janz, Martin

    2017-01-01

    Schwann cell c-Jun is implicated in adaptive and maladaptive functions in peripheral nerves. In injured nerves, this transcription factor promotes the repair Schwann cell phenotype and regeneration and promotes Schwann-cell-mediated neurotrophic support in models of peripheral neuropathies. However, c-Jun is associated with tumor formation in some systems, potentially suppresses myelin genes, and has been implicated in demyelinating neuropathies. To clarify these issues and to determine how c-Jun levels determine its function, we have generated c-Jun OE/+ and c-Jun OE/OE mice with graded expression of c-Jun in Schwann cells and examined these lines during development, in adulthood, and after injury using RNA sequencing analysis, quantitative electron microscopic morphometry, Western blotting, and functional tests. Schwann cells are remarkably tolerant of elevated c-Jun because the nerves of c-Jun OE/+ mice, in which c-Jun is elevated ∼6-fold, are normal with the exception of modestly reduced myelin thickness. The stronger elevation of c-Jun in c-Jun OE/OE mice is, however, sufficient to induce significant hypomyelination pathology, implicating c-Jun as a potential player in demyelinating neuropathies. The tumor suppressor P19ARF is strongly activated in the nerves of these mice and, even in aged c-Jun OE/OE mice, there is no evidence of tumors. This is consistent with the fact that tumors do not form in injured nerves, although they contain proliferating Schwann cells with strikingly elevated c-Jun. Furthermore, in crushed nerves of c-Jun OE/+ mice, where c-Jun levels are overexpressed sufficiently to accelerate axonal regeneration, myelination and function are restored after injury. SIGNIFICANCE STATEMENT In injured and diseased nerves, the transcription factor c-Jun in Schwann cells is elevated and variously implicated in controlling beneficial or adverse functions, including trophic Schwann cell support for neurons, promotion of regeneration, tumorigenesis, and suppression of myelination. To analyze the functions of c-Jun, we have used transgenic mice with graded elevation of Schwann cell c-Jun. We show that high c-Jun elevation is a potential pathogenic mechanism because it inhibits myelination. Conversely, we did not find a link between c-Jun elevation and tumorigenesis. Modest c-Jun elevation, which is beneficial for regeneration, is well tolerated during Schwann cell development and in the adult and is compatible with restoration of myelination and nerve function after injury. PMID:29109239

  12. Stimulation of Fas/FasL-mediated apoptosis by luteolin through enhancement of histone H3 acetylation and c-Jun activation in HL-60 leukemia cells.

    PubMed

    Wang, Shih-Wei; Chen, Yun-Ru; Chow, Jyh-Ming; Chien, Ming-Hsien; Yang, Shun-Fa; Wen, Yu-Ching; Lee, Wei-Jiunn; Tseng, Tsui-Hwa

    2018-07-01

    Luteolin (3',4',5,7-tetrahydroxyflavone), which exists in fruits, vegetables, and medicinal herbs, is used in Chinese traditional medicine for treating various diseases, such as hypertension, inflammatory disorders, and cancer. However, the gene-regulatory role of luteolin in cancer prevention and therapy has not been clarified. Herein, we demonstrated that treatment with luteolin resulted in a significant decrease in the viability of human leukemia cells. In the present study, by evaluating fragmentation of DNA and poly (ADP-ribose) polymerase (PARP), we found that luteolin was able to induce PARP cleavage and nuclear fragmentation as well as an increase in the sub-G 0 /G 1 fraction. In addition, luteolin also induced Fas and Fas ligand (FasL) expressions and subsequent activation of caspases-8 and -3, which can trigger the extrinsic apoptosis pathway, while knocking down Fas-associated protein with death domain (FADD) prevented luteolin-induced PARP cleavage. Immunoblot and chromatin immunoprecipitation (ChIP) analyses revealed that luteolin increased acetylation of histone H3, which is involved in the upregulation of Fas and FasL. Moreover, both the extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) pathways are involved in luteolin-induced histone H3 acetylation. Finally, luteolin also activated the c-Jun signaling pathway, which contributes to FasL, but not Fas, gene expression and downregulation of c-Jun expression by small interfering RNA transfection which resulted in a significant decrease in luteolin-induced PARP cleavage. Thus, our results demonstrate that luteolin induced apoptosis of HL-60 cells, and this was associated with c-Jun activation and histone H3 acetylation-mediated Fas/FasL expressions. © 2018 Wiley Periodicals, Inc.

  13. Oncoprotein protein kinase

    DOEpatents

    Karin, M.; Hibi, M.; Lin, A.

    1997-02-25

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE is disclosed. The polypeptide has serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences. The method of detection of JNK is also provided. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites. 44 figs.

  14. Oncoprotein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    2001-02-27

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD or 55 kD as determined by reducing SDS-PAGE, having serine and theonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  15. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    1999-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD or 55 kD as determined by reducing SDS-PAGE, having serine and theonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  16. Hyperforin activates gene transcription involving transient receptor potential C6 channels.

    PubMed

    Thiel, Gerald; Rössler, Oliver G

    2017-04-01

    Hypericum perforatum is one of the most prominent medical plants. Hyperforin, a main ingredient of H. perforatum, has been shown to activate transient receptor potential canonical C6 (TRPC6) channels. Alternatively, it has been proposed that hyperforin functions as a protonophore in a TRPC6-independent manner. Here, we show that hyperforin stimulation activates the transcription factor AP-1 in HEK293 cells expressing TRPC6 (T6.11 cells), but did not substantially change the AP-1 activity in HEK293 cells lacking TRPC6. We identified the AP-1 binding site as a hyperforin-responsive element. AP-1 is composed of the transcription factors c-Jun and c-Fos, or other members of the c-Jun and c-Fos families of proteins. Hyperforin stimulation increased c-Jun and c-Fos promoter activities in T6.11 cells and induced an upregulation of c-Jun and c-Fos biosynthesis. The analysis of the c-Fos promoter revealed that the cAMP-response element also functions as a hyperforin-responsive element. Hyperforin-induced upregulation of AP-1 in T6.11 cells was attenuated by preincubation of the cells with either pregnenolone or progesterone, indicating that gene regulation via TRPC6 is under control of hormones or hormonal precursors. The signal transduction of hyperforin-induced AP-1 gene transcription required an influx of Ca 2+ ions into the cells, the activation of MAP kinases, and the activation of the transcription factors c-Jun and ternary complex factor. We conclude that hyperforin regulates gene transcription via activation of TRPC6 channels, involving stimulus-regulated protein kinases and stimulus-responsive transcription factors. The fact that hyperforin regulates gene transcription may explain many of the intracellular alterations induced by this compound. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Developmental regulation of collagenase-3 mRNA in normal, differentiating osteoblasts through the activator protein-1 and the runt domain binding sites

    NASA Technical Reports Server (NTRS)

    Winchester, S. K.; Selvamurugan, N.; D'Alonzo, R. C.; Partridge, N. C.

    2000-01-01

    Collagenase-3 mRNA is initially detectable when osteoblasts cease proliferation, increasing during differentiation and mineralization. We showed that this developmental expression is due to an increase in collagenase-3 gene transcription. Mutation of either the activator protein-1 or the runt domain binding site decreased collagenase-3 promoter activity, demonstrating that these sites are responsible for collagenase-3 gene transcription. The activator protein-1 and runt domain binding sites bind members of the activator protein-1 and core-binding factor family of transcription factors, respectively. We identified core-binding factor a1 binding to the runt domain binding site and JunD in addition to a Fos-related antigen binding to the activator protein-1 site. Overexpression of both c-Fos and c-Jun in osteoblasts or core-binding factor a1 increased collagenase-3 promoter activity. Furthermore, overexpression of c-Fos, c-Jun, and core-binding factor a1 synergistically increased collagenase-3 promoter activity. Mutation of either the activator protein-1 or the runt domain binding site resulted in the inability of c-Fos and c-Jun or core-binding factor a1 to increase collagenase-3 promoter activity, suggesting that there is cooperative interaction between the sites and the proteins. Overexpression of Fra-2 and JunD repressed core-binding factor a1-induced collagenase-3 promoter activity. Our results suggest that members of the activator protein-1 and core-binding factor families, binding to the activator protein-1 and runt domain binding sites are responsible for the developmental regulation of collagenase-3 gene expression in osteoblasts.

  18. JunB is required for endothelial cell morphogenesis by regulating core-binding factor β

    PubMed Central

    Licht, Alexander H.; Pein, Oliver T.; Florin, Lore; Hartenstein, Bettina; Reuter, Hendrik; Arnold, Bernd; Lichter, Peter; Angel, Peter; Schorpp-Kistner, Marina

    2006-01-01

    The molecular mechanism triggering the organization of endothelial cells (ECs) in multicellular tubules is mechanistically still poorly understood. We demonstrate that cell-autonomous endothelial functions of the AP-1 subunit JunB are required for proper endothelial morphogenesis both in vivo in mouse embryos with endothelial-specific ablation of JunB and in in vitro angiogenesis models. By cDNA microarray analysis, we identified core-binding factor β (CBFβ), which together with the Runx proteins forms the heterodimeric core-binding transcription complex CBF, as a novel JunB target gene. In line with our findings, expression of the CBF target MMP-13 was impaired in JunB-deficient ECs. Reintroduction of CBFβ into JunB-deficient ECs rescued the tube formation defect and MMP-13 expression, indicating an important role for CBFβ in EC morphogenesis. PMID:17158955

  19. Hexavalent Chromium Cr(VI) Up-Regulates COX-2 Expression through an NFκB/c-Jun/AP-1–Dependent Pathway

    PubMed Central

    Zuo, Zhenghong; Cai, Tongjian; Li, Jingxia; Zhang, Dongyun; Yu, Yonghui

    2012-01-01

    Background: Hexavalent chromium [Cr(VI)] is recognized as a human carcinogen via inhalation. However, the molecular mechanisms by which Cr(VI) causes cancers are not well understood. Objectives: We evaluated cyclooxygenase-2 (COX-2) expression and the signaling pathway leading to this induction due to Cr(VI) exposure in cultured cells. Methods: We used the luciferase reporter assay and Western blotting to determine COX-2 induction by Cr(VI). We used dominant negative mutant, genetic knockout, gene knockdown, and chromatin immunoprecipitation approaches to elucidate the signaling pathway leading to COX-2 induction. Results: We found that Cr(VI) exposure induced COX-2 expression in both normal human bronchial epithelial cells and mouse embryonic fibroblasts in a concentration- and time-dependent manner. Deletion of IKKβ [inhibitor of transcription factor NFκB (IκB) kinase β; an upstream kinase responsible for nuclear factor κB (NFκB) activation] or overexpression of TAM67 (a dominant-negative mutant of c-Jun) dramatically inhibited the COX-2 induction due to Cr(VI), suggesting that both NFκB and c-Jun/AP-1 pathways were required for Cr(VI)-induced COX-2 expression. Our results show that p65 and c-Jun are two major components involved in NFκB and AP-1 activation, respectively. Moreover, our studies suggest crosstalk between NFκB and c-Jun/AP-1 pathways in cellular response to Cr(VI) exposure for COX-2 induction. Conclusion: We demonstrate for the first time that Cr(VI) is able to induce COX-2 expression via an NFκB/c-Jun/AP-1–dependent pathway. Our results provide novel insight into the molecular mechanisms linking Cr(VI) exposure to lung inflammation and carcinogenesis. PMID:22472290

  20. JUN regulates early transcriptional responses to axonal injury in retinal ganglion cells.

    PubMed

    Fernandes, Kimberly A; Harder, Jeffrey M; Kim, Jessica; Libby, Richard T

    2013-07-01

    The AP1 family transcription factor JUN is an important molecule in the neuronal response to injury. In retinal ganglion cells (RGCs), JUN is upregulated soon after axonal injury and disrupting JUN activity delays RGC death. JUN is known to participate in the control of many different injury response pathways in neurons, including pathways controlling cell death and axonal regeneration. The role of JUN in regulating genes involved in cell death, ER stress, and regeneration was tested to determine the overall importance of JUN in regulating RGC response to axonal injury. Genes from each of these pathways were transcriptionally controlled following axonal injury and Jun deficiency altered the expression of many of these genes. The differentially expressed genes included, Atf3, Ddit3, Ecel1, Gadd45α, Gal, Hrk, Pten, Socs3, and Sprr1a. Two of these genes, Hrk and Atf3, were tested for importance in RGC death using null alleles of each gene. Disruption of the prodeath Bcl2 family member Hrk did not affect the rate or amount of RGC death after axonal trauma. Deficiency in the ATF/CREB family transcription factor Atf3 did lessen the amount of RGC death after injury, though it did not provide long term protection to RGCs. Since JUN's dimerization partner determines its transcriptional targets, the expression of several candidate AP1 family members were examined. Multiple AP1 family members were induced by axonal injury and had a different expression profile in Jun deficient retinas compared to wildtype retinas (Fosl1, Fosl2 and Jund). Overall, JUN appears to play a multifaceted role in regulating RGC response to axonal injury. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Progesterone and the Repression of Myometrial Inflammation: The Roles of MKP-1 and the AP-1 System

    PubMed Central

    Lei, K.; Georgiou, E. X.; Chen, L.; Yulia, A.; Sooranna, S. R.; Brosens, J. J.; Bennett, P. R.

    2015-01-01

    Progesterone (P4) maintains uterine quiescence during pregnancy and its functional withdrawal is associated with increased prostaglandin synthesis and the onset of labor. In primary human myometrial cells, the glucocorticoid receptor (GR) rather than the P4 receptor mediates P4 antagonism of IL-1β-induced cyclooxygenase-2 (COX-2) expression, the rate-limiting enzyme in prostaglandin synthesis. We now report that P4 also acts via GR to induce MAPK phosphatase (MKP)-1 and knockdown of MKP-1 impairs the ability of P4 to repress IL-1β-dependent COX-2 induction. Microarray analysis revealed that P4 repressed preferentially activator protein-1-responsive genes in response to IL-1β. Consistent with these observations, we found that the ability of P4 to reduce c-Jun activation was lost upon GR as well as MKP-1 knockdown. Interestingly, c-Jun levels in human myometrial cells declined upon GR and MKP-1 knockdown, which suggests the presence of an activator protein-1 feedback loop. This is supported by our observation that c-Jun levels declined after an initial rise in primary myometrial cells treated with phorbol 12-myrisatate 13-acetate, a potent activator of c-Jun N-terminal kinase. Finally, we show that MKP-1 is an intermediate in P4-mediated repression of some but not all IL-1β-responsive genes. For example, P4 repression of IL11 and IRAK3 was maintained upon MKP-1 knockdown. Taken together, the data show that P4 acts via GR to drive MKP-1 expression, which in turn inhibits IL-1β-dependent c-Jun activation and COX-2 expression. PMID:26280733

  2. C-fos mediates antipsychotic-induced neurotensin gene expression in the rodent striatum.

    PubMed

    Robertson, G S; Tetzlaff, W; Bedard, A; St-Jean, M; Wigle, N

    1995-07-01

    The ubiquitous inducibility of the immediate-early gene c-fos in the central nervous system has led to the search for downstream genes which are regulated by its product, Fos. Recent evidence suggests that c-fos induction by a single injection of the classical antipsychotic haloperidol may contribute to the subsequent increase in neurotensin gene expression in the rodent striatum. Consistent with this proposal, in the present study haloperidol-induced Fos-like immunoreactivity and neurotensin/neuromedin N messenger RNA were found to be expressed by the same population of striatal neurons. Moreover, inhibition of haloperidol-induced c-fos expression by intrastriatal injection of antisense phosphorothioate oligodeoxynucleotides complimentary either to bases 109-126 or 127-144 of c-fos attenuated the subsequent increase in neurotensin/neuromedin N messenger RNA. However, injection of a sense phosphorothioate oligodeoxynucleotide corresponding to bases 127-144 of c-fos did not reduce haloperidol-induced c-fos or neurotensin/neuromedin N expression. Furthermore, constitutive expression of Jun-like immunoreactivity in the striatum was not reduced by either the sense or antisense phosphorothioate oligodeoxynucleotides. Similarly, the sense and antisense phosphorothioate oligodeoxynucleotide failed to reduce proenkephalin messenger RNA, which is located in the same striatal neurons that express haloperidol-induced neurotensin/neuromedin N messenger RNA, which is located in the same striatal neurons that express haloperidol-induced neurotensin/neuromedin N messenger RNA. Lastly, haloperidol-induced increases in nerve growth factor I-A-, JunB- and FosB-like immunoreactivity and fosB messenger RNA were not decreased by intrastriatal injection of either the sense or antisense phosphorothioate oligodeoxynucleotides. These results indicate that the antisense phosphorothioate oligodeoxynucleotides attenuated haloperidol-induced neurotensin/neuromedin N expression by selectively reducing c-fos expression and emphasize the potential importance of immediate-early gene induction in the mechanism of action of this antipsychotic drug.

  3. Mucin1 mediates autocrine transforming growth factor beta signaling through activating the c-Jun N-terminal kinase/activator protein 1 pathway in human hepatocellular carcinoma cells.

    PubMed

    Li, Qiongshu; Liu, Guomu; Shao, Dan; Wang, Juan; Yuan, Hongyan; Chen, Tanxiu; Zhai, Ruiping; Ni, Weihua; Tai, Guixiang

    2015-02-01

    In a previous study, we observed by global gene expression analysis that oncogene mucin1 (MUC1) silencing decreased transforming growth factor beta (TGF-β) signaling in the human hepatocellular carcinoma (HCC) cell line SMMC-7721. In this study, we report that MUC1 overexpression enhanced the levels of phosphorylated Smad3 linker region (p-Smad3L) (Ser-213) and its target gene MMP-9 in HCC cells, suggesting that MUC1 mediates TGF-β signaling. To investigate the effect of MUC1 on TGF-β signaling, we determined TGF-β secretion in MUC1 gene silencing and overexpressing cell lines. MUC1 expression enhanced not only TGF-β1 expression at the mRNA and protein levels but also luciferase activity driven by a TGF-β promoter, as well as elevated the activation of c-Jun N-terminal kinase (JNK) and c-Jun, a member of the activation protein 1 (AP-1) transcription factor family. Furthermore, pharmacological reduction of TGF-β receptor (TβR), JNK and c-Jun activity inhibited MUC1-induced autocrine TGF-β signaling. Moreover, a co-immunoprecipitation assay showed that MUC1 directly bound and activated JNK. In addition, both MUC1-induced TGF-β secretion and exogenous TGF-β1 significantly increased Smad signaling and cell migration, which were markedly inhibited by either TβR inhibitor or small interfering RNA silencing of TGF-β1 gene in HCC cells. The high correlation between MUC1 and TGF-β1 or p-Smad3L (Ser-213) expression was shown in tumor tissues from HCC patients by immunohistochemical staining analysis. Collectively, these results indicate that MUC1 mediates autocrine TGF-β signaling by activating the JNK/AP-1 pathway in HCC cells. Therefore, MUC1 plays a key role in HCC progression and could serve as an attractive target for HCC therapy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Resveratrol via sirtuin-1 downregulates RE1-silencing transcription factor (REST) expression preventing PCB-95-induced neuronal cell death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guida, Natascia; Laudati, Giusy; Anzilotti, Serenella

    Resveratrol (3,5,4′-trihydroxystilbene) (RSV), a polyphenol widely present in plants, exerts a neuroprotective function in several neurological conditions; it is an activator of class III histone deacetylase sirtuin1 (SIRT1), a crucial regulator in the pathophysiology of neurodegenerative diseases. By contrast, the RE1-silencing transcription factor (REST) is involved in the neurotoxic effects following exposure to polychlorinated biphenyl (PCB) mixture A1254. The present study investigated the effects of RSV-induced activation of SIRT1 on REST expression in SH-SY5Y cells. Further, we investigated the possible relationship between the non-dioxin-like (NDL) PCB-95 and REST through SIRT1 to regulate neuronal death in rat cortical neurons. Our resultsmore » revealed that RSV significantly decreased REST gene and protein levels in a dose- and time-dependent manner. Interestingly, overexpression of SIRT1 reduced REST expression, whereas EX-527, an inhibitor of SIRT1, increased REST expression and blocked RSV-induced REST downregulation. These results suggest that RSV downregulates REST through SIRT1. In addition, RSV enhanced activator protein 1 (AP-1) transcription factor c-Jun expression and its binding to the REST promoter gene. Indeed, c-Jun knockdown reverted RSV-induced REST downregulation. Intriguingly, in SH-SY5Y cells and rat cortical neurons the NDL PCB-95 induced necrotic cell death in a concentration-dependent manner by increasing REST mRNA and protein expression. In addition, SIRT1 knockdown blocked RSV-induced neuroprotection in rat cortical neurons treated with PCB-95. Collectively, these results indicate that RSV via SIRT1 activates c-Jun, thereby reducing REST expression in SH-SY5Y cells under physiological conditions and blocks PCB-95-induced neuronal cell death by activating the same SIRT1/c-Jun/REST pathway. - Highlights: • Resveratrol via SIRT1/c-Jun downregulates REST mRNA and protein in SH-SY5Y cells. • Non-dioxin-like (NDL) PCB-95 is cytotoxic to SH-SY5Y cells and cortical neurons. • PCB-95-induced cytotoxicity is mediated by REST. • PCB-95-induced cell death is inhibited by resveratrol.« less

  5. BRCA1-IRIS regulates cyclin D1 expression in breast cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakuci, Enkeleda; Mahner, Sven; DiRenzo, James

    2006-10-01

    The regulator of cell cycle progression, cyclin D1, is up-regulated in breast cancer cells; its expression is, in part, dependent on ER{alpha} signaling. However, many ER{alpha}-negative tumors and tumor cell lines (e.g., SKBR3) also show over-expression of cyclin D1. This suggests that, in addition to ER{alpha} signaling, cyclin D1 expression is under the control of other signaling pathways; these pathways may even be over-expressed in the ER{alpha}-negative cells. We previously noticed that both ER{alpha}-positive and -negative cell lines over-express BRCA1-IRIS mRNA and protein. Furthermore, the level of over-expression of BRCA1-IRIS in ER{alpha}-negative cell lines even exceeded its over-expression level inmore » ER{alpha}-positive cell lines. In this study, we show that: (1) BRCA1-IRIS forms complex with two of the nuclear receptor co-activators, namely, SRC1 and SRC3 (AIB1) in an ER{alpha}-independent manner. (2) BRCA1-IRIS alone, or in connection with co-activators, is recruited to the cyclin D1 promoter through its binding to c-Jun/AP1 complex; this binding activates the cyclin D1 expression. (3) Over-expression of BRCA1-IRIS in breast cells over-activates JNK/c-Jun; this leads to the induction of cyclin D1 expression and cellular proliferation. (4) BRCA1-IRIS activation of JNK/c-Jun/AP1 appears to account for this, because in cells that were depleted from BRCA1-IRIS, JNK remained inactive. However, depletion of SRC1 or SRC3 instead reduced c-Jun expression. Our data suggest that this novel signaling pathway links BRCA1-IRIS to cellular proliferation through c-Jun/AP1 nuclear pathway; finally, this culminates in the increased expression of the cyclin D1 gene.« less

  6. [Expression of c-jun protein after experimental rat brain concussion].

    PubMed

    Wang, Feng; Li, Yong-hong

    2010-02-01

    To observe e-jun protein expression after rat brain concussion and explore the forensic pathologic markers following brain concussion. Fifty-five rats were randomly divided into brain concussion group and control group. The expression of c-jun protein was observed by immunohistochemistry. There were weak positive expression of c-jun protein in control group. In brain concussion group, however, some neutrons showed positive expression of c-jun protein at 15 min after brain concussion, and reach to the peak at 3 h after brain concussion. The research results suggest that detection of c-jun protein could be a marker to determine brain concussion and estimate injury time after brain concussion.

  7. Cyclophosphamide Alters the Gene Expression Profile in Patients Treated with High Doses Prior to Stem Cell Transplantation

    PubMed Central

    El-Serafi, Ibrahim; Abedi-Valugerdi, Manuchehr; Potácová, Zuzana; Afsharian, Parvaneh; Mattsson, Jonas; Moshfegh, Ali; Hassan, Moustapha

    2014-01-01

    Background Hematopoietic stem cell transplantation is a curative treatment for several haematological malignancies. However, treatment related morbidity and mortality still is a limiting factor. Cyclophosphamide is widely used in condition regimens either in combination with other chemotherapy or with total body irradiation. Methods We present the gene expression profile during cyclophosphamide treatment in 11 patients conditioned with cyclophosphamide for 2 days followed by total body irradiation prior to hematopoietic stem cell transplantation. 299 genes were identified as specific for cyclophosphamide treatment and were arranged into 4 clusters highly down-regulated genes, highly up-regulated genes, early up-regulated but later normalized genes and moderately up-regulated genes. Results Cyclophosphamide treatment down-regulated expression of several genes mapped to immune/autoimmune activation and graft rejection including CD3, CD28, CTLA4, MHC II, PRF1, GZMB and IL-2R, and up-regulated immune-related receptor genes, e.g. IL1R2, IL18R1, and FLT3. Moreover, a high and significant expression of ANGPTL1 and c-JUN genes was observed independent of cyclophosphamide treatment. Conclusion This is the first investigation to provide significant information about alterations in gene expression following cyclophosphamide treatment that may increase our understanding of the cyclophosphamide mechanism of action and hence, in part, avoid its toxicity. Furthermore, ANGPTL1 remained highly expressed throughout the treatment and, in contrast to several other alkylating agents, cyclophosphamide did not influence c-JUN expression. PMID:24466173

  8. Cyclophosphamide alters the gene expression profile in patients treated with high doses prior to stem cell transplantation.

    PubMed

    El-Serafi, Ibrahim; Abedi-Valugerdi, Manuchehr; Potácová, Zuzana; Afsharian, Parvaneh; Mattsson, Jonas; Moshfegh, Ali; Hassan, Moustapha

    2014-01-01

    Hematopoietic stem cell transplantation is a curative treatment for several haematological malignancies. However, treatment related morbidity and mortality still is a limiting factor. Cyclophosphamide is widely used in condition regimens either in combination with other chemotherapy or with total body irradiation. We present the gene expression profile during cyclophosphamide treatment in 11 patients conditioned with cyclophosphamide for 2 days followed by total body irradiation prior to hematopoietic stem cell transplantation. 299 genes were identified as specific for cyclophosphamide treatment and were arranged into 4 clusters highly down-regulated genes, highly up-regulated genes, early up-regulated but later normalized genes and moderately up-regulated genes. Cyclophosphamide treatment down-regulated expression of several genes mapped to immune/autoimmune activation and graft rejection including CD3, CD28, CTLA4, MHC II, PRF1, GZMB and IL-2R, and up-regulated immune-related receptor genes, e.g. IL1R2, IL18R1, and FLT3. Moreover, a high and significant expression of ANGPTL1 and c-JUN genes was observed independent of cyclophosphamide treatment. This is the first investigation to provide significant information about alterations in gene expression following cyclophosphamide treatment that may increase our understanding of the cyclophosphamide mechanism of action and hence, in part, avoid its toxicity. Furthermore, ANGPTL1 remained highly expressed throughout the treatment and, in contrast to several other alkylating agents, cyclophosphamide did not influence c-JUN expression.

  9. Bex2 regulates cell proliferation and apoptosis in malignant glioma cells via the c-Jun NH2-terminal kinase pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xiuping, E-mail: xpzhou@xzmc.edu.cn; Lab of Neurosurgery, Xuzhou Medical College, Xuzhou, Jiangsu; Key Laboratory of Brain Disease Biology, Affiliated Hospital of Xuzhou Medical College, Jiangsu

    Highlights: Black-Right-Pointing-Pointer The expression levels of Bex2 markedly increased in glioma tissues. Black-Right-Pointing-Pointer Bex2 over-expression promoted cell proliferation, while its down-regulation inhibited cell growth. Black-Right-Pointing-Pointer Bex2 down-regulation promoted cell apoptosis via JNK/c-Jun signaling pathway. -- Abstract: The function of Bex2, a member of the Brain Expressed X-linked gene family, in glioma is controversial and its mechanism is largely unknown. We report here that Bex2 regulates cell proliferation and apoptosis in malignant glioma cells via the c-Jun NH2-terminal kinase (JNK) pathway. The expression level of Bex2 is markedly increased in glioma tissues. We observed that Bex2 over-expression promotes cell proliferation, whilemore » down-regulation of Bex2 inhibits cell growth. Furthermore, Bex2 down-regulation promotes cell apoptosis and activates the JNK pathway; these effects were abolished by administration of the JNK specific inhibitor, (SP600125). Thus, Bex2 may be an important player during the development of glioma.« less

  10. Effect of deoxyribozymes targeting c-Jun on solid tumor growth and angiogenesis in rodents.

    PubMed

    Zhang, Guishui; Dass, Crispin R; Sumithran, Eric; Di Girolamo, Nick; Sun, Lun-Quan; Khachigian, Levon M

    2004-05-05

    The basic region-leucine zipper protein c-Jun has been linked to cell proliferation, transformation, and apoptosis. However, a direct role for c-Jun in angiogenesis has not been shown. We used human microvascular endothelial cells (HMEC-1) transfected with a DNAzyme targeting the c-Jun mRNA (Dz13), related oligonucleotides, or vehicle in in vitro models of microvascular endothelial cell proliferation, migration, chemoinvasion, and tubule formation, a rat model of corneal neovascularization, and a mouse model of solid tumor growth and vascular endothelial growth factor (VEGF)-induced angiogenesis. All statistical tests were two-sided. Compared with mock-transfected cells, HMEC-1 cells transfected with Dz13 expressed less c-Jun protein and possessed lower DNA-binding activity. Dz13 blocked endothelial cell proliferation, migration, chemoinvasion, and tubule formation. Dz13 inhibited the endothelial cell expression and proteolytic activity of MMP-2, a c-Jun-dependent gene. Dz13 inhibited VEGF-induced neovascularization in the rat cornea compared with vehicle control (Dz13 versus vehicle: 4.0 neovessels versus 30.7 neovessels, difference = 26.7 neovessels; P =.004; area occupied by new blood vessels for Dz13 versus vehicle: 0.35 mm2 versus 1.52 mm2, difference = 1.17 mm2; P =.005) as well as solid melanoma growth in mice (Dz13 versus vehicle at 14 days: 108 mm3 versus 283 mm3, difference = 175 mm3; P =.006) with greatly reduced vascular density (Dz13 versus vehicle: 30% versus 100%, difference = 70%; P<.001). DNAzymes targeting c-Jun may have therapeutic potential as inhibitors of tumor angiogenesis and growth.

  11. Resveratrol via sirtuin-1 downregulates RE1-silencing transcription factor (REST) expression preventing PCB-95-induced neuronal cell death.

    PubMed

    Guida, Natascia; Laudati, Giusy; Anzilotti, Serenella; Secondo, Agnese; Montuori, Paolo; Di Renzo, Gianfranco; Canzoniero, Lorella M T; Formisano, Luigi

    2015-11-01

    Resveratrol (3,5,4'-trihydroxystilbene) (RSV), a polyphenol widely present in plants, exerts a neuroprotective function in several neurological conditions; it is an activator of class III histone deacetylase sirtuin1 (SIRT1), a crucial regulator in the pathophysiology of neurodegenerative diseases. By contrast, the RE1-silencing transcription factor (REST) is involved in the neurotoxic effects following exposure to polychlorinated biphenyl (PCB) mixture A1254. The present study investigated the effects of RSV-induced activation of SIRT1 on REST expression in SH-SY5Y cells. Further, we investigated the possible relationship between the non-dioxin-like (NDL) PCB-95 and REST through SIRT1 to regulate neuronal death in rat cortical neurons. Our results revealed that RSV significantly decreased REST gene and protein levels in a dose- and time-dependent manner. Interestingly, overexpression of SIRT1 reduced REST expression, whereas EX-527, an inhibitor of SIRT1, increased REST expression and blocked RSV-induced REST downregulation. These results suggest that RSV downregulates REST through SIRT1. In addition, RSV enhanced activator protein 1 (AP-1) transcription factor c-Jun expression and its binding to the REST promoter gene. Indeed, c-Jun knockdown reverted RSV-induced REST downregulation. Intriguingly, in SH-SY5Y cells and rat cortical neurons the NDL PCB-95 induced necrotic cell death in a concentration-dependent manner by increasing REST mRNA and protein expression. In addition, SIRT1 knockdown blocked RSV-induced neuroprotection in rat cortical neurons treated with PCB-95. Collectively, these results indicate that RSV via SIRT1 activates c-Jun, thereby reducing REST expression in SH-SY5Y cells under physiological conditions and blocks PCB-95-induced neuronal cell death by activating the same SIRT1/c-Jun/REST pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. In vivo studies of altered expression patterns of p53 and proliferative control genes in chronic vitamin A deficiency and hypervitaminosis.

    PubMed

    Borrás, Elisa; Zaragozá, Rosa; Morante, María; García, Concha; Gimeno, Amparo; López-Rodas, Gerardo; Barber, Teresa; Miralles, Vicente J; Viña, Juan R; Torres, Luis

    2003-04-01

    Several clinical trials have revealed that individuals who were given beta-carotene and vitamin A did not have a reduced risk of cancer compared to those given placebo; rather, vitamin A could actually have caused an adverse effect in the lungs of smokers [Omenn, G.S., Goodman, G.E., Thornquist, M.D., Balmes, J., Cullen, M.R., Glass, A., Keogh, J.P., Meyskens, F.L., Valanis, B., Williams, J.H., Barnhart, S. & Hammar, S. N. Engl. J. Med (1996) 334, 1150-1155; Hennekens, C.H., Buring, J.E., Manson, J.E., Stampfer, M., Rosner, B., Cook, N.R., Belanger, C., LaMotte, F., Gaziano, J.M., Ridker, P.M., Willet, W. & Peto, R. (1996) N. Engl. J. Med. 334, 1145-1149]. Using differential display techniques, an initial survey using rats showed that liver RNA expression of c-H-Ras was decreased and p53 increased in rats with chronic vitamin A deficiency. These findings prompted us to evaluate the expression of c-Jun, p53 and p21WAF1/CIF1 (by RT-PCR) in liver and lung of rats. This study showed that c-Jun levels were lower and that p53 and p21WAF1/CIF1 levels were higher in chronic vitamin A deficiency. Vitamin A supplementation increased expression of c-Jun, while decreasing the expression of p53 and p21WAF1/CIF1. Western-blot analysis demonstrated that c-Jun and p53 showed a similar pattern to that found in the RT-PCR analyses. Binding of retinoic acid receptors (RAR) to the c-Jun promoter was decreased in chronic vitamin A deficiency when compared to control hepatocytes, but contrasting results were found with acute vitamin A supplementated cells. DNA fragmentation and cytochrome c release from mitochondria were analyzed and no changes were found. In lung, an increase in the expression of c-Jun produced a significant increase in cyclin D1 expression. These results may explain, at least in part, the conflicting results found in patients supplemented with vitamin A and illustrate that the changes are not restricted to lung. Furthermore, these results suggest that pharmacological vitamin A supplementation may increase the risk of adverse effects including the risk of oncogenesis.

  13. C-Jun expression in lichen planus, psoriasis, and cutaneous squamous cell carcinoma, an immunohistochemical study.

    PubMed

    Abdou, Asmaa Gaber; Marae, Alaa Hassan; Shoeib, Mohammed; Dawood, Ghada; Abouelfath, Enas

    2018-01-01

    The AP-1 transcription factor complex is a key player in regulating inflammatory processes, cell proliferation, differentiation, and cell transformation. The aim of the present study is to investigate C-Jun (one of AP-1complex) expression and its proliferative role in skin samples of lichen planus, psoriasis as common inflammatory skin diseases and squamous cell carcinoma using immunohistochemical method. The present study was carried out on skin biopsies of 15 psoriatic patients, 15 lichen planus patients, 15 SCC, and 15 normal skin biopsies. Nuclear expression of C-Jun was detected in basal and few suprabasal layers of epidermis of normal skin. C-Jun was expressed in the whole epidermal layers of both psoriasis (14/15) and lichen planus (15/15) in addition to its expression in lymphocytic infiltrate in the latter in about half of cases (8/15). C-Jun was also expressed in 93.3% (14/15) of SCC in a percentage lower than that of psoriasis, lichen planus, and normal skin. The percentage of C-Jun expression in SCC was significantly associated with an early stage (p = 0.000), free surgical margins (p = 0.022), and small tumour size (p = 0.003). The marked reduction of C-Jun in SCC in comparison to normal skin and inflammatory skin dermatoses may refer to its tumour suppressor activity. C-Jun expression in SCC carries favourable prognosis. Absence of significant association between C-Jun and Ki-67 either in SCC or inflammatory skin diseases indicates that it does not affect proliferative capacity of cells.

  14. Osteoblasts are target cells for transformation in c-fos transgenic mice

    PubMed Central

    1993-01-01

    We have generated transgenic mice expressing the proto-oncogene c-fos from an H-2Kb class I MHC promoter as a tool to identify and isolate cell populations which are sensitive to altered levels of Fos protein. All homozygous H2-c-fosLTR mice develop osteosarcomas with a short latency period. This phenotype is specific for c-fos as transgenic mice expressing the fos- and jun-related genes, fosB and c-jun, from the same regulatory elements do not develop any pathology despite high expression in bone tissues. The c-fos transgene is not expressed during embryogenesis but is expressed after birth in bone tissues before the onset of tumor formation, specifically in putative preosteoblasts, bone- forming osteoblasts, osteocytes, as well as in osteoblastic cells present within the tumors. Primary and clonal cell lines established from c-fos-induced tumors expressed high levels of exogenous c-fos as well as the bone cell marker genes, type I collagen, alkaline phosphatase, and osteopontin/2ar. In contrast, osteocalcin/BGP expression was either low or absent. All cell lines were tumorigenic in vivo, some of which gave rise to osteosarcomas, expressing exogenous c- fos mRNA, and Fos protein in osteoblastic cells. Detailed analysis of one osteogenic cell line, P1, and several P1-derived clonal cell lines indicated that bone-forming osteoblastic cells were transformed by Fos. The regulation of osteocalcin/BGP and alkaline phosphatase gene expression by 1,25-dihydroxyvitamin D3 was abrogated in P1-derived clonal cells, whereas glucocorticoid responsiveness was unaltered. These results suggest that high levels of Fos perturb the normal growth control of osteoblastic cells and exert specific effects on the expression of the osteoblast phenotype. PMID:8335693

  15. Pentraxin-2 suppresses c-Jun/AP-1 signaling to inhibit progressive fibrotic disease

    PubMed Central

    Nakagawa, Naoki; Gomez, Ivan G.; Johnson, Bryce G.; Kameoka, Sei; Jack, Richard M.; Lupher, Mark L.; Gharib, Sina A.; Duffield, Jeremy S.

    2016-01-01

    Pentraxin-2 (PTX-2), also known as serum amyloid P component (SAP/APCS), is a constitutive, antiinflammatory, innate immune plasma protein whose circulating level is decreased in chronic human fibrotic diseases. Here we show that recombinant human PTX-2 (rhPTX-2) retards progression of chronic kidney disease in Col4a3 mutant mice with Alport syndrome, reducing blood markers of kidney failure, enhancing lifespan by 20%, and improving histological signs of disease. Exogenously delivered rhPTX-2 was detected in macrophages but also in tubular epithelial cells, where it counteracted macrophage activation and was cytoprotective for the epithelium. Computational analysis of genes regulated by rhPTX-2 identified the transcriptional regulator c-Jun along with its activator protein–1 (AP-1) binding partners as a central target for the function of rhPTX-2. Accordingly, PTX-2 attenuates c-Jun and AP-1 activity, and reduces expression of AP-1–dependent inflammatory genes in both monocytes and epithelium. Our studies therefore identify rhPTX-2 as a potential therapy for chronic fibrotic disease of the kidney and an important inhibitor of pathological c-Jun signaling in this setting. PMID:27942582

  16. Inhibition of integrin-linked kinase expression by emodin through crosstalk of AMPKα and ERK1/2 signaling and reciprocal interplay of Sp1 and c-Jun.

    PubMed

    Tang, Qing; Zhao, Shunyu; Wu, Jingjing; Zheng, Fang; Yang, LiJun; Hu, JingHeng; Hann, Swei Sunny

    2015-07-01

    Despite the anti-cancer effect of emodin observed in several cancers, the underlying molecular mechanism remains to be elucidated. In this study, we showed that emodin-inhibited NSCLC cell growth and increased phosphorylation of AMPKα and ERK1/2. In addition, emodin-inhibited ILK protein expression. The overexpression of ILK reversed the effect of emodin on cell growth inhibition. Furthermore, the blockade of AMPK by compound C abrogated, while metformin, an activator of AMPK, strengthened the effect of emodin on the inhibition of ILK expression. Interestingly, the inhibitor of MAPK extracellular signaling-regulated kinase (ERK) kinase (MEK)/ERK1/2 (PD98059) attenuated emodin-induced phosphorylation of AMPKα. Moreover, emodin reduced the protein expression of Sp1 and AP-1 subunit c-Jun. Exogenous expression of Sp1 and c-Jun diminished emodin-reduced ILK protein expression. Emodin suppressed ILK promoter activity, which was not observed in cells overexpression of Sp1 and treated with compound C. Intriguingly, exogenous expression of c-Jun overcame the emodin-inhibited Sp1 protein expression. Collectively, our results demonstrate that emodin inhibits ILK expression through AMPKα-mediated reduction of Sp1 and c-Jun. Metformin enhances the effects of emodin. Exogenous expression of Sp1 and c-Jun resists emodin-inhibited ILK promoter activity and protein expression. In addition, the overexpression of c-Jun diminishes emodin-induced AMPKα signaling. Thus, the crosstalk of AMPKα and MEK/ERK1/2 signaling and the reciprocal interaction between Sp1 and c-Jun proteins contribute to the overall responses of emodin. This novel signaling axis may be a therapeutic potential for prevention and treatment of NSCLC. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Wogonin but not Nor-wogonin inhibits lipopolysaccharide and lipoteichoic acid-induced iNOS gene expression and NO production in macrophages.

    PubMed

    Huang, Guan-Cheng; Chow, Jyh-Ming; Shen, Shing-Chuan; Yang, Liang-Yo; Lin, Cheng-Wei; Chen, Yen-Chou

    2007-08-01

    Wogonin (Wog; 5,7-dihydroxy-8-methoxy flavone) has been shown to effectively inhibit lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS) gene expression and nitric oxide production in our previous study. In the present study, we found that Nor-wogonin (N-Wog; 5,7,8-trihydroxyl flavone), a structural analogue of Wog with an OH substitution at C8, performed different effect on LPS- or lipoteichoic acid (LTA)-induced iNOS gene expression and nitric oxide (NO) production in macrophages. Wog, but not N-Wog, significantly inhibits LPS- or LTA-induced NO production through suppressing iNOS gene expression at both protein and mRNA without affecting NO donor sodium nitroprusside-induced NO production, NOS enzyme activity, and cells viability. Activation of JNKs (not ERKs) via phosphorylation induction, and an increase in c-Jun (not c-Fos) protein expression were involved in LPS- and LTA-treated RAW264.7 cells, and those events were blocked by Wog, but not N-Wog, addition. Furthermore, 5,7-diOH flavone, but not 5-OH flavone, 7-OH flavone, 5-OH-7-OCH(3) flavone, significantly inhibits LPS-induced iNOS protein expression and NO production, and 7,8-diOCH(3) flavone performs more effective inhibitory activity on LPS-induced NO production and iNOS protein expression than 7-OCH(3)-8-OH flavone. These data suggest that OHs at both C5 and C7 are essential for NO inhibition of flavonoids, and OCH(3) at C8 may contribute to this activity, and suppression of JNKs-c-Jun activation is involved.

  18. Transcriptional profiling reveals regulated genes in the hippocampus during memory formation

    NASA Technical Reports Server (NTRS)

    Donahue, Christine P.; Jensen, Roderick V.; Ochiishi, Tomoyo; Eisenstein, Ingrid; Zhao, Mingrui; Shors, Tracey; Kosik, Kenneth S.

    2002-01-01

    Transcriptional profiling (TP) offers a powerful approach to identify genes activated during memory formation and, by inference, the molecular pathways involved. Trace eyeblink conditioning is well suited for the study of regional gene expression because it requires the hippocampus, whereas the highly parallel task, delay conditioning, does not. First, we determined when gene expression was most regulated during trace conditioning. Rats were exposed to 200 trials per day of paired and unpaired stimuli each day for 4 days. Changes in gene expression were most apparent 24 h after exposure to 200 trials. Therefore, we profiled gene expression in the hippocampus 24 h after 200 trials of trace eyeblink conditioning, on multiple arrays using additional animals. Of 1,186 genes on the filter array, seven genes met the statistical criteria and were also validated by real-time polymerase chain reaction. These genes were growth hormone (GH), c-kit receptor tyrosine kinase (c-kit), glutamate receptor, metabotropic 5 (mGluR5), nerve growth factor-beta (NGF-beta), Jun oncogene (c-Jun), transmembrane receptor Unc5H1 (UNC5H1), and transmembrane receptor Unc5H2 (UNC5H2). All these genes, except for GH, were downregulated in response to trace conditioning. GH was upregulated; therefore, we also validated the downregulation of the GH inhibitor, somatostatin (SST), even though it just failed to meet criteria on the arrays. By during situ hybridization, GH was expressed throughout the cell layers of the hippocampus in response to trace conditioning. None of the genes regulated in trace eyeblink conditioning were similarly affected by delay conditioning, a task that does not require the hippocampus. These findings demonstrate that transcriptional profiling can exhibit a repertoire of genes sensitive to the formation of hippocampal-dependent associative memories.

  19. Orphan nuclear receptor Nur77 is a novel negative regulator of endothelin-1 expression in vascular endothelial cells.

    PubMed

    Qin, Qing; Chen, Ming; Yi, Bing; You, Xiaohua; Yang, Ping; Sun, Jianxin

    2014-12-01

    Endothelin-1 (ET-1) produced by vascular endothelial cells plays essential roles in the regulation of vascular tone and development of cardiovascular diseases. The objective of this study is to identify novel regulators implicated in the regulation of ET-1 expression in vascular endothelial cells (ECs). By using quantitative real-time PCR (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA), we show that either ectopic expression of orphan nuclear receptor Nur77 or pharmacological activation of Nur77 by 6-mercaptopurine (6-MP) substantially inhibits ET-1 expression in human umbilical vein endothelial cells (HUVECs), under both basal and thrombin-stimulated conditions. Furthermore, thrombin-stimulated ET expression is significantly augmented in both Nur77 knockdown ECs and aort from Nur77 knockout mice, suggesting that Nur77 is a negative regulator of ET-1 expression. Inhibition of ET-1 expression by Nur77 occurs at gene transcriptional levels, since Nur77 potently inhibits ET-1 promoter activity, without affecting ET-1 mRNA stability. As shown in electrophoretic mobility shift assay (EMSA), Nur77 overexpression markedly inhibits both basal and thrombin-stimulated transcriptional activity of AP-1. Mechanistically, we demonstrate that Nur77 specially interacts with c-Jun and inhibits AP-1 dependent c-Jun promoter activity, which leads to a decreased expression of c-Jun, a critical component involved in both AP-1 transcriptional activity and ET-1 expression in ECs. These findings demonstrate that Nur77 is a novel negative regulator of ET-1 expression in vascular ECs through an inhibitory interaction with the c-Jun/AP-1 pathway. Activation of Nur77 may represent a useful therapeutic strategy for preventing certain cardiovascular diseases, such as atherosclerosis and pulmonary artery hypertension. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Functional cooperation between HIF-1α and c-Jun in mediating primary and acquired resistance to gefitinib in NSCLC cells with activating mutation of EGFR.

    PubMed

    Meng, Shuyan; Wang, Guorui; Lu, Yang; Fan, Zhen

    2018-07-01

    Hypoxia-inducible factor 1 (HIF-1) and activator protein 1 (AP-1) are important transcription factors regulating expression of genes involved in cell survival. HIF-1α and c-Jun are key components of HIF-1 and AP-1, respectively, and are regulated by epidermal growth factor receptor (EGFR)-mediated cell signaling and tumor microenvironmental cues. The roles of HIF-1α and c-Jun in development of resistance to EGFR tyrosine kinase inhibitor (TKI) in non-small cell lung cancer (NSCLC) with activating mutation of EGFR have not been explored. In this study, we investigated the roles of HIF-1α and c-Jun in mediating primary and acquired resistance to gefitinib in NSCLC cells with activating mutation of EGFR. Changes in HIF-1α protein and in total and phosphorylated c-Jun levels in relation to changes in total and phosphorylated EGFR levels before and after gefitinib treatment were measured using Western blot analysis in NSCLC cells sensitive or resistant to gefitinib. The impact of overexpression of a constitutively expressed HIF-1α (HIF-1α/ΔODD) or a constitutively active c-Jun upstream regulator (SEK1 S220E/T224D mutant) on cell response to gefitinib was also examined. The effect of pharmacological inhibition of SEK1-JNK-c-Jun pathway on cell response to gefitinib was evaluated. Downregulation of HIF-1α and total and phosphorylated c-Jun levels correlated with cell inhibitory response to gefitinib better than decrease in phosphorylated EGFR did in NSCLC cells with intrinsic or acquired resistance to gefitinib. Overexpression of HIF-1α/ΔODD or SEK1 S220E/T224D mutant conferred resistance to gefitinib. There exists a positive feed-forward regulation loop between HIF-1 and c-Jun. The JNK inhibitor SP600125 sensitized gefitinib-resistant NSCLC cells to gefitinib. HIF-1α and c-Jun functionally cooperate in development of resistance to gefitinib in NSCLC cells. The translational value of inhibiting HIF-1α/c-Jun cooperation in overcoming resistance to EGFR TKI treatment of NSCLC cells with activating mutation of EGFR deserves further investigation. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. The role of MAP kinases in the induction of iNOS expression in neutrophils exposed to NDMA: the involvement transcription factors.

    PubMed

    Ratajczak-Wrona, W; Jablonska, E; Garley, M; Jablonski, J; Radziwon, P; Iwaniuk, A

    2013-01-01

    The role of MAP kinases in the activation of AP-1 (c-Jun, c-Fos) and NF-κB p65 engaged in the regulation of iNOS expression in human neutrophils (PMNs) exposed to N-nitrosodimethylamine (NDMA) was analyzed in the study. The study included a group of 20 healthy individuals. Isolated human PMN were incubated in the presence of NDMA. Selective MAP kinases inhibitors were used. The expression of proteins in the cytoplasmic and nuclear fractions was assessed using Western blot method. The results show that NDMA intensifies iNOS, c-Jun, NF-κB p65 and IκB-α expression in the analyzed PMNs. The blocking of the p38 pathway led to lower iNOS expression, and higher expression of c-Jun and c-Fos in the cytoplasmic fraction, and also lower c-Jun expression in the nuclear fraction of PMNs exposed to NDMA. A decrease in iNOS expression in the cytoplasmic fraction, and also c-Jun in both fractions of the examined cells, was observed as a result of JNK pathway inhibition. The blocking of the ERK5 pathway led to higher iNOS, c-Jun and c-Fos expression in the cytoplasmic fraction, and higher c-Jun expression in the nuclear fraction of PMNs exposed to NDMA. The study also demonstrated that blocking of the p38 and JNK pathways resulted in higher expression of NF-κB p65 and IκB-α in the cytoplasmic fraction and their lower expression in the nuclear fraction of these cells. Our data indicate the role of MAP kinases p38 and JNK in the activation of c-Jun and NF-κB p65 transcription factors engaged in the regulation of iNOS expression in human neutrophils exposed to NDMA. However ERK5 kinase is not involved in the regulation of iNOS and NO production by those cells.

  2. Expression levels of transcription factors c-Fos and c-Jun and transmembrane protein HAb18G/CD147 in urothelial carcinoma of the bladder.

    PubMed

    Huhe, Muren; Liu, Shuangshuang; Zhang, Yang; Zhang, Zheng; Chen, Zhinan

    2017-05-01

    The aim of the present study was to investigate the prognostic significance of the expression of transcription factors, c-Fos, c-Jun and transmembrane protein CD147, in urothelial carcinoma of the bladder (UCB). The current study investigated the clinical significance of these factors in the development, progression and survival analysis of UCB. Immunohistochemistry was employed to analyze c‑Fos, c‑Jun and CD147 expression in 41 UCB cases and 34 non‑cancerous human bladder tissues. These results were scored in a semi‑quantitative manner based on the intensity and percentage of tumor cells that presented immunoreactivity. Protein levels of CD147, c‑Fos and c‑Jun expression were upregulated in 22 (53.7%), 10 (24.4%) and 9 (22.0%) UCB cases, respectively. High levels of c‑Jun correlated with the AJCC cancer staging manual (7th edition; P=0.038). Univariate analysis revealed that upregulated CD147 (P=0.038) or c‑Jun (P=0.008) was associated with poor overall survival (OS), respectively. Further analysis revealed that either CD147‑c‑Fos‑c‑Jun co‑expression (P=0.004), or CD147‑c‑Jun co‑expression (P=0.037) and c‑Fos‑c‑Jun co‑expression (P<0.001) were associated with poor OS. Multivariate analysis suggested that either upregulation of CD147, c‑Jun or c‑Fos were independent risk indicators for death in UCB patients. Increased expression of c‑Jun or CD147, as well as co‑expression of CD147‑c‑Jun, c‑Jun‑c‑Fos or CD147‑c‑Jun‑c‑Fos has prognostic significance for UCB patients. Therefore, high CD147 and c‑Jun expression may serve roles in tumor progression and may be diagnostic and therapeutic targets in UCB whether alone or in combination.

  3. delta opioid receptors stimulate Akt-dependent phosphorylation of c-jun in T cells.

    PubMed

    Shahabi, Nahid A; McAllen, Kathy; Sharp, Burt M

    2006-02-01

    Activation of naive T cells markedly up-regulates the expression of delta opioid receptors (DORs). These receptors are bound by DOR peptides released by T cells, modulating T cell functions such as interleukin-2 production, cellular proliferation, and chemotaxis. Previous studies have shown that DOR agonists [e.g., [D-Ala(2)-D-Leu(5)]-enkephalin (DADLE)] modulate T cell antigen receptor signaling through mitogen-activated protein kinases (MAPKs; i.e., extracellular signal-regulated kinases 1 and 2) and that DORs directly induce phosphorylation of activating transcription factor-2 (implicated in cytokine gene transcription) and its association with the MAPK c-jun1 NH(2)-terminal kinase (JNK). Such observations suggest that DORs may induce the phosphorylation of c-jun. These experiments were performed to test this hypothesis and determine the potential roles of phosphoinositide 3-kinase (PI3K) and Akt (protein kinase B). DADLE (10(-10) to 10(-6) M) dose-dependently induced c-jun phosphorylation. This was blocked by pertussis toxin and the DOR-specific antagonist naltindole. Fluorescence flow cytometry showed that DADLE significantly stimulated c-jun phosphorylation by T cells. DADLE stimulated phosphorylation of membrane-associated Akt; wortmannin and LY294002 ([2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one]), specific inhibitors of PI3K, abolished the DADLE-induced phosphorylation of c-jun. Finally, inhibitors of Akt and JNK blocked DADLE-induced phosphorylation of c-jun. Thus, activated DORs directly stimulate c-jun phosphorylation through a PI3K-dependent pathway in T cells, apparently involving Akt. This implies that DORs activate JNK through a novel pathway dependent on PI3K and Akt, thereby regulating the function of activator protein-1 transcription complexes containing c-jun and other transcription partners.

  4. β3-adrenergic receptor activation induces TGFβ1 expression in cardiomyocytes via the PKG/JNK/c-Jun pathway.

    PubMed

    Xu, Zhongcheng; Wu, Jimin; Xin, Junzhou; Feng, Yenan; Hu, Guomin; Shen, Jing; Li, Mingzhe; Zhang, Youyi; Xiao, Han; Wang, Li

    2018-06-05

    In heart failure, the expression of cardiac β 3 -adrenergic receptors (β 3 -ARs) increases. However, the precise role of β 3 -AR signaling within cardiomyocytes remains unclear. Transforming growth factor β1 (TGFβ1) is a crucial cytokine mediating the cardiac remodeling that plays a causal role in the progression of heart failure. Here, we set out to determine the effect of β 3 -AR activation on TGFβ1 expression in rat cardiomyocytes and examine the underlying mechanism. The selective β 3 -AR agonist BRL37344 induced an increase in TGFβ1 expression and the phosphorylation of c-Jun N-terminal kinase (JNK) and c-Jun in β 3 -AR-overexpressing cardiomyocytes. Those effects of BRL37344 were suppressed by a β 3 -AR antagonist. Moreover, the inhibition of JNK and c-Jun activity by a JNK inhibitor and c-Jun siRNA blocked the increase in TGFβ1 expression upon β 3 -AR activation. A protein kinase G (PKG) inhibitor also attenuated β 3 -AR-agonist-induced TGFβ1 expression and the phosphorylation of JNK and c-Jun. In conclusion, the β 3 -AR activation in cardiomyocytes increases the expression of TGFβ1 via the PKG/JNK/c-Jun pathway. These results help us further understand the role of β 3 -AR signaling in heart failure. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Arsenic trioxide phosphorylates c-Fos to transactivate p21{sup WAF1/CIP1} expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Zimiao; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Huang, H.-S.

    2008-12-01

    An infamous poison, arsenic also has been used as a drug for nearly 2400 years; in recently years, arsenic has been effective in the treatment of acute promyelocytic leukemia. Increasing evidence suggests that opposite effects of arsenic trioxide (ATO) on tumors depend on its concentrations. For this reason, the mechanisms of action of the drug should be elucidated, and it should be used therapeutically only with extreme caution. Previously, we demonstrated the opposing effects of ERK1/2 and JNK on p21{sup WAF1/CIP1} (p21) expression in response to ATO in A431 cells. In addition, JNK phosphorylates c-Jun (Ser{sup 63/73}) to recruit TGIF/HDAC1more » to suppress p21 gene expression. Presently, we demonstrated that a high concentration of ATO sustains ERK1/2 phosphorylation, and increases c-Fos biosynthesis and stability, which enhances p21 gene expression. Using site-directed mutagenesis, a DNA affinity precipitation assay, and functional assays, we demonstrated that phosphorylation of the C-terminus of c-Fos (Thr{sup 232}, Thr{sup 325}, Thr{sup 331}, and Ser{sup 374}) plays an important role in its binding to the p21 promoter, and in conjunction with N-terminus phosphorylation of c-Fos (Ser{sup 70}) to transactivate p21 promoter expression. In conclusion, a high concentration of ATO can sustain ERK1/2 activation to enhance c-Fos expression, then dimerize with dephosphorylated c-Jun (Ser{sup 63/73}) and recruit p300/CBP to the Sp1 sites (- 84/- 64) to activate p21 gene expression in A431 cells.« less

  6. c-Jun and Hypoxia-Inducible Factor 1 Functionally Cooperate in Hypoxia-Induced Gene Transcription

    PubMed Central

    Alfranca, Arántzazu; Gutiérrez, M. Dolores; Vara, Alicia; Aragonés, Julián; Vidal, Felipe; Landázuri, Manuel O.

    2002-01-01

    Under low-oxygen conditions, cells develop an adaptive program that leads to the induction of several genes, which are transcriptionally regulated by hypoxia-inducible factor 1 (HIF-1). On the other hand, there are other factors which modulate the HIF-1-mediated induction of some genes by binding to cis-acting motifs present in their promoters. Here, we show that c-Jun functionally cooperates with HIF-1 transcriptional activity in different cell types. Interestingly, a dominant-negative mutant of c-Jun which lacks its transactivation domain partially inhibits HIF-1-mediated transcription. This cooperative effect is not due to an increase in the nuclear amount of the HIF-1α subunit, nor does it require direct binding of c-Jun to DNA. c-Jun and HIF-1α are able to associate in vivo but not in vitro, suggesting that this interaction involves the participation of additional proteins and/or a posttranslational modification of these factors. In this context, hypoxia induces phosphorylation of c-Jun at Ser63 in endothelial cells. This process is involved in its cooperative effect, since specific blockade of the JNK pathway and mutation of c-Jun at Ser63 and Ser73 impair its functional cooperation with HIF-1. The functional interplay between c-Jun and HIF-1 provides a novel insight into the regulation of some genes, such as the one for VEGF, which is a key regulator of tumor angiogenesis. PMID:11739718

  7. The activation of c-Jun NH2-terminal kinase is required for dihydroartemisinin-induced autophagy in pancreatic cancer cells

    PubMed Central

    2014-01-01

    Background c-Jun NH2-terminal kinases (JNKs) are strongly activated by a stressful cellular environment, such as chemotherapy and oxidative stress. Autophagy is a protein-degradation system in which double-membrane vacuoles called autophagosomes are formed. The autophagy-related gene Beclin 1 plays a key role in this process. We previously found that autophagy was induced by dihydroartemisinin (DHA) in pancreatic cancer cells. However, little is known about the complex relationship between ROS, JNK activation, autophagy induction, and Beclin 1 expression. Methods Cell viability and CCK-8 assays were carried out to determine the cell proliferation; small interfering RNAs (siRNAs) were used to knockdown c-Jun NH2-terminal kinases (JNK1/2) genes; western blot was performed to detect the protein expression of LC3, JNK, Beclin 1, caspase 3 and β-actin; production of intracellular ROS was analyzed using FACS flow cytometry; autophagy induction was confirmed by electron microscopy. Results In the present study, we explored the role of DHA and Beclin 1 expression in autophagy. DHA-treated cells showed autophagy characteristics, and DHA also activated the JNK pathway and up-regulated the expression of Beclin 1. Conversely, blocking JNK signaling inhibited Beclin 1 up-regulation. JNK activation was found to primarily depend on reactive oxygen species (ROS) resulting from the DHA treatment. Moreover, JNK pathway inhibition and Beclin 1 silencing prevented the induction of DHA-induced autophagy. Conclusions These results suggest that the induction of autophagy by DHA is required for JNK-mediated Beclin 1 expression. PMID:24438216

  8. K+ channel openers prevent global ischemia-induced expression of c-fos, c-jun, heat shock protein, and amyloid beta-protein precursor genes and neuronal death in rat hippocampus.

    PubMed Central

    Heurteaux, C; Bertaina, V; Widmann, C; Lazdunski, M

    1993-01-01

    Transient global forebrain ischemia induces in rat brain a large increase of expression of the immediate early genes c-fos and c-jun and of the mRNAs for the 70-kDa heat-shock protein and for the form of the amyloid beta-protein precursor including the Kunitz-type protease-inhibitor domain. At 24 hr after ischemia, this increased expression is particularly observed in regions that are vulnerable to the deleterious effects of ischemia, such as pyramidal cells of the CA1 field in the hippocampus. In an attempt to find conditions which prevent the deleterious effects of ischemia, representatives of three different classes of K+ channel openers, (-)-cromakalim, nicorandil, and pinacidil, were administered both before ischemia and during the reperfusion period. This treatment totally blocked the ischemia-induced expression of the different genes. In addition it markedly protected neuronal cells against degeneration. The mechanism of the neuroprotective effects involves the opening of ATP-sensitive K+ channels since glipizide, a specific blocker of that type of channel, abolished the beneficial effects of K+ channel openers. The various classes of K+ channel openers seem to deserve attention as potential drugs for cerebral ischemia. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8415718

  9. The tumor promoter arsenite stimulates AP-1 activity by inhibiting a JNK phosphatase.

    PubMed Central

    Cavigelli, M; Li, W W; Lin, A; Su, B; Yoshioka, K; Karin, M

    1996-01-01

    Trivalent arsenic (As3+) is highly carcinogenic, but devoid of known mutagenic activity. Therefore, it is likely to act as a tumor promoter. To understand the molecular basis for the tumor-promoting activity of As3+, we examined its effect on transcription factor AP-1, whose activity is stimulated by several other tumor promoters. We found that As3+, but not As5+, which is toxic but not carcinogenic, is a potent stimulator of AP-1 transcriptional activity and an efficient inducer of c-fos and c-jun gene expression. Induction of c-jun and c-fos transcription by As3+ correlates with activation of Jun kinases (JNKs) and p38/Mpk2, which phosphorylate transcription factors that activate these immediate early genes. No effect on ERK activity was observed. As5+, on the other hand, had a negligible effect on JNK or p38/Mpk2 activity. Biochemical analysis and co-transfection experiments strongly suggest that the primary mechanism by which As3+ stimulates JNK activity involves the inhibition of a constitutive dual-specificity JNK phosphatase. This phosphatase activity appears to be responsible for maintaining low basal JNK activity in non-stimulated cells and its inhibition may lead to tumor promotion through induction of proto-oncogenes such as c-jun and c-fos, and stimulation of AP-1 activity. The same phosphatase may also regulate p38/Mpk2 activity. Images PMID:8947050

  10. Cell-extracellular matrix interactions can regulate the switch between growth and differentiation in rat hepatocytes: reciprocal expression of C/EBP alpha and immediate-early growth response transcription factors.

    PubMed Central

    Rana, B; Mischoulon, D; Xie, Y; Bucher, N L; Farmer, S R

    1994-01-01

    Previous investigations have shown that culture of freshly isolated hepatocytes under conventional conditions, i.e., on dried rat tail collagen in the presence of growth factors, facilitates cell growth but also causes an extensive down-regulation of most liver-specific functions. This dedifferentiation process can be prevented if the cells are cultured on a reconstituted basement membrane gel matrix derived from the Englebreth-Holm-Swarm mouse sarcoma tumor (EHS gel). To gain insight into the mechanisms regulating this response to extracellular matrix, we are analyzing the activities of two families of transcription factors, C/EBP and AP-1, which control the transcription of hepatic and growth-responsive genes, respectively. We demonstrate that isolation of hepatocytes from the normal quiescent rat liver by collagenase perfusion activates the immediate-early growth response program, as indicated by increased expression of c-jun, junB, c-fos, and c-myc mRNAs. Adhesion of these activated cells to dried rat tail collagen augments the elevated levels of these mRNAs for the initial 1 to 2 h postplating; junB and c-myc mRNA levels then drop steeply, with junB returning to normal quiescence and the c-myc level remaining slightly elevated during the 3-day culture period. Levels of c-jun mRNA and AP-1 DNA binding activity, however, remain elevated from the outset, while C/EBP alpha mRNA expression is down-regulated, resulting in a decrease in the steady-state levels of the 42- and 30-kDa C/EBP alpha polypeptides and C/EBP alpha DNA binding activity. In contrast, C/EBP beta mRNA production remains at near-normal hepatic levels for 5 to 8 days of culture, although its DNA binding activity decreases severalfold during this time. Adhesion of hepatocytes to the EHS gel for the same period of time dramatically alters this program: it arrests growth and inhibits AP-1 DNA binding activity and the expression of c-jun, junB, and c-myc mRNAs, but, in addition, it restores C/EBP alpha mRNA and protein as well as C/EBP alpha and C/EBP beta DNA binding activities to the abundant levels present in freshly isolated hepatocytes. These changes are not due merely to growth inhibition, because suppression of hepatocyte proliferation on collagen by epidermal growth factor starvation or addition of transforming growth factor beta does not inhibit AP-1 activity or restore C/EBP alpha DNA binding activity to normal hepatic levels. These data suggest that expression of the normal hepatic phenotype requires that hepatocytes exist in a G0 state of growth arrest, facilitated here by adhesion of cells to the EHS gel, in order to express high levels of hepatic transcription factors such as C/EBP alpha. Images PMID:8065319

  11. Activator protein 1 promotes gemcitabine-induced apoptosis in pancreatic cancer by upregulating its downstream target Bim.

    PubMed

    Ren, Xiaoxia; Zhao, Wenjing; Du, Yongxing; Zhang, Taiping; You, Lei; Zhao, Yupei

    2016-12-01

    Gemcitabine is a commonly used chemotherapy drug in pancreatic cancer. The function of activator protein 1 (AP-1) is cell-specific, and its function depends on the expression of other complex members. In the present study, we added gemcitabine to the media of Panc-1 and SW1990 cells at clinically achieved concentrations (10 µM). Compared with constitutive c-Fos expression, c-Jun expression increased in a dose-dependent manner upon gemcitabine treatment. c-Jun overexpression increased gemcitabine-induced apoptosis through Bim activation, while cell apoptosis and Bim expression decreased following c-Jun knockdown. Furthermore, gemcitabine-induced apoptosis and Bim levels decreased when c-Jun phosphorylation was blocked by SP600125. Our findings suggest that c-Jun, which is a member of the AP-1 complex, functions in gemcitabine-induced apoptosis by regulating its downstream target Bim in pancreatic cancer cells.

  12. Matrix stiffness-upregulated LOXL2 promotes fibronectin production, MMP9 and CXCL12 expression and BMDCs recruitment to assist pre-metastatic niche formation.

    PubMed

    Wu, Sifan; Zheng, Qiongdan; Xing, Xiaoxia; Dong, Yinying; Wang, Yaohui; You, Yang; Chen, Rongxin; Hu, Chao; Chen, Jie; Gao, Dongmei; Zhao, Yan; Wang, Zhiming; Xue, Tongchun; Ren, Zhenggang; Cui, Jiefeng

    2018-05-04

    Higher matrix stiffness affects biological behavior of tumor cells, regulates tumor-associated gene/miRNA expression and stemness characteristic, and contributes to tumor invasion and metastasis. However, the linkage between higher matrix stiffness and pre-metastatic niche in hepatocellular carcinoma (HCC) is still largely unknown. We comparatively analyzed the expressions of LOX family members in HCC cells grown on different stiffness substrates, and speculated that the secreted LOXL2 may mediate the linkage between higher matrix stiffness and pre-metastatic niche. Subsequently, we investigated the underlying molecular mechanism by which matrix stiffness induced LOXL2 expression in HCC cells, and explored the effects of LOXL2 on pre-metastatic niche formation, such as BMCs recruitment, fibronectin production, MMPs and CXCL12 expression, cell adhesion, etc. RESULTS: Higher matrix stiffness significantly upregulated LOXL2 expression in HCC cells, and activated JNK/c-JUN signaling pathway. Knockdown of integrin β1 and α5 suppressed LOXL2 expression and reversed the activation of above signaling pathway. Additionally, JNK inhibitor attenuated the expressions of p-JNK, p-c-JUN, c-JUN and LOXL2, and shRNA-c-JUN also decreased LOXL2 expression. CM-LV-LOXL2-OE and rhLOXL2 upregulated MMP9 expression and fibronectin production obviously in lung fibroblasts. Moreover, activation of Akt pathway contributed to LOXL2-induced fibronectin upregulation. LOXL2 in CM as chemoattractant increased motility and invasion of BMCs, implicating a significant role of LOXL2 in BMCs recruitment. Except that, CM-LV-LOXL2-OE as chemoattractant also increased the number of migrated HCC cells, and improved chemokine CXCL12 expression in lung fibroblasts. The number of HCC cells adhered to surface of lung fibroblasts treated with CM-LV-LOXL2-OE was remarkably higher than that of the control cells. These results indicated that the secreted LOXL2 facilitated the motility of HCC cells and strengthened CTCs settlement on the remodeled matrix "soil". Integrin β1/α5/JNK/c-JUN signaling pathway participates in higher matrix stiffness-induced LOXL2 upregulation in HCC cells. The secreted LOXL2 promotes fibronectin production, MMP9 and CXCL12 expression and BMDCs recruitment to assist pre-metastatic niche formation.

  13. c-Jun induces apoptosis of starved BM2 monoblasts by activating cyclin A-CDK2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanhara, Petr; Bryja, Vitezslav; Horvath, Viktor

    2007-02-02

    c-Jun is one of the major components of the activating protein-1 (AP-1), the transcription factor that participates in regulation of proliferation, differentiation, and apoptosis. In this study, we explored functional interactions of the c-Jun protein with several regulators of the G1/S transition in serum-deprived v-myb-transformed chicken monoblasts BM2. We show that the c-Jun protein induces expression of cyclin A, thus up-regulating activity of cyclin A-associated cyclin-dependent kinase 2 (CDK2), and causing massive programmed cell death of starved BM2cJUN cells. Specific inhibition of CDK2 suppresses frequency of apoptosis of BM2cJUN cells. We conclude that up-regulation of cyclin A expression and CDK2more » activity can represent important link between the c-Jun protein, cell cycle machinery, and programmed cell death pathway in leukemic cells.« less

  14. Identification of Biological Targets of Therapeutic Intervention for Hepatocellular Carcinoma by Integrated Bioinformatical Analysis.

    PubMed

    Hu, Wei Qi; Wang, Wei; Fang, Di Long; Yin, Xue Feng

    2018-05-24

    BACKGROUND We screened the potential molecular targets and investigated the molecular mechanisms of hepatocellular carcinoma (HCC). MATERIAL AND METHODS Microarray data of GSE47786, including the 40 μM berberine-treated HepG2 human hepatoma cell line and 0.08% DMSO-treated as control cells samples, was downloaded from the GEO database. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analyses were performed; the protein-protein interaction (PPI) networks were constructed using STRING database and Cytoscape; the genetic alteration, neighboring genes networks, and survival analysis of hub genes were explored by cBio portal; and the expression of mRNA level of hub genes was obtained from the Oncomine databases. RESULTS A total of 56 upregulated and 8 downregulated DEGs were identified. The GO analysis results were significantly enriched in cell-cycle arrest, regulation of transcription, DNA-dependent, protein amino acid phosphorylation, cell cycle, and apoptosis. The KEGG pathway analysis showed that DEGs were enriched in MAPK signaling pathway, ErbB signaling pathway, and p53 signaling pathway. JUN, EGR1, MYC, and CDKN1A were identified as hub genes in PPI networks. The genetic alteration of hub genes was mainly concentrated in amplification. TP53, NDRG1, and MAPK15 were found in neighboring genes networks. Altered genes had worse overall survival and disease-free survival than unaltered genes. The expressions of EGR1, MYC, and CDKN1A were significantly increased, but expression of JUN was not, in the Roessler Liver datasets. CONCLUSIONS We found that JUN, EGR1, MYC, and CDKN1A might be used as diagnostic and therapeutic molecular biomarkers and broaden our understanding of the molecular mechanisms of HCC.

  15. Birth-related expression of c-fos, c-jun and substance P mRNAs in the rat brainstem and pia mater: possible relationship to changes in central chemosensitivity.

    PubMed

    Wickström, H R; Holgert, H; Hökfelt, T; Lagercrantz, H

    1999-02-05

    In situ hybridization was used to characterize respiration-related areas of the brainstem activated around the time of birth as well as their postnatal sensitivity to CO2. Levels of mRNA corresponding to the immediate early genes (IEG), c-fos and c-jun, and of substance P precursor, ppt-A, were determined in rat fetuses (E21) and neonatal pups (1 h, 1 day and 6 days after normal birth) and after exposure to hypercapnia (12% CO2 for 1 h). Transient increases in c-fos mRNA were observed in the central chemoreceptor area of the ventral medullary surface (VMS), in the lateral reticular nucleus (LRN), in the nucleus of the solitary tract (NTS), and in the nucleus raphé pallidus (RPA) 1 h after birth. Increased expression of c-fos mRNA in the VMS could also be evoked by hypercapnia and this response was particularly pronounced 1 day after birth. On the other hand, c-jun mRNA could be detected already at E21 in the hypoglossal nucleus (XII) and LRN and these levels were not significantly altered at 1 h after birth. There was, however, an increase in the expression of c-jun mRNA in the pia mater surrounding the brainstem after birth. At 1 day after birth, c-jun mRNA levels had decreased in the LRN and pia mater, and later on (6 days after birth) in XII. Furthermore, the ppt-A mRNA level in NTS increased immediately after birth and remained high 1 and 6 days later. These results suggest that (a) the central chemoreceptor area of the VMS, as well as the NTS, LRN, RPA and pia mater are activated following birth; (b) the VMS, but not the other structures examined, can be activated immediately after birth by hypercapnia; and (c) increased expression of ppt-A mRNA may be related to the transition of respiratory control at birth. Copyright 1998 Elsevier Science B.V.

  16. The activation of p38 MAPK primarily contributes to UV-induced RhoB expression by recruiting the c-Jun and p300 to the distal CCAAT box of the RhoB promoter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Jiwon; Department of Microbiology, Chungnam National University, Daejeon 305-764; Choi, Jeong-Hae

    2011-06-03

    Highlights: {yields} Regulation of transcriptional activation of RhoB is still unclear. {yields} We examine the effect of p38 MAPK inhibition, and c-Jun and RhoB depletion on UV-induced RhoB expression and apoptosis. {yields} We identify the regions of RhoB promoter necessary to confer UV responsiveness using pRhoB-luciferase reporter assays. {yields} c-Jun, ATF2 and p300 are dominantly associated with NF-Y on the distal CCAAT box. {yields} The activation of p38 MAPK primarily contribute to UV-induced RhoB expression by recruiting the c-Jun and p300 proteins on distal CCAAT box of RhoB promoter. -- Abstract: The Ras-related small GTP-binding protein RhoB is rapidly inducedmore » in response to genotoxic stresses caused by ionizing radiation. It is known that UV-induced RhoB expression results from the binding of activating transcription factor 2 (ATF2) via NF-Y to the inverted CCAAT box (-23) of the RhoB promoter. Here, we show that the association of c-Jun with the distal CCAAT box (-72) is primarily involved in UV-induced RhoB expression and p38 MAPK regulated RhoB induction through the distal CCAAT box. UV-induced RhoB expression and apoptosis were markedly attenuated by pretreatment with the p38 MAPK inhibitor. siRNA knockdown of RhoB, ATF2 and c-Jun resulted in decreased RhoB expression and eventually restored the growth of UV-irradiated Jurkat cells. In the reporter assay using luciferase under the RhoB promoter, inhibition of RhoB promoter activity by the p38 inhibitor and knockdown of c-Jun using siRNA occurred through the distal CCAAT box. Immunoprecipitation and DNA affinity protein binding assays revealed the association of c-Jun and p300 via NF-YA and the dissociation of histone deacetylase 1 (HDAC1) via c-Jun recruitment to the CCAAT boxes of the RhoB promoter. These results suggest that the activation of p38 MAPK primarily contributes to UV-induced RhoB expression by recruiting the c-Jun and p300 proteins to the distal CCAAT box of the RhoB promoter in Jurkat cells.« less

  17. Up-regulation of Jun/AP-1 during differentiation of N1E-115 neuroblastoma cells.

    PubMed

    de Groot, R P; Kruijer, W

    1991-12-01

    Neuroblastoma cell lines isolated from neuroblastoma tumors can be induced to differentiate into neuronal cell types by treatment with chemical agents, such as dimethyl sulfoxide and retinoic acid. The molecular mechanisms underlying this differentiation process, however, are completely obscure. In this paper, we show that neuronal differentiation of mouse N1E-115 neuroblastoma cells by dimethyl sulfoxide is accompanied by a prolonged rise in c-jun, junB, and junD expression and AP-1 activity. Multiple sequence elements in the Jun promoters are involved in this process. Furthermore, we show that c-jun and junD, but not junB, are expressed at high levels in the neuronal cell types obtained after dimethyl sulfoxide treatment. These results suggest an important role for c-jun and junD in neuronal differentiation of N1E-115 cells.

  18. The viral protein A238L inhibits TNF-alpha expression through a CBP/p300 transcriptional coactivators pathway.

    PubMed

    Granja, Aitor G; Nogal, Maria L; Hurtado, Carolina; Del Aguila, Carmen; Carrascosa, Angel L; Salas, María L; Fresno, Manuel; Revilla, Yolanda

    2006-01-01

    African swine fever virus (ASFV) is able to inhibit TNF-alpha-induced gene expression through the synthesis of A238L protein. This was shown by the use of deletion mutants lacking the A238L gene from the Vero cell-adapted Ba71V ASFV strain and from the virulent isolate E70. To further analyze the molecular mechanism by which the viral gene controls TNF-alpha, we have used Jurkat cells stably transfected with the viral gene to identify the TNF-alpha regulatory elements involved in the induction of the gene after stimulation with PMA and calcium ionophore. We have thus identified the cAMP-responsive element and kappa3 sites on the TNF-alpha promoter as the responsible of the gene activation, and demonstrate that A238L inhibits TNF-alpha expression through these DNA binding sites. This inhibition was partially reverted by overexpression of the transcriptional factors NF-AT, NF-kappaB, and c-Jun. Furthermore, we present evidence that A238L inhibits the activation of TNF-alpha by modulating NF-kappaB, NF-AT, and c-Jun trans activation through a mechanism that involves CREB binding protein/p300 function, because overexpression of these transcriptional coactivators recovers TNF-alpha promoter activity. In addition, we show that A238L is a nuclear protein that binds to the cyclic AMP-responsive element/kappa3 complex, thus displacing the CREB binding protein/p300 coactivators. Taken together, these results establish a novel mechanism in the control of TNF-alpha gene expression by a viral protein that could represent an efficient strategy used by ASFV to evade the innate immune response.

  19. Reactive oxygen species activate differentiation gene transcription of acute myeloid leukemia cells via the JNK/c-JUN signaling pathway.

    PubMed

    Lam, Chung Fan; Yeung, Hoi Ting; Lam, Yuk Man; Ng, Ray Kit

    2018-05-01

    Reactive oxygen species (ROS) and altered cellular redox status are associated with many malignancies. Acute myeloid leukemia (AML) cells are maintained at immature state by differentiation blockade, which involves deregulation of transcription factors in myeloid differentiation. AML cells can be induced to differentiate by phorbol-12-myristate-13-acetate (PMA), which possesses pro-oxidative activity. However, the signaling events mediated by ROS in the activation of transcriptional program during AML differentiation has not been fully elucidated. Here, we investigated AML cell differentiation by treatment with PMA and ROS scavenger N-acetyl-l-cysteine (NAC). We observed elevation of intracellular ROS level in the PMA-treated AML cells, which correlated with differentiated cell morphology and increased CD11b + mature cell population. The effect of PMA can be abolished by NAC co-treatment, supporting the involvement of ROS in the process. Moreover, we demonstrated that short ROS elevation mediated cell cycle arrest, but failed to activate myeloid gene transcription; whereas prolonged ROS elevation activated JNK/c-JUN signaling pathway. Inhibition of JNK suppressed the expression of key myeloid transcriptional regulators c-JUN, SPI-1 and MAFB, and prevented AML cells from undergoing terminal differentiation. These findings provide new insights into the crucial role of JNK/c-Jun signaling pathway in the activation of transcriptional program during ROS-mediated AML differentiation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Stimulation of Pol III-dependent 5S rRNA and U6 snRNA gene expression by AP-1 transcription factors.

    PubMed

    Ahuja, Richa; Kumar, Vijay

    2017-07-01

    RNA polymerase III transcribes structurally diverse group of essential noncoding RNAs including 5S ribosomal RNA (5SrRNA) and U6 snRNA. These noncoding RNAs are involved in RNA processing and ribosome biogenesis, thus, coupling Pol III activity to the rate of protein synthesis, cell growth, and proliferation. Even though a few Pol II-associated transcription factors have been reported to participate in Pol III-dependent transcription, its activation by activator protein 1 (AP-1) factors, c-Fos and c-Jun, has remained unexplored. Here, we show that c-Fos and c-Jun bind to specific sites in the regulatory regions of 5S rRNA (type I) and U6 snRNA (type III) gene promoters and stimulate their transcription. Our chromatin immunoprecipitation studies suggested that endogenous AP-1 factors bind to their cognate promoter elements during the G1/S transition of cell cycle apparently synchronous with Pol III transcriptional activity. Furthermore, the interaction of c-Jun with histone acetyltransferase p300 promoted the recruitment of p300/CBP complex on the promoters and facilitated the occupancy of Pol III transcriptional machinery via histone acetylation and chromatin remodeling. The findings of our study, together, suggest that AP-1 factors are novel regulators of Pol III-driven 5S rRNA and U6 snRNA expression with a potential role in cell proliferation. © 2017 Federation of European Biochemical Societies.

  1. Phospholipase C-{delta}{sub 1} regulates interleukin-1{beta} and tumor necrosis factor-{alpha} mRNA expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Eric; Jakinovich, Paul; Bae, Aekyung

    Phospholipase C-{delta}{sub 1} (PLC{delta}{sub 1}) is a widely expressed highly active PLC isoform, modulated by Ca{sup 2+} that appears to operate downstream from receptor signaling and has been linked to regulation of cytokine production. Here we investigated whether PLC{delta}{sub 1} modulated expression of the pro-inflammatory cytokines interleukin-1{beta} (IL-1{beta}), tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-6 (IL-6) in rat C6 glioma cells. Expression of PLC{delta}{sub 1} was specifically suppressed by small interfering RNA (siRNA) and the effects on cytokine mRNA expression, stimulated by the Toll-like receptor (TLR) agonist, lipopolysaccharide (LPS), were examined. Real-time polymerase chain reaction (RT-PCR) results showed that PLC{delta}{sub 1}more » knockdown enhanced expression IL-1{beta} and tumor necrosis factor-{alpha} (TNF-{alpha}) mRNA by at least 100 fold after 4 h of LPS stimulation compared to control siRNA treatment. PLC{delta}{sub 1} knock down caused persistently high Nf{kappa}b levels at 4 h of LPS stimulation compared to control siRNA-treated cells. PLC{delta}{sub 1} knockdown was also associated with elevated nuclear levels of c-Jun after 30 min of LPS stimulation, but did not affect LPS-stimulated p38 or p42/44 MAPK phosphorylation, normally associated with TLR activation of cytokine gene expression; rather, enhanced protein kinase C (PKC) phosphorylation of cellular proteins was observed in the absence of LPS stimulation. An inhibitor of PKC, bisindolylmaleimide II (BIM), reversed phosphorylation, prevented elevation of nuclear c-Jun levels, and inhibited LPS-induced increases of IL-1{beta} and TNF-{alpha} mRNA's induced by PLC{delta}{sub 1} knockdown. Our results show that loss of PLC{delta}{sub 1} enhances PKC/c-Jun signaling and up-modulates pro-inflammatory cytokine gene transcription in concert with the TLR-stimulated p38MAPK/Nf{kappa}b pathway. Our findings are consistent with the idea that PLC{delta}{sub 1} is a suppressor of PKC activity.« less

  2. Molecular mechanisms of pathogenesis in hepatocellular carcinoma revealed by RNA‑sequencing.

    PubMed

    Liu, Yao; Yang, Zhe; Du, Feng; Yang, Qiao; Hou, Jie; Yan, Xiaohong; Geng, Yi; Zhao, Yaning; Wang, Hua

    2017-11-01

    The present study aimed to explore the underlying molecular mechanisms of hepatocellular carcinoma (HCC). RNA‑sequencing profiles GSM629264 and GSM629265, from the GSE25599 data set, were downloaded from the Gene Expression Omnibus database and processed by quality evaluation. GSM629264 and GSM629265 were from HCC and adjacent non‑cancerous tissues, respectively. TopHat software was used for alignment analysis, followed by the detection of novel splicing sites. In addition, the Cufflinks software package was used to analyze gene expressions, and the Cuffdiff program was used to screen for differently expressed genes (DEGs) and differentially expressed splicing variants. Gene ontology functional enrichment and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of DEGs were also performed. Transcription factors (TFs) and microRNAs (miRNAs) that regulate DEGs were identified, and a protein‑protein interaction (PPI) network was constructed. The hub node in the PPI network was obtained, and the TFs and miRNAs that regulated the hub node were further predicted. The quality of the sequencing data met the standards for analysis, and the clean reads were ~65%. Most sequencing reads mapped into coding sequence exons (CDS_exons), whereas other reads mapped into exon 3' untranslated regions (UTR_Exons), 5'UTR_Exons and Introns. Upregulated and downregulated DEGs between HCC and adjacent non‑cancerous tissues were screened. Genes of differentially expressed splicing variants were identified, including vesicle‑associated membrane protein 4, phosphatidylinositol glycan anchor biosynthesis class C, protein disulfide isomerase family A member 4 and growth arrest specific 5. Screened DEGs were enriched in the complement pathway. In the PPI network, ubiquitin C (UBC) was the hub node. UBC was predicted to be regulated by several TFs, including specificity protein 1 (SP1), FBJ murine osteosarcoma viral oncogene homolog (FOS), proto‑oncogene c‑JUN (JUN), FOS‑like antigen 2 (FOSL2) and SWI/SNF‑related, matrix‑associated, actin‑dependent regulator of chromatin, subfamily A, member 4 (SMARCA4), and several miRNAs, including miR‑30 and miR‑181. Results from the present study demonstrated that UBC, SP1, FOS, JUN, FOSL2, SMARCA4, miR‑30 and miR‑181 may participate in the development of HCC.

  3. Measles Virus Nucleocapsid (MVNP) Gene Expression and RANK Receptor Signaling in Osteoclast Precursors, Osteoclast Inhibitors Peptide Therapy for Pagets Disease

    DTIC Science & Technology

    2007-10-01

    OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC a. REPORT U b. ABSTRACT U c . THIS PAGE U UU 27 19b. TELEPHONE NUMBER...and c -Jun kinase activity in osteoclast precursor cells (4). Our hypothesis is that MVNP expression in osteoclast precursors modulates the status...transcription factors such as c - Fos, NFATc1 critical for OCL differentiation were significantly decreased in OIP-1 transgenic mice derived preosteoclast cells

  4. CREB-1 and AP-1 transcription factors JunD and Fra-2 regulate bone sialoprotein gene expression in human breast cancer cells.

    PubMed

    Detry, C; Lamour, V; Castronovo, V; Bellahcène, A

    2008-02-01

    Bone sialoprotein (BSP) expression is detected in a variety of human osteotropic cancers. High expression of BSP in breast and prostate primary carcinomas is associated with progression and bone metastases development. In this study, we examined the transcriptional regulation of BSP gene expression in MDA-MB-231 and MCF-7 human breast cancer cells compared with Saos-2 human osteoblast-like cells. BSP human promoter deletion analyses delineated a -56/-84 region, which comprises a cAMP response element (CRE) that was sufficient for maximal promoter activity in breast cancer cell lines. We found that the basic fibroblast growth factor response element (FRE) also located in the proximal promoter was a crucial regulator of human BSP promoter activity in Saos-2 but not in breast cancer cells. Promoter activity experiments in combination with DNA mobility shift assays demonstrated that BSP promoter activity is under the control of the CRE element, through CREB-1, JunD and Fra-2 binding, in MDA-MB-231, MCF-7 and in Saos-2 cells. Forskolin, a protein kinase A pathway activator, failed to enhance BSP transcriptional activity suggesting that CRE site behaves as a constitutive rather than an inducible element in these cell lines. Over-expression of JunD and Fra-2 increased BSP promoter activity and upregulated endogenous BSP protein expression in MCF-7 and Saos-2 cells while siRNA-mediated inhibition of both factors expression significantly reduced BSP protein level in MDA-MB-231. Collectively, these data provide with new transcriptional mechanisms, implicating CREB and AP-1 factors, that control BSP gene expression in breast cancer cells.

  5. Upregulation of CCL2 via ATF3/c-Jun interaction mediated the Bortezomib-induced peripheral neuropathy.

    PubMed

    Liu, Cuicui; Luan, Shuo; OuYang, Handong; Huang, Zhenzhen; Wu, Shaoling; Ma, Chao; Wei, Jiayou; Xin, Wenjun

    2016-03-01

    Bortezomib (BTZ) is a frequently used chemotherapeutic drug for the treatment of refractory multiple myeloma and hematological neoplasms. The mechanism by which the administration of BTZ leads to painful peripheral neuropathy remains unclear. In present study, we found that application of BTZ at 0.4 mg/kg for consecutive 5 days significantly increased the expression of CCL2 in DRG, and intrathecal administration of neutralizing antibody against CCL2 inhibited the mechanical allodynia induced by BTZ. We also found an increased expression of c-Jun in DRG, and that inhibition of c-Jun signaling prevented the CCL2 upregulation and mechanical allodynia in the rats treated with BTZ. Furthermore, the results with luciferase assay in vitro and ChIP assay in vivo showed that c-Jun might be essential for BTZ-induced CCL2 upregulation via binding directly to the specific position of the ccl2 promoter. In addition, the present results showed that an upregulated expression of ATF3 was co-expressed with c-Jun in the DRG neurons, and the enhanced interaction between c-Jun and ATF3 was observed in DRG in the rats treated with BTZ. Importantly, pretreatment with ATF3 siRNA significantly inhibited the recruitment of c-Jun to the ccl2 promoter in the rats treated with BTZ. Taken together, these findings suggested that upregulation of CCL2 resulting from the enhanced interaction between c-Jun and ATF3 in DRG contributed to BTZ-induced mechanical allodynia. Copyright © 2015. Published by Elsevier Inc.

  6. The dyad palindromic glutathione transferase P enhancer binds multiple factors including AP1.

    PubMed Central

    Diccianni, M B; Imagawa, M; Muramatsu, M

    1992-01-01

    Glutathione Transferase P (GST-P) gene expression is dominantly regulated by an upstream enhancer (GPEI) consisting of a dyad of palindromically oriented imperfect TPA (12-O-tetradecanoyl-phorbol-13-acetate)-responsive elements (TRE). GPEI is active in AP1-lacking F9 cells as well in AP1-containing HeLa cells. Despite GPEI's similarity to a TRE, c-jun co-transfection has only a minimal effect on transactivation. Antisense c-jun and c-fos co-transfection experiments further demonstrate the lack of a role for AP1 in GPEI mediated trans-activation in F9 cells, although endogenously present AP1 can influence GPEI in HeLa cells. Co-transfection of delta fosB with c-jun, which forms an inactive c-Jun/delta FosB heterodimer that binds TRE sequences, inhibits GPEI-mediated transcription in AP1-lacking F9 cells as well as AP1-containing HeLa cells. These data suggest novel factor(s) other than AP1 are influencing GPEI. Binding studies reveal multiple nucleoproteins bind to GPEI. These factors are likely responsible for the high level of GPEI-mediated transcription observed in the absence of AP1 and during hepatocarcinogenesis. Images PMID:1408831

  7. The dyad palindromic glutathione transferase P enhancer binds multiple factors including AP1.

    PubMed

    Diccianni, M B; Imagawa, M; Muramatsu, M

    1992-10-11

    Glutathione Transferase P (GST-P) gene expression is dominantly regulated by an upstream enhancer (GPEI) consisting of a dyad of palindromically oriented imperfect TPA (12-O-tetradecanoyl-phorbol-13-acetate)-responsive elements (TRE). GPEI is active in AP1-lacking F9 cells as well in AP1-containing HeLa cells. Despite GPEI's similarity to a TRE, c-jun co-transfection has only a minimal effect on transactivation. Antisense c-jun and c-fos co-transfection experiments further demonstrate the lack of a role for AP1 in GPEI mediated trans-activation in F9 cells, although endogenously present AP1 can influence GPEI in HeLa cells. Co-transfection of delta fosB with c-jun, which forms an inactive c-Jun/delta FosB heterodimer that binds TRE sequences, inhibits GPEI-mediated transcription in AP1-lacking F9 cells as well as AP1-containing HeLa cells. These data suggest novel factor(s) other than AP1 are influencing GPEI. Binding studies reveal multiple nucleoproteins bind to GPEI. These factors are likely responsible for the high level of GPEI-mediated transcription observed in the absence of AP1 and during hepatocarcinogenesis.

  8. TGF-beta induces connexin43 gene expression in normal murine mammary gland epithelial cells via activation of p38 and PI3K/AKT signaling pathways.

    PubMed

    Tacheau, Charlotte; Fontaine, Juliette; Loy, Jennifer; Mauviel, Alain; Verrecchia, Franck

    2008-12-01

    One of the shared physiological roles between TGF-beta and connexin family members is to inhibit epithelial cell cycle progression and consequently, to provide protection against malignant transformation. Herein, we demonstrated that TGF-beta1 induces the expression of connexin43 (Cx43) in normal murine mammary gland (NMuMG) cell lines at the protein and mRNA levels, and transcriptionally. Using overexpression of a truncated dominant-negative form of Cx43, we determined that the modulation of gap junctional communication by TGF-beta1 plays a key role in the control of NMuMG cells proliferation by TGF-beta1. In addition, using overexpression of truncated dominant-negative forms of either Smad2 or Smad3, and MDA-MB-468 human breast carcinoma cells deficient for Smad4, we determined that the Smad cascade is not implicated in TGF-beta1 effect on Cx43 expression. Using specific pharmacologic inhibitors for JNK, ERK, p38, and PI3K/AKT signaling pathways, we demonstrated the cooperative role of p38 and PI3K/AKT signaling in TGF-beta1-induced Cx43 expression and gap junctional communication. Furthermore, transfection of a c-jun antisense expression vector significantly prevented TGF-beta1-induced Cx43 gene expression demonstrating the involvement of c-Jun/AP-1 pathway together with p38 and PI3K/AKT pathways in mediating TGF-beta1-induced Cx43 gene expression.

  9. Gene expression profile of human Down syndrome leukocytes.

    PubMed

    Malagó, Wilson; Sommer, César A; Del Cistia Andrade, Camillo; Soares-Costa, Andrea; Abrao Possik, Patricia; Cassago, Alexandre; Santejo Silveira, Henrique C; Henrique-Silva, Flavio

    2005-08-01

    Identification of differences in the gene expression patterns of Down syndrome and normal leukocytes. We constructed the first Down syndrome leukocyte serial analysis of gene expression (SAGE) library from a 28 year-old patient. This library was analyzed and compared with a normal leukocyte SAGE library using the eSAGE software. Reverse transcriptase polymerase chain reaction (RT-PCR) was used to validate the results. We found that a large number of unidentified transcripts were overexpressed in Down syndrome leukocytes and some transcripts coding for growth factors (e.g. interleukin 8, IL-8), ribosomaproteins (e.g. L13a, L29, and L37), and transcription factors (e.g., Jun B, Jun D, and C/EBP beta) were underexpressed. The SAGE data were successfully validated for the genes IL-8, CXCR4, BCL2A1, L13a, L29, L37, and GTF3A using RT-PCR. Our analysis identified significant changes in the expression pattern of Down syndrome leukocytes compared with normal ones, including key regulators of growth and proliferation, ribosomal proteins, and a large number of overexpressed transcripts that were not matched in UniGene clusters and that may represent novel genes related to Down syndrome. This study offers a new insight into transcriptional changes in Down syndrome leukocytes and indicates candidate genes for further investigations into the molecular mechanism of Down syndrome pathology.

  10. Genetic framework for GATA factor function in vascular biology.

    PubMed

    Linnemann, Amelia K; O'Geen, Henriette; Keles, Sunduz; Farnham, Peggy J; Bresnick, Emery H

    2011-08-16

    Vascular endothelial dysfunction underlies the genesis and progression of numerous diseases. Although the GATA transcription factor GATA-2 is expressed in endothelial cells and is implicated in coronary heart disease, it has been studied predominantly as a master regulator of hematopoiesis. Because many questions regarding GATA-2 function in the vascular biology realm remain unanswered, we used ChIP sequencing and loss-of-function strategies to define the GATA-2-instigated genetic network in human endothelial cells. In contrast to erythroid cells, GATA-2 occupied a unique target gene ensemble consisting of genes encoding key determinants of endothelial cell identity and inflammation. GATA-2-occupied sites characteristically contained motifs that bind activator protein-1 (AP-1), a pivotal regulator of inflammatory genes. GATA-2 frequently occupied the same chromatin sites as c-JUN and c-FOS, heterodimeric components of AP-1. Although all three components were required for maximal AP-1 target gene expression, GATA-2 was not required for AP-1 chromatin occupancy. GATA-2 conferred maximal phosphorylation of chromatin-bound c-JUN at Ser-73, which stimulates AP-1-dependent transactivation, in a chromosomal context-dependent manner. This work establishes a link between a GATA factor and inflammatory genes, mechanistic insights underlying GATA-2-AP-1 cooperativity and a rigorous genetic framework for understanding GATA-2 function in normal and pathophysiological vascular states.

  11. Nuclear Receptor SHP Activates miR-206 Expression via a Cascade Dual Inhibitory Mechanism

    PubMed Central

    Song, Guisheng; Wang, Li

    2009-01-01

    MicroRNAs play a critical role in many essential cellular functions in the mammalian species. However, limited information is available regarding the regulation of miRNAs gene transcription. Microarray profiling and real-time PCR analysis revealed a marked down-regulation of miR-206 in nuclear receptor SHP−/− mice. To understand the regulatory function of SHP with regard to miR-206 gene expression, we determined the putative transcriptional initiation site of miR-206 and also its full length primary transcript using a database mining approach and RACE. We identified the transcription factor AP1 binding sites on the miR-206 promoter and further showed that AP1 (c-Jun and c-Fos) induced miR-206 promoter transactivity and expression which was repressed by YY1. ChIP analysis confirmed the physical association of AP1 (c-Jun) and YY1 with the endogenous miR-206 promoter. In addition, we also identified nuclear receptor ERRγ (NR3B3) binding site on the YY1 promoter and showed that YY1 promoter was transactivated by ERRγ, which was inhibited by SHP (NROB2). ChIP analysis confirmed the ERRγ binding to the YY1 promoter. Forced expression of SHP and AP1 induced miR-206 expression while overexpression of ERRγ and YY1 reduced its expression. The effects of AP1, ERRγ, and YY1 on miR-206 expression were reversed by siRNA knockdown of each gene, respectively. Thus, we propose a novel cascade “dual inhibitory” mechanism governing miR-206 gene transcription by SHP: SHP inhibition of ERRγ led to decreased YY1 expression and the de-repression of YY1 on AP1 activity, ultimately leading to the activation of miR-206. This is the first report to elucidate a cascade regulatory mechanism governing miRNAs gene transcription. PMID:19721712

  12. Hericium erinaceus (Bull.: Fr.) Pers., a medicinal mushroom, activates peripheral nerve regeneration.

    PubMed

    Wong, Kah-Hui; Kanagasabapathy, Gowri; Naidu, Murali; David, Pamela; Sabaratnam, Vikineswary

    2016-10-01

    To study the ability of aqueous extract of Hericium erinaceus mushroom in the treatment of nerve injury following peroneal nerve crush in Sprague-Dawley rats. Aqueous extract of Hericium erinaceus was given by daily oral administration following peroneal nerve crush injury in Sprague-Dawley rats. The expression of protein kinase B (Akt) and mitogen-activated protein kinase (MAPK) signaling pathways; and c-Jun and c-Fos genes were studied in dorsal root ganglia (DRG) whereas the activity of protein synthesis was assessed in peroneal nerves by immunohistochemical method. Peripheral nerve injury leads to changes at the axonal site of injury and remotely located DRG containing cell bodies of sensory afferent neurons. Immunofluorescence studies showed that DRG neurons ipsilateral to the crush injury in rats of treated groups expressed higher immunoreactivities for Akt, MAPK, c-Jun and c-Fos as compared with negative control group (P <0.05). The intensity of nuclear ribonucleoprotein in the distal segments of crushed nerves of treated groups was significantly higher than in the negative control group (P <0.05). H. erinaceus is capable of promoting peripheral nerve regeneration after injury. Potential signaling pathways include Akt, MAPK, c-Jun, and c-Fos, and protein synthesis have been shown to be involved in its action.

  13. Wnt signaling is involved in human articular chondrocyte de-differentiation in vitro.

    PubMed

    Sassi, N; Laadhar, L; Allouche, M; Zandieh-Doulabi, B; Hamdoun, M; Klein-Nulend, J; Makni, S; Sellami, S

    2014-01-01

    Osteoarthritis is the most prevalent form of arthritis in the world. Certain signaling pathways, such as the wnt pathway, are involved in cartilage pathology. Osteoarthritic chondrocytes undergo morphological and biochemical changes that lead to chondrocyte de-differentiation. We investigated whether the Wnt pathway is involved in de-differentiation of human articular chondrocytes in vitro. Human articular chondrocytes were cultured for four passages in the presence or absence of IL-1 in monolayer or micromass culture. Changes in cell morphology were monitored by light microscopy. Protein and gene expression of chondrocyte markers and Wnt pathway components were determined by Western blotting and qPCR after culture. After culturing for four passages, chondrocytes exhibited a fibroblast-like morphology. Collagen type II and aggrecan protein and gene expression decreased, while collagen type I, matrix metalloproteinase 13, and nitric oxide synthase expressions increased. Wnt molecule expression profiles changed; Wnt5a protein expression, the Wnt target gene, c-jun, and in Wnt pathway regulator, sFRP4 increased. Treatment with IL-1 caused chondrocyte morphology to become more filament-like. This change in morphology was accompanied by extinction of col II expression and increased col I, MMP13 and eNOS expression. Changes in expression of the Wnt pathway components also were observed. Wnt7a decreased significantly, while Wnt5a, LRP5, β-catenin and c-jun expressions increased. Culture of human articular chondrocytes with or without IL-1 not only induced chondrocyte de-differentiation, but also changed the expression profiles of Wnt components, which suggests that the Wnt pathway is involved in chondrocyte de-differentiation in vitro.

  14. [Curcumin alleviates early brain injury following subarachnoid hemorrhage in rats by inhibiting JNK/c-Jun signal pathway].

    PubMed

    Li, Xia; Zhu, Ji

    2018-03-01

    Objective To investigate the inhibitory effect of curcumin on early brain injury following subarachnoid hemorrhage (SAH) by inhibiting JNK/ c-Jun signal pathway. Methods Sixty adult male SD rats were randomly divided into four groups: sham operation group (sham group), SAH group, SAH group treated with 100 mg/(kg.d) curcumin and SAH group treated with 200 mg/(kg.d) curcumin, with 15 rats in each group. Endovascular puncture was used to induce SAH model. Nissl staining was used to test whether neurons were broken. TUNEL staining was used to detect apoptosis. Immunohistochemistry was used to investigate the expression of caspase-3. Western blot analysis was used to detect the expressions of p-JNK, JNK, p-c-Jun, c-Jun, and caspase-3. Results Nissl staining indicated the decrease of Nissl bodies in SAH group, but increase of Nissl bodies in SAH group treated with curcumin. TUNEL staining showed that there were more apoptotic neurons in SAH group compared with sham group, while apoptotic neurons decreased after the treatment with curcumin, more obviously in the group treated with 200 mg/(kg.d) curcumin. The expressions of p-JNK, JNK, p-c-Jun, c-Jun, and caspase-3 were up-regulated in SAH group compared with sham group. However, the expressions of those proteins were down-regulated after the treatment with curcumin, especially by higher-dose curcumin treatment. Conclusion Curcumin might suppress early brain injury after SAH by inhibiting JNK/c-Jun signal pathway and neuron apoptosis.

  15. Embryoid body attachment to reconstituted basement membrane induces a genetic program of epithelial differentiation via jun N-terminal kinase signaling.

    PubMed

    Ho, Hoang-Yen; Moffat, Ryan C; Patel, Rupal V; Awah, Franklin N; Baloue, Kaitrin; Crowe, David L

    2010-09-01

    Embryonic stem (ES) cells are derived from early stage mammalian embryos and have broad developmental potential. These cells can be manipulated experimentally to generate cells of multiple tissue types which could be important in treating human diseases. The ability to produce relevant amounts of these differentiated cell populations creates the basis for clinical interventions in tissue regeneration and repair. Understanding how embryonic stem cells differentiate also can reveal important insights into cell biology. A previously reported mouse embryonic stem cell model demonstrated that differentiated epithelial cells migrated out of embryoid bodies attached to reconstituted basement membrane. We used genomic technology to profile ES cell populations in order to understand the molecular mechanisms leading to epithelial differentiation. Cells with characteristics of cultured epithelium migrated from embryoid bodies attached to reconstituted basement membrane. However, cells that comprised embryoid bodies also rapidly lost ES cell-specific gene expression and expressed proteins characteristic of stratified epithelia within hours of attachment to basement membrane. Gene expression profiling of sorted cell populations revealed upregulation of the BMP/TGFbeta signaling pathway, which was not sufficient for epithelial differentiation in the absence of basement membrane attachment. Activation of c-jun N-terminal kinase 1 (JNK1) and increased expression of Jun family transcription factors was observed during epithelial differentiation of ES cells. Inhibition of JNK signaling completely blocked epithelial differentiation in this model, revealing a key mechanism by which ES cells adopt epithelial characteristics via basement membrane attachment. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  16. Connective tissue growth factor activates pluripotency genes and mesenchymal-epithelial transition in head and neck cancer cells.

    PubMed

    Chang, Cheng-Chi; Hsu, Wen-Hao; Wang, Chen-Chien; Chou, Chun-Hung; Kuo, Mark Yen-Ping; Lin, Been-Ren; Chen, Szu-Ta; Tai, Shyh-Kuan; Kuo, Min-Liang; Yang, Muh-Hwa

    2013-07-01

    The epithelial-mesenchymal transition (EMT) is a key mechanism in both embryonic development and cancer metastasis. The EMT introduces stem-like properties to cancer cells. However, during somatic cell reprogramming, mesenchymal-epithelial transition (MET), the reverse process of EMT, is a crucial step toward pluripotency. Connective tissue growth factor (CTGF) is a multifunctional secreted protein that acts as either an oncoprotein or a tumor suppressor among different cancers. Here, we show that in head and neck squamous cell carcinoma (HNSCC), CTGF promotes the MET and reduces invasiveness. Moreover, we found that CTGF enhances the stem-like properties of HNSCC cells and increases the expression of multiple pluripotency genes. Mechanistic studies showed that CTGF induces c-Jun expression through αvβ3 integrin and that c-Jun directly activates the transcription of the pluripotency genes NANOG, SOX2, and POU5F1. Knockdown of CTGF in TW2.6 cells was shown to reduce tumor formation and attenuate E-cadherin expression in xenotransplanted tumors. In HNSCC patient samples, CTGF expression was positively correlated with the levels of CDH1, NANOG, SOX2, and POU5F1. Coexpression of CTGF and the pluripotency genes was found to be associated with a worse prognosis. These findings are valuable in elucidating the interplay between epithelial plasticity and stem-like properties during cancer progression and provide useful information for developing a novel classification system and therapeutic strategies for HNSCC. ©2013 AACR.

  17. Rac1b enhances cell survival through activation of the JNK2/c-JUN/Cyclin-D1 and AKT2/MCL1 pathways

    PubMed Central

    Wang, Hong; Wei, Si-Si; Chen, Jie; Chen, Yi-He; Xu, Wei-Ping; Jie, Qi-Qiang; Zhou, Qing; Li, Yi-Gang; Wei, Yi-Dong; Wang, Yue-Peng

    2016-01-01

    Rac1b is a constitutively activated, alternatively spliced form of the small GTPase Rac1. Previous studies showed that Rac1b promotes cell proliferation and inhibits apoptosis. In the present study, we used microarray analysis to detect genes differentially expressed in HEK293T cells and SW480 human colon cancer cells stably overexpressing Rac1b. We found that the pro-proliferation genes JNK2, c-JUN and cyclin-D1 as well as anti-apoptotic AKT2 and MCL1 were all upregulated in both lines. Rac1b promoted cell proliferation and inhibited apoptosis by activating the JNK2/c-JUN/cyclin-D1 and AKT2/MCL1 pathways, respectively. Very low Rac1b levels were detected in the colonic epithelium of wild-type Sprague-Dawley rats. Knockout of the rat Rac1 gene exon-3b or knockdown of endogenous Rac1b in HT29 human colon cancer cells downregulated only the AKT2/MCL1 pathway. Our study revealed that very low levels of endogenous Rac1b inhibit apoptosis, while Rac1b upregulation both promotes cell proliferation and inhibits apoptosis. It is likely the AKT2/MCL1 pathway is more sensitive to Rac1b regulation. PMID:26918455

  18. The p-ERK–p-c-Jun–cyclinD1 pathway is involved in proliferation of smooth muscle cells after exposure to cigarette smoke extract

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tianjia; Song, Ting; Ni, Leng

    Highlights: • Smooth muscle cells proliferated after exposure to cigarette smoke extract. • The p-ERK, p-c-Jun, and cyclinD1 expressions increased in the process. • The p-ERK inhibitor, U0126, can reverse these effects. • The p-ERK → p-c-Jun → cyclinD1 pathway is involved in the process. - Abstract: An epidemiological survey has shown that smoking is closely related to atherosclerosis, in which excessive proliferation of vascular smooth muscle cells (SMCs) plays a key role. To investigate the mechanism underlying this unusual smoking-induced proliferation, cigarette smoke extract (CSE), prepared as smoke-bubbled phosphate-buffered saline (PBS), was used to induce effects mimicking those exertedmore » by smoking on SMCs. As assessed by Cell Counting Kit-8 detection (an improved MTT assay), SMC viability increased significantly after exposure to CSE. Western blot analysis demonstrated that p-ERK, p-c-Jun, and cyclinD1 expression increased. When p-ERK was inhibited using U0126 (inhibitor of p-ERK), cell viability decreased and the expression of p-c-Jun and cyclinD1 was reduced accordingly, suggesting that p-ERK functions upstream of p-c-Jun and cyclinD1. When a c-Jun over-expression plasmid was transfected into SMCs, the level of cyclinD1 in these cells increased. Moreover, when c-Jun was knocked down by siRNA, cyclinD1 levels decreased. In conclusion, our findings indicate that the p-ERK–p-c-Jun–cyclinD1 pathway is involved in the excessive proliferation of SMCs exposed to CSE.« less

  19. Novel mechanism of JNK pathway activation by adenoviral E1A

    PubMed Central

    Morrison, Helen; Pospelova, Tatiana V.; Pospelov, Valery A.; Herrlich, Peter

    2014-01-01

    The adenoviral oncoprotein E1A influences cellular regulation by interacting with a number of cellular proteins. In collaboration with complementary oncogenes, E1A fully transforms primary cells. As part of this action, E1A inhibits transcription of c-Jun:Fos target genes while promoting that of c-Jun:ATF2-dependent genes including jun. Both c-Jun and ATF2 are hyperphosphorylated in response to E1A. In the current study, E1A was fused with the ligand binding domain of the estrogen receptor (E1A-ER) to monitor the immediate effect of E1A activation. With this approach we now show that E1A activates c-Jun N-terminal kinase (JNK), the upstream kinases MKK4 and MKK7, as well as the small GTPase Rac1. Activation of the JNK pathway requires the N-terminal domain of E1A, and, importantly, is independent of transcription. In addition, it requires the presence of ERM proteins. Downregulation of signaling components upstream of JNK inhibits E1A-dependent JNK/c-Jun activation. Taking these findings together, we show that E1A activates the JNK/c-Jun signaling pathway upstream of Rac1 in a transcription-independent manner, demonstrating a novel mechanism of E1A action. PMID:24742962

  20. The Expression of Fos, Jun and AP-1 DNA Binding Activity in Rat Supraoptic Nucleus Neurons Following Acute Versus Repeated Osmotic Stimulation

    DTIC Science & Technology

    1995-06-22

    heterodimers with each other, they may have very different effects upon gene expression (Mellstrom et al., 1991). Hypertonic saline injections may induce...1, fra 2, Jun-B and Jun-D, that in turn have dramatic effects upon hormone synthesis. How one should view hypertonic saline as an experimental...treatment is also a complex issue. Hypertonic saline administration has at least three effects upon an animal: it is an osmotic stimulus (dramatically

  1. [Effect of Inhibiting and Activating Wnt Signalling Pathway on NSC67657-inducing Monocytic Differentiation of HL-60 Cells].

    PubMed

    Wang, Wei-Jia; Zhang, Xiu-Ming; Zhang, Yan; Wang, Jin-Shu

    2016-04-01

    To investigate the effect of inhibiting and activating Wnt signalling pathway on monocyte differentiation of HL-60 cells induced with a new steroidal drug NSC67657 and its possible mechamism. The HL-60 cells were treated with 5, 10 and 20 µmol/L XAV-939 (inhibitor of Wnt signalling pathway) for 3 days, and with 10, 20 and 30 mmol/L LiCl (activator of Wnt signalling pathway) for 1 day; the expression levels of down-stream genes and proteins of Wnt signolling pathway were detected by RT-PCR and Western blot, respectively; the expression of cell surface differentiation antigen CD14 and early apoptosis of HL-60 cells was detected by flow cytometry, moreover the most suitable concentration of Wnt inhibitor and activator for HL-60 cells was determined. Then the HL-60 cells with inhibited and activated Wnt pathway were treated with NSC67657 of 10 µmol/L for 3 days; the expression levels of CD14 and down-stream target proteins of Wnt signalling pathway in blank control (culture mediam) group, simple NSC67657-treated group, NSC67657 combined with inhibitor group and NSC67657 combined activator group were compared and analyzed. 20 µmol/L XAV-939 and 20 mmol/L LiCl could effectively inhibit and activate Wnt signalling pathway of HL-60 cells respectively, could significantly down- and up-regulate the expression of cyclinD1, TCF1 and c-Jun genes (P < 0.05) and proteins (P < 0.05); moreover, the number of CD10(+) HL-60 cells in these conditions was below 1%, no early apoptosis of HL-60 cells was found. In the simple NSC67657-treated groups, the expression of cyclinD1, TCF1 and c-Jun proteins was down-regulated (P < 0.05), and the percentage of CD14(+) HL-60 cells accounted for 62.13 ± 9.44; after the HL-60 cells were treated with XAV-939, the NSC67657 could more significantly down-regulate the expression of cyclinD1, TCF1 and c-Jun proteins and the percentage of CD14(+) HL-60 cell accounted for 84.17 ± 5.39%, as compared with simple NSC67657-treated group; as compared with blank controls group, the expression of cyclinD1, TCF1 and c-Jun proteins was more obviously down-regulated and the percentage of CD14(+) HL-60 cells decreased to 33.99 ± 8.37% in NSC67657 combined LiC1 streated group, but which were higher than those in simple NSC67657-treated group (P < 0.05). 20 µmol/L XAV-939 and 20 mmol/L LiCl as effective inhabitor and activator of Wnt signalling pathway respectively can significantly down- and up-regulate the expression of Wnt down-stream pathway target genes and proteins. The influence of XAV-939 and LiC1 on differentiation of HL-60 cells induced by NSC67657 suggests that Wnt signalling pathway plays a key role in monocyte differentiction of HL-60 cells induced by NSC67657.

  2. Age-associated reduction of cellular spreading/mechanical force up-regulates matrix metalloproteinase-1 expression and collagen fibril fragmentation via c-Jun/AP-1 in human dermal fibroblasts.

    PubMed

    Qin, Zhaoping; Voorhees, John J; Fisher, Gary J; Quan, Taihao

    2014-12-01

    The dermal compartment of human skin is largely composed of dense collagen-rich fibrils, which provide structural and mechanical support. Skin dermal fibroblasts, the major collagen-producing cells, are interact with collagen fibrils to maintain cell spreading and mechanical force for function. A characteristic feature of aged human skin is fragmentation of collagen fibrils, which is initiated by matrix metalloproteinase 1 (MMP-1). Fragmentation impairs fibroblast attachment and thereby reduces spreading. Here, we investigated the relationship among fibroblast spreading, mechanical force, MMP-1 expression, and collagen fibril fragmentation. Reduced fibroblast spreading due to cytoskeletal disruption was associated with reduced cellular mechanical force, as determined by atomic force microscopy. These reductions substantially induced MMP-1 expression, which led to collagen fibril fragmentation and disorganization in three-dimensional collagen lattices. Constraining fibroblast size by culturing on slides coated with collagen micropatterns also significantly induced MMP-1 expression. Reduced spreading/mechanical force induced transcription factor c-Jun and its binding to a canonical AP-1 binding site in the MMP-1 proximal promoter. Blocking c-Jun function with dominant negative mutant c-Jun significantly reduced induction of MMP-1 expression in response to reduced spreading/mechanical force. Furthermore, restoration of fibroblast spreading/mechanical force led to decline of c-Jun and MMP-1 levels and eliminated collagen fibril fragmentation and disorganization. These data reveal a novel mechanism by which alteration of fibroblast shape/mechanical force regulates c-Jun/AP-1-dependent expression of MMP-1 and consequent collagen fibril fragmentation. This mechanism provides a foundation for understanding the cellular and molecular basis of age-related collagen fragmentation in human skin. © 2014 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  3. Down-regulation of MDR1 by Ad-DKK3 via Akt/NFκB pathways augments the anti-tumor effect of temozolomide in glioblastoma cells and a murine xenograft model.

    PubMed

    Fujihara, Toshitaka; Mizobuchi, Yoshifumi; Nakajima, Kohei; Kageji, Teruyoshi; Matsuzaki, Kazuhito; Kitazato, Keiko T; Otsuka, Ryotaro; Hara, Keijiro; Mure, Hideo; Okazaki, Toshiyuki; Kuwayama, Kazuyuki; Nagahiro, Shinji; Takagi, Yasushi

    2018-05-19

    Glioblastoma multiforme (GBM) is the most malignant of brain tumors. Acquired drug resistance is a major obstacle for successful treatment. Earlier studies reported that expression of the multiple drug resistance gene (MDR1) is regulated by YB-1 or NFκB via the JNK/c-Jun or Akt pathway. Over-expression of the Dickkopf (DKK) family member DKK3 by an adenovirus vector carrying DKK3 (Ad-DKK3) exerted anti-tumor effects and led to the activation of the JNK/c-Jun pathway. We investigated whether Ad-DKK3 augments the anti-tumor effect of temozolomide (TMZ) via the regulation of MDR1. GBM cells (U87MG and U251MG), primary TGB105 cells, and mice xenografted with U87MG cells were treated with Ad-DKK3 or TMZ alone or in combination. Ad-DKK3 augmentation of the anti-tumor effects of TMZ was associated with reduced MDR1 expression in both in vivo and in vitro studies. The survival of Ad-DKK3-treated U87MG cells was inhibited and the expression of MDR1 was reduced. This was associated with the inhibition of Akt/NFκB but not of YB-1 via the JNK/c-Jun- or Akt pathway. Our results suggest that Ad-DKK3 regulates the expression of MDR1 via Akt/NFκB pathways and that it augments the anti-tumor effects of TMZ in GBM cells.

  4. The role of c-Jun in controlling the EPAC1-dependent induction of the SOCS3 gene in HUVECs

    PubMed Central

    Wiejak, Jolanta; Dunlop, Julia; Yarwood, Stephen J.

    2014-01-01

    The cyclic AMP sensor, EPAC1, activates AP1-mediated transcription in HUVECs. Correspondingly, induction of the SOCS3 minimal promoter by EPAC1 requires a single AP1 site that constitutively binds phosphorylated (Ser63) c-Jun in DNA-pull-down assays. c-Jun (Ser63) becomes further phosphorylated following cyclic AMP stimulation and specific activation of protein kinase A (PKA), but not through selective activation of EPAC1. Moreover, despite a requirement for c-Jun for SOCS3 induction in fibroblasts, phospho-null c-Jun (Ser63/73Ala) had little effect on SOCS3 induction by cyclic AMP in HUVECs. AP1 activation and SOCS3 induction by EPAC1 in HUVECs therefore occur independently of c-Jun phosphorylation on Ser63. PMID:24631457

  5. IGF-I stimulates ERβ and aromatase expression via IGF1R/PI3K/AKT-mediated transcriptional activation in endometriosis.

    PubMed

    Zhou, Yan; Zeng, Cheng; Li, Xin; Wu, Pei-Li; Yin, Ling; Yu, Xiao-Lan; Zhou, Ying-Fang; Xue, Qing

    2016-08-01

    Estrogen receptor beta (ERβ, encoded by ESR2 gene) and cytochrome P450 aromatase (encoded by CYP19A1 gene) play critical roles in endometriosis, and the levels of insulin-like growth factor-I (IGF-I) in the peritoneal fluid are significantly higher in patients with endometriosis compared with those in normal women. However, the effects and mechanisms of IGF-I on ERβ and aromatase expression remain to be fully elucidated. In this study, human endometriotic stromal cells (ESCs) and endometrial cells (EMs) derived from ovarian endometriomas and eutopic endometrial tissues. ESCs were cultured with IGF-I, signal pathway inhibitors, and siRNAs. ERβ and aromatase expression were measured by real-time PCR and Western, respectively. The binding of c-Jun and CREB to the ESR2 and CYP19A1 promoters was assessed by chromatin immunoprecipitation assay. Animal experiments were performed in a xenograft mouse model. Levels of IGF-I mRNA in ESCs were markedly higher than those in EMs. IGF-I upregulated ERβ and aromatase expression in ESCs after stimulation of the IGF1R/PI3K/AKT pathway. Following IGF-I treatment, a marked increase in c-Jun and CREB phosphorylation occurred, enhancing binding to the ESR2 and CYP19A1 promoters. An IGF1R inhibitor in vivo reduced IGF-I-induced endometriosis graft growth and ERβ and aromatase expression. In conclusion, this is the first report to describe a mechanistic analysis of ERβ and aromatase expression regulated by IGF-I in ESCs. Moreover, an IGF1R inhibitor impeded ectopic lesion growth in nude mice. These findings suggest that an inhibitor of IGF1R might have therapeutic potential as an antiendometriotic drug. Level of IGF-I mRNA in ESCs is markedly higher than that in EMs. IGF-I up-regulates ERβ and aromatase expression via IGF1R/PI3K/AKT pathway. C-Jun and CREB are recruited to ESR2 or CYP19A1 promoter by IGF-I stimulation. IGF-1R inhibitors in vivo impede the growth of ectopic lesions in nude mice.

  6. NFκB- and AP-1-mediated DNA looping regulates matrix metalloproteinase-9 transcription in TNF-α-treated human leukemia U937 cells.

    PubMed

    Chen, Ying-Jung; Chang, Long-Sen

    2015-10-01

    The aim of this study is to explore the spatial association of critical genomic elements in the effect of TNF-α on matrix metalloproteinase-9 (MMP-9) expression in human leukemia U937 cells. TNF-α up-regulated MMP-9 protein expression and mRNA level in U937 cells, and Akt-mediated-NFκB/p65 activation and JNK-mediated c-Jun activation were proven to be involved in TNF-α-induced MMP-9 up-regulation. Promoter luciferase activity assay revealed that NFκB (nt-600) and AP-1 (nt-79) binding sites were crucial for TNF-α-induced transcription of MMP-9 gene. The results of a chromatin immunoprecipitation assay indicated that TNF-α reduced histone deacetylase-1 (HDAC-1) recruitment but increased p300 (a histone acetyltransferase) recruitment to MMP-9 promoter regions surrounding NFκB and AP-1 binding sites. Consistently, TNF-α increased enrichment of the acetylated histone H3 mark on MMP-9 promoter regions. DNA affinity purification assay revealed that p300 and HDAC1 could bind oligonucleotides containing AP-1/c-Jun and NFκB/p65 binding sites. Chromosome conformation capture assay showed that TNF-α stimulated chromosomal loops in the MMP-9 promoter via NFκB/p65 and AP-1/c-Jun. The p300-associated acetyltransferase activity was crucial for p65/c-Jun-mediated DNA looping, and inhibition of HDAC activity increased the level of DNA looping. Reduction in the level of DNA looping eliminated all TNF-α-stimulated MMP-9 up-regulation. Taken together, our data suggest that p65/c-Jun-mediated DNA looping is involved in TNF-α-induced MMP-9 up-regulation and that the recruitment of p300 or HDAC1 to NFκB and AP-1 binding sites modifies the level of DNA looping. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. c-Jun/AP-1 pathway-mediated cyclin D1 expression participates in low dose arsenite-induced transformation in mouse epidermal JB6 Cl41 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Dongyun; Li Jingxia; Gao Jimin

    2009-02-15

    Arsenic is a well-documented human carcinogen associated with skin carcinogenesis. Our previous work reveals that arsenite exposure is able to induce cell transformation in mouse epidermal cell JB6 Cl41 through the activation of ERK, rather than JNK pathway. Our current studies further evaluate downstream pathway in low dose arsenite-induced cell transformation in JB6 Cl41 cells. Our results showed that treatment of cells with low dose arsenite induced activation of c-Jun/AP-1 pathway, and ectopic expression of dominant negative mutant of c-Jun (TAM67) blocked arsenite-induced transformation. Furthermore, our data indicated that cyclin D1 was an important downstream molecule involved in c-Jun/AP-1-mediated cellmore » transformation upon low dose arsenite exposure, because inhibition of cyclin D1 expression by its specific siRNA in the JB6 Cl41 cells resulted in impairment of anchorage-independent growth of cells induced by low dose arsenite. Collectively, our results demonstrate that c-Jun/AP-1-mediated cyclin D1 expression is at least one of the key events implicated in cell transformation upon low dose arsenite exposure.« less

  8. β-Adrenergic Receptor Stimulated Ncx1 Upregulation is Mediated via a CaMKII/AP-1 Signaling Pathway in Adult Cardiomyocytes

    PubMed Central

    Mani, Santhosh K.; Egan, Erin A.; Addy, Benjamin K.; Grimm, Michael; Kasiganesan, Harinath; Thiyagarajan, Thirumagal; Renaud, Ludivine; Brown, Joan Heller; Kern, Christine B.; Menick, Donald R.

    2013-01-01

    The Na+-Ca2+ exchanger gene (Ncx1) is upregulated in hypertrophy and is often found elevated in end-stage heart failure. Studies have shown that the change in its expression contributes to contractile dysfunction. β-adrenergic receptor (β-AR) signaling plays an important role in the regulation of calcium homeostasis in the cardiomyocyte but chronic activation in periods of cardiac stress contribute to heart failure by mechanisms which include Ncx1 upregulation. Here, using a Ca2+/Calmodulin-Dependent Protein Kinase II (CaMKIIδc) null mouse, we demonstrate that β-AR-stimulated Ncx1 upregulation is dependent on CaMKII. β-AR-stimulated Ncx1 expression is mediated by activator protein 1 (AP-1) factors and is independent of cAMP-response element-binding protein (CREB) activation. The MAP kinases (ERK1/2, JNK and p38) are not required for AP-1 factor activation. Chromatin immunoprecipitation demonstrates that β-AR stimulation activates the ordered recruitment of JunB homodimers which then are replaced by c-Jun homodimers binding to the proximal AP-1 elements of the endogenous Ncx1 promoter. In conclusion, this work has provided insight into the intracellular signaling pathways and transcription factors regulating Ncx1 gene expression in a chronically β-AR-stimulated heart. PMID:19945464

  9. [Effect of curcumine on the nuclear pathway of JNK during hippocampal ischemia/reperfusion injury in SHR].

    PubMed

    Ye, Ke-Ping; Chen, Chun-Ru; Zheng, Jin-Wei; Cao, Hong; Ji, Bin; Zhou, Rui; Meng, Zhi-Yan; Li, Jun; Lian, Qing-Quan

    2010-11-01

    To investigate the diversify of the nuclear pathway of c-Jun NH2-terminal kinases (JNK) during transient brain ischemia/reperfusion injury in hippocampal neuron apoptosis in spontaneously hypertensive rats (SHR) and to test whether the neuroprotection of curcumine on transient brain ischemia/reperfusion injury in SHR is related to the nuclear pathway of JNK. Male Wistar-Kyoto (WKY) rats and SHR were randomly divided into five groups (n = 6): WKY sham group (W-Sham), WKY ischemia/reperfusion group (W-I/ R), SHR sham group (S-Sham), SHR ischemia/reperfusion group (S-I/R) and SHR curcumine (a chinese traditional medicine)100 mg/kg treatment group (S-Cur), which were sacrificed at 2 h, 6 h, 24 h, 3 d and 7 d after reperfusion. Global brain ischemic model was established by 4-VO method. The TdT-mediated dUTP nick end labeling (TUNEL) method was used to detect the neuron apoptosis in hippocampal CA1 region. The immunohistochemical method was applied to investigate the expressions of c-jun and c-fos in hippocampal CA1 region. The expressions of apoptosis and c-jun and c-fos in CA1 region in S-Sham group, W-I/R group and S-I/R group were more than those in W-Sham group (P < 0.05), were significantly increased in S-I/R group than those in W-I/R group (P < 0.05), and were significantly decreased in S-Cur group than those in S-I/R group (P < 0.05). Neuronal apoptosis and the expressions of c-jun and c-fos are more in SHR hippocampal. Global brain ischemia/reperfusion injury induces more expressions of apoptosis in hippocampal neuron in SHR, and the more expressions of c-jun and c-fos may participate in that process. The neuroprotection of curcumine in SHR is related to c-jun and c-fos.

  10. Effects of interleukin-7/interleukin-7 receptor on RANKL-mediated osteoclast differentiation and ovariectomy-induced bone loss by regulating c-Fos/c-Jun pathway.

    PubMed

    Zhao, Ji-Jun; Wu, Zhao-Feng; Yu, Ying-Hao; Wang, Ling; Cheng, Li

    2018-09-01

    To explore the effects of IL-7/IL-7R on the RANKL-mediated osteoclast differentiation in vitro and OVX-induced bone loss in vivo. BMMs and RAW264.7 were transfected with IL-7, IL-7R siRNA, c-Fos siRNA, and c-jun siRNA and later stimulated by RANKL. TRAP and toluidine blue staining were used to observe osteoclast formation and bone resorption, respectively. HE and TRAP staining were used to detect trabecular bone microstructure and osteoclasts of mice, respectively. qRT-PCR and Western blot analysis were used to examine expression. IL-7 unregulated the expression of CTSK, NFATc1, MMP9, and the phosphorylation of p38 and Akt by activating the c-Fos/c-Jun pathway, which increased osteoclast numbers and bone resorption in RANKL-stimulated macrophages. While IL-7R siRNA and c-Fos siRNA decreased the expression, as well as and the phosphorylation of p38 and Akt.IL-7 decreased the BMD and OPG expression in OVX-induced mice and increased the TRAP positive cells, the mRNA expression of c-fos, c-jun, and RANKL, which was contradictory to IL-7R siRNA, and c-Fos siRNA. Furthermore, IL-7R siRNA and c-Fos siRNA caused thicker trabeculae, increased trabecular number, and decreased osteolysis in OVX mice. IL-7/IL-7R can promote RANKL-mediated osteoclast formation and bone resorption by activating the c-Fos/c-Jun pathway, as well as inducing bone loss in OVX mice. © 2018 Wiley Periodicals, Inc.

  11. Functional characterization of CXCR4 in mediating the expression of protein C system in experimental ulcerative colitis

    PubMed Central

    Lin, Xuhong; Wang, Huichao; Li, Yuxia; Yang, Jingnan; Yang, Ruilin; Wei, Dandan; Zhang, Junjie; Yang, Desheng; Wang, Bin; Ren, Xuequn; Cheng, Guanchang

    2017-01-01

    The present study aimed to explore the role of CXCR4 and protein C system (PCS) in the experimental ulcerative colitis (UC). The expression of CXCR3, CCR10, and CXCR4 in dextran sulfate sodium (DSS)-induced colitis mouse model was measured by immunohistochemistry and western blot analysis. In vitro studies with microvascular endothelial cells (MVECs) were performed. The expression of endothelial protein C receptor (EPCR) and thrombomodulin (TM) were detected by RT-PCR and western blot analysis. Activities of protein C (PC), protein S (PS), activated PC (APC) were evaluated in cells pre-treated with JNK inhibitor SP600125 and c-Jun silencing. DSS mice showed up-regulated expression of CXCR4, higher macroscopic score and histological score (P<0.05), as well as elevated levels of SDF-1α (P<0.05) compared with wild type, CXCR4-/-, or CXCR4-/- +DSS mice. In DSS mice, EPCR expression was down-regulated (P<0.05), accompanied by decreased activity of PC and PS (P<0.05 or P<0.01) with an up-regulated expression of pJNK MAPK and pc-Jun (P<0.05). Moreover, the macroscopic score and histological score index, SDF-1α levels, EPCR expression, PC activity, pJNK, and pc-Jun were reversed in CXCR4-/- +DSS mice (P<0.05). In vitro, SDF-1α-induced inhibition of the PCS was blunted by SP600125 (P<0.05). Meanwhile, down-regulation of c-Jun rescued the inhibition of PCS (P<0.05). MVECs with retrovirus-mediated transfection of c-Jun demonstrated a strong trans-inactivation effect on the EPCR promoter (P<0.05). These findings suggest that CXCR4 is involved in UC pathogenesis and could be a promising therapeutic target for UC treatment. PMID:29218082

  12. The role of c-Jun in controlling the EPAC1-dependent induction of the SOCS3 gene in HUVECs.

    PubMed

    Wiejak, Jolanta; Dunlop, Julia; Yarwood, Stephen J

    2014-05-02

    The cyclic AMP sensor, EPAC1, activates AP1-mediated transcription in HUVECs. Correspondingly, induction of the SOCS3 minimal promoter by EPAC1 requires a single AP1 site that constitutively binds phosphorylated (Ser63) c-Jun in DNA-pull-down assays. c-Jun (Ser63) becomes further phosphorylated following cyclic AMP stimulation and specific activation of protein kinase A (PKA), but not through selective activation of EPAC1. Moreover, despite a requirement for c-Jun for SOCS3 induction in fibroblasts, phospho-null c-Jun (Ser63/73Ala) had little effect on SOCS3 induction by cyclic AMP in HUVECs. AP1 activation and SOCS3 induction by EPAC1 in HUVECs therefore occur independently of c-Jun phosphorylation on Ser63. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  13. NF-kB and c-Jun induce the expression of the oncogenic miR-221 and miR-222 in prostate carcinoma and glioblastoma cells

    PubMed Central

    Galardi, Silvia; Mercatelli, Neri; Farace, Maria G.; Ciafrè, Silvia A.

    2011-01-01

    MicroRNAs (miRNAs) are potent negative regulators of gene expression involved in all aspects of cell biology. They finely modulate virtually all physiological pathways in metazoans, and are deeply implicated in all main pathologies, among which cancer. Mir-221 and miR-222, two closely related miRNAs encoded in cluster from a genomic region on chromosome X, are strongly upregulated in several forms of human tumours. In this work, we report that the ectopic modulation of NF-kB modifies miR-221/222 expression in prostate carcinoma and glioblastoma cell lines, where we had previously shown their oncogenic activity. We identify two separate distal regions upstream of miR-221/222 promoter which are bound by the NF-kB subunit p65 and drive efficient transcription in luciferase reporter assays; consistently, the site-directed mutagenesis disrupting p65 binding sites or the ectopical inhibition of NF-kB activity significantly reduce luciferase activity. In the most distal enhancer region, we also define a binding site for c-Jun, and we show that the binding of this factor cooperates with that of p65, fully accounting for the observed upregulation of miR-221/222. Thus our work uncovers an additional mechanism through which NF-kB and c-Jun, two transcription factors deeply involved in cancer onset and progression, contribute to oncogenesis, by inducing miR-221/222 transcription. PMID:21245048

  14. The JNK/AP-1 pathway upregulates expression of the recycling endosome rab11a gene in B cells transformed by Theileria.

    PubMed

    Lizundia, Regina; Chaussepied, Marie; Naissant, Bernina; Masse, Guillemette X; Quevillon, Emmanuel; Michel, Fréderique; Monier, Solange; Weitzman, Jonathan B; Langsley, Gordon

    2007-08-01

    Lymphocyte transformation induced by Theileria parasites involves constitutive activation of c-Jun N-terminal kinase (JNK) and the AP-1 transcription factor. We found that JNK/AP-1 activation is associated with elevated levels of Rab11 protein in Theileria-transformed B cells. We show that AP-1 regulates rab11a promoter activity in B cells and that the induction of c-Jun activity in mouse fibroblasts also leads to increased transcription of the endogenous rab11a gene, consistent with it being an AP-1 target. Pharmacological inhibition of the JNK pathway reduced Rab11 protein levels and endosome recycling of transferrin receptor (TfR) and siRNA knockdown of JNK1 and Rab11A levels also reduced TfR surface expression. We propose a model, where activation of the JNK/AP-1 pathway during cell transformation might assure that the regulation of recycling endosomes is co-ordinated with cell-cycle progression. This might be achieved via the simultaneous upregulation of the cell cycle machinery (e.g. cyclin D1) and the recycling endosome regulators (e.g. Rab11A).

  15. Activation of Nrf2 Reduces UVA-Mediated MMP-1 Upregulation via MAPK/AP-1 Signaling Cascades: The Photoprotective Effects of Sulforaphane and Hispidulin

    PubMed Central

    Chaiprasongsuk, Anyamanee; Lohakul, Jinaphat; Soontrapa, Kitipong; Sampattavanich, Somponnat; Akarasereenont, Pravit

    2017-01-01

    UVA irradiation plays a role in premature aging of the skin through triggering oxidative stress-associated stimulation of matrix metalloproteinase-1 (MMP-1) responsible for collagen degradation, a hallmark of photoaged skin. Compounds that can activate nuclear factor E2-related factor 2 (Nrf2), a transcription factor regulating antioxidant gene expression, should therefore serve as effective antiphotoaging agents. We investigated whether genetic silencing of Nrf2 could relieve UVA-mediated MMP-1 upregulation via activation of mitogen-activated protein kinase (MAPK)/activator protein 1 (AP-1) signaling using human keratinocyte cell line (HaCaT). Antiphotoaging effects of hispidulin (HPD) and sulforaphane (SFN) were assessed on their abilities to activate Nrf2 in controlling MMP-1 and collagen expressions in association with phosphorylation of MAPKs (extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38), c-Jun, and c-Fos, using the skin of BALB/c mice subjected to repetitive UVA irradiation. Our findings suggested that depletion of Nrf2 promoted both mRNA expression and activity of MMP-1 in the UVA-irradiated HaCaT cells. Treatment of Nrf2 knocked-down HaCaT cells with MAPK inhibitors significantly suppressed UVA-induced MMP-1 and AP-1 activities. Moreover, pretreatment of the mouse skin with HPD and SFN, which could activate Nrf2, provided protective effects against UVA-mediated MMP-1 induction and collagen depletion in correlation with the decreased levels of phosphorylated MAPKs, c-Jun, and c-Fos in the mouse skin. In conclusion, Nrf2 could influence UVA-mediated MMP-1 upregulation through the MAPK/AP-1 signaling cascades. HPD and SFN may therefore represent promising antiphotoaging candidates. PMID:28011874

  16. Sulforaphane and alpha-lipoic acid upregulate the expression of the pi class of glutathione S-transferase through c-jun and Nrf2 activation.

    PubMed

    Lii, Chong-Kuei; Liu, Kai-Li; Cheng, Yi-Ping; Lin, Ai-Hsuan; Chen, Haw-Wen; Tsai, Chia-Wen

    2010-05-01

    The anticarcinogenic effect of dietary organosulfur compounds has been partly attributed to their modulation of the activity and expression of phase II detoxification enzymes. Our previous studies indicated that garlic allyl sulfides upregulate the expression of the pi class of glutathione S-transferase (GSTP) through the activator protein-1 pathway. Here, we examined the modulatory effect of sulforaphane (SFN) and alpha-lipoic acid (LA) or dihydrolipoic acid (DHLA) on GSTP expression in rat Clone 9 liver cells. Cells were treated with LA or DHLA (50-600 micromol/L) or SFN (0.2-5 micromol/L) for 24 h. Immunoblots and real-time PCR showed that SFN, LA, and DHLA dose dependently induced GSTP protein and mRNA expression. Compared with the induction by the garlic organosulfur compound diallyl trisulfide (DATS), the effectiveness was in the order of SFN > DATS > LA = DHLA. The increase in GSTP enzyme activity in cells treated with 5 micromol/L SFN, 50 micromol/L DATS, and 600 micromol/L LA and DHLA was 172, 75, 122, and 117%, respectively (P < 0.05). A reporter assay showed that the GSTP enhancer I (GPEI) was required for GSTP induction by the organosulfur compounds. Electromobility gel shift assays showed that the DNA binding of GPEI to nuclear proteins reached a maximum at 0.5-1 h after SFN, LA, and DHLA treatment. Super-shift assay revealed that the transcription factors c-jun and nuclear factor erythroid-2 related factor 2 (Nrf2) were bound to GPEI. These results suggest that SFN and LA in either its oxidized or reduced form upregulate the transcription of the GSTP gene by activating c-jun and Nrf2 binding to the enhancer element GPEI.

  17. Androgen receptor requires JunD as a coactivator to switch on an oxidative stress generation pathway in prostate cancer cells.

    PubMed

    Mehraein-Ghomi, Farideh; Basu, Hirak S; Church, Dawn R; Hoffmann, F Michael; Wilding, George

    2010-06-01

    Relatively high oxidative stress levels in the prostate are postulated to be a major factor for prostate carcinogenesis and prostate cancer (CaP) progression. We focused on elucidating metabolic pathways of oxidative stress generation in CaP cells. Previously, we showed that the transcription factor JunD is essential for androgen-induced reactive oxygen species (ROS) production in androgen-dependent human CaP cells. We also recently showed that androgen induces the first and regulatory enzyme spermidine/spermine N1-acetyltransferase (SSAT) in a polyamine catabolic pathway that produces copious amounts of metabolic ROS. Here, we present coimmunoprecipitation and Gaussia luciferase reconstitution assay data that show that JunD forms a complex with androgen-activated androgen receptor (AR) in situ. Our chromatin immunoprecipitation assay data show that JunD binds directly to a specific SSAT promoter sequence only in androgen-treated LNCaP cells. Using a vector containing a luciferase reporter gene connected to the SSAT promoter and a JunD-silenced LNCaP cell line, we show that JunD is essential for androgen-induced SSAT gene expression. The elucidation of JunD-AR complex inducing SSAT expression leading to polyamine oxidation establishes the mechanistic basis of androgen-induced ROS production in CaP cells and opens up a new prostate-specific target for CaP chemopreventive/chemotherapeutic drug development. Copyright 2010 AACR.

  18. Potential down-regulation of salivary gland AQP5 by LPS via cross-coupling of NF-kappaB and p-c-Jun/c-Fos.

    PubMed

    Yao, Chenjuan; Purwanti, Nunuk; Karabasil, Mileva Ratko; Azlina, Ahmad; Javkhlan, Purevjav; Hasegawa, Takahiro; Akamatsu, Tetsuya; Hosoi, Toru; Ozawa, Koichiro; Hosoi, Kazuo

    2010-08-01

    The mRNA and protein levels of aquaporin (AQP)5 in the parotid gland were found to be potentially decreased by lipopolysaccharide (LPS) in vivo in C3H/HeN mice, but only weakly in C3H/HeJ, a TLR4 mutant mouse strain. In the LPS-injected mice, pilocarpine-stimulated saliva production was reduced by more than 50%. In a tissue culture system, the LPS-induced decrease in the AQP5 mRNA level was blocked completely by pyrrolidine dithiocarbamate, MG132, tyrphostin AG126, SP600125, and partially by SB203580, which are inhibitors for IkappaB kinase, 26S proteasome, ERK1/2, JNK, and p38 MAPK, respectively. In contrast, the expression of AQP1 mRNA was down-regulated by LPS and such down-regulation was blocked only by SP600125. The transcription factors NF-kappaB (p65 subunit), p-c-Jun, and c-Fos were increased by LPS given in vivo, whereas the protein-binding activities of the parotid gland extract toward the sequences for NF-kappaB but not AP-1-responsive elements present at the promoter region of the AQP5 gene were increased by LPS injection. Co-immunoprecipitation by using antibody columns suggested the physical association of the three transcription factors. These results suggest that LPS-induced potential down-regulation of expression of AQP5 mRNA in the parotid gland is mediated via a complex(es) of these two classes of transcription factors, NF-kappaB and p-c-Jun/c-Fos.

  19. NADPH oxidase 2-derived reactive oxygen species signal contributes to bradykinin-induced matrix metalloproteinase-9 expression and cell migration in brain astrocytes

    PubMed Central

    2012-01-01

    Background Matrix metalloproteinase-9 (MMP-9) plays a crucial role in pathological processes of brain inflammation, injury, and neurodegeneration. Moreover, bradykinin (BK) induces the expression of several inflammatory proteins in brain astrocytes. Recent studies have suggested that increased oxidative stress is implicated in the brain inflammation and injury. However, whether BK induced MMP-9 expression mediated through oxidative stress remains virtually unknown. Herein we investigated the role of redox signals in BK-induced MMP-9 expression in rat brain astrocytes (RBA-1 cells). Results In the study, we first demonstrated that reactive oxygen species (ROS) plays a crucial role in BK-induced MMP-9 expression in cultured brain astrocytes (in vitro) and animal brain tissue (in vivo) models. Next, BK-induced MMP-9 expression is mediated through a Ca2+-mediated PKC-α linking to p47phox/NADPH oxidase 2 (Nox2)/ROS signaling pathway. Nox2-dependent ROS generation led to activation and up-regulation of the downstream transcriptional factor AP-1 (i.e. c-Fos and c-Jun), which bound to MMP-9 promoter region, and thereby turned on transcription of MMP-9 gene. Functionally, BK-induced MMP-9 expression enhanced astrocytic migration. Conclusions These results demonstrated that in RBA-1 cells, activation of AP-1 (c-Fos/c-Jun) by the PKC-α-mediated Nox2/ROS signals is essential for up-regulation of MMP-9 and cell migration enhanced by BK. PMID:23176293

  20. Constitutive hypophosphorylation of extracellular signal-regulated kinases-1/2 and down-regulation of c-Jun in human gastric adenocarcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, William Ka Kei; Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong; Institute of Digestive Diseases, Chinese University of Hong Kong, Hong Kong

    2008-08-22

    Hyperphosphorylation of extracellular signal-regulated protein kinases-1/2 (ERK1/2) is known to promote cancer cell proliferation. We therefore investigated the constitutive phosphorylation levels of ERK1/2 and the expression of its downstream targets c-Fos, c-Jun, and cyclooxygenase-2 (COX-2) in biopsied human gastric cancer tissues. Results showed that ERK1/2 phosphorylation and c-Jun expression were significantly lowered in gastric cancer compared with the non-cancer adjacent tissues. The expression of c-Fos, however, was not altered while COX-2 was significantly up-regulated. To conclude, we demonstrate that hypophosphorylation of ERK1/2 may occur in gastric cancer. Such discovery may have implication in the application of pathway-directed therapy for thismore » malignant disease.« less

  1. c-Jun binds the N terminus of human TAF(II)250 to derepress RNA polymerase II transcription in vitro.

    PubMed

    Lively, T N; Ferguson, H A; Galasinski, S K; Seto, A G; Goodrich, J A

    2001-07-06

    c-Jun is an oncoprotein that activates transcription of many genes involved in cell growth and proliferation. We studied the mechanism of transcriptional activation by human c-Jun in a human RNA polymerase II transcription system composed of highly purified recombinant and native transcription factors. Transcriptional activation by c-Jun depends on the TATA-binding protein (TBP)-associated factor (TAF) subunits of transcription factor IID (TFIID). Protein-protein interaction assays revealed that c-Jun binds with high specificity to the largest subunit of human TFIID, TAF(II)250. The region of TAF(II)250 bound by c-Jun lies in the N-terminal 163 amino acids. This same region of TAF(II)250 binds to TBP and represses its interaction with TATA boxes, thereby decreasing DNA binding by TFIID. We hypothesized that c-Jun is capable of derepressing the effect of the TAF(II)250 N terminus on TFIID-driven transcription. In support of this hypothesis, we found that c-Jun increased levels of TFIID-driven transcription in vitro when added at high concentrations to a DNA template lacking activator protein 1 (AP-1) sites. Moreover, c-Jun blocked the repression of TBP DNA binding caused by the N terminus of TAF(II)250. In addition to revealing a mechanism by which c-Jun activates transcription, our studies provide the first evidence that an activator can bind directly to the N terminus of TAF(II)250 to derepress RNA polymerase II transcription in vitro.

  2. miR-139-5p inhibits isoproterenol-induced cardiac hypertrophy by targetting c-Jun.

    PubMed

    Ming, Su; Shui-Yun, Wang; Wei, Qiu; Jian-Hui, Li; Ru-Tai, Hui; Lei, Song; Mei, Jia; Hui, Wang; Ji-Zheng, Wang

    2018-04-27

    Hypertrophic cardiomyopathy (HCM) is a serious monogenic disease characterized by cardiac hypertrophy, fibrosis, sudden cardiac death, and heart failure. Previously, we identified that miR-139-5p was down-regulated in HCM patients. However, the regulatory effects of miR-139-5p remain unclear. Thus, we investigated the role of miR-139-5p in the regulation of cardiac hypertrophy. The expression of miR-139-5p in left ventricular tissues in HCM patients and mice subjected to transverse aortic constriction (TAC) was significantly down-regulated. Knockdown of miR-139-5p expression in neonatal rat cardiomyocytes (NRCMs) induced cardiomyocyte enlargement and increased atrial natriuretic polypeptide (ANP) expression. Overexpression of miR-139-5p antagonized isoproterenol (ISO)-induced cardiomyocyte enlargement and ANP/brain natriuretic peptide (BNP) up-regulation. More importantly, we found that c-Jun expression was inhibited by miR-139-5p in NRCMs. Knockdown of c-Jun expression significantly attenuated cardiac hypertrophy induced by miR-139-5p deprivation. Our data indicated that miR-139-5p was down-regulated in the hearts of HCM patients and that it inhibited cardiac hypertrophy by targetting c-Jun expression. © 2018 The Author(s).

  3. Targeting p53 via JNK pathway: a novel role of RITA for apoptotic signaling in multiple myeloma.

    PubMed

    Saha, Manujendra N; Jiang, Hua; Yang, Yijun; Zhu, Xiaoyun; Wang, Xiaoming; Schimmer, Aaron D; Qiu, Lugui; Chang, Hong

    2012-01-01

    The low frequency of p53 alterations e.g., mutations/deletions (∼10%) in multiple myeloma (MM) makes this tumor type an ideal candidate for p53-targeted therapies. RITA is a small molecule which can induce apoptosis in tumor cells by activating the p53 pathway. We previously showed that RITA strongly activates p53 while selectively inhibiting growth of MM cells without inducing genotoxicity, indicating its potential as a drug lead for p53-targeted therapy in MM. However, the molecular mechanisms underlying the pro-apoptotic effect of RITA are largely undefined. Gene expression analysis by microarray identified a significant number of differentially expressed genes associated with stress response including c-Jun N-terminal kinase (JNK) signaling pathway. By Western blot analysis we further confirmed that RITA induced activation of p53 in conjunction with up-regulation of phosphorylated ASK-1, MKK-4 and c-Jun. These results suggest that RITA induced the activation of JNK signaling. Chromatin immunoprecipitation (ChIP) analysis showed that activated c-Jun binds to the activator protein-1 (AP-1) binding site of the p53 promoter region. Disruption of the JNK signal pathway by small interfering RNA (siRNA) against JNK or JNK specific inhibitor, SP-600125 inhibited the activation of p53 and attenuated apoptosis induced by RITA in myeloma cells carrying wild type p53. On the other hand, p53 transcriptional inhibitor, PFT-α or p53 siRNA not only inhibited the activation of p53 transcriptional targets but also blocked the activation of c-Jun suggesting the presence of a positive feedback loop between p53 and JNK. In addition, RITA in combination with dexamethasone, known as a JNK activator, displays synergistic cytotoxic responses in MM cell lines and patient samples. Our study unveils a previously undescribed mechanism of RITA-induced p53-mediated apoptosis through JNK signaling pathway and provides the rationale for combination of p53 activating drugs with JNK activators in the treatment of MM.

  4. Targeting p53 via JNK Pathway: A Novel Role of RITA for Apoptotic Signaling in Multiple Myeloma

    PubMed Central

    Saha, Manujendra N.; Jiang, Hua; Yang, Yijun; Zhu, Xiaoyun; Wang, Xiaoming; Schimmer, Aaron D.; Qiu, Lugui; Chang, Hong

    2012-01-01

    The low frequency of p53 alterations e.g., mutations/deletions (∼10%) in multiple myeloma (MM) makes this tumor type an ideal candidate for p53-targeted therapies. RITA is a small molecule which can induce apoptosis in tumor cells by activating the p53 pathway. We previously showed that RITA strongly activates p53 while selectively inhibiting growth of MM cells without inducing genotoxicity, indicating its potential as a drug lead for p53-targeted therapy in MM. However, the molecular mechanisms underlying the pro-apoptotic effect of RITA are largely undefined. Gene expression analysis by microarray identified a significant number of differentially expressed genes associated with stress response including c-Jun N-terminal kinase (JNK) signaling pathway. By Western blot analysis we further confirmed that RITA induced activation of p53 in conjunction with up-regulation of phosphorylated ASK-1, MKK-4 and c-Jun. These results suggest that RITA induced the activation of JNK signaling. Chromatin immunoprecipitation (ChIP) analysis showed that activated c-Jun binds to the activator protein-1 (AP-1) binding site of the p53 promoter region. Disruption of the JNK signal pathway by small interfering RNA (siRNA) against JNK or JNK specific inhibitor, SP-600125 inhibited the activation of p53 and attenuated apoptosis induced by RITA in myeloma cells carrying wild type p53. On the other hand, p53 transcriptional inhibitor, PFT-α or p53 siRNA not only inhibited the activation of p53 transcriptional targets but also blocked the activation of c-Jun suggesting the presence of a positive feedback loop between p53 and JNK. In addition, RITA in combination with dexamethasone, known as a JNK activator, displays synergistic cytotoxic responses in MM cell lines and patient samples. Our study unveils a previously undescribed mechanism of RITA-induced p53-mediated apoptosis through JNK signaling pathway and provides the rationale for combination of p53 activating drugs with JNK activators in the treatment of MM. PMID:22276160

  5. Impaired expression of DICER and some microRNAs in HBZ expressing cells from acute adult T-cell leukemia patients

    PubMed Central

    Gazon, Hélène; Belrose, Gildas; Terol, Marie; Meniane, Jean-Come; Mesnard, Jean-Michel; Césaire, Raymond; Peloponese, Jean-Marie

    2016-01-01

    Global dysregulation of microRNAs (miRNAs), a class of non-coding RNAs that regulate genes expression, is a common feature of human tumors. Profiling of cellular miRNAs on Adult T cell Leukemia (ATL) cells by Yamagishi et al. showed a strong decrease in expression for 96.7% of cellular miRNAs in ATL cells. However, the mechanisms that regulate the expression of miRNAs in ATL cells are still largely unknown. In this study, we compared the expression of 12 miRs previously described for being overexpress by Tax and the expression of several key components of the miRNAs biogenesis pathways in different HBZ expressing cell lines as well as in primary CD4 (+) cells from acute ATL patients. We showed that the expression of miRNAs and Dicer1 were downregulated in cells lines expressing HBZ as well as in fresh CD4 (+) cells from acute ATL patients. Using qRT-PCR, western blotting analysis and Chromatin Immunoprecipitation, we showed that dicer transcription was regulated by c-Jun and JunD, two AP-1 transcription factors. We also demonstrated that HBZ affects the expression of Dicer by removing JunD from the proximal promoter. Furthermore, we showed that at therapeutic concentration of 1mM, Valproate (VPA) an HDAC inhibitors often used in cancer treatment, rescue Dicer expression and miRNAs maturation. These results might offer a rationale for clinical studies of new combined therapy in an effort to improve the outcome of patients with acute ATL. PMID:26849145

  6. Angiotensin II initiates tyrosine kinase Pyk2-dependent signalings leading to activation of Rac1-mediated c-Jun NH2-terminal kinase.

    PubMed

    Murasawa, S; Matsubara, H; Mori, Y; Masaki, H; Tsutsumi, Y; Shibasaki, Y; Kitabayashi, I; Tanaka, Y; Fujiyama, S; Koyama, Y; Fujiyama, A; Iba, S; Iwasaka, T

    2000-09-01

    Ca(2+)-sensitive tyrosine kinase Pyk2 was shown to be involved in angiotensin (Ang) II-mediated activation of extracellular signal-regulated kinase (ERK) via transactivation of epidermal growth factor receptor (EGF-R). In this study, we tested the involvement of Pyk2 and EGF-R in Ang II-induced activation of JNK and c-Jun in cardiac fibroblasts. Ang II markedly stimulated JNK activities, which were abolished by genistein and intracellular Ca(2+) chelators but partially by protein kinase C depletion. Inhibition of EGF-R did not affect Pyk2 and JNK activation by Ang II. Stable transfection with a dominant negative (DN) mutant for Pyk2 (PKM) completely blocked JNK activation by Ang II. DN mutants of Rac1 (DN-Rac1) and MEK kinase (DN-MEKK1) also abolished it, whereas those of Cdc42, RhoA, and Ha-Ras had no effect. Induction of c-Jun gene transcription by Ang II was abolished in PKM, DN-Rac1, and DN-MEKK1, in which Ang II-induced binding of ATF2/c-Jun heterodimer to the activator protein-1 sequence at -190 played a key role. These results suggest that 1) in cardiac fibroblasts activation of JNK and c-Jun by Ang II is initiated by Pyk2-dependent signalings but not by downstream signals of EGF-R or Ras, 2) Rac1 but not Cdc42 is required for JNK activation by Ang II upstream of MEKK1, and 3) ATF-2/c-Jun binding to the activator protein-1 sequence at -190 plays a key role for induction of c-Jun gene by Ang II.

  7. Mechanotransduction of Ultrasound is Frequency Dependent Below the Cavitation Threshold

    PubMed Central

    Louw, Tobias M.; Budhiraja, Gaurav; Viljoen, Hendrik J.; Subramanian, Anuradha

    2013-01-01

    This study provides evidence that low-intensity ultrasound directly affects nuclear processes, and the magnitude of the effect varies with frequency. In particular, we show that the transcriptional induction of first load-inducible genes, which is independent of new protein synthesis, is frequency dependent. Bovine chondrocytes were exposed to low-intensity below the cavitational threshold) ultrasound at 2,5 and 8 MHz. Ultrasound elevated the expression of early response genes c-Fos, c-Jun and c-Myc, maximized at 5 MHz. The phosphorylated ERK inhibitor PD98059 abrogated any increase in c-series gene expression, suggesting that signaling occurs via the MAPPK/ERK pathway. However, phosphorylated ERK levels did not change with ultrasound frequency, indicating that processes downstream of ERK phosphorylation (such as nuclear transport and chromatin reorganization) respond to ultrasound with frequency dependence. A quantitative, biphasic mathematical model based on Biot theory predicted that cytoplasmic and nuclear stress is maximized at 5.2 ± 0.8 MHz for a chondrocyte, confirming experimental measurements. PMID:23562015

  8. Roles of p62 in BDNF-dependent autophagy suppression and neuroprotection against mitochondrial dysfunction in rat cortical neurons.

    PubMed

    Wu, Chia-Lin; Chen, Chien-Hui; Hwang, Chi-Shin; Chen, Shang-Der; Hwang, Wei-Chao; Yang, Ding-I

    2017-03-01

    Previously, we have reported that pre-conditioning of primary rat cortical neurons with brain-derived neurotrophic factor (BDNF) may exert neuroprotective effects against 3-nitropropionic acid (3-NP), a mitochondrial complex II inhibitor. However, the underlying mechanisms, especially potential involvements of autophagy, remain elusive. In this work, we tested the hypothesis that BDNF may suppress 3-NP-induced autophagy to exert its neuroprotective effects by inducing the expression of p62/sequestosome-1 in primary cortical neurons. We found that 3-NP increased total level of microtubule-associated protein 1A/1B-light chain (LC)-3 as well as the LC3-II/LC3-I ratio, an index of autophagy, in primary cortical neurons. BDNF decreased LC3-II/LC3-I ratio and time-dependently induced expression of p62. Knockdown of p62 by siRNA restored LC3-II/LC3-I ratio and increased total LC3 levels associated with BDNF exposure; p62 knockdown also abolished BDNF-dependent neuroprotection against 3-NP. Upstream of p62, we found that BDNF triggered phosphorylation of mammalian target of rapamycin (mTOR) and its downstream mediator p70S6K; importantly, the mTOR inhibitor rapamycin reduced both BDNF-dependent p62 induction as well as 3-NP resistance. BDNF is known to induce c-Jun in cortical neurons. We found that c-Jun knockdown in part attenuated BDNF-mediated p62 induction, whereas p62 knockdown had no significant effects on c-Jun expression. In addition to suppressing p62 induction, rapamycin also partially suppressed BDNF-induced c-Jun expression, but c-Jun knockdown failed to affect mTOR activation. Together, our results suggested that BDNF inhibits 3-NP-induced autophagy via, at least in part, mTOR/c-Jun-dependent induction of p62 expression, together contributing to neuroprotection against mitochondrial inhibition. © 2016 International Society for Neurochemistry.

  9. Developmental reprogramming of rat GLUT-5 requires de novo mRNA and protein synthesis.

    PubMed

    Jiang, L; Ferraris, R P

    2001-01-01

    Fructose transporter (GLUT-5) expression is low in mid-weaning rat small intestine, increases normally after weaning is completed, and can be precociously induced by premature consumption of a high-fructose (HF) diet. In this study, an in vivo perfusion model was used to determine the mechanisms regulating this substrate-induced reprogramming of GLUT-5 development. HF (100 mM) but not high-glucose (HG) perfusion increased GLUT-5 activity and mRNA abundance. In contrast, HF and HG perfusion had no effect on Na(+)-dependent glucose transporter (SGLT-1) expression but increased c-fos and c-jun expression. Intraperitoneal injection of actinomycin D before intestinal perfusion blocked the HF-induced increase in fructose uptake rate and GLUT-5 mRNA abundance. Actinomycin D also prevented the perfusion-induced increase in c-fos and c-jun mRNA abundance but did not affect glucose uptake rate and SGLT-1 mRNA abundance. Cycloheximide blocked the HF-induced increase in fructose uptake rate but not the increase in GLUT-5 mRNA abundance and had no effect on glucose uptake rate and SGLT-1 mRNA abundance. In neonatal rats, the substrate-induced reprogramming of intestinal fructose transport is likely to involve transcription and translation of the GLUT-5 gene.

  10. Inhibitor of Differentiation/DNA Binding 1 (ID1) Inhibits Etoposide-induced Apoptosis in a c-Jun/c-Fos-dependent Manner.

    PubMed

    Zhao, Yahui; Luo, Aiping; Li, Sheng; Zhang, Wei; Chen, Hongyan; Li, Yi; Ding, Fang; Huang, Furong; Liu, Zhihua

    2016-03-25

    ID1 (inhibitor of differentiation/DNA binding 1) acts an important role in metastasis, tumorigenesis, and maintenance of cell viability. It has been shown that the up-regulation of ID1 is correlated with poor prognosis and the resistance to chemotherapy of human cancers. However, the underlying molecular mechanism remains elusive. Here, we determined for the first time that up-regulating ID1 upon etoposide activation was mediated through AP-1 binding sites within theID1promoter and confirmed that ID1 enhanced cell resistance to DNA damage-induced apoptosis in esophageal squamous cell carcinoma cells. Ablation of c-Jun/c-Fos or ID1 expression enhanced etoposide-mediated apoptosis through increasing activity of caspase 3 and PARP cleavage. Moreover, c-Jun/c-Fos and ID1 were positively correlated in human cancers. More importantly, simultaneous high expression of ID1 and c-Jun or c-Fos was correlated with poor survival in cancer patients. Collectively, we demonstrate the importance of c-Jun/c-Fos-ID1 signaling pathway in chemoresistance of esophageal cancer cells and provide considerable insight into understanding the underlying molecular mechanisms in esophageal squamous cell carcinoma cell biology. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. The novel protein C3orf43 accelerates hepatocyte proliferation.

    PubMed

    Zhang, Chunyan; Chang, Cuifang; Li, Deming; Zhang, Fuchun; Xu, Cunshuan

    2017-01-01

    Our previous study found that single-pass membrane protein with coiled-coil domains 1 (C3orf43; XM_006248472.3) was significantly upregulated in the proliferative phase during liver regeneration. This indicates that C3orf43 plays a vital role in liver cell proliferation. However, its physiological functions remains unclear. The expressions of C3orf43 in BRL-3A cells transfected with C3orf43-siRNA (C3-siRNA) or overexpressing the vector plasmid pCDH-C3orf43 (pCDH-C3) were measured via RT-qPCR and western blot. Cell growth and proliferation were determined using MTT and flow cytometry. Cell proliferation-related gene expression was measured using RT-qPCR and western blot. It was found that upregulation of C3orf43 by pCDH-C3 promoted hepatocyte proliferation, and inhibition of C3orf43 by C3-siRNA led to the reduction of cell proliferation. The results of qRT-PCR and western blot assay showed that the C3-siRNA group downregulated the expression of cell proliferation-related genes like JUN, MYC, CCND1 and CCNA2, and the pCDH-C3 group upregulated the expression of those genes. These findings reveal that C3orf43 may contribute to hepatocyte proliferation and may have the potential to promote liver repair and regeneration.

  12. Transcriptional machinery of TNF-α-inducible YTH domain containing 2 (YTHDC2) gene.

    PubMed

    Tanabe, Atsushi; Konno, Junpei; Tanikawa, Kenya; Sahara, Hiroeki

    2014-02-01

    We previously demonstrated that a cellular factor, cyclosporin A (CsA) associated helicase-like protein (CAHL) that is identical to YTH domain containing 2 (YTHDC2), forms trimer complex with cyclophilin B and NS5B of hepatitis C virus (HCV) and facilitates HCV genome replication. Gene expression of YTHDC2 was shown in tumor cell lines and tumor necrosis factor (TNF)-α-treated hepatocytes, but not in untreated. However, the function of YTHDC2 in the tumor cells and the mechanism by which the YTHDC2 gene is transcribed in these cells is largely unknown. We first evaluated that the role of YTHDC2 in the proliferation of hepatocellular carcinoma (HCC) cell line Huh7 using RNA interference and found that YTHDC2-downregulated Huh7 were significantly decreased cell growth as compared to control. We next demonstrated that the cAMP response element (CRE) site in the promoter region of the YTHDC2 gene is critical for YTHDC2 transcription. To further investigate the transcription factors bound to the CRE site, we performed chromatin immunoprecipitation assays. Our findings demonstrate that c-Jun and ATF-2 bind to the CRE site in Huh7, and that TNF-α induces the biological activity of these transcription factors in hepatocytes as well as Huh7. Moreover, treatment with the HDAC inhibitor, trichostatin A (TSA), reduces YTHDC2 expression in Huh7 and in TNF-α-stimulated hepatocytes. Collectively, these data show that YTHDC2 plays an important role in tumor cells growth and activation/recruitment of c-Jun and ATF-2 to the YTHDC2 promoter is necessary for the transcription of YTHDC2, and that HDAC activity is required for the efficient expression of YTHDC2 in both of hepatocyte and HCC cells. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Effect of soy saponin on the growth of human colon cancer cells

    PubMed Central

    Tsai, Cheng-Yu; Chen, Yue-Hwa; Chien, Yi-Wen; Huang, Wen-Hsuan; Lin, Shyh-Hsiang

    2010-01-01

    AIM: To investigate the effect of extracted soybean saponins on the growth of human colon cancer cells. METHODS: WiDr human colon cancer cells were treated with 150, 300, 600 or 1200 ppm of soy saponin to determine the effect on cell growth, cell morphology, alkaline phosphatase (AP) and protein kinase C (PKC) activities, and P53 protein, c-Fos and c-Jun gene expression. RESULTS: Soy saponin decreased the number of viable cells in a dose-dependent manner and suppressed 12-O-tetradecanol-phorbol-13-acetate-stimulated PKC activity (P < 0.05). Cells treated with saponins developed cytoplasmic vesicles and the cell membrane became rougher and more irregular in a dose-dependent manner, and eventually disassembled. At 600 and 1200 ppm, the activity of AP was increased (P < 0.05). However, the apoptosis markers such as c-Jun and c-Fos were not significantly affected by saponin. CONCLUSION: Soy saponin may be effective in preventing colon cancer by affecting cell morphology, cell proliferation enzymes, and cell growth. PMID:20632438

  14. Unifying mechanism for different fibrotic diseases

    PubMed Central

    Wernig, Gerlinde; Chen, Shih-Yu; Cui, Lu; Van Neste, Camille; Tsai, Jonathan M.; Kambham, Neeraja; Vogel, Hannes; Natkunam, Yaso; Gilliland, D. Gary; Nolan, Garry; Weissman, Irving L.

    2017-01-01

    Fibrotic diseases are not well-understood. They represent a number of different diseases that are characterized by the development of severe organ fibrosis without any obvious cause, such as the devastating diseases idiopathic pulmonary fibrosis (IPF) and scleroderma. These diseases have a poor prognosis comparable with endstage cancer and are uncurable. Given the phenotypic differences, it was assumed that the different fibrotic diseases also have different pathomechanisms. Here, we demonstrate that many endstage fibrotic diseases, including IPF; scleroderma; myelofibrosis; kidney-, pancreas-, and heart-fibrosis; and nonalcoholic steatohepatosis converge in the activation of the AP1 transcription factor c-JUN in the pathologic fibroblasts. Expression of the related AP1 transcription factor FRA2 was restricted to pulmonary artery hypertension. Induction of c-Jun in mice was sufficient to induce severe fibrosis in multiple organs and steatohepatosis, which was dependent on sustained c-Jun expression. Single cell mass cytometry revealed that c-Jun activates multiple signaling pathways in mice, including pAkt and CD47, which were also induced in human disease. αCD47 antibody treatment and VEGF or PI3K inhibition reversed various organ c-Jun–mediated fibroses in vivo. These data suggest that c-JUN is a central molecular mediator of most fibrotic conditions. PMID:28424250

  15. Functional cooperation between GATA factors and cJUN on the star promoter in MA-10 Leydig cells.

    PubMed

    Martin, Luc J; Bergeron, Francis; Viger, Robert S; Tremblay, Jacques J

    2012-01-01

    Steroid hormone biosynthesis requires the steroidogenic acute regulatory protein (STAR). STAR is part of a protein complex that transports cholesterol through the mitochondrial membrane where steroidogenesis begins. Several transcription factors participate to direct the proper spatiotemporal and hormonal regulation of the Star gene in Leydig cells. Mechanistically, this is believed to involve the functional interplay between many of these factors. Here we report a novel transcriptional cooperation between GATA factors and cJUN on the mouse Star and human STAR promoters in MA-10 Leydig cells. This cooperation was observed with different GATA members (GATA1, 4, and 6), whereas only cJUN could cooperate with GATA factors. GATA/cJUN transcriptional cooperation on the Star promoter is mediated via closely juxtaposed GATA and AP-1 binding motifs. Mutation of all functional GATA and cJUN elements abolished GATA/cJUN cooperation, which is in agreement with previous data reporting a direct interaction between GATA4 and cJUN in a heterologous system. These data add valuable new insights that further define the molecular mechanisms that govern Star transcription in steroidogenic cells of the testis.

  16. OncomiR Addiction Is Generated by a miR-155 Feedback Loop in Theileria-Transformed Leukocytes

    PubMed Central

    Medjkane, Souhila; Perichon, Martine; Yin, Qinyan; Flemington, Erik; Weitzman, Matthew D.; Weitzman, Jonathan B.

    2013-01-01

    The intracellular parasite Theileria is the only eukaryote known to transform its mammalian host cells. We investigated the host mechanisms involved in parasite-induced transformation phenotypes. Tumour progression is a multistep process, yet ‘oncogene addiction’ implies that cancer cell growth and survival can be impaired by inactivating a single gene, offering a rationale for targeted molecular therapies. Furthermore, feedback loops often act as key regulatory hubs in tumorigenesis. We searched for microRNAs involved in addiction to regulatory loops in leukocytes infected with Theileria parasites. We show that Theileria transformation involves induction of the host bovine oncomiR miR-155, via the c-Jun transcription factor and AP-1 activity. We identified a novel miR-155 target, DET1, an evolutionarily-conserved factor involved in c-Jun ubiquitination. We show that miR-155 expression led to repression of DET1 protein, causing stabilization of c-Jun and driving the promoter activity of the BIC transcript containing miR-155. This positive feedback loop is critical to maintain the growth and survival of Theileria-infected leukocytes; transformation is reversed by inhibiting AP-1 activity or miR-155 expression. This is the first demonstration that Theileria parasites induce the expression of host non-coding RNAs and highlights the importance of a novel feedback loop in maintaining the proliferative phenotypes induced upon parasite infection. Hence, parasite infection drives epigenetic rewiring of the regulatory circuitry of host leukocytes, placing miR-155 at the crossroads between infection, regulatory circuits and transformation. PMID:23637592

  17. Heterodimerization with Jun family members regulates c-Fos nucleocytoplasmic traffic.

    PubMed

    Malnou, Cécile E; Salem, Tamara; Brockly, Frédérique; Wodrich, Harald; Piechaczyk, Marc; Jariel-Encontre, Isabelle

    2007-10-19

    c-Fos proto-oncoprotein forms AP-1 transcription complexes with heterodimerization partners such as c-Jun, JunB, and JunD. Thereby, it controls essential cell functions and exerts tumorigenic actions. The dynamics of c-Fos intracellular distribution is poorly understood. Hence, we have combined genetic, cell biology, and microscopic approaches to investigate this issue. In addition to a previously characterized basic nuclear localization signal (NLS) located within the central DNA-binding domain, we identified a second NLS within the c-Fos N-terminal region. This NLS is non-classic and its activity depends on transportin 1 in vivo. Under conditions of prominent nuclear localization, c-Fos can undergo nucleocytoplasmic shuttling through an active Crm-1 exportin-independent mechanism. Dimerization with the Jun proteins inhibits c-Fos nuclear exit. The strongest effect is observed with c-Jun probably in accordance with the relative stabilities of the different c-Fos:Jun dimers. Retrotransport inhibition is not caused by binding of dimers to DNA and, therefore, is not induced by indirect effects linked to activation of c-Fos target genes. Monomeric, but not dimeric, Jun proteins also shuttle actively. Thus, our work unveils a novel regulation operating on AP-1 by demonstrating that dimerization is crucial, not only for active transcription complex formation, but also for keeping them in the compartment where they exert their transcriptional function.

  18. miR-138 protects cardiomyocytes from hypoxia-induced apoptosis via MLK3/JNK/c-jun pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Siyi; Liu, Peng; Jian, Zhao

    2013-11-29

    Highlights: •First time to find miR-138 is up-regulated in hypoxic cardiomyocytes. •First time to find miR-138 targets MLK3 and regulates JNK/c-jun pathway. •Rare myocardial biopsy of patients with CHD were collected. •Both silence and overexpression of miR-138 were implemented. •Various methods were used to detect cell function. -- Abstract: Cardiomyocytes experience a series of complex endogenous regulatory mechanisms against apoptosis induced by chronic hypoxia. MicroRNAs are a class of endogenous small non-coding RNAs that regulate cellular pathophysiological processes. Recently, microRNA-138 (miR-138) has been found related to hypoxia, and beneficial for cell proliferation. Therefore, we intend to study the role ofmore » miR-138 in hypoxic cardiomyocytes and the main mechanism. Myocardial samples of patients with congenital heart disease (CHD) were collected to test miR-138 expression. Agomir or antagomir of miR-138 was transfected into H9C2 cells to investigate its effect on cell apoptosis. Higher miR-138 expression was observed in patients with cyanotic CHD, and its expression gradually increased with prolonged hypoxia time in H9C2 cells. Using MTT and LDH assays, cell growth was significantly greater in the agomir group than in the negative control (NC) group, while antagomir decreased cell survival. Dual luciferase reporter gene and Western-blot results confirmed MLK3 was a direct target of miR-138. It was found that miR-138 attenuated hypoxia-induced apoptosis using TUNEL, Hoechst staining and Annexin V-PE/7-AAD flow cytometry analysis. We further detected expression of apoptosis-related proteins. In the agomir group, the level of pro-apoptotic proteins such as cleaved-caspase-3, cleaved-PARP and Bad significantly reduced, while Bcl-2 and Bcl-2/Bax ratio increased. Opposite changes were observed in the antagomir group. Downstream targets of MLK3, JNK and c-jun, were also suppressed by miR-138. Our study demonstrates that up-regulation of miR-138 plays a protective role in myocardial adaptation to chronic hypoxia, which is mediated mainly by MLK3/JNK/c-jun signaling pathway.« less

  19. MAGE-A1 promotes melanoma proliferation and migration through C-JUN activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dong; The 309th Hospital of China People's Liberation Army, Beijing 100091; Wang, Junyun

    2016-05-13

    MAGE-A1 belongs to the chromosome X-clustered genes of cancer-testis antigen family and is normally expressed in the human germ line but is also overexpressed in various tumors. Previous studies of MAGE-A1 in melanoma mainly focused on methylation changes or its role in immunotherapy, however, its biological functions in melanoma have remained unknown. In order to determine the role of MAGE-A1 in melanoma growth and metastasis, we manipulated melanoma cell lines with overexpression and knockdown of MAGE-A1. Integration of cell proliferation assays, transwell migration and invasion assays, and RNA-Seq analysis revealed that up-regulation of MAGE-A1 dramatically promoted proliferation, migration, and invasionmore » of human melanoma cell lines in vitro, while down-regulation of MAGE-A1 inhibited those characteristics associated with tumor cells. Furthermore, transcriptome sequencing revealed that MAGE-A1 exerts its tumor promoting activity by activating p-C-JUN directly or through ERK-MAPK signaling pathways. Based on our findings, we propose that MAGE-A1 may be a potential therapeutic target for melanoma patients. - Highlights: • MAGE-A1 promotes proliferation and clone formation in melanoma cell lines. • MAGE-A1 enhances tumor cell migration and invasion in melanoma cell lines. • Network including C-JUN, IL8, and ARHGAP29 play critical role in malignant melanoma. • Oncogenic MAGE-A1 increases p-C-JUN levels, possibly via ERK-MAPK signaling pathway.« less

  20. Activation of Tax protein by c-Jun-N-terminal kinase is not dependent on the presence or absence of the early growth response-1 gene product.

    PubMed

    Parra, Eduardo; Gutierréz, Luís; Ferreira, Jorge

    2016-02-01

    The Tax protein of human T cell leukemia virus type 1 plays a major role in the pathogenesis of adult T cell leukemia (ATL), an aggressive neoplasia of CD4+ T cells. In the present study, we investigated whether the EGR-1 pathway is involved in the regulation of Tax-induced JNK expression in human Jurkat T cells transfected to express the Tax protein in the presence or absence of PMA or ionomycin. Overexpression of EGR-1 in Jurkat cells transfected to express Tax, promoted the activation of several genes, with the most potent being those that contained AP-1 (Jun/c-Fos), whereas knockdown of endogenous EGR-1 by small interfering RNA (siRNA) somewhat reduced Tax-mediated JNK-1 transcription. Additionally, luciferase-based AP-1 and NF-κB reporter gene assays demonstrated that inhibition of EGR-1 expression by an siRNA did not affect the transcriptional activity of a consensus sequence of either AP-1 or NF-κB. On the other hand, the apoptosis assay, using all-trans retinoic acid (ATRA) as an inducer of apoptosis, confirmed that siRNA against EGR-1 failed to suppress ATRA-induced apoptosis in Jurkat and Jurkat-Tax cells, as noted by the low levels of both DEVDase activity and DNA fragmentation, indicating that the induction of apoptosis by ATRA was Egr-1-independent. Finally, our data showed that activation of Tax by JNK-1 was not dependent on the EGR-1 cascade of events, suggesting that EGR-1 is important but not a determinant for the activity for Tax-induced proliferation of Jurkat cells.

  1. TATA-binding protein-associated factor 7 regulates polyamine transport activity and polyamine analog-induced apoptosis.

    PubMed

    Fukuchi, Junichi; Hiipakka, Richard A; Kokontis, John M; Nishimura, Kazuhiro; Igarashi, Kazuei; Liao, Shutsung

    2004-07-16

    Identification of the polyamine transporter gene will be useful for modulating polyamine accumulation in cells and should be a good target for controlling cell proliferation. Polyamine transport activity in mammalian cells is critical for accumulation of the polyamine analog methylglyoxal bis(guanylhydrazone) (MGBG) that induces apoptosis, although a gene responsible for transport activity has not been identified. Using a retroviral gene trap screen, we generated MGBG-resistant Chinese hamster ovary (CHO) cells to identify genes involved in polyamine transport activity. One gene identified by the method encodes TATA-binding protein-associated factor 7 (TAF7), which functions not only as one of the TAFs, but also a coactivator for c-Jun. TAF7-deficient cells had decreased capacity for polyamine uptake (20% of CHO cells), decreased AP-1 activation, as well as resistance to MGBG-induced apoptosis. Stable expression of TAF7 in TAF7-deficient cells restored transport activity (55% of CHO cells), AP-1 gene transactivation (100% of CHO cells), and sensitivity to MGBG-induced apoptosis. Overexpression of TAF7 in CHO cells did not increase transport activity, suggesting that TAF7 may be involved in the maintenance of basal activity. c-Jun NH2-terminal kinase inhibitors blocked MGBG-induced apoptosis without alteration of polyamine transport. Decreased TAF7 expression, by RNA interference, in androgen-independent human prostate cancer LN-CaP104-R1 cells resulted in lower polyamine transport activity (25% of control) and resistance to MGBG-induced growth arrest. Taken together, these results reveal a physiological function of TAF7 as a basal regulator for mammalian polyamine transport activity and MGBG-induced apoptosis.

  2. Stretch and interleukin 1 beta: pro-labour factors with similar mitogen-activated protein kinase effects but differential patterns of transcription factor activation and gene expression.

    PubMed

    Sooranna, S R; Engineer, N; Liang, Z; Bennett, P R; Johnson, M R

    2007-07-01

    IL-1beta and stretch increase uterine smooth muscle cell (USMC) prostaglandin H synthase 2 (PGHS-2) and interleukin (IL)-8 mRNA expression in a mitogen-activated protein kinase (MAPK) dependent mechanism. We have tested our hypothesis that stretch and IL-1beta activate different components of the MAPK cascade in USMC and investigated the effects of specific MAPK inhibitors on these components. Further, we have used a Jun N-terminal kinase (JNK) and p38 activator, anisomycin, to compare the effect of differential MAPK activation on the expression of PGHS-2, IL-8 and oxytocin receptor (OTR) mRNA with that seen in response to stretch and IL-1beta. Stretch, IL-1beta and anisomycin activated similar components of the MAPK cascade and specific inhibitors of MAPK altered phosphorylation of MAPK and downstream cascade components as expected. Expression of OTR mRNA was increased by stretch and anisomycin in a MAPK-independent manner. All three stimuli increased PGHS-2 and IL-8 mRNA expression in a MAPK-dependent manner, but while the MAPK inhibitors reduced the IL-1beta-induced activation of activating transcription factor (ATF)-2, liver activating protein (LAP) and c-jun, the stretch-induced increase in LAP was unaffected by MAPK-inhibition and only JNK inhibition appeared to reduce c-jun activation. These observations show that stretch, IL-1beta and anisomycin activate the same components of the MAPK cascade, but differentially activate LAP and liver inhibitory protein (LIP) perhaps accounting for the increase in OTR by stretch and anisomycin but not IL-1beta observed in this study.

  3. Loss of connective tissue growth factor as an unfavorable prognosis factor activates miR-18b by PI3K/AKT/C-Jun and C-Myc and promotes cell growth in nasopharyngeal carcinoma.

    PubMed

    Yu, X; Zhen, Y; Yang, H; Wang, H; Zhou, Y; Wang, E; Marincola, F M; Mai, C; Chen, Y; Wei, H; Song, Y; Lyu, X; Ye, Y; Cai, L; Wu, Q; Zhao, M; Hua, S; Fu, Q; Zhang, Y; Yao, K; Liu, Z; Li, X; Fang, W

    2013-05-16

    Connective tissue growth factor (CTGF) has different roles in different types of cancer. However, the involvement and molecular basis of CTGF in tumor progression and prognosis of human nasopharyngeal carcinoma (NPC) have almost never been reported. In this study, we observed that downregulated CTGF expression was significantly associated with NPC progression and poor prognosis. Knockdown of CTGF markedly elevated the ability of cell proliferation in vivo and in vitro. Subsequently, we discovered that the reduction of CTGF increased the expression of miR-18b, an oncomir-promoting cell proliferation. Further, we discovered that attenuated CTGF-mediated upregulation of miR-18b was dependent on the increased binding of transcription factors Jun proto-oncogene (C-Jun) and v-Myc myelocytomatosis viral oncogene homolog (C-Myc) to miR-18b promoter region via phosphoinositide 3-kinase (PI3K)/AKT pathway. Finally, we further found that miR-18b directly suppressed the expression of CTGF in NPC. In clinical fresh specimens, miR-18b was widely overexpressed and inversely correlated with CTGF expression in NPC. Our studies are the first to demonstrate that reduced CTGF as an unfavorable prognosis factor mediates the activation of miR-18b, an oncomir directly suppresses CTGF expression, by PI3K/AKT/C-Jun and C-Myc and promotes cell growth of NPC.

  4. Plasticity in the Rat Prefrontal Cortex: Linking Gene Expression and an Operant Learning with a Computational Theory

    PubMed Central

    Rapanelli, Maximiliano; Lew, Sergio Eduardo; Frick, Luciana Romina; Zanutto, Bonifacio Silvano

    2010-01-01

    The plasticity in the medial Prefrontal Cortex (mPFC) of rodents or lateral prefrontal cortex in non human primates (lPFC), plays a key role neural circuits involved in learning and memory. Several genes, like brain-derived neurotrophic factor (BDNF), cAMP response element binding (CREB), Synapsin I, Calcium/calmodulin-dependent protein kinase II (CamKII), activity-regulated cytoskeleton-associated protein (Arc), c-jun and c-fos have been related to plasticity processes. We analysed differential expression of related plasticity genes and immediate early genes in the mPFC of rats during learning an operant conditioning task. Incompletely and completely trained animals were studied because of the distinct events predicted by our computational model at different learning stages. During learning an operant conditioning task, we measured changes in the mRNA levels by Real-Time RT-PCR during learning; expression of these markers associated to plasticity was incremented while learning and such increments began to decline when the task was learned. The plasticity changes in the lPFC during learning predicted by the model matched up with those of the representative gene BDNF. Herein, we showed for the first time that plasticity in the mPFC in rats during learning of an operant conditioning is higher while learning than when the task is learned, using an integrative approach of a computational model and gene expression. PMID:20111591

  5. Gallic acid abolishes the EGFR/Src/Akt/Erk-mediated expression of matrix metalloproteinase-9 in MCF-7 breast cancer cells.

    PubMed

    Chen, Ying-Jung; Lin, Ku-Nan; Jhang, Li-Mei; Huang, Chia-Hui; Lee, Yuan-Chin; Chang, Long-Sen

    2016-05-25

    Several studies have revealed that natural compounds are valuable resources to develop novel agents against dysregulation of the EGF/EGFR-mediated matrix metalloproteinase-9 (MMP-9) expression in cancer cells. In view of the findings that EGF/EGFR-mediated MMP-9 expression is closely related to invasion and metastasis of breast cancer. To determine the beneficial effects of gallic acid on the suppression of breast cancer metastasis, we explored the effect of gallic acid on MMP-9 expression in EGF-treated MCF-7 breast cancer cells. Treatment with EGF up-regulated MMP-9 mRNA and protein levels in MCF-7 cells. EGF treatment induced phosphorylation of EGFR and elicited Src activation, subsequently promoting Akt/NFκB (p65) and ERK/c-Jun phosphorylation in MCF-7 cells. Activation of Akt/p65 and ERK/c-Jun was responsible for the MMP-9 up-regulation in EGF-treated cells. Gallic acid repressed the EGF-induced activation of EGFR and Src; furthermore, inactivation of Akt/p65 and ERK/c-Jun was a result of the inhibitory effect of gallic acid on the EGF-induced MMP-9 up-regulation. Over-expression of constitutively active Akt and MEK1 or over-expression of constitutively active Src eradicated the inhibitory effect of gallic acid on the EGF-induced MMP-9 up-regulation. A chromosome conformation capture assay showed that EGF induced a chromosomal loop formation in the MMP-9 promoter via NFκB/p65 and AP-1/c-Jun activation. Treatment with gallic acid, EGFR inhibitor, or Src inhibitor reduced DNA looping. Taken together, our data suggest that gallic acid inhibits the activation of EGFR/Src-mediated Akt and ERK, leading to reduced levels of p65/c-Jun-mediated DNA looping and thus inhibiting MMP-9 expression in EGF-treated MCF-7 cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Novel Array-Based Target Identification for Synergistic Sensitization of Breast Cancer to Herceptin

    DTIC Science & Technology

    2010-05-01

    Tatsuya Azum, Eileen Adamson, Ryan Alipio, Becky Pio, Frank Jones, Dan Mercola. Chip- on- chip analysis of mechanism of action of HER2 inhibition in...Munawar, Kutbuddin S. Doctor, Michael Birrer, Michael McClelland, Eileen Adamson, Dan Mercola. Egr1 regulates the coordinated expression of numerous...Kemal Korkmaz, Mashide Ohmichi, Eileen Adamson, Michael McClelland, Dan Mercola. Identification of genes bound and regulated by ATF2/c-Jun

  7. Dexamethasone inhibits inflammatory response via down regulation of AP-1 transcription factor in human lung epithelial cells.

    PubMed

    Patil, Rajeshwari H; Naveen Kumar, M; Kiran Kumar, K M; Nagesh, Rashmi; Kavya, K; Babu, R L; Ramesh, Govindarajan T; Chidananda Sharma, S

    2018-03-01

    The production of inflammatory mediators by epithelial cells in inflammatory lung diseases may represent an important target for the anti-inflammatory effects of glucocorticoids. Activator protein-1 is a major activator of inflammatory genes and has been proposed as a target for inhibition by glucocorticoids. We have used human pulmonary type-II A549 cells to examine the effect of dexamethasone on the phorbol ester (PMA)/Lipopolysaccharide (LPS) induced pro-inflammatory cytokines and AP-1 factors. A549 cells were treated with and without PMA or LPS or dexamethasone and the cell viability and nitric oxide production was measured by MTT assay and Griess reagent respectively. Expression of pro-inflammatory cytokines and AP-1 factors mRNA were measured using semi quantitative RT-PCR. The PMA/LPS treated cells show significant 2-3 fold increase in the mRNA levels of pro-inflammatory cytokines (IL-1β, IL-2, IL-6, IL-8 and TNF-α), cyclo‑oxygenase-2 (COX-2) and specific AP-1 factors (c-Jun, c-Fos and Jun-D). Whereas, pretreatment of cells with dexamethasone significantly inhibited the LPS induced nitric oxide production and PMA/LPS induced mRNAs expression of above pro-inflammatory cytokines, COX-2 and AP-1 factors. Cells treated with dexamethasone alone at both the concentrations inhibit the mRNAs expression of IL-1β, IL-6 and TNF-α compared to control. Our study reveals that dexamethasone decreased the mRNAs expression of c-Jun and c-Fos available for AP-1 formation suggested that AP-1 is the probable key transcription factor involved in the anti-inflammatory activity of dexamethasone. This may be an important molecular mechanism of steroid action in asthma and other chronic inflammatory lung diseases which may be useful for treatment of lung inflammatory diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Gene expression profiling for nitric oxide prodrug JS-K to kill HL-60 myeloid leukemia cells.

    PubMed

    Liu, Jie; Malavya, Swati; Wang, Xueqian; Saavedra, Joseph E; Keefer, Larry K; Tokar, Erik; Qu, Wei; Waalkes, Michael P; Shami, Paul J

    2009-07-01

    The nitric oxide (NO) prodrug JS-K is shown to have anticancer activity. To profile the molecular events associated with the anticancer effects of JS-K, HL-60 leukemia cells were treated with JS-K and subjected to microarray and real-time RT-PCR analysis. JS-K induced concentration- and time-dependent gene expression changes in HL-60 cells corresponding to the cytolethality effects. The apoptotic genes (caspases, Bax, and TNF-alpha) were induced, and differentiation-related genes (CD14, ITGAM, and VIM) were increased. For acute phase protein genes, some were increased (TP53, JUN) while others were suppressed (c-myc, cyclin E). The expression of anti-angiogenesis genes THBS1 and CD36 and genes involved in tumor cell migration such as tissue inhibitors of metalloproteinases, were also increased by JS-K. Confocal analysis confirmed key gene changes at the protein levels. Thus, multiple molecular events are associated with JS-K effects in killing HL-60, which could be molecular targets for this novel anticancer NO prodrug.

  9. Cordyceps sinensis extract suppresses hypoxia-induced proliferation of rat pulmonary artery smooth muscle cells.

    PubMed

    Gao, Bao-an; Yang, Jun; Huang, Ji; Cui, Xiang-jun; Chen, Shi-xiong; Den, Hong-yan; Xiang, Guang-ming

    2010-09-01

    To investigate the effects of a Chinese herb Cordyceps sinensis (C. sinensis) extract on hypoxia-induced proliferation and the underlying mechanisms involved. This prospective study was carried out at the Central Laboratory of Yichang Central People's Hospital, Yichang, China from March 2008 to April 2010. The C. sinensis was extracted from the Chinese herb C. sinensis using aqueous alcohol extraction techniques. Forty healthy adult male Sprague Dawley rats were used in the study. The proliferation of pulmonary artery smooth muscle cells (PASMCs) was measured using 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and cell viability was determined by trypan blue exclusion. Cell cycles were analyzed using FACSort flow cytometric analysis. The expression of proliferating cell nuclear antigen (PCNA), c-jun, and c-fos in rat PASMCs was determined by immunohistochemistry. We found an increased proliferation of PASMCs and increased expression of transcription factors, c-jun and c-fos in PASMCs cultured under hypoxic conditions. The C. sinensis extract significantly inhibited hypoxia-induced cell proliferation in a dose-dependent manner. In addition, C. sinensis extract also significantly inhibited the expression of PCNA, c-jun, and c-fos in these PASMCs. Our results indicated that C. sinensis extract inhibits hypoxia-induced proliferation of rat PASMCs, probably by suppressing the expression of PCNA, c-fos, c-jun, and decreasing the percentage of cells in synthesis phase, second gap phase, and mitotic phase in cell cycle (S+G2/M) phase. Our results therefore, provided novel evidence that C. sinensis extract may be used as a therapeutic reagent in the treatment of hypoxic pulmonary hypertension.

  10. UV Radiation Activates Toll-Like Receptor 9 Expression in Primary Human Keratinocytes, an Event Inhibited by Human Papillomavirus 38 E6 and E7 Oncoproteins.

    PubMed

    Pacini, Laura; Ceraolo, Maria Grazia; Venuti, Assunta; Melita, Giusi; Hasan, Uzma A; Accardi, Rosita; Tommasino, Massimo

    2017-10-01

    Several lines of evidence indicate that cutaneous human papillomavirus (HPV) types belonging to the beta genus of the HPV phylogenetic tree synergize with UV radiation in the development of skin cancer. Accordingly, the E6 and E7 oncoproteins from some beta HPV types are able to deregulate pathways related to immune response and cellular transformation. Toll-like receptor 9 (TLR9), in addition to playing a role in innate immunity, has been shown to be involved in the cellular stress response. Using primary human keratinocytes as experimental models, we have shown that UV irradiation (and other cellular stresses) activates TLR9 expression. This event is closely linked to p53 activation. Silencing the expression of p53 or deleting its encoding gene affected the activation of TLR9 expression after UV irradiation. Using various strategies, we have also shown that the transcription factors p53 and c-Jun are recruited onto a specific region of the TLR9 promoter after UV irradiation. Importantly, the E6 and E7 oncoproteins from beta HPV38, by inducing the accumulation of the p53 antagonist ΔNp73α, prevent the UV-mediated recruitment of these transcription factors onto the TLR9 promoter, with subsequent impairment of TLR9 gene expression. This study provides new insight into the mechanism that mediates TLR9 upregulation in response to cellular stresses. In addition, we show that HPV38 E6 and E7 are able to interfere with this mechanism, providing another explanation for the possible cooperation of beta HPV types with UV radiation in skin carcinogenesis. IMPORTANCE Beta HPV types have been suggested to act as cofactors in UV-induced skin carcinogenesis by altering several cellular mechanisms activated by UV radiation. We show that the expression of TLR9, a sensor of damage-associated molecular patterns produced during cellular stress, is activated by UV radiation in primary human keratinocytes (PHKs). Two transcription factors known to be activated by UV radiation, p53 and c-Jun, play key roles in UV-activated TLR9 expression. The E6 and E7 oncoproteins from beta HPV38 strongly inhibit UV-activated TLR9 expression by preventing the recruitment of p53 and c-Jun to the TLR9 promoter. Our findings provide additional support for the role that beta HPV types play in skin carcinogenesis by preventing activation of specific pathways upon exposure of PHKs to UV radiation. Copyright © 2017 American Society for Microbiology.

  11. Differential Expression of c-fos Proto-Oncogene in Normal Oral Mucosa versus Squamous Cell Carcinoma

    PubMed Central

    Krishna, Akhilesh; Bhatt, Madan Lal Brahma; Singh, Vineeta; Singh, Shraddha; Gangwar, Pravin Kumar; Singh, Uma Shankar; Kumar, Vijay; Mehrotra, Divya

    2018-01-01

    Background: The c-Fos nuclear protein dimerizes with Jun family proteins to form the transcription factor AP-1 complex which participates in signal transduction and regulation of normal cellular processes. In tumorigenesis, c-Fos promotes invasive growth through down-regulation of tumor suppressor genes but its role in oral carcinogenesis is not clear. Objectives: This study concerned c-fos gene expression in normal and malignant tissues of the oral cavity, with attention to associations between expression status and clinico-pathological profiles of OSCC patients. Method: A total of 65 histopathologically confirmed OSCC tissue samples were included in case group along with an equal number of age and sex-matched normal tissue samples of oral cavity for the control group. c-Fos protein and m-RNA expressions were analyzed using immunohistochemistry and qRT-PCR, respectively. Results: A significant low expression of c-Fos protein was observed in OSCC cases than normal control subjects (p= <0.001). The mean percent positivity of c-Fos protein in cases vs. controls was 24.91± 2.7 vs. 49.68± 2.2 (p= <0.001). Most OSCC tissue samples showed weak or moderate c-Fos expression whereas 53.8% of normal tissue sections presented with strong immunostaining. Moreover, the relative m-RNA expression for the c-fos gene was significantly decreased in case group (0.93± 0.48) as compared to the control group (1.22± 0.87). Majority of c-Fos positive cases were diagnosed with well developed tumor. The mean percent positivity of c-Fos protein was significantly lower in higher grade tumor as compared with normal oral mucosa (p= < 0.001). Conclusion: The present study suggested that the c-fos gene is downregulated in oral carcinomas. The disparity of c-Fos protein levels in different pathological grades of tumor and normal oral tissue samples may indicate that loss of c-Fos expression is related with the progression of OSCC. PMID:29582647

  12. Adenosine 5'-monophosphate blocks acetaminophen toxicity by increasing ubiquitination-mediated ASK1 degradation.

    PubMed

    Yang, Xiao; Zhan, Yibei; Sun, Qi; Xu, Xi; Kong, Yi; Zhang, Jianfa

    2017-01-24

    Acetaminophen (APAP) overdose is the most frequent cause of drug-induced liver failure in the world. Hepatic c-jun NH2-terminal protein kinase (JNK) activation is thought to be a consequence of oxidative stress produced during APAP metabolism. Activation of JNK signals causes hepatocellular damage with necrotic and apoptotic cell death. Here we found that APAP caused a feedback increase in plasma adenosine 5'-monophsphate (5'-AMP). We demonstrated that co-administration of APAP and 5'-AMP significantly ameliorated APAP-induced hepatotoxicity in mice, without influences on APAP metabolism and its analgesic function. The mechanism of protection by 5'-AMP was through inhibiting APAP-induced activation of JNK, and attenuating downstream c-jun and c-fos gene expression. This was triggered by attenuating apoptosis signal-regulated kinase 1(ASK1) methylation and increasing ubiquitination-mediated ASK1 protein degradation. Our findings indicate that replacing the current APAP with a safe and functional APAP/5'-AMP formulation could prevent APAP-induced hepatotoxicity.

  13. Adenosine 5′-monophosphate blocks acetaminophen toxicity by increasing ubiquitination-mediated ASK1 degradation

    PubMed Central

    Sun, Qi; Xu, Xi; Kong, Yi; Zhang, Jianfa

    2017-01-01

    Acetaminophen (APAP) overdose is the most frequent cause of drug-induced liver failure in the world. Hepatic c-jun NH2-terminal protein kinase (JNK) activation is thought to be a consequence of oxidative stress produced during APAP metabolism. Activation of JNK signals causes hepatocellular damage with necrotic and apoptotic cell death. Here we found that APAP caused a feedback increase in plasma adenosine 5′-monophsphate (5′-AMP). We demonstrated that co-administration of APAP and 5′-AMP significantly ameliorated APAP-induced hepatotoxicity in mice, without influences on APAP metabolism and its analgesic function. The mechanism of protection by 5′-AMP was through inhibiting APAP-induced activation of JNK, and attenuating downstream c-jun and c-fos gene expression. This was triggered by attenuating apoptosis signal-regulated kinase 1(ASK1) methylation and increasing ubiquitination-mediated ASK1 protein degradation. Our findings indicate that replacing the current APAP with a safe and functional APAP/5′-AMP formulation could prevent APAP-induced hepatotoxicity. PMID:28031524

  14. TGRL Lipolysis Products Induce Stress Protein ATF3 via the TGF-β Receptor Pathway in Human Aortic Endothelial Cells

    PubMed Central

    Eiselein, Larissa; Nyunt, Tun; Lamé, Michael W.; Ng, Kit F.; Wilson, Dennis W.; Rutledge, John C.; Aung, Hnin H.

    2015-01-01

    Studies have suggested a link between the transforming growth factor beta 1 (TGF-β1) signaling cascade and the stress-inducible activating transcription factor 3 (ATF3). We have demonstrated that triglyceride-rich lipoproteins (TGRL) lipolysis products activate MAP kinase stress associated JNK/c-Jun pathways resulting in up-regulation of ATF3, pro-inflammatory genes and induction of apoptosis in human aortic endothelial cells. Here we demonstrate increased release of active TGF-β at 15 min, phosphorylation of Smad2 and translocation of co-Smad4 from cytosol to nucleus after a 1.5 h treatment with lipolysis products. Activation and translocation of Smad2 and 4 was blocked by addition of SB431542 (10 μM), a specific inhibitor of TGF-β-activin receptor ALKs 4, 5, 7. Both ALK receptor inhibition and anti TGF-β1 antibody prevented lipolysis product induced up-regulation of ATF3 mRNA and protein. ALK inhibition prevented lipolysis product-induced nuclear accumulation of ATF3. ALKs 4, 5, 7 inhibition also prevented phosphorylation of c-Jun and TGRL lipolysis product-induced p53 and caspase-3 protein expression. These findings demonstrate that TGRL lipolysis products cause release of active TGF-β and lipolysis product-induced apoptosis is dependent on TGF-β signaling. Furthermore, signaling through the stress associated JNK/c-Jun pathway is dependent on TGF-β signaling suggesting that TGF-β signaling is necessary for nuclear accumulation of the ATF3/cJun transcription complex and induction of pro-inflammatory responses. PMID:26709509

  15. Alternative Polyadenylation in Triple-Negative Breast Tumors Allows NRAS and c-JUN to Bypass PUMILIO Posttranscriptional Regulation

    PubMed Central

    Miles, Wayne O.; Lembo, Antonio; Volorio, Angela; Brachtel, Elena; Tian, Bin; Sgroi, Dennis; Provero, Paolo; Dyson, Nicholas

    2017-01-01

    Alternative polyadenylation (APA) is a process that changes the posttranscriptional regulation and translation potential of mRNAs via addition or deletion of 3′ untranslated region (3′ UTR) sequences. To identify posttranscriptional-regulatory events affected by APA in breast tumors, tumor datasets were analyzed for recurrent APA events. Motif mapping of the changed 3′ UTR regions found that APA-mediated removal of Pumilio regulatory elements (PRE) was unusually common. Breast tumor subtype–specific APA profiling identified triple-negative breast tumors as having the highest levels of APA. To determine the frequency of these events, an independent cohort of triple-negative breast tumors and normal breast tissue was analyzed for APA. APA-mediated shortening of NRAS and c-JUN was seen frequently, and this correlated with changes in the expression of downstream targets. mRNA stability and luciferase assays demonstrated APA-dependent alterations in RNA and protein levels of affected candidate genes. Examination of clinical parameters of these tumors found those with APA of NRAS and c-JUN to be smaller and less proliferative, but more invasive than non-APA tumors. RT-PCR profiling identified elevated levels of polyadenylation factor CSTF3 in tumors with APA. Overexpression of CSTF3 was common in triple-negative breast cancer cell lines, and elevated CSTF3 levels were sufficient to induce APA of NRAS and c-JUN. Our results support the hypothesis that PRE-containing mRNAs are disproportionately affected by APA, primarily due to high sequence similarity in the motifs utilized by polyadenylation machinery and the PUM complex. PMID:27758885

  16. Inorganic arsenic represses interleukin-17A expression in human activated Th17 lymphocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morzadec, Claudie; Macoch, Mélinda; Robineau, Marc

    2012-08-01

    Trivalent inorganic arsenic [As(III)] is an efficient anticancer agent used to treat patients suffering from acute promyelocytic leukemia. Recently, experimental studies have clearly demonstrated that this metalloid can also cure lymphoproliferative and/or pro-inflammatory syndromes in different murine models of chronic immune-mediated diseases. T helper (Th) 1 and Th17 lymphocytes play a central role in development of these diseases, in mice and humans, especially by secreting the potent pro-inflammatory cytokine interferon-γ and IL-17A, respectively. As(III) impairs basic functions of human T cells but its ability to modulate secretion of pro-inflammatory cytokines by differentiated Th lymphocytes is unknown. In the present study,more » we demonstrate that As(III), used at concentrations clinically achievable in plasma of patients, has no effect on the secretion of interferon-γ from Th1 cells but almost totally blocks the expression and the release of IL-17A from human Th17 lymphocytes co-stimulated for five days with anti-CD3 and anti-CD28 antibodies, in the presence of differentiating cytokines. In addition, As(III) specifically reduces mRNA levels of the retinoic-related orphan receptor (ROR)C gene which encodes RORγt, a key transcription factor controlling optimal IL-17 expression in fully differentiated Th17 cells. The metalloid also blocks initial expression of IL-17 gene induced by the co-stimulation, probably in part by impairing activation of the JNK/c-Jun pathway. In conclusion, our results demonstrate that As(III) represses expression of the major pro-inflammatory cytokine IL-17A produced by human Th17 lymphocytes, thus strengthening the idea that As(III) may be useful to treat inflammatory immune-mediated diseases in humans. -- Highlights: ► Arsenic inhibits secretion of IL-17A from human naïve and memory Th17 lymphocytes. ► Arsenic represses early expression of IL-17A gene in human activated T lymphocytes. ► Arsenic interferes with activation of the JNK/c-Jun pathway in human T lymphocytes.« less

  17. Coordinated induction of GST and MRP2 by cAMP in Caco-2 cells: Role of protein kinase A signaling pathway and toxicological relevance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arana, Maite Rocío, E-mail: arana@ifise-conicet.gov.ar; Tocchetti, Guillermo Nicolás, E-mail: gtocchetti@live.com.ar; Domizi, Pablo, E-mail: domizi@ibr-conicet.gov.ar

    2015-09-01

    The cAMP pathway is a universal signaling pathway regulating many cellular processes including metabolic routes, growth and differentiation. However, its effects on xenobiotic biotransformation and transport systems are poorly characterized. The effect of cAMP on expression and activity of GST and MRP2 was evaluated in Caco-2 cells, a model of intestinal epithelium. Cells incubated with the cAMP permeable analog dibutyryl cyclic AMP (db-cAMP: 1,10,100 μM) for 48 h exhibited a dose–response increase in GST class α and MRP2 protein expression. Incubation with forskolin, an activator of adenylyl cyclase, confirmed the association between intracellular cAMP and upregulation of MRP2. Consistent withmore » increased expression of GSTα and MRP2, db-cAMP enhanced their activities, as well as cytoprotection against the common substrate 1-chloro-2,4-dinitrobenzene. Pretreatment with protein kinase A (PKA) inhibitors totally abolished upregulation of MRP2 and GSTα induced by db-cAMP. In silico analysis together with experiments consisting of treatment with db-cAMP of Caco-2 cells transfected with a reporter construct containing CRE and AP-1 sites evidenced participation of these sites in MRP2 upregulation. Further studies involving the transcription factors CREB and AP-1 (c-JUN, c-FOS and ATF2) demonstrated increased levels of total c-JUN and phosphorylation of c-JUN and ATF2 by db-cAMP, which were suppressed by a PKA inhibitor. Co-immunoprecipitation and ChIP assay studies demonstrated that db-cAMP increased c-JUN/ATF2 interaction, with further recruitment to the region of the MRP2 promoter containing CRE and AP-1 sites. We conclude that cAMP induces GSTα and MRP2 expression and activity in Caco-2 cells via the PKA pathway, thus regulating detoxification of specific xenobiotics. - Highlights: • cAMP positively modulates the expression and activity of GST and MRP2 in Caco-2 cells. • Such induction resulted in increased cytoprotection against chemical injury. • PKA signaling pathway is involved downstream of cAMP. • Transcriptional MRP2 regulation ultimately involved participation of c-JUN and ATF2.« less

  18. Mechanism of alpha-lipoic acid in attenuating kanamycin-induced ototoxicity☆

    PubMed Central

    Wang, Aimei; Hou, Ning; Bao, Dongyan; Liu, Shuangyue; Xu, Tao

    2012-01-01

    In view of the theory that alpha-lipoic acid effectively prevents cochlear cells from injury caused by various factors such as cisplatin and noise, this study examined whether alpha-lipoic acid can prevent kanamycin-induced ototoxicity. To this end, healthy BALB/c mice were injected subcutaneously with alpha-lipoic acid and kanamycin for 14 days. Auditory brainstem response test showed that increased auditory brainstem response threshold shifts caused by kanamycin were significantly inhibited. Immunohistochemical staining and western blot analysis showed that the expression of phosphorylated p38 mitogen-activated protein kinase and phosphorylated c-Jun N-terminal kinase in mouse cochlea was significantly decreased. The experimental findings suggest that phosphorylated p38 and phosphorylated c-Jun N-terminal kinase mediated kanamycin-induced ototoxic injury in BALB/c mice. Alpha-lipoic acid effectively attenuated kanamycin ototoxicity by inhibiting the kanamycin-induced high expression of phosphorylated p38 and phosphorylated c-Jun N-terminal kinase. PMID:25317129

  19. A non-canonical Flt3ITD/NF-κB signaling pathway represses DAPK1 in acute myeloid leukemia (AML)

    PubMed Central

    Shanmugam, Rajasubramaniam; Sayar, Hamid; Suvannasankha, Attaya; Goswami, Chirayu; Li, Lang; Gupta, Sushil; Cardoso, Angelo A.; Baghdadi, Tareq Al; Sargent, Katie J.; Cripe, Larry D.; Kalvakolanu, Dhananjaya V.; Boswell, H. Scott

    2014-01-01

    Purpose DAPK1, a tumor suppressor, is a rate-limiting effector in an ER stress-dependent apoptotic pathway. Its expression is epigenetically suppressed in several tumors. A mechanistic basis for epigenetic/transcriptional repression of DAPK1 was investigated in certain forms of AML with poor prognosis, which lacked ER stress-induced apoptosis. Experimental Design Heterogeneous primary AMLs were screened to identify a subgroup with Flt3ITD in which repression of DAPK1, among NF-κB- and c- jun-responsive genes, was studied. RNAi knockdown studies were performed in Flt3ITD+ve cell line, MV-4-11, to establish genetic epistasis in the pathway Flt3ITD-TAK1-DAPK1 repression, and chromatin immunoprecipitations were performed to identify proximate effector proteins, including TAK1-activated p52NF-κB, at the DAPK1 locus. Results AMLs characterized by normal karyotype with Flt3ITD were found to have 10-100-fold lower DAPK1 transcripts normalized to the expression of c-jun, a transcriptional activator of DAPK1, as compared to a heterogeneous cytogenetic category. Meis1, a c-jun-responsive adverse AML prognostic gene signature was also measured as control. These Flt3ITD+ve AMLs over-express relB, a transcriptional repressor, which forms active heterodimers with p52NF-κB. Chromatin immunoprecipitation assays identified p52NF-κB binding to the DAPK1 promoter along with HDAC2 and HDAC6 in the Flt3ITD+ve human AML cell line MV-4-11. Knockdown of p52NF-κB or its upstream regulator, NIK, de-repressed DAPK1. DAPK1-repressed primary Flt3ITD+ve AMLs had selective nuclear activation of p52NF-κB. Conclusions Flt3ITD promotes a non-canonical pathway via TAK1 and p52NF-κB to suppress DAPK1 in association with HDACs, which explains DAPK1 repression in Flt3ITD+ve AML. PMID:22096027

  20. Imaging Erg and Jun transcription factor interaction in living cells using fluorescence resonance energy transfer analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camuzeaux, Barbara; Spriet, Corentin; Heliot, Laurent

    2005-07-15

    Physical interactions between transcription factors play important roles in modulating gene expression. Previous in vitro studies have shown a transcriptional synergy between Erg protein, an Ets family member, and Jun/Fos heterodimer, members of the bZip family, which requires direct Erg-Jun protein interactions. Visualization of protein interactions in living cells is a new challenge in biology. For this purpose, we generated fusion proteins of Erg, Fos, and Jun with yellow and cyan fluorescent proteins, YFP and CFP, respectively. After transient expression in HeLa cells, interactions of the resulting fusion proteins were explored by fluorescence resonance energy transfer microscopy (FRET) in fixedmore » and living cells. FRET between YFP-Erg and CFP-Jun was monitored by using photobleaching FRET and fluorescence lifetime imaging microscopy. Both techniques revealed the occurrence of intermolecular FRET between YFP-Erg and CFP-Jun. This is stressed by loss of FRET with an YFP-Erg version carrying a point mutation in its ETS domain. These results provide evidence for the interaction of Erg and Jun proteins in living cells as a critical prerequisite of their transcriptional synergy, but also for the essential role of the Y371 residue, conserved in most Ets proteins, in this interaction.« less

  1. Voltage-gated Na+ Channel Activity Increases Colon Cancer Transcriptional Activity and Invasion Via Persistent MAPK Signaling

    NASA Astrophysics Data System (ADS)

    House, Carrie D.; Wang, Bi-Dar; Ceniccola, Kristin; Williams, Russell; Simaan, May; Olender, Jacqueline; Patel, Vyomesh; Baptista-Hon, Daniel T.; Annunziata, Christina M.; Silvio Gutkind, J.; Hales, Tim G.; Lee, Norman H.

    2015-06-01

    Functional expression of voltage-gated Na+ channels (VGSCs) has been demonstrated in multiple cancer cell types where channel activity induces invasive activity. The signaling mechanisms by which VGSCs promote oncogenesis remain poorly understood. We explored the signal transduction process critical to VGSC-mediated invasion on the basis of reports linking channel activity to gene expression changes in excitable cells. Coincidentally, many genes transcriptionally regulated by the SCN5A isoform in colon cancer have an over-representation of cis-acting sites for transcription factors phosphorylated by ERK1/2 MAPK. We hypothesized that VGSC activity promotes MAPK activation to induce transcriptional changes in invasion-related genes. Using pharmacological inhibitors/activators and siRNA-mediated gene knockdowns, we correlated channel activity with Rap1-dependent persistent MAPK activation in the SW620 human colon cancer cell line. We further demonstrated that VGSC activity induces downstream changes in invasion-related gene expression via a PKA/ERK/c-JUN/ELK-1/ETS-1 transcriptional pathway. This is the first study illustrating a molecular mechanism linking functional activity of VGSCs to transcriptional activation of invasion-related genes.

  2. JNK1 regulates histone acetylation in trigeminal neurons following chemical stimulation

    PubMed Central

    Wu, Jing; Zhang, Xuan; Nauta, Haring J; Lin, Qing; Li, Junfa; Fang, Li

    2008-01-01

    Trigeminal nerve fibers in nasal and oral cavities are sensitive to various environmental hazardous stimuli, which trigger many neurotoxic problems such as chronic migraine headache and trigeminal irritated disorders. However, the role of JNK kinase cascade and its epigenetic modulation of histone remodeling in trigeminal ganglion (TG) neurons activated by environmental neurotoxins remains unknown. Here we investigated the role of JNK/c-Jun cascade in the regulation of acetylation of H3 histone in TG neurons following in vitro stimulation by a neuro-inflammatory agent, mustard oil (MO). We found that MO stimulation elicited JNK/c-Jun pathway significantly by enhancing phospho-JNK1, phospho-c-Jun expression, and c-Jun activity, which were correlated with an elevated acetylated H3 histone in TG neurons. However, increases in phospho-c-Jun and c-Jun activity were significantly blocked by a JNK inhibitor, SP600125. We also found that altered H3 histone remodeling, assessed by H3 acetylation in triggered TG neurons, was reduced by SP600125. The study suggests that the activated JNK signaling in regulation of histone remodeling may contribute to neuro-epigentic changes in peripheral sensory neurons following environmental neurotoxic exposure. PMID:18822271

  3. A Single Meal Containing Raw, Crushed Garlic Influences Expression of Immunity- and Cancer-Related Genes in Whole Blood of Humans1234

    PubMed Central

    Charron, Craig S; Dawson, Harry D; Albaugh, George P; Solverson, Patrick M; Vinyard, Bryan T; Solano-Aguilar, Gloria I; Molokin, Aleksey; Novotny, Janet A

    2015-01-01

    Background: Preclinical and epidemiologic studies suggest that garlic intake is inversely associated with the progression of cancer and cardiovascular disease. Objective: We designed a study to probe the mechanisms of garlic action in humans. Methods: We conducted a randomized crossover feeding trial in which 17 volunteers consumed a garlic-containing meal (100 g white bread, 15 g butter, and 5 g raw, crushed garlic) or a garlic-free control meal (100 g white bread and 15 g butter) after 10 d of consuming a controlled, garlic-free diet. Blood was collected before and 3 h after test meal consumption for gene expression analysis in whole blood. Illumina BeadArray was used to screen for genes of interest, followed by real-time quantitative reverse transcriptase–polymerase chain reaction (qRT-PCR) on selected genes. To augment human study findings, Mono Mac 6 cells were treated with a purified garlic extract (0.5 μL/mL), and mRNA was measured by qRT-PCR at 0, 3, 6, and 24 h. Results: The following 7 genes were found to be upregulated by garlic intake: aryl hydrocarbon receptor (AHR), aryl hydrocarbon receptor nuclear translocator (ARNT), hypoxia-inducible factor 1α (HIF1A), proto-oncogene c-Jun (JUN), nuclear factor of activated T cells (NFAT) activating protein with immunoreceptor tyrosine-based activation motif 1 (NFAM1), oncostatin M (OSM), and V-rel avian reticuloendotheliosis viral oncogene homolog (REL). Fold-increases in mRNA transcripts ranged from 1.6 (HIF1A) to 3.0 (NFAM1) (P < 0.05). The mRNA levels of 5 of the 7 genes that were upregulated in the human trial were also upregulated in cell culture at 3 and 6 h: AHR, HIF1A, JUN, OSM, and REL. Fold-increases in mRNA transcripts in cell culture ranged from 1.7 (HIF1A) to 12.1 (JUN) (P < 0.01). OSM protein was measured by ELISA and was significantly higher than the control at 3, 6, and 24 h (24 h: 19.5 ± 1.4 and 74.8 ± 1.4 pg/mL for control and garlic, respectively). OSM is a pleiotropic cytokine that inhibits several tumor cell lines in culture. Conclusion: These data indicate that the bioactivity of garlic is multifaceted and includes activation of genes related to immunity, apoptosis, and xenobiotic metabolism in humans and Mono Mac 6 cells. This trial is registered at clinicaltrials.gov as NCT01293591. PMID:26423732

  4. A Single Meal Containing Raw, Crushed Garlic Influences Expression of Immunity- and Cancer-Related Genes in Whole Blood of Humans.

    PubMed

    Charron, Craig S; Dawson, Harry D; Albaugh, George P; Solverson, Patrick M; Vinyard, Bryan T; Solano-Aguilar, Gloria I; Molokin, Aleksey; Novotny, Janet A

    2015-11-01

    Preclinical and epidemiologic studies suggest that garlic intake is inversely associated with the progression of cancer and cardiovascular disease. We designed a study to probe the mechanisms of garlic action in humans. We conducted a randomized crossover feeding trial in which 17 volunteers consumed a garlic-containing meal (100 g white bread, 15 g butter, and 5 g raw, crushed garlic) or a garlic-free control meal (100 g white bread and 15 g butter) after 10 d of consuming a controlled, garlic-free diet. Blood was collected before and 3 h after test meal consumption for gene expression analysis in whole blood. Illumina BeadArray was used to screen for genes of interest, followed by real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) on selected genes. To augment human study findings, Mono Mac 6 cells were treated with a purified garlic extract (0.5 μL/mL), and mRNA was measured by qRT-PCR at 0, 3, 6, and 24 h. The following 7 genes were found to be upregulated by garlic intake: aryl hydrocarbon receptor (AHR), aryl hydrocarbon receptor nuclear translocator (ARNT), hypoxia-inducible factor 1α (HIF1A), proto-oncogene c-Jun (JUN), nuclear factor of activated T cells (NFAT) activating protein with immunoreceptor tyrosine-based activation motif 1 (NFAM1), oncostatin M (OSM), and V-rel avian reticuloendotheliosis viral oncogene homolog (REL). Fold-increases in mRNA transcripts ranged from 1.6 (HIF1A) to 3.0 (NFAM1) (P < 0.05). The mRNA levels of 5 of the 7 genes that were upregulated in the human trial were also upregulated in cell culture at 3 and 6 h: AHR, HIF1A, JUN, OSM, and REL. Fold-increases in mRNA transcripts in cell culture ranged from 1.7 (HIF1A) to 12.1 (JUN) (P < 0.01). OSM protein was measured by ELISA and was significantly higher than the control at 3, 6, and 24 h (24 h: 19.5 ± 1.4 and 74.8 ± 1.4 pg/mL for control and garlic, respectively). OSM is a pleiotropic cytokine that inhibits several tumor cell lines in culture. These data indicate that the bioactivity of garlic is multifaceted and includes activation of genes related to immunity, apoptosis, and xenobiotic metabolism in humans and Mono Mac 6 cells. This trial is registered at clinicaltrials.gov as NCT01293591. © 2015 American Society for Nutrition.

  5. LEAP: constructing gene co-expression networks for single-cell RNA-sequencing data using pseudotime ordering.

    PubMed

    Specht, Alicia T; Li, Jun

    2017-03-01

    To construct gene co-expression networks based on single-cell RNA-Sequencing data, we present an algorithm called LEAP, which utilizes the estimated pseudotime of the cells to find gene co-expression that involves time delay. R package LEAP available on CRAN. jun.li@nd.edu. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  6. Effect of angiotensin II type 2 receptor on tyrosine kinase Pyk2 and c-Jun NH2-terminal kinase via SHP-1 tyrosine phosphatase activity: evidence from vascular-targeted transgenic mice of AT2 receptor.

    PubMed

    Matsubara, H; Shibasaki, Y; Okigaki, M; Mori, Y; Masaki, H; Kosaki, A; Tsutsumi, Y; Uchiyama, Y; Fujiyama, S; Nose, A; Iba, O; Tateishi, E; Hasegawa, T; Horiuchi, M; Nahmias, C; Iwasaka, T

    2001-04-20

    Angiotensin II (Ang II) has two major receptor isoforms, AT1 and AT2. AT1 transphosphorylates Ca(2+)-sensitive tyrosine kinase Pyk2 to activate c-Jun NH2-terminal kinase (JNK). Although AT2 inactivates extracellular signal-regulated kinase (ERK) via tyrosine phosphatases (PTP), the action of AT2 on Pyk2 and JNK remains undefined. Using AT2-overexpressing vascular smooth muscle cells (AT2-VSMC) from AT2-transgenic mice, we studied these undefined actions of AT2. AT1-mediated JNK activity was increased 2.2-fold by AT2 inhibition, which was abolished by orthovanadate. AT2 did not affect AT1-mediated Pyk2 phosphorylation, but attenuated c-Jun mRNA accumulation by 32%. The activity of src-homology 2 domain-containing PTP (SHP-1) was significantly upregulated 1 min after AT2 stimulation. Stable overexpression of SHP-1 dominant negative mutant in AT2-VSMC completely abolished AT2-mediated inhibition of JNK activation and c-Jun expression. These findings suggest that AT2 inhibits JNK activity by affecting the downstream signal of Pyk2 in a SHP-1-dependent manner, leading to a decrease in c-Jun expression. Copyright 2001 Academic Press.

  7. Enhanced Expression of WD Repeat-Containing Protein 35 via Nuclear Factor-Kappa B Activation in Bupivacaine-Treated Neuro2a Cells

    PubMed Central

    Huang, Lei; Kondo, Fumio; Harato, Misako; Feng, Guo-Gang; Ishikawa, Naoshisa; Fujiwara, Yoshihiro; Okada, Shoshiro

    2014-01-01

    The family of WD repeat proteins comprises a large number of proteins and is involved in a wide variety of cellular processes such as signal transduction, cell growth, proliferation, and apoptosis. Bupivacaine is a sodium channel blocker administered for local infiltration, nerve block, epidural, and intrathecal anesthesia. Recently, we reported that bupivacaine induces reactive oxygen species (ROS) generation and p38 mitogen-activated protein kinase (MAPK) activation, resulting in an increase in the expression of WD repeat-containing protein 35 (WDR35) in mouse neuroblastoma Neuro2a cells. It has been shown that ROS activate MAPK through phosphorylation, followed by activation of nuclear factor-kappa B (NF-κB) and activator protein 1 (AP-1). The present study was undertaken to test whether NF-κB and c-Jun/AP-1 are involved in bupivacaine-induced WDR35 expression in Neuro2a cells. Bupivacaine activated both NF-κB and c-Jun in Neuro2a cells. APDC, an NF-κB inhibitor, attenuated the increase in NF-κB activity and WDR35 protein expression in bupivacaine-treated Neuro2a cells. GW9662, a selective peroxisome proliferator-activated receptor-γ antagonist, enhanced the increase in NF-κB activity and WDR35 protein expression in bupivacaine-treated Neuro2a cells. In contrast, c-Jun siRNA did not inhibit the bupivacaine-induced increase in WDR35 mRNA expression. These results indicate that bupivacaine induces the activation of transcription factors NF-κB and c-Jun/AP-1 in Neuro2a cells, while activation of NF-κB is involved in bupivacaine-induced increases in WDR35 expression. PMID:24466034

  8. Glucocorticoids suppress tumor necrosis factor-alpha expression by human monocytic THP-1 cells by suppressing transactivation through adjacent NF-kappa B and c-Jun-activating transcription factor-2 binding sites in the promoter.

    PubMed

    Steer, J H; Kroeger, K M; Abraham, L J; Joyce, D A

    2000-06-16

    Glucocorticoid drugs suppress tumor necrosis factor-alpha (TNF-alpha) synthesis by activated monocyte/macrophages, contributing to an anti-inflammatory action in vivo. In lipopolysaccharide (LPS)-activated human monocytic THP-1 cells, glucocorticoids acted primarily on the TNF-alpha promoter to suppress a burst of transcriptional activity that occurred between 90 min and 3 h after LPS exposure. LPS increased nuclear c-Jun/ATF-2, NF-kappaB(1)/Rel-A, and Rel-A/C-Rel transcription factor complexes, which bound specifically to oligonucleotide sequences from the -106 to -88 base pair (bp) region of the promoter. The glucocorticoid, dexamethasone, suppressed nuclear binding activity of these complexes prior to and during the critical phase of TNF-alpha transcription. Site-directed mutagenesis in TNF-alpha promoter-luciferase reporter constructs showed that the adjacent c-Jun/ATF-2 (-106 to -99 bp) and NF-kappaB (-97 to -88 bp) binding sites each contributed to the LPS-stimulated expression. Mutating both sites largely prevented dexamethasone from suppressing TNF-alpha promoter-luciferase reporters. LPS exposure also increased nuclear Egr-1 and PU.1 abundance. The Egr-1/Sp1 (-172 to -161 bp) binding sites and the PU.1-binding Ets site (-116 to -110 bp) each contributed to the LPS-stimulated expression but not to glucocorticoid response. Dexamethasone suppressed the abundance of the c-Fos/c-Jun complex in THP-1 cell nuclei, but there was no direct evidence for c-Fos/c-Jun transactivation through sites in the -172 to -52 bp region. Small contributions to glucocorticoid response were attributable to promoter sequences outside the -172 to -88 bp region and to sequences in the TNF-alpha 3'-untranslated region. We conclude that glucocorticoids suppress LPS-stimulated secretion of TNF-alpha from human monocytic cells largely through antagonizing transactivation by c-Jun/ATF-2 and NF-kappaB complexes at binding sites in the -106 to -88 bp region of the TNF-alpha promoter.

  9. The Arf-inducing Transcription Factor Dmp1 Encodes a Transcriptional Activator of Amphiregulin, Thrombospondin-1, JunB and Egr1

    PubMed Central

    Mallakin, Ali; Sugiyama, Takayuki; Kai, Fumitake; Taneja, Pankaj; Kendig, Robert D.; Frazier, Donna P.; Maglic, Dejan; Matise, Lauren A.; Willingham, Mark C.; Inoue, Kazushi

    2009-01-01

    Dmp1 (Dmtf1) encodes a Myb-like transcription factor implicated in tumor suppression through direct activation of the Arf-p53 pathway. The human DMP1 gene is frequently deleted in non-small cell lung cancers, especially those that retain wild-type INK4a/ARF and/or p53. To identify novel genes that are regulated by Dmp1, transcriptional profiles of lung tissue from Dmp1-null and wild-type mice were generated using the GeneChip Microarray. Comparative analysis of gene expression changes between the two groups resulted in identification of numerous genes that may be regulated by Dmp1. Notably, amphiregulin (Areg), thrombospondin-1 (Tsp-1), JunB, Egr1, adrenomedullin (Adm), Bcl-3 and methyl-CpG binding domain protein 1 (Mbd1) were downregulated in the lungs from Dmp1-null mice while Gas1 and Ect2 genes were upregulated. These target genes were chosen for further analyses since they are involved in cell proliferation, transcription, angiogenesis/metastasis, apoptosis, or DNA methylation, and thus could account for the tumor suppressor phenotype of Dmp1. Dmp1 directly bound to the genomic loci of Areg, Tsp-1, JunB and Egr1. Significant upregulation or downregulation of the novel Dmp1 target genes was observed upon transient expression of Dmp1 in alveolar epithelial cells, an effect which was nullified by the inhibition of de novo mRNA synthesis. Interestingly, these genes and their protein products were significantly downregulated or upregulated in the lungs from Dmp1-heterozygous mice as well. Identification of novel Dmp1 target genes not only provides insights into the effects of Dmp1 on global gene expression, but also sheds light on the mechanism of haploid insufficiency of Dmp1 in tumor suppression. PMID:19816943

  10. Arsenic may be involved in fluoride-induced bone toxicity through PTH/PKA/AP1 signaling pathway.

    PubMed

    Zeng, Qi-bing; Xu, Yu-yan; Yu, Xian; Yang, Jun; Hong, Feng; Zhang, Ai-hua

    2014-01-01

    Chronic exposure to combined fluoride and arsenic continues to be a major public health problem worldwide, affecting thousands of people. In recent years, more and more researchers began to focus on the interaction between the fluorine and the arsenic. In this study, the selected investigation site was located in China. The study group was selected from people living in fluoride-arsenic polluted areas due to burning coal. The total number of participants was 196; including the fluoride-arsenic anomaly group (130) and the fluoride-arsenic normal group (63). By observing the changes in gene and protein expression of PTH/PKA/AP1 signaling pathway, the results show that fluoride can increase the expression levels of PTH, PKA, and AP1, but arsenic can only affect the expression of AP1; fluoride and arsenic have an interaction on the expression of AP1. Further study found that fluoride and arsenic can affect the mRNA expression level of c-fos gene (AP1 family members), and have an interaction on the expression of c-fos, but not c-jun. The results indicate that PTH/PKA/AP1 signaling pathway may play an important role in bone toxicity of fluoride. Arsenic can affect the expression of c-fos, thereby affecting the expression of transcription factor AP1, indirectly involved in fluoride-induced bone toxicity. Copyright © 2013. Published by Elsevier B.V.

  11. The protective effect of Kaempferia parviflora extract on UVB-induced skin photoaging in hairless mice.

    PubMed

    Park, Ji-Eun; Pyun, Hee-Bong; Woo, Seon Wook; Jeong, Jae-Hong; Hwang, Jae-Kwan

    2014-10-01

    Chronic skin exposure to ultraviolet (UV) light increases reactive oxygen species (ROS) and stimulates the expression of matrix metalloproteinases (MMPs) through c-Jun and c-Fos activation. These signaling cascades induce the degradation of extracellular matrix (ECM) components, resulting in photoaging. This study evaluated the preventive effect of the ethanol extract of Kaempferia parviflora Wall. ex. Baker (black ginger) on UVB-induced photoaging in vivo. To investigate the antiphotoaging effect of K. parviflora extract (KPE), UVB-irradiated hairless mice administered oral doses of KPE (100 or 200 mg/kg/day) for 13 weeks. In comparison to the UVB control group, KPE significantly prevented wrinkle formation and the loss of collagen fibers with increased type I, III, and VII collagen genes (COL1A1, COL3A1, and COL7A1). The decrease in wrinkle formation was associated with a significant reduction in the UVB-induced expression of MMP-2, MMP-3, MMP-9, and MMP-13 via the suppression of c-Jun and c-Fos activity. KPE also increased the expression of catalase, which acts as an antioxidant enzyme in skin. In addition, expression of inflammatory mediators, such as nuclear factor kappa B (NF-κB), interleukin-1β (IL-1β), and cyclooxygenase-2 (COX-2), was significantly reduced by KPE treatment. The results show that oral administration of KPE significantly prevents UVB-induced photoaging in hairless mice, suggesting its potential as a natural antiphotoaging material. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Differences in gene expression profiles and signaling pathways in rhabdomyolysis-induced acute kidney injury.

    PubMed

    Geng, Xiaodong; Wang, Yuanda; Hong, Quan; Yang, Jurong; Zheng, Wei; Zhang, Gang; Cai, Guangyan; Chen, Xiangmei; Wu, Di

    2015-01-01

    Rhabdomyolysis is a threatening syndrome because it causes the breakdown of skeletal muscle. Muscle destruction leads to the release of myoglobin, intracellular proteins, and electrolytes into the circulation. The aim of this study was to investigate the differences in gene expression profiles and signaling pathways upon rhabdomyolysis-induced acute kidney injury (AKI). In this study, we used glycerol-induced renal injury as a model of rhabdomyolysis-induced AKI. We analyzed data and relevant information from the Gene Expression Omnibus database (No: GSE44925). The gene expression data for three untreated mice were compared to data for five mice with rhabdomyolysis-induced AKI. The expression profiling of the three untreated mice and the five rhabdomyolysis-induced AKI mice was performed using microarray analysis. We examined the levels of Cyp3a13, Rela, Aldh7a1, Jun, CD14. And Cdkn1a using RT-PCR to determine the accuracy of the microarray results. The microarray analysis showed that there were 1050 downregulated and 659 upregulated genes in the rhabdomyolysis-induced AKI mice compared to the control group. The interactions of all differentially expressed genes in the Signal-Net were analyzed. Cyp3a13 and Rela had the most interactions with other genes. The data showed that Rela and Aldh7a1 were the key nodes and had important positions in the Signal-Net. The genes Jun, CD14, and Cdkn1a were also significantly upregulated. The pathway analysis classified the differentially expressed genes into 71 downregulated and 48 upregulated pathways including the PI3K/Akt, MAPK, and NF-κB signaling pathways. The results of this study indicate that the NF-κB, MAPK, PI3K/Akt, and apoptotic pathways are regulated in rhabdomyolysis-induced AKI.

  13. [Study of neuron-protective effect and mechanism of neuregulin1β against cerebral ischemia reperfusion-induced injury in rats].

    PubMed

    Ji, Y Q; Zhang, R; Teng, L; Li, H Y; Guo, Y L

    2017-07-18

    Objective: Thecurrent study is to explore the neuron-protective mechanism of neuregulin1β (NRG1β) in a rat model of middle cerebral artery occlusion/reperfusion (MCAO/R) through inhibiting the c-Jun phosphorylation. Methods: After 24 h of MCAO/R (referring to Longa's method), neurobehavioral function was measured by modified neurological severity score (mNSS) test; the cerebral infarction volume was detected by triphenyltetrazolium chloride (TTC) staining; the blood brain barrier (BBB) permeability was measured by Evans Blue (EB); the neuron morphology of brain tissue was observed by Nissl stain; the ultra-structures of the neurons were observed by transmission electron microscopy (TEM); the apoptotic neurons were counted by in situ cell death detection kit colocalized with NeuN; the expressions of phospho-c-Jun was determined by immunofluorescent labeling and Western blot analysis. Results: Compared with the sham-operation rats, the rats receiving MCAO/R showed increased mNSS (9.7±1.2), cerebral infarction volume (41.4±3.0)%, permeability of BBB, deformation of neurons, ischemia-induced apoptosis (0.63±0.04), and enhanced expression of phospho-c-Jun protein (0.90±0.07) (all P <0.05). Our data indicated that NRG1β attenuated neurologic deficits (6.4±0.9), decreased the cerebral infarction volume (10.4±0.5), reduced EB extravasation (1.55±0.13) and the deformation of neurons, protected the ultra-structure of neurons, blocked ischemia-induced apoptosis (0.23±0.02), through down-regulated phospho-c-Jun expression (0.40±0.03) in MCAO/R rats ( P <0.05). Conclusion: NRG1β exerts neuron-protective effects against ischemia reperfusion-induced injury in rats through inhibiting the c-Jun phosphorylation.

  14. Stat1-independent regulation of gene expression in response to IFN-γ

    PubMed Central

    Ramana, Chilakamarti V.; Gil, M. Pilar; Han, Yulong; Ransohoff, Richard M.; Schreiber, Robert D.; Stark, George R.

    2001-01-01

    Although Stat1 is essential for cells to respond fully to IFN-γ, there is substantial evidence that, in the absence of Stat1, IFN-γ can still regulate the expression of some genes, induce an antiviral state and affect cell growth. We have now identified many genes that are regulated by IFN-γ in serum-starved Stat1-null mouse fibroblasts. The proteins induced by IFN-γ in Stat1-null cells can account for the substantial biological responses that remain. Some genes are induced in both wild-type and Stat1-null cells and thus are truly Stat1-independent. Others are subject to more complex regulation in response to IFN-γ, repressed by Stat1 in wild-type cells and activated in Stat1-null cells. Many genes induced by IFN-γ in Stat1-null fibroblasts also are induced by platelet-derived growth factor in wild-type cells and thus are likely to be involved in cell proliferation. In mouse cells expressing the docking site mutant Y440F of human IFN-γ receptor subunit 1, the mouse Stat1 is not phosphorylated in response to human IFN-γ, but c-myc and c-jun are still induced, showing that the Stat1 docking site is not required for Stat1-independent signaling. PMID:11390994

  15. Quinacrine induces apoptosis in human leukemia K562 cells via p38 MAPK-elicited BCL2 down-regulation and suppression of ERK/c-Jun-mediated BCL2L1 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Changchien, Jung-Jung; Chen, Ying-Jung; Huang, Chia-Hui

    2015-04-01

    Although previous studies have revealed the anti-cancer activity of quinacrine, its effect on leukemia is not clearly resolved. We sought to explore the cytotoxic effect and mechanism of quinacrine action in human leukemia K562 cells. Quinacrine induced K562 cell apoptosis accompanied with ROS generation, mitochondrial depolarization, and down-regulation of BCL2L1 and BCL2. Upon exposure to quinacrine, ROS-mediated p38 MAPK activation and ERK inactivation were observed in K562 cells. Quinacrine-induced cell death and mitochondrial depolarization were suppressed by the p38MAPK inhibitor SB202190 and constitutively active MEK1 over-expression. Activation of p38 MAPK was shown to promote BCL2 degradation. Further, ERK inactivation suppressedmore » c-Jun-mediated transcriptional expression of BCL2L1. Over-expression of BCL2L1 and BCL2 attenuated quinacrine-evoked mitochondrial depolarization and rescued the viability of quinacrine-treated cells. Taken together, our data indicate that quinacrine-induced K562 cell apoptosis is mediated through mitochondrial alterations triggered by p38 MAPK-mediated BCL2 down-regulation and suppression of ERK/c-Jun-mediated BCL2L1 expression. - Highlights: • Quinacrine induces K562 cell apoptosis via down-regulation of BCL2 and BCL2L1. • Quinacrine induces p38 MAPK activation and ERK inactivation in K562 cells. • Quinacrine elicits p38 MAPK-mediated BCL2 down-regulation. • Quinacrine suppresses ERK/c-Jun-mediated BCL2L1 expression.« less

  16. Overexpressed DNA polymerase iota regulated by JNK/c-Jun contributes to hypermutagenesis in bladder cancer.

    PubMed

    Yuan, Fang; Xu, Zhigang; Yang, Mingzhen; Wei, Quanfang; Zhang, Yi; Yu, Jin; Zhi, Yi; Liu, Yang; Chen, Zhiwen; Yang, Jin

    2013-01-01

    Human DNA polymerase iota (pol ι) possesses high error-prone DNA replication features and performs translesion DNA synthesis. It may be specialized and strictly regulated in normal mammalian cells. Dysregulation of pol ι may contribute to the acquisition of a mutator phenotype. However, there are few reports describing the transcription regulatory mechanism of pol ι, and there is controversy regarding its role in carcinogenesis. In this study, we performed the deletion and point-mutation experiment, EMSA, ChIP, RNA interference and western blot assay to prove that c-Jun activated by c-Jun N-terminal kinase (JNK) regulates the transcription of pol ι in normal and cancer cells. Xeroderma pigmentosum group C protein (XPC) and ataxia-telangiectasia mutated related protein (ATR) promote early JNK activation in response to DNA damage and consequently enhance the expression of pol ι, indicating that the novel role of JNK signal pathway is involved in DNA damage response. Furthermore, associated with elevated c-Jun activity, the overexpression of pol ι is positively correlated with the clinical tumor grade in 97 bladder cancer samples and may contribute to the hypermutagenesis. The overexpressed pol ι-involved mutagenesis is dependent on JNK/c-Jun pathway in bladder cancer cells identifying by the special mutation spectra. Our results support the conclusion that dysregulation of pol ι by JNK/c-Jun is involved in carcinogenesis and offer a novel understanding of the role of pol ι or c-Jun in mutagenesis.

  17. Overexpressed DNA Polymerase Iota Regulated by JNK/c-Jun Contributes to Hypermutagenesis in Bladder Cancer

    PubMed Central

    Yuan, Fang; Xu, Zhigang; Yang, Mingzhen; Wei, Quanfang; Zhang, Yi; Yu, Jin; Zhi, Yi; Liu, Yang; Chen, Zhiwen; Yang, Jin

    2013-01-01

    Human DNA polymerase iota (pol ι) possesses high error-prone DNA replication features and performs translesion DNA synthesis. It may be specialized and strictly regulated in normal mammalian cells. Dysregulation of pol ι may contribute to the acquisition of a mutator phenotype. However, there are few reports describing the transcription regulatory mechanism of pol ι, and there is controversy regarding its role in carcinogenesis. In this study, we performed the deletion and point-mutation experiment, EMSA, ChIP, RNA interference and western blot assay to prove that c-Jun activated by c-Jun N-terminal kinase (JNK) regulates the transcription of pol ι in normal and cancer cells. Xeroderma pigmentosum group C protein (XPC) and ataxia-telangiectasia mutated related protein (ATR) promote early JNK activation in response to DNA damage and consequently enhance the expression of pol ι, indicating that the novel role of JNK signal pathway is involved in DNA damage response. Furthermore, associated with elevated c-Jun activity, the overexpression of pol ι is positively correlated with the clinical tumor grade in 97 bladder cancer samples and may contribute to the hypermutagenesis. The overexpressed pol ι-involved mutagenesis is dependent on JNK/c-Jun pathway in bladder cancer cells identifying by the special mutation spectra. Our results support the conclusion that dysregulation of pol ι by JNK/c-Jun is involved in carcinogenesis and offer a novel understanding of the role of pol ι or c-Jun in mutagenesis. PMID:23922701

  18. Cisplatin induces expression of drug resistance-related genes through c-jun N-terminal kinase pathway in human lung cancer cells.

    PubMed

    Xu, Li; Fu, Yingya; Li, Youlun; Han, Xiaoli

    2017-08-01

    Change of multidrug resistance-related genes (e.g., lung resistance protein, LRP) and overexpression of anti-apoptotic genes (Bcl-2, Bcl-Xl, XIAP, Survivin) are responsible for cisplatin resistance. In our study, we investigated the mechanism by which cisplatin induces LRP, Bcl-2, Bcl-xL, XIAP, and Survivin expression in human lung adenocarcinoma A549 cells and human H446 small cell lung cancer cells at mRNA and protein levels. In our study, cell proliferation was assessed with CCK-8 assays, and cell apoptosis was assessed with flow cytometric analysis and Annexin-V/PI staining. qPCR was used to complete RNA experiments. Protein expression was assessed with Western blotting. Cisplatin increased Bcl-2, LRP, and Survivin expression, but decreased Bcl-xL and XIAP expression in a dose-dependent manner. Preincubation with JNK-specific inhibitor, SP600125, significantly inhibited these genes' expression at mRNA and protein levels, enhanced chemosensitivity of lung cancer cells to cisplatin, and promoted cisplatin-induced apoptosis. Our data suggest that the JNK signaling pathway plays an important role in cisplatin resistance. Lung resistance protein (LRP) and anti-apoptotic genes (Bcl-2, Bcl-Xl, XIAP, Survivin) are involved in the process. The results reminded us of a novel therapy target for lung cancer treatment.

  19. Diet-induced obesity mediated by the JNK/DIO2 signal transduction pathway

    PubMed Central

    Vernia, Santiago; Cavanagh-Kyros, Julie; Barrett, Tamera; Jung, Dae Young; Kim, Jason K.; Davis, Roger J.

    2013-01-01

    The cJun N-terminal kinase (JNK) signaling pathway is a key mediator of metabolic stress responses caused by consuming a high-fat diet, including the development of obesity. To test the role of JNK, we examined diet-induced obesity in mice with targeted ablation of Jnk genes in the anterior pituitary gland. These mice exhibited an increase in the pituitary expression of thyroid-stimulating hormone (TSH), an increase in the blood concentration of thyroid hormone (T4), increased energy expenditure, and markedly reduced obesity compared with control mice. The increased amount of pituitary TSH was caused by reduced expression of type 2 iodothyronine deiodinase (Dio2), a gene that is required for T4-mediated negative feedback regulation of TSH expression. These data establish a molecular mechanism that accounts for the regulation of energy expenditure and the development of obesity by the JNK signaling pathway. PMID:24186979

  20. Case study on the utility of hepatic global gene expression profiling in the risk assessment of the carcinogen furan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Anna Francina, E-mail: Francina.Jackson@hc-sc.gc.ca; Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa K1S 5B6; Williams, Andrew, E-mail: Andrew.Williams@hc-sc.gc.ca

    2014-01-01

    Furan is a chemical hepatocarcinogen in mice and rats. Its previously postulated cancer mode of action (MOA) is chronic cytotoxicity followed by sustained regenerative proliferation; however, its molecular basis is unknown. To this end, we conducted toxicogenomic analysis of B3C6F1 mouse livers following three week exposures to non-carcinogenic (0, 1, 2 mg/kg bw) or carcinogenic (4 and 8 mg/kg bw) doses of furan. We saw enrichment for pathways responsible for cytotoxicity: stress-activated protein kinase (SAPK) and death receptor (DR5 and TNF-alpha) signaling, and proliferation: extracellular signal-regulated kinases (ERKs) and TNF-alpha. We also noted the involvement of NF-kappaB and c-Jun inmore » response to furan, which are genes that are known to be required for liver regeneration. Furan metabolism by CYP2E1 produces cis-2-butene-1,4-dial (BDA), which is required for ensuing cytotoxicity and oxidative stress. NRF2 is a master regulator of gene expression during oxidative stress and we suggest that chronic NFR2 activity and chronic inflammation may represent critical transition events between the adaptive (regeneration) and adverse (cancer) outcomes. Another objective of this study was to demonstrate the applicability of toxicogenomics data in quantitative risk assessment. We modeled benchmark doses for our transcriptional data and previously published cancer data, and observed consistency between the two. Margin of exposure values for both transcriptional and cancer endpoints were also similar. In conclusion, using furan as a case study we have demonstrated the value of toxicogenomics data in elucidating dose-dependent MOA transitions and in quantitative risk assessment. - Highlights: • Global gene expression changes in furan-exposed mouse livers were analyzed. • A molecular mode of action for furan-induced hepatocarcinogenesis is proposed. • Key pathways include NRF2, SAPK, ERK and death receptor signaling. • Important roles for TNF-alpha, c-Jun, and NF-κB in tumorigenesis are proposed. • BMD and MoE values from transcriptional and apical data are compared.« less

  1. AP-1 proteins in the adult brain: facts and fiction about effectors of neuroprotection and neurodegeneration.

    PubMed

    Herdegen, T; Waetzig, V

    2001-04-30

    Jun and Fos proteins are induced and activated following most physiological and pathophysiological stimuli in the brain. Only few data allow conclusions about distinct functions of AP-1 proteins in neurodegeneration and neuroregeneration, and these functions mainly refer to c-Jun and its activation by JNKs. Apoptotic functions of activated c-Jun affect hippocampal, nigral and primary cultured neurons following excitotoxic stimulation and destruction of the neuron-target-axis including withdrawal of trophic molecules. The inhibition of JNKs might exert neuroprotection by subsequent omission of c-Jun activation. Besides endogenous neuronal functions, the c-Jun/AP-1 proteins can damage the nervous system by upregulation of harmful programs in non-neuronal cells (e.g. microglia) with release of neurodegenerative molecules. In contrast, the differentiation with neurite extension and maturation of neural cells in vitro indicate physiological and potentially neuroprotective functions of c-Jun and JNKs including sensoring for alterations in the cytoskeleton. This review summarizes the multiple molecular interfunctions which are involved in the shift from the physiological role to degenerative effects of the Jun/JNK-axis such as cell type-specific expression and intracellular localization of scaffold proteins and upstream activators, antagonistic phosphatases, interaction with other kinase systems, or the activation of transcription factors competing for binding to JNK proteins and AP-1 DNA elements.

  2. Increased mitochondrial calcium sensitivity and abnormal expression of innate immunity genes precede dopaminergic defects in Pink1-deficient mice.

    PubMed

    Akundi, Ravi S; Huang, Zhenyu; Eason, Joshua; Pandya, Jignesh D; Zhi, Lianteng; Cass, Wayne A; Sullivan, Patrick G; Büeler, Hansruedi

    2011-01-13

    PTEN-induced kinase 1 (PINK1) is linked to recessive Parkinsonism (EOPD). Pink1 deletion results in impaired dopamine (DA) release and decreased mitochondrial respiration in the striatum of mice. To reveal additional mechanisms of Pink1-related dopaminergic dysfunction, we studied Ca²+ vulnerability of purified brain mitochondria, DA levels and metabolism and whether signaling pathways implicated in Parkinson's disease (PD) display altered activity in the nigrostriatal system of Pink1⁻/⁻ mice. Purified brain mitochondria of Pink1⁻/⁻ mice showed impaired Ca²+ storage capacity, resulting in increased Ca²+ induced mitochondrial permeability transition (mPT) that was rescued by cyclosporine A. A subpopulation of neurons in the substantia nigra of Pink1⁻/⁻ mice accumulated phospho-c-Jun, showing that Jun N-terminal kinase (JNK) activity is increased. Pink1⁻/⁻ mice 6 months and older displayed reduced DA levels associated with increased DA turnover. Moreover, Pink1⁻/⁻ mice had increased levels of IL-1β, IL-12 and IL-10 in the striatum after peripheral challenge with lipopolysaccharide (LPS), and Pink1⁻/⁻ embryonic fibroblasts showed decreased basal and inflammatory cytokine-induced nuclear factor kappa-β (NF-κB) activity. Quantitative transcriptional profiling in the striatum revealed that Pink1⁻/⁻ mice differentially express genes that (i) are upregulated in animals with experimentally induced dopaminergic lesions, (ii) regulate innate immune responses and/or apoptosis and (iii) promote axonal regeneration and sprouting. Increased mitochondrial Ca²+ sensitivity and JNK activity are early defects in Pink1⁻/⁻ mice that precede reduced DA levels and abnormal DA homeostasis and may contribute to neuronal dysfunction in familial PD. Differential gene expression in the nigrostriatal system of Pink1⁻/⁻ mice supports early dopaminergic dysfunction and shows that Pink1 deletion causes aberrant expression of genes that regulate innate immune responses. While some differentially expressed genes may mitigate neurodegeneration, increased LPS-induced brain cytokine expression and impaired cytokine-induced NF-κB activation may predispose neurons of Pink1⁻/⁻ mice to inflammation and injury-induced cell death.

  3. Regulation of human bone sialoprotein gene transcription by platelet-derived growth factor-BB.

    PubMed

    Mezawa, Masaru; Araki, Shouta; Takai, Hideki; Sasaki, Yoko; Wang, Shuang; Li, Xinyue; Kim, Dong-Soon; Nakayama, Youhei; Ogata, Yorimasa

    2009-04-15

    Platelet-derived growth factor (PDGF) is produced by mesenchymal cells and released by platelets following aggregation and is synthesized by osteoblasts. In bone, PDGF stimulates proliferation and differentiation of osteoblasts. PDGF also increases bone resorption, most likely by increasing the number of osteoclasts. Bone sialoprotein (BSP) is thought to function in the initial mineralization of bone, selectively expressed by differentiated osteoblast. To determine the molecular mechanisms PDGF regulation of human BSP gene transcription, we have analyzed the effects of PDGF-BB on osteoblast-like Saos2 and ROS17/2.8 cells. PDGF-BB (5 ng/ml) increased BSP mRNA and protein levels at 12 h in Saos2 cells, and induced BSP mRNA expression at 3 h, reached maximal at 12 h in ROS17/2.8 cells. Transient transfection analyses were performed using chimeric constructs of the human BSP gene promoter linked to a luciferase reporter gene. Treatment of Saos2 cells with PDGF-BB (5 ng/ml, 12 h) increased luciferase activities of all constructs between -184LUC to -2672LUC including the human BSP gene promoter. Effects of PDGF-BB abrogated in constructs included 2 bp mutations in the two cAMP response elements (CRE1 and CRE2), activator protein 1(3) (AP1(3)) and shear stress response element 1 (SSRE1). Luciferase activities induced by PDGF-BB were blocked by protein kinase A inhibitor H89 and tyrosine kinase inhibitor herbimycin A. Gel mobility shift analyses showed that PDGF-BB increased binding of CRE1, CRE2, AP1(3) and SSRE1 elements. CRE1- and CRE2-protein complexes were supershifted by CREB1 and phospho-CREB1 antibodies. Notably, AP1(3)-protein complexes were supershifted by c-Fos and JunD, and disrupted by CREB1, phospho-CREB1, c-Jun and Fra2 antibodies. These studies, therefore, demonstrate that PDGF-BB stimulates human BSP transcription by targeting the CRE1, CRE2, AP1(3) and SSRE1 elements in the human BSP gene promoter.

  4. Liver tumor formation by a mutant retinoblastoma protein in the transgenic mice is caused by an upregulation of c-Myc target genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Bo; Hikosaka, Keisuke; Sultana, Nishat

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Fifty percent of the mutant Rb transgenic mice produced liver tumors. Black-Right-Pointing-Pointer In the tumor, Foxm1, Skp2, Bmi1 and AP-1 mRNAs were up-regulated. Black-Right-Pointing-Pointer No increase in expression of the Myc-target genes was observed in the non-tumorous liver. Black-Right-Pointing-Pointer Tumor formation depends on up-regulation of the Myc-target genes. -- Abstract: The retinoblastoma (Rb) tumor suppressor encodes a nuclear phosphoprotein that regulates cellular proliferation, apoptosis and differentiation. In order to adapt itself to these biological functions, Rb is subjected to modification cycle, phosphorylation and dephosphorylation. To directly determine the effect of phosphorylation-resistant Rb on liver development and function, wemore » generated transgenic mice expressing phosphorylation-resistant human mutant Rb (mt-Rb) under the control of the rat hepatocyte nuclear factor-1 gene promoter/enhancer. Expression of mt-Rb in the liver resulted in macroscopic neoplastic nodules (adenomas) with {approx}50% incidence within 15 months old. Interestingly, quantitative reverse transcriptase-PCR analysis showed that c-Myc was up-regulated in the liver of mt-Rb transgenic mice irrespective of having tumor tissues or no tumor. In tumor tissues, several c-Myc target genes, Foxm1, c-Jun, c-Fos, Bmi1 and Skp2, were also up-regulated dramatically. We determined whether mt-Rb activated the Myc promoter in the HTP9 cells and demonstrated that mt-Rb acted as an inhibitor of wild-type Rb-induced repression on the Myc promoter. Our results suggest that continued upregulation of c-Myc target genes promotes the liver tumor formation after about 1 year of age.« less

  5. Identification of specific gravity sensitive signal transduction pathways in human A431 carcinoma cells

    NASA Astrophysics Data System (ADS)

    Rijken, P. J.; de Groot, R. P.; Kruijer, W.; de Laat, S. W.; Verkleij, A. J.; Boonstra, J.

    Epidermal growth factor (EGF) activates a well characterized signal transduction cascade in human A431 epidermoid carcinoma cells. The influence of gravity on EGF-induced EGF-receptor clustering and early gene expression as well as on actin polymerization and actin organization have been investigated. Different signalling pathways induced by the agents TPA, forskolin and A23187 that activate gene expression were tested for sensitivity to gravity. EGF-induced c-fos and c-jun expression were decreased in microgravity. However, constitutive β-2 microglobulin expression remained unaltered. Under simulated weightlessness conditions EGF- and TPA-induced c-fos expression was decreased, while forskolin- and A23187-induced c-fos expression was independent of the gravity conditions. These results suggest that gravity affects specific signalling pathways. Preliminary results indicate that EGF-induced EGF-receptor clustering remained unaltered irrespective of the gravity conditions. Furthermore, the relative filamentous actin content of steady state A431 cells was enhanced under microgravity conditions and actin filament organization was altered. Under simulated weightlessness actin filament organization in steady state cells as well as in EGF-treated cells was altered as compared to the 1 G reference experiment. Interestingly the microtubule and keratin organization in untreated cells showed no difference with the normal gravity samples. This indicates that gravity may affect specific components of the signal transduction circuitry.

  6. ERK2-mediated C-terminal serine phosphorylation of p300 is vital to the regulation of epidermal growth factor-induced keratin 16 gene expression.

    PubMed

    Chen, Yun-Ju; Wang, Ying-Nai; Chang, Wen-Chang

    2007-09-14

    We previously reported that the epidermal growth factor (EGF) regulates the gene expression of keratin 16 by activating the extracellular signal-regulated kinase 1 and 2 (ERK1/2) signaling which in turn enhances the recruitment of p300 to the keratin 16 promoter. The recruited p300 functionally cooperates with Sp1 and c-Jun to regulate the gene expression of keratin 16. This study investigated in detail the molecular events incurred upon p300 whereby EGF caused an enhanced interaction between p300 and Sp1. EGF apparently induced time- and dose-dependent phosphorylation of p300, both in vitro and in vivo, through the activation of ERK2. The six potential ERK2 phosphorylation sites, including three threonine and three serine residues as revealed by sequential analysis, were first identified in vitro. Confirmation of these six sites in vivo indicated that these three serine residues (Ser-2279, Ser-2315, and Ser-2366) on the C terminus of p300 were the major signaling targets of EGF. Furthermore, the C-terminal serine phosphorylation of p300 stimulated its histone acetyltransferase activity and enhanced its interaction with Sp1. These serine phosphorylation sites on p300 controlled the p300 recruitment to the keratin 16 promoter. When all three serine residues on p300 were replaced by alanine, EGF could no longer induce the gene expression of keratin 16. Taken together, these results strongly suggested that the ERK2-mediated C-terminal serine phosphorylation of p300 was a key event in the regulation of EGF-induced keratin 16 expression. These results also constituted the first report identifying the unique p300 phosphorylation sites induced by ERK2 in vivo.

  7. Liver tumor formation by a mutant retinoblastoma protein in the transgenic mice is caused by an upregulation of c-Myc target genes.

    PubMed

    Wang, Bo; Hikosaka, Keisuke; Sultana, Nishat; Sharkar, Mohammad Tofael Kabir; Noritake, Hidenao; Kimura, Wataru; Wu, Yi-Xin; Kobayashi, Yoshimasa; Uezato, Tadayoshi; Miura, Naoyuki

    2012-01-06

    The retinoblastoma (Rb) tumor suppressor encodes a nuclear phosphoprotein that regulates cellular proliferation, apoptosis and differentiation. In order to adapt itself to these biological functions, Rb is subjected to modification cycle, phosphorylation and dephosphorylation. To directly determine the effect of phosphorylation-resistant Rb on liver development and function, we generated transgenic mice expressing phosphorylation-resistant human mutant Rb (mt-Rb) under the control of the rat hepatocyte nuclear factor-1 gene promoter/enhancer. Expression of mt-Rb in the liver resulted in macroscopic neoplastic nodules (adenomas) with ∼50% incidence within 15 months old. Interestingly, quantitative reverse transcriptase-PCR analysis showed that c-Myc was up-regulated in the liver of mt-Rb transgenic mice irrespective of having tumor tissues or no tumor. In tumor tissues, several c-Myc target genes, Foxm1, c-Jun, c-Fos, Bmi1 and Skp2, were also up-regulated dramatically. We determined whether mt-Rb activated the Myc promoter in the HTP9 cells and demonstrated that mt-Rb acted as an inhibitor of wild-type Rb-induced repression on the Myc promoter. Our results suggest that continued upregulation of c-Myc target genes promotes the liver tumor formation after about 1 year of age. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Anxa5 mediates the in vitro malignant behaviours of murine hepatocarcinoma Hca-F cells with high lymph node metastasis potential preferentially via ERK2/p-ERK2/c-Jun/p-c-Jun(Ser73) and E-cadherin.

    PubMed

    Sun, Xujuan; Wei, Bin; Liu, Shuqing; Guo, Chunmei; Wu, Na; Liu, Qinlong; Sun, Ming-Zhong

    2016-12-01

    Annexin A5 (Anxa5) is associated with the progression of some cancers, while its role and regulation mechanism in tumor lymphatic metastasis is rarely reported. This study aims to investigate the influence of Anxa5 knockdown on the malignant behaviours of murine hepatocarcinoma Hca-F cell line with high lymph node metastatic (LNM) potential and the underlying regulation mechanism. RNA interfering was performed to silence Anxa5 in Hca-F. Monoclonal shRNA-Anxa5- Hca-F cells were obtained via G418 screening by limited dilution method. Quantitative real-time RT-PCR (qRT-PCR) and Western blotting (WB) were applied to measure Anxa5 expression levels. CCK-8, Boyden transwell-chamber and in situ LN adhesion assays were performed to explore the effects of Anxa5 on the proliferation, migration, invasion and adhesion capacities of Hca-F. WB and qRT-PCR were used to detect the level changes of key molecules in corresponding signal pathways. We obtained two monoclonal shRNA-Anxa5-transfected Hca-F cell lines with stable knockdowns of Anxa5. Anxa5 knockdown resulted in significantly reduced proliferation, migration, invasion and in situ LN adhesion potentials of Hca-F in proportion to its knockdown extent. Anxa5 downregulation enhanced E-cadherin levels in Hca-F. Moreover, Anxa5 affected Hca-F behaviours specifically via ERK2/p-ERK2/c-Jun/p-c-Jun(Ser73) instead of p38MAPK/c-Jun, Jnk/c-Jun and AKT/c-Jun pathways. Anxa5 mediates the in vitro malignant behaviours of murine hepatocarcinoma Hca-F cells via ERK2/c-Jun/p-c-Jun(Ser73) and ERK2/E-cadherin pathways. It is an important molecule in metastasis (especially LNM) and a potential therapeutic target for hepatocarcinoma. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Mechanisms underlying differential expression of interleukin-8 in breast cancer cells

    PubMed Central

    Freund, Ariane; Jolivel, Valérie; Durand, Sébastien; Kersual, Nathalie; Chalbos, Dany; Chavey, Carine; Vignon, Françoise; Lazennec, Gwendal

    2004-01-01

    We have recently reported that Interleukin-8 (IL-8) expression was inversely correlated to estrogen-receptor (ER)-status and was overexpressed in invasive breast cancer cells. In the present study, we show that IL-8 overexpression in breast cancer cells involves a higher transcriptional activity of IL-8 gene promoter. Cloning of IL-8 promoter from MDA-MB-231 and MCF-7 cells expressing high and low levels of IL-8, respectively, shows the integrity of the promoter in both cell lines. Deletion and site-directed mutagenesis of the promoter demonstrate that NF-κB and AP-1 and to a lesser extent C/EBP binding sites play a crucial role in the control of IL-8 promoter activity in MDA-MB-231 cells. Knock-down of NF-κB and AP-1 activities by adenovirus-mediated expression of a NF-κB super-repressor and RNA interference, respectively, decreased IL-8 expression in MDA-MB-231 cells. On the contrary, restoration of Fra-1, Fra-2, c-Jun, p50, p65, C/EBPα and C/EBPβ expression levels in MCF-7 cells led to a promoter activity comparable to that observed in MDA-MB-231 cells. Our data constitute the first extensive study of IL-8 gene overexpression in breast cancer cells and suggest that the high expression of IL-8 in invasive cancer cells requires a complex cooperation between NF-κB, AP-1 and C/EBP transcription factors. PMID:15208657

  10. Mechanical stretch is a highly selective regulator of gene expression in human bladder smooth muscle cells.

    PubMed

    Adam, Rosalyn M; Eaton, Samuel H; Estrada, Carlos; Nimgaonkar, Ashish; Shih, Shu-Ching; Smith, Lois E H; Kohane, Isaac S; Bägli, Darius; Freeman, Michael R

    2004-12-15

    Application of mechanical stimuli has been shown to alter gene expression in bladder smooth muscle cells (SMC). To date, only a limited number of "stretch-responsive" genes in this cell type have been reported. We employed oligonucleotide arrays to identify stretch-sensitive genes in primary culture human bladder SMC subjected to repetitive mechanical stimulation for 4 h. Differential gene expression between stretched and nonstretched cells was assessed using Significance Analysis of Microarrays (SAM). Expression of 20 out of 11,731 expressed genes ( approximately 0.17%) was altered >2-fold following stretch, with 19 genes induced and one gene (FGF-9) repressed. Using real-time RT-PCR, we tested independently the responsiveness of 15 genes to stretch and to platelet-derived growth factor-BB (PDGF-BB), another hypertrophic stimulus for bladder SMC. In response to both stimuli, expression of 13 genes increased, 1 gene (FGF-9) decreased, and 1 gene was unchanged. Six transcripts (HB-EGF, BMP-2, COX-2, LIF, PAR-2, and FGF-9) were evaluated using an ex vivo rat model of bladder distension. HB-EGF, BMP-2, COX-2, LIF, and PAR-2 increased with bladder stretch ex vivo, whereas FGF-9 decreased, consistent with expression changes observed in vitro. In silico analysis of microarray data using the FIRED algorithm identified c-jun, AP-1, ATF-2, and neurofibromin-1 (NF-1) as potential transcriptional mediators of stretch signals. Furthermore, the promoters of 9 of 13 stretch-responsive genes contained AP-1 binding sites. These observations identify stretch as a highly selective regulator of gene expression in bladder SMC. Moreover, they suggest that mechanical and growth factor signals converge on common transcriptional regulators that include members of the AP-1 family.

  11. Dual Role of Jun N-Terminal Kinase Activity in Bone Morphogenetic Protein-Mediated Drosophila Ventral Head Development.

    PubMed

    Park, Sung Yeon; Stultz, Brian G; Hursh, Deborah A

    2015-12-01

    The Drosophila bone morphogenetic protein encoded by decapentaplegic (dpp) controls ventral head morphogenesis by expression in the head primordia, eye-antennal imaginal discs. These are epithelial sacs made of two layers: columnar disc proper cells and squamous cells of the peripodial epithelium. dpp expression related to head formation occurs in the peripodial epithelium; cis-regulatory mutations disrupting this expression display defects in sensory vibrissae, rostral membrane, gena, and maxillary palps. Here we document that disruption of this dpp expression causes apoptosis in peripodial cells and underlying disc proper cells. We further show that peripodial Dpp acts directly on the disc proper, indicating that Dpp must cross the disc lumen to act. We demonstrate that palp defects are mechanistically separable from the other mutant phenotypes; both are affected by the c-Jun N-terminal kinase pathway but in opposite ways. Slight reduction of both Jun N-terminal kinase and Dpp activity in peripodial cells causes stronger vibrissae, rostral membrane, and gena defects than Dpp alone; additionally, strong reduction of Jun N-terminal kinase activity alone causes identical defects. A more severe reduction of dpp results in similar vibrissae, rostral membrane, and gena defects, but also causes mutant maxillary palps. This latter defect is correlated with increased peripodial Jun N-terminal kinase activity and can be caused solely by ectopic activation of Jun N-terminal kinase. We conclude that formation of sensory vibrissae, rostral membrane, and gena tissue in head morphogenesis requires the action of Jun N-terminal kinase in peripodial cells, while excessive Jun N-terminal kinase signaling in these same cells inhibits the formation of maxillary palps. Copyright © 2015 by the Genetics Society of America.

  12. DREAM Controls the On/Off Switch of Specific Activity-Dependent Transcription Pathways

    PubMed Central

    Mellström, Britt; Sahún, Ignasi; Ruiz-Nuño, Ana; Murtra, Patricia; Gomez-Villafuertes, Rosa; Savignac, Magali; Oliveros, Juan C.; Gonzalez, Paz; Kastanauskaite, Asta; Knafo, Shira; Zhuo, Min; Higuera-Matas, Alejandro; Errington, Michael L.; Maldonado, Rafael; DeFelipe, Javier; Jefferys, John G. R.; Bliss, Tim V. P.; Dierssen, Mara

    2014-01-01

    Changes in nuclear Ca2+ homeostasis activate specific gene expression programs and are central to the acquisition and storage of information in the brain. DREAM (downstream regulatory element antagonist modulator), also known as calsenilin/KChIP-3 (K+ channel interacting protein 3), is a Ca2+-binding protein that binds DNA and represses transcription in a Ca2+-dependent manner. To study the function of DREAM in the brain, we used transgenic mice expressing a Ca2+-insensitive/CREB-independent dominant active mutant DREAM (daDREAM). Using genome-wide analysis, we show that DREAM regulates the expression of specific activity-dependent transcription factors in the hippocampus, including Npas4, Nr4a1, Mef2c, JunB, and c-Fos. Furthermore, DREAM regulates its own expression, establishing an autoinhibitory feedback loop to terminate activity-dependent transcription. Ablation of DREAM does not modify activity-dependent transcription because of gene compensation by the other KChIP family members. The expression of daDREAM in the forebrain resulted in a complex phenotype characterized by loss of recurrent inhibition and enhanced long-term potentiation (LTP) in the dentate gyrus and impaired learning and memory. Our results indicate that DREAM is a major master switch transcription factor that regulates the on/off status of specific activity-dependent gene expression programs that control synaptic plasticity, learning, and memory. PMID:24366545

  13. Prognostic factors and genes associated with endometrial cancer based on gene expression profiling by bioinformatics analysis.

    PubMed

    Zhang, Ying; Zhang, Wei; Li, Xinglan; Li, Dapeng; Zhang, Xiaoling; Yin, Yajie; Deng, Xiangyun; Sheng, Xiugui

    2016-06-01

    Endometrial cancer (EC) is the most prevalent malignancy worldwide. Although several efforts had been made to explore the molecular mechanism responsible for EC progression, it is still not fully understood. To evaluate the clinical characteristics and prognostic factors of patients with EC, and further to search for novel genes associated with EC progression. We recruited 328 patients with EC and analyzed prognostic factors using Cox proportional hazard regression model. Further, a gene expression profile of EC was used to identify the differentially expressed genes (DEGs) between normal samples and tumor samples. Subsequently, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis ( http://www.genome.jp/kegg/ ) for DEGs were performed, and then protein-protein interaction (PPI) network of DEGs as well as the subnetwork of PPI were constructed with plug-in, MCODE by mapping DEGs into the Search Tool for the Retrieval of Interacting Genes database. Our results showed that body mass index (BMI), hypertension, myometrial invasion, pathological type, and Glut4 positive expression were prognostic factors in EC (P < 0.05). Bioinformatics analysis showed that upregulated DEGs were associated with cell cycle, and downregulated DEGs were related to MAPK pathway. Meanwhile, PPI network analysis revealed that upregulated CDK1 and CCNA2 as well as downregulated JUN and FOS were listed in top two nodes with high degrees. Patients with EC should be given more focused attentions in respect of pathological type, BMI, hypertension, and Glut4-positive expression. In addition, CDK1, CCNA2, JUN, and FOS might play important roles in EC development.

  14. The CHAC1-inhibited Notch3 pathway is involved in temozolomide-induced glioma cytotoxicity.

    PubMed

    Chen, Peng-Hsu; Shen, Wan-Lin; Shih, Chwen-Ming; Ho, Kuo-Hao; Cheng, Chia-Hsiung; Lin, Cheng-Wei; Lee, Chin-Cheng; Liu, Ann-Jeng; Chen, Ku-Chung

    2017-04-01

    Glioblastoma multiforme (GBM) is the high-grade primary glioma in adults. Temozolomide (TMZ), an alkylating agent of the imidazotetrazine series, is a first-line chemotherapeutic drug for clinical therapy. However, the expense of TMZ therapy and increasing drug resistance to TMZ decreases its therapeutic effects. Therefore, our aim was to investigate the detailed molecular mechanisms of TMZ-mediated cytotoxicity to enhance the efficacy of TMZ in clinical GBM therapy. First, TMZ-mediated gene expression profiles and networks in U87-MG cells were identified by transcriptome microarray and bioinformatic analyses. Cation transport regulator-like protein 1 (CHAC1) was the most highly TMZ-upregulated gene. Overexpression and knockdown of CHAC1 expression significantly influenced TMZ-mediated cell viability, apoptosis, caspase-3 activation, and poly(ADP ribose) polymerase (PARP) degradation. The c-Jun N-terminal kinase (JNK)1/c-JUN pathway was identified to participate in TMZ-upregulated CHAC1 expression via transcriptional control. Furthermore, CHAC1 levels were significantly decreased in GBM cell lines, TCGA array data, and tumor tissues. Overexpression of CHAC1 enhanced glioma apoptotic death via caspase-3/9 activation, PARP degradation, autophagy formation, reactive oxygen species generation, increased intracellular calcium, and loss of the mitochondria membrane potential. Finally, we also identified that TMZ significantly reduced Notch3 levels, which are upregulated in gliomas. TMZ also induced CHAC1 to bind to the Notch3 protein and inhibit Notch3 activation, resulting in attenuation of Notch3-mediated downstream signaling pathways. These results emphasize that CHAC1-inhibited Notch3 signaling can influence TMZ-mediated cytotoxicity. Our findings may provide novel therapeutic strategies for future glioblastoma therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Insufficiency of pro-heparin-binding epidermal growth factor-like growth factor shedding enhances hypoxic cell death in H9c2 cardiomyoblasts via the activation of caspase-3 and c-Jun N-terminal kinase.

    PubMed

    Uetani, Teruyoshi; Nakayama, Hironao; Okayama, Hideki; Okura, Takafumi; Higaki, Jitsuo; Inoue, Hirofumi; Higashiyama, Shigeki

    2009-05-01

    Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a cardiogenic and cardiohypertrophic growth factor. ProHB-EGF, a product of the Hb-egf gene and the precursor of HB-EGF, is anchored to the plasma membrane. Its ectodomain region is shed by a disintegrin and metalloproteases (ADAMs) when activated by various stimulations. It has been reported that an uncleavable mutant of Hb-egf, uc-Hb-egf, produces uc-proHB-EGF, which is not cleaved by ADAMs and causes dilation of the heart in knock-in mice. This suggests that the shedding of proHB-EGF is essential for the development and survival of cardiomyocytes: however, the molecular mechanism involved has remained unclear. In this study, we investigated the relationship between uc-proHB-EGF expression and cardiomyocyte survival. Human uc-proHB-EGF was adenovirally introduced into the rat cardiomyoblast cell line H9c2, and the cells were cultured under normoxic and hypoxic conditions. Uc-proHB-EGF-expressing H9c2 cells underwent apoptosis under normoxic conditions, which distinctly increased under hypoxic conditions. Furthermore, we observed an increased Caspase-3 activity, reactive oxygen species accumulation, and an increased c-Jun N-terminal kinase (JNK) activity in the uc-proHB-EGF-expressing H9c2 cells. Treatment of the uc-proHB-EGF transfectants with inhibitors of Caspase-3, reactive oxygen species, and JNK, namely, Z-VAD-fmk, N-acetylcysteine, and SP600125, respectively, significantly reduced hypoxic cell death. These data indicate that insufficiency of proHB-EGF shedding under hypoxic stress leads to cardiomyocyte apoptosis via Caspase-3- and JNK-dependent pathways.

  16. Dehydroepiandrosterone Activation of G-protein-coupled Estrogen Receptor Rapidly Stimulates MicroRNA-21 Transcription in Human Hepatocellular Carcinoma Cells*

    PubMed Central

    Teng, Yun; Radde, Brandie N.; Litchfield, Lacey M.; Ivanova, Margarita M.; Prough, Russell A.; Clark, Barbara J.; Doll, Mark A.; Hein, David W.; Klinge, Carolyn M.

    2015-01-01

    Little is known about the regulation of the oncomiR miR-21 in liver. Dehydroepiandrosterone (DHEA) regulates gene expression as a ligand for a G-protein-coupled receptor and as a precursor for steroids that activate nuclear receptor signaling. We report that 10 nm DHEA increases primary miR-21 (pri-miR-21) transcription and mature miR-21 expression in HepG2 cells in a biphasic manner with an initial peak at 1 h followed by a second, sustained response from 3–12 h. DHEA also increased miR-21 in primary human hepatocytes and Hep3B cells. siRNA, antibody, and inhibitor studies suggest that the rapid DHEA-mediated increase in miR-21 involves a G-protein-coupled estrogen receptor (GPER/GPR30), estrogen receptor α-36 (ERα36), epidermal growth factor receptor-dependent, pertussis toxin-sensitive pathway requiring activation of c-Src, ERK1/2, and PI3K. GPER antagonist G-15 attenuated DHEA- and BSA-conjugated DHEA-stimulated pri-miR-21 transcription. Like DHEA, GPER agonists G-1 and fulvestrant increased pri-miR-21 in a GPER- and ERα36-dependent manner. DHEA, like G-1, increased GPER and ERα36 mRNA and protein levels. DHEA increased ERK1/2 and c-Src phosphorylation in a GPER-responsive manner. DHEA increased c-Jun, but not c-Fos, protein expression after 2 h. DHEA increased androgen receptor, c-Fos, and c-Jun recruitment to the miR-21 promoter. These results suggest that physiological concentrations of DHEA activate a GPER intracellular signaling cascade that increases pri-miR-21 transcription mediated at least in part by AP-1 and androgen receptor miR-21 promoter interaction. PMID:25969534

  17. A noncanonical Flt3ITD/NF-κB signaling pathway represses DAPK1 in acute myeloid leukemia.

    PubMed

    Shanmugam, Rajasubramaniam; Gade, Padmaja; Wilson-Weekes, Annique; Sayar, Hamid; Suvannasankha, Attaya; Goswami, Chirayu; Li, Lang; Gupta, Sushil; Cardoso, Angelo A; Baghdadi, Tareq Al; Sargent, Katie J; Cripe, Larry D; Kalvakolanu, Dhananjaya V; Boswell, H Scott

    2012-01-15

    Death-associated protein kinase 1 (DAPK1), a tumor suppressor, is a rate-limiting effector in an endoplasmic reticulum (ER) stress-dependent apoptotic pathway. Its expression is epigenetically suppressed in several tumors. A mechanistic basis for epigenetic/transcriptional repression of DAPK1 was investigated in certain forms of acute myeloid leukemia (AML) with poor prognosis, which lacked ER stress-induced apoptosis. Heterogeneous primary AMLs were screened to identify a subgroup with Flt3ITD in which repression of DAPK1, among NF-κB-and c-Jun-responsive genes, was studied. RNA interference knockdown studies were carried out in an Flt3ITD(+) cell line, MV-4-11, to establish genetic epistasis in the pathway Flt3ITD-TAK1-DAPK1 repression, and chromatin immunoprecipitations were carried out to identify proximate effector proteins, including TAK1-activated p52NF-κB, at the DAPK1 locus. AMLs characterized by normal karyotype with Flt3ITD were found to have 10- to 100-fold lower DAPK1 transcripts normalized to the expression of c-Jun, a transcriptional activator of DAPK1, as compared with a heterogeneous cytogenetic category. In addition, Meis1, a c-Jun-responsive adverse AML prognostic gene signature was measured as control. These Flt3ITD(+) AMLs overexpress relB, a transcriptional repressor, which forms active heterodimers with p52NF-κB. Chromatin immunoprecipitation assays identified p52NF-κB binding to the DAPK1 promoter together with histone deacetylase 2 (HDAC2) and HDAC6 in the Flt3ITD(+) human AML cell line MV-4-11. Knockdown of p52NF-κB or its upstream regulator, NF-κB-inducing kinase (NIK), de-repressed DAPK1. DAPK1-repressed primary Flt3ITD(+) AMLs had selective nuclear activation of p52NF-κB. Flt3ITD promotes a noncanonical pathway via TAK1 and p52NF-κB to suppress DAPK1 in association with HDACs, which explains DAPK1 repression in Flt3ITD(+) AML. ©2011 AACR.

  18. Gene expression profiling in human skeletal muscle during recovery from eccentric exercise

    PubMed Central

    Mohoney, D. J.; Safdar, A.; Parise, G.; Melov, S.; Fu, Minghua; MacNeil, L.; Kaczor, J.; Payne, E. T.; Tarnopolsky, M. A.

    2009-01-01

    We used cDNA microarrays to screen for differentially expressed genes during recovery from exercise-induced muscle damage in humans. Male subjects (n = 4) performed 300 maximal eccentric contractions, and skeletal muscle biopsy samples were analyzed at 3 h and 48 h after exercise. In total, 113 genes increased 3 h postexercise, and 34 decreased. At 48 h postexercise, 59 genes increased and 29 decreased. On the basis of these data, we chose 19 gene changes and conducted secondary analyses using real-time RT-PCR from muscle biopsy samples taken from 11 additional subjects who performed an identical bout of exercise. Real-time RT-PCR analyses confirmed that exercise-induced muscle damage led to a rapid (3 h) increase in sterol response element binding protein 2 (SREBP-2), followed by a delayed (48 h) increase in the SREBP-2 gene targets Acyl CoA:cholesterol acyltransferase (ACAT)-2 and insulin-induced gene 1 (insig-1). The expression of the IL-1 receptor, a known regulator of SREBP-2, was also elevated after exercise. Taken together, these expression changes suggest a transcriptional program for increasing cholesterol and lipid synthesis and/or modification. Additionally, damaging exercise induced the expression of protein kinase H11, capping protein Z alpha (capZα), and modulatory calcineurin-interacting protein 1 (MCIP1), as well as cardiac ankryin repeat protein 1 (CARP1), DNAJB2, c-myc, and junD, each of which are likely involved in skeletal muscle growth, remodeling, and stress management. In summary, using DNA microarrays and RT-PCR, we have identified novel genes that respond to skeletal muscle damage, which, given the known biological functions, are likely involved in recovery from and/or adaptation to damaging exercise. PMID:18321953

  19. Activity-dependent expression of miR-132 regulates immediate-early gene induction during olfactory learning in the greater short-nosed fruit bat, Cynopterus sphinx.

    PubMed

    Mukilan, Murugan; Ragu Varman, Durairaj; Sudhakar, Sivasubramaniam; Rajan, Koilmani Emmanuvel

    2015-04-01

    The activity-dependent expression of immediate-early genes (IEGs) and microRNA (miR)-132 has been implicated in synaptic plasticity and the formation of long-term memory (LTM). In the present study, we show that olfactory training induces the expression of IEGs (EGR-1, C-fos, C-jun) and miR-132 at similar time scale in olfactory bulb (OB) of Cynopterus sphinx. We examined the role of miR-132 in the OB using antisense oligodeoxynucleotide (AS-ODN) and demonstrated that a local infusion of AS-ODN in the OB 2h prior to training impaired olfactory memory formation in C. sphinx. However, the infusion of AS-ODN post-training did not cause a deficit in memory formation. Furthermore, the inhibition of miR-132 reduced the olfactory training-induced expression of IEGs and post synaptic density protein-95 (PSD-95) in the OB. Additionally, we show that miR-132 regulates the activation of calcium/calmodulin-dependent protein kinase-II (CaMKII) and cAMP response element binding protein (CREB), possibly through miR-148a. These data suggest that olfactory training induces the expression of miR-132 and IEGs, which in turn activates post-synaptic proteins that regulate olfactory memory formation. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. DUSP5 functions as a feedback regulator of TNFα-induced ERK1/2 dephosphorylation and inflammatory gene expression in adipocytes.

    PubMed

    Habibian, Justine S; Jefic, Mitra; Bagchi, Rushita A; Lane, Robert H; McKnight, Robert A; McKinsey, Timothy A; Morrison, Ron F; Ferguson, Bradley S

    2017-10-10

    Adipose tissue inflammation is a central pathological element that regulates obesity-mediated insulin resistance and type II diabetes. Evidence demonstrates that extracellular signal-regulated kinase (ERK 1/2) activation (i.e. phosphorylation) links tumor necrosis factor α (TNFα) to pro-inflammatory gene expression in the nucleus. Dual specificity phosphatases (DUSPs) inactivate ERK 1/2 through dephosphorylation and can thus inhibit inflammatory gene expression. We report that DUSP5, an ERK1/2 phosphatase, was induced in epididymal white adipose tissue (WAT) in response to diet-induced obesity. Moreover, DUSP5 mRNA expression increased during obesity development concomitant to increases in TNFα expression. Consistent with in vivo findings, DUSP5 mRNA expression increased in adipocytes in response to TNFα, parallel with ERK1/2 dephosphorylation. Genetic loss of DUSP5 exacerbated TNFα-mediated ERK 1/2 signaling in 3T3-L1 adipocytes and in adipose tissue of mice. Furthermore, inhibition of ERK 1/2 and c-Jun N terminal kinase (JNK) signaling attenuated TNFα-induced DUSP5 expression. These data suggest that DUSP5 functions in the feedback inhibition of ERK1/2 signaling in response to TNFα, which resulted in increased inflammatory gene expression. Thus, DUSP5 potentially acts as an endogenous regulator of adipose tissue inflammation; although its role in obesity-mediated inflammation and insulin signaling remains unclear.

  1. FGF-1-induced matrix metalloproteinase-9 expression in breast cancer cells is mediated by increased activities of NF-kappaB and activating protein-1.

    PubMed

    Lungu, Gina; Covaleda, Lina; Mendes, Odete; Martini-Stoica, Heidi; Stoica, George

    2008-06-01

    Matrix metalloproteinase-9 (MMP-9) plays a critical role in tumor invasion and metastasis. Here, we investigate the effect of fibroblast growth factor-1 (FGF-1) on the expression of MMP-9 in ENU1564, an ethyl-N-nitrosourea-induced rat mammary adenocarcinoma cell line. We observed that FGF-1 induces a dose-dependent increase in MMP-9 mRNA, protein, and activity in ENU1564 cells. To gain insight into the molecular mechanism of MMP-9 regulation by FGF-1, we investigated the role of components of PI3K-Akt and MEK1/2-ERK signaling pathways in our system since NF-kappaB and AP-1 transcription factor binding sites have been characterized in the upstream region of the MMP-9 gene. We demonstrated that FGF-1 increases Akt phosphorylation, triggers nuclear translocation of NF-kappaBp65, and enhances degradation of cytoplasmic IkappaBalpha. Pretreatment of cells with LY294002, a PI3K inhibitor, significantly inhibited MMP-9 protein expression in FGF-1-treated cells. Conversely, our data show that FGF-1 increases ERK phosphorylation in ENU1564 cells, increases c-jun and c-fos mRNA expression in a time-dependent manner, and triggers nuclear translocation of c-jun. Pretreatment of cells with PD98059, a MEK1/2 inhibitor significantly inhibited MMP-9 protein expression in FGF-1 treated cells. Finally, we observed increased DNA binding of NF-kappaB and AP-1 in FGF-1-treated cells and that mutation of either NF-kappaB or AP-1 response elements prevented MMP-9 promoter activation by FGF-1. Taken together, these results demonstrated that FGF-1-induced MMP-9 expression in ENU1564 cells is associated with increasing DNA binding activities of NF-kappaB and AP-1 and involve activation of a dual signaling pathway, PI3K-Akt and MEK1/2-ERK. (c) 2007 Wiley-Liss, Inc.

  2. Differences in gene expression profiles and signaling pathways in rhabdomyolysis-induced acute kidney injury

    PubMed Central

    Geng, Xiaodong; Wang, Yuanda; Hong, Quan; Yang, Jurong; Zheng, Wei; Zhang, Gang; Cai, Guangyan; Chen, Xiangmei; Wu, Di

    2015-01-01

    Purpose: Rhabdomyolysis is a threatening syndrome because it causes the breakdown of skeletal muscle. Muscle destruction leads to the release of myoglobin, intracellular proteins, and electrolytes into the circulation. The aim of this study was to investigate the differences in gene expression profiles and signaling pathways upon rhabdomyolysis-induced acute kidney injury (AKI). Methods: In this study, we used glycerol-induced renal injury as a model of rhabdomyolysis-induced AKI. We analyzed data and relevant information from the Gene Expression Omnibus database (No: GSE44925). The gene expression data for three untreated mice were compared to data for five mice with rhabdomyolysis-induced AKI. The expression profiling of the three untreated mice and the five rhabdomyolysis-induced AKI mice was performed using microarray analysis. We examined the levels of Cyp3a13, Rela, Aldh7a1, Jun, CD14. And Cdkn1a using RT-PCR to determine the accuracy of the microarray results. Results: The microarray analysis showed that there were 1050 downregulated and 659 upregulated genes in the rhabdomyolysis-induced AKI mice compared to the control group. The interactions of all differentially expressed genes in the Signal-Net were analyzed. Cyp3a13 and Rela had the most interactions with other genes. The data showed that Rela and Aldh7a1 were the key nodes and had important positions in the Signal-Net. The genes Jun, CD14, and Cdkn1a were also significantly upregulated. The pathway analysis classified the differentially expressed genes into 71 downregulated and 48 upregulated pathways including the PI3K/Akt, MAPK, and NF-κB signaling pathways. Conclusion: The results of this study indicate that the NF-κB, MAPK, PI3K/Akt, and apoptotic pathways are regulated in rhabdomyolysis-induced AKI. PMID:26823722

  3. The E3 ubiquitin ligase Trim7 mediates c-Jun/AP-1 activation by Ras signalling

    PubMed Central

    Chakraborty, Atanu; Diefenbacher, Markus E.; Mylona, Anastasia; Kassel, Olivier; Behrens, Axel

    2015-01-01

    The c-Jun/AP-1 transcription factor controls key cellular behaviours, including proliferation and apoptosis, in response to JNK and Ras/MAPK signalling. While the JNK pathway has been well characterised, the mechanism of activation by Ras was elusive. Here we identify the uncharacterised ubiquitin ligase Trim7 as a critical component of AP-1 activation via Ras. We found that MSK1 directly phosphorylates Trim7 in response to direct activation by the Ras–Raf–MEK–ERK pathway, and this modification stimulates Trim7 E3 ubiquitin ligase activity. Trim7 mediates Lys63-linked ubiquitination of the AP-1 coactivator RACO-1, leading to RACO-1 protein stabilisation. Consequently, Trim7 depletion reduces RACO-1 levels and AP-1-dependent gene expression. Moreover, transgenic overexpression of Trim7 increases lung tumour burden in a Ras-driven cancer model, and knockdown of Trim7 in established xenografts reduces tumour growth. Thus, phosphorylation-ubiquitination crosstalk between MSK1, Trim7 and RACO-1 completes the long sought-after mechanism linking growth factor signalling and AP-1 activation. PMID:25851810

  4. Nuclear IGF-1R interacts with regulatory regions of chromatin to promote RNA polymerase II recruitment and gene expression associated with advanced tumor stage.

    PubMed

    Aleksic, Tamara; Gray, Nicki E; Wu, Xiaoning; Rieunier, Guillaume; Osher, Eliot; Mills, Jack; Verrill, Clare; Bryant, Richard J; Han, Cheng; Hutchinson, Kathryn; Lambert, Adam; Kumar, Rajeev; Hamdy, Freddie C; Weyer-Czernilofsky, Ulrike; Sanderson, Michael; Bogenrieder, Thomas; Taylor, Stephen; Macaulay, Valentine M

    2018-05-07

    Internalization of ligand-activated type 1 IGF receptor (IGF-1R) is followed by recycling to the plasma membrane, degradation or nuclear translocation. Nuclear IGF-1R reportedly associates with clinical response to IGF-1R inhibitory drugs, yet its role in the nucleus is poorly characterized. Here we investigated the significance of nuclear IGF-1R in clinical cancers and cell line models. In prostate cancers, IGF-1R was predominantly membrane-localized in benign glands, while malignant epithelium contained prominent internalized (nuclear/cytoplasmic) IGF-1R, and nuclear IGF-1R associated significantly with advanced tumor stage. Using ChIP-seq to assess global chromatin occupancy, we identified IGF-1R binding sites at or near transcription start sites of genes including JUN and FAM21, most sites coinciding with occupancy by RNA polymerase II (RNAPol2) and histone marks of active enhancers/promoters. IGF-1R was inducibly recruited to chromatin, directly binding DNA and interacting with RNAPol2 to upregulate expression of JUN and FAM21, shown to mediate tumor cell survival and IGF-induced migration. IGF-1 also enriched RNAPol2 on promoters containing IGF-1R binding sites. These functions were inhibited by IGF-1/2 neutralizing antibody xentuzumab (BI 836845), or by blocking receptor internalization. We detected nuclear IGF-1R on JUN and FAM21 promoters in fresh prostate cancers that contained abundant nuclear IGF-1R, with evidence of correlation between nuclear IGF-1R content and JUN expression in malignant prostatic epithelium. Taken together, these data reveal previously unrecognized molecular mechanisms through which IGFs promote tumorigenesis, with implications for therapeutic evaluation of anti-IGF drugs. Copyright ©2018, American Association for Cancer Research.

  5. Induced overexpression of protein kinase D1 stimulates mitogenic signaling in human pancreatic carcinoma PANC-1 cells.

    PubMed

    Kisfalvi, Krisztina; Hurd, Cliff; Guha, Sushovan; Rozengurt, Enrique

    2010-05-01

    Neurotensin (NT) stimulates protein kinase D1 (PKD1), extracellular signal regulated kinase (ERK), c-Jun N-terminal Kinase (JNK), and DNA synthesis in the human pancreatic adenocarcinoma cell line PANC-1. To determine the effect of PKD1 overexpression on these biological responses, we generated inducible stable PANC-1 clones that express wild-type (WT) or kinase-dead (K618N) forms of PKD1 in response to the ecdysone analog ponasterone-A (PonA). NT potently stimulated c-Jun Ser(63) phosphorylation in both wild type and clonal derivatives of PANC-1 cells. PonA-induced expression of WT, but not K618N PKD1, rapidly blocked NT-mediated c-Jun Ser(63) phosphorylation either at the level of or upstream of MKK4, a dual-specificity kinase that leads to JNK activation. This is the first demonstration that PKD1 suppresses NT-induced JNK/cJun activation in PANC-1 cells. In contrast, PKD1 overexpression markedly increased the duration of NT-induced ERK activation in these cells. The reciprocal influence of PKD1 signaling on pro-mitogenicERK and pro-apopotic JNK/c-Jun pathways prompted us to examine whether PKD1 overexpression promotes DNA synthesis and proliferation of PANC-1 cells. Our results show that PKD1 overexpression increased DNA synthesis and cell numbers of PANC-1 cells cultured in regular dishes or in polyhydroxyethylmethacrylate [Poly-(HEMA)]-coated dishes to eliminate cell adhesion (anchorage-independent growth). Furthermore, PKD1 overexpression markedly enhanced DNA synthesis induced by NT (1-10 nM). These results indicate that PKD1 mediates mitogenic signaling in PANC-1 and suggests that this enzyme could be a novel target for the development of therapeutic drugs that restrict the proliferation of these cells.

  6. Using c-Jun to identify fear extinction learning-specific patterns of neural activity that are affected by single prolonged stress.

    PubMed

    Knox, Dayan; Stanfield, Briana R; Staib, Jennifer M; David, Nina P; DePietro, Thomas; Chamness, Marisa; Schneider, Elizabeth K; Keller, Samantha M; Lawless, Caroline

    2018-04-02

    Neural circuits via which stress leads to disruptions in fear extinction is often explored in animal stress models. Using the single prolonged stress (SPS) model of post traumatic stress disorder and the immediate early gene (IEG) c-Fos as a measure of neural activity, we previously identified patterns of neural activity through which SPS disrupts extinction retention. However, none of these stress effects were specific to fear or extinction learning and memory. C-Jun is another IEG that is sometimes regulated in a different manner to c-Fos and could be used to identify emotional learning/memory specific patterns of neural activity that are sensitive to SPS. Animals were either fear conditioned (CS-fear) or presented with CSs only (CS-only) then subjected to extinction training and testing. C-Jun was then assayed within neural substrates critical for extinction memory. Inhibited c-Jun levels in the hippocampus (Hipp) and enhanced functional connectivity between the ventromedial prefrontal cortex (vmPFC) and basolateral amygdala (BLA) during extinction training was disrupted by SPS in the CS-fear group only. As a result, these effects were specific to emotional learning/memory. SPS also disrupted inhibited Hipp c-Jun levels, enhanced BLA c-Jun levels, and altered functional connectivity among the vmPFC, BLA, and Hipp during extinction testing in SPS rats in the CS-fear and CS-only groups. As a result, these effects were not specific to emotional learning/memory. Our findings suggest that SPS disrupts neural activity specific to extinction memory, but may also disrupt the retention of fear extinction by mechanisms that do not involve emotional learning/memory. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Time-Dependent Regulation of Apoptosis by AEN and BAX in Response to 2-Aminoanthracene Dietary Consumption

    PubMed Central

    Gato, Worlanyo Eric; McGee, Stacey R.; Hales, Dale B.; Means, Jay C.

    2014-01-01

    Background/Objective: The modulation of the toxic effects of 2-aminoanthracene (2AA) on the liver by apoptosis was investigated. Fisher-344 (F344) rats were exposed to various concentrations of 2AA for 14 and 28 days. The arylamine 2AA is an aromatic hydrocarbon employed in manufacturing chemicals, dyes, inks, and it is also a curing agent in epoxy resins and polyurethanes. 2AA has been detected in tobacco smoke and cooked foods. Methods: Analysis of total messenger ribonucleic acid (mRNA) extracts from liver for apoptosis-related gene expression changes in apoptosis enhancing nuclease (AEN), Bcl2-associated X protein (BAX), CASP3, Jun proto-oncogene (JUN), murine double minute-2 p53 binding protein homolog (MDM2), tumor protein p53 (p53), and GAPDH genes by quantitative real-time polymerase chain reaction (qRT-PCR) was coupled with terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and caspase-3 (Casp3) activity assays. Results: Specific apoptosis staining result does not seem to show significant difference between control and treated animals. This may be due to freeze-thaw artifacts observed in the liver samples. However, there appears to be a greater level of apoptosis in medium- and high-dose (MD and HD) 2AA treated animals. Analyses of apoptosis-related genes seem to show AEN and BAX as the main targets in the induction of apoptosis in response to 2AA exposure, though p53, MDM2, and JUN may play supporting roles. Conclusion: Dose-dependent increases in mRNA expression were observed in all genes except Casp3. BAX was very highly expressed in the HD rats belonging to the 2-week exposure group. This trend was not observed in the animals treated for 4 weeks. Instead, AEN was rather very highly expressed in the liver of the MD animals that were treated with 2AA for 28 days. PMID:24748736

  8. Modulatory effects of Echinacea purpurea extracts on human dendritic cells: a cell- and gene-based study.

    PubMed

    Wang, Chien-Yu; Chiao, Ming-Tsang; Yen, Po-Jen; Huang, Wei-Chou; Hou, Chia-Chung; Chien, Shih-Chang; Yeh, Kuo-Chen; Yang, Wen-Ching; Shyur, Lie-Fen; Yang, Ning-Sun

    2006-12-01

    Echinacea spp. are popularly used as an herbal medicine or food supplement for enhancing the immune system. This study shows that plant extracts from root [R] and stem plus leaf [S+L] tissues of E. purpurea exhibit opposite (enhancing vs inhibitory) modulatory effects on the expression of the CD83 marker in human dendritic cells (DCs), which are known as professional antigen-presenting cells. We developed a function-targeted DNA microarray system to characterize the effects of phytocompounds on human DCs. Down-regulation of mRNA expression of specific chemokines (e.g., CCL3 and CCL8) and their receptors (e.g., CCR1 and CCR9) was observed in [S+L]-treated DCs. Other chemokines and regulatory molecules (e.g., CCL4 and CCL2) involved in the c-Jun pathway were found to be up-regulated in [R]-treated DCs. This study, for the first time, demonstrates that E. purpurea extracts can modulate DC differentiation and expression of specific immune-related genes in DCs.

  9. Methotrexate increases expression of cell cycle checkpoint genes via Jun-N-terminal kinase activation

    PubMed Central

    Spurlock, Charles F.; Tossberg, John T.; Fuchs, Howard A.; Olsen, Nancy J.; Aune, Thomas M.

    2011-01-01

    Objective To assess defects in expression of critical cell cycle checkpoint genes and proteins in subjects with rheumatoid arthritis relative to presence or absence of methotrexate medication and assess the role of Jun N-terminal kinase in methotrexate induction of these genes. Methods Flow cytometry analysis was used to quantify changes in intracellular proteins, measure reactive oxygen species (ROS), and determine apoptosis in different lymphoid populations. Quantitative reverse transcriptase polymerase chain reaction (Q-RT-PCR) was employed to determine changes in cell cycle checkpoint target genes. Results RA subjects express lower baseline levels of MAPK9, TP53, CDKN1A, CDKN1B, CHEK2, and RANGAP1 messenger RNA (mRNA) and total JNK protein. MAPK9, TP53, CDKN1A, and CDKN1B mRNA expression, but not CHEK2, and RANGAP1, is higher in patients on low-dose MTX therapy. Further, JNK levels inversely correlate with CRP levels in RA patients. In tissue culture, MTX induces expression of both p53 and p21 by JNK2 and JNK1-dependent mechanisms, respectively, while CHEK2 and RANGAP1 are not induced by MTX. MTX also induces ROS production, JNK activation, and sensitivity to apoptosis in activated T cells. Supplementation with tetrahydrobiopterin blocks these MTX-mediated effects. Conclusions Our findings support the notion that MTX restores some, but not all of the proteins contributing to cell cycle checkpoint deficiencies in RA T cells by a JNK dependent pathway. PMID:22183962

  10. R Script Approach to Infer Toxoplasma Infection Mechanisms From Microarrays and Domain-Domain Protein Interactions

    PubMed Central

    Arenas, Ailan F; Salcedo, Gladys E; Gomez-Marin, Jorge E

    2017-01-01

    Pathogen-host protein-protein interaction systems examine the interactions between the protein repertoires of 2 distinct organisms. Some of these pathogen proteins interact with the host protein system and may manipulate it for their own advantages. In this work, we designed an R script by concatenating 2 functions called rowDM and rowCVmed to infer pathogen-host interaction using previously reported microarray data, including host gene enrichment analysis and the crossing of interspecific domain-domain interactions. We applied this script to the Toxoplasma-host system to describe pathogen survival mechanisms from human, mouse, and Toxoplasma Gene Expression Omnibus series. Our outcomes exhibited similar results with previously reported microarray analyses, but we found other important proteins that could contribute to toxoplasma pathogenesis. We observed that Toxoplasma ROP38 is the most differentially expressed protein among toxoplasma strains. Enrichment analysis and KEGG mapping indicated that the human retinal genes most affected by Toxoplasma infections are those related to antiapoptotic mechanisms. We suggest that proteins PIK3R1, PRKCA, PRKCG, PRKCB, HRAS, and c-JUN could be the possible substrates for differentially expressed Toxoplasma kinase ROP38. Likewise, we propose that Toxoplasma causes overexpression of apoptotic suppression human genes. PMID:29317802

  11. Molecular profiles of pre- and postoperative breast cancer tumours reveal differentially expressed genes.

    PubMed

    Riis, Margit L H; Lüders, Torben; Markert, Elke K; Haakensen, Vilde D; Nesbakken, Anne-Jorun; Kristensen, Vessela N; Bukholm, Ida R K

    2012-01-01

    Gene expression studies on breast cancer have generally been performed on tissue obtained at the time of surgery. In this study, we have compared the gene expression profiles in preoperative tissue (core needle biopsies) while tumor is still in its normal milieu to postoperative tissue from the same tumor obtained during surgery. Thirteen patients were included of which eleven had undergone sentinel node diagnosis procedure before operation. Microarray gene expression analysis was performed using total RNA from all the samples. Paired significance analysis of microarrays revealed 228 differently expressed genes, including several early response stress-related genes such as members of the fos and jun families as well as genes of which the expression has previously been associated with cancer. The expression profiles found in the analyses of breast cancer tissue must be evaluated with caution. Different profiles may simply be the result of differences in the surgical trauma and timing of when samples are taken and not necessarily associated with tumor biology.

  12. Molecular Profiles of Pre- and Postoperative Breast Cancer Tumours Reveal Differentially Expressed Genes

    PubMed Central

    Riis, Margit L. H.; Lüders, Torben; Markert, Elke K.; Haakensen, Vilde D.; Nesbakken, Anne-Jorun; Kristensen, Vessela N.; Bukholm, Ida R. K.

    2012-01-01

    Gene expression studies on breast cancer have generally been performed on tissue obtained at the time of surgery. In this study, we have compared the gene expression profiles in preoperative tissue (core needle biopsies) while tumor is still in its normal milieu to postoperative tissue from the same tumor obtained during surgery. Thirteen patients were included of which eleven had undergone sentinel node diagnosis procedure before operation. Microarray gene expression analysis was performed using total RNA from all the samples. Paired significance analysis of microarrays revealed 228 differently expressed genes, including several early response stress-related genes such as members of the fos and jun families as well as genes of which the expression has previously been associated with cancer. The expression profiles found in the analyses of breast cancer tissue must be evaluated with caution. Different profiles may simply be the result of differences in the surgical trauma and timing of when samples are taken and not necessarily associated with tumor biology. PMID:23227362

  13. Electroacupuncture attenuates mechanical allodynia by suppressing the spinal JNK1/2 pathway in a rat model of inflammatory pain.

    PubMed

    Du, Jun-Ying; Fang, Jian-Qiao; Liang, Yi; Fang, Jun-Fan

    2014-09-01

    Electroacupuncture (EA) has a substantial analgesic effect on inflammatory pain induced by complete Freund's adjuvant (CFA). The activation of the c-Jun N-terminal kinase 1/2 (JNK1/2) signal transduction pathway in the spinal cord is associated with inflammatory pain. However, the relationship between EA's analgesic effect and the JNK1/2 signal transduction pathway in the inflammatory pain remain unclear. In the present study, we used the established rat model of CFA-induced inflammatory pain to investigate the role of the spinal JNK1/2 pathway in EA-mediated analgesia. We observed a decrease in paw withdrawal thresholds and an increase in paw edema at 1 and 3 days after injecting CFA into the right hindpaw. CFA, 3 days after injection, upregulated expression of phospho-c-Jun N-terminal kinase1/2 (p-JNK1/2) protein and its downstream targets, the transcriptional regulators p-c-Jun and activator protein-1 (AP-1), as well as cyclooxygenase-2 (COX-2) and the transient receptor potential vanilloid 1 (TRPV1). EA significantly alleviated CFA-induced inflammatory pain. In addition, EA reduced p-JNK1/2 protein levels and COX-2 mRNA expressions, a degree of down-regulated p-c-Jun protein level and AP-1 DNA binding activity in the spinal dorsal horn of CFA-administered animals, but it had no effect on TRPV1 mRNA expression. Furthermore, EA and the JNK inhibitor SP600125 synergistically inhibited CFA-induced hyperalgesia and suppressed the COX-2 mRNA expression in the spinal dorsal horn. Our findings indicate that EA alleviates inflammatory pain behavior, at least in part, by reducing COX-2 expression in the spinal cord via the JNK1/2 signaling pathway. Inactivation of the spinal JNK1/2 signal transduction pathway maybe the potential mechanism of EA's antinociception in the inflammatory pain model. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Smurf1 plays a role in EGF inhibition of BMP2-induced osteogenic differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hye-Lim; Park, Hyun-Jung; Kwon, Arang

    2014-05-01

    It has been demonstrated that epidermal growth factor (EGF) plays a role in supporting the proliferation of bone marrow stromal cells in bone but inhibits their osteogenic differentiation. However, the mechanism underlying EGF inhibition of osteoblast differentiation remains unclear. Smurf1 is an E3 ubiquitin ligase that targets Smad1/5 and Runx2, which are critical transcription factors for bone morphogenetic protein 2 (BMP2)-induced osteoblast differentiation. In this study, we investigated the effect of EGF on the expression of Smurf1, and the role of Smurf1 in EGF inhibition of osteogenic differentiation using C2C12 cells, a murine myoblast cell line. EGF increased Smurf1 expression,more » which was blocked by inhibiting the activity of either JNK or ERK. Chromatin immunoprecipitation and Smurf1 promoter assays demonstrated that c-Jun and Runx2 play roles in the EGF induction of Smurf1 transcription. EGF suppressed BMP2-induced expression of osteogenic marker genes, which were rescued by Smurf1 knockdown. EGF downregulated the protein levels of Runx2 and Smad1 in a proteasome-dependent manner. EGF decreased the transcriptional activity of Runx2 and Smurf1, which was partially rescued by Smurf1 silencing. Taken together, these results suggest that EGF increases Smurf1 expression via the activation of JNK and ERK and the subsequent binding of c-Jun and Runx2 to the Smurf1 promoter and that Smurf1 mediates the inhibitory effect of EGF on BMP2-induced osteoblast differentiation. - Highlights: • EGF increases the expression level of Smurf1 in mesenchymal precursor cells. • EGF reduces the protein levels and transcriptional activity of Runx2 and Smad1. • EGF suppresses BMP2-induced osteogenic differentiation, which is rescued by Smurf1 knockdown.« less

  15. Linkage study of nonsyndromic cleft lip with or without cleft palate using candidate genes and mapped polymorphic markers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stein, J.D.; Nelson, L.D.; Conner, B.J.

    1994-09-01

    Nonsyndromic cleft lip with or without cleft palate (CL(P)) involves fusion or growth failure of facial primordia during development. Complex segregation analysis of clefting populations suggest that an autosomal dominant gene may play a role in this common craniofacial disorder. We have ascertained 16 multigenerational families with CL(P) and tested linkage to 29 candidate genes and 139 mapped short tandem repeat markers. The candidate genes were selected based on their expression in craniofacial development or were identified through murine models. These include: TGF{alpha}, TGF{beta}1, TGF{beta}2, TGF{beta}3, EGF, EGFR, GRAS, cMyc, FGFR, Jun, JunB, PDFG{alpha}, PDGF{beta}, IGF2R, GCR Hox7, Hox8, Hox2B,more » twirler, 5 collagen and 3 extracellular matrix genes. Linkage was tested assuming an autosomal dominant model with sex-specific decreased penetrance. Linkage to all of the candidate loci was excluded in 11 families. RARA was tested and was not informative. However, haplotype analysis of markers flanking RARA on 17q allowed exclusion of this candidate locus. We have previously excluded linkage to 61 STR markers in 11 families. Seventy-eight mapped short tandem repeat markers have recently been tested in 16 families and 30 have been excluded. The remaining are being analyzed and an exclusion map is being developed based on the entire study results.« less

  16. Efficacy validation of synthesized retinol derivatives In vitro: stability, toxicity, and activity.

    PubMed

    Han, Hye-Sook; Kwon, Youn-Ja; Park, Myoung-Soon; Park, Si-Ho; Cho, So-Mi Kim; Rho, Young-Soy; Kim, Jin-Wou; Sin, Hong-Sig; Um, Soo-Jong

    2003-08-15

    Retinol (vitamin A) is used as an antiwrinkle agent in the cosmetics industry. However, its photo-instability makes it unsuitable for use in general cosmetic formulations. To improve the photo-stability of retinol, three derivatives (3, 4, and 5) were synthesized and their biological activities were analyzed. 1H NMR and HPLC analysis indicated that derivatives 3 and 5 were much more stable than retinol under our sunlight exposure conditions. When human adult fibroblasts were treated, the IC(50) of derivative 3 was 96 microM, which is similar to that of retinol, as determined by the MTT assay. Derivatives 4 and 5 were 2.5 and 8 times more toxic than retinol, respectively. At 1 microM treatment, like retinol, derivatives 3 and 4 were specifically active for RARalpha out of six retinoid receptors (RAR/RXRalpha, beta, gamma). Dose-dependent analysis confirmed that derivative 4 was as active as retinol and the other two derivatives were less active for RARalpha. The effect of our derivatives on the expression of collagenase, an indicator of wrinkle formation, was measured using the transient co-expression of c-Jun and RT-PCR in HaCaT cells. Collagenase promoter activity, which is increased by c-Jun expression, was reduced 42% by retinol treatment. The other derivatives inhibited collagenase promoter activity similarly. These results were further confirmed by RT-PCR analysis of the collagenase gene. Taken together, our results suggest that retinol derivative 3 is a promising antiwrinkle agent based on its higher photo-stability, lower RARalpha activity (possibly indicating reduced side effects), and similar effect on collagenase expression.

  17. Angiopoietin-Like 4 Regulates Epidermal Differentiation

    PubMed Central

    Huang, Royston-Luke; Goh, Yan Yih; Wang, Xiao Ling; Tang, Mark Boon Yang; Tan, Nguan Soon

    2011-01-01

    The nuclear hormone receptor PPARβ/δ is integral to efficient wound re-epithelialization and implicated in epidermal maturation. However, the mechanism underlying the latter process of epidermal differentiation remains unclear. We showed that ligand-activated PPARβ/δ indirectly stimulated keratinocyte differentiation, requiring de novo gene transcription and protein translation. Using organotypic skin cultures constructed from PPARβ/δ- and angiopoietin-like 4 (ANGPTL4)-knockdown human keratinocytes, we showed that the expression of ANGPTL4, a PPARβ/δ target gene, is essential for the receptor mediated epidermal differentiation. The pro-differentiation effect of PPARβ/δ agonist GW501516 was also abolished when keratinocytes were co-treated with PPARβ/δ antagonist GSK0660 and similarly in organotypic skin culture incubated with blocking ANGPTL4 monoclonal antibody targeted against the C-terminal fibrinogen-like domain. Our focused real-time PCR gene expression analysis comparing the skin biopsies from wildtype and ANGPTL4-knockout mice confirmed a consistent down-regulation of numerous genes involved in epidermal differentiation and proliferation in the ANGPTL4-knockout skin. We further showed that the deficiency of ANGPTL4 in human keratinocytes and mice skin have diminished expression of various protein kinase C isotypes and phosphorylated transcriptional factor activator protein-1, which are well-established for their roles in keratinocyte differentiation. Chromatin immunoprecipitation confirmed that ANGPTL4 stimulated the activation and binding of JUNB and c-JUN to the promoter region of human involucrin and transglutaminase type 1 genes, respectively. Taken together, we showed that PPARβ/δ regulates epidermal maturation via ANGPTL4-mediated signalling pathway. PMID:21966511

  18. Modeling the Mechanism of GR/c-Jun/Erg Crosstalk in Apoptosis of Acute Lymphoblastic Leukemia

    PubMed Central

    Chen, Daphne Wei-Chen; Krstic-Demonacos, Marija; Schwartz, Jean-Marc

    2012-01-01

    Acute lymphoblastic leukemia (ALL) is one of the most common forms of malignancy that occurs in lymphoid progenitor cells, particularly in children. Synthetic steroid hormones glucocorticoids (GCs) are widely used as part of the ALL treatment regimens due to their apoptotic function, but their use also brings about various side effects and drug resistance. The identification of the molecular differences between the GCs responsive and resistant cells therefore are essential to decipher such complexity and can be used to improve therapy. However, the emerging picture is complicated as the activities of genes and proteins involved are controlled by multiple factors. By adopting the systems biology framework to address this issue, we here integrated the available knowledge together with experimental data by building a series of mathematical models. This rationale enabled us to unravel molecular interactions involving c-Jun in GC induced apoptosis and identify Ets-related gene (Erg) as potential biomarker of GC resistance. The results revealed an alternative possible mechanism where c-Jun may be an indirect GR target that is controlled via an upstream repressor protein. The models also highlight the importance of Erg for GR function, particularly in GC sensitive C7 cells where Erg directly regulates GR in agreement with our previous experimental results. Our models describe potential GR-controlled molecular mechanisms of c-Jun/Bim and Erg regulation. We also demonstrate the importance of using a systematic approach to translate human disease processes into computational models in order to derive information-driven new hypotheses. PMID:23181019

  19. Modeling the Mechanism of GR/c-Jun/Erg Crosstalk in Apoptosis of Acute Lymphoblastic Leukemia.

    PubMed

    Chen, Daphne Wei-Chen; Krstic-Demonacos, Marija; Schwartz, Jean-Marc

    2012-01-01

    Acute lymphoblastic leukemia (ALL) is one of the most common forms of malignancy that occurs in lymphoid progenitor cells, particularly in children. Synthetic steroid hormones glucocorticoids (GCs) are widely used as part of the ALL treatment regimens due to their apoptotic function, but their use also brings about various side effects and drug resistance. The identification of the molecular differences between the GCs responsive and resistant cells therefore are essential to decipher such complexity and can be used to improve therapy. However, the emerging picture is complicated as the activities of genes and proteins involved are controlled by multiple factors. By adopting the systems biology framework to address this issue, we here integrated the available knowledge together with experimental data by building a series of mathematical models. This rationale enabled us to unravel molecular interactions involving c-Jun in GC induced apoptosis and identify Ets-related gene (Erg) as potential biomarker of GC resistance. The results revealed an alternative possible mechanism where c-Jun may be an indirect GR target that is controlled via an upstream repressor protein. The models also highlight the importance of Erg for GR function, particularly in GC sensitive C7 cells where Erg directly regulates GR in agreement with our previous experimental results. Our models describe potential GR-controlled molecular mechanisms of c-Jun/Bim and Erg regulation. We also demonstrate the importance of using a systematic approach to translate human disease processes into computational models in order to derive information-driven new hypotheses.

  20. Increased sensitivity to apoptosis induced by methotrexate is mediated by Jun N-terminal kinase

    PubMed Central

    Spurlock, Charles F.; Aune, Zachary T.; Tossberg, John T.; Collins, Patrick L.; Aune, Jessica P.; Huston, Joseph W.; Crooke, Philip S.; Olsen, Nancy J.; Aune, Thomas M.

    2011-01-01

    Objective Low-dose methotrexate [MTX] is an effective therapy for rheumatoid arthritis yet its mechanism of action is incompletely understood. Here, we explored induction of apoptosis by MTX. Methods We employed flow cytometry to assess changes in levels of intracellular proteins, reactive oxygen species [ROS], and apoptosis.Quantitative polymerase chain reaction was usedtoassess changes in transcript levels of select target genes in response to MTX. Results MTX does not directly induce apoptosis but rather ‘primes’ cells for markedly increased sensitivity to apoptosis via either mitochondrial or death receptor pathways by a Jun N-terminal kinase [JNK]-dependent mechanism. Increased sensitivity to apoptosis is mediated, at least in part, by MTX-dependent production of reactive oxygen species, JNK activation and JNK-dependent induction of genes whose protein products promote apoptosis. Supplementation with tetrahydrobiopterin blocks these methotrexate-induced effects. Subjects with rheumatoid arthritis on low-dose MTX therapy express elevated levels of the JNK-target gene, JUN. Conclusions Our results support a model whereby methotrexate inhibits reduction of dihydrobiopterin to tetrahydrobiopterin resulting in increased production of ROS, increased JNK activity and increased sensitivity to apoptosis. The finding of increased JUN levels in subjects with RA taking low-dose MTX supports the notion that this pathway is activated by MTX, in vivo, and may contribute to efficacy of MTX in inflammatory disease. PMID:21618198

  1. MarvelD3 regulates the c-Jun N-terminal kinase pathway during eye development in Xenopus

    PubMed Central

    Vacca, Barbara; Sanchez-Heras, Elena; Steed, Emily; Balda, Maria S.; Ohnuma, Shin-Ichi; Sasai, Noriaki; Mayor, Roberto

    2016-01-01

    ABSTRACT Ocular morphogenesis requires several signalling pathways controlling the expression of transcription factors and cell-cycle regulators. However, despite a well-known mechanism, the dialogue between those signals and factors remains to be unveiled. Here, we identify a requirement for MarvelD3, a tight junction transmembrane protein, in eye morphogenesis in Xenopus. MarvelD3 depletion led to an abnormally pigmented eye or even an eye-less phenotype, which was rescued by ectopic MarvelD3 expression. Altering MarvelD3 expression led to deregulated expression of cell-cycle regulators and transcription factors required for eye development. The eye phenotype was rescued by increased c-Jun terminal Kinase activation. Thus, MarvelD3 links tight junctions and modulation of the JNK pathway to eye morphogenesis. PMID:27870636

  2. Increased Mitochondrial Calcium Sensitivity and Abnormal Expression of Innate Immunity Genes Precede Dopaminergic Defects in Pink1-Deficient Mice

    PubMed Central

    Akundi, Ravi S.; Huang, Zhenyu; Eason, Joshua; Pandya, Jignesh D.; Zhi, Lianteng; Cass, Wayne A.; Sullivan, Patrick G.; Büeler, Hansruedi

    2011-01-01

    Background PTEN-induced kinase 1 (PINK1) is linked to recessive Parkinsonism (EOPD). Pink1 deletion results in impaired dopamine (DA) release and decreased mitochondrial respiration in the striatum of mice. To reveal additional mechanisms of Pink1-related dopaminergic dysfunction, we studied Ca2+ vulnerability of purified brain mitochondria, DA levels and metabolism and whether signaling pathways implicated in Parkinson's disease (PD) display altered activity in the nigrostriatal system of Pink1−/− mice. Methods and Findings Purified brain mitochondria of Pink1−/− mice showed impaired Ca2+ storage capacity, resulting in increased Ca2+ induced mitochondrial permeability transition (mPT) that was rescued by cyclosporine A. A subpopulation of neurons in the substantia nigra of Pink1−/− mice accumulated phospho-c-Jun, showing that Jun N-terminal kinase (JNK) activity is increased. Pink1−/− mice 6 months and older displayed reduced DA levels associated with increased DA turnover. Moreover, Pink1−/− mice had increased levels of IL-1β, IL-12 and IL-10 in the striatum after peripheral challenge with lipopolysaccharide (LPS), and Pink1−/− embryonic fibroblasts showed decreased basal and inflammatory cytokine-induced nuclear factor kappa-β (NF-κB) activity. Quantitative transcriptional profiling in the striatum revealed that Pink1−/− mice differentially express genes that (i) are upregulated in animals with experimentally induced dopaminergic lesions, (ii) regulate innate immune responses and/or apoptosis and (iii) promote axonal regeneration and sprouting. Conclusions Increased mitochondrial Ca2+ sensitivity and JNK activity are early defects in Pink1−/− mice that precede reduced DA levels and abnormal DA homeostasis and may contribute to neuronal dysfunction in familial PD. Differential gene expression in the nigrostriatal system of Pink1−/− mice supports early dopaminergic dysfunction and shows that Pink1 deletion causes aberrant expression of genes that regulate innate immune responses. While some differentially expressed genes may mitigate neurodegeneration, increased LPS-induced brain cytokine expression and impaired cytokine-induced NF-κB activation may predispose neurons of Pink1−/− mice to inflammation and injury-induced cell death. PMID:21249202

  3. Differential regulation of CD44 expression by lipopolysaccharide (LPS) and TNF-alpha in human monocytic cells: distinct involvement of c-Jun N-terminal kinase in LPS-induced CD44 expression.

    PubMed

    Gee, Katrina; Lim, Wilfred; Ma, Wei; Nandan, Devki; Diaz-Mitoma, Francisco; Kozlowski, Maya; Kumar, Ashok

    2002-11-15

    Alterations in the regulation of CD44 expression play a critical role in modulating cell adhesion, migration, and inflammation. LPS, a bacterial cell wall component, regulates CD44 expression and may modulate CD44-mediated biological effects in monocytic cells during inflammation and immune responses. In this study, we show that in normal human monocytes, LPS and LPS-induced cytokines IL-10 and TNF-alpha enhance CD44 expression. To delineate the mechanism underlying LPS-induced CD44 expression, we investigated the role of the mitogen-activated protein kinases (MAPKs), p38, p42/44 extracellular signal-regulated kinase, and c-Jun N-terminal kinase (JNK) by using their specific inhibitors. We demonstrate the involvement, at least in part, of p38 MAPK in TNF-alpha-induced CD44 expression in both monocytes and promonocytic THP-1 cells. However, neither p38 nor p42/44 MAPKs were involved in IL-10-induced CD44 expression in monocytes. To further dissect the TNF-alpha and LPS-induced signaling pathways regulating CD44 expression independent of IL-10-mediated effects, we used IL-10 refractory THP-1 cells as a model system. Herein, we show that CD44 expression induced by the LPS-mediated pathway predominantly involved JNK activation. This conclusion was based on results derived by transfection of THP-1 cells with a dominant-negative mutant of stress-activated protein/extracellular signal-regulated kinase kinase 1, and by exposure of cells to JNK inhibitors dexamethasone and SP600125. All these treatments prevented CD44 induction in LPS-stimulated, but not in TNF-alpha-stimulated, THP-1 cells. Furthermore, we show that CD44 induction may involve JNK-dependent early growth response gene activation in LPS-stimulated monocytic cells. Taken together, these results suggest a predominant role of JNK in LPS-induced CD44 expression in monocytic cells.

  4. Cyclopentenone prostaglandins as potential inducers of phase II detoxification enzymes. 15-deoxy-delta(12,14)-prostaglandin j2-induced expression of glutathione S-transferases.

    PubMed

    Kawamoto, Y; Nakamura, Y; Naito, Y; Torii, Y; Kumagai, T; Osawa, T; Ohigashi, H; Satoh, K; Imagawa, M; Uchida, K

    2000-04-14

    Exposure of cells to a wide variety of chemoprotective compounds confers resistance to a broad set of carcinogens. For a subset of the chemoprotective compounds, protection is generated by an increase in the abundance of protective enzymes, such as glutathione S-transferases (GSTs). In the present study, we developed a cell culture system that potently responds to phenolic antioxidants and found that antitumor prostaglandins (PGs) are potential inducers of GSTs. We screened primary hepatocytes and multiple cell lines for inducing GST activity upon incubation with the phenolic antioxidant (tert-butylhydroquinone) and found that rat liver epithelial RL34 cells most potently responded. Based on an extensive screening of diverse chemical agents on the induction of GST activity in RL34 cells, the J2 series of PGs, 15-deoxy-Delta(12,14)-prostaglandin J2 (15-deoxy-Delta(12,14)-PGJ2) in particular, were found to be potential inducers of GST. Enhanced gene expression of Class pi GST isozyme (GSTP1) by 15-deoxy-Delta(12,14)-PGJ2 was evident as a drastic elevation of the mRNA level. Hence, we examined the molecular mechanism underlying the 15-deoxy-Delta(12, 14)-PGJ2-induced GSTP1 gene expression. From functional analysis of various deletion mutant genes, we found that the 15-deoxy-Delta(12, 14)-PGJ2 reponse element was localized in a region containing a GSTP1 enhancer I (GPEI) that consists of two imperfect phorbol 12-O-tetradecanoylphorbol-13-acetate response elements. When the GPEI was combined with the minimum GSTP1 promoter, the element indeed showed an enhancer activity in response to 15-deoxy-Delta(12, 14)-PGJ2. Point mutations of either of the two imperfect 12-O-tetradecanoylphorbol-13-acetate response elements in GPEI completely abolished the enhancer activity. Gel mobility shift assays demonstrated that 15-deoxy-Delta(12,14)-PGJ2 specifically stimulated the binding of nuclear proteins including the transcription factor c-Jun, but not Nrf2, to GPEI. These results suggest that 15-deoxy-Delta(12,14)-PGJ2 induces the expression of the rat GSTP1 gene through binding of proteins, including c-Jun, to a specific GPEI.

  5. Tungstate reduces the expression of gluconeogenic enzymes in STZ rats.

    PubMed

    Nocito, Laura; Zafra, Delia; Calbó, Joaquim; Domínguez, Jorge; Guinovart, Joan J

    2012-01-01

    Oral administration of sodium tungstate has shown hyperglycemia-reducing activity in several animal models of diabetes. We present new insights into the mechanism of action of tungstate. We studied protein expression and phosphorylation in the liver of STZ rats, a type I diabetes model, treated with sodium tungstate in the drinking water (2 mg/ml) and in primary cultured-hepatocytes, through Western blot and Real Time PCR analysis. Tungstate treatment reduces the expression of gluconeogenic enzymes (PEPCK, G6Pase, and FBPase) and also regulates transcription factors accountable for the control of hepatic metabolism (c-jun, c-fos and PGC1α). Moreover, ERK, p90rsk and GSK3, upstream kinases regulating the expression of c-jun and c-fos, are phosphorylated in response to tungstate. Interestingly, PKB/Akt phosphorylation is not altered by the treatment. Several of these observations were reproduced in isolated rat hepatocytes cultured in the absence of insulin, thereby indicating that those effects of tungstate are insulin-independent. Here we show that treatment with tungstate restores the phosphorylation state of various signaling proteins and changes the expression pattern of metabolic enzymes.

  6. Downregulation of immediate-early genes linking to suppression of neuronal plasticity in rats after 28-day exposure to glycidol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akane, Hirotoshi; Saito, Fumiyo; Shiraki, Ayako

    2014-09-01

    We previously found that the 28-day oral toxicity study of glycidol at 200 mg/kg/day in rats resulted in axonopathy in both the central and peripheral nervous systems and aberrations in the late-stage of hippocampal neurogenesis targeting the process of neurite extension. To capture the neuronal parameters in response to glycidol toxicity, these animals were subjected to region-specific global gene expression profiling in four regions of cerebral and cerebellar architectures, followed by immunohistochemical analysis of selected gene products. Expression changes of genes related to axonogenesis and synaptic transmission were observed in the hippocampal dentate gyrus, cingulate cortex and cerebellar vermis atmore » 200 mg/kg showing downregulation in most genes. In the corpus callosum, genes related to growth, survival and functions of glial cells fluctuated their expression. Immunohistochemically, neurons expressing gene products of immediate-early genes, i.e., Arc, Fos and Jun, decreased in their number in the dentate granule cell layer, cingulate cortex and cerebellar vermis. We also applied immunohistochemical analysis in rat offspring after developmental exposure to glycidol through maternal drinking water. The results revealed increases of Arc{sup +} neurons at 1000 ppm and Fos{sup +} neurons at ≥ 300 ppm in the dentate granule cell layer of offspring only at the adult stage. These results suggest that glycidol suppressed neuronal plasticity in the brain after 28-day exposure to young adult animals, in contrast to the operation of restoration mechanism to increase neuronal plasticity at the adult stage in response to aberrations in neurogenesis after developmental exposure. - Highlights: • Neuronal toxicity parameters after 28-day glycidol treatment were examined in rats. • Region-specific global gene expression profiling was conducted in brain regions. • Cortical tissues downregulated genes on axonogenesis and synaptic transmission. • Cortical tissues decreased immunoreactive neurons for Arc, Fos or Jun. • The results suggest that 28-day glycidol treatment suppressed neuronal plasticity.« less

  7. c-Jun activation in Schwann cells protects against loss of sensory axons in inherited neuropathy

    PubMed Central

    Hantke, Janina; Carty, Lucy; Wagstaff, Laura J.; Turmaine, Mark; Wilton, Daniel K.; Quintes, Susanne; Koltzenburg, Martin; Baas, Frank; Mirsky, Rhona

    2014-01-01

    Charcot–Marie–Tooth disease type 1A is the most frequent inherited peripheral neuropathy. It is generally due to heterozygous inheritance of a partial chromosomal duplication resulting in over-expression of PMP22. A key feature of Charcot–Marie–Tooth disease type 1A is secondary death of axons. Prevention of axonal loss is therefore an important target of clinical intervention. We have previously identified a signalling mechanism that promotes axon survival and prevents neuron death in mechanically injured peripheral nerves. This work suggested that Schwann cells respond to injury by activating/enhancing trophic support for axons through a mechanism that depends on upregulation of the transcription factor c-Jun in Schwann cells, resulting in the sparing of axons that would otherwise die. As c-Jun orchestrates Schwann cell support for distressed neurons after mechanical injury, we have now asked: do Schwann cells also activate a c-Jun dependent neuron-supportive programme in inherited demyelinating disease? We tested this by using the C3 mouse model of Charcot–Marie–Tooth disease type 1A. In line with our previous findings in humans with Charcot–Marie–Tooth disease type 1A, we found that Schwann cell c-Jun was elevated in (uninjured) nerves of C3 mice. We determined the impact of this c-Jun activation by comparing C3 mice with double mutant mice, namely C3 mice in which c-Jun had been conditionally inactivated in Schwann cells (C3/Schwann cell-c-Jun−/− mice), using sensory-motor tests and electrophysiological measurements, and by counting axons in proximal and distal nerves. The results indicate that c-Jun elevation in the Schwann cells of C3 nerves serves to prevent loss of myelinated sensory axons, particularly in distal nerves, improve behavioural symptoms, and preserve F-wave persistence. This suggests that Schwann cells have two contrasting functions in Charcot–Marie–Tooth disease type 1A: on the one hand they are the genetic source of the disease, on the other, they respond to it by mounting a c-Jun-dependent response that significantly reduces its impact. Because axonal death is a central feature of much nerve pathology it will be important to establish whether an axon-supportive Schwann cell response also takes place in other conditions. Amplification of this axon-supportive mechanism constitutes a novel target for clinical intervention that might be useful in Charcot–Marie–Tooth disease type 1A and other neuropathies that involve axon loss. PMID:25216747

  8. Gas6 induces cancer cell migration and epithelial–mesenchymal transition through upregulation of MAPK and Slug

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Yunhee; Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon; Lee, Mira

    2013-04-26

    Highlights: •We investigated the molecular mechanisms underlying Gas6-mediated cancer cell migration. •Gas6 treatment and subsequent Axl activation induce cell migration and EMT via upregulation of Slug. •Slug expression mediated by Gas6 is mainly through c-Jun and ATF-2 in an ERK1/2 and JNK-dependent manner. •The Gas6/Axl-Slug axis may be exploited as a target for anti-cancer metastasis therapy. -- Abstract: Binding of Gas6 to Axl (Gas6/Axl axis) alters cellular functions, including migration, invasion, proliferation, and survival. However, the molecular mechanisms underlying Gas6-mediated cell migration remain poorly understood. In this study, we found that Gas6 induced the activation of JNK and ERK1/2 signalingmore » in cancer cells expressing Axl, resulting in the phosphorylation of activator protein-1 (AP-1) transcription factors c-Jun and ATF-2, and induction of Slug. Depletion of c-Jun or ATF-2 by siRNA attenuated the Gas6-induced expression of Slug. Slug expression was required for cell migration and E-cadherin reduction/vimentin induction induced by Gas6. These results suggest that Gas6 induced cell migration via Slug upregulation in JNK- and ERK1/2-dependent mechanisms. These data provide an important insight into the molecular mechanisms mediating Gas6-induced cell migration.« less

  9. RRR-alpha-tocopheryl succinate inhibits EL4 thymic lymphoma cell growth by inducing apoptosis and DNA synthesis arrest.

    PubMed

    Yu, W; Sanders, B G; Kline, K

    1997-01-01

    RRR-alpha-tocopheryl succinate (vitamin E succinate, VES) treatment of murine EL4 T lymphoma cells induced the cells to undergo apoptosis. After 48 hours of VES treatment at 20 micrograms/ml, 95% of cells were apoptotic. Evidence for the induction of apoptosis by VES treatments is based on staining of DNA for detection of chromatin condensation/fragmentation, two-color flow-cytometric analyses of DNA content, and end-labeled DNA and electrophoretic analyses for detection of DNA ladder formation. VES-treated EL4 cells were blocked in the G1 cell cycle phase; however, apoptotic cells came from all cell cycle phases. Analyses of mRNA expression of genes involved in apoptosis revealed decreased c-myc and increased bcl-2, c-fos, and c-jun mRNAs within three to six hours after treatment. Western analyses showed increased c-Jun, c-Fos, and Bcl-2 protein levels. Electrophoretic mobility shift assays showed increased AP-1 binding at 6, 12, and 24 hours after treatment and decreased c-Myc binding after 12 and 24 hours of VES treatment. Treatments of EL4 cells with VES+RRR-alpha-to-copherol reduced apoptosis without effecting DNA synthesis arrest. Treatments of EL4 cells with VES+rac-6-hydroxyl-2, 5,7,8-tetramethyl-chroman-2-carboxylic acid, butylated hydroxytoluene, or butylated hydroxyanisole had no effect on apoptosis or DNA synthesis arrest caused by VES treatments. Analyses of bcl-2, c-myc, c-jun, and c-fos mRNA levels in cells receiving VES + RRR-alpha-tocopherol treatments showed no change from cells receiving VES treatments alone, implying that these changes are correlated with VES treatments but are not causal for apoptosis. However, treatments with VES + RRR-alpha-tocopherol decreased AP-1 binding to consensus DNA oligomer, suggesting AP-1 involvement in apoptosis induced by VES treatments.

  10. Gallic acid-capped gold nanoparticles inhibit EGF-induced MMP-9 expression through suppression of p300 stabilization and NFκB/c-Jun activation in breast cancer MDA-MB-231 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ying-Jung; Lee, Yuan-Chin; Huang, Chia-Hui

    Triple-negative breast cancers (TNBCs) are highly invasive and have a higher rate of distant metastasis. Matrix metalloproteinase-9 (MMP-9) plays a crucial role in EGF/EGFR-mediated malignant progression and metastasis of TNBCs. Various studies have revealed that treatment with gallic acid down-regulates MMP-9 expression in cancer cells, and that conjugation of phytochemical compounds with gold nanoparticles (AuNPs) increases the anti-tumor activity of the phytochemical compounds. Thus, the effect of gallic acid-capped AuNPs (GA-AuNPs) on MMP-9 expression in EGF-treated TNBC MDA-MB-231 cells was analyzed in the present study. The so-called green synthesis of AuNPs by means of gallic acid was performed at pHmore » 10, and the resulting GA-AuNPs had spherical shape with an average diameter of approximately 50 nm. GA-AuNPs notably suppressed migration and invasion of EGF-treated cells, and inhibited EGF-induced MMP-9 up-regulation. GA-AuNPs abrogated EGF-induced Akt/p65 and ERK/c-Jun phosphorylation, leading to down-regulation of MMP-9 mRNA and protein expression in EGF-treated cells. Meanwhile, EGF-induced p300 stabilization was found to be involved in MMP-9 expression, whereas GA-AuNPs inhibited the EGF-promoted stability of the p300 protein. Although GA-AuNPs and gallic acid suppressed EGF-induced MMP-9 up-regulation via the same signaling pathway, the effective concentration of gallic acid was approximately 100-fold higher than that of GA-AuNPs for inhibition of MMP-9 expression in EGF-treated cells to a similar extent. Collectively, our data indicate that, in comparison with gallic acid, GA-AuNPs have a superior ability to inhibit EGF/EGFR-mediated MMP-9 expression in TNBC MDA-MB-231 cells. Our findings also point to a way to improve the anti-tumor activity of gallic acid. - Highlights: • Gallic acid-capped gold nanoparticles inhibit EGF-induced MMP-9 expression. • EGF-induced MMP-9 expression via p300 stabilization and NFκB/c-Jun activation. • Gallic acid-capped gold nanoparticles inhibit EGF-modulated p300 stabilization. • Gallic acid-capped gold nanoparticles abrogate EGF-induced NFκB/c-Jun activation.« less

  11. Neuroprotective Effects of the Absence of JNK1 or JNK3 Isoforms on Kainic Acid-Induced Temporal Lobe Epilepsy-Like Symptoms.

    PubMed

    de Lemos, Luisa; Junyent, Felix; Camins, Antoni; Castro-Torres, Rubén Darío; Folch, Jaume; Olloquequi, Jordi; Beas-Zarate, Carlos; Verdaguer, Ester; Auladell, Carme

    2018-05-01

    The activation of c-Jun-N-terminal kinases (JNK) pathway has been largely associated with the pathogenesis and the neuronal death that occur in neurodegenerative diseases. Altogether, this justifies why JNKs have become a focus of screens for new therapeutic strategies. The aim of the present study was to identify the role of the different JNK isoforms (JNK1, JNK2, and JNK3) in apoptosis and inflammation after induction of brain damage. To address this aim, we induced excitotoxicity in wild-type and JNK knockout mice (jnk1 -/- , jnk2 -/- , and jnk3 -/- ) via an intraperitoneal injection of kainic acid, an agonist of glutamic-kainate-receptors, that induce status epilepticus.Each group of animals was divided into two treatments: a single intraperitoneal dose of saline solution, used as a control, and a single intraperitoneal dose (30 mg/kg) of kainic acid. Our results reported a significant decrease in neuronal degeneration in the hippocampus of jnk1 -/- and jnk3 -/- mice after kainic acid treatment, together with reduced or unaltered expression of several apoptotic genes compared to WT treated mice. In addition, both jnk1 -/- and jnk3 -/- mice exhibited a reduction in glial reactivity, as shown by the lower expression of inflammatory genes and a reduction of JNK phosphorylation. In addition, in jnk3 -/- mice, the c-Jun phosphorylation was also diminished.Collectively, these findings provide compelling evidence that the absence of JNK1 or JNK3 isoforms confers neuroprotection against neuronal damage induced by KA and evidence, for the first time, the implication of JNK1 in excitotoxicity. Accordingly, JNK1 and/or JNK3 are promising targets for the prevention of cell death and inflammation during epileptogenesis.

  12. An ADAM12 and FAK positive feedback loop amplifies the interaction signal of tumor cells with extracellular matrix to promote esophageal cancer metastasis.

    PubMed

    Luo, Man-Li; Zhou, Zhuan; Sun, Lichao; Yu, Long; Sun, Lixin; Liu, Jun; Yang, Zhihua; Ran, Yuliang; Yao, Yandan; Hu, Hai

    2018-05-28

    Esophageal squamous cell carcinomas (ESCCs) have a poor prognosis mostly due to early metastasis. To explore the early event of metastasis in ESCC, we established an in vitro selection model to mimic the interaction of tumor cells with extracellular matrix, through which a sub-line of ESCC cells with high invasive ability was generated. By comparing the gene expression profile of the highly invasive sub-line to that of the parental cells, ADAM12-L was identified as a candidate gene promoting ESCC cell invasion. Immunohistochemistry revealed that the ADAM12-L was overexpressed in human ESCC tissues, especially at cancer invasive edge, and ADAM12-L overexpression tightly correlated with increased metastasis and poor outcome of ESCC patients. Indeed, ADAM12-L knockdown reduced the invasion and metastasis of ESCC cells both in vitro and in vivo. Furthermore, we demonstrated that ADAM12-L participated in focal adhesion turnover and promoted the activation of focal adhesion kinase (FAK), which in turn increased ADAM12-L transcription through FAK/JNK/c-Jun axis. Therefore, a loop initiated from the cancer cell upon the engagement with extracellular matrix through FAK and c-Jun to enhance ADAM12-L expression is established, leading to the positive feedback of further FAK activation and prompting metastasis. Our study indicates that overexpression of ADAM12-L can serve as a precision marker to determine the activation of this loop. Targeting ADAM12-L to disrupt this positive feedback loop represents a promising strategy to treat the metastasis of esophageal cancers. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Cinnamophilin isolated from Cinnamomum philippinense protects against collagen degradation in human chondrocytes.

    PubMed

    Lu, Yung-Chang; Hsiao, George; Lin, Kuan-Hung; Hsieh, Ming-Shium; Jayakumar, Thanasekaran; Wu, Tian-Shung; Sheu, Joen-Rong

    2013-06-01

    To investigate the therapeutic potential of naturally occurring cinnamophilin against cartilage degradation and its action mechanisms, its effects on matrix metalloproteinase (MMP)-1 and -13 induction were examined in the human SW1353 chondrocytic cell line. Human chondrocytes (SW1353) were stimulated with interleukin (IL)-1β, and then mitogen-activated protein kinase (MAPK) and c-Jun activations, inhibitory κB-α (IκB-α) degradation, and MMP-1, and 13 expressions were assayed by a Western blot analysis. Cinnamophilin strongly inhibited MMP-1 and -13 induction in IL-1β-treated (30 ng/mL) SW1353 cells in a concentration-dependent manner, and it also reduced MAPK family members including extracellular signal-regulated kinase (ERK), p38 MAPKs, and c-Jun N-terminal kinase. Moreover, nuclear factor (NF)-κB signaling activation through IκB-α degradation, IκB kinase (IKK)-α/β, and p-65 phosphorylation was restored by cinnamophilin upon IL-1β stimulation. Importantly, results showed that IL-1β-induced activation of phosphorylated (p)-c-Jun in chondrocytes was significantly inhibited by cinnamophilin. These results indicate that cinnamophilin inhibited MMP-1 and -13 expressions in IL-1β-treated chondrocytes through either NF-κB or ERK/p38 MAPK downregulation and/or suppressing p-c-Jun pathways. Furthermore, these findings suggest that cinnamophilin may have the potential for chondroprotection against collagen matrix breakdown in cartilage of diseased tissues such as those found in arthritic disorders. Copyright © 2012 John Wiley & Sons, Ltd.

  14. Characterization of Short Range DNA Looping in Endotoxin-mediated Transcription of the Murine Inducible Nitric-oxide Synthase (iNOS) Gene*

    PubMed Central

    Guo, Hongtao; Mi, Zhiyong; Kuo, Paul C.

    2008-01-01

    The local structural properties and spatial conformations of chromosomes are intimately associated with gene expression. The spatial associations of critical genomic elements in inducible nitric-oxide synthase (iNOS) transcription have not been previously examined. In this regard, the murine iNOS promoter contains 2 NF-κB binding sites (nt –86 and nt –972) that are essential for maximal transactivation of iNOS by LPS. Although AP-1 is commonly listed as an essential transcription factor for LPS-mediated iNOS transactivation, the relationship between AP-1 and NF-κB in this setting is not well studied. In this study using a model of LPS-stimulated ANA-1 murine macrophages, we demonstrate that short range DNA looping occurs at the iNOS promoter. This looping requires the presence of AP-1, c-Jun, NF-κB p65, and p300-associated acetyltransferase activity. The distal AP-1 binding site interacts via p300 with the proximal NF-κB binding site to create this DNA loop to participate in iNOS transcription. Other geographically distant AP-1 and NF-κB sites are certainly occupied, but selected sites are critical for iNOS transcription and the formation of the c-Jun, p65, and p300 transcriptional complex. In this “simplified” model of murine iNOS promoter, numerous transcription factors recognize and bind to various response elements, but these locales do not equally contribute to iNOS gene transcription. PMID:18596035

  15. Targeting genes in insulin-associated signalling pathway, DNA damage, cell proliferation and cell differentiation pathways by tocotrienol-rich fraction in preventing cellular senescence of human diploid fibroblasts.

    PubMed

    Durani, L W; Jaafar, F; Tan, J K; Tajul Arifin, K; Mohd Yusof, Y A; Wan Ngah, W Z; Makpol, S

    2015-01-01

    Tocotrienols have been known for their antioxidant properties besides their roles in cellular signalling, gene expression, immune response and apoptosis. This study aimed to determine the molecular mechanism of tocotrienol-rich fraction (TRF) in preventing cellular senescence of human diploid fibroblasts (HDFs) by targeting the genes in senescence-associated signalling pathways. Real time quantitative PCR (qRT-PCR) was utilized to evaluate the expression of genes involved in these pathways. Our findings showed that SOD1 and CCS-1 were significantly down-regulated in pre-senescent cells while CCS-1 and PRDX6 were up-regulated in senescent cells (p<0.05). Treatment with TRF significantly down-regulated SOD1 in pre-senescent and senescent HDFs, up-regulated SOD2 in senescent cells, CAT in young HDFs, GPX1 in young and pre-senescent HDFs, and CCS-1 in young, pre-senescent and senescent HDFs (p<0.05). TRF treatment also caused up-regulation of FOXO3A in all age groups of cells (p<0.05). The expression of TP53, PAK2 and CDKN2A was significantly increased in senescent HDFs and treatment with TRF significantly down-regulated TP53 in senescent cells (p<0.05). MAPK14 was significantly up-regulated (p<0.05) in senescent HDFs while no changes was observed on the expression of JUN. TRF treatment, however, down-regulated MAPK14 in young and senescent cells and up-regulated JUN in young and pre-senescent HDFs (p<0.05). TRF modulated the expression of genes involved in senescence-associated signalling pathways during replicative senescence of HDFs.

  16. Comparative study of the efficacy of pulsed electromagnetic field and low level laser therapy on mitogen-activated protein kinases.

    PubMed

    El-Makakey, Ayman M; El-Sharaby, Radwa M; Hassan, Mohammed H; Balbaa, Alaa

    2017-03-01

    Mitogen-Activated Protein Kinases (MAPKs) consist of three major signaling members: extracellular signal-regulated kinase (ERK), p38 and C-JUN N-terminal kinase (JNK). We investigated physiological effects of Pulsed Electromagnetic Field Therapy (PEMFT) and Low Level Laser Therapy (LLLT) on human body, adopting the expression level of mitogen-activated protein kinases as an indicator via assessment of the activation levels of three major families of MAPKS, ERK, p38 and JNK in the peripheral lymphocytes of patients before and after the therapies. Assessment for the expression levels of MAPKs families' were done, in the peripheral lymphocytes of patients recently have appendectomy, using flow cytometric analysis of multiple signaling pathways, pre and post LLLT and PEMFT application (twice daily for 6 successive days) on the appendectomy wound. There were non-significant differences in the expression levels of MAPKs families' pre- therapies application. But there were significant increase in the ERK expression levels post application of LLLT compared to its pre application (p<0.01). Also, there was significant increase in the ERK, p38 and C-Jun N terminal expression level values post application of PEMFT compared to its pre application expression levels (p<0.01 for each). The present study demonstrates that PEMFT has a powerful healing effect more than LLLT as it increase the activation of ERK, P38 and C-Jun-N Terminal while LLLT only increase the activation of ERK. LLLT has more potent pain decreasing effect than PEMFT as it does not activate P38 pathway like PEMFT.

  17. 17β-Estradiol activates GPER- and ESR1-dependent pathways inducing apoptosis in GC-2 cells, a mouse spermatocyte-derived cell line.

    PubMed

    Chimento, Adele; Sirianni, Rosa; Casaburi, Ivan; Ruggiero, Carmen; Maggiolini, Marcello; Andò, Sebastiano; Pezzi, Vincenzo

    2012-05-15

    In mammals, spontaneous apoptosis is observed particularly in differentiating spermatogonia and in spermatocytes. 17β-Estradiol (E2) in primary rat pachytene spermatocytes (PS) binds estrogen receptor α (ESR1) and GPER to activate EGFR/ERK/c-Jun pathway leading to up regulation of proapoptotic factor bax. Aim of this study was to clarify the effector pathway(s) controlling spermatocytes apoptosis using as model GC-2 cells, an immortalized mouse pachytene spermatocyte-derived cell line, which reproduces primary cells responses to E2. In fact, in GC-2 cells we observed that ESR1 and GPER activation caused rapid ERK and c-Jun phosphorylation, bax up-regulation, events associated with apoptosis. We further investigated the apoptotic mechanism demonstrating that E2, as well as ESR1 and GPER specific agonists, induced sustained ERK, c-Jun and p38 phosphorylation, Cytochrome c release, caspase 3 and endogenous substrate Poly (ADP-ribose) polymerase (PARP) activation and increased expression of cell cycle inhibitor p21. When ESR1 or GPER expression was silenced, E2 was still able to decrease cell proliferation, only the concomitant silencing abolished E2 effect. These results indicate that GC-2 cells are a valid cell model to study E2-dependent apoptosis in spermatocytes and show that E2, activating both ESR1 and GPER, is able to induce an ERK1/2, c-Jun and p38-dependent mitochondrion apoptotic pathway in this cell type. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. Dehydroepiandrosterone Activation of G-protein-coupled Estrogen Receptor Rapidly Stimulates MicroRNA-21 Transcription in Human Hepatocellular Carcinoma Cells.

    PubMed

    Teng, Yun; Radde, Brandie N; Litchfield, Lacey M; Ivanova, Margarita M; Prough, Russell A; Clark, Barbara J; Doll, Mark A; Hein, David W; Klinge, Carolyn M

    2015-06-19

    Little is known about the regulation of the oncomiR miR-21 in liver. Dehydroepiandrosterone (DHEA) regulates gene expression as a ligand for a G-protein-coupled receptor and as a precursor for steroids that activate nuclear receptor signaling. We report that 10 nm DHEA increases primary miR-21 (pri-miR-21) transcription and mature miR-21 expression in HepG2 cells in a biphasic manner with an initial peak at 1 h followed by a second, sustained response from 3-12 h. DHEA also increased miR-21 in primary human hepatocytes and Hep3B cells. siRNA, antibody, and inhibitor studies suggest that the rapid DHEA-mediated increase in miR-21 involves a G-protein-coupled estrogen receptor (GPER/GPR30), estrogen receptor α-36 (ERα36), epidermal growth factor receptor-dependent, pertussis toxin-sensitive pathway requiring activation of c-Src, ERK1/2, and PI3K. GPER antagonist G-15 attenuated DHEA- and BSA-conjugated DHEA-stimulated pri-miR-21 transcription. Like DHEA, GPER agonists G-1 and fulvestrant increased pri-miR-21 in a GPER- and ERα36-dependent manner. DHEA, like G-1, increased GPER and ERα36 mRNA and protein levels. DHEA increased ERK1/2 and c-Src phosphorylation in a GPER-responsive manner. DHEA increased c-Jun, but not c-Fos, protein expression after 2 h. DHEA increased androgen receptor, c-Fos, and c-Jun recruitment to the miR-21 promoter. These results suggest that physiological concentrations of DHEA activate a GPER intracellular signaling cascade that increases pri-miR-21 transcription mediated at least in part by AP-1 and androgen receptor miR-21 promoter interaction. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Cinnamon polyphenols regulate multiple metabolic pathways involved in insulin signaling and intestinal lipoprotein metabolism of small intestinal enterocytes.

    PubMed

    Qin, Bolin; Dawson, Harry D; Schoene, Norberta W; Polansky, Marilyn M; Anderson, Richard A

    2012-01-01

    Increasing evidence suggests that dietary factors may affect the expression of multiple genes and signaling pathways, which regulate intestinal lipoprotein metabolism. The small intestine is actively involved in the regulation of dietary lipid absorption, intracellular transport, and metabolism and is closely linked to systemic lipid metabolism. Cinnamon polyphenols have been shown to improve glucose, insulin, and lipid metabolism and improve inflammation in cell culture, animal, and human studies. However, little is known of the effects of an aqueous cinnamon extract (CE) on the regulation of genes and signaling pathways related to intestinal metabolism. The aim of the study was to investigate the effects of a CE on the primary enterocytes of chow-fed rats. Freshly isolated intestinal enterocytes were used to investigate apolipoprotein-B48 secretion by immunoprecipitation; gene expressions by quantitative reverse transcriptase-polymerase chain reaction and the protein and phosphorylation levels were evaluated by western blot and flow cytometric analyses. Ex vivo, the CE significantly decreased the amount of apolipoprotein-B48 secretion into the media, inhibited the mRNA expression of genes of the inflammatory cytokines, interleukin-1β, interleukin-6, and tumor necrosis factor-α, and induced the expression of the anti-inflammatory gene, Zfp36. CE also increased the mRNA expression of genes leading to increased insulin sensitivity, including Ir, Irs1, Irs2, Pi3k, and Akt1, and decreased Pten expression. CE also inhibited genes associated with increased cholesterol, triacylglycerols, and apolipoprotein-B48 levels, including Abcg5, Npc1l1, Cd36, Mttp, and Srebp1c, and facilitated Abca1 expression. CE also stimulated the phospho-p38 mitogen-activated protein kinase, c-Jun N-terminal kinase, and extracellular-signal-regulated kinase expressions determined by flow cytometry, with no changes in protein levels. These results demonstrate that the CE regulates genes associated with insulin sensitivity, inflammation, and cholesterol/lipogenesis metabolism and the activity of the mitogen-activated protein kinase signal pathway in intestinal lipoprotein metabolism. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Interleukin-like EMT inducer regulates partial phenotype switching in MITF-low melanoma cell lines

    PubMed Central

    Noguchi, Ken; Dalton, Annamarie C.; Howley, Breege V.; McCall, Buckley J.; Yoshida, Akihiro; Diehl, J. Alan

    2017-01-01

    ILEI (FAM3C) is a secreted factor that contributes to the epithelial-to-mesenchymal transition (EMT), a cell biological process that confers metastatic properties to a tumor cell. Initially, we found that ILEI mRNA is highly expressed in melanoma metastases but not in primary tumors, suggesting that ILEI contributes to the malignant properties of melanoma. While melanoma is not an epithelial cell-derived tumor and does not undergo a traditional EMT, melanoma undergoes a similar process known as phenotype switching in which high (micropthalmia-related transcription factor) MITF expressing (MITF-high) proliferative cells switch to a low expressing (MITF-low) invasive state. We observed that MITF-high proliferative cells express low levels of ILEI (ILEI-low) and MITF-low invasive cells express high levels of ILEI (ILEI-high). We found that inducing phenotype switching towards the MITF-low invasive state increases ILEI mRNA expression, whereas phenotype switching towards the MITF-high proliferative state decreases ILEI mRNA expression. Next, we used in vitro assays to show that knockdown of ILEI attenuates invasive potential but not MITF expression or chemoresistance. Finally, we used gene expression analysis to show that ILEI regulates several genes involved in the MITF-low invasive phenotype including JARID1B, HIF-2α, and BDNF. Gene set enrichment analysis suggested that ILEI-regulated genes are enriched for JUN signaling, a known regulator of the MITF-low invasive phenotype. In conclusion, we demonstrate that phenotype switching regulates ILEI expression, and that ILEI regulates partial phenotype switching in MITF-low melanoma cell lines. PMID:28545079

  1. Trichloroethylene-Induced DNA Methylation Changes in Male F344 Rat Liver.

    PubMed

    Jiang, Yan; Chen, Jiahong; Yue, Cong; Zhang, Hang; Chen, Tao

    2016-10-17

    Trichloroethylene (TCE), a common environmental contaminant, causes hepatocellular carcinoma in mice but not in rats. To understand the mechanisms of the species-specific hepatocarcinogenecity of TCE, we examined the methylation status of DNA in the liver of rats exposed to TCE at 0 or 1000 mg/kg b.w. for 5 days using MeDIP-chip, bisulfite sequencing, COBRA, and LC-MS/MS. The related mRNA expression levels were measured by qPCR. Although no global DNA methylation change was detected, 806 genes were hypermethylated and 186 genes were hypomethylated. The genes with hypermethylated DNA were enriched in endocytosis, MAPK, and cAMP signaling pathways. We further confirmed the hypermethylation of Uhrf2 DNA and the hypomethylation of Hadhb DNA, which were negatively correlated with their mRNA expression levels. The transcriptional levels of Jun, Ihh, and Tet2 were significantly downregulated, whereas Cdkn1a was overexpressed. No mRNA expression change was found for Mki67, Myc, Uhrf1, and Dnmt1. In conclusion, TCE-induced DNA methylation changes in rats appear to suppress instead of promote hepatocarcinogenesis, which might play a role in the species-specific hepatocarcinogenecity of TCE.

  2. cAMP Response Element-Binding Protein Is Required for Dopamine-Dependent Gene Expression in the Intact But Not the Dopamine-Denervated Striatum

    PubMed Central

    Andersson, Malin; Konradi, Christine; Cenci, M. Angela

    2014-01-01

    The cAMP response element-binding protein (CREB) is believed to play a pivotal role in dopamine (DA) receptor-mediated nuclear signaling and neuroplasticity. Here we demonstrate that the significance of CREB for gene expression depends on the experimental paradigm. We compared the role of CREB in two different but related models: L-DOPA administration to unilaterally 6-hydroxydopamine lesioned rats, and cocaine administration to neurologically intact animals. Antisense technology was used to produce a local knockdown of CREB in the lateral caudate–putamen, a region that mediates the dyskinetic or stereotypic manifestations associated with L-DOPA or cocaine treatment, respectively. In intact rats, CREB antisense reduced both basal and cocaine-induced expression of c-Fos, FosB/ΔFosB, and prodynorphin mRNA. In the DA-denervated striatum, CREB was not required for L-DOPA to induce these gene products, nor did CREB contribute considerably to DNA binding activity at cAMP responsive elements (CREs) and CRE-like enhancers. ΔFosB-related proteins and JunD were the main contributors to both CRE and AP-1 DNA–protein complexes in L-DOPA-treated animals. In behavioral studies, intrastriatal CREB knockdown caused enhanced activity scores in intact control animals and exacerbated the dyskinetic effects of acute L-DOPA treatment in 6-OHDA-lesioned animals. These data demonstrate that CREB is not required for the development of L-DOPA-induced dyskinesia in hemiparkinsonian rats. Moreover, our results reveal an unexpected alteration of nuclear signaling mechanisms in the parkinsonian striatum treated with L-DOPA, where AP-1 transcription factors appear to supersede CREB in the activation of CRE-containing genes. PMID:11739600

  3. In vitro efficacy of a gene-activated nerve guidance conduit incorporating non-viral PEI-pDNA nanoparticles carrying genes encoding for NGF, GDNF and c-Jun.

    PubMed

    Lackington, William A; Raftery, Rosanne M; O'Brien, Fergal J

    2018-06-07

    Despite the success of tissue engineered nerve guidance conduits (NGCs) for the treatment of small peripheral nerve injuries, autografts remain the clinical gold standard for larger injuries. The delivery of neurotrophic factors from conduits might enhance repair for more effective treatment of larger injuries but the efficacy of such systems is dependent on a safe, effective platform for controlled and localised therapeutic delivery. Gene therapy might offer an innovative approach to control the timing, release and level of neurotrophic factor production by directing cells to transiently sustain therapeutic protein production in situ. In this study, a gene-activated NGC was developed by incorporating non-viral polyethyleneimine-plasmid DNA (PEI-pDNA) nanoparticles (N/P 7 ratio, 2μg dose) with the pDNA encoding for nerve growth factor (NGF), glial derived neurotrophic factor (GDNF) or the transcription factor c-Jun. The physicochemical properties of PEI-pDNA nanoparticles, morphology, size and charge, were shown to be suitable for gene delivery and demonstrated high Schwann cell transfection efficiency (60±13%) in vitro. While all three genes showed therapeutic potential in terms of enhancing neurotrophic cytokine production while promoting neurite outgrowth, delivery of the gene encoding for c-Jun showed the greatest capacity to enhance regenerative cellular processes in vitro. Ultimately, this gene-activated NGC construct was shown to be capable of transfecting both Schwann cells (S42 cells) and neuronal cells (PC12 and dorsal root ganglia) in vitro, demonstrating potential for future therapeutic applications in vivo. The basic requirements of biomaterial-based nerve guidance conduits have now been well established and include being able to bridge a nerve injury to support macroscopic guidance between nerve stumps, while being strong enough to withstand longitudinal tension and circumferential compression, in addition to being mechanically sound to facilitate surgical handling and implantation. While meeting these criteria, conduits are still limited to the treatment of small defects clinically and might benefit from additional biochemical stimuli to enhance repair for the effective treatment of larger injuries. In this study, a gene activated conduit was successfully developed by incorporating non-viral nanoparticles capable of efficient Schwann cell and neuronal cell transfection with therapeutic genes in vitro, which showed potential to enhance repair in future applications particularly when taking advantage of the transcription factor c-Jun. This innovative approach may provide an alternative to conduits used as platforms for the delivery neurotrophic factors or genetically modified cells (viral gene therapy), and a potential solution for the unmet clinical need to repair large peripheral nerve injury effectively. Copyright © 2018. Published by Elsevier Ltd.

  4. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    2002-01-29

    The present invention provides an isolated polynucleotide encoding a c-Jun peptide consisting of about amino acid residues 33 to 79 as set fort in SEQ ID NO: 10 or conservative variations thereof. The invention also provides a method for producing a peptide of SEQ ID NO:1 comprising (a) culturing a host cell containing a polynucleotide encoding a c-Jun peptide consisting of about amino acid residues 33 to 79 as set forth in SEQ ID NO: 10 under conditions which allow expression of the polynucleotide; and (b) obtaining the peptide of SEQ ID NO:1.

  5. Simulated Microgravity Induced Cytoskeletal Rearrangements are Modulated by Protooncogenes

    NASA Technical Reports Server (NTRS)

    Melhado, C. D.; Sanford, G. L.; Bosah, F.; Harris-Hooker, S.

    1998-01-01

    Microgravity is the environment living systems encounter during space flight and gravitational unloading is the effect of this environment on living systems. The cell, being a multiphasic chemical system, is a useful starting point to study the potential impact of gravity unloading on physiological function. In the absence of gravity, sedimentation of organelles including chromosomes, mitochondria, nuclei, the Golgi apparatus, vacuoles, and the endoplasmic reticulum may be affected. Most of these organelles, however, are somewhat held in place by cytoskeleton. Hansen and Igber suggest that intermediate filaments act to stabilize the nuleus against rotational movement, and integrate cell and nuclear structure. The tensegrity theory supports the idea that mechanical or physical forces alters the cytoskeletal structures of a cell resulting in the changes in cell: matrix interactions and receptor-signaling coupling. This type of stress to the cytoskeleton may be largely responsible regulating cell shape, growth, movement and metabolism. Mouse MC3T3 El cells under microgravity exhibited significant cytoskeletal changes and alterations in cell growth. The alterations in cytoskeleton architecture may be due to changes in the expression of actin related proteins or integrins. Philopott and coworkers reported on changes in the distribution of microtubule and cytoskeleton elements in the cells of heart tissue from space flight rats and those centrifuged at 1.7g. Other researchers have showed that microgravity reduced EGF-induced c-fos and c-jun expression compared to 1 g controls. Since c-fos and c-jun are known regulators of cell growth, it is likely that altered signal transduction involving protooncogenes may play a crucial role in the reduced growth and alterations in cytoskeletal arrangements found during space flight. It is clear that a microgravity environment induces a number of changes in cell shape, cell surface molecules, gene expression, and cytoskeletal reorganization. However the underlying mechanism for these cellular changes have not been clearly defined. We examined alterations in endothelial migration, and cytoskeleton architecture (microfilamentous f-actin and vimentin-rich- intermediate filaments) following wounding under simulated microgravity. We also examined the possibility that altered signal transduction pathways, involving protooncogenes, may play a crucial role in microgravity-induced retardation of cell migration and alterations in cytoskeletal organization. We hypothesize that, based on the tensegrity theory, cytoskeletal organization respond to gravitational unloading and through this response, cell behavior, function and gene expression are modified.

  6. Tungstate Reduces the Expression of Gluconeogenic Enzymes in STZ Rats

    PubMed Central

    Calbó, Joaquim; Domínguez, Jorge; Guinovart, Joan J.

    2012-01-01

    Aims Oral administration of sodium tungstate has shown hyperglycemia-reducing activity in several animal models of diabetes. We present new insights into the mechanism of action of tungstate. Methods We studied protein expression and phosphorylation in the liver of STZ rats, a type I diabetes model, treated with sodium tungstate in the drinking water (2 mg/ml) and in primary cultured-hepatocytes, through Western blot and Real Time PCR analysis. Results Tungstate treatment reduces the expression of gluconeogenic enzymes (PEPCK, G6Pase, and FBPase) and also regulates transcription factors accountable for the control of hepatic metabolism (c-jun, c-fos and PGC1α). Moreover, ERK, p90rsk and GSK3, upstream kinases regulating the expression of c-jun and c-fos, are phosphorylated in response to tungstate. Interestingly, PKB/Akt phosphorylation is not altered by the treatment. Several of these observations were reproduced in isolated rat hepatocytes cultured in the absence of insulin, thereby indicating that those effects of tungstate are insulin-independent. Conclusions Here we show that treatment with tungstate restores the phosphorylation state of various signaling proteins and changes the expression pattern of metabolic enzymes. PMID:22905122

  7. Low humidity environmental challenge causes barrier disruption and cornification of the mouse corneal epithelium via a c-jun N-terminal kinase 2 (JNK2) pathway.

    PubMed

    Pelegrino, F S A; Pflugfelder, S C; De Paiva, C S

    2012-01-01

    Patients with tear dysfunction often experience increased irritation symptoms when subjected to drafty and/or low humidity environmental conditions. The purpose of this study was to investigate the effects of low humidity stress (LHS) on corneal barrier function and expression of cornified envelope (CE) precursor proteins in the epithelium of C57BL/6 and c-jun N-terminal kinase 2 (JNK2) knockout (KO) mice. LHS was induced in both strains by exposure to an air draft for 15 (LHS15D) or 30 days (LHS30D) at a relative humidity <30%RH. Nonstressed (NS) mice were used as controls. Oregon-green-dextran uptake was used to measure corneal barrier function. Levels of small proline-rich protein (SPRR)-2, involucrin, occludin, and MMP-9 were evaluated by immunofluorescent staining in cornea sections. Wholemount corneas immunostained for occludin were used to measure mean apical cell area. Gelatinase activity was evaluated by in situ zymography. Expression of MMP, CE and inflammatory cytokine genes was evaluated by qPCR. C57BL/6 mice exposed to LHS15D showed corneal barrier dysfunction, decreased apical corneal epithelial cell area, higher MMP-9 expression and gelatinase activity and increased involucrin and SPRR-2 immunoreactivity in the corneal epithelium compared to NS mice. JNK2KO mice were resistant to LHS-induced corneal barrier disruption. MMP-3,-9,-13, IL-1α, IL-1β, involucrin and SPRR-2a RNA transcripts were significantly increased in C57BL/6 mice at LHS15D, while no change was noted in JNK2KO mice. LHS is capable of altering corneal barrier function, promoting pathologic alteration of the TJ complex and stimulating production of CE proteins by the corneal epithelium. Activation of the JNK2 signaling pathway contributes to corneal epithelial barrier disruption in LHS. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Isorhapontigenin (ISO) inhibited cell transformation by inducing G0/G1 phase arrest via increasing MKP-1 mRNA Stability.

    PubMed

    Gao, Guangxun; Chen, Liang; Li, Jingxia; Zhang, Dongyun; Fang, Yong; Huang, Haishan; Chen, Xiequn; Huang, Chuanshu

    2014-05-15

    The cancer chemopreventive property of Chinese herb new isolate isorhapontigenin (ISO) and mechanisms underlying its activity have never been explored. Here we demonstrated that ISO treatment with various concentrations for 3 weeks could dramatically inhibit TPA/EGF-induced cell transformation of Cl41 cells in Soft Agar assay, whereas co-incubation of cells with ISO at the same concentrations could elicit G0/G1 cell-cycle arrest without redundant cytotoxic effects on non-transformed cells. Further studies showed that ISO treatment resulted in cyclin D1 downregulation in dose- and time-dependent manner. Our results indicated that ISO regulated cyclin D1 at transcription level via targeting JNK/C-Jun/AP-1 activation. Moreover, we found that ISO-inhibited JNK/C-Jun/AP-1 activation was mediated by both upregulation of MKP-1 expression through increasing its mRNA stability and deactivating MKK7. Most importantly, MKP-1 knockdown could attenuate ISO-mediated suppression of JNK/C-Jun activation and cyclin D1 expression, as well as G0/G1 cell cycle arrest and cell transformation inhibition, while ectopic expression of FLAG-cyclin D1 T286A mutant also reversed ISO-induced G0/G1 cell-cycle arrest and inhibition of cell transformation. Our results demonstrated that ISO is a promising chemopreventive agent via upregulating mkp-1 mRNA stability, which is distinct from its cancer therapeutic effect with downregulation of XIAP and cyclin D1 expression.

  9. The effect of dehydroglyasperin C on UVB-mediated MMPs expression in human HaCaT cells.

    PubMed

    Xuan, Song Hua; Park, Young Min; Ha, Ji Hoon; Jeong, Yoon Ju; Park, Soo Nam

    2017-12-01

    The ultraviolet B (UVB) from solar radiation increases the generation of reactive oxygen species (ROS), which mediate the production of matrix metalloproteinases (MMPs), and acts mainly on the epidermis layer of the skin. This study was aimed at assessing the anti-photoaging effects of dehydroglyasperin C isolated from Glycyrrhiza uralensis Fisch on MMPs levels in HaCaT human keratinocytes and to elucidate the underlying mechanism. The cell viability was measured by MTT assay. Expression, phosphorylation and enzymatic activity of the protein were examined using ELISA, Western blot or gelatin zymography. Intracellular ROS measurement was evaluated by fluorescent ELISA and 2',7'-dichlorodihydrofluorescein diacetate (H 2 DCF-DA) assay. In the present study, we found that dehydroglyasperin C markedly inhibited UVB-mediated expression of collagenase (MMP-1) and gelatinase (MMP-9) by inhibiting ROS generation. Dehydroglyasperin C treatment also decreased the UVB irradiation-mediated activation of mitogen-activated protein kinase (MAPK), c-Jun phosphorylation, and c-Fos expression. In addition, the down-regulation of UVB-induced c-Jun phosphorylation caused by dehydroglyasperin C treatment was more than the down-regulation of c-Fos expression in the HaCaT human keratinocytes. Our results indicated that dehydroglyasperin C may function as a potential anti-photoaging agent by inhibiting UVB-mediated MMPs expression via suppression of MAPK and AP-1 signaling. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  10. Matrix Metalloproteinase (MMP) 9 Transcription in Mouse Brain Induced by Fear Learning*

    PubMed Central

    Ganguly, Krishnendu; Rejmak, Emilia; Mikosz, Marta; Nikolaev, Evgeni; Knapska, Ewelina; Kaczmarek, Leszek

    2013-01-01

    Memory formation requires learning-based molecular and structural changes in neurons, whereas matrix metalloproteinase (MMP) 9 is involved in the synaptic plasticity by cleaving extracellular matrix proteins and, thus, is associated with learning processes in the mammalian brain. Because the mechanisms of MMP-9 transcription in the brain are poorly understood, this study aimed to elucidate regulation of MMP-9 gene expression in the mouse brain after fear learning. We show here that contextual fear conditioning markedly increases MMP-9 transcription, followed by enhanced enzymatic levels in the three major brain structures implicated in fear learning, i.e. the amygdala, hippocampus, and prefrontal cortex. To reveal the role of AP-1 transcription factor in MMP-9 gene expression, we have used reporter gene constructs with specifically mutated AP-1 gene promoter sites. The constructs were introduced into the medial prefrontal cortex of neonatal mouse pups by electroporation, and the regulation of MMP-9 transcription was studied after contextual fear conditioning in the adult animals. Specifically, −42/-50- and −478/-486-bp AP-1 binding motifs of the mouse MMP-9 promoter sequence have been found to play a major role in MMP-9 gene activation. Furthermore, increases in MMP-9 gene promoter binding by the AP-1 transcription factor proteins c-Fos and c-Jun have been demonstrated in all three brain structures under investigation. Hence, our results suggest that AP-1 acts as a positive regulator of MMP-9 transcription in the brain following fear learning. PMID:23720741

  11. Matrix metalloproteinase (MMP) 9 transcription in mouse brain induced by fear learning.

    PubMed

    Ganguly, Krishnendu; Rejmak, Emilia; Mikosz, Marta; Nikolaev, Evgeni; Knapska, Ewelina; Kaczmarek, Leszek

    2013-07-19

    Memory formation requires learning-based molecular and structural changes in neurons, whereas matrix metalloproteinase (MMP) 9 is involved in the synaptic plasticity by cleaving extracellular matrix proteins and, thus, is associated with learning processes in the mammalian brain. Because the mechanisms of MMP-9 transcription in the brain are poorly understood, this study aimed to elucidate regulation of MMP-9 gene expression in the mouse brain after fear learning. We show here that contextual fear conditioning markedly increases MMP-9 transcription, followed by enhanced enzymatic levels in the three major brain structures implicated in fear learning, i.e. the amygdala, hippocampus, and prefrontal cortex. To reveal the role of AP-1 transcription factor in MMP-9 gene expression, we have used reporter gene constructs with specifically mutated AP-1 gene promoter sites. The constructs were introduced into the medial prefrontal cortex of neonatal mouse pups by electroporation, and the regulation of MMP-9 transcription was studied after contextual fear conditioning in the adult animals. Specifically, -42/-50- and -478/-486-bp AP-1 binding motifs of the mouse MMP-9 promoter sequence have been found to play a major role in MMP-9 gene activation. Furthermore, increases in MMP-9 gene promoter binding by the AP-1 transcription factor proteins c-Fos and c-Jun have been demonstrated in all three brain structures under investigation. Hence, our results suggest that AP-1 acts as a positive regulator of MMP-9 transcription in the brain following fear learning.

  12. Gene expression and the biological phenotype of papillary thyroid carcinomas.

    PubMed

    Delys, L; Detours, V; Franc, B; Thomas, G; Bogdanova, T; Tronko, M; Libert, F; Dumont, J E; Maenhaut, C

    2007-12-13

    The purpose of this paper is to correlate the molecular phenotype of papillary thyroid carcinoma (PTC) to their biological pathology. We hybridized 26 PTC on microarrays and showed that nearly 44% of the transcriptome was regulated in these tumors. We then combined our data set with two published PTC microarray studies to produce a platform- and study-independent list of PTC-associated genes. We further confirmed the mRNA regulation of 15 genes from this list by quantitative reverse transcription-PCR. Analysis of this list with statistical tools led to several conclusions: (1) there is a change in cell population with an increased expression of genes involved in the immune response, reflecting lymphocyte infiltration in the tumor compared to the normal tissue. (2) The c-jun N-terminal kinase pathway is activated by overexpression of its components. (3) The activation of ERKK1/2 by genetic alterations is supplemented by activation of the epidermal growth factor but not of the insulin-like growth factor signaling pathway. (4) There is a downregulation of immediate early genes. (5) We observed an overexpression of many proteases in accordance with tumor remodeling, and suggested a probable role of S100 proteins and annexin A2 in this process. (6) Numerous overexpressed genes favor the hypothesis of a collective migration mode of tumor cells.

  13. Gene expression abnormalities in histologically normal breast epithelium from patients with luminal type of breast cancer.

    PubMed

    Zubor, Pavol; Hatok, Jozef; Moricova, Petra; Kajo, Karol; Kapustova, Ivana; Mendelova, Andrea; Racay, Peter; Danko, Jan

    2015-05-01

    The gene expression profile of breast cancer has been described as a great breakthrough on the way to comprehend differences in cancer origin, behavior and therapy. However, gene expression profile in histologically normal epithelium (HNEpi) which could harbor genetic abnormalities predisposing breast tissue to develop malignancy was minor scope for scientists in the past. Thus, we aimed to analyze gene expressions in HNEpi and breast cancer tissue (BCTis) in order to establish its value as potential diagnostic marker for cancer development. We evaluated a panel of disease-specific genes in luminal type (A/B) of breast cancer and tumor surrounding HNEpi by qRT-PCR Array in 32 microdissected samples. There was 20.2 and 2.4% deregulation rate in genes with at least 2-fold or 5-fold over-expression between luminal (A/B) type breast carcinomas and tumor surrounding HNEpi, respectively. The high-grade luminal carcinomas showed higher number of deregulated genes compared to low-grade cases (50.6 vs. 23.8% with at least 2-fold deregulation rate). The main overexpressed genes in HNEpi were KLK5, SCGB1D2, GSN, EGFR and NGFR. The significant differences in gene expression between BCTis and HNEpi samples were revealed for BAG1, C3, CCNA2, CD44, FGF1, FOSL1, ID2, IL6R, NGFB, NGFR, PAPPA, PLAU, SERPINB5, THBS1 and TP53 gene (p < 0.05) and BCL2L2, CTSB, ITGB4, JUN, KIT, KLF5, SCGB1D2, SCGB2A1, SERPINE1 (p < 0.01), and EGFR, GABRP, GSN, MAP2K7 and THBS2 (p < 0.001), and GSN, KLK5 (p < 0.0001). The ontological gene analyses revealed high deregulations in gene group directly associated with breast cancer prognosis and origin.

  14. Commonly dysregulated genes in murine APL cells

    PubMed Central

    Yuan, Wenlin; Payton, Jacqueline E.; Holt, Matthew S.; Link, Daniel C.; Watson, Mark A.; DiPersio, John F.; Ley, Timothy J.

    2007-01-01

    To identify genes that are commonly dysregulated in a murine model of acute promyelocytic leukemia (APL), we first defined gene expression patterns during normal murine myeloid development; serial gene expression profiling studies were performed with primary murine hematopoietic progenitors that were induced to undergo myeloid maturation in vitro with G-CSF. Many genes were reproducibly expressed in restricted developmental “windows,” suggesting a structured hierarchy of expression that is relevant for the induction of developmental fates and/or differentiated cell functions. We compared the normal myeloid developmental transcriptome with that of APL cells derived from mice expressing PML-RARα under control of the murine cathepsin G locus. While many promyelocyte-specific genes were highly expressed in all APL samples, 116 genes were reproducibly dysregulated in many independent APL samples, including Fos, Jun, Egr1, Tnf, and Vcam1. However, this set of commonly dysregulated genes was expressed normally in preleukemic, early myeloid cells from the same mouse model, suggesting that dysregulation occurs as a “downstream” event during disease progression. These studies suggest that the genetic events that lead to APL progression may converge on common pathways that are important for leukemia pathogenesis. PMID:17008535

  15. Roles of p38 and JNK protein kinase pathways activated by compound cantharidin capsules containing serum on proliferation inhibition and apoptosis of human gastric cancer cell line

    PubMed Central

    Sun, Yonghao; Zhang, Dejuan; Mao, Mao; Lu, Yangping; Jiao, Ning

    2017-01-01

    The aim of the present study was to investigate the inhibitory effect of compound cantharides capsules (CCCs) on the viability and apoptosis of human gastric cancer cell lines, BGC-823 and SGC-7901, and to detect its regulation of gene expression levels, as well as its inhibition mechanisms. Each cell line was grouped into a control group, CCC serum group, 5-fluorouracil (5-FU) group, combination therapy group (CCC serum + 5-FU) and serum control group. Growth curves were measured and flow cytometry was used to detect cell apoptosis and cell viability. The mRNA expression level of proliferation-related C-MYC and p53 genes were assayed by reverse transcription-quantitative polymerase chain reaction. Protein phosphorylation levels of proliferating cell nuclear antigen, p38 mitogen-activated protein kinase, extracellular signal-related kinase 1/2, c-Jun N-terminal kinase (JNK) and IκB were assayed by western blotting. The combined CCC serum and 5-FU group exhibited a higher inhibition rate in both cell lines and CCC serum therapy demonstrated a similar effect to 5-FU treatment, as demonstrated in the MTT and cell growth assay. Combined therapy significantly decreased the C-MYC mRNA expression levels and increased p53 mRNA expression levels (P<0.05). Combined therapy of 5-FU and CCC was more significant compared with CCC serum or 5-FU only (P<0.05). P38 and JNK-related protein phosphorylation are involved in apoptosis initiated by CCC combined 5-FU therapy. Combined therapy was able to significantly inhibit human gastric cancer cell growth (P<0.05), and advance cell apoptosis compared with CCC serum only. CCC serum resulted in downregulation of the c-Myc gene and upregulation of the p53 gene. p38 and JNK-related protein phosphorylation is involved in the inhibition of cell viability and apoptosis of human gastric cancer cell lines. PMID:28810654

  16. Roles of p38 and JNK protein kinase pathways activated by compound cantharidin capsules containing serum on proliferation inhibition and apoptosis of human gastric cancer cell line.

    PubMed

    Sun, Yonghao; Zhang, Dejuan; Mao, Mao; Lu, Yangping; Jiao, Ning

    2017-08-01

    The aim of the present study was to investigate the inhibitory effect of compound cantharides capsules (CCCs) on the viability and apoptosis of human gastric cancer cell lines, BGC-823 and SGC-7901, and to detect its regulation of gene expression levels, as well as its inhibition mechanisms. Each cell line was grouped into a control group, CCC serum group, 5-fluorouracil (5-FU) group, combination therapy group (CCC serum + 5-FU) and serum control group. Growth curves were measured and flow cytometry was used to detect cell apoptosis and cell viability. The mRNA expression level of proliferation-related C-MYC and p53 genes were assayed by reverse transcription-quantitative polymerase chain reaction. Protein phosphorylation levels of proliferating cell nuclear antigen, p38 mitogen-activated protein kinase, extracellular signal-related kinase 1/2, c-Jun N-terminal kinase (JNK) and IκB were assayed by western blotting. The combined CCC serum and 5-FU group exhibited a higher inhibition rate in both cell lines and CCC serum therapy demonstrated a similar effect to 5-FU treatment, as demonstrated in the MTT and cell growth assay. Combined therapy significantly decreased the C-MYC mRNA expression levels and increased p53 mRNA expression levels (P<0.05). Combined therapy of 5-FU and CCC was more significant compared with CCC serum or 5-FU only (P<0.05). P38 and JNK-related protein phosphorylation are involved in apoptosis initiated by CCC combined 5-FU therapy. Combined therapy was able to significantly inhibit human gastric cancer cell growth (P<0.05), and advance cell apoptosis compared with CCC serum only. CCC serum resulted in downregulation of the c-Myc gene and upregulation of the p53 gene. p38 and JNK-related protein phosphorylation is involved in the inhibition of cell viability and apoptosis of human gastric cancer cell lines.

  17. Lysophosphatidylcholine up-regulates human endothelial nitric oxide synthase gene transactivity by c-Jun N-terminal kinase signalling pathway

    PubMed Central

    Xing, Feiyue; Liu, Jing; Mo, Yongyan; Liu, Zhifeng; Qin, Qinghe; Wang, Jingzhen; Fan, Zhenhua; Long, Yutian; Liu, Na; Zhao, Kesen; Jiang, Yong

    2009-01-01

    Human endothelial nitric oxide synthase (eNOS) plays a pivotal role in maintaining blood pressure homeostasis and vascular integrity. It has recently been reported that mitogen-activated protein kinases (MAPKs) are intimately implicated in expression of eNOS. However detailed mechanism mediated by them remains to be clarified. In this study, eNOS gene transactivity in human umbilical vein endothelial cells was up-regulated by stimulation of lysophosphatidylcholine (LPC). The stimulation of LPC highly activated both extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK), with differences in the dynamic processes of activation between them. Unexpectedly, p38 MAPK could not be activated by the stimulation of LPC. The activation of JNK signalling pathway by overexpression of JNK or its upstream kinase active mutant up-regulated the transactivity of eNOS significantly, but the activation of p38 signalling pathway down-regulated it largely. The inhibition of either ERK1/2 or JNK signalling pathway by kinase-selective inhibitors could markedly block the induction of the transactivity by LPC. It was observed by electrophoretic mobility shift assay that LPC stimulated both SP1 and AP1 DNA binding activity to go up. Additionally using decoy oligonucleotides proved that SP1 was necessary for maintaining the basal or stimulated transactivity, whereas AP1 contributed mainly to the increase of the stimulated transactivity. These findings indicate that the up-regulation of the eNOS gene transactivity by LPC involves the enhancement of SP1 transcription factor by the activation of JNK and ERK1/2 signalling pathways and AP1 transcription factor by the activation of JNK signalling pathway. PMID:18624763

  18. A short pulse of mechanical force induces gene expression and growth in MC3T3-E1 osteoblasts via an ERK 1/2 pathway

    NASA Technical Reports Server (NTRS)

    Hatton, Jason P.; Pooran, Milad; Li, Chai-Fei; Luzzio, Chris; Hughes-Fulford, Millie

    2003-01-01

    Physiological mechanical loading is crucial for maintenance of bone integrity and architecture. We have calculated the strain caused by gravity stress on osteoblasts and found that 4-30g corresponds to physiological levels of 40-300 microstrain. Short-term gravity loading (15 minutes) induced a 15-fold increase in expression of growth-related immediate early gene c-fos, a 5-fold increase in egr-1, and a 3-fold increase in autocrine bFGF. The non-growth-related genes EP-1, TGF-beta, and 18s were unaffected by gravity loading. Short-term physiological loading induced extracellular signal-regulated kinase (ERK 1/2) phosphorylation in a dose-dependent manner with maximum phosphorylation saturating at mechanical loading levels of 12g (p < 0.001) with no effect on total ERK. The phosphorylation of focal adhesion kinase (FAK) was unaffected by mechanical force. g-Loading did not activate P38 MAPK or c-jun N-terminal kinase (JNK). Additionally, a gravity pulse resulted in the localization of phosphorylated ERK 1/2 to the nucleus; this did not occur in unloaded cells. The induction of c-fos was inhibited 74% by the MEK1/2 inhibitor U0126 (p < 0.001) but was not affected by MEK1 or p38 MAPK-specific inhibitors. The long-term consequence of a single 15-minute gravity pulse was a 64% increase in cell growth (p < 0.001). U0126 significantly inhibited gravity-induced growth by 50% (p < 0.001). These studies suggest that short periods of physiological mechanical stress induce immediate early gene expression and growth in MC3T3-E1 osteoblasts primarily through an ERK 1/2-mediated pathway.

  19. Inhibition of adrenergic human prostate smooth muscle contraction by the inhibitors of c-Jun N-terminal kinase, SP600125 and BI-78D3.

    PubMed

    Strittmatter, F; Walther, S; Gratzke, C; Göttinger, J; Beckmann, C; Roosen, A; Schlenker, B; Hedlund, P; Andersson, K E; Stief, C G; Hennenberg, M

    2012-07-01

    BACKGROUND AND PURPOSE α(1) -Adrenoceptor-induced contraction of prostate smooth muscle is mediated by calcium- and Rho kinase-dependent mechanisms. In addition, other mechanisms, such as activation of c-jun N-terminal kinase (JNK) may be involved. Here, we investigated whether JNK participates in α(1)-adrenoceptor-induced contraction of human prostate smooth muscle. EXPERIMENTAL APPROACH Prostate tissue was obtained from patients undergoing radical prostatectomy. Effects of the JNK inhibitors SP600125 (50 µM) and BI-78D3 (30 µM) on contractions induced by phenylephrine, noradrenaline and electric field stimulation (EFS) were studied in myographic measurements. JNK activation by noradrenaline (30 µM) and phenylephrine (10 µM), and the effects of JNK inhibitors of c-Jun phosphorylation were assessed by Western blot analyses with phospho-specific antibodies. Expression of JNK was studied by immunohistochemistry and fluorescence double staining. KEY RESULTS The JNK inhibitors SP600125 and BI-78D3 reduced phenylephrine- and noradrenaline-induced contractions of human prostate strips. In addition, SP600125 reduced EFS-induced contraction of prostate strips. Stimulation of prostate tissue with noradrenaline or phenylephrine in vitro resulted in activation of JNK. Incubation of prostate tissue with SP600125 or BI-78D3 reduced the phosphorylation state of c-Jun. Immunohistochemical staining demonstrated the expression of JNK in smooth muscle cells of human prostate tissue. Fluorescence staining showed that α(1A)-adrenoceptors and JNK are expressed in the same cells. CONCLUSIONS AND IMPLICATIONS Activation of JNK is involved in α(1)-adrenoceptor-induced prostate smooth muscle contraction. Models of α(1)-adrenoceptor-mediated prostate smooth muscle contraction should include this JNK-dependent mechanism. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  20. The Effect of Gravity Fields on Cellular Gene Expression

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, Millie

    1999-01-01

    Early theoretical analysis predicted that microgravity effects on the isolated cell would be minuscule at the subcellular level; however, these speculations have not proven true in the real world. Astronauts experience a significant bone and muscle loss in as little as 2 weeks of spaceflight and changes are seen at the cellular level soon after exposure to microgravity. Changes in biological systems may be primarily due to the lack of gravity and the resulting loss of mechanical stress on tissues and cells. Recent ground and flight studies examining the effects of gravity or mechanical stress on cells demonstrate marked changes in gene expression when relatively small changes in mechanical forces or gravity fields were made. Several immediate early genes (IEG) like c-fos and c-myc are induced by mechanical stimulation within minutes. In contrast, several investigators report that the absence of mechanical forces during space flight result in decreased sera response element (SRE) activity and attenuation of expression of IEGs such as c-fos, c-jun and cox-2 mRNAs. Clearly, these early changes in gene expression may have long term consequences on mechanically sensitive cells. In our early studies on STS-56, we reported four major changes in the osteoblast; 1) prostaglandin synthesis in flight, 2) changes in cellular morphology, 3) altered actin cytoskeleton and 4) reduced osteoblast growth after four days exposure to microgravity. Initially, it was believed that changes in fibronectin (FN) RNA, FN protein synthesis or subsequent FN matrix formation might account for the changes in cytoskeleton and/ or reduction of growth. However our recent studies on Biorack (STS-76, STS-81 and STS-84), using ground and in-flight 1-G controls, demonstrated that fibronectin synthesis and matrix formation were normal in microgravity. In addition, in our most recent Biorack paper, our laboratory has documented that relative protein synthesis and mRNA synthesis are not changed after 24 hours exposure to microgravity. We did, however, find significant changes in osteoblast gene expression of IEGs, c-fos and cox-2 in microgravity exposure as compared to ground and in-flight 1-G controls. Subsequent ground studies suggest that the molecular mechanism underlying these changes may involve prostaglandin c-AMP receptors (EPs) and/or subsequent alteration of intracellular signaling in the absence of gravity.

  1. Macrophages promote coal tar pitch extract-induced tumorigenesis of BEAS-2B cells and tumor metastasis in nude mice mediated by AP-1.

    PubMed

    Zhang, Peng; Jin, Yue-Fei; Zhang, Qiao; Wu, Yi-Ming; Wu, Wei-Dong; Yao, Wu; Wu, Yong-Jun; Li, Zhi-Tao; Zhao, Yong; Liu, Yu; Feng, Fei-Fei

    2014-01-01

    We sought to evaluate the role of tumor associated macrophages (TAMs) on the promotion of coal tar pitch extract (CTPE)-induced tumorigenesis of human bronchial epithelial cells (BEAS-2B) and tumor metastasis in nude mice, and related mechanisms. BEAS-2B cells were first treated with 2.4 mg/mL CTPE for 72 hours. After removal of CTPE, the cells were continuously cultured and passaged using trypsin-EDTA. THP-1 cells were used as macrophage-like cells. BEAS-2B cells under different conditions (n=6/ group) were injected into the back necks of nude mice, and alterations of tumor xenograft growth, indicative of tumorigenicity, and tumor metastasis were determined. Pathological changes (tumor nests and microvascular lesions) of HE-stained tumor tissues were also evaluated. The expression of AP-1(c-Jun) in xenografts and metastatic tumors was determined using immunohistochemistry. Tumor size and weight in nude mice transplanted with the mixture of CTPE-induced passage 30 BEAS-2B and THP-1 cells (2:1) were increased compared to those from the CTPE-treated BEAS-2B cells at passage 30 alone at different observation time points. Tumor metastasis to lymph nodes and liver was only detected after transplantation of a mixture the two kinds of cells. The numbers of tumor nests and microvascular lesions, and the expression levels of AP-1 (c-Jun) in tumors from the mixture of two kinds of cells were increased apparently in contrast to those in tumor from the CTPE-treated BEAS-2B cells of passage 30 alone. In addition, there was positive correlation between AP-1 (c-Jun) expression level and the number of microvascular lesions, or between AP-1 (c-Jun) expression level and tumor metastasis in these two groups. TAMs not only facilitate tumorigenesis transformation of CTPE-induced BEAS-2B cells, but also promote tumor growth, angiogenesis and metastasis in nude mice in vivo, which may be mediated by AP-1.

  2. Novel Array-Based Target Identification for Synergistic Sensitization of Breast Cancer to Herceptin

    DTIC Science & Technology

    2010-05-01

    cancer cell lines and expressed in human breast tumors. Oncotarget, (submitted). Abstract Farah Rahmatpanah, Zhenyu Jia, Tatsuya Azum, Eileen Adamson...Michael McClelland, Eileen Adamson, Dan Mercola. Egr1 regulates the coordinated expression of numerous EGF receptor target genes as identified by...ChIP on chip. Genome Biology 2008, 9:R166 [Epub ahead of print]. Jun Hayakawa, Shalu Mittal, Yipeng Wang, Kemal Korkmaz, Mashide Ohmichi, Eileen

  3. High Surplus Energy Status Blocks Protective Breast Cancer Gene | Center for Cancer Research

    Cancer.gov

    High caloric intake, weight gain, and obesity are associated with increased risk of postmenopausal breast cancer, but little is known about the molecular processes through which these metabolic factors contribute to cancer. Li-Jun Di, Ph.D., and Alfonso Fernandez, Ph.D., postdoctoral fellows working with Kevin Gardner, M.D., Ph.D., in CCR's Laboratory of Receptor Biology and Gene Expression, were part of a research team that recently discovered a link between cellular metabolism and BRCA1, a protein involved in DNA repair as well as the regulation of cell cycle and the expression of many genes. Their findings were published in a recent issue of Nature Structural and Molecular Biology.

  4. 8-Oxo-2'-deoxyguanosine ameliorates UVB-induced skin damage in hairless mice by scavenging reactive oxygen species and inhibiting MMP expression.

    PubMed

    Lee, Jin-Ku; Ko, Seong-Hee; Ye, Sang-Kyu; Chung, Myung-Hee

    2013-04-01

    Skin is uniquely vulnerable to damage caused by reactive oxygen species (ROS), which are most commonly produced in response to ultraviolet (UV) light. ROS generated at injury sites play an important role in modulating the inflammatory response. Besides inhibiting Rac, 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxo-dG) has also shown notable antioxidant action. We tested whether 8-oxo-dG could protect skin from UVB-induced damage by scavenging ROS. HaCaT cells and hairless mice were irradiated with 15 and 180 mJ/cm(2) narrow-spectrum UVB, respectively. ROS generation was detected through incubation with DCFDA and confocal microscopy. Western blot analyses and immunohistochemistry were performed to verify the activities of ERK, JNK, p38, ATF-2, and c-Jun, and the expression of matrix metalloproteinases (MMPs), in UVB-irradiated HaCaT cells and murine skin. Hydrogen peroxide production and protein carbonyl concentrations were measured in UVB-damaged mouse skin. MMP-1 and MMP-9 expression in UVB-irradiated HaCaT cells was measured by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). In UVB-irradiated HaCaT cells, 8-oxo-dG inhibited ROS production, subsequent activation of mitogen-activated protein kinase (MAPK), ATF-2, and c-Jun, and MMP expression. It also prevented UV-induced skin reactions in hairless mice, inhibiting the increase in protein carbonyl content, activation of MAPKs, ATF-2, and c-Jun, the increases in MMP-9 and -13 expression, and epidermal hyperplasia. 8-oxo-dG can be considered an endogenous antioxidant and its potent antioxidant activity might be a beneficial property that could be exploited to protect skin from ROS-associated photodamage. Copyright © 2013. Published by Elsevier Ireland Ltd.

  5. Inhibitory effect of indigo naturalis on tumor necrosis factor-α-induced vascular cell adhesion molecule-1 expression in human umbilical vein endothelial cells.

    PubMed

    Chang, Hsin-Ning; Pang, Jong-Hwei Su; Yang, Sien-Hung; Hung, Chi-Feng; Chiang, Chi-Hsin; Lin, Tung-Yi; Lin, Yin-Ku

    2010-09-14

    The use of indigo naturalis to treat psoriasis has proved effective in our previous clinical studies. The present study was designed to examine the anti-inflammatory effect of indigo naturalis in primary cultured human umbilical vein endothelial cells (HUVECs). Pretreatment of cells with indigo naturalis extract attenuated TNF-α-induced increase in Jurkat T cell adhesion to HUVECs as well as decreased the protein and messenger (m)RNA expression levels of vascular cell adhesion molecule-1 (VCAM-1) on HUVECs. Indigo naturalis extract also inhibited the protein expression of activator protein-1 (AP-1)/c-Jun, a critical transcription factor for the activation of VCAM-1 gene expression. Since the reduction of lymphocyte adhesion to vascular cells by indigo naturalis extract could subsequently reduce the inflammatory reactions caused by lymphocyte infiltration in the epidermal layer and help to improve psoriasis, this study provides a potential mechanism for the anti-inflammatory therapeutic effect of indigo naturalis extract in psoriasis.

  6. Dual Role of Cyanidin-3-glucoside on the Differentiation of Bone Cells.

    PubMed

    Park, K H; Gu, D R; So, H S; Kim, K J; Lee, S H

    2015-12-01

    Cyanidin-3-glucoside (C3G) is one of the major components of anthocyanin, a water-soluble phytochemical. Recent studies demonstrated the chemopreventive and chemotherapeutic activities of C3G in various conditions, including cancer, although the precise effects of C3G on osteoclast and osteoblast differentiation remain unclear. Here, we investigated the role of C3G in the differentiation of bone-associated cells and its underlying mechanism. C3G inhibited receptor activator of nuclear factor kappa-B ligand (RANKL)-mediated osteoclast differentiation and formation in a dose-dependent manner and downregulated the expression of osteoclast differentiation marker genes. Pretreatment with C3G considerably reduced the induction of extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 mitogen-activated kinases activation by RANKL in osteoclast precursor cells. Furthermore, C3G dramatically inhibited the expression of c-Fos and nuclear factor of activated T-cells, cytoplasmic 1, which are important transcription factors for osteoclast differentiation and activation. The formation of osteoclasts in coculture of bone marrow cells and calvaria-derived osteoblasts was also inhibited by C3G treatment, although the expression of macrophage colony-stimulating factor and RANKL (master factors for osteoclast differentiation and formation) and osteoprotegerin (a decoy receptor for RANKL) on osteoblasts was unaffected. The inhibitory effect of C3G on osteoclastogenesis is therefore targeted specifically to osteoclasts but not osteoblasts. Moreover, analysis of the expression levels of osteoblast differentiation marker genes and alizarin red staining showed that osteoblast differentiation and matrix formation increased after C3G treatment. Taken together, these results strongly suggest that C3G has a dual role in bone metabolism, as an effective inhibitor of osteoclast differentiation but also as an activator of osteoblast differentiation. Therefore, C3G may be used as a potent preventive or therapeutic agent for bone-related diseases, such as osteoporosis, rheumatoid arthritis, and periodontitis. © International & American Associations for Dental Research 2015.

  7. Fructo-oligosaccharide attenuates the production of pro-inflammatory cytokines and the activation of JNK/Jun pathway in the lungs of D-galactose-treated Balb/cJ mice.

    PubMed

    Yeh, Shu-Lan; Wu, Tzu-Chin; Chan, Shu-Ting; Hong, Meng-Jun; Chen, Hsiao-Ling

    2014-01-01

    This study determined the effects of long-term D-galactose (DG) injection on the lung pro-inflammatory and fibrotic status and whether fructo-oligosaccharide (FO) could attenuate such effects. Forty Balb/cJ mice (12 weeks of age) were divided into four groups: control (s.c. saline) (basal diet), DG (s.c. 1.2 g DG/kg body weight) (basal diet), DG + FO (FO diet, 2.5% w/w FO), and DG + E (vitamin E diet, α-tocopherol 0.2% w/w) serving as an antioxidant control group. These animals were killed after 49 day of treatments. Another group of naturally aging (NA) mice without any injection was killed at 64 weeks of age to be an aging control group. D-galactose treatment, generally similar to NA, increased the lung pro-inflammatory status, as shown in the IL-6 and IL-1β levels and the expression of phospho-Jun and phospho-JNK, and the fibrotic status as shown in the hydroxyproline level compared to the vehicle. FO diminished the DG-induced increases in the lung IL-1β level and expressions of total Jun, phospho-JNK, and attenuated DG effects on lung IL-6 and hydroxyproline, while α-tocopherol exerted anti-inflammatory effects on all parameters determined. FO, as well as α-tocopherol, modulated the large bowel ecology by increasing the fecal bifidobacteria and cecal butyrate levels compared with DG. D-galactose treatment mimicked the lung pro-inflammatory status as shown in the NA mice. FO attenuated the DG-induced lung pro-inflammatory status and down-regulated JNK/Jun pathway in the lung, which could be mediated by the prebiotic effects and metabolic products of FO in the large intestine.

  8. Bile acids-mediated overexpression of MUC4 via FAK-dependent c-Jun activation in pancreatic cancer.

    PubMed

    Joshi, Suhasini; Cruz, Eric; Rachagani, Satyanarayana; Guha, Sushovan; Brand, Randall E; Ponnusamy, Moorthy P; Kumar, Sushil; Batra, Surinder K

    2016-08-01

    The majority of pancreatic cancer (PC) patients are clinically presented with obstructive jaundice with elevated levels of circulatory bilirubin and alkaline phosphatases. In the current study, we examined the implications of bile acids (BA), an important component of bile, on the pathophysiology of PC and investigated their mechanistic association in tumor-promoting functions. Integration of results from PC patient samples and autochthonous mouse models showed an elevated levels of BA (p < 0.05) in serum samples compared to healthy controls. Similarly, an elevated BA levels was observed in pancreatic juice derived from PC patients (p < 0.05) than non-pancreatic non-healthy (NPNH) controls, further establishing the clinical association of BA with the pathogenesis of PC. The tumor-promoting functions of BA were established by observed transcriptional upregulation of oncogenic MUC4 expression. Luciferase reporter assay revealed distal MUC4 promoter as the primary responsive site to BA. In silico analysis recognized two c-Jun binding sites at MUC4 distal promoter, which was biochemically established using ChIP assay. Interestingly, BA treatment led to an increased transcription and activation of c-Jun in a FAK-dependent manner. Additionally, BA receptor, namely FXR, which is also upregulated at transcriptional level in PC patient samples, was demonstrated as an upstream molecule in BA-mediated FAK activation, plausibly by regulating Src activation. Altogether, these results demonstrate that elevated levels of BA increase the tumorigenic potential of PC cells by inducing FXR/FAK/c-Jun axis to upregulate MUC4 expression, which is overexpressed in pancreatic tumors and is known to be associated with progression and metastasis of PC. Published by Elsevier B.V.

  9. Zinc-finger protein 418 overexpression protects against cardiac hypertrophy and fibrosis

    PubMed Central

    Huang, Zirui; Zhu, Zhilin; Xu, Chunli; Teng, Lin; He, Ling; Gu, Chen; Yi, Cai

    2017-01-01

    Background This study aimed to investigated the effect and mechanism of zinc-finger protein 418 (ZNF418) on cardiac hypertrophy caused by aortic banding (AB), phenylephrine (PE) or angiotensin II (Ang II) in vivo and in vitro. Methods The expression of ZNF418 in hearts of patients with dilated cardiomyopathy (DCM) or hypertrophic cardiomyopathy (HCM) and AB-induced cardiac hypertrophy mice, as well as in Ang II- or PE-induced hypertrophic primary cardiomyocytes was detected by western blotting. Then, the expression of ZNF418 was up-regulated or down-regulated in AB-induced cardiac hypertrophy mice and Ang II -induced hypertrophic primary cardiomyocytes. The hypertrophic responses and fibrosis were evaluated by echocardiography and histological analysis. The mRNA levels of hypertrophy markers and fibrotic markers were detected by RT-qPCR. Furthermore, the phosphorylation and total levels of c-Jun were measured by western blotting. Results ZNF418 was markedly down-regulated in hearts of cardiac hypertrophy and hypertrophic primary cardiomyocytes. Down-regulated ZNF418 exacerbated the myocyte size and fibrosis, moreover increased the mRNA levels of ANP, BNP, β-MHC, MCIP1.4, collagen 1a, collagen III, MMP-2 and fibronection in hearts of AB-treated ZNF418 knockout mice or Ang II-treated cardiomyocytes with AdshZNF418. Conversely, these hypertrophic responses were reduced in the ZNF418 transgenic (TG) mice treated by AB and the AdZNF418-transfected primary cardiomyocytes treated by Ang II. Additionally, the deficiency of ZNF418 enhanced the phosphorylation level of c-jun, and overexpression of ZNF418 suppressed the phosphorylation level of c-jun in vivo and in vitro. Conclusion ZNF418 maybe attenuate hypertrophic responses by inhibiting the activity of c-jun/AP-1. PMID:29065170

  10. Regulatory Efficacy of Brown Seaweed Lessonia nigrescens Extract on the Gene Expression Profile and Intestinal Microflora in Type 2 Diabetic Mice.

    PubMed

    Zhao, Chao; Yang, Chengfeng; Chen, Mingjun; Lv, Xucong; Liu, Bin; Yi, Lunzhao; Cornara, Laura; Wei, Ming-Chi; Yang, Yu-Chiao; Tundis, Rosa; Xiao, Jianbo

    2018-02-01

    In this study, the antidiabetic activity of Lessonia nigrescens ethanolic extract (LNE) is investigated in streptozotocin (SZT)-induced type 2 diabetic mice fed with a high-sucrose/high-fat diet. Ultra high performance liquid chromatography coupled with photo-DAD and electospray ionization-mass spectrometry (ESI-MS) is employed to analyze the major compounds in LNE. The components of the intestinal microflora in type 2 diabetic mice are analyzed by high-throughput next-generation 16S rRNA gene sequencing. Fasting blood glucose levels in diabetic mice are significantly decreased after LNE administration. The histology reveals that LNE could protect the cellular architecture of liver and kidney. LNE treatment significantly increases Bacteroidetes and decreases Firmicutes populations in intestinal microflora. Specifically, It could selectively enrich the amounts of beneficial bacteria, Barnesiella, as well as reduce the abundances of Clostridium and Alistipes. The increased gene and protein expression levels of phosphatidylinositol 3-kinase (PI3K) in the liver are observed in LNE treatment groups, while the expressions of c-Jun N-terminal kinase (JNK) are significantly downregulated. The above findings suggest that LNE could be considered as a functional food for reducing blood glucose and regulating intestinal microflora. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A co-delivery nanosystem of chemotherapeutics and DNAzyme overcomes cancer drug resistance and metastasis

    NASA Astrophysics Data System (ADS)

    Sun, Shu-Pin; Liu, Ching-Ping; Huang, I.-Ping; Chu, Chia-Hui; Chung, Ming-Fang; Cheng, Shih-Hsun; Lin, Shu-Yi; Lo, Leu-Wei

    2017-12-01

    Multidrug resistance (MDR) constitutes a major problem in the management of cancer and cancer metastasized from primary-source tumor causes cancer-related deaths. Our new approach is the co-delivery of chemotherapy drugs with a transcription-factor-targeting genetic agent to simultaneously inhibit the growth and metastasis of cancer cells. C-Jun is a transcription factor that regulates multidrug resistance-associated protein 1 (MRP1) pump efflux transcription and tumor metastasis. In this work, we reported that mesoporous silica nanoparticles (MSNs) can be functionalized to co-deliver doxorubicin (Dox) and DNAzyme (Dz) to increase cancer cell killing in an additive fashion. The MSNs were sequentially conjugated with Dox into the MSNs’ nanochannels and Dz onto the MSNs’ outermost surface to target c-Jun as the Dox@MSN-Dz co-delivery system. The Dox-resistant PC-3 cells treated with Dox@MSN-Dz efficiently enhanced the intracellular Dox concentration due to the abrogation of Dox-induced MRP1 expression through the downregulation of c-Jun expression by Dz. Additionally, significant reductions in invasion and migration related to metastasis were also observed in cells treated with Dox@MSN-Dz. Therefore, our results contribute new insight to the treatment of MDR combined metastatic cancer cells, worthwhile for studying its potential for development in clinical translation.

  12. AML1/ETO trans-activates c-KIT expression through the long range interaction between promoter and intronic enhancer.

    PubMed

    Tian, Ying; Wang, Genjie; Hu, Qingzhu; Xiao, Xichun; Chen, Shuxia

    2018-04-01

    The AML1/ETO onco-fusion protein is crucial for the genesis of t(8;21) acute myeloid leukemia (AML) and is well documented as a transcriptional repressor through dominant-negative effect. However, little is known about the transactivation mechanism of AML1/ETO. Through large cohort of patient's expression level data analysis and a series of experimental validation, we report here that AML1/ETO transactivates c-KIT expression through directly binding to and mediating the long-range interaction between the promoter and intronic enhancer regions of c-KIT. Gene expression analyses verify that c-KIT expression is significantly high in t(8;21) AML. Further ChIP-seq analysis and motif scanning identify two regulatory regions located in the promoter and intronic enhancer region of c-KIT, respectively. Both regions are enriched by co-factors of AML1/ETO, such as AML1, CEBPe, c-Jun, and c-Fos. Further luciferase reporter assays show that AML1/ETO trans-activates c-KIT promoter activity through directly recognizing the AML1 motif and the co-existence of co-factors. The induction of c-KIT promoter activity is reinforced with the existence of intronic enhancer region. Furthermore, ChIP-3C-qPCR assays verify that AML1/ETO mediates the formation of DNA-looping between the c-KIT promoter and intronic enhancer region through the long-range interaction. Collectively, our data uncover a novel transcriptional activity mechanism of AML1/ETO and enrich our knowledge of the onco-fusion protein mediated transcription regulation. © 2017 Wiley Periodicals, Inc.

  13. Transforming growth factor-β decreases side population cells in hepatocellular carcinoma in vitro.

    PubMed

    Kim, Jong Bin; Lee, Seulki; Kim, Hye Ri; Park, Seo-Young; Lee, Minjong; Yoon, Jung-Hwan; Kim, Yoon Jun

    2018-06-01

    Hepatocellular carcinoma (HCC) can result from hepatitis B or C infection, fibrosis or cirrhosis. Transforming growth factor-β (TGF-β) is one of the main growth factors associated with fibrosis or cirrhosis progression in the liver, but its role is controversial in hepatocarcinogenesis. In the present study, the effect of TGF-β on the HCC Huh-7 and Huh-Bat cell lines was evaluated. To study the effect of TGF-β, Huh-7 and Huh-Bat cells were treated with TGF-β and a TGF-β receptor inhibitor (SB431542). Cell survival, cell cycle, numbers of side population (SP) cells and expression of the cancer stem cell marker cluster of differentiation (CD)133, epithelial-mesenchymal transition markers (E-cadherin, α-smooth muscle actin and vimentin) and TGF-β-regulated proteins [phospho-c-Jun N-terminal kinase (p-JNK), p-c-Jun and p-smad2] were investigated. TGF-β treatment resulted in decreased cell survival with a targeted effect on SP cells. Expression of CD133 and vimentin was upregulated by treatment with the TGF-β receptor antagonist SB431542, but not with TGF-β. By contrast, TGF-β induced accumulation of cells at G0/G1, and upregulated expression of p-JNK, p-c-Jun and p-smad2. However, these effects were blocked when cells were treated with TGF-β plus SB431542, indicating the specificity of the TGF-β effect. The present results indicated that TGF-β has anticancer effects mediated by survival inhibition of cancer stem cells, which may be developed as a novel therapy for HCC.

  14. Dysregulation of temperature and liver cytokine gene expression in immunodeficient wasted mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Libertin, C.R.; Ling-Indeck, L.; Weaver, P.

    1995-04-25

    Wasted mice bear the spontaneous autosomal recessive mutation wst/wst; this genotype is associated with weight loss beginning at 21 days of age, neurologic dysfunction, immunodeficiency at mucosal sites, and increased sensitivity to the killing effects of ionizing radiation. The pathology underlying the disease symptoms is unknown. Experiments reported here were designed to examine thermoregulation and liver expression of specific cytokines in wasted mice and in littermate and parental controls. Our experiments found that wasted mice begin to show a drop in body temperature at 21-23 days following birth, continuing until death at the age of 28 days. Concomitant with that,more » livers from wasted mice expressed increased amounts of mRNAs specific for cytokines IL,6 and IL-1, the acute phase reactant C-reactive protein, c-jun, and apoptosis-associated Rp-8 when compared to littermate and parental control animals. Levels of {beta}-transforming growth factor (TGF), c-fos, proliferating cell nuclear antigen (PCNA), and ornithine amino transferase (OAT) transcripts were the same in livers from wasted mice and controls. These results suggest a relationship between an acute phase reactant response in wasted mice and temperature dysregulation.« less

  15. Identification of a novel phosphorylation site in c-jun directly targeted in vitro by protein kinase D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waldron, Richard T.; Whitelegge, Julian P.; Faull, Kym F.

    Protein kinase D (PKD) phosphorylates the c-jun amino-terminal in vitro at site(s) distinct from JNK [C. Hurd, R.T. Waldron, E. Rozengurt, Protein kinase D complexes with c-jun N-terminal kinase via activation loop phosphorylation and phosphorylates the c-jun N-terminus, Oncogene 21 (2002) 2154-2160], but the sites have not been identified. Here, metabolic {sup 32}P-labeling of c-jun protein in COS-7 cells indicated that PKD phosphorylates c-jun in vivo at a site(s) between aa 43-93, a region containing important functional elements. On this basis, the PKD-mediated phosphorylation site(s) was further characterized in vitro using GST-c-jun fusion proteins. PKD did not incorporate phosphate intomore » Ser63 and Ser73, the JNK sites in GST-c-jun(1-89). Rather, PKD and JNK could sequentially phosphorylate distinct site(s) simultaneously. By mass spectrometry of tryptic phosphopeptides, Ser58 interposed between the JNK-binding portion of the delta domain and the adjacent TAD1 was identified as a prominent site phosphorylated in vitro by PKD. These data were further supported by kinase reactions using truncations or point-mutations of GST-c-jun. Together, these data suggest that PKD-mediated phosphorylation modulates c-jun at the level of its N-terminal functional domains.« less

  16. Microarray Analysis of Gene Expression Alteration in Human Middle Ear Epithelial Cells Induced by Asian Sand Dust.

    PubMed

    Go, Yoon Young; Park, Moo Kyun; Kwon, Jee Young; Seo, Young Rok; Chae, Sung-Won; Song, Jae-Jun

    2015-12-01

    The primary aim of this study is to evaluate the gene expression profile of Asian sand dust (ASD)-treated human middle ear epithelial cell (HMEEC) using microarray analysis. The HMEEC was treated with ASD (400 µg/mL) and total RNA was extracted for microarray analysis. Molecular pathways among differentially expressed genes were further analyzed. For selected genes, the changes in gene expression were confirmed by real-time polymerase chain reaction. A total of 1,274 genes were differentially expressed by ASD. Among them, 1,138 genes were 2 folds up-regulated, whereas 136 genes were 2 folds down-regulated. Up-regulated genes were mainly involved in cellular processes, including apoptosis, cell differentiation, and cell proliferation. Down-regulated genes affected cellular processes, including apoptosis, cell cycle, cell differentiation, and cell proliferation. The 10 genes including ADM, CCL5, EDN1, EGR1, FOS, GHRL, JUN, SOCS3, TNF, and TNFSF10 were identified as main modulators in up-regulated genes. A total of 11 genes including CSF3, DKK1, FOSL1, FST, TERT, MMP13, PTHLH, SPRY2, TGFBR2, THBS1, and TIMP1 acted as main components of pathway associated with 2-fold down regulated genes. We identified the differentially expressed genes in ASD-treated HMEEC. Our work indicates that air pollutant like ASD, may play an important role in the pathogenesis of otitis media.

  17. JIP1-Mediated JNK Activation Negatively Regulates Synaptic Plasticity and Spatial Memory.

    PubMed

    Morel, Caroline; Sherrin, Tessi; Kennedy, Norman J; Forest, Kelly H; Avcioglu Barutcu, Seda; Robles, Michael; Carpenter-Hyland, Ezekiel; Alfulaij, Naghum; Standen, Claire L; Nichols, Robert A; Benveniste, Morris; Davis, Roger J; Todorovic, Cedomir

    2018-04-11

    The c-Jun N-terminal kinase (JNK) signal transduction pathway is implicated in learning and memory. Here, we examined the role of JNK activation mediated by the JNK-interacting protein 1 (JIP1) scaffold protein. We compared male wild-type mice with a mouse model harboring a point mutation in the Jip1 gene that selectively blocks JIP1-mediated JNK activation. These male mutant mice exhibited increased NMDAR currents, increased NMDAR-mediated gene expression, and a lower threshold for induction of hippocampal long-term potentiation. The JIP1 mutant mice also displayed improved hippocampus-dependent spatial memory and enhanced associative fear conditioning. These results were confirmed using a second JIP1 mutant mouse model that suppresses JNK activity. Together, these observations establish that JIP1-mediated JNK activation contributes to the regulation of hippocampus-dependent, NMDAR-mediated synaptic plasticity and learning. SIGNIFICANCE STATEMENT The results of this study demonstrate that c-Jun N-terminal kinase (JNK) activation induced by the JNK-interacting protein 1 (JIP1) scaffold protein negatively regulates the threshold for induction of long-term synaptic plasticity through the NMDA-type glutamate receptor. This change in plasticity threshold influences learning. Indeed, mice with defects in JIP1-mediated JNK activation display enhanced memory in hippocampus-dependent tasks, such as contextual fear conditioning and Morris water maze, indicating that JIP1-JNK constrains spatial memory. This study identifies JIP1-mediated JNK activation as a novel molecular pathway that negatively regulates NMDAR-dependent synaptic plasticity and memory. Copyright © 2018 the authors 0270-6474/18/383708-21$15.00/0.

  18. Propensity for HBZ-SP1 isoform of HTLV-I to inhibit c-Jun activity correlates with sequestration of c-Jun into nuclear bodies rather than inhibition of its DNA-binding activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clerc, Isabelle, E-mail: isabelle.clerc@univ-montp1.f; CNRS, UM5236, CPBS, F-34965 Montpellier; Universite Montpellier 2, CPBS, F-34095 Montpellier

    2009-09-01

    HTLV-I bZIP factor (HBZ) contains a C-terminal zipper domain involved in its interaction with c-Jun. This interaction leads to a reduction of c-Jun DNA-binding activity and prevents the protein from activating transcription of AP-1-dependent promoters. However, it remained unclear whether the negative effect of HBZ-SP1 was due to its weak DNA-binding activity or to its capacity to target cellular factors to transcriptionally-inactive nuclear bodies. To answer this question, we produced a mutant in which specific residues present in the modulatory and DNA-binding domain of HBZ-SP1 were substituted for the corresponding c-Fos amino acids to improve the DNA-binding activity of themore » c-Jun/HBZ-SP1 heterodimer. The stability of the mutant, its interaction with c-Jun, DNA-binding activity of the resulting heterodimer, and its effect on the c-Jun activity were tested. In conclusion, we demonstrate that the repression of c-Jun activity in vivo is mainly due to the HBZ-SP1-mediated sequestration of c-Jun to the HBZ-NBs.« less

  19. ERalpha and AP-1 interact in vivo with a specific sequence of the F promoter of the human ERalpha gene in osteoblasts.

    PubMed

    Lambertini, Elisabetta; Tavanti, Elisa; Torreggiani, Elena; Penolazzi, Letizia; Gambari, Roberto; Piva, Roberta

    2008-07-01

    Estrogen-responsive genes often have an estrogen response element (ERE) positioned next to activator protein-1 (AP-1) binding sites. Considering that the interaction between ERE and AP-1 elements has been described for the modulation of bone-specific genes, we investigated the 17-beta-estradiol responsiveness and the role of these cis-elements present in the F promoter of the human estrogen receptor alpha (ERalpha) gene. The F promoter, containing the sequence analyzed here, is one of the multiple promoters of the human ERalpha gene and is the only active promoter in bone tissue. Through electrophoretic mobility shift (EMSA), chromatin immunoprecipitation (ChIP), and re-ChIP assays, we investigated the binding of ERalpha and four members of the AP-1 family (c-Jun, c-fos, Fra-2, and ATF2) to a region located approximately 800 bp upstream of the transcriptional start site of exon F of the human ERalpha gene in SaOS-2 osteoblast-like cells. Reporter gene assay experiments in combination with DNA binding assays demonstrated that F promoter activity is under the control of upstream cis-acting elements which are recognized by specific combinations of ERalpha, c-Jun, c-fos, and ATF2 homo- and heterodimers. Moreover, ChIP and re-ChIP experiments showed that these nuclear factors bind the F promoter in vivo with a simultaneous occupancy stimulated by 17-beta-estradiol. Taken together, our findings support a model in which ERalpha/AP-1 complexes modulate F promoter activity under conditions of 17-beta-estradiol stimulation. (c) 2008 Wiley-Liss, Inc.

  20. c-Jun N-terminal kinase 1 promotes transforming growth factor-β1-induced epithelial-to-mesenchymal transition via control of linker phosphorylation and transcriptional activity of Smad3.

    PubMed

    Velden, Jos L J van der; Alcorn, John F; Guala, Amy S; Badura, Elsbeth C H L; Janssen-Heininger, Yvonne M W

    2011-04-01

    Transforming growth factor (TGF)-β1 is a key mediator of lung remodeling and fibrosis. Epithelial cells are both a source of and can respond to TGF-β1 with epithelial-to-mesenchymal transition (EMT). We recently determined that TGF-β1-induced EMT in lung epithelial cells requires the presence of c-Jun N-terminal kinase (JNK) 1. Because TGF-β1 signals via Smad complexes, the goal of the present study was to determine the impact of JNK1 on phosphorylation of Smad3 and Smad3-dependent transcriptional responses in lung epithelial cells. Evaluation of JNK1-deficient lung epithelial cells demonstrated that TGF-β1-induced terminal phosphorylation of Smad3 was similar, whereas phosphorylation of mitogen-activated protein kinase sites in the linker regions of Smad3 was diminished, in JNK1-deficient cells compared with wild-type cells. In comparison to wild-type Smad3, expression of a mutant Smad3 in which linker mitogen-activated protein kinase sites were ablated caused a marked attenuation in JNK1 or TGF-β1-induced Smad-binding element transcriptional activity, and expression of plasminogen activator inhibitor-1, fibronectin-1, high-mobility group A2, CArG box-binding factor-A, and fibroblast-specific protein-1, genes critical in the process of EMT. JNK1 enhanced the interaction between Smad3 and Smad4, which depended on linker phosphorylation of Smad3. Conversely, Smad3 with phosphomimetic mutations in the linker domain further enhanced EMT-related genes and proteins, even in the absence of JNK1. Finally, we demonstrated a TGF-β1-induced interaction between Smad3 and JNK1. Collectively, these results demonstrate that Smad3 phosphorylation in the linker region and Smad transcriptional activity are directly or indirectly controlled by JNK1, and provide a putative mechanism whereby JNK1 promotes TGF-β1-induced EMT.

  1. Effect of a sustained reduction in plasma free fatty acid concentration on insulin signalling and inflammation in skeletal muscle from human subjects

    PubMed Central

    Liang, Hanyu; Tantiwong, Puntip; Sriwijitkamol, Apiradee; Shanmugasundaram, Karthigayan; Mohan, Sumathy; Espinoza, Sara; DeFronzo, Ralph A; Dubé, John J; Musi, Nicolas

    2013-01-01

    Free fatty acids (FFAs) have been implicated in the pathogenesis of insulin resistance. Reducing plasma FFA concentration in obese and type 2 diabetic (T2DM) subjects improves insulin sensitivity. However, the molecular mechanism by which FFA reduction improves insulin sensitivity in human subjects is not fully understood. In the present study, we tested the hypothesis that pharmacological FFA reduction enhances insulin action by reducing local (muscle) inflammation, leading to improved insulin signalling. Insulin-stimulated total glucose disposal (TGD), plasma FFA species, muscle insulin signalling, IκBα protein, c-Jun phosphorylation, inflammatory gene (toll-like receptor 4 and monocyte chemotactic protein 1) expression, and ceramide and diacylglycerol (DAG) content were measured in muscle from a group of obese and T2DM subjects before and after administration of the antilipolytic drug acipimox for 7 days, and the results were compared to lean individuals. We found that obese and T2DM subjects had elevated saturated and unsaturated FFAs in plasma, and acipimox reduced all FFA species. Acipimox-induced reductions in plasma FFAs improved TGD and insulin signalling in obese and T2DM subjects. Acipimox increased IκBα protein (an indication of decreased IκB kinase–nuclear factor κB signalling) in both obese and T2DM subjects, but did not affect c-Jun phosphorylation in any group. Acipimox also decreased inflammatory gene expression, although this reduction only occurred in T2DM subjects. Ceramide and DAG content did not change. To summarize, pharmacological FFA reduction improves insulin signalling in muscle from insulin-resistant subjects. This beneficial effect on insulin action could be related to a decrease in local inflammation. Notably, the improvements in insulin action were more pronounced in T2DM, indicating that these subjects are more susceptible to the toxic effect of FFAs. PMID:23529132

  2. Effect of a sustained reduction in plasma free fatty acid concentration on insulin signalling and inflammation in skeletal muscle from human subjects.

    PubMed

    Liang, Hanyu; Tantiwong, Puntip; Sriwijitkamol, Apiradee; Shanmugasundaram, Karthigayan; Mohan, Sumathy; Espinoza, Sara; Defronzo, Ralph A; Dubé, John J; Musi, Nicolas

    2013-06-01

    Free fatty acids (FFAs) have been implicated in the pathogenesis of insulin resistance. Reducing plasma FFA concentration in obese and type 2 diabetic (T2DM) subjects improves insulin sensitivity. However, the molecular mechanism by which FFA reduction improves insulin sensitivity in human subjects is not fully understood. In the present study, we tested the hypothesis that pharmacological FFA reduction enhances insulin action by reducing local (muscle) inflammation, leading to improved insulin signalling. Insulin-stimulated total glucose disposal (TGD), plasma FFA species, muscle insulin signalling, IBα protein, c-Jun phosphorylation, inflammatory gene (toll-like receptor 4 and monocyte chemotactic protein 1) expression, and ceramide and diacylglycerol (DAG) content were measured in muscle from a group of obese and T2DM subjects before and after administration of the antilipolytic drug acipimox for 7 days, and the results were compared to lean individuals. We found that obese and T2DM subjects had elevated saturated and unsaturated FFAs in plasma, and acipimox reduced all FFA species. Acipimox-induced reductions in plasma FFAs improved TGD and insulin signalling in obese and T2DM subjects. Acipimox increased IBα protein (an indication of decreased IB kinase-nuclear factor B signalling) in both obese and T2DM subjects, but did not affect c-Jun phosphorylation in any group. Acipimox also decreased inflammatory gene expression, although this reduction only occurred in T2DM subjects. Ceramide and DAG content did not change. To summarize, pharmacological FFA reduction improves insulin signalling in muscle from insulin-resistant subjects. This beneficial effect on insulin action could be related to a decrease in local inflammation. Notably, the improvements in insulin action were more pronounced in T2DM, indicating that these subjects are more susceptible to the toxic effect of FFAs.

  3. Gene expression in the liver of rainbow trout, Oncorhynchus mykiss, during the stress response

    USGS Publications Warehouse

    Momoda, T.S.; Schwindt, A.R.; Feist, G.W.; Gerwick, L.; Bayne, C.J.; Schreck, C.B.

    2007-01-01

    To better appreciate the mechanisms underlying the physiology of the stress response, an oligonucleotide microarray and real-time RT-PCR (QRT-PCR) were used to study gene expression in the livers of rainbow trout (Oncorhynchus mykiss). For increased confidence in the discovery of candidate genes responding to stress, we conducted two separate experiments using fish from different year classes. In both experiments, fish exposed to a 3 h stressor were compared to control (unstressed) fish. In the second experiment some additional fish were exposed to only 0.5 h of stress and others were sampled 21 h after experiencing a 3 h stressor. This 21 h post-stress treatment was a means to study gene expression during recovery from stress. The genes we report as differentially expressed are those that responded similarly in both experiments, suggesting that they are robust indicators of stress. Those genes are a major histocompatibility complex class 1 molecule (MHC1), JunB, glucose 6-phosphatase (G6Pase), and nuclear protein 1 (Nupr1). Interestingly, Nupr1 gene expression was still elevated 21 h after stress, which indicates that recovery was incomplete at that time.

  4. Pathogenic Cx31 is un/misfolded to cause skin abnormality via a Fos/JunB-mediated mechanism.

    PubMed

    Tang, Chengyuan; Chen, Xiang; Chi, Jingwei; Yang, Dawei; Liu, Shu; Liu, Mujun; Pan, Qian; Fan, Jianbing; Wang, Danling; Zhang, Zhuohua

    2015-11-01

    Mutations in connexin-31 (Cx31) are associated with multiple human diseases, including familial erythrokeratodermia variabilis (EKV). The pathogenic mechanism of EKV-associated Cx31 mutants remains largely elusive. Here, we show that EKV-pathogenic Cx31 mutants are un/misfolded and temperature sensitive. In Drosophila, expression of pathogenic Cx31, but not wild-type Cx31, causes depigmentation and degeneration of ommatidia that are rescued by expression of either dBip or dHsp70. Ectopic expression of Cx31 in mouse skin results in skin abnormalities resembling human EKV. The affected tissues show remarkable disrupted gap junction formation and significant upregulation of chaperones Bip and Hsp70 as well as AP-1 proteins c-Fos and JunB, in addition to molecular signatures of skin diseases. Consistently, c-Fos, JunB, Bip and Hsp70 are strikingly higher in keratinocytes of EKV patients than their matched control individuals. Furthermore, a druggable AP-1 inhibitory small molecule suppresses skin phenotype and pathological abnormalities of transgenic Cx31 mice. The study suggests that Cx31 mutant proteins are un/misfolded to cause EKV likely via an AP-1-mediated mechanism and identifies a small molecule with therapeutic potential of the disease. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Anti-Inflammatory Effect of Apigenin on LPS-Induced Pro-Inflammatory Mediators and AP-1 Factors in Human Lung Epithelial Cells.

    PubMed

    Patil, Rajeshwari H; Babu, R L; Naveen Kumar, M; Kiran Kumar, K M; Hegde, Shubha M; Nagesh, Rashmi; Ramesh, Govindarajan T; Sharma, S Chidananda

    2016-02-01

    Apigenin is one of the plant flavonoids present in fruits and vegetables, acting as an important nutraceutical component. It is recognized as a potential antioxidant, antimicrobial, and anti-inflammatory molecule. In the present study, the mechanism of anti-inflammatory action of apigenin on lipopolysaccharide (LPS)-induced pro-inflammatory cytokines and activator protein-1 (AP-1) factors in human lung A549 cells was investigated. The anti-inflammatory activity of apigenin on LPS-induced inflammation was determined by analyzing the expression of pro-inflammatory cytokines, nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and different AP-1 factors. Apigenin significantly inhibited the LPS-induced expression of iNOS, COX-2, expression of pro-inflammatory cytokines (IL-1β, IL-2, IL-6, IL-8, and TNF-α), and AP-1 proteins (c-Jun, c-Fos, and JunB) including nitric oxide production. Study confirms the anti-inflammatory effect of apigenin by inhibiting the expression of inflammatory mediators and AP-1 factors involved in the inflammation and its importance in the treatment of lung inflammatory diseases.

  6. The role of peroxisome proliferator-activated receptor-{beta}/{delta} in epidermal growth factor-induced HaCaT cell proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang Pengfei; Jiang Bimei; Yang Xinghua

    2008-10-15

    Epidermal growth factor (EGF) has been shown to be a potent mitogen for epidermal cells both in vitro and in vivo, thus contributing to the development of an organism. It has recently become clear that peroxisome proliferator-activated receptor-{beta}/{delta} (PPAR{beta}/{delta}) expression and activation is involved in the cell proliferation. However, little is known about the role of PPAR{beta}/{delta} in EGF-induced proliferation of HaCaT keratinocytes. In this study, HaCaT cells were cultured in the presence and absence of EGF and we identified that EGF induced an increase of PPAR{beta}/{delta} mRNA and protein level expression in time-dependent and dose-dependent manner, and AG1487, anmore » EGF receptor (EGFR) special inhibitor, caused attenuation of PPAR{beta}/{delta} protein expression. Electrophoretic mobility shift assay (EMSA) revealed that EGF significantly increased PPAR{beta}/{delta} binding activity in HaCaT keratinocytes. Antisense phosphorothioate oligonucleotides (asODNs) against PPAR{beta}/{delta} caused selectively inhibition of PPAR{beta}/{delta} protein content induced by EGF and significantly attenuated EGF-mediated cell proliferation. Treatment of the cells with L165041, a specific synthetic ligand for PPAR{beta}/{delta}, significantly enhanced EGF-mediated cell proliferation. Finally, c-Jun ablation inhibited PPAR{beta}/{delta} up-regulation induced by EGF, and chromatin immunoprecipitation (ChIP) showed that c-Jun bound to the PPAR{beta}/{delta} promoter and the binding increased in EGF-stimulated cells. These results demonstrate that EGF induces PPAR{beta}/{delta} expression in a c-Jun-dependent manner and PPAR{beta}/{delta} plays a vital role in EGF-stimulated proliferation of HaCaT cells.« less

  7. DISTINCT FUNCTIONS OF JNK AND C-JUN IN OXIDANT-INDUCED HEPATOCYTE DEATH

    PubMed Central

    Amir, Muhammad; Liu, Kun; Zhao, Enpeng; Czaja, Mark J.

    2013-01-01

    Overactivation of c-Jun N-terminal kinase (JNK)/c-Jun signaling is a central mechanism of hepatocyte injury and death including that from oxidative stress. However, the functions of JNK and c-Jun are still unclear, and this pathway also inhibits hepatocyte death. Previous studies of menadione-induced oxidant stress demonstrated that toxicity resulted from sustained JNK/c-Jun activation as death was blocked by the c-Jun dominant negative TAM67. To further delineate the function of JNK/c-Jun signaling in hepatocyte injury from oxidant stress, the effects of direct JNK inhibition on menadione-induced death were examined. In contrast to the inhibitory effect of TAM67, pharmacological JNK inhibition by SP600125 sensitized the rat hepatocyte cell line RALA255-10G to death from menadione. SP600125 similarly sensitized mouse primary hepatocytes to menadione toxicity. Death from SP600125/menadione was c-Jun dependent as it was blocked by TAM67, but independent of c-Jun phosphorylation. Death occurred by apoptosis and necrosis and activation of the mitochondrial death pathway. Short hairpin RNA knockdowns of total JNK or JNK2 sensitized to death from menadione, whereas a jnk1 knockdown was protective. Jnk2 null mouse primary hepatocytes were also sensitized to menadione death. JNK inhibition magnified decreases in cellular ATP content and β-oxidation induced by menadione. This effect mediated cell death as chemical inhibition of β-oxidation also sensitized cells to death from menadione, and supplementation with the β-oxidation substrate oleate blocked death. Components of the JNK/c-Jun signaling pathway have opposing functions in hepatocyte oxidant stress with JNK2 mediating resistance to cell death and c-Jun promoting death. PMID:22644775

  8. Toll-like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells.

    PubMed

    Paik, Yong-Han; Schwabe, Robert F; Bataller, Ramón; Russo, Maria P; Jobin, Christian; Brenner, David A

    2003-05-01

    Bacterial lipopolysaccharide (LPS) stimulates Kupffer cells and participates in the pathogenesis of alcohol-induced liver injury. However, it is unknown whether LPS directly affects hepatic stellate cells (HSCs), the main fibrogenic cell type in the injured liver. This study characterizes LPS-induced signal transduction and proinflammatory gene expression in activated human HSCs. Culture-activated HSCs and HSCs isolated from patients with hepatitis C virus-induced cirrhosis express LPS-associated signaling molecules, including CD14, toll-like receptor (TLR) 4, and MD2. Stimulation of culture-activated HSCs with LPS results in a rapid and marked activation of NF-kappaB, as assessed by in vitro kinase assays for IkappaB kinase (IKK), IkappaBalpha steady-state levels, p65 nuclear translocation, NF-kappaB-dependent luciferase reporter gene assays, and electrophoretic mobility shift assays. Lipid A induces NF-kappaB activation in a similar manner. Both LPS- and lipid A-induced NF-kappaB activation is blocked by preincubation with either anti-TLR4 blocking antibody (HTA125) or Polymyxin B. Lipid A induces NF-kappaB activation in HSCs from TLR4-sufficient (C3H/OuJ) mice but not from TLR4-deficient (C3H/HeJ) mice. LPS also activates c-Jun N-terminal kinase (JNK), as assessed by in vitro kinase assays. LPS up-regulates IL-8 and MCP-1 gene expression and secretion. LPS-induced IL-8 secretion is completely inhibited by the IkappaB super repressor (Ad5IkappaB) and partially inhibited by a specific JNK inhibitor, SP600125. LPS also up-regulates cell surface expression of ICAM-1 and VCAM-1. In conclusion, human activated HSCs utilize components of TLR4 signal transduction cascade to stimulate NF-kappaB and JNK and up-regulate chemokines and adhesion molecules. Thus, HSCs are a potential mediator of LPS-induced liver injury.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Tetsuya; Digumarthi, Hari; Aranbayeva, Zina

    The green tea polyphenol epigallocatechin-3-gallate (EGCG) regulates gene expression differentially in tumor and normal cells. In normal human primary epidermal keratinocytes (NHEK), one of the key mediators of EGCG action is p57/KIP2, a cyclin-dependent kinase (CDK) inhibitor. EGCG potently induces p57 in NHEK, but not in epithelial cancer cells. In humans, reduced expression of p57 often is associated with advanced tumors, and tumor cells with inactivated p57 undergo apoptosis when exposed to EGCG. The mechanism of p57 induction by EGCG is not well understood. Here, we show that in NHEK, EGCG-induces p57 via the p38 mitogen-activated protein kinase (MAPK) signalingmore » pathway. In p57-negative tumor cells, JNK signaling mediates EGCG-induced apoptosis, and exogenous expression of p57 suppresses EGCG-induced apoptosis via inhibition of c-Jun N-terminal kinase (JNK). We also found that restoration of p57 expression in tumor cells significantly reduced tumorigenicity in athymic mice. These results suggest that p57 expression may be an useful indicator for the clinical course of cancers, and could be potentially useful as a target for cancer therapies.« less

  10. Overexpression of carbonic anhydrase IX induces cell motility by activating matrix metalloproteinase-9 in human oral squamous cell carcinoma cells.

    PubMed

    Yang, Jia-Sin; Lin, Chiao-Wen; Hsieh, Yi-Hsien; Chien, Ming-Hsien; Chuang, Chun-Yi; Yang, Shun-Fa

    2017-10-10

    Oral cancer is a solid malignant tumor that is prone to occur following hypoxia. There are no clear studies showing a link between hypoxia and oral carcinogenesis. Carbonic anhydrase IX (CAIX), which is a hypoxia-induced transmembrane protein, is highly expressed in various types of human cancer. However, the effects of CAIX on the metastasis of human oral cancer cells and the underlying molecular mechanisms have not been clarified. In this study, we observed that CAIX overexpression increased the migratory and invasive abilities of SCC-9 and SAS cells. In addition, CAIX overexpression increased the mRNA and protein expression of matrix metalloproteinase-9 (MMP-9) and the phosphorylation of focal adhesion kinase (FAK), steroid receptor coactivator (Src), and extracellular signal-regulated kinase 1/2 signaling proteins. CAIX overexpression also increased the binding capacity of nuclear factor-κB (NF-κB), c-Jun, and c-Fos on the MMP-9 gene promoter. In addition, treatment with MMP-9 short hairpin RNA, an MMP inhibitor (GM6001), an FAK mutant, or an MEK inhibitor (U0126) inhibited CAIX-induced cell motility in SCC-9 cells. Moreover, data sets from The Cancer Genome Atlas demonstrated that CAIX expression was significantly associated with advanced progression and poor survival in oral cancer. In conclusion, it can be inferred that CAIX overexpression induces MMP-9 gene expression, which consequently induces the metastasis of oral cancer cells.

  11. Overexpression of carbonic anhydrase IX induces cell motility by activating matrix metalloproteinase-9 in human oral squamous cell carcinoma cells

    PubMed Central

    Yang, Jia-Sin; Lin, Chiao-Wen; Hsieh, Yi-Hsien; Chien, Ming-Hsien; Chuang, Chun-Yi; Yang, Shun-Fa

    2017-01-01

    Oral cancer is a solid malignant tumor that is prone to occur following hypoxia. There are no clear studies showing a link between hypoxia and oral carcinogenesis. Carbonic anhydrase IX (CAIX), which is a hypoxia-induced transmembrane protein, is highly expressed in various types of human cancer. However, the effects of CAIX on the metastasis of human oral cancer cells and the underlying molecular mechanisms have not been clarified. In this study, we observed that CAIX overexpression increased the migratory and invasive abilities of SCC-9 and SAS cells. In addition, CAIX overexpression increased the mRNA and protein expression of matrix metalloproteinase-9 (MMP-9) and the phosphorylation of focal adhesion kinase (FAK), steroid receptor coactivator (Src), and extracellular signal-regulated kinase 1/2 signaling proteins. CAIX overexpression also increased the binding capacity of nuclear factor-κB (NF-κB), c-Jun, and c-Fos on the MMP-9 gene promoter. In addition, treatment with MMP-9 short hairpin RNA, an MMP inhibitor (GM6001), an FAK mutant, or an MEK inhibitor (U0126) inhibited CAIX-induced cell motility in SCC-9 cells. Moreover, data sets from The Cancer Genome Atlas demonstrated that CAIX expression was significantly associated with advanced progression and poor survival in oral cancer. In conclusion, it can be inferred that CAIX overexpression induces MMP-9 gene expression, which consequently induces the metastasis of oral cancer cells. PMID:29137326

  12. Glycyrrhetinic acid inhibits ICAM-1 expression via blocking JNK and NF-κB pathways in TNF-α-activated endothelial cells

    PubMed Central

    Chang, Ying-ling; Chen, Chien-lin; Kuo, Chao-Lin; Chen, Bor-chyuan; You, Jyh-sheng

    2010-01-01

    Aim: To investigate the effects of glycyrrhetinic acid (GA), an active component extracted from the root of Glycyrrhizae glabra, on the expression of intercellular adhesion molecule-1 (ICAM-1) in tumor necrosis factor-α (TNF-α)-activated human umbilical vein endothelial cells (HUVEC). Methods: ICAM-1 mRNA and protein levels were detected using RT-PCR and cell enzyme-linked immunosorbent assays. The adherence of human monocytic THP-1 cells labeled with [3H]thymidine to HUVEC was determined by counting radioactivity with a scintillation counter. The activation of mitogen-activated protein kinases as well as the degradation of IκB and nuclear factor-κB (NF-κB) or phospho-c-Jun in the nucleus were detected by western blots. NF-κB binding activity was detected using electrophoretic mobility shift assay. Results: GA (50 and 100 μmol/L) significantly inhibits TNF-α-induced ICAM-1 mRNA and protein expressions, as well as THP-1 cell adhesiveness in HUVEC. GA selectively inhibited TNF-α-activated signal pathway of c-Jun N-terminal kinase (JNK), without affecting extracellular signal-regulated kinase 1/2 and p38. Furthermore, GA apparently inhibited IκB/NF-κB signaling system by preventing IκB degradation, NF-κB translocation, and NF-κB/DNA binding activity. Finally, pretreatment with GA or the inhibitors of NF-κB, JNK, and p38 reduced the ICAM-1 protein expression induced by TNF-α. Conclusion: GA inhibits TNF-α-stimulated ICAM-1 expression, leading to a decrease in adherent monocytes to HUVEC. This inhibition is attributed to GA interruption of both JNK/c-Jun and IκB/NF-κB signaling pathways, which decrease activator protein-1 (AP-1) and NF-κB mediated ICAM-1 expressions. The results suggest that GA may provide a beneficial effect in treating vascular diseases associated with inflammation, such as atherosclerosis. PMID:20418897

  13. Upregulation of RhoB via c-Jun N-terminal kinase signaling induces apoptosis of the human gastric carcinoma NUGC-3 cells treated with NSC12618.

    PubMed

    Kim, Bo-Kyung; Kim, Hwan Mook; Chung, Kyung-Sook; Kim, Dong-Myung; Park, Song-Kyu; Song, Alexander; Won, Kyoung-Jae; Lee, Kiho; Oh, Yu-Kyoung; Lee, Kyeong; Song, Kyung-Bin; Simon, Julian A; Han, Gyoonhee; Won, Misun

    2011-03-01

    RhoB expression is reduced in most invasive tumors, with loss of RhoB expression correlating significantly with tumor stage. Here, we demonstrate that upregulation of RhoB by the potent anticancer agent NSC126188 induces apoptosis of NUGC-3 human gastric carcinoma cells. The crucial role of RhoB in NSC126188-induced apoptosis is indicated by the rescue of NUGC-3 cells from apoptosis by knockdown of RhoB. In the presence of NSC126188, c-Jun N-terminal kinase (JNK) signaling was activated, and the JNK inhibitor SP600125 reduced RhoB expression and suppressed the apoptosis of NUGC-3 cells. Knockdowns of mitogen-activated protein kinase kinase (MKK) 4/7, JNK1/2 and c-Jun downregulated RhoB expression and rescued cells from apoptotic death in the presence of NSC126188. The JNK inhibitor SP600125 suppressed transcriptional activation of RhoB in the presence of NSC126188, as indicated by a reporter assay that used luciferase under the RhoB promoter. The ability of NSC126188 to increase luciferase activity through both the p300-binding site and the inverted CCAAT sequence (iCCAAT box) suggests that JNK signaling to upregulate RhoB expression is mediated through both the p300-binding site and the iCCAAT box. However, the JNK inhibitor SP600125 did not inhibit the upregulation of RhoB by farnesyltransferase inhibitor (FTI)-277. The p300-binding site did not affect activation of the RhoB promoter by FTI-277 in NUGC-3 cells, suggesting that the transcriptional activation of RhoB by NSC126188 occurs by a different mechanism than that reported for FTIs. Our data indicate that NSC126188 increases RhoB expression via JNK-mediated signaling through a p300-binding site and iCCAAT box resulting in apoptosis of NUGC-3 cells.

  14. CoCl2 , a mimic of hypoxia, enhances bone marrow mesenchymal stem cells migration and osteogenic differentiation via STAT3 signaling pathway.

    PubMed

    Yu, Xin; Wan, Qilong; Cheng, Gu; Cheng, Xin; Zhang, Jing; Pathak, Janak L; Li, Zubing

    2018-06-16

    Mesenchymal stem cells homing and migration is a crucial step during bone fracture healing. Hypoxic environment in fracture site induces bone marrow mesenchymal stem cells (BMSCs) migration, but its mechanism remains unclear. Our previous study and studies by other groups have reported the involvement of signal transducer and activator of transcription 3 (STAT3) pathway in cell migration. However, the role of STAT3 pathway in hypoxia-induced cell migration is still unknown. In this study, we investigated the role of STAT3 signaling in hypoxia-induced BMSCs migration and osteogenic differentiation. BMSCs isolated from C57BL/6 male mice were cultured in the presence of cobalt chloride (CoCl 2 ) to simulate intracellular hypoxia. Hypoxia enhanced BMSCs migration, and upregulated cell migration related gene expression i.e., metal-loproteinase (MMP) 7, MMP9 and C-X-C motif chemokine receptor 4. Hypoxia enhanced the phosphorylation of STAT3, and cell migration related proteins: c-jun n-terminal kinase (JNK), focal of adhesion kinase (FAK), extracellular regulated protein kinases and protein kinase B 1/2 (ERK1/2). Moreover, hypoxia enhanced expression of osteogenic differentiation marker. Inhibition of STAT3 suppressed the hy-poxia-induced BMSCs migration, cell migration related signaling molecules phos-phorylation, and osteogenic differentiation related gene expression. In conclusion, our result indicates that hypoxia-induced BMSCs migration and osteogenic differentiation is via STAT3 phosphorylation and involves the cooperative activity of the JNK, FAK and MMP9 signaling pathways. This article is protected by copyright. All rights reserved.

  15. The PNPLA3 I148M variant modulates the fibrogenic phenotype of human hepatic stellate cells.

    PubMed

    Bruschi, Francesca Virginia; Claudel, Thierry; Tardelli, Matteo; Caligiuri, Alessandra; Stulnig, Thomas M; Marra, Fabio; Trauner, Michael

    2017-06-01

    The genetic polymorphism I148M of patatin-like phospholipase domain-containing 3 (PNPLA3) is robustly associated with hepatic steatosis and its progression to steatohepatitis, fibrosis, and cancer. Hepatic stellate cells (HSCs) are key players in the development of liver fibrosis, but the role of PNPLA3 and its variant I148M in this process is poorly understood. Here we analyzed the expression of PNPLA3 during human HSC activation and thereby explored how a PNPLA3 variant impacts hepatic fibrogenesis. We show that expression of PNPLA3 gene and protein increases during the early phases of activation and remains elevated in fully activated HSCs (P < 0.01). Knockdown of PNPLA3 significantly decreases the profibrogenic protein alpha-smooth muscle actin (P < 0.05). Primary human I148M HSCs displayed significantly higher expression and release of proinflammatory cytokines, such as chemokine (C-C motif) ligand 5 (P < 0.01) and granulocyte-macrophage colony-stimulating factor (P < 0.001), thus contributing to migration of immune cells (P < 0.05). Primary I148M HSCs showed reduced retinol (P < 0.001) but higher lipid droplet content (P < 0.001). In line with this, LX-2 cells stably overexpressing I148M showed augmented proliferation and migration, lower retinol, and abolished retinoid X receptor/retinoid A receptor transcriptional activities but more lipid droplets. Knockdown of I148M PNPLA3 (P < 0.001) also reduces chemokine (C-C motif) ligand 5 and collagen1α1 expression (P < 0.05). Notably, I148M cells display reduced peroxisome proliferator-activated receptor gamma transcriptional activity, and this effect was attributed to increased c-Jun N-terminal kinase, thereby inhibiting peroxisome proliferator-activated receptor gamma through serine 84 phosphorylation and promoting activator protein 1 transcription. Conversely, the c-Jun N-terminal kinase inhibitor SP600125 and the peroxisome proliferator-activated receptor gamma agonist rosiglitazone decreased activator protein 1 promoter activity. These data indicate that PNPLA3 is required for HSC activation and that its genetic variant I148M potentiates the profibrogenic features of HSCs, providing a molecular mechanism for the higher risk of progression and severity of liver diseases conferred to patients carrying the I148M variant. (Hepatology 2017;65:1875-1890). © 2017 by the American Association for the Study of Liver Diseases.

  16. Effects of butyltin exposures on MAP kinase dependent transcription regulators in human natural killer cells

    PubMed Central

    Person, Rachel J.; Whalen, Margaret M.

    2010-01-01

    Natural Killer (NK) cells are a major immune defense mechanism against cancer development and viral infection. The butyltins (BTs), tributyltin (TBT) and dibutyltin (DBT) have been widely used in industrial and other applications and significantly contaminate the environment. Both TBT and DBT have been detected in human blood. These compounds inhibit the lytic and binding function of human NK cells and thus could increase the incidence of cancer and viral infections. Butyltin (BT)-induced loss of NK function is accompanied by activation of mitogen activated protein kinases (MAPKs) and decreases in expression of cell-surface and cytolytic proteins. MAPKs activate components of the transcription regulator AP-1 and activate the transcription regulator Elk-1. Based on the fact that BTs activate MAPKs and alter protein expression, the current study examined the effect of BT exposures on the levels and phosphorylation states of the components of AP-1 and the phosphorylation state of Elk-1. Exposure to 300 nM TBT for 10 min increased the phosphorylation of c-Jun in NK cells. 1 h exposures to 300 nM and 200 nM TBT increased the phosphorylation and overall level of c-Jun. During a 300 nM treatment with TBT for 1 h the binding activity of AP-1 was significantly decreased. There were no significant alterations of AP-1 components or of Elk-1 with DBT exposures. Thus, it appears that TBT-induced alterations on phosphorylation, total levels and binding activity of c-Jun might contribute to, but are not fully responsible for, TBT-induced alterations of NK protein expression. PMID:20370538

  17. Effects of butyltin exposures on MAP kinase-dependent transcription regulators in human natural killer cells.

    PubMed

    Person, Rachel J; Whalen, Margaret M

    2010-06-01

    Natural killer (NK) cells are a major immune defense mechanism against cancer development and viral infection. The butyltins (BTs), tributyltin (TBT) and dibutyltin (DBT), have been widely used in industrial and other applications and significantly contaminate the environment. Both TBT and DBT have been detected in human blood. These compounds inhibit the lytic and binding function of human NK cells and thus could increase the incidence of cancer and viral infections. Butyltin (BT)-induced loss of NK function is accompanied by activation of mitogen activated protein kinases (MAPKs) and decreases in expression of cell-surface and cytolytic proteins. MAPKs activate components of the transcription regulator AP-1 and activate the transcription regulator Elk-1. Based on the fact that BTs activate MAPKs and alter protein expression, the current study examined the effect of BT exposures on the levels and phosphorylation states of the components of AP-1 and the phosphorylation state of Elk-1. Exposure to 300 nM TBT for 10 min increased the phosphorylation of c-Jun in NK cells. One hour exposures to 300 nM and 200 nM TBT increased the phosphorylation and overall level of c-Jun. During a 300 nM treatment with TBT for 1 h the binding activity of AP-1 was significantly decreased. There were no significant alterations of AP-1 components or of Elk-1 with DBT exposures. Thus, it appears that TBT-induced alterations on phosphorylation, total levels, and binding activity of c-Jun might contribute to, but are not fully responsible for, TBT-induced alterations of NK protein expression.

  18. Acute transcriptional up-regulation specific to osteoblasts/osteoclasts in medaka fish immediately after exposure to microgravity

    PubMed Central

    Chatani, Masahiro; Morimoto, Hiroya; Takeyama, Kazuhiro; Mantoku, Akiko; Tanigawa, Naoki; Kubota, Koji; Suzuki, Hiromi; Uchida, Satoko; Tanigaki, Fumiaki; Shirakawa, Masaki; Gusev, Oleg; Sychev, Vladimir; Takano, Yoshiro; Itoh, Takehiko; Kudo, Akira

    2016-01-01

    Bone loss is a serious problem in spaceflight; however, the initial action of microgravity has not been identified. To examine this action, we performed live-imaging of animals during a space mission followed by transcriptome analysis using medaka transgenic lines expressing osteoblast and osteoclast-specific promoter-driven GFP and DsRed. In live-imaging for osteoblasts, the intensity of osterix- or osteocalcin-DsRed fluorescence in pharyngeal bones was significantly enhanced 1 day after launch; and this enhancement continued for 8 or 5 days. In osteoclasts, the signals of TRAP-GFP and MMP9-DsRed were highly increased at days 4 and 6 after launch in flight. HiSeq from pharyngeal bones of juvenile fish at day 2 after launch showed up-regulation of 2 osteoblast- and 3 osteoclast- related genes. Gene ontology analysis for the whole-body showed that transcription of genes in the category “nucleus” was significantly enhanced; particularly, transcription-regulators were more up-regulated at day 2 than at day 6. Lastly, we identified 5 genes, c-fos, jun-B-like, pai-1, ddit4 and tsc22d3, which were up-regulated commonly in the whole-body at days 2 and 6, and in the pharyngeal bone at day 2. Our results suggested that exposure to microgravity immediately induced dynamic alteration of gene expression levels in osteoblasts and osteoclasts. PMID:28004797

  19. Estrogens and Progesterone Promote Persistent CCND1 Gene Activation during G1 by Inducing Transcriptional Derepression via c-Jun/c-Fos/Estrogen Receptor (Progesterone Receptor) Complex Assembly to a Distal Regulatory Element and Recruitment of Cyclin D1 to Its Own Gene Promoter

    PubMed Central

    Cicatiello, Luigi; Addeo, Raffaele; Sasso, Annarita; Altucci, Lucia; Petrizzi, Valeria Belsito; Borgo, Raphaelle; Cancemi, Massimo; Caporali, Simona; Caristi, Silvana; Scafoglio, Claudio; Teti, Diana; Bresciani, Francesco; Perillo, Bruno; Weisz, Alessandro

    2004-01-01

    Transcriptional activation of the cyclin D1 gene (CCND1) plays a pivotal role in G1-phase progression, which is thereby controlled by multiple regulatory factors, including nuclear receptors (NRs). Appropriate CCND1 gene activity is essential for normal development and physiology of the mammary gland, where it is regulated by ovarian steroids through a mechanism(s) that is not fully elucidated. We report here that CCND1 promoter activation by estrogens in human breast cancer cells is mediated by recruitment of a c-Jun/c-Fos/estrogen receptor α complex to the tetradecanoyl phorbol acetate-responsive element of the gene, together with Oct-1 to a site immediately adjacent. This process coincides with the release from the same DNA region of a transcriptional repressor complex including Yin-Yang 1 (YY1) and histone deacetylase 1 and is sufficient to induce the assembly of the basal transcription machinery on the promoter and to lead to initial cyclin D1 accumulation in the cell. Later on in estrogen stimulation, the cyclin D1/Cdk4 holoenzyme associates with the CCND1 promoter, where E2F and pRb can also be found, contributing to the long-lasting gene enhancement required to drive G1-phase completion. Interestingly, progesterone triggers similar regulatory events through its own NRs, suggesting that the gene regulation cascade described here represents a crossroad for the transcriptional control of G1-phase progression by different classes of NRs. PMID:15282324

  20. Insulin stimulates the expression of the SHARP-1 gene via multiple signaling pathways.

    PubMed

    Takagi, K; Asano, K; Haneishi, A; Ono, M; Komatsu, Y; Yamamoto, T; Tanaka, T; Ueno, H; Ogawa, W; Tomita, K; Noguchi, T; Yamada, K

    2014-06-01

    The rat enhancer of split- and hairy-related protein-1 (SHARP-1) is a basic helix-loop-helix transcription factor. An issue of whether SHARP-1 is an insulin-inducible transcription factor was examined. Insulin rapidly increased the level of SHARP-1 mRNA both in vivo and in vitro. Then, signaling pathways involved with the increase of SHARP-1 mRNA by insulin were determined in H4IIE rat hepatoma cells. Pretreatments with LY294002, wortmannin, and staurosporine completely blocked the induction effect, suggesting the involvement of both phosphoinositide 3-kinase (PI 3-K) and protein kinase C (PKC) pathways. In fact, overexpression of a dominant negative form of atypical protein kinase C lambda (aPKCλ) significantly decreased the induction of the SHARP-1 mRNA. In addition, inhibitors for the small GTPase Rac or Jun N-terminal kinase (JNK) also blocked the induction of SHARP-1 mRNA by insulin. Overexpression of a dominant negative form of Rac1 prevented the activation by insulin. Furthermore, actinomycin D and cycloheximide completely blocked the induction of SHARP-1 mRNA by insulin. Finally, when a SHARP-1 expression plasmid was transiently transfected with various reporter plasmids into H4IIE cells, the promoter activity of PEPCK reporter plasmid was specifically decreased. Thus, we conclude that insulin induces the SHARP-1 gene expression at the transcription level via a both PI 3-K/aPKCλ/JNK- and a PI 3-K/Rac/JNK-signaling pathway; protein synthesis is required for this induction; and that SHARP-1 is a potential repressor of the PEPCK gene expression. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Thymosin beta 4 up-regulates miR-200a expression and induces differentiation and survival of rat brain progenitor cells.

    PubMed

    Santra, Manoranjan; Chopp, Michael; Santra, Sutapa; Nallani, Ankita; Vyas, Shivam; Zhang, Zheng Gang; Morris, Daniel C

    2016-01-01

    Thymosin beta 4 (Tβ4), a secreted 43 amino acid peptide, promotes oligodendrogenesis, and improves neurological outcome in rat models of neurologic injury. We demonstrated that exogenous Tβ4 treatment up-regulated the expression of the miR-200a in vitro in rat brain progenitor cells and in vivo in the peri-infarct area of rats subjected to middle cerebral artery occlusion (MCAO). The up-regulation of miR-200a down-regulated the expression of the following targets in vitro and in vivo models: (i) growth factor receptor-bound protein 2 (Grb2), an adaptor protein involved in epidermal growth factor receptor (EGFR)/Grb2/Ras/MEK/ERK1/c-Jun signaling pathway, which negatively regulates the expression of myelin basic protein (MBP), a marker of mature oligodendrocyte; (ii) ERRFI-1/Mig-6, an endogenous potent kinase inhibitor of EGFR, which resulted in activation/phosphorylation of EGFR; (iii) friend of GATA 2, and phosphatase and tensin homolog deleted in chromosome 10 (PTEN), which are potent inhibitors of the phosphatidylinositol-3-kinase (PI3K)/AKT signaling pathway, and resulted in marked activation of AKT; and (iv) transcription factor, p53, which induces pro-apoptotic genes, and possibly reduced apoptosis of the progenitor cells subjected to oxygen glucose deprivation (OGD). Anti-miR-200a transfection reversed all the effects of Tβ4 treatment in vitro. Thus, Tβ4 up-regulated MBP synthesis, and inhibited OGD-induced apoptosis in a novel miR-200a dependent EGFR signaling pathway. Our findings of miR-200a-mediated protection of progenitor cells may provide a new therapeutic importance for the treatment of neurologic injury. Tβ4-induced micro-RNA-200a (miR-200a) regulates EGFR signaling pathways for MBP synthesis and apoptosis: up-regulation of miR-200a after Tβ4 treatment, increases MBP synthesis after targeting Grb2 and thereby inactivating c-Jun from inhibition of MBP synthesis; and also inhibits OGD-mediated apoptosis after targeting EGFR inhibitor (Mig-6), PI3K inhibitors (FOG2 and Pten) and an inducer (p53) of pro-apoptotic genes, for AKT activation and down-regulation of p53. These findings may contribute the therapeutic benefits for stroke and other neuronal diseases associated with demyelination disorders. © 2015 International Society for Neurochemistry.

  2. Regulation of MMP-3 expression and secretion by the chemokine eotaxin-1 in human chondrocytes.

    PubMed

    Chao, Pin-Zhir; Hsieh, Ming-Shium; Cheng, Chao-Wen; Lin, Yung-Feng; Chen, Chien-Ho

    2011-11-25

    Osteoarthritis (OA) is characterized by the degradation of articular cartilage, marked by the breakdown of matrix proteins. Studies demonstrated the involvement of chemokines in this process, and some may potentially serve as diagnostic markers and therapeutic targets; however, the underlying signal transductions are not well understood. We investigated the effects of the CC chemokine eotaxin-1 (CCL11) on the matrix metalloproteinase (MMP) expression and secretion in the human chondrocyte cell line SW1353 and primary chondrocytes. Eotaxin-1 significantly induced MMP-3 mRNA expression in a dose-dependent manner. Inhibitors of extracellular signal-regulated kinase (ERK) and p38 kinase were able to repress eotaxin-1-induced MMP-3 expression. On the contrary, Rp-adenosine-3',5'-cyclic monophosphorothioate (Rp-cAMPs), a competitive cAMP antagonist for cAMP receptors, and H-89, a protein kinase A (PKA) inhibitor, markedly enhanced eotaxin-1-induced MMP-3 expression. These results suggest that MMP-3 expression is specifically mediated by the G protein-coupled eotaxin-1 receptor activities. Interestingly, little amount of MMP-3 protein was detected in the cell lysates of eotaxin-1-treated SW1353 cells, and most of MMP-3 protein was in the culture media. Furthermore we found that the eotaxin-1-dependent MMP-3 protein secretion was regulated by phospholipase C (PLC)-protein kinase C (PKC) cascade and c-Jun N-terminal kinase (JNK)/mitogen-activated protein (MAP) kinase pathways. These data indicate a specific regulation of MMP-3 secretion also by eotaxin-1 receptor activities. Eotaxin-1 not only induces MMP-3 gene expression but also promotes MMP-3 protein secretion through G protein-coupled eotaxin-1 receptor activities. Chemokines, such as eotaxin-1, could be a potential candidate in the diagnosis and treatment of arthritis.

  3. Regulation of Schwann Cell Differentiation and Proliferation by the Pax-3 Transcription Factor

    PubMed Central

    Moate, Roy M.; Jessen, Kristjan R.; Mirsky, Rhona; Parkinson, David B.

    2017-01-01

    Pax-3 is a paired domain transcription factor that plays many roles during vertebrate development. In the Schwann cell lineage, Pax-3 is expressed at an early stage in Schwann cells precursors of the embryonic nerve, is maintained in the nonmyelinating cells of the adult nerve, and is upregulated in Schwann cells after peripheral nerve injury. Consistent with this expression pattern, Pax-3 has previously been shown to play a role in repressing the expression of the myelin basic protein gene in Schwann cells. We have studied the role of Pax-3 in Schwann cells and have found that it controls not only the regulation of cell differentiation but also the survival and proliferation of Schwann cells. Pax-3 expression blocks both the induction of Oct-6 and Krox-20 (K20) by cyclic AMP and completely inhibits the ability of K20, the physiological regulator of myelination in the peripheral nervous system, to induce myelin gene expression in Schwann cells. In contrast to other inhibitors of myelination, we find that Pax-3 represses myelin gene expression in a c-Jun-independent manner. In addition to this, we find that Pax-3 expression alone is sufficient to inhibit the induction of apoptosis by TGFβ1 in Schwann cells. Expression of Pax-3 is also sufficient to induce the proliferation of Schwann cells in the absence of added growth factors and to reverse K20-induced exit from the cell cycle. These findings indicate new roles for the Pax-3 transcription factor in controlling the differentiation and proliferation of Schwann cells during development and after peripheral nerve injury. PMID:22532290

  4. 20(S)-protopanaxadiol (PPD) alleviates scopolamine-induced memory impairment via regulation of cholinergic and antioxidant systems, and expression of Egr-1, c-Fos and c-Jun in mice.

    PubMed

    Lu, Cong; Dong, Liming; Lv, Jingwei; Wang, Yan; Fan, Bei; Wang, Fengzhong; Liu, Xinmin

    2018-01-05

    20(S)-protopanaxadiol (PPD) possesses various biological properties, including anti-inflammatory, antitumor and anti-fatigue properties. Recent studies found that PPD functioned as a neurotrophic agent to ameliorate the sensory deficit caused by glutamate-induced excitotoxicity through its antioxidant effects and exhibited strong antidepressant-like effects in vivo. The objective of the present study was first to investigate the effect of PPD in scopolamine (SCOP)-induced memory deficit in mice and the potential mechanisms involved. In this study, mice were pretreated with PPD (20 and 40 μmol/kg) and donepezil (1.6 mg/kg) intraperitoneally (i.p) for 14 days. Then, open field test was used to assess the effect of PPD on the locomotor activity and mice were daily injected with SCOP (0.75 mg/kg) to induce cognitive deficits and then subjected to behavioral tests by object location recognition (OLR) experiment and Morris water maze (MWM) task. The cholinergic system function, oxidative stress biomarkers and protein expression of Egr-1, c-Fos, and c-Jun in mouse hippocampus were examined. PPD was found to significantly improve the performance of amnesia mice in OLR and MWM tests. PPD regulated cholinergic function by inhibiting SCOP-induced elevation of acetylcholinesterase (AChE) activity, decline of choline acetyltransferase (ChAT) activity and decrease of acetylcholine (Ach) level. PPD suppressed oxidative stress by increasing activities of antioxidant enzymes such as superoxide dismutase (SOD) and lowering maleic diadehyde (MDA) level. Additionally, PPD significantly elevated the expression of Egr-1, c-Fos, and c-Jun in hippocampus at protein level. Taken together, all these results suggested that 20(S)-protopanaxadiol (PPD) may be a candidate compound for the prevention against memory loss in some neurodegenerative diseases such as Alzheimer's disease (AD). Copyright © 2017. Published by Elsevier B.V.

  5. Crosstalk between Wnt Signaling and RNA Processing in Colorectal Cancer.

    PubMed

    Bordonaro, Michael

    2013-01-01

    RNA processing involves a variety of processes affecting gene expression, including the removal of introns through RNA splicing, as well as 3' end processing (cleavage and polyadenylation). Alternative RNA processing is fundamentally important for gene regulation, and aberrant processing is associated with the initiation and progression of cancer. Deregulated Wnt signaling, which is the initiating event in the development of most cases of human colorectal cancer (CRC), has been linked to modified RNA processing, which may contribute to Wnt-mediated colonic carcinogenesis. Crosstalk between Wnt signaling and alternative RNA splicing with relevance to CRC includes effects on the expression of Rac1b, an alternatively spliced gene associated with tumorigenesis, which exhibits alternative RNA splicing that is influenced by Wnt activity. In addition, Tcf4, a crucial component of Wnt signaling, also exhibits alternative splicing, which is likely involved in colonic tumorigenesis. Modulation of 3' end formation, including of the Wnt target gene COX-2, also can influence the neoplastic process, with implications for CRC. While many human genes are dependent on introns and splicing for normal levels of gene expression, naturally intronless genes exist with a unique metabolism that allows for intron-independent gene expression. Effects of Wnt activity on the RNA metabolism of the intronless Wnt-target gene c-jun is a likely contributor to cancer development. Further, butyrate, a breakdown product of dietary fiber and a histone deacetylase inhibitor, upregulates Wnt activity in CRC cells, and also modulates RNA processing; therefore, the interplay between Wnt activity, the modulation of this activity by butyrate, and differential RNA metabolism in colonic cells can significantly influence tumorigenesis. Determining the role played by altered RNA processing in Wnt-mediated neoplasia may lead to novel interventions aimed at restoring normal RNA metabolism for therapeutic benefit. Therefore, this minireview presents a brief overview of several aspects of RNA processing of relevance to cancer, which potentially influence, or are influenced by, Wnt signaling activity.

  6. Reduced hepatic injury in Toll-like receptor 4-deficient mice following D-galactosamine/lipopolysaccharide-induced fulminant hepatic failure.

    PubMed

    Ben Ari, Ziv; Avlas, Orna; Pappo, Orit; Zilbermints, Veacheslav; Cheporko, Yelena; Bachmetov, Larissa; Zemel, Romy; Shainberg, Asher; Sharon, Eran; Grief, Franklin; Hochhauser, Edith

    2012-01-01

    Liver transplantation is the only therapy of proven benefit in fulminant hepatic failure (FHF). Lipopolysaccharide (LPS), D-galactosamine (GalN)-induced FHF is a well established model of liver injury in mice. Toll-Like Receptor 4 (TLR4) has been identified as a receptor for LPS. The aim of this study was to investigate the role of TLR4 in FHF induced by D-GalN/LPS administration in mice. Wild type (WT) and TLR4 deficient (TLR4ko) mice were studied in vivo in a fulminant model induced by GalN/LPS. Hepatic TLR4 expression, serum liver enzymes, hepatic and serum TNF-α and interleukin-1β levels were determined. Apoptotic cells were identified by immunohistochemistry for caspase-3. Nuclear factor-kappaβ (NF-κ β) and phosphorylated c-Jun hepatic expression were studied using Western blot analysis. All WT mice died within 24 hours after administration of GalN/LPS while all TLR4ko mice survived. Serum liver enzymes, interleukin-1β, TNF-α level, TLR4 mRNA expression, hepatic injury and hepatocyte apoptosis all significantly decreased in TLR4ko mice compared with WT mice. A significant decrease in hepatic c-Jun and IκB signaling pathway was noted in TLR4ko mice compared with WT mice. In conclusion, following induction of FHF, the inflammatory response and the liver injury in TLR4ko mice was significantly attenuated through decreased hepatic c-Jun and NF-κB expression and thus decreased TNF-α level. Down-regulation of TLR4 expression plays a pivotal role in GalN/LPS induced FHF. These findings might have important implications for the use of the anti TLR4 protein signaling as a potential target for therapeutic intervention in FHF. Copyright © 2012 S. Karger AG, Basel.

  7. Common and specific signatures of gene expression and protein-protein interactions in autoimmune diseases.

    PubMed

    Tuller, T; Atar, S; Ruppin, E; Gurevich, M; Achiron, A

    2013-03-01

    The aim of this study is to understand intracellular regulatory mechanisms in peripheral blood mononuclear cells (PBMCs), which are either common to many autoimmune diseases or specific to some of them. We incorporated large-scale data such as protein-protein interactions, gene expression and demographical information of hundreds of patients and healthy subjects, related to six autoimmune diseases with available large-scale gene expression measurements: multiple sclerosis (MS), systemic lupus erythematosus (SLE), juvenile rheumatoid arthritis (JRA), Crohn's disease (CD), ulcerative colitis (UC) and type 1 diabetes (T1D). These data were analyzed concurrently by statistical and systems biology approaches tailored for this purpose. We found that chemokines such as CXCL1-3, 5, 6 and the interleukin (IL) IL8 tend to be differentially expressed in PBMCs of patients with the analyzed autoimmune diseases. In addition, the anti-apoptotic gene BCL3, interferon-γ (IFNG), and the vitamin D receptor (VDR) gene physically interact with significantly many genes that tend to be differentially expressed in PBMCs of patients with the analyzed autoimmune diseases. In general, similar cellular processes tend to be differentially expressed in PBMC in the analyzed autoimmune diseases. Specifically, the cellular processes related to cell proliferation (for example, epidermal growth factor, platelet-derived growth factor, nuclear factor-κB, Wnt/β-catenin signaling, stress-activated protein kinase c-Jun NH2-terminal kinase), inflammatory response (for example, interleukins IL2 and IL6, the cytokine granulocyte-macrophage colony-stimulating factor and the B-cell receptor), general signaling cascades (for example, mitogen-activated protein kinase, extracellular signal-regulated kinase, p38 and TRK) and apoptosis are activated in most of the analyzed autoimmune diseases. However, our results suggest that in each of the analyzed diseases, apoptosis and chemotaxis are activated via different subsignaling pathways. Analyses of the expression levels of dozens of genes and the protein-protein interactions among them demonstrated that CD and UC have relatively similar gene expression signatures, whereas the gene expression signatures of T1D and JRA relatively differ from the signatures of the other autoimmune diseases. These diseases are the only ones activated via the Fcɛ pathway. The relevant genes and pathways reported in this study are discussed at length, and may be helpful in the diagnoses and understanding of autoimmunity and/or specific autoimmune diseases.

  8. Procyanidins from evening primrose (Oenothera paradoxa) defatted seeds inhibit invasiveness of breast cancer cells and modulate the expression of selected genes involved in angiogenesis, metastasis, and apoptosis.

    PubMed

    Lewandowska, Urszula; Szewczyk, Karolina; Owczarek, Katarzyna; Hrabec, Zbigniew; Podsędek, Anna; Sosnowska, Dorota; Hrabec, Elżbieta

    2013-01-01

    There is a growing interest in plant polyphenols (including flavanols) that exhibit pleiotropic biological activities such as antiinflammatory, antioxidant, and anticancer effects. Here, we report for the first time the inhibition of MDA-MB-231 breast cancer cell viability and invasiveness by an evening primrose flavanol preparation (EPFP). We observed a decrease in MDA-MB-231 viability of 50% vs. a control after 72 h of incubation with EPFP at a concentration of 58 μM gallic acid equivalents (GAE) and an inhibition of their invasiveness of 65% vs. a control at 75 μM GAE after 48 h of incubation. EPFP caused a 10-fold reduction in matrix metalloproteinase-9 (MMP-9) activity at 100 μM GAE. Furthermore, through modulation of mRNA expression, EPFP reduced the expression levels of the following proteins: antiapoptotic Bcl-2, angiogenic vascular endothelial growth factor (VEGF), and 2 transcription factors (c-Jun, c-Fos). Moreover, analysis by flow cytometry revealed that EPFP induced apoptosis in MDA-MB-231 cells. In conclusion, our data shows that EPFP inhibits cell viability by increasing apoptosis and decreases cell invasiveness by decreasing angiogenesis.

  9. TAK1 in brain endothelial cells mediates fever and lethargy

    PubMed Central

    Ridder, Dirk A.; Lang, Ming-Fei; Salinin, Sergei; Röderer, Jan-Peter; Struss, Marcel; Maser-Gluth, Christiane

    2011-01-01

    Systemic inflammation affects the brain, resulting in fever, anorexia, lethargy, and activation of the hypothalamus–pituitary–adrenal axis. How peripheral inflammatory signals reach the brain is still a matter of debate. One possibility is that, in response to inflammatory stimuli, brain endothelial cells in proximity to the thermoregulatory centers produce cyclooxygenase 2 (COX-2) and release prostaglandin E2, causing fever and sickness behavior. We show that expression of the MAP kinase kinase kinase TAK1 in brain endothelial cells is needed for interleukin 1β (IL-1β)–induced COX-2 production. Exploiting the selective expression of the thyroxine transporter Slco1c1 in brain endothelial cells, we generated a mouse line allowing inducible deletion of Tak1 specifically in brain endothelium. Mice lacking the Tak1 gene in brain endothelial cells showed a blunted fever response and reduced lethargy upon intravenous injection of the endogenous pyrogen IL-1β. In conclusion, we demonstrate that TAK1 in brain endothelial cells induces COX-2, most likely by activating p38 MAPK and c-Jun, and is necessary for fever and sickness behavior. PMID:22143887

  10. Trinitrotoluene Induces Endoplasmic Reticulum Stress and Apoptosis in HePG2 Cells.

    PubMed

    Song, Li; Wang, Yue; Wang, Jun; Yang, Fan; Li, Xiaojun; Wu, Yonghui

    2015-11-09

    This study aims to describe trinitrotoluene (TNT)-induced endoplasmic reticulum stress (ERS) and apoptosis in HePG2 cells. HePG2 cells were cultured in vitro with 0, 6, 12, or 24 μg/ml TNT solution for 12, 24, and 48 h. Western blotting was performed to detect intracellular ERS-related proteins, including glucose-regulated protein (GRP) 78, GRP94, Caspase 4, p-Jun N-terminal kinase (JNK), and C/EBP homologous protein (CHOP). Real-time PCR was used to measure mRNA expression from the respective genes. The expressions of ERS-related proteins GRP78 and GRP94 as well as mRNA and protein expression of ERS signaling apoptotic CHOP in the TNT treatment group were significantly increased. In addition, the mRNA and protein expression levels of ERS-induced apoptotic protein Caspase-4 were significantly increased. Flow cytometry revealed that after TNT treatment, the apoptosis rate also significantly increased. TNT could increase the expression levels of GRP78, GRP94, Caspase-4, and CHOP in HePG2 cells; this increase in protein expression might be involved in HePG2 apoptosis through the induction of the ERS pathway.

  11. Trinitrotoluene Induces Endoplasmic Reticulum Stress and Apoptosis in HePG2 Cells

    PubMed Central

    Song, Li; Wang, Yue; Wang, Jun; Yang, Fan; Li, Xiaojun; Wu, Yonghui

    2015-01-01

    Background This study aims to describe trinitrotoluene (TNT)-induced endoplasmic reticulum stress (ERS) and apoptosis in HePG2 cells. Material/Methods HePG2 cells were cultured in vitro with 0, 6, 12, or 24 μg/ml TNT solution for 12, 24, and 48 h. Western blotting was performed to detect intracellular ERS-related proteins, including glucose-regulated protein (GRP) 78, GRP94, Caspase 4, p-Jun N-terminal kinase (JNK), and C/EBP homologous protein (CHOP). Real-time PCR was used to measure mRNA expression from the respective genes. Results The expressions of ERS-related proteins GRP78 and GRP94 as well as mRNA and protein expression of ERS signaling apoptotic CHOP in the TNT treatment group were significantly increased. In addition, the mRNA and protein expression levels of ERS-induced apoptotic protein Caspase-4 were significantly increased. Flow cytometry revealed that after TNT treatment, the apoptosis rate also significantly increased. Conclusions TNT could increase the expression levels of GRP78, GRP94, Caspase-4, and CHOP in HePG2 cells; this increase in protein expression might be involved in HePG2 apoptosis through the induction of the ERS pathway. PMID:26551326

  12. Potential biomarkers for paclitaxel sensitivity in hypopharynx cancer cell.

    PubMed

    Xu, Cheng-Zhi; Shi, Run-Jie; Chen, Dong; Sun, Yi-Yuan; Wu, Qing-Wei; Wang, Tao; Wang, Pei-Hua

    2013-01-01

    Paclitaxel has been proved to be active in treatment and larynx preservation of HNSCC, however, the fact that about 20-40% patients do not respond to paclitaxel makes it urgent to figure out the biomarkers for paclitaxel-based treatment in Hypopharynx cancer (HPC) patients to improve the therapy effect. In this work, Fadu cells, treated or untreated with low dose of paclitaxel for 24 h, were applied to DNA microarray chips. The differential expression in mRNAs and miRs was analyzed and the network between expression-altered mRNAs and miRs was constructed. Differentially expressed genes were mainly enriched in superpathway of cholesterol biosynthesis (ACAT2, MSMO1, LSS, FDFT1 and FDPS etc.), complement system (C3, C1R, C1S, CFR and CFB etc.), interferon signaling (IFIT1, IFIT3, IFITM1 and MX1 etc.), mTOR signaling (MRAS, PRKAA2, PLD1, RND3 and EIF4A1 etc.) and IGF1 signaling (MRAS, IGFBP7, JUN and FOS etc.), most of these pathways are implicated in tumorigenesis or chemotherapy resistance. The first three pathways were predicted to be suppressed, while the last two pathways were predicted to be induced by paclitaxel, suggesting the combination therapy with mTOR inhibition and paclitaxel might be better than single one. The dramatically expression-altered miRs were miR-112, miR-7, miR-1304, miR-222*, miR-29b-1* (these five miRs were upregulated) and miR-210 (downregulated). The 26 putative target genes mediated by the 6 miRs were figured out and the miR-gene network was constructed. Furthermore, immunoblotting assay showed that ERK signaling in Fadu cells was active by low dose of paclitaxel but repressed by high dose of paclitaxel. Collectively, our data would provide potential biomarkers and therapeutic targets for paclitaxel-based therapy in HPC patients.

  13. Potential biomarkers for paclitaxel sensitivity in hypopharynx cancer cell

    PubMed Central

    Xu, Cheng-Zhi; Shi, Run-Jie; Chen, Dong; Sun, Yi-Yuan; Wu, Qing-Wei; Wang, Tao; Wang, Pei-Hua

    2013-01-01

    Paclitaxel has been proved to be active in treatment and larynx preservation of HNSCC, however, the fact that about 20-40% patients do not respond to paclitaxel makes it urgent to figure out the biomarkers for paclitaxel-based treatment in Hypopharynx cancer (HPC) patients to improve the therapy effect. In this work, Fadu cells, treated or untreated with low dose of paclitaxel for 24 h, were applied to DNA microarray chips. The differential expression in mRNAs and miRs was analyzed and the network between expression-altered mRNAs and miRs was constructed. Differentially expressed genes were mainly enriched in superpathway of cholesterol biosynthesis (ACAT2, MSMO1, LSS, FDFT1 and FDPS etc.), complement system (C3, C1R, C1S, CFR and CFB etc.), interferon signaling (IFIT1, IFIT3, IFITM1 and MX1 etc.), mTOR signaling (MRAS, PRKAA2, PLD1, RND3 and EIF4A1 etc.) and IGF1 signaling (MRAS, IGFBP7, JUN and FOS etc.), most of these pathways are implicated in tumorigenesis or chemotherapy resistance. The first three pathways were predicted to be suppressed, while the last two pathways were predicted to be induced by paclitaxel, suggesting the combination therapy with mTOR inhibition and paclitaxel might be better than single one. The dramatically expression-altered miRs were miR-112, miR-7, miR-1304, miR-222*, miR-29b-1* (these five miRs were upregulated) and miR-210 (downregulated). The 26 putative target genes mediated by the 6 miRs were figured out and the miR-gene network was constructed. Furthermore, immunoblotting assay showed that ERK signaling in Fadu cells was active by low dose of paclitaxel but repressed by high dose of paclitaxel. Collectively, our data would provide potential biomarkers and therapeutic targets for paclitaxel-based therapy in HPC patients. PMID:24294361

  14. Gallic acid prevents isoproterenol-induced cardiac hypertrophy and fibrosis through regulation of JNK2 signaling and Smad3 binding activity

    PubMed Central

    Ryu, Yuhee; Jin, Li; Kee, Hae Jin; Piao, Zhe Hao; Cho, Jae Yeong; Kim, Gwi Ran; Choi, Sin Young; Lin, Ming Quan; Jeong, Myung Ho

    2016-01-01

    Gallic acid, a type of phenolic acid, has been shown to have beneficial effects in inflammation, vascular calcification, and metabolic diseases. The present study was aimed at determining the effect and regulatory mechanism of gallic acid in cardiac hypertrophy and fibrosis. Cardiac hypertrophy was induced by isoproterenol (ISP) in mice and primary neonatal cardiomyocytes. Gallic acid pretreatment attenuated concentric cardiac hypertrophy. It downregulated the expression of atrial natriuretic peptide, brain natriuretic peptide, and beta-myosin heavy chain in vivo and in vitro. Moreover, it prevented interstitial collagen deposition and expression of fibrosis-associated genes. Upregulation of collagen type I by Smad3 overexpression was observed in cardiac myoblast H9c2 cells but not in cardiac fibroblasts. Gallic acid reduced the DNA binding activity of phosphorylated Smad3 in Smad binding sites of collagen type I promoter in rat cardiac fibroblasts. Furthermore, it decreased the ISP-induced phosphorylation of c-Jun N-terminal kinase (JNK) and extracellular signal regulated kinase (ERK) protein in mice. JNK2 overexpression reduced collagen type I and Smad3 expression as well as GATA4 expression in H9c2 cells and cardiac fibroblasts. Gallic acid might be a novel therapeutic agent for the prevention of cardiac hypertrophy and fibrosis by regulating the JNK2 and Smad3 signaling pathway. PMID:27703224

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhan, Yu; Abi Saab, Widian F.; Modi, Nidhi

    Mixed lineage kinase 3 (MLK3) is a mitogen-activated protein kinase kinase kinase (MAP3K) that activates MAPK signaling pathways and regulates cellular responses such as proliferation, migration and apoptosis. Here we report high levels of total and phospho-MLK3 in ovarian cancer cell lines in comparison to immortalized nontumorigenic ovarian epithelial cell lines. Using small interfering RNA (siRNA)-mediated gene silencing, we determined that MLK3 is required for the invasion of SKOV3 and HEY1B ovarian cancer cells. Furthermore, mlk3 silencing substantially reduced matrix metalloproteinase (MMP)-1, -2, -9 and -12 gene expression and MMP-2 and -9 activities in SKOV3 and HEY1B ovarian cancer cells.more » MMP-1, -2, -9 and-12 expression, and MLK3-induced activation of MMP-2 and MMP-9 requires both extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) activities. In addition, inhibition of activator protein-1 (AP-1) reduced MMP-1, MMP-9 and MMP-12 gene expression. Collectively, these findings establish MLK3 as an important regulator of MMP expression and invasion in ovarian cancer cells. -- Highlights: Black-Right-Pointing-Pointer Ovarian cancer cell lines have high levels of total and phosphorylated MLK3. Black-Right-Pointing-Pointer MLK3 is required for MMP expression and activity in ovarian cancer cells. Black-Right-Pointing-Pointer MLK3 is required for invasion of SKOV3 and HEY1B ovarian cancer cells. Black-Right-Pointing-Pointer MLK3-dependent regulation of MMP-2 and MMP-9 activities requires ERK and JNK.« less

  16. Nitric oxide regulation of calcitonin gene-related peptide gene expression in rat trigeminal ganglia neurons

    PubMed Central

    Bellamy, Jamie; Bowen, Elizabeth J.; Russo, Andrew F.; Durham, Paul L.

    2006-01-01

    Calcitonin gene-related peptide (CGRP) and nitric oxide are involved in the underlying pathophysiology of migraine and other diseases involving neurogenic inflammation. We have tested the hypothesis that nitric oxide might trigger signaling mechanisms within the trigeminal ganglia neurons that would coordinately stimulate CGRP synthesis and release. Treatment of primary trigeminal ganglia cultures with nitric oxide donors caused a greater than four-fold increase in CGRP release compared with unstimulated cultures. Similarly, CGRP promoter activity was also stimulated by nitric oxide donors and overexpression of inducible nitric oxide synthase (iNOS). Cotreatment with the antimigraine drug sumatriptan greatly repressed nitric oxide stimulation of CGRP promoter activity and secretion. Somewhat surprisingly, the mechanisms of nitric oxide stimulation of CGRP secretion did not require cGMP or PI3-kinase signaling pathways, but rather, nitric oxide action required extracellular calcium and likely involves T-type calcium channels. Furthermore, nitric oxide was shown to increase expression of the active forms of the mitogen-activated protein kinases Jun amino-terminal kinase and p38 but not extracellular signal-related kinase in trigeminal neurons. In summary, our results provide new insight into the cellular mechanisms by which nitric oxide induces CGRP synthesis and secretion from trigeminal neurons. PMID:16630053

  17. Chemopreventive agents alters global gene expression pattern: predicting their mode of action and targets.

    PubMed

    Narayanan, Bhagavathi A

    2006-12-01

    Chemoprevention has the potential to be a major component of colon, breast, prostate and lung cancer control. Epidemiological, experimental, and clinical studies provide evidence that antioxidants, anti-inflammatory agents, n-3 polyunsaturated fatty acids and several other phytochemicals possess unique modes of action against cancer growth. However, the mode of action of several of these agents at the gene transcription level is not completely understood. Completion of the human genome sequence and the advent of DNA microarrays using cDNAs enhanced the detection and identification of hundreds of differentially expressed genes in response to anticancer drugs or chemopreventive agents. In this review, we are presenting an extensive analysis of the key findings from studies using potential chemopreventive agents on global gene expression patterns, which lead to the identification of cancer drug targets. The summary of the study reports discussed in this review explains the extent of gene alterations mediated by more than 20 compounds including antioxidants, fatty acids, NSAIDs, phytochemicals, retinoids, selenium, vitamins, aromatase inhibitor, lovastatin, oltipraz, salvicine, and zinc. The findings from these studies further reveal the utility of DNA microarray in characterizing and quantifying the differentially expressed genes that are possibly reprogrammed by the above agents against colon, breast, prostate, lung, liver, pancreatic and other cancer types. Phenolic antioxidant resveratrol found in berries and grapes inhibits the formation of prostate tumors by acting on the regulatory genes such as p53 while activating a cascade of genes involved in cell cycle and apoptosis including p300, Apaf-1, cdk inhibitor p21, p57 (KIP2), p53 induced Pig 7, Pig 8, Pig 10, cyclin D, DNA fragmentation factor 45. The group of genes significantly altered by selenium includes cyclin D1, cdk5, cdk4, cdk2, cdc25A and GADD 153. Vitamine D shows impact on p21(Waf1/Cip1) p27 cyclin B and cyclin A1. Genomic expression profile with vitamin D indicated differential expression of gene targets such as c-JUN, JUNB, JUND, FREAC-1/FoxF1, ZNF-44/KOX7, plectin, filamin, and keratin-13, involved in antiproliferative, differentiation pathways. The agent UBEIL has a remarkable effect on cyclin D1. Curcumin mediated NrF2 pathway significantly altered p21(Waf1/Cip1) levels. Aromatase inhibitors affected the expression of cyclin D1. Interestingly, few dietary compounds listed in this review also have effect on APC, cdk inhibitors p21(Waf1/Cip1) and p27. Tea polyphenol EGCG has a significant effect on TGF-beta expression, while several other earlier studies have shown its effect on cell cycle regulatory proteins. This review article reveals potential chemoprevention drug targets, which are mainly centered on cell cycle regulatory pathway genes in cancer.

  18. Systems biology approach to transplant tolerance: proof of concept experiments using RNA interference (RNAi) to knock down hub genes in Jurkat and HeLa cells in vitro.

    PubMed

    Lwin, Wint Wah; Park, Ken; Wauson, Matthew; Gao, Qin; Finn, Patricia W; Perkins, David; Khanna, Ajai

    2012-07-01

    Systems biology is gaining importance in studying complex systems such as the functional interconnections of human genes [1]. To investigate the molecular interactions involved in T cell immune responses, we used databases of physical gene-gene interactions to constructed molecular interaction networks (interconnections) with R language algorithms. This helped to identify highly interconnected "hub" genes AT(1)P5C1, IL6ST, PRKCZ, MYC, FOS, JUN, and MAPK1. We hypothesized that suppression of these hub genes in the gene network would result in significant phenotypic effects on T cells and examined this in vitro. The molecular interaction networks were then analyzed and visualized with Cytoscape. Jurkat and HeLa cells were transfected with siRNA for the selected hub genes. Cell proliferation was measured using ATP luminescence and BrdU labeling, which were measured 36, 72, and 96 h after activation. Following T cell stimulation, we found a significant decrease in ATP production (P < 0.05) when the hub genes ATP5C1 and PRKCZ were knocked down using siRNA transfection, whereas no difference in ATP production was observed in siRNA transfected HeLa cells. However, HeLa cells showed a significant (P < 0.05) decrease in cell proliferation when the genes MAPK1, IL6ST, ATP5C1, JUN, and FOS were knocked down. In both Jurkat and HeLa cells, targeted gene knockdown using siRNA showed decreased cell proliferation and ATP production in both Jurkat and HeLa cells. However, Jurkat T cells and HELA cells use different hub genes to regulate activation responses. This experiment provides proof of principle of applying siRNA knockdown of T cell hub genes to evaluate their proliferative capacity and ATP production. This novel concept outlines a systems biology approach to identify hub genes for targeted therapeutics. Published by Elsevier Inc.

  19. Evaluation of the Genetic Response of U937 and Jurkat Cells to 10-Nanosecond Electrical Pulses (nsEP)

    DTIC Science & Technology

    2016-05-02

    signal-regulated kinase (Erk), heat shock 27kDa protein 1 ( HSP27 ), c-Jun N-terminal kinase (JNK), jun proto-oncogene (c-Jun), dual specificity mitogen...the MAPK pathway-associated proteins were significantly increased (Fig 5D). These included ERK1, JNK, ATF2, HSP27 , c-JUN, and p53. At 12 h post

  20. Age-Dependent Schwann Cell Phenotype Regulation Following Peripheral Nerve Injury.

    PubMed

    Chen, Wayne A; Luo, T David; Barnwell, Jonathan C; Smith, Thomas L; Li, Zhongyu

    2017-12-01

    Schwann cells are integral to the regenerative capacity of the peripheral nervous system, which declines after adolescence. The mechanisms underlying this decline are poorly understood. This study sought to compare the protein expression of Notch, c-Jun, and Krox-20 after nerve crush injury in adolescent and young adult rats. We hypothesized that these Schwann cell myelinating regulatory factors are down-regulated after nerve injury in an age-dependent fashion. Adolescent (2 months old) and young adult (12 months old) rats (n = 48) underwent sciatic nerve crush injury. Protein expression of Notch, c-Jun, and Krox-20 was quantified by Western blot analysis at 1, 3, and 7 days post-injury. Functional recovery was assessed in a separate group of animals (n = 8) by gait analysis (sciatic functional index) and electromyography (compound motor action potential) over an 8-week post-injury period. Young adult rats demonstrated a trend of delayed onset of the dedifferentiating regulatory factors, Notch and c-Jun, corresponding to the delayed functional recovery observed in young adult rats compared to adolescent rats. Compound motor action potential area was significantly greater in adolescent rats relative to young adult rats, while amplitude and velocity trended toward statistical significance. The process of Schwann cell dedifferentiation following peripheral nerve injury shows different trends with age. These trends of delayed onset of key regulatory factors responsible for Schwann cell myelination may be one of many possible factors mediating the significant differences in functional recovery between adolescent and young adult rats following peripheral nerve injury.

  1. Alkaloid fraction of Uncaria rhynchophylla protects against N-methyl-D-aspartate-induced apoptosis in rat hippocampal slices.

    PubMed

    Lee, Jongseok; Son, Dongwook; Lee, Pyeongjae; Kim, Sun-Yeou; Kim, Hocheol; Kim, Chang-Ju; Lim, Eunhee

    2003-09-04

    Uncaria rhynchophylla is a medicinal herb which has sedative and anticonvulsive effects and has been applied in the treatment of epilepsy in Oriental medicine. In this study, the effect of alkaloid fraction of U. rhynchophylla against N-methyl-D-aspartate (NMDA)-induced neuronal cell death was investigated. Pretreatment with an alkaloid fraction of U. rhynchophylla for 1 h decreased the degree of neuronal damage induced by NMDA exposure in cultured hippocampal slices and also inhibited NMDA-induced enhanced expressions of apoptosis-related genes such as c-jun, p53, and bax. In the present study, the alkaloid fraction of U. rhynchophylla was shown to have a protective property against NMDA-induced cytotoxicity by suppressing the NMDA-induced apoptosis in rat hippocampal slices.

  2. Physical interaction of the activator protein-1 factors c-Fos and c-Jun with Cbfa1 for collagenase-3 promoter activation

    NASA Technical Reports Server (NTRS)

    D'Alonzo, Richard C.; Selvamurugan, Nagarajan; Karsenty, Gerard; Partridge, Nicola C.

    2002-01-01

    Previously, we determined that the activator protein-1 (AP-1)-binding site and the runt domain (RD)-binding site and their binding proteins, c-Fos.c-Jun and Cbfa, regulate the collagenase-3 promoter in parathyroid hormone-treated and differentiating osteoblasts. Here we show that Cbfa1 and c-Fos.c-Jun appear to cooperatively bind the RD- and AP-1-binding sites and form ternary structures in vitro. Both in vitro and in vivo co-immunoprecipitation and yeast two-hybrid studies further demonstrate interaction between Cbfa1 with c-Fos and c-Jun in the absence of phosphorylation and without binding to DNA. Additionally, only the runt domain of Cbfa1 was required for interaction with c-Jun and c-Fos. In mammalian cells, overexpression of Cbfa1 enhanced c-Jun activation of AP-1-binding site promoter activity, demonstrating functional interaction. Finally, insertion of base pairs that disrupted the helical phasing between the AP-1- and RD-binding sites also inhibited collagenase-3 promoter activation. Thus, we provide direct evidence that Cbfa1 and c-Fos.c-Jun physically interact and cooperatively bind the AP-1- and RD-binding sites in the collagenase-3 promoter. Moreover, the AP-1- and RD-binding sites appear to be organized in a specific required helical arrangement that facilitates transcription factor interaction and enables promoter activation.

  3. Androgen receptor stimulates bone sialoprotein (BSP) gene transcription via cAMP response element and activator protein 1/glucocorticoid response elements.

    PubMed

    Takai, Hideki; Nakayama, Youhei; Kim, Dong-Soon; Arai, Masato; Araki, Shouta; Mezawa, Masaru; Nakajima, Yu; Kato, Naoko; Masunaga, Hiroshi; Ogata, Yorimasa

    2007-09-01

    Bone sialoprotein (BSP) is an early marker of osteoblast differentiation. Androgens are steroid hormones that are essential for skeletal development. The androgen receptor (AR) is a transcription factor and a member of the steroid receptor superfamily that plays an important role in male sexual differentiation and prostate cell proliferation. To determine the molecular mechanism involved in the stimulation of bone formation, we have analyzed the effects of androgens and AR effects on BSP gene transcription. AR protein levels were increased after AR overexpression in ROS17/2.8 cells. BSP mRNA levels were increased by AR overexpression. However, the endogenous and overexpressed BSP mRNA levels were not changed by DHT (10(-8) M, 24 h). Whereas luciferase (LUC) activities in all constructs, including a short construct (nts -116 to +60), were increased by AR overexpression, the basal and LUC activities enhanced by AR overexpression were not induced by DHT (10(-8)M, 24 h). The effect of AR overexpression was abrogated by 2 bp mutations in either the cAMP response element (CRE) or activator protein 1 (AP1)/glucocorticoid response element (GRE). Gel shift analyses showed that AR overexpression increased binding to the CRE and AP1/GRE elements. Notably, the CRE-protein complexes were supershifted by phospho-CREB antibody, and CREB, c-Fos, c-Jun, and AR antibodies disrupted the complexes formation. The AP1/GRE-protein complexes were supershifted by c-Fos antibody and c-Jun, and AR antibodies disrupted the complexes formation. These studies demonstrate that AR stimulates BSP gene transcription by targeting the CRE and AP1/GRE elements in the promoter of the rat BSP gene.

  4. Control of endothelial cell tube formation by Notch ligand intracellular domain interactions with activator protein 1 (AP-1).

    PubMed

    Forghany, Zary; Robertson, Francesca; Lundby, Alicia; Olsen, Jesper V; Baker, David A

    2018-01-26

    Notch signaling is a ubiquitous signal transduction pathway found in most if not all metazoan cell types characterized to date. It is indispensable for cell differentiation as well as tissue growth, tissue remodeling, and apoptosis. Although the canonical Notch signaling pathway is well characterized, accumulating evidence points to the existence of multiple, less well-defined layers of regulation. In this study, we investigated the function of the intracellular domain (ICD) of the Notch ligand Delta-like 4 (DLL4). We provide evidence that the DLL4 ICD is required for normal DLL4 subcellular localization. We further show that it is cleaved and interacts with the JUN proto-oncogene, which forms part of the activator protein 1 (AP-1) transcription factor complex. Mechanistically, the DLL4 ICD inhibited JUN binding to DNA and thereby controlled the expression of JUN target genes, including DLL4 Our work further demonstrated that JUN strongly stimulates endothelial cell tube formation and that DLL4 constrains this process. These results raise the possibility that Notch/DLL4 signaling is bidirectional and suggest that the DLL4 ICD could represent a point of cross-talk between Notch and receptor tyrosine kinase (RTK) signaling. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Acceleration of Smad2 and Smad3 phosphorylation via c-Jun NH(2)-terminal kinase during human colorectal carcinogenesis.

    PubMed

    Yamagata, Hideo; Matsuzaki, Koichi; Mori, Shigeo; Yoshida, Katsunori; Tahashi, Yoshiya; Furukawa, Fukiko; Sekimoto, Go; Watanabe, Toshihiko; Uemura, Yoshiko; Sakaida, Noriko; Yoshioka, Kazuhiko; Kamiyama, Yasuo; Seki, Toshihito; Okazaki, Kazuichi

    2005-01-01

    Conversion of normal epithelial cells to tumors is associated with a shift in transforming growth factor-beta (TGF-beta) function: reduction of tumor suppressor activity and increase of oncogenic activity. However, specific mechanisms of this functional alteration during human colorectal carcinogenesis remain to be elucidated. TGF-beta signaling involves Smad2/3 phosphorylated at linker regions (pSmad2/3L) and COOH-terminal regions (pSmad2/3C). Using antibodies specific to each phosphorylation site, we herein showed that Smad2 and Smad3 were phosphorylated at COOH-terminal regions but not at linker regions in normal colorectal epithelial cells and that pSmad2/3C were located predominantly in their nuclei. However, the linker regions of Smad2 and Smad3 were phosphorylated in 31 sporadic colorectal adenocarcinomas. In particular, late-stage invasive and metastatic cancers typically showed a high degree of phosphorylation of Smad2/3L. Their extent of phosphorylation in 11 adenomas was intermediate between those in normal epithelial cells and adenocarcinomas. Whereas pSmad2L remained in the cytoplasm, pSmad3L was located exclusively in the nuclei of Ki-67-immunoreactive adenocarcinomas. In contrast, pSmad3C gradually decreased as the tumor stage progressed. Activated c-Jun NH(2)-terminal kinase in cancers could directly phosphorylate Smad2/3L. Although Mad homology 2 region sequencing in the Smad4 gene revealed a G/A substitution at codon 361 in one adenocarcinoma, the mutation did not correlate with phosphorylation. No mutations in the type II TGF-beta receptor and Smad2 genes were observed in the tumors. In conclusion, pSmad3C, which favors tumor suppressor activity of TGF-beta, was found to decrease, whereas c-Jun NH(2)-terminal kinase tended to induce the phosphorylation of Smad2/3L in human colorectal adenoma-carcinoma sequence.

  6. ANXA11 regulates the tumorigenesis, lymph node metastasis and 5-fluorouracil sensitivity of murine hepatocarcinoma Hca-P cells by targeting c-Jun.

    PubMed

    Liu, Shuqing; Guo, Chunmei; Wang, Jiasheng; Wang, Bo; Qi, Houbao; Sun, Ming-Zhong

    2016-03-29

    Annexin A11 (Anxa11) is associated with various cancers. Using a pair of syngeneic murine hepatocarcinoma cells, Hca-P with ~25% and Hca-F with ~75% lymph node metastatic (LNM) potentials, we demonstrated Anxa11 involvement in hepatocarcinoma lymphatic metastasis. Here, ANXA11 acted as a suppressor for the tumorigenicity, LNM and 5-FU resistance of Hca-P via c-Jun. We constructed monoclonal Hca-P cell line with stable ANXA11 knockdown. Although Bax and Bcl-2 levels increased in shRNA-Anxa11-transfected Hca-P, ANXA11 downregulation showed no clear effect on Hca-P apoptosis. ANXA11 downregulation promoted in vitro migration and invasion capacities of Hca-P. In situ adhesion potential of Hca-P cells toward LN was significantly enhanced following ANXA11 downregulation. Consistently, ANXA11 downregulation promoted the in vivo tumor growth and LNM capacities of Hca-P cells. ANXA11 knockdown enhanced the chemoresistance of Hca-P cells specifically toward 5-FU instead of cisplatin. Its downregulation increased c-Jun (pSer73) and decreased c-Jun (pSer243) levels in Hca-P. c-Jun (pSer243) downregulation seemed to be only correlated with ANXA11 knockdown without the connection to 5-FU treatment. Interestingly, compared with scramble-Hca-P cells, the levels of c-Jun and c-Jun (pSer73) in shRNA-Anxa11-Hca-P cells were upregulated in the presences of 0.1 and 1.0 mg/L 5-FU. The levels changes from c-Jun and c-Jun (pSer73) in Hca-P cells showed a more obvious tendency with the combination of ANXA11 knockdown and 5-FU treatment. ANXA11 level regulates LNM and 5-FU resistance of Hca-P via c-Jun pathway. It might play an important role in hepatocarcinoma cell malignancy and be a therapeutic target for hepatocarcinoma.

  7. ANXA11 regulates the tumorigenesis, lymph node metastasis and 5-fluorouracil sensitivity of murine hepatocarcinoma Hca-P cells by targeting c-Jun

    PubMed Central

    Wang, Bo; Qi, Houbao; Sun, Ming-Zhong

    2016-01-01

    Annexin A11 (Anxa11) is associated with various cancers. Using a pair of syngeneic murine hepatocarcinoma cells, Hca-P with ~25% and Hca-F with ~75% lymph node metastatic (LNM) potentials, we demonstrated Anxa11 involvement in hepatocarcinoma lymphatic metastasis. Here, ANXA11 acted as a suppressor for the tumorigenicity, LNM and 5-FU resistance of Hca-P via c-Jun. We constructed monoclonal Hca-P cell line with stable ANXA11 knockdown. Although Bax and Bcl-2 levels increased in shRNA-Anxa11-transfected Hca-P, ANXA11 downregulation showed no clear effect on Hca-P apoptosis. ANXA11 downregulation promoted in vitro migration and invasion capacities of Hca-P. In situ adhesion potential of Hca-P cells toward LN was significantly enhanced following ANXA11 downregulation. Consistently, ANXA11 downregulation promoted the in vivo tumor growth and LNM capacities of Hca-P cells. ANXA11 knockdown enhanced the chemoresistance of Hca-P cells specifically toward 5-FU instead of cisplatin. Its downregulation increased c-Jun (pSer73) and decreased c-Jun (pSer243) levels in Hca-P. c-Jun (pSer243) downregulation seemed to be only correlated with ANXA11 knockdown without the connection to 5-FU treatment. Interestingly, compared with scramble-Hca-P cells, the levels of c-Jun and c-Jun (pSer73) in shRNA-Anxa11-Hca-P cells were upregulated in the presences of 0.1 and 1.0 mg/L 5-FU. The levels changes from c-Jun and c-Jun (pSer73) in Hca-P cells showed a more obvious tendency with the combination of ANXA11 knockdown and 5-FU treatment. ANXA11 level regulates LNM and 5-FU resistance of Hca-P via c-Jun pathway. It might play an important role in hepatocarcinoma cell malignancy and be a therapeutic target for hepatocarcinoma. PMID:26908448

  8. The c-Jun N-terminal kinase pathway is critical for cell transformation by the latent membrane protein 1 of Epstein-Barr virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kutz, Helmut; Reisbach, Gilbert; Schultheiss, Ute

    The latent membrane protein 1 (LMP1) of Epstein-Barr virus (EBV) transforms cells activating signal transduction pathways such as NF-{kappa}B, PI3-kinase, or c-Jun N-terminal kinase (JNK). Here, we investigated the functional role of the LMP1-induced JNK pathway in cell transformation. Expression of a novel dominant-negative JNK1 allele caused a block of proliferation in LMP1-transformed Rat1 fibroblasts. The JNK-specific inhibitor SP600125 reproduced this effect in Rat1-LMP1 cells and efficiently interfered with proliferation of EBV-transformed lymphoblastoid cells (LCLs). Inhibition of the LMP1-induced JNK pathway in LCLs caused the downregulation of c-Jun and Cdc2, the essential G2/M cell cycle kinase, which was accompanied bymore » a cell cycle arrest of LCLs at G2/M phase transition. Moreover, SP600125 retarded tumor growth of LCLs in a xenograft model in SCID mice. Our data support a critical role of the LMP1-induced JNK pathway for proliferation of LMP1-transformed cells and characterize JNK as a potential target for intervention against EBV-induced malignancies.« less

  9. [S632A3 promotes LPS-induced IFN-beta production through inhibiting the activation of GSK-3beta].

    PubMed

    Zhang, Na; Yang, Xin; Xu, Rong; Wang, Zhen; Song, Dan-Qing; Li, Dian-Dong; Deng, Hong-Bin

    2013-07-01

    LPS stimulation of macrophages production of IFN-beta plays a key role in innate immunity defending the microbial invasion. In this study, the effect of S632A3 promoting LPS-induced IFN-beta production and the underlying mechanism were investigated, mRNA level was measured by real-time PCR, cytokine production was determined by ELISA, GSK-3beta activity was investigated by kinase assay, protein phosphorylation and expression were evaluated by Western blotting. The results revealed that S632A3 significantly augmented IFN-beta production by LPS-stimulated macrophages. S632A3 inhibition of the activation of GSK-3beta, reduced the threonine 239 phosphorylation of transcription factor c-Jun but increased the total level of c-Jun in LPS-stimulated macrophages. Moreover, small interfering RNA-mediated knockdown of c-Jun level abrogated the ability of S632A3 to augment IFN-beta. The study thus demonstrates S632A3 being a new anti-inflammation lead compound and provides a molecular mechanism by which S632A3 promoted LPS-induced IFN-beta production in macrophages through inhibiting the activation of GSK-3beta.

  10. Analysis of molecular mechanisms of 5-fluorouracil-induced steatosis and inflammation in vitro and in mice

    PubMed Central

    Freese, Kim; Schiergens, Tobias S.; Kuecuekoktay, Fulya Suzan; Teufel, Andreas; Thasler, Wolfgang E.; Müller, Martina; Bosserhoff, Anja K.; Hellerbrand, Claus

    2017-01-01

    Chemotherapy-associated steatohepatitis is attracting increasing attention because it heralds an increased risk of morbidity and mortality in patients undergoing surgery because of liver metastases. The aim of this study was to develop in vitro and in vivo models to analyze the pathogenesis of 5-fluorouracil (5-FU)-induced steatohepatitis. Therefore, primary human hepatocytes and HepG2 hepatoma cells were incubated with 5-FU at non-toxic concentrations up to 24 h. Furthermore, hepatic tissue of C57BL/6N mice was analyzed 24 h after application of a single 5-FU dose (200 mg/kg body weight). In vitro, incubation with 5-FU induced a significant increase of hepatocellular triglyceride levels. This was paralleled by an impairment of mitochondrial function and a dose- and time-dependently increased expression of fatty acid acyl-CoA oxidase 1 (ACOX1), which catalyzes the initial step for peroxisomal β-oxidation. The latter is known to generate reactive oxygen species, and consequently, expression of the antioxidant enzyme heme oxygenase 1 (HMOX1) was significantly upregulated in 5-FU-treated cells, indicative for oxidative stress. Furthermore, 5-FU significantly induced c-Jun N-terminal kinase (JNK) activation and the expression of pro-inflammatory genes IL-8 and ICAM-1. Also in vivo, 5-FU significantly induced hepatic ACOX1 and HMOX1 expression as well as JNK-activation, pro-inflammatory gene expression and immune cell infiltration. In summary, we identified molecular mechanisms by which 5-FU induces hepatocellular lipid accumulation and inflammation. Our newly developed models can be used to gain further insight into the pathogenesis of 5-FU-induced steatohepatitis and to develop therapeutic strategies to inhibit its development and progression. PMID:28055957

  11. The drosophila T-box transcription factor midline functions within Insulin/Akt and c-Jun-N terminal kinase stress-reactive signaling pathways to regulate interommatial bristle formation and cell survival

    PubMed Central

    Chen, Q. Brent; Das, Sudeshna; Visic, Petra; Buford, Kendrick D.; Zong, Yan; Buti, Wisam; Odom, Kelly R.; Lee, Hannah; Leal, Sandra M.

    2015-01-01

    We recently reported that the T-box transcription factor midline (mid) functions within the Notch-Delta signaling pathway to specify sensory organ precursor (SOP) cell fates in early-staged pupal eye imaginal discs and to suppress apoptosis (Das et al.). From genetic and allelic modifier screens, we now report that mid interacts with genes downstream of the insulin receptor(InR)/Akt, c-Jun-N-terminal kinase (JNK) and Notch signaling pathways to regulate interommatidial bristle (IOB) formation and cell survival. One of the most significant mid-interacting genes identified from the modifier screen is dFOXO, a transcription factor exhibiting a nucleocytoplasmic subcellular distribution pattern. In common with dFOXO, we show that Mid exhibits a nucleocytoplasmic distribution pattern within WT third-instar larval (3°L) tissue homogenates. Because dFOXO is a stress-responsive factor, we assayed the effects of either oxidative or metabolic stress responses on modifying the mid mutant phenotype which is characterized by a 50% loss of IOBs within the adult compound eye. While metabolic starvation stress does not affect the mid mutant phenotype, either 1 mM paraquat or 20% coconut oil, oxidative stress inducers, partially suppresses the mid mutant phenotype resulting in a significant recovery of IOBs. Another significant mid-interacting gene we identified is groucho (gro). Mid and Gro are predicted to act as corepressors of the enhancer-of-split gene complex downstream of Notch. Immunolabeling WT and dFOXO null 3°L eye-antennal imaginal discs with anti-Mid and anti-Engrailed (En) antibodies indicate that dFOXO is required to activate Mid and En expression within photoreceptor neurons of the eye disc. Taken together, these studies show that Mid and dFOXO serve as critical effectors of cell fate specification and survival within integrated Notch, InR/dAkt, and JNK signaling pathways during 3°L and pupal eye imaginal disc development. PMID:25748605

  12. EFFECT OF TRICHLOROETHYLENE AND ITS METABOLITES, DICHLOROACETIC ACID AND TRICHLOROACETIC ACID, ON THE METHYLATION AND EXPRESSION OF C-JUN AND C-MYC PROTOONCOGENES IN MOUSE LIVER: PREVENTION BY METHIONINE. (R825384)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  13. Comparative Transcriptomics Highlights the Role of the Activator Protein 1 Transcription Factor in the Host Response to Ebolavirus

    PubMed Central

    Todd, Shawn; Boyd, Victoria; Tachedjian, Mary; Klein, Reuben; Shiell, Brian; Dearnley, Megan; McAuley, Alexander J.; Woon, Amanda P.; Purcell, Anthony W.; Marsh, Glenn A.; Baker, Michelle L.

    2017-01-01

    ABSTRACT Ebolavirus and Marburgvirus comprise two genera of negative-sense single-stranded RNA viruses that cause severe hemorrhagic fevers in humans. Despite considerable research efforts, the molecular events following Ebola virus (EBOV) infection are poorly understood. With the view of identifying host factors that underpin EBOV pathogenesis, we compared the transcriptomes of EBOV-infected human, pig, and bat kidney cells using a transcriptome sequencing (RNA-seq) approach. Despite a significant difference in viral transcription/replication between the cell lines, all cells responded to EBOV infection through a robust induction of extracellular growth factors. Furthermore, a significant upregulation of activator protein 1 (AP1) transcription factor complex members FOS and JUN was observed in permissive cell lines. Functional studies focusing on human cells showed that EBOV infection induces protein expression, phosphorylation, and nuclear accumulation of JUN and, to a lesser degree, FOS. Using a luciferase-based reporter, we show that EBOV infection induces AP1 transactivation activity within human cells at 48 and 72 h postinfection. Finally, we show that JUN knockdown decreases the expression of EBOV-induced host gene expression. Taken together, our study highlights the role of AP1 in promoting the host gene expression profile that defines EBOV pathogenesis. IMPORTANCE Many questions remain about the molecular events that underpin filovirus pathophysiology. The rational design of new intervention strategies, such as postexposure therapeutics, will be significantly enhanced through an in-depth understanding of these molecular events. We believe that new insights into the molecular pathogenesis of EBOV may be possible by examining the transcriptomic response of taxonomically diverse cell lines (derived from human, pig, and bat). We first identified the responsive pathways using an RNA-seq-based transcriptomics approach. Further functional and computational analysis focusing on human cells highlighted an important role for the AP1 transcription factor in mediating the transcriptional response to EBOV infection. Our study sheds new light on how host transcription factors respond to and promote the transcriptional landscape that follows viral infection. PMID:28931675

  14. S-ADENOSYLMETHIONINE PREVENTS THE UP REGULATION OF TOLL-LIKE RECEPTOR (TLR) SIGNALING CAUSED BY CHRONIC ETHANOL FEEDING IN RATS

    PubMed Central

    Oliva, Joan; Bardag-Gorce, Fawzia; Li, Jun; French, Barbara A; French, Samuel W

    2011-01-01

    Toll-like receptors (TLR) play a role in mediating the proinflammatory response, fibrogenesis and carcinogenesis in chronic liver diseases such as alcoholic liver disease, non-alcoholic liver disease, hepatitis C and hepatocellular carcinoma. This is true in experimental models of these diseases. For this reason, we investigated the TLR proinflammatory response in the chronic intragastric tube feeding rat model of alcohol liver disease. The methyl donor S-adenosylmethionine was also fed to prevent the gene expression changes induced by ethanol. Ethanol feeding tended to increase the up regulation of the gene expression of TLR2 and TLR4. SAMe feeding prevented this. TLR4 and MyD88 protein levels were significantly increased by ethanol and this was prevented by SAMe. This is the first report where ethanol feeding induced TLR2 and SAMe prevented the induction by ethanol. CD34, FOS, interferon responsive factor 1 (IRF-1), Jun, TLR 1,2,3,4,6 and 7 and Traf-6 were found to be up regulated as seen by microarray analysis where rats were sacrified at high blood alcohol levels compared to pair fed controls. Il-6, IL-10 and IFNγ were also up regulated by high blood levels of ethanol. The gene expression of CD14, MyD88 and TNFR1SF1 were not up regulated by ethanol but were down regulated by SAMe. The gene expression of IL-1R1 and IRF1 tended to be up regulated by ethanol and this was prevented by feeding SAMe. The results suggest that SAMe, fed chronically prevents activation of TLR pathways caused by ethanol. In this way the proinflammatory response, fibrogenesis, cirrhosis and hepatocellular carcinoma formation due to alcohol liver disease could be prevented by SAMe. PMID:21276439

  15. No involvement of the nerve growth factor gene locus in hypertension in spontaneously hypertensive rats.

    PubMed

    Nemoto, Kiyomitsu; Sekimoto, Masashi; Fukamachi, Katsumi; Kageyama, Haruaki; Degawa, Masakuni; Hamadai, Masanori; Hendley, Edith D; Macrae, I Mhairi; Clark, James S; Dominiczak, Anna F; Ueyama, Takashi

    2005-02-01

    Sympathetic hyper-innervation and increased levels of nerve growth factor (NGF), an essential neurotrophic factor for sympathetic neurons, have been observed in the vascular tissues of spontaneously hypertensive rats (SHRs). Such observations have suggested that the pathogenesis of hypertension might involve a qualitative or quantitative abnormality in the NGF protein, resulting from a significant mutation in the gene's promoter or coding region. In the present study, we analyzed the nucleotide sequences of the cis-element of the NGF gene in SHRs, stroke-prone SHRs (SHRSPs), and normotensive Wistar-Kyoto (WKY) rats. The present analyses revealed some differences in the 3-kb promoter region, coding exon, and 3' untranslated region (3'UTR) for the NGF gene among those strains. However, the observed differences did not lead to changes in promoter activity or to amino acid substitution; nor did they represent a link between the 3'UTR mutation of SHRSPs and elevated blood pressure in an F2 generation produced by crossbreeding SHRSPs with WKY rats. These results suggest that the NGF gene locus is not involved in hypertension in SHR/ SHRSP strains. The present study also revealed two differences between SHRs and WKY rats, as found in cultured vascular smooth muscle cells and in mRNA prepared from each strain. First, SHRs had higher expression levels of c-fos and c-jun genes, which encode the component of the AP-1 transcription factor that activates NGF gene transcription. Second, NGF mRNAs prepared from SHRs had a longer 3'UTR than those prepared from WKY rats. Although it remains to be determined whether these events play a role in the hypertension of SHR/SHRSP strains, the present results emphasize the importance of actively searching for aberrant trans-acting factor(s) leading to the enhanced expression of the NGF gene and NGF protein in SHR/SHRSP strains.

  16. Targeting androgen receptor and JunD interaction for prevention of prostate cancer progression.

    PubMed

    Mehraein-Ghomi, Farideh; Kegel, Stacy J; Church, Dawn R; Schmidt, Joseph S; Reuter, Quentin R; Saphner, Elizabeth L; Basu, Hirak S; Wilding, George

    2014-05-01

    Multiple studies show that reactive oxygen species (ROS) play a major role in prostate cancer (PCa) development and progression. Previously, we reported an induction of Spermidine/Spermine N(1) -Acetyl Transferase (SSAT) by androgen-activated androgen receptor (AR)-JunD protein complex that leads to over-production of ROS in PCa cells. In our current research, we identify small molecules that specifically block AR-JunD in this ROS-generating metabolic pathway. A high throughput assay based on Gaussia Luciferase reconstitution was used to identify inhibitors of the AR-JunD interaction. Selected hits were further screened using a fluorescence polarization competitor assay to eliminate those that bind to the AR Ligand Binding Domain (LBD), in order to identify molecules that specifically target events downstream to androgen activation of AR. Eleven molecules were selected for studies on their efficacy against ROS generation and growth of cultured human PCa cells by DCFH dye-oxidation assay and DNA fluorescence assay, respectively. In situ Proximity Ligation Assay (PLA), SSAT promoter-luciferase reporter assay, and western blotting of apoptosis and cell cycle markers were used to study mechanism of action of the lead compound. Selected lead compound GWARJD10 with EC(50) 10 μM against ROS production was shown to block AR-JunD interaction in situ as well as block androgen-induced SSAT gene expression at IC(50) 5 μM. This compound had no effect on apoptosis markers, but reduced cyclin D1 protein level. Inhibitor of AR-JunD interaction, GWARJD10 shows promise for prevention of progression of PCa at an early stage of the disease by blocking growth and ROS production. © 2014 Wiley Periodicals, Inc.

  17. T-bet-mediated Tim-3 expression dampens monocyte function during chronic hepatitis C virus infection.

    PubMed

    Yi, Wenjing; Zhang, Peixin; Liang, Yan; Zhou, Yun; Shen, Huanjun; Fan, Chao; Moorman, Jonathan P; Yao, Zhi Q; Jia, Zhansheng; Zhang, Ying

    2017-03-01

    Hepatitis C virus (HCV) induces a high rate of chronic infection via dysregulation of host immunity. We have previously shown that T-cell immunoglobulin and mucin domain protein-3 (Tim-3) is up-regulated on monocyte/macrophages (M/Mφ) during chronic HCV infection; little is known, however, about the transcription factor that controls its expression in these cells. In this study, we investigated the role of transcription factor, T-box expressed in T cells (T-bet), in Tim-3 expression in M/Mφ in the setting of HCV infection. We demonstrate that T-bet is constitutively expressed in resting CD14 + M/Mφ in the peripheral blood. M/Mφ from chronically HCV-infected individuals exhibit a significant increase in T-bet expression that positively correlates with an increased level of Tim-3 expression. Up-regulation of T-bet is also observed in CD14 + M/Mφ incubated with HCV + Huh7.5 cells, as well as in primary M/Mφ or monocytic THP-1 cells exposed to HCV core protein in vitro, which is reversible by blocking HCV core/gC1qR interactions. Moreover, the HCV core-induced up-regulation of T-bet and Tim-3 expression in M/Mφ can be abrogated by incubating the cells with SP600125 - an inhibitor for the c-Jun N-terminal kinase (JNK) signalling pathway. Importantly, silencing T-bet gene expression decreases Tim-3 expression and enhances interleukin-12 secretion as well as signal transducer and activator of transcription 1 phosphorylation. These data suggest that T-bet, induced by the HCV core/gC1qR interaction, enhances Tim-3 expression via the JNK pathway, leading to dampened M/Mφ function during HCV infection. These findings reveal a novel mechanism for Tim-3 regulation via T-bet during HCV infection, providing new targets to combat this global epidemic viral disease. © 2016 John Wiley & Sons Ltd.

  18. C-Jun N-terminal kinase signalling pathway in response to cisplatin.

    PubMed

    Yan, Dong; An, GuangYu; Kuo, Macus Tien

    2016-11-01

    Cisplatin (cis diamminedichloroplatinum II, cDDP) is one of the most effective cancer chemotherapeutic agents and is used in the treatment of many types of human malignancies. However, inherent tumour resistance is a major barrier to effective cisplatin therapy. So far, the mechanism of cDDP resistance has not been well defined. In general, cisplatin is considered to be a cytotoxic drug, for damaging DNA and inhibiting DNA synthesis, resulting in apoptosis via the mitochondrial death pathway or plasma membrane disruption. cDDP-induced DNA damage triggers signalling pathways that will eventually decide between cell life and death. As a member of the mitogen-activated protein kinases family, c-Jun N-terminal kinase (JNK) is a signalling pathway in response to extracellular stimuli, especially drug treatment, to modify the activity of numerous proteins locating in the mitochondria or the nucleus. Recent studies suggest that JNK signalling pathway plays a major role in deciding the fate of the cell and inducing resistance to cDDP-induced apoptosis in human tumours. c-Jun N-terminal kinase regulates several important cellular functions including cell proliferation, differentiation, survival and apoptosis while activating and inhibiting substrates for phosphorylation transcription factors (c-Jun, ATF2: Activating transcription factor 2, p53 and so on), which subsequently induce pro-apoptosis and pro-survival factors expression. Therefore, it is suggested that JNK signal pathway is a double-edged sword in cDDP treatment, simultaneously being a significant pro-apoptosis factor but also being associated with increased resistance to cisplatin-based chemotherapy. This review focuses on current knowledge concerning the role of JNK in cell response to cDDP, as well as their role in cisplatin resistance. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  19. STAT3 precedes HIF1α transcriptional responses to oxygen and oxygen and glucose deprivation in human brain pericytes.

    PubMed

    Carlsson, Robert; Özen, Ilknur; Barbariga, Marco; Gaceb, Abderahim; Roth, Michaela; Paul, Gesine

    2018-01-01

    Brain pericytes are important to maintain vascular integrity of the neurovascular unit under both physiological and ischemic conditions. Ischemic stroke is known to induce an inflammatory and hypoxic response due to the lack of oxygen and glucose in the brain tissue. How this early response to ischemia is molecularly regulated in pericytes is largely unknown and may be of importance for future therapeutic targets. Here we evaluate the transcriptional responses in in vitro cultured human brain pericytes after oxygen and/or glucose deprivation. Hypoxia has been widely known to stabilise the transcription factor hypoxia inducible factor 1-alpha (HIF1α) and mediate the induction of hypoxic transcriptional programs after ischemia. However, we find that the transcription factors Jun Proto-Oncogene (c-JUN), Nuclear Factor Of Kappa Light Polypeptide Gene Enhancer In B-Cells (NFκB) and signal transducer and activator of transcription 3 (STAT3) bind genes regulated after 2hours (hs) of omitted glucose and oxygen before HIF1α. Potent HIF1α responses require 6hs of hypoxia to substantiate transcriptional regulation comparable to either c-JUN or STAT3. Phosphorylated STAT3 protein is at its highest after 5 min of oxygen and glucose (OGD) deprivation, whereas maximum HIF1α stabilisation requires 120 min. We show that STAT3 regulates angiogenic and metabolic pathways before HIF1α, suggesting that HIF1α is not the initiating trans-acting factor in the response of pericytes to ischemia.

  20. Cellular and molecular mechanisms in vascular smooth muscle cells by which total saponin extracted from Tribulus terrestris protects against artherosclerosis.

    PubMed

    Li, Mengquan; Guan, Yue; Liu, Jiaqi; Zhai, Fengguo; Zhang, Xiuping; Guan, Lixin

    2013-01-01

    Total saponin extracted from Tribulus terrestris (TSETT) has been reported to protect against atherosclerosis. We here investigate the cellular and molecular mechanisms of TSETT underlying protection against atherosclerosis. Cell proliferation was measured with Methyl thiazolyl tetrazolium (MTT); Intracellular H2O2 was measured with DCFH-DA, a fluorescent dye; Intracellular free Ca(2+) was measured with a confocal laser scanning microscopy; Genes expression was measured with gene array and real-time quantitative polymerase chain reaction (RT-PCR); Phosphorylation of extracellular signal-regulated kinase 1/2 (phospho-ERK1/2) was measured with cell-based enzyme-linked immunosorbent assay (ELISA) and western blotting. TSETT significantly suppressed the increase in cells proliferation induced by angiotensin II, significantly suppressed the increase in the intracellular production of H2O2 induced by angiotensin II, significantly inhibited the increase in intracellular free Ca(2+) induced by H2O2, significantly inhibited the increase in phospho-ERK1/2 induced by angiotensin II; significantly inhibited the increase in mRNA expression of c-fos, c-jun and pkc-α induced by angiotensin II. These findings provide a new insight into the antiatherosclerotic properties of TSETT and provide a pharmacological basis for the clinical application of TSETT in anti-atherosclerosis. © 2013 S. Karger AG, Basel.

  1. Striated muscle activator of Rho signalling (STARS) is a PGC-1α/oestrogen-related receptor-α target gene and is upregulated in human skeletal muscle after endurance exercise

    PubMed Central

    Wallace, Marita A; Hock, M Benjamin; Hazen, Bethany C; Kralli, Anastasia; Snow, Rod J; Russell, Aaron P

    2011-01-01

    Abstract The striated muscle activator of Rho signalling (STARS) is an actin-binding protein specifically expressed in cardiac, skeletal and smooth muscle. STARS has been suggested to provide an important link between the transduction of external stress signals to intracellular signalling pathways controlling genes involved in the maintenance of muscle function. The aims of this study were firstly, to establish if STARS, as well as members of its downstream signalling pathway, are upregulated following acute endurance cycling exercise; and secondly, to determine if STARS is a transcriptional target of peroxisome proliferator-activated receptor gamma co-activator 1-α (PGC-1α) and oestrogen-related receptor-α (ERRα). When measured 3 h post-exercise, STARS mRNA and protein levels as well as MRTF-A and serum response factor (SRF) nuclear protein content, were significantly increased by 140, 40, 40 and 40%, respectively. Known SRF target genes, carnitine palmitoyltransferase-1β (CPT-1β) and jun B proto-oncogene (JUNB), as well as the exercise-responsive genes PGC-1α mRNA and ERRα were increased by 2.3-, 1.8-, 4.5- and 2.7-fold, 3 h post-exercise. Infection of C2C12 myotubes with an adenovirus-expressing human PGC-1α resulted in a 3-fold increase in Stars mRNA, a response that was abolished following the suppression of endogenous ERRα. Over-expression of PGC-1α also increased Cpt-1β, Cox4 and Vegf mRNA by 6.2-, 2.0- and 2.0-fold, respectively. Suppression of endogenous STARS reduced basal Cpt-1β levels by 8.2-fold and inhibited the PGC-1α-induced increase in Cpt-1β mRNA. Our results show for the first time that the STARS signalling pathway is upregulated in response to acute endurance exercise. Additionally, we show in C2C12 myotubes that the STARS gene is a PGC-1α/ERRα transcriptional target. Furthermore, our results suggest a novel role of STARS in the co-ordination of PGC-1α-induced upregulation of the fat oxidative gene, CPT-1β. PMID:21486805

  2. Differential Receptor for Advanced Glycation End Products Expression in Preeclamptic, Intrauterine Growth Restricted, and Gestational Diabetic Placentas.

    PubMed

    Alexander, Kristen L; Mejia, Camilo A; Jordan, Clinton; Nelson, Michael B; Howell, Brian M; Jones, Cameron M; Reynolds, Paul R; Arroyo, Juan A

    2016-02-01

    Receptor for advanced glycation end products (RAGE) is a receptor implicated in the modulation of inflammation. Inflammation has been associated with pregnancy pathologies including preeclampsia (PE), intrauterine growth restriction (IUGR), and gestational diabetes mellitus (GDM). Our objective was to examine placental RAGE expression in PE, IUGR, and GDM complications. Human placental tissues were obtained for RAGE determination using Q-PCR, immunohistochemistry, and Western blot. Invasive trophoblast cells were cultured and treated with AGES for RAGE activation studies. Compared to control placenta, we observed: (i) decreased RAGE gene expression during GDM, (ii) increased RAGE protein in the PE placenta, and (iii) decreased RAGE protein in the IUGR placenta. In trophoblast cells exposed AGEs, we observed: (i) decreased trophoblast invasion, (ii) increased c-Jun N-terminal kinases (JNK) and Extracellular signal-regulated kinases (ERK), and (iii) increased TNF-α and IL-1β secretion. We conclude that placental RAGE is activated during PE and that RAGE-mediated inflammation in the trophoblast involves increased pro-inflammatory cytokine secretion. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Class I HDACs control a JIP1-dependent pathway for kinesin-microtubule binding in cardiomyocytes

    PubMed Central

    Blakeslee, Weston W.; Lin, Ying-Hsi; Stratton, Matthew S.; Tatman, Philip D.; Hu, Tianjing; Ferguson, Bradley S.; McKinsey, Timothy A.

    2018-01-01

    Class I histone deacetylase (HDAC) inhibitors block hypertrophy and fibrosis of the heart by suppressing pathological signaling and gene expression programs in cardiac myocytes and fibroblasts. The impact of HDAC inhibition in unstressed cardiac cells remains poorly understood. Here, we demonstrate that treatment of cultured cardiomyocytes with small molecule HDAC inhibitors leads to dramatic induction of c-Jun amino-terminal kinase (JNK)-interacting protein-1 (JIP1) mRNA and protein expression. In contrast to prior findings, elevated levels of endogenous JIP1 in cardiomyocytes failed to significantly alter JNK signaling or cardiomyocyte hypertrophy. Instead, HDAC inhibitor-mediated induction of JIP1 was required to stimulate expression of the kinesin heavy chain family member, KIF5A. We provide evidence for an HDAC-dependent regulatory circuit that promotes formation of JIP1:KIF5A:microtubule complexes that regulate intracellular transport of cargo such as autophagosomes. These findings define a novel role for class I HDACs in the control of the JIP1/kinesin axis in cardiomyocytes, and suggest that HDAC inhibitors could be used to alter microtubule transport in the heart. PMID:28886967

  4. Aβ-Induced Insulin Resistance and the Effects of Insulin on the Cholesterol Synthesis Pathway and Aβ Secretion in Neural Cells.

    PubMed

    Najem, Dema; Bamji-Mirza, Michelle; Yang, Ze; Zhang, Wandong

    2016-06-01

    Alzheimer's disease (AD) is characterized by amyloid-β (Aβ) toxicity, tau pathology, insulin resistance, neuroinflammation, and dysregulation of cholesterol homeostasis, all of which play roles in neurodegeneration. Insulin has polytrophic effects on neurons and may be at the center of these pathophysiological changes. In this study, we investigated possible relationships among insulin signaling and cholesterol biosynthesis, along with the effects of Aβ42 on these pathways in vitro. We found that neuroblastoma 2a (N2a) cells transfected with the human gene encoding amyloid-β protein precursor (AβPP) (N2a-AβPP) produced Aβ and exhibited insulin resistance by reduced p-Akt and a suppressed cholesterol-synthesis pathway following insulin treatment, and by increased phosphorylation of insulin receptor subunit-1 at serine 612 (p-IRS-S612) as compared to parental N2a cells. Treatment of human neuroblastoma SH-SY5Y cells with Aβ42 also increased p-IRS-S612, suggesting that Aβ42 is responsible for insulin resistance. The insulin resistance was alleviated when N2a-AβPP cells were treated with higher insulin concentrations. Insulin increased Aβ release from N2a-AβPP cells, by which it may promote Aβ clearance. Insulin increased cholesterol-synthesis gene expression in SH-SY5Y and N2a cells, including 24-dehydrocholesterol reductase (DHCR24) and 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR) through sterol-regulatory element-binding protein-2 (SREBP2). While Aβ42-treated SH-SY5Y cells exhibited increased HMGCR expression and c-Jun phosphorylation as pro-inflammatory responses, they also showed down-regulation of neuro-protective/anti-inflammatory DHCR24. These results suggest that Aβ42 may cause insulin resistance, activate JNK for c-Jun phosphorylation, and lead to dysregulation of cholesterol homeostasis, and that enhancing insulin signaling may relieve the insulin-resistant phenotype and the dysregulated cholesterol-synthesis pathway to promote Aβ release for clearance from neural cells.

  5. The dual-specificity phosphatase MKP-1 limits the cardiac hypertrophic response in vitro and in vivo.

    PubMed

    Bueno, O F; De Windt, L J; Lim, H W; Tymitz, K M; Witt, S A; Kimball, T R; Molkentin, J D

    2001-01-19

    Mitogen-activated protein kinase (MAPK) signaling pathways are important regulators of cell growth, proliferation, and stress responsiveness. A family of dual-specificity MAP kinase phosphatases (MKPs) act as critical counteracting factors that directly regulate the magnitude and duration of p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK) activation. Here we show that constitutive expression of MKP-1 in cultured primary cardiomyocytes using adenovirus-mediated gene transfer blocked the activation of p38, JNK1/2, and ERK1/2 and prevented agonist-induced hypertrophy. Transgenic mice expressing physiological levels of MKP-1 in the heart showed (1) no activation of p38, JNK1/2, or ERK1/2; (2) diminished developmental myocardial growth; and (3) attenuated hypertrophy in response to aortic banding and catecholamine infusion. These results provide further evidence implicating MAPK signaling factors as obligate regulators of cardiac growth and hypertrophy and demonstrate the importance of dual-specificity phosphatases as counterbalancing regulatory factors in the heart.

  6. Delivery of RNAi reagents in murine models of obesity and diabetes.

    PubMed

    Wilcox, Denise M; Yang, Ruojing; Morgan, Sherry J; Nguyen, Phong T; Voorbach, Martin J; Jung, Paul M; Haasch, Deanna L; Lin, Emily; Bush, Eugene N; Opgenorth, Terry J; Jacobson, Peer B; Collins, Christine A; Rondinone, Cristina M; Surowy, Terry; Landschulz, Katherine T

    2006-11-29

    RNA interference (RNAi) is an exciting new tool to effect acute in vivo knockdown of genes for pharmacological target validation. Testing the application of this technology to metabolic disease targets, three RNAi delivery methods were compared in two frequently utilized preclinical models of obesity and diabetes, the diet-induced obese (DIO) and B6.V-Lep/J (ob/ob) mouse. Intraperitoneal (i.p.) and high pressure hydrodynamic intravenous (i.v.) administration of naked siRNA, and low pressure i.v. administration of shRNA-expressing adenovirus were assessed for both safety and gene knockdown efficacy using constructs targeting cJun N-terminal kinase 1 (JNK1). Hydrodynamic delivery of siRNA lowered liver JNK1 protein levels 40% in DIO mice, but was accompanied by iatrogenic liver damage. The ob/ob model proved even more intolerant of this technique, with hydrodynamic delivery resulting in severe liver damage and death of most animals. While well-tolerated, i.p. injections of siRNA in DIO mice did not result in any knockdown or phenotypic changes in the mice. On the other hand, i.v. injected adenovirus expressing shRNA potently reduced expression of JNK1 in vivo by 95% without liver toxicity. In conclusion, i.p. and hydrodynamic injections of siRNA were ineffective and/or inappropriate for in vivo gene targeting in DIO and ob/ob mice, while adenovirus-mediated delivery of shRNA provided a relatively benign and effective method for exploring liver target silencing.

  7. The molecular mechanism underlying the proliferating and preconditioning effect of vitamin C on adipose-derived stem cells.

    PubMed

    Kim, Ji Hye; Kim, Wang-Kyun; Sung, Young Kwan; Kwack, Mi Hee; Song, Seung Yong; Choi, Joon-Seok; Park, Sang Gyu; Yi, TacGhee; Lee, Hyun-Joo; Kim, Dae-Duk; Seo, Hyun Min; Song, Sun U; Sung, Jong-Hyuk

    2014-06-15

    Although adipose-derived stem cells (ASCs) show promise for cell therapy, there is a tremendous need for developing ASC activators. In the present study, we investigated whether or not vitamin C increases the survival, proliferation, and hair-regenerative potential of ASCs. In addition, we tried to find the molecular mechanisms underlying the vitamin C-mediated stimulation of ASCs. Sodium-dependent vitamin C transporter 2 (SVCT2) is expressed in ASCs, and mediates uptake of vitamin C into ASCs. Vitamin C increased the survival and proliferation of ASCs in a dose-dependent manner. Vitamin C increased ERK1/2 phosphorylation, and inhibition of the mitogen-activated protein kinase (MAPK) pathway attenuated the proliferation of ASCs. Microarray and quantitative polymerase chain reaction showed that vitamin C primarily upregulated expression of proliferation-related genes, including Fos, E2F2, Ier2, Mybl1, Cdc45, JunB, FosB, and Cdca5, whereas Fos knock-down using siRNA significantly decreased vitamin C-mediated ASC proliferation. In addition, vitamin C-treated ASCs accelerated the telogen-to-anagen transition in C3H/HeN mice, and conditioned medium from vitamin C-treated ASCs increased the hair length and the Ki67-positive matrix keratinocytes in hair organ culture. Vitamin C increased the mRNA expression of HGF, IGFBP6, VEGF, bFGF, and KGF, which may mediate hair growth promotion. In summary, vitamin C is transported via SVCT2, and increased ASC proliferation is mediated by the MAPK pathway. In addition, vitamin C preconditioning enhanced the hair growth promoting effect of ASCs. Because vitamin C is safe and effective, it could be used to increase the yield and regenerative potential of ASCs.

  8. Alpinia officinarum Stimulates Osteoblast Mineralization and Inhibits Osteoclast Differentiation.

    PubMed

    Shim, Ki-Shuk; Lee, Chung-Jo; Yim, Nam-Hui; Gu, Min Jung; Ma, Jin Yeul

    2016-01-01

    Alpinia officinarum rhizome has been used as a traditional herbal remedy to treat inflammatory and internal diseases. Based on the previously observed inhibitory effect of A. officinarum rhizome in an arthritis model, we evaluated whether a water extract of A. officinarum rhizome (WEAO) would enhance in vitro osteoblast mineralization using calvarial osteoblast precursor cells or would inhibit in vitro osteoclast differentiation and bone resorption using bone marrow derived macrophages. In osteoblasts, WEAO enhanced the mRNA levels of transcription factor (runt-related transcription factor 2, smad1, smad5, and junB) and marker (bone morphogenetic protein-2, collagen type 1alpha1, and osteocalcin) genes related to osteoblast mineralization, consistent with increased alizarin red S staining intensity. WEAO markedly inhibited osteoclast differentiation by suppressing the receptor activator for nuclear factor-[Formula: see text]B ligand-induced downregulation of inhibitor of DNA binding 2 and V-maf musculoaponeurotic fibrosarcoma oncogene homolog B and the phosphorylation of c-Jun N-terminal kinase, p38, nuclear factor-[Formula: see text]B, c-Src, and Bruton's tyrosine kinase to induce nuclear factor of activated T cells cytoplasmic 1 expression. WEAO also suppressed the resorbing activity of mature osteoclasts by altering actin ring formation. Therefore, the results of this study demonstrate that WEAO stimulates osteoblast mineralization and inhibits osteoclast differentiation. Thus, WEAO may be a promising herbal candidate to treat or prevent pathological bone diseases by regulating the balance between osteoclast and osteoblast activity.

  9. Pinus densiflora extract protects human skin fibroblasts against UVB-induced photoaging by inhibiting the expression of MMPs and increasing type I procollagen expression.

    PubMed

    Jung, Hoe-Yune; Shin, Jae-Cheon; Park, Seon-Min; Kim, Na-Ri; Kwak, Wonjung; Choi, Bo-Hwa

    2014-01-01

    Exposure to ultraviolet (UV) light can cause skin photoaging, which is associated with upregulation of matrix metalloproteinases (MMPs) and downregulation of collagen synthesis. It has been reported that MMPs, especially MMP-1, MMP-3 and MMP-9, decrease the elasticity of the dermis by degrading collagen. In this study, we assessed the effects of Pinus densiflora extract (PDE) on photoaging and investigated its mechanism of action in human skin fibroblast (Hs68) cells after UVB exposure using real-time polymerase chain reaction, Western blot analysis, and enzymatic activity assays. PDE exhibited an antioxidant activity and inhibited elastase activities in vitro. We also found that PDE inhibited UVB-induced cytotoxicity, MMP-1 production and expression of MMP-1, -3 and -9 mRNA in Hs68 cells. In addition, PDE decreased UVB-induced MMP-2 activity and MMP-2 mRNA expression. Moreover, PDE prevented the decrease of type I procollagen mediated by exposure to UVB irradiation, an effect that is linked to the upregulation and downregulation of Smad3 and Smad7, respectively. Another effect of UV irradiation is to stimulate activator protein 1 (AP-1) activity via overexpression of c-Jun/c-Fos, which, in turn, upregulates MMP-1, -3, and -9. In this study, we found that PDE suppressed UV-induced c-Jun and c-Fos mRNA expression. Taken together, these results demonstrate that PDE regulates UVB-induced expression of MMPs and type I procollagen synthesis by inhibiting AP-1 activity and restoring impaired Smad signaling, suggesting that PDE may be useful as an effective anti-photoaging agent.

  10. Wnt5a suppresses inflammation-driven intervertebral disc degeneration via a TNF-α/NF-κB-Wnt5a negative-feedback loop.

    PubMed

    Li, Z; Zhang, K; Li, X; Pan, H; Li, S; Chen, F; Zhang, J; Zheng, Z; Wang, J; Liu, H

    2018-04-12

    This study was to investigate the molecular role of Wnt5a on inflammation-driven intervertebral disc degeneration (IVDD). The expression of Wnt5a was analyzed in human nucleus pulposus (NP) tissues with immunohistochemical staining. The effects of Wnt5a on matrix production were assessed by RT-qPCR and western blotting. Small interfering RNAs (siRNAs), promoter deletion assay, and promoter binding site mutant were used to reveal the molecular role of Wnt5a in TNF-α-induced matrix metalloproteinase (MMP) expression. The regulatory effects of TNF-α on Wnt5a were investigated with pharmachemical inhibitors and siRNA experiment. The expression of Wnt5a was elevated in moderately degenerated human NP tissue with similar expression pattern of TNF-α. In NP cells, Wnt5a significantly increased aggrecan and collagen II expression. Inhibition of JNK or interfering Sox9 gene expression significantly suppressed Wnt5a-induced matrix production. AP-1(JunB) binding sites were located in Sox9 promoter and mutation of these sites sabotaged Wnt5a-induced Sox9 up-regulation and subsequent matrix genes expression. Notably, Wnt5a, which was induced by TNF-α, on the other way round suppressed TNF-α-NF-κB (p65) signaling and subsequent MMPs expression. In vivo studies with MR imaging confirmed the protective role of Wnt5a in IVDD. Wnt5a, which can be induced by TNF-α, increased matrix production in a Sox9-dependent manner through the activation of JNK-AP1 (JunB) signaling, and antagonized TNF-α-induced up-regulation of MMPs through the inhibition of NF-κB signaling. It indicates that Wnt5a suppresses IVDD through a TNF-α/NF-κB-Wnt5a negative-feedback loop. Copyright © 2018 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  11. Arctigenin Increases Hemeoxygenase-1 Gene Expression by Modulating PI3K/AKT Signaling Pathway in Rat Primary Astrocytes.

    PubMed

    Jeong, Yeon-Hui; Park, Jin-Sun; Kim, Dong-Hyun; Kim, Hee-Sun

    2014-11-01

    In the present study, we found that the natural compound arctigenin inhibited hydrogen peroxide-induced reactive oxygen species (ROS) production in rat primary astrocytes. Since hemeoxygenase-1 (HO-1) plays a critical role as an antioxidant defense factor in the brain, we examined the effect of arctigenin on HO-1 expression in rat primary astrocytes. We found that arctigenin increased HO-1 mRNA and protein levels. Arctigenin also increases the nuclear translocation and DNA binding of Nrf2/c-Jun to the antioxidant response element (ARE) on HO-1 promoter. In addition, arctigenin increased ARE-mediated transcriptional activities in rat primary astrocytes. Further mechanistic studies revealed that arctigenin increased the phosphorylation of AKT, a downstream substrate of phosphatidylinositol 3-kinase (PI3K). Treatment of cells with a PI3K-specific inhibitor, LY294002, suppressed the HO-1 expression, Nrf2 DNA binding and ARE-mediated transcriptional activities in arctigenin-treated astrocyte cells. The results collectively suggest that PI3K/AKT signaling pathway is at least partly involved in HO-1 expression by arctigenin via modulation of Nrf2/ARE axis in rat primary astrocytes.

  12. Arctigenin Increases Hemeoxygenase-1 Gene Expression by Modulating PI3K/AKT Signaling Pathway in Rat Primary Astrocytes

    PubMed Central

    Jeong, Yeon-Hui; Park, Jin-Sun; Kim, Dong-Hyun; Kim, Hee-Sun

    2014-01-01

    In the present study, we found that the natural compound arctigenin inhibited hydrogen peroxide-induced reactive oxygen species (ROS) production in rat primary astrocytes. Since hemeoxygenase-1 (HO-1) plays a critical role as an antioxidant defense factor in the brain, we examined the effect of arctigenin on HO-1 expression in rat primary astrocytes. We found that arctigenin increased HO-1 mRNA and protein levels. Arctigenin also increases the nuclear translocation and DNA binding of Nrf2/c-Jun to the antioxidant response element (ARE) on HO-1 promoter. In addition, arctigenin increased ARE-mediated transcriptional activities in rat primary astrocytes. Further mechanistic studies revealed that arctigenin increased the phosphorylation of AKT, a downstream substrate of phosphatidylinositol 3-kinase (PI3K). Treatment of cells with a PI3K-specific inhibitor, LY294002, suppressed the HO-1 expression, Nrf2 DNA binding and ARE-mediated transcriptional activities in arctigenin-treated astrocyte cells. The results collectively suggest that PI3K/AKT signaling pathway is at least partly involved in HO-1 expression by arctigenin via modulation of Nrf2/ARE axis in rat primary astrocytes. PMID:25489416

  13. Oryza sativa (Rice) Hull Extract Inhibits Lipopolysaccharide-Induced Inflammatory Response in RAW264.7 Macrophages by Suppressing Extracellular Signal-regulated Kinase, c-Jun N-terminal Kinase, and Nuclear Factor-κB Activation.

    PubMed

    Ha, Sang Keun; Sung, Jeehye; Choi, Inwook; Kim, Yoonsook

    2016-01-01

    Rice ( Oryza sativa ) is a major cereal crop in many Asian countries and an important staple food source. Rice hulls have been reported to possess antioxidant activities. In this study, we evaluated the antiinflammatory effects of rice hull extract and associated signal transduction mechanisms in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. We found that rice hull extract inhibited nitric oxide (NO) and prostaglandin E 2 by suppressing the expression of inducible NO synthase and cyclooxygenase-2, respectively. The release of interleukin-1β and tumor necrosis factor-α was also reduced in a dose-dependent manner. Furthermore, rice hull extract attenuated the activation of nuclear factor-kappa B (NF-κB), as well as the phosphorylation of mitogen-activated protein kinases, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK), in LPS-stimulated RAW264.7 cells. This suggests that rice hull extract decreases the production of inflammatory mediators by downregulating ERK and JNK and the NF-κB signal pathway in RAW 264.7 cells. Rice hull extract inhibits the lipopolysaccharide-induced inflammatory response in RAW264.7 macrophages.Rice hull extract inhibited nitric oxide and prostaglandin E 2 by suppressing the expression of inducible NO synthase and cyclooxygenase-2, respectively.Rice hull extract exerted anti-inflammatory effect through inhibition of nuclear factor-kappa B, extracellular signal-regulated kinase and c-Jun N-terminal kinase signaling pathways.Rice hull extract may provide a potential therapeutic approach for inflammatory diseases. Abbreviations used: COX-2: cyclooxygenase-2, ERK: extracellular signal-regulated kinase, IκB: inhibitory kappa B, IL-1β: interleukin-1β, iNOS: inducible NO synthase, JNK: c-Jun N-terminal kinase, LPS: lipopolysaccharide, MAPKs: mitogen-activated protein kinases, NF-κB: nuclear factor-κB, NO: nitric oxide, PGE2: prostaglandin E2, RHE: rice hull extract, ROS: reactive oxygen species, TNF-α: tumor necrosis factor-α.

  14. Dexamethasone reduces mitomycin C-related inflammatory cytokine expression without inducing further cell death in corneal fibroblasts.

    PubMed

    Chang, Shu-Wen; Chou, San-Fang; Yu, Shuen-Yuen

    2010-01-01

    The purpose of this study was to investigate the effect of dexamethasone (DEX) on mitomycin C (MMC)-induced inflammatory cytokine expression in corneal fibroblasts. Primary human corneal fibroblasts were treated with MMC, dexamethasone, or in combination. Morphological changes and cell growth were documented using phase-contrast microscopy and PicoGreen assay, respectively. Cell apoptosis was evaluated by annexin V/propidium iodide staining, whereas viability was tested by the live/dead assay and analyzed by flow cytometry. The relative expression of interleukin-8 and monocyte chemoattractant protein-1 was investigated with quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay. Mitogen-activated protein kinase activation and mitogen-activated protein kinase phosphatase-1 expression were documented by Western blot analysis. We found that MMC induced corneal fibroblast elongation, apoptosis, and retarded cell growth, whereas DEX did not significantly alter cell morphology or viability. The combination of DEX and MMC did not induce additional apoptosis and cell death. DEX dose dependently down-regulated basal and MMC-induced interleukin-8 and monocyte chemoattractant protein-1 mRNA expression and protein secretion. DEX attenuated MMC-induced p38 and Jun N-terminal kinases activation and up-regulated expression. These suggested that DEX may inhibit MMC-induced interleukin-8 and monocyte chemoattractant protein-1 by up-regulating MKP-1 expression, which subsequently deactivated p38 and Jun N-terminal kinases activation. Combined MMC and DEX treatment may facilitate corneal wound healing.

  15. Differential co-expression and regulation analyses reveal different mechanisms underlying major depressive disorder and subsyndromal symptomatic depression.

    PubMed

    Xu, Fan; Yang, Jing; Chen, Jin; Wu, Qingyuan; Gong, Wei; Zhang, Jianguo; Shao, Weihua; Mu, Jun; Yang, Deyu; Yang, Yongtao; Li, Zhiwei; Xie, Peng

    2015-04-03

    Recent depression research has revealed a growing awareness of how to best classify depression into depressive subtypes. Appropriately subtyping depression can lead to identification of subtypes that are more responsive to current pharmacological treatment and aid in separating out depressed patients in which current antidepressants are not particularly effective. Differential co-expression analysis (DCEA) and differential regulation analysis (DRA) were applied to compare the transcriptomic profiles of peripheral blood lymphocytes from patients with two depressive subtypes: major depressive disorder (MDD) and subsyndromal symptomatic depression (SSD). Six differentially regulated genes (DRGs) (FOSL1, SRF, JUN, TFAP4, SOX9, and HLF) and 16 transcription factor-to-target differentially co-expressed gene links or pairs (TF2target DCLs) appear to be the key differential factors in MDD; in contrast, one DRG (PATZ1) and eight TF2target DCLs appear to be the key differential factors in SSD. There was no overlap between the MDD target genes and SSD target genes. Venlafaxine (Efexor™, Effexor™) appears to have a significant effect on the gene expression profile of MDD patients but no significant effect on the gene expression profile of SSD patients. DCEA and DRA revealed no apparent similarities between the differential regulatory processes underlying MDD and SSD. This bioinformatic analysis may provide novel insights that can support future antidepressant R&D efforts.

  16. The basic leucine zipper domain of c-Jun functions in transcriptional activation through interaction with the N terminus of human TATA-binding protein-associated factor-1 (human TAF(II)250).

    PubMed

    Lively, Tricia N; Nguyen, Tuan N; Galasinski, Shelly K; Goodrich, James A

    2004-06-18

    We previously reported that c-Jun binds directly to the N-terminal 163 amino acids of Homo sapiens TATA-binding protein-associated factor-1 (hsTAF1), causing a derepression of transcription factor IID (TFIID)-driven transcription (Lively, T. N., Ferguson, H. A., Galasinski, S. K., Seto, A. G., and Goodrich, J. A. (2001) J. Biol. Chem. 276, 25582-25588). This region of hsTAF1 binds TATA-binding protein to repress TFIID DNA binding and transcription. Here we show that the basic leucine zipper domain of c-Jun, which allows for DNA binding and homodimerization, is necessary and sufficient for interaction with hsTAF1. Interestingly, the isolated basic leucine zipper domain of c-Jun was able to derepress TFIID-directed basal transcription in vitro. Moreover, when the N-terminal region of hsTAF1 was added to in vitro transcription reactions and overexpressed in cells, it blocked c-Jun activation. c-Fos, another basic leucine zipper protein, did not interact with hsTAF1, but c-Fos/c-Jun heterodimers did bind the N terminus of hsTAF1. Our studies show that, in addition to dimerization and DNA binding, the well characterized basic leucine zipper domain of c-Jun functions in transcriptional activation by binding to the N terminus of hsTAF1 to derepress transcription.

  17. Mucin1 shifts Smad3 signaling from the tumor-suppressive pSmad3C/p21(WAF1) pathway to the oncogenic pSmad3L/c-Myc pathway by activating JNK in human hepatocellular carcinoma cells.

    PubMed

    Li, Qiongshu; Liu, Guomu; Yuan, Hongyan; Wang, Juan; Guo, Yingying; Chen, Tanxiu; Zhai, Ruiping; Shao, Dan; Ni, Weihua; Tai, Guixiang

    2015-02-28

    Mucin1 (MUC1) is a transmembrane glycoprotein that acts as an oncogene in human hepatic tumorigenesis. Hepatocellular carcinoma (HCC) cells often gain advantage by reducing the tumor-suppressive activity of transforming growth factor beta (TGF-β) together with stimulation of its oncogenic activity as in MUC1 expressing HCC cells; however, molecular mechanisms remain largely unknown. Type I TGF-β receptor (TβRI) and c-Jun NH2-terminal kinase (JNK) differentially phosphorylate Smad3 mediator to create 2 phosphorylated forms: COOH-terminally phosphorylated Smad3 (pSmad3C) and linker-phosphorylated Smad3 (pSmad3L). Here, we report that MUC1 overexpression in HCC cell lines suppresses TβRI-mediated pSmad3C signaling which involves growth inhibition by up-regulating p21(WAF1). Instead, MUC1 directly activates JNK to stimulate oncogenic pSmad3L signaling, which fosters cell proliferation by up-regulating c-Myc. Conversely, MUC1 gene silencing in MUC1 expressing HCC cells results in preserved tumor-suppressive function via pSmad3C, while eliminating pSmad3L-mediated oncogenic activity both in vitro and in vivo. In addition, high correlation between MUC1 and pSmad3L/c-Myc but not pSmad3C/p21(WAF1) expression was observed in HCC tissues from patients. Collectively, these results indicate that MUC1 shifts Smad3 signaling from a tumor-suppressive pSmad3C/p21(WAF1) to an oncogenic pSmad3L/c-Myc pathway by directly activating JNK in HCC cells, suggesting that MUC1 is an important target for HCC therapy.

  18. REGULATION OF INFLAMMATORY TRANSCRIPTION FACTORS BY HEAT SHOCK PROTEIN 70 IN PRIMARY CULTURED ASTROCYTES EXPOSED TO OXYGEN–GLUCOSE DEPRIVATION

    PubMed Central

    KIM, J. Y.; YENARI, M. A.; LEE, J. E.

    2018-01-01

    Inflammation is an important event in ischemic injury. These immune responses begin with the expression of pro-inflammatory genes modulating transcription factors, such as nuclear factor-κB (NF-κB), activator protein-1 (AP-1), and signal transducers and activator of transcription-1 (STAT-1). The 70-kDa heat shock protein (Hsp70) can both induce and arrest inflammatory reactions and lead to improved neurological outcome in experimental brain injury and ischemia. Since Hsp70 are induced under heat stress, we investigated the link between Hsp70 neuroprotection and phosphorylation of inhibitor of κB (IκB), c-Jun N-terminal kinases (JNK) and p38 through co-immunoprecipitation and enzyme-linked immunosorbent assay (ELISA) assay. Transcription factors and pro-inflammatory genes were quantified by immunoblotting, electrophoretic-mobility shift assay and reverse transcription-polymerase chain reaction assays. The results showed that heat stress led to Hsp70 overexpression which rendered neuroprotection after ischemia-like injury. Overexpression Hsp70 also interrupts the phosphorylation of IκB, JNK and p38 and bluntsDNA binding of their transcription factors (NF-κB, AP-1 and STAT-1), effectively downregulating the expression of pro-inflammatory genes inheat-pretreatedastrocytes. Takentogether, these results suggest that overexpression of Hsp70 may protect against brain ischemia via an anti-inflammatory mechanism by interrupting the phosphorylation of upstream of transcription factors. PMID:25485480

  19. Regulation of MMP-3 expression and secretion by the chemokine eotaxin-1 in human chondrocytes

    PubMed Central

    2011-01-01

    Background Osteoarthritis (OA) is characterized by the degradation of articular cartilage, marked by the breakdown of matrix proteins. Studies demonstrated the involvement of chemokines in this process, and some may potentially serve as diagnostic markers and therapeutic targets; however, the underlying signal transductions are not well understood. Methods We investigated the effects of the CC chemokine eotaxin-1 (CCL11) on the matrix metalloproteinase (MMP) expression and secretion in the human chondrocyte cell line SW1353 and primary chondrocytes. Results Eotaxin-1 significantly induced MMP-3 mRNA expression in a dose-dependent manner. Inhibitors of extracellular signal-regulated kinase (ERK) and p38 kinase were able to repress eotaxin-1-induced MMP-3 expression. On the contrary, Rp-adenosine-3',5'-cyclic monophosphorothioate (Rp-cAMPs), a competitive cAMP antagonist for cAMP receptors, and H-89, a protein kinase A (PKA) inhibitor, markedly enhanced eotaxin-1-induced MMP-3 expression. These results suggest that MMP-3 expression is specifically mediated by the G protein-coupled eotaxin-1 receptor activities. Interestingly, little amount of MMP-3 protein was detected in the cell lysates of eotaxin-1-treated SW1353 cells, and most of MMP-3 protein was in the culture media. Furthermore we found that the eotaxin-1-dependent MMP-3 protein secretion was regulated by phospholipase C (PLC)-protein kinase C (PKC) cascade and c-Jun N-terminal kinase (JNK)/mitogen-activated protein (MAP) kinase pathways. These data indicate a specific regulation of MMP-3 secretion also by eotaxin-1 receptor activities. Conclusions Eotaxin-1 not only induces MMP-3 gene expression but also promotes MMP-3 protein secretion through G protein-coupled eotaxin-1 receptor activities. Chemokines, such as eotaxin-1, could be a potential candidate in the diagnosis and treatment of arthritis. PMID:22114952

  20. c-jun-N-Terminal Kinase (JNK) for the Treatment of Amyotrophic Lateral Sclerosis

    DTIC Science & Technology

    2014-10-01

    AWARD NUMBER: W81XWH-12-1-0431 TITLE: “c-jun-N-Terminal Kinase (JNK) for the Treatment of Amyotrophic Lateral Sclerosis ” PRINCIPAL INVESTIGATOR...TITLE AND SUBTITLE “c-jun-N-Terminal Kinase (JNK) for the Treatment of Amyotrophic Lateral Scelerosis” 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH

  1. Signaling pathways involved in the inhibition of epidermal growth factor receptor by erlotinib in hepatocellular cancer

    PubMed Central

    Huether, Alexander; Höpfner, Michael; Sutter, Andreas P; Baradari, Viola; Schuppan, Detlef; Scherübl, Hans

    2006-01-01

    AIM: To examine the underlying mechanisms of erlotinib-induced growth inhibition in hepatocellular carcinoma (HCC). METHODS: Erlotinib-induced alterations in gene expression were evaluated using cDNA array technology; changes in protein expression and/or protein activation due to erlotinib treatment as well as IGF-1-induced EGFR transactivation were investigated using Western blotting. RESULTS: Erlotinib treatment inhibited the mitogen activated protein (MAP)-kinase pathway and signal transducer of activation and transcription (STAT)-mediated signaling which led to an altered expression of apoptosis and cell cycle regulating genes as demonstrated by cDNA array technology. Overexpression of proapoptotic factors like caspases and gadds associated with a down-regulation of antiapoptotic factors like Bcl-2, Bcl-XL or jun D accounted for erlotinib's potency to induce apoptosis. Downregulation of cell cycle regulators promoting the G1/S-transition and overexpression of cyclin-dependent kinase inhibitors and gadds contributed to the induction of a G1/G0-arrest in response to erlotinib. Furthermore, we displayed the transactivation of EGFR-mediated signaling by the IGF-1-receptor and showed erlotinib’s inhibitory effects on the receptor-receptor cross talk. CONCLUSION: Our study sheds light on the under-standing of the mechanisms of action of EGFR-TK-inhibition in HCC-cells and thus might facilitate the design of combination therapies that act additively or synergistically. Moreover, our data on the pathways responding to erlotinib treatment could be helpful in predicting the responsiveness of tumors to EGFR-TKIs in the future. PMID:16937526

  2. Interfering RNA against PKC-α inhibits TNF-α-induced IP3R1 expression and improves glomerular filtration rate in rats with fulminant hepatic failure.

    PubMed

    Wang, Dong-Lei; Dai, Wen-Ying; Wang, Wen; Wen, Ying; Zhou, Ying; Zhao, Yi-Tong; Wu, Jian; Liu, Pei

    2018-05-01

    We have reported that tumor necrosis factor-α (TNF-α) is critical for reduction of glomerular filtration rate (GFR) in rats with fulminant hepatic failure (FHF). The present study aims to evaluate the underlying mechanisms of decreased GFR during acute hepatic failure. Rats with FHF induced by d-galactosamine plus lipopolysaccharide (GalN/LPS) were injected intravenously with recombinant lentivirus harboring short hairpin RNA against the protein kinase C-α ( PKC-α) gene (Lenti-shRNA-PKC-α). GFR, serum levels of aminotransferases, creatinine, urea nitrogen, potassium, sodium, chloride, TNF-α, and endothelin-1 (ET-1), as well as type 1 inositol 1,4,5-trisphosphate receptor (IP 3 R1) expression in renal tissue were assessed. The effects of PKC-α silencing on TNF-α-induced IP 3 R1, specificity protein 1 (SP-1), and c-Jun NH 2 -terminal kinase (JNK) expression, as well as cytosolic calcium content were determined in glomerular mesangial cell (GMCs) with RNAi against PKC-α. Renal IP 3 R1 overexpression was abrogated by pre-treatment with Lenti-shRNA-PKC-α. The PKC-α silence significantly improved the compromised GFR, reduced Cr levels, and reversed the decrease in glomerular inulin space and the increase in glomerular calcium content in GalN/LPS-exposed rats. TNF-α treatment increased expression of PKC-α, IP 3 R1, specificity protein 1 (SP-1), JNK, and p-JNK in GMCs and increased Ca 2 + release and binding activity of SP-1 to the IP 3 R1 promoter. These effects were blocked by transfection of siRNA against the PKC-α gene, and the PKC-α gene silence also restored cytosolic Ca 2+ concentration. RNAi targeting PKC-α inhibited TNF-α-induced IP 3 R1 overexpression and in turn improved compromised GFR in the development of acute kidney injury during FHF in rats.

  3. The extraction of simple relationships in growth factor-specific multiple-input and multiple-output systems in cell-fate decisions by backward elimination PLS regression.

    PubMed

    Akimoto, Yuki; Yugi, Katsuyuki; Uda, Shinsuke; Kudo, Takamasa; Komori, Yasunori; Kubota, Hiroyuki; Kuroda, Shinya

    2013-01-01

    Cells use common signaling molecules for the selective control of downstream gene expression and cell-fate decisions. The relationship between signaling molecules and downstream gene expression and cellular phenotypes is a multiple-input and multiple-output (MIMO) system and is difficult to understand due to its complexity. For example, it has been reported that, in PC12 cells, different types of growth factors activate MAP kinases (MAPKs) including ERK, JNK, and p38, and CREB, for selective protein expression of immediate early genes (IEGs) such as c-FOS, c-JUN, EGR1, JUNB, and FOSB, leading to cell differentiation, proliferation and cell death; however, how multiple-inputs such as MAPKs and CREB regulate multiple-outputs such as expression of the IEGs and cellular phenotypes remains unclear. To address this issue, we employed a statistical method called partial least squares (PLS) regression, which involves a reduction of the dimensionality of the inputs and outputs into latent variables and a linear regression between these latent variables. We measured 1,200 data points for MAPKs and CREB as the inputs and 1,900 data points for IEGs and cellular phenotypes as the outputs, and we constructed the PLS model from these data. The PLS model highlighted the complexity of the MIMO system and growth factor-specific input-output relationships of cell-fate decisions in PC12 cells. Furthermore, to reduce the complexity, we applied a backward elimination method to the PLS regression, in which 60 input variables were reduced to 5 variables, including the phosphorylation of ERK at 10 min, CREB at 5 min and 60 min, AKT at 5 min and JNK at 30 min. The simple PLS model with only 5 input variables demonstrated a predictive ability comparable to that of the full PLS model. The 5 input variables effectively extracted the growth factor-specific simple relationships within the MIMO system in cell-fate decisions in PC12 cells.

  4. High Degree of Overlap between Responses to a Virus and to the House Dust Mite Allergen in Airway Epithelial Cells

    PubMed Central

    Golebski, Korneliusz; Luiten, Silvia; van Egmond, Danielle; de Groot, Esther; Röschmann, Kristina Irene Lisolette; Fokkens, Wytske Johanna; van Drunen, Cornelis Maria

    2014-01-01

    Background Airway epithelium is widely considered to play an active role in immune responses through its ability to detect changes in the environment and to generate a microenvironment for immune competent cells. Therefore, besides its role as a physical barrier, epithelium affects the outcome of the immune response by the production of various pro-inflammatory mediators. Methods We stimulated airway epithelial cells with viral double stranded RNA analogue poly(I:C) or with house dust mite in a time course of 24 hours. In order to determine cytokines production by stimulated cells, we performed multiplex enzyme linked immunosorbant assay (ELISA). Results We demonstrate that the temporal pattern of the genes that respond to virus exposure in airway epithelium resembles to a significant degree their pattern of response to HDM. The gene expression pattern of EGR1, DUSP1, FOSL1, JUN, MYC, and IL6 is rather similar after viral (poly(I:C)) and HDM exposure. However, both triggers also induce a specific response (e.g. ATF3, FOS, and NFKB1). We confirmed these data by showing that epithelial cells produce a variety of similar mediators in response to both poly(I:C) and HDM challenge (IL1-RA, IL-17, IFN-α and MIP1-α), sometimes with a quantitative difference in response (IL2-R, IL-6, IL-8, MCP-1, MIG, and HGF). Interestingly, only four mediators (IL-12, IP-10, RANTES and VEGF) where up-regulated specifically by poly(I:C) and not by HDM. Additionally, we report that pre-exposure to HDM deregulates production of cytokines and mediators in response to poly(I:C). Conclusions Epithelial cells responses to the HDM-allergen and a virus strongly resemble both in gene expression and in protein level explaining why these two responses may affect each other. PMID:24498371

  5. High degree of overlap between responses to a virus and to the house dust mite allergen in airway epithelial cells.

    PubMed

    Golebski, Korneliusz; Luiten, Silvia; van Egmond, Danielle; de Groot, Esther; Röschmann, Kristina Irene Lisolette; Fokkens, Wytske Johanna; van Drunen, Cornelis Maria

    2014-01-01

    Airway epithelium is widely considered to play an active role in immune responses through its ability to detect changes in the environment and to generate a microenvironment for immune competent cells. Therefore, besides its role as a physical barrier, epithelium affects the outcome of the immune response by the production of various pro-inflammatory mediators. We stimulated airway epithelial cells with viral double stranded RNA analogue poly(I:C) or with house dust mite in a time course of 24 hours. In order to determine cytokines production by stimulated cells, we performed multiplex enzyme linked immunosorbant assay (ELISA). We demonstrate that the temporal pattern of the genes that respond to virus exposure in airway epithelium resembles to a significant degree their pattern of response to HDM. The gene expression pattern of EGR1, DUSP1, FOSL1, JUN, MYC, and IL6 is rather similar after viral (poly(I:C)) and HDM exposure. However, both triggers also induce a specific response (e.g. ATF3, FOS, and NFKB1). We confirmed these data by showing that epithelial cells produce a variety of similar mediators in response to both poly(I:C) and HDM challenge (IL1-RA, IL-17, IFN-α and MIP1-α), sometimes with a quantitative difference in response (IL2-R, IL-6, IL-8, MCP-1, MIG, and HGF). Interestingly, only four mediators (IL-12, IP-10, RANTES and VEGF) where up-regulated specifically by poly(I:C) and not by HDM. Additionally, we report that pre-exposure to HDM deregulates production of cytokines and mediators in response to poly(I:C). Epithelial cells responses to the HDM-allergen and a virus strongly resemble both in gene expression and in protein level explaining why these two responses may affect each other.

  6. Prolonging microtubule dysruption enhances the immunogenicity of chronic lymphocytic leukaemia cells

    PubMed Central

    Shaha, S P; Tomic, J; Shi, Y; Pham, T; Mero, P; White, D; He, L; Baryza, J L; Wender, P A; Booth, J W; Spaner, D E

    2009-01-01

    Cytotoxic chemotherapies do not usually mediate the expression of an immunogenic gene programme in tumours, despite activating many of the signalling pathways employed by highly immunogenic cells. Concomitant use of agents that modulate and complement stress-signalling pathways activated by chemotherapeutic agents may then enhance the immunogenicity of cancer cells, increase their susceptibility to T cell-mediated controls and lead to higher clinical remission rates. Consistent with this hypothesis, the microtubule inhibitor, vincristine, caused chronic lymphocytic leukaemia (CLL) cells to die rapidly, without increasing their immunogenicity. Protein kinase C (PKC) agonists (such as bryostatin) delayed the death of vincristine-treated CLL cells and made them highly immunogenic, with increased stimulatory abilities in mixed lymphocyte responses, production of proinflammatory cytokines, expression of co-stimulatory molecules and activation of c-Jun N-terminal kinase (JNK), p38 and nuclear factor kappa B (NF-κB) signalling pathways. This phenotype was similar to the result of activating CLL cells through Toll-like receptors (TLRs), which communicate ‘danger’ signals from infectious pathogens. Use of PKC agonists and microtubule inhibitors to mimic TLR-signalling, and increase the immunogenicity of CLL cells, has implications for the design of chemo-immunotherapeutic strategies. PMID:19737143

  7. Ras activation modulates methylglyoxal-induced mesangial cell apoptosis through superoxide production.

    PubMed

    Huang, Wei Jan; Tung, Chun Wu; Ho, Cheng; Yang, Jen Tsung; Chen, Min Li; Chang, Pey Jium; Lee, Pei Hsien; Lin, Chun Liang; Wang, Jeng Yi

    2007-01-01

    While previous studies have demonstrated that diabetic nephropathy is attributable to glucose-derived dicarbonyl compounds, methylglyoxal (MGO)-inducing apoptosis in renal mesangial cells, the molecular mechanism of upper stream redox signaling modulation, has not been fully elucidated. Rat mesangial cells pretreated with or without superoxide dismutase, diphenyloniodium, SB203580, and manumycin A were cultured in methylglyoxal stress-induced apoptosis. Signaling protein expression, flow cytometry, and morphological features of apoptotic cell death were assessed. Methylglyoxal decreased cell viability in mesangial cells. Superoxide mediated methylglyoxal-induced caspase 3 cleavage. Pretreatment with diphenyloniodium, SB203580, and manumycin A reduced methylglyoxal augmentation of superoxide synthesis and caspase-3 activation. Methylglyoxal rapidly enhanced Ras activation and progressively increased cytosolic P38 and nuclear c-Jun activation. Scavenging of superoxide by superoxide dismutase or diphenyloniodium, inhibiting P38 by SB203580, and inhibiting Ras with manumycin A successfully reduced the promoting effect of methylglyoxal on P38 and c-Jun phosphorylation (activation). Furthermore, pretreatment with superoxide dismutase, diphenyloniodium, SB203580, and manumycin A significantly attenuated methylglyoxal induction of apoptosis on the basis of Annexin-V assay and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end-labelling (TUNEL) staining. This study has shown that methylglyoxal increased Ras modulation of superoxide-mediated P38 activation and c-Jun activation, which resulted in increased apoptosis.

  8. The Ubiquitin Ligase COP1 Promotes Glioma Cell Proliferation by Preferentially Downregulating Tumor Suppressor p53.

    PubMed

    Zou, Shenshan; Zhu, Yufu; Wang, Bin; Qian, Fengyuan; Zhang, Xiang; Wang, Lei; Fu, Chunling; Bao, Hanmo; Xie, Manyi; Gao, Shangfeng; Yu, Rutong; Shi, Hengliang

    2017-09-01

    Human glioma causes substantial morbidity and mortality worldwide. However, the molecular mechanisms underlying glioma progression are still largely unknown. COP1 (constitutively photomorphogenic 1), an E3 ubiquitin ligase, is important in cell survival, development, cell growth, and cancer biology by regulating different substrates. As is well known, both tumor suppressor p53 and oncogenic protein c-JUN could be ubiquitinated and degraded by ubiquitin ligase COP1, which may be the reason that COP1 serves as an oncogene or a tumor suppressor in different cancer types. Up to now, the possible role of COP1 in human glioma is still unclear. In the present study, we found that the expression of COP1 was upregulated in human glioma tissues. The role of COP1 in glioma cell proliferation was investigated using COP1 loss- and gain-of-function. The results showed that downregulation of COP1 by short hairpin RNA (shRNA) inhibited glioma cell proliferation, while overexpression of COP1 significantly promoted it. Furthermore, we demonstrated that COP1 only interacted with and regulated p53, but not c-JUN. Taken together, these results indicate that COP1 may play a role in promoting glioma cell proliferation by interacting with and downregulating tumor suppressor p53 rather than oncogenic protein c-JUN.

  9. Avian sarcoma virus 17 carries the jun oncogene.

    PubMed Central

    Maki, Y; Bos, T J; Davis, C; Starbuck, M; Vogt, P K

    1987-01-01

    Biologically active molecular clones of avian sarcoma virus 17 (ASV 17) contain a replication-defective proviral genome of 3.5 kilobases (kb). The genome retains partial gag and env sequences, which flank a cell-derived putative oncogene of 0.93 kb, termed jun. The jun gene lacks preserved coding domains of tyrosine-specific protein kinases. It also shows no significant nucleic acid homology with other known oncogenes. The probable transformation-specific protein in ASV 17-transformed cells is a 55-kDa gag-jun fusion product. Images PMID:3033666

  10. Angelica archangelia Prevented Collagen Degradation by Blocking Production of Matrix Metalloproteinases in UVB-exposed Dermal Fibroblasts.

    PubMed

    Sun, Zhengwang; Hwang, Eunson; Park, Sang Yong; Zhang, Mengyang; Gao, Wei; Lin, Pei; Yi, Tae-Hoo

    2016-07-01

    Angelica archangelia (AA), a traditional herb, has attracted attention as an agent with potential for use in the prevention of chronic skin diseases. This study examined the photoprotective effects of AA on the inhibition of matrix metalloproteinases (MMPs) and collagen degradation in UVB-irradiated normal human dermal fibroblasts. Our results showed that AA markedly blocked collagen degradation by restraining the production of MMPs in UVB-exposed fibroblasts. We also investigated the underlying mechanism behind the effects of AA. AA attenuated UVB-triggered interleukin-6 (IL-6) and promoted the expression of transforming growth factor β1. Application of AA extract (10, 100 μg mL(-1) ) significantly diminished UVB-induced extracellular signal-regulated kinase and Jun-N-terminal kinase phosphorylation, which consequently reduced phosphorylated c-Fos and c-Jun. Our results indicated that AA inhibited the UVB-induced expression of MMPs by inhibiting mitogen-activated protein kinase signaling pathways and activator protein-1 activation. Our results suggest that AA is a promising botanical agent for use against skin photoaging. © 2016 The American Society of Photobiology.

  11. Role of inhibitory κB kinase and c-Jun NH2-terminal kinase in the development of hepatic insulin resistance in critical illness diabetes.

    PubMed

    Jiang, Shaoning; Messina, Joseph L

    2011-09-01

    Hyperglycemia and insulin resistance induced by acute injuries or critical illness are associated with increased mortality and morbidity, as well as later development of type 2 diabetes. The molecular mechanisms underlying the acute onset of insulin resistance following critical illness remain poorly understood. In the present studies, the roles of serine kinases, inhibitory κB kinase (IKK) and c-Jun NH(2)-terminal kinase (JNK), in the acute development of hepatic insulin resistance were investigated. In our animal model of critical illness diabetes, activation of hepatic IKK and JNK was observed as early as 15 min, concomitant with the rapid impairment of hepatic insulin signaling and increased serine phosphorylation of insulin receptor substrate 1. Inhibition of IKKα or IKKβ, or both, by adenovirus vector-mediated expression of dominant-negative IKKα or IKKβ in liver partially restored insulin signaling. Similarly, inhibition of JNK1 kinase by expression of dominant-negative JNK1 also resulted in improved hepatic insulin signaling, indicating that IKK and JNK1 kinases contribute to critical illness-induced insulin resistance in liver.

  12. Mitomycin-C induces the apoptosis of human Tenon's capsule fibroblast by activation of c-Jun N-terminal kinase 1 and caspase-3 protease.

    PubMed

    Seong, Gong Je; Park, Channy; Kim, Chan Yoon; Hong, Young Jae; So, Hong-Seob; Kim, Sang-Duck; Park, Raekil

    2005-10-01

    To investigate whether mitochondrial dysfunction and mitogen-activated protein kinase family proteins are implicated in apoptotic signaling of human Tenon's capsule fibroblasts (HTCFs) by mitomycin-C. Apoptosis was determined by Hoechst nuclei staining, agarose gel electrophoresis, and flow cytometry in HTCFs treated with 0.4 mg/mL mitomycin-C for 5 minutes. Enzymatic digestion of florigenic biosubstrate assessed the catalytic activity of caspase proteases, including caspase-3, caspase-8, and caspase-9. Phosphotransferase activity of c-Jun N-terminal kinase (JNK) 1 was measured by in vitro immune complex kinase assay using c-Jun(1-79) protein as a substrate. Mitochondrial membrane potential transition (MPT) was measured by flow cytometric analysis of JC-1 staining. Mitomycin-C (0.4 mg/mL) induced the apoptosis of HTCFs, which was characterized as nucleic acid and genomic DNA fragmentation, chromatin condensation, and sub-G(0)/G(1) fraction of cell cycle increase. The catalytic activity of caspase-3 and caspase-9 was significantly increased and was accompanied by cytosolic release of cytochrome c and MPT in response to mitomycin-C. Treatment with mitomycin-C resulted in the increased expression of Fas, FasL, Bad, and phosphorylated p53 and a decreased level of phosphorylated AKT. Treatment with mitomycin-C also increased the phosphotransferase activity and tyrosine phosphorylation of JNK1, whose inhibitor significantly suppressed the cytotoxicity of mitomycin-C. Mitomycin-C induced the apoptosis of HTCFs through the activation of intrinsic and extrinsic caspase cascades with mitochondrial dysfunction. It also activated Fas-mediated apoptotic signaling of fibroblasts. Furthermore, the activation of JNK1 played a major role in the cytotoxicity of mitomycin-C.

  13. The Effects of Aronia melanocarpa 'Viking' Extracts in Attenuating RANKL-Induced Osteoclastic Differentiation by Inhibiting ROS Generation and c-FOS/NFATc1 Signaling.

    PubMed

    Ghosh, Mithun; Kim, In Sook; Lee, Young Min; Hong, Seong Min; Lee, Taek Hwan; Lim, Ji Hong; Debnath, Trishna; Lim, Beong Ou

    2018-03-08

    This study aimed to determine the anti-osteoclastogenic effects of extracts from Aronia melanocarpa 'Viking' (AM) and identify the underlying mechanisms in vitro. Reactive oxygen species (ROS) are signal mediators in osteoclast differentiation. AM extracts inhibited ROS production in RAW 264.7 cells in a dose-dependent manner and exhibited strong radical scavenging activity. The extracts also attenuated the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated osteoclasts. To attain molecular insights, the effect of the extracts on the signaling pathways induced by receptor activator of nuclear factor kappa B ligand (RANKL) were also investigated. RANKL triggers many transcription factors through the activation of mitogen-activated protein kinase (MAPK) and ROS, leading to the induction of osteoclast-specific genes. The extracts significantly suppressed RANKL-induced activation of MAPKs, such as extracellular signal-regulated kinase (ERK), c-Jun- N -terminal kinase (JNK) and p38 and consequently led to the downregulation of c-Fos and nuclear factor of activated T cells 1 (NFATc1) protein expression which ultimately suppress the activation of the osteoclast-specific genes, cathepsin K, TRAP, calcitonin receptor and integrin β₃. In conclusion, our findings suggest that AM extracts inhibited RANKL-induced osteoclast differentiation by downregulating ROS generation and inactivating JNK/ERK/p38, nuclear factor kappa B (NF-κB)-mediated c-Fos and NFATc1 signaling pathway.

  14. Experience-Dependent Induction of Hippocampal ΔFosB Controls Learning.

    PubMed

    Eagle, Andrew L; Gajewski, Paula A; Yang, Miyoung; Kechner, Megan E; Al Masraf, Basma S; Kennedy, Pamela J; Wang, Hongbing; Mazei-Robison, Michelle S; Robison, Alfred J

    2015-10-07

    The hippocampus (HPC) is known to play an important role in learning, a process dependent on synaptic plasticity; however, the molecular mechanisms underlying this are poorly understood. ΔFosB is a transcription factor that is induced throughout the brain by chronic exposure to drugs, stress, and variety of other stimuli and regulates synaptic plasticity and behavior in other brain regions, including the nucleus accumbens. We show here that ΔFosB is also induced in HPC CA1 and DG subfields by spatial learning and novel environmental exposure. The goal of the current study was to examine the role of ΔFosB in hippocampal-dependent learning and memory and the structural plasticity of HPC synapses. Using viral-mediated gene transfer to silence ΔFosB transcriptional activity by expressing ΔJunD (a negative modulator of ΔFosB transcriptional function) or to overexpress ΔFosB, we demonstrate that HPC ΔFosB regulates learning and memory. Specifically, ΔJunD expression in HPC impaired learning and memory on a battery of hippocampal-dependent tasks in mice. Similarly, general ΔFosB overexpression also impaired learning. ΔJunD expression in HPC did not affect anxiety or natural reward, but ΔFosB overexpression induced anxiogenic behaviors, suggesting that ΔFosB may mediate attentional gating in addition to learning. Finally, we found that overexpression of ΔFosB increases immature dendritic spines on CA1 pyramidal cells, whereas ΔJunD reduced the number of immature and mature spine types, indicating that ΔFosB may exert its behavioral effects through modulation of HPC synaptic function. Together, these results suggest collectively that ΔFosB plays a significant role in HPC cellular morphology and HPC-dependent learning and memory. Consolidation of our explicit memories occurs within the hippocampus, and it is in this brain region that the molecular and cellular processes of learning have been most closely studied. We know that connections between hippocampal neurons are formed, eliminated, enhanced, and weakened during learning, and we know that some stages of this process involve alterations in the transcription of specific genes. However, the specific transcription factors involved in this process are not fully understood. Here, we demonstrate that the transcription factor ΔFosB is induced in the hippocampus by learning, regulates the shape of hippocampal synapses, and is required for memory formation, opening up a host of new possibilities for hippocampal transcriptional regulation. Copyright © 2015 the authors 0270-6474/15/3513773-11$15.00/0.

  15. Cross-linking of surface Ig receptors on murine B lymphocytes stimulates the expression of nuclear tetradecanoyl phorbol acetate-response element-binding proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiles, T.C.; Liu, J.L.; Rothstein, T.L.

    1991-03-15

    Cross-linking of sIg on primary B lymphocytes leads to increased nuclear DNA-binding activity specific for the tetradecanoyl phorbol acetate-response element (TRE), as judged by gel mobility shift assays. Stimulation of B cells to enter S phase of the cell cycle by treatment with the combination of phorbol ester plus calcium ionophore also stimulated nuclear TRE-binding activity within 2 h, with maximal expression at 4 h; however, phorbol ester and calcium ionophore were not as effective in stimulating binding activity when examined separately. Stimulated nuclear expression of TRE-binding activity appears to require protein synthesis. Fos- and Jun/AP-1-related proteins participate directly inmore » the identified nucleoprotein complex, as shown by the ability of c-fos- and c-jun-specific antisera to either alter or completely abolish electrophoretic migration of the complex in native gels. Further, UV photo-cross-linking studies identified two major TRE-binding protein species, whose sizes correspond to TRE-binding proteins derived from HeLa cell nuclear extracts. The results suggest that in primary B cells nuclear TRE-binding activity represents a downstream signaling event that occurs subsequent to changes in protein kinase C activity and intracellular Ca2+ but that can be triggered physiologically through sIg.« less

  16. NF-κB– and AP-1–Mediated DNA Looping Regulates Osteopontin Transcription in Endotoxin-Stimulated Murine Macrophages

    PubMed Central

    Zhao, Wei; Wang, Lijuan; Zhang, Meng; Wang, Peng; Zhang, Lei; Yuan, Chao; Qi, Jianni; Qiao, Yu; Kuo, Paul C.; Gao, Chengjiang

    2013-01-01

    Osteopontin (OPN) is expressed by various immune cells and modulates both innate and adaptive immune responses. However, the molecular mechanisms that control opn gene expression, especially at the chromatin level, remain largely unknown. We have previously demonstrated many specific cis- and trans-regulatory elements that determine the extent of endotoxin (LPS)-mediated induction of OPN synthesis in murine macrophages. In the present study, we confirm that NF-κB also plays an important role in the setting of LPS-stimulated OPN expression through binding to a distal regulatory element. Importantly, we demonstrate that LPS stimulates chromosomal loops in the OPN promoter between NF-κB binding site and AP-1 binding site using chromosome conformation capture technology. The crucial role of NF-κB and AP-1 in LPS-stimulated DNA looping was confirmed, as small interfering RNA knock-down of NF-κB p65 and AP-1 c-Jun exhibited decreased levels of DNA looping. Furthermore, we demonstrate that p300 can form a complex with NF-κB and AP-1 and is involved in DNA looping and LPS-induced OPN expression. Therefore, we have identified an essential mechanism to remodel the local chromatin structures and spatial conformations to regulate LPS-induced OPN expression. PMID:21257959

  17. Dexamethasone inhibits IL-12p40 production in lipopolysaccharide-stimulated human monocytic cells by down-regulating the activity of c-Jun N-terminal kinase, the activation protein-1, and NF-kappa B transcription factors.

    PubMed

    Ma, Wei; Gee, Katrina; Lim, Wilfred; Chambers, Kelly; Angel, Jonathan B; Kozlowski, Maya; Kumar, Ashok

    2004-01-01

    IL-12 plays a critical role in the development of cell-mediated immune responses and in the pathogenesis of inflammatory and autoimmune disorders. Dexamethasone (DXM), an anti-inflammatory glucocorticoid, has been shown to inhibit IL-12p40 production in LPS-stimulated monocytic cells. In this study, we investigated the molecular mechanism by which DXM inhibits IL-12p40 production by studying the role of the mitogen-activated protein kinases (MAPKs), and the key transcription factors involved in human IL-12p40 production in LPS-stimulated monocytic cells. A role for c-Jun N-terminal kinase (JNK) MAPK in LPS-induced IL-12p40 regulation in a promonocytic THP-1/CD14 cell line was demonstrated by using specific inhibitors of JNK activation, SP600125 and a dominant-negative stress-activated protein/extracellular signal-regulated kinase kinase-1 mutant. To identify transcription factors regulating IL-12p40 gene transcription, extensive deletion analyses of the IL-12p40 promoter was performed. The results revealed the involvement of a sequence encompassing the AP-1-binding site, in addition to that of NF-kappaB. The role of AP-1 in IL-12p40 transcription was confirmed by using antisense c-fos and c-jun oligonucleotides. Studies conducted to understand the regulation of AP-1 and NF-kappaB activation by JNK MAPK revealed that both DXM and SP600125 inhibited IL-12p40 gene transcription by inhibiting the activation of AP-1 and NF-kappaB transcription factors as revealed by luciferase reporter and gel mobility shift assays. Taken together, our results suggest that DXM may inhibit IL-12p40 production in LPS-stimulated human monocytic cells by down-regulating the activation of JNK MAPK, the AP-1, and NF-kappaB transcription factors.

  18. A peptide fragment of ependymin neurotrophic factor uses protein kinase C and the mitogen-activated protein kinase pathway to activate c-Jun N-terminal kinase and a functional AP-1 containing c-Jun and c-Fos proteins in mouse NB2a cells.

    PubMed

    Adams, David S; Hasson, Brendan; Boyer-Boiteau, Anne; El-Khishin, Adam; Shashoua, Victor E

    2003-05-01

    Ependymin (EPN) is a goldfish brain neurotrophic factor previously shown to function in a variety of cellular events related to long-term memory formation and neuronal regeneration. CMX-8933, an 8-amino-acid synthetic peptide fragment of EPN, was designed for aiding an investigation of the biological properties of this glycoprotein. We reported from previous studies that treatment of mouse neuroblastoma (NB2a) cultures with CMX-8933 promotes activation of transcription factor AP-1, a characteristic previously associated with the following full-length neurotrophic factors: nerve growth factor, neurotropin-3, and brain-derived neurotrophic factor. The CMX-8933-activated AP-1 specifically bound an AP-1 consensus probe and appeared to contain c-Jun and c-Fos protein components in antibody supershift experiments. Because AP-1 influences a variety of positive and negative cellular processes, determined in part by its exact protein composition and mechanism of activation, we extended these initial AP-1 observations in the current study to confirm the identity of the CMX-8933-activated c-Jun and c-Fos components. CMX-8933 increases the enzymatic activity of c-Jun N-terminal kinase (JNK), increases the phosphorylation of JNK and c-Jun proteins, and increases the cellular titers of c-Jun and c-Fos mRNAs. Furthermore, the AP-1 activated by CMX-8933 is functional, insofar as it transactivates both synthetic and natural AP-1-dependent reporter plasmids. Inhibition studies indicate that activation of the 8933-induced AP-1 occurs via the mitogen-activated protein kinase pathway. These data are in agreement with the recently proposed model for the conversion of short- to long-term synaptic plasticity and memory, in which a JNK-activated transcription factor AP-1, containing c-Jun and c-Fos components, functions at the top of a hierarchy of transcription factors known to regulate long-term neural plasticity. Copyright 2003 Wiley-Liss, Inc.

  19. Mobile phone electromagnetic radiation activates MAPK signaling and regulates viability in Drosophila.

    PubMed

    Lee, Kyu-Sun; Choi, Jong-Soon; Hong, Sae-Yong; Son, Tae-Ho; Yu, Kweon

    2008-07-01

    Mobile phones are widely used in the modern world. However, biological effects of electromagnetic radiation produced by mobile phones are largely unknown. In this report, we show biological effects of the mobile phone 835 MHz electromagnetic field (EMF) in the Drosophila model system. When flies were exposed to the specific absorption rate (SAR) 1.6 W/kg, which is the proposed exposure limit by the American National Standards Institute (ANSI), more than 90% of the flies were viable even after the 30 h exposure. However, in the SAR 4.0 W/kg strong EMF exposure, viability dropped from the 12 h exposure. These EMF exposures triggered stress response and increased the production of reactive oxygen species. The EMF exposures also activated extracellular signal regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) signaling, but not p38 kinase signaling. Interestingly, SAR 1.6 W/kg activated mainly ERK signaling and expression of an anti-apoptotic gene, whereas SAR 4.0 W/kg strongly activated JNK signaling and expression of apoptotic genes. In addition, SAR 4.0 W/kg amplified the number of apoptotic cells in the fly brain. These findings demonstrate that the exposure limit on electromagnetic radiation proposed by ANSI triggered ERK-survival signaling but the strong electromagnetic radiation activated JNK-apoptotic signaling in Drosophila.

  20. [Effects of inhibiting the phosphorylation of JNK by absorbed INF-γon the remodeling of nasal mucosa in allergic rhinitis rats].

    PubMed

    Li, Q; Chen, Y L; Ma, Y Y; Zhang, Y D; Sun, C W; You, C P

    2016-07-05

    Objective: To study the role of phosphorylated JNK(c-Jun N-terminal kinase) on nasal mucosa remodeling in allergic rhinitis(AR) rats and the influence of IFN-γon IL-1β,JNK and nasal mucosa remodeling. Method: According to random number table,48 Wistar rats were divided into control group(A group),AR group(B group),IFN-γgroup(C group) and triamcinolone acetonide group(D group).The rats in group B,C and D were sensitized and provocated for inducing AR by intraperitoneal injection of ovalbumin(OVA) and Al(OH)₃.Thirty minutes before intranasally challenged,rats in three groups were administrated by instillation of PBS,IFN-γand triamcinolone acetonide into nasal cavities,while the group A rats were administrated by saline solution.Ten rats in each group were selected to enter the final experiment.The density of IL-1βin serum and nasal lavage fluid were tested by ELISA.The mean absorbance (m A ) of phosphorylated JNK and c-Jun were tested by immunohistochemistry.Western Blot detected the P-JNK level in nasal tissue homogenate. Result: The density of IL-1βin serum and nasal lavage fluid in group C and group D were significantly lower than that of group B ( P <0.01).Immunohistochemistry study showed that the protein expression level of phosphorylated JNK and c-Jun of nasal mucosa were significantly increased in group B,but significantly reduced in group C and group D .The mA of phosphorylated JNK and c-Jun in group B were significantly higher than those in the group C and group D( P <0.01).The Western blot showed that the P-JNK of nasal tissue homogenate in group B was higher than that of group C and group D ( P <0.01). Conclusion: The phosphorylation of JNK played an important role in nasal mucosa remodeling.IFN-γcould inhibit the phosphorylation of JNK and reduce the nasal mucosa remodeling.The mechanisms may be achieved through down-regulation of IL-1β. Copyright© by the Editorial Department of Journal of Clinical Otorhinolaryngology Head and Neck Surgery.

  1. Metallic Nickel Nanoparticles May Exhibit Higher Carcinogenic Potential than Fine Particles in JB6 Cells

    PubMed Central

    Bowman, Linda; Zou, Baobo; Mao, Guochuan; Xu, Jin; Castranova, Vincent; Zhao, Jinshun; Ding, Min

    2014-01-01

    While numerous studies have described the pathogenic and carcinogenic effects of nickel compounds, little has been done on the biological effects of metallic nickel. Moreover, the carcinogenetic potential of metallic nickel nanoparticles is unknown. Activator protein-1 (AP-1) and nuclear factor-κB (NF-κB) have been shown to play pivotal roles in tumor initiation, promotion, and progression. Mutation of the p53 tumor suppressor gene is considered to be one of the steps leading to the neoplastic state. The present study examines effects of metallic nickel fine and nanoparticles on tumor promoter or suppressor gene expressions as well as on cell transformation in JB6 cells. Our results demonstrate that metallic nickel nanoparticles caused higher activation of AP-1 and NF-κB, and a greater decrease of p53 transcription activity than fine particles. Western blot indicates that metallic nickel nanoparticles induced a higher level of protein expressions for R-Ras, c-myc, C-Jun, p65, and p50 in a time-dependent manner. In addition, both metallic nickel nano- and fine particles increased anchorage-independent colony formation in JB6 P+ cells in the soft agar assay. These results imply that metallic nickel fine and nanoparticles are both carcinogenetic in vitro in JB6 cells. Moreover, metallic nickel nanoparticles may exhibit higher carcinogenic potential, which suggests that precautionary measures should be taken in the use of nickel nanoparticles or its compounds in nanomedicine. PMID:24691273

  2. BAG3 is upregulated by c-Jun and stabilizes JunD.

    PubMed

    Li, Chao; Li, Si; Kong, De-Hui; Meng, Xin; Zong, Zhi-Hong; Liu, Bao-Qin; Guan, Yifu; Du, Zhen-Xian; Wang, Hua-Qin

    2013-12-01

    BAG3 plays a regulatory role in a number of cellular processes, including cell proliferation, apoptosis, adhesion and migration, epithelial-mesenchymal transition (EMT), autophagy activation, and virus infection. The AP-1 transcription factors are implicated in a variety of important biological processes including cell differentiation, proliferation, apoptosis and oncogenesis. Recently, it has been reported that AP-1 protein c-Jun inhibits autophagy and enhances apoptotic cell death mediated by starvation. However, the molecular mechanisms remain unclear. For the first time, the current study demonstrated that serum starvation downregulated BAG3 at the transcriptional level via c-Jun. In addition, the current study reported that BAG3 stabilized JunD mRNA, which was, at least in part, responsible for the promotion of serum starvation mediated-growth inhibition by BAG3. © 2013.

  3. Luteolin, a novel natural inhibitor of tumor progression locus 2 serine/threonine kinase, inhibits tumor necrosis factor-alpha-induced cyclooxygenase-2 expression in JB6 mouse epidermis cells.

    PubMed

    Kim, Jong-Eun; Son, Joe Eun; Jang, Young Jin; Lee, Dong Eun; Kang, Nam Joo; Jung, Sung Keun; Heo, Yong-Seok; Lee, Ki Won; Lee, Hyong Joo

    2011-09-01

    Targeting tumor necrosis factor (TNF)-α-mediated signal pathways may be a promising strategy for developing chemopreventive agents, because TNF-α-mediated cyclooxygenase (COX)-2 expression plays a key role in inflammation and carcinogenesis. Luteolin [2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4-chromenone] exerts anticarcinogenic effects, although little is known about the underlying molecular mechanisms and specific targets of this compound. In the present study, we found that luteolin inhibited TNF-α-induced COX-2 expression by down-regulating the transactivation of nuclear factor-κB and activator protein-1. Furthermore, luteolin inhibited TNF-α-induced phosphorylation of mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase 1/ERK/p90(RSK), mitogen-activated protein kinase kinase 4/c-Jun N-terminal kinase/c-Jun, and Akt/p70(S6K). However, it had no effect on the phosphorylation of p38. These effects of luteolin on TNF-α-mediated signaling pathways and COX-2 expression are similar to those achieved by blocking tumor progression locus 2 serine/threonine kinase (TPL2) using pharmacologic inhibitors and small interfering RNAs. Luteolin inhibited TPL2 activity in vitro and in TPL2 immunoprecipitation kinase assays by binding directly in an ATP-competitive manner. Overall, these results indicate that luteolin exerts potent chemopreventive activities, which primarily target TPL2.

  4. UV-induced DNA damage is an intermediate step in UV-induced expression of human immunodeficiency virus type 1, collagenase, c-fos, and metallothionein.

    PubMed Central

    Stein, B; Rahmsdorf, H J; Steffen, A; Litfin, M; Herrlich, P

    1989-01-01

    UV irradiation of human and murine cells enhances the transcription of several genes. Here we report on the primary target of relevant UV absorption, on pathways leading to gene activation, and on the elements receiving the UV-induced signal in the human immunodeficiency virus type 1 (HIV-1) long terminal repeat, in the gene coding for collagenase, and in the cellular oncogene fos. In order to induce the expression of genes. UV radiation needs to be absorbed by DNA and to cause DNA damage of the kind that cannot be repaired by cells from patients with xeroderma pigmentosum group A. UV-induced activation of the three genes is mediated by the major enhancer elements (located between nucleotide positions -105 and -79 of HIV-1, between positions -72 and -65 of the collagenase gene, and between positions -320 and -299 of fos). These elements share no apparent sequence motif and bind different trans-acting proteins; a member of the NF kappa B family binds to the HIV-1 enhancer, the heterodimer of Jun and Fos (AP-1) binds to the collagenase enhancer, and the serum response factors p67 and p62 bind to fos. DNA-binding activities of the factors recognizing the HIV-1 and collagenase enhancers are augmented in extracts from UV-treated cells. The increase in activity is due to posttranslational modification. While AP-1 resides in the nucleus and must be modulated there, NF kappa B is activated in the cytoplasm, indicating the existence of a cytoplasmic signal transduction pathway triggered by UV-induced DNA damage. In addition to activation, new synthesis of AP-1 is induced by UV radiation. Images PMID:2557547

  5. Downregulation of Cellular c-Jun N-Terminal Protein Kinase and NF-κB Activation by Berberine May Result in Inhibition of Herpes Simplex Virus Replication

    PubMed Central

    Song, Siwei; Qiu, Min; Chu, Ying; Chen, Deyan; Wang, Xiaohui; Su, Airong

    2014-01-01

    Berberine is a quaternary ammonium salt from the protoberberine group of isoquinoline alkaloids. Some reports show that berberine exhibits anti-inflammatory, antitumor, and antiviral properties by modulating multiple cellular signaling pathways, including p53, nuclear factor κB (NF-κB), and mitogen-activated protein kinase. In the present study, we investigated the antiviral effect of berberine against herpes simplex virus (HSV) infection. Current antiherpes medicines such as acyclovir can lessen the recurring activation when used early at infection but are unable to prevent or cure infections where treatment has selected for resistant mutants. In searching for new antiviral agents against herpesvirus infection, we found that berberine reduced viral RNA transcription, protein synthesis, and virus titers in a dose-dependent manner. To elucidate the mechanism of its antiviral activity, the effect of berberine on the individual steps of viral replication cycle of HSV was investigated via time-of-drug addition assay. We found that berberine acted at the early stage of HSV replication cycle, between viral attachment/entry and genomic DNA replication, probably at the immediate-early gene expression stage. We further demonstrated that berberine significantly reduced HSV-induced NF-κB activation, as well as IκB-α degradation and p65 nuclear translocation. Moreover, we found that berberine also depressed HSV-induced c-Jun N-terminal kinase (JNK) phosphorylation but had little effect on p38 phosphorylation. Our results suggest that the berberine inhibition of HSV infection may be mediated through modulating cellular JNK and NF-κB pathways. PMID:24913175

  6. Korean Red Ginseng Extract Enhances the Anticancer Effects of Sorafenib through Abrogation of CREB and c-Jun Activation in Renal Cell Carcinoma.

    PubMed

    Kim, Chulwon; Lee, Jong Hyun; Baek, Seung Ho; Ko, Jeong-Hyeon; Nam, Dongwoo; Ahn, Kwang Seok

    2017-07-01

    Although application of sorafenib in the treatment of human renal cell carcinoma (RCC) remains one of the best examples of successful targeted therapy, majority of RCC patients suffer from its side effects as well as develop resistance to this targeted therapy. Thus, there is a need to promote novel alternative therapies for the treatment of RCC. In this study, we investigated whether Korean red ginseng extract (KRGE) could inhibit the proliferation and induce chemosensitization in human renal cancer cells. Also, we used a human phospho-antibody array containing 46 antibodies against signaling molecules to examine a subset of phosphorylation events after KRGE and sorafenib combination treatment. Korean red ginseng extract suppressed the proliferation of two RCC cell lines; activated caspase-3; caused poly(ADP-ribose) polymerase cleavage; abrogated the expression of B-cell lymphoma 2, B-cell lymphoma extra large, survivin, inhibitors of apoptosis proteins-1/2, cyclooxygenase-2, cyclin D1, matrix metallopeptidase-9, and vascular endothelial growth factor; and upregulated pro-apoptotic gene products. Interestingly, KRGE enhanced the cytotoxic and apoptotic effects of sorafenib in RCC cells. The combination treatment of KRGE and sorafenib more clearly suppressed cyclic adenosine monophosphate response element-binding protein and c-Jun phosphorylation and induced phosphorylation of p53 than did the individual treatment regimen. Our results clearly demonstrate that KRGE can enhance the anticancer activity of sorafenib and may have a substantial potential in the treatment of RCC. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  7. c-Jun N-terminal kinase 3 (JNK3) Mediates Paraquat- and Rotenone-Induced Dopaminergic Neuron Death

    PubMed Central

    Choi, Won Seok; Abel, Glen; Klintworth, Heather; Flavell, Richard A.; Xia, Zhengui

    2011-01-01

    Mechanistic studies underlying dopaminergic neuron death may identify new drug targets for the treatment of Parkinson disease (PD). Epidemiological studies have linked pesticide exposure to increased risk for sporadic PD. Here, we investigated the role of c-Jun N-terminal kinase 3 (JNK3), a neural-specific JNK isoform, in dopaminergic neuron death induced by the pesticides rotenone and paraquat. The role of JNK3 was evaluated using RNA silencing and gene deletion to block JNK3 signaling. Using an antibody that recognizes all isoforms of activated JNKs, we found that paraquat and rotenone stimulate JNK phosphorylation in primary cultured dopaminergic neurons. In cultured neurons transfected with Jnk3-specific siRNA and in neurons from Jnk3−/− mice, JNK phosphorylation was nearly abolished, suggesting that JNK3 is the main JNK isoform activated in dopaminergic neurons by these pesticides. Paraquat- and rotenone-induced death of dopaminergic neurons was also significantly reduced by Jnk3 siRNA or Jnk3 gene deletion and deletion of the Jnk3 gene completely attenuated paraquat-induced dopaminergic neuron death and motor-deficits in vivo. Our data identify JNK3 as a common and critical mediator of dopaminergic neuron death induced by paraquat and rotenone, suggesting that it is a potential drug target for PD treatment. PMID:20418776

  8. Changes in the Coding and Non-coding Transcriptome and DNA Methylome that Define the Schwann Cell Repair Phenotype after Nerve Injury.

    PubMed

    Arthur-Farraj, Peter J; Morgan, Claire C; Adamowicz, Martyna; Gomez-Sanchez, Jose A; Fazal, Shaline V; Beucher, Anthony; Razzaghi, Bonnie; Mirsky, Rhona; Jessen, Kristjan R; Aitman, Timothy J

    2017-09-12

    Repair Schwann cells play a critical role in orchestrating nerve repair after injury, but the cellular and molecular processes that generate them are poorly understood. Here, we perform a combined whole-genome, coding and non-coding RNA and CpG methylation study following nerve injury. We show that genes involved in the epithelial-mesenchymal transition are enriched in repair cells, and we identify several long non-coding RNAs in Schwann cells. We demonstrate that the AP-1 transcription factor C-JUN regulates the expression of certain micro RNAs in repair Schwann cells, in particular miR-21 and miR-34. Surprisingly, unlike during development, changes in CpG methylation are limited in injury, restricted to specific locations, such as enhancer regions of Schwann cell-specific genes (e.g., Nedd4l), and close to local enrichment of AP-1 motifs. These genetic and epigenomic changes broaden our mechanistic understanding of the formation of repair Schwann cell during peripheral nervous system tissue repair. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Formononetin attenuates osteoclastogenesis via suppressing the RANKL-induced activation of NF-κB, c-Fos, and nuclear factor of activated T-cells cytoplasmic 1 signaling pathway.

    PubMed

    Huh, Jeong-Eun; Lee, Wong In; Kang, Jung Won; Nam, Dongwoo; Choi, Do-Young; Park, Dong-Suk; Lee, Sang Hoon; Lee, Jae-Dong

    2014-11-26

    Formononetin (1), a plant-derived phytoestrogen, possesses bone protective properties. To address the potential therapeutic efficacy and mechanism of action of 1, we investigated its antiosteoclastogenic activity and its effect on nuclear factor-kappaB ligand (RANKL)-induced bone-marrow-derived macrophages (BMMs). Compound 1 markedly inhibited RANKL-induced osteoclast differentiation in the absence of cytotoxicity, by regulating the expression of osteoprotegerin (OPG) and RANKL in BMMs and in cocultured osteoblasts. Compound 1 significantly inhibited RANKL-induced tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, monocyte chemoattractant protein-1 (MCP-1), regulated on activation normal T cell expressed and secreted (RANTES), and macrophage inflammatory protein-1α (MIP-1α) in a concentration-dependent manner. These effects were accompanied by a decrease in RANKL-induced activation of the NF-κB p65 subunit, degradation of inhibitor κBα (IκBα), induction of NF-κB, and phosphorylation of AKT, extracellular-signal regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK). NF-κB siRNA suppressed AKT, ERK, JNK, and p38 MAPK phosphorylation. Furthermore, 1 significantly suppressed c-Fos and nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), key transcription factors during osteoclastogenesis. SP600125, a specific inhibitor of JNK, reduced RANKL-induced expression of phospho-c-Jun, c-Fos, and NFATc1 and inhibited osteoclast formation. These results suggested that 1 acted as an antiresorption agent by blocking osteoclast activation.

  10. Glucocorticoid-mediated BIM induction and apoptosis are regulated by Runx2 and c-Jun in leukemia cells

    PubMed Central

    Heidari, N; Miller, A V; Hicks, M A; Marking, C B; Harada, H

    2012-01-01

    Glucocorticoids (GCs) are common components of many chemotherapeutic regimens for lymphoid malignancies. GC-induced apoptosis involves an intrinsic mitochondria-dependent pathway. BIM (BCL-2-interacting mediator of cell death), a BCL-2 homology 3-only pro-apoptotic protein, is upregulated by dexamethasone (Dex) treatment in acute lymphoblastic leukemia cells and has an essential role in Dex-induced apoptosis. It has been indicated that Dex-induced BIM is regulated mainly by transcription, however, the molecular mechanisms including responsible transcription factors are unclear. In this study, we found that Dex treatment induced transcription factor Runx2 and c-Jun in parallel with BIM induction. Dex-induced BIM and apoptosis were decreased in cells harboring dominant-negative c-Jun and were increased in cells with c-Jun overexpression. Cells harboring short hairpin RNA for Runx2 also decreased BIM induction and apoptosis. On the Bim promoter, c-Jun bound to and activated the AP-1-binding site at about −2.7 kb from the transcription start site. Treatment with RU486, a GC receptor antagonist, blocked Dex-induced Runx2, c-Jun and BIM induction, as well as apoptosis. Furthermore, pretreatment with SB203580, a p38-mitogen-activated protein kinase (MAPK) inhibitor, decreased Dex-induced Runx2, c-Jun and BIM, suggesting that p38-MAPK activation is upstream of the induction of these molecules. In conclusion, we identified the critical signaling pathway for GC-induced apoptosis, and targeting these molecules may be an alternative approach to overcome GC-resistance in leukemia treatment. PMID:22825467

  11. Cyanidin-3-glucoside Alleviates 4-Hydroxyhexenal-Induced NLRP3 Inflammasome Activation via JNK-c-Jun/AP-1 Pathway in Human Retinal Pigment Epithelial Cells.

    PubMed

    Jin, Xiaolu; Wang, Chengtao; Wu, Wei; Liu, Tingting; Ji, Baoping; Zhou, Feng

    2018-01-01

    Recently, the NLRP3 inflammasome activation in the eyes has been known to be associated with the pathogenesis of age-related macular degeneration. The aim of this study was to investigate the protective effects of cyanidin-3-glucoside (C3G), an important anthocyanin with great potential for preventing eye diseases, against 4-hydroxyhexenal- (HHE-) induced inflammatory damages in human retinal pigment epithelial cells, ARPE-19. We noticed that C3G pretreatment to the ARPE-19 cells rescued HHE-induced antiproliferative effects. Cell apoptosis ratio induced by HHE was also decreased by C3G, measured by flow cytometry. The activation of NLRP3 inflammasome induced by HHE was found with increases of caspase-1 activity, proinflammatory cytokine releases (IL-1 β and IL-18), and NLRP3 inflammasome-related gene expressions (NLRP3, IL-1 β , IL-18, and caspase-1). The C3G showed potent inhibitive effects on these NLRP3 inflammasome activation hallmarks induced by HHE. Moreover, we noticed that the C3G's pretreatment leads to a delayed and a decreased JNK activation in HHE-challenged ARPE-19 cells. Finally, using a luciferase reporter gene assay system, we demonstrated that HHE-induced activation protein- (AP-) 1 transcription activity was abolished by C3G pretreatment in a dose-dependent manner. Taken together, these data showed that HHE leads to inflammatory damages to ARPE-19 cells while C3G has great protective effects, highlighting future potential applications of C3G against AMD-associated inflammation.

  12. Functional cooperation of the proapoptotic Bcl2 family proteins Bmf and Bim in vivo.

    PubMed

    Hübner, Anette; Cavanagh-Kyros, Julie; Rincon, Mercedes; Flavell, Richard A; Davis, Roger J

    2010-01-01

    Bcl2-modifying factor (Bmf) is a member of the BH3-only group of proapoptotic proteins. To test the role of Bmf in vivo, we constructed mice with a series of mutated Bmf alleles that disrupt Bmf expression, prevent Bmf phosphorylation by the c-Jun NH(2)-terminal kinase (JNK) on Ser(74), or mimic Bmf phosphorylation on Ser(74). We report that the loss of Bmf causes defects in uterovaginal development, including an imperforate vagina and hydrometrocolpos. We also show that the phosphorylation of Bmf on Ser(74) can contribute to a moderate increase in levels of Bmf activity. Studies of compound mutants with the related gene Bim demonstrated that Bim and Bmf exhibit partially redundant functions in vivo. Thus, developmental ablation of interdigital webbing on mouse paws and normal lymphocyte homeostasis require the cooperative activity of Bim and Bmf.

  13. ASK1-dependent recruitment and activation of macrophages induce hair growth in skin wounds

    PubMed Central

    Osaka, Nao; Takahashi, Takumi; Murakami, Shiori; Matsuzawa, Atsushi; Noguchi, Takuya; Fujiwara, Takeshi; Aburatani, Hiroyuki; Moriyama, Keiji; Takeda, Kohsuke; Ichijo, Hidenori

    2007-01-01

    Apoptosis signal-regulating kinase 1 (ASK1) is a member of the mitogen-activated protein 3-kinase family that activates both c-Jun NH2-terminal kinase and p38 pathways in response to inflammatory cytokines and physicochemical stress. We report that ASK1 deficiency in mice results in dramatic retardation of wounding-induced hair regrowth in skin. Oligonucleotide microarray analysis revealed that expression of several chemotactic and activating factors for macrophages, as well as several macrophage-specific marker genes, was reduced in the skin wound area of ASK1-deficient mice. Intracutaneous transplantation of cytokine-activated bone marrow-derived macrophages strongly induced hair growth in both wild-type and ASK1-deficient mice. These findings indicate that ASK1 is required for wounding-induced infiltration and activation of macrophages, which play central roles in inflammation-dependent hair regrowth in skin. PMID:17389227

  14. Characterization of a novel human sperm-associated antigen 9 (SPAG9) having structural homology with c-Jun N-terminal kinase-interacting protein

    PubMed Central

    Jagadish, Nirmala; Rana, Ritu; Selvi, Ramasamy; Mishra, Deepshikha; Garg, Manoj; Yadav, Shikha; Herr, John C.; Okumura, Katsuzumi; Hasegawa, Akiko; Koyama, Koji; Suri, Anil

    2005-01-01

    We report a novel SPAG9 (sperm-associated antigen 9) protein having structural homology with JNK (c-Jun N-terminal kinase)-interacting protein 3. SPAG9, a single copy gene mapped to the human chromosome 17q21.33 syntenic with location of mouse chromosome 11, was earlier shown to be expressed exclusively in testis [Shankar, Mohapatra and Suri (1998) Biochem. Biophys. Res. Commun. 243, 561–565]. The SPAG9 amino acid sequence analysis revealed identity with the JNK-binding domain and predicted coiled-coil, leucine zipper and transmembrane domains. The secondary structure analysis predicted an α-helical structure for SPAG9 that was confirmed by CD spectra. Microsequencing of higher-order aggregates of recombinant SPAG9 by tandem MS confirmed the amino acid sequence and mono atomic mass of 83.9 kDa. Transient expression of SPAG9 and its deletion mutants revealed that both leucine zipper with extended coiled-coil domains and transmembrane domain of SPAG9 were essential for dimerization and proper localization. Studies of MAPK (mitogenactivated protein kinase) interactions demonstrated that SPAG9 interacted with higher binding affinity to JNK3 and JNK2 compared with JNK1. No interaction was observed with p38α or extracellular-signal-regulated kinase pathways. Polyclonal antibodies raised against recombinant SPAG9 recognized native protein in human sperm extracts and localized specifically on the acrosomal compartment of intact human spermatozoa. Acrosome-reacted spermatozoa demonstrated SPAG9 immunofluorescence, indicating its retention on the equatorial segment after the acrosome reaction. Further, anti-SPAG9 antibodies inhibited the binding of human spermatozoa to intact human oocytes as well as to matched hemizona. This is the first report of sperm-associated JNK-binding protein that may have a role in spermatozoa–egg interaction. PMID:15693750

  15. Characterization of a novel human sperm-associated antigen 9 (SPAG9) having structural homology with c-Jun N-terminal kinase-interacting protein.

    PubMed

    Jagadish, Nirmala; Rana, Ritu; Selvi, Ramasamy; Mishra, Deepshikha; Garg, Manoj; Yadav, Shikha; Herr, John C; Okumura, Katsuzumi; Hasegawa, Akiko; Koyama, Koji; Suri, Anil

    2005-07-01

    We report a novel SPAG9 (sperm-associated antigen 9) protein having structural homology with JNK (c-Jun N-terminal kinase)-interacting protein 3. SPAG9, a single copy gene mapped to the human chromosome 17q21.33 syntenic with location of mouse chromosome 11, was earlier shown to be expressed exclusively in testis [Shankar, Mohapatra and Suri (1998) Biochem. Biophys. Res. Commun. 243, 561-565]. The SPAG9 amino acid sequence analysis revealed identity with the JNK-binding domain and predicted coiled-coil, leucine zipper and transmembrane domains. The secondary structure analysis predicted an alpha-helical structure for SPAG9 that was confirmed by CD spectra. Microsequencing of higher-order aggregates of recombinant SPAG9 by tandem MS confirmed the amino acid sequence and mono atomic mass of 83.9 kDa. Transient expression of SPAG9 and its deletion mutants revealed that both leucine zipper with extended coiled-coil domains and transmembrane domain of SPAG9 were essential for dimerization and proper localization. Studies of MAPK (mitogenactivated protein kinase) interactions demonstrated that SPAG9 interacted with higher binding affinity to JNK3 and JNK2 compared with JNK1. No interaction was observed with p38alpha or extracellular-signal-regulated kinase pathways. Polyclonal antibodies raised against recombinant SPAG9 recognized native protein in human sperm extracts and localized specifically on the acrosomal compartment of intact human spermatozoa. Acrosome-reacted spermatozoa demonstrated SPAG9 immunofluorescence, indicating its retention on the equatorial segment after the acrosome reaction. Further, anti-SPAG9 antibodies inhibited the binding of human spermatozoa to intact human oocytes as well as to matched hemizona. This is the first report of sperm-associated JNK-binding protein that may have a role in spermatozoa-egg interaction.

  16. AP-1 Inhibition by SR 11302 Protects Human Hepatoma HepG2 Cells from Bile Acid-Induced Cytotoxicity by Restoring the NOS-3 Expression

    PubMed Central

    González-Rubio, Sandra; Linares, Clara I.; Aguilar-Melero, Patricia; Rodríguez-Perálvarez, Manuel; Montero-Álvarez, José L.

    2016-01-01

    The harmful effects of bile acid accumulation occurring during cholestatic liver diseases have been associated with oxidative stress increase and endothelial nitric oxide synthase (NOS-3) expression decrease in liver cells. We have previously reported that glycochenodeoxycholic acid (GCDCA) down-regulates gene expression by increasing SP1 binding to the NOS-3 promoter in an oxidative stress dependent manner. In the present study, we aimed to investigate the role of transcription factor (TF) AP-1 on the NOS-3 deregulation during GCDCA-induced cholestasis. The cytotoxic response to GCDCA was characterized by 1) the increased expression and activation of TFs cJun and c-Fos; 2) a higher binding capability of these at position -666 of the NOS-3 promoter; 3) a decrease of the transcriptional activity of the promoter and the expression and activity of NOS-3; and 4) the expression increase of cyclin D1. Specific inhibition of AP-1 by the retinoid SR 11302 counteracted the cytotoxic effects induced by GCDCA while promoting NOS-3 expression recovery and cyclin D1 reduction. NOS activity inhibition by L-NAME inhibited the protective effect of SR 11302. Inducible NOS isoform was no detected in this experimental model of cholestasis. Our data provide direct evidence for the involvement of AP-1 in the NOS-3 expression regulation during cholestasis and define a critical role for NOS-3 in regulating the expression of cyclin D1 during the cell damage induced by bile acids. AP-1 appears as a potential therapeutic target in cholestatic liver diseases given its role as a transcriptional repressor of NOS-3. PMID:27490694

  17. Distinct roles for motor neuron autophagy early and late in the SOD1G93A mouse model of ALS

    PubMed Central

    Rudnick, Noam D.; Griffey, Christopher J.; Guarnieri, Paolo; Gerbino, Valeria; Wang, Xueyong; Piersaint, Jason A.; Tapia, Juan Carlos; Rich, Mark M.; Maniatis, Tom

    2017-01-01

    Mutations in autophagy genes can cause familial and sporadic amyotrophic lateral sclerosis (ALS). However, the role of autophagy in ALS pathogenesis is poorly understood, in part due to the lack of cell type-specific manipulations of this pathway in animal models. Using a mouse model of ALS expressing mutant superoxide dismutase 1 (SOD1G93A), we show that motor neurons form large autophagosomes containing ubiquitinated aggregates early in disease progression. To investigate whether this response is protective or detrimental, we generated mice in which the critical autophagy gene Atg7 was specifically disrupted in motor neurons (Atg7 cKO). Atg7 cKO mice were viable but exhibited structural and functional defects at a subset of vulnerable neuromuscular junctions. By crossing Atg7 cKO mice to the SOD1G93A mouse model, we found that autophagy inhibition accelerated early neuromuscular denervation of the tibialis anterior muscle and the onset of hindlimb tremor. Surprisingly, however, lifespan was extended in Atg7 cKO; SOD1G93A double-mutant mice. Autophagy inhibition did not prevent motor neuron cell death, but it reduced glial inflammation and blocked activation of the stress-related transcription factor c-Jun in spinal interneurons. We conclude that motor neuron autophagy is required to maintain neuromuscular innervation early in disease but eventually acts in a non–cell-autonomous manner to promote disease progression. PMID:28904095

  18. The JNK-like MAPK KGB-1 of Caenorhabditis elegans promotes reproduction, lifespan, and gene expressions for protein biosynthesis and germline homeostasis but interferes with hyperosmotic stress tolerance.

    PubMed

    Gerke, Peter; Keshet, Alex; Mertenskötter, Ansgar; Paul, Rüdiger J

    2014-01-01

    This study focused on the role of the JNK-like MAPK (mitogen-activated protein kinase) KGB-1 (kinase, GLH-binding 1) for osmoprotection and other vital functions. We mapped KGB-1 expression patterns and determined lifespan, reproduction and survival rates as well as changes in body volume, motility, and GPDH (glycerol-3-phosphate dehydrogenase) activity for glycerol production in wildtype (WT), different signaling mutants (including a kgb-1 deletion mutant, kgb-1∆) and RNAi-treated worms under control and hyperosmotic conditions. KGB-1-mediated gene expressions were studied, for instance, by RNA Sequencing, with the resulting transcriptome data analyzed using orthology-based approaches. Surprisingly, mutation/RNAi of kgb-1 and fos-1 (gene for an AP-1, activator protein 1, element) significantly promoted hyperosmotic resistance, even though hyperosmotic GPDH activity was higher in WT than in kgb-1∆. KGB-1 and moderate hyperosmolarity promoted and severe hyperosmolarity repressed kgb-1, fos-1, and jun-1 (gene for another AP-1 element) expression. Transcriptome profiling revealed, for instance, down-regulated genes for protein biosynthesis and up-regulated genes for membrane transporters in kgb-1∆ and up-regulated genes for GPDH-1 or detoxification in WT, with the latter indicating cellular damage and less effective osmoprotection in WT. KGB-1 promotes reproduction and lifespan and fosters gene expressions for AP-1 elements, protein biosynthesis, and balanced gametogenesis, but inhibits expressions for membrane transporters perhaps in order to control energy consumption. Reduced protein biosyntheses and enhanced membrane transports in kgb-1∆ most likely contribute to the high hyperosmotic tolerance of the mutant by easing the burden of the existing chaperone machinery and promoting regulatory volume increases upon hyperosmotic stress.

  19. Oligonucleotide microarray analysis of apoptosis induced by 15-methoxypinusolidic acid in microglial BV2 cells

    PubMed Central

    Choi, Y; Lim, SY; Jeong, HS; Koo, KA; Sung, SH; Kim, YC

    2009-01-01

    Background and purpose: We conducted a genome wide gene expression analysis to explore the biological aspects of 15-methoxypinusolidic acid (15-MPA) isolated from Biota orientalis and tried to confirm the suitability of 15-MPA as a therapeutic candidate for CNS injuries focusing on microglia. Experimental approach: Murine microglial BV2 cells were treated with 15-MPA, and their transcriptome was analysed by using oligonucleotide microarrays. Genes differentially expressed upon 15-MPA treatment were selected for RT-PCR (reverse transcription-polymerase chain reaction) analysis to confirm the gene expression. Inhibition of cell proliferation and induction of apoptosis by 15-MPA were examined by bromodeoxyuridine assay, Western blot analysis of poly-ADP-ribose polymerase and flow cytometry. Key results: A total of 514 genes were differentially expressed by 15-MPA treatment. Biological pathway analysis revealed that 15-MPA induced significant changes in expression of genes in the cell cycle pathway. Genes involved in growth arrest and DNA damage [gadd45α, gadd45γ and ddit3 (DNA damage-inducible transcript 3)] and cyclin-dependent kinase inhibitor (cdkn2b) were up-regulated, whereas genes involved in cell cycle progression (ccnd1, ccnd3 and ccne1), DNA replication (mcm4, orc1l and cdc6) and cell proliferation (fos and jun) were down-regulated. RT-PCR analysis for representative genes confirmed the expression levels. 15-MPA significantly reduced bromodeoxyuridine incorporation, increased poly-ADP-ribose polymerase cleavage and the number of apoptotic cells, indicating that 15-MPA induces apoptosis in BV2 cells. Conclusion and implications: 15-MPA induced apoptosis in murine microglial cells, presumably via inhibition of the cell cycle progression. As microglial activation is detrimental in CNS injuries, these data suggest a strong therapeutic potential of 15-MPA. PMID:19466985

  20. Fisetin Protects PC12 Cells from Tunicamycin-Mediated Cell Death via Reactive Oxygen Species Scavenging and Modulation of Nrf2-Driven Gene Expression, SIRT1 and MAPK Signaling in PC12 Cells.

    PubMed

    Yen, Jui-Hung; Wu, Pei-Shan; Chen, Shu-Fen; Wu, Ming-Jiuan

    2017-04-17

    Fisetin (3,7,3',4'-tetrahydroxyflavone) is a dietary flavonol and exhibits antioxidant, anti-inflammatory, and neuroprotective activities. However, high concentration of fisetin is reported to produce reactive oxygen species (ROS), induce endoplasmic reticulum (ER) stress and cause cytotoxicity in cancer cells. The aim of this study is to investigate the cytoprotective effects of low concentration of fisetin against tunicamycin (Tm)-mediated cytotoxicity in neuronal-like catecholaminergic PC12 cells. Cell viability was assayed by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and apoptotic and autophagic markers were analyzed by Western blot. Gene expression of unfolded protein response (UPR) and Phase II enzymes was further investigated using RT-Q-PCR or Western blotting. Intracellular ROS level was measured using 2',7'-dichlorodihydrofluorescein diacetate (H₂DCFDA) by a fluorometer. The effects of fisetin on mitogen activated protein kinases (MAPKs) and SIRT1 (Sirtuin 1) signaling pathways were examined using Western blotting and specific inhibitors. Fisetin (<20 µM) restored cell viability and repressed apoptosis, autophagy and ROS production in Tm-treated cells. Fisetin attenuated Tm-mediated expression of ER stress genes, such as glucose-regulated proteins 78 (GRP78), C/EBP homologous protein (CHOP also known as GADD153) and Tribbles homolog 3 (TRB3), but induced the expression of nuclear E2 related factor (Nrf)2-targeted heme oxygenase (HO)-1, glutamate cysteine ligase (GCL) and cystine/glutamate transporter (xCT/SLC7A11), in both the presence and absence of Tm. Moreover, fisetin enhanced phosphorylation of ERK (extracellular signal-regulated kinase), JNK (c-JUN NH₂-terminal protein kinase), and p38 MAPK. Addition of JNK and p38 MAPK inhibitor significantly antagonized its cytoprotective activity and modulatory effects on UPR. Fisetin also restored Tm-inhibited SIRT1 expression and addition of sirtinol (SIRT1 activation inhibitor) significantly blocked fisetin-mediated cytoprotection. In conclusion, this result shows that fisetin activates Nrf2, MAPK and SIRT1, which may elicit adaptive cellular stress response pathways so as to protect cells from Tm-induced cytotoxicity.

  1. Mechanisms underlying Actinobacillus pleuropneumoniae exotoxin ApxI induced expression of IL-1β, IL-8 and TNF-α in porcine alveolar macrophages

    PubMed Central

    2011-01-01

    Actinobacillus pleuropneumoniae (A. pleuropneumoniae) causes fibrino-hemorrhagic necrotizing pleuropneumonia in pigs. Production of proinflammatory mediators in the lungs is an important feature of A. pleuropneumoniae infection. However, bacterial components other than lipopolysaccharide involved in this process remain unidentified. The goals of this study were to determine the role of A. pleuropneumoniae exotoxin ApxI in cytokine induction and to delineate the underlying mechanisms. Using real-time quantitative PCR analysis, we found native ApxI stimulated porcine alveolar macrophages (PAMs) to transcribe mRNAs of IL-1β, IL-8 and TNF-α in a concentration- and time-dependent manner. Heat-inactivation or pre-incubation of ApxI with a neutralizing antiserum attenuated ApxI bioactivity to induce cytokine gene expression. The secretion of IL-1β, IL-8 and TNF-α protein from PAMs stimulated with ApxI was also confirmed by quantitative ELISA. In delineating the underlying signaling pathways contributing to cytokine expression, we observed mitogen-activated protein kinases (MAPKs) p38 and cJun NH2-terminal kinase (JNK) were activated upon ApxI stimulation. Administration of an inhibitor specific to p38 or JNK resulted in varying degrees of attenuation on ApxI-induced cytokine expression, suggesting the differential regulatory roles of p38 and JNK in IL-1β, IL-8 and TNF-α production. Further, pre-incubation of PAMs with a CD18-blocking antibody prior to ApxI stimulation significantly reduced the activation of p38 and JNK, and subsequent expression of IL-1β, IL-8 or TNF-α gene, indicating a pivotal role of β2 integrins in the ApxI-mediated effect. Collectively, this study demonstrated ApxI induces gene expression of IL-1β, IL-8 and TNF-α in PAMs that involves β2 integrins and downstream MAPKs. PMID:21314908

  2. The MEK-ERK pathway negatively regulates bim expression through the 3' UTR in sympathetic neurons

    PubMed Central

    2011-01-01

    Background Apoptosis plays a critical role during neuronal development and disease. Developing sympathetic neurons depend on nerve growth factor (NGF) for survival during the late embryonic and early postnatal period and die by apoptosis in its absence. The proapoptotic BH3-only protein Bim increases in level after NGF withdrawal and is required for NGF withdrawal-induced death. The regulation of Bim expression in neurons is complex and this study describes a new mechanism by which an NGF-activated signalling pathway regulates bim gene expression in sympathetic neurons. Results We report that U0126, an inhibitor of the prosurvival MEK-ERK pathway, increases bim mRNA levels in sympathetic neurons in the presence of NGF. We find that this effect is independent of PI3-K-Akt and JNK-c-Jun signalling and is not mediated by the promoter, first exon or first intron of the bim gene. By performing 3' RACE and microinjection experiments with a new bim-LUC+3'UTR reporter construct, we show that U0126 increases bim expression via the bim 3' UTR. We demonstrate that this effect does not involve a change in bim mRNA stability and by using PD184352, a specific MEK1/2-ERK1/2 inhibitor, we show that this mechanism involves the MEK1/2-ERK1/2 pathway. Finally, we demonstrate that inhibition of MEK/ERK signalling independently reduces cell survival in NGF-treated sympathetic neurons. Conclusions These results suggest that in sympathetic neurons, MEK-ERK signalling negatively regulates bim expression via the 3' UTR and that this regulation is likely to be at the level of transcription. This data provides further insight into the different mechanisms by which survival signalling pathways regulate bim expression in neurons. PMID:21762482

  3. Eckol protects V79-4 lung fibroblast cells against gamma-ray radiation-induced apoptosis via the scavenging of reactive oxygen species and inhibiting of the c-Jun NH(2)-terminal kinase pathway.

    PubMed

    Zhang, Rui; Kang, Kyoung Ah; Piao, Mei Jing; Ko, Dong Ok; Wang, Zhi Hong; Lee, In Kyung; Kim, Bum Joon; Jeong, Il Yun; Shin, Taekyun; Park, Jae Woo; Lee, Nam Ho; Hyun, Jin Won

    2008-09-04

    The radioprotective effect of eckol against gamma-ray radiation-induced oxidative stress and its possible protective mechanisms were investigated. Eckol was found to reduce the intracellular reactive oxygen species generated by gamma-ray radiation. Moreover, eckol also protected against radiation-induced cellular DNA damage and membrane lipid peroxidation, which are the main targets of radiation-induced damage. In addition, eckol recovered the cell viability damaged by radiation via the inhibition of apoptosis. Irradiated cells with eckol treatment reduced the expression of bax, the activation of caspase 9 and caspase 3, which were induced by radiation. However, irradiated cells with eckol recovered the expression of bcl-2 and mitochondrial cytochrome c which were decreased by radiation. The anti-apoptotic effect of eckol exerted via the inhibition of mitogen-activated protein kinase kinase-4 (MKK4/SEK1)-c-Jun NH(2)-terminal kinase (JNK)-activator protein 1 (AP-1) cascades induced by radiation. In summary, the results suggest that eckol protects cells against the oxidative stress induced by radiation via the reduction of reactive oxygen species and the attenuation of activation in SEK1-JNK-AP-1 pathway.

  4. Shigella flexneri type III secreted effector OspF reveals new crosstalks of proinflammatory signaling pathways during bacterial infection.

    PubMed

    Reiterer, Veronika; Grossniklaus, Lars; Tschon, Therese; Kasper, Christoph Alexander; Sorg, Isabel; Arrieumerlou, Cécile

    2011-07-01

    Shigella flexneri type III secreted effector OspF harbors a phosphothreonine lyase activity that irreversibly dephosphorylates MAP kinases (MAPKs) p38 and ERK in infected epithelial cells and thereby, dampens innate immunity. Whereas this activity has been well characterized, the impact of OspF on other host signaling pathways that control inflammation was unknown. Here we report that OspF potentiates the activation of the MAPK JNK and the transcription factor NF-κB during S. flexneri infection. This unexpected effect of OspF was dependent on the phosphothreonine lyase activity of OspF on p38, and resulted from the disruption of a negative feedback loop regulation between p38 and TGF-beta activated kinase 1 (TAK1), mediated via the phosphorylation of TAK1-binding protein 1. Interestingly, potentiated JNK activation was not associated with enhanced c-Jun signaling as OspF also inhibits c-Jun expression at the transcriptional level. Altogether, our data reveal the impact of OspF on the activation of NF-κB, JNK and c-Jun, and demonstrate the existence of a negative feedback loop regulation between p38 and TAK1 during S. flexneri infection. Furthermore, this study validates the use of bacterial effectors as molecular tools to identify the crosstalks that connect important host signaling pathways induced upon bacterial infection. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Using Gelatin Nanoparticle Mediated Intranasal Delivery of Neuropeptide Substance P to Enhance Neuro-Recovery in Hemiparkinsonian Rats.

    PubMed

    Zhao, Ying-Zheng; Jin, Rong-Rong; Yang, Wei; Xiang, Qi; Yu, Wen-Ze; Lin, Qian; Tian, Fu-Rong; Mao, Kai-Li; Lv, Chuan-Zhu; Wáng, Yi-Xiáng J; Lu, Cui-Tao

    2016-01-01

    Intranasal administration of phospholipid-based gelatin nanoparticles (GNP) was prepared to investigate the neuro-recovery effects of neuropeptide Substance P (SP) on hemiparkinsonian rats. The SP-loaded gelatin nanoparticles (SP-GNP) were prepared by a water-in-water emulsion method and possessed high stability, encapsulating efficiency and loading capacity. PC-12 cells were used to examine the growth enhancement of SP-GNP in vitro by MTT assays and flow cytometry (FCM). The therapeutic effects of SP-GNP on 6-hydroxydopamine (6-OHDA) induced hemiparkinsonian rats were assessed by quantifying rotational behavior and the levels of tyrosine hydroxylase (TH), phosphorylated c-Jun protein (p-c-Jun) and Caspase-3 (Cas-3) expressed in substantia nigra (SN) region of hemiparkinsonian rats. PC-12 cells under SP-GNP treatment showed better cell viability and lower degree of apoptosis than those under SP solution treatment. Hemiparkinsonian rats under intranasal SP-GNP administration demonstrated better behavioral improvement, higher level of TH in SN along with much lower extent of p-c-Jun and Cas-3 than those under intranasal SP solution administration and intravenous SP-GNP administration. With the advantages of GNP and nose-to-brain pathway, SP can be effectively delivered into the damaged SN region and exhibit its neuro-recovery function through the inhibition on JNK pathway and dopaminergic neuron apoptosis.

  6. Cannabinoid Receptor 2 Suppresses Leukocyte Inflammatory Migration by Modulating the JNK/c-Jun/Alox5 Pathway*

    PubMed Central

    Liu, Yi-Jie; Fan, Hong-Bo; Jin, Yi; Ren, Chun-Guang; Jia, Xiao-E; Wang, Lei; Chen, Yi; Dong, Mei; Zhu, Kang-Yong; Dong, Zhi-Wei; Ye, Bai-Xin; Zhong, Zhong; Deng, Min; Liu, Ting Xi; Ren, Ruibao

    2013-01-01

    Inflammatory migration of immune cells is involved in many human diseases. Identification of molecular pathways and modulators controlling inflammatory migration could lead to therapeutic strategies for treating human inflammation-associated diseases. The role of cannabinoid receptor type 2 (Cnr2) in regulating immune function had been widely investigated, but the mechanism is not fully understood. Through a chemical genetic screen using a zebrafish model for leukocyte migration, we found that both an agonist of the Cnr2 and inhibitor of the 5-lipoxygenase (Alox5, encoded by alox5) inhibit leukocyte migration in response to acute injury. These agents have a similar effect on migration of human myeloid cells. Consistent with these results, we found that inactivation of Cnr2 by zinc finger nuclease-mediated mutagenesis enhances leukocyte migration, while inactivation of Alox5 blocks leukocyte migration. Further investigation indicates that there is a signaling link between Cnr2 and Alox5 and that alox5 is a target of c-Jun. Cnr2 activation down-regulates alox5 expression by suppressing the JNK/c-Jun activation. These studies demonstrate that Cnr2, JNK, and Alox5 constitute a pathway regulating leukocyte migration. The cooperative effect between the Cnr2 agonist and Alox5 inhibitor also provides a potential therapeutic strategy for treating human inflammation-associated diseases. PMID:23539630

  7. GW501516-activated PPARβ/δ promotes liver fibrosis via p38-JNK MAPK-induced hepatic stellate cell proliferation.

    PubMed

    Kostadinova, Radina; Montagner, Alexandra; Gouranton, Erwan; Fleury, Sébastien; Guillou, Hervé; Dombrowicz, David; Desreumaux, Pierre; Wahli, Walter

    2012-10-10

    After liver injury, the repair process comprises activation and proliferation of hepatic stellate cells (HSCs), which produce extracellular matrix (ECM) proteins. Peroxisome proliferator-activated receptor beta/delta (PPARβ/δ) is highly expressed in these cells, but its function in liver repair remains incompletely understood. This study investigated whether activation of PPARβ/δ with the ligand GW501516 influenced the fibrotic response to injury from chronic carbon tetrachloride (CCl4) treatment in mice. Wild type and PPARβ/δ-null mice were treated with CCl4 alone or CCl4 co-administered with GW501516. To unveil mechanisms underlying the PPARβ/δ-dependent effects, we analyzed the proliferative response of human LX-2 HSCs to GW501516 in the presence or absence of PPARβ/δ. We found that GW501516 treatment enhanced the fibrotic response. Compared to the other experimental groups, CCl4/GW501516-treated wild type mice exhibited increased expression of various profibrotic and pro-inflammatory genes, such as those involved in extracellular matrix deposition and macrophage recruitment. Importantly, compared to healthy liver, hepatic fibrotic tissues from alcoholic patients showed increased expression of several PPAR target genes, including phosphoinositide-dependent kinase-1, transforming growth factor beta-1, and monocyte chemoattractant protein-1. GW501516 stimulated HSC proliferation that caused enhanced fibrotic and inflammatory responses, by increasing the phosphorylation of p38 and c-Jun N-terminal kinases through the phosphoinositide-3 kinase/protein kinase-C alpha/beta mixed lineage kinase-3 pathway. This study clarified the mechanism underlying GW501516-dependent promotion of hepatic repair by stimulating proliferation of HSCs via the p38 and JNK MAPK pathways.

  8. PARKIN overexpression in human mesenchymal stromal cells from Wharton's jelly suppresses 6-hydroxydopamine-induced apoptosis: Potential therapeutic strategy in Parkinson's disease.

    PubMed

    Bonilla-Porras, A R; Arevalo-Arbelaez, A; Alzate-Restrepo, J F; Velez-Pardo, C; Jimenez-Del-Rio, M

    2018-01-01

    Stem cell transplantation is an excellent option for regenerative or replacement therapy. However, deleterious microenvironmental and endogenous factors (e.g., oxidative stress) compromise ongoing graft survival and longevity. Therefore, (transient or stable) genetically modified cells may be reasonably thought to resist oxidative stress-induced damage. Genetic engineering of mesenchymal stromal cells (MSCs) obtained from Wharton's jelly tissue may offer some therapeutic potential. PARKIN is a multifunctional ubiquitin ligase able to protect dopaminergic cells against stress-related signaling. We, therefore, evaluated the effect of the neurotoxicant 6-hydroxydopamine (6-OHDA) on regulated cell death signaling in MSCs and investigated whether overexpression of PARKIN in MSCs was capable of modulating the effect of 6-OHDA. We transiently transfected Wharton's jelly-derived MSCs with an mCherry-PARKIN vector using the Lipofectamine LTX method. Naïve MSCs and MSCs overexpressing PARKIN were exposed to increasing concentrations of 6-OHDA. We used light and fluorescence microscopy, flow cytometry, immunocytochemistry staining, in-cell Western and Western blot analysis. After 12-24 h of 6-OHDA exposure, we detected dichlorofluorescein (DCF)-positive cells (80%) indicative of reactive oxygen species (H2O2) production, reduced cell viability (40-50%), decreased mitochondrial membrane potential (ΔΨm, ~35-45%), DNA fragmentation (18-30%), and G1-arrested cell cycle in the MSCs. 6-OHDA exposure increased the expression of the transcription factor c-JUN, increased the expression of the mitochondria maintenance Phosphatase and tensin homologue-induced putative kinase 1 (PINK1) protein and increased the expression of pro-apoptotic PUMA, caspase-3 and apoptosis-inducing factor (AIF). 6-OHDA exposure also significantly augmented the oxidation of the oxidative stress sensor, DJ-1. Overexpression of PARKIN in MSCs not only significantly reduced the expression of cell death and oxidative stress markers but also significantly reduced DCF-positive cells (~50% reduction). 6-OHDA induced apoptosis in MSCs via generation of H2O2, activation of c-JUN and PUMA, mitochondrial depolarization and nuclei fragmentation. Our findings suggest that PARKIN protects MSCs against 6-OHDA toxicity by partly interacting with H2O2, reducing the expression of c-JUN, PUMA, AIF and caspase-3, and maintaining the mitochondrial ΔΨm. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  9. Effects of mipafox, paraoxon, chlorpyrifos and its metabolite chlorpyrifos-oxon on the expression of biomarker genes of differentiation in D3 mouse embryonic stem cells.

    PubMed

    Sogorb, Miguel A; Fuster, Encarnación; Del Río, Eva; Estévez, Jorge; Vilanova, Eugenio

    2016-11-25

    Chlorpyrifos (CPS) is an organophosphorus compound (OP) capable of causing well-known cholinergic and delayed syndromes through the inhibition of acetylcholinesterase and Neuropathy Target Esterase (NTE), respectively. CPS is also able to induce neurodevelopmental toxicity in animals. NTE is codified by the Pnpla6 gene and plays a central role in differentiation and neurodifferentiation. We tested, in D3 mouse embryonic stem cells under differentiation, the effects of the NTE inhibition by the OPs mipafox, CPS and its main active metabolite chlorpyrifos-oxon (CPO) on the expression of genes Vegfa, Bcl2, Amot, Nes and Jun, previously reported to be under- or overexpressed after Pnpla6 silencing in this same cellular model. Mipafox did not significantly alter the expression of such genes at concentrations that significantly inhibited NTE. However, CPS and CPO at concentrations that caused NTE inhibition at similar levels to mipafox statistically and significantly altered the expression of most of these genes. Paraoxon (another OP with capability to inhibit esterases but not NTE) caused similar effects to CPS and CPO. These findings suggest that the molecular mechanism for the neurodevelopmental toxicity induced by CPS is not based on NTE inhibition, and that other unknown esterases might be potential targets of neurodevelopmental toxicity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. COL1A1 promotes metastasis in colorectal cancer by regulating the WNT/PCP pathway

    PubMed Central

    Zhang, Zheying; Wang, Yongxia; Zhang, Jinghang; Zhong, Jiateng; Yang, Rui

    2018-01-01

    Colorectal cancer (CRC) is the third leading cause of cancer-associated mortality, and is a major health problem. Collagen type I α 1 (COL1A1) is a major component of collagen type I. Recently, it was reported to be overexpressed in a variety of tumor tissues and cells. However, the function of COL1A1 in CRC remains unclear. Herein, the present study demonstrated that COL1A1 was upregulated in CRC tissues and the paired lymph node tissues. Transwell assays showed that COL1A1 promoted CRC cell migration in vitro. Moreover, it was revealed that COL1A1 levels were correlated with those of WNT/planar cell polarity (PCP) signaling pathway genes; inhibition of COL1A1 decreased the expression levels of Ras-related C3 botulinum toxin substrate 1-GTP, phosphorylated-c-Jun N-terminal kinase, and RhoA-GTP, all of which are key genes in the WNT/PCP signaling pathway. These results may indicate the mechanisms underlying the oncogenic role of COL1A1 in CRC. In summary, the present data indicated that COL1A1 may serve as an oncoprotein, and that it may be used as a potential therapeutic target in CRC. PMID:29393423

  11. Periostin promotes migration and osteogenic differentiation of human periodontal ligament mesenchymal stem cells via the Jun amino-terminal kinases (JNK) pathway under inflammatory conditions.

    PubMed

    Tang, Yi; Liu, Lin; Wang, Pei; Chen, Donglei; Wu, Ziqiang; Tang, Chunbo

    2017-12-01

    Mesenchymal stem cell (MSC)-mediated periodontal tissue regeneration is considered to be a promising method for periodontitis treatment. The molecular mechanism of functional regulation by MSCs remains unclear, thus limiting their application. Our previous study discovered that Periostin (POSTN) promoted the migration and osteogenic differentiation of periodontal ligament mesenchymal stem cells (PDLSCs), but it is still unclear whether POSTN is able to restore the regenerative potential of PDLSCs under inflammatory conditions. In this study, we investigated the effect of POSTN on PDLSCs under inflammatory conditions and its mechanism. PDLSCs were isolated from periodontal ligament tissue. TNF-α was used at 10 ng/mL to mimic inflammatory conditions. Lentivirus POSTN shRNA was used to knock down POSTN. Recombinant human POSTN (rhPOSTN) was used to stimulate PDLSCs. A scratch assay was used to analyse cell migration. Alkaline phosphatase (ALP) activity, Alizarin Red staining and expression of osteogenesis-related genes were used to investigate the osteogenic differentiation potential. Western blot analysis was used to detect the mitogen-activated protein kinases (MAPK) and AKT signalling pathways. After a 10 ng/mL TNF-α treatment, knockdown of POSTN impeded scratch closure, inhibited ALP activity and mineralization in vitro, and decreased expression of RUNX2, OSX, OPN and OCN in PDLSCs, while 75 ng/mL rhPOSTN significantly accelerated scratch closure, enhanced ALP activity and mineralization in vitro, and increased expression of RUNX2, OSX, OPN and OCN. In addition, knockdown of POSTN inhibited expression of phosphorylated c-Jun N-terminal kinase (p-JNK), while 75 ng/mL rhPOSTN increased expression of p-JNK in PDLSCs with TNF-α treatment. Furthermore, inhibition of JNK by its inhibitor SP600125 dramatically blocked POSTN-enhanced scratch closure, ALP activity and mineralization in PDLSCs. Our results revealed that POSTN might promote the migration and osteogenic differentiation potential of PDLSCs via the JNK pathway, providing insight into the mechanism underlying MSC biology under inflammatory conditions and identifying a potential target for improving periodontal tissue regeneration. © 2017 John Wiley & Sons Ltd.

  12. Agonistic autoantibodies against the angiotensin AT1 receptor increase in unstable angina patients after stent implantation.

    PubMed

    Tian, Miao; Sheng, Li; Huang, Peng; Li, Jun; Zhang, Chuan-Huan; Yang, Jun; Liao, Yu-Hua; Li, Liu-Dong

    2014-12-01

    Agonistic AT1 receptor autoantibodies have been described in patients with hypertension and preeclampsia. These autoantibodies could stimulate proliferation of vascular smooth muscle cells (VSMCs), which are involved in angiotensin II-induced vascular injury in cardiovascular disease. Hence, in this study, we explored the existence of agonistic AT1 receptor autoantibodies in unstable angina (UA) patients and the possible effects of them on the in-stent restenosis of these patients. A total of 95 UA patients and 98 healthy volunteers were enrolled. The serum of each patient was analyzed for the presence of AT1 receptor autoantibodies by enzyme-linked immunosorbent assay. Their effects on VSMC proliferation and c-fos and c-jun expression were studied in vitro. AT1 receptor autoantibodies were detected in 34/95 patients with UA. The incidence was 10.2% in the control group and rose to 47.37% after stent implantation. In vitro, this autoantibody had agonist-like activity, shown as stimulation of VSMC proliferation and upregulation of c-fos and c-jun expression. These effects were similar to that of angiotensin II and could be weakened partly by the AT1-receptor blocker valsartan. Our findings show that the autoantibody from UA patients has similar agonistic activity to angiotensin II and might play a role in the pathogenesis of in-stent restenosis in these patients.

  13. Hinokitiol, a tropolone derivative, inhibits mouse melanoma (B16-F10) cell migration and in vivo tumor formation.

    PubMed

    Huang, Chien-Hsun; Lu, Shing-Hwa; Chang, Chao-Chien; Thomas, Philip Aloysius; Jayakumar, Thanasekaran; Sheu, Joen-Rong

    2015-01-05

    Invasion and metastasis are the major causes of treatment failure in patients with cancer. Hinokitiol, a natural bioactive compound found in Chamacyparis taiwanensis, has been used in hair tonics, cosmetics, and food as an antimicrobial agent. In this study, we investigated the effects and possible mechanisms of action of hinokitiol on migration by the metastatic melanoma cell line, B16-F10, in which matrix metalloproteinase-1 (MMP-1) is found to be highly- expressed. Treatment with hinokitiol revealed a concentration-dependent inhibition of migration of B16-F10 melanoma cells. Hinokitiol appeared to achieve this effect by reducing the expression of MMP-1 and by suppressing the phosphorylation of mitogen- activated protein kinase (MAPK) signaling molecules such as extracellular signal-regulated kinase (ERK) 1/2, p38 MAPK and c-Jun N-terminal kinases (JNK). On the other hand, hinokitiol treatment reversed IκB-α degradation and inhibited the phosphorylation of p65 nuclear factor kappa B (NF-κB) and cJun in B16-F10 cells. In addition, hinokitiol suppressed the translocation of p65 NF-κB from the cytosol to the nucleus, suggesting reduced NF-κB activation. Consistent with these in vitro findings, our in vivo study demonstrated that hinokitiol treatment significantly reduced the total number of mouse lung metastatic nodules and improved histological alterations in B16-F10 injected C57BL/6 mice. These findings suggest that treatment of B16-F10 cells with hinokitiol significantly inhibits metastasis, possibly by blocking MMP-1 activation, MAPK signaling pathways and inhibition of the transcription factors, NF-κB and c-Jun, involved in cancer cell migration. These results may accelerate the development of novel therapeutic agents for the treatment of malignant cancers. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Pancreatic β-Cell-Derived IP-10/CXCL10 Isletokine Mediates Early Loss of Graft Function in Islet Cell Transplantation.

    PubMed

    Yoshimatsu, Gumpei; Kunnathodi, Faisal; Saravanan, Prathab Balaji; Shahbazov, Rauf; Chang, Charles; Darden, Carly M; Zurawski, Sandra; Boyuk, Gulbahar; Kanak, Mazhar A; Levy, Marlon F; Naziruddin, Bashoo; Lawrence, Michael C

    2017-11-01

    Pancreatic islets produce and secrete cytokines and chemokines in response to inflammatory and metabolic stress. The physiological role of these "isletokines" in health and disease is largely unknown. We observed that islets release multiple inflammatory mediators in patients undergoing islet transplants within hours of infusion. The proinflammatory cytokine interferon-γ-induced protein 10 (IP-10/CXCL10) was among the highest released, and high levels correlated with poor islet transplant outcomes. Transgenic mouse studies confirmed that donor islet-specific expression of IP-10 contributed to islet inflammation and loss of β-cell function in islet grafts. The effects of islet-derived IP-10 could be blocked by treatment of donor islets and recipient mice with anti-IP-10 neutralizing monoclonal antibody. In vitro studies showed induction of the IP-10 gene was mediated by calcineurin-dependent NFAT signaling in pancreatic β-cells in response to oxidative or inflammatory stress. Sustained association of NFAT and p300 histone acetyltransferase with the IP-10 gene required p38 and c-Jun N-terminal kinase mitogen-activated protein kinase (MAPK) activity, which differentially regulated IP-10 expression and subsequent protein release. Overall, these findings elucidate an NFAT-MAPK signaling paradigm for induction of isletokine expression in β-cells and reveal IP-10 as a primary therapeutic target to prevent β-cell-induced inflammatory loss of graft function after islet cell transplantation. © 2017 by the American Diabetes Association.

  15. Converging evidence that sequence variations in the novel candidate gene MAP2K7 (MKK7) are functionally associated with schizophrenia.

    PubMed

    Winchester, Catherine L; Ohzeki, Hiromitsu; Vouyiouklis, Demetrius A; Thompson, Rhiannon; Penninger, Josef M; Yamagami, Keiji; Norrie, John D; Hunter, Robert; Pratt, Judith A; Morris, Brian J

    2012-11-15

    Schizophrenia is a debilitating psychiatric disease with a strong genetic contribution, potentially linked to altered glutamatergic function in brain regions such as the prefrontal cortex (PFC). Here, we report converging evidence to support a functional candidate gene for schizophrenia. In post-mortem PFC from patients with schizophrenia, we detected decreased expression of MKK7/MAP2K7-a kinase activated by glutamatergic activity. While mice lacking one copy of the Map2k7 gene were overtly normal in a variety of behavioural tests, these mice showed a schizophrenia-like cognitive phenotype of impaired working memory. Additional support for MAP2K7 as a candidate gene came from a genetic association study. A substantial effect size (odds ratios: ~1.9) was observed for a common variant in a cohort of case and control samples collected in the Glasgow area and also in a replication cohort of samples of Northern European descent (most significant P-value: 3 × 10(-4)). While some caution is warranted until these association data are further replicated, these results are the first to implicate the candidate gene MAP2K7 in genetic risk for schizophrenia. Complete sequencing of all MAP2K7 exons did not reveal any non-synonymous mutations. However, the MAP2K7 haplotype appeared to have functional effects, in that it influenced the level of expression of MAP2K7 mRNA in human PFC. Taken together, the results imply that reduced function of the MAP2K7-c-Jun N-terminal kinase (JNK) signalling cascade may underlie some of the neurochemical changes and core symptoms in schizophrenia.

  16. Vincristine activates c-Jun N-terminal kinase in chronic lymphocytic leukaemia in vivo

    PubMed Central

    Bates, Darcy J P; Lewis, Lionel D; Eastman, Alan; Danilov, Alexey V

    2015-01-01

    Aims The authors’ aim was to conduct a proof-of-principle study to test whether c-Jun N-terminal kinase (JNK) phosphorylation and Noxa induction occur in peripheral blood chronic lymphocytic leukaemia (CLL) cells in patients receiving a vincristine infusion. Methods Patients with CLL received 2 mg vincristine by a 5-min intravenous infusion. Blood samples were collected at baseline and up to 6 h after the vincristine infusion, and assayed for JNK activation, Noxa induction and vincristine plasma concentrations. Results Ex vivo treated peripheral CLL cells activated JNK in response to 10–100 nM vincristine in 6 h. Noxa protein expression, while variable, was also observed over this time frame. In CLL patients, vincristine infusion led to rapid (<1 h) JNK phosphorylation in peripheral blood CLL cells which was sustained for at least 4–6 h after the vincristine infusion. Noxa protein expression was not observed in response to vincristine infusion. Conclusions This study confirmed that vincristine can activate JNK but not induce Noxa in CLL cells in vivo. The results suggest that novel JNK-dependent drug combinations with vincristine warrant further investigation. PMID:25753324

  17. Role of inhibitory κB kinase and c-Jun NH2-terminal kinase in the development of hepatic insulin resistance in critical illness diabetes

    PubMed Central

    Jiang, Shaoning

    2011-01-01

    Hyperglycemia and insulin resistance induced by acute injuries or critical illness are associated with increased mortality and morbidity, as well as later development of type 2 diabetes. The molecular mechanisms underlying the acute onset of insulin resistance following critical illness remain poorly understood. In the present studies, the roles of serine kinases, inhibitory κB kinase (IKK) and c-Jun NH2-terminal kinase (JNK), in the acute development of hepatic insulin resistance were investigated. In our animal model of critical illness diabetes, activation of hepatic IKK and JNK was observed as early as 15 min, concomitant with the rapid impairment of hepatic insulin signaling and increased serine phosphorylation of insulin receptor substrate 1. Inhibition of IKKα or IKKβ, or both, by adenovirus vector-mediated expression of dominant-negative IKKα or IKKβ in liver partially restored insulin signaling. Similarly, inhibition of JNK1 kinase by expression of dominant-negative JNK1 also resulted in improved hepatic insulin signaling, indicating that IKK and JNK1 kinases contribute to critical illness-induced insulin resistance in liver. PMID:21680774

  18. Salvianolic Acid B Protects Normal Human Dermal Fibroblasts Against Ultraviolet B Irradiation-Induced Photoaging Through Mitogen-Activated Protein Kinase and Activator Protein-1 Pathways.

    PubMed

    Sun, Zhengwang; Park, Sang-Yong; Hwang, Eunson; Zhang, Mengyang; Jin, Fengxie; Zhang, Baochun; Yi, Tae Hoo

    2015-01-01

    Exposure to ultraviolet (UV) light causes increased matrix metalloproteinase (MMP) activity and decreased collagen synthesis, leading to skin photoaging. Salvianolic acid B (SAB), a polyphenol, was extracted and purified from salvia miltiorrhiza. We assessed effects of SAB on UVB-induced photoaging and investigated its molecular mechanism of action in UVB-irradiated normal human dermal fibroblasts. Our results show that SAB significantly inhibited the UVB-induced expression of metalloproteinases-1 (MMP-1) and interleukin-6 (IL-6) while promoting the production of type I procollagen and transforming growth factor β1 (TGF-β1). Moreover, treatment with SAB in the range of 1-100 μg/mL significantly inhibited UVB-induced extracellular signal-regulated kinase (ERK), Jun N-terminal kinase (JNK) and p38 phosphorylation, which resulted in decreasing UVB-induced phosphorylation of c-Fos and c-Jun. These results indicate that SAB downregulates UV-induced MMP-1 expression by inhibiting Mitogen-activated protein kinase (MAPK) signaling pathways and activator protein-1 (AP-1) activation. Our results suggest a potential use for SAB in skin photoprotection. © 2015 The American Society of Photobiology.

  19. Daphnoretin modulates differentiation and maturation of human dendritic cells through down-regulation of c-Jun N-terminal kinase.

    PubMed

    Chen, Chien-An; Liu, Chien-Kuo; Hsu, Ming-Ling; Chi, Chih-Wen; Ko, Chun-Chuan; Chen, Jian-Syun; Lai, Cheng-Ta; Chang, Hen-Hong; Lee, Tzung-Yan; Lai, Yuen-Liang; Chen, Yu-Jen

    2017-10-01

    Daphnoretin, an active constituent of Wikstroemia indica C.A. Meys, has been shown possessing anti-cancer activity. In this study, we examined the effect of daphnoretin on differentiation and maturation of human myeloid dendritic cells (DCs). After treatment with daphnoretin (0, 1.1, 3.3, 10 and 30μM) to initiate monocytes, the recovery rate of DCs was reduced in a dose-dependent manner. The mature DCs differentiated in the presence of daphnoretin had fewer and shorter dendrites. Daphnoretin modulated DCs differentiation and maturation in terms of lower expression of CD1a, CD40, CD83, DC-SIGN, and HLA-DR. Daphnoretin inhibited the allostimulatory activity of DCs on proliferation of naive CD4 + CD45 + RA + T cell. On the mitogen-activated protein kinase, daphnoretin down-regulated the lipopolysaccharide-augmented expression of phosphorylated c-Jun N-terminal kinase (pJNK), but not p38 and extracellular signal-regulated kinase 1/2 (ERK1/2). Activation of JNK by anisomycin reversed the effect of daphnoretin on daphnoretin-inhibited pJNK expression and dendrite formation of DCs. In disease model related to maturation of DCs, daphnoretin suppressed the acute rejection of skin allografts in mice. Our results suggest that daphnoretin modulated differentiation and maturation of DCs toward a state of atypical maturation with impaired allostimulatory function and this effect may go through down-regulation of phosphorylated JNK. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. c-jun-N-Terminal Kinase (JNK) for the Treatment of Amyotrophic Lateral Sclerosis

    DTIC Science & Technology

    2015-03-01

    1 AWARD NUMBER: W81XWH-12-1-0431 TITLE: “c-jun-N-Terminal Kinase (JNK) for the Treatment of Amyotrophic Lateral Sclerosis ” PRINCIPAL...TITLE AND SUBTITLE “c-jun-N-Terminal Kinase (JNK) for the Treatment of Amyotrophic Lateral Scelerosis” 5a. CONTRACT NUMBER 5b. GRANT NUMBER... Lateral   Sclerosis ”   Final  Report:  Project  Period  Sept  2012-­‐Dec  2014     Personnel  List:     Feng,  Yangbo

  1. Branches of NF-κb signaling pathway regulate hepatocyte proliferation in rat liver regeneration.

    PubMed

    Chang, C F; Zhao, W M; Mei, J X; Zhou, Y; Pan, C Y; Xu, T T; Xu, C S

    2015-07-13

    Previous studies have demonstrated that the nuclear factor κB (NF-κB) pathway is involved in promoting cell proliferation. To further explore the regulatory branches and their sequence in the NF-κB pathway in the promotion of hepatocyte proliferation at the transcriptional level during rat liver regeneration, Rat Genome 230 2.0 array was used to detect the expression changes of the isolated hepatocytes. We found that many genes involved in the NF-κB pathway (including 73 known genes and 19 homologous genes) and cell proliferation (including 484 genes and 104 homologous genes) were associated with liver regeneration. Expression profile function (Ep) was used to analyze the biological processes. It was revealed that the NF-κB pathway promoted hepatocyte proliferation through three branches. Several methods of integrated statistics were applied to extract and screen key genes in liver regeneration, and it indicated that eight genes may play a vital role in rat liver regeneration. To confirm the above predicted results, Ccnd1, Jun and Myc were analyzed using qRT-PCR, and the results were generally consistent with that of microarray data. It is concluded that 3 branches and 8 key genes involved in the NF-κB pathway regulate hepatocyte proliferation during rat liver regeneration.

  2. 75 FR 1662 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-12

    ..., 113 Stat. 1338 (1999). \\3\\ See 15 U.S.C. 78q(i). \\4\\ See Exchange Act Release No. 49831 (Jun. 8, 2004), 69 FR 34472 (Jun. 21, 2004). SIBHCs, as well as recordkeeping and reporting requirements. Among other... Act Release No. 49831, at 6 (Jun. 8, 2004), 69 FR 34472, at 34473 (Jun. 21, 2004). Pursuant to Section...

  3. Jab1/Csn5-thioredoxin signaling in relapsed acute monocytic leukemia under oxidative stress

    PubMed Central

    Zhou, Fuling; Pan, Yunbao; Wei, Yongchang; Zhang, Ronghua; Bai, Gaigai; Shen, Qiuju; Meng, Shan; Le, Xiao-Feng; Andreeff, Michael; Claret, Francois X.

    2018-01-01

    Purpose High levels of ROS and ineffective antioxidant systems contribute to oxidative stress, which affects the function of hematopoietic cells in acute myeloid leukemia (AML); however, the mechanisms by which ROS lead to malignant transformation in relapsed AML-M5 are not completely understood. We hypothesized that alterations in intracellular ROS would trigger AML-M5 relapse by activating the intrinsic pathway. Experimental Design We studied ROS levels and conducted JAB1/COPS5 and TRX gene expression analyses with blood samples obtained from 60 matched AML-M5 patients at diagnosis and relapse and conducted mechanism studies of Jab1’s regulation of Trx in leukemia cell lines. Results Our data showed that increased production of ROS and a low capacity of antioxidant enzymes were characteristics of AML-M5, both at diagnosis and at relapse. Consistently, increased gene expression levels of thioredoxin (TRX) and c-Jun activation domain-binding protein-1 (JAB1/COPS5) were associated with low overall survival rates in patients with AML-M5. In addition, stimulating AML-M5 cells with low concentrations of hydrogen peroxide led to increased Jab1 and Trx expression. Consistently, transfection of ectopic Jab1 into leukemia cells increased Trx expression, whereas silencing of Jab1 in leukemia cells reduced Trx expression. Mechanistically, Jab1 interacted with Trx and stabilized Trx protein. Moreover, Jab1 transcriptionally regulated Trx. Furthermore, depletion of Jab1 inhibited leukemia cell growth both in vitro and in vivo. Conclusions We identified a novel Jab1-Trx axis that is a key cellular process in the pathobiologic characteristics of AML-M5. Targeting the ROS/Jab1/Trx pathway could be beneficial in the treatment of AML-M5. PMID:28270496

  4. Fluocinolone acetonide partially restores the mineralization of LPS-stimulated dental pulp cells through inhibition of NF-κB pathway and activation of AP-1 pathway

    PubMed Central

    Liu, Zhongning; Jiang, Ting; Wang, Xinzhi; Wang, Yixiang

    2013-01-01

    BACKGROUND AND PURPOSE Fluocinolone acetonide (FA) is commonly used as a steroidal anti-inflammatory drug. We recently found that in dental pulp cells (DPCs) FA has osteo-/odonto-inductive as well as anti-inflammatory effects. However, the mechanism by which FA induces these effects in DPCs is poorly understood. EXPERIMENTAL APPROACH The effect of FA on the mineralization of DPCs during inflammatory conditions and the underlying mechanism were investigated by real-time PCR, Western blot, EMSA, histochemical staining, immunostaining and pathway blockade assays. KEY RESULTS FA significantly inhibited the inflammatory response in LPS-treated DPCs not only by down-regulating the expression of pro–inflammation-related genes, but also by up-regulating the expression of the anti-inflammatory gene PPAR-γ and mineralization-related genes. Moreover, histochemical staining and immunostaining showed that FA could partially restore the expressions of alkaline phosphatase, osteocalcin and dentin sialophosphoprotein (DSPP) and mineralization in LPS-stimulated DPCs. Real-time PCR and Western blot analysis revealed that FA up-regulated DSPP and runt-related transcription factor 2 expression by inhibiting the expression of phosphorylated-NF-κB P65 and activating activator protein-1 (AP-1) (p-c-Jun and Fra-1). These results were further confirmed through EMSA, by detection of NF-κB DNA-binding activity and pathway blockade assays using a NF-κB pathway inhibitor, AP-1 pathway inhibitor and glucocorticoid receptor antagonist. CONCLUSIONS AND IMPLICATIONS Inflammation induced by LPS suppresses the mineralization process in DPCs. FA partially restored this osteo-/odonto-genesis process in LPS-treated DPCs and had an anti-inflammatory effect through inhibition of the NF-κB pathway and activation of the AP-1 pathway. Hence, FA is a potential new treatment for inflammation-associated bone/teeth diseases. PMID:24024985

  5. Nuclear phosphoproteome analysis of 3T3-L1 preadipocyte differentiation reveals system-wide phosphorylation of transcriptional regulators.

    PubMed

    Rabiee, Atefeh; Schwämmle, Veit; Sidoli, Simone; Dai, Jie; Rogowska-Wrzesinska, Adelina; Mandrup, Susanne; Jensen, Ole N

    2017-03-01

    Adipocytes (fat cells) are important endocrine and metabolic cells critical for systemic insulin sensitivity. Both adipose excess and insufficiency are associated with adverse metabolic function. Adipogenesis is the process whereby preadipocyte precursor cells differentiate into lipid-laden mature adipocytes. This process is driven by a network of transcriptional regulators (TRs). We hypothesized that protein PTMs, in particular phosphorylation, play a major role in activating and propagating signals within TR networks upon induction of adipogenesis by extracellular stimulus. We applied MS-based quantitative proteomics and phosphoproteomics to monitor the alteration of nuclear proteins during the early stages (4 h) of preadipocyte differentiation. We identified a total of 4072 proteins including 2434 phosphorylated proteins, a majority of which were assigned as regulators of gene expression. Our results demonstrate that adipogenic stimuli increase the nuclear abundance and/or the phosphorylation levels of proteins involved in gene expression, cell organization, and oxidation-reduction pathways. Furthermore, proteins acting as negative modulators involved in negative regulation of gene expression, insulin stimulated glucose uptake, and cytoskeletal organization showed a decrease in their nuclear abundance and/or phosphorylation levels during the first 4 h of adipogenesis. Among 288 identified TRs, 49 were regulated within 4 h of adipogenic stimulation including several known and many novel potential adipogenic regulators. We created a kinase-substrate database for 3T3-L1 preadipocytes by investigating the relationship between protein kinases and protein phosphorylation sites identified in our dataset. A majority of the putative protein kinases belong to the cyclin-dependent kinase family and the mitogen-activated protein kinase family including P38 and c-Jun N-terminal kinases, suggesting that these kinases act as orchestrators of early adipogenesis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. JunB transcription factor maintains skeletal muscle mass and promotes hypertrophy

    PubMed Central

    Raffaello, Anna; Milan, Giulia; Masiero, Eva; Carnio, Silvia; Lee, Donghoon

    2010-01-01

    The size of skeletal muscle cells is precisely regulated by intracellular signaling networks that determine the balance between overall rates of protein synthesis and degradation. Myofiber growth and protein synthesis are stimulated by the IGF-1/Akt/mammalian target of rapamycin (mTOR) pathway. In this study, we show that the transcription factor JunB is also a major determinant of whether adult muscles grow or atrophy. We found that in atrophying myotubes, JunB is excluded from the nucleus and that decreasing JunB expression by RNA interference in adult muscles causes atrophy. Furthermore, JunB overexpression induces hypertrophy without affecting satellite cell proliferation and stimulated protein synthesis independently of the Akt/mTOR pathway. When JunB is transfected into denervated muscles, fiber atrophy is prevented. JunB blocks FoxO3 binding to atrogin-1 and MuRF-1 promoters and thus reduces protein breakdown. Therefore, JunB is important not only in dividing populations but also in adult muscle, where it is required for the maintenance of muscle size and can induce rapid hypertrophy and block atrophy. PMID:20921137

  7. In Vitro Studies on the Antimicrobial Peptide Human Beta-Defensin 9 (HBD9): Signalling Pathways and Pathogen-Related Response (An American Ophthalmological Society Thesis)

    PubMed Central

    Dua, Harminder S.; Otri, Ahmad Muneer; Hopkinson, Andrew; Mohammed, Imran

    2014-01-01

    Purpose: Human β-defensins (HBDs) are an important part of the innate immune host defense at the ocular surface. Unlike other defensins, expression of HBD9 at the ocular surface is reduced during microbial infection, but activation of toll-like receptor 2 (TLR2) in corneal epithelial cells has been shown to up-regulate HBD9. Our purpose was to test the hypothesis that TLR2 has a key role in the signalling pathway(s) involved in the overexpression or underexpression of HBD9, and accordingly, different pathogens would induce a different expression pattern of HBD9. Methods: The in vitro RNAi silencing method and response to dexamethasone were used to determine key molecules involved in signalling pathways of HBD9 in immortalized human corneal epithelial cells. The techniques included cell culture with exposure to specific transcription factor inhibitors and bacteria, RNA extraction and cDNA synthesis, quantitative real-time polymerase chain reaction, and immunohistology. Results: This study demonstrates that TLR2 induces HBD9 mRNA and protein expression in a time- and dose-dependent manner. Transforming growth factor-β–activated kinase 1 (TAK1) plays a central role in HBD9 induction by TLR2, and transcription factors c-JUN and activating transcription factor 2 are also involved. Dexamethasone reduces TLR2-mediated up-regulation of HBD9 mRNA and protein levels in mitogen-activated protein kinase phosphatase 1 (MKP1)-dependent and c-JUN-independent manner. HBD9 expression differs with gram-negative and gram-positive bacteria. Conclusions: TLR2-mediated MKPs and nuclear factor-κB signalling pathways are involved in HBD9 expression. TAK-1 is a key molecule. These molecules can be potentially targeted to modulate HBD9 expression. Differential expression of HBD9 with different bacteria could be related to differences in pathogen-associated molecular patterns of these organisms. PMID:25646028

  8. Activation of c-jun N-terminal kinase upon influenza A virus (IAV) infection is independent of pathogen-related receptors but dependent on amino acid sequence variations of IAV NS1.

    PubMed

    Nacken, Wolfgang; Anhlan, Darisuren; Hrincius, Eike R; Mostafa, Ahmed; Wolff, Thorsten; Sadewasser, Anne; Pleschka, Stephan; Ehrhardt, Christina; Ludwig, Stephan

    2014-08-01

    A hallmark cell response to influenza A virus (IAV) infections is the phosphorylation and activation of c-jun N-terminal kinase (JNK). However, so far it is not fully clear which molecules are involved in the activation of JNK upon IAV infection. Here, we report that the transfection of influenza viral-RNA induces JNK in a retinoic acid-inducible gene I (RIG-I)-dependent manner. However, neither RIG-I-like receptors nor MyD88-dependent Toll-like receptors were found to be involved in the activation of JNK upon IAV infection. Viral JNK activation may be blocked by addition of cycloheximide and heat shock protein inhibitors during infection, suggesting that the expression of an IAV-encoded protein is responsible for JNK activation. Indeed, the overexpression of nonstructural protein 1 (NS1) of certain IAV subtypes activated JNK, whereas those of some other subtypes failed to activate JNK. Site-directed mutagenesis experiments using NS1 of the IAV H7N7, H5N1, and H3N2 subtypes identified the amino acid residue phenylalanine (F) at position 103 to be decisive for JNK activation. Cleavage- and polyadenylation-specific factor 30 (CPSF30), whose binding to NS1 is stabilized by the amino acids F103 and M106, is not involved in JNK activation. Conclusively, subtype-specific sequence variations in the IAV NS1 protein result in subtype-specific differences in JNK signaling upon IAV infection. Influenza A virus (IAV) infection leads to the activation or modulation of multiple signaling pathways. Here, we demonstrate for the first time that the c-jun N-terminal kinase (JNK), a long-known stress-activated mitogen-activated protein (MAP) kinase, is activated by RIG-I when cells are treated with IAV RNA. However, at the same time, nonstructural protein 1 (NS1) of IAV has an intrinsic JNK-activating property that is dependent on IAV subtype-specific amino acid variations around position 103. Our findings identify two different and independent pathways that result in the activation of JNK in the course of an IAV infection. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  9. Activation of c-jun N-Terminal Kinase upon Influenza A Virus (IAV) Infection Is Independent of Pathogen-Related Receptors but Dependent on Amino Acid Sequence Variations of IAV NS1

    PubMed Central

    Nacken, Wolfgang; Anhlan, Darisuren; Hrincius, Eike R.; Mostafa, Ahmed; Wolff, Thorsten; Sadewasser, Anne; Pleschka, Stephan; Ehrhardt, Christina

    2014-01-01

    ABSTRACT A hallmark cell response to influenza A virus (IAV) infections is the phosphorylation and activation of c-jun N-terminal kinase (JNK). However, so far it is not fully clear which molecules are involved in the activation of JNK upon IAV infection. Here, we report that the transfection of influenza viral-RNA induces JNK in a retinoic acid-inducible gene I (RIG-I)-dependent manner. However, neither RIG-I-like receptors nor MyD88-dependent Toll-like receptors were found to be involved in the activation of JNK upon IAV infection. Viral JNK activation may be blocked by addition of cycloheximide and heat shock protein inhibitors during infection, suggesting that the expression of an IAV-encoded protein is responsible for JNK activation. Indeed, the overexpression of nonstructural protein 1 (NS1) of certain IAV subtypes activated JNK, whereas those of some other subtypes failed to activate JNK. Site-directed mutagenesis experiments using NS1 of the IAV H7N7, H5N1, and H3N2 subtypes identified the amino acid residue phenylalanine (F) at position 103 to be decisive for JNK activation. Cleavage- and polyadenylation-specific factor 30 (CPSF30), whose binding to NS1 is stabilized by the amino acids F103 and M106, is not involved in JNK activation. Conclusively, subtype-specific sequence variations in the IAV NS1 protein result in subtype-specific differences in JNK signaling upon IAV infection. IMPORTANCE Influenza A virus (IAV) infection leads to the activation or modulation of multiple signaling pathways. Here, we demonstrate for the first time that the c-jun N-terminal kinase (JNK), a long-known stress-activated mitogen-activated protein (MAP) kinase, is activated by RIG-I when cells are treated with IAV RNA. However, at the same time, nonstructural protein 1 (NS1) of IAV has an intrinsic JNK-activating property that is dependent on IAV subtype-specific amino acid variations around position 103. Our findings identify two different and independent pathways that result in the activation of JNK in the course of an IAV infection. PMID:24872593

  10. Implication of multiple mechanisms in apoptosis induced by the synthetic retinoid CD437 in human prostate carcinoma cells.

    PubMed

    Sun, S Y; Yue, P; Lotan, R

    2000-09-14

    The synthetic retinoid 6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphthalene carboxylic acid (CD437) induces apoptosis in several types of cancer cell. CD437 inhibited the growth of both androgen-dependent and -independent human prostate carcinoma (HPC) cells in a concentration-dependent manner by rapid induction of apoptosis. CD437 was more effective in killing androgen-independent HPC cells such as DU145 and PC-3 than the androgen-dependent LNCaP cells. The caspase inhibitors Z-VAD-FMK and Z-DEVD-FMK blocked apoptosis induced by CD437 in DU145 and LNCaP cells, in which increased caspase-3 activity and PARP cleavage were observed, but not in PC-3 cells, in which CD437 did not induce caspase-3 activation and PARP cleavage. Thus, CD437 can induce either caspase-dependent or caspase-independent apoptosis in HPC cells. CD437 increased the expression of c-Myc, c-Jun, c-Fos, and death receptors DR4, DR5 and Fas. CD437's potency in apoptosis induction in the different cell lines was correlated with its effects on the expression of oncogenes and death receptors, thus implicating these genes in CD437-induced apoptosis in HPC cells. However, the importance and contribution of each of these genes in different HPC cell lines may vary. Because CD437 induced the expression of DR4, DR5 and Fas, we examined the effects of combining CD437 and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and Fas ligand, respectively, in HPC cells. We found synergistic induction of apoptosis, highlighting the importance of the modulation of these death receptors in CD437-induced apoptosis in HPC cells. This result also suggests a potential strategy of using CD437 with TRAIL for treatment of HPC. Oncogene (2000) 19, 4513 - 4522.

  11. Gene structure, cDNA characterization and RNAi-based functional analysis of a myeloid differentiation factor 88 homolog in Tenebrio molitor larvae exposed to Staphylococcus aureus infection.

    PubMed

    Patnaik, Bharat Bhusan; Patnaik, Hongray Howrelia; Seo, Gi Won; Jo, Yong Hun; Lee, Yong Seok; Lee, Bok Luel; Han, Yeon Soo

    2014-10-01

    Myeloid differentiation factor 88 (MyD88), an intracellular adaptor protein involved in Toll/Toll-like receptor (TLR) signal processing, triggers activation of nuclear factor-kappaB (NF-κB) transcription factors. In the present study, we analyzed the gene structure and biological function of MyD88 in a coleopteran insect, Tenebrio molitor (TmMyD88). The TmMyD88 gene was 1380 bp in length and consisted of five exons and four introns. The 5'-flanking sequence revealed several putative transcription factor binding sites, such as STAT-4, AP-1, cJun, cfos, NF-1 and many heat shock factor binding elements. The cDNA contained a typical death domain, a conservative Toll-like interleukin-1 receptor (TIR) domain, and a C-terminal extension (CTE). The TmMyD88 TIR domain showed three significantly conserved motifs for interacting with the TIR domain of TLRs. TmMyD88 was grouped within the invertebrate cluster of the phylogenetic tree and shared 75% sequence identity with the TIR domain of Tribolium castaneum MyD88. Homology modeling of the TmMyD88 TIR domain revealed five parallel β-strands surrounded by five α-helices that adopted loop conformations to function as an adaptor. TmMyD88 expression was upregulated 7.3- and 4.79-fold after 12 and 6h, respectively, of challenge with Staphylococcus aureus and fungal β-1,3 glucan. Silencing of the TmMyD88 transcript by RNA interference led to reduced resistance of the host to infection by S. aureus. These results indicate that TmMyD88 is required for survival against Staphylococcus infection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. The intriguing role of fibroblasts and c-Jun in the chemopreventive and therapeutic effect of finasteride on xenograft models of prostate cancer

    PubMed Central

    Niu, Yi-Nong; Wang, Kai; Jin, Song; Fan, Dong-Dong; Wang, Ming-Shuai; Xing, Nian-Zeng; Xia, Shu-Jie

    2016-01-01

    In a large clinical trial, finasteride reduced the rate of low-grade prostate cancer (PCa) while increasing the incidence of high-grade cancer. Whether finasteride promotes the development of high-grade tumors remains controversial. We demonstrated the role of fibroblasts and c-Jun in chemopreventive and therapeutic effect of finasteride on xenograft models of PCa. LNCaP (PC3) cells or recombinants of cancer cells and fibroblasts were implanted in male athymic nude mice treated with finasteride. Tumor growth, cell proliferation, apoptosis, p-Akt, and p-ERK1/2 were evaluated. In LNCaP (PC3) mono-grafted models, finasteride did not change the tumor growth. In recombinant-grafted models, fibroblasts and c-Jun promoted tumor growth; finasteride induced proliferation of LNCaP cells and repressed PC3 cell apoptosis. When c-Jun was knocked out, fibroblasts and/or finasteride did not promote the tumor growth. Finasteride inhibited p-Akt and p-ERK1/2 in mono-culture cancer cells while stimulating the same signaling molecules in the presence of fibroblasts. Reduced p-Akt and p-ERK1/2 were noted in the presence of c-Jun−/− fibroblasts. Fibroblasts and c-Jun promote PCa growth; finasteride further stimulates tumor growth with promoted proliferation, repressed apoptosis, and up-regulated pro-proliferative molecular pathway in the presence of fibroblasts and c-Jun. Stromal-epithelial interactions play critical roles in finasteride's therapeutic effects on PCa. Our findings have preliminary implications in using finasteride as a chemopreventive or therapeutic agent for PCa patients. PMID:26698232

  13. Induction of c-Jun by air particulate matter (PM₁₀) of Mexico city: Participation of polycyclic aromatic hydrocarbons.

    PubMed

    Salcido-Neyoy, Martha Estela; Sánchez-Pérez, Yesennia; Osornio-Vargas, Alvaro Román; Gonsebatt, María Eugenia; Meléndez-Zajgla, Jorge; Morales-Bárcenas, Rocío; Petrosyan, Pavel; Molina-Servin, Edith Danny; Vega, Elizabeth; Manzano-León, Natalia; García-Cuellar, Claudia M

    2015-08-01

    The carcinogenic potential of urban particulate matter (PM) has been partly attributed to polycyclic aromatic hydrocarbons (PAHs) content, which activates the aryl hydrocarbon receptor (AhR). Here we report the effect of PM with an aerodynamic size of 10 μm (PM10) on the induction of AhR pathway in A549 cells, evaluating its downstream targets CYP1B1, IL-6, IL-8 and c-Jun. Significant increases in CYP1B1 protein and enzyme activity; IL-6 and IL-8 secretion and c-Jun protein were found in response to PM10. The formation of PAH-DNA adducts was also detected. The involvement of AhR pathway was confirmed with Resveratrol as AhR antagonist, which reversed CYP1B1 and c-Jun induction. Nevertheless, in IL-6 and IL-8 secretion, the Resveratrol was ineffective, suggesting an effect independent of this pathway. Considering the role of c-Jun in oncogenesis, its induction by PM may be contributing to its carcinogenic potential through induction of AhR pathway by PAHs present in PM10. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. ω-3 Polyunsaturated fatty acids and their cytochrome P450-derived metabolites suppress colorectal tumor development in mice.

    PubMed

    Wang, Weicang; Yang, Jun; Nimiya, Yoshiki; Lee, Kin Sing Stephen; Sanidad, Katherine; Qi, Weipeng; Sukamtoh, Elvira; Park, Yeonhwa; Liu, Zhenhua; Zhang, Guodong

    2017-10-01

    Many studies have shown that dietary intake of ω-3 polyunsaturated fatty acids (PUFAs) reduces the risks of colorectal cancer; however, the underlying mechanisms are not well understood. Here we used a LC-MS/MS-based lipidomics to explore the role of eicosanoid signaling in the anti-colorectal cancer effects of ω-3 PUFAs. Our results showed that dietary feeding of ω-3 PUFAs-rich diets suppressed growth of MC38 colorectal tumor, and modulated profiles of fatty acids and eicosanoid metabolites in C57BL/6 mice. Notably, we found that dietary feeding of ω-3 PUFAs significantly increased levels of epoxydocosapentaenoic acids (EDPs, metabolites of ω-3 PUFA produced by cytochrome P450 enzymes) in plasma and tumor tissue of the treated mice. We further showed that systematic treatment with EDPs (dose=0.5 mg/kg per day) suppressed MC38 tumor growth in mice, with reduced expressions of pro-oncogenic genes such as C-myc, Axin2, and C-jun in tumor tissues. Together, these results support that formation of EDPs might contribute to the anti-colorectal cancer effects of ω-3 PUFAs. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu Ping; Jiang Xiaohong; Arcasoy, Murat O.

    The role of erythropoietin receptor (EpoR) expression in tumor cells and the potential of EpoR-mediated signaling to contribute to cellular proliferation and invasiveness require further characterization. To determine whether EpoR expression and activation in tumor cells modulates intracellular signal transduction to promote cellular proliferation and migration, we employed a novel experimental model using human breast cancer cells engineered to stably express a constitutively active EpoR-R129C variant. EpoR-R129C expression resulted in increased cellular proliferation and migration of breast cancer cells and these effects were associated with significantly increased Epo-induced phosphorylation of ERK1/2, AKT and c-Jun-NH2-kinase (SAPK/JNK) proteins. Expression of the constitutivelymore » active EpoR-R129C receptor promoted the proliferation and migration of breast cancer cells via activation of ERK- and SAPK/JNK-dependent signaling pathways, respectively. These findings suggest that EpoR over-expression and activation in breast cancer cells has the potential to contribute to tumor progression by promoting the proliferation and invasiveness of the neoplastic cells.« less

  16. Induction of antiproliferative connective tissue growth factor expression in Wilms' tumor cells by sphingosine-1-phosphate receptor 2.

    PubMed

    Li, Mei-Hong; Sanchez, Teresa; Pappalardo, Anna; Lynch, Kevin R; Hla, Timothy; Ferrer, Fernando

    2008-10-01

    Connective tissue growth factor (CTGF), a member of the CCN family of secreted matricellular proteins, regulates fibrosis, angiogenesis, cell proliferation, apoptosis, tumor growth, and metastasis. However, the role of CTGF and its regulation mechanism in Wilms' tumor remains largely unknown. We found that the bioactive lipid sphingosine-1-phosphate (S1P) induced CTGF expression in a concentration- and time-dependent manner in a Wilms' tumor cell line (WiT49), whereas FTY720-phosphate, an S1P analogue that binds all S1P receptors except S1P2, did not. Further, the specific S1P2 antagonist JTE-013 completely inhibited S1P-induced CTGF expression, whereas the S1P1 antagonist VPC44116 did not, indicating that this effect was mediated by S1P2. This was confirmed by adenoviral transduction of S1P2 in WiT49 cells, which showed that overexpression of S1P2 increased the expression of CTGF. Induction of CTGF by S1P was sensitive to ROCK inhibitor Y-27632 and c-Jun NH2-terminal kinase inhibitor SP600125, suggesting the requirement of RhoA/ROCK and c-Jun NH2-terminal kinase pathways for S1P-induced CTGF expression. Interestingly, the expression levels of CTGF were decreased in 8 of 10 Wilms' tumor tissues compared with matched normal tissues by quantitative real-time PCR and Western blot analysis. In vitro, human recombinant CTGF significantly inhibited the proliferation of WiT49 cells. In addition, overexpression of CTGF resulted in significant inhibition of WiT49 cell growth. Taken together, these data suggest that CTGF protein induced by S1P2 might act as a growth inhibitor in Wilms' tumor.

  17. Piracy of PGE2/EP receptor mediated signaling by Kaposi’s sarcoma associated herpes virus (KSHV/HHV-8) for latency gene expression: Strategy of a successful pathogen

    PubMed Central

    Paul, Arun George; Sharma-Walia, Neelam; Kerur, Nagaraj; White, Carl; Chandran, Bala

    2010-01-01

    KSHV is implicated in the pathogenesis of KS, a chronic inflammation associated malignancy. COX-2 and its metabolite PGE2, two pivotal proinflammatory/oncogeneic molecules, are proposed to play roles in the expression of major KSHV latency associated nuclear antigen-1 (LANA-1). Microsomal prostaglandin E2 synthase (mPGES), PGE2 and its receptors (EP1, EP2, EP3, and EP4) were detected in KS lesions with the distinct staining of EP2/EP4 in KS lesions. In latently infected endothelial TIVE-LTC cells, EP receptor antagonists down-regulated LANA-1 expression as well as Ca2+, p-Src, p-PI3K, p-PKCζ/λ, and p-NF-κB, which are also some of the signal molecules proposed to be important in KS pathogenesis. Exogenous PGE2 and EP receptor agonists induced the LANA-1 promoter in 293 cells, and YY1, Sp1, Oct-1, Oct-6, C/EBP and c-Jun transcription factors appear to be involved in this induction. PGE2/EP receptor induced LANA-1 promoter activity was down-regulated significantly by the inhibition of Ca2+, p-Src, p-PI3K, p-PKCζ/λ, and p-NF-κB. These findings implicate the inflammatory PGE2/EP receptors and the associated signal molecules in herpes virus latency and uncover a novel paradigm that demonstrates the evolution of KSHV genome plasticity to utilize inflammatory response for its survival advantage of maintaining latent gene expression. This data also suggests that potential use of anti-COX-2 and anti-EP receptor therapy may not only ameliorate the chronic inflammation associated with KS but could also lead to elimination of the KSHV latent infection and the associated KS lesions. PMID:20388794

  18. Tumor necrosis factor-alpha stimulation of calcitonin gene-related peptide expression and secretion from rat trigeminal ganglion neurons.

    PubMed

    Bowen, Elizabeth J; Schmidt, Thomas W; Firm, Christina S; Russo, Andrew F; Durham, Paul L

    2006-01-01

    Expression of the neuropeptide calcitonin gene-related peptide (CGRP) in trigeminal ganglion is implicated in neurovascular headaches and temporomandibular joint disorders. Elevation of cytokines contributes to the pathology of these diseases. However, a connection between cytokines and CGRP gene expression in trigeminal ganglion nerves has not been established. We have focused on the effects of the cytokine tumor necrosis factor-alpha (TNF-alpha). TNFR1 receptors were found on the majority of CGRP-containing rat trigeminal ganglion neurons. Treatment of cultures with TNF-alpha stimulated CGRP secretion. In addition, the intracellular signaling intermediate from the TNFR1 receptor, ceramide, caused a similar increase in CGRP release. TNF-alpha caused a coordinate increase in CGRP promoter activity. TNF-alpha treatment activated the transcription factor NF-kappaB, as well as the Jun N-terminal kinase (JNK) and p38 mitogen-activated protein (MAP) kinase pathways. The importance of TNF-alpha induction of MAP kinase pathways was demonstrated by inhibiting MAP kinases with pharmacological reagents and gene transfer with an adenoviral vector encoding MAP kinase phosphatase-1 (MKP-1). We propose that selective and regulated inhibition of MAP kinases in trigeminal neurons may be therapeutically beneficial for inflammatory disorders involving elevated CGRP levels.

  19. Tumor necrosis factor-α stimulation of calcitonin gene-related peptide expression and secretion from rat trigeminal ganglion neurons

    PubMed Central

    Bowen, Elizabeth J.; Schmidt, Thomas W.; Firm, Christina S.; Russo, Andrew F.; Durham, Paul L.

    2006-01-01

    Expression of the neuropeptide calcitonin gene-related peptide (CGRP) in trigeminal ganglion is implicated in neurovascular headaches and temporomandibular joint disorders. Elevation of cytokines contributes to the pathology of these diseases. However, a connection between cytokines and CGRP gene expression in trigeminal ganglion nerves has not been established. We have focused on the effects of the cytokine tumor necrosis factorα (TNFα). TNFR1 receptors were found on the majority of CGRP-containing rat trigeminal ganglion neurons. Treatment of cultures with TNFα stimulated CGRP secretion. In addition, the intracellular signaling intermediate from the TNFR1 receptor, ceramide, caused a similar increase in CGRP release. TNFα caused a coordinate increase in CGRP promoter activity. TNFα treatment activated the transcription factor NF-κB, as well as the Jun N-terminal kinase (JNK) and p38 mitogen-activated protein (MAP) kinase pathways. The importance of TNFα induction of MAP kinase pathways was demonstrated by inhibiting MAP kinases with pharmacological reagents and gene transfer with an adenoviral vector encoding MAP kinase phosphatase-1 (MKP-1). We propose that selective and regulated inhibition of MAP kinases in trigeminal neurons may be therapeutically beneficial for inflammatory disorders involving elevated CGRP levels. PMID:16277606

  20. JPRS Report, Science & Technology. China.

    DTIC Science & Technology

    1989-03-29

    Commun ., Vol COM-29, No 6, pp 895-901, June 1981. [4] R.C. Titsworth , "A Boolean-Function-Multiplexed Telemetry System," IEEE Trans, on SET, pp 42...Reagents 39 Gene-Engineered Human Epithelium Growth Factor (hEGF) 39 Superfine Snake Venom 39 COMPUTERS Ai Computer System LISP-MI [Zheng Shouqi, et...XUEBAO, No 3, Jun 88] 134 Coordinated Development of Microwave, Optical Communications [Zhang Xu; DIANXIN KUAIBAO, No 11, Nov 88] 143 Error

  1. Macrolactin F inhibits RANKL-mediated osteoclastogenesis by suppressing Akt, MAPK and NFATc1 pathways and promotes osteoblastogenesis through a BMP-2/smad/Akt/Runx2 signaling pathway.

    PubMed

    Li, Liang; Sapkota, Mahesh; Gao, Ming; Choi, Hyukjae; Soh, Yunjo

    2017-11-15

    The balance between bone formation and bone resorption is maintained by osteoblasts and osteoclasts. In the current study, macrolactin F (MF) was investigated for novel biological activity on the receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclastogenesis in primary bone marrow-derived macrophages (BMMs). We found that RANKL-induced osteoclast formation and differentiation from BMMs was significantly inhibited by MF in a dose-dependent manner without cytotoxicity. RANKL-induced F-actin ring formation and bone resorption activity in BMMs which was attenuated by MF. In addition, MF suppressed the expression of osteoclast-related genes, including c-myc, RANK, tartrate-resistant acid phosphatase (TRAP), nuclear factor of activated T cells c1 (NFATc1), cathepsin K and matrix metalloproteinase 9 (MMP9). Furthermore, the protein expression NFATc1, c-Fos, MMP9, cathepsin K and phosphorylation of Jun N-terminal kinase (JNK), p38 and Akt were also down-regulated by MF treatment. Interestingly, MF promoted pre-osteoblast cell differentiation on Alizarin Red-mineralization activity, alkaline phosphatase (ALP) activity, and the expression of osteoblastogenic markers including Runx2, Osterix, Smad4, ALP, type I collagen alpha 1 (Col1α), osteopontin (OPN), and osteocalcin (OCN) via activation of the BMP-2/smad/Akt/Runx2 pathway on MC3T3-E1. Taken together, these results indicate that MF may be useful as a therapeutic agent to enhance bone health and treat osteoporosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A systematic review of known mechanisms of hydroxyurea-induced fetal hemoglobin for treatment of sickle cell disease.

    PubMed

    Pule, Gift D; Mowla, Shaheen; Novitzky, Nicolas; Wiysonge, Charles S; Wonkam, Ambroise

    2015-10-01

    To report on molecular mechanisms of fetal hemoglobin (HbF) induction by hydroxyurea (HU) for the treatment of sickle cell disease. Systematic review. Studies have provided consistent associations between genomic variations in HbF-promoting loci and variable HbF level in response to HU. Numerous signal transduction pathways have been implicated, through the identification of key genomic variants in BCL11A, HBS1L-MYB, SAR1 or XmnI polymorphism that predispose the response to the treatment, and signal transduction pathways that modulate γ-globin expression (cAMP/cGMP; Giα/c-Jun N-terminal kinase/Jun; methylation and miRNA). Three main molecular pathways have been reported: i) Epigenetic modifications, transcriptional events and signaling pathways involved in HU-mediated response, ii) Signaling pathways involving HU-mediated response and iii) Post-transcriptional pathways (regulation by miRNAs). The complete picture of HU-mediated mechanisms of HbF production in Sickle Cell Disease remains elusive. Research on post-transcriptional mechanisms could lead to therapeutic targets that may minimize alterations to the cellular transcriptome.

  3. Microarray expression profiling and co-expression network analysis of circulating LncRNAs and mRNAs associated with neurotoxicity induced by BPA.

    PubMed

    Pang, Wei; Lian, Fu-Zhi; Leng, Xue; Wang, Shu-Min; Li, Yi-Bo; Wang, Zi-Yu; Li, Kai-Ren; Gao, Zhi-Xian; Jiang, Yu-Gang

    2018-05-01

    A growing body of evidence has shown bisphenol A (BPA), an estrogen-like industrial chemical, has adverse effects on the nervous system. In this study, we investigated the transcriptional behavior of long non-coding RNAs (lncRNAs) and mRNAs to provide the information to explore neurotoxic effects induced by BPA. By microarray expression profiling, we discovered 151 differentially expressed lncRNAs and 794 differentially expressed mRNAs in the BPA intervention group compared with the control group. Gene ontology analysis indicated the differentially expressed mRNAs were mainly involved in fundamental metabolic processes and physiological and pathological conditions, such as development, synaptic transmission, homeostasis, injury, and neuroinflammation responses. In the expression network of the BPA-induced group, a great number of nodes and connections were found in comparison to the control-derived network. We identified lncRNAs that were aberrantly expressed in the BPA group, among which, growth arrest specific 5 (GAS5) might participate in the BPA-induced neurotoxicity by regulating Jun, RAS, and other pathways indirectly through these differentially expressed genes. This study provides the first investigation of genome-wide lncRNA expression and correlation between lncRNA and mRNA expression in the BPA-induced neurotoxicity. Our results suggest that the elevated expression of lncRNAs is a major biomarker in the neurotoxicity induced by BPA.

  4. RNA-seq Analysis of Clinical-Grade Osteochondral Allografts Reveals Activation of Early Response Genes

    PubMed Central

    Lin, Yang; Lewallen, Eric A.; Camilleri, Emily T.; Bonin, Carolina A.; Jones, Dakota L.; Dudakovic, Amel; Galeano-Garces, Catalina; Wang, Wei; Karperien, Marcel J.; Larson, Annalise N.; Dahm, Diane L.; Stuart, Michael J.; Levy, Bruce A.; Smith, Jay; Ryssman, Daniel B.; Westendorf, Jennifer J.; Im, Hee-Jeong; van Wijnen, Andre J.; Riester, Scott M.; Krych, Aaron J.

    2016-01-01

    Preservation of osteochondral allografts used for transplantation is critical to ensure favorable outcomes for patients after surgical treatment of cartilage defects. To study the biological effects of protocols currently used for cartilage storage, we investigated differences in gene expression between stored allograft cartilage and fresh cartilage from living donors using high throughput molecular screening strategies. We applied next generation RNA sequencing (RNA-seq) and real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR) to assess genome-wide differences in mRNA expression between stored allograft cartilage and fresh cartilage tissue from living donors. Gene ontology analysis was used to characterize biological pathways associated with differentially expressed genes. Our studies establish reduced levels of mRNAs encoding cartilage related extracellular matrix (ECM) proteins (i.e., COL1A1, COL2A1, COL10A1, ACAN, DCN, HAPLN1, TNC, and COMP) in stored cartilage. These changes occur concomitantly with increased expression of “early response genes” that encode transcription factors mediating stress/cytoprotective responses (i.e., EGR1, EGR2, EGR3, MYC, FOS, FOSB, FOSL1, FOSL2, JUN, JUNB, and JUND). The elevated expression of “early response genes” and reduced levels of ECM-related mRNAs in stored cartilage allografts suggests that tissue viability may be maintained by a cytoprotective program that reduces cell metabolic activity. These findings have potential implications for future studies focused on quality assessment and clinical optimization of osteochondral allografts used for cartilage transplantation. PMID:26909883

  5. Meta-type analysis of dopaminergic effects on gene expression in the neuroendocrine brain of female goldfish.

    PubMed

    Popesku, Jason T; Martyniuk, Christopher J; Trudeau, Vance L

    2012-01-01

    Dopamine (DA) is a major neurotransmitter important for neuroendocrine control and recent studies have described genomic signaling pathways activated and inhibited by DA agonists and antagonists in the goldfish brain. Here we perform a meta-type analysis using microarray datasets from experiments conducted with female goldfish to characterize the gene expression responses that underlie dopaminergic signaling. Sexually mature, pre-spawning [gonadosomatic index (GSI) = 4.5 ± 1.3%] or sexually regressing (GSI = 3 ± 0.4%) female goldfish (15-40 g) injected intraperitoneally with either SKF 38393, LY 171555, SCH 23390, sulpiride, or a combination of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and α-methyl-p-tyrosine. Microarray meta-type analysis identified 268 genes in the telencephalon and hypothalamus as having reciprocal (i.e., opposite between agonism and antagonism/depletion) fold change responses, suggesting that these transcripts are likely targets for DA-mediated regulation. Noteworthy genes included ependymin, vimentin, and aromatase, genes that support the significance of DA in neuronal plasticity and tissue remodeling. Sub-network enrichment analysis (SNEA) was used to identify common gene regulators and binding proteins associated with the differentially expressed genes mediated by DA. SNEA analysis identified gene expression targets that were related to three major categories that included cell signaling (STAT3, SP1, SMAD, Jun/Fos), immune response (IL-6, IL-1β, TNFs, cytokine, NF-κB), and cell proliferation and growth (IGF1, TGFβ1). These gene networks are also known to be associated with neurodegenerative disorders such as Parkinsons' disease, well-known to be associated with loss of dopaminergic neurons. This study identifies genes and networks that underlie DA signaling in the vertebrate CNS and provides targets that may be key neuroendocrine regulators. The results provide a foundation for future work on dopaminergic regulation of gene expression in fish model systems.

  6. Meta-Type Analysis of Dopaminergic Effects on Gene Expression in the Neuroendocrine Brain of Female Goldfish

    PubMed Central

    Popesku, Jason T.; Martyniuk, Christopher J.; Trudeau, Vance L.

    2012-01-01

    Dopamine (DA) is a major neurotransmitter important for neuroendocrine control and recent studies have described genomic signaling pathways activated and inhibited by DA agonists and antagonists in the goldfish brain. Here we perform a meta-type analysis using microarray datasets from experiments conducted with female goldfish to characterize the gene expression responses that underlie dopaminergic signaling. Sexually mature, pre-spawning [gonadosomatic index (GSI) = 4.5 ± 1.3%] or sexually regressing (GSI = 3 ± 0.4%) female goldfish (15–40 g) injected intraperitoneally with either SKF 38393, LY 171555, SCH 23390, sulpiride, or a combination of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and α-methyl-p-tyrosine. Microarray meta-type analysis identified 268 genes in the telencephalon and hypothalamus as having reciprocal (i.e., opposite between agonism and antagonism/depletion) fold change responses, suggesting that these transcripts are likely targets for DA-mediated regulation. Noteworthy genes included ependymin, vimentin, and aromatase, genes that support the significance of DA in neuronal plasticity and tissue remodeling. Sub-network enrichment analysis (SNEA) was used to identify common gene regulators and binding proteins associated with the differentially expressed genes mediated by DA. SNEA analysis identified gene expression targets that were related to three major categories that included cell signaling (STAT3, SP1, SMAD, Jun/Fos), immune response (IL-6, IL-1β, TNFs, cytokine, NF-κB), and cell proliferation and growth (IGF1, TGFβ1). These gene networks are also known to be associated with neurodegenerative disorders such as Parkinsons’ disease, well-known to be associated with loss of dopaminergic neurons. This study identifies genes and networks that underlie DA signaling in the vertebrate CNS and provides targets that may be key neuroendocrine regulators. The results provide a foundation for future work on dopaminergic regulation of gene expression in fish model systems. PMID:23130016

  7. Preclinical evaluation of destruxin B as a novel Wnt signaling target suppressing proliferation and metastasis of colorectal cancer using non-invasive bioluminescence imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeh, Chi-Tai; Center of Excellence for Cancer Research, Taipei Medical University, Taipei, Taiwan; Department of Surgery, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan

    2012-05-15

    In continuation to our studies toward the identification of direct anti-cancer targets, here we showed that destruxin B (DB) from Metarhizium anisopliae suppressed the proliferation and induced cell cycle arrest in human colorectal cancer (CRC) HT29, SW480 and HCT116 cells. Additionally, DB induced apoptosis in HT29 cells by decreased expression level of anti-apoptotic proteins Bcl-2 and Bcl-xL while increased pro-apoptotic Bax. On the other hand, DB attenuated Wnt-signaling by downregulation of β-catenin, Tcf4 and β-catenin/Tcf4 transcriptional activity, concomitantly with decreased expression of β-catenin target genes cyclin D1, c-myc and survivin. Furthermore, DB affected the migratory and invasive ability of HT29more » cells through suppressed MMPs-2 and -9 enzymatic activities. We also found that DB targeted the MAPK and/or PI3K/Akt pathway by reduced expression of Akt, IKK-α, JNK, NF-κB, c-Jun and c-Fos while increased that of IκBα. Finally, we demonstrated that DB inhibited tumorigenesis in HT29 xenograft mice using non-invasive bioluminescence technique. Consistently, tumor samples from DB-treated mice demonstrated suppressed expression of β-catenin, cyclin D1, survivin, and endothelial marker CD31 while increased caspase-3 expression. Collectively, our data supports DB as an inhibitor of Wnt/β-catenin/Tcf signaling pathway that may be beneficial in the CRC management. Highlights: ► Destruxin B (DB) inhibited colorectal cancer cells growth and induced apoptosis. ► MAPK and/or PI3K/Akt cascade cooperates in DB induced apoptosis. ► DB affected the migratory and invasive ability of HT29 cells through MMP-9. ► DB attenuated Wnt-signaling components β-catenin, Tcf4. ► DB attenuated cyclin D1, c-myc, survivin and tumorigenesis in HT29 xenograft mice.« less

  8. A novel sesquiterpene glycoside from Loquat leaf alleviates oleic acid-induced steatosis and oxidative stress in HepG2 cells.

    PubMed

    Jian, Tunyu; Wu, Yuexian; Ding, Xiaoqin; Lv, Han; Ma, Li; Zuo, Yuanyuan; Ren, Bingru; Zhao, Lei; Tong, Bei; Chen, Jian; Li, Weilin

    2018-01-01

    Loquat (Eriobotrya japonica) leaf has displayed beneficial effect on metabolic syndrome. In our previously study, total sesquiterpene glycosides (TSG) isolated from Loquat leaf exhibited therapeutic effect on Non-alcoholic fatty liver disease (NAFLD) in vivo, but the accurate active compound remains unknown. Sesquiterpene glycoside 1 (SG1) is a novel compound, which is exclusively isolated from Loquat leaf, but its biological activity has been rarely reported. The present study was designed to evaluate the pharmacological effect of SG1, the main component of TSG, in oleic acid (OA)-induced HepG2 cell model of NAFLD with its related mechanisms of action. In this study, both SG1 and TSG were found to significantly reduce the lipid deposition in the cell model. They could also decrease total cholesterol (TC), triglyceride (TG) and intracellular free fatty acid (FFA) contents. Compared with OA-treated cells, the superoxide dismutase (SOD) level increased, and the malondialdehyde (MDA) and 4-hydroxynonenal levels respectively decreased after the administration of SG1 or TSG. The high dose of SG1 (140 μg/mL) displayed a similar therapeutic effect as TSG at 200 μg/mL. Both SG1 and TSG were found to suppress the expression of cytochrome P450 2E1 (CYP2E1) and the phosphorylation of c-jun terminal kinase (JNK) and its downstream target c-Jun in OA-treated cell. These results demonstrate again that TSG are probably the main responsible chemical profiles of Loquat leaf for the treatment of NAFLD, for which it can effectively improve OA-induced steatosis and reduce oxidative stress, probably by downregulating of CYP2E1 expression and JNK/c-Jun phosphorylation, while SG1 may be the principle compound. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Spinal intracellular metabotropic glutamate receptor 5 (mGluR5) contributes to pain and c-fos expression in a rat model of inflammatory pain.

    PubMed

    Vincent, Kathleen; Wang, Shu Fan; Laferrière, André; Kumar, Naresh; Coderre, Terence J

    2017-04-01

    Metabotropic glutamate receptor 5 (mGluR5) is an excitatory G-protein-coupled receptor (GPCR) present in the spinal cord dorsal horn (SCDH) where it has a well-established role in pain. In addition to its traditional location on the cytoplasmic membrane, recent evidence shows that these receptors are present intracellularly on the nuclear membrane in the spinal cord dorsal horn and are implicated in neuropathic pain. Nuclear mGluR5 is a functional receptor that binds glutamate entering the cell through the neuronal glutamate transporter (GT) EAAT3 and activates transcription factor c-fos, whereas plasma membrane mGluR5 is responsible for c-jun activation. Here, we extend these findings to a model of inflammatory pain using complete Freund's adjuvant (CFA) and show that nuclear mGluR5 is also upregulated in the spinal cord dorsal horn following inflammation. We also show that pretreatment with an excitatory amino acid transporter (EAAT) inhibitor attenuates pain and decreases Fos, but not Jun, expression in complete Freund's adjuvant rats. In contrast, selective glial glutamate transporter inhibitors are pronociceptive and increase spinal glutamate concentrations. Additionally, we found that permeable mGluR5 antagonists are more effective at attenuating pain and Fos expression than nonpermeable group I mGluR antagonists. Taken together, these results suggest that under inflammatory conditions, intracellular mGluR5 is actively involved in the relay of nociceptive information in the spinal cord.

  10. Whole genome siRNA cell-based screen links mitochondria to Akt signaling network through uncoupling of electron transport chain

    PubMed Central

    Senapedis, William T.; Kennedy, Caleb J.; Boyle, Patrick M.; Silver, Pamela A.

    2011-01-01

    Forkhead transcription factors (FOXOs) alter a diverse array of cellular processes including the cell cycle, oxidative stress resistance, and aging. Insulin/Akt activation directs phosphorylation and cytoplasmic sequestration of FOXO away from its target genes and serves as an endpoint of a complex signaling network. Using a human genome small interfering RNA (siRNA) library in a cell-based assay, we identified an extensive network of proteins involved in nuclear export, focal adhesion, and mitochondrial respiration not previously implicated in FOXO localization. Furthermore, a detailed examination of mitochondrial factors revealed that loss of uncoupling protein 5 (UCP5) modifies the energy balance and increases free radicals through up-regulation of uncoupling protein 3 (UCP3). The increased superoxide content induces c-Jun N-terminal kinase 1 (JNK1) kinase activity, which in turn affects FOXO localization through a compensatory dephosphorylation of Akt. The resulting nuclear FOXO increases expression of target genes, including mitochondrial superoxide dismutase. By connecting free radical defense and mitochondrial uncoupling to Akt/FOXO signaling, these results have implications in obesity and type 2 diabetes development and the potential for therapeutic intervention. PMID:21460183

  11. Whole genome siRNA cell-based screen links mitochondria to Akt signaling network through uncoupling of electron transport chain.

    PubMed

    Senapedis, William T; Kennedy, Caleb J; Boyle, Patrick M; Silver, Pamela A

    2011-05-15

    Forkhead transcription factors (FOXOs) alter a diverse array of cellular processes including the cell cycle, oxidative stress resistance, and aging. Insulin/Akt activation directs phosphorylation and cytoplasmic sequestration of FOXO away from its target genes and serves as an endpoint of a complex signaling network. Using a human genome small interfering RNA (siRNA) library in a cell-based assay, we identified an extensive network of proteins involved in nuclear export, focal adhesion, and mitochondrial respiration not previously implicated in FOXO localization. Furthermore, a detailed examination of mitochondrial factors revealed that loss of uncoupling protein 5 (UCP5) modifies the energy balance and increases free radicals through up-regulation of uncoupling protein 3 (UCP3). The increased superoxide content induces c-Jun N-terminal kinase 1 (JNK1) kinase activity, which in turn affects FOXO localization through a compensatory dephosphorylation of Akt. The resulting nuclear FOXO increases expression of target genes, including mitochondrial superoxide dismutase. By connecting free radical defense and mitochondrial uncoupling to Akt/FOXO signaling, these results have implications in obesity and type 2 diabetes development and the potential for therapeutic intervention.

  12. A retrograde apoptotic signal originating in NGF-deprived distal axons of rat sympathetic neurons in compartmented cultures.

    PubMed

    Mok, Sue-Ann; Lund, Karen; Campenot, Robert B

    2009-05-01

    Previous investigations of retrograde survival signaling by nerve growth factor (NGF) and other neurotrophins have supported diverse mechanisms, but all proposed mechanisms have in common the generation of survival signals retrogradely transmitted to the neuronal cell bodies. We report the finding of a retrograde apoptotic signal in axons that is suppressed by local NGF signaling. NGF withdrawal from distal axons alone was sufficient to activate the pro-apoptotic transcription factor, c-jun, in the cell bodies. Providing NGF directly to cell bodies, thereby restoring a source of NGF-induced survival signals, could not prevent c-jun activation caused by NGF withdrawal from the distal axons. This is evidence that c-jun is not activated due to loss of survival signals at the cell bodies. Moreover, blocking axonal transport with colchicine inhibited c-jun activation caused by NGF deprivation suggesting that a retrogradely transported pro-apoptotic signal, rather than loss of a retrogradely transported survival signal, caused c-jun activation. Additional experiments showed that activation of c-jun, pro-caspase-3 cleavage, and apoptosis were blocked by the protein kinase C inhibitors, rottlerin and chelerythrine, only when applied to distal axons suggesting that they block the axon-specific pro-apoptotic signal. The rottlerin-sensitive mechanism was found to regulate glycogen synthase kinase 3 (GSK3) activity. The effect of siRNA knockdown, and pharmacological inhibition of GSK3 suggests that GSK3 is required for apoptosis caused by NGF deprivation and may function as a retrograde carrier of the axon apoptotic signal. The existence of a retrograde death signaling system in axons that is suppressed by neurotrophins has broad implications for neurodevelopment and for discovering treatments for neurodegenerative diseases and neurotrauma.

  13. Protective effect of Disporum sessile D.Don extract against UVB-induced photoaging via suppressing MMP-1 expression and collagen degradation in human skin cells.

    PubMed

    Mohamed, Mohamed Antar Aziz; Jung, Mira; Lee, Sang Min; Lee, Tae Hoon; Kim, Jiyoung

    2014-04-05

    In the present study, we report that Disporum sessile D.Don herbal extract (DDE) possesses anti-skin photoaging effect through inhibition of MMP-1 mRNA and protein expression levels and increase collagen production in UVB-irradiated human dermal fibroblast cells (NHDF). To delineate the molecular mechanism by which DDE inhibited MMP-1 expression, immortal human keratinocytes cells (HaCaT) have been used. We have found that DDE inhibited UVB-induced MMP-1 mRNA and protein expression levels in HaCaT cells through inhibition of UVB-induced activation of NF-κB in HaCaT cells. Inhibitors of NF-κB (Bay11-7082), and mitogen-activated protein kinases such as extracellular regulated kinase (PD98059), c-Jun N-terminal kinase (SP600125), and p38 (SB203580) suppressed expression of MMP-1, and phosphorylation of these signaling molecules were attenuated by DDE. DDE also inhibited phosphorylation of IKKα and IκBα, and reduced nuclear translocation of NF-κB. Our results also demonstrated that DDE inhibited NF-κB driven expression of luciferase reporter gene and the DNA binding of NF-κB to its cognate binding site in UV-irradiated cells. Therefore, these results strongly suggest that DDE can be utilized as a potential agent for prevention and treatment of skin photoaging. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Long noncoding RNA HULC accelerates liver cancer by inhibiting PTEN via autophagy cooperation to miR15a.

    PubMed

    Xin, Xiaoru; Wu, Mengying; Meng, Qiuyu; Wang, Chen; Lu, Yanan; Yang, Yuxin; Li, Xiaonan; Zheng, Qidi; Pu, Hu; Gui, Xin; Li, Tianming; Li, Jiao; Jia, Song; Lu, Dongdong

    2018-06-12

    Long noncoding RNA HULC is highly up-regulation in human hepatocellular carcinoma (HCC). However, the functions of HULC in hepatocarcinogenesis remains unclear. RT-PCR, Western blotting, Chromatin immunoprecipitation (CHIP) assay, RNA Immunoprecipitation (RIP) and tumorignesis test in vitro and in vivo were performed. HULC is negatively associated with expression of PTEN or miR15a in patients of human liver cancer. Moreover, HULC accelerates malignant progression of liver cancer cells in vitro and in vivo. Mechanistically, HULC increasesthe expression of P62 via decreasing mature miR15a. On the other hand, excessive HULC increases the expression of LC3 on the level of transcription and then activates LC3 through Sirt1 (a deacetylase). Notably, HULC enhanced the interplay between LC3 and ATG3. Furthermore, HULC also increases the expression of becline-1(autophagy related gene). Therefore, HULC increases the cellular autophagy by increasing LC3II dependent on Sirt1.Noteworthy, excessive HULC reduces the expression of PTEN, β-catenin and enhances the expression of SAPK/JUNK, PKM2, CDK2, NOTCH1, C-Jun in liver cancer cells. Of significance, our observations also revealed that HULC inhibited PTEN through ubiquitin-proteasome system mediated by autophagy-P62.Ultimately,HULC activates AKT-PI3K-mTOR pathway through inhibiting PTEN in human liver cancer cells. This study elucidates a novel mechanism that lncRNA HULC produces a vital function during hepatocarcinogenesis.

  15. Adsorption kinetics of c-Fos and c-Jun to air-water interfaces.

    PubMed

    Del Boca, Maximiliano; Nobre, Thatyane Morimoto; Zaniquelli, Maria Elisabete Darbello; Maggio, Bruno; Borioli, Graciela A

    2007-11-01

    The kinetics of adsorption to air-water interfaces of the biomembrane active transcription factors c-Fos, c-Jun and their mixtures is investigated. The adsorption process shows three distinct stages: a lag time, a fast pseudo zero-order stage, and a halting stage. The initial stage determines the course of the process, which is concentration dependent until the end of the fast stage. We show that c-Fos has faster adsorption kinetics than c-Jun over all three stages and that the interaction between both proteins is apparent in the adsorption profiles of the mixtures. Protein molecular reorganization at the interface determines the transition to the final adsorption stage of the pure proteins as well as that of the mixtures.

  16. Activation of ERK and JNK signaling pathways by mycotoxin citrinin in human cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, C.-H.; Yu, F.-Y.; Wang, L.-T.

    2009-06-15

    Mycotoxin citrinin (CTN) is commonly found in foods and feeds that are contaminated/inoculated with Penicillium, Aspergillus and Monascus species. The exposure of human embryonic kidney (HEK293) and HeLa cells to CTN resulted in a dose-dependent increase in the phosphorylation of two major mitogen-activated protein kinases (MAPKs), ERK1/2 and JNK. In HEK293 cultures, the administering of CTN increased both the mRNA and protein levels of egr-1, c-fos and c-jun genes; additionally, the ERK1/2 pathway contributed to the upregulation of Egr-1 and c-Fos protein expression. CTN treatment also induced the transcription activity of Egr-1 and AP-1 proteins, as evidenced by luciferase reportermore » assays. Bioinformatic analyses indicated two genes Gadd45{beta} and MMP3 have Egr-1 and AP-1 response elements in their promoters, respectively. Furthermore, co-exposure of HEK293 cells to CTN and MAPK pathway inhibitors demonstrated that CTN increased the levels of Gadd45{beta} mRNA through ERK1/2 signaling pathway and up-regulated the MMP3 transcripts majorly via JNK pathway. Finally, CTN-triggered caspase 3 activity was significantly reduced in the presence of MAPK inhibitors. Our results suggest that CTN positively regulates ERK1/2 and JNK pathways as well as their downstream effectors in human cells; activated MAPK pathways are also involved in CTN-induced apoptosis.« less

  17. Synthesis of a Dual Functional Anti-MDR Tumor Agent PH II-7 with Elucidations of Anti-Tumor Effects and Mechanisms

    PubMed Central

    Tan, Yaohong; Hu, Yunhui; Zhou, Yuan; Liu, Juanni; Xu, Yuanfu; Xie, Yinliang; Wang, Caiyun; Gao, Yingdai; Wang, Jianxiang; Cheng, Tao; Yang, Chunzheng; Xiong, Dongsheng; Miao, Hua

    2012-01-01

    Multidrug resistance mediated by P-glycoprotein in cancer cells has been a major issue that cripples the efficacy of chemotherapy agents. Aimed for improved efficacy against resistant cancer cells, we designed and synthesized 25 oxindole derivatives based on indirubin by structure-activity relationship analysis. The most potent one was named PH II-7, which was effective against 18 cancer cell lines and 5 resistant cell lines in MTT assay. It also significantly inhibited the resistant xenograft tumor growth in mouse model. In cell cycle assay and apoptosis assay conducted with flow cytometry, PH II-7 induced S phase cell cycle arrest and apoptosis even in resistant cells. Consistently revealed by real-time PCR, it modulates the expression of genes related to the cell cycle and apoptosis in these cells, which may contributes to its efficacy against them. By side-chain modification and FITC-labeling of PH II-7, we were able to show with confocal microscopy that not only it was not pumped by P-glycoprotein, it also attenuated the efflux of Adriamycin by P-glycoprotein in MDR tumor cells. Real-time PCR and western blot analysis showed that PH II-7 down-regulated MDR1 gene via protein kinase C alpha (PKCA) pathway, with c-FOS and c-JUN as possible mediators. Taken together, PH II-7 is a dual-functional compound that features both the cytotoxicity against cancer cells and the inhibitory effect on P-gp mediated drug efflux. PMID:22403708

  18. Decursin attenuates the amyloid-β-induced inflammatory response in PC12 cells via MAPK and nuclear factor-κB pathway.

    PubMed

    Li, Li; Yang, Yiqiu; Zheng, Jingbin; Cai, Guodi; Lee, Yongwoo; Du, Jikun

    2018-02-01

    Decursin, the major bioactive component of Angelica gigas Nakai, exhibited neuroprotective properties. Our previous studies showed that decursin conferred neuroprotective effects in PC12 cells induced by Amyloid-β (Aβ) 25-35 via antiapoptosis and antioxidant. In this study, the antiinflammatory effects of decursin against PC12 cells injury stimulated by Aβ 25-35 were assessed. Our results demonstrated that decursin suppressed the expression of cyclooxygenase-2 protein and prostaglandin E2 content which was stimulated by Aβ 25-35 in PC12 cells. Meanwhile, the nuclear translocation of nuclear factor-κB in Aβ 25-35 -treated PC12 cells was also inhibited by decursin. In addition, decursin suppressed phosphorylation of the two upstream pathway kinases, p38 and c-Jun N-terminal kinase. Overall, our findings indicate that decursin exerts protective effects against neuroinflammation stimulated by Aβ 25-35 in PC12 cells by abolishing cyclooxygenase-2 protein expression through inactivation of nuclear factor-κB via the upstream kinases including p38 and c-Jun N-terminal kinase. This work provides a new insight into the pharmacological mode of decursin and should facilitate its therapeutic application in treatment of inflammatory disorders. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Baicalin inhibits TLR7/MYD88 signaling pathway activation to suppress lung inflammation in mice infected with influenza A virus

    PubMed Central

    WAN, QIAOFENG; WANG, HAO; HAN, XUEBO; LIN, YUAN; YANG, YANHUI; GU, LIGANG; ZHAO, JIAQING; WANG, LI; HUANG, LING; LI, YANBIN; YANG, YURONG

    2014-01-01

    The present study aimed to investigate the protective effects and underlying mechanisms of baicalin on imprinting control region mice infected with influenza A/FM/1/47 (H1N1) virus. Oral administration of baicalin into mice infected with H1N1 prevented death, increased the mean time to death and inhibited lung index and lung consolidation. Subsequently, fluorescence quantitative polymerase chain reaction was used to assess the mRNA expression of toll-like receptor 7 (TLR7) and myeloid differentiation primary response gene 88 (MYD88), and western blot analysis was used to determine the expression of phosphorylated nuclear factor κB (NF-κB)-P65 and c-jun/activator protein 1 (AP-1). An enzyme-linked immunosorbent assay was applied to test for the inflammatory cytokines, tumor necrosis factor (TNF)-α and interleukin (IL)-1β and IL-6, in the lung tissue. The findings indicated that baicalin downregulated the mRNA expression of TLR7 and MYD88, significantly downregulated the protein expression of NF-κB-P65 and AP-1 and also inhibited the secretion of TNF-α, IL-1β and IL-6. In conclusion, baicalin effectively reduced the pathological damage and inflammation of the lungs by downregulating the TLR7/MYD88-mediated signaling pathway. PMID:24748990

  20. RNA-seq analysis of clinical-grade osteochondral allografts reveals activation of early response genes.

    PubMed

    Lin, Yang; Lewallen, Eric A; Camilleri, Emily T; Bonin, Carolina A; Jones, Dakota L; Dudakovic, Amel; Galeano-Garces, Catalina; Wang, Wei; Karperien, Marcel J; Larson, Annalise N; Dahm, Diane L; Stuart, Michael J; Levy, Bruce A; Smith, Jay; Ryssman, Daniel B; Westendorf, Jennifer J; Im, Hee-Jeong; van Wijnen, Andre J; Riester, Scott M; Krych, Aaron J

    2016-11-01

    Preservation of osteochondral allografts used for transplantation is critical to ensure favorable outcomes for patients after surgical treatment of cartilage defects. To study the biological effects of protocols currently used for cartilage storage, we investigated differences in gene expression between stored allograft cartilage and fresh cartilage from living donors using high throughput molecular screening strategies. We applied next generation RNA sequencing (RNA-seq) and real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR) to assess genome-wide differences in mRNA expression between stored allograft cartilage and fresh cartilage tissue from living donors. Gene ontology analysis was used to characterize biological pathways associated with differentially expressed genes. Our studies establish reduced levels of mRNAs encoding cartilage related extracellular matrix (ECM) proteins (i.e., COL1A1, COL2A1, COL10A1, ACAN, DCN, HAPLN1, TNC, and COMP) in stored cartilage. These changes occur concomitantly with increased expression of "early response genes" that encode transcription factors mediating stress/cytoprotective responses (i.e., EGR1, EGR2, EGR3, MYC, FOS, FOSB, FOSL1, FOSL2, JUN, JUNB, and JUND). The elevated expression of "early response genes" and reduced levels of ECM-related mRNAs in stored cartilage allografts suggests that tissue viability may be maintained by a cytoprotective program that reduces cell metabolic activity. These findings have potential implications for future studies focused on quality assessment and clinical optimization of osteochondral allografts used for cartilage transplantation. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1950-1959, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  1. Polyamine and methionine adenosyltransferase 2A crosstalk in human colon and liver cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomasi, Maria Lauda; USC Research Center for Liver Diseases, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033; The Southern California Research Center for Alcoholic and Pancreatic Diseases and Cirrhosis, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033

    Methionine adenosyltransferase (MAT) is an essential enzyme that is responsible for the biosynthesis of S-adenosylmethionine (SAMe), the principal methyl donor and precursor of polyamines. MAT1A is expressed in normal liver and MAT2A is expressed in all extrahepatic tissues. MAT2A expression is increased in human colon cancer and in colon cancer cells treated with mitogens, whereas silencing MAT2A resulted in apoptosis. The aim of the current work was to examine the mechanism responsible for MAT2A-dependent growth and apoptosis. We found that in RKO (human adenocarcinoma cell line) cells, MAT2A siRNA treatment lowered cellular SAMe and putrescine levels by 70–75%, increased apoptosismore » and inhibited growth. Putrescine supplementation blunted significantly MAT2A siRNA-induced apoptosis and growth suppression. Putrescine treatment (100 pmol/L) raised MAT2A mRNA level to 4.3-fold of control, increased the expression of c-Jun and c-Fos and binding to an AP-1 site in the human MAT2A promoter and the promoter activity. In human colon cancer specimens, the expression levels of MAT2A, ornithine decarboxylase (ODC), c-Jun and c-Fos are all elevated as compared to adjacent non-tumorous tissues. Overexpression of ODC in RKO cells also raised MAT2A mRNA level and MAT2A promoter activity. ODC and MAT2A are also overexpressed in liver cancer and consistently, similar MAT2A-ODC-putrescine interactions and effects on growth and apoptosis were observed in HepG2 cells. In conclusion, there is a crosstalk between polyamines and MAT2A. Increased MAT2A expression provides more SAMe for polyamines biosynthesis; increased polyamine (putrescine in this case) can activate MAT2A at the transcriptional level. This along with increased ODC expression in cancer all feed forward to further enhance the proliferative capacity of the cancer cell. -- Highlights: • MAT2A knockdown depletes putrescine and leads to apoptosis. • Putrescine attenuates MAT2A knockdown-induced apoptosis and growth suppression. • Putrescine induces AP-1, which activates MAT2A promoter to increase its expression. • Putrescine increases ornithine decarboxylase expression, which induce MAT2A promoter. • Expression of MAT2A correlates with that of ornithine decarboxylase in colon cancer.« less

  2. LOXL4 Is Induced by Transforming Growth Factor β1 through Smad and JunB/Fra2 and Contributes to Vascular Matrix Remodeling

    PubMed Central

    Busnadiego, Oscar; González-Santamaría, José; Lagares, David; Guinea-Viniegra, Juan; Pichol-Thievend, Cathy; Muller, Laurent

    2013-01-01

    Transforming growth factor β1 (TGF-β1) is a pleiotropic factor involved in the regulation of extracellular matrix (ECM) synthesis and remodeling. In search for novel genes mediating the action of TGF-β1 on vascular ECM, we identified the member of the lysyl oxidase family of matrix-remodeling enzymes, lysyl oxidase-like 4 (LOXL4), as a direct target of TGF-β1 in aortic endothelial cells, and we dissected the molecular mechanism of its induction. Deletion mapping and mutagenesis analysis of the LOXL4 promoter demonstrated the absolute requirement of a distal enhancer containing an activator protein 1 (AP-1) site and a Smad binding element for TGF-β1 to induce LOXL4 expression. Functional cooperation between Smad proteins and the AP-1 complex composed of JunB/Fra2 accounted for the action of TGF-β1, which involved the extracellular signal-regulated kinase (ERK)-dependent phosphorylation of Fra2. We furthermore provide evidence that LOXL4 was extracellularly secreted and significantly contributed to ECM deposition and assembly. These results suggest that TGF-β1-dependent expression of LOXL4 plays a role in vascular ECM homeostasis, contributing to vascular processes associated with ECM remodeling and fibrosis. PMID:23572561

  3. NOS1 mediates AP1 nuclear translocation and inflammatory response.

    PubMed

    Srivastava, Mansi; Baig, Mirza S

    2018-06-01

    A hallmark of the AP1 functioning is its nuclear translocation, which induces proinflammatory cytokine expression and hence the inflammatory response. After endotoxin shock AP1 transcription factor, which comprises Jun, ATF2, and Fos family of proteins, translocates into the nucleus and induces proinflammatory cytokine expression. In the current study, we found, NOS1 inhibition prevents nuclear translocation of the AP1 transcription factor subunits. Pharmacological inhibition of NOS1 impedes translocation of subunits into the nucleus, suppressing the transcription of inflammatory genes causing a diminished inflammatory response. In conclusion, the study shows the novel mechanism of NOS1- mediated AP1 nuclear translocation, which needs to be further explored. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  4. Bee venom suppresses PMA-mediated MMP-9 gene activation via JNK/p38 and NF-kappaB-dependent mechanisms.

    PubMed

    Cho, Hyun-Ji; Jeong, Yun-Jeong; Park, Kwan-Kyu; Park, Yoon-Yub; Chung, Il-Kyung; Lee, Kwang-Gill; Yeo, Joo-Hong; Han, Sang-Mi; Bae, Young-Seuk; Chang, Young-Chae

    2010-02-17

    Bee venom has been used for the treatment of inflammatory diseases such as rheumatoid arthritis and for the relief of pain in traditional oriental medicine. The purpose of this study is to elucidate the effects of bee venom on MMP-9 expression and determine possible mechanisms by which bee venom relieves or prevents the expression of MMP-9 during invasion and metastasis of breast cancer cells. We examined the expression and activity of MMP-9 and possible signaling pathway affected in PMA-induced MCF-7 cells. Bee venom was obtained from the National Institute of Agricultural Science and Technology of Korea. Matrigel invasion assay, wound-healing assay, zymography assay, western blot assay, electrophoretic mobility shift assay and luciferase gene assay were used for assessment. Bee venom inhibited cell invasion and migration, and also suppressed MMP-9 activity and expression, processes related to tumor invasion and metastasis, in PMA-induced MCF-7 cells. Bee venom specifically suppressed the phosphorylation of p38/JNK and at the same time, suppressed the protein expression, DNA binding and promoter activity of NF-kappaB. The levels of phosphorylated ERK1/2 and c-Jun did not change. We also investigated MMP-9 inhibition by melittin, apamin and PLA(2), representative single component of bee venom. We confirmed that PMA-induced MMP-9 activity was significantly decreased by melittin, but not by apamin and phospholipase A(2). These data demonstrated that the expression of MMP-9 was abolished by melittin, the main component of bee venom. Bee venom inhibits PMA-induced MMP-9 expression and activity by inhibition of NF-kappaB via p38 MAPK and JNK signaling pathways in MCF-7 cells. These results indicate that bee venom can be a potential anti-metastatic and anti-invasive agent. This useful effect may lead to future clinical research on the anti-cancer properties of bee venom. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  5. Geldanamycin attenuates 3-nitropropionic acid-induced apoptosis and JNK activation through the expression of HSP 70 in striatal cells

    PubMed Central

    CHOI, YONG-JOON; KIM, NAM HO; LIM, MAN SUP; LEE, HEE JAE; KIM, SUNG SOO; CHUN, WANJOO

    2014-01-01

    Although selective striatal cell death is a characteristic hallmark in the pathogenesis of Huntington’s disease (HD), the underlying mechanism of striatal susceptibility remains to be clarified. Heat shock proteins (HSPs) have been reported to suppress the aggregate formation of mutant huntingtin and concurrent striatal cell death. In a previous study, we observed that heat shock transcription factor 1 (HSF1), a major transcription factor of HSPs, significantly attenuated 3-nitropropionic acid (3NP)-induced reactive oxygen species (ROS) production and apoptosis through the expression of HSP 70 in striatal cells. To investigate the differential roles of HSPs in 3NP-induced striatal cell death, the effect of geldanamycin (GA), an HSP 90 inhibitor, was examined in 3NP-stimulated striatal cells. GA significantly attenuated 3NP-induced striatal apoptosis and ROS production with an increased expression of HSP 70. Triptolide (TL), an HSP 70 inhibitor, abolished GA-mediated protective effects in 3NP-stimulated striatal cells. To understand the underlying mechanism by which GA-mediated HSP 70 protects striatal cells against 3NP stimulation, the involvement of various signaling pathways was examined. GA significantly attenuated 3NP-induced c-Jun N-terminal kinase (JNK) phosphorylation and subsequent c-Jun phosphorylation in striatal cells. Taken together, the present study demonstrated that GA exhibits protective properties against 3NP-induced apoptosis and JNK activation via the induction of HSP 70 in striatal cells, suggesting that expression of HSP 70 may be a valuable therapeutic target in the treatment of HD. PMID:24756698

  6. Effect of JNK inhibitor SP600125 on hair cell regeneration in zebrafish (Danio rerio) larvae

    PubMed Central

    Sun, Shaoyang; Wang, Xu; Li, Wenyan; Li, Huawei

    2016-01-01

    The c-Jun amino-terminal kinase (JNK) proteins are a subgroup of the mitogen-activated protein kinase family. They play a complex role in cell proliferation, survival, and apoptosis. Here, we report a novel role of JNK signalling in hair cell regeneration. We eliminated hair cells of 5-day post-fertilization zebrafish larvae using neomycin followed by JNK inhibition with SP600125. JNK inhibition strongly decreased the number of regenerated hair cells in response to neomycin damage. These changes were associated with reduced proliferation. JNK inhibition also increased cleaved caspase-3 activity and induced apoptosis in regenerating neuromasts. Finally, JNK inhibition with SP600125 decreased the expression of genes related to Wnt. Over-activation of the Wnt signalling pathway partly rescued the hair cell regeneration defects induced by JNK inhibition. Together, our findings provide novel insights into the function of JNK and show that JNK inhibition blocks hair cell regeneration by controlling the Wnt signalling pathway. PMID:27438150

  7. Expression and purification of functional JNK2beta2: perspectives on high-level production of recombinant MAP kinases.

    PubMed

    Savopoulos, John W; Dowd, Stephen; Armour, Carolyn; Carter, Paul S; Greenwood, Catherine J; Mills, David; Powell, David; Pettman, Gary R; Jenkins, Owen; Walsh, Frank S; Philpott, Karen L

    2002-02-01

    The mitogen-activated protein (MAP) kinases are a group of serine/threonine kinases that mediate intracellular signal transduction in response to environmental stimuli including stress, growth factors, and various cytokines. Of this family, the c-Jun N-terminal kinases (JNKs) are members which, depending on cell type, have been shown to activate the transcription of genes involved in the inflammatory response, apoptosis, and hypertrophy. Here we report the use Baculovirus/Sf9 cells to produce milligram quantities of recombinant JNK2beta2 substrate which could be purified to >90% as judged by SDS-PAGE. In addition, we report a novel method for the site-specific biotinylation for this enzyme and demonstrate that the biotinylated product is an authentic substrate of the upstream kinases MKK4 and 7 and can phosphorylate a downstream target, ATF-2. We also show that the phosphorylated product can be captured efficiently on streptavidin-coated beads for use in scintillation proximity assays. Copyright 2002 Elsevier Science (USA).

  8. A synthetic chalcone as a potent inducer of glutathione biosynthesis.

    PubMed

    Kachadourian, Remy; Day, Brian J; Pugazhenti, Subbiah; Franklin, Christopher C; Genoux-Bastide, Estelle; Mahaffey, Gregory; Gauthier, Charlotte; Di Pietro, Attilio; Boumendjel, Ahcène

    2012-02-09

    Chalcones continue to attract considerable interest due to their anti-inflammatory and antiangiogenic properties. We recently reported the ability of 2',5'-dihydroxychalcone (2',5'-DHC) to induce both breast cancer resistance protein-mediated export of glutathione (GSH) and c-Jun N-terminal kinase-mediated increased intracellular GSH levels. Herein, we report a structure-activity relationship study of a series of 30 synthetic chalcone derivatives with hydroxyl, methoxyl, and halogen (F and Cl) substituents and their ability to increase intracellular GSH levels. This effect was drastically improved with one or two electrowithdrawing groups on phenyl ring B and up to three methoxyl and/or hydroxyl groups on phenyl ring A. The optimal structure, 2-chloro-4',6'-dimethoxy-2'-hydroxychalcone, induced both a potent NF-E2-related factor 2-mediated transcriptional response and an increased formation of glutamate cysteine ligase holoenzyme, as shown using a human breast cancer cell line stably expressing a luciferase reporter gene driven by antioxidant response elements.

  9. A Synthetic Chalcone as a Potent Inducer of Glutathione Biosynthesis

    PubMed Central

    Kachadourian, Remy; Day, Brian J.; Pugazhenti, Subbiah; Franklin, Christopher C.; Genoux-Bastide, Estelle; Mahaffey, Gregory; Gauthier, Charlotte; Di Pietro, Attilio; Boumendjel, Ahcène

    2014-01-01

    Chalcones continue to attract considerable interest due to their anti-inflammatory and antiangiogenic properties. We recently reported the ability of 2′,5′-dihydroxychalcone (2′,5′-DHC) to induce both breast cancer resistance protein-mediated export of glutathione (GSH) and c-Jun N-terminal kinase-mediated increased intracellular GSH levels. Herein, we report a structure–activity relationship study of a series of 30 synthetic chalcone derivatives with hydroxyl, methoxyl, and halogen (F and Cl) substituents and their ability to increase intracellular GSH levels. This effect was drastically improved with one or two electrowithdrawing groups on phenyl ring B and up to three methoxyl and/or hydroxyl groups on phenyl ring A. The optimal structure, 2-chloro-4′,6′-dimethoxy-2′-hydroxychalcone, induced both a potent NF-E2-related factor 2-mediated transcriptional response and an increased formation of glutamate cysteine ligase holoenzyme, as shown using a human breast cancer cell line stably expressing a luciferase reporter gene driven by antioxidant response elements. PMID:22239485

  10. Insulin-like growth factor-II regulates bone sialoprotein gene transcription.

    PubMed

    Choe, Jin; Sasaki, Yoko; Zhou, Liming; Takai, Hideki; Nakayama, Yohei; Ogata, Yorimasa

    2016-09-01

    Insulin-like growth factor-I and -II (IGF-I and IGF-II) have been found in bone extracts of several different species, and IGF-II is the most abundant growth factor stored in bone. Bone sialoprotein (BSP) is a noncollagenous extracellular matrix glycoprotein associated with mineralized connective tissues. In this study, we have investigated the regulation of BSP transcription by IGF-II in rat osteoblast-like ROS17/2.8 cells. IGF-II (50 ng/ml) increased BSP mRNA and protein levels after 6-h stimulation, and enhanced luciferase activities of the constructs pLUC3 (-116 to +60), pLUC4 (-425 to +60), pLUC5 (-801 to +60) and pLUC6 (-938 to +60). Effects of IGF-II were inhibited by tyrosine kinase, extracellular signal-regulated kinase1/2 and phosphatidylinositol 3-kinase inhibitors, and abrogated by 2-bp mutations in cAMP response element (CRE), FGF2 response element (FRE) and homeodomain protein-binding site (HOX). The results of gel shift assays showed that nuclear proteins binding to CRE, FRE and HOX sites were increased by IGF-II (50 ng/ml) at 3 and 6 h. CREB1, phospho-CREB1, c-Fos and c-Jun antibodies disrupted the formation of the CRE-protein complexes. Dlx5 and Runx2 antibodies disrupted the FRE- and HOX-protein complex formations. These studies therefore demonstrated that IGF-II increased BSP transcription by targeting CRE, FRE and HOX elements in the proximal promoter of the rat BSP gene. Moreover, phospho-CREB1, c-Fos, c-Jun, Dlx5 and Runx2 transcription factors appear to be key regulators of IGF-II effects on BSP transcription.

  11. Chemotherapeutic Potential of 2-[Piperidinoethoxyphenyl]-3-Phenyl-2H-Benzo(b)pyran in Estrogen Receptor- Negative Breast Cancer Cells: Action via Prevention of EGFR Activation and Combined Inhibition of PI-3-K/Akt/FOXO and MEK/Erk/AP-1 Pathways

    PubMed Central

    Saxena, Ruchi; Chandra, Vishal; Manohar, Murli; Hajela, Kanchan; Debnath, Utsab; Prabhakar, Yenamandra S.; Saini, Karan Singh; Konwar, Rituraj; Kumar, Sandeep; Megu, Kaling; Roy, Bal Gangadhar; Dwivedi, Anila

    2013-01-01

    Inhibition of epidermal growth factor receptor (EGFR) signaling is considered to be a promising treatment strategy for estrogen receptor (ER)-negative breast tumors. We have investigated here the anti-breast cancer properties of a novel anti-proliferative benzopyran compound namely, 2-[piperidinoethoxyphenyl]-3-phenyl-2H-benzo(b)pyran (CDRI-85/287) in ER- negative and EGFR- overexpressing breast cancer cells. The benzopyran compound selectively inhibited the EGF-induced growth of MDA-MB 231 cells and ER-negative primary breast cancer cell culture. The compound significantly reduced tumor growth in xenograft of MDA-MB 231 cells in nude mice. The compound displayed better binding affinity for EGFR than inhibitor AG1478 as demonstrated by molecular docking studies. CDRI-85/287 significantly inhibited the activation of EGFR and downstream effectors MEK/Erk and PI-3-K/Akt. Subsequent inhibition of AP-1 promoter activity resulted in decreased transcription activation and expression of c-fos and c-jun. Dephosphorylation of downstream effectors FOXO-3a and NF-κB led to increased expression of p27 and decreased expression of cyclin D1 which was responsible for decreased phosphorylation of Rb and prevented the transcription of E2F- dependent genes involved in cell cycle progression from G1/S phase. The compound induced apoptosis via mitochondrial pathway and it also inhibited EGF-induced invasion of MDA-MB 231 cells as evidenced by decreased activity of MMP-9 and expression of CTGF. These results indicate that benzopyran compound CDRI-85/287 could constitute a powerful new chemotherapeutic agent against ER-negative and EGFR over-expressing breast tumors. PMID:23840429

  12. New inter-correlated genes targeted by diatom-derived polyunsaturated aldehydes in the sea urchin Paracentrotus lividus.

    PubMed

    Ruocco, Nadia; Maria Fedele, Anna; Costantini, Susan; Romano, Giovanna; Ianora, Adrianna; Costantini, Maria

    2017-08-01

    The marine environment is continually subjected to the action of stressors (including natural toxins), which represent a constant danger for benthic communities. In the present work using network analysis we identified ten genes on the basis of associated functions (FOXA, FoxG, GFI-1, nodal, JNK, OneCut/Hnf6, TAK1, tcf4, TCF7, VEGF) in the sea urchin Paracentrotus lividus, having key roles in different processes, such as embryonic development and asymmetry, cell fate specification, cell differentiation and morphogenesis, and skeletogenesis. These genes are correlated with three HUB genes, Foxo, Jun and HIF1A. Real Time qPCR revealed that during sea urchin embryonic development the expression levels of these genes were modulated by three diatom-derived polyunsaturated aldehydes (PUAs), decadienal, heptadienal and octadienal. Our findings show how changes in gene expression levels may be used as an early indicator of stressful conditions in the marine environment. The identification of key genes and the molecular pathways in which they are involved represents a fundamental tool in understanding how marine organisms try to afford protection against toxicants, to avoid deleterious consequences and irreversible damages. The genes identified in this work as targets for PUAs can be considered as possible biomarkers to detect exposure to different environmental pollutants. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Identification of Key Pathways and Genes in L4 Dorsal Root Ganglion (DRG) After Sciatic Nerve Injury via Microarray Analysis.

    PubMed

    Zhao, He; Duan, Li-Jun; Sun, Qing-Ling; Gao, Yu-Shan; Yang, Yong-Dong; Tang, Xiang-Sheng; Zhao, Ding-Yan; Xiong, Yang; Hu, Zhen-Guo; Li, Chuan-Hong; Chen, Si-Xue; Liu, Tao; Yu, Xing

    2018-04-19

    Peripheral nerve injury (PNI) has devastating consequences. Dorsal root ganglion as a pivotal locus participates in the process of neuropathic pain and nerve regeneration. In recent years, gene sequencing technology has seen rapid rise in the biomedicine field. So, we attempt to gain insight into in the mechanism of neuropathic pain and nerve regeneration in the transcriptional level and to explore novel genes through bioinformatics analysis. The gene expression profiles of GSE96051 were downloaded from GEO database. The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analyses were performed, and protein-protein interaction (PPI) network of the differentially expressed genes (DEGs) was constructed by Cytoscape software. Our results showed that both IL-6 and Jun genes and the signaling pathway of MAPK, apoptosis, P53 present their vital modulatory role in nerve regeneration and neuropathic pain. Noteworthy, 13 hub genes associated with neuropathic pain and nerve regeneration, including Ccl12, Ppp1r15a, Cdkn1a, Atf3, Nts, Dusp1, Ccl7, Csf, Gadd45a, Serpine1, Timp1 were rarely reported in PubMed database, these genes may provide us the new orientation in experimental research and clinical study. Our results may provide more deep insight into the mechanism and a promising therapeutic target. The next step is to put our emphasis on an experiment level and to verify the novel genes from 13 hub genes.

  14. Nuclear pore complex-mediated modulation of TCR signaling is required for naïve CD4+ T cell homeostasis.

    PubMed

    Borlido, Joana; Sakuma, Stephen; Raices, Marcela; Carrette, Florent; Tinoco, Roberto; Bradley, Linda M; D'Angelo, Maximiliano A

    2018-06-01

    Nuclear pore complexes (NPCs) are channels connecting the nucleus with the cytoplasm. We report that loss of the tissue-specific NPC component Nup210 causes a severe deficit of naïve CD4 + T cells. Nup210-deficient CD4 + T lymphocytes develop normally but fail to survive in the periphery. The decreased survival results from both an impaired ability to transmit tonic T cell receptor (TCR) signals and increased levels of Fas, which sensitize Nup210 -/- naïve CD4 + T cells to Fas-mediated cell death. Mechanistically, Nup210 regulates these processes by modulating the expression of Cav2 (encoding Caveolin-2) and Jun at the nuclear periphery. Whereas the TCR-dependent and CD4 + T cell-specific upregulation of Cav2 is critical for proximal TCR signaling, cJun expression is required for STAT3-dependent repression of Fas. Our results uncover an unexpected role for Nup210 as a cell-intrinsic regulator of TCR signaling and T cell homeostasis and expose NPCs as key players in the adaptive immune system.

  15. [Construction, identification and expression of three kinds of shuttle plasmids of adenovirus expression vector of hepatitis C virus structure gene].

    PubMed

    Cao, Yi-zhan; Hao, Chun-qiu; Feng, Zhi-hua; Zhou, Yong-xing; Li, Jin-ge; Jia, Zhan-sheng; Wang, Ping-zhong

    2003-02-01

    To construct three recombinant shuttle plasmids of adenovirus expression vector which can express hepatitis C virus(HCV) different structure genes(C, C+E1, C+E1+E2) in order to pack adenovirus expression vectors which can express HCV different structure gene effectively. The different HCV structure genes derived from the plasmid pBRTM/HCV1-3011 by using polymerase chain reaction (PCR) were inserted into the backward position of cytomegalovirus(CMV) immediate early promotor element of shuttle plasmid(pAd.CMV-Link.1) of adenovirus expression vector respectively, then the three recombinant plasmids (pAd.HCV-C, pAd.HCV-CE1, pAd.HCV-S) were obtained. The recombinant plasmids were identified by endonuclease, PCR and sequencing. HCV structure genes were expressed transiently with Lipofectamine 2000 coated in HepG2 cells which were confirmed by immunofluorescence and Western-Blot. Insert DNAs of the three recombinant plasmids' were confirmed to be HCV different structure genes by endonuclease, PCR and sequencing. The three recombinant plasmids can express HCV structure gene (C, C+E1, C+E1+E2) transiently in HepG2 cells which were confirmed by immunofluorescence and Western-Blot. The three recombinant shuttle plasmids of adenovirus expression vector can express HCV structure gene(C, C+E1, C+E1+E2) transiently. This should be useful to pack adenovirus expression vector which can express HCV structure genes.

  16. Developmentally induced microencephalopathy in guinea pigs--embryonic glial cell activation marks selective neuronal death.

    PubMed

    Rossner, S; Brückner, M K; Bigl, V

    2001-06-01

    We have recently shown that in utero treatment of guinea pigs with the DNA methylating substance methylazoxymethanol acetate (MAM) on gestation day (GD) 24 results in neocortical microencephalopathy, increased protein kinase C activity and altered processing of the amyloid precursor protein in neocortex of the offsprings. In order to identify the primary neuronal lesions produced by MAM-treatment, we mapped the 5-bromo-2'-deoxyuridine (BrdU)-incorporation in dividing neurons on GD 24 and we followed the effects of MAM-treatment on GD 24 on embryonic immediate early gene expression and on glial cell activation. BrdU injected on GD 24 labeled many neurons of the ventricular zone and of the intermediate zone but only scattered neurons of the cortical plate. When time-mated guinea pigs were injected intraperitoneally with MAM on GD 24, we observed the activation of microglial cells in the ventricular/intermediate zone and the appearence of astrocytes between the intermediate zone and the cortical plate, 48 h after intoxification. The activation of glial cells was accompanied by the neuronal expression of c-Fos but not of c-Jun in the ventricular/intermediate zone. Based on our observations on BrdU-incorporation and on the morphological outcome of MAM treatment in the juvenile guinea pig, our data presented here indicate that selective neurodegeneration during development induces the activation of both phagocytotic microglial cells and of astrocytes which might trophically support damaged neurons surviving this lesion procedure.

  17. Conditional deletion of Pkd1 in osteocytes disrupts skeletal mechanosensing in mice

    PubMed Central

    Xiao, Zhousheng; Dallas, Mark; Qiu, Ni; Nicolella, Daniel; Cao, Li; Johnson, Mark; Bonewald, Lynda; Quarles, L. Darryl

    2011-01-01

    We investigated whether polycystin-1 is a bone mechanosensor. We conditionally deleted Pkd1 in mature osteoblasts/osteocytes by crossing Dmp1-Cre with Pkd1flox/m1Bei mice, in which the m1Bei allele is nonfunctional. We assessed in wild-type and Pkd1-deficient mice the response to mechanical loading in vivo by ulna loading and ex vivo by measuring the response of isolated osteoblasts to fluid shear stress. We found that conditional Pkd1 heterozygotes (Dmp1-Cre;Pkd1flox/+) and null mice (Pkd1Dmp1-cKO) exhibited a ∼40 and ∼90% decrease, respectively, in functional Pkd1 transcripts in bone. Femoral bone mineral density (12 vs. 27%), trabecular bone volume (32 vs. 48%), and cortical thickness (6 vs. 17%) were reduced proportionate to the reduction of Pkd1 gene dose, as were mineral apposition rate (MAR) and expression of Runx2-II, Osteocalcin, Dmp1, and Phex. Anabolic load-induced periosteal lamellar MAR (0.58±0.14; Pkd1Dmp1-cKO vs. 1.68±0.34 μm/d; control) and increases in Cox-2, c-Jun, Wnt10b, Axin2, and Runx2-II gene expression were significantly attenuated in Pkd1Dmp1-cKO mice compared with controls. Application of fluid shear stress to immortalized osteoblasts from Pkd1null/null and Pkd1m1Bei/m1Bei-derived osteoblasts failed to elicit the increments in cytosolic calcium observed in wild-type controls. These data indicate that polycystin-1 is essential for the anabolic response to skeletal loading in osteoblasts/osteocytes.—Xiao, Z., Dallas, M., Qiu, N., Nicolella, D., Cao, L., Johnson, M., Bonewald, L., Quarles, L. D. Conditional deletion of Pkd1 in osteocytes disrupts skeletal mechanosensing in mice. PMID:21454365

  18. Fisetin Protects PC12 Cells from Tunicamycin-Mediated Cell Death via Reactive Oxygen Species Scavenging and Modulation of Nrf2-Driven Gene Expression, SIRT1 and MAPK Signaling in PC12 Cells

    PubMed Central

    Yen, Jui-Hung; Wu, Pei-Shan; Chen, Shu-Fen; Wu, Ming-Jiuan

    2017-01-01

    Background: Fisetin (3,7,3′,4′-tetrahydroxyflavone) is a dietary flavonol and exhibits antioxidant, anti-inflammatory, and neuroprotective activities. However, high concentration of fisetin is reported to produce reactive oxygen species (ROS), induce endoplasmic reticulum (ER) stress and cause cytotoxicity in cancer cells. The aim of this study is to investigate the cytoprotective effects of low concentration of fisetin against tunicamycin (Tm)-mediated cytotoxicity in neuronal-like catecholaminergic PC12 cells. Methods: Cell viability was assayed by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and apoptotic and autophagic markers were analyzed by Western blot. Gene expression of unfolded protein response (UPR) and Phase II enzymes was further investigated using RT-Q-PCR or Western blotting. Intracellular ROS level was measured using 2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA) by a fluorometer. The effects of fisetin on mitogen activated protein kinases (MAPKs) and SIRT1 (Sirtuin 1) signaling pathways were examined using Western blotting and specific inhibitors. Results: Fisetin (<20 µM) restored cell viability and repressed apoptosis, autophagy and ROS production in Tm-treated cells. Fisetin attenuated Tm-mediated expression of ER stress genes, such as glucose-regulated proteins 78 (GRP78), C/EBP homologous protein (CHOP also known as GADD153) and Tribbles homolog 3 (TRB3), but induced the expression of nuclear E2 related factor (Nrf)2-targeted heme oxygenase (HO)-1, glutamate cysteine ligase (GCL) and cystine/glutamate transporter (xCT/SLC7A11), in both the presence and absence of Tm. Moreover, fisetin enhanced phosphorylation of ERK (extracellular signal-regulated kinase), JNK (c-JUN NH2-terminal protein kinase), and p38 MAPK. Addition of JNK and p38 MAPK inhibitor significantly antagonized its cytoprotective activity and modulatory effects on UPR. Fisetin also restored Tm-inhibited SIRT1 expression and addition of sirtinol (SIRT1 activation inhibitor) significantly blocked fisetin-mediated cytoprotection. In conclusion, this result shows that fisetin activates Nrf2, MAPK and SIRT1, which may elicit adaptive cellular stress response pathways so as to protect cells from Tm-induced cytotoxicity. PMID:28420170

  19. Elevated Muscle TLR4 Expression and Metabolic Endotoxemia in Human Aging

    PubMed Central

    Ghosh, Sangeeta; Lertwattanarak, Raweewan; Garduño, Jose de Jesus; Galeana, Joaquin Joya; Li, Jinqi; Zamarripa, Frank; Lancaster, Jack L.; Mohan, Sumathy; Hussey, Sophie

    2015-01-01

    Aging is associated with alterations in glucose metabolism and sarcopenia that jointly contribute to a higher risk of developing type 2 diabetes. Because aging is considered as a state of low-grade inflammation, in this study we examined whether older, healthy (lean, community-dwelling) participants have altered signaling flux through toll-like receptor 4 (TLR4), a key mediator of innate and adaptive immune responses. We also examined whether a 4-month aerobic exercise program would have an anti-inflammatory effect by reducing TLR4 expression and signaling. At baseline, muscle TLR4, nuclear factor κB p50 and nuclear factor κB p65 protein content, and c-Jun N-terminal kinase phosphorylation were significantly elevated in older versus young participants. The plasma concentration of the TLR4 agonist lipopolysaccharide and its binding protein also were significantly elevated in older participants, indicative of metabolic endotoxemia, which is a recently described phenomenon of increased plasma endotoxin level in metabolic disease. These alterations in older participants were accompanied by decreased insulin sensitivity, quadriceps muscle volume, and muscle strength. The exercise training program increased insulin sensitivity, without affecting quadriceps muscle volume or strength. Muscle TLR4, nuclear factor κB, and c-Jun N-terminal kinase, and plasma lipopolysaccharide and lipopolysaccharide binding protein were not changed by exercise. In conclusion, insulin resistance and sarcopenia of aging are associated with increased TLR4 expression/signaling, which may be secondary to metabolic endotoxemia. PMID:24846769

  20. A Systems Biology Approach to Reveal Putative Host-Derived Biomarkers of Periodontitis by Network Topology Characterization of MMP-REDOX/NO and Apoptosis Integrated Pathways.

    PubMed

    Zeidán-Chuliá, Fares; Gürsoy, Mervi; Neves de Oliveira, Ben-Hur; Özdemir, Vural; Könönen, Eija; Gürsoy, Ulvi K

    2015-01-01

    Periodontitis, a formidable global health burden, is a common chronic disease that destroys tooth-supporting tissues. Biomarkers of the early phase of this progressive disease are of utmost importance for global health. In this context, saliva represents a non-invasive biosample. By using systems biology tools, we aimed to (1) identify an integrated interactome between matrix metalloproteinase (MMP)-REDOX/nitric oxide (NO) and apoptosis upstream pathways of periodontal inflammation, and (2) characterize the attendant topological network properties to uncover putative biomarkers to be tested in saliva from patients with periodontitis. Hence, we first generated a protein-protein network model of interactions ("BIOMARK" interactome) by using the STRING 10 database, a search tool for the retrieval of interacting genes/proteins, with "Experiments" and "Databases" as input options and a confidence score of 0.400. Second, we determined the centrality values (closeness, stress, degree or connectivity, and betweenness) for the "BIOMARK" members by using the Cytoscape software. We found Ubiquitin C (UBC), Jun proto-oncogene (JUN), and matrix metalloproteinase-14 (MMP14) as the most central hub- and non-hub-bottlenecks among the 211 genes/proteins of the whole interactome. We conclude that UBC, JUN, and MMP14 are likely an optimal candidate group of host-derived biomarkers, in combination with oral pathogenic bacteria-derived proteins, for detecting periodontitis at its early phase by using salivary samples from patients. These findings therefore have broader relevance for systems medicine in global health as well.

Top