Science.gov

Sample records for c-mod radio frequency

  1. Wide-frequency range, dynamic matching network and power system for the “Shoelace” radio frequency antenna on the Alcator C-Mod tokamak

    SciTech Connect

    Golfinopoulos, Theodore LaBombard, Brian; Burke, William; Parker, Ronald R.; Parkin, William; Woskov, Paul

    2014-04-15

    A wide-frequency range (50–300 kHz) power system has been implemented for use with a new RF antenna – the “Shoelace” antenna – built to drive coherent plasma fluctuations in the edge of the Alcator C-Mod tokamak. A custom, dynamically tunable matching network allows two commercial 1 kW, 50-Ω RF amplifiers to drive the low-impedance, inductive load presented by the antenna. This is accomplished by a discretely variable L-match network, with 81 independently selected steps available for each of the series and parallel legs of the matching configuration. A compact programmable logic device provides a control system that measures the frequency with better than 1 kHz accuracy and transitions to the correct tuning state in less than 1 ms. At least 85% of source power is dissipated in the antenna across the operational frequency range, with a minimum frequency slew rate of 1 MHz/s; the best performance is achieved in the narrower band from 80 to 150 kHz which is of interest in typical experiments. The RF frequency can be run with open-loop control, following a pre-programmed analog waveform, or phase-locked to track a plasma fluctuation diagnostic signal in real time with programmable phase delay; the amplitude control is always open-loop. The control waveforms and phase delay are programmed remotely. These tools have enabled first-of-a-kind measurements of the tokamak edge plasma system response in the frequency range and at the wave number at which coherent fluctuations regulate heat and particle transport through the plasma boundary.

  2. Wide-frequency range, dynamic matching network and power system for the "Shoelace" radio frequency antenna on the Alcator C-Mod tokamak.

    PubMed

    Golfinopoulos, Theodore; LaBombard, Brian; Burke, William; Parker, Ronald R; Parkin, William; Woskov, Paul

    2014-04-01

    A wide-frequency range (50-300 kHz) power system has been implemented for use with a new RF antenna - the "Shoelace" antenna - built to drive coherent plasma fluctuations in the edge of the Alcator C-Mod tokamak. A custom, dynamically tunable matching network allows two commercial 1 kW, 50-Ω RF amplifiers to drive the low-impedance, inductive load presented by the antenna. This is accomplished by a discretely variable L-match network, with 81 independently selected steps available for each of the series and parallel legs of the matching configuration. A compact programmable logic device provides a control system that measures the frequency with better than 1 kHz accuracy and transitions to the correct tuning state in less than 1 ms. At least 85% of source power is dissipated in the antenna across the operational frequency range, with a minimum frequency slew rate of 1 MHz/s; the best performance is achieved in the narrower band from 80 to 150 kHz which is of interest in typical experiments. The RF frequency can be run with open-loop control, following a pre-programmed analog waveform, or phase-locked to track a plasma fluctuation diagnostic signal in real time with programmable phase delay; the amplitude control is always open-loop. The control waveforms and phase delay are programmed remotely. These tools have enabled first-of-a-kind measurements of the tokamak edge plasma system response in the frequency range and at the wave number at which coherent fluctuations regulate heat and particle transport through the plasma boundary.

  3. Wide-frequency range, dynamic matching network and power system for the "Shoelace" radio frequency antenna on the Alcator C-Mod tokamak

    NASA Astrophysics Data System (ADS)

    Golfinopoulos, Theodore; LaBombard, Brian; Burke, William; Parker, Ronald R.; Parkin, William; Woskov, Paul

    2014-04-01

    A wide-frequency range (50-300 kHz) power system has been implemented for use with a new RF antenna - the "Shoelace" antenna - built to drive coherent plasma fluctuations in the edge of the Alcator C-Mod tokamak. A custom, dynamically tunable matching network allows two commercial 1 kW, 50-Ω RF amplifiers to drive the low-impedance, inductive load presented by the antenna. This is accomplished by a discretely variable L-match network, with 81 independently selected steps available for each of the series and parallel legs of the matching configuration. A compact programmable logic device provides a control system that measures the frequency with better than 1 kHz accuracy and transitions to the correct tuning state in less than 1 ms. At least 85% of source power is dissipated in the antenna across the operational frequency range, with a minimum frequency slew rate of 1 MHz/s; the best performance is achieved in the narrower band from 80 to 150 kHz which is of interest in typical experiments. The RF frequency can be run with open-loop control, following a pre-programmed analog waveform, or phase-locked to track a plasma fluctuation diagnostic signal in real time with programmable phase delay; the amplitude control is always open-loop. The control waveforms and phase delay are programmed remotely. These tools have enabled first-of-a-kind measurements of the tokamak edge plasma system response in the frequency range and at the wave number at which coherent fluctuations regulate heat and particle transport through the plasma boundary.

  4. Stability of Microturbulent Drift Modes during Internal Transport Barrier Formation in the Alcator C-Mod Radio Frequency Heated H-mode

    SciTech Connect

    M.H. Redi; C.L. Fiore; W. Dorland; D.R. Mikkelsen; G. Rewoldt; P.T. Bonoli; D.R. Ernst; J.E. Rice; S.J. Wukitch

    2003-11-20

    Recent H-mode experiments on Alcator C-Mod [I.H. Hutchinson, et al., Phys. Plasmas 1 (1994) 1511] which exhibit an internal transport barrier (ITB), have been examined with flux tube geometry gyrokinetic simulations, using the massively parallel code GS2 [M. Kotschenreuther, G. Rewoldt, and W.M. Tang, Comput. Phys. Commun. 88 (1995) 128]. The simulations support the picture of ion/electron temperature gradient (ITG/ETG) microturbulence driving high xi/ xe and that suppressed ITG causes reduced particle transport and improved ci on C-Mod. Nonlinear calculations for C-Mod confirm initial linear simulations, which predicted ITG stability in the barrier region just before ITB formation, without invoking E x B shear suppression of turbulence. Nonlinear fluxes are compared to experiment, which both show low heat transport in the ITB and higher transport within and outside of the barrier region.

  5. Microturbulent Drift Mode Stability before Internal Transport Barrier Formation in the Alcator C-Mod Radio Frequency Heated H-mode

    SciTech Connect

    M.H. Redi; W. Dorland; C.L. Fiore; P.T. Bonoli; M.J. Greenwald; J.E. Rice; J.A. Baumgaertel; T.S. Hahm; G.W. Hammett; K. Hill; D.C. McCune; D.R. Mikkelsen; G. Rewoldt

    2004-09-01

    H-mode experiments on Alcator C-Mod [I.H. Hutchinson, et al., Phys. Plasma 1 (1994) 1511] which exhibit an internal transport barrier (ITB), have been examined with gyrokinetic simulations, near the ITB onset time. Linear simulations support the picture of ion and electron temperature gradient (ITG, ETG) microturbulence driving high {chi}{sub i} and {chi}{sub e}, respectively, and that stable ITG correlates with reduced particle transport and improved ion thermal confinement on C-Mod. In the barrier region ITG is weakly unstable, with a critical temperature gradient higher than expected from standard models. Nonlinear calculations and the role of E x B shear suppression of turbulence outside the plasma core are discussed in light of recent profile measurements for the toroidal velocity. The gyrokinetic model benchmarks successfully against experiment in the plasma core.

  6. The ORNL fast wave ICRF (Ion Cyclotron Range of Frequencies) antenna for Alcator C-Mod

    SciTech Connect

    Goulding, R.H.; Hoffman, D.J.; Conner, D.L.; Hammonds, C.J.; Ping, J.L.; Riemer, B.W.; Ryan, P.M.; Taylor, D.J.; Wysor, R.B.; Yugo, J.J. )

    1989-01-01

    A fast wave ICRF antenna is being designed for Alcator C-Mod which is prototypical in many respects of the baseline launcher design for the Compact Ignition Tokamak (CIT). The C-Mod launcher has a single current strap, with a strap and cavity geometry very similar to one quadrant of the CIT launcher, which has four straps in a 2 {times} 2 configuration. The antenna fits entirely within an 8 in. wide by 25 in. long port and is radially movable over a distance of 15 cm. It will operate at a frequency of 80 MHz for pulse lengths up to 1 s, at a maximum power level of 2 MW, corresponding to a power flux of >1.5 kW/cm{sup 2}. The antenna is an end fed double loop configuration in which the current strap is grounded in the middle to provide mechanical support. The design includes a disruption support system which accommodates thermal expansion of the antenna box while supporting large disruption loads. It also includes a novel matching system consisting of an external resonant loop with two shunt capacitors serving as tuning/matching elements. 8 refs., 5 figs., 12 tabs.

  7. Study of toroidal flow generation by ion cyclotron range of frequency minority heating in the Alcator C-Mod plasma

    NASA Astrophysics Data System (ADS)

    Murakami, S.; Itoh, K.; Zheng, L. J.; Van Dam, J. W.; Bonoli, P.; Rice, J. E.; Fiore, C. L.; Gao, C.; Fukuyama, A.

    2016-01-01

    The averaged toroidal flow of energetic minority ions during ICRF (ion cyclotron range of frequencies) heating is investigated in the Alcator C-Mod plasma by applying the GNET code, which can solve the drift kinetic equation with complicated orbits of accelerated energetic particles. It is found that a co-directional toroidal flow of the minority ions is generated in the region outside of the resonance location, and that the toroidal velocity reaches more than 40% of the central ion thermal velocity (Vtor ˜ 300 km/s with PICRF ˜ 2 MW). When we shift the resonance location to the outside of |r /a |˜0.5 , the toroidal flow immediately inside of the resonance location is reduced to 0 or changes to the opposite direction, and the toroidal velocity shear is enhanced at r/a ˜ 0.5. A radial diffusion equation for toroidal flow is solved by assuming a torque profile for the minority ion mean flow, and good agreements with experimental radial toroidal flow profiles are obtained. This suggests that the ICRF driven minority ion flow is related to the experimentally observed toroidal rotation during ICRF heating in the Alcator C-Mod plasma.

  8. The LHCD Launcher for Alcator C-Mod - Design, Construction, Calibration and Testing

    SciTech Connect

    J. Hosea; D. Beals; W. Beck; S. Bernabei; W. Burke; R. Childs; R. Ellis; E. Fredd; N. Greenough; M. Grimes; D. Gwinn; J. Irby; S. Jurczynski; P. Koert; C.C. Kung; G.D. Loesser; E. Marmar; R. Parker; J. Rushinski; G. Schilling; D. Terry; R. Vieira; J.R. Wilson; J. Zaks

    2005-06-27

    MIT and PPPL have joined together to fabricate a high-power lower hybrid current drive (LHCD) system for supporting steady-state AT regime research on Alcator C-Mod. The goal of the first step of this project is to provide 1.5 MW of 4.6 GHz rf [radio frequency] power to the plasma with a compact launcher which has excellent spectral selectivity and fits into a single C-Mod port. Some of the important design, construction, calibration and testing considerations for the launcher leading up to its installation on C-Mod are presented here.

  9. Validation of full-wave simulations for mode conversion of waves in the ion cyclotron range of frequencies with phase contrast imaging in Alcator C-Mod

    SciTech Connect

    Tsujii, N.; Porkolab, M.; Bonoli, P. T.; Edlund, E. M.; Ennever, P. C.; Lin, Y.; Wright, J. C.; Wukitch, S. J.; Jaeger, E. F.; Green, D. L.; Harvey, R. W.

    2015-08-15

    Mode conversion of fast waves in the ion cyclotron range of frequencies (ICRF) is known to result in current drive and flow drive under optimised conditions, which may be utilized to control plasma profiles and improve fusion plasma performance. To describe these processes accurately in a realistic toroidal geometry, numerical simulations are essential. Quantitative comparison of these simulations and the actual experimental measurements is important to validate their predictions and to evaluate their limitations. The phase contrast imaging (PCI) diagnostic has been used to directly detect the ICRF waves in the Alcator C-Mod tokamak. The measurements have been compared with full-wave simulations through a synthetic diagnostic technique. Recently, the frequency response of the PCI detector array on Alcator C-Mod was recalibrated, which greatly improved the comparison between the measurements and the simulations. In this study, mode converted waves for D-{sup 3}He and D-H plasmas with various ion species compositions were re-analyzed with the new calibration. For the minority heating cases, self-consistent electric fields and a minority ion distribution function were simulated by iterating a full-wave code and a Fokker-Planck code. The simulated mode converted wave intensity was in quite reasonable agreement with the measurements close to the antenna, but discrepancies remain for comparison at larger distances.

  10. Radio frequency detection assembly and method for detecting radio frequencies

    DOEpatents

    Cown, Steven H.; Derr, Kurt Warren

    2010-03-16

    A radio frequency detection assembly is described and which includes a radio frequency detector which detects a radio frequency emission produced by a radio frequency emitter from a given location which is remote relative to the radio frequency detector; a location assembly electrically coupled with the radio frequency detector and which is operable to estimate the location of the radio frequency emitter from the radio frequency emission which has been received; and a radio frequency transmitter electrically coupled with the radio frequency detector and the location assembly, and which transmits a radio frequency signal which reports the presence of the radio frequency emitter.

  11. Identification of waves in the lower-hybrid frequency range in the scrape-off layer plasma of Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Shinya, Takahiro; Gyou Baek, Seung; Wallace, Gregory M.; Shiraiwa, Syun'ichi; Takase, Yuichi; Parker, Ronald R.; Bonoli, Paul T.; Brunner, Dan; Faust, Ian; LaBombard, Brian L.; Wukitch, Steve

    2017-03-01

    Polarization resolved measurements of the parallel refractive index {{N}\\parallel}\\equiv c{{k}\\parallel}/ω of the driven RF waves in the lower hybrid (LH) range of frequencies are performed using arrays of RF magnetic probes in the scrape-off layer plasma of Alcator C-Mod. The measured {{N}\\parallel} of the RF magnetic field component parallel to the background magnetic field is about  -1.6, which corresponds to the peak of the launched LH {{N}\\parallel} spectrum. Based on the wave dispersion relationship, this wave is identified as the LH slow wave. On the other hand, the RF magnetic field component perpendicular to the magnetic field is found to have a lower {{N}\\parallel} of  -1.2, and is detected only near the last closed flux surface. This wave is identified as the LH fast wave generated by slow-fast wave mode conversion.

  12. The Frequency Spectrum Radio.

    ERIC Educational Resources Information Center

    Howkins, John, Ed.

    1979-01-01

    This journal issue focuses on the frequency spectrum used in radio communication and on the World Administrative Radio Conference, sponsored by the International Telecommunication Union, held in Geneva, Switzerland, in the fall of 1979. Articles describe the World Administrative Radio Conference as the most important radio communication conference…

  13. The Frequency Spectrum Radio.

    ERIC Educational Resources Information Center

    Howkins, John, Ed.

    1979-01-01

    This journal issue focuses on the frequency spectrum used in radio communication and on the World Administrative Radio Conference, sponsored by the International Telecommunication Union, held in Geneva, Switzerland, in the fall of 1979. Articles describe the World Administrative Radio Conference as the most important radio communication conference…

  14. 20 years of research on the Alcator C-Mod tokamak

    SciTech Connect

    Greenwald, M.; Baek, S.; Barnard, H.; Beck, W.; Bonoli, P.; Brunner, D.; Burke, W.; Ennever, P.; Ernst, D.; Faust, I.; Fiore, C.; Fredian, T.; Gao, C.; Golfinopoulos, T.; Granetz, R.; Hartwig, Z.; Hubbard, A.; Hughes, J.; Hutchinson, I.; Irby, J.; and others

    2014-11-15

    The object of this review is to summarize the achievements of research on the Alcator C-Mod tokamak [Hutchinson et al., Phys. Plasmas 1, 1511 (1994) and Marmar, Fusion Sci. Technol. 51, 261 (2007)] and to place that research in the context of the quest for practical fusion energy. C-Mod is a compact, high-field tokamak, whose unique design and operating parameters have produced a wealth of new and important results since it began operation in 1993, contributing data that extends tests of critical physical models into new parameter ranges and into new regimes. Using only high-power radio frequency (RF) waves for heating and current drive with innovative launching structures, C-Mod operates routinely at reactor level power densities and achieves plasma pressures higher than any other toroidal confinement device. C-Mod spearheaded the development of the vertical-target divertor and has always operated with high-Z metal plasma facing components—approaches subsequently adopted for ITER. C-Mod has made ground-breaking discoveries in divertor physics and plasma-material interactions at reactor-like power and particle fluxes and elucidated the critical role of cross-field transport in divertor operation, edge flows and the tokamak density limit. C-Mod developed the I-mode and the Enhanced Dα H-mode regimes, which have high performance without large edge localized modes and with pedestal transport self-regulated by short-wavelength electromagnetic waves. C-Mod has carried out pioneering studies of intrinsic rotation and demonstrated that self-generated flow shear can be strong enough in some cases to significantly modify transport. C-Mod made the first quantitative link between the pedestal temperature and the H-mode's performance, showing that the observed self-similar temperature profiles were consistent with critical-gradient-length theories and followed up with quantitative tests of nonlinear gyrokinetic models. RF research highlights include direct experimental

  15. 20 years of research on the Alcator C-Mod tokamaka)

    NASA Astrophysics Data System (ADS)

    Greenwald, M.; Bader, A.; Baek, S.; Bakhtiari, M.; Barnard, H.; Beck, W.; Bergerson, W.; Bespamyatnov, I.; Bonoli, P.; Brower, D.; Brunner, D.; Burke, W.; Candy, J.; Churchill, M.; Cziegler, I.; Diallo, A.; Dominguez, A.; Duval, B.; Edlund, E.; Ennever, P.; Ernst, D.; Faust, I.; Fiore, C.; Fredian, T.; Garcia, O.; Gao, C.; Goetz, J.; Golfinopoulos, T.; Granetz, R.; Grulke, O.; Hartwig, Z.; Horne, S.; Howard, N.; Hubbard, A.; Hughes, J.; Hutchinson, I.; Irby, J.; Izzo, V.; Kessel, C.; LaBombard, B.; Lau, C.; Li, C.; Lin, Y.; Lipschultz, B.; Loarte, A.; Marmar, E.; Mazurenko, A.; McCracken, G.; McDermott, R.; Meneghini, O.; Mikkelsen, D.; Mossessian, D.; Mumgaard, R.; Myra, J.; Nelson-Melby, E.; Ochoukov, R.; Olynyk, G.; Parker, R.; Pitcher, S.; Podpaly, Y.; Porkolab, M.; Reinke, M.; Rice, J.; Rowan, W.; Schmidt, A.; Scott, S.; Shiraiwa, S.; Sierchio, J.; Smick, N.; Snipes, J. A.; Snyder, P.; Sorbom, B.; Stillerman, J.; Sung, C.; Takase, Y.; Tang, V.; Terry, J.; Terry, D.; Theiler, C.; Tronchin-James, A.; Tsujii, N.; Vieira, R.; Walk, J.; Wallace, G.; White, A.; Whyte, D.; Wilson, J.; Wolfe, S.; Wright, G.; Wright, J.; Wukitch, S.; Zweben, S.

    2014-11-01

    The object of this review is to summarize the achievements of research on the Alcator C-Mod tokamak [Hutchinson et al., Phys. Plasmas 1, 1511 (1994) and Marmar, Fusion Sci. Technol. 51, 261 (2007)] and to place that research in the context of the quest for practical fusion energy. C-Mod is a compact, high-field tokamak, whose unique design and operating parameters have produced a wealth of new and important results since it began operation in 1993, contributing data that extends tests of critical physical models into new parameter ranges and into new regimes. Using only high-power radio frequency (RF) waves for heating and current drive with innovative launching structures, C-Mod operates routinely at reactor level power densities and achieves plasma pressures higher than any other toroidal confinement device. C-Mod spearheaded the development of the vertical-target divertor and has always operated with high-Z metal plasma facing components—approaches subsequently adopted for ITER. C-Mod has made ground-breaking discoveries in divertor physics and plasma-material interactions at reactor-like power and particle fluxes and elucidated the critical role of cross-field transport in divertor operation, edge flows and the tokamak density limit. C-Mod developed the I-mode and the Enhanced Dα H-mode regimes, which have high performance without large edge localized modes and with pedestal transport self-regulated by short-wavelength electromagnetic waves. C-Mod has carried out pioneering studies of intrinsic rotation and demonstrated that self-generated flow shear can be strong enough in some cases to significantly modify transport. C-Mod made the first quantitative link between the pedestal temperature and the H-mode's performance, showing that the observed self-similar temperature profiles were consistent with critical-gradient-length theories and followed up with quantitative tests of nonlinear gyrokinetic models. RF research highlights include direct experimental

  16. Stabilized radio frequency quadrupole

    DOEpatents

    Lancaster, H.D.; Fugitt, J.A.; Howard, D.R.

    1984-12-25

    Disclosed is a long-vane stabilized radio frequency resonator for accelerating charged particles and including means defining a radio frequency resonator cavity, a plurality of long vanes mounted in the defining means for dividing the cavity into sections, and means interconnecting opposing ones of the plurality of vanes for stabilizing the resonator. 5 figs.

  17. Stabilized radio frequency quadrupole

    DOEpatents

    Lancaster, Henry D.; Fugitt, Jock A.; Howard, Donald R.

    1984-01-01

    A long-vane stabilized radio frequency resonator for accelerating charged particles and including means defining a radio frequency resonator cavity, a plurality of long vanes mounted in the defining means for dividing the cavity into sections, and means interconnecting opposing ones of the plurality of vanes for stabilizing the resonator.

  18. Characterization and performance of a field aligned ion cyclotron range of frequency antenna in Alcator C-Mod

    SciTech Connect

    Wukitch, S. J.; Garrett, M. L.; Ochoukov, R.; Terry, J. L.; Hubbard, A.; Labombard, B.; Lau, C.; Lin, Y.; Lipschultz, B.; Miller, D.; Reinke, M. L.; Whyte, D.; Collaboration: Alcator C-Mod Team

    2013-05-15

    Ion cyclotron range of frequency (ICRF) heating is expected to provide auxiliary heating for ITER and future fusion reactors where high Z metallic plasma facing components (PFCs) are being considered. Impurity contamination linked to ICRF antenna operation remains a major challenge particularly for devices with high Z metallic PFCs. Here, we report on an experimental investigation to test whether a field aligned (FA) antenna can reduce impurity contamination and impurity sources. We compare the modification of the scrape of layer (SOL) plasma potential of the FA antenna to a conventional, toroidally aligned (TA) antenna, in order to explore the underlying physics governing impurity contamination linked to ICRF heating. The FA antenna is a 4-strap ICRF antenna where the current straps and antenna enclosure sides are perpendicular to the total magnetic field while the Faraday screen rods are parallel to the total magnetic field. In principle, alignment with respect to the total magnetic field minimizes integrated E|| (electric field along a magnetic field line) via symmetry. A finite element method RF antenna model coupled to a cold plasma model verifies that the integrated E|| should be reduced for all antenna phases. Monopole phasing in particular is expected to have the lowest integrated E||. Consistent with expectations, we observed that the impurity contamination and impurity source at the FA antenna are reduced compared to the TA antenna. In both L and H-mode discharges, the radiated power is 20%–30% lower for a FA-antenna heated discharge than a discharge heated with the TA-antennas. However, inconsistent with expectations, we observe RF induced plasma potentials (via gas-puff imaging and emissive probes to be nearly identical for FA and TA antennas when operated in dipole phasing). Moreover, the highest levels of RF-induced plasma potentials are observed using monopole phasing with the FA antenna. Thus, while impurity contamination and sources are indeed

  19. Radio frequency spectrum management

    NASA Astrophysics Data System (ADS)

    Sujdak, E. J., Jr.

    1980-03-01

    This thesis is a study of radio frequency spectrum management as practiced by agencies and departments of the Federal Government. After a brief introduction to the international agency involved in radio frequency spectrum management, the author concentrates on Federal agencies engaged in frequency management. These agencies include the National Telecommunications and Information Administration (NTIA), the Interdepartment Radio Advisory Committee (IRAC), and the Department of Defense (DoD). Based on an analysis of Department of Defense frequency assignment procedures, recommendations are given concerning decentralizing military frequency assignment by delegating broader authority to unified commanders. This proposal includes a recommendation to colocate the individual Service frequency management offices at the Washington level. This would result in reduced travel costs, lower manpower requirements, and a common tri-Service frequency management data base.

  20. Edge Minority Heating Experiment in Alcator C-Mod

    SciTech Connect

    S.J. Zweben; J.L. Terry; P. Bonoli; R. Budny; C.S. Chang; C. Fiore; G. Schilling; S. Wukitch; J. Hughes; Y. Lin; R. Perkins; M. Porkolab; the Alcator C-Mod Team

    2005-03-25

    An attempt was made to control global plasma confinement in the Alcator C-Mod tokamak by applying ion cyclotron resonance heating (ICRH) power to the plasma edge in order to deliberately create a minority ion tail loss. In theory, an edge fast ion loss could modify the edge electric field and so stabilize the edge turbulence, which might then reduce the H-mode power threshold or improve the H-mode barrier. However, the experimental result was that edge minority heating resulted in no improvement in the edge plasma parameters or global stored energy, at least at power levels of radio-frequency power is less than or equal to 5.5 MW. A preliminary analysis of these results is presented and some ideas for improvement are discussed.

  1. Radio frequency strain monitor

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S. (Inventor); Rogowski, Robert S. (Inventor); Holben, Jr., Milford S. (Inventor)

    1989-01-01

    A radio frequency strain monitor includes a voltage controlled oscillator for generating an oscillating signal that is input into a propagation path. The propagation path is preferably bonded to the surface of a structure to be monitored and produces a propagated signal. A phase difference between the oscillating and propagated signals is detected and maintained at a substantially constant value which is preferably a multiple of 90.degree. by changing the frequency of the oscillating signal. Any change in frequency of the oscillating signal provides an indication of strain in the structure to which the propagation path is bonded.

  2. RADIO FREQUENCY ATTENUATOR

    DOEpatents

    Giordano, S.

    1963-11-12

    A high peak power level r-f attenuator that is readily and easily insertable along a coaxial cable having an inner conductor and an outer annular conductor without breaking the ends thereof is presented. Spaced first and second flares in the outer conductor face each other with a slidable cylindrical outer conductor portion therebetween. Dielectric means, such as water, contact the cable between the flares to attenuate the radio-frequency energy received thereby. The cylindrical outer conductor portion is slidable to adjust the voltage standing wave ratio to a low level, and one of the flares is slidable to adjust the attenuation level. An integral dielectric container is also provided. (AFC)

  3. Upgrades to the C-Mod FIR Polarimeter

    NASA Astrophysics Data System (ADS)

    Abraham, Sameer; Irby, Jim; Watterson, Reich; Vieira, Rui; Leccacorvi, Rick; Parkin, William; Murray, Rick; Marmar, Earl

    2016-10-01

    The 3-Chord FIR Polarimeter presently deployed on C-Mod is capable of responding to both fast changes in the plasma equilibrium and high frequency fluctuations. Two FIR lasers locked together with a slight frequency offset provide a signal IF at 4 MHz, which allows for the fast response of the system. Recently implemented upgrades including relocation of the laser table from the C-Mod experimental cell to a more shielded location, the design and installation of a humidity controlled beam-line to convey the FIR beams across the cell, and improved collimation optics will be discussed. Results from initial testing of the system during C-Mod operation, as well as fluctuation data from the most recent and previous campaigns will be presented and compared. Supported by USDoE Award DE-FC02-99ER54512.

  4. Radio frequency coaxial feedthrough

    DOEpatents

    Owens, Thomas L.

    1989-01-17

    An improved radio frequency coaxial transmission line vacuum feed-through provided based on the use of a half-wavelength annular dielectric pressure barrier disk, or multiple disks comprising an effective half wavelength structure to eliminate reflections from the barrier surfaces. Gas-tight seals are formed about the outer and inner diameter surfaces of the barrier disk using a sealing technique which generates radial forces sufficient to form seals by forcing the conductor walls against the surfaces of the barrier disks in a manner which does not deform the radii of the inner and outer conductors, thereby preventing enhancement of the electric field at the barrier faces which limits voltage and power handling capabilities of a feedthrough.

  5. Stabilized radio-frequency quadrupole

    DOEpatents

    Lancaster, H.D.; Fugitt, J.A.; Howard, D.R.

    1982-09-29

    A long-vane stabilized radio frequency resonator for accelerating charged particles and including means defining a radio frequency resonator cavity, a plurality of long vanes mounted in the defining means for dividing the cavity into sections, and means interconnecting opposing ones of the plurality of vanes for stabilizing the resonator.

  6. Upgrade Plans for the C-Mod FIR Polarimeter

    NASA Astrophysics Data System (ADS)

    Watterson, R.; Garnier, D.; Irby, J.; Brower, D. L.; Xu, P.; Bergerson, W. F.; Ding, W. X.; Guttenfelder, W.; Marmar, E. S.

    2014-10-01

    The 3-chord FIR polarimeter presently deployed on C-Mod is capable of responding to both fast changes in the plasma equilibrium and high frequency fluctuations. It operates under ITER-like plasma conditions and magnetic fields, and uses an optical layout similar to that proposed for ITER. The details of this system and some results from the C-Mod 2012 campaign will be presented, along with the design of the upgrade that is now being implemented. The new system will provide horizontal chords near the mid-plane and low loss etalon windows to improve both the signal level and our ability to study magnetic fluctuations. The laser table has been relocated from the C-Mod cell to a shielded and climate controlled location, and improvements have been made to its acoustic isolation. New collimation optics, and a beam-line needed to convey the FIR beams into the tokamak port have been designed. Improvements to the detector electronics will also be discussed, as will initial testing of the laser system and reference detectors during C-Mod operation. Supported by USDoE Award DE-FC02-99ER54512.

  7. Frequency Allocation; The Radio Spectrum.

    ERIC Educational Resources Information Center

    Federal Communications Commission, Washington, DC.

    The Federal Communications Commission (FCC) assigns segments of the radio spectrum to categories of users, and specific frequencies within each segment to individual users. Since demand for channel space exceeds supply, the process is complex. The radio spectrum can be compared to a long ruler: the portion from 10-540 kiloHertz has been set aside…

  8. a Radio-Frequency

    NASA Astrophysics Data System (ADS)

    Foo, Thomas Kwok-Fah

    Radio-frequency (RF) inhomogeneity encountered in magnetic resonance (MR) imaging poses a significant impediment to obtaining images of the highest diagnostic quality. This inhomogeneity arises from the conductivity effect, which attenuates the RF field with increasing depth, and the permittivity effect. The latter is the dominant effect at 1.5 Tesla (64 MHz), and contributes to standing waves within the body. A theoretical model has been developed which describes these effects for an infinitely long right circularly cylindrical object inside a concentric RF coil and RF shield. This model assumes that the RF field propagates as a travelling wave in the z direction, along the long axis of the cylinder. The resulting solutions adequately predict the field distribution for RF coils which have both a finite wavelength and an infinite wavelength in z. This corresponds to high-pass and low-pass birdcage resonators, respectively, that are in general used in MR imaging. Standing wave models are easily obtained from the superposition of solutions of two travelling waves in opposite directions. The results of this model indicate that the axial propagation constant k_{z} is a strong function of the dielectric present in the coil -to-shield space. The field distribution in the axial plane can be represented by the Bessel function J_1(k _{rho}r), where k _sp{rho}{2} = k^2-k_sp{z}{2} . By varying the dielectric material occupying the coil-to-shield space, an optimum value of k _{z} can be obtained for a particular coil and shield configuration which minimizes the amplitude variations in the axial plane. Experimental verification of the theoretical model has been obtained. These measurements were performed on a non-resonant, travelling wave test coil with a saline phantom as a load simulating the body. The measured field profiles in the axial plane agree with the predicted values, establishing the validity of the theoretical model. As expected, optimal RF homogeneity was obtained

  9. Radio Frequency Interference: Radio Astronomy's Biggest Enemy

    NASA Astrophysics Data System (ADS)

    Acevedo, F.; Ghosh, Tapasi

    1997-12-01

    As technology progresses, the demand for the usage of the electromagnetic spectrum increases with it. The development is so fast and prolific that clean band space for passive users such as Radio Astronomy is becoming ever so scarce. Even though, several spectral bands have been protected for Radio Astronomy by Federal Communication Commission (in the USA) under the recommendations of the International Telecommunication Union (ITU), pressure for making more spectral space commercially usable is extreme. Although these commercial usages make our modern living at all possible, often the extreme vulnerability of passive users are are not fully appreciated, resulting in unwanted emissions (RFI) in the Radio Astronomy Bands. Another source of RFI is the fact that many of the electronic devices used in the observatories themselves generate radio waves. If proper precautions are not taken, these can be received back through the Radio Telescope itself. This problem is referred to as internal RFI. The focus of this paper is the search and diminution of internal RFI in the Arecibo Observatory in Arecibo, Puerto Rico. Using a simple setup of a log-periodic antenna and a Spectrum Analyzer, spectra spanning a frequency range of 100 - 1800 MHZ were recorded in some areas of the Observatory and the new Visitor Center (AOVEF). The measurements disclosed sources of radio emission among some of the digital electronic equipment in the Equipment room and a few displays in the AOVEF. Most prominent of these was a 2.5 MHz comb spanning the entire range of the measurements emitted from the SRENDIP and AOFTM machines. The respective groups were informed and corrective shielding & isolations were implemented immediately. In AOVEF, three displays, some audio-visual equipment, and video/digital cameras used by the visitors were found to be "leaky". In future, the use of such cameras will be prohibited and the exhibits will be screened appropriately.

  10. Transport and Stability in C-Mod ITBs in Diverse Regimes

    NASA Astrophysics Data System (ADS)

    Fiore, C. L.; Ernst, D. R.; Howard, N. T.; Kasten, C. P.; Mikkelsen, D.; Reinke, M. L.; Rice, J. E.; White, A. E.; Rowan, W. L.; Bespamyatnov, I.

    2012-10-01

    Internal Transport Barriers (ITBs) in C-Mod feature highly peaked density and pressure profiles and are typically induced by the introduction of radio frequency power in the ion cyclotron range of frequencies (ICRF) with the second harmonic of the resonance for minority hydrogen ions positioned off-axis at the plasma half radius on either the low or high field side of the plasma. These ITBs are formed in the absence of particle or momentum injection, and with monotonic q profiles with qmin< 1. Thus they allow exploration of ITB dynamics in a reactor relevant regime. Recently, linear and non-linear gyrokinetic simulations have demonstrated that changes in the ion temperature and plasma rotation profiles, coincident with the application of off-axis ICRF heating, contribute to greater stability to ion temperature gradient driven fluctuation in the plasma. This results in reduced turbulent driven outgoing heat flux. To date, ITB formation in C-Mod has only been observed in EDA H-mode plasmas with moderate (2-3 MW) ICRF power. Experiments to explore the formation of ITBs in other operating regimes such as I-mode and also with high ICRF power are being undertaken to understand further the process of ITB formation and sustainment, especially with regard to turbulent driven transport.

  11. The Alcator C-Mod FIR Polarimeter

    NASA Astrophysics Data System (ADS)

    Xu, P.; Irby, J. H.; Bosco, J.; Kanojia, A.; Leccacorvi, R.; Marmar, E. S.; Michael, P.; Murray, R.; Rokhman, Y.; Vieira, R.; Brower, D. L.; Ding, W. X.; Mansfield, D. K.

    2009-11-01

    A multi-chord FIR polarimetry diagnostic is being developed for the Alcator C-Mod Tokamak to be used to determine the q-profile and to study density and magnetic field fluctuations. This poloidally viewing system using retro-reflectors on the inner wall will have geometry and fields similar to those planned for ITER. The full optical layout will be discussed, as well as simulations of the expected Faraday and Cotton-Mouton signal levels. Bench test results from a single chord system including all optical components will be presented, and preliminary experimental results from C-Mod will be compared with simulated Faraday rotation angle calculated using Thomson Scattering density profiles and EFIT reconstructions of actual C-Mod plasmas.

  12. Rf modeling and design of a folded waveguide launcher for the Alcator C-Mod tokamak

    SciTech Connect

    Bigelow, T.S.; Fogelman, C.F.; Baity, F.W.; Carter, M.D.; Hoffman, D.J.; Ryan, P.M.; Yugo, J.J.; Golovato, S.N.; Bonoli, P.

    1993-12-01

    The folded waveguide (FWG) launcher is being investigated as an improved antenna configuration for plasma heating in the ion cyclotron range of frequencies (ICRF). A development FWG launcher was successfully tested at Oak Ridge National Laboratory (ORNL) with a low-density plasma load and found to have significantly greater power density capability than current strap-type antennas operating in similar plasmas. To further test the concept on a high density tokamak plasma, a collaboration has been set up between ORNL and Massachusetts Institute of Technology (MIT) to develop and test an 80-MHz, 2-MW FWG on the Alcator C-Mod tokamak at MIT. The radio frequency (rf) electromagnetic modeling techniques and laboratory measurements used in the design of this antenna are described in this paper. A companion paper describes the mechanical design of the FWG.

  13. Low Frequency Radio Experiment (LORE)

    NASA Astrophysics Data System (ADS)

    Manoharan, P. K.; Naidu, Arun; Joshi, B. C.; Roy, Jayashree; Kate, G.; Pethe, Kaiwalya; Galande, Shridhar; Jamadar, Sachin; Mahajan, S. P.; Patil, R. A.

    2016-03-01

    In this paper, we present a case study of Low Frequency Radio Experiment (LORE) payload to probe the corona and the solar disturbances at solar offsets greater than 2 solar radii, i.e., at frequencies below 30 MHz. The LORE can be complimentary to the planned Indian solar mission, “Aditya-L1” and its other payloads as well as synergistic to ground-based interplanetary scintillation (IPS) observations, which are routinely carried out by the Ooty Radio Telescope. We discuss the baseline design and technical details of the proposed LORE and its particular suitability for providing measurements on the detailed time and frequency structure of fast drifting type-III and slow drifting type-II radio bursts with unprecedented time and frequency resolutions. We also brief the gonio-polarimetry, which is possible with better-designed antennas and state-of-the-art electronics, employing FPGAs and an intelligent data management system. These would enable us to make a wide range of studies, such as nonlinear plasma processes in the Sun-Earth distance, in-situ radio emission from coronal mass ejections (CMEs), interplanetary CME driven shocks, nature of ICMEs driving decelerating IP shocks and space weather effects of solar wind interaction regions.

  14. Flying radio frequency undulator

    SciTech Connect

    Kuzikov, S. V.; Vikharev, A. A.; Savilov, A. V.

    2014-07-21

    A concept for the room-temperature rf undulator, designed to produce coherent X-ray radiation by means of a relatively low-energy electron beam and pulsed mm-wavelength radiation, is proposed. The “flying” undulator is a high-power short rf pulse co-propagating together with a relativistic electron bunch in a helically corrugated waveguide. The electrons wiggle in the rf field of the −1st spatial harmonic with the phase velocity directed in the opposite direction in respect to the bunch velocity, so that particles can irradiate high-frequency Compton's photons. A high group velocity (close to the speed of light) ensures long cooperative motion of the particles and the co-propagating rf pulse.

  15. Radio frequency power load and associated method

    NASA Technical Reports Server (NTRS)

    Sims, III, William Herbert (Inventor); Chavers, Donald Gregory (Inventor); Richeson, James J. (Inventor)

    2010-01-01

    A radio frequency power load and associated method. A radio frequency power load apparatus includes a container and a fluid having an ion source therein, the fluid being contained in the container. Two conductors are immersed in the fluid. A radio frequency transmission system includes a radio frequency transmitter, a radio frequency amplifier connected to the transmitter and a radio frequency power load apparatus connected to the amplifier. The apparatus includes a fluid having an ion source therein, and two conductors immersed in the fluid. A method of dissipating power generated by a radio frequency transmission system includes the steps of: immersing two conductors of a radio frequency power load apparatus in a fluid having an ion source therein; and connecting the apparatus to an amplifier of the transmission system.

  16. Low Frequency Radio Experiment (LORE)

    NASA Astrophysics Data System (ADS)

    Manoharan, Periasamy K.; Joshi, Bhal Chandra; Naidu, Arun Kumar

    High temporal and frequency resolution observations of solar generated disturbances below 15 MHz in the near-Sun region and at Sun-Earth distances in conjunction with optical and high energy observations of Sun are essential to understand the structure and evolution of eruptions, such as, flares, coronal mass ejections (CMEs), and their associated solar wind disturbances at heights above the photosphere and their consequences in the interplanetary medium. This talk presents a case study of Low Frequency Radio Experiment (LORE) payload to probe the corona and the solar disturbances at solar offsets greater than 2 solar radii below 30 MHz. The LORE, although not part of Aditya-L1 mission, can be complimentary to planned Aditya-L1 coronagraph and its other on-board payloads as well as synergistic to ground based observations, which are routinely carried out by Ooty Radio Telescope. We discuss the baseline design and technical details of the proposed LORE and it is particularly suitable for providing data on the detailed time and frequency structure of fast drifting Type-III and slow drifting Type-II radio bursts with unprecedented time and frequency resolution as well as goniopolarimetry, made possible with better designed antennas and state-of-art electronics, employing FPGAs and an intelligent data management system. This would enable wide ranging studies such as studies of nonlinear plasma processes, CME in-situ radio emission, CME driven phenomena, interplanetary CME driven shocks, ICMEs driven by decelerating IP shocks and space weather effects of Solar Wind interaction regions. The talk will highlight the science objectives as well as the proposed technical design features.

  17. Radio frequency coaxial feedthrough device

    DOEpatents

    Owens, Thomas L.; Baity, Frederick W.; Hoffman, Daniel J.; Whealton, John H.

    1987-01-01

    A radio frequency coaxial vacuum feedthrough is provided which utilizes a cylindrical ceramic vacuum break formed of an alumina ceramic. The cylinder is coaxially disposed and brazed between tapered coaxial conductors to form a vacuum sealed connection between a pressurized upstream coaxial transmission line and a utilization device located within a vacuum container. The feedthrough provides 50 ohm matched impedance RF feedthrough up to about 500 MHz at power levels in the multimegawatt range.

  18. HIGH CURRENT RADIO FREQUENCY ION SOURCE

    DOEpatents

    Abdelaziz, M.E.

    1963-04-01

    This patent relates to a high current radio frequency ion source. A cylindrical plasma container has a coil disposed around the exterior surface thereof along the longitudinal axis. Means are provided for the injection of an unionized gas into the container and for applying a radio frequency signal to the coil whereby a radio frequency field is generated within the container parallel to the longitudinal axis thereof to ionize the injected gas. Cathode and anode means are provided for extracting transverse to the radio frequency field from an area midway between the ends of the container along the longitudinal axis thereof the ions created by said radio frequency field. (AEC)

  19. Radio Frequency Power Load and Associated Method

    NASA Technical Reports Server (NTRS)

    Srinivasan, V. Karthik (Inventor); Freestone, Todd M. (Inventor); Sims, William Herbert, III (Inventor)

    2014-01-01

    A radio frequency power load and associated method. A radio frequency power load apparatus may include a container with an ionized fluid therein. The apparatus may include one conductor immersed in a fluid and another conductor electrically connected to the container. A radio frequency transmission system may include a radio frequency transmitter, a radio frequency amplifier connected to the transmitter and a radio frequency power load apparatus connected to the amplifier. The apparatus may include a fluid having an ion source therein, one conductor immersed in a fluid, and another conductor electrically connected to the container. A method of dissipating power generated by a radio frequency transmission system may include constructing a waveguide with ionized fluid in a container and connecting the waveguide to an amplifier of the transmission system.

  20. Low Radio Frequency Picosatellite Missions

    NASA Astrophysics Data System (ADS)

    Jones, Dayton L.

    2014-06-01

    The dramatic advances in cubesat and other picosatellite capabilities are opening the door for scientifically important observations at low radio frequencies. Because simple antennas are effective at low frequencies, and receiver technology allows low mass and low power instruments, these observations are an ideal match for very small spacecraft. A workshop on cubesat missions for low frequency radio astronomy was held at the Kiss Institute for Space Sciences, Caltech, to explore mission concepts involving one up to hundreds of picosatellites. One result from this workshop was that there are opportunities for viable missions throughout this large range. For example, the sky-integrated spectral signature of highly redshifted neutral hydrogen from the dark ages and cosmic dawn epochs can be measured by a single antenna on a single spacecraft. There are challenging issues of calibration, foreground removal, and RF interference that need to be solved, but the basic concept is appealingly simple. At the other extreme, imaging of angular structure in the high-redshift hydrogen signal will require an interferometer array with a very large number of antennas. In this case the primary requirement is a sufficiently low individual spacecraft mass that hundreds can be launched affordably. The technical challenges for large arrays are long-term relative station keeping and high downlink data rates. Missions using several to a few tens of picosatellites can image and track bright sources such as solar and planetary radio bursts, and will provide essential validation of technologies needed for much larger arrays.This work has been carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  1. Radio-Frequency Strain Monitor

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S.; Rogowski, Robert S.; Holben, Milford S., Jr.

    1988-01-01

    Radio-frequency (RF) strain monitor developed to measure lengths of objects. RF waveguide or cable bonded to structure monitored. Propagation of RF signal along waveguide results in phase shift proportional to length of path traveled. Impedance mismatches placed in RF cable at nodes of structure. Records mismatches and detects overall length of line and lengths of intervals between nodes. Used to detect changes in elements of large structure with single cable. Monitor has potential for many applications, including monitoring stability of such large structures as aircraft, bridges, and buildings in Earthquake zones.

  2. Coping with Radio Frequency Interference

    NASA Astrophysics Data System (ADS)

    Lewis, B. M.

    2009-01-01

    The radio spectrum is a finite resource, on which humanity makes many demands. And pressure on it is ever increasing with the development of new technology and ideas for radio services. After all, we all benefit from wifi and cell phones. Radio astronomers have a small percentage of the spectrum allocated to them at octave intervals in the metre-centimetre bands, and at important frequencies, such as that of the 21cm line of HI. Signals from other services, as well as from our own poorly-engineered equipment, sometimes contaminate our bands: these signals constitute RFI. These may totally obliterate the astronomical signal, or, in the case of CLOUDSAT, may be capable of completely destroying a receiver, which introduces us to the new possibility of 'destructive interference'. A geo-stationary satellite can block access to a piece of sky from one site. Good equipment design eliminates self-inflicted interference, while physical separation often provides adequate practical mitigation at many frequencies. However, new observatories end up being located in the West Australian desert or Antarctica. In future they may be on the back side of the Moon. But there is no Earth-bound protection via physical separation against satellite signals. Some mitigation can be achieved by frequent data dumps and the excision of RFI, or by real-time detection and blanking of the receiver, or by more sophisticated algoriths. Astronomers of necessity aim to achieve mitigation via coordination, at the local level, and by participating in spectrum management at the national and international levels. This involves them spending a lot of time in Geneva at the International Telegraphic Union protecting their access to spectrum, and access to clean spectrum from the L3 point and the far side of the Moon.

  3. Monochromatic radio frequency accelerating cavity

    DOEpatents

    Giordano, S.

    1984-02-09

    A radio frequency resonant cavity having a fundamental resonant frequency and characterized by being free of spurious modes. A plurality of spaced electrically conductive bars are arranged in a generally cylindrical array within the cavity to define a chamber between the bars and an outer solid cylindrically shaped wall of the cavity. A first and second plurality of mode perturbing rods are mounted in two groups at determined random locations to extend radially and axially into the cavity thereby to perturb spurious modes and cause their fields to extend through passageways between the bars and into the chamber. At least one body of lossy material is disposed within the chamber to damp all spurious modes that do extend into the chamber thereby enabling the cavity to operate free of undesired spurious modes.

  4. Monochromatic radio frequency accelerating cavity

    DOEpatents

    Giordano, Salvatore

    1985-01-01

    A radio frequency resonant cavity having a fundamental resonant frequency and characterized by being free of spurious modes. A plurality of spaced electrically conductive bars are arranged in a generally cylindrical array within the cavity to define a chamber between the bars and an outer solid cylindrically shaped wall of the cavity. A first and second plurality of mode perturbing rods are mounted in two groups at determined random locations to extend radially and axially into the cavity thereby to perturb spurious modes and cause their fields to extend through passageways between the bars and into the chamber. At least one body of lossy material is disposed within the chamber to damp all spurious modes that do extend into the chamber thereby enabling the cavity to operate free of undesired spurious modes.

  5. Overview of Alcator C-Mod Research

    NASA Astrophysics Data System (ADS)

    Marmar, Earl; Alcator C-Mod Team

    2016-10-01

    C-Mod is the only divertor tokamak in the world capable of operating at B fields up to 8 T, equaling and exceeding that planned for ITER. C-Mod is compact, accessing regimes of extreme edge power density (q|| 1 GW/m2) . surpassing the design for ITER, and approaching the levels envisioned in power plants. C-Mod results are particularly important for providing the physics basis of the high-field, compact tokamak approach. Results of experiments and related modeling span the topics of core transport and turbulence, RF heating and current drive, pedestal physics, scrape-off layer, divertor and plasma-wall interactions. ICRF has been successfully applied to control and reverse accumulation of high Z impurities in the core plasma. For the first time ever, feedback of low Z seeding for divertor power dissipation has been tied directly to real-time plasma power fluxes measured on the high-Z metal PFCs in the divertor, and used to mitigate those fluxes with no degradation of the pedestal pressure or core confinement. The naturally ELM-less I-mode and EDA-H-mode regimes have been extended BT = 8T. I-mode threshold scalings show a weak dependence on B, yielding a significantly broader window for I-mode operation at high field. Quiescence of the high-field side scrape-off layer makes this a potentially attractive location for placement of RF actuators to ameliorate plasma interactions with launchers; the wave physics for penetration and damping, for both ICRF and LHRF appears very favorable for high-field side launch. Supported by USDoE Award DE-FC02-99ER54512.

  6. A radio frequency coaxial feedthrough

    DOEpatents

    Owens, T.L.

    1987-12-07

    An improved radio frequency coaxial transmission line vacuum feedthrough is provided based on the use of a half-wavelength annular dielectric pressure barrier disk, or multiple disks comprising an effective half wavelength structure to eliminate reflection from the barrier surfaces. Gas-tight seals are formed about the outer and inner diameter surfaces of the barrier disk using a sealing technique which generates radial forces sufficient to form seals by forcing the conductor walls against the surfaces of the barrier disks in a manner which does not deform the radii of the inner and outer conductors, thereby preventing enhancement of the electric field at the barrier faces which limits the voltage and power handling capabilities of a feedthrough.

  7. Radio Frequency Plasma in Water

    NASA Astrophysics Data System (ADS)

    Maehara, Tsunehiro; Toyota, Hiromichi; Kuramoto, Makoto; Iwamae, Atsushi; Tadokoro, Atsushi; Mukasa, Shinobu; Yamashita, Hiroshi; Kawashima, Ayato; Nomura, Shinfuku

    2006-11-01

    We generate a radio frequency (RF) plasma in water at an atmospheric pressure by applying an RF power of 13.56 MHz from an electrode. The plasma is in a bubble formed in water. On the basis of hydrogen spectral lines under the assumption of thermal equilibrium, the temperature of the plasma is estimated to be 4000-4500 K. Spectroscopic measurements show that hydrogen and oxygen are excited in the plasma. The plasma is also obtained in tap water or NaCl solution with a high conductivity. In the solution, sodium spectral lines are observed. Colored water containing methylene blue is exposed to the plasma. The absorbence spectra of the colored water before and after exposure to the plasma suggest the decomposition of organic matter due to chemical reactions involving active species, such as OH-radicals.

  8. Energetic Ion Losses in the Alcator C-Mod Tokamak

    NASA Astrophysics Data System (ADS)

    Pace, D. C.; Granetz, R. S.; Bader, A.; Parker, R. R.; Vieira, R.; Wukitch, S. J.; Darrow, D. S.; Zweben, S. J.

    2011-10-01

    A scintillator-based fast ion loss detector (FILD) is presently being commissioned on the Alcator C-Mod tokamak to resolve the energy and pitch angle of energetic ions that are lost from the plasma due to interactions with MHD modes, edge localized modes, and ion cyclotron resonance heating (ICRH) injection. Energetic ion populations are generated by applying ICRH in the minority heating regime, producing tail energies up to 2 MeV and driving a variety of Alfvén eigenmodes. The 2 MHz sampling rate of the detector allows for the identification of convective losses across the range of encountered Alfvénic frequencies. A comprehensive design study optimized the FILD to overlap its observed ion phase space with that of the compact neutral particle analyzer array that measures radial energy and density profiles of confined ICRH tail ions. Initial results from this diagnostic system will be presented in the context of the extensive C-Mod ICRH experiment and simulation/modeling effort. Work supported by US DOE through an appointment in the Fusion Energy Postdoctoral Research Program and under DE-FC02-99ER54512.

  9. Implementation of LHCD Experiments on Alcator C-Mod

    SciTech Connect

    Parker, R.; Basse, N.; Beck, W.; Childs, R.; Grimes, M.; Gwinn, D.; Irby, J.; Koert, P.; Labombard, B.; Liptac, J.; Marmar, E.; Terry, D.; Terry, J.; Vieira, R.; Wallace, G.; Wilson, J.R.; Zaks, J.; Bernabei, S.; Ellis, R.; Fredd, E.

    2005-09-26

    An antenna-transmitter system for driving current in the LHRF has been installed in Alcator C-Mod. The antenna is a grill consisting of 4 poloidal rows of waveguides, each with 24 guides in the toroidal direction. Power is supplied by 12 klystrons capable of 250 kW operation at a frequency of 4.6 GHz. Thus the total source power is 3 MW, with about 1.5 MW available to be coupled to the plasma. Power supply and heat throughput limits in C-Mod limit the pulse length to 5 s, which however represents several current redistribution times. With 90 deg. phasing, the n parallel spectrum is sharply peaked at 2.3 and the range 1.5 < n parallel < 3.5 can be accessed dynamically by varying the phase of the klystrons. The system is in the commissioning phase with klystron power limited to {approx}20 kW and pulse length to 10 ms. Early results from plasma operation are discussed.

  10. Radio frequency sustained ion energy

    DOEpatents

    Jassby, Daniel L.; Hooke, William M.

    1977-01-01

    Electromagnetic (E.M.) energy injection method and apparatus for producing and sustaining suprathermal ordered ions in a neutral, two-ion-species, toroidal, bulk equilibrium plasma. More particularly, the ions are produced and sustained in an ordered suprathermal state of existence above the average energy and velocity of the bulk equilibrium plasma by resonant rf energy injection in resonance with the natural frequency of one of the ion species. In one embodiment, the electromagnetic energy is injected to clamp the energy and velocity of one of the ion species so that the ion energy is increased, sustained, prolonged and continued in a suprathermal ordered state of existence containing appreciable stored energy that counteracts the slowing down effects of the bulk equilibrium plasma drag. Thus, selective deuteron absorption may be used for ion-tail creation by radio-frequency excitation alone. Also, the rf can be used to increase the fusion output of a two-component neutral injected plasma by selective heating of the injected deuterons.

  11. Recent Results from the C-Mod Polarimeter

    NASA Astrophysics Data System (ADS)

    Xu, P.; Irby, J. H.; Bergerson, W. F.; Brower, D. L.; Ding, W. X.; Marmar, E. S.; Delgado-Aparicio, L.; Ernst, D.; Hughes, J. W.; Mumgaard, R.; Parker, R.; Scott, S.; Shiraiwa, S.; Wallace, G. M.; White, A. E.; Wolfe, S. M.

    2013-10-01

    The C-Mod 3 chord FIR polarimeter, with a 2 MHz bandwidth, is capable of responding to both fast changes in the plasma equilibrium and high frequency fluctuations. It operates under ITER-like plasma conditions and magnetic fields, and uses an optical layout and FIR sources very similar to those proposed for the ITER polarimeter. Results from the polarimeter as a function of plasma density and current will be discussed, as well as the effects of lower hybrid power levels, phasing and plasma density on the current drive efficiency. The possible identification of some broadband fluctuations as primarily magnetic in nature, and gyrokinetic simulation results from the modeling of these fluctuations will also be presented. Estimates of the localization of this mode will be described. The polarimeter response to low frequency MHD modes will be compared with results from the Fast Two-Color-Interferometer. USDoE contract DE-FC02-99ER54512.

  12. Nonthermal processing by radio frequency electric fields

    USDA-ARS?s Scientific Manuscript database

    Radio frequency electric fields (RFEF) processing is relatively new and has been shown to inactivate bacteria in apple juice, orange juice and apple cider at moderately low temperatures. Key equipment components of the process include a radio frequency power supply and a treatment chamber that is ca...

  13. Integrally formed radio frequency quadrupole

    DOEpatents

    Abbott, Steven R.

    1989-01-01

    An improved radio frequency quadrupole (10) is provided having an elongate housing (11) with an elongate central axis (12) and top, bottom and two side walls (13a-d) symmetrically disposed about the axis, and vanes (14a-d) formed integrally with the walls (13a-d), the vanes (14a-d) each having a cross-section at right angles to the central axis (12) which tapers inwardly toward the axis to form electrode tips (15a-d) spaced from each other by predetermined distances. Each of the four walls (13a-d), and the vanes (14a-d) integral therewith, is a separate structural element having a central lengthwise plane (16) passing through the tip of the vane, the walls (13a-d) having flat mounting surfaces (17, 18) at right angles to and parallel to the control plane (16), respectively, which are butted together to position the walls and vane tips relative to each other.

  14. Extension of Alcator C-mod's ICRF Experimental Capability

    SciTech Connect

    Schilling, G.; Hosea, J.C.; Wilson, J.R.; Bonoli, P.T.; Lee, W.D.

    1999-06-01

    A new 4-strap single-ended ICRF antenna has been added to the Alcator C-Mod tokamak. PPPL designed, fabricated, and tested the antenna up to 45 kV on an rf test stand. It is capable of symmetric phasing for ICRF heating studies, and asymmetric phasing with an improved directed wave spectrum for current drive. Two new 2 MW transmitters, tunable from 40-80 MHz, allow operation in plasma at 43, 60, and 78 MHz to match a variety of toroidal fields and plasma conditions. This addition increases the total available ICRF power to 4 MW at 80 MHz plus 4 MW at 40-80 MHz. Plasma heating and current drive experiments at the extended power levels and new frequencies are planned, and initial system performance will be discussed.

  15. Development of the Alcator C-Mod FIR Polarimeter

    NASA Astrophysics Data System (ADS)

    Xu, P.; Irby, J. H.; Bosco, J.; Kanojia, A.; Leccacorvi, R.; Marmar, E. S.; Michael, P.; Murray, R.; Vieira, R.; Wolfe, S.; Brower, D. L.; Ding, W. X.; Mansfield, D. K.

    2008-11-01

    A multi-chord FIR polarimetry diagnostic is being developed for the Alcator C-Mod Tokamak to be used to determine the q-profile and to study density and magnetic field fluctuations. This poloidally viewing system using retro-reflectors on the inner wall will have geometry and fields similar to those planned for ITER. The optical layout will be discussed, as well as simulations of the expected Faraday and Cotton-Mouton signal levels, and the plans to integrate these data into EFIT. Details of the hardware being developed and procured including the FIR laser system, the laser power and frequency control system, optical components, detectors, beam position feedback system, and inner wall retro-reflectors and shutter will be presented.

  16. Multi-mode radio frequency device

    DOEpatents

    Gilbert, Ronald W.; Carrender, Curtis Lee; Anderson, Gordon A.; Steele, Kerry D.

    2007-02-13

    A transponder device having multiple modes of operation, such as an active mode and a passive mode, wherein the modes of operation are selected in response to the strength of a received radio frequency signal. A communication system is also provided having a transceiver configured to transmit a radio frequency signal and to receive a responsive signal, and a transponder configured to operate in a plurality of modes and to activate modes of operation in response to the radio frequency signal. Ideally, each mode of operation is activated and deactivated independent of the other modes, although two or more modes may be concurrently operational.

  17. High power radio frequency attenuation device

    DOEpatents

    Kerns, Quentin A.; Miller, Harold W.

    1984-01-01

    A resistor device for attenuating radio frequency power includes a radio frequency conductor connected to a series of fins formed of high relative magnetic permeability material. The fins are dimensional to accommodate the skin depth of the current conduction therethrough, as well as an inner heat conducting portion where current does not travel. Thermal connections for air or water cooling are provided for the inner heat conducting portions of each fin. Also disclosed is a resistor device to selectively alternate unwanted radio frequency energy in a resonant cavity.

  18. NASA Radio Frequency Spectrum Management Manual

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Radio Frequency (RF) Spectrum Management Manual sets forth procedures and guidelines for the management requirements for controlling the use of radio frequencies by the National Aeronautics and Space Administration. It is applicable to NASA Headquarters and field installations. NASA Management Instruction 1102.3 assigns the authority for management of radio frequencies for the National Aeronautics and Space Administration to the Associate Administrator for Space Operations, NASA Headquarters. This manual is issued in loose-leaf form and will be revised by page changes.

  19. Multi-chord Faraday-Effect measurements of fluctuations in C-Mod

    NASA Astrophysics Data System (ADS)

    Bergerson, William; Xu, P.; Brower, D. L.; Ding, W. X.; Irby, J. H.

    2012-10-01

    Three chords measuring the Faraday effect are operated routinely across all machine conditions in C-mod and allow for internal measurements of the equilibrium poloidal magnetic field. Absolute error attributed to stray magnetic field effects is below 0.5 degree and noise related to contamination from the lower hybrid and ion cyclotron radio frequency systems are not observed. Tests indicate there is no measurable signal contamination from the toroidal magnetic field due to the Cotton-Mouton effect or misalignment. Polarization sensitivity of the wire mesh beamsplitters requires system calibration which is achieved using a rotating half-wave plate. Individual channels can be modified to measure the Cotton-Mouton effect directly and yield a line integrated density measurement without ``fringe skips.'' Fluctuations on the Faraday signal associated with sawteeth, tearing modes, the quasi-coherent mode, broadband turbulence, and fast particle driven modes are observed at frequencies up to 1 MHz. Efforts are underway to differentiate between density and magnetic fluctuations in the polarimetry measurement via cross correlation techniques and combined density measurements. This work supported by DOE contract DE-FG02-01ER54615 and DE-FC02-99ER54512-CMOD.

  20. Overview of Alcator C-Mod Research

    NASA Astrophysics Data System (ADS)

    White, Anne

    2015-11-01

    Research on C-Mod supports next-step-devices: RF heating, current and flow drive, divertor/PMI physics, non-ELMing regimes with enhanced confinement, and disruption mitigation/runaway dynamics. Disruption mitigation experiments in MHD-unstable plasmas show MGI works equally well with and without locked modes. The L-I-mode threshold is found to be independent of magnetic field, opening an expanded operating range at high field. The toroidal and radial structure of power deposition of RF waves into the edge plasma has been systematically quantified, through the use of a unique set of fast time resolution edge diagnostics. Progress in understanding multi-channel core transport has been significant. Full-physics, ITG/TEM/ETG gyrokinetic simulations show that nonlinear cross-scale coupling enhances both ion and electron heat flux to match experiments, explaining the origin of electron heat flux and stiffness. Dynamic, passive measurements of the core rotation velocity profiles with X-ray imaging crystal spectroscopy show the direction of intrinsic rotation reversals depends on central safety factor, not on the magnetic shear. Design studies for ADX and SPARC are establishing the engineering, economics and physics for a fusion energy development path leveraging new superconducting magnet technologies. This work is supported by the US DOE under DE- FC02-99ER54512-CMOD.

  1. Radio-frequency characteristics of graphene oxide

    NASA Astrophysics Data System (ADS)

    Kim, Whan Kyun; Jung, Young Mo; Cho, Joon Hyong; Kang, Ji Yoong; Oh, Ju Yeong; Kang, Hosung; Lee, Hee-Jo; Kim, Jae Hun; Lee, Seok; Shin, H. J.; Choi, J. Y.; Lee, S. Y.; Kim, Y. C.; Han, I. T.; Kim, J. M.; Yook, Jong-Gwan; Baik, Seunghyun; Jun, Seong Chan

    2010-11-01

    We confirm graphene oxide, a two-dimensional carbon structure at the nanoscale level can be a strong candidate for high-efficient interconnector in radio-frequency range. In this paper, we investigate high frequency characteristics of graphene oxide in range of 0.5-40 GHz. Radio-frequency transmission properties were extracted as S-parameters to determine the intrinsic ac transmission of graphene sheets, such as the impedance variation dependence on frequency. The impedance and resistance of graphene sheets drastically decrease as frequency increases. This result confirms graphene oxide has high potential for transmitting signals at gigahertz ranges.

  2. High spectral purity Kerr frequency comb radio frequency photonic oscillator

    PubMed Central

    Liang, W.; Eliyahu, D.; Ilchenko, V. S.; Savchenkov, A. A.; Matsko, A. B.; Seidel, D.; Maleki, L.

    2015-01-01

    Femtosecond laser-based generation of radio frequency signals has produced astonishing improvements in achievable spectral purity, one of the basic features characterizing the performance of an radio frequency oscillator. Kerr frequency combs hold promise for transforming these lab-scale oscillators to chip-scale level. In this work we demonstrate a miniature 10 GHz radio frequency photonic oscillator characterized with phase noise better than −60 dBc Hz−1 at 10 Hz, −90 dBc Hz−1 at 100 Hz and −170 dBc Hz−1 at 10 MHz. The frequency stability of this device, as represented by Allan deviation measurements, is at the level of 10−10 at 1–100 s integration time—orders of magnitude better than existing radio frequency photonic devices of similar size, weight and power consumption. PMID:26260955

  3. High spectral purity Kerr frequency comb radio frequency photonic oscillator.

    PubMed

    Liang, W; Eliyahu, D; Ilchenko, V S; Savchenkov, A A; Matsko, A B; Seidel, D; Maleki, L

    2015-08-11

    Femtosecond laser-based generation of radio frequency signals has produced astonishing improvements in achievable spectral purity, one of the basic features characterizing the performance of an radio frequency oscillator. Kerr frequency combs hold promise for transforming these lab-scale oscillators to chip-scale level. In this work we demonstrate a miniature 10 GHz radio frequency photonic oscillator characterized with phase noise better than -60 dBc Hz(-1) at 10 Hz, -90 dBc Hz(-1) at 100 Hz and -170 dBc Hz(-1) at 10 MHz. The frequency stability of this device, as represented by Allan deviation measurements, is at the level of 10(-10) at 1-100 s integration time-orders of magnitude better than existing radio frequency photonic devices of similar size, weight and power consumption.

  4. Radio-Frequency Electronics, Circuits and Applications

    NASA Astrophysics Data System (ADS)

    Hagen, Jon B.

    This accessible and comprehensive book provides an introduction to the basic concepts and key circuits of radio frequency systems, covering fundamental principles which apply to all radio devices, from wireless data transceivers on semiconductor chips to high-power broadcast transmitters. Topics covered include filters, amplifiers, oscillators, modulators, low-noise amplifiers, phase-locked loops, and transformers. Applications of radio frequency systems are described in such areas as communications, radio and television broadcasting, radar, and radio astronomy. The book contains many exercises, and assumes only a knowledge of elementary electronics and circuit analysis. It will be an ideal textbook for advanced undergraduate and graduate courses in electrical engineering, as well as an invaluable reference for researchers and professional engineers in this area, or for those moving into the field of wireless communications.

  5. Upgrades to the 4-strap ICRF Antenna in Alcator C-Mod

    SciTech Connect

    G. Schilling; J.C. Hosea; J.R. Wilson; W. Beck; R.L. Boivin; P.T. Bonoli; D. Gwinn; W.E. Lee; E. Nelson-Melby; M. Porkolab; R. Vieira; S.J. Wukitch; and J.A. Goetz

    2001-06-12

    A 4-strap ICRF antenna suitable for plasma heating and current drive has been designed and fabricated for the Alcator C-Mod tokamak. Initial operation in plasma was limited by high metallic impurity injection resulting from front surface arcing between protection tiles and from current straps to Faraday shields. Antenna modifications were made in February 2000, resulting in impurity reduction, but low-heating efficiency was observed when the antenna was operated in its 4-strap rather than a 2-strap configuration. Further modifications were made in July 2000, with the installation of BN plasma-facing tiles and radio- frequency bypassing of the antenna backplane edges and ends to reduce potential leakage coupling to plasma surface modes. Good heating efficiency was now observed in both heating configurations, but coupled power was limited to 2.5 MW in H-mode, 3 MW in L-mode, by plasma-wall interactions. Additional modifications were started in February 2001 and will be completed by this meeting. All the above upgrades and their effect on antenna performance will be presented.

  6. Lower hybrid current drive experiments on Alcator C-Mod: Comparison with theory and simulationa)

    NASA Astrophysics Data System (ADS)

    Bonoli, P. T.; Ko, J.; Parker, R.; Schmidt, A. E.; Wallace, G.; Wright, J. C.; Fiore, C. L.; Hubbard, A. E.; Irby, J.; Marmar, E.; Porkolab, M.; Terry, D.; Wolfe, S. M.; Wukitch, S. J.; Alcator C-Mod Team; Wilson, J. R.; Scott, S.; Valeo, E.; Phillips, C. K.; Harvey, R. W.

    2008-05-01

    Lower hybrid (LH) current drive experiments have been carried out on the Alcator C-Mod tokamak [I. H. Hutchinson et al., Phys. Plasmas 1, 1511 (1994)] using a radio-frequency system at 4.6GHz. Up to 900kW of LH power has been coupled and driven LH currents have been inferred from magnetic measurements by extrapolating to zero loop voltage, yielding an efficiency of neILHR0/PLH≈2.5±0.2×1019(A/W/m2). We have simulated the LH current drive in these discharges using the combined ray tracing/three-dimensional (r,v⊥,v∥) Fokker-Planck code GENRAY-CQL3D (R. W. Harvey and M. McCoy, in Proceedings of the IAEA Technical Committee Meeting on Simulation and Modeling of Thermonuclear Plasmas, Montreal, Canada, 1992) and found similar current drive efficiencies. The simulated profiles of current density from CQL3D, including both ohmic plus LH drive have been found to be in good agreement with the measured current density from a motional Stark effect diagnostic. Measurements of nonthermal x-ray emission confirm the presence of a significant fast electron population and the three-dimensional (r,v⊥,v∥) electron distribution function from CQL3D has been used in a synthetic diagnostic code to simulate the measured hard x-ray data.

  7. Tumor Localization Using Radio Frequency Implants

    DTIC Science & Technology

    2006-09-01

    frequency implants PRINCIPAL INVESTIGATOR: John E. McGary, Ph.D. CONTRACTING ORGANIZATION: Baylor College of Medicine...2. REPORT TYPE Final 3. DATES COVERED (From - To) 15 FEB 2004 - 15 AUG 2006 4. TITLE AND SUBTITLE Tumor localization using radio frequency implants ...in real-time at sufficiently large distances required for clinical treatment. 15. SUBJECT TERMS SQUID, RFID , tumor tracking, localization

  8. Stimulation of MHD Modes in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Golfinopoulos, T.; Granetz, R.; Labombard, B.; Lin, Y.; Parker, R. R.; Sears, J.; Wukitch, S. J.

    2010-11-01

    Active MHD (AMHD) spectroscopy involves stimulating MHD modes by external means to study the modes or diagnose the plasma. In many AMHD experiments, drive frequency is swept across a 100-200 kHz range in which modes are expected; this allows for robust techniques to detect resonant poles in the presence of direct pickup from the driver. However, there is flexibility in the drive mechanism. At Alcator, we have employed a parametric excitation method, amplitude-modulating the ICRF wave (80 MHz) with envelope signals in the AE frequency range (100's kHz). This builds off the ICRF beat technique used in JET in 1996 and ASDEX Upgrade in 2006, but is unique in its use of a single antenna, improving coherence. An advantage of this approach is its ability to couple to the plasma core. It also has high input power, though efficiency is limited by the Manley-Rowe relations. In initial experiments, we excited weak, stable modes in the toroidal Alfvén eigenmode band gap. We plan to explore this and other methods for coupling to various MHD-like modes, especially C-Mod's Quasi Coherent mode.

  9. Initial Active MHD Spectroscopy Experiments on Alcator C-MOD

    NASA Astrophysics Data System (ADS)

    Schmittdiel, D. A.; Snipes, J. A.; Granetz, R. S.; Parker, R. R.; Wolfe, S. M.; Fasoli, A.

    2002-11-01

    The Active MHD Spectroscopy system is a new diagnostic on C-MOD that will be used to study low frequency MHD modes and TAE's present at high B_tor, n_e, and Te ˜= T_i. The present system consists of two antennas, power amplifiers, and an impedance matching network. Each antenna is 15 × 25 cm with five turns, an inductance of ˜10 μH, and is covered by boron nitride tiles. The two antennas are placed at the same toroidal location, symmetrically above and below the midplane. Each antenna is driven by a ˜1 kW power amplifier in the range of 1 kHz - 1 MHz with an expected antenna current ˜10 A, which will produce a vacuum field of ˜0.5 G at the q = 1.5 surface. This diagnostic is designed to excite high n ( ˜20) stable TAE's and initial results regarding their frequency, mode structure, and damping rate will be presented. Evolution of these modes could also provide information on the q profile to compare with MSE measurements, which will be important for planned lower hybrid current drive operation in 2003.

  10. Radio Frequency Fragment Separator at NSCL

    NASA Astrophysics Data System (ADS)

    Bazin, D.; Andreev, V.; Becerril, A.; Doléans, M.; Mantica, P. F.; Ottarson, J.; Schatz, H.; Stoker, J. B.; Vincent, J.

    2009-07-01

    A new device has been designed and built at NSCL which provides additional filtering of radioactive beams produced via projectile fragmentation. The Radio Frequency Fragment Separator (RFFS) uses the time micro structure of the beams accelerated by the cyclotrons to deflect particles according to their time-of-flight, in effect producing a phase filtering. The transverse RF (Radio Frequency) electric field of the RFFS has superior filtering performance compared to other electrostatic devices, such as Wien filters. Such filtering is critical for radioactive beams produced on the neutron-deficient side of the valley of stability, where strong contamination occurs at intermediate energies from 50 to 200 MeV/u.

  11. Solar emission levels at low radio frequencies

    NASA Technical Reports Server (NTRS)

    Erickson, W. C.

    1990-01-01

    Solar radio emission could seriously interfere with observations made by a low frequency (1 to 10 MHz) array in space. International Sun-Earth Explorer (ISEE-3) radio data were used to determine solar emission level. The results indicate that solar emission should seriously disturb less than ten percent of the data, even during the years of solar maximum. Thus it appears that solar emission should not cause a disastrous loss of data. The information needed to design procedures to excise solar interference from the data produced by any low-frequency array is provided.

  12. Monitoring Radio Frequency Interference in Southwest Virginia

    NASA Astrophysics Data System (ADS)

    Rapp, Steve

    2010-01-01

    The radio signals received from astronomical objects are extremely weak. Because of this, radio sources are easily shrouded by interference from devices such as satellites and cell phone towers. Radio astronomy is very susceptible to this radio frequency interference (RFI). Possibly even worse than complete veiling, weaker interfering signals can contaminate the data collected by radio telescopes, possibly leading astronomers to mistaken interpretations. To help promote student awareness of the connection between radio astronomy and RFI, an inquiry-based science curriculum was developed to allow high school students to determine RFI levels in their communities. The Quiet Skies Project_the result of a collaboration between the National Aeronautics and Space Administration (NASA), the National Science Foundation (NSF), and the National Radio Astronomy Observatory (NRAO)_encourages students to collect and analyze RFI data and develop conclusions as a team. Because the project focuses on electromagnetic radiation, it is appropriate for physics, physical science, chemistry, or general science classes. My class-about 50 students from 15 southwest Virginia high schools-participated in the Quiet Skies Project and were pioneers in the use of the beta version of the Quiet Skies Detector (QSD), which is used to detect RFI. Students have been involved with the project since 2005 and have collected and shared data with NRAO. In analyzing the data they have noted some trends in RFI in Southwest Virginia.

  13. FIR polarimetry diagnostic for the C-Mod tokamak

    NASA Astrophysics Data System (ADS)

    Irby, J. H.; Bergerson, W. F.; Brower, D. L.; Ding, W. X.; Marmar, E. S.; Xu, P.

    2012-02-01

    A three-chord polarimeter on Alcator C-Mod will make measurements of the poloidal magnetic field and plasma fluctuations. The beams from two frequency-offset, 200 mW, FIR lasers operating at 117.73 μm are combined to produce collinear, counter-rotating, circularly polarized beams. The beams are divided into three chords which are directed into the plasma at one toroidal location. Corner cube retro-reflectors mounted on the inside wall return the beam for a double pass. The mixing product of the two beams is detected both before (reference) and after (signal) the plasma using polarization sensitive detectors that produce a beat signal at ~ 4 MHz. During the plasma discharge, the phase delay of the signal mixer, which depends on the Faraday effect, is evaluated with respect to the reference and produces line-integrated information on the poloidal magnetic field. Measurements on C-Mod require the phase error to be at the 0.1 degree level, and great care in the design of optical mounts, polarizers, beam-splitters, focusing optics, and acoustic and magnetic shielding was required. Development of new planar diode Schottky detectors was necessary to provide high sensitivity for a diagnostic that will eventually have at least six chords. Absorption of the FIR laser light by water vapor requires that the entire beam path be purged with dry air. Six retro-reflectors on the inner wall arranged in an ITER-like configuration provide poloidally viewing chords from near the mid-plane to well into the plasma scrape off layer. A pneumatically controlled shutter protects the in-vessel optics during boronizations and during limited discharges that might accelerate damage to the retro-reflector surfaces. Tests indicate there is no measurable signal contamination from the toroidal magnetic field due to the Cotton-Mouton effect. Polarization sensitivity of the wire mesh beamsplitters necessitated system calibration. Good agreement to EFIT reconstructions has been observed along with

  14. Radio Frequency Interference Detection using Machine Learning.

    NASA Astrophysics Data System (ADS)

    Mosiane, Olorato; Oozeer, Nadeem; Aniyan, Arun; Bassett, Bruce A.

    2017-05-01

    Radio frequency interference (RFI) has plagued radio astronomy which potentially might be as bad or worse by the time the Square Kilometre Array (SKA) comes up. RFI can be either internal (generated by instruments) or external that originates from intentional or unintentional radio emission generated by man. With the huge amount of data that will be available with up coming radio telescopes, an automated aproach will be required to detect RFI. In this paper to try automate this process we present the result of applying machine learning techniques to cross match RFI from the Karoo Array Telescope (KAT-7) data. We found that not all the features selected to characterise RFI are always important. We further investigated 3 machine learning techniques and conclude that the Random forest classifier performs with a 98% Area Under Curve and 91% recall in detecting RFI.

  15. 47 CFR 2.815 - External radio frequency power amplifiers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false External radio frequency power amplifiers. 2... External radio frequency power amplifiers. (a) As used in this part, an external radio frequency power amplifier is any device which, (1) when used in conjunction with a radio transmitter as a signal source...

  16. 47 CFR 2.815 - External radio frequency power amplifiers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false External radio frequency power amplifiers. 2... External radio frequency power amplifiers. (a) As used in this part, an external radio frequency power amplifier is any device which, (1) when used in conjunction with a radio transmitter as a signal source...

  17. 47 CFR 2.815 - External radio frequency power amplifiers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false External radio frequency power amplifiers. 2... External radio frequency power amplifiers. (a) As used in this part, an external radio frequency power amplifier is any device which, (1) when used in conjunction with a radio transmitter as a signal source...

  18. 47 CFR 2.815 - External radio frequency power amplifiers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false External radio frequency power amplifiers. 2... External radio frequency power amplifiers. (a) As used in this part, an external radio frequency power amplifier is any device which, (1) when used in conjunction with a radio transmitter as a signal source...

  19. 47 CFR 2.815 - External radio frequency power amplifiers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false External radio frequency power amplifiers. 2... External radio frequency power amplifiers. (a) As used in this part, an external radio frequency power amplifier is any device which, (1) when used in conjunction with a radio transmitter as a signal source...

  20. H-modes on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Snipes, J. A.; Hubbard, A. E.; Garnier, D. T.; Golovato, S. N.; Granetz, R. S.; Greenwald, M.; Hutchinson, I. H.; Irby, J.; La Bombard, B.; Marmar, E. S.; Niemczewski, A.; O'Shea, P. J.; Porkolab, M.; Stek, P.; Takase, Y.; Terry, J. L.; Watterson, R.; Wolfe, S. M.

    1996-08-01

    H-modes exhibiting improved confinement above the L-mode are achieved in Alcator C-Mod with ICRF and with ohmic heating alone without boronization. Both ELM-free and ELMy H-modes are obtained with total input power from 0.75 to 4.2 MW over a range of densities (0.8 to 0741-3335/38/8/005/img1) and toroidal fields (3 to 8 T). Type III ELMs are often observed to have coherent, high m and n precursor oscillations with frequencies of 100 - 160 kHz. The threshold power required to achieve the H-mode increases with density and toroidal field, in rough agreement with scalings derived from other tokamaks. The power densities and density times toroidal field products are an order of magnitude larger than in other tokamaks, in the range of values expected for ITER. The L - H and H - L transitions occur at approximately the same edge electron temperature. A low density limit to the H-mode is found at about 0741-3335/38/8/005/img2. A high midplane neutral pressure limit of about 0.6 mTorr is also observed.

  1. ICRF heating scenarios in Alcator C-MOD

    NASA Astrophysics Data System (ADS)

    Takase, Y.; Bonoli, P. T.; Golovato, S. N.; Porkolab, M.

    1994-10-01

    Alcator C-MOD tokamak (R=0.67 m, α=0/21 m, κ `1.8, B≤9 T, I≤3 MA) will start operating in April 1993. Initially 2 MW of rf power at 80 MHz will be available, which will be upgraded to 4 MW by early 1994. Additional 2-4 MW of 40-80 MHz tunable power may be installed in 1996 in collaboration with PPPL. With the 80 MHz transmitters, He3 minority heating at B=7.9 T and H minority heating at 5.3 T are the main heating scenarios, with possibilites of He3 and H second harmonic minority heating (at 3.9 T and 2.6 T, respectively) and direct electron heating by ELD/TTMP. The tunable transmitter will enable fundamental He3 and H minority heating at lower fields, and Alfvén wave heating below the ion cyclotron frequency at fields above 4 T in H plasmas. Advanced tokamak scenarios with high bootstrap current fraction and high normalized beta can also be studied in combination with pellet fueling and 4.6 GHz LHCD under TPX-like conditions (B˜4 T, n¯e≲1×1020 m-3) for pulse lengths exceeding the L/R time.

  2. ICRF heating scenarios in Alcator C-MOD

    SciTech Connect

    Takase, Y.; Bonoli, P.T.; Golovato, S.N.; Porkolab, M. )

    1994-10-15

    Alcator C-MOD tokamak ([ital R]=0.67 m, [alpha]=0/21 m, [kappa cur]1.8, [ital B][le]9 T, [ital I][le]3 MA) will start operating in April 1993. Initially 2 MW of rf power at 80 MHz will be available, which will be upgraded to 4 MW by early 1994. Additional 2--4 MW of 40--80 MHz tunable power may be installed in 1996 in collaboration with PPPL. With the 80 MHz transmitters, He[sup 3] minority heating at [ital B]=7.9 T and H minority heating at 5.3 T are the main heating scenarios, with possibilites of He[sup 3] and H second harmonic minority heating (at 3.9 T and 2.6 T, respectively) and direct electron heating by ELD/TTMP. The tunable transmitter will enable fundamental He[sup 3] and H minority heating at lower fields, and Alfven wave heating below the ion cyclotron frequency at fields above 4 T in H plasmas. Advanced tokamak scenarios with high bootstrap current fraction and high normalized beta can also be studied in combination with pellet fueling and 4.6 GHz LHCD under TPX-like conditions ([ital B][similar to]4 T, [ital [bar n

  3. Lower Hybrid Wave Induced Rotation on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Parker, Ron; Podpaly, Yuri; Rice, John; Schmidt, Andrea

    2009-11-01

    Injection of RF power in the vicinity of the lower hybrid frequency has been observed to cause strong counter current rotation in Alcator C-Mod plasmas [1,2]. The spin-up rate is consistent with the rate at which momentum is injected by the LH waves, and also the rate at which fast electron momentum is transferred to the ions. A momentum diffusivity of ˜ 0.1 m^2/s is sufficient to account for the observed steady-state rotation. This value is also comparable with that derived from an analysis of rotation induced by RF mode conversion [3]. Radial force balance requires a radial electric field, suggesting a buildup of negative charge in the plasma core. This may be the result of an inward pinch of the LH produced fast electrons, as would be expected for resonant trapped particles. Analysis of the fast-electron-produced bremsstrahlung during LH power modulation experiments yields an inward pinch velocity of ˜ 1 m/s, consistent with the estimated trapped particle pinch velocity. [4pt] [1] A. Ince-Cushman, et.al., Phys. Rev. Lett., 102, 035002 (2009)[0pt] [2] J. E. Rice, et. al., Nucl. Fusion 49, 025004 (2009)[0pt] [3] Y. Lin, et.al., this meeting

  4. Radio Frequency Signals in Jupiter's Atmosphere

    NASA Astrophysics Data System (ADS)

    Lanzerotti, L. J.; Rinnert, K.; Dehmel, G.; Gliem, F. O.; Krider, E. P.; Uman, M. A.; Bach, J.

    1996-05-01

    During the Galileo probe's descent through Jupiter's atmosphere, under the ionosphere, the lightning and radio emission detector measured radio frequency signals at levels significantly above the probe's electromagnetic noise. The signal strengths at 3 and 15 kilohertz were relatively large at the beginning of the descent, decreased with depth to a pressure level of about 5 bars, and then increased slowly until the end of the mission. The 15-kilohertz signals show arrival direction anisotropies. Measurements of radio frequency wave forms show that the probe passed through an atmospheric region that did not support lightning within at least 100 kilometers and more likely a few thousand kilometers of the descent trajectory. The apparent opacity of the jovian atmosphere increases sharply at pressures greater than about 4 bars.

  5. Radio Frequency Signals in Jupiter's Atmosphere

    PubMed

    Lanzerotti; Rinnert; Dehmel; Gliem; Krider; Uman; Bach

    1996-05-10

    During the Galileo probe's descent through Jupiter's atmosphere, under the ionosphere, the lightning and radio emission detector measured radio frequency signals at levels significantly above the probe's electromagnetic noise. The signal strengths at 3 and 15 kilohertz were relatively large at the beginning of the descent, decreased with depth to a pressure level of about 5 bars, and then increased slowly until the end of the mission. The 15-kilohertz signals show arrival direction anisotropies. Measurements of radio frequency wave forms show that the probe passed through an atmospheric region that did not support lightning within at least 100 kilometers and more likely a few thousand kilometers of the descent trajectory. The apparent opacity of the jovian atmosphere increases sharply at pressures greater than about 4 bars.

  6. Cost cutting using radio frequency inventory control.

    PubMed

    Weber, J

    1992-05-01

    Bar coding should be a staple in every hospital by now--but it's not. The author tells how bar coding and the use of radio frequency transmission of inventory data direct to their mainframe computer has saved them time and money.

  7. Radio Frequency (RF) strain monitor

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S. (Inventor); Rogowski, Robert S. (Inventor); Holben, Milford S., Jr. (Inventor)

    1988-01-01

    This invention relates to an apparatus for measuring strain in a structure. In particular, the invention detects strain in parts per million to over ten percent along an entire length (or other dimension) of a structure measuring a few millimeters to several kilometers. By using a propagation path bonded to the structure, the invention is not limited by the signal attenuation characteristics of the structure and thus frequencies in the megahertz to gigahertz range may be used to detect strain in part per million to over ten percent with high precision.

  8. Radio frequency interference at the geostationary orbit

    NASA Technical Reports Server (NTRS)

    Sue, M. K.

    1981-01-01

    Growing demands on the frequency spectrum have increased the possibility of radio frequency interference (RFI). Various approaches to obtain in orbit RFI data are compared; this comparision indicates that the most practical way to obtain RFI data for a desired orbit (such as a geostationary orbit) is through the extrapolation of in orbit RFI measurements by a low orbit satellite. It is concluded that a coherent RFI program that uses both experimental data and analytical predictions provides accurate RFI data at minimal cost.

  9. Divertor bypass in the Alcator C-Mod tokamak

    SciTech Connect

    Pitcher, C. S.; LaBombard, B.; Danforth, R.; Pina, W.; Silveira, M.; Parkin, B.

    2001-01-01

    The Alcator C-Mod divertor bypass has for the first time allowed in situ variations to the mechanical baffle design in a tokamak. The design utilizes small coils which interact with the ambient magnetic field inside the vessel to provide the torque required to control small flaps of a Venetian blind geometry. Plasma physics experiments with the bypass have revealed the importance of the divertor baffling to maintain high divertor gas pressures. These experiments have also indicated that the divertor baffling has only a limited effect on the main chamber pressure in C-Mod.

  10. SITE TECHNOLOGY CAPSULE: IITRI RADIO FREQUENCY HEATING TECHNOLOGY

    EPA Science Inventory

    Radio frequency heating (RFH) technologies use electromagnetic energy in the radio frequency (RF) band to heat soil in situ, thereby potentially enhancing the performance of standard soil vapor extraction (SVE) technologies. Contaminants are removed from in situ soils and transfe...

  11. 48 CFR 211.275 - Radio frequency identification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Radio frequency identification. 211.275 Section 211.275 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS... Requirements Documents 211.275 Radio frequency identification. ...

  12. SITE TECHNOLOGY CAPSULE: IITRI RADIO FREQUENCY HEATING TECHNOLOGY

    EPA Science Inventory

    Radio frequency heating (RFH) technologies use electromagnetic energy in the radio frequency (RF) band to heat soil in situ, thereby potentially enhancing the performance of standard soil vapor extraction (SVE) technologies. Contaminants are removed from in situ soils and transfe...

  13. Graphene radio frequency receiver integrated circuit.

    PubMed

    Han, Shu-Jen; Garcia, Alberto Valdes; Oida, Satoshi; Jenkins, Keith A; Haensch, Wilfried

    2014-01-01

    Graphene has attracted much interest as a future channel material in radio frequency electronics because of its superior electrical properties. Fabrication of a graphene integrated circuit without significantly degrading transistor performance has proven to be challenging, posing one of the major bottlenecks to compete with existing technologies. Here we present a fabrication method fully preserving graphene transistor quality, demonstrated with the implementation of a high-performance three-stage graphene integrated circuit. The circuit operates as a radio frequency receiver performing signal amplification, filtering and downconversion mixing. All circuit components are integrated into 0.6 mm(2) area and fabricated on 200 mm silicon wafers, showing the unprecedented graphene circuit complexity and silicon complementary metal-oxide-semiconductor process compatibility. The demonstrated circuit performance allow us to use graphene integrated circuit to perform practical wireless communication functions, receiving and restoring digital text transmitted on a 4.3-GHz carrier signal.

  14. Sampling Downconverter For Radio-Frequency Signals

    NASA Technical Reports Server (NTRS)

    Thomas, J. B.; Rayhrer, B.; Young, L. E.

    1990-01-01

    Phase and delay errors reduced greatly. Proposed GaAs integrated-circuit for receiver of radio signals at gigahertz frequencies samples incoming signal in phase and in quadrature, digitizes it, and down-converts it to baseband in single step. Incorporates both digital and analog components in design offering improved stability, versatility, and sampling bandwidth. Eliminates need for several components found in conventional analog designs, including mixers, postmixer filters, and 90 degree phase shifter.

  15. Radio-frequency association of Efimov trimers.

    PubMed

    Lompe, Thomas; Ottenstein, Timo B; Serwane, Friedhelm; Wenz, Andre N; Zürn, Gerhard; Jochim, Selim

    2010-11-12

    The quantum mechanical three-body problem is one of the fundamental challenges of few-body physics. When the two-body interactions become resonant, an infinite series of universal three-body bound states is predicted to occur, whose properties are determined by the strength of the two-body interactions. We used radio-frequency fields to associate Efimov trimers consisting of three distinguishable fermions. The measurements of their binding energy are consistent with theoretical predictions that include nonuniversal corrections.

  16. Passive radio frequency peak power multiplier

    DOEpatents

    Farkas, Zoltan D.; Wilson, Perry B.

    1977-01-01

    Peak power multiplication of a radio frequency source by simultaneous charging of two high-Q resonant microwave cavities by applying the source output through a directional coupler to the cavities and then reversing the phase of the source power to the coupler, thereby permitting the power in the cavities to simultaneously discharge through the coupler to the load in combination with power from the source to apply a peak power to the load that is a multiplication of the source peak power.

  17. 48 CFR 252.211-7006 - Passive Radio Frequency Identification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Passive Radio Frequency... of Provisions And Clauses 252.211-7006 Passive Radio Frequency Identification. As prescribed in 211.275-3, use the following clause: Passive Radio Frequency Identification (SEP 2011) (a) Definitions....

  18. 48 CFR 252.211-7006 - Passive Radio Frequency Identification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 3 2012-10-01 2012-10-01 false Passive Radio Frequency... of Provisions And Clauses 252.211-7006 Passive Radio Frequency Identification. As prescribed in 211.275-3, use the following clause: Passive Radio Frequency Identification (SEP 2011) (a) Definitions....

  19. 48 CFR 252.211-7006 - Passive Radio Frequency Identification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Passive Radio Frequency... of Provisions And Clauses 252.211-7006 Passive Radio Frequency Identification. As prescribed in 211.275-3, use the following clause: Passive Radio Frequency Identification (SEP 2011) (a) Definitions....

  20. 48 CFR 252.211-7006 - Passive Radio Frequency Identification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false Passive Radio Frequency... of Provisions And Clauses 252.211-7006 Passive Radio Frequency Identification. As prescribed in 211.275-3, use the following clause: Passive Radio Frequency Identification (SEP 2011) (a) Definitions....

  1. Investigation of Edge Localized Modes in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Terry, J. L.

    2006-10-01

    Characteristics of discrete ELMs produced in Alcator C-Mod discharges of low edge collisionality and high triangularity are examined. These discharges have high values for central Te and ne (reaching 4.5 keV and 2x10^20 m-3 respectively) and good confinement, consistent with ITER98y2 ELMy H-mode scaling. Pedestal temperature heights reach 0.9 keV at densities above 1x10^20 m-3. Studies of the stability of the pedestal profiles to peeling/ballooning modes will be presented. The energy lost per ELM from the H-mode pedestal is ˜10-20% of the pedestal energy. These ELMs exhibit relatively long-lived precursor oscillations, often with two modes of intermediate (n˜10) toroidal mode number present. At the ELM ``crash'' a high frequency (˜0.5 MHz), short-lived magnetic oscillation is initiated, and multiple plasma filament structures are expelled into the Scrape-Off-Layer. The initial ELM filaments, ``primaries'', are large perturbations to the SOL. The perturbation increases the local Dα emission by factors ranging from 1.5 (just outside the LCFS) to ˜100. In the outboard midplane region the primary filaments have radial extents of 0.5-1 cm and typical radial propagation velocities of 1-2 km/s. The poloidal extent of the filaments is greater than the 4.5 cm diagnostic field-of-view. The initial filaments are followed (at intervals of ˜100μs) by multiple, less perturbing ``secondary'' filaments. The radial dynamics of the ELM are also studied at the inboard midplane. The perturbation on the inboard edge appears to be a rapid profile relaxation and recovery. The onset of the inboard profile relaxation is sometimes observed to occur before filaments are seen on the outboard side.

  2. Radio-frequency scanning tunnelling microscopy.

    PubMed

    Kemiktarak, U; Ndukum, T; Schwab, K C; Ekinci, K L

    2007-11-01

    The scanning tunnelling microscope (STM) relies on localized electron tunnelling between a sharp probe tip and a conducting sample to attain atomic-scale spatial resolution. In the 25-year period since its invention, the STM has helped uncover a wealth of phenomena in diverse physical systems--ranging from semiconductors to superconductors to atomic and molecular nanosystems. A severe limitation in scanning tunnelling microscopy is the low temporal resolution, originating from the diminished high-frequency response of the tunnel current readout circuitry. Here we overcome this limitation by measuring the reflection from a resonant inductor-capacitor circuit in which the tunnel junction is embedded, and demonstrate electronic bandwidths as high as 10 MHz. This approximately 100-fold bandwidth improvement on the state of the art translates into fast surface topography as well as delicate measurements in mesoscopic electronics and mechanics. Broadband noise measurements across the tunnel junction using this radio-frequency STM have allowed us to perform thermometry at the nanometre scale. Furthermore, we have detected high-frequency mechanical motion with a sensitivity approaching approximately 15 fm Hz(-1/2). This sensitivity is on par with the highest available from nanoscale optical and electrical displacement detection techniques, and the radio-frequency STM is expected to be capable of quantum-limited position measurements.

  3. LOFAR: A LOw Frequency radio ARray

    NASA Astrophysics Data System (ADS)

    Hewitt, Jacqueline

    2001-04-01

    Recent advances in calibration and imaging algorithms at low radio frequencies, combined with advances in digital signal processing, have led to the realization that a large low-frequency radio array is now technically feasible and affordable. Improvements of one to two orders of magnitude (depending on frequency) in both sensitivity and resolution would make possible new approaches to the study of many astrophysics problems. In particular, key science areas that would be revolutionized by such an array are the high redshift universe, the epoch of reionization, the distribution of galactic cosmic rays, the bursting and transient universe, ionospheric structure, and the solar-terrestrial relationship. An ASTRON-NRL-MIT collaboration has proposed the design and construction of a low frequency array (LOFAR) made up of over 13,000 fixed dipole and dipole-array antennas that would operate in the 15-240 MHz range. The goals are to achieve a collecting area of one square kilometer at 15 MHz, arc-second angular resolution, high dynamic range, and wide-field imaging capabilities.

  4. Radio frequency driven multicusp sources (invited)

    NASA Astrophysics Data System (ADS)

    Leung, Ka-Ngo

    1998-02-01

    The radio frequency (rf)-driven multicusp source was originally developed for use in the superconducting super collider injector. The source can routinely provide 30 mA of H˜ beam at 0.1% duty factor. By adding a minute quantity of cesium to the discharge, H- beam current in excess of 100 mA and e/H˜1 has been achieved. The rf-driven H˜ source is being further developed for 6% duty factor operation to be used in the national spallation neutron source. Application of the rf-driven multicusp source has been extended to radioactive ion beam production, ion projection lithography, and compact neutron tubes.

  5. Radio frequency identification applications in hospital environments.

    PubMed

    Wicks, Angela M; Visich, John K; Li, Suhong

    2006-01-01

    Radio frequency identification (RFID) technology has recently begun to receive increased interest from practitioners and academicians. This interest is driven by mandates from major retailers such as Wal-Mart, Target and Metro Group, and the United States Department of Defense, in order to increase the efficiency and visibility of material and information flows in the supply chain. However, supply chain managers do not have a monopoly on the deployment of RFID. In this article, the authors discuss the potential benefits, the areas of applications, the implementation challenges, and the corresponding strategies of RFID in hospital environments.

  6. Radio frequency selection and interference prevention

    NASA Technical Reports Server (NTRS)

    Degroot, N. F.

    1982-01-01

    The bands available for deep-space communications, and the choice of particular mission frequencies are discussed. The more general susceptibility of deep-space Earth stations to various kinds of interference is then presented. An associated topic is the development of protection criteria that specify maximum allowable levels of interference. Next, the prediction of interference from near-Earth satellites is described, with particular emphasis on the problems and uncertainties of such predictions. Finally, a brief description of other activities aimed at the prevention or avoidance of interference to deep-space radio communications is given.

  7. High efficiency, oxidation resistant radio frequency susceptor

    DOEpatents

    Besmann, Theodore M.; Klett, James W.

    2004-10-26

    An article and method of producing an article for converting energy from one form to another having a pitch-derived graphitic foam carbon foam substrate and a single layer coating applied to all exposed surfaces wherein the coating is either silicon carbide or carbides formed from a Group IVA metal. The article is used as fully coated carbon foam susceptors that more effectively absorb radio frequency (RF) band energy and more effectively convert the RF energy into thermal band energy or sensible heat. The essentially non-permeable coatings also serve as corrosion or oxidation resistant barriers.

  8. Carbon Nanotube for Radio-frequency Electronics.

    PubMed

    Donglai, Zhong; Zhang, Zhiyong; Peng, Lian-Mao

    2017-03-31

    Carbon nanotube (CNT) is considered as a promising material for radio frequency (RF) applications owing to its high carrier mobility and saturated drift velocity, as well as ultra-small intrinsic gate capacitance. Here we review the progress on CNT-based devices and integrated circuits for RF applications, including theoretical projection of RF performance of CNT-based devices, preparation of CNT materials, fabrication, optimization of RF field-effect transistors (FETs) structures, ambipolar FET based RF applications, and outline the challenges and prospective of CNT-based RF applications.

  9. Divertor IR thermography on Alcator C-Mod

    SciTech Connect

    Terry, J. L.; LaBombard, B.; Brunner, D.; Payne, J.; Wurden, G. A.

    2010-10-15

    Alcator C-Mod is a particularly challenging environment for thermography. It presents issues that will similarly face ITER, including low-emissivity metal targets, low-Z surface films, and closed divertor geometry. In order to make measurements of the incident divertor heat flux using IR thermography, the C-Mod divertor has been modified and instrumented. A 6 deg. toroidal sector has been given a 2 deg. toroidal ramp in order to eliminate magnetic field-line shadowing by imperfectly aligned divertor tiles. This sector is viewed from above by a toroidally displaced IR camera and is instrumented with thermocouples and calorimeters. The camera provides time histories of surface temperatures that are used to compute incident heat-flux profiles. The camera sensitivity is calibrated in situ using the embedded thermocouples, thus correcting for changes and nonuniformities in surface emissivity due to surface coatings.

  10. Divertor IR thermography on Alcator C-Mod.

    PubMed

    Terry, J L; LaBombard, B; Brunner, D; Payne, J; Wurden, G A

    2010-10-01

    Alcator C-Mod is a particularly challenging environment for thermography. It presents issues that will similarly face ITER, including low-emissivity metal targets, low-Z surface films, and closed divertor geometry. In order to make measurements of the incident divertor heat flux using IR thermography, the C-Mod divertor has been modified and instrumented. A 6° toroidal sector has been given a 2° toroidal ramp in order to eliminate magnetic field-line shadowing by imperfectly aligned divertor tiles. This sector is viewed from above by a toroidally displaced IR camera and is instrumented with thermocouples and calorimeters. The camera provides time histories of surface temperatures that are used to compute incident heat-flux profiles. The camera sensitivity is calibrated in situ using the embedded thermocouples, thus correcting for changes and nonuniformities in surface emissivity due to surface coatings.

  11. Progress on the C-Mod FIR Polarimeter System

    NASA Astrophysics Data System (ADS)

    Xu, P.; Irby, J. H.; Bergerson, W. F.; Brower, D. L.; Ding, W. X.; Shiraiwa, S.; Wolfe, S.

    2010-11-01

    A poloidally viewing FIR polarimetry diagnostic is being developed for the Alcator C-Mod Tokamak. The primary diagnostic components are a two-wave FIR laser at 117.73 microns and newly developed detectors whose performance characteristics will be described. Faraday rotation will be used both to refine the q-profile measurement by adding constraints to EFIT , and to study density and magnetic field fluctuations. A three-chord system has been installed, one chord of which is being tested during the FY10 C-Mod campaign. The FIR laser source is affected by both stray magnetic fields and mechanical vibrations present in the experimental cell thereby impacting the measurement. Methods developed to mitigate and correct for these effects will be discussed. Initial Faraday data will be compared with expectations from numerical simulation.

  12. Benchmarking Nonlinear Turbulence Simulations on Alcator C-Mod

    SciTech Connect

    M.H. Redi; C.L. Fiore; W. Dorland; M.J. Greenwald; G.W. Hammett; K. Hill; D. McCune; D.R. Mikkelsen; G. Rewoldt; J.E. Rice

    2004-06-22

    Linear simulations of plasma microturbulence are used with recent radial profiles of toroidal velocity from similar plasmas to consider nonlinear microturbulence simulations and observed transport analysis on Alcator C-Mod. We focus on internal transport barrier (ITB) formation in fully equilibrated H-mode plasmas with nearly flat velocity profiles. Velocity profile data, transport analysis and linear growth rates are combined to integrate data and simulation, and explore the effects of toroidal velocity on benchmarking simulations. Areas of interest for future nonlinear simulations are identified. A good gyrokinetic benchmark is found in the plasma core, without extensive nonlinear simulations. RF-heated C-Mod H-mode experiments, which exhibit an ITB, have been studied with the massively parallel code GS2 towards validation of gyrokinetic microturbulence models. New, linear, gyrokinetic calculations are reported and discussed in connection with transport analysis near the ITB trigger time of shot No.1001220016.

  13. Optical generation of radio-frequency power

    SciTech Connect

    Hietala, V.M.; Vawter, G.A.; Brennan, T.M.; Hammons, B.E.; Meyer, W.J.

    1994-11-01

    An optical technique for high-power radio-frequency (RF) signal generation is described. The technique uses a unique photodetector based on a traveling-wave design driven by an appropriately modulated light source. The traveling-wave photodetector (TWPD) exhibits simultaneously a theoretical quantum efficiency approaching 100 % and a very large electrical bandwidth. Additionally, it is capable of dissipating the high-power levels required for the RF generation technique. The modulated light source is formed by either the beating together of two lasers or by the direct modulation of a light source. A system example is given which predicts RF power levels of 100`s of mW`s at millimeter wave frequencies with a theoretical ``wall-plug`` efficiency approaching 34%.

  14. C-Mod Collaboration Informal Technical Progress Report

    SciTech Connect

    Kenneth W. Gentle

    2007-12-31

    The aims of the collaboration have not changed. A specific list of tasks was agreed upon during the Fall of 2006 in preparation for the 2007 C-Mod campaign by Earl Marmar, Head of the Alcator Project, Kenneth Gentle, Principal Investigator, and William Rowan, Collaboration Coordinator with the facilitation of Adam Rosenberg (DOE grant monitor for the collaboration). The activities follow the list of tasks and are discussed in this progress report.

  15. Turbulent impurity transport modeling for Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Fu, X. R.; Horton, W.; Bespamyatnov, I. O.; Rowan, W. L.; Benkadda, S.; Fiore, C. L.; Futatani, S.; Liao, K. T.; Liao

    2013-10-01

    Turbulent particle transport is investigated with a quasilinear theory that is motivated by the boron impurity transport experiments in the Alcator C-Mod. Eigenvalue problems for sets of reduced fluid equations for multi-component plasmas are solved for the self-consistent fluctuating field vectors composed of the electric potential φ, the main ion density δni , the impurity density δnz and the ion temperature fluctuation δTi . For Alcator C-Mod parameters, we investigate two drift wave models: (1) the density-gradient-driven impurity drift wave and (2) the ion-temperature-gradient-driven ion temperature gradient (ITG) mode. Analytic and numerical results for particle transport coefficients are derived and compared with the transport data and the neoclassical theory. We explore the ability of the model to explain impurity density profiles in three confinement regimes: H-mode, I-mode and internal transport barrier (ITB) regime in C-Mod. Related experiments reported on the Large Helical Device are briefly discussed.

  16. Radio Frequency Mass Gauging of Propellants

    NASA Technical Reports Server (NTRS)

    Zimmerli, Gregory A.; Vaden, Karl R.; Herlacher, Michael D.; Buchanan, David A.; VanDresar, Neil T.

    2007-01-01

    A combined experimental and computer simulation effort was conducted to measure radio frequency (RF) tank resonance modes in a dewar partially filled with liquid oxygen, and compare the measurements with numerical simulations. The goal of the effort was to demonstrate that computer simulations of a tank's electromagnetic eigenmodes can be used to accurately predict ground-based measurements, thereby providing a computational tool for predicting tank modes in a low-gravity environment. Matching the measured resonant frequencies of several tank modes with computer simulations can be used to gauge the amount of liquid in a tank, thus providing a possible method to gauge cryogenic propellant tanks in low-gravity. Using a handheld RF spectrum analyzer and a small antenna in a 46 liter capacity dewar for experimental measurements, we have verified that the four lowest transverse magnetic eigenmodes can be accurately predicted as a function of liquid oxygen fill level using computer simulations. The input to the computer simulations consisted of tank dimensions, and the dielectric constant of the fluid. Without using any adjustable parameters, the calculated and measured frequencies agree such that the liquid oxygen fill level was gauged to within 2 percent full scale uncertainty. These results demonstrate the utility of using electromagnetic simulations to form the basis of an RF mass gauging technology with the power to simulate tank resonance frequencies from arbitrary fluid configurations.

  17. Ultra-stable radio frequency dissemination in free space.

    PubMed

    Miao, J; Wang, B; Gao, C; Bai, Y; Zhu, X; Wang, L J

    2013-10-01

    We demonstrate an ultra-stable radio frequency (RF) dissemination scheme over 80 m free space. The frequency dissemination stability is 3.2 × 10(-13)/s and 4.4 × 10(-17)/day, which can be applied to transfer frequency signal without compromising its stability in a global navigation satellite system (GNSS) or radio astronomy.

  18. Radio frequency multicusp ion source development (invited)

    NASA Astrophysics Data System (ADS)

    Leung, K. N.

    1996-03-01

    The radio-frequency (rf) driven multicusp source was originally developed for use in the Superconducting Super Collider injector. It has been demonstrated that the source can meet the H- beam current and emittance requirements for this application. By employing a porcelain-coated antenna, a clean plasma discharge with very long-life operation can be achieved. Today, the rf source is used to generate both positive and negative hydrogen ion beams and has been tested in various particle accelerator laboratories throughout the world. Applications of this ion source have been extended to other fields such as ion beam lithography, oil-well logging, ion implantation, accelerator mass spectrometry and medical therapy machines. This paper summarizes the latest rf ion source technology and development at the Lawrence Berkeley National Laboratory.

  19. Radio frequency multicusp ion source development (invited)

    SciTech Connect

    Leung, K.N.

    1996-03-01

    The radio-frequency (rf) driven multicusp source was originally developed for use in the Superconducting Super Collider injector. It has been demonstrated that the source can meet the H{sup {minus}} beam current and emittance requirements for this application. By employing a porcelain-coated antenna, a clean plasma discharge with very long-life operation can be achieved. Today, the rf source is used to generate both positive and negative hydrogen ion beams and has been tested in various particle accelerator laboratories throughout the world. Applications of this ion source have been extended to other fields such as ion beam lithography, oil-well logging, ion implantation, accelerator mass spectrometry and medical therapy machines. This paper summarizes the latest rf ion source technology and development at the Lawrence Berkeley National Laboratory. {copyright} {ital 1996 American Institute of Physics.}

  20. Nb3Sn for Radio Frequency Cavities

    SciTech Connect

    Godeke, A.

    2006-12-18

    In this article, the suitability of Nb3Sn to improve theperformance of superconducting Radio-Frequency (RF)cavities is discussed.The use of Nb3Sn in RF cavitiesis recognized as an enabling technology toretain a veryhigh cavity quality factor (Q0) at 4.2 K and tosignificantly improve the cavity accelerating efficiency per unitlength(Eacc). This potential arises through the fundamental properties ofNb3Sn. The properties that are extensively characterized in theliterature are, however, mainly related to improvements in currentcarrying capacity (Jc) in the vortex state. Much less is available forthe Meissner state, which is of key importance to cavities. Relevantdata, available for the Meissner state is summarized, and it is shown howthis already validates the use of Nb3Sn. In addition, missing knowledgeis highlighted and suggestions are given for further Meissner statespecific research.

  1. An improved integrally formed radio frequency quadrupole

    DOEpatents

    Abbott, S.R.

    1987-10-05

    An improved radio frequency quadrupole is provided having an elongate housing with an elongate central axis and top, bottom and two side walls symmetrically disposed about the axis, and vanes formed integrally with the walls, the vanes each having a cross-section at right angles to the central axis which tapers inwardly toward the axis to form electrode tips spaced from each other by predetermined distances. Each of the four walls, and the vanes integral therewith, is a separate structural element having a central lengthwise plane passing through the tip of the vane, the walls having flat mounting surfaces at right angles to and parallel to the control plane, respectively, which are butted together to position the walls and vane tips relative to each other. 4 figs.

  2. [Pulmonary vein stenosis after radio frequency ablation].

    PubMed

    Guzzi, Marcelo; Bouza, Gabriel; Rodríguez, Raquel; Lantos, Jorge; Dubner, Sergio; Mrad, Jorge

    2011-01-01

    Physicians should be alert to the occurrence of respiratory symptoms after radio frequency ablation for the treatment of atrial fibrillation. Pulmonary veins stenosis could appear with an incidence of between 1 and 3% during the two years following the procedure. We present the case of a 41 year-old-male patient admitted with a three weeks old hemoptysis and thoracodinia and a prior history of a radiofrequency ablation procedure performed six months earlier. The angiotomography was not compatible with the diagnosis of pulmonary embolism and the angio-MRI detected hypoperfusion of the left upper pulmonary lobe. Consequently pulmonary veins angiotomography was requested, showing upper pulmonary lobe vein stenosis. An hemodynamic study with vein expansion and stent placement was successfully performed.

  3. An amplitude modulated radio frequency plasma generator

    NASA Astrophysics Data System (ADS)

    Lei, Fan; Li, Xiaoping; Liu, Yanming; Liu, Donglin; Yang, Min; Xie, Kai; Yao, Bo

    2017-04-01

    A glow discharge plasma generator and diagnostic system has been developed to study the effects of rapidly variable plasmas on electromagnetic wave propagation, mimicking the plasma sheath conditions encountered in space vehicle reentry. The plasma chamber is 400 mm in diameter and 240 mm in length, with a 300-mm-diameter unobstructed clear aperture. Electron densities produced are in the mid 1010 electrons/cm3. An 800 W radio frequency (RF) generator is capacitively coupled through an RF matcher to an internally cooled stainless steel electrode to form the plasma. The RF power is amplitude modulated by a waveform generator that operates at different frequencies. The resulting plasma contains electron density modulations caused by the varying power levels. A 10 GHz microwave horn antenna pair situated on opposite sides of the chamber serves as the source and detector of probe radiation. The microwave power feed to the source horn is split and one portion is sent directly to a high-speed recording oscilloscope. On mixing this with the signal from the pickup horn antenna, the plasma-induced phase shift between the two signals gives the path-integrated electron density with its complete time dependent variation. Care is taken to avoid microwave reflections and extensive shielding is in place to minimize electronic pickup. Data clearly show the low frequency modulation of the electron density as well as higher harmonics and plasma fluctuations.

  4. Multi-channel transport experiments at Alcator C-Mod and comparison with gyrokinetic simulationsa)

    NASA Astrophysics Data System (ADS)

    White, A. E.; Howard, N. T.; Greenwald, M.; Reinke, M. L.; Sung, C.; Baek, S.; Barnes, M.; Candy, J.; Dominguez, A.; Ernst, D.; Gao, C.; Hubbard, A. E.; Hughes, J. W.; Lin, Y.; Mikkelsen, D.; Parra, F.; Porkolab, M.; Rice, J. E.; Walk, J.; Wukitch, S. J.; Team, Alcator C-Mod

    2013-05-01

    Multi-channel transport experiments have been conducted in auxiliary heated (Ion Cyclotron Range of Frequencies) L-mode plasmas at Alcator C-Mod [Marmar and Alcator C-Mod Group, Fusion Sci. Technol. 51(3), 3261 (2007)]. These plasmas provide good diagnostic coverage for measurements of kinetic profiles, impurity transport, and turbulence (electron temperature and density fluctuations). In the experiments, a steady sawtoothing L-mode plasma with 1.2 MW of on-axis RF heating is established and density is scanned by 20%. Measured rotation profiles change from peaked to hollow in shape as density is increased, but electron density and impurity profiles remain peaked. Ion or electron heat fluxes from the two plasmas are the same. The experimental results are compared directly to nonlinear gyrokinetic theory using synthetic diagnostics and the code GYRO [Candy and Waltz, J. Comput. Phys. 186, 545 (2003)]. We find good agreement with experimental ion heat flux, impurity particle transport, and trends in the fluctuation level ratio (T˜e/Te)/(n ˜e/ne), but underprediction of electron heat flux. We find that changes in momentum transport (rotation profiles changing from peaked to hollow) do not correlate with changes in particle transport, and also do not correlate with changes in linear mode dominance, e.g., Ion Temperature Gradient versus Trapped Electron Mode. The new C-Mod results suggest that the drives for momentum transport differ from drives for heat and particle transport. The experimental results are inconsistent with present quasilinear models, and the strong sensitivity of core rotation to density remains unexplained.

  5. Multi-channel transport experiments at Alcator C-Mod and comparison with gyrokinetic simulations

    SciTech Connect

    White, A. E.; Howard, N. T.; Greenwald, M.; Reinke, M. L.; Sung, C.; Baek, S.; Barnes, M.; Dominguez, A.; Ernst, D.; Gao, C.; Hubbard, A. E.; Hughes, J. W.; Lin, Y.; Parra, F.; Porkolab, M.; Rice, J. E.; Walk, J.; Wukitch, S. J.; Team, Alcator C-Mod; Candy, J.; and others

    2013-05-15

    Multi-channel transport experiments have been conducted in auxiliary heated (Ion Cyclotron Range of Frequencies) L-mode plasmas at Alcator C-Mod [Marmar and Alcator C-Mod Group, Fusion Sci. Technol. 51(3), 3261 (2007)]. These plasmas provide good diagnostic coverage for measurements of kinetic profiles, impurity transport, and turbulence (electron temperature and density fluctuations). In the experiments, a steady sawtoothing L-mode plasma with 1.2 MW of on-axis RF heating is established and density is scanned by 20%. Measured rotation profiles change from peaked to hollow in shape as density is increased, but electron density and impurity profiles remain peaked. Ion or electron heat fluxes from the two plasmas are the same. The experimental results are compared directly to nonlinear gyrokinetic theory using synthetic diagnostics and the code GYRO [Candy and Waltz, J. Comput. Phys. 186, 545 (2003)]. We find good agreement with experimental ion heat flux, impurity particle transport, and trends in the fluctuation level ratio (T(tilde sign){sub e}/T{sub e})/(ñ{sub e}/n{sub e}), but underprediction of electron heat flux. We find that changes in momentum transport (rotation profiles changing from peaked to hollow) do not correlate with changes in particle transport, and also do not correlate with changes in linear mode dominance, e.g., Ion Temperature Gradient versus Trapped Electron Mode. The new C-Mod results suggest that the drives for momentum transport differ from drives for heat and particle transport. The experimental results are inconsistent with present quasilinear models, and the strong sensitivity of core rotation to density remains unexplained.

  6. Polarimetric Observations at Low Radio Frequencies

    NASA Astrophysics Data System (ADS)

    Farnes, J. S.

    2012-06-01

    Magnetic fields play a fundamental role in the evolution of astrophysical systems. These fields can be studied through wide-field spectropolarimetry, which allows for faint polarised signals to be detected at relatively low radio frequencies. An interferometric polarisation mode has recently become available at the Giant Metrewave Radio Telescope (GMRT). A detailed analysis of the GMRT's instrumental response is presented. The findings are used to create a polarisation pipeline, which in combination with rotation measure (RM) Synthesis is used for the detection of extended linearly polarised emission at 610 MHz. A number of compact sources are detected and their Faraday depth and polarisation fraction are reported. New holography observations of the GMRT's primary beam are presented. Instantaneous off-axis polarisation is substantial and scales with the Stokes I beam. The developed beam models are used to reduce direction-dependent instrumental polarisation, and the Stokes I beam is shown to deviate from circular symmetry. A new technique for electric vector polarisation angle calibration is developed that removes the need for known sources on the sky, eliminates ionospheric effects, and avoids a flaw in current methods which could erroneously yield multiple Faraday components for sources that are well-parameterised by a single RM. A sample of nine galaxies from two Southern Compact Groups are then presented, with constraints being placed on the polarised fraction, RM, spectral index, star formation rate, companion sources, and hydrodynamical state. One galaxy has a displaced peak of radio emission that is extended beyond the disk in comparison to the near-IR disk - suggesting the radio disturbance may be a consequence of ram pressure stripping. Linear polarisation is detected from the core of NGC 7552 at 610 MHz, while another three galaxies ESO 0353-G036, NGC 7590, and NGC 7599 are found to be unpolarised. An analysis of additional extended sources allows for an

  7. Trirotron: triode rotating beam radio frequency amplifier

    DOEpatents

    Lebacqz, Jean V.

    1980-01-01

    High efficiency amplification of radio frequencies to very high power levels including: establishing a cylindrical cloud of electrons; establishing an electrical field surrounding and coaxial with the electron cloud to bias the electrons to remain in the cloud; establishing a rotating electrical field that surrounds and is coaxial with the steady field, the circular path of the rotating field being one wavelength long, whereby the peak of one phase of the rotating field is used to accelerate electrons in a beam through the bias field in synchronism with the peak of the rotating field so that there is a beam of electrons continuously extracted from the cloud and rotating with the peak; establishing a steady electrical field that surrounds and is coaxial with the rotating field for high-energy radial acceleration of the rotating beam of electrons; and resonating the rotating beam of electrons within a space surrounding the second field, the space being selected to have a phase velocity equal to that of the rotating field to thereby produce a high-power output at the frequency of the rotating field.

  8. Edge Turbulence Imaging on NSTX and Alcator C-Mod

    SciTech Connect

    S.J. Zweben; R.A. Maqueda; J.L. Terry; B. Bai; C.J. Boswell; C.E. Bush; D. D'Ippolito; E.D. Fredrickson; M. Greenwald; K. Hallatschek; S. Kaye; B. LaBombard; R. Maingi; J. Myra; W.M. Nevins; B.N. Rogers; D.P. Stotler; J. Wilgen; and X.Q. Xu

    2002-07-10

    Edge turbulence images have been made using an ultra-high speed CCD camera on both NSTX and Alcator C-Mod. In both cases, the D-alpha or HeI (587.6 nm) line emission from localized deuterium or helium gas puffs was viewed along a local magnetic field line near the outer midplane. Fluctuations in this line emission reflect fluctuations in electron density and/or electron temperature through the atomic excitation rates, which can be modeled using the DEGAS-2 code. The 2-D structure of the measured turbulence can be compared with theoretical simulations based on 3-D fluid models.

  9. Secondary electrons in dual-frequency capacitive radio frequency discharges

    NASA Astrophysics Data System (ADS)

    Schulze, J.; Donkó, Z.; Schüngel, E.; Czarnetzki, U.

    2011-08-01

    Two fundamentally different types of dual-frequency (DF) capacitively coupled radio frequency discharges can be used for plasma processing applications to realize separate control of the ion mean energy, langEirang, and the ion flux, Γi, at the substrate surface: (i) classical discharges operated at substantially different frequencies, where the low- and high-frequency voltage amplitudes, philf and phihf, are used to control langEirang and Γi, respectively; (ii) electrically asymmetric (EA) discharges operated at a fundamental frequency and its second harmonic with fixed, but adjustable phase shift between the driving frequencies, θ. In EA discharges the voltage amplitudes are used to control Γi and θ is used to control langEirang. Here, we report our systematic simulation studies of the effect of secondary electrons on the ionization dynamics and the quality of this separate control in both discharge types in argon at different gas pressures. We focus on the effect of the control parameter for langEirang on Γi for different secondary yields, γ. We find a dramatic effect of tuning philf in classical DF discharges, which is caused by a transition from α- to γ-mode induced by changing philf. In EA discharges we find that no such mode transition is induced by changing θ within the parameter range studied here and, consequently, Γi remains nearly constant as a function of θ. Thus, despite some limitations at high values of γ the quality of the separate control of ion energy and flux is generally better in EA discharges compared with classical DF discharges.

  10. DEMONSTRATION BULLETIN: RADIO FREQUENCY HEATING - KAI TECHNOLOGIES, INC.

    EPA Science Inventory

    Radio frequency heating (RFH) is a process that uses electromagnetic energy in the radio frequency (RF) band to heat soil in situ, thereby potentially enhancing the performance of standard soil vapor extraction (SVE) technologies. An RFH system developed by KAI Technologies, I...

  11. 48 CFR 211.275 - Passive radio frequency identification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 3 2012-10-01 2012-10-01 false Passive radio frequency identification. 211.275 Section 211.275 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS... Requirements Documents 211.275 Passive radio frequency identification. ...

  12. 48 CFR 211.275 - Passive radio frequency identification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Passive radio frequency identification. 211.275 Section 211.275 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS... Requirements Documents 211.275 Passive radio frequency identification. ...

  13. 48 CFR 211.275 - Passive radio frequency identification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false Passive radio frequency identification. 211.275 Section 211.275 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS... Requirements Documents 211.275 Passive radio frequency identification. ...

  14. 48 CFR 211.275 - Passive radio frequency identification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Passive radio frequency identification. 211.275 Section 211.275 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS... Requirements Documents 211.275 Passive radio frequency identification. ...

  15. Experimental radio frequency link for Ka-band communications applications

    NASA Technical Reports Server (NTRS)

    Fujikawa, Gene; Conray, Martin J.; Saunders, Alan L.; Pope, Dale E.

    1988-01-01

    An experimental radio frequency link has been demonstrated to provide two-way communication between a remote user ground terminal and a ground-based Ka-band transponder. Bit-error-rate performance and radio frequency characteristics of the communication link were investigated.

  16. 47 CFR 80.1019 - Antenna radio frequency indicator.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Antenna radio frequency indicator. 80.1019... Act § 80.1019 Antenna radio frequency indicator. Each nonportable bridge-to-bridge transmitter must be... indication when the transmitter is supplying power to the antenna transmission line or, in lieu thereof,...

  17. 47 CFR 80.927 - Antenna radio frequency indicator.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Antenna radio frequency indicator. 80.927... Boats § 80.927 Antenna radio frequency indicator. The transmitter must be equipped with a device which provides visual indication whenever the transmitter is supplying power to the antenna....

  18. 47 CFR 80.927 - Antenna radio frequency indicator.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Antenna radio frequency indicator. 80.927... Boats § 80.927 Antenna radio frequency indicator. The transmitter must be equipped with a device which provides visual indication whenever the transmitter is supplying power to the antenna....

  19. 47 CFR 80.1019 - Antenna radio frequency indicator.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Antenna radio frequency indicator. 80.1019... Act § 80.1019 Antenna radio frequency indicator. Each nonportable bridge-to-bridge transmitter must be... indication when the transmitter is supplying power to the antenna transmission line or, in lieu thereof,...

  20. 47 CFR 80.927 - Antenna radio frequency indicator.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Antenna radio frequency indicator. 80.927... Boats § 80.927 Antenna radio frequency indicator. The transmitter must be equipped with a device which provides visual indication whenever the transmitter is supplying power to the antenna....

  1. 47 CFR 80.1019 - Antenna radio frequency indicator.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Antenna radio frequency indicator. 80.1019... Act § 80.1019 Antenna radio frequency indicator. Each nonportable bridge-to-bridge transmitter must be... indication when the transmitter is supplying power to the antenna transmission line or, in lieu thereof,...

  2. 47 CFR 80.927 - Antenna radio frequency indicator.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Antenna radio frequency indicator. 80.927... Boats § 80.927 Antenna radio frequency indicator. The transmitter must be equipped with a device which provides visual indication whenever the transmitter is supplying power to the antenna....

  3. 47 CFR 80.927 - Antenna radio frequency indicator.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antenna radio frequency indicator. 80.927... Boats § 80.927 Antenna radio frequency indicator. The transmitter must be equipped with a device which provides visual indication whenever the transmitter is supplying power to the antenna....

  4. 47 CFR 80.1019 - Antenna radio frequency indicator.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Antenna radio frequency indicator. 80.1019... Act § 80.1019 Antenna radio frequency indicator. Each nonportable bridge-to-bridge transmitter must be... indication when the transmitter is supplying power to the antenna transmission line or, in lieu thereof,...

  5. 47 CFR 80.1019 - Antenna radio frequency indicator.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antenna radio frequency indicator. 80.1019... Act § 80.1019 Antenna radio frequency indicator. Each nonportable bridge-to-bridge transmitter must be... indication when the transmitter is supplying power to the antenna transmission line or, in lieu thereof,...

  6. DEMONSTRATION BULLETIN: RADIO FREQUENCY HEATING - KAI TECHNOLOGIES, INC.

    EPA Science Inventory

    Radio frequency heating (RFH) is a process that uses electromagnetic energy in the radio frequency (RF) band to heat soil in situ, thereby potentially enhancing the performance of standard soil vapor extraction (SVE) technologies. An RFH system developed by KAI Technologies, I...

  7. Radio-frequency measurement in semiconductor quantum computation

    NASA Astrophysics Data System (ADS)

    Han, TianYi; Chen, MingBo; Cao, Gang; Li, HaiOu; Xiao, Ming; Guo, GuoPing

    2017-05-01

    Semiconductor quantum dots have attracted wide interest for the potential realization of quantum computation. To realize efficient quantum computation, fast manipulation and the corresponding readout are necessary. In the past few decades, considerable progress of quantum manipulation has been achieved experimentally. To meet the requirements of high-speed readout, radio-frequency (RF) measurement has been developed in recent years, such as RF-QPC (radio-frequency quantum point contact) and RF-DGS (radio-frequency dispersive gate sensor). Here we specifically demonstrate the principle of the radio-frequency reflectometry, then review the development and applications of RF measurement, which provides a feasible way to achieve high-bandwidth readout in quantum coherent control and also enriches the methods to study these artificial mesoscopic quantum systems. Finally, we prospect the future usage of radio-frequency reflectometry in scaling-up of the quantum computing models.

  8. Radio Frequency Ablation for Primary Liver Cancer

    PubMed Central

    2004-01-01

    Executive Summary Objective The Medical Advisory Secretariat undertook a review of the evidence on the safety, clinical effectiveness, and cost-effectiveness of radio frequency ablation (RFA) compared with other treatments for unresectable hepatocellular carcinoma (HCC) in Ontario. Background Liver cancer is the fifth most common type of cancer globally, although it is most prevalent in Asia and Africa. The incidence of liver cancer has been increasing in the Western world, primarily because of an increased prevalence of hepatitis B and C. Data from Cancer Care Ontario from 1998 to 2002 suggest that the age-adjusted incidence of liver cancer in men rose slightly from 4.5 cases to 5.4 cases per 100,000 men. For women, the rates declined slightly, from 1.8 cases to 1.4 cases per 100,000 women during the same period. Most people who present with symptoms of liver cancer have a progressive form of the disease. The rates of survival in untreated patients in the early stage of the disease range from 50% to 82% at 1 year and 26% to 32% at 2 years. Patients with more advanced stages have survival rates ranging from 0% to 36% at 3 years. Surgical resection and transplantation are the procedures that have the best prognoses; however, only 15% to 20% of patients presenting with liver cancer are eligible for surgery. Resection is associated with a 50% survival rate at 5 years. The Technology: Radio Frequency Ablation RFA is a relatively new technique for the treatment of small liver cancers that cannot be treated with surgery. This technique applies alternating high-frequency electrical currents to the cancerous tissue. The intense heat leads to thermal coagulation that can kill the tumour. RFA is done under general or local anesthesia and can be done percutaneously (through the skin with a small needle), laparoscopically (microinvasively, using a small video camera), or intraoperatively. Percutaneous RFA is usually a day procedure. Methods The leading international

  9. Correlation ECE diagnostic in Alcator C-Mod

    DOE PAGES

    Sung, C.; White, A. E.; Howard, N. T.; ...

    2015-03-12

    Correlation ECE (CECE) is a diagnostic technique that allows measurement of small amplitude electron temperature, Te, fluctuations through standard cross-correlation analysis methods. In Alcator C-Mod, a new CECE diagnostic has been installed[Sung RSI 2012], and interesting phenomena have been observed in various plasma conditions. We find that local Te fluctuations near the edge (ρ ~ 0:8) decrease across the linearto- saturated ohmic confinement transition, with fluctuations decreasing with increasing plasma density[Sung NF 2013], which occurs simultaneously with rotation reversals[Rice NF 2011]. Te fluctuations are also reduced across core rotation reversals with an increase of plasma density in RF heated L-modemore » plasmas, which implies that the same physics related to the reduction of Te fluctuations may be applied to both ohmic and RF heated L-mode plasmas. In I-mode plasmas, we observe the reduction of core Te fluctuations, which indicates changes of turbulence occur not only in the pedestal region but also in the core across the L/I transition[White NF 2014]. The present CECE diagnostic system in C-Mod and these experimental results are described in this paper.« less

  10. C-Mod MHD stability analysis with LHCD

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Fatima; Bhattacharjee, A.; Delgado, L.; Scott, S.; Wilson, J. R.; Wallace, G. M.; Shiraiwa, S.; Mumgaard, R. T.

    2016-10-01

    In lower hybrid current drive (LHCD) experiments on the Alcator C-Mod, sawtooth activity could be suppressed as the safety factor q on axis is raised above unity. However, in some of these experiments, after applying LHCD, the onset of MHD mode activity caused the current drive efficiency to significantly drop. Here, we study the stability of these experiments by performing MHD simulations using the NIMROD code starting with experimental EFIT equilibria. First, consistent with the LHCD experiment with no signature of MHD activity, MHD mode activity was also absent in the simulations. Second, for experiments with MHD mode activity, we find that a core n=1 reconnecting mode with dominate poloidal modes of m=2,3 is unstable. This mode is a resistive current-driven mode as its growth rate scales with a negative power of the Lundquist number in the simulations. In addition, with further enhanced reversed-shear q profile in the simulations, a core double tearing mode is found to be unstable. This work is supported by U.S. DOE cooperative agreement DE-FC02-99ER54512 using the Alcator C-Mod tokamak, a DOE Office of Science user facility.

  11. Correlation ECE diagnostic in Alcator C-Mod

    SciTech Connect

    Sung, C.; White, A. E.; Howard, N. T.; Mikkelsen, D.; Irby, J.; Leccacorvi, R.; Vieira, R.; Oi, C.; Rice, J.; Reinke, M.; Gao, C.; Ennever, P.; Porkolab, M.; Churchill, R.; Theiler, C.; Walk, J.; Hughes, J.; Hubbard, A.; Greenwald, M.

    2015-03-12

    Correlation ECE (CECE) is a diagnostic technique that allows measurement of small amplitude electron temperature, Te, fluctuations through standard cross-correlation analysis methods. In Alcator C-Mod, a new CECE diagnostic has been installed[Sung RSI 2012], and interesting phenomena have been observed in various plasma conditions. We find that local Te fluctuations near the edge (ρ ~ 0:8) decrease across the linearto- saturated ohmic confinement transition, with fluctuations decreasing with increasing plasma density[Sung NF 2013], which occurs simultaneously with rotation reversals[Rice NF 2011]. Te fluctuations are also reduced across core rotation reversals with an increase of plasma density in RF heated L-mode plasmas, which implies that the same physics related to the reduction of Te fluctuations may be applied to both ohmic and RF heated L-mode plasmas. In I-mode plasmas, we observe the reduction of core Te fluctuations, which indicates changes of turbulence occur not only in the pedestal region but also in the core across the L/I transition[White NF 2014]. The present CECE diagnostic system in C-Mod and these experimental results are described in this paper.

  12. Investigation of ELMs on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Terry, J. L.

    2005-10-01

    C-Mod typically operates in regimes without large ELMs. Recently, discrete ELMs have been routinely produced by making plasmas with large lower triangularity (i.e. >0.75), compared to the more typical C-Mod values <0.6. The ELM character was substantially modified as the triangularity was reduced, changing from discrete ELMs of ˜60 μsec duration, to H-to-L mode back transitions, lasting ˜4msec. The discrete ELMs are most apparent when the density is just above the low-density H-mode threshold, ne˜8x10^19m-3. Pedestal Te up to 1 keV was measured early in the H-mode phase. The spatial structure and propagation of the discrete ELMs are studied using fast-framing (˜250 kHz) cameras and other high resolution optical diagnostics. The magnetics and the optical diagnostics show a rapidly-growing precursor oscillation (100-200 kHz just prior to the ELM crash) that is localized radially to around the top of the pedestal. Outside the LCFS the enhanced emission from the ELM propagates radially outward with a complicated spatial structure, similar in many respects to `blobs.'

  13. Correlation ECE diagnostic in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Sung, C.; White, A. E.; Howard, N. T.; Mikkelsen, D.; Irby, J.; Leccacorvi, R.; Vieira, R.; Oi, C.; Rice, J.; Reinke, M.; Gao, C.; Ennever, P.; Porkolab, M.; Churchill, R.; Theiler, C.; Walk, J.; Hughes, J.; Hubbard, A.; Greenwald, M.

    2015-03-01

    Correlation ECE (CECE) is a diagnostic technique that allows measurement of small amplitude electron temperature, Te, fluctuations through standard cross-correlation analysis methods. In Alcator C-Mod, a new CECE diagnostic has been installed[Sung RSI 2012], and interesting phenomena have been observed in various plasma conditions. We find that local Te fluctuations near the edge (ρ ~ 0:8) decrease across the linearto- saturated ohmic confinement transition, with fluctuations decreasing with increasing plasma density[Sung NF 2013], which occurs simultaneously with rotation reversals[Rice NF 2011]. Te fluctuations are also reduced across core rotation reversals with an increase of plasma density in RF heated L-mode plasmas, which implies that the same physics related to the reduction of Te fluctuations may be applied to both ohmic and RF heated L-mode plasmas. In I-mode plasmas, we observe the reduction of core Te fluctuations, which indicates changes of turbulence occur not only in the pedestal region but also in the core across the L/I transition[White NF 2014]. The present CECE diagnostic system in C-Mod and these experimental results are described in this paper.

  14. Highlights of Recent Alcator C-Mod Research

    NASA Astrophysics Data System (ADS)

    Marmar, Earl

    2012-10-01

    Alcator C-Mod focuses on broad scientific issues with particular emphasis on ITER needs and requests. First results from a high power, magnetic field-aligned ICRF antenna show significant reduction of high Z impurity contamination under various plasma conditions Detailed comparisons of core and edge fluctuations in L-mode and I-mode reveal that core turbulence is reduced in I-mode before the reduction of edge turbulence and the onset of the WCM, in stark contrast to the usual turbulence changes observed in H-mode on other tokamaks. The connection among rotation reversals, non-local heat transport, energy confinement saturation (the transition between the linear Ohmic confinement, and saturated Ohmic confinement, regimes) and changes in underlying turbulence has been demonstrated. Joint pedestal studies among C-Mod, DIII-D and NSTX reveal common features, including an upper limit on pedestal pressure in ELMy H-mode determined by peeling-ballooning modes (PBMs), and pedestal width scaling approximately as βpol^1/2. A novel stochastic model for intermittent SOL plasma fluctuations has been constructed, is in excellent agreement with experiment, and reveals important details on the underlying physics. Design of the first actively heated tokamak tungsten divertor is described.

  15. Testing Gyrokinetics on C-Mod and NSTX

    SciTech Connect

    M.H. Redi; W. Dorland; C.L. Fiore; D. Stutman; J.A. Baumgaertel; B. Davis; S.M. Kaye; D.C. McCune; J. Menard; G. Rewoldt

    2005-06-20

    Quantitative benchmarks of computational physics codes against experiment are essential for the credible application of such codes. Fluctuation measurements can provide necessary critical tests of nonlinear gyrokinetic simulations, but such require extraordinary computational resources. Linear micro-stability calculations with the GS2 [1] gyrokinetic code have been carried out for tokamak and ST experiments which exhibit internal transport barriers (ITB) and good plasma confinement. Qualitative correlation is found for improved confinement before and during ITB plasmas on Alcator C-Mod [2] and NSTX [3], with weaker long wavelength micro-instabilities in the plasma core regions. Mixing length transport models are discussed. The NSTX L-mode is found to be near marginal stability for kinetic ballooning modes. Fully electromagnetic, linear, gyrokinetic calculations of the Alcator C-Mod ITB during off-axis rf heating, following four plasma species and including the complete electron response show ITG/TEM microturbulence is suppressed in the plasma core and in the barrier region before barrier formation, without recourse to the usual requirements of velocity shear or reversed magnetic shear [4-5]. No strongly growing long or short wavelength drift modes are found in the plasma core but strong ITG/TEM and ETG drift wave turbulence is found outside the barrier region. Linear microstability analysis is qualitatively consistent with the experimental transport analysis, showing low transport inside and high transport outside the ITB region before barrier formation, without consideration of ExB shear stabilization.

  16. Radio Frequency Heating for Soil Remediation.

    PubMed

    Price, Stephen L; Kasevich, Raymond S; Johnson, Mark A; Wiberg, Dan; Marley, Michael C

    1999-02-01

    Radio frequency heating (RFH) is a technology that increases the cost-effectiveness of a variety of site remediation technologies by accelerating the rate of contaminant removal. Heating makes the physical, chemical, and biological properties of materials such as contaminants, soil, and groundwater more amenable to remediation. RFH brings controlled heating to the subsurface, enhancing the removal of contaminants by soil vapor extraction (SVE), groundwater aeration (air sparging), bioremediation, and product recovery. The results presented are from a bench-scale study and a field demonstration that both used RFH to enhance the performance of SVE. The bench-scale study performed on PCE-contaminated soil revealed an increase, by a factor of 8, in the removal rate when RFH was used to heat soil to 90 °C. The application of RFH for a three-week period at a former gasoline station near St. Paul, MN, resulted in raising the ambient soil temperature from 8 °C to 100 °C in the immediate vicinity of the RFH applicator and to 40 °C 1.5 m (5 ft) away. Most significantly, the use of an integrated RFH/SVE system achieved an overall 50% reduction in gasoline range organics (GRO) in soil over a two- to three-month period. The discussion includes applications of RFH for enhancing bioremediation and product recovery.

  17. Directional Radio-Frequency Identification Tag Reader

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro J.; Taylor, John D.; Henderson, John J.

    2004-01-01

    A directional radio-frequency identification (RFID) tag reader has been designed to facilitate finding a specific object among many objects in a crowded room. The device could be an adjunct to an electronic inventory system that tracks RFID-tagged objects as they move through reader-equipped doorways. Whereas commercial RFID-tag readers do not measure directions to tagged objects, the device is equipped with a phased-array antenna and a received signal-strength indicator (RSSI) circuit for measuring direction. At the beginning of operation, it is set to address only the RFID tag of interest. It then continuously transmits a signal to interrogate that tag while varying the radiation pattern of the antenna. It identifies the direction to the tag as the radiation pattern direction of peak strength of the signal returned by the tag. An approximate distance to the tag is calculated from the peak signal strength. The direction and distance can be displayed on a screen. A prototype containing a Yagi antenna was found to be capable of detecting a 915.5-MHz tag at a distance of approximately equal to 15 ft (approximately equal to 4.6 m).

  18. Extending the ICRF to Higher Radio Frequencies

    NASA Technical Reports Server (NTRS)

    Jacobs, C. S.; Jones, D. L.; Lanyi, G. E.; Lowe, S. T.; Naudet, C. J.; Resch, G. M.; Steppe, J. A.; Zhang, L. D.; Ulvestad, J. S.; Taylor, G. B.

    2002-01-01

    The ICRF forms the basis for all astrometry including use as the inertial coordinate system for navigating deep space missions. This frame was defined using S/X-band observations over the past 20+ years. In January 2002, the VLBA approved our proposal for observing time to extend the ICRF to K-band (24 GHz) and Q-band (43 GHz). The first step will be observations at K- and Q-bands on a subset of ICRF sources. Eventually, K- and Q-band multi-epoch observations will be used to estimate positions, flux density and source structure for a large fraction of the current S/X-band ICRF source list. This work will benefit the radio astronomy community by extending the VLBA calibrator list at these bands. In the longer term, we would also like to extend the ICRF to Ka-band (32 GHz). A celestial reference frame will be needed at this frequency to support deep space navigation. A navigation demonstration is being considered for NASA's Mars 2005 mission. The initial K- and Q-band work will serve to identify candidate sources at Ka-band for use with that mission.

  19. Micro pulsed radio-frequency electroporation chips.

    PubMed

    He, Huiqi; Chang, Donald C; Lee, Yi-Kuen

    2006-01-01

    Electroporation (EP) is one of the most important physical methods in biotechnology, which employs electrical pulses to transiently permeabilize cell membranes. In this study, a new micro pulsed radio-frequency electroporation cell (microPREP) chip was fabricated using a lift-off technique and SU-8 photolithography. The biological tests were carried out using three different plant protoplasts (cabbage, spinach and oil rape) on the micro EP chip and a pulsed RF electric field was applied to the microchip. The variations of fluorescent intensity and cell viability as functions of the electric pulse amplitude and duration time during the electroporation process were studied in detail at the single-cell level. Using such chip design and test method, one can easily optimize the efficiency and cell viability. Also, a large amount of statistical data can be quickly obtained. Finally, results of this parametric study were presented in the "phase diagram", from which the critical electric field for inducing single-cell electroporation under different conditions can be clearly determined.

  20. Radio Frequency Plasma Applications for Space Propulsion

    SciTech Connect

    Baity, F.W., Jr.; Barber, G.C.; Carter, M.D.; Chang-Diaz, F.R.; Goulding, R.H.; Ilin, A.V.; Jaeger, E.F.; Sparks, D.O.; Squire, J.P.

    1999-09-13

    Recent developments in solid-state radio frequency (RF) power technologies allow for the practical consideration of RF heated plasmas for space propulsion. These technologies permit the use of any electrical power source, de-couple the power and propellant sources, and allow for the effcient use of both the propellant mass and power. Effcient use of the propellant is obtained by expelling the rocket exhaust at the highest possible velocity, which can be orders of magnitude higher than those achieved in chemical rockets. Handling the hot plasma exhaust requires the use of magnetic nozzles, and the basic physics of ion detachment from the magnetic eld is discussed. The plasma can be generated by RF using helicon waves to heat electrons. Further direct heating of the ions helps to reduce the line radiation losses, and the magnetic geometry is tailored to allow ion cyclotron resonance heating. RF eld and ion trajectory calculations are presented to give a reasonably self-consistent picture of the ion acceleration process.

  1. Extending the ICRF to Higher Radio Frequencies

    NASA Technical Reports Server (NTRS)

    Jacobs, C. S.; Jones, D. L.; Lanyi, G. E.; Lowe, S. T.; Naudet, C. J.; Resch, G. M.; Steppe, J. A.; Zhang, L. D.; Ulvestad, J. S.; Taylor, G. B.

    2002-01-01

    The ICRF forms the basis for all astrometry including use as the inertial coordinate system for navigating deep space missions. This frame was defined using S/X-band observations over the past 20+ years. In January 2002, the VLBA approved our proposal for observing time to extend the ICRF to K-band (24 GHz) and Q-band (43 GHz). The first step will be observations at K- and Q-bands on a subset of ICRF sources. Eventually, K- and Q-band multi-epoch observations will be used to estimate positions, flux density and source structure for a large fraction of the current S/X-band ICRF source list. This work will benefit the radio astronomy community by extending the VLBA calibrator list at these bands. In the longer term, we would also like to extend the ICRF to Ka-band (32 GHz). A celestial reference frame will be needed at this frequency to support deep space navigation. A navigation demonstration is being considered for NASA's Mars 2005 mission. The initial K- and Q-band work will serve to identify candidate sources at Ka-band for use with that mission.

  2. Method and apparatus for radio frequency ceramic sintering

    DOEpatents

    Hoffman, Daniel J.; Kimrey, Jr., Harold D.

    1993-01-01

    Radio frequency energy is used to sinter ceramic materials. A coaxial waveguide resonator produces a TEM mode wave which generates a high field capacitive region in which a sample of the ceramic material is located. Frequency of the power source is kept in the range of radio frequency, and preferably between 60-80 MHz. An alternative embodiment provides a tunable radio frequency circuit which includes a series input capacitor and a parallel capacitor, with the sintered ceramic connected by an inductive lead. This arrangement permits matching of impedance over a wide range of dielectric constants, ceramic volumes, and loss tangents.

  3. Method and apparatus for radio frequency ceramic sintering

    DOEpatents

    Hoffman, D.J.; Kimrey, H.D. Jr.

    1993-11-30

    Radio frequency energy is used to sinter ceramic materials. A coaxial waveguide resonator produces a TEM mode wave which generates a high field capacitive region in which a sample of the ceramic material is located. Frequency of the power source is kept in the range of radio frequency, and preferably between 60-80 MHz. An alternative embodiment provides a tunable radio frequency circuit which includes a series input capacitor and a parallel capacitor, with the sintered ceramic connected by an inductive lead. This arrangement permits matching of impedance over a wide range of dielectric constants, ceramic volumes, and loss tangents. 6 figures.

  4. Angular structure of extragalactic radio sources at low frequencies

    NASA Astrophysics Data System (ADS)

    Brazhenko, A. I.; Koshovy, V. V.; Lozynsky, A. R.; Megn, A. V.; Rashkovsky, S. L.; Shepelev, V. A.

    2005-06-01

    The low frequency VLBI of URAN network operated in the decameter range has been designed in Ukraine to study cosmic radio sources. The network consists of five radio telescopes making up of four interferometers with baselines range from 42 to 913 km with UTR-2 radio telescope operated as the main antenna of the interferometers. The angular resolution of the network amount to 1 arcsec at the highest frequency of the range, and its sensitivity is about 20 Jy. Regular observations of galactic and extragalactic radio sources are performed with the network. Some results of studies are presented here.

  5. Frequency coupling in dual frequency capacitively coupled radio-frequency plasmas

    SciTech Connect

    Gans, T.; Schulze, J.; O'Connell, D.; Czarnetzki, U.; Faulkner, R.; Ellingboe, A. R.; Turner, M. M.

    2006-12-25

    An industrial, confined, dual frequency, capacitively coupled, radio-frequency plasma etch reactor (Exelan registered , Lam Research) has been modified for spatially resolved optical measurements. Space and phase resolved optical emission spectroscopy yields insight into the dynamics of the discharge. A strong coupling of the two frequencies is observed in the emission profiles. Consequently, the ionization dynamics, probed through excitation, is determined by both frequencies. The control of plasma density by the high frequency is, therefore, also influenced by the low frequency. Hence, separate control of plasma density and ion energy is rather complex.

  6. Volume Recombination in Alcator C-Mod Divertor Plasmas

    NASA Astrophysics Data System (ADS)

    Terry, J. L.

    1997-11-01

    Volume recombination has been predicted(See, for example, A. Loarte, Proc. 12th PSI Conf, J. Nucl. Mater (1996) I9, in press.) to be a significant sink for plasma ions under the detached divertor conditions achieved on many tokamaks. This volume recombination sink was observed initially in Alcator C-Mod and shown to be a major fraction of the ion loss. Signatures of recombination have now been observed on DIII-D(R.C. Isler, et al., paper submitted for publication), Asdex-UG (B. Napiontek, et al. 24th EPS Conf., Berchtesgaden, Germany, 1997, P4.007, in press.), and JET(R.D. Monk, et al. 24th EPS Conf., Berchtesgaden, Germany, 1997, P1.030, in press.). It is important primarily because the recombined atoms are not accelerated through the sheath - thus reducing divertor plate sputtering, and because most of the potential energy of recombination (13.6 eV) is released as radiation before the ion strikes the plate. The Alcator C-Mod measurements show that the recombination occurs in low Te ( ~1 eV), high ne ( ~1× 10^21 m-3) regions, and is significantly larger in detached regions. At the inboard, detached divertor plate the measured volume recombination rate is typically greater than the rate of ion collection at that plate and is about an order of magnitude higher than on the attached, outer plate. These spatially resolved measurements also show that the recombination rate is peaked near the strike point and imply that the recombination is occurring close to the plate surface. The C-Mod observations about the magnitude and spatial distribution of the recombination are consistent with the modelling of similar discharges(F. Wising et al., Contrib. Plasma Phys. 36, p 136 (1996).). The experimental evidence for recombination is found in the deuterium emission spectra from the divertor, in particular in the Balmer- and/or Lyman-series. The spectra show that the dominant recombination mechanism is 3-body recombination into excited states of deuterium and that the populations

  7. Home monitoring using wearable radio frequency transmitters.

    PubMed

    Almudevar, Anthony; Leibovici, Adrian; Tentler, Aleksey

    2008-02-01

    Location tracking of a wearable radio frequency (RF) transmitter in a wireless network is a potentially useful tool for the home monitoring of patients in clinical applications. However, the problem of converting RF signals into accurate estimates of transmitter location remains a significant challenge. We wish to demonstrate that long-term home monitoring using RF transmitters is feasible. Additionally, we conjecture that human motion within familiar environments is confined to relatively small regions of high occupancy. Hence, human motion can be modelled as movement along a network of such high occupancy regions. Our methodology uses a signal processing technique developed by one of the authors (Almudevar). The technique converts longitudinal RF data into an estimated trajectory which does not depend on explicit location estimates. This approach eliminates the need for a location-signal calibration procedure. Given a long-term trajectory, Gaussian mixture models are used to identify high occupancy regions. The methodology was evaluated using data collected under a study funded by an Everyday Technologies for Alzheimer Care (ETAC) research grant from the Alzheimer's Association. A home monitoring system provided by Home Free Systems was used. The proposed methodology was able to reliably reconstruct trajectories using study data. Regions of high occupancy were identified, and the observed transitions between these regions were found to be spatially and serially coherent. In addition, the trajectory was compared to output from a parallel home sensor network, and a high degree a conformity was evident. Long-term home monitoring of human motion is feasible using readily available and easily installable technology. Furthermore, by using suitable signal processing algorithms, the often difficult location-signal calibration process can be bypassed.

  8. Progress in characterizing pedestal stability on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Hughes, J. W.; Churchill, R. M.; Cziegler, I.; Davis, E. M.; Dominguez, A.; Ennever, P.; Ernst, D.; Hubbard, A. E.; Lipschultz, B.; Ma, Y.; Walk, J. R.; Wolfe, S. M.; Snyder, P. B.; Osborne, T.; Xu, X.; Sugiyama, L.

    2011-10-01

    Experimental studies on Alcator C-Mod explore pedestal structure and edge relaxation mechanisms primarily in three high confinement regimes: ELMy H-mode, EDA H-mode and I-mode. Extensive scans of BT, IP, ne, Pnet and shaping parameters have been carried out in these regimes, allowing the characterization of the operating space for ELMs as well as benign pedestal relaxation mechanisms (e.g. quasi- and weakly coherent modes). Well resolved edge profiles and accurate equilibrium reconstructions are produced from typical discharges, enabling evaluation of edge stability using various computational tools, such as ELITE, BOUT++, M3D and GS2. Relationships among dominant edge instabilities, radial transport and pedestal structure will be discussed. Supported by US DoE Award DE-FC02-99-ER54512.

  9. Stationary density profiles in the Alcator C-mod tokamak

    NASA Astrophysics Data System (ADS)

    Kesner, J.; Ernst, D.; Hughes, J.; Mumgaard, R.; Scott, S.; Shiraiwa, S.; Whyte, D.

    2012-12-01

    In the absence of an internal particle source, plasma turbulence will impose an intrinsic relationship between an inwards pinch and an outwards diffusion resulting in a stationary density profile. The Alcator C-mod tokamak utilizes RF heating and current drive so that fueling only occurs in the vicinity of the separatrix. Discharges that transition from L-mode to I-mode are seen to maintain a self-similar stationary density profile as measured by Thomson scattering. For discharges with negative magnetic shear, an observed rise of the safety factor in the vicinity of the magnetic axis appears to be accompanied by a decrease of electron density, qualitatively consistent with the theoretical expectations.

  10. Stationary Density Profiles in Alcator C-mod

    NASA Astrophysics Data System (ADS)

    Kesner, J.; Ernst, D.; Hughes, J. W.; Mumgaard, R.; Shiraiwa, S.; Whyte, D. G.

    2012-10-01

    In the absence of an internal particle source, plasma turbulence will impose an intrinsic relationship between an inwards pinch and an outwards diffusion resulting in a stationary density profile as determined by the turbulent equipartition (TEP) theory. The Alcator C-mod tokamak utilizes RF heating and current drive so that fueling only occurs in the vicinity of the separatrix. Density is determined from Thomson scattering. Discharges that transition from L-mode to I-mode are seen to maintain a stationary profile. For reversed shear discharges maintained by non-inductive current drive (Vloop 0) a drop of density in the vicinity of the axis is consistent with an observed rise in q, although error in the measurement precludes making this observation definitive.

  11. Optical Tunable-Based Transmitter for Multiple Radio Frequency Bands

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung (Inventor); Simons, Rainee N. (Inventor); Wintucky, Edwin G. (Inventor); Freeman, Jon C. (Inventor)

    2016-01-01

    An optical tunable transmitter is used to transmit multiple radio frequency bands on a single beam. More specifically, a tunable laser is configured to generate a plurality of optical wavelengths, and an optical tunable transmitter is configured to modulate each of the plurality of optical wavelengths with a corresponding radio frequency band. The optical tunable transmitter is also configured to encode each of the plurality of modulated optical wavelengths onto a single laser beam for transmission of a plurality of radio frequency bands using the single laser beam.

  12. High-power radio-frequency attenuation device

    DOEpatents

    Kerns, Q.A.; Miller, H.W.

    1981-12-30

    A resistor device for attenuating radio frequency power includes a radio frequency conductor connected to a series of fins formed of high relative magnetic permeability material. The fins are dimensional to accommodate the skin depth of the current conduction therethrough, as well as an inner heat conducting portion where current does not travel. Thermal connections for air or water cooling are provided for the inner heat conducting portions of each fin. Also disclosed is a resistor device to selectively alternate unwanted radio frequency energy in a resonant cavity.

  13. Neutral particle dynamics in the Alcator C-Mod tokamak

    SciTech Connect

    Niemczewski, Artur P.

    1995-08-01

    This thesis presents an experimental study of neutral particle dynamics in the Alcator C-Mod tokamak. The primary diagnostic used is a set of six neutral pressure gauges, including special-purpose gauges built for in situ tokamak operation. While a low main chamber neutral pressure coincides with high plasma confinement regimes, high divertor pressure is required for heat and particle flux dispersion in future devices such as ITER. Thus we examine conditions that optimize divertor compression, defined here as a divertor-to-midplane pressure ratio. We find both pressures depend primarily on the edge plasma regimes defined by the scrape-off-layer heat transport. While the maximum divertor pressure is achieved at high core plasma densities corresponding to the detached divertor state, the maximum compression is achieved in the high-recycling regime. Variations in the divertor geometry have a weaker effect on the neutral pressures. For otherwise similar plasmas the divertor pressure and compression are maximum when the strike point is at the bottom of the vertical target plate. We introduce a simple flux balance model, which allows us to explain the divertor neutral pressure across a wide range of plasma densities. In particular, high pressure sustained in the detached divertor (despite a considerable drop in the recycling source) can be explained by scattering of neutrals off the cold plasma plugging the divertor throat. Because neutrals are confined in the divertor through scattering and ionization processes (provided the mean-free-paths are much shorter than a typical escape distance) tight mechanical baffling is unnecessary. The analysis suggests that two simple structural modifications may increase the divertor compression in Alcator C-Mod by a factor of about 5. Widening the divertor throat would increase the divertor recycling source, while closing leaks in the divertor structure would eliminate a significant neutral loss mechanism.

  14. Overview of Recent Alcator C-Mod Results

    NASA Astrophysics Data System (ADS)

    Marmar, Earl; Alcator C-Mod Team

    2014-10-01

    Alcator C-Mod research currently emphasizes RF heating, current and flow drive, divertor/PMI issues, non-ELMing pedestal regimes with enhanced confinement, and disruption mitigation/runaway dynamics. Stability analysis of I-mode pedestals shows pressures well below the peeling-ballooning limit, as well as expected kinetic ballooning mode thresholds, consistent with the lack of ELMs. Results with the magnetic field aligned ICRF antenna show reductions in high-Z metallic impurities. Implementation of novel ``mirror-probe'' electronics has enabled simultaneous measurements of Te, ne and φ with 1 μs time response using a single probe tip, revealing important properties of the Quasi-Coherent-Mode (QCM) which regulates edge particle transport in EDA H-mode. An Accelerator-based In-situ Material Surveillance diagnostic has been deployed, providing the first between-shot measurements of surface evolution of the all-metal wall. We have observed suppression of boundary turbulence and τE improvement using LHRF into high-density H-modes, with H-factor increases up to 30%. Upgrades which are ready for construction and near term installation on C-Mod include: an off-midplane LH launcher to test theories of improved current drive at high density and an actively heated (900 K) tungsten DEMO-like outer divertor. We are proposing a new facility, ADX, based on Alcator technology, to access advanced magnetic topologies to solve the divertor PMI problem, combined with high-field launch LHCD and ICRF to extend the tokamak to steady-state with reactor relevant tools. Supported by USDOE.

  15. 77 FR 35426 - Certain Radio Frequency Integrated Circuits and Devices Containing Same; Institution of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-13

    ... COMMISSION Certain Radio Frequency Integrated Circuits and Devices Containing Same; Institution of... within the United States after importation of certain radio frequency integrated circuits and devices... after importation of certain radio frequency integrated circuits and devices containing same...

  16. Solar system radio astronomy at low frequencies

    NASA Technical Reports Server (NTRS)

    Desch, M. D.

    1987-01-01

    The planetary radio-astronomy observations obtained with the two Voyager spacecraft since their launch in 1977 are briefly characterized and illustrated with graphs, diagrams, and sample spectra. Topics addressed include the spacecraft designs and trajectories, the wavelength coverage of the radio instruments, the Io-controlled LF emission of Jupiter, the solar-wind effect on the Saturn kilometric radiation, the Saturn electrostatic discharges, and the use of the clocklike feature of the Uranus emission to measure the planet's rotation period.

  17. Radio frequency overview of the high explosive radio telemetry project

    SciTech Connect

    Bracht, R.; Dimsdle, J.; Rich, D.; Smith, F.

    1998-12-31

    High explosive radio telemetry (HERT) is a project that is being developed jointly by Los Alamos National Laboratory and AlliedSignal Federal Manufacturing and Technologies. The ultimate goal is to develop a small, modular telemetry system capable of high-speed detection of explosive events, with an accuracy on the order of 10 nanoseconds. The reliable telemetry of this data, from a high-speed missile trajectory, is a very challenging opportunity. All captured data must be transmitted in less than 20 microseconds of time duration. This requires a high bits/Hertz microwave telemetry modulation code to insure transmission of the data with the limited time interval available.

  18. Commissioning of helium injector for coupled radio frequency quadrupole and separated function radio frequency quadrupole accelerator.

    PubMed

    Peng, Shixiang; Chen, Jia; Ren, Haitao; Zhao, Jie; Xu, Yuan; Zhang, Tao; Zhang, Ailing; Xia, Wenlong; Gao, Shuli; Wang, Zhi; Luo, Yuting; Guo, Zhiyu; Chen, Jia'er

    2014-02-01

    A project to study a new type of acceleration structure has been launched at Peking University, in which a traditional radio frequency quadrupole (RFQ) and a separated function radio frequency quadrupole are coupled in one cavity to accelerate the He+ beam. A helium injector for this project is developed. The injector consists of a 2.45 GHz permanent magnet electron cyclotron resonance ion source and a 1.16 m long low energy beam transport (LEBT). The commissioning of this injector was carried out and an onsite test was held in June 2013. A 14 mA He+ beam with the energy of 30 keV has been delivered to the end of the LEBT, where a diaphragm with the diameter of 7 mm is located. The position of the diaphragm corresponds to the entrance of the RFQ electrodes. The beam emittance and fraction were measured after the 7 mm diaphragm. Its rms emittance is about 0.14 π mm mrad and the fraction of He+ is about 99%.

  19. Commissioning of helium injector for coupled radio frequency quadrupole and separated function radio frequency quadrupole accelerator

    SciTech Connect

    Peng, Shixiang Chen, Jia; Ren, Haitao; Zhao, Jie; Xu, Yuan; Zhang, Tao; Xia, Wenlong; Gao, Shuli; Wang, Zhi; Luo, Yuting; Guo, Zhiyu; Zhang, Ailing; Chen, Jia'er

    2014-02-15

    A project to study a new type of acceleration structure has been launched at Peking University, in which a traditional radio frequency quadrupole (RFQ) and a separated function radio frequency quadrupole are coupled in one cavity to accelerate the He+ beam. A helium injector for this project is developed. The injector consists of a 2.45 GHz permanent magnet electron cyclotron resonance ion source and a 1.16 m long low energy beam transport (LEBT). The commissioning of this injector was carried out and an onsite test was held in June 2013. A 14 mA He+ beam with the energy of 30 keV has been delivered to the end of the LEBT, where a diaphragm with the diameter of 7 mm is located. The position of the diaphragm corresponds to the entrance of the RFQ electrodes. The beam emittance and fraction were measured after the 7 mm diaphragm. Its rms emittance is about 0.14 π mm mrad and the fraction of He+ is about 99%.

  20. Solar observations with a low frequency radio telescope

    NASA Astrophysics Data System (ADS)

    Myserlis, I.; Seiradakis, J.; Dogramatzidis, M.

    2012-01-01

    We have set up a low frequency radio monitoring station for solar bursts at the Observatory of the Aristotle University in Thessaloniki. The station consists of a dual dipole phased array, a radio receiver and a dedicated computer with the necessary software installed. The constructed radio receiver is based on NASA's Radio Jove project. It operates continuously, since July 2010, at 20.1 MHz (close to the long-wavelength ionospheric cut-off of the radio window) with a narrow bandwidth (~5 kHz). The system is properly calibrated, so that the recorded data are expressed in antenna temperature. Despite the high interference level of an urban region like Thessaloniki (strong broadcasting shortwave radio stations, periodic experimental signals, CBs, etc), we have detected several low frequency solar radio bursts and correlated them with solar flares, X-ray events and other low frequency solar observations. The received signal is monitored in ordinary ASCII format and as audio signal, in order to investigate and exclude man-made radio interference. In order to exclude narrow band interference and calculate the spectral indices of the observed events, a second monitoring station, working at 36 MHz, is under construction at the village of Nikiforos near the town of Drama, about 130 km away of Thessaloniki. Finally, we plan to construct a third monitoring station at 58 MHz, in Thessaloniki. This frequency was revealed to be relatively free of interference, after a thorough investigation of the region.

  1. DEMONSTRATION BULLETIN: RADIO FREQUENCY HEATING - IIT RESEARCH INSTITUTE

    EPA Science Inventory

    Radio frequency heating (RFH) is a process that uses electromagnetic energy generated by radio waves to heat soil in situ, thereby potentially enhancing the performance of standard soil vapor extraction (SVE) technologies. An RFH system developed by the IIT Research Institute ...

  2. DEMONSTRATION BULLETIN: RADIO FREQUENCY HEATING - IIT RESEARCH INSTITUTE

    EPA Science Inventory

    Radio frequency heating (RFH) is a process that uses electromagnetic energy generated by radio waves to heat soil in situ, thereby potentially enhancing the performance of standard soil vapor extraction (SVE) technologies. An RFH system developed by the IIT Research Institute ...

  3. Energy harvesting from radio frequency propagation using piezoelectric cantilevers

    NASA Astrophysics Data System (ADS)

    Ahmad, Mahmoud Al; Alshareef, H. N.

    2012-02-01

    This work reports an induced strain in a piezoelectric cantilever due to radio frequency signal propagation. The piezoelectric actuator is coupled to radio frequency (RF) line through a gap of 0.25 mm. When a voltage signal of 10 Vpp propagates in the line it sets an alternating current in the actuator electrodes. This flowing current drives the piezoelectric cantilever to mechanical movement, especially when the frequency of the RF signal matches the mechanical resonant frequency of the cantilever. Output voltage signals versus frequency for both mechanical vibrational and RF signal excitations have been measured using different loads.

  4. I. S. Shklovsky and Low-Frequency Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Konovalenko, A. A.

    2017-03-01

    Purpose: Proving of the high astrophysical significance of the low-frequency radio astronomy (decameter and adjacent hectometer and meter wavelengths), demonstration of the priority results of the Ukrainian low-frequency radio astronomy as well as significant contribution of I. S. Shklovsky to its development. Design/methodology/approach: The requirements to characteristics of high efficiency radio telescopes UTR-2, URAN, GURT and to sensitive and interference immune observational methods at low frequencies are formulated by using the theoretical analysis and astrophysical predictions including those I. S. Shklovsky’s. Findings: New generation radio telescopes UTR-2, URAN, GURT are created and modernized. New observational methods at low frequencies are introduced. Large-scale investigations of the Solar system, Galaxy and Methagalaxy are carried out. They have allowed to detect new objects and phenomena for the continuum, monochromatic, pulse and sporadic cosmic radio emission. The role of I. S. Shklovsky in the development of many low-frequency radio astronomy directions is noted, too. Conclusions: The unique possibilities of the low-frequency radio astronomy which gives new information about the Universe, inaccessible with the other astrophysical methods, are shown. The progress of the low-frequency radio astronomy opens the impressive possibilities for the future. It includes modernization of the largest radio telescopes UTR-2, URAN, NDA and creation of new instruments GURT, NenuFAR, LOFAR, LWA, MWA, SKA as well as making multi-antenna and ground-space experiments. The contribution of outstanding astrophysicist of the XX century I. S. Shklovsky to this part of actual astronomical science is evident, claiming for attention and will never be forgotten.

  5. Radio-frequency wave enhanced runaway production rate

    SciTech Connect

    Chan, V.S.; McClain, F.W.

    1983-06-01

    Enhancement of runaway electron production (over that of an Ohmic discharge) can be achieved by the addition of radio-frequency waves. This effect is studied analytically and numerically using a two-dimensional Fokker--Planck quasilinear equation.

  6. Plasma processing of superconducting radio frequency cavities

    NASA Astrophysics Data System (ADS)

    Upadhyay, Janardan

    The development of plasma processing technology of superconducting radio frequency (SRF) cavities not only provides a chemical free and less expensive processing method, but also opens up the possibility for controlled modification of the inner surfaces of the cavity for better superconducting properties. The research was focused on the transition of plasma etching from two dimensional flat surfaces to inner surfaces of three dimensional (3D) structures. The results could be applicable to a variety of inner surfaces of 3D structures other than SRF cavities. Understanding the Ar/Cl2 plasma etching mechanism is crucial for achieving the desired modification of Nb SRF cavities. In the process of developing plasma etching technology, an apparatus was built and a method was developed to plasma etch a single cell Pill Box cavity. The plasma characterization was done with the help of optical emission spectroscopy. The Nb etch rate at various points of this cavity was measured before processing the SRF cavity. Cylindrical ring-type samples of Nb placed on the inner surface of the outer wall were used to measure the dependence of the process parameters on plasma etching. The measured etch rate dependence on the pressure, rf power, dc bias, temperature, Cl2 concentration and diameter of the inner electrode was determined. The etch rate mechanism was studied by varying the temperature of the outer wall, the dc bias on the inner electrode and gas conditions. In a coaxial plasma reactor, uniform plasma etching along the cylindrical structure is a challenging task due to depletion of the active radicals along the gas flow direction. The dependence of etch rate uniformity along the cylindrical axis was determined as a function of process parameters. The formation of dc self-biases due to surface area asymmetry in this type of plasma and its variation on the pressure, rf power and gas composition was measured. Enhancing the surface area of the inner electrode to reduce the

  7. Searching for Low-Frequency Radio Transients from Supernovae

    NASA Astrophysics Data System (ADS)

    Tsai-Wei, Jr.; Cutchin, Sean; Kothari, Manthan; Schmitt, Christian; Kavic, Michael; Simonetti, John

    2011-10-01

    Supernovae events may be accompanied by prompt emission of a low-frequency electromagnetic transient. These transient events are created by the interaction of a shock wave of charged particles created by SN core-collapse with a stars ambient magnetic field. Such events can be detected in low-frequency radio array. Here we discuss an ongoing search for such events using two radio arrays: the Long Wavelength Array (LWA) and Eight-meter-wavelength Transient Array (ETA).

  8. Solar radio astronomy at low frequencies

    NASA Technical Reports Server (NTRS)

    Dulk, George A.

    1990-01-01

    The characteristics of solar radio emissions at decametric to kilometric wavelengths are reviewed. Special attention is given to the radiation of the quiet sun at several metric and decametric wavelengths and to nonthermal radiation from the active sun, including radio bursts of type III (electron beams), type-III bursts from behind the sun, storms of type III bursts, the flare-associated radio bursts, type II bursts (shock waves), and shock-associated bursts. It is pointed out that almost no observations have been made so far of solar radiation between about 20 MHz and about 2 MHz. Below about 2 MHz, dynamic spectra of flux densities of solar burst have been recorded in space and observations were made of the directions of centroids and characteristic sizes of the emitting sources.

  9. Compact multichannel neutral particle analyzer for measurement of energetic charge-exchanged neutrals in Alcator C-Mod

    SciTech Connect

    Tang, V.; Liptac, J.; Parker, R. R.; Bonoli, P. T.; Fiore, C. L.; Granetz, R. S.; Irby, J. H.; Lin, Y.; Wukitch, S. J.; Frenje, J. A.; Leiter, R.; Mcduffee, S.; Petrasso, R. D.

    2006-08-15

    A four-channel compact neutral particle analyzer (CNPA) based on operating small Si diode detectors in pulse-height analysis (PHA) mode is used to measure energetic hydrogen minority ions with energies between {approx}50 and 350 keV stemming from ion-cyclotron range-of-frequency heated D(H) Alcator C-Mod plasmas with both active and passive charge exchange (CX). First core minority ion distribution results from Alcator C-Mod discharges and a detailed description of the diagnostic are presented. The diagnostic employs integrated electronics and fast digitization of the shaping amplifier voltage. The digitized data are stored for postshot PHA, which removes the constraints of real-time PHA and allows for improved performance via elimination of base line shift effects and potentially relieving pileup through Gaussian fitting routines. The CNPA is insensitive to the large gamma and neutron background in Alcator C-Mod discharges but is susceptible to the plasma's soft x-ray flux. The soft x-ray flux limits the CNPA energy resolution to {approx}15-20 keV. A simple model is used to interpret the active CNPA data which permits rapid estimates of the core hydrogen minority temperatures and anisotropy with a time resolution of {approx}100 ms. Hydrogenlike boron is identified as an important electron donor for the CX signal.

  10. Solar system radio emissions studies with the largest low-frequency radio telescopes

    NASA Astrophysics Data System (ADS)

    Zakharenko, V.; Konovalenko, A.; Litvinenko, G.; Kolyadin, V.; Zarka, P.; Mylostna, K.; Vasylieva, I.; Griessmeier, J.-M.; Sidorchuk, M.; Rucker, H.; Fischer, G.; Cecconi, B.; Coffre, A.; Denis, L.; Shevchenko, V.; Nikolaenko, V.

    2014-04-01

    We describe the trends and tasks in the field of lowfrequency studies of radio emission from the Solar system's objects. The world's largest decameter radio telescopes UTR-2 and URAN have a unique combination of sensitivity and time/frequency resolution parameters, providing the capability of the most detailed studies of various types of solar and planetary emissions.

  11. Planetary and exoplanetary low frequency radio observations from the Moon

    NASA Astrophysics Data System (ADS)

    Zarka, P.; Bougeret, J.-L.; Briand, C.; Cecconi, B.; Falcke, H.; Girard, J.; Grießmeier, J.-M.; Hess, S.; Klein-Wolt, M.; Konovalenko, A.; Lamy, L.; Mimoun, D.; Aminaei, A.

    2012-12-01

    We analyze the planetary and exoplanetary science that can be carried out with precursor as well as future low frequency radio instruments on the Moon, assessing the limiting noise sources, comparing them to the average and peak spectra of all planetary radio components as they will be seen from the Lunar surface or orbit. We identify which objectives will be accessible with each class of instrument, and discuss the interest of these observations compared to observations by planetary probes and to ground-based observations by large low-frequency radio arrays. The interest of goniopolarimetry is emphasized for pathfinder missions.

  12. Fluctuating zonal flows in the I-mode regime in Alcator C-Mod

    SciTech Connect

    Cziegler, I.; Diamond, P. H.; Fedorczak, N.; Manz, P.; Tynan, G. R.; Xu, M.; Churchill, R. M.; Hubbard, A. E.; Lipschultz, B.; Sierchio, J. M.; Terry, J. L.; Theiler, C.

    2013-05-15

    Velocity fields and density fluctuations of edge turbulence are studied in I-mode [F. Ryter et al., Plasma Phys. Controlled Fusion 40, 725 (1998)] plasmas of the Alcator C-Mod [I. H. Hutchinson et al., Phys. Plasmas 1, 1511 (1994)] tokamak, which are characterized by a strong thermal transport barrier in the edge while providing little or no barrier to the transport of both bulk and impurity particles. Although previous work showed no clear geodesic-acoustic modes (GAM) on C-Mod, using a newly implemented, gas-puff-imaging based time-delay-estimate velocity inference algorithm, GAM are now shown to be ubiquitous in all I-mode discharges examined to date, with the time histories of the GAM and the I-mode specific [D. Whyte et al., Nucl. Fusion 50, 105005 (2010)] Weakly Coherent Mode (WCM, f = 100–300 kHz, Δf/f≈0.5, and k{sub θ}≈1.3 cm{sup −1}) closely following each other through the entire duration of the regime. Thus, the I-mode presents an example of a plasma state in which zero frequency zonal flows and GAM continuously coexist. Using two-field (density-velocity and radial-poloidal velocity) bispectral methods, the GAM are shown to be coupled to the WCM and to be responsible for its broad frequency structure. The effective nonlinear growth rate of the GAM is estimated, and its comparison to the collisional damping rate seems to suggest a new view on I-mode threshold physics.

  13. The Cubesat Radio Experiment (CURE) and Beyond: Cubesat-based Low Frequency Radio Interferometry

    NASA Astrophysics Data System (ADS)

    Saint-Hilaire, P.; Sundkvist, D. J.; Martinez Oliveros, J. C.; Sample, J. G.; Pulupa, M.; Maruca, B.; Bale, S. D.; Bonnell, J. W.; Mozer, F.; Hurford, G. J.

    2014-12-01

    We have proposed a 3U cubesat, to carry a low-frequency radio receiver into low-Earth orbit to study solar radio bursts induced by solar flares and Coronal Mass Ejections. Because of the reflective properties of the Earth's ionosphere, observations of radio waves around and below 10 MHz must be made from space. The measurements will allow continuous tracking of radio bursts and associated CMEs through the inner heliosphere. These observations are important since such events are the main cause for space weather disturbances. Data products from the mission will primarily be spectra and waveforms of solar radio type II and III bursts, and the direction to the radio source as it propagates through the inner heliosphere. These data products will be available to the community through an automated pipeline nominally within a few hours of downlink. Additional science data products will be sizes of radio sources obtained via lunar occultations, and local ionospheric plasma density and electron temperature. As a first cubesat with a scientific radio instrument at these frequencies, this project is also intended as a path-finder: the instrument and sub-systems can immediately be duplicated in other cubesats, with the goal of providing the first radio interferometric measurements below the ionospheric cutoff.

  14. The spectral evolution of low-frequency variable radio sources

    NASA Technical Reports Server (NTRS)

    Dennison, B.; Broderick, J. J.; Odell, S. L.; Mitchell, K. J.; Altschuler, D. R.; Payne, H. E.; Condon, J. J.

    1984-01-01

    The dynamic spectra of several low frequency extragalactic radio sources are presented. The observations were made at 318, 430, 606, 880, and 1400 MHz at several different radio observatories around the U.S. Two outbursts were observed in AO 0235 + 16 at 1.4 GHz, followed by a diminished variation at the lower frequencies. The dynamic frequencies of NRAO 140, PKS 1117 + 14, DA 406, CTA 102, and 3C 454.3 do not fit the same pattern. These radio sources displayed the following characteristics: (1) departure from straight or curved spectra at the frequencies of variation; (2) no obvious frequency drifting; and (3) negligible variation at 1.4 GHz. Possible explanations for this behavior are briefly discussed.

  15. Reconstruction in 3D of the fast wave fields in ITER, DIII-D, C-Mod and NSTX, including the coupling of full-wave and particle codes to resolve finite orbit effects

    SciTech Connect

    Green, David L; Jaeger, Erwin Frederick; Berry, Lee A; Choi, M.

    2009-01-01

    The rf-SciDAC collaboration is developing computer simulations to predict the damping of radio frequency (rf) waves in fusion plasmas. Here we extend self-consistent quasi-linear calculations of ion cyclotron resonant heating to include the finite drift of ions from magnetic flux surfaces and rf induced spatial transport. The all-orders spectral wave solver AORSA is iteratively coupled with a particle based update of the plasma distribution function using a quasi-linear diffusion tersor representative of the (k) over right arrow spectrum. Initial results are presented for a high power minority heating scenario on the Alcator C-Mod tokamak and a high harmonic beam heating scenario on DIII-D. Finite orbit effects are shown to give a less peaked perpendicular energy profile and rf induced transport.

  16. Overview of Recent Alcator C-Mod Highlights

    NASA Astrophysics Data System (ADS)

    Marmar, Earl; C-Mod Team

    2013-10-01

    Analysis and modeling of recent C-Mod experiments has yielded significant results across multiple research topics. I-mode provides routine access to high confinement plasma (H98 up to 1.2) in quasi-steady state, without large ELMs; pedestal pressure and impurity transport are regulated by short-wavelength EM waves, and core turbulence is reduced. Multi-channel transport is being investigated in Ohmic and RF-heated plasmas, using advanced diagnostics to validate non-linear gyrokinetic simulations. Results from the new field-aligned ICRF antenna, including significantly reduced high-Z metal impurity contamination, and greatly improved load-tolerance, are being understood through antenna-plasma modeling. Reduced LHCD efficiency at high density correlates with parametric decay and enhanced edge absorption. Strong flow drive and edge turbulence suppression are seen from LHRF, providing new approaches for plasma control. Plasma density profiles directly in front of the LH coupler show non-linear modifications, with important consequences for wave coupling. Disruption-mitigation experiments using massive gas injection at multiple toroidal locations show unexpected results, with potentially significant implications for ITER. First results from a novel accelerator-based PMI diagnostic are presented. What would be the world's first actively-heated high-temperature advanced tungsten divertor is designed and ready for construction. Conceptual designs are being developed for an ultra-advanced divertor facility, Alcator DX, to attack key FNSF and DEMO heat-flux challenges integrated with a high-performance core. Supported by USDOE.

  17. Transport of light, trace impurities in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Rowan, W. L.; Bespamyatnov, I. O.; Liao, K. T.; Horton, W.; Fu, X. R.; Hughes, J. W.

    2012-10-01

    Light impurity profiles for boron were measured in ITB, H-mode, L-mode, and I-mode discharges in Alcator C-Mod. Within this wide range of modes, the profiles varied from peaked to hollow to flat. Specifically, hollow profiles are often observed in H-mode, while ITBs produce strong peaking, and L-mode produces moderate peaking. I-mode discharges are characterized by flat impurity profiles. For the study reported here, the profiles were measured with charge exchange recombination spectroscopy. The dependences of Rv/D were sought on dimensionless quantities including ion density scale length, effective charge, collisionality, and temperature scale length. We find that neoclassical transport consistently underestimates the measured transport. The excess measured transport is assumed to be turbulent. The strongest dependence of Rv/D is with temperature scale length. In addition, the measured transport was compared with the prediction of an analytical theory of drift wave turbulence that identifies transport implications for drift waves driven by ion and impurity density gradients.

  18. Highlights of the Alcator C-Mod Research Campaign

    NASA Astrophysics Data System (ADS)

    Greenwald, Martin; Alcator Team

    2011-10-01

    Alcator C-Mod has completed an experimental campaign focusing on broad scientific issues with particular emphasis on ITER needs and requests. Experiments with no NBI torque have investigated spontaneous flow reversal, creation of transport barriers aided by the shear of intrinsic rotation and a variety of RF flow drive schemes. Studies of I-mode have found conditions where a wide operating regime opens up, allowing easy access to long-lived, high-performance discharges with L-mode like particle confinement. We are validating the EPED and BOUT++ models for pedestal height/width and ELM onset using extended parameter scans in ELMy H-mode. The challenge of high-Z impurity generation with ICRF is being addressed first by deployment of a novel antenna whose current straps and antenna box are perpendicular to the total magnetic field -second by studies of the modification of edge impurity transport, where fine-scale Er structures in the SOL in the presence of ICRF heating have been found. LH current drive has produced non-inductive reversed shear regimes at n ~ 5x1019 which exhibit electron temperature ITBs. The first observations have been made of in-tokamak production of divertor tungsten nano-structures (fuzz), which had previously been seen only in linear laboratory experiments. Supported by DoE DE-FC02-99ER54512.

  19. Digital Plasma Control System for Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Ferrara, M.; Wolfe, S.; Stillerman, J.; Fredian, T.; Hutchinson, I.

    2004-11-01

    A digital plasma control system (DPCS) has been designed to replace the present C-Mod system, which is based on hybrid analog-digital computer. The initial implementation of DPCS comprises two 64 channel, 16 bit, low-latency cPCI digitizers, each with 16 analog outputs, controlled by a rack-mounted single-processor Linux server, which also serves as the compute engine. A prototype system employing three older 32 channel digitizers was tested during the 2003-04 campaign. The hybrid's linear PID feedback system was emulated by IDL code executing a synchronous loop, using the same target waveforms and control parameters. Reliable real-time operation was accomplished under a standard Linux OS (RH9) by locking memory and disabling interrupts during the plasma pulse. The DPCS-computed outputs agreed to within a few percent with those produced by the hybrid system, except for discrepancies due to offsets and non-ideal behavior of the hybrid circuitry. The system operated reliably, with no sample loss, at more than twice the 10kHz design specification, providing extra time for implementing more advanced control algorithms. The code is fault-tolerant and produces consistent output waveforms even with 10% sample loss.

  20. Helium Diagnostic for Alcator C-Mod Edge Studies

    NASA Astrophysics Data System (ADS)

    Pappas, D. A.; Labombard, B.; Lipschultz, B.; Pitcher, C. S.; Brix, M.; Schweer, B.

    1997-11-01

    We are developing a diagnostic based on the thermal helium beam technique pioneered on TEXTOR [1,2], which is intended to continuously measure electron temperature and density profiles in the edge plasma at the midplane with high radial and temporal resolution (Δr=1 mm, Δt=1 ms). As a He neutral source, we are presently using a simple gas capillary embedded in one of the C-Mod limiters at the midplane, typically 10 to 15 mm away from the location of the plasma separatrix. Four fibers from a tangentially viewing telescope, which are fed to a visible spectrometer, are used to monitor the HeI lines of interest. We are looking at both the red (667.8 nm, 706.5 nm, 728.1 nm) and the green (471.3 nm, 501.5 nm, 504.7 nm) lines [2], whose intensity ratios can be used to obtain electron temperature and density. The experiments are performed under a variety of plasma conditions and the results are compared to those obtained with a scanning probe. [1] B. Schweer, et al., J. Nucl. Mat. 196-198, 174 (1992). [2] M. Brix and B. Schweer, 24^th EPS Conference, Berchtesgaden, Germany, June 1997. * Work Supported by D.o.E. Contract DE-AC02-78ET51013

  1. Alcator C-Mod ICRF antenna and matching circuit

    SciTech Connect

    Golovato, S.N.; Porkolab, M.; Takase, Y.; Holcomb, H.L. )

    1989-07-01

    Alcator C-mod will be a compact, high field, high density, divertor tokamak. Two FMIT transmitters will supply 4 MW of power in 1 sec pulses at 80 MHz for ICRF heating. Fast wave minority heating experiments are planned in D({sup 3}He) at 8 T and D(H) at 5.5 T. The first antenna will have a single current strap inside a box structure, which will be movable radially. The antenna will be inserted through a side port, making the rf power density on the antenna surface {similar to}2 kW/cm{sup 2} at 2 MW. the antenna will be center-trapped for mechanical strength and have a double layer Faraday screen tilted along the field lines. The antenna geometry was chosen to maximize power coupling assuming voltage-limited operation. A wide antenna with slotted box sides appears the best design, and 10 {Omega} of loading is required to couple 2 MW of power at a voltage limit of 40 kV. Matching is achieved by choice of the drive point to a resonant circuit formed by the antenna and a loop of transmission line outside of the vacuum and by tuning elements in the transmission line to the transmitter.

  2. Alcator C-Mod ICRF antenna and matching circuit

    SciTech Connect

    Golovato, S.N.; Porkolab, M.; Takase, Y.; Holcomb, H.L.

    1989-06-01

    Alcator C-Mod will be a compact, high field, high density, divertor tokamak. Two FMIT transmitters will supply 4 MW of power in 1 sec pulses at 80 MHz for ICRF heating. Fast wave minority heating experiments are planned in D(/sup 3/He) at 8 T and D(H) at 5.5 T. The first antenna will have a single current strap inside a box structure, which will be movable radially. The antenna will be inserted through a side port, making the rf power density on the antenna surface /approximately/2 kW/cm/sup 2/ at 2 MW. The antenna will be center-tapped for mechanical strength and have a double layer Faraday screen tilted along the field lines. The antenna geometry was chosen to maximize power coupling assuming voltage-limited operation. A wide antenna with slotted box sides appears the best design, and 10 /Omega/ of loading is required to couple 2 MW of power at a voltage limit of 40 kV. Matching is achieved by choice of the drive point to a resonant circuit formed by the antenna and a loop of transmission line outside of the vacuum and by tuning elements in the transmission line to the transmitter. 6 refs., 4 figs.

  3. Identification of Mercier instabilities in Alcator C-Mod tokamak

    SciTech Connect

    In, Y.; Ramos, J. J.; Hastie, R. J.; Catto, P. J.; Hubbard, A. E.; Hutchinson, I. H.; Marmar, E.; Porkolab, M.; Snipes, J.; Wolfe, S.

    2000-12-01

    During current ramp-up discharges, highly localized magnetohydrodynamic (MHD) fluctuations were observed on the electron cyclotron emission diagnostics of Alcator C-Mod tokamak [I. H. Hutchinson , Phys. Plasmas 1, 1511 (1994)]. The electron temperature profile was hollow, while the density profile was weakly decreasing. Assuming that the equilibration time was short enough to quickly thermalize ions the pressure profile was also found to be hollow. Using this pressure profile as an additional constraint to the EFIT program, an equilibrium with reversed shear was constructed having a q(0)>>1. The localized MHD activity was observed near the inner q=5 rational surface in this reconstructed equilibrium, where the Mercier criterion for ideal MHD stability was violated because of the reversed pressure gradient (dp/dr>0), q>1 and moderate shear. When kinetic effects were added, the ideal Mercier mode was finite ion Larmor radius stabilized. However, ion Landau damping was found to be strong enough to drive a kinetic Mercier instability.

  4. Charged fusion product diagnostics in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Boivin, R. L.; Kurz, C.; Lo, D. H.; Fiore, C. L.; Granetz, R.; Petrasso, R. D.

    1992-10-01

    With a plasma current of up to 3 MA, toroidal field of up to 9 T, the confinement of the charged fusion products (CFPs) in Alcator C-Mod is expected to be excellent. For example, at maximum current and field, classical losses of the 0.8 MeV 3He, 1 MeV triton, 3 MeV proton, 3.5 and 3.7 MeV alphas are expected to be less than 5%. For the study of the global confinement of CFPs, we plan to measure the burnup of the 1 MeV triton (from the D-D reaction) using a proton recoil detector (NE-213) for the detection of the 14 MeV neutron resulting from the secondary fusion reaction (D-T). On the other hand, loss measurements of CFPs will be made inside the first wall with two detectors (one at the bottom, one at the midplane) using silicon based detectors. The midplane detector will be used to diagnose D-3He plasmas by looking at the unconfined 14.7 MeV proton. In addition to the derivation of fusion yield, energy distribution of the escaping protons will provide information about the ion velocity distribution of the reactants. The bottom detector is time, pitch angle and energy resolved, and thus will be used to study loss mechanisms such as first orbit, toroidal field ripple and magnetohydrodynamics-induced diffusion.

  5. Escaping charged fusion product spectrometer on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Lo, Daniel H.; Boivin, Réjean L.; Petrasso, Richard D.

    1995-01-01

    A spectrometer for studying escaping charged fusion products has been designed, built, and installed on the Alcator C-Mod tokamak. The ultimate goal of deploying this diagnostic is to evaluate the effectiveness of 3He minority heating through the broadened spectrum of unconfined 14.7 MeV protons from D-3He reactions. Other physics issues that will be addressed with this diagnostic include: first-orbit losses, central ion temperature, 3He burnup, etc. The spectrometer is located 25.8 cm below the midplane and at least 5 cm behind the shadow of the rf limiter. The diagnostic is equipped with a 300 μm thick ion-implanted-silicon detector that is bakeable up to 200 °C. Eighteen apertures of various dimensions and viewing angles, with aluminum foils of various thicknesses, allow for a choice of different charged fusion products and a control of the signal level. In-vessel calibration is provided by two weak radioactive sources of α particles.

  6. Lower Hybrid Current Drive Experiments in Alcator C-Mod

    SciTech Connect

    J.R. Wilson, S. Bernabei, P. Bonoli, A. Hubbard, R. Parker, A. Schmidt, G. Wallace, J. Wright, and the Alcator C-Mod Team

    2007-10-09

    A Lower Hybrid Current Drive (LHCD) system has been installed on the Alcator C-MOD tokamak at MIT. Twelve klystrons at 4.6 GHz feed a 4x22 waveguide array. This system was designed for maximum flexibility in the launched parallel wave-number spectrum. This flexibility allows tailoring of the lower hybrid deposition under a variety of plasma conditions. Power levels up to 900 kW have been injected into the tokomak. The parallel wave number has been varied over a wide range, n|| ~ 1.6–4. Driven currents have been inferred from magnetic measurements by extrapolating to zero loop voltage and by direct comparison to Fisch-Karney theory, yielding an efficiency of n20IR/P ~ 0.3. Modeling using the CQL3D code supports these efficiencies. Sawtooth oscillations vanish, accompanied with peaking of the electron temperature (Te0 rises from 2.8 to 3.8 keV). Central q is inferred to rise above unity from the collapse of the sawtooth inversion radius, indicating off-axis cd as expected. Measurements of non-thermal x-ray and electron cyclotron emission confirm the presence of a significant fast electron population that varies with phase and plasma density. The x-ray emission is observed to be radialy broader than that predicted by simple ray tracing codes. Possible explanations for this broader emission include fast electron diffusion or broader deposition than simple ray tracing predictions (perhaps due to diffractive effects).

  7. Integrated modeling of LHCD experiment on Alcator C-Mod

    SciTech Connect

    Shiraiwa, S.; Bonoli, P.; Parker, R.; Wallace, G.

    2014-02-12

    Recent progress in integrating the latest LHCD model based on ray-tracing into the Integrated Plasma Simulator (IPS) is reported. IPS, a python based framework for time dependent tokamak simulation, was expanded recently to incorporate LHCD simulation using GENRAY/CQL3D (ray-tracing/3D Fokker-Planck package). Using GENRAY/CQL3D in the IPS framework, it becomes possible to include parasitic LHCD power loss near the plasma edge, which was found to be important in experiments particularly at high density as expected on reactors. Moreover, it allows for evolving the velocity distribution function in 4 D (ν{sub ∥}, ν⊥, r/a, t) space self-consistently. In order to validate the code, IPS is applied to LHCD experiments on Alctor C-Mod. In this paper, a LHCD experiment performed at the density of n{sub e}∼0.5×10{sup 20}m{sup −3} where good LHCD efficiency and the development of internal transport barrier (ITB) was reported, is modelled in a predictive mode and the result is compared with experiment.

  8. Plasma wave simulation based on a versatile FEM solver on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Shiraiwa, Syun'ichi

    2009-11-01

    A new efficient full wave simulation code of the lower hybrid (LH) wave was developed using the finite element method (FEM). A dielectric tensor consisting of the cold plasma contribution and the electron Landau damping (ELD) was used. The non-trivial problem of introducing non-local hot plasma effects into an FEM solver was addressed by iteratively solving the coupled problem of the Maxwell's equations with the convolution integral. With this approach, the EM problem is numerically sparse, and the computational requirements are reduced significantly compared to spectral domain solvers [1]. The simulation of an Alcator C-Mod scale plasma has been done on a desktop computer, suggesting the possibility of an ITER scale plasma simulation. The algorithm was implemented using a general purpose FEM software, COMSOL Multiphysics, and the simulation results of a Maxwellian tokamak plasma showed good agreement with ray tracing calculations in the strong single pass absorption regime. Integration of a Fokker-Planck calculation for a more realistic non-Maxwellian plasma is underway and initial results show reasonable shift of the power absorption towards the plasma edge [2]. Importantly, the FEM approach allows seamless handling of the core, SOL, and antenna regions. This flexibility has been exploited to address issues of antenna-plasma coupling in the LH and ICRF frequency ranges. Techniques to use the FEM package for this purpose were validated by solving the LH grill antenna coupling problem whose analytic solution is known. The code has been applied to a new Alcator C-Mod ICRF antenna to assess the antenna near field pattern [3]. [4pt] [1] J. C. Wright, et. al., Comput. Phys. 4, 545 (2008) [0pt] [2] O. Meneghini, et. al., this conference [0pt] [3] M. Garrett, et. al., this conference

  9. ICRF-enhanced plasma potentials in the SOL of Alcator C-Mod

    SciTech Connect

    Ochoukov, R.; Whyte, D. G.; Brunner, D.; LaBombard, B.; Lipschultz, B.; Terry, J. L.; Wukitch, S. J.; D'Ippolito, D. A.; Myra, J. R.

    2014-02-12

    We performed an extensive survey of the plasma potential in the scrape-off layer (SOL) of Ion Cyclotron Range-of Frequencies (ICRF)-heated discharges on Alcator C-Mod. Our results show that plasma potentials are enhanced in the presence of ICRF power and plasma potential values of >100 V are often observed. Such potentials are high enough to induce sputtering of high-Z molybdenum (Mo) plasma facing components by deuterium ions on C-Mod. For comparison, the plasma potential in Ohmic discharges is typically less than 10 V, well below the threshold needed to induce Mo sputtering by deuterium ions. ICRF-enhanced plasma potentials are observed in the SOL regions that both magnetically map and do not map to active ICRF antennas. Regions that magnetically map to active ICRF antennas are accessible to slow waves directly launched by the antennas and these regions experience plasma potential enhancement that is partially consistent with the slow wave rectification mechanism. One of the most defining features of the slow wave rectification is a threshold appearance of significant plasma potentials (>100 V) when the dimensionless rectification parameter Λ{sub −o} is above unity and this trend is observed experimentally. We also observe ICRF-enhanced plasma potentials >100 V in regions that do not magnetically map to the active antennas and, hence, are not accessible for slow waves launched directly by the active antennas. However, unabsorbed fast waves can reach these regions. The general trend that we observe in these 'un-mapped' regions is that the plasma potential scales with the strength of the local RF wave fields with the fast wave polarization and the highest plasma potentials are observed in discharges with the highest levels of unabsorbed ICRF power. Similarly, we find that core Mo levels scale with the level of unabsorbed ICRF power suggesting a link between plasma potentials in the SOL and the strength of the impurity source.

  10. Lower Hybrid Heating and Current Drive on the Alcator C-Mod Tokamak

    SciTech Connect

    R. Wilson, R. Parker, M. Bitter, P.T. Bonoli, C. Fiore, R.W. Harvey, K. Hill, A.E. Hubbard, J.W. Hughes, A. Ince-Cushman, C. Kessel, J.S. Ko, O. Meneghini, C.K. Phillips, M. Porkolab, J. Rice, A.E. Schmidt, S. Scott,S. Shiraiwa, E. Valeo, G.Wallace, J.C. Wright and the Alcator C-Mod Team

    2009-11-20

    On the Alcator C-Mod tokamak, lower hybrid current drive (LHCD) is being used to modify the current profile with the aim of obtaining advanced tokamak (AT) performance in plasmas with parameters similar to those that would be required on ITER. To date, power levels in excess of 1 MW at a frequency of 4.6 GHz have been coupled into a variety of plasmas. Experiments have established that LHCD on C-Mod behaves globally as predicted by theory. Bulk current drive efficiencies, n20IlhR/Plh ~ 0.25, inferred from magnetics and MSE are in line with theory. Quantitative comparisons between local measurements, MSE, ECE and hard x-ray bremsstrahlung, and theory/simulation using the GENRAY, TORIC-LH CQL3D and TSC-LSC codes have been performed. These comparisons have demonstrated the off-axis localization of the current drive, its magnitude and location dependence on the launched n|| spectrum, and the use of LHCD during the current ramp to save volt-seconds and delay the peaking of the current profile. Broadening of the x-ray emission profile during ICRF heating indicates that the current drive location can be controlled by the electron temperature, as expected. In addition, an alteration in the plasma toroidal rotation profile during LHCD has been observed with a significant rotation in the counter current direction. Notably, the rotation is accompanied by peaking of the density and temperature profiles on a current diffusion time scale inside of the half radius where the LH absorption is taking place.

  11. Low-Frequency Radio Bursts and Space Weather

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.

    2016-01-01

    Low-frequency radio phenomena are due to the presence of nonthermal electrons in the interplanetary (IP) medium. Understanding these phenomena is important in characterizing the space environment near Earth and other destinations in the solar system. Substantial progress has been made in the past two decades, because of the continuous and uniform data sets available from space-based radio and white-light instrumentation. This paper highlights some recent results obtained on IP radio phenomena. In particular, the source of type IV radio bursts, the behavior of type III storms, shock propagation in the IP medium, and the solar-cycle variation of type II radio bursts are considered. All these phenomena are closely related to solar eruptions and active region evolution. The results presented were obtained by combining data from the Wind and SOHO missions.

  12. Heating mechanisms in gold nanoparticles at radio frequencies.

    PubMed

    Pearce, John A; Cook, Jason R

    2011-01-01

    Gold nanoparticles are under study as a potentially viable mechanism for hyperthermia tumor treatment in two regimes of the electromagnetic spectrum: laser and radio frequency excitation. Gold nanoparticles, nanorods and nanoshells have been applied with visible laser sources that excite the particles at or near their plasmon resonance frequency, and this mechanism has been well studied. The physical processes that describe the experimentally observed heating at radio frequencies (13.56 MHz) are not as well understood. Differing results have been reported in semi-solid phantom materials and liquid phase suspensions. This numerical modeling study was undertaken to inspect the relative importance of several candidate physical processes.

  13. Scaling laws for dual radio-frequency capacitively coupled discharges

    SciTech Connect

    Chung, T.H.

    2005-10-01

    The characteristics of dual radio-frequency capacitively coupled discharges are studied based on a homogeneous analytic model. We are considering a planar plasma device that can be approximated using a one-dimensional model. A set of equations describing the dynamics of the system are presented and used to give the analytic scaling laws. Scaling laws relating the drive frequencies and the applied voltages of dual radio-frequency sources to operating functions such as plasma density and plasma potential are examined and compared with numerical simulations.

  14. 47 CFR 2.805 - Operation of radio frequency devices prior to equipment authorization.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Marketing of Radio-frequency Devices § 2.805 Operation of radio frequency devices prior to equipment authorization. (a) General rule. A... 47 Telecommunication 1 2014-10-01 2014-10-01 false Operation of radio frequency devices prior...

  15. 47 CFR 2.803 - Marketing of radio frequency products prior to equipment authorization.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Marketing of radio frequency products prior to... FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Marketing of Radio-frequency Devices § 2.803 Marketing of radio frequency products prior to equipment authorization. (a) Marketing, as...

  16. 47 CFR 2.803 - Marketing of radio frequency devices prior to equipment authorization.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Marketing of radio frequency devices prior to... FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Marketing of Radio-frequency Devices § 2.803 Marketing of radio frequency devices prior to equipment authorization. (a) Except as...

  17. 47 CFR 2.805 - Operation of radio frequency products prior to equipment authorization.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Operation of radio frequency products prior to... FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Marketing of Radio-frequency Devices § 2.805 Operation of radio frequency products prior to equipment authorization. (a) General rule...

  18. 47 CFR 2.803 - Marketing of radio frequency devices prior to equipment authorization.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Marketing of radio frequency devices prior to... FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Marketing of Radio-frequency Devices § 2.803 Marketing of radio frequency devices prior to equipment authorization. (a) Except as...

  19. 47 CFR 2.803 - Marketing of radio frequency devices prior to equipment authorization.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Marketing of radio frequency devices prior to... FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Marketing of Radio-frequency Devices § 2.803 Marketing of radio frequency devices prior to equipment authorization. (a) Except as...

  20. 47 CFR 2.803 - Marketing of radio frequency devices prior to equipment authorization.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Marketing of radio frequency devices prior to... FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Marketing of Radio-frequency Devices § 2.803 Marketing of radio frequency devices prior to equipment authorization. (a) Marketing,...

  1. Magnetoreception in birds: the effect of radio-frequency fields.

    PubMed

    Wiltschko, Roswitha; Thalau, Peter; Gehring, Dennis; Nießner, Christine; Ritz, Thorsten; Wiltschko, Wolfgang

    2015-02-06

    The avian magnetic compass, probably based on radical pair processes, works only in a narrow functional window around the local field strength, with cryptochrome 1a as most likely receptor molecule. Radio-frequency fields in the MHz range have been shown to disrupt the birds' orientation, yet the nature of this interference is still unclear. In an immuno-histological study, we tested whether the radio-frequency fields interfere with the photoreduction of cryptochrome, but this does not seem to be the case. In behavioural studies, birds were not able to adjust to radio-frequency fields like they are able to adjust to static fields outside the normal functional range: neither a 2-h pre-exposure in a 7.0 MHz field, 480 nT, nor a 7-h pre-exposure in a 1.315 MHz field, 15 nT, allowed the birds to regain their orientation ability. This inability to adjust to radio-frequency fields suggests that these fields interfere directly with the primary processes of magnetoreception and therefore disable the avian compass as long as they are present. They do not have lasting adverse after-effects, however, as birds immediately after exposure to a radio-frequency field were able to orient in the local geomagnetic field. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  2. Magnetoreception in birds: the effect of radio-frequency fields

    PubMed Central

    Wiltschko, Roswitha; Thalau, Peter; Gehring, Dennis; Nießner, Christine; Ritz, Thorsten; Wiltschko, Wolfgang

    2015-01-01

    The avian magnetic compass, probably based on radical pair processes, works only in a narrow functional window around the local field strength, with cryptochrome 1a as most likely receptor molecule. Radio-frequency fields in the MHz range have been shown to disrupt the birds' orientation, yet the nature of this interference is still unclear. In an immuno-histological study, we tested whether the radio-frequency fields interfere with the photoreduction of cryptochrome, but this does not seem to be the case. In behavioural studies, birds were not able to adjust to radio-frequency fields like they are able to adjust to static fields outside the normal functional range: neither a 2-h pre-exposure in a 7.0 MHz field, 480 nT, nor a 7-h pre-exposure in a 1.315 MHz field, 15 nT, allowed the birds to regain their orientation ability. This inability to adjust to radio-frequency fields suggests that these fields interfere directly with the primary processes of magnetoreception and therefore disable the avian compass as long as they are present. They do not have lasting adverse after-effects, however, as birds immediately after exposure to a radio-frequency field were able to orient in the local geomagnetic field. PMID:25540238

  3. AURA—A radio frequency extension to IceCube

    NASA Astrophysics Data System (ADS)

    Landsman, H.; Ruckman, L.; Varner, G. S.; IceCube Collaboration

    2009-06-01

    The excellent radio frequency (RF) transparency of cold polar ice, combined with the coherent Cherenkov emission produced by neutrino-induced showers when viewed at wavelengths longer than a few centimeters, has spurred considerable interest in a large-scale radio-wave neutrino detector array. The AURA (Askaryan Under-ice Radio Array) experimental effort, within the IceCube collaboration, seeks to take advantage of the opportunity presented by IceCube [A. Karle, Nucl. Instr. and Meth. A (2009), this issue, doi:10.1016/j.nima.2009.03.180. [1]; A. Achtenberg et al., The IceCube Collaboration, Astropart. Phys. 26 (2006) 155 [2

  4. Spectral Energy Distribution and Radio Halo of NGC 253 at Low Radio Frequencies

    NASA Astrophysics Data System (ADS)

    Kapińska, A. D.; Staveley-Smith, L.; Crocker, R.; Meurer, G. R.; Bhandari, S.; Hurley-Walker, N.; Offringa, A. R.; Hanish, D. J.; Seymour, N.; Ekers, R. D.; Bell, M. E.; Callingham, J. R.; Dwarakanath, K. S.; For, B.-Q.; Gaensler, B. M.; Hancock, P. J.; Hindson, L.; Johnston-Hollitt, M.; Lenc, E.; McKinley, B.; Morgan, J.; Procopio, P.; Wayth, R. B.; Wu, C.; Zheng, Q.; Barry, N.; Beardsley, A. P.; Bowman, J. D.; Briggs, F.; Carroll, P.; Dillon, J. S.; Ewall-Wice, A.; Feng, L.; Greenhill, L. J.; Hazelton, B. J.; Hewitt, J. N.; Jacobs, D. J.; Kim, H.-S.; Kittiwisit, P.; Line, J.; Loeb, A.; Mitchell, D. A.; Morales, M. F.; Neben, A. R.; Paul, S.; Pindor, B.; Pober, J. C.; Riding, J.; Sethi, S. K.; Udaya Shankar, N.; Subrahmanyan, R.; Sullivan, I. S.; Tegmark, M.; Thyagarajan, N.; Tingay, S. J.; Trott, C. M.; Webster, R. L.; Wyithe, S. B.; Cappallo, R. J.; Deshpande, A. A.; Kaplan, D. L.; Lonsdale, C. J.; McWhirter, S. R.; Morgan, E.; Oberoi, D.; Ord, S. M.; Prabu, T.; Srivani, K. S.; Williams, A.; Williams, C. L.

    2017-03-01

    We present new radio continuum observations of NGC 253 from the Murchison Widefield Array at frequencies between 76 and 227 MHz. We model the broadband radio spectral energy distribution for the total flux density of NGC 253 between 76 MHz and 11 GHz. The spectrum is best described as a sum of a central starburst and extended emission. The central component, corresponding to the inner 500 pc of the starburst region of the galaxy, is best modeled as an internally free-free absorbed synchrotron plasma, with a turnover frequency around 230 MHz. The extended emission component of the spectrum of NGC 253 is best described as a synchrotron emission flattening at low radio frequencies. We find that 34% of the extended emission (outside the central starburst region) at 1 GHz becomes partially absorbed at low radio frequencies. Most of this flattening occurs in the western region of the southeast halo, and may be indicative of synchrotron self-absorption of shock-reaccelerated electrons or an intrinsic low-energy cutoff of the electron distribution. Furthermore, we detect the large-scale synchrotron radio halo of NGC 253 in our radio images. At 154-231 MHz the halo displays the well known X-shaped/horn-like structure, and extends out to ˜8 kpc in the z-direction (from the major axis).

  5. Characteristics of Radio-Frequency Circuits Utilizing Ferroelectric Capacitors

    NASA Technical Reports Server (NTRS)

    Eskridge, Michael; Gui, Xiao; MacLeod, Todd; Ho, Fat D.

    2011-01-01

    Ferroelectric capacitors, most commonly used in memory circuits and variable components, were studied in simple analog radio-frequency circuits such as the RLC resonator and Colpitts oscillator. The goal was to characterize the RF circuits in terms of frequency of oscillation, gain, etc, using ferroelectric capacitors. Frequencies of oscillation of both circuits were measured and studied a more accurate resonant frequency can be obtained using the ferroelectric capacitors. Many experiments were conducted and data collected. A model to simulate the experimental results will be developed. Discrepancies in gain and frequency in these RF circuits when conventional capacitors are replaced with ferroelectric ones were studied. These results will enable circuit designers to anticipate the effects of using ferroelectric components in their radio- frequency applications.

  6. Measurement of particle transport coefficients on Alcator C-Mod

    SciTech Connect

    Luke, T.C.T.

    1994-10-01

    The goal of this thesis was to study the behavior of the plasma transport during the divertor detachment in order to explain the central electron density rise. The measurement of particle transport coefficients requires sophisticated diagnostic tools. A two color interferometer system was developed and installed on Alcator C-Mod to measure the electron density with high spatial ({approx} 2 cm) and high temporal ({le} 1.0 ms) resolution. The system consists of 10 CO{sub 2} (10.6 {mu}m) and 4 HeNe (.6328 {mu}m) chords that are used to measure the line integrated density to within 0.08 CO{sub 2} degrees or 2.3 {times} 10{sup 16}m{sup {minus}2} theoretically. Using the two color interferometer, a series of gas puffing experiments were conducted. The density was varied above and below the threshold density for detachment at a constant magnetic field and plasma current. Using a gas modulation technique, the particle diffusion, D, and the convective velocity, V, were determined. Profiles were inverted using a SVD inversion and the transport coefficients were extracted with a time regression analysis and a transport simulation analysis. Results from each analysis were in good agreement. Measured profiles of the coefficients increased with the radius and the values were consistent with measurements from other experiments. The values exceeded neoclassical predictions by a factor of 10. The profiles also exhibited an inverse dependence with plasma density. The scaling of both attached and detached plasmas agreed well with this inverse scaling. This result and the lack of change in the energy and impurity transport indicate that there was no change in the underlying transport processes after detachment.

  7. Overview of recent Alcator C-Mod research

    NASA Astrophysics Data System (ADS)

    Marmar, E. S.; Bai, B.; Boivin, R. L.; Bonoli, P. T.; Boswell, C.; Bravenec, R.; Carreras, B.; Ernst, D.; Fiore, C.; Gangadhara, S.; Gentle, K.; Goetz, J.; Granetz, R.; Greenwald, M.; Hallatschek, K.; Hastie, J.; Hosea, J.; Hubbard, A.; Hughes, J. W.; Hutchinson, I.; In, Y.; Irby, J.; Jennings, T.; Kopon, D.; Kramer, G.; La Bombard, B.; Lee, W. D.; Lin, Y.; Lipschultz, B.; Liptac, J.; Lynn, A.; Marr, K.; Maqueda, R.; Melby, E.; Mikkelsen, D.; Mossessian, D.; Nazikian, R.; Nevins, W. M.; Parker, R.; Pedersen, T. S.; Phillips, C. K.; Phillips, P.; Pitcher, C. S.; Porkolab, M.; Ramos, J.; Redi, M.; Rice, J.; Rogers, B. N.; Rowan, W. L.; Sampsell, M.; Schilling, G.; Scott, S.; Snipes, J.; Snyder, P.; Stotler, D.; Taylor, G.; Terry, J. L.; Wilson, H.; Wilson, J. R.; Wolfe, S. M.; Wukitch, S.; Xu, X. Q.; Youngblood, B.; Yuh, H.; Zhurovich, K.; Zweben, S.

    2003-12-01

    Research on the Alcator C-Mod tokamak [1] is focused on high particle- and power-density plasma regimes to understand particle and energy transport in the core, the dynamics of the H-mode pedestal, and scrape-off layer and divertor physics. The auxiliary heating is provided exclusively by RF waves, and both the physics and technology of RF heating and current drive are studied. The momentum which is manifested in strong toroidal rotation, in the absence of direct momentum input, has been shown to be transported in from the edge of the plasma following the L-H transition, with timescale comparable to that for energy transport. In discharges which develop internal transport barriers, the rotation slows first inside the barrier region, and then subsequently outside of the barrier foot. Heat pulse propagation studies using sawteeth indicate a very narrow region of strongly reduced energy transport, located near r/a = 0.5. Addition of on-axis ICRF heating arrests the buildup of density and impurities, leading to quasi-steady conditions. The quasi-coherent mode associated with enhanced D-Alpha (EDA) H-mode appears to be due to a resistive ballooning instability. As the pedestal pressure gradient and temperature are increased in EDA H-mode, small ELMs appear; detailed modelling indicates that these are due to intermediate n peeling-ballooning modes. Phase contrast imaging has been used to directly detect density fluctuations driven by ICRF waves in the core of the plasma, and mode conversion to an intermediate wavelength ion cyclotron wave has been observed for the first time. The bursty turbulent density fluctuations, observed to drive rapid cross-field particle transport in the edge plasma, appear to play a key role in the dynamics of the density limit. Preparations for quasi-steady-state advanced tokamak studies with lower hybrid current drive are well underway, and time dependent modelling indicates that regimes with high bootstrap fraction can be produced.

  8. Overview of the Alcator C-MOD Research Program

    SciTech Connect

    S. Scott, A. Bader, M. Bakhtiari, N. Basse, W. Beck, T. Biewer, S. Bernabei, P. Bonoli, et al.

    2007-11-13

    Recent research on the high-field, high-density diverted Alcator C-MOD tokamak has focussed on the plasma physics and plasma engineering required for ITER and for attractive fusion reactors. Experimental campaigns over the past two years have focused on understanding the physical mechanisms that affect the plasma performance realized with all-molybdenum walls versus walls with low-Z coatings. RF sheath rectification along flux tubes that intersect the RF antenna is found to be a major cause of localized boron erosion and impurity generation. Initial lower-hybrid current drive (LHCD) experiments (PLH < 900 kW) have demonstrated fully noninductive current drive at Ιρ ~ 1.0 MA with good efficiency, Ιdrive = 0.4PLH/neoR (MA,MW,1020m-3,m). Disruption mitigation via massive gas-jet impurity puffing has proven successful at high plasma pressure, indicating this technique has promise for implementation on ITER. Pressure gradients in the near SOL of Ohmic L-mode plasmas are observed to scale consistently as Ι 2(over)ρ, and show a significant dependence on X-point topology. Modeling of H-mode edge fueling indicates high self-screening to neutrals in the pedestal and scrape-off layer (SOL), and reproduces experimental density pedestal response to changes in neutral source. Detailed measurements of the temperature and density profiles in the near sol and fast framing movies of the turbulent structures provide improved understanding of the mechanisms that control transport in the edge region.

  9. Scaling of Global LHCD Efficiency in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Scott, S.; Bonoli, P.; Mumgaard, R.; Shiraiwa, S.; Wallace, G.; Whyte, D.

    2014-10-01

    A database of global current-drive efficiency by Lower Hybrid waves has been assembled covering nine years of C-Mod operation. Plasma conditions were averaged over 50-ms time slices during equilibrated current-profile time periods, excluding transient events such as Prad spikes. The database comprises 1800 time slices spanning: PLH < 1 . 1 MW, n|| = 1.5-2.3, Ip = 0.3-1.0 MA, nebar = 0.35-1.5 e20. Nine percent of the data points are approximately non-inductive (ΔV/V >0.9), while 17 percent experience low m,n MHD that degrades the LHCD efficiency. During LHCD, a simple Spitzer model is used to estimate the residual inductively-driven current which scales the pre-LH current by the ratio of the loop voltage to the pre-LH loop voltage, correcting also for the change in conductivity. The current-drive efficiency is defined as η = nebar R ILHCD /PLH [1020 MA/m2 MW], where ILHCD is the current driven by LH waves and PLH is the forward-directed LH power. In approximately non-inductive, MHD-free plasmas, the global current drive efficiency shows a striking positive correlation with plasma current, η = 0.065 + 0.40 x Ip [MA], reaching a value of η = 0.47 at Ip =1.02 MA. A positive but weaker correlation between η and Teo does not explain the η dependence on Ip. Preliminary GENRAY/CQL3D simulations at Ip =1.0 MA predict 900 kA of driven current versus 1000 kA observed. Comparisons of η to numerical simulations over a wide parameter range will be discussed. Work supported by DoE Awards DE-FC02-99ER54512 and DE-AC02-09CH11466.

  10. Double Transport Barrier Experiments on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Wukitch, S. J.

    2001-10-01

    Double transport barrier modes (core and edge barrier) have been observed with intense, off-axis ICRF heating in Alcator C-Mod. An internal transport barrier (ITB) is routinely produced in enhanced D_α H-mode, 4.5 T, sawtoothing discharges with the minority resonance layer r/a ~ -0.5 to the high field side of the magnetic axis during current flat top. The measured density and calculated \\chi_eff (from TRANSP) profiles suggest the central particle and thermal barriers are formed less than one energy confinement time after the H-mode develops. The density, radiation and \\chi_eff profiles indicate that the foot of the barrier is r/a ~ 0.5. Furthermore, the thermal and particle confinement are improved across the entire region inside the barrier. Interestingly, the central toroidal rotation reverses from co-current direction, typical of H-mode plasmas, to the counter-current direction as the density profile becomes more peaked. Typically, increased core impurity radiation, presumably due to improved particle confinement, leads to a barrier collapse after ~ 10 energy confinement times. A BT scan showed that the double barrier mode was accessed for B_T=4.1-4.5 T with the foot of the ITB remaining at r/a ~ 0.5. Importantly, experiments with additional central ICRF heating maintained the double barrier mode for as long as the ICRF was applied ( ~ 6 confinement times). With the application of central heating, the central rotation reversed back to the co-current direction. In addition, the density peaking and impurity accumulation were arrested with the application of the central heating. Thus, the additional central heating appears to provide a means for controlling this mode.

  11. Nonreciprocal Radio Frequency Transduction in a Parametric Mechanical Artificial Lattice

    NASA Astrophysics Data System (ADS)

    Huang, Pu; Zhang, Liang; Zhou, Jingwei; Tian, Tian; Yin, Peiran; Duan, Changkui; Du, Jiangfeng

    2016-07-01

    Generating nonreciprocal radio frequency transduction plays important roles in a wide range of research and applications, and an aspiration is to integrate this functionality into microcircuits without introducing a magnetic field, which, however, remains challenging. By designing a 1D artificial lattice structure with a neighbor interaction engineered parametrically, we predicted a nonreciprocity transduction with a large unidirectionality. We then experimentally demonstrated the phenomenon on a nanoelectromechanical chip fabricated by conventional complementary metal-silicon processing. A unidirectionality with isolation as high as 24 dB is achieved, and several different transduction schemes are realized by programing the control voltage topology. Apart from being used as a radio frequency isolator, the system provides a way to build a practical on-chip programmable device for broad research and applications in the radio frequency domain.

  12. Exposure of radio officers to radio frequency radiation on Danish merchant ships

    SciTech Connect

    Skotte, J.

    1984-12-01

    Exposure of radio officers to radio frequency radiation from telegraphy and telephony equipment on ships was investigated. Eighty-five measurements were made of 12 radio tranmitters operating in the 400 kHz to 25 MHz range (power up to 1200 W) and three VHF telephony transmitters in the 150 MHz band. Field measurments were made at positions normally occupied by radio officers approximately 1 m, 0.5 m and 0.25 m from the antenna feed lines. The distance between the radio operator and the measurement location was at least 0.5 m. The ratio of the electric and magnetic field strength squared (MF and HF transmitters) to ANSI C95.1-1982 radio frequency protection guides ranged from 0.001 to 0.26 (geometric mean 0.02) at the location of the seated radio officer's head. A minimum distance of 0.5 m between antenna feed lines and personnel is recommended. This would normally ensure an exposure below the ANSI safety levels.

  13. A Radio-Frequency-over-Fiber link for large-array radio astronomy applications

    NASA Astrophysics Data System (ADS)

    Mena, J.; Bandura, K.; Cliche, J.-F.; Dobbs, M.; Gilbert, A.; Tang, Q. Y.

    2013-10-01

    A prototype 425-850 MHz Radio-Frequency-over-Fiber (RFoF) link for the Canadian Hydrogen Intensity Mapping Experiment (CHIME) is presented. The design is based on a directly modulated Fabry-Perot (FP) laser, operating at ambient temperature, and a single-mode fiber. The dynamic performance, gain stability, and phase stability of the RFoF link are characterized. Tests on a two-element interferometer built at the Dominion Radio Astrophysical Observatory for CHIME prototyping demonstrate that RFoF can be successfully used as a cost-effective solution for analog signal transport on the CHIME telescope and other large-array radio astronomy applications.

  14. Methods, Systems and Apparatuses for Radio Frequency Identification

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W. (Inventor); Chu, Andrew W. (Inventor); Lin, Gregory Y. (Inventor); Kennedy, Timothy F. (Inventor); Ngo, Phong H. (Inventor); Brown, Dewey T. (Inventor); Byerly, Diane (Inventor)

    2016-01-01

    A system for radio frequency identification (RFID) includes an enclosure defining an interior region interior to the enclosure, and a feed for generating an electromagnetic field in the interior region in response to a signal received from an RFID reader via a radio frequency (RF) transmission line and, in response to the electromagnetic field, receiving a signal from an RFID sensor attached to an item in the interior region. The structure of the enclosure may be conductive and may include a metamaterial portion, an electromagnetically absorbing portion, or a wall extending in the interior region. Related apparatuses and methods for performing RFID are provided.

  15. Methods, Systems and Apparatuses for Radio Frequency Identification

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W. (Inventor); Chu, Andrew W. (Inventor); Lin, Gregory Y. (Inventor); Kennedy, Timothy F. (Inventor); Ngo, Phong H. (Inventor); Brown, Dewey T. (Inventor); Byerly, Diane (Inventor); Boose, Haley C. (Inventor)

    2015-01-01

    A system for radio frequency identification (RFID) includes an enclosure defining an interior region interior to the enclosure, and a feed for generating an electromagnetic field in the interior region in response to a signal received from an RFID reader via a radio frequency (RF) transmission line and, in response to the electromagnetic field, receiving a signal from an RFID sensor attached to an item in the interior region. The structure of the enclosure may be conductive and may include a metamaterial portion, an electromagnetically absorbing portion, or a wall extending in the interior region. Related apparatuses and methods for performing RFID are provided.

  16. Methods, Systems and Apparatuses for Radio Frequency Identification

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W. (Inventor); Chu, Andrew W. (Inventor); Lin, Gregory Y. (Inventor); Kennedy, Timothy F. (Inventor); Ngo, Phong H. (Inventor); Brown, Dewey T. (Inventor); Byerly, Diane (Inventor)

    2017-01-01

    A system for radio frequency identification (RFID) includes an enclosure defining an interior region interior to the enclosure, and a feed for generating an electromagnetic field in the interior region in response to a signal received from an RFID reader via a radio frequency (RF) transmission line and, in response to the electromagnetic field, receiving a signal from an RFID sensor attached to an item in the interior region. The structure of the enclosure may be conductive and may include a metamaterial portion, an electromagnetically absorbing portion, or a wall extending in the interior region. Related apparatuses and methods for performing RFID are provided.

  17. Dual radio frequency plasma source: Understanding via electrical asymmetry effect

    SciTech Connect

    Bora, B.; Bhuyan, H.; Favre, M.; Wyndham, E.; Wong, C. S.

    2013-04-21

    On the basis of the global model, the influences of driving voltage and frequency on electron heating in geometrically symmetrical dual capacitively coupled radio frequency plasma have been investigated. Consistent with the experimental and simulation results, non-monotonic behavior of dc self bias and plasma heating with increasing high frequency is observed. In addition to the local maxima of plasma parameters for the integer values of the ratio between the frequencies ({xi}), ourstudies also predict local maxima for odd integer values of 2{xi} as a consequence of the electrical asymmetry effect produced by dual frequency voltage sources.

  18. Low-frequency radio navigation system

    NASA Technical Reports Server (NTRS)

    Wallis, D. E. (Inventor)

    1983-01-01

    A method of continuous wave navigation using four transmitters operating at sufficiently low frequencies to assure essentially pure groundwave operation is described. The transmitters are keyed to transmit constant bursts (1/4 sec) in a time-multiplexed pattern with phase modulation of at least one transmitter for identification of the transmitters and with the ability to identify the absolute phase of the modulated transmitter and the ability to modulate low rate data for transmission. The transmitters are optimally positioned to provide groundwave coverage over a service region of about 50 by 50 km for the frequencies selected in the range of 200 to 500 kHz, but their locations are not critical because of the beneficial effect of overdetermination of position of a receiver made possible by the fourth transmitter. Four frequencies are used, at least two of which are selected to provide optimal resolution. All transmitters are synchronized to an average phase as received by a monitor receiver.

  19. SYNCHROTRON RADIO FREQUENCY PHASE CONTROL SYSTEM

    DOEpatents

    Plotkin, M.; Raka, E.C.; Snyder, H.S.

    1963-05-01

    A system for canceling varying phase changes introduced by connecting cables and control equipment in an alternating gradient synchrotron is presented. In a specific synchrotron embodiment twelve spaced accelerating stations for the proton bunches are utilized. In order to ensure that the protons receive their boost or kick at the exact instant necessary it is necessary to compensate for phase changes occurring in the r-f circuitry over the wide range of frequencies dictated by the accelerated velocities of the proton bunches. A constant beat frequency is utilized to transfer the r-f control signals through the cables and control equipment to render the phase shift constant and readily compensable. (AEC)

  20. Radio frequency interference mitigation using deep convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Akeret, J.; Chang, C.; Lucchi, A.; Refregier, A.

    2017-01-01

    We propose a novel approach for mitigating radio frequency interference (RFI) signals in radio data using the latest advances in deep learning. We employ a special type of Convolutional Neural Network, the U-Net, that enables the classification of clean signal and RFI signatures in 2D time-ordered data acquired from a radio telescope. We train and assess the performance of this network using the HIDE &SEEK radio data simulation and processing packages, as well as early Science Verification data acquired with the 7m single-dish telescope at the Bleien Observatory. We find that our U-Net implementation is showing competitive accuracy to classical RFI mitigation algorithms such as SEEK's SUMTHRESHOLD implementation. We publish our U-Net software package on GitHub under GPLv3 license.

  1. Radio frequency noise from clinical linear accelerators.

    PubMed

    Burke, B; Lamey, M; Rathee, S; Murray, B; Fallone, B G

    2009-04-21

    There is a great deal of interest in image-guided radiotherapy (IGRT), and to advance the state of IGRT, an integrated linear accelerator-magnetic resonance (linac-MR) system has been proposed. Knowledge of the radiofrequency (RF) emissions near a linac is important for the design of appropriate RF shielding to facilitate the successful integration of these two devices. The frequency spectra of both electric and magnetic fields of RF emission are measured using commercially available measurement probes near the treatment couch in three clinical linac vaults with distinct physical layouts. The magnitude spectrum of the RF power emitted from these three linacs is then estimated. The electric field spectrum was also measured at several distances from the linac modulator in order to assess the effects of variations in spatial location in the treatment vault. A large fraction of RF power is emitted at frequencies below 5 MHz. However, the measured RF power at the Larmor frequency (8.5 MHz) of the proposed 0.2 T MR in the linac-MR (0.4-14.6 microW m(-2)) is still large enough to cause artifacts in MR images. Magnetron-based linacs generally emit much larger RF power than klystron-based linacs. In the frequency range of 1-50 MHz, only slight variation in the measured electric field is observed as a function of measurement position. This study suggests that the RF emissions are strong enough to cause image artifacts in MRI systems.

  2. Low frequency follow up of radio haloes and relics in the GMRT Radio Halo Cluster Survey

    NASA Astrophysics Data System (ADS)

    Venturi, T.; Giacintucci, S.; Dallacasa, D.; Cassano, R.; Brunetti, G.; Macario, G.; Athreya, R.

    2013-03-01

    Aims: To gain insight into the origin of diffuse radio sources in galaxy clusters and their connection with cluster merger processes, we performed GMRT low frequency observations of the radio haloes, relics and new candidates belonging to the GMRT radio Halo cluster sample first observed at 610 MHz. Our main aim was to investigate their observational properties and integrated spectra at frequencies below 610 MHz. Methods: High sensitivity imaging was performed using the GMRT at 325 MHz and 240 MHz. The properties of the diffuse emission in each cluster were compared to our 610 MHz images and/or literature information available at other frequencies, in order to derive the integrated spectra over a wide frequency range. Results: Cluster radio haloes form a composite class in terms of spectral properties. Beyond the classical radio haloes, whose spectral index α is in the range ~1.2 ÷ 1.3 (S ∝ ν- α), we found sources with α ~ 1.6 ÷ 1.9. This result supports the idea that the spectra of the radiating particles in radio haloes is not universal and that inefficient mechanisms of particle acceleration are responsible for their origin. We also found a variety of brightness distributions, i.e. both centrally peaked and clumpy haloes. Even though the thermal and relativistic plasma tend to occupy the same cluster volume, in some cases a positional shift between the radio and X-ray peaks of emission is evident. Our observations also revealed diffuse cluster sources that cannot be easily classified as either haloes or relics. New candidate relics were found in A 1300 and in A 1682, and in some clusters "bridges" of radio emission have been detected, connecting the relic and radio halo emission. Finally, by combining our new data with information in the literature, we derived the Log LX - Log P325 MHz correlation for radio haloes, and investigated the possible correlation of the spectral index of radio haloes with the temperature of the intracluster medium.

  3. 78 FR 13893 - Certain Radio Frequency Identification (“RFID”) Products and Components Thereof; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-01

    ... COMMISSION Certain Radio Frequency Identification (``RFID'') Products and Components Thereof; Notice of... Commission has received a complaint entitled Certain Radio Frequency Identification (``RFID'') Products and... frequency identification (``RFID'') products and components thereof. The complaint names as...

  4. Analysis of Jovian low frequency radio emissions

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.

    1985-01-01

    The density of ions in the Io plasma torus and the scattering of these ions by low frequency electromagnetic emissions detected by Voyager 1 were studied. The ion density profile was investigated using whistler dispersion measurements provided by the Voyager plasma instrument. The scale height and absolute density of H+ ions in the vicinity of the plasma torus were determined by combining the measured plasma densities with the whistler dispersion measurements. A theoretical analysis of the modes of propagation of low frequency electromagnetic emissions in the torus was undertaken. Polarization reversal effects and rough estimates of the ion diffusion coefficient were utilized. Numerical evaluation of the ion diffusion coefficients in the torus were made using the observed Voyager 1 wave intensities. Results show that the observed wave intensities produce significant ion diffusion effects in the ion torus.

  5. The development of an Omegratron plasma ion mass spectrometer for Alcator C-Mod

    SciTech Connect

    Thomas, E.E. Jr.

    1993-05-01

    A new diagnostic device, the Omegatron Probe, has been developed to investigate relative impurity levels and impurity charge state distribution in the Alcator C-Mod Tokamak edge plasma. The Omegatron probe consists of two principal components, a ``front-end`` of independently biased grids, arranged in a gridded energy analyzer fashion and a large collection cavity. Particles enter the probe in a thin ``ribbon`` through a knife-edge slit. The grids provide a means to measure and control the parallel energy distribution of the ions. In the collection cavity, an oscillating electric field is applied perpendicularly to the ambient magnetic field. Ions whose cyclotron frequencies are resonant with this electric field oscillation will gain perpendicular energy and be collected. In this way, the probe can be operated in two modes: first, by fixing the potentials on the grids and sweeping frequencies to obtain a `` Z/m spectrum`` of ion species and second, by fixing the frequency and sweeping the grid potentials to obtain the distribution function of an individual impurity species. The Omegatron probe performed successfully in tests on a Hollow Cathode Discharge (HCD) linear plasma column. It obtained measurements of T{sub e} {approx} 5 eV, T{sub i} (H{sup +}) {approx} 2.0 {plus_minus} 0.2 eV, n{sub 0} {approx} 9 {times} 10{sup 15} m{sup {minus}3}, RMS potential fluctuation levels of {approximately} 0.5 {plus_minus} 0.05 {plus_minus} T{sub e}, and obtained ``Z/m`` spectra for the plasma ions (H{sup +}, H{sub 2}{sup +}, He{sup +}). Additional experiments confirmed the theoretical scalings of the f/{delta}f resolution with the applied electric field and magnetic field strengths. The instrument yielded an absolute level of resolution, f/{delta}f, of approximately 2.5 to 3 times the theoretical values. Finally, the results from the HCD are used to project operation on Alcator C-Mod.

  6. Overview of the Alcator C-MOD research programme

    NASA Astrophysics Data System (ADS)

    Scott, S.; Bader, A.; Bakhtiari, M.; Basse, N.; Beck, W.; Biewer, T.; Bernabei, S.; Bonoli, P.; Bose, B.; Bravenec, R.; Bespamyatnov, I.; Childs, R.; Cziegler, I.; Doerner, R.; Edlund, E.; Ernst, D.; Fasoli, A.; Ferrara, M.; Fiore, C.; Fredian, T.; Graf, A.; Graves, T.; Granetz, R.; Greenough, N.; Greenwald, M.; Grimes, M.; Grulke, O.; Gwinn, D.; Harvey, R.; Harrison, S.; Hender, T. C.; Hosea, J.; Howell, D. F.; Hubbard, A. E.; Hughes, J. W.; Hutchinson, I.; Ince-Cushman, A.; Irby, J.; Jernigan, T.; Johnson, D.; Ko, J.; Koert, P.; La Bombard, B.; Kanojia, A.; Lin, L.; Lin, Y.; Lipschultz, B.; Liptac, J.; Lynn, A.; MacGibbon, P.; Marmar, E.; Marr, K.; May, M.; Mikkelsen, D. R.; McDermott, R.; Parisot, A.; Parker, R.; Phillips, C. K.; Phillips, P.; Porkolab, M.; Reinke, M.; Rice, J.; Rowan, W.; Sampsell, M.; Schilling, G.; Schmidt, A.; Smick, N.; Smirnov, A.; Snipes, J.; Stotler, D.; Stillerman, J.; Tang, V.; Terry, D.; Terry, J.; Ulrickson, M.; Vieira, R.; Wallace, G.; Whyte, D.; Wilson, J. R.; Wright, G.; Wright, J.; Wolfe, S.; Wukitch, S.; Wurden, G.; Yuh, H.; Zhurovich, K.; Zaks, J.; Zweben, S.

    2007-10-01

    Alcator C-MOD has compared plasma performance with plasma-facing components (PFCs) coated with boron to all-metal PFCs to assess projections of energy confinement from current experiments to next-generation burning tokamak plasmas. Low-Z coatings reduce metallic impurity influx and diminish radiative losses leading to higher H-mode pedestal pressure that improves global energy confinement through profile stiffness. RF sheath rectification along flux tubes that intersect the RF antenna is found to be a major cause of localized boron erosion and impurity generation. Initial lower hybrid current drive (LHCD) experiments (PLH < 900 kW) in preparation for future advanced-tokamak studies have demonstrated fully non-inductive current drive at Ip ~ 1.0 MA with good efficiency, Idrive = 0.4 PLH/neoR (MA, MW, 1020 m-3,m). The potential to mitigate disruptions in ITER through massive gas-jet impurity puffing has been extended to significantly higher plasma pressures and shorter disruption times. The fraction of total plasma energy radiated increases with the Z of the impurity gas, reaching 90% for krypton. A positive major-radius scaling of the error field threshold for locked modes (Bth/B ~ R0.68±0.19) is inferred from its measured variation with BT that implies a favourable threshold value for ITER. A phase contrast imaging diagnostic has been used to study the structure of Alfvén cascades and turbulent density fluctuations in plasmas with an internal transport barrier. Understanding the mechanisms responsible for regulating the H-mode pedestal height is also crucial for projecting performance in ITER. Modelling of H-mode edge fuelling indicates high self-screening to neutrals in the pedestal and scrape-off layer (SOL), and reproduces experimental density pedestal response to changes in neutral source, including a weak variation of pedestal height and constant width. Pressure gradients in the near SOL of Ohmic L-mode plasmas are observed to scale consistently as I_p^2

  7. Systems and methods for determining radio frequency interference

    NASA Technical Reports Server (NTRS)

    Johannsen, K. G.; Sabaroff, S.; Henry, V. F. (Inventor)

    1978-01-01

    The presence, frequency and amplitude of radio frequency interference superimposed on communication links originating from a terrestrial region and including a relay in a geostationary spacecraft are determined by pointing a narrow beam antenna on the satellite at the terrestrial region. The level of noise radiated from the region to the antenna is measured at a terrestrial station that is usually remote from the region. Calibrating radio signals having a plurality of predetermined EIRP's (Effective Isotropic Radiated Power) and frequencies in the spectrum are transmitted from the region through the spacecraft narrow beam antenna back to the station. At the station, the levels of the received calibrating signals are separately measured for each of the frequency bands and EIRP's.

  8. A radio-frequency sheath model for complex waveforms

    SciTech Connect

    Turner, M. M.; Chabert, P.

    2014-04-21

    Plasma sheaths driven by radio-frequency voltages occur in contexts ranging from plasma processing to magnetically confined fusion experiments. An analytical understanding of such sheaths is therefore important, both intrinsically and as an element in more elaborate theoretical structures. Radio-frequency sheaths are commonly excited by highly anharmonic waveforms, but no analytical model exists for this general case. We present a mathematically simple sheath model that is in good agreement with earlier models for single frequency excitation, yet can be solved for arbitrary excitation waveforms. As examples, we discuss dual-frequency and pulse-like waveforms. The model employs the ansatz that the time-averaged electron density is a constant fraction of the ion density. In the cases we discuss, the error introduced by this approximation is small, and in general it can be quantified through an internal consistency condition of the model. This simple and accurate model is likely to have wide application.

  9. Twenty Years of Research on the Alcator C-Mod Tokamak

    NASA Astrophysics Data System (ADS)

    Greenwald, Martin

    2013-10-01

    Alcator C-Mod is a compact, high-field tokamak, whose unique design and operating parameters have produced a wealth of new and important results since its start in 1993, contributing data that extended tests of critical physical models into new parameter ranges and into new regimes. Using only RF for heating and current drive with innovative launching structures, C-Mod operates routinely at very high power densities. Research highlights include direct experimental observation of ICRF mode-conversion, ICRF flow drive, demonstration of Lower-Hybrid current drive at ITER-like densities and fields and, using a set of powerful new diagnostics, extensive validation of advanced RF codes. C-Mod spearheaded the development of the vertical-target divertor and has always operated with high-Z metal plasma facing components--an approach adopted for ITER. C-Mod has made ground-breaking discoveries in divertor physics and plasma-material interactions at reactor-like power and particle fluxes and elucidated the critical role of cross-field transport in divertor operation, edge flows and the tokamak density limit. C-Mod developed the I-mode and EDA H-mode regimes which have high performance without large ELMs and with pedestal transport self-regulated by short-wavelength electromagnetic waves. C-Mod has carried out pioneering studies of intrinsic rotation and found that self-generated flow shear can be strong enough to significantly modify transport. C-Mod made the first quantitative link between pedestal temperature and H-mode performance, showing that the observed self-similar temperature profiles were consistent with critical-gradient-length theories and followed up with quantitative tests of nonlinear gyrokinetic models. Disruption studies on C-Mod provided the first observation of non-axisymmetric halo currents and non-axisymmetric radiation in mitigated disruptions. Work supported by U.S. DoE

  10. Localized radio frequency communication using asynchronous transfer mode protocol

    DOEpatents

    Witzke, Edward L.; Robertson, Perry J.; Pierson, Lyndon G.

    2007-08-14

    A localized wireless communication system for communication between a plurality of circuit boards, and between electronic components on the circuit boards. Transceivers are located on each circuit board and electronic component. The transceivers communicate with one another over spread spectrum radio frequencies. An asynchronous transfer mode protocol controls communication flow with asynchronous transfer mode switches located on the circuit boards.

  11. Authentication of Radio Frequency Identification Devices Using Electronic Characteristics

    ERIC Educational Resources Information Center

    Chinnappa Gounder Periaswamy, Senthilkumar

    2010-01-01

    Radio frequency identification (RFID) tags are low-cost devices that are used to uniquely identify the objects to which they are attached. Due to the low cost and size that is driving the technology, a tag has limited computational capabilities and resources. This limitation makes the implementation of conventional security protocols to prevent…

  12. Modification of the DSN radio frequency angular tropospheric refraction model

    NASA Technical Reports Server (NTRS)

    Berman, A. L.

    1977-01-01

    The previously derived DSN Radio Frequency Angular Tropospheric Refraction Model contained an assumption which was subsequently seen to be at a variance with the theoretical basis of angular refraction. The modification necessary to correct the model is minor in that the value of a constant is changed.

  13. Radio frequency telemetry system for sensors and actuators

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N. (Inventor); Miranda, Felix A. (Inventor)

    2003-01-01

    The present invention discloses and teaches apparatus for combining Radio Frequency (RF) technology with novel micro-inductor antennas and signal processing circuits for RF telemetry of real time, measured data, from microelectromechanical system (MEMS) sensors, through electromagnetic coupling with a remote powering/receiving device. Such technology has many applications, but is especially useful in the biomedical area.

  14. Radio Frequency Telemetry System for Sensors and Actuators

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N. (Inventor); Miranda, Felix A. (Inventor)

    2003-01-01

    The present invention discloses and teaches apparatus for combining Radio Frequency (RF) technology with novel micro-inductor antennas and signal processing circuits for RF telemetry of real time, measured data, from microelectromechanical system (MEMS) sensors, through electromagnetic coupling with a remote poweringheceiving device. Such technology has many applications, but is especially useful in the biomedical area.

  15. How can radio frequency identification technology impact nursing practice?

    PubMed

    Billingsley, Luanne; Wyld, David

    2014-12-01

    Radio frequency identification (RFID) technology can save nurses time, improve quality of care, en hance patient and staff safety, and decrease costs. However, without a better understanding of these systems and their benefits to patients and hospitals, nurses may be slower to recommend, implement, or adopt RFID technology into practice.

  16. Radio-frequency energy in fusion power generation

    SciTech Connect

    Lawson, J.Q.; Becraft, W.R.; Hoffman, D.J.

    1983-01-01

    The history of radio-frequency (rf) energy in fusion experiments is reviewed, and the status of current efforts is described. Potential applications to tasks other than plasma heating are described, as are the research and development needs of rf energy technology.

  17. Low Frequency Radio Astronomy Summary: A Festschrift For Bill Erickson

    NASA Astrophysics Data System (ADS)

    Clark, B. G.; Kassim, N. E.; Perez, M. R.

    2005-12-01

    The science and technological issues presented at this workshop in honor of Bill Erickson's 74th birthday, are certainly opening up a new window of astronomical observations at the low end of the radio frequency spectrum. We briefly review some of the contributions concentrating our comments on the topics of science, technology, and history.

  18. Magnetically programmable surface acoustic wave radio frequency identification tags

    NASA Astrophysics Data System (ADS)

    Chin, Matthew; Buford, Benjamin; Dhagat, Pallavi

    2011-04-01

    A reconfigurable surface acoustic wave reflector using an integrated magnetoresistive bit was fabricated and evaluated for use in programmable radio frequency identification tags. It is shown that two distinct reflectivities can be achieved depending on the magnetic state of the bit. The experimental results are compared with theoretical calculations of optimal reflectivities achievable from resistively loaded surface acoustic wave transducers.

  19. Radio-frequency and microwave energies, magnetic and electric fields

    NASA Technical Reports Server (NTRS)

    Michaelson, S. M.

    1975-01-01

    The biological effects of radio frequency, including microwave, radiation are considered. Effects on body temperature, the eye, reproductive systems, internal organs, blood cells, the cardiovascular system, and the central nervous system are included. Generalized effects of electric and magnetic fields are also discussed. Experimentation with animals and clinical studies on humans are cited, and possible mechanisms of the effects observed are suggested.

  20. 75. Transmitter building no. 102, view of typical radio frequency ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    75. Transmitter building no. 102, view of typical radio frequency switching group for lower antenna A & B and upper antenna A & B and MIP/MWOC automated interface cabinet. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  1. Authentication of Radio Frequency Identification Devices Using Electronic Characteristics

    ERIC Educational Resources Information Center

    Chinnappa Gounder Periaswamy, Senthilkumar

    2010-01-01

    Radio frequency identification (RFID) tags are low-cost devices that are used to uniquely identify the objects to which they are attached. Due to the low cost and size that is driving the technology, a tag has limited computational capabilities and resources. This limitation makes the implementation of conventional security protocols to prevent…

  2. INNOVATIVE TECHNOLOGY EVALUATION REPORT: RADIO FREQUENCY HEATING, KAI TECHNOLOGIES, INC.

    EPA Science Inventory

    A demonstration of KAI Technologies in-situ radio frequency heating system for soil treatment was conducted from January 1994 to July 1994 at Kelly Air Force Base in San Antonio, Texas. This demonstration was conducted as a joint effort between the USEPA and the USAF. The technol...

  3. INNOVATIVE TECHNOLOGY EVALUATION REPORT: RADIO FREQUENCY HEATING, KAI TECHNOLOGIES, INC.

    EPA Science Inventory

    A demonstration of KAI Technologies in-situ radio frequency heating system for soil treatment was conducted from January 1994 to July 1994 at Kelly Air Force Base in San Antonio, Texas. This demonstration was conducted as a joint effort between the USEPA and the USAF. The technol...

  4. Modification of the DSN radio frequency angular tropospheric refraction model

    NASA Technical Reports Server (NTRS)

    Berman, A. L.

    1977-01-01

    The previously derived DSN Radio Frequency Angular Tropospheric Refraction Model contained an assumption which was subsequently seen to be at a variance with the theoretical basis of angular refraction. The modification necessary to correct the model is minor in that the value of a constant is changed.

  5. Radio-frequency and microwave energies, magnetic and electric fields

    NASA Technical Reports Server (NTRS)

    Michaelson, S. M.

    1975-01-01

    The biological effects of radio frequency, including microwave, radiation are considered. Effects on body temperature, the eye, reproductive systems, internal organs, blood cells, the cardiovascular system, and the central nervous system are included. Generalized effects of electric and magnetic fields are also discussed. Experimentation with animals and clinical studies on humans are cited, and possible mechanisms of the effects observed are suggested.

  6. Determining radio frequency heating uniformity in mixed beans for disinfestations

    USDA-ARS?s Scientific Manuscript database

    Our laboratory collaborates with USDA-ARS in Parlier, CA in developing thermal treatments based on radio frequency (RF) energy for insect control in legumes to meet postharvest phytosanitary regulations for international market. Our current study focuses on lentils and chickpeas that are two importa...

  7. Radio frequency excited CO/sub 2/ waveguide lasers

    SciTech Connect

    Sinclair, R.L.; Tulip, J.L.

    1984-10-01

    This paper reports on the operation of radio frequency (rf) excited carbon dioxide waveguide lasers. An efficiency of greater than 10% has been achieved with a maximum power of 21 W. The effects of bore size, waveguide fabrication techniques, and gas mixture are discussed.

  8. Radio frequency and infrared drying of sized textile warp yarns

    SciTech Connect

    Ruddick, H.G. )

    1990-11-01

    Drying sized textile warp yarns without contacting the warp is easily accomplished by either radio frequency or infrared techniques. Although the process is more expensive than conventional drying, the substantial savings accrued during subsequent weaving and finishing of the cloth can help keep the US textile industry competitive and support electrical load. 5 refs., 8 figs., 14 tabs.

  9. 29. View of typical radio frequency monitor group electronic tubetype ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. View of typical radio frequency monitor group electronic tube-type cabinet. System is water-cooled with antenna assist. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  10. Radio-frequency single-electron refrigerator.

    PubMed

    Pekola, Jukka P; Giazotto, Francesco; Saira, Olli-Pentti

    2007-01-19

    We propose a cyclic refrigeration principle based on mesoscopic electron transport. Synchronous sequential tunneling of electrons in a Coulomb-blockaded device, a normal metal-superconductor single-electron box, results in a cooling power of approximately k(B)T x f at temperature T over a wide range of cycle frequencies f. Electrostatic work, done by the gate voltage source, removes heat from the Coulomb island with an efficiency of approximately k(B)T/Delta, where Delta is the superconducting gap parameter. The performance is not affected significantly by nonidealities, for instance by offset charges. We propose ways of characterizing the system and of its practical implementation.

  11. Computer simulations of ions in radio-frequency traps

    NASA Technical Reports Server (NTRS)

    Williams, A.; Prestage, J. D.; Maleki, L.; Djomehri, J.; Harabetian, E.

    1990-01-01

    The motion of ions in a trapped-ion frequency standard affects the stability of the standard. In order to study the motion and structures of large ion clouds in a radio-frequency (RF) trap, a computer simulation of the system that incorporates the effect of thermal excitation of the ions was developed. Results are presented from the simulation for cloud sizes up to 512 ions, emphasizing cloud structures in the low-temperature regime.

  12. LOFAR MSSS: The scaling relation between AGN cavity power and radio luminosity at low radio frequencies

    NASA Astrophysics Data System (ADS)

    Kokotanekov, G.; Wise, M.; Heald, G. H.; McKean, J. P.; Bîrzan, L.; Rafferty, D. A.; Godfrey, L. E. H.; de Vries, M.; Intema, H. T.; Broderick, J. W.; Hardcastle, M. J.; Bonafede, A.; Clarke, A. O.; van Weeren, R. J.; Röttgering, H. J. A.; Pizzo, R.; Iacobelli, M.; Orrú, E.; Shulevski, A.; Riseley, C. J.; Breton, R. P.; Nikiel-Wroczyński, B.; Sridhar, S. S.; Stewart, A. J.; Rowlinson, A.; van der Horst, A. J.; Harwood, J. J.; Gürkan, G.; Carbone, D.; Pandey-Pommier, M.; Tasse, C.; Scaife, A. M. M.; Pratley, L.; Ferrari, C.; Croston, J. H.; Pandey, V. N.; Jurusik, W.; Mulcahy, D. D.

    2017-09-01

    We present a new analysis of the widely used relation between cavity power and radio luminosity in clusters of galaxies with evidence for strong AGN feedback. We studied the correlation at low radio frequencies using two new surveys - the first alternative data release of the TIFR GMRT Sky Survey (TGSS ADR1) at 148 MHz and LOFAR's firstall-sky survey, the Multifrequency Snapshot Sky Survey (MSSS) at 140 MHz. We find a scaling relation Pcav ∝ Lβ148, with a logarithmic slope of β = 0.51 ± 0.14, which is in good agreement with previous results based on data at 327 MHz. The large scatter present in this correlation confirms the conclusion reached at higher frequencies that the total radio luminosity at a single frequency is a poor predictor of the total jet power. Previous studies have shown that the magnitude of this scatter can be reduced when bolometric radio luminosity corrected for spectral aging is used. We show that including additional measurements at 148 MHz alone is insufficient to improve this correction and further reduce the scatter in the correlation. For a subset of four well-resolved sources, we examined the detected extended structures at low frequencies and compare with the morphology known from higher frequency images and Chandra X-ray maps. In the case of Perseus we discuss details in the structures of the radio mini-halo, while in the 2A 0335+096 cluster we observe new diffuse emission associated with multiple X-ray cavities and likely originating from past activity. For A2199 and MS 0735.6+7421, we confirm that the observed low-frequency radio lobes are confined to the extents known from higher frequencies. This new low-frequency analysis highlights the fact that existing cavity power to radio luminosity relations are based on a relatively narrow range of AGN outburst ages. We discuss how the correlation could be extended using low frequency data from the LOFAR Two-metre Sky Survey (LoTSS) in combination with future, complementary deeper X

  13. Low Frequency Radio Transients in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Hyman, S. D.; Bartleson, A. L.; Lazio, T. J. W.; Kassim, N. E.

    2001-12-01

    We report the detection of a new radio transient source, GCRT J1746-2757, located only 1.1 degrees north of the Galactic center. Consistent with other radio transients toward the Galactic center, this source brightened and faded on a time scale of a few months. No X-ray counterpart was detected, but upper limits suggest that GCRT J1746-2757 may have been a "fast" transient, with a time scale of days. We also report new 0.33 GHz measurements of the radio counterpart to the X-ray transient source, XTE J1748-288, previously detected and monitored at higher radio frequencies. We show that the spectrum of XTE J1748-288 steepened considerably during a period of a few months after its peak. We also discuss the need for a more efficient means of finding additional radio transients. This research is supported by funding from the Jeffress Memorial Trust, Research Corporation, and the Sweet Briar College Faculty Grants program. Basic research in radio astronomy at NRL is supported by the Office of Naval Research.

  14. Fluctuating Zonal Flows in I-mode in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Cziegler, Istvan

    2012-10-01

    Velocity fields and density fluctuations of edge turbulence have been studied in I-mode [1] plasmas of Alcator C-Mod, which are characterized by a strong thermal transport barrier in the edge while providing little or no barrier to the transport of both bulk and impurity particles. This allows access to steady state, high performance discharges without explosive edge relaxations or impurity accumulation. The key feature in the I-mode edge seems to be a weakly coherent mode (WCM) at 100-300 kHz, with δf 150 kHz and a poloidal wavenumber k 1.5,-1. Although previous work showed no clear geodesic-acoustic modes (GAM) on C-Mod, using a newly implemented, gas-puff-imaging (GPI) based time-delay-estimate (TDE) velocity inference algorithm, GAM are now shown to be ubiquitous in all I-mode discharges, with the time histories of the GAM and the WCM closely following each other through the entire duration of the regime. The central frequency of the WCM is shown to scale with HITER,98, which itself scales with the depth of the radial electric field well in the edge [2]. Thus, the I-mode presents an example of a plasma state in which quasi-static zonal flows (ZF) and GAM continuously coexist. Using both single- (density) and two-field (density-velocity) bispectral methods, the GAM are shown to be coupled to the WCM and to be responsible for its broad frequency structure. Since the WCM activity is strongly correlated to the I-mode behavior [3], and due to the known dependence of the GAM damping on collisionality [4], the decrease in GAM amplitude, and with it WCM activity, at higher densities offers an explanation for the density limit for I-mode access [3].[4pt] [1] F. Ryter et al, Plasma Phys. Control. Fusion 40 725 (1998)[0pt] [2] R. McDermott et al, Phys. Plasmas 16 056103 (2009)[0pt] [3] D. Whyte et al, Nucl. Fus. 50 105005 (2010)[0pt] [4] S. Novakovskii et al, Phys. Plasmas 4 4272 (1997)

  15. Biomedical imaging with radio-frequency radiometry

    NASA Astrophysics Data System (ADS)

    Nguyen, Andrew

    2009-03-01

    We present a technique for biomedical imaging without radiation. The technique is based on the principles of thermal radiation and RF radiometry, which can be used to generate tomographic images for medical diagnosis such as early detection of breast cancer. Thermal radiation refers to the blackbody radiation emitted by matter, which extends all through the electromagnetic spectrum. By wirelessly measuring this thermal radiation transmitted by the patient's body and internal tissues at RF frequencies using RF radiometry, a mapping of the temperature distribution can be established, from which information such as images of the body and internal tissues can be formed. Biomedical imaging using RF radiometry is valuable for biomedical imaging applications as it promises to retain the full benefits of RF imaging without exposing patients to radiation, thus benefiting not only patients but also health-care professionals and industries.

  16. Secondary electrons in dual-frequency capacitive radio frequency discharges

    NASA Astrophysics Data System (ADS)

    Schulze, Julian; Schuengel, Edmund; Czarnetzki, Uwe; Donko, Zoltan

    2011-10-01

    Two fundamentally different types of dual-frequency capacitive RF discharges can be used to realize separate control of the ion mean energy, , and the ion flux, Γi, at the electrodes: (i) Classical discharges operated at substantially different frequencies, where the low and high frequency voltage amplitudes, φlfand φhf, are used to control and Γi, respectively. (ii) Electrically asymmetric (EA) discharges operated at a fundamental frequency and its second harmonic with adjustable phase shift, θ, between the driving frequencies, which is used to control . We study the effect of secondary electrons on the quality of this separate control in both discharge types in argon at different gas pressures by PIC/MCC simulations with focus on the effect of the control parameter for on Γi for different secondary yields, γ. A dramatic effect of tuning φlf in classical discharges and a significantly less pronounced effect of tuning θ in EA discharges is observed. This is caused by a transition from α- to γ-mode induced by changing φlf and not induced by changing θ. Two fundamentally different types of dual-frequency capacitive RF discharges can be used to realize separate control of the ion mean energy, , and the ion flux, Γi, at the electrodes: (i) Classical discharges operated at substantially different frequencies, where the low and high frequency voltage amplitudes, φlfand φhf, are used to control and Γi, respectively. (ii) Electrically asymmetric (EA) discharges operated at a fundamental frequency and its second harmonic with adjustable phase shift, θ, between the driving frequencies, which is used to control . We study the effect of secondary electrons on the quality of this separate control in both discharge types in argon at different gas pressures by PIC/MCC simulations with focus on the effect of the control parameter for on Γi for different secondary yields, γ. A dramatic effect of tuning φlf in

  17. The Submillimeter Wave Electron Cyclotron Emission Diagnostic for the Alcator C-Mod Tokamak.

    NASA Astrophysics Data System (ADS)

    Hsu, Thomas C.

    This thesis describes the engineering design, construction, and operation of a high spatial resolution submillimeter wave diagnostic for electron temperature measurements on Alcator C-Mod. Alcator C-Mod is a high performance compact tokamak capable of producing diverted, shaped plasmas with a major radius of 0.67 meters, minor radius of 0.21 centimeters, plasma current of 3 MA. The maximum toroidal field is 9 Tesla on the magnetic axis. The ECE diagnostic includes three primary components: a 10.8 meter quasioptical transmission line, a rapid scanning Michelson interferometer, and a vacuum compatible calibration source. Due to the compact size and high field of the tokamak the ECE system was designed to have a spectral range from 100 to 1000 GHz with frequency resolution of 5 GHz and spatial resolution of one centimeter. The beamline uses all reflecting optical elements including two off-axis parabolic mirrors with diameters of 20 cm. and focal lengths of 2.7 meters. Techniques are presented for grinding and finishing the mirrors to sufficient surface quality to permit optical alignment of the system. Measurements of the surface figure confirm the design goal of 1/4 wavelength accuracy at 1000 GHz. Extensive broadband tests of the spatial resolution of the ECE system are compared to a fundamental mode Gaussian beam model, a three dimensional vector diffraction model, and a geometric optics model. The Michelson interferometer is a rapid scanning polarization instrument which has an apodized frequency resolution of 5 GHz and a minimum scan period of 7.5 milliseconds. The novel features of this instrument include the use of precision linear bearings to stabilize the moving mirror and active counterbalancing to reduce vibration. Beam collimation within the instrument is done with off-axis parabolic mirrors. The Michelson also includes a 2-50 mm variable aperture and two signal attenuators constructed from crossed wire grid polarizers. To make full use of the advantages

  18. Upgrade to the Gas Puff Imaging Diagnostic that Views Alcator C-Mod's Inboard Edge

    NASA Astrophysics Data System (ADS)

    Sierchio, J. M.; Terry, J. L.

    2012-10-01

    We describe an upgrade of Alcator C-Mod's Gas Puff Imaging system which views the inboard plasma edge and SOL along lines-of-sight that are approximately parallel to the local magnetic field. The views are arranged in a 2D (R,Z) array with ˜2.8 cm radial coverage and ˜2.4 cm poloidal coverage. 23 of 54 available views were coupled via fibers to individual interference filters and PIN photodiode detectors. We are in the process of upgrading the system in order to increase the sensitivity of the system by replacing the PIN photodiodes with a 4x8 array of Avalanche Photo-Diodes (APD). Light from 30 views is coupled to the single-chip APD array through a single interference filter. We expect an improvement in signal-to-noise ratio of more than 10x. The frequency response of the system will increase from ˜400 kHz to 1MHz. The dynamic range of the new system is manipulated by changing the high-voltages on the APDs. Test results of the detectors' channel-to-channel cross-talk, frequency response, and gain curves will be presented, along with schematics of the experimental setup. The upgraded system allows for more study of inboard edge fluctuations, including whether the quasi-coherent fluctuations observed in the outboard edge also exist inboard.

  19. The Low-Frequency Environment of the Murchison Widefield Array: Radio-Frequency Interference Analysis and Mitigation

    NASA Astrophysics Data System (ADS)

    Offringa, A. R.; Wayth, R. B.; Hurley-Walker, N.; Kaplan, D. L.; Barry, N.; Beardsley, A. P.; Bell, M. E.; Bernardi, G.; Bowman, J. D.; Briggs, F.; Callingham, J. R.; Cappallo, R. J.; Carroll, P.; Deshpande, A. A.; Dillon, J. S.; Dwarakanath, K. S.; Ewall-Wice, A.; Feng, L.; For, B.-Q.; Gaensler, B. M.; Greenhill, L. J.; Hancock, P.; Hazelton, B. J.; Hewitt, J. N.; Hindson, L.; Jacobs, D. C.; Johnston-Hollitt, M.; Kapińska, A. D.; Kim, H.-S.; Kittiwisit, P.; Lenc, E.; Line, J.; Loeb, A.; Lonsdale, C. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Morgan, J.; Neben, A. R.; Oberoi, D.; Ord, S. M.; Paul, S.; Pindor, B.; Pober, J. C.; Prabu, T.; Procopio, P.; Riding, J.; Udaya Shankar, N.; Sethi, S.; Srivani, K. S.; Staveley-Smith, L.; Subrahmanyan, R.; Sullivan, I. S.; Tegmark, M.; Thyagarajan, N.; Tingay, S. J.; Trott, C. M.; Webster, R. L.; Williams, A.; Williams, C. L.; Wu, C.; Wyithe, J. S.; Zheng, Q.

    2015-03-01

    The Murchison Widefield Array is a new low-frequency interferometric radio telescope built in Western Australia at one of the locations of the future Square Kilometre Array. We describe the automated radio-frequency interference detection strategy implemented for the Murchison Widefield Array, which is based on the aoflagger platform, and present 72-231 MHz radio-frequency interference statistics from 10 observing nights. Radio-frequency interference detection removes 1.1% of the data. Radio-frequency interference from digital TV is observed 3% of the time due to occasional ionospheric or atmospheric propagation. After radio-frequency interference detection and excision, almost all data can be calibrated and imaged without further radio-frequency interference mitigation efforts, including observations within the FM and digital TV bands. The results are compared to a previously published Low-Frequency Array radio-frequency interference survey. The remote location of the Murchison Widefield Array results in a substantially cleaner radio-frequency interference environment compared to Low-Frequency Array's radio environment, but adequate detection of radio-frequency interference is still required before data can be analysed. We include specific recommendations designed to make the Square Kilometre Array more robust to radio-frequency interference, including: the availability of sufficient computing power for radio-frequency interference detection; accounting for radio-frequency interference in the receiver design; a smooth band-pass response; and the capability of radio-frequency interference detection at high time and frequency resolution (second and kHz-scale respectively).

  20. The radio astronomy explorer satellite, a low-frequency observatory.

    NASA Technical Reports Server (NTRS)

    Weber, R. R.; Alexander, J. K.; Stone, R. G.

    1971-01-01

    The RAE-1 is the first spacecraft designed exclusively for radio astronomical studies. It is a small, but relatively complex, observatory including two 229-meter antennas, several radiometer systems covering a frequency range of 0.2 to 9.2 MHz, and a variety of supporting experiments such as antenna impedance probes and TV cameras to monitor antenna shape. Since its launch in July, 1968, RAE-1 has sent back some 10 billion data bits per year on measurements of long-wavelength radio phenomena in the magnetosphere, the solar corona, and the Galaxy. In this paper we describe the design, calibration, and performance of the RAE-1 experiments in detail.

  1. The radio astronomy explorer satellite, a low-frequency observatory.

    NASA Technical Reports Server (NTRS)

    Weber, R. R.; Alexander, J. K.; Stone, R. G.

    1971-01-01

    The RAE-1 is the first spacecraft designed exclusively for radio astronomical studies. It is a small, but relatively complex, observatory including two 229-meter antennas, several radiometer systems covering a frequency range of 0.2 to 9.2 MHz, and a variety of supporting experiments such as antenna impedance probes and TV cameras to monitor antenna shape. Since its launch in July, 1968, RAE-1 has sent back some 10 billion data bits per year on measurements of long-wavelength radio phenomena in the magnetosphere, the solar corona, and the Galaxy. In this paper we describe the design, calibration, and performance of the RAE-1 experiments in detail.

  2. Rain effects on radio frequency propagation

    NASA Astrophysics Data System (ADS)

    Fang, D. J.; Lo, C. S.

    1986-03-01

    Rain is a principal cause of signal degradation in a terrestrial or satellite transmission in a frequency range from UHF to EHF. This study proceeded with a format for compiling and editing the relevant data, and for making engineering inferences to supplement relevant yet inadequate data, as required for practical applications on a terrestrial or a slant path link. The format was to model the rain-induced attenuation by an empirical relationship on a = aRb L type of power law equation. Five well recognized models (CCIR, Fedi, French, Lin and SAM) were chosen for comparison with database. As for immediate applications, the Lin model is recommended for percentage of time over 0.35 of a year; and for percentage of time less than 0.3%, the French model is considered to be applicable. For more specific applications, such as for cases of low rain-rate regions to high rain-rate regions, low elevation angle paths to high elevation angle paths, etc., best performance models are identified.

  3. Managing High Frequency Radios, Personal Wireless Communication Systems, and the Military Affiliate Radio System

    DTIC Science & Technology

    2007-11-02

    Equipment ............................................................. 18 15. Government Telephones...funding, authorization to use government fre- quencies must be obtained through the Spectrum Certification Process in accordance with AFMAN 33-120...Radio Frequency (RF) Spectrum Management. NOTE: Federal Communications Commis- sion (FCC) Code of Federal Government Regulations, Title 47, Part 15

  4. Pulsed radio frequency energy (PRFE) use in human medical applications.

    PubMed

    Guo, Lifei; Kubat, Nicole J; Isenberg, Richard A

    2011-03-01

    A number of electromagnetic field-based technologies are available for therapeutic medical applications. These therapies can be broken down into different categories based on technical parameters employed and type of clinical application. Pulsed radio frequency energy (PRFE) therapy is a non invasive, electromagnetic field-based therapeutic that is based on delivery of pulsed, shortwave radio frequency energy in the 13-27.12 MHz carrier frequency range, and designed for local application to a target tissue without the intended generation of deep heat. It has been studied for use in a number of clinical applications, including as a palliative treatment for both postoperative and non postoperative pain and edema, as well as in wound healing applications. This review provides an introduction to the therapy, a summary of clinical efficacy studies using the therapy in specific applications, and an overview of treatment-related safety.

  5. 47 CFR 15.204 - External radio frequency power amplifiers and antenna modifications.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false External radio frequency power amplifiers and... RADIO FREQUENCY DEVICES Intentional Radiators § 15.204 External radio frequency power amplifiers and... frequency power amplifier or amplifier kit intended for use with a part 15 intentional radiator. (b) A...

  6. 47 CFR 15.204 - External radio frequency power amplifiers and antenna modifications.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false External radio frequency power amplifiers and... RADIO FREQUENCY DEVICES Intentional Radiators § 15.204 External radio frequency power amplifiers and... frequency power amplifier or amplifier kit intended for use with a part 15 intentional radiator. (b) A...

  7. 47 CFR 15.204 - External radio frequency power amplifiers and antenna modifications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false External radio frequency power amplifiers and... RADIO FREQUENCY DEVICES Intentional Radiators § 15.204 External radio frequency power amplifiers and... frequency power amplifier or amplifier kit intended for use with a part 15 intentional radiator. (b) A...

  8. 47 CFR 15.204 - External radio frequency power amplifiers and antenna modifications.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false External radio frequency power amplifiers and... RADIO FREQUENCY DEVICES Intentional Radiators § 15.204 External radio frequency power amplifiers and... frequency power amplifier or amplifier kit intended for use with a part 15 intentional radiator. (b) A...

  9. Low Frequency Radio Astronomical Antennas for the Lunar Environment

    NASA Astrophysics Data System (ADS)

    Burns, Jack O.; Lazio, J.; ROLSS DALI Teams

    2009-01-01

    Low radio frequencies ( MHz) represent the last of the relatively unexplored wavebands in the electromagnetic spectrum for astrophysics. Such observations are very challenging from the surface of the Earth because of an abundance of human-made radio interference (e.g., FM bands, TV channels) and because of ionospheric refraction. The lunar farside presents a unique opportunity to fully open this cosmic window because of the demonstrated radio-quiet environment. The ultimate science goal of a lunar farside low frequency telescope is to explore a new frontier in cosmology, the so-called Dark Ages. This era occurs between Recombination (at z 1100) when the universe first becomes transparent (producing what we observe today as the CMB) and Reionization when the first stars and galaxies form (at z 10-20). During the Dark Ages, the universe was unlit by any star and the only detectable signal is likely to arise from neutral hydrogen absorption against the CMB (from the collapse of the first structures). Observing this absorption signal would be a powerful probe of fundamental cosmology. During the Dark Ages (z 20 - 150), when the 21-cm (1.4 GHz) neutral hydrogen line is redshifted into the low frequency radio band (10-30 MHz, 10-30 m), the absorption signal has the potential to be the richest of all cosmological data sets. In this poster, we will discuss the opportunities and options for low frequency radio antennas in both lunar orbit and on the lunar surface. We are investigating a novel concept to deploy a large number of low-mass antennas deposited on sheets of polyimide film. We will also describe results of laboratory vacuum testing at U. Colorado on polyimide film cycled between -150 C and 100 C, and exposed to far-ultraviolet light, with conditions like those on the lunar surface.

  10. Radio frequency characteristics of Fe-filled carbon nanotube film

    NASA Astrophysics Data System (ADS)

    Kim, Ki Hyeon; Kim, Yoong-Ahm; Yamaguchi, Masahiro

    2006-07-01

    The conduction noise suppression in radio frequency region using film type of the Fe-filled carbon nanotubes and its epoxy composite was evaluated on a coplanar waveguide. Fe in carbon nanotubes have shown α-Fe crystalline structure and had a coercivity of 650 Oe. The magnitudes of the signal attenuation of Fe-filled carbon nanotubes on coplanar waveguide were shown in the range of about 10-18 dB/cm at 20 GHz (the stop-band frequency region). The power losses of these films exhibited 65-85% at 20 GHz in the stop-band frequency.

  11. Population density effect on radio frequencies interference (RFI) in radio astronomy

    NASA Astrophysics Data System (ADS)

    Umar, Roslan; Abidin, Zamri Zainal; Ibrahim, Zainol Abidin; Hassan, Mohd Saiful Rizal; Rosli, Zulfazli; Hamidi, Zety Shahrizat

    2012-06-01

    Radio astronomical observation is infected by wide range of Radio Frequency Interference (RFI). We will also use information gathered from on-site RFI level measurements on selected 'good' areas generated by this study. After investigating a few suitable sites we will commence to the site and construct the RFI observation. Eventually, the best area we will be deciding from the observations soon. The result of this experiment will support our planning to build the first radio telescope in Malaysia. Radio observatories normally are located in remote area, in order to combat RFI from active spectrum users and radio noise produced in industrial or residential areas. The other solution for this problem is regulating the use of radio frequencies in the country (spectrum management). Measurement of RFI level on potential radio astronomical site can be done to measure the RFI levels at sites. Seven sites are chosen divide by three group, which is A, B and C. In this paper, we report the initial testing RFI survey for overall spectrum (0-2GHz) for those sites. The averaged RFI level above noise level at the three group sites are 19.0 (+/-1.79) dBm, 19.5 (+/-3.71) dBm and 17.0 (+/-3.71) dBm and the averaged RFI level above noise level for without main peaks are 20.1 (+/-1.77) dBm, 19.6 (+/-3.65) dBm and 17.2 (+/-1.43) dBm respectively.

  12. Phase responses of harmonics reflected from radio-frequency electronics

    NASA Astrophysics Data System (ADS)

    Mazzaro, Gregory J.; McGowan, Sean F.; Gallagher, Kyle A.; Sherbondy, Kelly D.; Martone, Anthony F.; Narayanan, Ram M.

    2016-05-01

    The phase responses of nonlinear-radar targets illuminated by stepped frequencies are studied. Data is presented for an experimental radar and two commercial electronic targets at short standoff ranges. The amplitudes and phases of harmonics generated by each target at each frequency are captured over a 100-MHz-wide transmit band. As in the authors' prior work, target detection is demonstrated by receiving at least one harmonic of at least one transmit frequency. In the present work, experiments confirm that the phase of a harmonic reflected from a radio-frequency electronic target at a standoff distance is linear versus frequency. Similar to traditional wideband radar, the change of the reflected phase with respect to frequency indicates the range to the nonlinear target.

  13. Simulating 3D Spacecraft Constellations for Low Frequency Radio Imaging

    NASA Astrophysics Data System (ADS)

    Hegedus, A. M.; Amiri, N.; Lazio, J.; Belov, K.; Kasper, J. C.

    2016-12-01

    Constellations of small spacecraft could be used to realize a low-frequency phased array for either heliophysics or astrophysics observations. However, there are issues that arise with an orbiting array that do not occur on the ground, thus rendering much of the existing radio astronomy software inadequate for data analysis and simulation. In this work we address these issues and consider the performance of two constellation concepts. The first is a 32-spacecraft constellation for astrophysical observations, and the second is a 5-element concept for pointing to the location of radio emission from coronal mass ejections (CMEs). For the first, we fill the software gap by extending the APSYNSIM software to simulate the aperture synthesis for a radio interferometer in orbit. This involves using the dynamic baselines from the relative motion of the individual spacecraft as well as the capability to add galactic noise. The ability to simulate phase errors corresponding to positional uncertainty of the antennas was also added. The upgraded software was then used to model the imaging of a 32 spacecraft constellation that would orbit the moon to image radio galaxies like Cygnus A at .3-30 MHz. Animated images showing the improvement of the dirty image as the orbits progressed were made. RMSE plots that show how well the dirty image matches the input image as a function of integration time were made. For the second concept we performed radio interferometric simulations of the Sun Radio Interferometer Space Experiment (SunRISE) using the Common Astronomy Software Applications (CASA) package. SunRISE is a five spacecraft phased array that would orbit Earth to localize the low frequency radio emission from CMEs. This involved simulating the array in CASA, creating truth images for the CMEs over the entire frequency band of SunRISE, and observing them with the simulated array to see how well it could localize the true position of the CME. The results of our analysis show that we

  14. Remote Sensing: Radio Frequency Detection for High School Physics Students

    NASA Astrophysics Data System (ADS)

    Huggett, Daniel; Jeandron, Michael; Maddox, Larry; Yoshida, Sanichiro

    2011-10-01

    In an effort to give high school students experience in real world science applications, we have partnered with Loranger High School in Loranger, LA to mentor 9 senior physics students in radio frequency electromagnetic detection. The effort consists of two projects: Mapping of 60 Hz noise around the Laser Interferometer Gravitational Wave Observatory (LIGO), and the construction of a 20 MHz radio telescope for observations of the Sun and Jupiter (Radio Jove, NASA). The results of the LIGO mapping will aid in strategies to reduce the 60 Hz line noise in the LIGO noise spectrum. The Radio Jove project will introduce students to the field of radio astronomy and give them better insight into the dynamic nature of large solar system objects. Both groups will work together in the early stages as they learn the basics of electromagnetic transmission and detection. The groups will document and report their progress regularly. The students will work under the supervision of three undergraduate mentors. Our program is designed to give them theoretical and practical knowledge in radiation and electronics. The students will learn how to design and test receiver in the lab and field settings.

  15. Dowsing can be interfered with by radio frequency radiation.

    PubMed

    Huttunen, Paavo; Niinimaa, Ahti; Myllylä, Risto

    2012-04-01

    The soil radiation, watercourses and ores have been located for centuries by sensitive persons, dowsers. An ideomotoric explanation of the dowsing reaction, with no physical interaction, has been accepted. Our present re-analyses of some such results have shown, that there could be a physical phenomenon connecting the human reactions in field experiments, where the test subjects walked or were sitting in a slow-moving car, with the windows covered, and a dowsing rod in their hands was recorded. The correlations between the reaction points by test subjects in the moving car and the points by walking along the same path were highly significant. The correlation was not seen in all test locations. The distance between the test location and the radio tower, and the incidence angle of the transmitted radio wave, possibly had an effect on results. We hypothesize that the experiments carried out in the 20th century were interfered with by man-made radio frequency radiation, mainly FM radio and TV broadcasting, as test subjects' bodies absorbed the radio waves and unconscious hand movement reactions took place following the standing waves or intensity variations due to multipath propagation. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. Relativistic runaway breakdown in low-frequency radio

    NASA Astrophysics Data System (ADS)

    Füllekrug, Martin; Roussel-Dupré, Robert; Symbalisty, Eugene M. D.; Chanrion, Olivier; Odzimek, Anna; van der Velde, Oscar; Neubert, Torsten

    2010-01-01

    The electromagnetic radiation emitted by an electron avalanche beam resulting from relativistic runaway breakdown within the Earth's atmosphere is investigated. It is found from theoretical modeling with a computer simulation that the electron beam emits electromagnetic radiation which is characterized by consecutive broadband pulses in the low-frequency radio range from ˜10 to 300 kHz at a distance of ˜800 km. Experimental evidence for the existence of consecutive broadband pulses is provided by low-frequency radio observations of sprite-producing lightning discharges at a distance of ˜550 km. The measured broadband pulses occur ˜4-9 ms after the sprite-producing lightning discharge, they exhibit electromagnetic radiation which mainly spans the frequency range from ˜50 to 350 kHz, and they exhibit complex waveforms without the typical ionospheric reflection of the first hop sky wave. Two consecutive pulses occur ˜4.5 ms and ˜3 ms after the causative lightning discharge and coincide with the sprite luminosity. It is concluded that relativistic runaway breakdown within the Earth's atmosphere can emit broadband electromagnetic pulses and possibly generates sprites. The source location of the broadband pulses can be determined with an interferometric network of wideband low-frequency radio receivers to lend further experimental support to the relativistic runaway breakdown theory.

  17. Photonics-based tunable and broadband radio frequency converter

    NASA Astrophysics Data System (ADS)

    Borges, Ramon Maia; Mazzer, Daniel; Rufino Marins, Tiago Reis; Sodré, Arismar Cerqueira

    2016-03-01

    This paper is regarding the concept and development of a photonics-based tunable and broadband radio frequency converter (PBRC). It employs an external modulation technique to generate and reconfigure its output frequency, a digital circuit to manage the modulators' bias voltages, and an optical interface for connecting it to optical-wireless networks based on radio-over-fiber technology. The proposed optoelectronic device performs photonics-based upconversion and downconversion as a function of the local oscillator frequency and modulators' bias points. Experimental results demonstrate a radiofrequency (RF) carrier conversion with spectral purity over the frequency range from 750 MHz to 6.0 GHz, as well as the integration of the photonics-based converter with an optical backhaul based on a 1.5-km single-mode fiber from a geographically distributed optical network. Low phase noise and distortion absence illustrate its applicability for convergent and reconfigurable optical wireless communications. A potential application relies on the use of PBRC in convergent optical wireless networks to dynamically provide RF carriers as a function of the telecom operator demand and radio propagation environment.

  18. Radio frequency interference affecting type III solar burst observations

    NASA Astrophysics Data System (ADS)

    Anim, N. M.; Hamidi, Z. S.; Abidin, Z. Z.; Monstein, C.; Rohizat, N. S.

    2013-05-01

    The solar burst extinguish from the Sun's corona atmosphere and it dynamical structure of the magnetic field in radio wavelength are studied. Observation of solar radio burst with Compact Astronomical Low cost Low frequency Instrument for Spectroscopy and Transportable Observatory (CALLISTO) from ETH, Zurich in frequency range of 45 until 870 MHz. Observation done at Pusat Angkasa Negara, Banting, Selangor and successfully detected the solar burst type III on 9th March 2012 from 4:22:00 UT until 4:28:00 UT. The solar burst emission is associated with M6.3 solar flare which occurred at sunspot AR1429 at 03:58UT were observed by NOAA. Frequency ranges chosen as the best ranges for solar monitoring in Malaysia is 150 MHz until 400 MHz. The highest signal amplitude within this frequency ranges is 1.7619 dB at 153.188 MHz (Government Use) have potential to influence the detection of solar radio burst type III within 20 until 400 MHz.

  19. Wavelet Based Characterization of Low Radio Frequency Solar Emissions

    NASA Astrophysics Data System (ADS)

    Suresh, A.; Sharma, R.; Das, S. B.; Oberoi, D.; Pankratius, V.; Lonsdale, C.

    2016-12-01

    Low-frequency solar radio observations with the Murchison Widefield Array (MWA) have revealed the presence of numerous short-lived, narrow-band weak radio features, even during quiet solar conditions. In their appearance in in the frequency-time plane, they come closest to the solar type III bursts, but with much shorter spectral spans and flux densities, so much so that they are not detectable with the usual swept frequency radio spectrographs. These features occur at rates of many thousand features per hour in the 30.72 MHz MWA bandwidth, and hence necessarily require an automated approach to determine robust statistical estimates of their properties, e.g., distributions of spectral widths, temporal spans, flux densities, slopes in the time-frequency plane and distribution over frequency. To achieve this, a wavelet decomposition approach has been developed for feature recognition and subsequent parameter extraction from the MWA dynamic spectrum. This work builds on earlier work by the members of this team to achieve a reliable flux calibration in a computationally efficient manner. Preliminary results show that the distribution of spectral span of these features peaks around 3 MHz, most of them last for less than two seconds and are characterized by flux densities of about 60% of the background solar emission. In analogy with the solar type III bursts, this non-thermal emission is envisaged to arise via coherent emission processes. There is also an exciting possibility that these features might correspond to radio signatures of nanoflares, hypothesized (Gold, 1964; Parker, 1972) to explain coronal heating.

  20. Low Frequency Spectral Structure of X-shaped Radio Sources

    NASA Astrophysics Data System (ADS)

    Lal, D. V.; Rao, A. P.

    2005-12-01

    X-shaped radio galaxies are attributed to be formed by galactic mergers as the black holes of two galaxies fall into the merged system and form a bound system. Recent analysis of Giant Metrewave Radio Telescope low frequency data for an X-shaped source, 3C 223.1 has revealed an unusual result (Lal & Rao 2004). The radio morphologies of it at 240 and 610 MHz show well defined X-shape with a pair of active jets along the north-south axis and a pair of wings along the east-west axis, that pass symmetrically through the undetected radio core. The wings (or low surface brightness jets) have flatter spectral indices with respect to the high surface brightness jets, which confirms the earlier marginal result obtained at high frequency by Dennett-Thorpe et al. (2002). Although unusual, it is a valuable result which puts stringent constraints on the formation models and nature of these sources. We present preliminary results for two such sources.

  1. Investigating electromagnetic effects on core transport in Alcator C-Mod H-mode discharges

    NASA Astrophysics Data System (ADS)

    Guttenfelder, W.; Howard, N. T.; Irby, J.; Poli, F. M.; White, A. E.; Bergerson, W. F.; Brower, D. L.; Ding, W. X.; Kessel, C. E.; Sung, C.; Wolfe, S. M.; Xu, P.

    2014-10-01

    Understanding the importance of electromagnetic effects on core turbulence and transport is being pursued at Alcator C-Mod, especially for higher performance H-mode plasmas at increasing beta. Previously reported measurements from a line-integrated polarimeter diagnostic reveal broadband, high frequency fluctuations. The presence of these features, absent in core and edge density fluctuation measurements from phase contrast imaging, suggest they may be related to fluctuations in the magnetic field. Such features were observed in a number of H-mode plasmas over a range of normalized beta (βN ~ 1-2) and Greenwald fraction (fGW ~ 0.45-0.85). To investigate the possible influence of electromagnetic effects on core transport and turbulence, gyrokinetic simulations are used to predict microinstability of these discharges, the corresponding relative amplitude of the magnetic fluctuations in comparison to density fluctuations, and the sensitivity of these predictions to variations in beta. Results of both linear and nonlinear simulations and their comparison with transport and turbulence measurements will be presented. This work is supported by US DOE Contracts DE-AC02-09CH11466 and DE-FC02-99ER54512.

  2. First Measurements of Edge Transport Driven by the Shoelace Antenna on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Golfinopoulos, T.; Labombard, B.; Parker, R. R.; Burke, W. M.; Hughes, J. W.; Brunner, D. F.; Davis, E. M.; Ennever, P. C.; Granetz, R. S.; Greenwald, M. J.; Irby, J. H.; Leccacorvi, R.; Marmar, E. S.; Parkin, W. C.; Porkolab, M.; Terry, J. L.; Vieira, R. F.; Wolfe, S. M.; Wukitch, S. J.; Alcator C-Mod Team

    2015-11-01

    The Shoelace antenna is a unique device designed to couple to the Quasi-Coherent Mode (QCM, k⊥ ~ 1 . 5 cm-1, 50 < f < 200 kHz) and Weakly-Coherent Mode (WCM, k⊥ ~ 1 . 5 cm-1, 200 < f < 500 kHz), continuous edge fluctuations that sustain high-performance confinement regimes by exhausting impurities. The antenna is used to explore whether modes like the QCM and WCM may be exploited to actively regulate edge transport. In initial experiments, the antenna excited a resonance at the QCM frequency and phase velocity, but transport measurements were unavailable. A subsequent redesign of the winding pitch allows the antenna to be field-aligned while mapping magnetically to the Mirror Langmuir Probe (MLP) on the last-closed flux surface. This has enabled the first measurements of edge transport induced by the antenna-driven fluctuation, which has been further enhanced by quadrupling the antenna source power. This work was supported by U.S. Department of Energy award DE-FC02-99ER54512, using Alcator C-Mod, a DOE SC User Facility.

  3. The dynamics and structure of edge-localized-modes in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Terry, J. L.; Cziegler, I.; Hubbard, A. E.; Snipes, J. A.; Hughes, J. W.; Greenwald, M. J.; LaBombard, B.; Lin, Y.; Phillips, P.; Wukitch, S.

    2007-06-01

    Characteristics of discrete ELMs produced in Alcator C-Mod discharges of low edge collisionality (0.2 < ν∗ < 1) and large lower triangularity (δlower ∼ 0.75) are examined. The energy lost per ELM from the H-mode pedestal is ∼10% of the pedestal energy. These ELMs exhibit relatively long-lived precursor oscillations, often with two modes of intermediate toroidal mode number present. At the ELM 'crash' multiple plasma filament structures are expelled into the scrape-off-layer. A short-lived high frequency (∼0.5 MHz) magnetic oscillation is initiated at the 'crash'. The initial ELM filaments are large perturbations to the SOL with radial extents of 0.5-1 cm and typical radial propagation velocities of 1 km/s. Velocities of up to 8 km/s have been seen. The poloidal extent of the initial filaments is >4.5 cm. The initial filaments are followed (at intervals of ∼100 μs) by multiple, less perturbing secondary filaments.

  4. Reduction of Core Turbulence in I-mode Plasmas at Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    White, A. E.; Barnes, M.; Dominguez, A.; Greenwald, M.; Howard, N. T.; Hubbard, A. E.; Hughes, J. W.; Mikkelsen, D. R.; Parra, F. I.; Reinke, M. L.; Sung, C.; Walk, J.; Whyte, D. G.

    2013-10-01

    Core turbulent fluctuations (0.40 < r/a < 0.95) are reduced in the high confinement regime, I-mode, at Alcator C-Mod. Long wavelength density fluctuation levels are observed to decrease from L-mode levels by up to 30%, while long wavelength electron temperature fluctuation levels are observed to decrease by up to 70%. This reduction in core turbulence is correlated with the increases in confinement in I-mode. During some L-I transitions, density fluctuations in the core (r/a ~ 0.5) and near the top of the Te pedestal (r/a ~ 0.95) are both reduced prior to the reduction of low-frequency edge turbulence (r/a ~ 0.99-1.0), and prior to the onset of the edge-localized weakly coherent mode (WCM) (r/a ~ 0.99-1.0). This result contrasts typical observations of confinement transitions (I-mode and H-mode) where changes in edge turbulence occur prior to changes in core turbulence. Supported by USDoE: DE-FC02-99ER54512 and DE-SC0006419.

  5. Reduction of core turbulence in I-mode plasmas in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    White, A. E.; Barnes, M.; Dominguez, A.; Greenwald, M.; Howard, N. T.; Hubbard, A. E.; Hughes, J. W.; Mikkelsen, D. R.; Parra, F. I.; Reinke, M. L.; Sung, C.; Walk, J.; Whyte, D. G.

    2014-08-01

    In this paper, we report observations of reduced core (0.40 < ρ < 0.95) fluctuations in the edge localized mode (ELM)-free high-confinement regime, I-mode, at Alcator C-Mod (Marmar et al2009 Nucl. Fusion 49 104014). Long wavelength (kθρs < 0.5) density fluctuation levels are observed to decrease from L-mode levels by up to 30% in I-mode, while long wavelength (kθρs < 0.3) electron temperature fluctuation levels are observed to decrease by up to 70% in I-mode. This reduction in core turbulence is correlated with the increases in confinement in I-mode compared to L-mode. As the pedestal temperature increases across the L-I transition, core density fluctuations (0.40 < ρ < 0.95) are reduced prior to the onset of the edge-localized (ρ ˜ 0.99-1.0) weakly coherent mode (WCM) and prior to the reduction of low-frequency (ρ ˜ 0.99-1.0) turbulence in the edge/pedestal region. This result helps add to our understanding of the dynamics of confinement transitions such as I-mode and H-mode, where changes in edge turbulence are more typically observed to occur prior to changes in core turbulence.

  6. Alcator C-Mod's Quasi-Coherent Mode Antenna: Experimental Results and Interpretation

    NASA Astrophysics Data System (ADS)

    Golfinopoulos, T.; Labombard, B.; Parker, R. R.; Burke, W.; Davis, E. M.; Granetz, R.; Greenwald, M.; Marmar, E.; Porkolab, M.; Terry, J. L.; Wolfe, S. M.; Woskov, P. P.; Xu, X.

    2012-10-01

    A new ``Shoelace'' antenna has been installed on Alcator C-Mod. Its goal is to interact with edge fluctuations, and particularly the quasi-coherent mode (QCM) associated with the steady-state EDA H-mode. With k=1.5 cm-1 and frequency range, 40

  7. Core impurity transport in Alcator C-Mod L-, I- and H-mode plasmas

    NASA Astrophysics Data System (ADS)

    Rice, J. E.; Reinke, M. L.; Gao, C.; Howard, N. T.; Chilenski, M. A.; Delgado-Aparicio, L.; Granetz, R. S.; Greenwald, M. J.; Hubbard, A. E.; Hughes, J. W.; Irby, J. H.; Lin, Y.; Marmar, E. S.; Mumgaard, R. T.; Scott, S. D.; Terry, J. L.; Walk, J. R.; White, A. E.; Whyte, D. G.; Wolfe, S. M.; Wukitch, S. J.

    2015-03-01

    Core impurity transport has been investigated for a variety of confinement regimes in Alcator C-Mod plasmas from x-ray emission following injection of medium and high Z materials. In ohmic L-mode discharges, impurity transport is anomalous (Deff ≫ Dnc) and changes very little across the LOC/SOC boundary. In ion cyclotron range of frequencies (ICRF) heated L-mode plasmas, the core impurity confinement time decreases with increasing ICRF input power (and subsequent increasing electron temperature) and increases with plasma current. Nearly identical impurity confinement characteristics are observed in I-mode plasmas. In enhanced Dα H-mode discharges the core impurity confinement times are much longer. There is a strong connection between core impurity confinement time and the edge density gradient across all confinement regimes studied here. Deduced central impurity density profiles in stationary plasmas are generally flat, in spite of large amplitude sawtooth oscillations, and there is little evidence of impurity convection inside of r/a = 0.3 when averaged over sawteeth.

  8. Fast-switching Langmuir probe bias electronics for Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Lyons, L.; Labombard, B.

    2006-10-01

    In order to resolve fast-changes in edge plasma density, temperature and plasma potentials with a single Langmuir electrode, the I-V characteristic must be generated and sampled at high frequency. To this end, a custom-designed package of fast-switching electronics is being assembled for use in Alcator C-Mod, employing three principal components: (1) a master TTL ‘waveform generator’, (2) fast-switching MOSFET drive circuits (˜ 30 ns rise time), and (3) current-voltage monitor circuits. Three voltage bias states are capacitively coupled to up to 6 Langmuir probes in a sequence that samples portions of the I-V characteristic: ‘ion saturation (>= -234V), ‘electron collection’ (<= +64V), and ‘near floating’ (˜ 0V). Up to 2 amps of peak current can be supplied to each probe with waveform durations of ˜ 2 seconds. Resultant I-V characteristics are digitally sampled (<= 50MHz) by cPCI transient recorders. Three additional TTL waveforms, synchronized to the data-sampling times of the different bias states, are also supplied. These may be used to report plasma conditions in real-time using a ‘mirror Langmuir probe’ technique [1]. [1] B. LaBombard and L. Lyons, manuscript in preparation.

  9. Analysis, prediction and control of radio frequency interference with respect to DSN

    NASA Technical Reports Server (NTRS)

    Degroot, N. F.

    1982-01-01

    Susceptibility modeling, prediction of radio frequency interference from satellites, operational radio frequency interference control, and international regulations are considered. The existing satellite interference prediction program DSIP2 is emphasized. A summary status evaluation and recommendations for future work are given.

  10. Observations of Fast Radio Bursts and perspectives at low frequencies

    NASA Astrophysics Data System (ADS)

    Zarka, P.; Mottez, F.

    2016-12-01

    We briefly summarize the characteristics of the elusive Fast Radio Bursts from existing observations. Then we emphasize the interest of low-frequency observations, e.g. with NenuFAR. In order to define the best observing parameters and detection scheme, we have built a simulation program of FRB at low-frequencies, that proceeds in 2 steps: (i) FRB generation and dilution in a dynamic spectrum with given characteristics, and (ii) definition of the FRB spectrum, and detection on the galactic radio background by means of parametric dedispersion. We carry on a preliminary simulation study, that allows us to draw first conclusions, among which the possibility to detect Lorimer-like FRB with NenuFAR.

  11. Radio frequency communication system utilizing radiating transmission lines

    DOEpatents

    Struven, Warren C.

    1984-01-01

    A radio communication system for use in tunnels, mines, buildings or other shielded locations in which a pair of radiating transmission lines (30), (31) extend through such location in spaced coextensive relation to each other. Each transmission line (30), (31) has at least one unidirectional amplifier (32), (33) interposed therein with the sense of the unidirectional amplifier (32) of one transmission line (30) being opposite to the sense of the unidirectional amplifier (33) of the other transmission line (31). Each of the amplifiers (32), (33) has a gain which is less than the coupling loss between the transmission lines (30), (31). Two or more mobile transceivers (35) in the location served by the system are coupled to the transmission lines (30), (31) by electromagnetic wave propagation in space in order to communicate directly with each other at a given radio frequency within the frequency range of the system.

  12. Final report: In situ radio frequency heating demonstration

    SciTech Connect

    Jarosch, T.R.; Beleski, R.J.; Faust, D.

    1994-01-05

    A field demonstration of in situ radio frequency heating was performed at the Savannah River Site (SRS) as part of the US Department of Energy-Office of Technology Development`s Integrated Demonstration. The objective of the demonstration was to investigate the effectiveness of in situ radio frequency (RF) heating as an enhancement to vacuum extraction of residual solvents (primarily trichloroethylene and perchloroethylene) held in vadose zone clay deposits. Conventional soil vacuum extraction techniques are mass transfer limited because of the low permeabilities of the clays. By selectively heating the clays to temperatures at or above 100{degrees}C, the release or transport of the solvent vapors will be enhanced as a result of several factors including an increase in the contaminant vapor pressure and diffusivity and an increase in the effective permeability of the formation with the release of water vapor.

  13. Radio frequency analog electronics based on carbon nanotube transistors

    PubMed Central

    Kocabas, Coskun; Kim, Hoon-sik; Banks, Tony; Rogers, John A.; Pesetski, Aaron A.; Baumgardner, James E.; Krishnaswamy, S. V.; Zhang, Hong

    2008-01-01

    The potential to exploit single-walled carbon nanotubes (SWNTs) in advanced electronics represents a continuing, major source of interest in these materials. However, scalable integration of SWNTs into circuits is challenging because of difficulties in controlling the geometries, spatial positions, and electronic properties of individual tubes. We have implemented solutions to some of these challenges to yield radio frequency (RF) SWNT analog electronic devices, such as narrow band amplifiers operating in the VHF frequency band with power gains as high as 14 dB. As a demonstration, we fabricated nanotube transistor radios, in which SWNT devices provide all of the key functions, including resonant antennas, fixed RF amplifiers, RF mixers, and audio amplifiers. These results represent important first steps to practical implementation of SWNTs in high-speed analog circuits. Comparison studies indicate certain performance advantages over silicon and capabilities that complement those in existing compound semiconductor technologies. PMID:18227509

  14. An overview of radio frequency identification (RFID) tags technology

    NASA Astrophysics Data System (ADS)

    Falinski, Wojciech

    2006-10-01

    RFID (Radio Frequency Identification) is the technology of wireless identification of tagged products. It is one of the fastest developing technologies in electronic market and it is predicted to replace soon the barcodes which are in common usage in today's economy. There are several advantages of RFID tags over barcode. The main are reading without must of scanning the product and the possibility to keep much more information on chip of the tag. In the article there are introduced the possible applications of RFID technology. There are also presented the classification of the RFID tags and the difference between working frequency. It is introduced every steps of manufacturing RFID tags with focus on the technology aspects (technologies of producing antenna, attaching the chip and creation of electrical connection between antenna and chip). Tele and Radio Research Institute is now starting to realize the project of manufacturing the RFID tags antenna. There is presented our guideline of the project.

  15. The interaction of radio frequency and lambda DNA

    NASA Astrophysics Data System (ADS)

    Pearson, Mary Elizabeth

    By exposing an aqueous DNA solution to a spectrum of radio frequency (RF) energy this research identifies frequencies, if any, where DNA interacts with RF energy. Interaction is determined by the amount of RF energy either absorbed or reflected by the DNA solution. Previous studies have shown that RF energy at high power levels causes destruction of DNA. The method outlined in this thesis will radiate a DNA solution at a low power level of non-ionizing RF energy. This will determine if DNA behavioral changes can be induced without heating the DNA solution. Any frequencies interacting with DNA within the frequency band areas will be identified as potential frequencies to induce change in genetic function. This thesis sets a foundational experimental protocol to test RF energy interaction with a variety of biological molecules.

  16. Radio Frequency (RF) Measurements for Human Detection, Tracking, and Identification

    DTIC Science & Technology

    2007-10-01

    of tick bites and the potential for Lyme disease . Insect repellent will be available at the test site and we will ask volunteers to inspect...2003, 150 (4). 6. Chen, Victor C.; Ling, Hao. Time Frequency for Radar Imaging and Signal Analysis; Artech House, 2002. 7. Natecz, Marek ; Rytel... disease that is the direct result of participating in this project (under the provisions of AR 40-38 and AR 70-25). Title of Research Project: Radio

  17. Large-N correlator systems for low frequency radio astronomy

    NASA Astrophysics Data System (ADS)

    Foster, Griffin

    Low frequency radio astronomy has entered a second golden age driven by the development of a new class of large-N interferometric arrays. The low frequency array (LOFAR) and a number of redshifted HI Epoch of Reionization (EoR) arrays are currently undergoing commission and regularly observing. Future arrays of unprecedented sensitivity and resolutions at low frequencies, such as the square kilometer array (SKA) and the hydrogen epoch of reionization array (HERA), are in development. The combination of advancements in specialized field programmable gate array (FPGA) hardware for signal processing, computing and graphics processing unit (GPU) resources, and new imaging and calibration algorithms has opened up the oft underused radio band below 300 MHz. These interferometric arrays require efficient implementation of digital signal processing (DSP) hardware to compute the baseline correlations. FPGA technology provides an optimal platform to develop new correlators. The significant growth in data rates from these systems requires automated software to reduce the correlations in real time before storing the data products to disk. Low frequency, widefield observations introduce a number of unique calibration and imaging challenges. The efficient implementation of FX correlators using FPGA hardware is presented. Two correlators have been developed, one for the 32 element BEST-2 array at Medicina Observatory and the other for the 96 element LOFAR station at Chilbolton Observatory. In addition, calibration and imaging software has been developed for each system which makes use of the radio interferometry measurement equation (RIME) to derive calibrations. A process for generating sky maps from widefield LOFAR station observations is presented. Shapelets, a method of modelling extended structures such as resolved sources and beam patterns has been adapted for radio astronomy use to further improve system calibration. Scaling of computing technology allows for the

  18. Base Level Management of Radio Frequency Radiation Protection Program

    DTIC Science & Technology

    1989-04-01

    with a healti h....:d. V. STANDARDS A. The Basis of Our Permissible Exposure Limits (PELs). 1. What level of RFR is safe? It’s a big question, and a lot...mobile lifting equipment, hand-held radios, climbing gear, etc. b. Check out your equipment. Is the calibration current? Does the probe frequency range...CH--Hazardous levels possible, but only in areas that require climbing . GH--Ground-level hazardous exposures possible. DL--Transmitter dummy loaded. SH

  19. Radio-frequency dressing of multiple Feshbach resonances

    NASA Astrophysics Data System (ADS)

    Kaufman, A. M.; Anderson, R. P.; Hanna, Thomas M.; Tiesinga, E.; Julienne, P. S.; Hall, D. S.

    2009-11-01

    We demonstrate and theoretically analyze the dressing of several proximate Feshbach resonances in R87b using radio-frequency (rf) radiation. We present accurate measurements and characterizations of the resonances, and the dramatic changes in scattering properties that can arise through the rf dressing. Our scattering theory analysis yields quantitative agreement with the experimental data. We also present a simple interpretation of our results in terms of rf-coupled bound states interacting with the collision threshold.

  20. Momentum Resolved Radio Frequency Spectroscopy in Trapped Fermi Gases

    SciTech Connect

    Chen Qijin; Levin, K.

    2009-05-15

    We address recent momentum-resolved radio frequency (rf) spectroscopy experiments, showing how they yield more stringent tests than other comparisons with theory, associated with the ultracold Fermi gases. We demonstrate that, by providing a clear dispersion signature of pairing, they remove the ambiguity plaguing the interpretation of previous rf experiments. Our calculated spectral intensities are in semiquantitative agreement with the data. Even in the presence of a trap, the spectra are predicted to exhibit two BCS-like branches.

  1. Perforated-Layer Implementation Of Radio-Frequency Lenses

    NASA Technical Reports Server (NTRS)

    Dolgin, Benjamin P.

    1996-01-01

    Luneberg-type radio-frequency dielectric lenses made of stacked perforated circular dielectric sheets, according to proposal. Perforation pattern designed to achieve required spatial variation of permittivity. Consists of round holes distributed across face of each sheet in "Swiss-cheese" pattern, plus straight or curved slots that break up outer parts into petals in "daisy-wheel" pattern. Holes and slots made by numerically controlled machining.

  2. Longitudinal capture in the radio-frequency-quadrupole structure

    SciTech Connect

    Inagaki, S.

    1980-03-01

    The radio-frequency-quadrupole (RFQ) linac structure not only can attain easily transverse focusing in the low-beta region, but also can obtain very high capture efficiency because of its low beta-lambda and low-particle rigidity. An optimization study of the zero space-charge longitudinal capture in an RFQ linac that yields configurations with large capture efficiency is described.

  3. Hybrid photonic signal processing for radio frequency signals

    NASA Astrophysics Data System (ADS)

    Riza, Nabeel A.

    2005-09-01

    Photonics previously has been used in the all-analog and all-digital domain for processing of Radio Frequency (RF) Signals. This paper highlights recent work by the Riza group on a new hybrid analog-digital approach to RF signal processing and controls. Specifically, novels works will be described in the design of RF processing components such as fiberoptic attenuator, fiber-optic programmable delay lines, and optical transversal filters.

  4. Radio Frequency Radiation (RFR) Measurements in Operational Settings.

    DTIC Science & Technology

    1984-12-01

    1NURAT0 OF -HSAG Deport No. 84-028CV111ARA USAF OCCUPATIONAL AND ENVIRONMENTAL HEALTH LABORATORY Brooks AFB, Texas 78235 RADIO FREQUENCY RADIATION (RFR...with a 60 Watt/cm3 peak power burnout rating. First attempts to use these early instruments (Model 8300). in the investigation of an alleged...an aside, Narda also makes several other probe series for measurements to as low as 300 Kiz. All Narda probes are susceptible to burnout when exposed

  5. Radio frequency heating for in-situ remediation of DNAPL

    SciTech Connect

    Kasevich, R.S.

    1996-08-01

    In-situ radio frequency (RF) heating technology for treating soils contaminated with dense nonaqueous phase liquids (DNAPLs) is described. RF imparts heat to non-conducting materials through the application of carefully controlled RF transmissions, improving contaminant flow characteristics and facilitating separation and removal from subsurface soils. The paper outlines advantages and limitations of RF remediation, process operations, general technology considerations, low permeability media considerations, commercial availability, and costs. Two case histories of RF remediation are briefly summarized. 13 refs., 10 figs.

  6. Imaging Interplanetary CMEs at Radio Frequency From Solar Polar Orbit

    NASA Astrophysics Data System (ADS)

    Wu, Ji; Sun, Weiying; Zheng, Jianhua; Zhang, Cheng; Wang, Chi; Wang, C. B.; Wang, S.

    Coronal mass ejections (CMEs) are violent discharges of plasma and magnetic fields from the Sun's corona. They have come to be recognized as the major driver of physical conditions in the Sun-Earth system. Consequently, the detection of CMEs is important for un-derstanding and ultimately predicting space weather conditions. The Solar Polar Orbit Radio Telescope (SPORT) is a proposed mission to observe the propagation of interplanetary CMEs from solar polar orbit. The main payload (radio telescope) on board SPORT will be an in-terferometric imaging radiometer working at the meter wavelength band, which will follow the propagation of interplanetary CMEs from a distance of a few solar radii to near 1 AU from solar polar orbit. The SPORT spacecraft will also be equipped with a set of optical and in situ measurement instruments such as a EUV solar telescope, a solar wind plasma experiment, a solar wind ion composition instrument, an energetic particle detector, a wave detector, a mag-netometer and an interplanetary radio burst tracker. In this paper, we first describe the current shortage of interplanetary CME observations. Next, the scientific motivation and objectives of SPORT are introduced. We discuss the basic specifications of the main radio telescope of SPORT with reference to the radio emission mechanisms and the radio frequency band to be observed. Finally, we discuss the key technologies of the SPORT mission, including the con-ceptual design of the main telescope, the image retrieval algorithm and the solar polar orbit injection. Other payloads and their respective observation objectives are also briefly discussed. Key words: Interplanetary CMEs; Interferometric imaging; Solar polar orbit; Radiometer.

  7. 48 CFR 552.211-92 - Radio Frequency Identification (RFID) using passive tags.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 4 2013-10-01 2013-10-01 false Radio Frequency... Provisions and Clauses 552.211-92 Radio Frequency Identification (RFID) using passive tags. As prescribed in 511.204(b)(11), insert the following clause: Radio Frequency Identification (RFID) Using Passive Tags...

  8. 48 CFR 552.211-92 - Radio Frequency Identification (RFID) using passive tags.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 4 2014-10-01 2014-10-01 false Radio Frequency... Provisions and Clauses 552.211-92 Radio Frequency Identification (RFID) using passive tags. As prescribed in 511.204(b)(11), insert the following clause: Radio Frequency Identification (RFID) Using Passive Tags...

  9. 48 CFR 552.211-92 - Radio Frequency Identification (RFID) using passive tags.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 4 2012-10-01 2012-10-01 false Radio Frequency... Provisions and Clauses 552.211-92 Radio Frequency Identification (RFID) using passive tags. As prescribed in 511.204(b)(11), insert the following clause: Radio Frequency Identification (RFID) Using Passive Tags...

  10. 75 FR 6818 - Revision to the Manual of Regulations and Procedures for Federal Radio Frequency Management

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-11

    ... Manual of Regulations and Procedures for Federal Radio Frequency Management AGENCY: National... Radio Frequency Management (NTIA Manual). Specifically, the NTIA updates the version of the Manual of Regulations and Procedures for Federal Radio Frequency Management with which Federal agencies must comply when...

  11. 76 FR 18652 - Revision to the Manual of Regulations and Procedures for Federal Radio Frequency Management

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-05

    ... Manual of Regulations and Procedures for Federal Radio Frequency Management AGENCY: National... Radio Frequency Management (NTIA Manual). Specifically, NTIA updates the version of the Manual of Regulations and Procedures for Federal Radio Frequency Management with which federal agencies must comply when...

  12. 75 FR 54790 - Revision to the Manual of Regulations and Procedures for Federal Radio Frequency Management

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-09

    ... Manual of Regulations and Procedures for Federal Radio Frequency Management AGENCY: National... Radio Frequency Management (NTIA Manual). Specifically, NTIA updates the version of the Manual of Regulations and Procedures for Federal Radio Frequency Management with which federal agencies must comply when...

  13. 76 FR 56984 - Revision to the Manual of Regulations and Procedures for Federal Radio Frequency Management

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-15

    ... Manual of Regulations and Procedures for Federal Radio Frequency Management AGENCY: National... Radio Frequency Management (NTIA Manual). Specifically, NTIA updates the version of the Manual of Regulations and Procedures for Federal Radio Frequency Management with which federal agencies must comply when...

  14. Development and preliminary results of radio frequency ion source

    SciTech Connect

    Xie, Yahong Hu, Chundong; Jiang, Caichao; Chen, Yuqian; Gu, Yumin; Su, Renxue; Xie, Yuanlai; Liu, Zhimin

    2016-02-15

    A radio frequency (RF) ion source was designed and developed for neutral beam injector. A RF driver test bed was used with a RF generator with maximum power of 25 kW with 1 MHz frequency and a matching box. In order to study the characteristic of RF plasma generation, the capacitance in the matching box was adjusted with different cases. The results show that lower capacitance will better the stability of the plasma with higher RF power. In the future, new RF coils and matching box will be developed for plasma generators with higher RF power of 50 kW.

  15. Multiplexing of Radio-Frequency Single Electron Transistors

    NASA Technical Reports Server (NTRS)

    Stevenson, Thomas R.; Pellerano, F. A.; Stahle, C. M.; Aidala, K.; Schoelkopf, R. J.; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    We present results on wavelength division multiplexing of radio-frequency single electron transistors. We use a network of resonant impedance matching circuits to direct applied rf carrier waves to different transistors depending on carrier frequency. A two-channel demonstration of this concept using discrete components successfully reconstructed input signals with small levels of cross coupling. A lithographic version of the rf circuits had measured parameters in agreement with electromagnetic modeling, with reduced cross capacitance and inductance, and should allow 20 to 50 channels to be multiplexed.

  16. A simple Lorenz circuit and its radio frequency implementation.

    PubMed

    Blakely, Jonathan N; Eskridge, Michael B; Corron, Ned J

    2007-06-01

    A remarkably simple electronic circuit design based on the chaotic Lorenz system is described. The circuit consists of just two active nonlinear elements (high-speed analog multipliers) and a few passive linear elements. Experimental implementations of the circuit exhibit the classic butterfly attractor and the hysteretic transition from steady state to chaos observed in the Lorenz equations. The simplicity of the circuit makes it suitable for radio frequency applications. The power spectrum of the observed oscillations displays a peak frequency as high as 930 kHz and significant power beyond 1 MHz.

  17. Radio-frequency interference mitigating hyperspectral L-band radiometer

    NASA Astrophysics Data System (ADS)

    Toose, Peter; Roy, Alexandre; Solheim, Frederick; Derksen, Chris; Watts, Tom; Royer, Alain; Walker, Anne

    2017-02-01

    Radio-frequency interference (RFI) can significantly contaminate the measured radiometric signal of current spaceborne L-band passive microwave radiometers. These spaceborne radiometers operate within the protected passive remote sensing and radio-astronomy frequency allocation of 1400-1427 MHz but nonetheless are still subjected to frequent RFI intrusions. We present a unique surface-based and airborne hyperspectral 385 channel, dual polarization, L-band Fourier transform, RFI-detecting radiometer designed with a frequency range from 1400 through ≈ 1550 MHz. The extended frequency range was intended to increase the likelihood of detecting adjacent RFI-free channels to increase the signal, and therefore the thermal resolution, of the radiometer instrument. The external instrument calibration uses three targets (sky, ambient, and warm), and validation from independent stability measurements shows a mean absolute error (MAE) of 1.0 K for ambient and warm targets and 1.5 K for sky. A simple but effective RFI removal method which exploits the large number of frequency channels is also described. This method separates the desired thermal emission from RFI intrusions and was evaluated with synthetic microwave spectra generated using a Monte Carlo approach and validated with surface-based and airborne experimental measurements.

  18. Radio frequency magnetic fields disrupt magnetoreception in American cockroach.

    PubMed

    Vácha, Martin; Puzová, Tereza; Kvícalová, Markéta

    2009-11-01

    The sense that allows birds to orient themselves by the Earth's magnetic field can be disabled by an oscillating magnetic field whose intensity is just a fraction of the geomagnetic field intensity and whose oscillations fall into the medium or high frequency radio wave bands. This remarkable phenomenon points very clearly at one of two existing alternative magnetoreception mechanisms in terrestrial animals, i.e. the mechanism based on the radical pair reactions of specific photosensitive molecules. As the first such study in invertebrates, our work offers evidence that geomagnetic field reception in American cockroach is sensitive to a weak radio frequency field. Furthermore, we show that the 'deafening' effect at Larmor frequency 1.2 MHz is stronger than at different frequencies. The parameter studied was the rise in locomotor activity of cockroaches induced by periodic changes in the geomagnetic North positions by 60 deg. The onset of the disruptive effect of a 1.2 MHz field was found between 12 nT and 18 nT whereas the threshold of a doubled frequency field 2.4 MHz fell between 18 nT and 44 nT. A 7 MHz field showed no impact even in maximal 44 nT magnetic flux density. The results indicate resonance effects rather than non-specific bias of procedure itself and suggest that insects may be equipped with the same magnetoreception system as the birds.

  19. Chasing Low Frequency Radio Bursts from Magnetically Active Stars

    NASA Astrophysics Data System (ADS)

    Lynch, Christene; Murphy, Tara; Kaplan, David

    2017-05-01

    Flaring activity is a common characteristic of magnetically active stars. These events produce emission throughout the electromagnetic spectrum, implying a range of physical processes. A number of objects exhibit short-duration, narrow band, and highly circularly polarised (reaching 100%) radio bursts. The observed polarisation and frequency-time structure of these bursts points to a coherent emission mechanism such as the electron cyclotron maser. Due to the stochastic nature of these bursts and the sensitivity of current instruments, the number of stars where coherent emission has been detected is few, with numbers limited to a few tens of objects. Observations of a wider sample of active stars are necessary in order to establish the percentage that exhibit coherent radio bursts and to relate the observed emission characteristics to stellar magnetic properties. New wide-field, low frequency radio telescopes will probe a frequency regime that is mostly unexplored for many magnetically active stars and where coherent radio emissions are expected to be more numerous. M dwarf stars are of particular interest as they are currently favoured as most likely to host habitable planets. Yet the extreme magnetic activity observed for some M dwarf stars places some doubt on the ability of orbiting planets to host life. This presentation reports the first results from a targeted Murchison Widefield Array survey of M dwarf stars that were previously detected at 100 - 200 MHz using single dish telescopes. We will discuss robust flare-rate measurements over a high dynamic range of flare properties, as well as investigate the physical mechanism(s) behind the flares.

  20. RFID Transponders' Radio Frequency Emissions in Aircraft Communication and Navigation Radio Bands

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Williams, Reuben A.; Koppen, Sandra V.; Salud, Maria Theresa P.

    2006-01-01

    Radiated emissions in aircraft communication and navigation bands are measured from several active radio frequency identification (RFID) tags. The individual tags are different in design and operations. They may also operate in different frequency bands. The process for measuring the emissions is discussed, and includes tag interrogation, reverberation chamber testing, and instrument settings selection. The measurement results are described and compared against aircraft emission limits. In addition, interference path loss for the cargo bays of passenger aircraft is measured. Cargo bay path loss is more appropriate for RFID tags than passenger cabin path loss. The path loss data are reported for several aircraft radio systems on a Boeing 747 and an Airbus A320.

  1. Eddy current imaging with an atomic radio-frequency magnetometer

    SciTech Connect

    Wickenbrock, Arne; Leefer, Nathan; Blanchard, John W.; Budker, Dmitry

    2016-05-02

    We use a radio-frequency {sup 85}Rb alkali-vapor cell magnetometer based on a paraffin-coated cell with long spin-coherence time and a small, low-inductance driving coil to create highly resolved conductivity maps of different objects. We resolve sub-mm features in conductive objects, we characterize the frequency response of our technique, and by operating at frequencies up to 250 kHz we are able to discriminate between differently conductive materials based on the induced response. The method is suited to cover a wide range of driving frequencies and can potentially be used for detecting non-metallic objects with low DC conductivity.

  2. Two-stage radio-frequency interferometer sensors

    PubMed Central

    Osterberg, Jeffrey; Wang, Pingshan

    2015-01-01

    We show that simple radio-frequency (RF) interferometers can have slow-wave positive group delay (PGD) or negative group delay (NGD), as well as superluminal propagation (SP) regions, due to a destructive interference process. These properties are easily tunable, which makes RF interferometers unique among systems that have NGD and SP regimes. A two-stage interferometer arrangement, which includes a first stage interferometer in the material-under-test path of a second stage, has significantly improved sensitivity in comparison with a one-stage reference interferometer. With a power divider based first stage and at its maximum NGD frequency, the frequency sensitivity improvement is as high as 7 times. With a quadrature based first stage, the sensitivity is increased by as much as 20 times. Sensitivity improvements are also observed at PGD and SP frequency regions. PMID:26576062

  3. Two-stage radio-frequency interferometer sensors.

    PubMed

    Osterberg, Jeffrey; Wang, Pingshan

    2015-10-26

    We show that simple radio-frequency (RF) interferometers can have slow-wave positive group delay (PGD) or negative group delay (NGD), as well as superluminal propagation (SP) regions, due to a destructive interference process. These properties are easily tunable, which makes RF interferometers unique among systems that have NGD and SP regimes. A two-stage interferometer arrangement, which includes a first stage interferometer in the material-under-test path of a second stage, has significantly improved sensitivity in comparison with a one-stage reference interferometer. With a power divider based first stage and at its maximum NGD frequency, the frequency sensitivity improvement is as high as 7 times. With a quadrature based first stage, the sensitivity is increased by as much as 20 times. Sensitivity improvements are also observed at PGD and SP frequency regions.

  4. Real-time sensing and gas jet mitigation of VDEs on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Granetz, R. S.; Wolfe, S. M.; Izzo, V. A.; Reinke, M. L.; Terry, J. L.; Hughes, J. W.; Zhurovich, K.; Whyte, D. G.; Bakhtiari, M.; Wurden, G.

    2006-10-01

    Experiments have been carried out in Alcator C-Mod to test the effectiveness of gas jet disruption mitigation of VDEs with real-time detection and triggering by the C-Mod digital plasma control system (DPCS). The DPCS continuously computes the error in the plasma vertical position from the magnetics diagnostics. When this error exceeds an adjustable preset value, the DPCS triggers the gas jet valve (with a negligible latency time). The high-pressure gas (argon) only takes a few milliseconds to enter the vacuum chamber and begin affecting the plasma, but this is comparable to the VDE timescale on C-Mod. Nevertheless, gas jet injection reduced the halo current, increased the radiated power fraction, and reduced the heating of the divertor compared to unmitigated disruptions, but not quite as well as in earlier mitigation experiments with vertically stable plasmas. Presumably a faster overall response time would be beneficial, and several ways to achieve this will also be discussed.

  5. Experimental Study of Reversed Shear Alfven Eigenmodes During The Current Ramp In The Alcator C-Mod Tokamak

    SciTech Connect

    Edlund, E. M.; Porkolab, M.; Kramer, G. J.; Lin, L.; Lin, Y.; Tsuji, N.; Wukitch, S. J.

    2010-08-27

    Experiments conducted in the Alcator C-Mod tokamak at MIT have explored the physics of reversed shear Alfven eigenmodes (RSAEs) during the current ramp. The frequency evolution of the RSAEs throughout the current ramp provides a constraint on the evolution of qmin, a result which is important in transport modeling and for comparison with other diagnostics which directly measure the magnetic field line structure. Additionally, a scaling of the RSAE minimum frequency with the sound speed is used to derive a measure of the adiabatic index, a measure of the plasma compressibility. This scaling bounds the adiabatic index at 1.40 ± 0:15 used in MHD models and supports the kinetic calculation of separate electron and ion compressibilities with an ion adiabatic index close to 7~4.

  6. New observations of the low frequency interplanetary radio emissions

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.; Gurnett, D. A.

    1991-01-01

    Recent Voyager 1 observations reveal reoccurrences of the low frequency interplanetary radio emissions. Three of the new events are weak transient events which rise in frequency from the range of 2-2.5 kHz to about 3 kHz with drift rates of approximately 1.5 kHz/year. The first of the transient events begins in mid-1989 and the more recent pair of events both were first detected in late 1991. In addition, there is an apparent onset of a 2-kHz component of the emission beginning near day 70 of 1991. The new transient emissions are barely detectable on Voyager 1 and are below the threshold of detectability on Voyager 2, which is less sensitive than Voyager 1. The new activity provides new opportunities to test various theories of the triggering, generation, and propagation of the outer heliospheric radio emissions and may signal a response of the source of the radio emissions to the increased solar activity associated with the recent peak in the solar cycle.

  7. A very low frequency radio astronomy observatory on the Moon

    NASA Technical Reports Server (NTRS)

    Douglas, James N.; Smith, Harlan J.

    1988-01-01

    Because of terrestrial ionospheric absorption, very little is known of the radio sky beyond 10 m wavelength. An extremely simple, low cost very low frequency radio telescope is proposed, consisting of a large array of short wires laid on the lunar surface, each wire equipped with an amplifier and a digitizer, and connected to a common computer. The telescope could do simultaneous multifrequency observations of much of the visible sky with high resolution in the 10 to 100 m wavelength range, and with lower resolution in the 100 to 1000 m range. It would explore structure and spectra of galactic and extragalactic point sources, objects, and clouds, and would produce detailed quasi-three-dimensional mapping of interstellar matter within several thousand parsecs of the Sun.

  8. A Low Frequency Study of Rotating Radio Transients

    NASA Astrophysics Data System (ADS)

    Meyers, B.; Tremblay, S. E.; Bhat, N. D. R.; Shannon, R. M.

    2016-07-01

    Rotating radio transients (RRATs) are neutron stars whose radio emission is typically detectable as sporadic emission (as opposed to periodic emission). This RRAT study will observe two RRATs (J0614-03, J0545-03) which have low to moderate dispersion measures and should be detectable with the MWA. Nominally, both RRATs should be within a single pointing, due to the increased field-of-view provided by the compact hex-tile core. Given our first concrete detection of the RRAT J2325-0530 with the recently implemented coherent beamformer, we expect that these sources will also be detectable. Observations below 300MHz of these RRATs have not been reported, thus the MWA provides an opportunity to perform the first low-frequency, high time resolution studies of these objects.

  9. Physical properties of conventional explosives deduced from radio frequency emissions

    SciTech Connect

    Harlin, Jeremiah D; Nemzek, Robert

    2008-01-01

    Los Alamos National Laboratory collected broadband radio frequency (RF) electric field change measurements from multiple detonations of high explosives (HE). Three types of HE were used: small cylinders of flake TNT, solid TNT, and PBX-9501. Low frequency signals (<80 MHz) were shot-to-shot repeatable and occurred within the first 100 {mu} s at measured amplitudes of about 2 V m{sup -1} at 35 m distance. High frequency signals (>290 MHz) occurred later, were an order of magnitude lower in signal strength, and were not repeatable. There is a positive correlation between the maximum electric field change and the shock velocity of the HE. The amount of free charge produced in the explosion estimated from the first RF pulse is between 10 and 150 {mu} C. This implies a weakly ionized plasma with temperatures between 2600 and 2900 K.

  10. Low radio frequency spectrum of Sgr-A*

    NASA Astrophysics Data System (ADS)

    Roy, Subhashis

    2017-01-01

    We observed the Galactic centre (GC) region with the partially upgraded Giant Metrewave Radio Telescope (GMRT) using a wideband system in frequency ranges of 300- 500 MHz with 16 antennas. Preliminary results are presented here. Sgr-A* is clearly detected down to 450 MHz. Sgr-A West slowly disappears at lower frequencies across the band. By taking cross-cuts across the known major-axis of Sgr-A*, we measure its total flux density across the band to be 0.4 Jy consistent with what is expected from earlier results. It clearly indicates lack of absorption from Sgr-A West. Its spectral index is consistent with its higher frequency value of +0.3.

  11. Modal response of 4-rod type radio frequency quadrupole linac

    SciTech Connect

    Chatterjee, Avik; Mahapatra, Abhijit; Mondal, Manas; Chakrabarti, Alok

    2009-10-15

    This paper deals with the analysis and experimental study of natural frequencies of vibration of a 4-rod type radio frequency quadrupole (RFQ) linear accelerator. The eigenvalue analysis of the structure has been done both analytically (multispan beam concept) as well as using blocked Lanczos eigenvalue finite element solver with an ability to extract the rigid body modes. This has been done in the mechanical design phase to find the level of agreement between the output of simplified analytical analysis results and the output of a commercial finite element method (FEM) solver, since a full scale RFQ structure is too complex to handle analytically. Experimental validation of the analysis results has been done on the physical 1.7 m RFQ at the installation site. The experimental data obtained were later analyzed and found to be in close agreement with the predicted frequencies in the lower frequency ranges. It gets more and more deviated in the higher frequency ranges. Also some frequencies were observed during experimentation, which were not found in the finite element analysis results. The source of those frequencies are to be further investigated as it may play a predominant role in the design high quality factor beam line cavities for higher operational efficiency.

  12. Modal response of 4-rod type radio frequency quadrupole linac.

    PubMed

    Chatterjee, Avik; Mahapatra, Abhijit; Mondal, Manas; Chakrabarti, Alok

    2009-10-01

    This paper deals with the analysis and experimental study of natural frequencies of vibration of a 4-rod type radio frequency quadrupole (RFQ) linear accelerator. The eigenvalue analysis of the structure has been done both analytically (multispan beam concept) as well as using blocked Lanczos eigenvalue finite element solver with an ability to extract the rigid body modes. This has been done in the mechanical design phase to find the level of agreement between the output of simplified analytical analysis results and the output of a commercial finite element method (FEM) solver, since a full scale RFQ structure is too complex to handle analytically. Experimental validation of the analysis results has been done on the physical 1.7 m RFQ at the installation site. The experimental data obtained were later analyzed and found to be in close agreement with the predicted frequencies in the lower frequency ranges. It gets more and more deviated in the higher frequency ranges. Also some frequencies were observed during experimentation, which were not found in the finite element analysis results. The source of those frequencies are to be further investigated as it may play a predominant role in the design high quality factor beam line cavities for higher operational efficiency.

  13. Time frequency analysis of Jovian and Saturnian radio spectral patterns

    NASA Astrophysics Data System (ADS)

    Boudjada, Mohammed Y.; Galopeau, Patrick H. M.; Al-Haddad, Emad; Lammer, Helmut

    2016-04-01

    Prominent radio spectral patterns were observed by the Cassini Radio and Plasma Wave Science experiment (RPWS) principally at Jupiter and Saturn. The spectral shapes are displayed in the usual dynamic spectra showing the flux density versus the time and the frequency. Those patterns exhibit well-organized shapes in the time-frequency plane connected with the rotation of the planet. We consider in this analysis the auroral emissions which occurred in the frequency range between 10 kHz and approximately 3 MHz. It concerns the Jovian hectometric emission (HOM) and the Saturnian kilometric radiation (SKR). We show in the case of Jupiter's HOM that the spectral patterns are well-arranged arc structures with curvatures depending on the Jovian rotation. Regarding the SKR emission, the spectral shapes exhibit generally complex patterns, and only sometimes arc structures are observed. We emphasize the curve alterations from vertex-early to vertex-late arcs (and vice versa) and we study their dependences, or not, on the planetary rotations. We also discuss the common physical process at the origin of the HOM and SKR emissions, specifically the spectral patterns created by the interaction between planetary satellites (e.g. Io or Dione) and the Jovian and Saturnian magnetospheres.

  14. Stable radio-frequency transfer over optical fiber by phase-conjugate frequency mixing.

    PubMed

    He, Yabai; Orr, Brian J; Baldwin, Kenneth G H; Wouters, Michael J; Luiten, Andre N; Aben, Guido; Warrington, R Bruce

    2013-08-12

    We demonstrate long-distance (≥100-km) synchronization of the phase of a radio-frequency reference over an optical-fiber network without needing to actively stabilize the optical path length. Frequency mixing is used to achieve passive phase-conjugate cancellation of fiber-length fluctuations, ensuring that the phase difference between the reference and synchronized oscillators is independent of the link length. The fractional radio-frequency-transfer stability through a 100-km "real-world" urban optical-fiber network is 6 × 10(-17) with an averaging time of 10(4) s. Our compensation technique is robust, providing long-term stability superior to that of a hydrogen maser. By combining our technique with the short-term stability provided by a remote, high-quality quartz oscillator, this system is potentially applicable to transcontinental optical-fiber time and frequency dissemination where the optical round-trip propagation time is significant.

  15. 47 CFR 76.616 - Operation near certain aeronautical and marine emergency radio frequencies.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... emergency radio frequencies. 76.616 Section 76.616 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Technical Standards § 76.616 Operation near certain aeronautical and marine emergency radio frequencies. (a) The transmission...

  16. 47 CFR 76.616 - Operation near certain aeronautical and marine emergency radio frequencies.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... emergency radio frequencies. 76.616 Section 76.616 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Technical Standards § 76.616 Operation near certain aeronautical and marine emergency radio frequencies. (a) The transmission...

  17. 47 CFR 76.616 - Operation near certain aeronautical and marine emergency radio frequencies.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... emergency radio frequencies. 76.616 Section 76.616 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Technical Standards § 76.616 Operation near certain aeronautical and marine emergency radio frequencies. (a) The transmission...

  18. [Radio-frequency ablation appliance in resection of the liver].

    PubMed

    Fedorov, V D; Vishnevskiĭ, V A; Kubyshkin, V A; Korniak, B S; Ikramov, R Z; Gavrilin, A V; Shchegolev, A I; Sergeeva, O N; Ionkin, D A; Tarasiuk, T I

    2004-01-01

    Pilot experience with "Radionics Cool-Tip RF System" appliance for radio-frequency ablation (RFA) in hepatic resection in the patients with focal lesions of the liver is presented. Advantages of RFA as an alternative method for hemostasis are demonstrated. With this technique bisegmentectomy (II - III) was performed in 4 patients, right-sided hemihepatectomy - in 2 patients. RFA permitted to minimize intraoperative blood loss without increase of surgery time. There were no severe complications during surgery and in early postoperative period. The method permits to perform combined surgeries without a significant increase of surgical risk.

  19. Radio frequency ablation of small renal tumors:: intermediate results.

    PubMed

    Hwang, J J; Walther, M M; Pautler, S E; Coleman, J A; Hvizda, J; Peterson, James; Linehan, W M; Wood, B J

    2004-05-01

    With evolving radio frequency technology, the clinical application of radio frequency ablation (RFA) has been actively investigated in the treatment for small renal tumors. We present our intermediate patient outcomes after RFA. Since January 2001, 17 patients with a total of 24 hereditary renal tumors ranging from 1.2 to 2.85 cm were treated with RFA using the 200 W Cool-tip RF System (Radionics, Burlington, Massachusetts) under laparoscopic (9) or percutaneous (8) guidance and had a minimum 1-year followup. A percutaneous approach was considered unsuitable if kidney tumors were contiguous to bowel, ureter or large vessels. Treatment eligibility criteria included an average tumor diameter of less than 3.0 cm, tumor growth during 1 year and solid appearance with contrast enhancement (HU change greater than 20) on computerized tomography (CT). Postoperative followup consisted of CT with and without intravenous contrast, and renal function assessment at regular intervals. Median patient age was 38 years (range 20 to 51). At a median followup of 385 days (range 342 to 691), median tumor or thermal lesion diameter decreased from 2.26 to 1.62 cm (p = 0.0013), and only 1 lesion (4%), which was located centrally near the hilum, exhibited contrast enhancement (HU change greater than 10) on CT at 12 months. Of the 15 renal tumors ablated laparoscopically, 13 were in direct contact with the bowel and 2 were abutting the ureter, necessitating mobilization before RFA. Laparoscopic ultrasound was used to guide radio frequency electrode placement and monitor the ablation process in these cases. Operative time and intraoperative blood loss (mean +/- standard mean of error) were 243 +/- 29 minutes and 67 +/- 9 cc, respectively. In 1 patient whose ureter was adherent to the tumor a ureteropelvic junction obstruction developed after laparoscopic RFA, requiring open repair. At the minimum 1-year followup 23 of 24 ablated tumors lacked contrast uptake on CT, meeting our radiographic

  20. RADIO FREQUENCY ABLATION OF SMALL RENAL TUMORS: INTERMEDIATE RESULTS

    PubMed Central

    HWANG, J. J.; WALTHER, M. M.; PAUTLER, S. E.; COLEMAN, J. A.; HVIZDA, J.; PETERSON, JAMES; LINEHAN, W. M.; WOOD, B. J.

    2008-01-01

    Purpose With evolving radio frequency technology, the clinical application of radio frequency ablation (RFA) has been actively investigated in the treatment for small renal tumors. We present our intermediate patient outcomes after RFA. Materials and Methods Since January 2001, 17 patients with a total of 24 hereditary renal tumors ranging from 1.2 to 2.85 cm were treated with RFA using the 200 W Cool-tip RF System (Radionics, Burlington, Massachusetts) under laparoscopic (9) or percutaneous (8) guidance and had a minimum 1-year followup. A percutaneous approach was considered unsuitable if kidney tumors were contiguous to bowel, ureter or large vessels. Treatment eligibility criteria included an average tumor diameter of less than 3.0 cm, tumor growth during 1 year and solid appearance with contrast enhancement (HU change greater than 20) on computerized tomography (CT). Postoperative followup consisted of CT with and without intravenous contrast, and renal function assessment at regular intervals. Results Median patient age was 38 years (range 20 to 51). At a median followup of 385 days (range 342 to 691), median tumor or thermal lesion diameter decreased from 2.26 to 1.62 cm (p = 0.0013), and only 1 lesion (4%), which was located centrally near the hilum, exhibited contrast enhancement (HU change greater than 10) on CT at 12 months. Of the 15 renal tumors ablated laparoscopically, 13 were in direct contact with the bowel and 2 were abutting the ureter, necessitating mobilization before RFA. Laparoscopic ultrasound was used to guide radio frequency electrode placement and monitor the ablation process in these cases. Operative time and intraoperative blood loss (mean ± standard mean of error) were 243 ± 29 minutes and 67 ± 9 cc, respectively. In 1 patient whose ureter was adherent to the tumor a ureteropelvic junction obstruction developed after laparoscopic RFA, requiring open repair. Conclusions At the minimum 1-year followup 23 of 24 ablated tumors lacked

  1. Optoelectronic Infrastructure for Radio Frequency and Optical Phased Arrays

    NASA Technical Reports Server (NTRS)

    Cai, Jianhong

    2015-01-01

    Optoelectronic integrated circuits offer radiation-hardened solutions for satellite systems in addition to improved size, weight, power, and bandwidth characteristics. ODIS, Inc., has developed optoelectronic integrated circuit technology for sensing and data transfer in phased arrays. The technology applies integrated components (lasers, amplifiers, modulators, detectors, and optical waveguide switches) to a radio frequency (RF) array with true time delay for beamsteering. Optical beamsteering is achieved by controlling the current in a two-dimensional (2D) array. In this project, ODIS integrated key components to produce common RF-optical aperture operation.

  2. Electromagnetic induction imaging with a radio-frequency atomic magnetometer

    NASA Astrophysics Data System (ADS)

    Deans, Cameron; Marmugi, Luca; Hussain, Sarah; Renzoni, Ferruccio

    2016-03-01

    We report on a compact, tunable, and scalable to large arrays imaging device, based on a radio-frequency optically pumped atomic magnetometer operating in magnetic induction tomography modality. Imaging of conductive objects is performed at room temperature, in an unshielded environment and without background subtraction. Conductivity maps of target objects exhibit not only excellent performance in terms of shape reconstruction but also demonstrate detection of sub-millimetric cracks and penetration of conductive barriers. The results presented here demonstrate the potential of a future generation of imaging instruments, which combine magnetic induction tomography and the unmatched performance of atomic magnetometers.

  3. Experimental research of radio-frequency ion thruster

    NASA Astrophysics Data System (ADS)

    Antropov, N. N.; Akhmetzhanov, R. V.; Bogatyy, A. V.; Grishin, R. A.; Kozhevnikov, V. V.; Plokhikh, A. P.; Popov, G. A.; Khartov, S. A.

    2016-12-01

    The article is devoted to the research of low-power (300 W) radio-frequency ion thruster designed at the Moscow Aviation Institute. The main results of experimental research of the thruster using the testfacility power supplies and the power processing unit of their own design are presented. The dependence of the working fluid ionization cost on its mass flow rate at the constant ion beam current was investigated experimentally. The influence of the shape and material of the discharge chamber on the integral characteristics of the thruster was studied. The recommendations on the optimization of the thruster primary performance were developed based on the results of experimental studies.

  4. Cotrapping different species in ion traps using multiple radio frequencies

    NASA Astrophysics Data System (ADS)

    Trypogeorgos, Dimitris; Foot, Christopher J.

    2016-08-01

    We consider the stability of systems subjected to periodic parametric driving in the context of ions confined by oscillating electric fields. The behavior of these systems can be understood in terms of a pseudopotential approximation and resonances arising from parametric excitation. We investigate the key properties of a way of operating a linear Paul trap with two radio frequencies that simultaneously confines two species with extremely different charge-to-mass ratios. The theoretical calculations have been verified by molecular dynamics simulations and normal modes analysis.

  5. Applications of Radio Frequency Identification (RFID) in Mining Industries

    NASA Astrophysics Data System (ADS)

    Khairul Nizam Mahmad, Mohd; Z, Mohd Remy Rozainy M. A.; Baharun, Norlia

    2016-06-01

    RFID technology has recently become a dream of many companies or organizations because of its strategic potential in transforming mining operations. Now is the perfect time, for RFID technology arise as the next revolution in mining industries. This paper will review regarding the application of RFID in mining industries and access knowledge regarding RFID technology and overseen the opportunity of this technology to become an importance element in mining industries. The application of Radio-Frequency Identification (RFID) in mining industries includes to control of Personal Protective Equipment (PPE), control of personnel to access mining sites and RFID solutions for tracking explosives.

  6. Radio Frequency Identification (RFID) in healthcare: a literature review.

    PubMed

    Kolokathi, Aikaterini; Rallis, Panagiotis

    2013-01-01

    Creating and maintaining a safe and high-quality health care environment is of great importance for global community. New technologies and their applications can help us achieve this goal. Radio-Frequency Identification (RIFD) technology is considered one of those technologies and even today there are some interesting deployments in the health industry. As a result, this work aims to present the basic idea behind RFID solutions, problems that can be addressed with the adoption of RFID and the benefits of relative applications.

  7. Time frequency requirements for radio interferometric earth physics

    NASA Technical Reports Server (NTRS)

    Thomas, J. B.; Fliegel, H. F.

    1973-01-01

    Two systems of VLBI (Very Long Baseline Interferometry) are now applicable to earth physics: an intercontinental baseline system using antennas of the NASA Deep Space Network, now observing at one-month intervals to determine UTI for spacecraft navigation; and a shorter baseline system called ARIES (Astronomical Radio Interferometric Earth Surveying), to be used to measure crustal movement in California for earthquake hazards estimation. On the basis of experience with the existing DSN system, a careful study has been made to estimate the time and frequency requirements of both the improved intercontinental system and of ARIES. Requirements for the two systems are compared and contrasted.

  8. Implantable radio frequency identification sensors: wireless power and communication.

    PubMed

    Hutchens, Chriswell; Rennaker, Robert L; Venkataraman, Srinivasan; Ahmed, Rehan; Liao, Ran; Ibrahim, Tamer

    2011-01-01

    There are significant technical challenges in the development of a fully implantable wirelessly powered neural interface. Challenges include wireless transmission of sufficient power to the implanted device to ensure reliable operation for decades without replacement, minimizing tissue heating, and adequate reliable communications bandwidth. Overcoming these challenges is essential for the development of implantable closed loop system for the treatment of disorders ranging from epilepsy, incontinence, stroke and spinal cord injury. We discuss the development of the wireless power, communication and control for a Radio-Frequency Identification Sensor (RFIDS) system with targeted power range for a 700 mV, 30 to 40 uA load attained at -2 dBm.

  9. Beam acceleration through proton radio frequency quadrupole accelerator in BARC

    NASA Astrophysics Data System (ADS)

    Bhagwat, P. V.; Krishnagopal, S.; Mathew, J. V.; Singh, S. K.; Jain, P.; Rao, S. V. L. S.; Pande, M.; Kumar, R.; Roychowdhury, P.; Kelwani, H.; Rama Rao, B. V.; Gupta, S. K.; Agarwal, A.; Kukreti, B. M.; Singh, P.

    2016-05-01

    A 3 MeV proton Radio Frequency Quadrupole (RFQ) accelerator has been designed at the Bhabha Atomic Research Centre, Mumbai, India, for the Low Energy High Intensity Proton Accelerator (LEHIPA) programme. The 352 MHz RFQ is built in 4 segments and in the first phase two segments of the LEHIPA RFQ were commissioned, accelerating a 50 keV, 1 mA pulsed proton beam from the ion source, to an energy of 1.24 MeV. The successful operation of the RFQ gave confidence in the physics understanding and technology development that have been achieved, and indicate that the road forward can now be traversed rather more quickly.

  10. Phase Radio Meteor Equipment for Time and Frequency Standards Comparison

    DTIC Science & Technology

    2001-11-01

    6, 172 pp. 422-428. [3] B. S. Dudnik, B. L. Kashcheyev, Y. A. Koval, and S. B. Pushkin , 1981, “Decrease of errors in time keeping scales...Dudnik, Y. A. Koval, and S. B. Pushkin , 1986, “Criteria for estimating high-precision indices of radio meteor complexes for time scales synchronization...time and frequency primary standards with the errors less than 10 ns, ” Izmeritelnaja technika, Ng. 12,31-32. [9] S. B. Pushkin , B. L. Kashcheyev

  11. Electromagnetic induction imaging with a radio-frequency atomic magnetometer

    SciTech Connect

    Deans, Cameron; Marmugi, Luca Hussain, Sarah; Renzoni, Ferruccio

    2016-03-07

    We report on a compact, tunable, and scalable to large arrays imaging device, based on a radio-frequency optically pumped atomic magnetometer operating in magnetic induction tomography modality. Imaging of conductive objects is performed at room temperature, in an unshielded environment and without background subtraction. Conductivity maps of target objects exhibit not only excellent performance in terms of shape reconstruction but also demonstrate detection of sub-millimetric cracks and penetration of conductive barriers. The results presented here demonstrate the potential of a future generation of imaging instruments, which combine magnetic induction tomography and the unmatched performance of atomic magnetometers.

  12. Novel integrated design framework for radio frequency quadrupoles

    NASA Astrophysics Data System (ADS)

    Jolly, Simon; Easton, Matthew; Lawrie, Scott; Letchford, Alan; Pozimski, Jürgen; Savage, Peter

    2014-01-01

    A novel design framework for Radio Frequency Quadrupoles (RFQs), developed as part of the design of the FETS RFQ, is presented. This framework integrates several previously disparate steps in the design of RFQs, including the beam dynamics design, mechanical design, electromagnetic, thermal and mechanical modelling and beam dynamics simulations. Each stage of the design process is described in detail, including the various software options and reasons for the final software suite selected. Results are given for each of these steps, describing how each stage affects the overall design process, with an emphasis on the resulting design choices for the FETS RFQ.

  13. Highly sensitive passive radio frequency identification based sensor systems.

    PubMed

    Wissenwasser, J; Vellekoop, M; Heer, R

    2010-02-01

    A novel platform for sensor applications based on radio frequency (rf) identification technology, where passive tags are powered by the rf-field of a reader, is presented. The sophisticated energy harvesting system of the tag enables a blanking of the rf-field for a defined period, while supplying the tag electronics with a highly stable voltage and a power of 25 mW for 100 ms. During this time, span measurements can be performed without interferences of the rf-field. The presented tags work without batteries and are designed for impedance measurements on microbiological cell cultures under physiological relevant conditions as well as in harsh environments.

  14. Highly sensitive passive radio frequency identification based sensor systems

    NASA Astrophysics Data System (ADS)

    Wissenwasser, J.; Vellekoop, M.; Heer, R.

    2010-02-01

    A novel platform for sensor applications based on radio frequency (rf) identification technology, where passive tags are powered by the rf-field of a reader, is presented. The sophisticated energy harvesting system of the tag enables a blanking of the rf-field for a defined period, while supplying the tag electronics with a highly stable voltage and a power of 25 mW for 100 ms. During this time, span measurements can be performed without interferences of the rf-field. The presented tags work without batteries and are designed for impedance measurements on microbiological cell cultures under physiological relevant conditions as well as in harsh environments.

  15. Overview of experimental results and code validation activities at Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Greenwald, M.; Bader, A.; Baek, S.; Barnard, H.; Beck, W.; Bergerson, W.; Bespamyatnov, I.; Bitter, M.; Bonoli, P.; Brookman, M.; Brower, D.; Brunner, D.; Burke, W.; Candy, J.; Chilenski, M.; Chung, M.; Churchill, M.; Cziegler, I.; Davis, E.; Dekow, G.; Delgado-Aparicio, L.; Diallo, A.; Ding, W.; Dominguez, A.; Ellis, R.; Ennever, P.; Ernst, D.; Faust, I.; Fiore, C.; Fitzgerald, E.; Fredian, T.; Garcia, O. E.; Gao, C.; Garrett, M.; Golfinopoulos, T.; Granetz, R.; Groebner, R.; Harrison, S.; Harvey, R.; Hartwig, Z.; Hill, K.; Hillairet, J.; Howard, N.; Hubbard, A. E.; Hughes, J. W.; Hutchinson, I.; Irby, J.; James, A. N.; Kanojia, A.; Kasten, C.; Kesner, J.; Kessel, C.; Kube, R.; LaBombard, B.; Lau, C.; Lee, J.; Liao, K.; Lin, Y.; Lipschultz, B.; Ma, Y.; Marmar, E.; McGibbon, P.; Meneghini, O.; Mikkelsen, D.; Miller, D.; Mumgaard, R.; Murray, R.; Ochoukov, R.; Olynyk, G.; Pace, D.; Park, S.; Parker, R.; Podpaly, Y.; Porkolab, M.; Preynas, M.; Pusztai, I.; Reinke, M.; Rice, J.; Rowan, W.; Scott, S.; Shiraiwa, S.; Sierchio, J.; Snyder, P.; Sorbom, B.; Soukhanovskii, V.; Stillerman, J.; Sugiyama, L.; Sung, C.; Terry, D.; Terry, J.; Theiler, C.; Tsujii, N.; Vieira, R.; Walk, J.; Wallace, G.; White, A.; Whyte, D.; Wilson, J.; Wolfe, S.; Woller, K.; Wright, G.; Wright, J.; Wukitch, S.; Wurden, G.; Xu, P.; Yang, C.; Zweben, S.

    2013-10-01

    Recent research on the Alcator C-Mod tokamak has focused on a range of scientific issues with particular emphasis on ITER needs and on detailed comparisons between experimental measurements and predictive models. Research on ICRF (ion cyclotron range of frequencies) heating emphasized the origins and mitigation of metallic impurities while work on lower hybrid current drive experiments have focused on linear and nonlinear wave interactions that limit efficiency at high densities in regimes with low single pass absorption. Experiments in core turbulence and transport focused on quantitative, multi-field comparisons between nonlinear gyro-kinetics simulations and experimental measurements of profiles, fluxes and fluctuations. Experiments into self-generated rotation observed spontaneous flow reversal at a critical density identical to the transition density between linear ohmic confinement and saturated ohmic confinement regimes. H-mode studies have measured pedestal widths consistent with kinetic-ballooning-mode-like instabilities, while the pedestal heights quantitatively match the EPED code predictions. Experiments with I-mode have increased the operating window for this promising edge-localized-mode-free regime. Extrapolation of I-mode to ITER suggests that the fusion gain Q ∼ 10 could be possible in ITER. Investigations into the physics and scaling of the power exhaust channel width in attached enhanced D-alpha H-mode and L-mode plasma showed a direct connection between the midplane pressure-folding length and the outer divertor target footprint. The width was found to scale inversely with IP, while being independent of conducted power, BT or q95 and insensitive to the scrape-off layer connection length—a behaviour that suggests critical-gradient physics sets both pressure and heat-flux profiles.

  16. Anomalous transport in the H-mode pedestal of Alcator C-Mod discharges

    NASA Astrophysics Data System (ADS)

    Pankin, A. Y.; Hughes, J. W.; Greenwald, M. J.; Kritz, A. H.; Rafiq, T.

    2017-02-01

    Anomalous transport in the H-mode pedestal region of five Alcator C-Mod discharges, representing a collisionality scan is analyzed. The understanding of anomalous transport in the pedestal region is important for the development of a comprehensive model for the H-mode pedestal slope. In this research, a possible role of the drift resistive inertial ballooning modes (Rafiq et al 2010 Phys. Plasmas 17 082511) in the edge of Alcator C-Mod discharges is analyzed. The stability analysis, carried out using the TRANSP code, indicates that the DRIBM modes are strongly unstable in Alcator C-Mod discharges with large electron collisionality. An improved interpretive analysis of H-mode pedestal experimental data is carried out utilizing the additive flux minimization technique (Pankin et al 2013 Phys. Plasmas 20 102501) together with the guiding-center neoclassical kinetic XGC0 code. The neoclassical and neutral physics are simulated in the XGC0 code and the anomalous fluxes are computed using the additive flux minimization technique. The anomalous fluxes are reconstructed and compared with each other for the collisionality scan Alcator C-Mod discharges. It is found that the electron thermal anomalous diffusivities at the pedestal top increase with the electron collisionality. This dependence can also point to the drift resistive inertial ballooning modes as the modes that drive the anomalous transport in the plasma edge of highly collisional discharges.

  17. Ground and space observations of medium frequency auroral radio emissions

    NASA Astrophysics Data System (ADS)

    Broughton, Matthew C.

    The auroral zone is a rich source of natural radio emissions that can be observed in space and at ground-level. By studying these waves, scientists can gain insight into the plasma processes that generate them and use the near-Earth space environment as a large-scale plasma physics laboratory. This thesis uses both ground-level and in situ observations to study two kinds of natural radio emissions. First, we report observations of a new kind of auroral radio emission. The waves have frequencies ranging from 1.3-2.2 MHz, bandwidths ranging from 90-272 kHz, and durations ranging from 16-355 s. Spectral analysis of the waveform data has revealed that the emission has a complex combination of at least three kinds of fine structures. For model auroral electron distributions, calculations indicate that Langmuir waves could be excited at frequencies consistent with observations. The remainder of the thesis discusses auroral medium frequency (MF) burst, an impulsive, broadband natural radio emission observed at ground-level within a few minutes of local substorm onset. LaBelle [2011] proposed that MF burst originates as Langmuir/Z-mode waves on the topside of the ionosphere that subsequently mode convert to L-mode waves and propagate to ground-level. Using continuous waveform measurements and combined observations with the Sondrestrom Incoherent Scatter Radar, we have performed two tests of this mechanism. The results of these tests are consistent with the mechanism described in LaBelle [2011]. A survey of 8,624 half-orbits of the DEMETER spacecraft has revealed 68 observations of bursty MF waves. We have compared the wave properties of these waves to those of MF burst and have found that although it is uncertain, the balance of the evidence suggests that the bursty MF waves observed with DEMETER are the same phenomenon as the ground-level MF burst. Finally, we have used numerical simulations to model both the fine structure of MF burst and to estimate the attenuation the

  18. Quantitative comparison of electron temperature fluctuations to nonlinear gyrokinetic simulations in C-Mod Ohmic L-mode discharges

    NASA Astrophysics Data System (ADS)

    Sung, C.; White, A. E.; Mikkelsen, D. R.; Greenwald, M.; Holland, C.; Howard, N. T.; Churchill, R.; Theiler, C.

    2016-04-01

    Long wavelength turbulent electron temperature fluctuations (kyρs < 0.3) are measured in the outer core region (r/a > 0.8) of Ohmic L-mode plasmas at Alcator C-Mod [E. S. Marmar et al., Nucl. Fusion 49, 104014 (2009)] with a correlation electron cyclotron emission diagnostic. The relative amplitude and frequency spectrum of the fluctuations are compared quantitatively with nonlinear gyrokinetic simulations using the GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] in two different confinement regimes: linear Ohmic confinement (LOC) regime and saturated Ohmic confinement (SOC) regime. When comparing experiment with nonlinear simulations, it is found that local, electrostatic ion-scale simulations (kyρs ≲ 1.7) performed at r/a ˜ 0.85 reproduce the experimental ion heat flux levels, electron temperature fluctuation levels, and frequency spectra within experimental error bars. In contrast, the electron heat flux is robustly under-predicted and cannot be recovered by using scans of the simulation inputs within error bars or by using global simulations. If both the ion heat flux and the measured temperature fluctuations are attributed predominantly to long-wavelength turbulence, then under-prediction of electron heat flux strongly suggests that electron scale turbulence is important for transport in C-Mod Ohmic L-mode discharges. In addition, no evidence is found from linear or nonlinear simulations for a clear transition from trapped electron mode to ion temperature gradient turbulence across the LOC/SOC transition, and also there is no evidence in these Ohmic L-mode plasmas of the "Transport Shortfall" [C. Holland et al., Phys. Plasmas 16, 052301 (2009)].

  19. Quantitative comparison of electron temperature fluctuations to nonlinear gyrokinetic simulations in C-Mod Ohmic L-mode discharges

    SciTech Connect

    Sung, C.; White, A. E.; Greenwald, M.; Howard, N. T.; Mikkelsen, D. R.; Churchill, R.; Holland, C.; Theiler, C.

    2016-04-15

    Long wavelength turbulent electron temperature fluctuations (k{sub y}ρ{sub s} < 0.3) are measured in the outer core region (r/a > 0.8) of Ohmic L-mode plasmas at Alcator C-Mod [E. S. Marmar et al., Nucl. Fusion 49, 104014 (2009)] with a correlation electron cyclotron emission diagnostic. The relative amplitude and frequency spectrum of the fluctuations are compared quantitatively with nonlinear gyrokinetic simulations using the GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] in two different confinement regimes: linear Ohmic confinement (LOC) regime and saturated Ohmic confinement (SOC) regime. When comparing experiment with nonlinear simulations, it is found that local, electrostatic ion-scale simulations (k{sub y}ρ{sub s} ≲ 1.7) performed at r/a ∼ 0.85 reproduce the experimental ion heat flux levels, electron temperature fluctuation levels, and frequency spectra within experimental error bars. In contrast, the electron heat flux is robustly under-predicted and cannot be recovered by using scans of the simulation inputs within error bars or by using global simulations. If both the ion heat flux and the measured temperature fluctuations are attributed predominantly to long-wavelength turbulence, then under-prediction of electron heat flux strongly suggests that electron scale turbulence is important for transport in C-Mod Ohmic L-mode discharges. In addition, no evidence is found from linear or nonlinear simulations for a clear transition from trapped electron mode to ion temperature gradient turbulence across the LOC/SOC transition, and also there is no evidence in these Ohmic L-mode plasmas of the “Transport Shortfall” [C. Holland et al., Phys. Plasmas 16, 052301 (2009)].

  20. Dispersion by pulsars, magnetars, fast radio bursts and massive electromagnetism at very low radio frequencies

    NASA Astrophysics Data System (ADS)

    Bentum, Mark J.; Bonetti, Luca; Spallicci, Alessandro D. A. M.

    2017-01-01

    Our understanding of the universe relies mostly on electromagnetism. As photons are the messengers, fundamental physics is concerned in testing their properties. Photon mass upper limits have been earlier set through pulsar observations, but new investigations are offered by the excess of dispersion measure (DM), sometimes observed with pulsar and magnetar data at low frequencies, or with the fast radio bursts (FRBs), of yet unknown origin. Arguments for the excess of DM do not reach a consensus, but are not mutually exclusive. Thus, we remind that for massive electromagnetism, dispersion goes as the inverse of the frequency squared. Thereby, new avenues are offered also by the recently operating ground observatories in 10-80 MHz domain and by the proposed Orbiting Low Frequency Antennas for Radio astronomy (OLFAR). The latter acts as a large aperture dish by employing a swarm of nano-satellites observing the sky for the first time in the 0.1-15 MHz spectrum. The swarm must be deployed sufficiently away from the ionosphere to avoid distorsions from terrestrial interference, especially during solar maxima, and offer stable conditions for calibration during observations.

  1. In situ observations of medium frequency auroral radio emissions

    NASA Astrophysics Data System (ADS)

    Broughton, M.; Labelle, J. W.; Pfaff, R. F.; Parrot, M.; Yan, X.; Burchill, J. K.

    2013-12-01

    The auroral ionosphere is a region rich with plasma waves that can be studied both in space and on the ground. These waves may mediate energy exchange between particle populations and provide information about the local plasma properties and boundaries. Auroral medium frequency (MF) burst is an impulsive radio emission observed at ground-level from 1.3-4.5 MHz that is associated with local substorm onset. There have been two recent reports of impulsive, broadband, MF waves at high latitudes. Burchill and Pfaff [2005] reported observations from the FAST satellite of impulsive, broadband, MF and low frequency (LF) radio waves. Using data from the DEMETER satellite, Parrot et al. [2009] surveyed MF waves caused by lightning. This study did show a high-latitude population of MF waves. We investigate whether the waves observed by these two satellites are related to auroral MF burst. Using FAST satellite burst mode electric field data from high-latitude (> 60 degrees magnetic), low-altitude (< 1000 km) intervals of moderate to large geomagnetic activity (Kp > 3) from 1996-2002, we have found forty-four examples of impulsive MF waves, all of which are associated with impulsive LF waves. Although MF burst and the waves observed by FAST have similar spectral signatures, they have different magnetic local time dependencies, which suggests that they may be unrelated. A study of MF waves observed at high latitude by DEMETER is ongoing. In situ observations of MF burst could provide crucial information about this heretofore unexplained natural radio emission.

  2. Anomalous Capacitive Sheath with Deep Radio Frequency Electric Field Penetration

    SciTech Connect

    Igor D. Kaganovich

    2002-01-18

    A novel nonlinear effect of anomalously deep penetration of an external radio-frequency electric field into a plasma is described. A self-consistent kinetic treatment reveals a transition region between the sheath and the plasma. Because of the electron velocity modulation in the sheath, bunches in the energetic electron density are formed in the transition region adjusted to the sheath. The width of the region is of order V(subscript T)/omega, where V(subscript T) is the electron thermal velocity, and w is frequency of the electric field. The presence of the electric field in the transition region results in a cooling of the energetic electrons and an additional heating of the cold electrons in comparison with the case when the transition region is neglected.

  3. An evolutionary sequence of low frequency radio astronomy missions

    NASA Technical Reports Server (NTRS)

    Jones, Dayton L.

    1990-01-01

    Many concepts for space-based low frequency radio astronomy missions are being developed, ranging from simple single-satellite experiments to large arrays on the far side of the moon. Each concept involves a different tradeoff between the range of scientific questions it can answer and the technical complexity of the experiment. Since complexity largely determines the development time, risk, launch vehicle requirements, cost, and probability of approval, it is important to see where the ability to expand the scientific return justifies a major increase in complexity. An evolutionary series of increasingly capable missions, similar to the series of missions for infrared or X-ray astronomy, is advocated. These would range from inexpensive 'piggy-back' experiments on near-future missions to a dedicated low frequency array in earth orbit (or possibly on the lunar nearside) and eventually to an array on the lunar farside.

  4. Physics design of rod type proton Radio Frequency Quadrupole linac

    NASA Astrophysics Data System (ADS)

    Das, C.; Dechoudhury, S.; Pandey, H. K.; Naik, V.; Chakrabarti, A.

    2017-02-01

    A Radio Frequency Quadrupole (RFQ) linac delivering 800 keV, 5 mA protons has been designed. It is envisaged as first injector of the proton driver that will be used for production of proton-rich radioactive beams in the proposed ANURIB facility. The option of rod-type structure at frequency of 80 MHz has been chosen owing to ease of mechanical fabrications and to avoid detrimental nearby dipole modes present in vane type structure. Optimization of parameters has been carried out for a viable length and power of RFQ in order to avoid any infrastructural complexity. Conventional method of keeping focusing factor and vane voltage constant along the length of RFQ has been adopted. Results of detailed beam dynamics and RF structure design, space charge induced effects and corroborative particle tracking with realistic 3D fields of modulated vane has been presented.

  5. Multiplexed infrared photodetection using resonant radio-frequency circuits

    SciTech Connect

    Liu, R.; Lu, R.; Gong, S.; Wasserman, D.; Roberts, C.; Allen, J. W.; Allen, M. S.; Wenner, B. R.

    2016-02-08

    We demonstrate a room-temperature semiconductor-based photodetector where readout is achieved using a resonant radio-frequency (RF) circuit consisting of a microstrip split-ring resonator coupled to a microstrip busline, fabricated on a semiconductor substrate. The RF resonant circuits are characterized at RF frequencies as function of resonator geometry, as well as for their response to incident IR radiation. The detectors are modeled analytically and using commercial simulation software, with good agreement to our experimental results. Though the detector sensitivity is weak, the detector architecture offers the potential for multiplexing arrays of detectors on a single read-out line, in addition to high speed response for either direct coupling of optical signals to RF circuitry, or alternatively, carrier dynamics characterization of semiconductor, or other, material systems.

  6. Radio-frequency ion deflector for mass separation

    SciTech Connect

    Schlösser, Magnus Rudnev, Vitaly; Ureña, Ángel González

    2015-10-15

    Electrostatic cylindrical deflectors act as energy analyzer for ion beams. In this article, we present that by imposing of a radio-frequency modulation on the deflecting electric field, the ion transmission becomes mass dependent. By the choice of the appropriate frequency, amplitude, and phase, the deflector can be used as mass filter. The basic concept of the new instrument as well as simple mathematic relations are described. These calculations and further numerical simulations show that a mass sensitivity is achievable. Furthermore, we demonstrate the proof-of-principle in experimental measurements, compare the results to those of from a 1 m linear time-of-flight spectrometer, and comment on the mass resolution of the method. Finally, some potential applications are indicated.

  7. Multiplexed infrared photodetection using resonant radio-frequency circuits

    NASA Astrophysics Data System (ADS)

    Liu, R.; Lu, R.; Roberts, C.; Gong, S.; Allen, J. W.; Allen, M. S.; Wenner, B. R.; Wasserman, D.

    2016-02-01

    We demonstrate a room-temperature semiconductor-based photodetector where readout is achieved using a resonant radio-frequency (RF) circuit consisting of a microstrip split-ring resonator coupled to a microstrip busline, fabricated on a semiconductor substrate. The RF resonant circuits are characterized at RF frequencies as function of resonator geometry, as well as for their response to incident IR radiation. The detectors are modeled analytically and using commercial simulation software, with good agreement to our experimental results. Though the detector sensitivity is weak, the detector architecture offers the potential for multiplexing arrays of detectors on a single read-out line, in addition to high speed response for either direct coupling of optical signals to RF circuitry, or alternatively, carrier dynamics characterization of semiconductor, or other, material systems.

  8. Measurements of radio frequency signals from lightning in Jupiter's atmosphere

    NASA Astrophysics Data System (ADS)

    Rinnert, K.; Lanzerotti, L. J.; Uman, M. A.; Dehmel, G.; Gliem, F. O.; Krider, E. P.; Bach, J.

    1998-09-01

    During the descent of the Galileo probe through Jupiter's atmosphere, the lightning and radio emissions detector (LRD) instrument measured radio frequency signals presumably from electrical discharges in the planet's atmosphere. The LRD was the only instrument that provided remote sensing, as well as in situ, measurements of atmospheric characteristics. The LRD measurements are presented here and some estimates are given on the energetics and frequency of occurrence of lightning in Jovian clouds. Propagation calculations of RF discharges in the Jovian atmosphere system and the statistics data obtained by the LRD, together with one very distinct lightning waveform, permit a unified and consistent interpretation of the data. We conclude that at the time of probe entry, Jovian discharges occur with a rate about one hundredth that of the global yearly average on Earth (Earth value is about 6 flashes km-2yr-1) within about 15,000 km radius of the probe and that the average radiated power is of the order of 5×1011W. The change in the electric dipole moment in Jovian lightning is about 107coulombm, roughly 100 times that of a typical terrestrial discharge.

  9. Hermetic aluminum radio frequency interconnection and method for making

    DOEpatents

    Kilgo, Riley D.; Kovacic, Larry; Brow, Richard K.

    2000-01-01

    The present invention provides a light-weight, hermetic coaxial radio-frequency (RF) interconnection having an electrically conductive outer housing made of aluminum or an aluminum alloy, a central electrical conductor made of ferrous or non-ferrous material, and a cylinder of dielectric material comprising a low-melting-temperature, high-thermal-expansion aluminophosphate glass composition for hermetically sealing between the aluminum-alloy outer housing and the ferrous or non-ferrous center conductor. The entire RF interconnection assembly is made permanently hermetic by thermally fusing the center conductor, glass, and housing concurrently by bringing the glass to the melt point by way of exposure to an atmospheric temperature sufficient to melt the glass, less than 540.degree. C., but that does not melt the center conductor or the outer aluminum or aluminum alloy housing. The composition of the glass used is controlled to provide a suitable low dielectric constant so that an appropriate electrical characteristic impedance, for example 50 ohms, can be achieved for an electrical interconnection that performs well at high radio frequencies and also provides an interconnection maintaining a relatively small physical size.

  10. Digital avionics susceptibility to high energy radio frequency fields

    NASA Technical Reports Server (NTRS)

    Larsen, William E.

    1988-01-01

    Generally, noncritical avionic systems for transport category aircraft have been designed to meet radio frequency (RF) susceptibility requirements set forth in RTCA DO 160B, environmental conditions and test procedures for airborne equipment. Section 20 of this document controls the electromagnetic interference (EMI) hardening for avionics equipment to levels of 1 and 2 V/m. Currently, US equipment manufacturers are designing flight-critical fly-by-wire avionics to a much higher level. The US Federal Aviation Administration (FAA) has requested that the RTCA SC-135 high-energy radio frequency (HERF) working group develop appropriate testing procedures for section 20 of RTCA DO 160B for radiated and conducted susceptibility at the box and systems level. The FAA has also requested the SAE AE4R committee to address installed systems testing, airframe shielding effects and RF environment monitoring. Emitters of interest include radar (ground, ship, and aircraft) commercial broadcast and TV station, mobile communication, and other transmitters that could possibly affect commercial aircraft.

  11. Radio-frequency identification: its potential in healthcare.

    PubMed

    2005-05-01

    Radio-frequency identification (RFID) technology is just starting to make inroads into healthcare. RFID uses radio-frequency tags attached to people or objects to provide identification, tracking, security, and other functions that fall under the general heading of automatic identification and data capture (AIDC). In the retail supply chain, RFID is already well established as a way to reduce theft and track objects from manufacture through shipment to delivery. In healthcare, basic RFID is already being used to track patients for anti-elopement and anti-abduction programs. As more sophisticated systems move into hospitals, RFID is also beginning to see use to provide more extensive patient identification than traditional bar coding can, and to track and locate capital equipment within the hospital. In years to come, RFID could be used for a variety of applications, including tracking and matching blood for transfusions, tracking pharmaceuticals, and combating the counterfeiting of medical products. RFID may ultimately be used for many of the functions currently carried out using bar coding--but not until the cost of RFID comes down. For the foreseeable future, the two technologies are likely to be used in tandem in many hospitals. In this article, we describe the components and operation of RFID systems and detail the different ways in which these systems are being used, and could be used, in hospitals.

  12. Near-field scanning study for radio frequency interference estimation

    NASA Astrophysics Data System (ADS)

    Pan, Jingnan

    This dissertation discusses the novel techniques using near-fields scanning to do radio frequency interference (RFI) estimation. As the electronic products are becoming more and more complicated, the radio frequency (RF) receiver in the system is very likely interfered by multiple noise sources simultaneously. A method is proposed to identify the interference from different noise sources separately, even when they are radiating at the same time. This method is very helpful for engineers to identify the contribution of the coupling from different sources and further solve the electromagnetic interference issues efficiently. On the other hand, the equivalent dipole-moment models and a decomposition method based on reciprocity theory can also be used together to estimate the coupling from the noise source to the victim antennas. This proposed method provides convenience to estimate RFI issues in the early design stage and saves the time of RFI simulation and measurements. The finite element method and image theory can also predict the far fields of the radiation source, locating above a ground plane. This method applies the finite element method (FEM) to get the equivalent current sources from the tangential magnetic near fields. With the equivalent current sources, the far-field radiation can be calculated based on Huygens's Principle and image theory. By using only the magnetic near fields on the simplified Huygens's surface, the proposed method significantly saves measurement time and cost while also retaining good far-field prediction.

  13. Digital avionics susceptibility to high energy radio frequency fields

    NASA Technical Reports Server (NTRS)

    Larsen, William E.

    1988-01-01

    Generally, noncritical avionic systems for transport category aircraft have been designed to meet radio frequency (RF) susceptibility requirements set forth in RTCA DO 160B, environmental conditions and test procedures for airborne equipment. Section 20 of this document controls the electromagnetic interference (EMI) hardening for avionics equipment to levels of 1 and 2 V/m. Currently, US equipment manufacturers are designing flight-critical fly-by-wire avionics to a much higher level. The US Federal Aviation Administration (FAA) has requested that the RTCA SC-135 high-energy radio frequency (HERF) working group develop appropriate testing procedures for section 20 of RTCA DO 160B for radiated and conducted susceptibility at the box and systems level. The FAA has also requested the SAE AE4R committee to address installed systems testing, airframe shielding effects and RF environment monitoring. Emitters of interest include radar (ground, ship, and aircraft) commercial broadcast and TV station, mobile communication, and other transmitters that could possibly affect commercial aircraft.

  14. The Evolution of Cassiopeia A at Low Radio Frequencies

    NASA Astrophysics Data System (ADS)

    Helmboldt, J. F.; Kassim, N. E.

    2009-09-01

    We have used archival 74 MHz Very Large Array data spanning the last 15 years in combination with new data from the Long-Wavelength Demonstrator Array and data from the literature covering the last 50 years to explore the evolution of Cas A at low radio frequencies. We find that the secular decrease of the flux density of Cas A at ~80 MHz is rather stable over five decades of time, decreasing at a rate of 0.7%-0.8% yr-1. This is entirely consistent with previous estimates at frequencies as low as 38 MHz, indicating that the secular decrease is roughly the same at low frequencies, at least between 38 and 80 MHz. We also find strong evidence for as many as four modes of flux density oscillation about the slower secular decrease with periods of 3.10 ± 0.02 yr, 5.1 ± 0.3 yr, 9.0 ± 0.2 yr, and 24 ± 2 yr. These are also consistent with fluctuations seen previously to occur on scales of a few years. These results provide compelling motivation for a thorough low-frequency monitoring campaign of Cas A to constrain the nature and physical origins of these fluctuations, and to be able to better predict the flux density of Cas A at any given epoch so that it may be used as a reliable low-frequency calibrator.

  15. Radio frequency based label-free detection of glucose.

    PubMed

    Park, Hyunggoo; Seo Yoon, Hyung; Patil, Umakant; Anoop, Rani; Lee, Juho; Lim, Juhwan; Lee, Woonhyoung; Chan Jun, Seong

    2014-04-15

    We investigated the frequency based mediator-free glucose sensor in the radio-frequency (RF) range. Frequency dependent power signal showed clear dependence on the glucose concentration with free enzymatic condition. Also, the passive electrical components such as the resistance, inductance, shunt conductance, and capacitance were extracted based on the transmission line model for further analysis. These various parameters proposed by the signal processing provided more effective verification for instant multi-components in-situ readings without any added supporters. Additionally the residual signal (RS), impedance (Z), and propagation constant (γ) were also calculated from measured S-parameters for glucose analysis. These parameters basically showed amplitude variation and interestingly, some parameters such as inductance and impedance showed frequency shift of resonance dip. The results support that the frequency based sensing technique including the parameter based analysis can enable effective multi-dimensional detection of glucose. Moreover, this technique showed that glucose sensing is also possible over a diabetic patient's serum. © 2013 Published by Elsevier B.V.

  16. Fundamental investigations of capacitive radio frequency plasmas: simulations and experiments

    NASA Astrophysics Data System (ADS)

    Donkó, Z.; Schulze, J.; Czarnetzki, U.; Derzsi, A.; Hartmann, P.; Korolov, I.; Schüngel, E.

    2012-12-01

    Capacitive radio frequency (RF) discharge plasmas have been serving hi-tech industry (e.g. chip and solar cell manufacturing, realization of biocompatible surfaces) for several years. Nonetheless, their complex modes of operation are not fully understood and represent topics of high interest. The understanding of these phenomena is aided by modern diagnostic techniques and computer simulations. From the industrial point of view the control of ion properties is of particular interest; possibilities of independent control of the ion flux and the ion energy have been utilized via excitation of the discharges with multiple frequencies. ‘Classical’ dual-frequency (DF) discharges (where two significantly different driving frequencies are used), as well as discharges driven by a base frequency and its higher harmonic(s) have been analyzed thoroughly. It has been recognized that the second solution results in an electrically induced asymmetry (electrical asymmetry effect), which provides the basis for the control of the mean ion energy. This paper reviews recent advances on studies of the different electron heating mechanisms, on the possibilities of the separate control of ion energy and ion flux in DF discharges, on the effects of secondary electrons, as well as on the non-linear behavior (self-generated resonant current oscillations) of capacitive RF plasmas. The work is based on a synergistic approach of theoretical modeling, experiments and kinetic simulations based on the particle-in-cell approach.

  17. Extragalactic Peaked-spectrum Radio Sources at Low Frequencies

    NASA Astrophysics Data System (ADS)

    Callingham, J. R.; Ekers, R. D.; Gaensler, B. M.; Line, J. L. B.; Hurley-Walker, N.; Sadler, E. M.; Tingay, S. J.; Hancock, P. J.; Bell, M. E.; Dwarakanath, K. S.; For, B.-Q.; Franzen, T. M. O.; Hindson, L.; Johnston-Hollitt, M.; Kapińska, A. D.; Lenc, E.; McKinley, B.; Morgan, J.; Offringa, A. R.; Procopio, P.; Staveley-Smith, L.; Wayth, R. B.; Wu, C.; Zheng, Q.

    2017-02-01

    We present a sample of 1483 sources that display spectral peaks between 72 MHz and 1.4 GHz, selected from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey. The GLEAM survey is the widest fractional bandwidth all-sky survey to date, ideal for identifying peaked-spectrum sources at low radio frequencies. Our peaked-spectrum sources are the low-frequency analogs of gigahertz-peaked spectrum (GPS) and compact-steep spectrum (CSS) sources, which have been hypothesized to be the precursors to massive radio galaxies. Our sample more than doubles the number of known peaked-spectrum candidates, and 95% of our sample have a newly characterized spectral peak. We highlight that some GPS sources peaking above 5 GHz have had multiple epochs of nuclear activity, and we demonstrate the possibility of identifying high-redshift (z > 2) galaxies via steep optically thin spectral indices and low observed peak frequencies. The distribution of the optically thick spectral indices of our sample is consistent with past GPS/CSS samples but with a large dispersion, suggesting that the spectral peak is a product of an inhomogeneous environment that is individualistic. We find no dependence of observed peak frequency with redshift, consistent with the peaked-spectrum sample comprising both local CSS sources and high-redshift GPS sources. The 5 GHz luminosity distribution lacks the brightest GPS and CSS sources of previous samples, implying that a convolution of source evolution and redshift influences the type of peaked-spectrum sources identified below 1 GHz. Finally, we discuss sources with optically thick spectral indices that exceed the synchrotron self-absorption limit.

  18. Resonant-frequency discharge in a multi-cell radio frequency cavity

    SciTech Connect

    Popović, S.; Upadhyay, J.; Nikolić, M.; Vušković, L.; Mammosser, J.

    2014-11-07

    We are reporting experimental results on a microwave discharge operating at resonant frequency in a multi-cell radio frequency (RF) accelerator cavity. Although the discharge operated at room temperature, the setup was constructed so that it could be used for plasma generation and processing in fully assembled active superconducting radio-frequency cryo-module. This discharge offers a mechanism for removal of a variety of contaminants, organic or oxide layers, and residual particulates from the interior surface of RF cavities through the interaction of plasma-generated radicals with the cavity walls. We describe resonant RF breakdown conditions and address the issues related to resonant detuning due to sustained multi-cell cavity plasma. We have determined breakdown conditions in the cavity, which was acting as a plasma vessel with distorted cylindrical geometry. We discuss the spectroscopic data taken during plasma removal of contaminants and use them to evaluate plasma parameters, characterize the process, and estimate the volatile contaminant product removal.

  19. Radio-frequency radiation exposure from AM radio transmitters and childhood leukemia and brain cancer.

    PubMed

    Ha, Mina; Im, Hyoungjune; Lee, Mihye; Kim, Hyun Joo; Kim, Byung-Chan; Gimm, Yoon-Myoung; Pack, Jeong-Ki

    2007-08-01

    Leukemia and brain cancer patients under age 15 years, along with controls with respiratory illnesses who were matched to cases on age, sex, and year of diagnosis (1993-1999), were selected from 14 South Korean hospitals using the South Korean Medical Insurance Data System. Diagnoses were confirmed through the South Korean National Cancer Registry. Residential addresses were obtained from medical records. A newly developed prediction program incorporating a geographic information system that was modified by the results of actual measurements was used to estimate radio-frequency radiation (RFR) exposure from 31 amplitude modulation (AM) radio transmitters with a power of 20 kW or more. A total of 1,928 leukemia patients, 956 brain cancer patients, and 3,082 controls were analyzed. Cancer risks were estimated using conditional logistic regression adjusted for residential area, socioeconomic status, and community population density. The odds ratio for all types of leukemia was 2.15 (95% confidence interval (CI): 1.00, 4.67) among children who resided within 2 km of the nearest AM radio transmitter as compared with those resided more than 20 km from it. For total RFR exposure from all transmitters, odds ratios for lymphocytic leukemia were 1.39 (95% CI: 1.04, 1.86) and 1.59 (95% CI: 1.19, 2.11) for children in the second and third quartiles, respectively, versus the lowest quartile. Brain cancer and infantile cancer were not associated with AM RFR.

  20. Relics in galaxy clusters at high radio frequencies

    NASA Astrophysics Data System (ADS)

    Kierdorf, M.; Beck, R.; Hoeft, M.; Klein, U.; van Weeren, R. J.; Forman, W. R.; Jones, C.

    2017-03-01

    Aims: We investigated the magnetic properties of radio relics located at the peripheries of galaxy clusters at high radio frequencies, where the emission is expected to be free of Faraday depolarization. The degree of polarization is a measure of the magnetic field compression and, hence, the Mach number. Polarization observations can also be used to confirm relic candidates. Methods: We observed three radio relics in galaxy clusters and one radio relic candidate at 4.85 and 8.35 GHz in total emission and linearly polarized emission with the Effelsberg 100-m telescope. In addition, we observed one radio relic candidate in X-rays with the Chandra telescope. We derived maps of polarization angle, polarization degree, and Faraday rotation measures. Results: The radio spectra of the integrated emission below 8.35 GHz can be well fitted by single power laws for all four relics. The flat spectra (spectral indices of 0.9 and 1.0) for the so-called Sausage relic in cluster CIZA J2242+53 and the so-called Toothbrush relic in cluster 1RXS 06+42 indicate that models describing the origin of relics have to include effects beyond the assumptions of diffuse shock acceleration. The spectra of the radio relics in ZwCl 0008+52 and in Abell 1612 are steep, as expected from weak shocks (Mach number ≈2.4). Polarization observations of radio relics offer a method of measuring the strength and geometry of the shock front. We find polarization degrees of more than 50% in the two prominent Mpc-sized radio relics, the Sausage and the Toothbrush, which are among the highest percentages of linear polarization detected in any extragalactic radio source to date. This is remarkable because the large beam size of the Effelsberg single-dish telescope corresponds to linear extensions of about 300 kpc at 8.35 GHz at the distances of the relics. The high degree of polarization indicates that the magnetic field vectors are almost perfectly aligned along the relic structure, as expected for shock

  1. Nonlinear frequency coupling in dual radio-frequency driven atmospheric pressure plasmas

    SciTech Connect

    Waskoenig, J.; Gans, T.

    2010-05-03

    Plasma ionization, and associated mode transitions, in dual radio-frequency driven atmospheric pressure plasmas are governed through nonlinear frequency coupling in the dynamics of the plasma boundary sheath. Ionization in low-power mode is determined by the nonlinear coupling of electron heating and the momentary local plasma density. Ionization in high-power mode is driven by electron avalanches during phases of transient high electric fields within the boundary sheath. The transition between these distinctly different modes is controlled by the total voltage of both frequency components.

  2. Effect of radio frequency discharge power on dusty plasma parameters

    SciTech Connect

    Sheridan, T. E.

    2009-08-01

    The parameters of a two-dimensional dusty plasma consisting of six, 9 mum diameter particles trapped inside a radio frequency (rf) plasma sheath have been measured as a function of rf power in a 13.5 mtorr (1.8 Pa) argon discharge. The center-of-mass and breathing frequencies are found by projecting the cluster's Brownian motion onto the associated normal mode. The center-of-mass frequency (i.e., radial confinement) is insensitive to rf power. The Debye shielding parameter kappa, as found from the breathing frequency, increases from approx =0.5 to 2 as the square root of rf power. The Debye length decreases from approx =2.7 to 0.7 mm as the inverse of the square root of rf power. The average particle charge qapprox =-17 000e is effectively independent of rf power. These results are consistent with an electron temperature that is independent of rf power and an ion density that is directly proportional to rf power, where the Debye length is determined by the ion density in combination with the electron temperature.

  3. Radio-frequency identification of surgical sponges in the abdominal cavity of pigs.

    PubMed

    Wiederkehr, Julio Cesar; Gama, Ricardo R; Wiederkehr, Henrique A; Stelmasuk, Kleber; Carvalho, Caroline A; Wiederkehr, Barbara A

    2014-06-01

    Counting the sponges is an important step in surgical procedures. A miscount may impact the patient's health, and it also has legal implications for the surgeon. This is an experimental study evaluating radio-frequency technology used in the perioperative period to identify surgical sponges left in the peritoneal cavity of swine. Radio-frequency labeled-disc identification tags were sewn into 40 surgical towels. Twenty labels had the ability to emit radio-frequency waves, and 20 labels were inert to radio-frequency identification. Twenty adult pigs that underwent laparotomy and randomly received two surgical sponges were scanned by a radio-frequency identification antenna. This method presented a positive predictive value of 100% and 100% specificity and sensitivity, as all of the tagged surgical sponges were detected. Radio-frequency identification has been proved to be a useful method for the identification of surgical sponges within the abdominal cavities of swine.

  4. Radio frequency electromagnetic field compliance assessment of multi-band and MIMO equipped radio base stations.

    PubMed

    Thors, Björn; Thielens, Arno; Fridén, Jonas; Colombi, Davide; Törnevik, Christer; Vermeeren, Günter; Martens, Luc; Joseph, Wout

    2014-05-01

    In this paper, different methods for practical numerical radio frequency exposure compliance assessments of radio base station products were investigated. Both multi-band base station antennas and antennas designed for multiple input multiple output (MIMO) transmission schemes were considered. For the multi-band case, various standardized assessment methods were evaluated in terms of resulting compliance distance with respect to the reference levels and basic restrictions of the International Commission on Non-Ionizing Radiation Protection. Both single frequency and multiple frequency (cumulative) compliance distances were determined using numerical simulations for a mobile communication base station antenna transmitting in four frequency bands between 800 and 2600 MHz. The assessments were conducted in terms of root-mean-squared electromagnetic fields, whole-body averaged specific absorption rate (SAR) and peak 10 g averaged SAR. In general, assessments based on peak field strengths were found to be less computationally intensive, but lead to larger compliance distances than spatial averaging of electromagnetic fields used in combination with localized SAR assessments. For adult exposure, the results indicated that even shorter compliance distances were obtained by using assessments based on localized and whole-body SAR. Numerical simulations, using base station products employing MIMO transmission schemes, were performed as well and were in agreement with reference measurements. The applicability of various field combination methods for correlated exposure was investigated, and best estimate methods were proposed. Our results showed that field combining methods generally considered as conservative could be used to efficiently assess compliance boundary dimensions of single- and dual-polarized multicolumn base station antennas with only minor increases in compliance distances.

  5. Radio-frequency energy harvesting for wearable sensors.

    PubMed

    Borges, Luís M; Chávez-Santiago, Raul; Barroca, Norberto; Velez, Fernando José; Balasingham, Ilangko

    2015-02-01

    The use of wearable biomedical sensors for the continuous monitoring of physiological signals will facilitate the involvement of the patients in the prevention and management of chronic diseases. The fabrication of small biomedical sensors transmitting physiological data wirelessly is possible as a result of the tremendous advances in ultra-low power electronics and radio communications. However, the widespread adoption of these devices depends very much on their ability to operate for long periods of time without the need to frequently change, recharge or even use batteries. In this context, energy harvesting (EH) is the disruptive technology that can pave the road towards the massive utilisation of wireless wearable sensors for patient self-monitoring and daily healthcare. Radio-frequency (RF) transmissions from commercial telecommunication networks represent reliable ambient energy that can be harvested as they are ubiquitous in urban and suburban areas. The state-of-the-art in RF EH for wearable biomedical sensors specifically targeting the global system of mobile 900/1800 cellular and 700 MHz digital terrestrial television networks as ambient RF energy sources are showcased. Furthermore, guidelines for the choice of the number of stages for the RF energy harvester are presented, depending on the requirements from the embedded system to power supply, which is useful for other researchers that work in the same area. The present authors' recent advances towards the development of an efficient RF energy harvester and storing system are presented and thoroughly discussed too.

  6. Radio frequency identification enabled wireless sensing for intelligent food logistics.

    PubMed

    Zou, Zhuo; Chen, Qiang; Chen, Qing; Uysal, Ismail; Zheng, Lirong

    2014-06-13

    Future technologies and applications for the Internet of Things (IoT) will evolve the process of the food supply chain and create added value of business. Radio frequency identifications (RFIDs) and wireless sensor networks (WSNs) have been considered as the key technological enablers. Intelligent tags, powered by autonomous energy, are attached on objects, networked by short-range wireless links, allowing the physical parameters such as temperatures and humidities as well as the location information to seamlessly integrate with the enterprise information system over the Internet. In this paper, challenges, considerations and design examples are reviewed from system, implementation and application perspectives, particularly with focus on intelligent packaging and logistics for the fresh food tracking and monitoring service. An IoT platform with a two-layer network architecture is introduced consisting of an asymmetric tag-reader link (RFID layer) and an ad-hoc link between readers (WSN layer), which are further connected to the Internet via cellular or Wi-Fi. Then, we provide insights into the enabling technology of RFID with sensing capabilities. Passive, semi-passive and active RFID solutions are discussed. In particular, we describe ultra-wideband radio RFID which has been considered as one of the most promising techniques for ultra-low-power and low-cost wireless sensing. Finally, an example is provided in the form of an application in fresh food tracking services and corresponding field testing results.

  7. Epidemiological studies of radio frequency exposures and human cancer.

    PubMed

    Elwood, J Mark

    2003-01-01

    Epidemiological studies of radio frequency (RF) exposures and human cancers include studies of military and civilian occupational groups, people who live near television and radio transmitters, and users of mobile phones. Many types of cancer have been assessed, with particular attention given to leukemia and brain tumors. The epidemiological results fall short of the strength and consistency of evidence that is required to come to a conclusion that RF emissions are a cause of human cancer. Although the epidemiological evidence in total suggests no increased risk of cancer, the results cannot be unequivocally interpreted in terms of cause and effect. The results are inconsistent, and most studies are limited by lack of detail on actual exposures, short follow-up periods, and the limited ability to deal with other relevant factors. In some studies, there may be substantial biases in the data used. For these same reasons, the studies are unable to confidently exclude any possibility of an increased risk of cancer. Further research to clarify the situation is justified. Priorities include further studies of leukemia in both adults and children, and of cranial tumors in relationship to mobile phone use. Copyright 2003 Wiley-Liss, Inc.

  8. Radio-frequency energy harvesting for wearable sensors

    PubMed Central

    Chávez-Santiago, Raul; Barroca, Norberto; Velez, Fernando José; Balasingham, Ilangko

    2015-01-01

    The use of wearable biomedical sensors for the continuous monitoring of physiological signals will facilitate the involvement of the patients in the prevention and management of chronic diseases. The fabrication of small biomedical sensors transmitting physiological data wirelessly is possible as a result of the tremendous advances in ultra-low power electronics and radio communications. However, the widespread adoption of these devices depends very much on their ability to operate for long periods of time without the need to frequently change, recharge or even use batteries. In this context, energy harvesting (EH) is the disruptive technology that can pave the road towards the massive utilisation of wireless wearable sensors for patient self-monitoring and daily healthcare. Radio-frequency (RF) transmissions from commercial telecommunication networks represent reliable ambient energy that can be harvested as they are ubiquitous in urban and suburban areas. The state-of-the-art in RF EH for wearable biomedical sensors specifically targeting the global system of mobile 900/1800 cellular and 700 MHz digital terrestrial television networks as ambient RF energy sources are showcased. Furthermore, guidelines for the choice of the number of stages for the RF energy harvester are presented, depending on the requirements from the embedded system to power supply, which is useful for other researchers that work in the same area. The present authors' recent advances towards the development of an efficient RF energy harvester and storing system are presented and thoroughly discussed too. PMID:26609400

  9. 200 GHz Maximum Oscillation Frequency in CVD Graphene Radio Frequency Transistors.

    PubMed

    Wu, Yun; Zou, Xuming; Sun, Menglong; Cao, Zhengyi; Wang, Xinran; Huo, Shuai; Zhou, Jianjun; Yang, Yang; Yu, Xinxin; Kong, Yuechan; Yu, Guanghui; Liao, Lei; Chen, Tangsheng

    2016-10-05

    Graphene is a promising candidate in analog electronics with projected operation frequency well into the terahertz range. In contrast to the intrinsic cutoff frequency (fT) of 427 GHz, the maximum oscillation frequency (fmax) of graphene device still remains at low level, which severely limits its application in radio frequency amplifiers. Here, we develop a novel transfer method for chemical vapor deposition graphene, which can prevent graphene from organic contamination during the fabrication process of the devices. Using a self-aligned gate deposition process, the graphene transistor with 60 nm gate length exhibits a record high fmax of 106 and 200 GHz before and after de-embedding, respectively. This work defines a unique pathway to large-scale fabrication of high-performance graphene transistors, and holds significant potential for future application of graphene-based devices in ultra high frequency circuits.

  10. The Radio Frequency Health Node Wireless Sensor System

    NASA Technical Reports Server (NTRS)

    Valencia, J. Emilio; Stanley, Priscilla C.; Mackey, Paul J.

    2009-01-01

    The Radio Frequency Health Node (RFHN) wireless sensor system differs from other wireless sensor systems in ways originally intended to enhance utility as an instrumentation system for a spacecraft. The RFHN can also be adapted to use in terrestrial applications in which there are requirements for operational flexibility and integrability into higher-level instrumentation and data acquisition systems. As shown in the figure, the heart of the system is the RFHN, which is a unit that passes commands and data between (1) one or more commercially available wireless sensor units (optionally, also including wired sensor units) and (2) command and data interfaces with a local control computer that may be part of the spacecraft or other engineering system in which the wireless sensor system is installed. In turn, the local control computer can be in radio or wire communication with a remote control computer that may be part of a higher-level system. The remote control computer, acting via the local control computer and the RFHN, cannot only monitor readout data from the sensor units but can also remotely configure (program or reprogram) the RFHN and the sensor units during operation. In a spacecraft application, the RFHN and the sensor units can also be configured more nearly directly, prior to launch, via a serial interface that includes an umbilical cable between the spacecraft and ground support equipment. In either case, the RFHN wireless sensor system has the flexibility to be configured, as required, with different numbers and types of sensors for different applications. The RFHN can be used to effect realtime transfer of data from, and commands to, the wireless sensor units. It can also store data for later retrieval by an external computer. The RFHN communicates with the wireless sensor units via a radio transceiver module. The modular design of the RFHN makes it possible to add radio transceiver modules as needed to accommodate additional sets of wireless sensor

  11. A generalized BC for radio-frequency sheaths

    NASA Astrophysics Data System (ADS)

    D'Ippolito, D. A.; Myra, J. R.

    2015-12-01

    A new radio-frequency (rf) sheath boundary condition (BC) is described and applied to the problem of far field sheaths. The new BC generalizes the one presently used in rf codes to include: (1) an arbitrary magnetic field angle, (2) the full complex impedance, (3) mobile ions, (4) unmagnetized ions, and (5) the magnetic pre-sheath. For a given wave-propagation (macro) problem, root-finding is used to match the impedance of the rf wave with that of the micro-sheath problem. For a model far-field sheath problem, it is shown that the structure of the (multiple) roots with the new BC is similar to that with the capacitive BC, but the location of the resonance changes when the full impedance is used.

  12. Security risks associated with radio frequency identification in medical environments.

    PubMed

    Hawrylak, Peter J; Schimke, Nakeisha; Hale, John; Papa, Mauricio

    2012-12-01

    Radio frequency identification (RFID) is a form of wireless communication that is used to identify assets and people. RFID has significant benefits to the medical environment. However, serious security threats are present in RFID systems that must be addressed in a medical environment. Of particular interest are threats to patient privacy and safety based on interception of messages, interruption of communication, modification of data, and fabrication of messages and devices. This paper presents an overview of these security threats present in RFID systems in a medical environment and provides guidance on potential solutions to these threats. This paper provides a roadmap for researchers and implementers to address the security issues facing RFID in the medical space.

  13. Propagation of radio frequency waves through density filaments

    SciTech Connect

    Ram, Abhay K.; Hizanidis, Kyriakos

    2015-12-10

    In tokamak fusion plasmas, coherent fluctuations in the form of blobs or filaments are routinely observed in the scrape-off layer. In this paper we develop an analytical formalism for the scattering of radio frequency waves by filaments which are cylindrical with their major axis aligned along the toroidal magnetic field lines. Since the magnitude of the ratio of the density inside the filaments to the background density is generally of order 1, the geometric optics approximation cannot be used to describe the scattering. A full-wave model is formulated which assumes that the plasma is cold and that the plasma in the cylindrical filament has uniform density. The background plasma, in which the filament is present, is also assumed to be cold and uniform. The theoretical framework applies to the scattering of any plasma wave.

  14. Electrochemical system and method for electropolishing superconductive radio frequency cavities

    DOEpatents

    Taylor, E. Jennings; Inman, Maria E.; Hall, Timothy

    2015-04-14

    An electrochemical finishing system for super conducting radio frequency (SCRF) cavities including a low viscosity electrolyte solution that is free of hydrofluoric acid, an electrode in contact with the electrolyte solution, the SCRF cavity being spaced apart from the electrode and in contact with the electrolyte solution and a power source including a first electrical lead electrically coupled to the electrode and a second electrical lead electrically coupled to the cavity, the power source being configured to pass an electric current between the electrode and the workpiece, wherein the electric current includes anodic pulses and cathodic pulses, and wherein the cathodic pulses are interposed between at least some of the anodic pulses. The SCRF cavity may be vertically oriented during the finishing process.

  15. Implantable Radio Frequency Identification Sensors: Wireless Power and Communication

    PubMed Central

    Hutchens, Chriswell; Rennaker, Robert L.; Venkataraman, Srinivasan; Ahmed, Rehan; Liao, Ran; Ibrahim, Tamer

    2013-01-01

    There are significant technical challenges in the development of a fully implantable wirelessly powered neural interface. Challenges include wireless transmission of sufficient power to the implanted device to ensure reliable operation for decades without replacement, minimizing tissue heating, and adequate reliable communications bandwidth. Overcoming these challenges is essential for the development of implantable closed loop system for the treatment of disorders ranging from epilepsy, incontinence, stroke and spinal cord injury. We discuss the development of the wireless power, communication and control for a Radio-Frequency Identification Sensor (RFIDS) system with targeted power range for a 700mV, 30 to 40uA load attained at −2dBm. PMID:22254944

  16. Propagation of radio frequency waves through density filaments

    NASA Astrophysics Data System (ADS)

    Ram, Abhay K.; Hizanidis, Kyriakos

    2015-12-01

    In tokamak fusion plasmas, coherent fluctuations in the form of blobs or filaments are routinely observed in the scrape-off layer. In this paper we develop an analytical formalism for the scattering of radio frequency waves by filaments which are cylindrical with their major axis aligned along the toroidal magnetic field lines. Since the magnitude of the ratio of the density inside the filaments to the background density is generally of order 1, the geometric optics approximation cannot be used to describe the scattering. A full-wave model is formulated which assumes that the plasma is cold and that the plasma in the cylindrical filament has uniform density. The background plasma, in which the filament is present, is also assumed to be cold and uniform. The theoretical framework applies to the scattering of any plasma wave.

  17. Nanocrystalline graphite films nucleation by the radio frequency bias pretreatment.

    PubMed

    Dvorkin, V V; Dzbanovsky, N N; Krivchenko, V A; Suetin, N V; Rakhimov, A T; Timofeyev, M A; Bespalov, A V; Golikova, O L

    2011-10-01

    New method for nucleation of different nanocrystalline carbon films upon monocrystalline Si substrate was proposed. The process is based on a combination of microwave and radio frequency plasma assisted chemical vapor deposition methods. Potential of the method for nucleation was demonstrated by deposition of nanocrystalline diamond film in pure microwave plasma in one process, immediately after "seeding" procedure. The method was also used for growth of nanocrystalline graphite (NCG) films, which are currently under intensive investigation due to their exceptional electronic properties, particularly fine electron emission characteristics. Deposited NCG films have demonstrated remarkable electron field emission properties having current density of up to 10 A/cm2. The films have also possessed good adhesion to silicon substrate. Carbon films and nucleation layer were characterized by scanning electron microscopy, transmission electron microscopy and Raman spectroscopy.

  18. Application of radio-frequency identification in perioperative care.

    PubMed

    Ku, Hsueh-Ling; Wang, Pa-Chun; Su, Mu-Chun; Liu, Charles C H; Hwang, Wu-Yuin

    2011-08-01

    Every perioperative department could benefit from having an information system that facilitates managerial function and improves efficiency in the OR. The Patient Advancement Monitoring System-Surgical implemented in a hospital in Taipei, Taiwan, is one such a system that uses radio-frequency identification technology for tracking perioperative care of patients along workflow checkpoints. This web-based medical information system can facilitate care provided throughout perioperative services by providing instant patient information to staff members in cross-functional health care teams. Manpower is not wasted on duplicating data entry because the surgical progression is displayed in real time. Satisfaction with the system has been high for both nurses and administrators. Copyright © 2011 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  19. Quartz antenna for radio frequency ion source operation

    SciTech Connect

    Lee, Y.; Gough, R.A.; Leung, K.N.; Perkins, L.T.; Pickard, D.S.; Vujic, J.; Wu, L.K.; Olivo, M.; Einenkel, H.

    1998-02-01

    Radio-frequency (rf) driven multicusp ion sources developed at the Lawrence Berkeley National Laboratory use an internal induction coil (antenna) for plasma generation. The copper rf-antenna with a thin layer of porcelain coating, which is presently used, cannot fully satisfy the increasing demands on source cleanliness and antenna lifetime under high power cw or pulsed operation in applications where water cooling is not possible. A quartz antenna has been designed and operated in the multicusp ion source. It has been demonstrated that the overall performance of the new antenna exceeds that of the regular porcelain-coated antenna. It can be operated with a long lifetime in different discharge plasmas. The quartz antenna has also been tested at the Paul Scherrer Institute for cw source operation at rf power higher than 5 kW. Results demonstrated that the antenna can survive under dense plasma discharge operations. {copyright} {ital 1998 American Institute of Physics.}

  20. Tracked 3D ultrasound in radio-frequency liver ablation

    NASA Astrophysics Data System (ADS)

    Boctor, Emad M.; Fichtinger, Gabor; Taylor, Russell H.; Choti, Michael A.

    2003-05-01

    Recent studies have shown that radio frequency (RF) ablation is a simple, safe and potentially effective treatment for selected patients with liver metastases. Despite all recent therapeutic advancements, however, intra-procedural target localization and precise and consistent placement of the tissue ablator device are still unsolved problems. Various imaging modalities, including ultrasound (US) and computed tomography (CT) have been tried as guidance modalities. Transcutaneous US imaging, due to its real-time nature, may be beneficial in many cases, but unfortunately, fails to adequately visualize the tumor in many cases. Intraoperative or laparoscopic US, on the other hand, provides improved visualization and target imaging. This paper describes a system for computer-assisted RF ablation of liver tumors, combining navigational tracking of a conventional imaging ultrasound probe to produce 3D ultrasound imaging with a tracked RF ablation device supported by a passive mechanical arm and spatially registered to the ultrasound volume.

  1. Indoor localization and beacon calibration using ultrasonic and radio frequency

    NASA Astrophysics Data System (ADS)

    Yoon, Jeong-Yong; Jung, Kyoo-Sick; Shin, Dong-Hun

    2005-12-01

    Using the ultrasonic and the radio frequency, a method for the robot localization and calibration was presented. The distance between the receiver and a beacon can be computed by using the difference between times of flight. The presented method uses the gradient of the maximum amplitude of the ultrasonic in order to measure the time of flight precisely. The measured three distances between the receiver and the beacon were used to compute the robot position by the direct inverse method and the iterated least square approximation method. This paper defines the calibration as the problem to find the location of 3 beacons and 3 robots, and presents 3 methods for it and found the 2B2R method as the best among them.

  2. Low-frequency radio emissions in the outer heliosphere

    NASA Technical Reports Server (NTRS)

    Macek, W. M.; Cairns, I. H.; Kurth, W. S.; Gurnett, D. A.

    1991-01-01

    Progress is reported toward a model for the 2 and 3 kHz radio waves observed by Voyagers 1 and 2 during the 1983-1987 interval at radial distances from the sun of 17 and 13 AU, respectively. The brightness temperature and range of the volume emissivity for the radiation are calculated, and the results are compared with the characteristics of known radiation at multiples of the plasma frequency. The derived brightness temperatures are used to constrain the source of the Langmuir waves required to generate the observed emission and to rule out certain emission mechanisms. Minimum values of 3-30 micro-V/m are derived for the Langmuir wave electric field intensity and are found to be in reasonable agreement with observed values at planetary bow shocks. Path lengths required for the radiation to reach the observed levels are derived and discussed. The relevance of these ideas to possible direct observations of heliospheric boundaries is addressed.

  3. Design and fabrication of the BNL radio frequency quadrupole

    SciTech Connect

    McKenzie-Wilson, R.B.

    1983-01-01

    The Brookhaven National Laboratory polarized H/sup -/ injection program for the AGS will utilize a Radio Frequency Quadrupole for acceleration between the polarized source and the Alvarez Linac. Although operation will commence with a few ..mu.. amperes of H/sup -/ current, it is anticipated that future polarized H/sup -/ sources will have a considerably improved output. The RFQ will operate at 201.25 MHz and will be capable of handling a beam current of 0.02 amperes with a duty cycle of 0.25%. The resulting low average power has allowed novel solutions to the problems of vane alignment, rf current contacts, and removal of heat from the vanes. The cavity design philosophy will be discussed together with the thermodynamics of heat removal from the vane. Details of the fabrication will be presented with a status report.

  4. Effective control of cold collisions with radio-frequency fields

    NASA Astrophysics Data System (ADS)

    Ding, Yijue; D'Incao, José P.; Greene, Chris H.

    2017-02-01

    We study 87Rb cold collisions in a static magnetic field and a single-color radio-frequency (RF) field by employing the multichannel quantum defect theory in combination with the Floquet method to solve the two-body time-dependent Schrödinger equation. Our results show that RF fields can modify the two-body scattering length by a large scale through Feshbach resonances in both low- and high-static magnetic-field regimes. Such RF-induced Feshbach resonances can be applied to quenching experiments or control of interactions in spinor condensates. Here, we also show that, analogously to photoassociation, RF fields can also associate cold atoms into molecules at a useful rate.

  5. Superconducting radio-frequency modules test faciilty operating experience

    SciTech Connect

    Soyars, W.; Bossert, R.; Darve, C.; Degraff, B.; Klebaner, A.; Martinez, A.; Pei, L.; Theilacker, J.; /Fermilab

    2007-07-01

    Fermilab is heavily engaged and making strong technical contributions to the superconducting radio-frequency research and development program (SRF R&D). Four major SRF test areas are being constructed to enable vertical and horizontal cavity testing, as well as cryomodule testing. The existing Fermilab cryogenic infrastructure has been modified to service Fermilab SRF R&D needs. The first stage of the project has been successfully completed, which allows for distribution of cryogens for a single cavity cryomodule using the existing Cryogenic Test Facility (CTF) that houses three Tevatron satellite refrigerators. The cooling capacity available for cryomodule testing at MDB results from the liquefaction capacity of the CTF cryogenic system. The cryogenic system for a single 9-cell cryomodule is currently operational. The paper describes the status, challenges and operational experience of the initial phase of the project.

  6. PIC simulation of reactive radio-frequency plasma

    NASA Astrophysics Data System (ADS)

    Matthias, Paul; Kahnfeld, Daniel; Lueskow, Karl; Bandelow, Gunnar; Schneider, Ralf; Kemnitz, Stefan; Duras, Julia

    2016-10-01

    Reactive plasmas are important for industrial applications. For sputter processes and plasma etching especially asymmetric capacitively coupled plasmas with a radio-frequency modulated voltage are used. The latest experimental results show an unexpected high-energy peak of negative ions at the grounded anode, depending on the cathode material. Here the Particle-in-Cell (PIC) method was used to simulate this experiment. The main mechanism for the effect is identified as the production of negative ions near the surface of the cathode. In a one dimensional simulation the negative ions are trapped inside the plasma because of the symmetric potential. Thus it was shown that these high-energy peaks of negative ions at the anode only appear in asymmetric discharges, due to the self-bias voltage. To reproduce the asymmetry a two dimensional model will be used in the future. German Space Agency DLR Project 50 RS 1510.

  7. Numerical model study of radio frequency vessel sealing thermodynamics

    NASA Astrophysics Data System (ADS)

    Pearce, John

    2015-03-01

    Several clinically successful clinical radio frequency vessel-sealing devices are currently available. The dominant thermodynamic principles at work involve tissue water vaporization processes. It is necessary to thermally denature vessel collagen, elastin and their adherent proteins to achieve a successful fusion. Collagens denature at middle temperatures, between about 60 and 90 C depending on heating time and rate. Elastin, and its adherent proteins, are more thermally robust, and require temperatures in excess of the boiling point of water at atmospheric pressure to thermally fuse. Rapid boiling at low apposition pressures leads to steam vacuole formation, brittle tissue remnants and frequently to substantial disruption in the vessel wall, particularly in high elastin-content arteries. High apposition pressures substantially increase the equilibrium boiling point of tissue water and are necessary to ensure a high probability of a successful seal. The FDM numerical models illustrate the beneficial effects of high apposition pressures.

  8. Biomedical Monitoring By A Novel Noncontact Radio Frequency Technology Project

    NASA Technical Reports Server (NTRS)

    Oliva-Buisson, Yvette J. (Compiler)

    2014-01-01

    The area of Space Health and Medicine is one of the NASA's Space Technology Grand Challenges. Space is an extreme environment which is not conducive to human life. The extraterrestrial environment can result in the deconditioning of various human physiological systems and thus require easy to use physiological monitoring technologies in order to better monitor space crews for appropriate health management and successful space missions and space operations. Furthermore, the Space Technology Roadmap's Technology Area Breakdown Structure calls for improvements in research to support human health and performance (Technology Area 06). To address these needs, this project investigated a potential noncontact and noninvasive radio frequency-based technique of monitoring central hemodynamic function in human research subjects in response to orthostatic stress.

  9. The Radio Frequency Heating of Magnum-psi

    SciTech Connect

    Koch, R.

    2005-01-15

    Magnum-psi is a linear device to be constructed at the FOM-Rijnhuizen institute and designed to produce plasmas allowing the study of plasma-surface interaction processes relevant to the ITER divertor. The plasma cross-section will be about 100 cm{sup 2}, the plasma density around 10{sup 20} m{sup -3} and the temperature around 3eV. The plasma will be confined by a strong magnetic field (up to 3T). In order to reach the adequate temperature and power flux, it is foreseen to heat the plasma with radio-frequency power, typically at the level of 100kW. In this paper, we investigate which heating system would match the requirements of the experiment.

  10. Radio frequency heating of ceramic windows in fusion applications

    SciTech Connect

    Fowler, J.D. Jr.

    1981-11-01

    Ceramic windows will be used as material barriers for radio frequency plasma heating in fusion reactors. This report examines the theory behind rf heating phenomena. Heating calculations are presented for various window materials, thicknesses, wavelengths, and power densities. The most pertinent material properties are loss tangent, thermal conductivity, dielectric constant, strength, and radiation resistance. Calculations indicate that among candidate materials, beryllium oxide offers the most promise because of its large thermal conductivity and relatively low loss tangent and dielectric constant. On the other hand, beryllia is susceptible to neutron damage, and this may adversely affect its electrical properties. Another promising candidate is sapphire, particularly at lower temperatures where the thermal conductivity is high. Fused silica suffers from low thermal conductivity and large positive temperature coefficient for loss tangent, but it may be useful under some conditions. In summary, calculations of heating can lead to elimination of some candidate materials and selection of others for further study.

  11. Radio frequency sheaths in an oblique magnetic field

    SciTech Connect

    Myra, J. R.; D'Ippolito, D. A.

    2015-06-15

    The physics of radio-frequency (rf) sheaths near a conducting surface is studied for plasmas immersed in a magnetic field that makes an oblique angle θ with the surface. A set of one-dimensional equations is developed that describes the dynamics of the time-dependent magnetic presheath and non-neutral Debye sheath. The model employs Maxwell-Boltzmann electrons, and the magnetization and mobility of the ions is determined by the magnetic field strength, and wave frequency, respectively. The angle θ, assumed to be large enough to insure an electron-poor sheath, is otherwise arbitrary. Concentrating on the ion-cyclotron range of frequencies, the equations are solved numerically to obtain the rectified (dc) voltage, the rf voltage across the sheath, and the rf current flowing through the sheath. As an application of this model, the sheath voltage-current relation is used to obtain the rf sheath impedance, which in turn gives an rf sheath boundary condition for the electric field at the sheath-plasma interface that can be used in rf wave codes. In general, the impedance has both resistive and capacitive contributions, and generalizes previous sheath boundary condition models. The resistive part contributes to parasitic power dissipation at the wall.

  12. Radio frequency sheaths in an oblique magnetic field

    SciTech Connect

    Myra, James R.; D'Ippolito, Daniel A.

    2015-06-01

    The physics of radio-frequency (rf) sheaths near a conducting surface is studied for plasmas immersed in a magnetic field that makes an oblique angle θ with the surface. A set of one-dimensional equations is developed that describe the dynamics of the time-dependent magnetic presheath and non-neutral Debye sheath. The model employs Maxwell-Boltzmann electrons, and the magnetization and mobility of the ions is determined by the magnetic field strength, and wave frequency, respectively. The angle, θ assumed to be large enough to insure an electron-poor sheath, is otherwise arbitrary. Concentrating on the ion-cyclotron range of frequencies, the equations are solved numerically to obtain the rectified (dc) voltage, the rf voltage across the sheath and the rf current flowing through the sheath. As an application of this model, the sheath voltage-current relation is used to obtain the rf sheath impedance, which in turn gives an rf sheath boundary condition for the electric field at the sheath-plasma interface that can be used in rf wave codes. In general the impedance has both resistive and capacitive contributions, and generalizes previous sheath boundary condition models. The resistive part contributes to parasitic power dissipation at the wall.

  13. Technologies for Low Frequency Radio Observations of the Cosmic Dawn

    NASA Technical Reports Server (NTRS)

    Jones, Dayton L.

    2014-01-01

    The Jet Propulsion Laboratory (JPL) is developing concepts and technologies for low frequency radio astronomy space missions aimed at observing highly redshifted neutral Hydrogen from the Dark Ages. This is the period of cosmic history between the recombination epoch when the microwave background radiation was produced and the re-ionization of the intergalactic medium by the first generation of stars (Cosmic Dawn). This period, at redshifts greater than about 20, is a critical epoch for the formation and evolution of large-scale structure in the universe. The 21-cm spectral line of Hydrogen provides the most promising method for directly studying the Dark Ages, but the corresponding frequencies at such large redshifts are only tens of MHz and thus require space-based observations to avoid terrestrial RFI and ionospheric absorption and refraction. This paper reports on the status of several low frequency technology development activities at JPL, including deployable bi-conical dipoles for a planned lunar-orbiting mission, and both rover-deployed and inflation-deployed long dipole antennas for use on the lunar surface.

  14. Radio frequency sheaths in an oblique magnetic field

    DOE PAGES

    Myra, James R.; D'Ippolito, Daniel A.

    2015-06-01

    The physics of radio-frequency (rf) sheaths near a conducting surface is studied for plasmas immersed in a magnetic field that makes an oblique angle θ with the surface. A set of one-dimensional equations is developed that describe the dynamics of the time-dependent magnetic presheath and non-neutral Debye sheath. The model employs Maxwell-Boltzmann electrons, and the magnetization and mobility of the ions is determined by the magnetic field strength, and wave frequency, respectively. The angle, θ assumed to be large enough to insure an electron-poor sheath, is otherwise arbitrary. Concentrating on the ion-cyclotron range of frequencies, the equations are solved numericallymore » to obtain the rectified (dc) voltage, the rf voltage across the sheath and the rf current flowing through the sheath. As an application of this model, the sheath voltage-current relation is used to obtain the rf sheath impedance, which in turn gives an rf sheath boundary condition for the electric field at the sheath-plasma interface that can be used in rf wave codes. In general the impedance has both resistive and capacitive contributions, and generalizes previous sheath boundary condition models. The resistive part contributes to parasitic power dissipation at the wall.« less

  15. Technologies for Low Frequency Radio Observations of the Cosmic Dawn

    NASA Technical Reports Server (NTRS)

    Jones, Dayton L.

    2014-01-01

    The Jet Propulsion Laboratory (JPL) is developing concepts and technologies for low frequency radio astronomy space missions aimed at observing highly redshifted neutral Hydrogen from the Dark Ages. This is the period of cosmic history between the recombination epoch when the microwave background radiation was produced and the re-ionization of the intergalactic medium by the first generation of stars (Cosmic Dawn). This period, at redshifts greater than about 20, is a critical epoch for the formation and evolution of large-scale structure in the universe. The 21-cm spectral line of Hydrogen provides the most promising method for directly studying the Dark Ages, but the corresponding frequencies at such large redshifts are only tens of MHz and thus require space-based observations to avoid terrestrial RFI and ionospheric absorption and refraction. This paper reports on the status of several low frequency technology development activities at JPL, including deployable bi-conical dipoles for a planned lunar-orbiting mission, and both rover-deployed and inflation-deployed long dipole antennas for use on the lunar surface.

  16. Ionization of CO in radio-frequency electric field

    NASA Astrophysics Data System (ADS)

    Aoneas, M. M.; Vojnović, M. M.; Ristić, M. M.; Vićić, M. D.; Poparić, G. B.

    2017-02-01

    The rate coefficients for the electron impact ionization of the CO molecule have been calculated in the presence of the radio-frequency (RF) electric field. The non-equilibrium electron energy distribution functions, used for the rate coefficient calculations, were generated by using a Monte Carlo simulation. The rate coefficients were obtained, time resolved within one period, in the frequency range from 13.56 up to 500 MHz, at effective reduced electric field values up to 700 Td. A temporal behavior of the rate coefficients under the influence of magnitude and frequency of the fields has been studied. The total ionization rate coefficients and the rate coefficients for the production of different ion fragments have been period averaged and presented in the order to be of use for practical implementation in the RF discharges in CO. Also, the temporal characteristics of the electron energy distribution functions and the diffusion coefficients have been studied separately revealing some interesting features in their time dependence within the period of electric field oscillations.

  17. Technologies for low radio frequency observations of the Cosmic Dawn

    NASA Astrophysics Data System (ADS)

    Jones, D. L.

    2014-03-01

    The Jet Propulsion Laboratory (JPL) is developing concepts and technologies for low frequency radio astronomy space missions aimed at observing highly redshifted neutral Hydrogen from the Dark Ages. This is the period of cosmic history between the recombination epoch when the microwave background radiation was produced and the re-ionization of the intergalactic medium by the first generation of stars (Cosmic Dawn). This period, at redshifts z > ~20, is a critical epoch for the formation and evolution of large-scale structure in the universe. The 21-cm spectral line of Hydrogen provides the most promising method for directly studying the Dark Ages, but the corresponding frequencies at such large redshifts are only tens of MHz and thus require space-based observations to avoid terrestrial RFI and ionospheric absorption and refraction. This paper reports on the status of several low frequency technology development activities at JPL, including deployable bi-conical dipoles for a planned lunar-orbiting mission, and both rover-deployed and inflation-deployed long dipole antennas for use on the lunar surface. In addition, recent results from laboratory testing of low frequency receiver designs are presented. Finally, several concepts for space-based imaging interferometers utilizing deployable low frequency antennas are described. Some of these concepts involve large numbers of antennas and consequently a large digital cross-correlator will be needed. JPL has studied correlator architectures that greatly reduce the DC power required for this step, which can dominate the power consumption of real-time signal processing. Strengths and weaknesses of each mission concept are discussed in the context of the additional technology development required.

  18. Design, development, and acceleration trials of radio-frequency quadrupole.

    PubMed

    Rao, S V L S; Jain, Piyush; Pande, Rajni; Roy, Shweta; Mathew, Jose V; Kumar, Rajesh; Pande, Manjiri; Krishnagopal, S; Gupta, S K; Singh, P

    2014-04-01

    A deuteron radio frequency quadrupole (RFQ) accelerator has been designed, fabricated, and tested at BARC, which will be used for neutron generation. The RFQ operates at a frequency of 350 MHz and needs an inter-vane voltage of 44 kV to accelerate the deuteron beam to 400 keV within a length of 1.03 m. The error analysis shows that the offset of two opposite vanes in the same direction by 100 μm leads to a change in resonant frequency by 1.3 MHz and a significant change of fields in the quadrants (∼±40% with respect to average field). From the 3D analysis, we have observed that the unwanted dipole mode frequencies are very near to the quadrupole mode frequency which will make structure sensitive to the perturbations. In order to move the dipole modes away from the quadrupole modes, we have used the dipole stabilizer rods. The 5 wire transmission line theory was used to study the perturbative analysis of the RFQ and based on this a computer program has been written to tune the cavity to get required field distribution. Based on these studies, a 1.03 m long RFQ made of OFE copper has been fabricated and tested. Even though the RFQ was designed for deuteron (D(+)) beam, we tested it by accelerating both the proton (H(+)) and D(+) beams. The RFQ was operated in pulsed mode and accelerated both H(+) and D(+) beams to designed values of 200 and 400 keV, respectively. The measured parameters are in good agreement with the designed values validating our simulations and fabrication processes. In this paper, simulations, RF measurements, and beam commissioning results are presented.

  19. Design, development, and acceleration trials of radio-frequency quadrupole

    SciTech Connect

    Rao, S. V. L. S. Jain, Piyush; Pande, Rajni; Roy, Shweta; Mathew, Jose V.; Kumar, Rajesh; Pande, Manjiri; Krishnagopal, S.; Gupta, S. K.; Singh, P.

    2014-04-15

    A deuteron radio frequency quadrupole (RFQ) accelerator has been designed, fabricated, and tested at BARC, which will be used for neutron generation. The RFQ operates at a frequency of 350 MHz and needs an inter-vane voltage of 44 kV to accelerate the deuteron beam to 400 keV within a length of 1.03 m. The error analysis shows that the offset of two opposite vanes in the same direction by 100 μm leads to a change in resonant frequency by 1.3 MHz and a significant change of fields in the quadrants (∼±40% with respect to average field). From the 3D analysis, we have observed that the unwanted dipole mode frequencies are very near to the quadrupole mode frequency which will make structure sensitive to the perturbations. In order to move the dipole modes away from the quadrupole modes, we have used the dipole stabilizer rods. The 5 wire transmission line theory was used to study the perturbative analysis of the RFQ and based on this a computer program has been written to tune the cavity to get required field distribution. Based on these studies, a 1.03 m long RFQ made of OFE copper has been fabricated and tested. Even though the RFQ was designed for deuteron (D{sup +}) beam, we tested it by accelerating both the proton (H{sup +}) and D{sup +} beams. The RFQ was operated in pulsed mode and accelerated both H{sup +} and D{sup +} beams to designed values of 200 and 400 keV, respectively. The measured parameters are in good agreement with the designed values validating our simulations and fabrication processes. In this paper, simulations, RF measurements, and beam commissioning results are presented.

  20. LETTER: Fast electron driven Alfvén eigenmodes in the current rise in Alcator C-MOD

    NASA Astrophysics Data System (ADS)

    Snipes, J. A.; Parker, R. R.; Phillips, P. E.; Schmidt, A.; Wallace, G.

    2008-07-01

    The injection of 0.3-1 MW of lower hybrid current drive (LHCD) from the very start of the plasma drives a suprathermal electron tail that excites a series of bursting high frequency (100-700 kHz) instabilities in the current rise in Alcator C-Mod. These high frequency bursting modes have relatively small amplitude (\\tilde {B}_\\theta \\le 5\\times 10^{-6}\\,T) measured with poloidal field pick-up coils on outboard limiters. They are observed very early in the current rise with one to three bands of frequencies. The frequency at each burst corresponds very closely to the centre of the gap frequency for toroidal Alfvén eigenmodes (TAEs), ωTAE = vA/2qR, for integer and half integer q values ranging typically from 11 down to 5.5. Measured average hard x-ray photon energies in the range 20-35 keV are in reasonable agreement with the theoretically calculated fast electron energy that matches the precession drift resonance condition for exciting Alfvén eigenmodes.

  1. Wireless Chalcogenide Nanoionic-Based Radio-Frequency Switch

    NASA Technical Reports Server (NTRS)

    Nessel, James; Miranda, Felix

    2013-01-01

    A new nonvolatile nanoionic switch is powered and controlled through wireless radio-frequency (RF) transmission. A thin layer of chalcogenide glass doped with a metal ion, such as silver, comprises the operational portion of the switch. For the switch to function, an oxidizable electrode is made positive (anode) with respect to an opposing electrode (cathode) when sufficient bias, typically on the order of a few tenths of a volt or more, is applied. This action causes the metal ions to flow toward the cathode through a coordinated hopping mechanism. At the cathode, a reduction reaction occurs to form a metal deposit. This metal deposit creates a conductive path that bridges the gap between electrodes to turn the switch on. Once this conductive path is formed, no further power is required to maintain it. To reverse this process, the metal deposit is made positive with respect to the original oxidizable electrode, causing the dissolution of the metal bridge thereby turning the switch off. Once the metal deposit has been completely dissolved, the process self-terminates. This switching process features the following attributes. It requires very little to change states (i.e., on and off). Furthermore, no power is required to maintain the states; hence, the state of the switch is nonvolatile. Because of these attributes the integration of a rectenna to provide the necessary power and control is unique to this embodiment. A rectenna, or rectifying antenna, generates DC power from an incident RF signal. The low voltages and power required for the nanoionic switch control are easily generated from this system and provide the switch with a novel capability to be operated and powered from an external wireless device. In one realization, an RF signal of a specific frequency can be used to set the switch into an off state, while another frequency can be used to set the switch to an on state. The wireless, miniaturized, and nomoving- part features of this switch make it

  2. Analysis of Runaway Electron Synchrotron Radiation in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Tinguely, R. A.; Granetz, R. S.

    2015-11-01

    In Alcator C-Mod, runaway electron (RE) beams can reach energies of ~30 MeV or higher, emitting synchrotron radiation in the visible wavelength range. Two spectrometers, with spectral ranges of 350-1020 nm and resolutions of ~4 nm, have been installed and absolutely calibrated on C-Mod to observe this emission. Recent theoretical work predicts that the RE distribution tends toward a mono-energetic bump as the synchrotron radiation and collisional friction balance the electric force. Our analysis of RE synchrotron spectra shows that it is possible to distinguish the emission of a mono-energetic and mono-pitch beam from that of a distribution of energies and pitch angles (as calculated in). Preliminary results indicate that the mono-energetic bump is formed as predicted, instead of a broader distribution. Supported by US DoE award DE-FC02-99ER54512.

  3. Analysis of Runaway Electron Synchrotron Emission in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Tinguely, A.; Granetz, R.; Stahl, A.

    2016-10-01

    Alcator C-Mod's high magnetic field allows relativistic ``runaway'' electron (RE) synchrotron radiation (SR) to be observed in the visible wavelength range. Our aim is to determine the evolution of the RE energy distribution function, current, and density from measured SR spectra, providing insight into basic plasma physics as well as mitigation for fusion devices. Recent theoretical studies predict that the SR reaction force and collisional friction will balance the electric force, forming a ``bump'' on the tail of the energy distribution. However, both mono-energetic and monotonically-decreasing distributions fit the experimental data equally well. The COllisonal Distribution of Electrons code is applied to C-Mod RE discharges and compared to experiment. In addition, a scan in magnetic field from 2.7 - 8 T explores the importance of SR as a power loss mechanism and limit on the maximum RE energy. Supported by USDoE Award DE-FC02-99ER54512.

  4. Collisionality Dependence of Multi-species Density Peaking in Turbulence Simulations of C-Mod Plasmas

    NASA Astrophysics Data System (ADS)

    Mikkelsen, D. R.; Bitter, M.; Delgado-Aparicio, L.; Hill, K. W.; Greenwald, M.; Howard, N.; Podpaly, Y.; Reinke, M.; Rice, J. E.; Hughes, J. W.; Ma, Y.; Candy, J.; Waltz, R. E.

    2012-10-01

    In nonlinear GYRO simulations of C-Mod plasmas, a turbulently driven pinch produces modest density peaking of all species. The ratio of density at r/a=0.44 and 0.74 is 1.2 for the majority and minority D & H (and electrons), and increases with impurity Z: 1.1 for helium, 1.15 for boron, 1.29 for neon, 1.36 for argon, 1.47 for molybdenum. Density peaking is only weakly affected when the ion temperature profile is varied to align the predicted heat flux to the experimental transport analysis. New simulations will extend the collisionality to the lower part of the experimentally accessible range in C-Mod to study the collisionality dependence of density peaking, and to establish whether much stronger peaking is predicted for lower collisionalities. Simulations based on measured I-mode ion and electron temperature profiles will also be presented.

  5. Observation of Co and Counter Rotation Produced by Lower Hybrid Waves in Alcator C-Mod

    SciTech Connect

    Parker, R. R.; Podpaly, Y.; Lee, J.; Reinke, M. L.; Rice, J. E.; Bonoli, P. T.; Meneghini, O.; Shiraiwa, S.; Wallace, G. M.; Wilson, J. R.

    2011-12-23

    Lower hybrid waves launched uni-directionally into tokamak plasmas impart momentum to the electrons. This momentum can be transferred to the ions, leading to substantial counter current rotation. Observations of LH-induced counter rotation have been previously reported [1], and the initial rate of increase has been found to be consistent with the calculated rate of wave momentum injection [2]. However, in recent experiments in Alcator C-Mod it has been found that application of LH waves to relatively low current (I{sub p}{approx}0.4-0.6 MA) plasmas can result in a co-current change of rotation, which implies a different mechanism than that described above. This appears to be linked to the so-called intrinsic rotation commonly observed in Alcator C-Mod and other tokamaks [3]. In addition to the change in direction at low current, some dependence on the magnetic configuration (USL vs. LSN) has been observed.

  6. Alcator C-Mod: research in support of ITER and steps beyond

    NASA Astrophysics Data System (ADS)

    Marmar, E. S.; Baek, S. G.; Barnard, H.; Bonoli, P.; Brunner, D.; Candy, J.; Canik, J.; Churchill, R. M.; Cziegler, I.; Dekow, G.; Delgado-Aparicio, L.; Diallo, A.; Edlund, E.; Ennever, P.; Faust, I.; Fiore, C.; Gao, Chi; Golfinopoulos, T.; Greenwald, M.; Hartwig, Z. S.; Holland, C.; Hubbard, A. E.; Hughes, J. W.; Hutchinson, I. H.; Irby, J.; LaBombard, B.; Lin, Yijun; Lipschultz, B.; Loarte, A.; Mumgaard, R.; Parker, R. R.; Porkolab, M.; Reinke, M. L.; Rice, J. E.; Scott, S.; Shiraiwa, S.; Snyder, P.; Sorbom, B.; Terry, D.; Terry, J. L.; Theiler, C.; Vieira, R.; Walk, J. R.; Wallace, G. M.; White, A.; Whyte, D.; Wolfe, S. M.; Wright, G. M.; Wright, J.; Wukitch, S. J.; Xu, P.

    2015-10-01

    This paper presents an overview of recent highlights from research on Alcator C-Mod. Significant progress has been made across all research areas over the last two years, with particular emphasis on divertor physics and power handling, plasma-material interaction studies, edge localized mode-suppressed pedestal dynamics, core transport and turbulence, and RF heating and current drive utilizing ion cyclotron and lower hybrid tools. Specific results of particular relevance to ITER include: inner wall SOL transport studies that have led, together with results from other experiments, to the change of the detailed shape of the inner wall in ITER; runaway electron studies showing that the critical electric field required for runaway generation is much higher than predicted from collisional theory; core tungsten impurity transport studies reveal that tungsten accumulation is naturally avoided in typical C-Mod conditions.

  7. Radio frequency radiation (RFR) from TV and radio transmitters at a pilot region in Turkey.

    PubMed

    Sirav, Bahriye; Seyhan, Nesrin

    2009-09-01

    For the last 30 y, the biological effects of non-ionising radiation (NIR: 0-300 GHz) have been a major topic in bioelectromagnetism. Since the number of radiofrequency (RF) systems operating in this frequency range has shown an incredible increase over the last few decades, the dangers of exposure to the fields generated thereby has become an important public health issue. In this study, the aim was to evaluate the level of RF electromagnetic radiation in Yenimahalle Sentepe Dededoruk Hill in Ankara, Turkey that is a multiple-transmitter site hosting 64 different TV and radio towers and one base station for mobile phone communication. The site has been of interest as it is nearby a residential community. Within the technical input data available on 31 of the radio and TV transmitters, the calculated radiation level in this particular region was found to be approximately four times higher than the permitted standards of Turkey, which are the same as the ICNIRP standards. Electromagnetic field measurement is needed in the site.

  8. Frequency allocations for passive use of the radio spectrum to make scientific studies

    NASA Technical Reports Server (NTRS)

    Stull, M. A.; Alexander, G.

    1976-01-01

    The paper examines the legal implications of frequency allocations for passive use of the radio spectrum, which refer to receive-only radio services. Such receive-only services refer to the reception of radio signals generated by nonhuman agencies as in radio astronomy or in the search for extraterrestrial intelligence. Juridical interpretations of the public interest and of necessity are applied to these passive services.

  9. Evidence for Chaotic Edge Turbulence in the Alcator C-Mod Tokamak

    NASA Astrophysics Data System (ADS)

    Zhu, Ziyan; White, Anne; Carter, Troy; Terry, Jim; Baek, Seung Gyou

    2016-10-01

    Turbulence greatly reduces the confinement time of magnetic-confined plasmas; understanding the nature of this turbulence and the associated transport is therefore of great importance. This research seeks to establish whether turbulent fluctuations in Alcator C-Mod are chaotic or stochastic. This has an important impact on transport caused by turbulence in C-Mod: stochastic fluctuations sample all of phase space and can lead to diffusive transport, whereas chaotic fluctuations live in a restricted phase space (e.g. on attractors) and a diffusive description may not be valid. By analyzing the time series from an O-Mode reflectometer, turbulent edge density fluctuations in Ohmic plasmas and L-mode plasmas in the Alcator C-Mod tokamak are shown to be chaotic. Supporting evidence for chaos in the edge region includes: the observation of an exponential power spectra (which is associated with Lorentzian-shaped pulses in the time series) and the location of the signal in the Complexity-Entropy plane (C-H plane) and its corresponding Brandt-Pompe (BP) probability distribution. These analysis techniques will be briefly introduced along with a discussion of the analysis results. Different diagnostic techniques, such as Gas Puff Imaging (GPI), could be used to confirm the results. Work supported by the U.S. Department of Energy Office of Science under Agreement DE-FC02-99ER54512 and DE-FC02-07ER54918:011.

  10. Long Term Retention of Deuterium and Tritium in Alcator C-Mod

    SciTech Connect

    FIORE,C.; LABOMBARD,B.; LIPSCHULTZ,B.; PITCHER,C.S.; SKINNER,C.H.; WAMPLER,WILLIAM R.

    1999-11-03

    We estimate the total in-vessel deuterium retention in Alcator C-Mod from a run campaign of about 1090 plasmas. The estimate is based on measurements of deuterium retained on 22 molybdenum tiles from the inner wall and divertor. The areal density of deuterium on the tiles was measured by nuclear reaction analysis. From these data, the in-vessel deuterium inventory is estimated to be about 0.1 gram, assuming the deuterium coverage is toroidally symmetric. Most of the retained deuterium is on the walls of the main plasma chamber, only about 2.5% of the deuterium is in the divertor. The D coverage is consistent with a layer saturated by implantation with ions and charge-exchange neutrals from the plasma. This contrasts with tokamaks with carbon plasma-facing components (PFC's) where long-term retention of tritium and deuterium is large and mainly in the divertor due to codeposition with carbon eroded by the plasma. The low deuterium retention in the C-Mod divertor is mainly due to the absence of carbon PFC's in C-Mod and the low erosion rate of Mo.

  11. Experiments and Simulations of ITER-like Plasmas in Alcator C-Mod

    SciTech Connect

    .R. Wilson, C.E. Kessel, S. Wolfe, I.H. Hutchinson, P. Bonoli, C. Fiore, A.E. Hubbard, J. Hughes, Y. Lin, Y. Ma, D. Mikkelsen, M. Reinke, S. Scott, A.C.C. Sips, S. Wukitch and the C-Mod Team

    2010-09-24

    Alcator C-Mod is performing ITER-like experiments to benchmark and verify projections to 15 MA ELMy H-mode Inductive ITER discharges. The main focus has been on the transient ramp phases. The plasma current in C-Mod is 1.3 MA and toroidal field is 5.4 T. Both Ohmic and ion cyclotron (ICRF) heated discharges are examined. Plasma current rampup experiments have demonstrated that (ICRF and LH) heating in the rise phase can save voltseconds (V-s), as was predicted for ITER by simulations, but showed that the ICRF had no effect on the current profile versus Ohmic discharges. Rampdown experiments show an overcurrent in the Ohmic coil (OH) at the H to L transition, which can be mitigated by remaining in H-mode into the rampdown. Experiments have shown that when the EDA H-mode is preserved well into the rampdown phase, the density and temperature pedestal heights decrease during the plasma current rampdown. Simulations of the full C-Mod discharges have been done with the Tokamak Simulation Code (TSC) and the Coppi-Tang energy transport model is used with modified settings to provide the best fit to the experimental electron temperature profile. Other transport models have been examined also. __________________________________________________

  12. Low Frequency Radio-wave System for subsurface investigation

    NASA Astrophysics Data System (ADS)

    Soldovieri, Francesco; Gennarelli, Gianluca; Kudelya, Anatoliy; Denisov, Alexander

    2015-04-01

    Low frequency radio-wave methods (RWM) allow subsurface investigations in terms of lithological structure characterization, detection of filtration flows of ground water, anthropogenic and natural cavities. In this contribution, we present a RWM that exploits two coils working at frequencies of few MHz as transmitting and receiving antennas. The basic principle of this inductive method is as follows. The primary alternating electromagnetic field radiated by the transmitting coil induces eddy currents in the subsurface mainly due to the conductivity anomalies. These eddy currents generate a secondary (scattered) magnetic field which overlaps to the incident magnetic field and is detected by the receiving coil. Despite the simple operation of the system, the complexity of the electromagnetic scattering phenomenon at hand must be properly modeled to achieve adequate performance. Therefore, an advanced data processing technique, belonging to the class of the inverse scattering approaches, has been developed by the authors in a full 3D geometry. The proposed method allows to deal with data collected on a scanning surface under a dipole inductive profiling (DIP) modality, where the transmitting/receiving coils are moved simultaneously with fixed offset (multi-bistatic configuration). The hardware, called Dipole Inductive Radio-wave System (DIRS), is composed by an electronic unit and transmitting and receiving loop antennas radiating at frequencies of few MHz (2-4 MHz), which are installed on theodolite supports. The compactness of DIRS and its robustness to external electromagnetic interference offers the possibility to perform geophysical research up to the depth of some tens of meters and under several types of ground and water surfaces, vegetation, and weather conditions. The light weight and small size of system (the single antenna with support weights about 5 kg and has a diameter of 0.5m) allows two operators to perform geophysical research without disturbing the

  13. Boundary conditions for electropositive and electronegative radio-frequency sheaths

    NASA Astrophysics Data System (ADS)

    Sobolewski, Mark

    2016-09-01

    Plasma sheaths play a dominant role in determining ion bombardment energies. To optimize plasma processes, sheaths must be understood and carefully controlled, which requires predictive models. One very efficient approach is to only model the sheath, excluding the bulk plasma. This approach, however, requires boundary conditions at the plasma/sheath boundary. Models that use the step approximation for electron density require initial ion velocities. More exact models with Boltzmann electrons (and, for electronegative discharges, negative ions) require the electron temperature (and the temperature and relative density of negative ions). It is often assumed that these boundary conditions have negligible effects on ion energies, but, for certain conditions in radio-frequency sheaths, this is not true. Analytic models as well as numerical simulations show that, at low frequencies (<= 1 MHz) and high bias voltages, the amplitude of the low-energy peak in ion energy distributions (IEDs) at the electrode is very sensitive to the boundary conditions. By measuring IEDs and sheath voltage waveforms, we obtain the most appropriate values of the boundary conditions for electropositive (Ar) as well as electronegative (CF4) discharges and insight into their presheath dynamics.

  14. Management of surgical instruments with radio frequency identification tags.

    PubMed

    Kusuda, Kaori; Yamashita, Kazuhiko; Ohnishi, Akiko; Tanaka, Kiyohito; Komino, Masaru; Honda, Hiroshi; Tanaka, Shinichi; Okubo, Takashi; Tripette, Julien; Ohta, Yuji

    2016-01-01

    To prevent malpractices, medical staff has adopted inventory time-outs and/or checklists. Accurate inventory and maintenance of surgical instruments decreases the risk of operating room miscounting and malfunction. In our previous study, an individual management of surgical instruments was accomplished using Radio Frequency Identification (RFID) tags. The purpose of this paper is to evaluate a new management method of RFID-tagged instruments. The management system of RFID-tagged surgical instruments was used for 27 months in clinical areas. In total, 13 study participants assembled surgical trays in the central sterile supply department. While using the management system, trays were assembled 94 times. During this period, no assembly errors occurred. An instrument malfunction had occurred after the 19th, 56th, and 73 th uses, no malfunction caused by the RFID tags, and usage history had been recorded. Additionally, the time it took to assemble surgical trays was recorded, and the long-term usability of the management system was evaluated. The system could record the number of uses and the defective history of each surgical instrument. In addition, the history of the frequency of instruments being transferred from one tray to another was recorded. The results suggest that our system can be used to manage instruments safely. Additionally, the management system was acquired of the learning effect and the usability on daily maintenance. This finding suggests that the management system examined here ensures surgical instrument and tray assembly quality.

  15. Mechanical properties of niobium radio-frequency cavities

    DOE PAGES

    Ciovati, Gianluigi; Dhakal, Pashupati; Matalevich, Joseph R.; ...

    2015-07-02

    Radio-frequency cavities made of bulk niobium are one of the components used in modern particle accelerators. The mechanical stability is an important aspect of cavity design, which typically relies on finite-element analysis simulations using material properties from tensile tests on sample. This contribution presents the results of strain and resonant frequency measurements as a function of a uniform pressure up to 722 kPa, applied to single-cell niobium cavities with different crystallographic structure, purity and treatments. In addition, burst tests of high-purity multi-cell cavities with different crystallographic structure have been conducted up to the tensile strength of the material. Finite-element analysismore » of the single-cell cavity geometry is in good agreement with the observed behavior in the elastic regime assuming a Young's modulus value of 88.5 GPa and a Poisson's ratio of 0.4, regardless of crystallographic structure, purity or treatment. However, the measured yield strength and tensile strength depend on crystallographic structure, material purity and treatment. In particular, the results from this study show that the mechanical properties of niobium cavities with large crystals are comparable to those of cavities made of fine-grain niobium.« less

  16. Microwave Sintering of Silver Nanoink for Radio Frequency Applications.

    PubMed

    Kim, Kwang-Seok; Park, Bum-Geun; Jung, Kwang-Ho; Kim, Jong-Woong; Jeong, Myung Yung; Jung, Seung-Boo

    2015-03-01

    Microwave sintering is a promising method for low-temperature processes, as it provides advantages such as uniform, fast, and volumetric heating. In this study, we investigated the electrical characteristics of inkjet-printed silver (Ag) circuits sintered by microwaves. The microstructural evolutions of inkjet-printed Ag circuits sintered at various temperatures for different durations were observed with a field emission scanning electron microscope. The electrical properties of the inkjet-printed Ag circuits were analysed by electrical resistivity measurements and radio frequency properties including scattering-parameters in the frequency range of 20 MHz to 20 GHz. The experimental results show that the signal losses of the Ag circuits sintered by microwave heating were lower than those sintered by conventional heating as microwave heating led to granular films which were nearly fully sintered without pores on the surfaces. When the inkjet-printed Ag circuits were sintered by microwaves at 300 °C for 4 min, their electrical resistivity was 5.1 µΩ cm, which is 3.2 times larger than that of bulk Ag. Furthermore, microwave sintering at 150 °C for 4 min achieved much lower signal losses (1.1 dB at 20 GHz) than conventional sintering under the same conditions.

  17. Ultra High-Speed Radio Frequency Switch Based on Photonics

    PubMed Central

    Ge, Jia; Fok, Mable P.

    2015-01-01

    Microwave switches, or Radio Frequency (RF) switches have been intensively used in microwave systems for signal routing. Compared with the fast development of microwave and wireless systems, RF switches have been underdeveloped particularly in terms of switching speed and operating bandwidth. In this paper, we propose a photonics based RF switch that is capable of switching at tens of picoseconds speed, which is hundreds of times faster than any existing RF switch technologies. The high-speed switching property is achieved with the use of a rapidly tunable microwave photonic filter with tens of gigahertz frequency tuning speed, where the tuning mechanism is based on the ultra-fast electro-optics Pockels effect. The RF switch has a wide operation bandwidth of 12 GHz and can go up to 40 GHz, depending on the bandwidth of the modulator used in the scheme. The proposed RF switch can either work as an ON/OFF switch or a two-channel switch, tens of picoseconds switching speed is experimentally observed for both type of switches. PMID:26608349

  18. Single-wire radio frequency transmission lines in biological tissue

    NASA Astrophysics Data System (ADS)

    Besnoff, Jordan S.; Reynolds, Matthew S.

    2015-05-01

    We present an approach for implanting radio frequency transmission lines in biological tissue, using a single insulated wire surrounded by tissue as a variant of the Goubau single-wire transmission line (SWTL) in air. We extend the Goubau SWTL model to include SWTLs surrounded by lossy dielectrics such as tissue by assuming a propagating mode component in the tissue. We show that a thin wire of radius 63.5 μ m , coated with biocompatible fluorinated ethylene propylene dielectric, exhibits a measured loss of only 1 dB/cm at a frequency of 915 MHz. The model fit to the measured insertion loss is within ±0.3 dB/cm across the 100 MHz to 3 GHz band. This SWTL presents excellent impedance matching to 50 Ω as evidenced by a measured median return loss better than 10 dB across the 100 MHz to 3 GHz range. This approach represents an alternative to near-field magnetic coupling for implanted systems where tissue displacement by a single, thin wire can be tolerated.

  19. Radio frequency switching network: a technique for infrared sensing

    NASA Astrophysics Data System (ADS)

    Mechtel, Deborah M.; Jenkins, R. Brian; Joyce, Peter J.; Nelson, Charles L.

    2016-10-01

    This paper describes a unique technique that implements photoconductive sensors in a radio frequency (RF) switching network designed to locate in real-time the position and intensity of IR radiation incident on a composite structure. In the implementation described here, photoconductive sensors act as rapid response switches in a two-layer RF network embedded in an FR-4 laminate. To detect radiation, phosphorous-doped silicon photoconductive sensors are inserted in GHz range RF transmission lines. By permitting signal propagation only when a sensor is illuminated, the RF signals are selectively routed from lower layer transmission lines to upper layer lines, thereby pinpointing the location and strength of incident radiation. Simulations based on a high frequency three-dimensional planar electromagnetics model are presented and compared to the experimental results. The experimental results are described for GHz range RF signal control for 300- and 180-mW incident energy from 975- to 1060-nm wavelength lasers, respectively, where upon illumination, RF transmission line signal output power doubled when compared to nonilluminated results. The experimental results are also reported for 100-W incident energy from a 1060-nm laser. Test results illustrate real-time signal processing would permit a structure to be controlled in response to incident radiation.

  20. Mechanical properties of niobium radio-frequency cavities

    SciTech Connect

    Ciovati, Gianluigi; Dhakal, Pashupati; Matalevich, Joseph R.; Myneni, Ganapati Rao; Schmidt, A.; Iversen, J.; Matheisen, A.; Singer, W.

    2015-07-02

    Radio-frequency cavities made of bulk niobium are one of the components used in modern particle accelerators. The mechanical stability is an important aspect of cavity design, which typically relies on finite-element analysis simulations using material properties from tensile tests on sample. This contribution presents the results of strain and resonant frequency measurements as a function of a uniform pressure up to 722 kPa, applied to single-cell niobium cavities with different crystallographic structure, purity and treatments. In addition, burst tests of high-purity multi-cell cavities with different crystallographic structure have been conducted up to the tensile strength of the material. Finite-element analysis of the single-cell cavity geometry is in good agreement with the observed behavior in the elastic regime assuming a Young's modulus value of 88.5 GPa and a Poisson's ratio of 0.4, regardless of crystallographic structure, purity or treatment. However, the measured yield strength and tensile strength depend on crystallographic structure, material purity and treatment. In particular, the results from this study show that the mechanical properties of niobium cavities with large crystals are comparable to those of cavities made of fine-grain niobium.

  1. Radio frequency radiation exposure of the F-15 crewmember.

    PubMed

    Laughrey, Michael S; Grayson, J Kevin; Jauchem, James R; Misener, Andrea E

    2003-08-01

    In the United States Air Force, pilots of F-15 fighter aircraft use fire control radars to search for enemy targets and to launch beyond visual range radar missiles. The fire control radars must be of a sufficient power output to enable a target return, but pilots are concerned about deleterious health effects from the levels of radio frequency radiation (RFR) they are exposed to. Measurement of RFR while actually in flight in the F-15 has never been performed. This study was designed to document the RFR levels that pilots are exposed to on normal missions while in flight with the radar on and active. A hand-held meter was used to measure electromagnetic fields during three F-15 flights. Instrumentation consisted of a Narda Microwave Model 8718 digital survey meter and Model 8723 broadband isotropic E-field probe with a frequency range between 300 MHz and 50 GHz. The measurements were conducted in the rear cockpit of an F-15D aircraft. Three missions were flown representing the standard missions an F-15 pilot flies on an everyday basis. The missions were: night intercepts, offensive basic fighter maneuvers, and defensive basic fighter maneuvers. Based on the data collected during three F-15 missions, all recorded RFR exposure to the crewmember in the F-15 was within the OSHA Permissible Exposure Limit (PEL) of 10 mW x cm(-2). Based on a limited sample, RFR exposures in F-15 cockpits appear to be well below the PEL.

  2. Ultra High-Speed Radio Frequency Switch Based on Photonics.

    PubMed

    Ge, Jia; Fok, Mable P

    2015-11-26

    Microwave switches, or Radio Frequency (RF) switches have been intensively used in microwave systems for signal routing. Compared with the fast development of microwave and wireless systems, RF switches have been underdeveloped particularly in terms of switching speed and operating bandwidth. In this paper, we propose a photonics based RF switch that is capable of switching at tens of picoseconds speed, which is hundreds of times faster than any existing RF switch technologies. The high-speed switching property is achieved with the use of a rapidly tunable microwave photonic filter with tens of gigahertz frequency tuning speed, where the tuning mechanism is based on the ultra-fast electro-optics Pockels effect. The RF switch has a wide operation bandwidth of 12 GHz and can go up to 40 GHz, depending on the bandwidth of the modulator used in the scheme. The proposed RF switch can either work as an ON/OFF switch or a two-channel switch, tens of picoseconds switching speed is experimentally observed for both type of switches.

  3. Radio-Frequency Tank Eigenmode Sensor for Propellant Quantity Gauging

    NASA Technical Reports Server (NTRS)

    Zimmerli, Gregory A.; Buchanan, David A.; Follo, Jeffrey C.; Vaden, Karl R.; Wagner, James D.; Asipauskas, Marius; Herlacher, Michael D.

    2010-01-01

    Although there are several methods for determining liquid level in a tank, there are no proven methods to quickly gauge the amount of propellant in a tank while it is in low gravity or under low-settling thrust conditions where propellant sloshing is an issue. Having the ability to quickly and accurately gauge propellant tanks in low-gravity is an enabling technology that would allow a spacecraft crew or mission control to always know the amount of propellant onboard, thus increasing the chances for a successful mission. The Radio Frequency Mass Gauge (RFMG) technique measures the electromagnetic eigenmodes, or natural resonant frequencies, of a tank containing a dielectric fluid. The essential hardware components consist of an RF network analyzer that measures the reflected power from an antenna probe mounted internal to the tank. At a resonant frequency, there is a drop in the reflected power, and these inverted peaks in the reflected power spectrum are identified as the tank eigenmode frequencies using a peak-detection software algorithm. This information is passed to a pattern-matching algorithm, which compares the measured eigenmode frequencies with a database of simulated eigenmode frequencies at various fill levels. A best match between the simulated and measured frequency values occurs at some fill level, which is then reported as the gauged fill level. The database of simulated eigenmode frequencies is created by using RF simulation software to calculate the tank eigenmodes at various fill levels. The input to the simulations consists of a fairly high-fidelity tank model with proper dimensions and including internal tank hardware, the dielectric properties of the fluid, and a defined liquid/vapor interface. Because of small discrepancies between the model and actual hardware, the measured empty tank spectra and simulations are used to create a set of correction factors for each mode (typically in the range of 0.999 1.001), which effectively accounts for

  4. High-performance radio frequency transistors based on diameter-separated semiconducting carbon nanotubes

    SciTech Connect

    Cao, Yu; Che, Yuchi; Zhou, Chongwu; Seo, Jung-Woo T.; Hersam, Mark C.; Gui, Hui

    2016-06-06

    In this paper, we report the high-performance radio-frequency transistors based on the single-walled semiconducting carbon nanotubes with a refined average diameter of ∼1.6 nm. These diameter-separated carbon nanotube transistors show excellent transconductance of 55 μS/μm and desirable drain current saturation with an output resistance of ∼100 KΩ μm. An exceptional radio-frequency performance is also achieved with current gain and power gain cut-off frequencies of 23 GHz and 20 GHz (extrinsic) and 65 GHz and 35 GHz (intrinsic), respectively. These radio-frequency metrics are among the highest reported for the carbon nanotube thin-film transistors. This study provides demonstration of radio frequency transistors based on carbon nanotubes with tailored diameter distributions, which will guide the future application of carbon nanotubes in radio-frequency electronics.

  5. Low-Frequency Radio Observations of Galaxy Cluster Merger Shocks

    NASA Astrophysics Data System (ADS)

    van Weeren, Reinout

    2014-10-01

    In a few dozen merging galaxy clusters diffuse extended radio emission has been found, implying the presence of relativistic particles and magnetic fields in the intracluster medium. A major question is how these particles are accelerated up to such extreme energies. In this talk I will present LOFAR and JVLA radio observations of the Toothbrush galaxy cluster. The Toothbrush cluster hosts diffuse 2 Mpc extended radio emission in the form of a radio relic and halo. Our deep LOFAR and JVLA observations allow a radio spectral study to test the shock origin of the relic and underlying particle acceleration mechanisms.

  6. Nanoionics-Based Switches for Radio-Frequency Applications

    NASA Technical Reports Server (NTRS)

    Nessel, James; Lee, Richard

    2010-01-01

    Nanoionics-based devices have shown promise as alternatives to microelectromechanical systems (MEMS) and semiconductor diode devices for switching radio-frequency (RF) signals in diverse systems. Examples of systems that utilize RF switches include phase shifters for electronically steerable phased-array antennas, multiplexers, cellular telephones and other radio transceivers, and other portable electronic devices. Semiconductor diode switches can operate at low potentials (about 1 to 3 V) and high speeds (switching times of the order of nanoseconds) but are characterized by significant insertion loss, high DC power consumption, low isolation, and generation of third-order harmonics and intermodulation distortion (IMD). MEMS-based switches feature low insertion loss (of the order of 0.2 dB), low DC power consumption (picowatts), high isolation (>30 dB), and low IMD, but contain moving parts, are not highly reliable, and must be operated at high actuation potentials (20 to 60 V) generated and applied by use of complex circuitry. In addition, fabrication of MEMS is complex, involving many processing steps. Nanoionics-based switches offer the superior RF performance and low power consumption of MEMS switches, without need for the high potentials and complex circuitry necessary for operation of MEMS switches. At the same time, nanoionics-based switches offer the high switching speed of semiconductor devices. Also, like semiconductor devices, nanoionics-based switches can be fabricated relatively inexpensively by use of conventional integrated-circuit fabrication techniques. More over, nanoionics-based switches have simple planar structures that can easily be integrated into RF power-distribution circuits.

  7. Photonic radio-frequency dissemination via optical fiber with high-phase stability.

    PubMed

    Wang, Xiaocheng; Liu, Zhangweiyi; Wang, Siwei; Sun, Dongning; Dong, Yi; Hu, Weisheng

    2015-06-01

    We demonstrate a photonic radio-frequency transmission system via optical fiber. Optical radio-frequency signal is generated utilizing a Mach-Zehnder modulator based on double-side-band with carrier suppression modulation scheme. The phase error induced by optical fiber transmission is transferred to an intermediate frequency signal by the dual-heterodyne phase error transfer scheme, and then canceled by a phase locked loop. With precise phase compensation, a radio frequency with high-phase stability can be obtained at the remote end. We performed 20.07-GHz radio-frequency transfer over 100-km optical fiber, and achieved residual phase noise of -65  dBc/Hz at 1-Hz offset frequency, and the RMS timing jitter in the frequency range from 0.01 Hz to 1 MHz reaches 110 fs. The long-term frequency stability also achieves 8×10(-17) at 10,000 s averaging time.

  8. Compatibility of the Radio Frequency Mass Gauge with Composite Tanks

    NASA Technical Reports Server (NTRS)

    Zimmerli, Greg; Mueller, Carl

    2015-01-01

    The radio frequency mass gauge (RFMG) is a low-gravity propellant quantity gauge being developed at NASA for possible use in long-duration space missions utilizing cryogenic propellants. As part of the RFMG technology development process, we evaluated the compatibility of the RFMG with a graphite-epoxy composite material used to construct propellant tanks. The key material property that can affect compatibility with the RFMG is the electrical conductivity. Using samples of 8552IM7 graphite-epoxy composite, we characterized the resistivity and reflectivity over a range of frequencies. An RF impedance analyzer was used to characterize the out-of-plane electrical properties (along the sample thickness) in the frequency range 10 to 1800 MHZ. The resistivity value at 500 MHz was 4.8 ohm-cm. Microwave waveguide measurements of samples in the range 1.7 2.6 GHz, performed by inserting the samples into a WR-430 waveguide, showed reflectivity values above 98. Together, these results suggested that a tank constructed from graphite-epoxy composite would produce good quality electromagnetic tank modes, which is needed for the RFMG. This was verified by room-temperature measurements of the electromagnetic modes of a 2.4 m diameter tank constructed by Boeing from similar graphite-epoxy composite material. The quality factor Q of the tank electromagnetic modes, measured via RF reflection measurements from an antenna mounted in the tank, was typically in the range 400 Q 3000. The good quality modes observed in the tank indicate that the RFMG is compatible with graphite-epoxy tanks, and thus the RFMG could be used as a low-gravity propellant quantity gauge in such tanks filled with cryogenic propellants.

  9. 48 CFR 552.211-92 - Radio Frequency Identification (RFID) using passive tags.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Identification (RFID) using passive tags. 552.211-92 Section 552.211-92 Federal Acquisition Regulations System... Provisions and Clauses 552.211-92 Radio Frequency Identification (RFID) using passive tags. As prescribed in 511.204(b)(11), insert the following clause: Radio Frequency Identification (RFID) Using Passive Tags...

  10. 48 CFR 552.211-92 - Radio Frequency Identification (RFID) using passive tags.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Identification (RFID) using passive tags. 552.211-92 Section 552.211-92 Federal Acquisition Regulations System... Provisions and Clauses 552.211-92 Radio Frequency Identification (RFID) using passive tags. As prescribed in 511.204(b)(11), insert the following clause: Radio Frequency Identification (RFID) Using Passive Tags...

  11. Coordinated observations using the world largest low-frequency radio telescopes and space misiions

    NASA Astrophysics Data System (ADS)

    Konovalenko, A. A.; Zarka, Ph.; Kolyadin, V. L.; Zakharenko, V. V.; Stepkin, S. V.; Panchenko, M.; Lecacheux, A.; Rucker, H. O.; Fischer, G.; Ulyanov, O. M.; Melnik, V. N.; Litvinenko, G. V.; Sidorchuk, M. A.; Bubnov, I. N.; Vasilyeva, Ya. Yu.; Bojko, A. I.; Shaposhnikov, V.; Mann, G.; Kalinichenko, N. N.; Falkovich, I. S.; Koval, A. A.; Mylostna, K.; Pylaev, O. S.; Shepelev, V. A.; Reznik, A. P.

    2013-09-01

    The positive possibilities of astrophysical objects studies(including the Solar system investigations) using coordinated observations with the largest existing and coming low frequency radio telescopes are shown. The observations of the Sun, Jupiter, Saturn, ant others with UTR-2, URAN, NDA radio telescopes, and WIND, Cassini and STEREO space missions at frequencies lower than 40 MHz have been carried out.

  12. 76 FR 9714 - Defense Federal Acquisition Regulation Supplement; Passive Radio Frequency Identification (DFARS...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-22

    ... relating to the use of passive Radio Frequency Identification (RFID). DATES: Comments on the proposed rule...) to revise DFARS 211.275, Radio frequency identification, to-- --Clarify that the RFID requirement pertains solely to ``passive RFID''; --Supply a link to a web site in lieu of individually listing...

  13. 78 FR 19311 - Certain Radio Frequency Identification (“RFID”) Products And Components Thereof; Institution of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-29

    ... COMMISSION Certain Radio Frequency Identification (``RFID'') Products And Components Thereof; Institution of... (``RFID'') products and components thereof by reason of infringement of U.S. Patent No. 7,081,819 (``the... sale within the United States after importation of certain radio frequency identification...

  14. 76 FR 58142 - Defense Federal Acquisition Regulation Supplement; Passive Radio Frequency Identification (DFARS...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-20

    ... relating to the use of passive radio frequency identification (RFID). DATES: Effective Date: September 20... passive radio frequency identification (RFID). II. Discussion and Analysis DoD received comments from two...: A respondent stated that RFID tags will play an expanded role in inventory management and...

  15. Technique for Predicting the Radio Frequency Field Strength Inside an Enclosure

    NASA Technical Reports Server (NTRS)

    Hallett, Michael P.; Reddell, Jerry P.

    1997-01-01

    This technical memo represents a simple analytical technique for predicting the Radio Frequency (RF) field inside an enclosed volume in which radio frequency occurs. The technique was developed to predict the RF field strength within a launch vehicle fairing in which some payloads desire to launch with their telemetry transmitter radiating. This technique considers both the launch vehicle and the payload aspects.

  16. Frequency variations of solar radio zebras and their power-law spectra

    NASA Astrophysics Data System (ADS)

    Karlický, M.

    2014-01-01

    Context. During solar flares several types of radio bursts are observed. The fine striped structures of the type IV solar radio bursts are called zebras. Analyzing them provides important information about the plasma parameters of their radio sources. We present a new analysis of zebras. Aims: Power spectra of the frequency variations of zebras are computed to estimate the spectra of the plasma density variations in radio zebra sources. Methods: Frequency variations of zebra lines and the high-frequency boundary of the whole radio burst were determined with and without the frequency fitting. The computed time dependencies of these variations were analyzed with the Fourier method. Results: First, we computed the variation spectrum of the high-frequency boundary of the whole radio burst, which is composed of several zebra patterns. This power spectrum has a power-law form with a power-law index -1.65. Then, we selected three well-defined zebra-lines in three different zebra patterns and computed the spectra of their frequency variations. The power-law indices in these cases are found to be in the interval between -1.61 and -1.75. Finally, assuming that the zebra-line frequency is generated on the upper-hybrid frequency and that the plasma frequency ωpe is much higher than the electron-cyclotron frequency ωce, the Fourier power spectra are interpreted to be those of the electron plasma density in zebra radio sources.

  17. High-energy sources at low radio frequency: the Murchison Widefield Array view of Fermi blazars

    DOE PAGES

    Giroletti, M.; Massaro, F.; D’Abrusco, R.; ...

    2016-04-01

    Low-frequency radio arrays are opening a new window for the study of the sky, both to study new phenomena and to better characterize known source classes. Being flat-spectrum sources, blazars are so far poorly studied at low radio frequencies. In this paper, we characterize the spectral properties of the blazar population at low radio frequency, compare the radio and high-energy properties of the gamma-ray blazar population, and search for radio counterparts of unidentified gamma-ray sources. We cross-correlated the 6100 deg2 Murchison Widefield Array Commissioning Survey catalogue with the Roma blazar catalogue, the third catalogue of active galactic nuclei detected bymore » Fermi-LAT, and the unidentified members of the entire third catalogue of gamma-ray sources detected by Fermi-LAT. When available, we also added high-frequency radio data from the Australia Telescope 20 GHz catalogue. We find low-frequency counterparts for 186 out of 517 (36%) blazars, 79 out of 174 (45%) gamma-ray blazars, and 8 out of 73 (11%) gamma-ray blazar candidates. The mean low-frequency (120–180 MHz) blazar spectral index is (αlow) = 0.57 ± 0.02: blazar spectra are flatter than the rest of the population of low-frequency sources, but are steeper than at ~GHz frequencies. Low-frequency radio flux density and gamma-ray energy flux display a mildly significant and broadly scattered correlation. Ten unidentified gamma-ray sources have a (probably fortuitous) positional match with low radio frequency sources. Low-frequency radio astronomy provides important information about sources with a flat radio spectrum and high energy. However, the relatively low sensitivity of the present surveys still misses a significant fraction of these objects. Finally, upcoming deeper surveys, such as the GaLactic and Extragalactic All-Sky MWA (GLEAM) survey, will provide further insight into this population.« less

  18. Exascale Real-Time Radio Frequency Interference Mitigation

    NASA Astrophysics Data System (ADS)

    van Nieuwpoort, Rob; Lofar Team

    2014-04-01

    Radio Frequency Interference (RFI) mitigation is extremely important to take advantage of the vastly improved bandwidth, sensitivity, and field-of-view of exascale telescopes. For current instruments, RFI mitigation is typically done offline, and in some cases (partially) manually. At the same time, it is clear that due to the high bandwidth requirements, RFI mitigation will have to be done automatically, and in real-time, for exascale instruments. In general, real-time RFI mitigation will be less precise than offline approaches. Due to memory constraints, there is much less data to work with, typically only in the order of one second or less, as opposed to the entire observation. In addition, we can record only limited statistics of the past. Moreover, we will typically have only few frequency channels locally available at each compute core. Finally, the amount of processing that can be spent on RFI mitigation is extremely limited due to computing and power constraints. Nevertheless, there are potential benefits as well, which include the possibility of working on higher time and frequency resolutions before any integration is done, leading to more accurate results. Most importantly, we can remove RFI before beam forming, which combines data from all receivers. The RFI that is present in the data streams from the separate receivers is also combined, effectively taking the union of all RFI. Thus, the RFI from all receivers pollutes all beams. Therefore, it is essential to do real-time RFI mitigation before the beam former. This is particularly important for pulsar surveys, for instance. modes. Although our techniques are generic, we describe how we implemented real-time RFI mitigation for one of the SKA pathfinders: The Low Frequency Array (LOFAR). The RFI mitigation algorithms and operations we introduce here are extremely fast, and the computational requirements scale linearly in the number of samples and frequency channels. We evaluate the quality of the

  19. Injection of plasma plume into radio frequency atmospheric pressure glow discharge

    NASA Astrophysics Data System (ADS)

    Guo, Ying; Han, Qianhan; Wang, Xiaodong; Shi, Jianjun

    2017-07-01

    The influence of a high voltage sub-microsecond pulsed plasma plume on a radio frequency discharge at atmospheric pressure is studied experimentally. The discharge characteristics and dynamics of pulsed discharge and radio frequency discharge are characterized in terms of voltage and current waveforms and spatio-temporal evolution of discharge. It is found that the plasma bullet generated by pulsed discharge can inject into the radio frequency discharge region with the average travelling speed of 70 km/s. The radio frequency discharge intensity is elevated to be 3 times higher as the plasma bullet penetrating the interelectrode gap of radio frequency discharge. The enhancement is attributed to the injection of energetic electrons by the plasma bullet, which is demonstrated by the temporal evolution of discharge image intensity and optical emission spectroscopy intensity.

  20. Radio Frequency Nonionizing Radiation in a Community Exposed to Radio and Television Broadcasting

    PubMed Central

    Burch, James B.; Clark, Maggie; Yost, Michael G.; Fitzpatrick, Cole T.E.; Bachand, Annette M.; Ramaprasad, Jaya; Reif, John S.

    2006-01-01

    Exposure to radio frequency (RF) nonionizing radiation from telecommunications is pervasive in modern society. Elevated disease risks have been observed in some populations exposed to radio and television transmissions, although findings are inconsistent. This study quantified RF exposures among 280 residents living near the broadcasting transmitters for Denver, Colorado. RF power densities outside and inside each residence were obtained, and a global positioning system (GPS) identified geographic coordinates and elevations. A viewshed model within a geographic information system (GIS) characterized the average distance and percentage of transmitters visible from each residence. Data were collected at the beginning and end of a 2.5-day period, and some measurements were repeated 8–29 months later. RF levels logged at 1-min intervals for 2.5 days varied considerably among some homes and were quite similar among others. The greatest differences appeared among homes within 1 km of the transmitters. Overall, there were no differences in mean residential RF levels compared over 2.5 days. However, after a 1- to 2-year follow-up, only 25% of exterior and 38% of interior RF measurements were unchanged. Increasing proximity, elevation, and line-of-sight visibility were each associated with elevated RF exposures. At average distances from > 1–3 km, exterior RF measurements were 13–30 times greater among homes that had > 50% of the transmitters visible compared with homes with ≤ 50% visibility at those distances. This study demonstrated that both spatial and temporal factors contribute to residential RF exposure and that GPS/GIS technologies can improve RF exposure assessment and reduce exposure misclassification. PMID:16451862

  1. Radio frequency nonionizing radiation in a community exposed to radio and television broadcasting.

    PubMed

    Burch, James B; Clark, Maggie; Yost, Michael G; Fitzpatrick, Cole T E; Bachand, Annette M; Ramaprasad, Jaya; Reif, John S

    2006-02-01

    Exposure to radio frequency (RF) nonionizing radiation from telecommunications is pervasive in modern society. Elevated disease risks have been observed in some populations exposed to radio and television transmissions, although findings are inconsistent. This study quantified RF exposures among 280 residents living near the broadcasting transmitters for Denver, Colorado. RF power densities outside and inside each residence were obtained, and a global positioning system (GPS) identified geographic coordinates and elevations. A view-shed model within a geographic information system (GIS) characterized the average distance and percentage of transmitters visible from each residence. Data were collected at the beginning and end of a 2.5-day period, and some measurements were repeated 8-29 months later. RF levels logged at 1-min intervals for 2.5 days varied considerably among some homes and were quite similar among others. The greatest differences appeared among homes within 1 km of the transmitters. Overall, there were no differences in mean residential RF levels compared over 2.5 days. However, after a 1- to 2-year follow-up, only 25% of exterior and 38% of interior RF measurements were unchanged. Increasing proximity, elevation, and line-of-sight visibility were each associated with elevated RF exposures. At average distances from > 1-3 km, exterior RF measurements were 13-30 times greater among homes that had > 50% of the transmitters visible compared with homes with < or = 50% visibility at those distances. This study demonstrated that both spatial and temporal factors contribute to residential RF exposure and that GPS/GIS technologies can improve RF exposure assessment and reduce exposure misclassification.

  2. THE LOW-FREQUENCY RADIO CATALOG OF FLAT-SPECTRUM SOURCES

    SciTech Connect

    Massaro, F.; Giroletti, M.; D'Abrusco, R.; Paggi, A.; Cowperthwaite, Philip S.; Masetti, N.; Tosti, G.; Funk, S.

    2014-07-01

    A well known property of the γ-ray sources detected by Cos-B in the 1970s, by the Compton Gamma-Ray Observatory in the 1990s, and recently by the Fermi observations is the presence of radio counterparts, particularly for those associated with extragalactic objects. This observational evidence is the basis of the radio-γ-ray connection established for the class of active galactic nuclei known as blazars. In particular, the main spectral property of the radio counterparts associated with γ-ray blazars is that they show a flat spectrum in the GHz frequency range. Our recent analysis dedicated to search blazar-like candidates as potential counterparts for the unidentified γ-ray sources allowed us to extend the radio-γ-ray connection in the MHz regime. We also showed that blazars below 1 GHz maintain flat radio spectra. Thus, on the basis of these new results, we assembled a low-frequency radio catalog of flat-spectrum sources built by combining the radio observations of the Westerbork Northern Sky Survey and of the Westerbork in the southern hemisphere catalog with those of the NRAO Very Large Array Sky survey (NVSS). This could be used in the future to search for new, unknown blazar-like counterparts of γ-ray sources. First, we found NVSS counterparts of Westerbork Synthesis Radio Telescope radio sources, and then we selected flat-spectrum radio sources according to a new spectral criterion, specifically defined for radio observations performed below 1 GHz. We also described the main properties of the catalog listing 28,358 radio sources and their logN-logS distributions. Finally, a comparison with the Green Bank 6 cm radio source catalog was performed to investigate the spectral shape of the low-frequency flat-spectrum radio sources at higher frequencies.

  3. Resonant-frequency discharge in a multi-cell radio frequency cavity

    SciTech Connect

    Popovic, S; Upadhyay, J; Mammosser, J; Nikolic, M; Vuskovic, L

    2014-11-07

    We are reporting experimental results on microwave discharge operating at resonant frequency in a multi-cell radio frequency (RF) accelerator cavity. Although the discharge operated at room temperature, the setup was constructed so that it could be used for plasma generation and processing in fully assembled active superconducting radio-frequency (SRF) cryomodule (in situ operation). This discharge offers an efficient mechanism for removal of a variety of contaminants, organic or oxide layers, and residual particulates from the interior surface of RF cavities through the interaction of plasma-generated radicals with the cavity walls. We describe resonant RF breakdown conditions and address the problems related to generation and sustaining the multi-cell cavity plasma, which are breakdown and resonant detuning. We have determined breakdown conditions in the cavity, which was acting as a plasma vessel with distorted cylindrical geometry. We discuss the spectroscopic data taken during plasma removal of contaminants and use them to evaluate plasma parameters, characterize the process, and estimate the volatile contaminant product removal.

  4. Analog optoelectronic independent component analysis for radio frequency signals

    NASA Astrophysics Data System (ADS)

    Baylor, Martha-Elizabeth

    This thesis addresses the problem of blind source separation of signals at radio frequencies. Independent component analysis (ICA), which includes a second-order decorrelation followed by a fourth-order decorrelation, uses signal independence to estimate the original signals from the received mixtures. Until now, ICA has been applied to many applications at or below audio frequencies. The work presented here demonstrates that an optoelectronic implementation using the parallel processing nature of dynamic holography can overcome the computational difficulties associated with algorithmic implementations of ICA. The holographic nature of a photorefractive crystal combined with the non-linearity of an electro-optic modulator in a feedback loop can be described by a nonlinear dynamical equation. The dynamics can be cast in the form of Lotka-Volterra equations used to study the dynamics of competing populations of species. Although this analogy with the animal world is interesting, the dynamical equation associated with the fourth-order decorrelation system is fascinating. The statistics associated with the original signals, rather than an external potential, determine the dynamics of the system. In particular, the system is multistable, metastable, or monostable depending on whether the probability density functions of the original signals are sub-Gaussian, Gaussian, or super-Gaussian, respectively. The multistable solution, which occurs for sub-Gaussian signals, provides the winner-takes-all behavior required to separate signals. This ability to separate sub-Gaussian signals is advantageous since signals modulated on a sinusoidal carrier are sub-Gaussian. The fourth-order decorrelation system achieves greater than 40 dB signal separation on 200 MHz single-frequency sine waves and greater than 20 dB signal separation for 10 MHz bandwidth signals. The system performance is degraded by 10 to 20 dB when mixed electronically due to imperfections in the mixing circuitry

  5. Supercomputer Simulation of Radio-frequency Hepatic Tumor Ablation

    NASA Astrophysics Data System (ADS)

    Kosturski, N.; Margenov, S.

    2010-11-01

    We simulate the thermal and electrical processes, involved in the radio-frequency (RF) ablation procedure. The mathematical model consists of two parts—electrical and thermal. The energy from the applied AC voltage is determined first, by solving the Laplace equation to find the potential distribution. After that, the electric field intensity and the current density are directly calculated. Finally, the heat transfer equation is solved to determine the temperature distribution. Heat loss due to blood perfusion is also accounted for. The representation of the computational domain is based on a voxel mesh. Both partial differential equations are discretized in space via linear conforming FEM. After the space discretization, the backward Euler scheme is used for the time stepping. Large-scale linear systems arise from the FEM discretization. Moreover, they are ill-conditioned, due to the strong coefficient jumps and the complex geometry of the problem. Therefore, efficient parallel solution methods are required. The developed parallel solver is based on the preconditioned conjugate gradient (PCG) method. As a preconditioner, we use BoomerAMG—a parallel algebraic multigrid implementation from the package Hypre, developed in LLNL, Livermore. Parallel numerical tests, performed on the IBM Blue Gene/P massively parallel computer are presented.

  6. Report on GMI Special Study #15: Radio Frequency Interference

    NASA Technical Reports Server (NTRS)

    Draper, David W.

    2015-01-01

    This report contains the results of GMI special study #15. An analysis is conducted to identify sources of radio frequency interference (RFI) to the Global Precipitation Measurement (GPM) Microwave Imager (GMI). The RFI impacts the 10 GHz and 18 GHz channels at both polarities. The sources of RFI are identified for the following conditions: over the water (including major inland water bodies) in the earth view, and over land in the earth view, and in the cold sky view. A best effort is made to identify RFI sources in coastal regions, with noted degradation of flagging performance due to the highly variable earth scene over coastal regions. A database is developed of such sources, including latitude, longitude, country and city of earth emitters, and position in geosynchronous orbit for space emitters. A description of the recommended approach for identifying the sources and locations of RFI in the GMI channels is given in this paper. An algorithm to flag RFI contaminated pixels which can be incorporated into the GMI Level 1Base/1B algorithms is defined, which includes Matlab code to perform the necessary flagging of RFI. A Matlab version of the code is delivered with this distribution.

  7. Three-dimensional effects for radio frequency antenna modeling

    SciTech Connect

    Carter, M.D.; Batchelor, D.B.; Stallings, D.C. )

    1994-10-15

    Electromagnetic field calculations for radio frequency (rf) antennas in two dimensions (2-D) neglect finite antenna length effects as well as the feeders leading to the main current strap. The 2-D calculations predict that the return currents in the sidewalls of the antenna structure depend strongly on the plasma parameters, but this prediction is suspect because of experimental evidence. To study the validity of the 2-D approximation, the Multiple Antenna Implementation System (MAntIS) has been used to perform three-dimensional (3-D) modeling of the power spectrum, plasma loading, and inductance for a relevant loop antenna design. Effects on antenna performance caused by feeders to the main current strap and conducting sidewalls are considered. The modeling shows that the feeders affect the launched power spectrum in an indirect way by forcing the driven rf current to return in the antenna structure rather than the plasma, as in the 2-D model. It has also been found that poloidal dependencies in the plasma impedance matrix can reduce the loading predicted from that predicted in the 2-D model. For some plasma parameters, the combined 3-D effects can lead to a reduction in the predicted loading by as much as a factor of 2 from that given by the 2-D model, even with end-effect corrections for the 2-D model.

  8. Image transmission in tactical radio frequency shared network propagation environments

    NASA Astrophysics Data System (ADS)

    White, Kent H.; Wagner, Kerry A.; O'Hanian, Scott

    1997-06-01

    The need to transmit images across tactical radio frequency (rf) links has been identified in army digitization applications. For example, military doctrine requires that tactical functions like identification of battlefield entities as potential targets and battle damage assessment be performed by the soldier. Currently, a key input to these processes is imagery. Therefore, the quality and timeliness of the image directly impact tactical performance. The military is investigating the employment of remote sensors and advanced communications systems to meet this requirement as part of its digitization effort. Army communications systems exist that partially meet this requirement. However, many existing solutions employ these legacy systems in the context of a point-to-point communications architecture. Solutions to the problem of transmitting images across a rf network have not been fully explored. The term network implies that the rf transmission media is common to and shared by multiple subscribers. It is a suite of capabilities that collectively manage media access and information transfer for its subscribers thus providing substantial improvements in effectiveness, efficiency, and robustness. This paper discusses the challenges of transmitting images using one army legacy communications system in a tactical rf network, presents a conceptual framework for attacking the problem, and discusses one solution.

  9. Radio-frequency ablation of hepatic metastases from colorectal cancer.

    PubMed

    Kanellos, I; Demetriades, H; Blouhos, K; Tsachalis, T; Pramateftakis, M G; Betsis, D

    2004-11-01

    The aim of our study is to present the preliminary results of an ongoing radio-frequency (RF) ablation study in patients with hepatic metastases from colorectal cancer. From November 2003, two patients affected with metachronous liver metastases from colorectal cancer were treated with RF ablation. The mean age of the patients was 66 years (58 and 74 years). Tumours were unifocal right-lobe lesions in one patient and bifocal in the second patient. Under general anaesthesia, a Radionics 200-W RF generator was used to ablate lesions with H2O-cooled electrodes via laparotomy. Patients' follow-up ranged from two to five months including evaluation of salient clinical, radiological and laboratory parameters. The patients experienced moderate-to-severe pain in the right abdomen lasting for 2-3 days and mild fever for 3-6 days after treatment. During the follow-up period no local recurrence was observed. RF ablation emerges to be a promising method for the treatment of hepatic metastases from colorectal cancer.

  10. Method of making radio frequency ion source antenna

    DOEpatents

    Ehlers, Kenneth W.; Leung, Ka-Ngo

    1988-01-01

    In the method, the radio frequency (RF) antenna is made by providing a clean coil made of copper tubing or other metal conductor, which is coated with a tacky organic binder, and then with a powdered glass frit, as by sprinkling the frit uniformly over the binder. The coil is then heated internally in an inert gas atmosphere, preferably by passing an electrical heating current along the coil. Initially, the coil is internally heated to about 200.degree. C. to boil off the water from the binder, and then to about 750.degree. C.-850.degree. C. to melt the glass frit, while also burning off the organic binder. The melted frit forms a molten glass coating on the metal coil, which is then cooled to solidify the glass, so that the metal coil is covered with a thin continuous homogeneous impervious glass coating of substantially uniform thickness. The glass coating affords complete electrical insulation and complete dielectric protection for the metal coil of the RF antenna, to withstand voltage breakdown and to prevent sputtering, while also doubling the plasma generating efficiency of the RF antenna, when energized with RF power in the vacuum chamber of an ion source for a particle accelerator or the like. The glass frit preferably contains apprxoimately 45% lead oxide.

  11. Radio-frequency capacitance spectroscopy of metallic nanoparticles.

    PubMed

    Frake, James C; Kano, Shinya; Ciccarelli, Chiara; Griffiths, Jonathan; Sakamoto, Masanori; Teranishi, Toshiharu; Majima, Yutaka; Smith, Charles G; Buitelaar, Mark R

    2015-06-04

    Recent years have seen great progress in our understanding of the electronic properties of nanomaterials in which at least one dimension measures less than 100 nm. However, contacting true nanometer scale materials such as individual molecules or nanoparticles remains a challenge as even state-of-the-art nanofabrication techniques such as electron-beam lithography have a resolution of a few nm at best. Here we present a fabrication and measurement technique that allows high sensitivity and high bandwidth readout of discrete quantum states of metallic nanoparticles which does not require nm resolution or precision. This is achieved by coupling the nanoparticles to resonant electrical circuits and measurement of the phase of a reflected radio-frequency signal. This requires only a single tunnel contact to the nanoparticles thus simplifying device fabrication and improving yield and reliability. The technique is demonstrated by measurements on 2.7 nm thiol coated gold nanoparticles which are shown to be in excellent quantitative agreement with theory.

  12. Effective Atom-Molecule Conversions Using Radio Frequency Fields.

    PubMed

    Ding, Yijue; Pérez-Ríos, Jesús; Greene, Chris H

    2016-11-18

    The present study is inspired by the Wieman group experiment [Phys. Rev. Lett. 2005, 95, 190404], in which they use a slow modulated magnetic field to effectively transfer rubidium atoms into cold molecules near a Feshbach resonance. We develop a time-dependent collision theory based on two channel model potentials to study the atom-molecule population transfer induced by a single-color radio frequency field in an ultracold (87) Rb gas. Wave-packet dynamical simulations allow an investigation of both bound-bound transitions and free-bound transitions. The effects of temperature, detuning and the RF amplitude on the population transfer are discussed in detail. Some of our simulations suggest that oscillatory atom-molecule conversion could originate from the long coherence time of the wave packet. This coherence time is unusually long in ultracold gases because the collision energy is typically quite well-defined. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Spectroscopic Measurements of Radio Frequency Plasmas in Supercritical Fluids

    SciTech Connect

    Maehara, Tsunehiro; Iwamae, Atsushi; Kawashima, Ayato

    2010-10-29

    Spectroscopic measurements of radio frequency (rf) plasma were performed under high pressure CO{sub 2} conditions (5 and 7 MPa) and supercritical (sc)CO{sub 2} conditions (8-20 MPa). The temperatures evaluated from C{sub 2} Swan bands increased from 3600 K to 4600 K with increasing pressure. The broadening and shifting of the O I line profile ({approx}777 nm) of rf plasma was observed under scCO{sub 2} conditions. The width of the line profile increased with increasing pressure. The reason for the broadening and shifting is still unclear because the present theory used to explain them is not valid for such high pressure conditions. Further, the broadening of the Ar I line profile ({approx}811.5 nm) in rf plasmas was observed under atmospheric Ar (0.1 MPa), high pressure Ar conditions (1-4 MPa), and scAr condition (5 MPa); the observation of the O I line profile in CO{sub 2} plasmas is difficult in this pressure range owing to its weak intensity therein. Similar to the case of the O I line in CO{sub 2} plasmas, the reason for the broadening of the Ar I line profile at 5 MPa is unclear.

  14. A graphical approach to radio frequency quadrupole design

    NASA Astrophysics Data System (ADS)

    Turemen, G.; Unel, G.; Yasatekin, B.

    2015-07-01

    The design of a radio frequency quadrupole, an important section of all ion accelerators, and the calculation of its beam dynamics properties can be achieved using the existing computational tools. These programs, originally designed in 1980s, show effects of aging in their user interfaces and in their output. The authors believe there is room for improvement in both design techniques using a graphical approach and in the amount of analytical calculations before going into CPU burning finite element analysis techniques. Additionally an emphasis on the graphical method of controlling the evolution of the relevant parameters using the drag-to-change paradigm is bound to be beneficial to the designer. A computer code, named DEMIRCI, has been written in C++ to demonstrate these ideas. This tool has been used in the design of Turkish Atomic Energy Authority (TAEK)'s 1.5 MeV proton beamline at Saraykoy Nuclear Research and Training Center (SANAEM). DEMIRCI starts with a simple analytical model, calculates the RFQ behavior and produces 3D design files that can be fed to a milling machine. The paper discusses the experience gained during design process of SANAEM Project Prometheus (SPP) RFQ and underlines some of DEMIRCI's capabilities.

  15. Radio-frequency plasma transducer for use in harsh environments

    SciTech Connect

    May, Andrew; Andarawis, Emad

    2007-10-15

    We describe a compact transducer used to generate and modulate low-intensity radio-frequency atmospheric pressure plasma (RF-APP) for high temperature gap measurement and generation of air-coupled ultrasound. The new transducer consists of a quarter-wave transmission line where the ground return path is a coaxial solenoid winding. The RF-APP is initiated at the open end of the transmission line and stabilized by passive negative feedback between the electrical impedance of the plasma and the energy stored in the solenoid. The electrical impedance of the plasma was measured at the lower-voltage source end of the transducer, eliminating the need to measure kilovolt-level voltages near the discharge. We describe the use of a 7 MHz RF-APP prototype as a harsh-environment clearance sensor to demonstrate the suitability of plasma discharges for a common nondestructive inspection application. Clearance measurements of 0-5 mm were performed on a rotating calibration target with a measurement precision of 0.1 mm and a 20 kHz sampling rate.

  16. Accoustic Localization of Breakdown in Radio Frequency Accelerating Cavities

    SciTech Connect

    Lane, Peter Gwin

    2016-07-01

    Current designs for muon accelerators require high-gradient radio frequency (RF) cavities to be placed in solenoidal magnetic fields. These fields help contain and efficiently reduce the phase space volume of source muons in order to create a usable muon beam for collider and neutrino experiments. In this context and in general, the use of RF cavities in strong magnetic fields has its challenges. It has been found that placing normal conducting RF cavities in strong magnetic fields reduces the threshold at which RF cavity breakdown occurs. To aid the effort to study RF cavity breakdown in magnetic fields, it would be helpful to have a diagnostic tool which can localize the source of breakdown sparks inside the cavity. These sparks generate thermal shocks to small regions of the inner cavity wall that can be detected and localized using microphones attached to the outer cavity surface. Details on RF cavity sound sources as well as the hardware, software, and algorithms used to localize the source of sound emitted from breakdown thermal shocks are presented. In addition, results from simulations and experiments on three RF cavities, namely the Aluminum Mock Cavity, the High-Pressure Cavity, and the Modular Cavity, are also given. These results demonstrate the validity and effectiveness of the described technique for acoustic localization of breakdown.

  17. Acoustic localization of breakdown in radio frequency accelerating cavities

    NASA Astrophysics Data System (ADS)

    Lane, Peter

    Current designs for muon accelerators require high-gradient radio frequency (RF) cavities to be placed in solenoidal magnetic fields. These fields help contain and efficiently reduce the phase space volume of source muons in order to create a usable muon beam for collider and neutrino experiments. In this context and in general, the use of RF cavities in strong magnetic fields has its challenges. It has been found that placing normal conducting RF cavities in strong magnetic fields reduces the threshold at which RF cavity breakdown occurs. To aid the effort to study RF cavity breakdown in magnetic fields, it would be helpful to have a diagnostic tool which can localize the source of breakdown sparks inside the cavity. These sparks generate thermal shocks to small regions of the inner cavity wall that can be detected and localized using microphones attached to the outer cavity surface. Details on RF cavity sound sources as well as the hardware, software, and algorithms used to localize the source of sound emitted from breakdown thermal shocks are presented. In addition, results from simulations and experiments on three RF cavities, namely the Aluminum Mock Cavity, the High-Pressure Cavity, and the Modular Cavity, are also given. These results demonstrate the validity and effectiveness of the described technique for acoustic localization of breakdown.

  18. Operating a radio-frequency plasma source on water vapor.

    PubMed

    Nguyen, Sonca V T; Foster, John E; Gallimore, Alec D

    2009-08-01

    A magnetically enhanced radio-frequency (rf) plasma source operating on water vapor has an extensive list of potential applications. In this work, the use of a rf plasma source to dissociate water vapor for hydrogen production is investigated. This paper describes a rf plasma source operated on water vapor and characterizes its plasma properties using a Langmuir probe, a residual gas analyzer, and a spectrometer. The plasma source operated first on argon and then on water vapor at operating pressures just over 300 mtorr. Argon and water vapor plasma number densities differ significantly. In the electropositive argon plasma, quasineutrality requires n(i) approximately = n(e), where n(i) is the positive ion density. But in the electronegative water plasma, quasineutrality requires n(i+) = n(i-) + n(e). The positive ion density and electron density of the water vapor plasma are approximately one and two orders of magnitude lower, respectively, than those of argon plasma. These results suggest that attachment and dissociative attachment are present in electronegative water vapor plasma. The electron temperature for this water vapor plasma source is between 1.5 and 4 eV. Without an applied axial magnetic field, hydrogen production increases linearly with rf power. With an axial magnetic field, hydrogen production jumps to a maximum value at 500 W and then saturates with rf power. The presence of the applied axial magnetic field is therefore shown to enhance hydrogen production.

  19. Surface processing for bulk niobium superconducting radio frequency cavities

    NASA Astrophysics Data System (ADS)

    Kelly, M. P.; Reid, T.

    2017-04-01

    The majority of niobium cavities for superconducting particle accelerators continue to be fabricated from thin-walled (2-4 mm) polycrystalline niobium sheet and, as a final step, require material removal from the radio frequency (RF) surface in order to achieve performance needed for use as practical accelerator devices. More recently bulk niobium in the form of, single- or large-grain slices cut from an ingot has become a viable alternative for some cavity types. In both cases the so-called damaged layer must be chemically etched or electrochemically polished away. The methods for doing this date back at least four decades, however, vigorous empirical studies on real cavities and more fundamental studies on niobium samples at laboratories worldwide have led to seemingly modest improvements that, when taken together, constitute a substantial advance in the reproducibility for surface processing techniques and overall cavity performance. This article reviews the development of niobium cavity surface processing, and summarizes results of recent studies. We place some emphasis on practical details for real cavity processing systems which are difficult to find in the literature but are, nonetheless, crucial for achieving the good and reproducible cavity performance. New approaches for bulk niobium surface treatment which aim to reduce cost or increase performance, including alternate chemical recipes, barrel polishing and ‘nitrogen doping’ of the RF surface, continue to be pursued and are closely linked to the requirements for surface processing.

  20. Surface processing for bulk niobium superconducting radio frequency cavities

    DOE PAGES

    Kelly, M. P.; Reid, T.

    2017-02-21

    The majority of niobium cavities for superconducting particle accelerators continue to be fabricated from thin-walled (2-4mm) polycrystalline niobium sheet and, as a final step, require material removal from the radio frequency (RF) surface in order to achieve performance needed for use as practical accelerator devices. More recently bulk niobium in the form of, single-or large-grain slices cut from an ingot has become a viable alternative for some cavity types. In both cases the so-called damaged layer must be chemically etched or electrochemically polished away. The methods for doing this date back at least four decades, however, vigorous empirical studies onmore » real cavities and more fundamental studies on niobium samples at laboratories worldwide have led to seemingly modest improvements that, when taken together, constitute a substantial advance in the reproducibility for surface processing techniques and overall cavity performance. This article reviews the development of niobium cavity surface processing, and summarizes results of recent studies. We place some emphasis on practical details for real cavity processing systems which are difficult to find in the literature but are, nonetheless, crucial for achieving the good and reproducible cavity performance. New approaches for bulk niobium surface treatment which aim to reduce cost or increase performance, including alternate chemical recipes, barrel polishing and 'nitrogen doping' of the RF surface, continue to be pursued and are closely linked to the requirements for surface processing.« less