Science.gov

Sample records for c-myc protein expression

  1. Regulation of human ornithine decarboxylase expression by the c-Myc.Max protein complex.

    PubMed

    Peña, A; Reddy, C D; Wu, S; Hickok, N J; Reddy, E P; Yumet, G; Soprano, D R; Soprano, K J

    1993-12-25

    The presence of a CACGTG element within a region of the human ornithine decarboxylase (ODC) promoter located at -491 to -474 base pairs 5' to the start site of transcription suggested that the c-Myc.Max protein complex may play a role in the regulation of ODC expression during growth. Electrophoretic mobility shift assays and methylation interference analysis showed that the nuclei of WI-38 cells expressing ODC contained proteins that bound to this region of the ODC gene in a manner that correlated with growth-associated ODC expression. Also, use of antibodies against c-Myc and Max and purified recombinant c-Myc and Max protein in the electrophoretic mobility shift assay confirmed that these proteins can specifically bind this portion of the human ODC promoter. Transient transfection studies showed that increase in the level of c-Myc and/or Max led to a significant enhancement of expression of a human ODC promoter-CAT reporter construct. Moreover, treatment of actively growing WI-38 cells with an antisense oligomer to c-Myc reduced the amount of endogenous protein complex formed and the amount of endogenous ODC mRNA expressed. These studies show that the c-Myc.Max protein complex plays a role in the transcriptional regulation of human ODC in vivo.

  2. c-Myc protein expression is not an independent prognostic predictor in cervical squamous cell carcinoma.

    PubMed

    Brenna, S M F; Zeferino, L C; Pinto, G A; Souza, R A; Andrade, L A L; Vassalo, J; Martinez, E Z; Syrjanen, K J

    2002-04-01

    The c-myc protein is known to regulate the cell cycle, and its down-regulation can lead to cell death by apoptosis. The role of c-myc protein as an independent prognostic determinant in cervical cancer is controversial. In the present study, a cohort of 220 Brazilian women (mean age 53.4 years) with FIGO stage I, II and III (21, 28 and 51%, respectively) cervical squamous cell carcinomas was analyzed for c-myc protein expression using immunohistochemistry. The disease-free survival and relapse-rate were analyzed using univariate (Kaplan-Meier) survival analysis for 116 women who completed the standard FIGO treatment and were followed up for 5 years. Positive c-myc staining was detected in 40% of carcinomas, 29% being grade 1, 9% grade 2, and 2% grade 3. The distribution of positive c-myc according to FIGO stage was 19% (17 women) in stage I, 33% (29) in stage II, and 48% (43) in stage III of disease. During the 60-month follow-up, disease-free survival in univariate (Kaplan-Meier) survival analysis (116 women) was lower for women with c-myc-positive tumors, i.e., 60.5, 47.5 and 36.6% at 12, 36, and 60 months, respectively (not significant). The present data suggest that immunohistochemical demonstration of c-myc does not possess any prognostic value independent of FIGO stage, and as such is unlikely to be a useful prognostic marker in cervical squamous cell carcinoma.

  3. Mode of c-myc protein expression in Spitz nevi, common melanocytic nevi and malignant melanomas.

    PubMed

    Bergman, R; Lurie, M; Kerner, H; Kilim, S; Friedman-Birnbaum, R

    1997-04-01

    The expression of c-myc protein was studied in formalin-fixed, paraffin-embedded sections of 16 compound Spitz nevi (SNs), 20 ordinary compound melanocytic nevi (MNs) and 30 malignant melanomas (MMs), using monoclonal antibody 9E10 and an immunoperoxidase technique. Nine (56%) SNs, 16 (80%) MNs and 23 (77%) MMs showed positive reactions in some of the tumor cells (P = non-significant). The staining reactions were mostly cytoplasmic, and moderate to strong in intensity. The frequencies of positively stained cells were higher in the MN and SN groups. Most of the lesions with a significant dermal component did not show stratification of staining with progressive descent into the dermis. Therefore, the mode of expression of c-myc in routinely processed specimens does not differentiate between SNs, MNs and MMs. One possible reason is that the increased expression of the c-myc protein is not sufficient alone to promote proliferation and malignant transformation in these types of tumors.

  4. Nuclear Localization and DNA Binding Properties of a Protein Expressed by Human c-myc Oncogene

    NASA Astrophysics Data System (ADS)

    Persson, Hakan; Leder, Philip

    1984-08-01

    Antisera to the human cellular myc oncogene product were used to identify a human c-myc specific protein with a molecular weight of 65,000. Subcellular fractionation showed that the human c-myc protein is predominantly found in the cell nucleus. The p65 Kc-myc protein binds to double- and single-stranded DNA as measured by a DNA affinity chromatography assay.

  5. The c-MYC Protooncogene Expression in Cholesteatoma

    PubMed Central

    Palkó, Enikő; Póliska, Szilárd; Csákányi, Zsuzsanna; Katona, Gábor; Karosi, Tamás; Penyige, András; Sziklai, István

    2014-01-01

    Cholesteatoma is an epidermoid cyst, which is most frequently found in the middle ear. The matrix of cholesteatoma is histologically similar to the matrix of the epidermoid cyst of the skin (atheroma); their epithelium is characterized by hyperproliferation. The c-MYC protooncogene located on chromosome 8q24 encodes a transcription factor involved in the regulation of cell proliferation and differentiation. Previous studies have found aneuploidy of chromosome 8, copy number variation of c-MYC gene, and the presence of elevated level c-MYC protein in cholesteatoma. In this study we have compared the expression of c-MYC gene in samples taken from the matrix of 26 acquired cholesteatomas (15 children and 11 adults), 15 epidermoid cysts of the skin (atheromas; head and neck region) and 5 normal skin samples (retroauricular region) using RT-qPCR, providing the first precise measurement of the expression of c-MYC gene in cholesteatoma. We have found significantly elevated c-MYC gene expression in cholesteatoma compared to atheroma and to normal skin samples. There was no significant difference, however, in c-MYC gene expression between cholesteatoma samples of children and adults. The significant difference in c-MYC gene expression level in cholesteatoma compared to that of atheroma implies a more prominent hyperproliferative phenotype which may explain the clinical behavior typical of cholesteatoma. PMID:24683550

  6. Regulation of human ornithine decarboxylase expression following prolonged quiescence: role for the c-Myc/Max protein complex.

    PubMed

    Peña, A; Wu, S; Hickok, N J; Soprano, D R; Soprano, K J

    1995-02-01

    WI-38 cells can remain quiescent for long periods of time and still be induced to reenter the cell cycle by the addition of fresh serum. However, the longer these cells remain growth arrested, the more time they require to enter S phase. This prolongation of the prereplicative phase has been localized to a point early in G1, after the induction of "immediate early" G1 genes such as c-fos and c-jun but before maximal expression of "early" G1 genes such as ornithine decarboxylase (ODC). Understanding the molecular basis for ODC mRNA induction can therefore provide information about the molecular events which regulate the progression of cells out of long-term quiescence into G1 and subsequently into DNA synthesis. Studies utilizing electrophoretic mobility shift assays (EMSA) of nuclear extracts from short- and long-term quiescent WI-38 cells identified a region of the human ODC promoter at -491 bp to -474 bp which exhibited a protein binding pattern that correlated with the temporal pattern of ODC mRNA expression. The presence of a CACGTG element within this fragment, studies with antibodies against c-Myc and Max, the use of purified recombinant c-Myc protein in the mobility shift assay, and antisense studies suggest that these proteins can specifically bind this portion of the human ODC promoter in a manner consistent with growth-associated modulation of the expression of ODC and other early G1 genes following prolonged quiescence. These studies suggest a role for the c-Myc/Max protein complex in regulating events involved in the progression of cells out of long-term quiescence into G1 and subsequently into S.

  7. Dual Targeting of Bromodomain and Extraterminal Domain Proteins, and WNT or MAPK Signaling, Inhibits c-MYC Expression and Proliferation of Colorectal Cancer Cells.

    PubMed

    Tögel, Lars; Nightingale, Rebecca; Chueh, Anderly C; Jayachandran, Aparna; Tran, Hoanh; Phesse, Toby; Wu, Rui; Sieber, Oliver M; Arango, Diego; Dhillon, Amardeep S; Dawson, Mark A; Diez-Dacal, Beatriz; Gahman, Timothy C; Filippakopoulos, Panagis; Shiau, Andrew K; Mariadason, John M

    2016-06-01

    Inhibitors of the bromodomain and extraterminal domain (BET) protein family attenuate the proliferation of several tumor cell lines. These effects are mediated, at least in part, through repression of c-MYC. In colorectal cancer, overexpression of c-MYC due to hyperactive WNT/β-catenin/TCF signaling is a key driver of tumor progression; however, effective strategies to target this oncogene remain elusive. Here, we investigated the effect of BET inhibitors (BETi) on colorectal cancer cell proliferation and c-MYC expression. Treatment of 20 colorectal cancer cell lines with the BETi JQ1 identified a subset of highly sensitive lines. JQ1 sensitivity was higher in cell lines with microsatellite instability but was not associated with the CpG island methylator phenotype, c-MYC expression or amplification status, BET protein expression, or mutation status of TP53, KRAS/BRAF, or PIK3CA/PTEN Conversely, JQ1 sensitivity correlated significantly with the magnitude of c-MYC mRNA and protein repression. JQ1-mediated c-MYC repression was not due to generalized attenuation of β-catenin/TCF-mediated transcription, as JQ1 had minimal effects on other β-catenin/TCF target genes or β-catenin/TCF reporter activity. BETi preferentially target super-enhancer-regulated genes, and a super-enhancer in c-MYC was recently identified in HCT116 cells to which BRD4 and effector transcription factors of the WNT/β-catenin/TCF and MEK/ERK pathways are recruited. Combined targeting of c-MYC with JQ1 and inhibitors of these pathways additively repressed c-MYC and proliferation of HCT116 cells. These findings demonstrate that BETi downregulate c-MYC expression and inhibit colorectal cancer cell proliferation and identify strategies for enhancing the effects of BETi on c-MYC repression by combinatorial targeting the c-MYC super-enhancer. Mol Cancer Ther; 15(6); 1217-26. ©2016 AACR. PMID:26983878

  8. Down-regulation of Thanatos-associated protein 11 by BCR-ABL promotes CML cell proliferation through c-Myc expression.

    PubMed

    Nakamura, Satoki; Yokota, Daisuke; Tan, Lin; Nagata, Yasuyuki; Takemura, Tomonari; Hirano, Isao; Shigeno, Kazuyuki; Shibata, Kiyoshi; Fujisawa, Shinya; Ohnishi, Kazunori

    2012-03-01

    Bcr-Abl activates various signaling pathways in chronic myelogenous leukemia (CML) cells. The proliferation of Bcr-Abl transformed cells is promoted by c-Myc through the activation of Akt, JAK2 and NF-κB. However, the mechanism by which c-Myc regulates CML cell proliferation is unclear. In our study, we investigated the role of Thanatos-associated protein 11 (THAP11), which inhibits c-Myc transcription, in CML cell lines and in hematopoietic progenitor cells derived from CML patients. The induction of THAP11 expression by Abl kinase inhibitors in CML cell lines and in CML-derived hematopoietic progenitor cells resulted in the suppression of c-Myc. In addition, over-expression of THAP11 inhibited CML cell proliferation. In colony forming cells derived from CML-aldehyde dehydrogenase (ALDH)(hi) /CD34(+) cells, treatment with Abl kinase inhibitors and siRNA depletion of Bcr-Abl induced THAP11 expression and reduced c-Myc expression, resulting in inhibited colony formation. Moreover, overexpression of THAP11 significantly decreased the colony numbers, and also inhibited the expression of c-myc target genes such as Cyclin D1, ODC and induced the expression of p21(Cip1) . The depletion of THAP11 inhibited JAK2 or STAT5 inactivation-mediated c-Myc reduction in ALDH(hi) /CD34(+) CML cells. Thus, the induced THAP11 might be one of transcriptional regulators of c-Myc expression in CML cell. Therefore, the induction of THAP11 has a potential possibility as a target for the inhibition of CML cell proliferation. PMID:21400515

  9. SAP155-mediated splicing of FUSE-binding protein-interacting repressor serves as a molecular switch for c-myc gene expression.

    PubMed

    Matsushita, Kazuyuki; Kajiwara, Toshiko; Tamura, Mai; Satoh, Mamoru; Tanaka, Nobuko; Tomonaga, Takeshi; Matsubara, Hisahiro; Shimada, Hideaki; Yoshimoto, Rei; Ito, Akihiro; Kubo, Shuji; Natsume, Tohru; Levens, David; Yoshida, Minoru; Nomura, Fumio

    2012-06-01

    The Far UpStream Element (FUSE)-binding protein-interacting repressor (FIR), a c-myc transcriptional suppressor, is alternatively spliced removing the transcriptional repression domain within exon 2 (FIRΔexon2) in colorectal cancers. SAP155 is a subunit of the essential splicing factor 3b (SF3b) subcomplex in the spliceosome. This study aims to study the significance of the FIR-SAP155 interaction for the coordination of c-myc transcription, pre-mRNA splicing, and c-Myc protein modification, as well as to interrogate FIRΔexon2 for other functions relating to altered FIR pre-mRNA splicing. Knockdown of SAP155 or FIR was used to investigate their reciprocal influence on each other and on c-myc transcription, pre-mRNA splicing, and protein expression. Pull down from HeLa cell nuclear extracts revealed the association of FIR, FIRΔexon2, and SF3b subunits. FIR and FIRΔexon2 were coimmunoprecipitated with SAP155. FIR and FIRΔexon2 adenovirus vector (Ad-FIR and Ad-FIRΔexon2, respectively) were prepared to test for their influence on c-myc expression. FIR, SAP155, SAP130, and c-myc were coordinately upregulated in human colorectal cancer. These results reveal that SAP155 and FIR/FIRΔexon2 form a complex and are mutually upregulating. Ad-FIRΔexon2 antagonized Ad-FIR transcriptional repression of c-myc in HeLa cells. Because FIRΔexon2 still carries RRM1 and RRM2 and binding activity to FUSE, it is able to displace repression competent FIR from FUSE in electrophoretic mobility shift assays, thus thwarting FIR-mediated transcriptional repression by FUSE. Thus aberrant FIRΔexon2 production in turn sustained c-Myc expression. In conclusion, altered FIR and c-myc pre-mRNA splicing, in addition to c-Myc expression by augmented FIR/FIRΔexon2-SAP155 complex, potentially contribute to colorectal cancer development.

  10. c-myc can induce expression of G0/G1 transition genes.

    PubMed Central

    Schweinfest, C W; Fujiwara, S; Lau, L F; Papas, T S

    1988-01-01

    The human c-myc oncogene was linked to the heat shock-inducible Drosophila hsp70 promoter and used to stably transfect mouse BALB/c 3T3 cells. Heat shock of the transfectants at 42 degrees C followed by recovery at 37 degrees C resulted in the appearance of the human c-myc protein which was appropriately localized to the nuclear fraction. Two-dimensional analysis of the proteins of density-arrested cells which had been heat shock treated revealed the induction of eight protein species and the repression of five protein species. All of the induced and repressed proteins were nonabundant. cDNA clones corresponding to genes induced during the G0/G1 transition were used as probes to assay for c-myc inducibility of these genes. Two anonymous sequences previously identified as serum inducible (3CH77 and 3CH92) were induced when c-myc was expressed. In response to serum stimulation, 3CH77 and 3CH92 were expressed before c-myc mRNA levels increased. However, in response to specific induction of c-myc by heat shock of serum arrested cells, 3CH77 and 3CH92 mRNA levels increased after the rise in c-myc mRNA. Therefore, we hypothesize that abnormal expression of c-myc can induce genes involved in the proliferative response. Images PMID:3211137

  11. Translocation of a store of maternal cytoplasmic c-myc protein into nuclei during early development.

    PubMed Central

    Gusse, M; Ghysdael, J; Evan, G; Soussi, T; Méchali, M

    1989-01-01

    The c-myc proto-oncogene is expressed as a maternal protein during oogenesis in Xenopus laevis, namely, in nondividing cells. A delayed translation of c-myc mRNA accumulated in early oocytes results in the accumulation of the protein during late oogenesis. The oocyte c-myc protein is unusually stable and is located in the cytoplasm, contrasting with its features in somatic cells. A mature oocyte contains a maternal c-myc protein stockpile of 4 x 10(5) to 6 x 10(5) times the level in a somatic growing cell. This level of c-myc protein is preserved only during the cleavage stage of the embryo. Fertilization triggers its rapid migration into the nuclei of the cleaving embryo and a change in the phosphorylation state of the protein. The c-myc protein content per nucleus decreases exponentially during the cleavage stage until a stoichiometric titration by the embryonic nuclei is reached during a 0.5-h period at the midblastula stage. Most of the maternal c-myc store is degraded by the gastrula stage. These observations implicate the participation of c-myc in the events linked to early embryonic development and the midblastula transition. Images PMID:2685563

  12. Acetylation of the c-MYC oncoprotein is required for cooperation with the HTLV-1 p30{sup II} accessory protein and the induction of oncogenic cellular transformation by p30{sup II}/c-MYC

    SciTech Connect

    Romeo, Megan M.; Ko, Bookyung; Kim, Janice; Brady, Rebecca; Heatley, Hayley C.; He, Jeffrey; Harrod, Carolyn K.; Barnett, Braden; Ratner, Lee; Lairmore, Michael D.; Martinez, Ernest; Lüscher, Bernhard; Robson, Craig N.; Henriksson, Marie; Harrod, Robert

    2015-02-15

    The human T-cell leukemia retrovirus type-1 (HTLV-1) p30{sup II} protein is a multifunctional latency-maintenance factor that negatively regulates viral gene expression and deregulates host signaling pathways involved in aberrant T-cell growth and proliferation. We have previously demonstrated that p30{sup II} interacts with the c-MYC oncoprotein and enhances c-MYC-dependent transcriptional and oncogenic functions. However, the molecular and biochemical events that mediate the cooperation between p30{sup II} and c-MYC remain to be completely understood. Herein we demonstrate that p30{sup II} induces lysine-acetylation of the c-MYC oncoprotein. Acetylation-defective c-MYC Lys→Arg substitution mutants are impaired for oncogenic transformation with p30{sup II} in c-myc{sup −/−} HO15.19 fibroblasts. Using dual-chromatin-immunoprecipitations (dual-ChIPs), we further demonstrate that p30{sup II} is present in c-MYC-containing nucleoprotein complexes in HTLV-1-transformed HuT-102 T-lymphocytes. Moreover, p30{sup II} inhibits apoptosis in proliferating cells expressing c-MYC under conditions of genotoxic stress. These findings suggest that c-MYC-acetylation is required for the cooperation between p30{sup II}/c-MYC which could promote proviral replication and contribute to HTLV-1-induced carcinogenesis. - Highlights: • Acetylation of c-MYC is required for oncogenic transformation by HTLV-1 p30{sup II}/c-MYC. • Acetylation-defective c-MYC mutants are impaired for foci-formation by p30{sup II}/c-MYC. • The HTLV-1 p30{sup II} protein induces lysine-acetylation of c-MYC. • p30{sup II} is present in c-MYC nucleoprotein complexes in HTLV-1-transformed T-cells. • HTLV-1 p30{sup II} inhibits apoptosis in c-MYC-expressing proliferating cells.

  13. Regulation by c-Myc of ncRNA expression.

    PubMed

    Kenneth, Niall S; White, Robert J

    2009-02-01

    Deregulated activity of the proto-oncogene product c-Myc is instrumental in promoting many human cancers. As it is a transcription factor, priority has been given to identifying the genes that it regulates. Until recently, all the attention was focused on protein-encoding genes. It is now clear, however, that c-Myc also controls the production of many non-coding (nc) RNAs, including tRNA, rRNA and miRNAs. This involves it regulating the transcriptional activity of three different RNA polymerases. These ncRNAs are likely to contribute substantially to the complex biology and pathology that is associated with c-Myc.

  14. Fluorescent Dansyl-Guanosine Conjugates that Bind c-MYC Promoter G-Quadruplex and Downregulate c-MYC Expression.

    PubMed

    Pavan Kumar, Y; Saha, Puja; Saha, Dhurjhoti; Bessi, Irene; Schwalbe, Harald; Chowdhury, Shantanu; Dash, Jyotirmayee

    2016-03-01

    The four-stranded G-quadruplex present in the c-MYC P1 promoter has been shown to play a pivotal role in the regulation of c-MYC transcription. Small-molecule compounds capable of inhibiting the c-MYC promoter activity by stabilising the c-MYC G-quadruplex could potentially be used as anticancer agents. In this context, here we report the synthesis of dansyl-guanosine conjugates through one-pot modular click reactions. The dansyl-guanosine conjugates can selectively detect c-MYC G-quadruplex over other biologically relevant quadruplexes and duplex DNA and can be useful as staining reagents for selective visualisation of c-MYC G-quadruplex over duplex DNA by gel electrophoresis. NMR spectroscopic titrations revealed the preferential binding sites of these dansyl ligands to the c-MYC G-quadruplex. A dual luciferase assay and qRT-PCR revealed that a dansyl-bisguanosine ligand represses the c-MYC expression, possibly by stabilising the c-MYC G-quadruplex.

  15. Alterations in exon 1 of c-myc and expression of p62c-myc in cervical squamous cell carcinoma.

    PubMed Central

    O'Leary, J J; Landers, R J; Crowley, M; Healy, I; Kealy, W F; Hogan, J; Doyle, C T

    1997-01-01

    AIMS: To examine human papillomavirus (HPV) positive and negative squamous cell carcinomas of the cervix for structural alterations in exon 1 c-myc; and to investigate the expression pattern of p62, the protein product of c-myc. MATERIAL: Archival paraffin wax embedded tissues of cervical squamous cell carcinomas, stage I and II, retrieved from the files of the department of pathology, University College Cork, Ireland: 40 cases were examined for alterations in exon 1 of c-myc; 57 cases were used for immunocytochemical p62 analysis. METHODS: c-myc exon 1 PCR on HPV positive and negative stage I and II cervical squamous cell carcinomas was performed using primers designed to fragile sites in exon 1 of the c-myc oncogene, which are frequently involved in translocation phenomena and deletions in other neoplasms. This region is bordered by two promoter sequences P1 and P2. In addition, the expression of p62 was evaluated using the monoclonal antibody Mycl-9E10. RESULTS: Alterations in exon 1 of c-myc were shown in 7.5% of squamous cell carcinomas of the cervix. Changes in exon 1 and 2 of c-myc were also found in COLO 320 cells and Raji cells. These alterations were due to small deletions within exon 1 of c-myc, but point polymorphisms occurring within the priming sites (in one case) may also have occurred. The alterations uncovered appeared "clonal," as replicate samples showed the same amplicon band pattern. Expression of c-myc was variable, with cytoplasmic staining patterns predominating. All cases which showed exon 1 alterations were HPV positive and had strong nuclear positivity on p62 immunocytochemistry. CONCLUSIONS: Alterations in exon 1 of c-myc occur in a minority of cervical cancers and there was increased expression of p62 in a cohort of HPV positive and negative cervical squamous cell carcinomas. Exon 1 alterations may provide an alternative route to c-myc activation in early squamous cell carcinoma. Images PMID:9462237

  16. CSIG promotes hepatocellular carcinoma proliferation by activating c-MYC expression

    PubMed Central

    Cheng, Qian; Yuan, Fuwen; Lu, Fengmin; Zhang, Bo; Chen, Tianda; Chen, Xiangmei; Cheng, Yuan; Li, Na; Ma, Liwei; Tong, Tanjun

    2015-01-01

    Cellular senescence-inhibited gene (CSIG) protein significantly prolongs the progression of replicative senescence, but its role in tumorigenesis is unclear. To reveal the role of CSIG in HCC, we determined its expression in HCC tissues and surrounding tissues and its functions in tumor cell proliferation in vitro and in vivo. CSIG protein was overexpressed in 86.4% of the human HCC cancerous tissues as compared with matched surrounding tissues, and its protein expression was greater in HCC cells than the non-transformed hepatic cell line L02. Furthermore, upregulation of CSIG significantly increased the colony formation of SMMC7721 and HepG2 cells, and silencing CSIG could induce cell cycle arrest and cell apoptosis. The tumorigenic ability of CSIG was confirmed in vivo in a mouse xenograft model. Our results showed that CSIG promoted the proliferation of HepG2 and SMMC7721 cells in vivo. Finally, CSIG protein directly interacted with c-MYC protein and increased c-MYC protein levels; the ubiquitination and degradation of c-MYC protein was increased with knockdown of CSIG. CSIG could also increase the expression of c-MYC protein in SMMC7721 cells in vivo, and it was noted that the level of c-MYC protein was also elevated in most human cancerous tissues with high level of CSIG. PMID:25749381

  17. Posttranscriptional regulation of cellular gene expression by the c-myc oncogene

    SciTech Connect

    Prendergast, G.C.; Cole, M.D. . Dept. of Biology)

    1989-01-01

    The c-myc oncogene has been implicated in the development of many different cancers, yet the mechanism by which the c-myc protein alters cellular growth control has proven elusive. The authors used a cDNA hybridization difference assay to isolate two genes, mr1 and mr2, that were constitutively expressed (i.e., deregulated) in rodent fibroblast cell lines immortalized by transfection of a viral promoter-linked c-myc gene. Both cDNAs were serum inducible in quiescent G/sub o/ fibroblasts, suggesting that they are functionally related to cellular proliferative processes. Although there were significant differences in cytoplasmic mRNA levels between myc-immortalized and control cells, the rates of transcription and mRNA turnover of both genes were similar, suggesting that c-myc regulates mr1 and mr2 expression by some nuclear posttranscriptional mechanism. Their results provide evidence that c-myc can rapidly modulate cellular gene expression and suggest that c-myc may function in gene regulation at the level of RNA export, splicing, or nuclear RNA turnover.

  18. c-myc protooncogene expression in mouse erythroleukemia cells.

    PubMed Central

    Lachman, H M

    1989-01-01

    Murine erythroleukemia (MEL) cells are erythroid progenitors whose programs of erythroid differentiation has been interrupted by transformation with the Friend virus complex. As a result of the ability of certain chemicals such as dimethylsulfoxide (DMSO) to induce terminal erythroid differentiation, the cells have been used as a model for understanding the molecular basis of cellular differentiation. Recent work on MEL cells as well as other differentiating systems indicates that expression of cellular protooncogenes is implicated in chemically mediated differentiation. In MEL cells the expression of the c-myc protooncogene undergoes unusual biphasic changes following inducer treatment. Levels of c-myc mRNA decrease 10- to 20-fold between 1 and 2 hr and are then reexpressed between 12 and 24 hr. These changes occur as a result of complex transcriptional and posttranscriptional regulatory events. Recent DNA transfection experiments, in which MEL cells were transfected with myc expression vectors, indicate that both the early decrease in c-myc expression and its subsequent reexpression are important events in the differentiation pathway. The work on MEL cells, as well as on other models of differentiation, is directed at understanding the molecular basis of leukemogenic transformation and cellular differentiation. The ability of c-myc, as well as other protooncogenes, to influence both of these events indicates that cellular protooncogenes play a central role in their regulation. Images FIGURE 1. FIGURE 2. FIGURE 3. FIGURE 4. FIGURE 5. PMID:2647476

  19. C-myc can induce expression of G/sub 0//G/sub 1/ transition genes

    SciTech Connect

    Schweinfest, C.W.; Fujiwara, S.; Lau, L.F.; Papas, T.S.

    1988-08-01

    The human c-myc oncogene was linked to the heat shock-inducible Drosophila hsp70 promoter and used to stably transfect mouse BALB/c 3T3 cells. Heat shock of the transfectants at 42/sup 0/C followed by recovery at 37/sup 0/C resulted in the appearance of the human c-myc protein which was appropriately localized to the nuclear fraction. Two-dimensional analysis of the proteins of density-arrested cells which had been heat shock treated revealed the induction of eight protein species and the repression of five protein species. All of the induced and repressed proteins were nonabundant. cDNA clones corresponding to genes induced during the G/sub 0//G/sub 1/ transition were used as probes to assay for c-myc inducibility of these genes. Two anonymous sequences previously identified as serum inducible (3CH77 and 3CH92) were induced when c-myc was expressed. In response to serum stimulation, 3CH77 and 3CH92 were expressed before c-myc mRNA levels increased. However, in response to specific induction of c-myc by heat shock of serum arrested cells, 3CH77 and 3CH92 mRNA levels increased after the rise in c-myc mRNA. Therefore, the authors hypothesize that abnormal expression of c-myc can induce genes involved in the proliferative response.

  20. Normal Expression of a Rearranged and Mutated c-myc Oncogene after Transfection into Fibroblasts

    NASA Astrophysics Data System (ADS)

    Richman, Adam; Hayday, Adrian

    1989-10-01

    Expression of the c-myc oncogene is deregulated in a variety of malignancies. Rearrangement and mutation of the c-myc locus is a characteristic feature of human Burkitt's lymphoma. Whether deregulation is solely a result of mutation of c-myc or whether it is influenced by the transformed B cell context has not been determined. A translocated and mutated allele of c-myc was stably transfected into fibroblasts. The rearranged allele was expressed indistinguishably from a normal c-myc gene: it had serum-regulated expression, was transcribed with normal promoter preference, and was strongly attenuated. Thus mutations by themselves are insufficient to deregulate c-myc transcription.

  1. Perturbation of the c-Myc-Max protein-protein interaction via synthetic α-helix mimetics.

    PubMed

    Jung, Kwan-Young; Wang, Huabo; Teriete, Peter; Yap, Jeremy L; Chen, Lijia; Lanning, Maryanna E; Hu, Angela; Lambert, Lester J; Holien, Toril; Sundan, Anders; Cosford, Nicholas D P; Prochownik, Edward V; Fletcher, Steven

    2015-04-01

    The rational design of inhibitors of the bHLH-ZIP oncoprotein c-Myc is hampered by a lack of structure in its monomeric state. We describe herein the design of novel, low-molecular-weight, synthetic α-helix mimetics that recognize helical c-Myc in its transcriptionally active coiled-coil structure in association with its obligate bHLH-ZIP partner Max. These compounds perturb the heterodimer's binding to its canonical E-box DNA sequence without causing protein-protein dissociation, heralding a new mechanistic class of "direct" c-Myc inhibitors. In addition to electrophoretic mobility shift assays, this model was corroborated by further biophysical methods, including NMR spectroscopy and surface plasmon resonance. Several compounds demonstrated a 2-fold or greater selectivity for c-Myc-Max heterodimers over Max-Max homodimers with IC50 values as low as 5.6 μM. Finally, these compounds inhibited the proliferation of c-Myc-expressing cell lines in a concentration-dependent manner that correlated with the loss of expression of a c-Myc-dependent reporter plasmid despite the fact that c-Myc-Max heterodimers remained intact.

  2. Effects of c-myc expression on cell cycle progression.

    PubMed Central

    Hanson, K D; Shichiri, M; Follansbee, M R; Sedivy, J M

    1994-01-01

    We used targeted homologous recombination to disrupt one c-myc gene copy in a diploid fibroblast cell line and found that a twofold reduction in Myc expression resulted in lower exponential growth rates and a lengthening of the G0-to-S-phase transition (M. Shichiri, K. D. Hanson and J. M. Sedivy, Cell Growth Differ. 4:93-104, 1993). Myc is a transcription factor, and the number of target genes whose regulation could result in differential growth rates may be very large. We have approached this problem by examining effects of reduced c-myc expression in three broad areas: (i) secretion of growth factors, (ii) expression of growth factor receptors, and (iii) intracellular signal transduction between Myc and components of the intrinsic cell cycle clock. We have found no evidence that differential medium conditioning can account for the growth phenotypes. Likewise, the expression of receptors for platelet-derived growth factor, epidermal growth factor, basic fibroblast growth factor, and insulin-like growth factor I was the same in diploid and heterozygous cells (platelet-derived growth factor, epidermal growth factor, fibroblast growth factor, and insulin-like growth factor are the sole growth factors required by these cells for growth in serum-free medium). In contrast, expression of cyclin E, cyclin A, and Rb phosphorylation were delayed when quiescent c-myc heterozygous cells were stimulated to enter the cell cycle. Expression of cyclin D1, cyclin D3, and Cdk2 was not affected. The timing of cyclin E induction was the earliest observable effect of reduced Myc expression. Our data indicate that Myc contributes to regulation of proliferation by a cell-autonomous mechanism that involves the modulation of cyclin E expression and, consequently, progression through the restriction point of the cell cycle. Images PMID:8065309

  3. The human cut homeodomain protein represses transcription from the c-myc promoter.

    PubMed Central

    Dufort, D; Nepveu, A

    1994-01-01

    Studies of the c-myc promoter have shown that efficient transcription initiation at the P2 start site as well as the block to elongation of transcription require the presence of the ME1a1 protein binding site upstream of the P2 TATA box. Following fractionation by size exclusion chromatography, three protein-ME1a1 DNA complexes, a, b, and c, were detected by electrophoretic mobility shift assay. A cDNA encoding a protein present in complex c was isolated by screening of an expression library with an ME1a1 DNA probe. This cDNA was found to encode the human homolog of the Drosophila Cut homeodomain protein. The bacterially expressed human Cut (hu-Cut) protein bound to the ME1a1 site, and antibodies against hu-Cut inhibited the ME1a1 binding activity c in nuclear extracts. In cotransfection experiments, the hu-Cut protein repressed transcription from the c-myc promoter, and this repression was shown to be dependent on the presence of the ME1a1 site. Using a reporter construct with a heterologous promoter, we found that c-myc exon 1 sequences were also necessary, in addition to the ME1a1 site, for repression by Cut. Taken together, these results suggest that the human homolog of the Drosophila Cut homeodomain protein is involved in regulation of the c-myc gene. Images PMID:8196661

  4. Cell growth suppression by thanatos-associated protein 11(THAP11) is mediated by transcriptional downregulation of c-Myc.

    PubMed

    Zhu, C-Y; Li, C-Y; Li, Y; Zhan, Y-Q; Li, Y-H; Xu, C-W; Xu, W-X; Sun, H B; Yang, X-M

    2009-03-01

    Thanatos-associated proteins (THAPs) are zinc-dependent, sequence-specific DNA-binding factors involved in cell proliferation, apoptosis, cell cycle, chromatin modification and transcriptional regulation. THAP11 is the most recently described member of this human protein family. In this study, we show that THAP11 is ubiquitously expressed in normal tissues and frequently downregulated in several human tumor tissues. Overexpression of THAP11 markedly inhibits growth of a number of different cells, including cancer cells and non-transformed cells. Silencing of THAP11 by RNA interference in HepG2 cells results in loss of cell growth repression. These results suggest that human THAP11 may be an endogenous physiologic regulator of cell proliferation. We also provide evidence that the function of THAP11 is mediated by its ability to repress transcription of c-Myc. Promoter reporter assays indicate a DNA binding-dependent c-Myc transcriptional repression. Chromatin immunoprecipitations and EMSA assay suggest that THAP11 directly binds to the c-Myc promoter. The findings that expression of c-Myc rescues significantly cells from THAP11-mediated cell growth suppression and that THAP11 expression only slightly inhibits c-Myc null fibroblasts cells growth reveal that THAP11 inhibits cell growth through downregulation of c-Myc expression. Taken together, these suggest that THAP11 functions as a cell growth suppressor by negatively regulating the expression of c-Myc. PMID:19008924

  5. Aspirin and salicylic acid decrease c-Myc expression in cancer cells: a potential role in chemoprevention.

    PubMed

    Ai, Guoqiang; Dachineni, Rakesh; Muley, Pratik; Tummala, Hemachand; Bhat, G Jayarama

    2016-02-01

    Epidemiological studies have demonstrated a significant correlation between regular aspirin use and reduced colon cancer incidence and mortality; however, the pathways by which it exerts its anti-cancer effects are still not fully explored. We hypothesized that aspirin's anti-cancer effect may occur through downregulation of c-Myc gene expression. Here, we demonstrate that aspirin and its primary metabolite, salicylic acid, decrease the c-Myc protein levels in human HCT-116 colon and in few other cancer cell lines. In total cell lysates, both drugs decreased the levels of c-Myc in a concentration-dependent fashion. Greater inhibition was observed in the nucleus than the cytoplasm, and immunofluorescence studies confirmed these observations. Pretreatment of cells with lactacystin, a proteasome inhibitor, partially prevented the downregulatory effect of both aspirin and salicylic acid, suggesting that 26S proteasomal pathway is involved. Both drugs failed to decrease exogenously expressed DDK-tagged c-Myc protein levels; however, under the same conditions, the endogenous c-Myc protein levels were downregulated. Northern blot analysis showed that both drugs caused a decrease in c-Myc mRNA levels in a concentration-dependent fashion. High-performance liquid chromatography (HPLC) analysis showed that aspirin taken up by cells was rapidly metabolized to salicylic acid, suggesting that aspirin's inhibitory effect on c-Myc may occur through formation of salicylic acid. Our result suggests that salicylic acid regulates c-Myc level at both transcriptional and post-transcription levels. Inhibition of c-Myc may represent an important pathway by which aspirin exerts its anti-cancer effect and decrease the occurrence of cancer in epithelial tissues. PMID:26314861

  6. Aspirin and salicylic acid decrease c-Myc expression in cancer cells: a potential role in chemoprevention.

    PubMed

    Ai, Guoqiang; Dachineni, Rakesh; Muley, Pratik; Tummala, Hemachand; Bhat, G Jayarama

    2016-02-01

    Epidemiological studies have demonstrated a significant correlation between regular aspirin use and reduced colon cancer incidence and mortality; however, the pathways by which it exerts its anti-cancer effects are still not fully explored. We hypothesized that aspirin's anti-cancer effect may occur through downregulation of c-Myc gene expression. Here, we demonstrate that aspirin and its primary metabolite, salicylic acid, decrease the c-Myc protein levels in human HCT-116 colon and in few other cancer cell lines. In total cell lysates, both drugs decreased the levels of c-Myc in a concentration-dependent fashion. Greater inhibition was observed in the nucleus than the cytoplasm, and immunofluorescence studies confirmed these observations. Pretreatment of cells with lactacystin, a proteasome inhibitor, partially prevented the downregulatory effect of both aspirin and salicylic acid, suggesting that 26S proteasomal pathway is involved. Both drugs failed to decrease exogenously expressed DDK-tagged c-Myc protein levels; however, under the same conditions, the endogenous c-Myc protein levels were downregulated. Northern blot analysis showed that both drugs caused a decrease in c-Myc mRNA levels in a concentration-dependent fashion. High-performance liquid chromatography (HPLC) analysis showed that aspirin taken up by cells was rapidly metabolized to salicylic acid, suggesting that aspirin's inhibitory effect on c-Myc may occur through formation of salicylic acid. Our result suggests that salicylic acid regulates c-Myc level at both transcriptional and post-transcription levels. Inhibition of c-Myc may represent an important pathway by which aspirin exerts its anti-cancer effect and decrease the occurrence of cancer in epithelial tissues.

  7. Linc-RoR promotes c-Myc expression through hnRNP I and AUF1

    PubMed Central

    Huang, Jianguo; Zhang, Ali; Ho, Tsui-Ting; Zhang, Ziqiang; Zhou, Nanjiang; Ding, Xianfeng; Zhang, Xu; Xu, Min; Mo, Yin-Yuan

    2016-01-01

    Linc-RoR was originally identified to be a regulator for induced pluripotent stem cells in humans and it has also been implicated in tumorigenesis. However, the underlying mechanism of Linc-RoR-mediated gene expression in cancer is poorly understood. The present study demonstrates that Linc-RoR plays an oncogenic role in part through regulation of c-Myc expression. Linc-RoR knockout (KO) suppresses cell proliferation and tumor growth. In particular, Linc-RoR KO causes a significant decrease in c-Myc whereas re-expression of Linc-RoR in the KO cells restores the level of c-Myc. Mechanistically, Linc-RoR interacts with heterogeneous nuclear ribonucleoprotein (hnRNP) I and AU-rich element RNA-binding protein 1 (AUF1), respectively, with an opposite consequence to their interaction with c-Myc mRNA. While Linc-RoR is required for hnRNP I to bind to c-Myc mRNA, interaction of Linc-RoR with AUF1 inhibits AUF1 to bind to c-Myc mRNA. As a result, Linc-RoR may contribute to the increased stability of c-Myc mRNA. Although hnRNP I and AUF1 can interact with many RNA species and regulate their functions, with involvement of Linc-RoR they would be able to selectively regulate mRNA stability of specific genes such as c-Myc. Together, these results support a role for Linc-RoR in c-Myc expression in part by specifically enhancing its mRNA stability, leading to cell proliferation and tumorigenesis. PMID:26656491

  8. Deregulated c-myc expression overrides IFN gamma-induced macrophage growth arrest.

    PubMed

    Vairo, G; Vadiveloo, P K; Royston, A K; Rockman, S P; Rock, C O; Jackowski, S; Hamilton, J A

    1995-05-18

    Induction of c-myc gene expression is an essential response to growth promoting agents, including colony-stimulating factor 1 (CSF-1). Down regulation of c-myc expression occurs in response to a variety of negative growth regulators in many cell types. However, for many of these systems the causal link between c-myc down regulation and growth arrest remains to be established. Here we show for CSF-1-dependent BAC1.2F5 mouse macrophages that interferon-gamma (IFN gamma) results in a midlate G1 phase decrease of CSF-1-dependent c-myc mRNA and subsequent cell cycle arrest. Introduction of a deregulated c-myc gene into these cells, which prevents the IFN gamma-mediated decrease in c-myc expression, overrides the cell cycle arrest and restores CSF-1-dependent growth in the presence of the cytokine. This result contrasts with the macrophage growth arrest induced by cAMP elevation, which also suppresses c-myc expression, but is not overcome by a deregulated c-myc gene. These results show that inhibition of c-myc expression is an essential component in IFN gamma-mediated cell cycle arrest and demonstrates that distinct mechanisms contribute to IFN gamma- and cAMP-mediated growth arrest in macrophages.

  9. Discovery of a Family of Genomic Sequences Which Interact Specifically with the c-MYC Promoter to Regulate c-MYC Expression

    PubMed Central

    Thomas, Shelia D.; Rouchka, Eric C.; Miller, Donald M.

    2016-01-01

    G-quadruplex forming sequences are particularly enriched in the promoter regions of eukaryotic genes, especially of oncogenes. One of the most well studied G-quadruplex forming sequences is located in the nuclease hypersensitive element (NHE) III1 of the c-MYC promoter region. The oncoprotein c-MYC regulates a large array of genes which play important roles in growth regulation and metabolism. It is dysregulated in >70% of human cancers. The silencer NHEIII1 located upstream of the P1 promoter regulates up-to 80% of c-MYC transcription and includes a G-quadruplex structure (Pu27) that is required for promoter inhibition. We have identified, for the first time, a family of seventeen G-quadruplex-forming motifs with >90% identity with Pu27, located on different chromosomes throughout the human genome, some found near or within genes involved in stem cell maintenance or neural cell development. Notably, all members of the Pu27 family interact specifically with NHEIII1 sequence, in vitro. Crosslinking studies demonstrate that Pu27 oligonucleotide binds specifically to the C-rich strand of the NHEIII1 resulting in the G-quadruplex structure stabilization. Pu27 homologous sequences (Pu27-HS) significantly inhibit leukemic cell lines proliferation in culture. Exposure of U937 cells to the Pu27-HS induces cell growth inhibition associated with cell cycle arrest that is most likely due to downregulation of c-MYC expression at the RNA and/or protein levels. Expression of SOX2, another gene containing a Pu27-HS, was affected by Pu27-HS treatment as well. Our data suggest that the oligonucleotides encoding the Pu27 family target complementary DNA sequences in the genome, including those of the c-MYC and SOX2 promoters. This effect is most likely cell type and cell growth condition dependent. The presence of genomic G-quadruplex-forming sequences homologous to Pu27 of c-MYC silencer and the fact that they interact specifically with the parent sequence suggest a common

  10. Discovery of a Family of Genomic Sequences Which Interact Specifically with the c-MYC Promoter to Regulate c-MYC Expression.

    PubMed

    Rezzoug, Francine; Thomas, Shelia D; Rouchka, Eric C; Miller, Donald M

    2016-01-01

    G-quadruplex forming sequences are particularly enriched in the promoter regions of eukaryotic genes, especially of oncogenes. One of the most well studied G-quadruplex forming sequences is located in the nuclease hypersensitive element (NHE) III1 of the c-MYC promoter region. The oncoprotein c-MYC regulates a large array of genes which play important roles in growth regulation and metabolism. It is dysregulated in >70% of human cancers. The silencer NHEIII1 located upstream of the P1 promoter regulates up-to 80% of c-MYC transcription and includes a G-quadruplex structure (Pu27) that is required for promoter inhibition. We have identified, for the first time, a family of seventeen G-quadruplex-forming motifs with >90% identity with Pu27, located on different chromosomes throughout the human genome, some found near or within genes involved in stem cell maintenance or neural cell development. Notably, all members of the Pu27 family interact specifically with NHEIII1 sequence, in vitro. Crosslinking studies demonstrate that Pu27 oligonucleotide binds specifically to the C-rich strand of the NHEIII1 resulting in the G-quadruplex structure stabilization. Pu27 homologous sequences (Pu27-HS) significantly inhibit leukemic cell lines proliferation in culture. Exposure of U937 cells to the Pu27-HS induces cell growth inhibition associated with cell cycle arrest that is most likely due to downregulation of c-MYC expression at the RNA and/or protein levels. Expression of SOX2, another gene containing a Pu27-HS, was affected by Pu27-HS treatment as well. Our data suggest that the oligonucleotides encoding the Pu27 family target complementary DNA sequences in the genome, including those of the c-MYC and SOX2 promoters. This effect is most likely cell type and cell growth condition dependent. The presence of genomic G-quadruplex-forming sequences homologous to Pu27 of c-MYC silencer and the fact that they interact specifically with the parent sequence suggest a common

  11. Elevated c-myc protooncogene expression in autosomal recessive polycystic kidney disease

    SciTech Connect

    Cowley, B.D. Jr.; Smardo, F.L. Jr.; Grantham, J.J.; Calvet, J.P.

    1987-12-01

    The polycystic kidney diseases (PKDs) are a group of disorders characterized by the growth of epithelial cysts from the nephrons and collecting ducts of kidney tubules. The diseases can be inherited or can be provoked by environmental factors. To investigate the molecular basis of the abnormal cell growth associated with PKD, c-myc protooncogene expression was studied in a mouse model for autosomal recessive PKD. Homozygous recessive C57BL/6J (cpk/cpk) mice develop massively enlarged cystic kidneys and die from renal failure shortly after 3 weeks of age. Quantitative dot blot and RNA blot hybridization experiments in which whole kidney poly(A)/sup +/ RNA was hybridized with a c-myc RNA probe showed a 2- to 6-fold increase in c-myc mRNA at 2 weeks, and a 25- to 30-fold increase in c-myc mRNA at 3 weeks of age in polycystic mice, as compared to normal littermates. c-myc expression was also examined under two conditions in which kidney cell growth was experimentally induced in normal adult mice: compensatory renal hypertrophy and tubule regeneration following folic acid-induced renal cell injury. While compensatory hypertrophy resulted in only a small increase in c-myc, folic acid treatment gave rise after 24 hr to a 12-fold increase in c-myc RNA. The induction of c-myc by folic acid is consistent with increased cellular proliferation regenerating tubules. In contrast, polycystic kidneys show only a minimal increase in cellular proliferation over that seen in normal kidneys, while c-myc levels were found to be markedly elevated. Thus, the level of c-myc expression in cystic kidneys appears to be out of proportion to the rate of cell division, suggesting that elevated and potentially abnormal c-myc expression may be involved in the pathogenesis of PKD.

  12. Both coding exons of the c-myc gene contribute to its posttranscriptional regulation in the quiescent liver and regenerating liver and after protein synthesis inhibition.

    PubMed Central

    Lavenu, A; Pistoi, S; Pournin, S; Babinet, C; Morello, D

    1995-01-01

    In vivo, the steady-state level of c-myc mRNA is mainly controlled by posttranscriptional mechanisms. Using a panel of transgenic mice in which various versions of the human c-myc proto-oncogene were under the control of major histocompatibility complex H-2Kb class I regulatory sequences, we have shown that the 5' and the 3' noncoding sequences are dispensable for obtaining a regulated expression of the transgene in adult quiescent tissues, at the start of liver regeneration, and after inhibition of protein synthesis. These results indicated that the coding sequences were sufficient to ensure a regulated c-myc expression. In the present study, we have pursued this analysis with transgenes containing one or the other of the two c-myc coding exons either alone or in association with the c-myc 3' untranslated region. We demonstrate that each of the exons contains determinants which control c-myc mRNA expression. Moreover, we show that in the liver, c-myc exon 2 sequences are able to down-regulate an otherwise stable H-2K mRNA when embedded within it and to induce its transient accumulation after cycloheximide treatment and soon after liver ablation. Finally, the use of transgenes with different coding capacities has allowed us to postulate that the primary mRNA sequence itself and not c-Myc peptides is an important component of c-myc posttranscriptional regulation. PMID:7623834

  13. Clinical significance of high c-MYC and low MYCBP2 expression and their association with Ikaros dysfunction in adult acute lymphoblastic leukemia.

    PubMed

    Ge, Zheng; Guo, Xing; Li, Jianyong; Hartman, Melanie; Kawasawa, Yuka Imamura; Dovat, Sinisa; Song, Chunhua

    2015-12-01

    Increased expression of c-MYC is observed in both Acute Myeloid Leukemia (AML) and T-cell Acute Lymphoblastic Leukemia (T-ALL). MYC binding protein 2 (MYCBP2) is a probable E3 ubiquitin ligase and its function in leukemia is unknown. IKZF1 deletion is associated with the development and poor outcome of ALL. Here, we observed significant high c-MYC expression and low MYCBP2 expression in adult ALL patients. Patients with high c-MYC expression and/or low MYCBP2 expression had higher WBC counts and a higher percentage of CD34+ or CD33+ cells, as well as splenomegaly, liver infiltration, higher BM blasts, and lower CR rate. Ikaros bound to the regulatory regions of c-MYC and MYCBP2, suppressed c-MYC and increased MYCBP2 expression in ALL cells. Expression of c-MYC mRNA was significantly higher in patients with IKZF1 deletion; conversely MYCBP2 mRNA expression was significantly lower in those patients. A CK2 inhibitor, which acts as an Ikaros activator, also suppressed c-MYC and increased MYCBP2 expression in an Ikaros (IKZF1) dependent manner in the ALL cells. In summary, our data indicated the correlation of high c-MYC expression, low MYCBP2 expression and high c-MYC plus low MYCBP2 expression with high-risk factors and proliferation markers in adult ALL patients. Our data also revealed an oncogenic role for an Ikaros/MYCBP2/c-MYC axis in adult ALL, providing a mechanism of target therapies that activate Ikaros in adult ALL.

  14. c-Myc inhibits TP53INP1 expression via promoter methylation in esophageal carcinoma

    SciTech Connect

    Weng, Wenhao; Yang, Qinyuan; Huang, Miaolong; Qiao, Yongxia; Xie, Yuan; Yu, Yongchun; Jing, An; Li, Zhi

    2011-02-11

    Research highlights: {yields} TP53INP1 expression is down-regulated in esophageal carcinoma and is associated with CGI-131 methylation. {yields} Inhibition of CGI-131 methylation upregulates TP53INP1 expression in ESCC cell lines. {yields} Ectopic expression of TP53INP1 inhibits growth of ESCC cells by inducing apoptosis and inhibiting cell cycle progression. {yields} c-Myc binds to the promoter of TP53INP1 in vivo and vitro and recruits DNMT3A to TP53INP1 promoter for CGI-131 methylation. -- Abstract: Tumor protein p53-induced nuclear protein 1 (TP53INP1) is a well known stress-induced protein that plays a role in both cell cycle arrest and p53-mediated apoptosis. Loss of TP53INP1 expression has been reported in human melanoma, breast carcinoma, and gastric cancer. However, TP53INP1 expression and its regulatory mechanism in esophageal squamous cell carcinoma (ESCC) remain unclear. Our findings are in agreement with previous reports in that the expression of TP53INP1 was downregulated in 28% (10/36 cases) of ESCC lesions, and this was accompanied by significant promoter methylation. Overexpression of TP53INP1 induced G1 cell cycle arrest and increased apoptosis in ESCC cell lines (EC-1, EC-109, EC-9706). Furthermore, our study showed that the oncoprotein c-Myc bound to the core promoter of TP53INP1 and recruited DNA methyltransferase 3A to methylate the local promoter region, leading to the inhibition of TP53INP1 expression. Our findings revealed that TP53INP1 is a tumor suppressor in ESCC and that c-Myc-mediated DNA methylation-associated silencing of TP53INP1 contributed to the pathogenesis of human ESCC.

  15. Expression of c-myc and PCNA in Epstein-Barr virus-associated gastric carcinoma

    PubMed Central

    ZHU, SHIGUANG; SUN, PING; ZHANG, YINGXIN; YAN, LIPING; LUO, BING

    2013-01-01

    The aim of this study was to detect the expression of proliferatng cell nuclear antigen (PCNA) and c-myc in Epstein-Barr virus (EBV)-associated gastric carcinoma (EBVaGC) and EBV-negative gastric carcinoma (EBVnGC), as well as the expression of EBV-encoded proteins in EBVaGC and their effect on carcinogenesis and the development of gastric cancer. The PCNA and c-myc protein levels were assessed by immunohistochemistry in 13 EBVaGC and 45 EBVnGC specimens. The expression of related genes of EBV, including EB nuclear antigen (NA)-1 and EBNA2 genes, latent membrane protein 1 (LMP1) and early genes BARF1 and BHRF1 were tested by reverse transcription-polymerase chain reaction (RT-PCR) and southern blotting. The PCNA labeling index (LI) of EBVaGCs, EBVnGCs and the corresponding adjacent tissues of EBVaGCs were 49.3768±12.1832, 14.839±7.1847, 35.613±8.3831 and 24.2735±10.1332, respectively. The PCNA LI was significantly different between EBVaGC and EBVnGC of EBVaGC (t=4.686, P<0.01). The difference between EBVaGC and corresponding adjacent tissues of EBVaGC was also significant (t=8.805, P<0.01). The expression of c-myc protein was detected in 33 of 58 (55.39%) gastric carcinomas and in 21 of 58 (36.21%) adjacent tissues. There was a significant difference between the two groups (χ2=4.989, P<0.05). The expression of the c-myc protein was detected in 8 of 13 (61.54%) EBVaGCs and in 25 of 45 (55.56%) EBVnGCs. The difference between the two groups was not significant (χ2=0.147, P>0.05). EBNA1 mRNA was detected in all 13 EBVaGC cases, while EBNA2 and LMP1 mRNA was not detected in these cases. Of the 13 EBV-positive samples, 6 exhibited BARF1 transcripts and 2 exhibited BHRF1 transcripts. c-myc expression did not correlate with the presence of EBV in EBVaGC. EBV infection may induce PCNA expression. The lack of EBNA2 and LMP1 protein expression in EBVaGC suggests that EBNA2 and LMP1 do not correlate with cell apoptosis and c-myc expression. Early genes BARF1 and BHRF1

  16. A phosphorylation site located in the NH2-terminal domain of c-Myc increases transactivation of gene expression.

    PubMed

    Seth, A; Alvarez, E; Gupta, S; Davis, R J

    1991-12-15

    The c-myc gene encodes a sequence-specific DNA-binding protein (c-Myc) that forms leucine zipper complexes and can act as a transcription factor. Growth factor stimulation of cells causes the phosphorylation of the c-Myc transcriptional activation domain at Ser62 within a proline-rich region that is highly conserved among members of the Myc family (Alvarez, E., Northwood, I.C., Gonzalez, F. A., Latour, D. A., Seth, A., Abate, C., Curran, T., and Davis, R. J. (1991) J. Biol. Chem. 266, 15277-15285). This phosphorylation site is a substrate for growth factor-regulated MAP kinases and for the cell cycle-dependent protein kinase p34cdc2. We report that serum treatment of cells results in a marked increase in the transactivation of gene expression mediated by the c-Myc transcriptional activation domain. A point mutation at the site of growth factor-stimulated phosphorylation (Ser62) decreases the serum induction of transactivation. These data indicate that the c-Myc transcriptional activation domain may be a direct target of signal transduction pathways. PMID:1748630

  17. Prognostic significance of c-Myc expression in soft tissue leiomyosarcoma.

    PubMed

    Tsiatis, Athanasios C; Herceg, Megan E; Keedy, Vicki L; Halpern, Jennifer L; Holt, Ginger E; Schwartz, Herbert S; Cates, Justin M M

    2009-11-01

    The biological potential of soft tissue leiomyosarcoma is difficult to predict using current standard prognostic parameters, and control of systemic disease is challenging with current chemotherapeutic protocols. Additional prognostic markers and alternative treatment options are very much required. Previous studies implicate upregulation of the oncogenic nuclear transcription factor c-Myc with aggressive behavior of many solid tumors. Therefore, this oncoprotein was evaluated as a prognostic marker for overall and metastasis-free survival in leiomyosarcoma. Immunohistochemical stains for c-Myc were performed on 28 cases of leiomyosarcoma occurring in the deep somatic soft tissues. Comparisons of Kaplan-Meier survival curves stratified by c-Myc status and conventional prognostic factors (histological grade, tumor size, and tumor stage) were evaluated using standard univariate statistical methods. A subsequent multivariate survival analysis was carried out according to the Cox proportional hazards regression model adjusting for potential confounding prognostic factors. A total of 15 cases (54%) were positive for nuclear c-Myc expression. Patients with c-Myc-positive tumors had significantly shorter metastasis-free survival intervals compared with those with c-Myc-negative tumors (median, 9 months vs. >94 months; P=0.014). c-Myc positivity also correlated with decreased overall survival (median, 23 months vs. >94 months; P=0.017). Histological grade was the only other prognostic marker predictive of poor outcome in the univariate analyses. In the multivariate survival analysis, only c-Myc status reached statistical significance, suggesting that it is an important and independent predictor of prognosis in leiomyosarcoma. Detection of nuclear c-Myc in leiomyosarcoma predicts decreased overall and metastasis-free survival, independent of standard prognostic variables, tumor size, histological grade, and TNM stage. The expression of this oncoprotein may represent a

  18. The FUSE/FBP/FIR/TFIIH system is a molecular machine programming a pulse of c-myc expression.

    PubMed

    Liu, Juhong; Kouzine, Fedor; Nie, Zuqin; Chung, Hye-Jung; Elisha-Feil, Zichrini; Weber, Achim; Zhao, Keji; Levens, David

    2006-05-17

    FarUpStream Element (FUSE) Binding Protein (FBP) binds the human c-myc FUSE in vitro only in single-stranded or supercoiled DNA. Because transcriptionally generated torsion melts FUSE in vitro even in linear DNA, and FBP/FBP Interacting Repressor (FIR) regulates transcription through TFIIH, these components have been speculated to be the mechanosensor (FUSE) and effectors (FBP/FIR) of a real-time mechanism controlling c-myc transcription. To ascertain whether the FUSE/FBP/FIR system operates according to this hypothesis in vivo, the flux of activators, repressors and chromatin remodeling complexes on the c-myc promoter was monitored throughout the serum-induced pulse of transcription. After transcription was switched on by conventional factors and chromatin regulators, FBP and FIR were recruited and established a dynamically remodeled loop with TFIIH at the P2 promoter. In XPB cells carrying mutant TFIIH, loop formation failed and the serum response was abnormal; RNAi depletion of FIR similarly disabled c-myc regulation. Engineering FUSE into episomal vectors predictably re-programmed metallothionein-promoter-driven reporter expression. The in vitro recruitment of FBP and FIR to dynamically stressed c-myc DNA paralleled the in vivo process.

  19. Kinetics of myc-max-mad gene expression during hepatocyte proliferation in vivo: Differential regulation of mad family and stress-mediated induction of c-myc.

    PubMed

    Mauleon, Itsaso; Lombard, Marie-Noëlle; Muñoz-Alonso, Maria J; Cañelles, Matilde; Leon, Javier

    2004-02-01

    Mad proteins (Mad1, Mxi1, Mad3, Mad4, Mnt/Rox) are biochemical and biological antagonists of c-Myc oncoprotein. Mad-Max dimers repress the transcription of the same target genes activated by Myc-Max dimers. Despite the critical role of Max and Mad proteins as modulators of c-Myc functions, there are no comparative data on their regulation in vivo. We carried out a systematic analysis of c-myc, max, and mad family expression in a model of synchronized cell proliferation in vivo in adult tissues, that is, rat hepatocytes after partial hepatectomy. We confirmed the previously reported early peak of c-myc expression after hepatectomy but we show that it did not correlate with hepatocyte proliferation as it also occurred in sham-operated animals as a result of surgical stresses. A second peak of c-myc expression was observed later, at the time of the wave of DNA synthesis. No such expression was detected in sham-operated rat quiescent hepatocytes. max expression increased around 4-16 h after hepatectomy, before the peaks of c-myc and DNA synthesis. mxi1 and mad4 were slightly downregulated during liver regeneration. mnt/rox expression did not change. These expression patterns suggest a role of Myc-Max for efficient mitogenic response of hepatocytes. We also analyzed the effects of Myc and Max ectopic expression on the clonogenic growth of the rat hepatoma cells. Expression of c-Myc and Max increased clonogenic growth, whereas the reduction of c-Myc levels by an antisense vector decreased growth. The results suggest nonredundant roles for mad genes in hepatocyte proliferation and point to c-Myc as a putative target for anticancer therapy of liver cancer.

  20. Amino-terminal domains of c-myc and N-myc proteins mediate binding to the retinoblastoma gene product

    NASA Astrophysics Data System (ADS)

    Rustgi, Anil K.; Dyson, Nicholas; Bernards, Rene

    1991-08-01

    THE proteins encoded by the myc gene family are involved in the control of cell proliferation and differentiation, and aberrant expression of myc proteins has been implicated in the genesis of a variety of neoplasms1. In the carboxyl terminus, myc proteins have two domains that encode a basic domain/helix-loop-helix and a leucine zipper motif, respectively. These motifs are involved both in DNA binding and in protein dimerization2-5. In addition, myc protein family members share several regions of highly conserved amino acids in their amino termini that are essential for transformation6,7. We report here that an N-terminal domain present in both the c-myc and N-myc proteins mediates binding to the retinoblastoma gene product, pRb. We show that the human papilloma virus E7 protein competes with c-myc for binding to pRb, indicating that these proteins share overlapping binding sites on pRb. Furthermore, a mutant Rb protein from a human tumour cell line that carried a 35-amino-acid deletion in its C terminus failed to bind to c-myc. Our results suggest that c-myc and pRb cooperate through direct binding to control cell proliferation.

  1. β2-adrenergic receptor signaling promotes pancreatic ductal adenocarcinoma (PDAC) progression through facilitating PCBP2-dependent c-myc expression.

    PubMed

    Wan, Chunhua; Gong, Chen; Zhang, Haifeng; Hua, Lu; Li, Xiaohong; Chen, Xudong; Chen, Yinji; Ding, Xiaoling; He, Song; Cao, Wei; Wang, Yingying; Fan, Shaoqing; Xiao, Ying; Zhou, Guoxiong; Shen, Aiguo

    2016-04-01

    The β2-adrenergic receptor (β2-AR) plays a crucial role in pancreatic ductal adenocarcinoma (PDAC) progression. In this report, we identified poly(rC)-binding protein 2 (PCBP2) as a novel binding partner for β2-AR using immunoprecipitation-mass spectrometry (IP-MS) approach. The association between β2-AR and PCBP2 was verified using reciprocal immunoprecipitation. Importantly, we found significant interaction and co-localization of the two proteins in the presence of β2-AR agonist in Panc-1 and Bxpc3 PDAC cells. β2-AR-induced recruitment of PCBP2 led to augmented protein level of c-myc in PDAC cells, likely as a result of enhanced internal ribosome entry segment (IRES)-mediated translation of c-myc. The activation of β2-AR accelerated cell proliferation and colony formation, while knockdown of PCBP2 or c-myc restrained the effect. Furthermore, overexpression of PCBP2 was observed in human PDAC cell lines and tissue specimens compared to the normal pancreatic ductal epithelial cells and the non-cancerous tissues respectively. Overexpression of β2-AR and PCBP2 was associated with advanced tumor stage and significantly worsened prognosis in patients with PDAC. Our results elucidate a new molecular mechanism by which β2-AR signaling facilitates PDAC progression through triggering PCBP2-dependent c-myc expression. PMID:26803058

  2. MicroRNA-561 inhibits gastric cancercell proliferation and invasion by downregulating c-Myc expression

    PubMed Central

    Qian, Kun; Mao, Binglang; Zhang, Wei; Chen, Huanwen

    2016-01-01

    Gastric cancer (GC) causes nearly one million deaths worldwide each year. However, the molecular pathway of GC development remains unclear. Increasing evidences have shown that microRNAs (miRNAs) are highly associated with tumor development. However, relative little is known about the potential role of miRNAs in gastric cancer development. In the present study, we showed that miR-561 was down-regulated frequently in human GCs cell lines and tissues, and its expression was associated with tumor-node-metastasis (pTNM) stage. Enforced expression of miR-561 in GC cells inhibited cell proliferation and invasion in vitro. In contrast, knockdown of miR-561 had the opposite effect on cell proliferation and invasion. Moreover, c-Myc was identified as a potential miR-561 target. Further studies confirmed that miR-561 suppressed the expression of c-Myc by directly binding to its 3’-untranslated region. Restoration of c-Myc in miR-561-overexpressed GC cells reversed the suppressive effects of miR-561 and c-Myc was inversely correlated with miR-561 expression in GC tissues. These results demonstrate that miR-561 acts as a novel tumor suppressor in GC by targeting c-Myc gene and inhibiting GC cells proliferation and invasion. These findings contribute to current understanding of the functions of miR-561 in GC. PMID:27725860

  3. Use of a transfected and amplified Drosophila heat shock promoter construction for inducible production of toxic mouse c-myc proteins in CHO cells

    SciTech Connect

    Wurm, F.M.; Gwinn, K.A.; Papoulas, O.; Pallavicini, M.; Kingston, R.E.

    1987-07-24

    After transfection and selection with methotrexate, CHO cell lines were established which contained up to 2000 copies of an expression vector for c-myc protein. The vector contained the Drosophila heat shock protein 70 (hsp70) promoter fused with the coding region of the mouse c-myc gene. Incubation of cells for up to 3 hours at 43/sup 0/C resulted in at least a 100-fold induction of recombinant c-myc mRNA. When cells were shifted back to 37/sup 0/C, within 1 to 4 hours, this RNA was translated into protein to yield about 250 ..mu..g per 10/sup 9/ cells. Cells died a few hours later, suggesting that high concentrations of intracellular c-myc are cytotoxic. 47 refs., 5 figs.

  4. Bortezomib inhibits Burkitt's lymphoma cell proliferation by downregulating sumoylated hnRNP K and c-Myc expression.

    PubMed

    Suk, Fat-Moon; Lin, Shyr-Yi; Lin, Ren-Jye; Hsine, Yung-Hsin; Liao, Yen-Ju; Fang, Sheng-Uei; Liang, Yu-Chih

    2015-09-22

    Bortezomib (Velcal) was the first proteasome inhibitor to be approved by the US Food and Drug Administration to treat patients with relapsed/refractory multiple myelomas. Previous studies have demonstrated that bortezomib inhibits tumor cell proliferation and induces apoptosis by blocking the nuclear factor (NF)-κB pathway. However, the exact mechanism by which bortezomib induces cancer cell apoptosis is still not well understood. In this study, we found that bortezomib significantly inhibited cell proliferation in both human Burkitt's lymphoma CA46 and Daudi cells. Through proteomic analysis, we found that bortezomib treatment changed the expression of various proteins in distinct functional categories including unfolding protein response (UPS), RNA processing, protein targeting and biosynthesis, apoptosis, and signal transduction. Among the proteins with altered expression, hnRNP K, hnRNP H, Hsp90α, Grp78, and Hsp7C were common to both Daudi and CA46 cells. Interestingly, bortezomib treatment downregulated the expression of high-molecular-weight (HMw) hnRNP K and c-Myc but upregulated the expression of low-molecular-weight (LMw) hnRNP K. Moreover, cell proliferation was significantly correlated with high expression of HMw hnRNP K and c-Myc. HMw and LMw hnRNP K were identified as sumoylated and desumoylated hnRNP K, respectively. Using transient transfection, we found that sumoylated hnRNP K increased c-Myc expression at the translational level and contributed to cell proliferation, and that Lys422 of hnRNP K is the candidate sumoylated residue. Our results suggest that besides inhibiting the ubiquitin-proteasome pathway, bortezomib may inhibit cell proliferation by downregulating sumoylated hnRNP K and c-Myc expression in Burkitt's lymphoma cells.

  5. Consensus-interferon and platelet-derived growth factor adversely regulate proliferation and migration of Kaposi's sarcoma cells by control of c-myc expression.

    PubMed Central

    Köster, R.; Blatt, L. M.; Streubert, M.; Zietz, C.; Hermeking, H.; Brysch, W.; Stürzl, M.

    1996-01-01

    Platelet-derived growth factor-B (PDGF-B) is a potent paracrine-acting mitogen in Kaposi's sarcoma (KS) lesions. Interferon-alpha is widely used for clinical treatment of KS. Here we show that platelet-derived growth factor-B activates proliferation and migration of cultivated AIDS-KS spindle cells whereas interferon-alpha acts as an inhibitor. At the molecular level, these opposite activities of platelet-derived growth factor-B and interferon-alpha converged onto the adverse regulation of the c-myc gene expression. Platelet-derived growth factor-B induced c-myc mRNA and protein synthesis in cultivated AIDS-KS spindle cells whereas interferon-alpha inhibited these processes. Using c-myc-specific phoshothioate antisense oligodeoxynucleotides, we demonstrated that down-regulation of c-myc expression is sufficient to inhibit proliferation and migration of KS spindle cells in vitro. This indicated that c-Myc protein may be an important regulatory molecule of KS spindle cell proliferation and migration. High amounts of the c-Myc protein were detected in the nuclei of KS spindle cells in histological sections of AIDS-KS biopsies. This suggested that the c-myc gene may also regulate proliferation and migration of AIDS-KS spindle cells in vivo. In this case, c-myc may play an important role in the focus of major pathogenic and therapeutic pathways of KS. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:8952524

  6. Linoleic acid and its metabolites, hydroperoxyoctadecadienoic acids, stimulate c-Fos, c-Jun, and c-Myc mRNA expression, mitogen-activated protein kinase activation, and growth in rat aortic smooth muscle cells.

    PubMed Central

    Rao, G N; Alexander, R W; Runge, M S

    1995-01-01

    Previous studies from other laboratories suggest that linoleic acid and its metabolites, hydroperoxyoctadecadienoic acids, play an important role in modulating the growth of some cells. A correlation has been demonstrated between hydroperoxyoctadecadienoic acids and conditions characterized by abnormal cell growth such as atherosclerosis and psoriasis. To determine if linoleic acid and its metabolites modulate cell growth in atherosclerosis, we measured DNA synthesis, protooncogene mRNA expression, and mitogen-activated protein kinase (MAPK) activation in vascular smooth muscle cells (VSMC). Linoleic acid induces DNA synthesis, c-fos, c-jun, and c-myc mRNA expression and MAPK activation in VSMC. Furthermore, nordihydroguaiaretic acid, a potent inhibitor of the lipoxygenase system, significantly reduced the growth-response effects of linoleic acid in VSMC, suggesting that conversion of linoleic acid to hydroperoxyoctadecadienoic acids (HPODEs) is required for these effects. HPODEs also caused significant induction of DNA synthesis, protooncogene mRNA expression, and MAPK activation in growth-arrested VSMC, suggesting that linoleic acid and its metabolic products, HPODEs, are potential mitogens in VSMC, and that conditions such as oxidative stress and lipid peroxidation which provoke the production of these substances may alter VSMC growth. Images PMID:7635978

  7. The enforced expression of c-Myc in pig fibroblasts triggers mesenchymal-epithelial transition (MET) via F-actin reorganization and RhoA/Rock pathway inactivation.

    PubMed

    Shi, Jun-Wen; Liu, Wei; Zhang, Ting-Ting; Wang, Sheng-Chun; Lin, Xiao-Lin; Li, Jing; Jia, Jun-Shuang; Sheng, Hong-Fen; Yao, Zhi-Fang; Zhao, Wen-Tao; Zhao, Zun-Lan; Xie, Rao-Ying; Yang, Sheng; Gao, Fei; Fan, Quan-Rong; Zhang, Meng-Ya; Yue, Min; Yuan, Jin; Gu, Wei-Wang; Yao, Kai-Tai; Xiao, Dong

    2013-04-01

    In previous studies from other labs it has been well demonstrated that the ectopic expression of c-Myc in mammary epithelial cells can induce epithelial-mesenchymal transition (EMT), whereas in our pilot experiment, epithelial-like morphological changes were unexpectedly observed in c-Myc-expressing pig fibroblasts [i.e., porcine embryonic fibroblasts (PEFs) and porcine dermal fibroblasts (PDFs)] and pig mesenchymal stem cells, suggesting that the same c-Myc gene is entitled to trigger EMT in epithelial cells and mesenchymal-epithelial transition (MET) in fibroblasts. This prompted us to characterize the existence of a MET in c-Myc-expressing PEFs and PDFs at the molecular level. qRT-PCR, immunofluorescence and western blot analysis illustrated that epithelial-like morphological changes were accompanied by the increased expression of epithelial markers [such as cell adhesion proteins (E-cadherin, α-catenin and Bves), tight junction protein occludin and cytokeratins (Krt8 and Krt18)], the reduced expression of mesenchymal markers [vimentin, fibronectin 1 (FN1), snail1, collagen family of proteins (COL1A1, COL5A2) and matrix metalloproteinase (MMP) family (MMP12 and MMP14)] and the decreased cell motility and increased cell adhesion in c-Myc-expressing PEFs and PDFs. Furthermore, the ectopic expression of c-Myc in pig fibroblasts disrupted the stress fiber network, suppressed the formation of filopodia and lamellipodia, and resulted in RhoA/Rock pathway inactivation, which finally participates in epithelial-like morphological conversion. Taken together, these findings demonstrate, for the first time, that the enforced expression of c-Myc in fibroblasts can trigger MET, to which cytoskeleton depolymerization and RhoA/Rock pathway inactivation contribute.

  8. Sirt1 deacetylates c-Myc and promotes c-Myc/Max association.

    PubMed

    Mao, Beibei; Zhao, Guowei; Lv, Xiang; Chen, Hou-Zao; Xue, Zheng; Yang, Ben; Liu, De-Pei; Liang, Chih-Chuan

    2011-11-01

    The c-Myc oncoprotein plays critical roles in multiple biological processes by controlling cell proliferation, apoptosis, differentiation, and metabolism. Especially, c-Myc is frequently overexpressed in many human cancers and widely involved in tumorigenesis. However, how the post-translational modifications, especially acetylation of c-Myc, contribute to its activity in the leukemia cells remains largely unknown. Sirt1, a NAD-dependent class III histone deacetylase, has a paradoxical role in tumorigenesis by deacetylating several transcription factors, including p53, E2F1 and forkhead proteins. In this study, we show that Sirt1 interacts physically with the C-terminus of c-Myc and deacetylates c-Myc both in vitro and in vivo. Moreover, the deacetylation of c-Myc by Sirt1 promotes its association with Max, a partner essential for its activation, thereby facilitating c-Myc transactivation activity on hTERT promoter. Finally, inhibition of endogenous Sirt1 in K562 cells by either RNAi or its inhibitor NAM causes the overall decrease of c-Myc target genes expression, including hTERT, cyclinD2 and LDHA, which further suppress cell proliferation and arrest cell cycle at G1/S phase. Thus, our results demonstrate the positive effect of Sirt1 on c-Myc activity by efficiently enhancing c-Myc/Max association in human leukemia cell line K562, suggesting a potential role of Sirt1 in tumorigenesis.

  9. Impact of c-MYC Protein Expression on Outcome of Patients with Early-Stage HER2+ Breast Cancer Treated with Adjuvant Trastuzumab NCCTG (Alliance) N9831

    PubMed Central

    Dueck, Amylou C.; Reinholz, Monica M.; Geiger, Xochiquetzal J.; Tenner, Kathleen; Ballman, Karla; Jenkins, Robert B.; Riehle, Darren; Chen, Beiyun; McCullough, Ann E.; Davidson, Nancy E.; Martino, Silvana; Sledge, George W.; Kaufman, Peter A.; Kutteh, Leila A.; Gralow, Julie; Harris, Lyndsay N.; Ingle, James N.; Lingle, Wilma L.; Perez, Edith A.

    2013-01-01

    Purpose This study investigated the association between tumor MYC protein expression and disease-free survival (DFS) of patients randomized to receive chemotherapy alone (Arm A) or chemotherapy with sequential (Arm B) or concurrent trastuzumab (Arm C) in the N9831 (Alliance) adjuvant HER2+ trastuzumab breast cancer trial. Patients/Methods This analysis included 1736 patients randomized to Arms A, B, and C on N9831. Nuclear MYC protein expression was determined in tissue microarray (TMA) sections containing three biopsies per patient or whole tissue sections (WS) using standard immunohistochemistry (clone 9E10). A tumor was considered positive for MYC protein overexpression (MYC+) if the nuclear 3+ staining percentage was >30%. Results 574 (33%) tumors were MYC+. MYC+ was associated with hormone receptor positivity (χ2 p=0.006), tumors ≥ 2 cm (χ2 p=0.02), and a higher rate of nodal positivity (χ2 p<0.001). Hazard ratios (HRs) for DFS (median follow-up: 6.1 years) for Arm C versus A were 0.52 (p=0.006) and 0.65 (p=0.006) for patients with MYC+ and MYC- tumors, respectively (interaction p=0.40). For Arm B versus A, HRs for patients with MYC+ and MYC- tumors were 0.79 (p=0.21) and 0.74 (p=0.04), respectively (interaction p=0.71). For Arm C versus B, HRs for patients with MYC+ and MYC- tumors were 0.56 (p=0.02) and 0.89 (p=0.49), respectively (interaction p=0.17). Conclusions Our data do not support an impact of tumor MYC protein expression on differential benefit from adjuvant trastuzumab. PMID:23965903

  10. Ginger extract inhibits human telomerase reverse transcriptase and c-Myc expression in A549 lung cancer cells.

    PubMed

    Tuntiwechapikul, Wirote; Taka, Thanachai; Songsomboon, Chonnipa; Kaewtunjai, Navakoon; Imsumran, Arisa; Makonkawkeyoon, Luksana; Pompimon, Wilart; Lee, T Randall

    2010-12-01

    The rhizome of ginger (Zingiber officinale Roscoe) has been reputed to have many curative properties in traditional medicine, and recent publications have also shown that many agents in ginger possess anticancer properties. Here we show that the ethyl acetate fraction of ginger extract can inhibit the expression of the two prominent molecular targets of cancer, the human telomerase reverse transcriptase (hTERT) and c-Myc, in A549 lung cancer cells in a time- and concentration-dependent manner. The treated cells exhibited diminished telomerase activity because of reduced protein production rather than direct inhibition of telomerase. The reduction of hTERT expression coincided with the reduction of c-Myc expression, which is one of the hTERT transcription factors; thus, the reduction in hTERT expression might be due in part to the decrease of c-Myc. As both telomerase inhibition and Myc inhibition are cancer-specific targets for cancer therapy, ginger extract might prove to be beneficial as a complementary agent in cancer prevention and maintenance therapy. PMID:21091248

  11. Regulation of c-Myc Expression by Ahnak Promotes Induced Pluripotent Stem Cell Generation.

    PubMed

    Lim, Hee Jung; Kim, Jusong; Park, Chang-Hwan; Lee, Sang A; Lee, Man Ryul; Kim, Kye-Seong; Kim, Jaesang; Bae, Yun Soo

    2016-01-01

    We have previously reported that Ahnak-mediated TGFβ signaling leads to down-regulation of c-Myc expression. Here, we show that inhibition of Ahnak can promote generation of induced pluripotent stem cells (iPSC) via up-regulation of endogenous c-Myc. Consistent with the c-Myc inhibitory role of Ahnak, mouse embryonic fibroblasts from Ahnak-deficient mouse (Ahnak(-/-) MEF) show an increased level of c-Myc expression compared with wild type MEF. Generation of iPSC with just three of the four Yamanaka factors, Oct4, Sox2, and Klf4 (hereafter 3F), was significantly enhanced in Ahnak(-/-) MEF. Similar results were obtained when Ahnak-specific shRNA was applied to wild type MEF. Of note, expressionof Ahnak was significantly induced during the formation of embryoid bodies from embryonic stem cells, suggesting that Ahnak-mediated c-Myc inhibition is involved in embryoid body formation and the initial differentiation of pluripotent stem cells. The iPSC from 3F-infected Ahnak(-/-) MEF cells (Ahnak(-/-)-iPSC-3F) showed expression of all stem cell markers examined and the capability to form three primary germ layers. Moreover, injection of Ahnak(-/-)-iPSC-3F into athymic nude mice led to development of teratoma containing tissues from all three primary germ layers, indicating that iPSC from Ahnak(-/-) MEF are bona fide pluripotent stem cells. Taken together, these data provide evidence for a new role for Ahnak in cell fate determination during development and suggest that manipulation of Ahnak and the associated signaling pathway may provide a means to regulate iPSC generation.

  12. Primary structure and functional scFv antibody expression of an antibody against the human protooncogen c-myc.

    PubMed

    Fuchs, P; Breitling, F; Little, M; Dübel, S

    1997-06-01

    The immunoglobulin heavy- and light-chain variable region (Vh and Vl) genes were isolated from Myc1-9E10 hybridoma cells, which secreted monoclonal antibody against human oncogen c-myc. The expression vector pOPE52-c-myc was constructed for the recombinant production in E. coli. A 30 kDa single chain fragment (scFv) expression product was found in the periplasmic space by SDS-PAGE and immunoblotting. A significant fraction was processed correctly as demonstrated with an antiserum recognizing the processed aminoterminus only. The specific binding of the scFv fragment to the peptide epitope of the maternal monoclonal antibody was demonstrated and the primary sequence of the variable regions was determined. Sequence comparison with previously published partial Vh and Vl sequences from this hybridoma cell line revealed a genetic heterogeneity for the light chain variable region. The potential use of this scFv as a new tool for detection and purification of tagged proteins, for adding costimulatory signals to the surface of cancer cells as well as for analyzing c-myc function in the living cell by cytoplasmic expression is discussed.

  13. Structure-based Inhibitor Design for the Intrinsically Disordered Protein c-Myc

    PubMed Central

    Yu, Chen; Niu, Xiaogang; Jin, Fan; Liu, Zhirong; Jin, Changwen; Lai, Luhua

    2016-01-01

    Intrinsically disordered proteins (IDPs) are associated with various diseases and have been proposed as promising drug targets. However, conventional structure-based approaches cannot be applied directly to IDPs, due to their lack of ordered structures. Here, we describe a novel computational approach to virtually screen for compounds that can simultaneously bind to different IDP conformations. The test system used c-Myc, an oncoprotein containing a disordered basic helix-loop-helix-leucine zipper (bHLH-LZ) domain that adopts a helical conformation upon binding to Myc-associated factor X (Max). For the virtual screen, we used three binding pockets in representative conformations of c-Myc370–409, which is part of the disordered bHLH-LZ domain. Seven compounds were found to directly bind c-Myc370–409 in vitro, and four inhibited the growth of the c-Myc-overexpressing cells by affecting cell cycle progression. Our approach of IDP conformation sampling, binding site identification, and virtual screening for compounds that can bind to multiple conformations provides a useful strategy for structure-based drug discovery targeting IDPs. PMID:26931396

  14. c-Myc over-expression in Ramos Burkitt's lymphoma cell line predisposes to iron homeostasis disruption in vitro

    SciTech Connect

    Habel, Marie-Eve; Jung, Daniel . E-mail: djung@hema-quebec.qc.ca

    2006-03-24

    Burkitt's lymphoma is an aggressive B-cell neoplasm resulting from deregulated c-myc expression. We have previously shown that proliferation of Burkitt's lymphoma cell lines such as Ramos is markedly reduced by iron treatment. It has been shown that iron induces expression of c-myc which, owing to its transcriptional regulatory functions, regulates genes involved in iron metabolism. Transient enhancement of c-myc expression by iron could increase the expression of genes involved in iron incorporation, which could lead to an accumulation of intracellular free iron. Here, we have investigated whether cells with a high basal level of c-Myc were more likely to accumulate free iron. Our results suggest that the basal level of c-Myc in Ramos cells is twofold higher than what is seen in HL-60 cells. Moreover, in Ramos cells, where c-Myc is expressed at a high level, H-ferritin expression is down-regulated, transferrin receptor (CD71) expression is increased, and ferritin translation is inhibited. These modifications in iron metabolism, resulting from the strong basal expression of c-Myc, and amplified by iron addition, could lead to a disruption in homeostasis and consequently to growth arrest.

  15. c-myc, ras p21 and p53 expression in pleomorphic adenoma and its malignant form of the human salivary glands.

    PubMed

    Deguchi, H; Hamano, H; Hayashi, Y

    1993-01-01

    Using an immunohistochemical study and an immunoblot analysis, the expression of cellular oncogenes of the human salivary glands such as c-myc, ras p21, and p53 tumor-suppressor gene in pleomorphic adenomas and its malignant form, carcinoma in pleomorphic adenomas was examined to evaluate a differential biological significance, in comparison with that in normal salivary gland tissues. Immunohistochemically, the c-myc product was detected in 42% of the pleomorphic adenomas and in 56% of the carcinomas in pleomorphic adenoma. The ras p21 expression was observed in 24% of pleomorphic adenomas, and in 50% of carcinomas in pleomorphic adenoma. The p53 protein was detected in 18% of the pleomorphic adenomas and in 67% of the carcinomas in pleomorphic adenoma. Although there was no significant difference between the benign and malignant forms for the expression of c-myc, a statistical significance in ras p21 and p53 expression was found between the pleomorphic adenoma and its malignant form (P < 0.05) and P < 0.001, respectively). An immunoblotting assay clearly demonstrated the expression of c-myc and p53 gene products in both the benign and malignant forms of the pleomorphic adenoma, and that of ras p21 in the malignant form. These results indicate that activation of c-myc and ras p21 proto-oncogenes and the involvement of p53 mutation may play important roles in the malignant transformation of salivary gland pleomorphic adenoma.

  16. Kindlin-3 interacts with the ribosome and regulates c-Myc expression required for proliferation of chronic myeloid leukemia cells

    PubMed Central

    Qu, Jing; Ero, Rya; Feng, Chen; Ong, Li-Teng; Tan, Hui-Foon; Lee, Hui-Shan; Ismail, Muhammad HB; Bu, Wen-Ting; Nama, Srikanth; Sampath, Prabha; Gao, Yong-Gui; Tan, Suet-Mien

    2015-01-01

    Kindlins are FERM-containing cytoplasmic proteins that regulate integrin-mediated cell-cell and cell-extracellular matrix (ECM) attachments. Kindlin-3 is expressed in hematopoietic cells, platelets, and endothelial cells. Studies have shown that kindlin-3 stabilizes cell adhesion mediated by ß1, ß2, and ß3 integrins. Apart from integrin cytoplasmic tails, kindlins are known to interact with other cytoplasmic proteins. Here we demonstrate that kindlin-3 can associate with ribosome via the receptor for activated-C kinase 1 (RACK1) scaffold protein based on immunoprecipitation, ribosome binding, and proximity ligation assays. We show that kindlin-3 regulates c-Myc protein expression in the human chronic myeloid leukemia cell line K562. Cell proliferation was reduced following siRNA reduction of kindlin-3 expression and a significant reduction in tumor mass was observed in xenograft experiments. Mechanistically, kindlin-3 is involved in integrin α5ß1-Akt-mTOR-p70S6K signaling; however, its regulation of c-Myc protein expression could be independent of this signaling axis. PMID:26677948

  17. c-Myc oncogene expression in selected odontogenic cysts and tumors: An immunohistochemical study

    PubMed Central

    Moosvi, Zama; Rekha, K

    2013-01-01

    Aim: To investigate the role of c-Myc oncogene in selected odontogenic cysts and tumors. Materials and Methods: Ten cases each of ameloblastoma, adenomatoid odontogenic tumor (AOT), odontogenic keratocyst (OKC), dentigerous cyst, and radicular cyst were selected and primary monoclonal mouse anti-human c-Myc antibody was used in a dilution of 1: 50. Statistical Analysis was performed using Mann Whitney U test. Results: 80% positivity was observed in ameloblastoma, AOT and OKC; 50% positivity in radicular cyst and 20% positivity in dentigerous cyst. Comparison of c-Myc expression between ameloblastoma and AOT did not reveal significant results. Similarly, no statistical significance was observed when results of OKC were compared with ameloblastoma and AOT. In contrast, significant differences were seen on comparison of dentigerous cyst with ameloblastoma and AOT and radicular cyst with AOT. Conclusion: From the above data we conclude that (1) Ameloblastoma and AOT have similar proliferative potential and their biologic behavior cannot possibly be attributed to it. (2) OKC has an intrinsic growth potential which is absent in other cysts and reinforces its classification as keratocystic odontogenic tumor. PMID:23798830

  18. Differential Regulation of N-Myc and c-Myc Synthesis, Degradation, and Transcriptional Activity by the Ras/Mitogen-activated Protein Kinase Pathway*

    PubMed Central

    Kapeli, Katannya; Hurlin, Peter J.

    2011-01-01

    Myc transcription factors are important regulators of proliferation and can promote oncogenesis when deregulated. Deregulated Myc expression in cancers can result from MYC gene amplification and translocation but also from alterations in mitogenic signaling pathways that affect Myc levels through both transcriptional and post-transcription mechanisms. For example, mutations in Ras family GTPase proteins that cause their constitutive activation can increase cellular levels of c-Myc by interfering with its rapid proteasomal degradation. Although enhanced protein stability is generally thought to be applicable to other Myc family members, here we show that c-Myc and its paralog N-Myc respond to oncogenic H-Ras (H-RasG12V) in very different ways. H-RasG12V promotes accumulation of both c-Myc and N-Myc, but although c-Myc accumulation is achieved by enhanced protein stability, N-Myc accumulation is associated with an accelerated rate of translation that overcomes a surprising H-RasG12V-mediated destabilization of N-Myc. We show that H-RasG12V-mediated degradation of N-Myc functions independently of key phosphorylation sites in the highly conserved Myc homology box I region that controls c-Myc protein stability by oncogenic Ras. Finally, we found that N-Myc and c-Myc transcriptional activity is associated with their proteasomal degradation but that N-Myc may be uniquely dependent on Ras-stimulated proteolysis for target gene expression. Taken together, these studies provide mechanistic insight into how oncogenic Ras augments N-Myc levels in cells and suggest that enhanced N-Myc translation and degradation-coupled transactivation may contribute to oncogenesis. PMID:21908617

  19. c-MYC expression sensitizes medulloblastoma cells to radio- and chemotherapy and has no impact on response in medulloblastoma patients

    PubMed Central

    2011-01-01

    Background To study whether and how c-MYC expression determines response to radio- and chemotherapy in childhood medulloblastoma (MB). Methods We used DAOY and UW228 human MB cells engineered to stably express different levels of c-MYC, and tested whether c-MYC expression has an effect on radio- and chemosensitivity using the colorimetric 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt (MTS) assay, clonogenic survival, apoptosis assays, cell cycle analysis, and western blot assessment. In an effort to validate our results, we analyzed c-MYC mRNA expression in formalin-fixed paraffin-embedded tumor samples from well-documented patients with postoperative residual tumor and compared c-MYC mRNA expression with response to radio- and chemotherapy as examined by neuroradiological imaging. Results In DAOY - and to a lesser extent in UW228 - cells expressing high levels of c-MYC, the cytotoxicity of cisplatin, and etoposide was significantly higher when compared with DAOY/UW228 cells expressing low levels of c-MYC. Irradiation- and chemotherapy-induced apoptotic cell death was enhanced in DAOY cells expressing high levels of c-MYC. The response of 62 of 66 residual tumors was evaluable and response to postoperative radio- (14 responders (CR, PR) vs. 5 non-responders (SD, PD)) or chemotherapy (23 CR/PR vs. 20 SD/PD) was assessed. c-MYC mRNA expression was similar in primary MB samples of responders and non-responders (Mann-Whitney U test, p = 0.50, ratio 0.49, 95% CI 0.008-30.0 and p = 0.67, ratio 1.8, 95% CI 0.14-23.5, respectively). Conclusions c-MYC sensitizes MB cells to some anti-cancer treatments in vitro. As we failed to show evidence for such an effect on postoperative residual tumors when analyzed by imaging, additional investigations in xenografts and larger MB cohorts may help to define the exact function of c-MYC in modulating response to treatment. PMID:21324178

  20. Expression of c-myc and induction of DNA synthesis by platelet-poor plasma in human diploid fibroblasts

    SciTech Connect

    Ferrari, S.; Calabretta, B.; Battini, R.; Cosenza, S.C.; Owen, T.A.; Soprano, K.J.; Baserga, R. )

    1988-01-01

    When WI-38 human diploid fibroblasts become confluent, they stop synthesizing DNA and dividing. Addition of serum causes the quiescent cell to reenter the cell cycle. Prolonged quiescence after confluence decreases and delays the response to serum. For a few days after reaching confluence. WI-38 cells also respond to platelet-poor plasma. During this period, although not cycling, WI-38 cells still express c-myc and other growth-regulated genes, as measured by steady-state RNA levels. If the quiescence is prolonged further, c-myc expression (and that of two other growth-regulated genes) is no longer detectable, and its disappearance coincides with a loss of response to platelet-poor plasma. These results suggest that, also under physiological conditions, the expression of c-myc and other growth-regulated genes can cooperate with platelet-poor plasma in inducing cellular DNA synthesis in human diploid fibroblasts.

  1. Gene therapy of c-myc suppressor FUSE-binding protein-interacting repressor by Sendai virus delivery prevents tracheal stenosis.

    PubMed

    Mizokami, Daisuke; Araki, Koji; Tanaka, Nobuaki; Suzuki, Hiroshi; Tomifuji, Masayuki; Yamashita, Taku; Ueda, Yasuji; Shimada, Hideaki; Matsushita, Kazuyuki; Shiotani, Akihiro

    2015-01-01

    Acquired tracheal stenosis remains a challenging problem for otolaryngologists. The objective of this study was to determine whether the Sendai virus (SeV)-mediated c-myc suppressor, a far upstream element (FUSE)-binding protein (FBP)-interacting repressor (FIR), modulates wound healing of the airway mucosa, and whether it prevents tracheal stenosis in an animal model of induced mucosal injury. A fusion gene-deleted, non-transmissible SeV vector encoding FIR (FIR-SeV/ΔF) was prepared. Rats with scraped airway mucosae were administered FIR-SeV/ΔF through the tracheostoma. The pathological changes in the airway mucosa and in the tracheal lumen were assessed five days after scraping. Untreated animals showed hyperplasia of the airway epithelium and a thickened submucosal layer with extensive fibrosis, angiogenesis, and collagen deposition causing lumen stenosis. By contrast, the administration of FIR-SeV/ΔF decreased the degree of tracheal stenosis (P < 0.05) and improved the survival rate (P < 0.05). Immunohistochemical staining showed that c-Myc expression was downregulated in the tracheal basal cells of the FIR-SeV/ΔF-treated animals, suggesting that c-myc was suppressed by FIR-SeV/ΔF in the regenerating airway epithelium of the injured tracheal mucosa. The airway-targeted gene therapy of the c-myc suppressor FIR, using a recombinant SeV vector, prevented tracheal stenosis in a rat model of airway mucosal injury.

  2. Changes in the phenotype of human small cell lung cancer cell lines after transfection and expression of the c-myc proto-oncogene.

    PubMed Central

    Johnson, B E; Battey, J; Linnoila, I; Becker, K L; Makuch, R W; Snider, R H; Carney, D N; Minna, J D

    1986-01-01

    Small cell lung cancer growing in cell culture possesses biologic properties that allow classification into two categories: classic and variant. Compared with classic small cell lung cancer cell lines, variant lines have altered large cell morphology, shorter doubling times, higher cloning efficiencies in soft agarose, and very low levels of L dopa decarboxylase production and bombesin-like immunoreactivity. C-myc is amplified and expressed in some small cell lung cancer cell lines and all c-myc amplified lines studied to date display the variant phenotype. To investigate if c-myc amplification and expression is responsible for the variant phenotype, a normal human c-myc gene was transfected into a cloned classic small cell lung cancer cell line not amplified for or expressing detectable c-myc messenger RNA (mRNA). Clones were isolated with one to six copies of c-myc stably integrated into DNA that expressed c-myc mRNA. In addition, one clone with an integrated neo gene but a deleted c-myc gene was isolated and in this case c-myc was not expressed. C-myc expression in transfected clones was associated with altered large cell morphology, a shorter doubling time, and increased cloning efficiency, but no difference in L dopa decarboxylase levels and bombesin-like immunoreactivity. We conclude increased c-myc expression observed here in transfected clones correlates with some of the phenotypic properties distinguishing c-myc amplified variants from unamplified classic small cell lung cancer lines. Images PMID:3016030

  3. Variant max protein, derived by alternative splicing, associates with c-Myc in vivo and inhibits transactivation

    SciTech Connect

    Arsura, M.; Deshpande, A.; Sonenshein, G.E.

    1995-12-01

    This report identifies a variant form of Myc-associated factor X (Max) protein, which plays a central role in the functional activity of c-Myc as a transcriptional activator. This variation, termed dMax, lacks the basic region as well as helix 1 and loop regions as a result of alternative splicing of max mRNA. This nuclear dMax was unable to bind E-box Myc site DNA but associated with c-Myc in vitro and in vivo and repressed transactivation. 42 refs., 8 figs.

  4. Phosphatidylcholine hydrolysis and c-myc expression are in collaborating mitogenic pathways activated by colony-stimulating factor 1.

    PubMed

    Xu, X X; Tessner, T G; Rock, C O; Jackowski, S

    1993-03-01

    Stimulation of diglyceride production via phospholipase C (PLC) hydrolysis of phosphatidylcholine was an early event in the mitogenic action of colony-stimulating factor 1 (CSF-1) in the murine macrophage cell line BAC1.2F5 and was followed by a second phase of diglyceride production that persisted throughout the G1 phase of the cell cycle. Addition of phosphatidylcholine-specific PLC (PC-PLC) from Bacillus cereus to the medium of quiescent cells raised the intracellular diglyceride concentration and stimulated [3H]thymidine incorporation, although PC-PLC did not support continuous proliferation. PC-PLC treatment did not induce tyrosine phosphorylation or turnover of the CSF-1 receptor. The major protein kinase C (PKC) isotype in BAC1.2F5 cells was PKC-delta. Diglyceride production from PC-PLC did not target PKC-delta, since unlike phorbol esters, PC-PLC treatment neither decreased the electrophoretic mobility of PKC-delta nor increased the amount of GTP bound to Ras, and PC-PLC was mitogenically active in BAC1.2F5 cells in which PKC-delta was downregulated by prolonged treatment with phorbol ester. PC-PLC mimicked CSF-1 action by elevating c-fos and junB mRNAs to 40% of the level induced by CSF-1; however, PC-PLC induced c-myc mRNA to only 5% of the level in CSF-1-stimulated cells. PC-PLC addition to CSF-1-dependent BAC1.2F5 clones that constitutively express c-myc increased [3H]thymidine incorporation to 86% of the level evoked by CSF-1 and supported slow growth in the absence of CSF-1. Therefore, PC-PLC is a component of a signal transduction pathway leading to transcription of c-fos and junB that collaborates with c-myc and is independent of PKC-delta and Ras activation.

  5. Survivin enhances telomerase activity via up-regulation of specificity protein 1- and c-Myc-mediated human telomerase reverse transcriptase gene transcription

    SciTech Connect

    Endoh, Teruo; Tsuji, Naoki; Asanuma, Koichi; Yagihashi, Atsuhito; Watanabe, Naoki . E-mail: watanabn@sapmed.ac.jp

    2005-05-01

    Suppression of apoptosis is thought to contribute to carcinogenesis. Survivin, a member of the inhibitor-of-apoptosis family, blocks apoptotic signaling activated by various cellular stresses. Since elevated expression of survivin observed in human cancers of varied origin was associated with poor patient survival, survivin has attracted growing attention as a potential target for cancer treatment. Immortalization of cells also is required for carcinogenesis; telomere length maintenance by telomerase is required for cancer cells to proliferate indefinitely. Yet how cancer cells activate telomerase remains unclear. We therefore examined possible interrelationships between survivin expression and telomerase activity. Correlation between survivin and human telomerase reverse transcriptase (hTERT) expression was observed in colon cancer tissues, and overexpression of survivin enhanced telomerase activity by up-regulation of hTERT expression in LS180 human colon cancer cells. DNA-binding activities of specificity protein 1 (Sp1) and c-Myc to the hTERT core promoter were increased in survivin gene transfectant cells. Phosphorylation of Sp1 and c-Myc at serine and threonine residues was enhanced by survivin, while total amounts of these proteins were unchanged. Further, 'knockdown' of survivin by a small inhibitory RNA decreased Sp1 and c-Myc phosphorylation. Thus survivin participates not only in inhibition of apoptosis, but also in prolonging cellular lifespan.

  6. Control of c-myc mRNA half-life in vitro by a protein capable of binding to a coding region stability determinant.

    PubMed

    Bernstein, P L; Herrick, D J; Prokipcak, R D; Ross, J

    1992-04-01

    Polysome-associated c-myc mRNA is degraded relatively rapidly in cells and in an in vitro mRNA decay system containing extracts from cultured mammalian cells. Using this system, a competition/screening assay was devised to search for factors that bind to specific regions of polysome-associated c-myc mRNA and thereby alter its half-life. mRNA stability was first assayed in reactions containing exogenous competitor RNAs corresponding to portions of c-myc mRNA itself. The addition of a 182-nucleotide sense strand fragment from the carboxy-terminal portion of the c-myc-coding region destabilized c-myc mRNA by at least eightfold. This RNA fragment had no effect on the stability of other mRNAs tested. Moreover, c-myc mRNA was not destabilized in reactions containing unrelated competitor RNAs or sense strand RNA from the c-myc 5' region. Polysome-associated globin mRNA containing the c-myc-coding region segment in-frame was also destabilized in vitro by the 182-nucleotide RNA. As determined by UV-cross-linking experiments, the 182-nucleotide RNA fragment was recognized by and bound to an approximately 75-kD polysome-associated protein. On the basis of these data plus Northern blotting analyses of c-myc mRNA decay products, we suggest that the approximately 75-kD protein is normally bound to a c-myc-coding region determinant and protects that region of the mRNA from endonuclease attack. Possible links between the protective protein, translation, ribosome pausing, and c-myc mRNA turnover are discussed.

  7. Endoglin inhibits ERK-induced c-Myc and cyclin D1 expression to impede endothelial cell proliferation

    SciTech Connect

    Pan, Christopher C.; Bloodworth, Jeffrey C.; Mythreye, Karthikeyan; Lee, Nam Y.

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Endoglin inhibits ERK activation in endothelial cells. Black-Right-Pointing-Pointer Endoglin is a regulator of c-Myc and cyclin D1 expression. Black-Right-Pointing-Pointer {beta}-arrestin2 interaction with endoglin is required for ERK/c-Myc repression. Black-Right-Pointing-Pointer Endoglin impedes cellular proliferation by targeting ERK-induced mitogenic signaling. -- Abstract: Endoglin is an endothelial-specific transforming growth factor beta (TGF-{beta}) co-receptor essential for angiogenesis and vascular remodeling. Endoglin regulates a wide range of cellular processes, including cell adhesion, migration, and proliferation, through TGF-{beta} signaling to canonical Smad and Smad-independent pathways. Despite its overall pro-angiogenic role in the vasculature, the underlying mechanism of endoglin action is poorly characterized. We previously identified {beta}-arrestin2 as a binding partner that causes endoglin internalization from the plasma membrane and inhibits ERK signaling towards endothelial migration. In the present study, we examined the mechanistic role of endoglin and {beta}-arrestin2 in endothelial cell proliferation. We show that endoglin impedes cell growth through sustained inhibition of ERK-induced c-Myc and cyclin D1 expression in a TGF-{beta}-independent manner. The down-regulation of c-Myc and cyclin D1, along with growth-inhibition, are reversed when the endoglin/{beta}-arrestin2 interaction is disrupted. Given that TGF-{beta}-induced Smad signaling potently represses c-Myc in most cell types, our findings here show a novel mechanism by which endoglin augments growth-inhibition by targeting ERK and key downstream mitogenic substrates.

  8. TATA-binding protein and the retinoblastoma gene product bind to overlapping epitopes on c-Myc and adenovirus E1A protein.

    PubMed Central

    Hateboer, G; Timmers, H T; Rustgi, A K; Billaud, M; van 't Veer, L J; Bernards, R

    1993-01-01

    Using a protein binding assay, we show that the amino-terminal 204 amino acids of the c-Myc protein interact directly with a key component of the basal transcription factor TFIID, the TATA box-binding protein (TBP). Essentially the same region of the c-Myc protein also binds the product of the retinoblastoma gene, the RB protein. c-Myc protein coimmunoprecipitates with TBP in lysates of mammalian cells, demonstrating that the proteins are also complexed in vivo. A short peptide that spans the RB binding site of the E7 protein of human papilloma virus type 16 interferes with the binding of c-Myc to TBP. The same peptide also blocks binding of adenovirus E1A protein to TBP, suggesting that c-Myc and E1A bind to RB and TBP through overlapping epitopes. Furthermore, we show that binding of RB to E1A prevents association of E1A with TBP. Our data suggest that one of the functions of RB and RB-like proteins is to prevent interaction of viral and cellular oncoproteins, such as c-Myc and E1A, with TBP. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:7690963

  9. NODAL DIFFUSE LARGE B-CELL LYMPHOMAS IN CHILDREN AND ADOLESCENTS: IMMUNOHISTOCHEMICAL EXPRESSION PATTERNS AND C-MYC TRANSLOCATION IN RELATION TO CLINICAL OUTCOME

    PubMed Central

    Gualco, Gabriela; Weiss, Lawrence M.; Harrington, William J.; Bacchi, Carlos E.

    2009-01-01

    Diffuse large B-cell lymphoma (DLBCL) is a very infrequent neoplasm in the pediatric age group; therefore there are very few studies on the immunophenotype or genetics of these cases. We studied a series of 16 patients with nodal DLBCL occurring in patients between 10 and 18 years of age. The cases were classified according to the 2008 World Health Organization classification criteria, with application of immunohistochemistry for the detection of CD10, BCL-6 and MUM1 proteins to divide the lymphomas into germinal center and non-germinal center types. In addition, TCL1, BCL-2 expression, and the Ki-67 proliferation index were evaluated by immunohistochemistry, and c-MYC and BCL-2 translocations were evaluated by FISH. All these parameters were correlated with clinical features and outcome. Our study revealed that centroblastic morphology and the germinal center type of DLBCL are more prevalent in these young patients (63%), with 37% containing a c-MYC translocation. Only one case showed a BCL-2 translocation, reflecting a double-hit case with features intermediate between DLBCL and Burkitt lymphoma. We found a higher frequency of BCL-2 expression than previously reported, with no direct influence on the outcome of the disease in univariate or multivariate analysis. The expression of TCL1 has not been specifically studied in nodal pediatric DLBCL before; we found a 31% incidence of TCL1 expression. MUM1 expression was observed in 44% of the cases and these positive cases showed a significant negative impact on clinical outcome. TCL1 is directly and significantly associated with the presence of c-MYC and a high proliferative index. The germinal center and non-germinal center subtypes showed significant differences for both overall survival and disease-free interval. C-MYC translocation was found in 37% of patients, and had a favorable impact on clinical outcome. We conclude that nodal pediatric and adolescent DLBCL are mainly of the germinal center type, with a

  10. Nodal diffuse large B-cell lymphomas in children and adolescents: immunohistochemical expression patterns and c-MYC translocation in relation to clinical outcome.

    PubMed

    Gualco, Gabriela; Weiss, Lawrence M; Harrington, William J; Bacchi, Carlos E

    2009-12-01

    Diffuse large B-cell lymphoma (DLBCL) is a very infrequent neoplasm in the pediatric age group; therefore there are very few studies on the immunophenotype or genetics of these cases. We studied a series of 16 patients with nodal DLBCL occurring in patients between 10 and 18 years of age. The cases were classified according to the 2008 World Health Organization classification criteria, with application of immunohistochemistry for the detection of CD10, BCL-6, and MUM1 proteins to divide the lymphomas into germinal center and nongerminal center types. In addition, TCL1, BCL-2 expression, and the Ki-67 proliferation index were evaluated by immunohistochemistry, and c-MYC and BCL2 translocations were evaluated by fluorescence in situ hybridization. All these parameters were correlated with clinical features and outcome. Our study revealed that centroblastic morphology and the germinal center type of DLBCL are more prevalent in these young patients (63%), with 37% containing a c-MYC translocation. Only 1 case showed a BCL2 translocation, reflecting a double-hit case with features intermediate between DLBCL and Burkitt lymphoma. We found a higher frequency of BCL-2 expression than previously reported, with no direct influence on the outcome of the disease in univariate or multivariate analysis. The expression of TCL1 has not been specifically studied in nodal pediatric DLBCL before; we found a 31% incidence of TCL1 expression. MUM1 expression was observed in 44% of the cases and these positive cases showed a significant negative impact on clinical outcome. TCL1 is directly and significantly associated with the presence of c-MYC and a high proliferative index. The germinal center and nongerminal center subtypes showed significant differences for both overall survival and disease-free interval. c-MYC translocation was found in 37% of patients, and had a favorable impact on clinical outcome. We conclude that nodal pediatric and adolescent DLBCL are mainly of the germinal

  11. Sodium arsenite alters cell cycle and MTHFR, MT1/2, and c-Myc protein levels in MCF-7 cells

    SciTech Connect

    Ruiz-Ramos, Ruben; Lopez-Carrillo, Lizbeth; Albores, Arnulfo; Hernandez-Ramirez, Raul U.; Cebrian, Mariano E.

    2009-12-15

    There is limited available information on the effects of arsenic on enzymes participating in the folate cycle. Therefore, our aim was to evaluate the effects of sodium arsenite on the protein levels of methylenetetrahydrofolate reductase (MTHFR) and dihydrofolate reductase (DHFR) and its further relationship with the expression MT1/2 and c-myc in MCF-7 cells. Arsenite treatment (0-10 muM) for 4 h decreased MTHFR levels in a concentration-dependent fashion without significant effects on DHFR. The effects on MTHFR were observed at arsenite concentrations not significantly affecting cell viability. We also observed an increase in S-phase recruitment at all concentrations probed. Lower concentrations (< 5 muM) induced cell proliferation, showing a high proportion of BrdU-stained cells, indicating a higher DNA synthesis rate. However, higher concentrations (>= 5 muM) or longer treatment periods induced apoptosis. Arsenite also induced dose-dependent increases in MT1/2 and c-Myc protein levels. The levels of MTHFR were inversely correlated to MT1/2 and c-Myc overexpression and increased S-phase recruitment. Our findings indicate that breast epithelial cells are responsive to arsenite and suggest that exposure may pose a risk for breast cancer. The reductions in MTHFR protein levels contribute to understand the mechanisms underlying the induction of genes influencing growth regulation, such as c-myc and MT1/2. However, further research is needed to ascertain if the effects here reported following short-time and high-dose exposure are relevant for human populations chronically exposed to low arsenic concentrations.

  12. Equol, an isoflavone metabolite, regulates cancer cell viability and protein synthesis initiation via c-Myc and eIF4G.

    PubMed

    de la Parra, Columba; Borrero-Garcia, Luis D; Cruz-Collazo, Ailed; Schneider, Robert J; Dharmawardhane, Suranganie

    2015-03-01

    Epidemiological studies implicate dietary soy isoflavones as breast cancer preventives, especially due to their anti-estrogenic properties. However, soy isoflavones may also have a role in promoting breast cancer, which has yet to be clarified. We previously reported that equol, a metabolite of the soy isoflavone daidzein, may advance breast cancer potential via up-regulation of the eukaryotic initiation factor 4GI (eIF4GI). In estrogen receptor negative (ER-) metastatic breast cancer cells, equol induced elevated levels of eIF4G, which were associated with increased cell viability and the selective translation of mRNAs that use non-canonical means of initiation, including internal ribosome entry site (IRES), ribosome shunting, and eIF4G enhancers. These mRNAs typically code for oncogenic, survival, and cell stress molecules. Among those mRNAs translationally increased by equol was the oncogene and eIF4G enhancer, c-Myc. Here we report that siRNA-mediated knockdown of c-Myc abrogates the increase in cancer cell viability and mammosphere formation by equol, and results in a significant down-regulation of eIF4GI (the major eIF4G isoform), as well as reduces levels of some, but not all, proteins encoded by mRNAs that are translationally stimulated by equol treatment. Knockdown of eIF4GI also markedly reduces an equol-mediated increase in IRES-dependent mRNA translation and the expression of specific oncogenic proteins. However, eIF4GI knockdown did not reciprocally affect c-Myc levels or cell viability. This study therefore implicates c-Myc as a potential regulator of the cancer-promoting effects of equol via up-regulation of eIF4GI and selective initiation of translation on mRNAs that utilize non-canonical initiation, including certain oncogenes. PMID:25593313

  13. Cellular nucleic-acid-binding protein, a transcriptional enhancer of c-Myc, promotes the formation of parallel G-quadruplexes.

    PubMed

    Borgognone, Mariana; Armas, Pablo; Calcaterra, Nora B

    2010-06-15

    G-rich sequences that contain stretches of tandem guanines can form four-stranded, intramolecular stable DNA structures called G-quadruplexes (termed G4s). Regulation of the equilibrium between single-stranded and G4 DNA in promoter regions is essential for control of gene expression in the cell. G4s are highly stable structures; however, their folding kinetics are slow under physiological conditions. CNBP (cellular nucleic-acid-binding protein) is a nucleic acid chaperone that binds the G4-forming G-rich sequence located within the NHE (nuclease hypersensitivity element) III of the c-Myc proto-oncogene promoter. Several reports have demonstrated that CNBP enhances the transcription of c-Myc in vitro and in vivo; however, none of these reports have assessed the molecular mechanisms responsible for this control. In the present study, by means of Taq polymerase stop assays, electrophoretic mobility-shift assays and CD spectroscopy, we show that CNBP promotes the formation of parallel G4s to the detriment of anti-parallel G4s, and its nucleic acid chaperone activity is required for this effect. These findings are the first to implicate CNBP as a G4-folding modulator and, furthermore, assign CNBP a novel mode-of-action during c-Myc transcriptional regulation.

  14. c-Abl is an effector of Src for growth factor-induced c-myc expression and DNA synthesis

    PubMed Central

    Furstoss, Olivia; Dorey, Karel; Simon, Valérie; Barilà, Daniela; Superti-Furga, Giulio; Roche, Serge

    2002-01-01

    The mechanism by which the ubiquitously expressed Src family kinases regulate mitogenesis is not well understood. Here we report that cytoplasmic tyrosine kinase c-Abl is an important effector of c-Src for PDGF- and serum-induced DNA synthesis. Inactivation of cytoplasmic c-Abl by the kinase- inactive Abl-PP-K– (AblP242E/P249E/K290M) or by microinjection of Abl neutralizing antibodies inhibited mitogenesis. The kinase-inactive SrcK295M induced a G1 block that was overcome by the constitutively active Abl-PP (AblP242E/P249E). Conversely, the inhibitory effect of Abl-PP-K– was not compensated by Src. c-Src-induced c-Abl activation involves phosphorylation of Y245 and Y412, two residues required for c-Abl mitogenic function. Finally, we found that p53 inactivation and c-myc expression, two cell cycle events regulated by Src during mitogenesis, also implied c-Abl: c-Abl function was dispensable in cells deficient in active p53 and inhibition of c-Abl reduced mitogen-induced c-myc expression. These data identify a novel function of cytoplasmic c-Abl in the signalling pathways regulating growth factor-induced c-myc expression and we propose the existence of a tyro sine kinase signalling cascade (PDGFR/c-Src/c-Abl) important for mitogenesis. PMID:11847100

  15. Role of calcium in prolactin-stimulated c-myc gene expression and mitogenesis in Nb2 lymphoma cells

    SciTech Connect

    Murphy, P.R.; DiMattia, G.E.; Friesen, H.G.

    1988-06-01

    Receptor-activated transmembrane calcium flux has been implicated as a mediator of the actions of many growth factors and hormones. We examined the effects of PRL, calcium ionophores, and calcium antagonists on /sup 45/Ca2+ flux, c-myc gene expression, and DNA synthesis in the PRL-dependent rat Nb2 lymphoma cell line. PRL had no detectable effects on /sup 45/Ca2+ uptake or efflux, and the mitogenic effects of PRL could not be reproduced by the calcium ionophore A23187 alone or in combination with the tumor-promoting phorbol ester 12-O-tetra-decanoyl-phorbol-13 acetate (TPA). PRL, but not A23187 or TPA, stimulated c-myc gene expression in quiescent Nb2 cells. Exposure to PRL for brief periods (15 min to 4 h), followed by extensive washing, resulted in a time- and dose-dependent activation of DNA synthesis measured 16 h later. This activation was not blocked by addition of excess anti-PRL antiserum after the wash steps, indicating that the observed stimulation was not due to residual PRL. Despite the marked increase in DNA synthesis, removal of PRL after 4 h prevented mitosis, suggesting that PRL may be required throughout the cell cycle for Nb2 cell proliferation. Although continuous incubation with calcium antagonists resulted in a dose-dependent inhibition of PRL-stimulated DNA synthesis, activation of DNA synthesis by brief exposure to PRL was not inhibited by the presence of EGTA, calcium channel blockers (nifedipine, cobalt chloride), or calmodulin inhibitors (trifluoperazine, N-6-aminohexyl-5-chloronaphthalene sulfonamide). PRL-stimulated c-myc expression was attenuated, but not blocked, by the calcium channel antagonists. However, the putative intracellular calcium antagonist TMB-8 inhibited both c-myc expression and DNA synthesis in a dose-dependent manner (IC50 = 16 microM).

  16. The Cellular Protein Complex Associated with a Transforming Region of E1A Contains c-MYC

    PubMed Central

    Vijayalingam, S.; Subramanian, T.; Zhao, Ling-jun

    2015-01-01

    ABSTRACT The cell-transforming activity of human adenovirus 5 (hAd5) E1A is mediated by the N-terminal half of E1A, which interacts with three different major cellular protein complexes, p300/CBP, TRRAP/p400, and pRb family members. Among these protein interactions, the interaction of pRb family proteins with conserved region 2 (CR2) of E1A is known to promote cell proliferation by deregulating the activities of E2F family transcription factors. The functional consequences of interaction with the other two protein complexes in regulating the transforming activity of E1A are not well defined. Here, we report that the E1A N-terminal region also interacted with the cellular proto-oncoprotein c-MYC and the homolog of enhancer of yellow 2 (ENY2). Our results suggested that these proteins interacted with an essential E1A transforming domain spanning amino acid residues 26 to 35 which also interacted with TRRAP and p400. Small interfering RNA (siRNA)-mediated depletion of TRRAP reduced c-MYC interaction with E1A, while p400 depletion did not. In contrast, depletion of TRRAP enhanced ENY2 interaction with E1A, suggesting that ENY2 and TRRAP may interact with E1A in a competitive manner. The same E1A region additionally interacted with the constituents of a deubiquitinase complex consisting of USP22, ATXN7, and ATXN7L3 via TRRAP. Acute short hairpin RNA (shRNA)-mediated depletion of c-MYC reduced the E1A transforming activity, while depletion of ENY2 and MAX did not. These results suggested that the association of c-MYC with E1A may, at least partially, play a role in the E1A transformation activity, independently of MAX. IMPORTANCE The transforming region of adenovirus E1A consists of three short modules which complex with different cellular protein complexes. The mechanism by which one of the transforming modules, CR2, promotes cell proliferation, through inactivating the activities of the pRb family proteins, is better understood than the activities of the other domains

  17. Extra c-myc oncogene copies in high risk cutaneous malignant melanoma and melanoma metastases

    PubMed Central

    Kraehn, G M; Utikal, J; Udart, M; Greulich, K M; Bezold, G; Kaskel, P; Leiter, U; Peter, R U

    2001-01-01

    Amplification and overexpression of the c-myc gene have been associated with neoplastic transformation in a plethora of malignant tumours. We applied interphase fluorescence in situ hybridization (FISH) with a locus-specific probe for the c-myc gene (8q24) in combination with a corresponding chromosome 8 α-satellite probe to evaluate genetic alterations in 8 primary melanomas and 33 advanced melanomas and compared it to 12 melanocytic nevi, 7 safety margins and 2 cases of normal skin. Additionally, in metaphase spreads of 7 melanoma cell lines a whole chromosome 8 paint probe was used. We investigated the functionality of the c-myc gene by detecting c-myc RNA expression with RT-PCR and c-myc protein by immunohistochemistry. 4/8 primary melanomas and 11/33 melanoma metastases showed additional c-myc signals relative to the centromere of chromosome 8 copy number. None of the nevi, safety margins or normal skin samples demonstrated this gain. In 2/7 melanoma cell lines (C32 and WM 266–4) isochromosome 8q formation with a relative gain of c-myc copies and a loss of 8p was observed. The highest c-myc gene expression compared to GAPDH was found in melanoma metastases (17.5%). Nevi (6.6%) and primary melanomas (5.0%) expressed the c-myc gene on a lower level. 72.7% of the patients with c-myc extra copies had visceral melanoma metastases (UICC IV), patients without c-myc gain in 35.0% only. The collective with additional c-myc copies also expressed the gene on a significantly higher level. These results indicate that a c-myc gain in relation to the centromere 8 copy number might be associated with advanced cutaneous melanoma. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11139316

  18. Blocking c-myc and stat3 by E. coli expressed and enzyme digested siRNA in mouse melanoma

    SciTech Connect

    Hong Jie; Zhao Yingchun; Huang Weida . E-mail: whuang@fudan.edu.cn

    2006-09-22

    Tumour cells often show alteration in the signal-transduction pathways, leading to proliferation in response to external signals. Oncogene overexpression and constitutive expression is a common phenomenon in the development and progression of many human cancers. Therefore oncogenes provide potential targets for cancer therapy. RNA interference (RNAi), mediated by small interfering RNA (siRNA), silences genes with a high degree of specificity and potentially represents a general approach for molecularly targeted anti-cancer therapy. The data presented in this report evaluated the method of systemically administering combined esiRNAs to multiple targets as compared with the method of using a single kind of esiRNA to a single target. Our experimental data revealed that the mixed treatment of esiC-MYC and esiSTAT3 had a better inhibition effect than the single treatment of esiC-MYC or esiSTAT3 on mouse B16 melanoma.

  19. Tumor suppressor NDRG2 inhibits glycolysis and glutaminolysis in colorectal cancer cells by repressing c-Myc expression.

    PubMed

    Xu, Xinyuan; Li, Jianying; Sun, Xiang; Guo, Yan; Chu, Dake; Wei, Li; Li, Xia; Yang, Guodong; Liu, Xinping; Yao, Libo; Zhang, Jian; Shen, Lan

    2015-09-22

    Cancer cells use glucose and glutamine as the major sources of energy and precursor intermediates, and enhanced glycolysis and glutamimolysis are the major hallmarks of metabolic reprogramming in cancer. Oncogene activation and tumor suppressor gene inactivation alter multiple intracellular signaling pathways that affect glycolysis and glutaminolysis. N-Myc downstream regulated gene 2 (NDRG2) is a tumor suppressor gene inhibiting cancer growth, metastasis and invasion. However, the role and molecular mechanism of NDRG2 in cancer metabolism remains unclear. In this study, we discovered the role of the tumor suppressor gene NDRG2 in aerobic glycolysis and glutaminolysis of cancer cells. NDRG2 inhibited glucose consumption and lactate production, glutamine consumption and glutamate production in colorectal cancer cells. Analysis of glucose transporters and the catalytic enzymes involved in glycolysis revealed that glucose transporter 1 (GLUT1), hexokinase 2 (HK2), pyruvate kinase M2 isoform (PKM2) and lactate dehydrogenase A (LDHA) was significantly suppressed by NDRG2. Analysis of glutamine transporter and the catalytic enzymes involved in glutaminolysis revealed that glutamine transporter ASC amino-acid transporter 2 (ASCT2) and glutaminase 1 (GLS1) was also significantly suppressed by NDRG2. Transcription factor c-Myc mediated inhibition of glycolysis and glutaminolysis by NDRG2. More importantly, NDRG2 inhibited the expression of c-Myc by suppressing the expression of β-catenin, which can transcriptionally activate C-MYC gene in nucleus. In addition, the growth and proliferation of colorectal cancer cells were suppressed significantly by NDRG2 through inhibition of glycolysis and glutaminolysis. Taken together, these findings indicate that NDRG2 functions as an essential regulator in glycolysis and glutaminolysis via repression of c-Myc, and acts as a suppressor of carcinogenesis through coordinately targeting glucose and glutamine transporter, multiple catalytic

  20. Targeting c-MYC in Platinum-Resistant Ovarian Cancer.

    PubMed

    Reyes-González, Jeyshka M; Armaiz-Peña, Guillermo N; Mangala, Lingegowda S; Valiyeva, Fatma; Ivan, Cristina; Pradeep, Sunila; Echevarría-Vargas, Ileabett M; Rivera-Reyes, Adrian; Sood, Anil K; Vivas-Mejía, Pablo E

    2015-10-01

    The purpose of this study was to investigate the molecular and therapeutic effects of siRNA-mediated c-MYC silencing in cisplatin-resistant ovarian cancer. Statistical analysis of patient's data extracted from The Cancer Genome Atlas (TCGA) portal showed that the disease-free (DFS) and the overall (OS) survival were decreased in ovarian cancer patients with high c-MYC mRNA levels. Furthermore, analysis of a panel of ovarian cancer cell lines showed that c-MYC protein levels were higher in cisplatin-resistant cells when compared with their cisplatin-sensitive counterparts. In vitro cell viability, growth, cell-cycle progression, and apoptosis, as well as in vivo therapeutic effectiveness in murine xenograft models, were also assessed following siRNA-mediated c-MYC silencing in cisplatin-resistant ovarian cancer cells. Significant inhibition of cell growth and viability, cell-cycle arrest, and activation of apoptosis were observed upon siRNA-mediated c-MYC depletion. In addition, single weekly doses of c-MYC-siRNA incorporated into 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG-2000)-based nanoliposomes resulted in significant reduction in tumor growth. These findings identify c-MYC as a potential therapeutic target for ovarian cancers expressing high levels of this oncoprotein. PMID:26227489

  1. Overexpression of c-Myc alters G(1)/S arrest following ionizing radiation.

    PubMed

    Sheen, Joon-Ho; Dickson, Robert B

    2002-03-01

    Study of the mechanism(s) of genomic instability induced by the c-myc proto-oncogene has the potential to shed new light on its well-known oncogenic activity. However, an underlying mechanism(s) for this phenotype is largely unknown. In the present study, we investigated the effects of c-Myc overexpression on the DNA damage-induced G(1)/S checkpoint, in order to obtain mechanistic insights into how deregulated c-Myc destabilizes the cellular genome. The DNA damage-induced checkpoints are among the primary safeguard mechanisms for genomic stability, and alterations of cell cycle checkpoints are known to be crucial for certain types of genomic instability, such as gene amplification. The effects of c-Myc overexpression were studied in human mammary epithelial cells (HMEC) as one approach to understanding the c-Myc-induced genomic instability in the context of mammary tumorigenesis. Initially, flow-cytometric analyses were used with two c-Myc-overexpressing, nontransformed immortal lines (184A1N4 and MCF10A) to determine whether c-Myc overexpression leads to alteration of cell cycle arrest following ionizing radiation (IR). Inappropriate entry into S phase was then confirmed with a bromodeoxyuridine incorporation assay measuring de novo DNA synthesis following IR. Direct involvement of c-Myc overexpression in alteration of the G(1)/S checkpoint was then confirmed by utilizing the MycER construct, a regulatable c-Myc. A transient excess of c-Myc activity, provided by the activated MycER, was similarly able to induce the inappropriate de novo DNA synthesis following IR. Significantly, the transient expression of full-length c-Myc in normal mortal HMECs also facilitated entry into S phase and the inappropriate de novo DNA synthesis following IR. Furthermore, irradiated, c-Myc-infected, normal HMECs developed a sub-G(1) population and a >4N population of cells. The c-Myc-induced alteration of the G(1)/S checkpoint was also compared to the effects of expression of MycS (N

  2. Deregulation of c-myc gene expression in human colon carcinoma is not accompanied by amplification or rearrangement of the gene.

    PubMed Central

    Erisman, M D; Rothberg, P G; Diehl, R E; Morse, C C; Spandorfer, J M; Astrin, S M

    1985-01-01

    The structure and expression of the c-myc oncogene were examined in 29 primary human colon adenocarcinomas. Dot blot hybridization of total RNA showed that 21 tumors (72%) had considerably elevated expression of c-myc (5- to 40-fold) relative to normal colonic mucosa. These data were corroborated by Northern blots of polyadenylated RNA, which showed a 2.3-kilobase transcript. Southern analysis of the c-myc locus in these tumors indicated the absence of amplification or DNA rearrangement in a 35-kilobase region encompassing the gene. In a parallel study, elevated expression of c-myc without amplification or DNA rearrangement was also observed in three of six colon carcinoma cell lines examined; in addition, unlike a normal colon cell line control, these three cell lines exhibited constitutive, high-level expression of the gene during their growth in cultures. These results indicate that elevated expression of the c-myc oncogene occurs frequently in primary human colon carcinomas and that the mechanism involved in the regulation of c-myc expression is altered in tumor-derived cell lines. Images PMID:3837853

  3. Rictor regulates FBXW7-dependent c-Myc and cyclin E degradation in colorectal cancer cells

    SciTech Connect

    Guo, Zheng; Zhou, Yuning; Evers, B. Mark; Wang, Qingding

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Rictor associates with FBXW7 to form an E3 complex. Black-Right-Pointing-Pointer Knockdown of rictor decreases ubiquitination of c-Myc and cylin E. Black-Right-Pointing-Pointer Knockdown of rictor increases protein levels of c-Myc and cylin E. Black-Right-Pointing-Pointer Overexpression of rictor induces the degradation of c-Myc and cyclin E proteins. Black-Right-Pointing-Pointer Rictor regulation of c-Myc and cyclin E requires FBXW7. -- Abstract: Rictor (Rapamycin-insensitive companion of mTOR) forms a complex with mTOR and phosphorylates and activates Akt. Activation of Akt induces expression of c-Myc and cyclin E, which are overexpressed in colorectal cancer and play an important role in colorectal cancer cell proliferation. Here, we show that rictor associates with FBXW7 to form an E3 complex participating in the regulation of c-Myc and cyclin E degradation. The Rictor-FBXW7 complex is biochemically distinct from the previously reported mTORC2 and can be immunoprecipitated independently of mTORC2. Moreover, knocking down of rictor in serum-deprived colorectal cancer cells results in the decreased ubiquitination and increased protein levels of c-Myc and cyclin E while overexpression of rictor induces the degradation of c-Myc and cyclin E proteins. Genetic knockout of FBXW7 blunts the effects of rictor, suggesting that rictor regulation of c-Myc and cyclin E requires FBXW7. Our findings identify rictor as an important component of FBXW7 E3 ligase complex participating in the regulation of c-Myc and cyclin E protein ubiquitination and degradation. Importantly, our results suggest that elevated growth factor signaling may contribute to decrease rictor/FBXW7-mediated ubiquitination of c-Myc and cyclin E, thus leading to accumulation of cyclin E and c-Myc in colorectal cancer cells.

  4. Induction of c-myc and c-jun proto-oncogene expression in rat L6 myoblasts by cadmium is inhibited by zinc preinduction of the metallothionein gene

    SciTech Connect

    Abshire, M.K.; Buzard, G.S.; Shiraishi, Noriyuki; Waalkers, M.P.

    1996-07-01

    Certain proto-oncogenes transfer growth regulatory signals from the cell surface to the nucleus. These genes often show activation soon after cells are exposed to mitogenic stimulation but can also be activated as a nonmitogenic stress response. Cadmium (Cd) is a carcinogenic metal in humans and rodents and, though its mechanism of action is unknown, it could involve activation of such proto-oncogenes. Metallothionein (MT), a metal-inducible protein that binds Cd, can protect against many aspects of Cd toxicity, including genotoxicity and possibly carcinogenesis. Thus, the effects of Cd on expression of c-myc and c-jun in rat L6 myoblasts, and the effect of preactivation of the MT gene by Zn treatment on such oncogene expression, were studied. MT protein levels were measured using oligonucleotide hybridization and standardized to {beta}-actin levels. Cd (5 {mu}M CdCl{sub 2}, 0-30 h) stimulated both c-myc and c-jun mRNA expression. An initial peak of activation of c-myc expression occurred 2 h after initiation of Cd exposure, and levels remained elevated throughout the assessment period. Zn pretreatment markedly reduced the activation of c-myc expression by Cd compared to cells not receiving Zn pretreatment. Cd treatment increased c-jun mRNA levels by up to 3.5-fold. Again, Zn pretreatment markedly reduced. 10 refs., 8 figs.

  5. Mutations in NEK8 link multiple organ dysplasia with altered Hippo signalling and increased c-MYC expression.

    PubMed

    Frank, Valeska; Habbig, Sandra; Bartram, Malte P; Eisenberger, Tobias; Veenstra-Knol, Hermine E; Decker, Christian; Boorsma, Reinder A C; Göbel, Heike; Nürnberg, Gudrun; Griessmann, Anabel; Franke, Mareike; Borgal, Lori; Kohli, Priyanka; Völker, Linus A; Dötsch, Jörg; Nürnberg, Peter; Benzing, Thomas; Bolz, Hanno J; Johnson, Colin; Gerkes, Erica H; Schermer, Bernhard; Bergmann, Carsten

    2013-06-01

    Mutations affecting the integrity and function of cilia have been identified in various genes over the last decade accounting for a group of diseases called ciliopathies. Ciliopathies display a broad spectrum of phenotypes ranging from mild manifestations to lethal combinations of multiple severe symptoms and most of them share cystic kidneys as a common feature. Our starting point was a consanguineous pedigree with three affected fetuses showing an early embryonic phenotype with enlarged cystic kidneys, liver and pancreas and developmental heart disease. By genome-wide linkage analysis, we mapped the disease locus to chromosome 17q11 and identified a homozygous nonsense mutation in NEK8/NPHP9 that encodes a kinase involved in ciliary dynamics and cell cycle progression. Missense mutations in NEK8/NPHP9 have been identified in juvenile cystic kidney jck mice and in patients suffering from nephronophthisis (NPH), an autosomal-recessive cystic kidney disease. This work confirmed a complete loss of NEK8 expression in the affected fetuses due to nonsense-mediated decay. In cultured fibroblasts derived from these fetuses, the expression of prominent polycystic kidney disease genes (PKD1 and PKD2) was decreased, whereas the oncogene c-MYC was upregulated, providing potential explanations for the observed renal phenotype. We furthermore linked NEK8 with NPHP3, another NPH protein known to cause a very similar phenotype in case of null mutations. Both proteins interact and activate the Hippo effector TAZ. Taken together, our study demonstrates that NEK8 is essential for organ development and that the complete loss of NEK8 perturbs multiple signalling pathways resulting in a severe early embryonic phenotype.

  6. Combined serum and tissue proteomic study applied to a c-Myc transgenic mouse model of hepatocellular carcinoma identified novel disease regulated proteins suitable for diagnosis and therapeutic intervention strategies.

    PubMed

    Ritorto, Maria Stella; Borlak, Jürgen

    2011-07-01

    Hepatocellular carcinoma (HCC) is the third leading cause of cancer death in the U.S. Notably, most HCCs display c-Myc hyperactivity but this transcription factor participates in the regulation of as many as 15-20% of genes of the human genome. To better understand its oncogenic activity, a mass spectrometry-based proteomic approach was employed to search for disease-regulated proteins in liver tissue and serum of c-Myc transgenic mice that specifically developed HCC. Overall, a total of 90 differentially expressed proteins were identified with retinol binding protein 4, transthyretin, major urinary protein family, apolipoprotein E, and glutathione peroxidase being regulated in common in tissue and serum of HCC mice. Importantly, this study identified n = 22 novel tumor tissue-regulated proteins to function in cell cycle and proliferation, nucleotide and ribosomal biogenesis, oxidative stress, and GSH metabolism, while bioinformatics revealed the coding sequences of regulated proteins to enharbour c-Myc binding sites. Translation of the findings to human disease was achieved by Western immunoblotting of serum proteins and by immunohistochemistry of human HCC. Taken collectively, our study helps to define a c-Myc proteome suitable for diagnostic and possible therapeutic intervention strategies.

  7. Reversal by RARα agonist Am580 of c-Myc-induced imbalance in RARα/RARγ expression during MMTV-Myc tumorigenesis

    PubMed Central

    2012-01-01

    Introduction Retinoic acid signaling plays key roles in embryonic development and in maintaining the differentiated status of adult tissues. Recently, the nuclear retinoic acid receptor (RAR) isotypes α, β and γ were found to play specific functions in the expansion and differentiation of the stem compartments of various tissues. For instance, RARγ appears to be involved in stem cell compartment expansion, while RARα and RARβ are implicated in the subsequent cell differentiation. We found that over-expressing c-Myc in normal mouse mammary epithelium and in a c-Myc-driven transgenic model of mammary cancer, disrupts the balance between RARγ and RARα/β in favor of RARγ. Methods The effects of c-Myc on RAR isotype expression were evaluated in normal mouse mammary epithelium, mammary tumor cells obtained from the MMTV-Myc transgenic mouse model as well as human normal immortalized breast epithelial and breast cancer cell lines. The in vivo effect of the RARα-selective agonist 4-[(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthyl)carboxamido]benzoic acid (Am580) was examined in the MMTV-Myc mouse model of mammary tumorigenesis. Results Modulation of the RARα/β to RARγ expression in mammary glands of normal mice, oncomice, and human mammary cell lines through the alteration of RAR-target gene expression affected cell proliferation, survival and tumor growth. Treatment of MMTV-Myc mice with the RARα-selective agonist Am580 led to significant inhibition of mammary tumor growth (~90%, P<0.001), lung metastasis (P<0.01) and extended tumor latency in 63% of mice. Immunocytochemical analysis showed that in these mice, RARα responsive genes such as Cyp26A1, E-cadherin, cellular retinol-binding protein 1 (CRBP1) and p27, were up-regulated. In contrast, the mammary gland tumors of mice that responded poorly to Am580 treatment (37%) expressed significantly higher levels of RARγ. In vitro experiments indicated that the rise in RARγ was functionally linked to

  8. Macrophage growth arrest by cyclic AMP defines a distinct checkpoint in the mid-G1 stage of the cell cycle and overrides constitutive c-myc expression.

    PubMed

    Rock, C O; Cleveland, J L; Jackowski, S

    1992-05-01

    Proliferation of a murine macrophage cell line (BAC1.2F5) in response to colony-stimulating factor 1 (CSF-1) is inhibited by prostaglandin E2 (PGE2)-mediated elevation of intracellular cyclic AMP (cAMP). When BAC1.2F5 cells were growth arrested in early G1 by CSF-1 starvation and stimulated to synchronously enter the cell cycle by readdition of growth factor, PGE2 inhibited [3H]thymidine incorporation when added before mid-G1, but its addition at later times did not block the onset of S phase. Reversible cell cycle arrest mediated by a cAMP analog required the presence of CSF-1 for cells to initiate DNA synthesis, whereas cells released from an aphidicolin block at the G1/S boundary entered S phase in the absence of CSF-1. PGE2 or cAMP analogs did not block the initial induction of c-myc mRNA by CSF-1 but abolished the CSF-1-dependent expression of c-myc mRNA in the mid-G1 stage of the cell cycle. The cAMP-mediated reduction in c-myc RNA levels was due to decreased c-myc transcription. However, CSF-1-dependent BAC1.2F5 clones infected with a c-myc retrovirus were growth arrested by cAMP analogs despite constitutive c-myc expression. Therefore, the reduction of endogenous c-myc expression by cAMP is neither necessary nor sufficient for growth inhibition.

  9. Thermodynamics of Protein–Protein Interactions of cMyc, Max, and Mad: Effect of Polyions on Protein Dimerization†

    PubMed Central

    Banerjee, Anamika; Hu, Jianzhong; Goss, Dixie J.

    2010-01-01

    The Myc–Max–Mad network of proteins activates or represses gene transcription depending on whether the dimerization partner of Max is c-Myc or Mad. To elucidate the physical properties of these protein–protein interactions, fluorescence anisotropy of TRITC-labeled Max was used. The binding affinities and thermodynamics of dimerization of the Max–Max homodimer and c-Myc–Max and Mad–Max heterodimers were determined. Our results indicate that c-Myc and Max form the most stable heterodimer. Previous work [Kohler, J. J., Metallo, S. J., Schneider, T. L., and Schepartz, A. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 11735–9] has shown that instead of dimerizing first and then binding to DNA, these proteins use a monomer pathway in which a monomer binds to DNA followed by dimerization on the surface of the DNA. The DNA E-box affects the dimerization, but nonspecific effects may also play a role. The influence of polyions, poly-l-lysine and poly-l-glutamic acid, were investigated to determine the effects of charged polymers other than DNA on homodimerization and heterodimerization. While the positively charged poly-l-lysine, PLL, did not show any significant effect, negatively charged poly-l-glutamic acid, PLG, stabilized both heterodimers and homodimers by 2–3 kJ/mol. These data suggest that in the cell nucleus the presence of negatively charged DNA or RNA could nonspecifically aid in association of these proteins. Calculations of ΔH° and ΔS° from the temperature dependence of Kd indicated that although the thermodynamic parameters for the dimer are different, the reactions for all three dimers are driven by negative (favorable) enthalpic and negative (unfavorable) entropic contributions. In the presence of PLG, entropy became more negative with the effect being largest for c-Myc–Max heterodimers. This suggests that van der Waals and H-bonding interactions are predominant in dimerization of these proteins. PMID:16475822

  10. Nickel compounds induce apoptosis in human bronchial epithelial Beas-2B cells by activation of c-Myc through ERK pathway

    SciTech Connect

    Li Qin; Suen, T.-C.; Sun Hong; Arita, Adriana; Costa, Max

    2009-03-01

    Nickel compounds are carcinogenic to humans and have been shown to alter epigenetic homeostasis. The c-Myc protein controls 15% of human genes and it has been shown that fluctuations of c-Myc protein alter global epigenetic marks. Therefore, the regulation of c-Myc by nickel ions in immortalized but not tumorigenic human bronchial epithelial Beas-2B cells was examined in this study. It was found that c-Myc protein expression was increased by nickel ions in non-tumorigenic Beas-2B and human keratinocyte HaCaT cells. The results also indicated that nickel ions induced apoptosis in Beas-2B cells. Knockout of c-Myc and its restoration in a rat cell system confirmed the essential role of c-Myc in nickel ion-induced apoptosis. Further studies in Beas-2B cells showed that nickel ion increased the c-Myc mRNA level and c-Myc promoter activity, but did not increase c-Myc mRNA and protein stability. Moreover, nickel ion upregulated c-Myc in Beas-2B cells through the MEK/ERK pathway. Collectively, the results demonstrate that c-Myc induction by nickel ions occurs via an ERK-dependent pathway and plays a crucial role in nickel-induced apoptosis in Beas-2B cells.

  11. Integrin α1β1 expression is controlled by c-MYC in colorectal cancer cells

    PubMed Central

    Boudjadi, S; Carrier, J C; Groulx, J-F; Beaulieu, J-F

    2016-01-01

    The α1β1 collagen receptor is only present in a few epithelial cell types. In the intestine, it is specifically expressed in proliferating crypt cells. This integrin has been reported to be involved in various cancers where it mediates the downstream activation of the Ras/ERK proliferative pathway. We have recently shown that integrin α1β1 is present in two-thirds of colon adenocarcinomas, but the mechanism by which ITGA1 expression is regulated is not known. DNA methylation, involved in ITGA1 repression during megakaryocyte differentiation, is not the mechanism of ITGA1 regulation in colorectal cancer cells. Our in silico analysis of the ITGA1 promoter revealed two response elements for MYC, an oncogenic factor known to regulate cancer cell proliferation, invasion and migration. In situ, the expressions of both MYC and ITGA1 are localized in the lower crypt of the normal colon and correlate in 72% of the 65 analyzed colorectal cancers. MYC pharmacological inhibition or downregulation of expression with short hairpin RNA in HT29, T84 and SW480 cells resulted in reduced ITGA1 expression at both the transcript and protein levels. Chromatin immunoprecipitation assays revealed that MYC was bound to the chromatin region of the ITGA1 proximal promoter, whereas MYC overexpression enhanced ITGA1 promoter activity that was reduced with MAD co-transfection or by the disruption of the response elements. We concluded that MYC is a key regulating factor for the control of ITGA1 expression. PMID:26096932

  12. Hierarchical phosphorylation at N-terminal transformation-sensitive sites in c-Myc protein is regulated by mitogens and in mitosis.

    PubMed Central

    Lutterbach, B; Hann, S R

    1994-01-01

    The N-terminal domain of the c-Myc protein has been reported to be critical for both the transactivation and biological functions of the c-Myc proteins. Through detailed phosphopeptide mapping analyses, we demonstrate that there is a cluster of four regulated and complex phosphorylation events on the N-terminal domain of Myc proteins, including Thr-58, Ser-62, and Ser-71. An apparent enhancement of Ser-62 phosphorylation occurs on v-Myc proteins having a mutation at Thr-58 which has previously been correlated with increased transforming ability. In contrast, phosphorylation of Thr-58 in cells is dependent on a prior phosphorylation of Ser-62. Hierarchical phosphorylation of c-Myc is also observed in vitro with a specific glycogen synthase kinase 3 alpha, unlike the promiscuous phosphorylation observed with other glycogen synthase kinase 3 alpha and 3 beta preparations. Although both p42 mitogen-activated protein kinase and cdc2 kinase specifically phosphorylate Ser-62 in vitro and cellular phosphorylation of Thr-58/Ser-62 is stimulated by mitogens, other in vivo experiments do not support a role for these kinases in the phosphorylation of Myc proteins. Unexpectedly, both the Thr-58 and Ser-62 phosphorylation events, but not other N-terminal phosphorylation events, can occur in the cytoplasm, suggesting that translocation of the c-Myc proteins to the nucleus is not required for phosphorylation at these sites. In addition, there appears to be an unusual block to the phosphorylation of Ser-62 during mitosis. Finally, although the enhanced transforming properties of Myc proteins correlates with the loss of phosphorylation at Thr-58 and an enhancement of Ser-62 phosphorylation, these phosphorylation events do not alter the ability of c-Myc to transactivate through the CACGTG Myc/Max binding site. Images PMID:8035827

  13. Acute and chronic effects of alcohol exposure on skeletal muscle c-myc, p53, and Bcl-2 mRNA expression.

    PubMed

    Nakahara, Tatsuo; Hashimoto, Kijiro; Hirano, Makoto; Koll, Michael; Martin, Colin R; Preedy, Victor R

    2003-12-01

    Skeletal muscle atrophy is a common feature in alcoholism that affects up to two-thirds of alcohol misusers, and women appear to be particularly susceptible. There is also some evidence to suggest that malnutrition exacerbates the effects of alcohol on muscle. However, the mechanisms responsible for the myopathy remain elusive, and some studies suggest that acetaldehyde, rather than alcohol, is the principal pathogenic perturbant. Previous reports on rats dosed acutely with ethanol (<24 h) have suggested that increased proto-oncogene expression (i.e., c-myc) may be a causative process, possibly via activating preapoptotic or transcriptional pathways. We hypothesized that 1) increases in c-myc mRNA levels also occur in muscle exposed chronically to alcohol, 2) muscle of female rats is more sensitive than that from male rats, 3) raising acetaldehyde will also increase c-myc, 4) prior starvation will cause further increases in c-myc mRNA expression in response to ethanol, and 5) other genes involved in apoptosis (i.e., p53 and Bcl-2) would also be affected by alcohol. To test this, we measured c-myc mRNA levels in skeletal muscle of rats dosed either chronically (6-7 wk; ethanol as 35% of total dietary energy) or acutely (2.5 h; ethanol as 75 mmol/kg body wt ip) with ethanol. All experiments were carried out in male Wistar rats (approximately 0.1-0.15 kg body wt) except the study that examined gender susceptibility in male and female rats. At the end of the studies, rats were killed, and c-myc, p53, and Bcl-2 mRNA was analyzed in skeletal muscle by RT-PCR with an endogenous internal standard, GAPDH. The results showed that 1) in male rats fed ethanol chronically, there were no increases in c-myc mRNA; 2) increases, however, occurred in c-myc mRNA in muscle from female rats fed ethanol chronically; 3) raising endogenous acetaldehyde with cyanamide increased c-myc mRNA in acute studies; 4) starvation per se increased c-myc mRNA levels and at 1 day potentiated the acute

  14. c-Myc Alters Substrate Utilization and O-GlcNAc Protein Posttranslational Modifications without Altering Cardiac Function during Early Aortic Constriction

    PubMed Central

    Ledee, Dolena; Smith, Lincoln; Bruce, Margaret; Kajimoto, Masaki; Isern, Nancy; Portman, Michael A.; Olson, Aaron K.

    2015-01-01

    Hypertrophic stimuli cause transcription of the proto-oncogene c-Myc (Myc). Prior work showed that myocardial knockout of c-Myc (Myc) attenuated hypertrophy and decreased expression of metabolic genes after aortic constriction. Accordingly, we assessed the interplay between Myc, substrate oxidation and cardiac function during early pressure overload hypertrophy. Mice with cardiac specific, inducible Myc knockout (MycKO-TAC) and non-transgenic littermates (Cont-TAC) were subjected to transverse aortic constriction (TAC; n = 7/group). Additional groups underwent sham surgery (Cont-Sham and MycKO-Sham, n = 5 per group). After two weeks, function was measured in isolated working hearts along with substrate fractional contributions to the citric acid cycle by using perfusate with 13C labeled mixed fatty acids, lactate, ketone bodies and unlabeled glucose and insulin. Cardiac function was similar between groups after TAC although +dP/dT and -dP/dT trended towards improvement in MycKO-TAC versus Cont-TAC. In sham hearts, Myc knockout did not affect cardiac function or substrate preferences for the citric acid cycle. However, Myc knockout altered fractional contributions during TAC. The unlabeled fractional contribution increased in MycKO-TAC versus Cont-TAC, whereas ketone and free fatty acid fractional contributions decreased. Additionally, protein posttranslational modifications by O-GlcNAc were significantly greater in Cont-TAC versus both Cont-Sham and MycKO-TAC. In conclusion, Myc alters substrate preferences for the citric acid cycle during early pressure overload hypertrophy without negatively affecting cardiac function. Myc also affects protein posttranslational modifications by O-GlcNAc during hypertrophy, which may regulate Myc-induced metabolic changes. PMID:26266538

  15. HBXIP and LSD1 Scaffolded by lncRNA Hotair Mediate Transcriptional Activation by c-Myc.

    PubMed

    Li, Yinghui; Wang, Zhen; Shi, Hui; Li, Hang; Li, Leilei; Fang, Runping; Cai, Xiaoli; Liu, Bowen; Zhang, Xiaodong; Ye, Lihong

    2016-01-15

    c-Myc is regarded as a transcription factor, but the basis for its function remains unclear. Here, we define a long noncoding RNA (lncRNA)/protein complex that mediates the transcriptional activation by c-Myc in breast cancer cells. Among 388 c-Myc target genes in human MCF-7 breast cancer cells, we found that their promoters could be occupied by the oncoprotein HBXIP. We confirmed that the HBXIP expression correlated with expression of the c-Myc target genes cyclin A, eIF4E, and LDHA. RNAi-mediated silencing of HBXIP abolished c-Myc-mediated upregulation of these target genes. Mechanistically, HBXIP interacted directly with c-Myc through the leucine zippers and recruited the lncRNA Hotair along with the histone demethylase LSD1, for which Hotair serves as a scaffold. Silencing of HBXIP, Hotair, or LSD1 was sufficient to block c-Myc-enhanced cancer cell growth in vitro and in vivo. Taken together, our results support a model in which the HBXIP/Hotair/LSD1 complex serves as a critical effector of c-Myc in activating transcription of its target genes, illuminating long-standing questions on how c-Myc drives carcinogenesis.

  16. Methylglyoxal suppresses human colon cancer cell lines and tumor growth in a mouse model by impairing glycolytic metabolism of cancer cells associated with down-regulation of c-Myc expression.

    PubMed

    He, Tiantian; Zhou, Huaibin; Li, Chunmei; Chen, Yuan; Chen, Xiaowan; Li, Chenli; Mao, Jiating; Lyu, Jianxin; Meng, Qing H

    2016-09-01

    Methylglyoxal (MG) is a highly reactive dicarbonyl compound exhibiting anti-tumor activity. The anti-tumor effects of MG have been demonstrated in some types of cancer, but its role in colon cancer and the mechanisms underlying this activity remain largely unknown. We investigated its role in human colon cancer and the underlying mechanism using human colon cancer cells and animal model. Viability, proliferation, and apoptosis were quantified in DLD-1 and SW480 colon cancer cells by using the Cell Counting Kit-8, plate colony formation assay, and flow cytometry, respectively. Cell migration and invasion were assessed by wound healing and transwell assays. Glucose consumption, lactate production, and intracellular ATP production also were assayed. The levels of c-Myc protein and mRNA were quantitated by western blot and qRT-PCR. The anti-tumor role of MG in vivo was investigated in a DLD-1 xenograft tumor model in nude mice. We demonstrated that MG inhibited viability, proliferation, migration, and invasion and induced apoptosis of DLD-1 and SW480 colon cancer cells. Treatment with MG reduced glucose consumption, lactate production, and ATP production and decreased c-Myc protein levels in these cells. Moreover, MG significantly suppressed tumor growth and c-Myc expression in vivo. Our findings suggest that MG plays an anti-tumor role in colon cancer. It inhibits cancer cell growth by altering the glycolytic pathway associated with downregulation of c-Myc protein. MG has therapeutic potential in colon cancer by interrupting cancer metabolism. PMID:27455418

  17. SIRT1 Limits Adipocyte Hyperplasia through c-Myc Inhibition*

    PubMed Central

    Abdesselem, Houari; Madani, Aisha; Hani, Ahmad; Al-Noubi, Muna; Goswami, Neha; Ben Hamidane, Hisham; Billing, Anja M.; Pasquier, Jennifer; Bonkowski, Michael S.; Halabi, Najeeb; Dalloul, Rajaa; Sheriff, Mohamed Z.; Mesaeli, Nasrin; ElRayess, Mohamed; Sinclair, David A.; Graumann, Johannes; Mazloum, Nayef A.

    2016-01-01

    The expansion of fat mass in the obese state is due to increased adipocyte hypertrophy and hyperplasia. The molecular mechanism that drives adipocyte hyperplasia remains unknown. The NAD+-dependent protein deacetylase sirtuin 1 (SIRT1), a key regulator of mammalian metabolism, maintains proper metabolic functions in many tissues, counteracting obesity. Here we report that differentiated adipocytes are hyperplastic when SIRT1 is knocked down stably in mouse 3T3-L1 preadipocytes. This phenotype is associated with dysregulated adipocyte metabolism and enhanced inflammation. We also demonstrate that SIRT1 is a key regulator of proliferation in preadipocytes. Quantitative proteomics reveal that the c-Myc pathway is altered to drive enhanced proliferation in SIRT1-silenced 3T3-L1 cells. Moreover, c-Myc is hyperacetylated, levels of p27 are reduced, and cyclin-dependent kinase 2 (CDK2) is activated upon SIRT1 reduction. Remarkably, differentiating SIRT1-silenced preadipocytes exhibit enhanced mitotic clonal expansion accompanied by reduced levels of p27 as well as elevated levels of CCAAT/enhancer-binding protein β (C/EBPβ) and c-Myc, which is also hyperacetylated. c-Myc activation and enhanced proliferation phenotype are also found to be SIRT1-dependent in proliferating mouse embryonic fibroblasts and differentiating human SW872 preadipocytes. Reducing both SIRT1 and c-Myc expression in 3T3-L1 cells simultaneously does not induce the adipocyte hyperplasia phenotype, confirming that SIRT1 controls adipocyte hyperplasia through c-Myc regulation. A better understanding of the molecular mechanisms of adipocyte hyperplasia will open new avenues toward understanding obesity. PMID:26655722

  18. Sulforaphane Inhibits c-Myc-Mediated Prostate Cancer Stem-Like Traits.

    PubMed

    Vyas, Avani R; Moura, Michelle B; Hahm, Eun-Ryeong; Singh, Krishna Beer; Singh, Shivendra V

    2016-11-01

    Preventive and therapeutic efficiencies of dietary sulforaphane (SFN) against human prostate cancer have been demonstrated in vivo, but the underlying mechanism(s) by which this occurs is poorly understood. Here, we show that the prostate cancer stem cell (pCSC)-like traits, such as accelerated activity of aldehyde dehydrogenase 1 (ALDH1), enrichment of CD49f+ fraction, and sphere forming efficiency, are attenuated by SFN treatment. Interestingly, the expression of c-Myc, an oncogenic transcription factor that is frequently deregulated in prostate cancer cells, was markedly suppressed by SFN both in vitro and in vivo. This is biologically relevant, because the lessening of pCSC-like phenotypes mediated by SFN was attenuated when c-Myc was overexpressed. Naturally occurring thio, sulfinyl, and sulfonyl analogs of SFN were also effective in causing suppression of c-Myc protein level. However, basal glycolysis, a basic metabolic pathway that can also be promoted by c-Myc overexpression, was not largely suppressed by SFN, implying that, in addition to c-Myc, there might be another SFN-sensitive cellular factor, which is not directly involved in basal glycolysis, but cooperates with c-Myc to sustain pCSC-like phenotypes. Our study suggests that oncogenic c-Myc is a target of SFN to prevent and eliminate the onset of human prostate cancer. J. Cell. Biochem. 117: 2482-2495, 2016. © 2016 Wiley Periodicals, Inc.

  19. c-Myc is a novel target of cell cycle arrest by honokiol in prostate cancer cells.

    PubMed

    Hahm, Eun-Ryeong; Singh, Krishna Beer; Singh, Shivendra V

    2016-09-01

    Honokiol (HNK), a highly promising phytochemical derived from Magnolia officinalis plant, exhibits in vitro and in vivo anticancer activity against prostate cancer but the underlying mechanism is not fully clear. This study was undertaken to delineate the role of c-Myc in anticancer effects of HNK. Exposure of prostate cancer cells to plasma achievable doses of HNK resulted in a marked decrease in levels of total and/or phosphorylated c-Myc protein as well as its mRNA expression. We also observed suppression of c-Myc protein in PC-3 xenografts upon oral HNK administration. Stable overexpression of c-Myc in PC-3 and 22Rv1 cells conferred significant protection against HNK-mediated growth inhibition and G0-G1 phase cell cycle arrest. HNK treatment decreased expression of c-Myc downstream targets including Cyclin D1 and Enhancer of Zeste Homolog 2 (EZH2), and these effects were partially restored upon c-Myc overexpression. In addition, PC-3 and DU145 cells with stable knockdown of EZH2 were relatively more sensitive to growth inhibition by HNK compared with control cells. Finally, androgen receptor overexpression abrogated HNK-mediated downregulation of c-Myc and its targets particularly EZH2. The present study indicates that c-Myc, which is often overexpressed in early and late stages of human prostate cancer, is a novel target of prostate cancer growth inhibition by HNK.

  20. Human telomerase reverse transcriptase (hTERT) promotes gastric cancer invasion through cooperating with c-Myc to upregulate heparanase expression

    PubMed Central

    Tang, Bo; Xie, Rui; Qin, Yong; Xiao, Yu-Feng; Yong, Xin; Zheng, Lei; Dong, Hui; Yang, Shi-Ming

    2016-01-01

    Human telomerase reverse transcriptase (hTERT) is a central regulator of multiple hallmarks of tumors. However, the potential roles of hTERT in tumor invasion and metastasis and the underlying molecular mechanisms remain poorly understood. Here, we found that the expression of hTERT in gastric cancer (GC) was significantly associated with an advanced TNM stage, lymphatic metastasis. Survival analysis identified hTERT as an independent prognostic factor for survival of GC patients. hTERT promoted the invasion and metastasis of GC cells by binding to c-Myc and recruiting the complex to heparanase promoter to upregulate heparanase expression. In addition, our data demonstrated that hTERT activated Wnt/β-catenin signaling to promote c-Myc expression which could in turn activate hTERT transcription and expression, suggesting a positive feedback regulation in GC progression. Consistently, c-Myc and heparanase expression was positively correlated with hTERT levels, and was also an independent predictor of metastasis and survival. Collectively, our data provide a novel molecular mechanism for hTERT in promotion of GC invasion and metastasis, and highlight the molecular etiology and clinical significance of hTERT in GC progression. Targeting hTERT may represent a new therapeutic strategy to improve therapy and survival of GC patients. PMID:26689987

  1. c-myc null cells misregulate cad and gadd45 but not other proposed c-Myc targets

    PubMed Central

    Bush, Andrew; Mateyak, Maria; Dugan, Kerri; Obaya, Alvaro; Adachi, Susumu; Sedivy, John; Cole, Michael

    1998-01-01

    We report here that the expression of virtually all proposed c-Myc target genes is unchanged in cells containing a homozygous null deletion of c-myc. Two noteworthy exceptions are the gene cad, which has reduced log phase expression and serum induction in c-myc null cells, and the growth arrest gene gadd45, which is derepressed by c-myc knockout. Thus, cad and gadd45 are the only proposed targets of c-Myc that may contribute to the dramatic slow growth phenotype of c-myc null cells. Our results demonstrate that a loss-of-function approach is critical for the evaluation of potential c-Myc target genes. PMID:9869632

  2. Differential regulation of the c-Myc/Lin28 axis discriminates subclasses of rearranged MLL leukemia

    PubMed Central

    Chen, Lili; Sun, Yuqing; Wang, Jingya; Jiang, Hui; Muntean, Andrew G.

    2016-01-01

    MLL rearrangements occur in myeloid and lymphoid leukemias and are generally associated with a poor prognosis, however this varies depending on the fusion partner. We modeled acute myeloid leukemia (AML) in mice using various MLL fusion proteins (MLL-FPs) and observed significantly different survival outcomes. To better understand the differences between these leukemias, we examined the genome wide expression profiles of leukemic cells transformed with different MLL-FPs. RNA-sequencing and pathway analysis identified the c-Myc transcriptional program as one of the top distinguishing features. c-Myc protein levels were highly correlative with AML disease latency in mice. Functionally, overexpression of c-Myc resulted in a more aggressive proliferation rate in MLL-FP cell lines. While all MLL-FP transformed cells displayed sensitivity to BET inhibitors, high c-Myc expressing cells showed greater resistance to Brd4 inhibition. The Myc target Lin28B was also differentially expressed in MLL-FP cell lines in agreement with c-Myc expression. Examination of Lin28B miRNAs targets revealed that let-7g was significantly increased in leukemic cells associated with the longest disease latency and forced let-7g expression induced differentiation of leukemic blasts. Thus, differential regulation of the c-Myc/Lin28/let-7g program by different MLL-FPs is functionally related to disease latency and BET inhibitor resistance in MLL leukemias. PMID:27007052

  3. Association Between Amplification and Expression of C-MYC Gene and Clinicopathological Characteristics of Stomach Cancer

    PubMed Central

    Khaleghian, Malihea; Jahanzad, Issa; Shakoori, Abbas; Emami Razavi, Amirnader; Azimi, Cyrus

    2016-01-01

    Background: The incidence rate of gastric cancer in western countries has shown a remarkable decline in the recent years while it is still the most common cancer among males in Iran. The proto-oncogene MYC, located at 8q24.1, regulates almost 15% of human genes and is activated in 20% of all tumors. The amplification of MYC and overexpression of its protein product are observed in 15 - 30% of gastric neoplasias. Objectives: The objective of this study was to find the preferences of Chromogenic In Situ Hybridization (CISH) and Immunohistochemistry (IHC) in diagnosis and prognosis of gastric cancer. Patients and Methods: We studied 102 samples of gastric cancer in Iran and all the patients had undergone primary surgical resection at the Cancer Institute Hospital, Tehran University of Medical Sciences. The CISH and IHC techniques were applied for all our samples. All of the samples had adenocarcinoma gastric cancer and were selected randomly. Also, the type of study was cross sectional. The sample size was 100 patients. Results: Our data revealed that both diffuse and intestinal types of gastric cancer occurred significantly more in males than females. Our results showed that there was an indication of some correlation between grades and CISH, although the difference was not significant. Our data also showed that CISH positive patients (43%) were more frequent compared to IHC positive patients (14.7%). There was a correlation between CISH and IHC. These results revealed that there was a significant difference between grades and IHC. There was also no statistical difference between CISH amplification in diffuse and intestinal types. Conclusions: From the results, it could be concluded that for administration of the treatment of stomach cancer, and progress and prognosis of tumor, which is important for patients and clinicians, the CISH is a better and more feasible test than IHC, in regards to sensitivity and specificity. PMID:27175302

  4. Modulation of Cellular Migration and Survival by c-Myc through the Downregulation of Urokinase (uPA) and uPA Receptor▿ †

    PubMed Central

    Alfano, Daniela; Votta, Giuseppina; Schulze, Almut; Downward, Julian; Caputi, Mario; Stoppelli, Maria Patrizia; Iaccarino, Ingram

    2010-01-01

    It has been proposed that c-Myc proapoptotic activity accounts for most of its restraint of tumor formation. We established a telomerase-immortalized human epithelial cell line expressing an activatable c-Myc protein. We found that c-Myc activation induces, in addition to increased sensitivity to apoptosis, reductions in cell motility and invasiveness. Transcriptome analysis revealed that urokinase (uPA) and uPA receptor (uPAR) were strongly downregulated by c-Myc. Evidence is provided that the repression of uPA and uPAR may account for most of the antimigratory and proapoptotic activities of c-Myc. c-Myc is known to cooperate with Ras in cellular transformation. We therefore investigated if this cooperation could converge in the control of uPA/uPAR expression. We found that Ras is able to block the effects of c-Myc activation on apoptosis and cellular motility but not on cell invasiveness. Accordingly, the activation of c-Myc in the context of Ras expression had only minor influence on uPAR expression but still had a profound repressive effect on uPA expression. Thus, the differential regulation of uPA and uPAR by c-Myc and Ras correlates with the effects of these two oncoproteins on cell motility, invasiveness, and survival. In conclusion, we have discovered a novel link between c-Myc and uPA/uPAR. We propose that reductions of cell motility and invasiveness could contribute to the inhibition of tumorigenesis by c-Myc and that the regulation of uPA and uPAR expression may be a component of the ability of c-Myc to reduce motility and invasiveness. PMID:20123981

  5. Regulation of c-Myc ubiquitination controls chronic myelogenous leukemia initiation and progression

    PubMed Central

    Reavie, Linsey; Buckley, Shannon M.; Loizou, Evangelia; Takeishi, Shoichiro; Aranda-Orgilles, Beatriz; Ndiaye-Lobry, Delphine; Abdel-Wahab, Omar; Ibrahim, Sherif; Nakayama, Keiichi I.; Aifantis, Iannis

    2013-01-01

    The molecular mechanisms regulating leukemia-initiating cell (LIC) function are of important clinical significance. We use chronic myelogenous leukemia (CML), as a model of LIC-dependent malignancy and identify the interaction between the ubiquitin ligase Fbw7 and its substrate c-Myc as a regulator of LIC homeostasis. Deletion of Fbw7 leads to c-Myc overexpression, p53-dependent LIC-specific apoptosis and the eventual inhibition of tumor progression. Decrease of either c-Myc protein levels or attenuation of the p53 response rescues LIC activity and disease progression. Further experiments showed that Fbw7 expression is required for survival and maintenance of human CML LIC. These studies identify a ubiquitin ligase:substrate pair regulating LIC activity, suggesting that targeting of the Fbw7:c-Myc axis is an attractive therapy target in refractory CML. PMID:23518350

  6. Alternative splicing of FBP-interacting repressor coordinates c-Myc, P27Kip1/cyclinE and Ku86/XRCC5 expression as a molecular sensor for bleomycin-induced DNA damage pathway

    PubMed Central

    Rahmutulla, Bahityar; Matsushita, Kazuyuki; Satoh, Mamoru; Seimiya, Masanori; Tsuchida, Sachio; Kubo, Shuji; Shimada, Hideaki; Ohtsuka, Masayuki; Miyazaki, Masaru; Nomura, Fumio

    2014-01-01

    The far-upstream element-binding protein-interacting repressor (FIR) is a c-myc transcriptional suppressor. FIR is alternatively spliced to lack the transcriptional repression domain within exon 2 (FIRΔexon2) in colorectal cancers. FIR and FIRΔexon2 form homo- or heterodimers that complex with SAP155. SAP155, a subunit of the essential splicing factor 3b subcomplex in the spliceosome, is required for proper P27Kip1 pre-mRNA splicing, and P27Kip1 arrests cells at G1. In contrast, FIR was co-immunoprecipitated with Ku86 and DNA-PKcs. siRNA against Ku86/Ku70 decreased FIR and P27Kip1 expression, whereas siRNA against FIR decreased Ku86/XRCC5 and P27Kip1 expression. Thus the mechanical interaction of FIR/FIRΔexon2/SAP155 bridges c-myc and P27Kip1 expression, potentially integrates cell-cycle progression and c-myc transcription in cell. Bleomycin (BLM) is an anticancer agent that introduces DNA breaks. Because DNA breaks generate the recruitment of Ku86/Ku70 to bind to the broken DNA ends, the possible involvement of FIR and Ku86/Ku70 interaction in the BLM-induced DNA damage repair response was investigated in this study. First, BLM treatment reduced SAP155 expression and increased FIR and FIRΔexon2 mRNA expression as well as the ratio of FIRΔexon2:FIR in hepatoblastoma cells (HLE and HLF). Second, FIR or FIRΔexon2 adenovirus vectors (Ad-FIR or Ad-FIRΔexon2) increased Ku86/Ku70 and P27Kip1 expression in vitro. Third, BLM decreased P27Kip1 protein expression, whereas increased P27Kip1 and γH2AX expression with Ad-FIRΔexon2. Together, the interaction of FIR/SAP155 modulates FIR splicing and involves in cell-cycle control or cell fate via P27Kip1 and c-myc in BLM-induced DNA damage pathway. This novel function of FIR splicing will contribute to clinical studies of cancer management through elucidating the mechanical interaction of FIR/FIRΔexon2/SAP155 as a potential target for cancer treatment. PMID:24811221

  7. c-MYC inhibition impairs hypoxia response in glioblastoma multiforme.

    PubMed

    Mongiardi, Maria Patrizia; Savino, Mauro; Falchetti, Maria Laura; Illi, Barbara; Bozzo, Francesca; Valle, Cristiana; Helmer-Citterich, Manuela; Ferrè, Fabrizio; Nasi, Sergio; Levi, Andrea

    2016-05-31

    The c-MYC oncoprotein is a DNA binding transcription factor that enhances the expression of many active genes. c-MYC transcriptional signatures vary according to the transcriptional program defined in each cell type during differentiation. Little is known on the involvement of c-MYC in regulation of gene expression programs that are induced by extracellular cues such as a changing microenvironment. Here we demonstrate that inhibition of c-MYC in glioblastoma multiforme cells blunts hypoxia-dependent glycolytic reprogramming and mitochondria fragmentation in hypoxia. This happens because c-MYC inhibition alters the cell transcriptional response to hypoxia and finely tunes the expression of a subset of Hypoxia Inducible Factor 1-regulated genes. We also show that genes whose expression in hypoxia is affected by c-MYC inhibition are able to distinguish the Proneural subtype of glioblastoma multiforme, thus potentially providing a molecular signature for this class of tumors that are the least tractable among glioblastomas. PMID:27119353

  8. c-MYC is a radiosensitive locus in human breast cells

    PubMed Central

    Wade, M A; Sunter, N J; Fordham, S E; Long, A; Masic, D; Russell, L J; Harrison, C J; Rand, V; Elstob, C; Bown, N; Rowe, D; Lowe, C; Cuthbert, G; Bennett, S; Crosier, S; Bacon, C M; Onel, K; Scott, K; Scott, D; Travis, L B; May, F E B; Allan, J M

    2015-01-01

    Ionising radiation is a potent human carcinogen. Epidemiological studies have shown that adolescent and young women are at increased risk of developing breast cancer following exposure to ionising radiation compared with older women, and that risk is dose-dependent. Although it is well understood which individuals are at risk of radiation-induced breast carcinogenesis, the molecular genetic mechanisms that underlie cell transformation are less clear. To identify genetic alterations potentially responsible for driving radiogenic breast transformation, we exposed the human breast epithelial cell line MCF-10A to fractionated doses of X-rays and examined the copy number and cytogenetic alterations. We identified numerous alterations of c-MYC that included high-level focal amplification associated with increased protein expression. c-MYC amplification was also observed in primary human mammary epithelial cells following exposure to radiation. We also demonstrate that the frequency and magnitude of c-MYC amplification and c-MYC protein expression is significantly higher in breast cancer with antecedent radiation exposure compared with breast cancer without a radiation aetiology. Our data also demonstrate extensive intratumor heterogeneity with respect to c-MYC copy number in radiogenic breast cancer, suggesting continuous evolution at this locus during disease development and progression. Taken together, these data identify c-MYC as a radiosensitive locus, implicating this oncogenic transcription factor in the aetiology of radiogenic breast cancer. PMID:25531321

  9. c-Myc/Max heterodimers bind cooperatively to the E-box sequences located in the first intron of the rat ornithine decarboxylase (ODC) gene.

    PubMed

    Walhout, A J; Gubbels, J M; Bernards, R; van der Vliet, P C; Timmers, H T

    1997-04-15

    The oncoprotein c-Myc plays an important role in cell proliferation, transformation, inhibition of differentiation and apoptosis. These functions most likely result from the transcription factor activity of c-Myc. As a heterodimer with Max, the c-Myc protein binds to the E-box sequence (CACGTG), which is also recognized by USF dimers. In order to test differences in target gene recognition of c-Myc/Max, Max and USF dimers, we compared the DNA binding characteristics of these proteins in vitro using vaccinia viruses expressing full-length c-Myc and Max proteins. As expected, purified c-Myc/max binds specifically to a consensus E-box. The optimal conditions for DNA binding by either c-Myc/Max, Max or USF dimers differ with respect to ionic strength and Mg2+ ion concentration. Most interestingly, the c-Myc/Max complex binds with a high affinity to its natural target, the rat ODC gene, which contains two adjacent, consensus E-boxes. High affinity binding results from teh ability of c-Myc/Max dimers to bind cooperatively to these E-boxes. We propose that differential cooperative binding by E-box binding transcription factors could contribute to target gene specificity.

  10. Stat3 and c-Myc Genome-Wide Promoter Occupancy in Embryonic Stem Cells

    PubMed Central

    Kidder, Benjamin L.; Yang, Jim; Palmer, Stephen

    2008-01-01

    Embryonic stem (ES) cell pluripotency is regulated in part by transcription factor (TF) pathways that maintain self-renewal and inhibit differentiation. Stat3 and c-Myc TFs are essential for maintaining mouse ES cell self-renewal. c-Myc, together with Oct4, Sox2, and Klf4, is a reprogramming factor. While previous studies have investigated core transcriptional circuitry in ES cells, other TF pathways that promote ES cell pluripotency have yet to be investigated. Therefore, to further understand ES cell transcriptional networks, we used genome-wide chromatin immunoprecipitation and microarray analysis (ChIP-chip) to map Stat3 and c-Myc binding targets in ES cells. Our results show that Stat3 and c-Myc occupy a significant number of genes whose expression is highly enriched in ES cells. By comparing Stat3 and c-Myc target genes with gene expression data from undifferentiated ES cells and embryoid bodies (EBs), we found that Stat3 binds active and inactive genes in ES cells, while c-Myc binds predominantly active genes. Moreover, the transcriptional states of Stat3 and c-Myc targets are correlated with co-occupancy of pluripotency-related TFs, polycomb group proteins, and active and repressive histone modifications. We also provide evidence that Stat3 targets are differentially expressed in ES cells following removal of LIF, where culture of ES cells in the absence of LIF resulted in downregulation of Stat3 target genes enriched in ES cells, and upregulation of lineage specific Stat3 target genes. Altogether, we reveal transcriptional targets of two key pluripotency-related genes in ES cells – Stat3 and c-Myc, thus providing further insight into the ES cell transcriptional network. PMID:19079543

  11. Therapeutic aspects of c-MYC signaling in inflammatory and cancerous colonic diseases

    PubMed Central

    Sipos, Ferenc; Firneisz, Gábor; Műzes, Györgyi

    2016-01-01

    Colonic inflammation is required to heal infections, wounds, and maintain tissue homeostasis. As the seventh hallmark of cancer, however, it may affect all phases of tumor development, including tumor initiation, promotion, invasion and metastatic dissemination, and also evasion immune surveillance. Inflammation acts as a cellular stressor and may trigger DNA damage or genetic instability, and, further, chronic inflammation can provoke genetic mutations and epigenetic mechanisms that promote malignant cell transformation. Both sporadical and colitis-associated colorectal carcinogenesis are multi-step, complex processes arising from the uncontrolled proliferation and spreading of malignantly transformed cell clones with the obvious ability to evade the host’s protective immunity. In cells upon DNA damage several proto-oncogenes, including c-MYC are activated in parelell with the inactivation of tumor suppressor genes. The target genes of the c-MYC protein participate in different cellular functions, including cell cycle, survival, protein synthesis, cell adhesion, and micro-RNA expression. The transcriptional program regulated by c-MYC is context dependent, therefore the final cellular response to elevated c-MYC levels may range from increased proliferation to augmented apoptosis. Considering physiological intestinal homeostasis, c-MYC displays a fundamental role in the regulation of cell proliferation and crypt cell number. However, c-MYC gene is frequently deregulated in inflammation, and overexpressed in both sporadic and colitis-associated colon adenocarcinomas. Recent results demonstrated that endogenous c-MYC is essential for efficient induction of p53-dependent apoptosis following DNA damage, but c-MYC function is also involved in and regulated by autophagy-related mechanisms, while its expression is affected by DNA-methylation, or histone acetylation. Molecules directly targeting c-MYC, or agents acting on other genes involved in the c-MYC pathway could be

  12. Therapeutic aspects of c-MYC signaling in inflammatory and cancerous colonic diseases.

    PubMed

    Sipos, Ferenc; Firneisz, Gábor; Műzes, Györgyi

    2016-09-21

    Colonic inflammation is required to heal infections, wounds, and maintain tissue homeostasis. As the seventh hallmark of cancer, however, it may affect all phases of tumor development, including tumor initiation, promotion, invasion and metastatic dissemination, and also evasion immune surveillance. Inflammation acts as a cellular stressor and may trigger DNA damage or genetic instability, and, further, chronic inflammation can provoke genetic mutations and epigenetic mechanisms that promote malignant cell transformation. Both sporadical and colitis-associated colorectal carcinogenesis are multi-step, complex processes arising from the uncontrolled proliferation and spreading of malignantly transformed cell clones with the obvious ability to evade the host's protective immunity. In cells upon DNA damage several proto-oncogenes, including c-MYC are activated in parelell with the inactivation of tumor suppressor genes. The target genes of the c-MYC protein participate in different cellular functions, including cell cycle, survival, protein synthesis, cell adhesion, and micro-RNA expression. The transcriptional program regulated by c-MYC is context dependent, therefore the final cellular response to elevated c-MYC levels may range from increased proliferation to augmented apoptosis. Considering physiological intestinal homeostasis, c-MYC displays a fundamental role in the regulation of cell proliferation and crypt cell number. However, c-MYC gene is frequently deregulated in inflammation, and overexpressed in both sporadic and colitis-associated colon adenocarcinomas. Recent results demonstrated that endogenous c-MYC is essential for efficient induction of p53-dependent apoptosis following DNA damage, but c-MYC function is also involved in and regulated by autophagy-related mechanisms, while its expression is affected by DNA-methylation, or histone acetylation. Molecules directly targeting c-MYC, or agents acting on other genes involved in the c-MYC pathway could be

  13. Therapeutic aspects of c-MYC signaling in inflammatory and cancerous colonic diseases.

    PubMed

    Sipos, Ferenc; Firneisz, Gábor; Műzes, Györgyi

    2016-09-21

    Colonic inflammation is required to heal infections, wounds, and maintain tissue homeostasis. As the seventh hallmark of cancer, however, it may affect all phases of tumor development, including tumor initiation, promotion, invasion and metastatic dissemination, and also evasion immune surveillance. Inflammation acts as a cellular stressor and may trigger DNA damage or genetic instability, and, further, chronic inflammation can provoke genetic mutations and epigenetic mechanisms that promote malignant cell transformation. Both sporadical and colitis-associated colorectal carcinogenesis are multi-step, complex processes arising from the uncontrolled proliferation and spreading of malignantly transformed cell clones with the obvious ability to evade the host's protective immunity. In cells upon DNA damage several proto-oncogenes, including c-MYC are activated in parelell with the inactivation of tumor suppressor genes. The target genes of the c-MYC protein participate in different cellular functions, including cell cycle, survival, protein synthesis, cell adhesion, and micro-RNA expression. The transcriptional program regulated by c-MYC is context dependent, therefore the final cellular response to elevated c-MYC levels may range from increased proliferation to augmented apoptosis. Considering physiological intestinal homeostasis, c-MYC displays a fundamental role in the regulation of cell proliferation and crypt cell number. However, c-MYC gene is frequently deregulated in inflammation, and overexpressed in both sporadic and colitis-associated colon adenocarcinomas. Recent results demonstrated that endogenous c-MYC is essential for efficient induction of p53-dependent apoptosis following DNA damage, but c-MYC function is also involved in and regulated by autophagy-related mechanisms, while its expression is affected by DNA-methylation, or histone acetylation. Molecules directly targeting c-MYC, or agents acting on other genes involved in the c-MYC pathway could be

  14. Therapeutic aspects of c-MYC signaling in inflammatory and cancerous colonic diseases

    PubMed Central

    Sipos, Ferenc; Firneisz, Gábor; Műzes, Györgyi

    2016-01-01

    Colonic inflammation is required to heal infections, wounds, and maintain tissue homeostasis. As the seventh hallmark of cancer, however, it may affect all phases of tumor development, including tumor initiation, promotion, invasion and metastatic dissemination, and also evasion immune surveillance. Inflammation acts as a cellular stressor and may trigger DNA damage or genetic instability, and, further, chronic inflammation can provoke genetic mutations and epigenetic mechanisms that promote malignant cell transformation. Both sporadical and colitis-associated colorectal carcinogenesis are multi-step, complex processes arising from the uncontrolled proliferation and spreading of malignantly transformed cell clones with the obvious ability to evade the host’s protective immunity. In cells upon DNA damage several proto-oncogenes, including c-MYC are activated in parelell with the inactivation of tumor suppressor genes. The target genes of the c-MYC protein participate in different cellular functions, including cell cycle, survival, protein synthesis, cell adhesion, and micro-RNA expression. The transcriptional program regulated by c-MYC is context dependent, therefore the final cellular response to elevated c-MYC levels may range from increased proliferation to augmented apoptosis. Considering physiological intestinal homeostasis, c-MYC displays a fundamental role in the regulation of cell proliferation and crypt cell number. However, c-MYC gene is frequently deregulated in inflammation, and overexpressed in both sporadic and colitis-associated colon adenocarcinomas. Recent results demonstrated that endogenous c-MYC is essential for efficient induction of p53-dependent apoptosis following DNA damage, but c-MYC function is also involved in and regulated by autophagy-related mechanisms, while its expression is affected by DNA-methylation, or histone acetylation. Molecules directly targeting c-MYC, or agents acting on other genes involved in the c-MYC pathway could be

  15. Depletion of c-myc with specific antisense sequences reverses the transformed phenotype in ras oncogene-transformed NIH 3T3 cells.

    PubMed Central

    Sklar, M D; Thompson, E; Welsh, M J; Liebert, M; Harney, J; Grossman, H B; Smith, M; Prochownik, E V

    1991-01-01

    ras oncogene-transformed NIH 3T3 cells expressing glucocorticoid-inducible antisense c-myc cDNA transcripts at levels sufficient to deplete c-myc protein lost their transformed morphology and the ability to grow in soft agar; their ability to form tumors in nude mice was also impaired. These changes were dependent on the continuous expression of the antisense sequences. No major effects on plating efficiencies, growth rates in monolayer culture, or immortalization were observed in the revertant cells, indicating that the observed effects were not a toxic consequence of c-myc protein depletion. Transfection with the same vector expressing c-myc in the sense orientation or other control vectors had no effect on transformation. These results suggest that a certain minimum level of expression of c-myc is required for the maintenance of ras transformation in NIH 3T3 cells. Images PMID:2046673

  16. SMARCAL1 Negatively Regulates C-Myc Transcription By Altering The Conformation Of The Promoter Region

    PubMed Central

    Sharma, Tapan; Bansal, Ritu; Haokip, Dominic Thangminlen; Goel, Isha; Muthuswami, Rohini

    2015-01-01

    SMARCAL1, a member of the SWI2/SNF2 protein family, stabilizes replication forks during DNA damage. In this manuscript, we provide the first evidence that SMARCAL1 is also a transcriptional co-regulator modulating the expression of c-Myc, a transcription factor that regulates 10–15% genes in the human genome. BRG1, SMARCAL1 and RNAPII were found localized onto the c-myc promoter. When HeLa cells were serum starved, the occupancy of SMARCAL1 on the c-myc promoter increased while that of BRG1 and RNAPII decreased correlating with repression of c-myc transcription. Using Active DNA-dependent ATPase A Domain (ADAAD), the bovine homolog of SMARCAL1, we show that the protein can hydrolyze ATP using a specific region upstream of the CT element of the c-myc promoter as a DNA effector. The energy, thereby, released is harnessed to alter the conformation of the promoter DNA. We propose that SMARCAL1 negatively regulates c-myc transcription by altering the conformation of its promoter region during differentiation. PMID:26648259

  17. SMARCAL1 Negatively Regulates C-Myc Transcription By Altering The Conformation Of The Promoter Region.

    PubMed

    Sharma, Tapan; Bansal, Ritu; Haokip, Dominic Thangminlen; Goel, Isha; Muthuswami, Rohini

    2015-12-09

    SMARCAL1, a member of the SWI2/SNF2 protein family, stabilizes replication forks during DNA damage. In this manuscript, we provide the first evidence that SMARCAL1 is also a transcriptional co-regulator modulating the expression of c-Myc, a transcription factor that regulates 10-15% genes in the human genome. BRG1, SMARCAL1 and RNAPII were found localized onto the c-myc promoter. When HeLa cells were serum starved, the occupancy of SMARCAL1 on the c-myc promoter increased while that of BRG1 and RNAPII decreased correlating with repression of c-myc transcription. Using Active DNA-dependent ATPase A Domain (ADAAD), the bovine homolog of SMARCAL1, we show that the protein can hydrolyze ATP using a specific region upstream of the CT element of the c-myc promoter as a DNA effector. The energy, thereby, released is harnessed to alter the conformation of the promoter DNA. We propose that SMARCAL1 negatively regulates c-myc transcription by altering the conformation of its promoter region during differentiation.

  18. Bromodichloromethane induces cell proliferation in different tissues of male F344 rats by suppression of E-cadherin expression via hypermethylation or transcriptional activation of c-myc and cyclin D1.

    PubMed

    Liao, Jing; Li, Xiao-Feng; Zhou, Shun-Chang; Luo, Yan; Liu, Ai-Lin; Lu, Wen-Qing

    2013-11-25

    The aim of this study was to investigate the mechanism of bromodichloromethane (BDCM) - induced cell proliferation in different tissues of male F344 rats. Rats were administered at doses of 0 and 100mg/kg/day BDCM dissolved in corn oil by gavage for 5 days/week for 1, 4, 8 and 12 weeks. Then the colon, kidney and liver were collected. No histologic lesions were observed in the colon of rats exposed to BDCM, while there were mild nephrotoxicity and marginal hepatotoxicity related to BDCM treatment. Moreover, BDCM enhanced cell proliferation in the colon and kidney but not in the liver. In colons, hypermethylation in E-cadherin promoter might be associated with inhibition of mRNA and protein expression after 12 weeks of BDCM exposure. In kidneys, BDCM decreased E-cadherin mRNA expression, accompanying with transcriptional activation of c-myc and cyclin D1. However, suppression of E-cadherin mRNA and protein expression occurred in the absence of significant changes in DNA methylation. Therefore, suppression of E-cadherin expression via hypermethylation or transcriptional activation of c-myc and cyclin D1 may be involved in BDCM-induced cell proliferation in different tissues of male F344 rats.

  19. Preventive and protective effects of silymarin on doxorubicin-induced testicular damages correlate with changes in c-myc gene expression.

    PubMed

    Malekinejad, H; Janbaz-Acyabar, H; Razi, M; Varasteh, S

    2012-09-15

    This study aimed to investigate the preventive and protective effects of silymarin (SMN) on doxorubicin (DOX)-induced damages in the testis. Wistar rats were divided into six groups (n=8), including: control (C), DOX-treated (DOX, 15 mg/kg, i.p.), DOX- and SMN-treated and SMN-treated animals (SMN, 50 mg/kg, orally). Those groups, which received either compounds, were sub-grouped based on the preventive (PVT), protective (PTT) and/or therapeutic regimens (TPT) of SMN administration. The antioxidant status analyses, hormonal assay, and histopathological examinations in the testis were conducted. The expression of c-myc at mRNA level also was analyzed. SMN in preventive and protective forms significantly (p<0.05) improved the DOX-induced weight loss and lowered the alkaline phosphatase level. Pretreatment and co-treatment with SMN attenuated the DOX-induced carbonyl stress. The DOX-induced histopathological damages including negative TDI and IR were significantly (p<0.05) improved with SMN pretreatment and co-administration. SMN in preventive and protective forms prevented from DOX-induced DNA fragmentation in the testis. SMN ameliorated the DOX-reduced serum level of sexual hormones including testosterone, inhibin B, LH and FSH in PVT and PTT groups. The c-myc expression at mRNA level was completely and relatively down regulated in the testis of animals that received SMN as pretreatment and concurrent administration, respectively. Our data suggests that the DOX-induced biochemical and histopathological alterations could be prevented and/or protected by SMN. Moreover, the SMN protective and preventive effects attribute to its capacity in the reduction of DOX-induced carbonyl stress and DNA damage, which may be mediated by c-myc expression.

  20. Overexpression of c-myc induces epithelial mesenchymal transition in mammary epithelial cells.

    PubMed

    Cho, Kyoung Bin; Cho, Min Kyong; Lee, Won Young; Kang, Keon Wook

    2010-07-28

    The c-myc gene is frequently overexpressed in human breast cancer and its target genes are involved in tumorigenesis. Epithelial mesenchymal transitions (EMT), where cells undergo a developmental switch from a polarized epithelial phenotype to a highly motile mesenchymal phenotype, are associated with invasion and motility of cancer cells. Basal E-cadherin expression was down-regulated in c-myc overexpressing MCF10A (c-myc-MCF10A) cells compared to GFP-overexpressing MCF10A (GFP-MCF10A) cells, while N-cadherin was distinctly increased in c-myc-MCF10A cells. Given that glycogen synthase kinase-3beta (GSK-3beta) and the snail axis have key roles in E-cadherin deregulation during EMT, we investigated the role of GSK-3beta/snail signaling pathways in the induction of EMT by c-myc overexpression. In contrast to GFP-MCF10A cells, both the transcriptional activity and the ubiquitination-dependent protein stability of snail were enhanced in c-myc-MCF10A cells, and this was reversed by GSK-3beta overexpression. We also found that c-myc overexpression inhibits GSK-3beta activity through activation of extracellular signal-regulated kinase (ERK). Inhibition of ERK by dominant negative mutant transfection or chemical inhibitor significantly suppressed snail gene transcription. These results suggest that c-myc overexpression during transformation of mammary epithelial cells (MEC) is involved in EMTs via ERK-dependent GSK-3beta inactivation and subsequent snail activation.

  1. Liver tumor formation by a mutant retinoblastoma protein in the transgenic mice is caused by an upregulation of c-Myc target genes

    SciTech Connect

    Wang, Bo; Hikosaka, Keisuke; Sultana, Nishat; Sharkar, Mohammad Tofael Kabir; Noritake, Hidenao; Kimura, Wataru; Wu, Yi-Xin; Kobayashi, Yoshimasa; Uezato, Tadayoshi; Miura, Naoyuki

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Fifty percent of the mutant Rb transgenic mice produced liver tumors. Black-Right-Pointing-Pointer In the tumor, Foxm1, Skp2, Bmi1 and AP-1 mRNAs were up-regulated. Black-Right-Pointing-Pointer No increase in expression of the Myc-target genes was observed in the non-tumorous liver. Black-Right-Pointing-Pointer Tumor formation depends on up-regulation of the Myc-target genes. -- Abstract: The retinoblastoma (Rb) tumor suppressor encodes a nuclear phosphoprotein that regulates cellular proliferation, apoptosis and differentiation. In order to adapt itself to these biological functions, Rb is subjected to modification cycle, phosphorylation and dephosphorylation. To directly determine the effect of phosphorylation-resistant Rb on liver development and function, we generated transgenic mice expressing phosphorylation-resistant human mutant Rb (mt-Rb) under the control of the rat hepatocyte nuclear factor-1 gene promoter/enhancer. Expression of mt-Rb in the liver resulted in macroscopic neoplastic nodules (adenomas) with {approx}50% incidence within 15 months old. Interestingly, quantitative reverse transcriptase-PCR analysis showed that c-Myc was up-regulated in the liver of mt-Rb transgenic mice irrespective of having tumor tissues or no tumor. In tumor tissues, several c-Myc target genes, Foxm1, c-Jun, c-Fos, Bmi1 and Skp2, were also up-regulated dramatically. We determined whether mt-Rb activated the Myc promoter in the HTP9 cells and demonstrated that mt-Rb acted as an inhibitor of wild-type Rb-induced repression on the Myc promoter. Our results suggest that continued upregulation of c-Myc target genes promotes the liver tumor formation after about 1 year of age.

  2. c-Myc alters substrate utilization and O-GlcNAc protein posttranslational modifications without altering cardiac function during early aortic constriction

    SciTech Connect

    Ledee, Dolena; Smith, Lincoln; Bruce, Margaret; Kajimoto, Masaki; Isern, Nancy; Portman, Michael A.; Olson, Aaron K.; Bertrand, Luc

    2015-08-12

    Pressure overload cardiac hypertrophy alters substrate metabolism. Prior work showed that myocardial inactivation of c-Myc (Myc) attenuated hypertrophy and decreased expression of metabolic genes after aortic constriction. Accordingly, we hypothesize that Myc regulates substrate preferences for the citric acid cycle during pressure overload hypertrophy from transverse aortic constriction (TAC) and that these metabolic changes impact cardiac function and growth. To test this hypothesis, we subjected mice with cardiac specific, inducible Myc inactivation (MycKO-TAC) and non-transgenic littermates (Cont-TAC) to transverse aortic constriction (TAC; n=7/group). A separate group underwent sham surgery (Sham, n=5). After two weeks, function was measured in isolated working hearts along with substrate fractional contributions to the citric acid cycle by using perfusate with 13C labeled mixed fatty acids, lactate, ketone bodies and unlabeled glucose and insulin. Cardiac function was similar between groups after TAC although +dP/dT and -dP/dT trended towards improvement in MycKO-TAC versus Cont-TAC. Compared to Sham, Cont-TAC had increased free fatty acid fractional contribution with a concurrent decrease in unlabeled (predominately glucose) contribution. The changes in free fatty acid and unlabeled fractional contributions were abrogated by Myc inactivation during TAC (MycKO-TAC). Additionally, protein posttranslational modification by O-GlcNAc was significantly greater in Cont-TAC versus both Sham and MycKO-TAC. Lastly, Myc alters substrate preferences for the citric acid cycle during early pressure overload hypertrophy without negatively affecting cardiac function. Myc also affects protein posttranslational modifications by O-GlcNAc during hypertrophy.

  3. c-Myc alters substrate utilization and O-GlcNAc protein posttranslational modifications without altering cardiac function during early aortic constriction

    DOE PAGES

    Ledee, Dolena; Smith, Lincoln; Bruce, Margaret; Kajimoto, Masaki; Isern, Nancy; Portman, Michael A.; Olson, Aaron K.; Bertrand, Luc

    2015-08-12

    Pressure overload cardiac hypertrophy alters substrate metabolism. Prior work showed that myocardial inactivation of c-Myc (Myc) attenuated hypertrophy and decreased expression of metabolic genes after aortic constriction. Accordingly, we hypothesize that Myc regulates substrate preferences for the citric acid cycle during pressure overload hypertrophy from transverse aortic constriction (TAC) and that these metabolic changes impact cardiac function and growth. To test this hypothesis, we subjected mice with cardiac specific, inducible Myc inactivation (MycKO-TAC) and non-transgenic littermates (Cont-TAC) to transverse aortic constriction (TAC; n=7/group). A separate group underwent sham surgery (Sham, n=5). After two weeks, function was measured in isolated workingmore » hearts along with substrate fractional contributions to the citric acid cycle by using perfusate with 13C labeled mixed fatty acids, lactate, ketone bodies and unlabeled glucose and insulin. Cardiac function was similar between groups after TAC although +dP/dT and -dP/dT trended towards improvement in MycKO-TAC versus Cont-TAC. Compared to Sham, Cont-TAC had increased free fatty acid fractional contribution with a concurrent decrease in unlabeled (predominately glucose) contribution. The changes in free fatty acid and unlabeled fractional contributions were abrogated by Myc inactivation during TAC (MycKO-TAC). Additionally, protein posttranslational modification by O-GlcNAc was significantly greater in Cont-TAC versus both Sham and MycKO-TAC. Lastly, Myc alters substrate preferences for the citric acid cycle during early pressure overload hypertrophy without negatively affecting cardiac function. Myc also affects protein posttranslational modifications by O-GlcNAc during hypertrophy.« less

  4. An essential E box in the promoter of the gene encoding the mRNA cap-binding protein (eukaryotic initiation factor 4E) is a target for activation by c-myc.

    PubMed Central

    Jones, R M; Branda, J; Johnston, K A; Polymenis, M; Gadd, M; Rustgi, A; Callanan, L; Schmidt, E V

    1996-01-01

    The mRNA cap-binding protein (eukaryotic initiation factor 4E [eIF4E]) binds the m7 GpppN cap on mRNA, thereby initiating translation. eIF4E is essential and rate limiting for protein synthesis. Overexpression of eIF4E transforms cells, and mutations in eIF4E arrest cells in G, in cdc33 mutants. In this work, we identified the promoter region of the gene encoding eIF4E, because we previously identified eIF4E as a potential myc-regulated gene. In support of our previous data, a minimal, functional, 403-nucleotide promoter region of eIF4E was found to contain CACGTG E box repeats, and this core eIF4E promoter was myc responsive in cotransfections with c-myc. A direct role for myc in activating the eIF4E promoter was demonstrated by cotransfections with two dominant negative mutants of c-myc (MycdeltaTAD and MycdeltaBR) which equally suppressed promoter function. Furthermore, electrophoretic mobility shift assays demonstrated quantitative binding to the E box motifs that correlated with myc levels in the electrophoretic mobility shift assay extracts; supershift assays demonstrated max and USF binding to the same motif. cis mutations in the core or flank of the eIF4E E box simultaneously altered myc-max and USF binding and inactivated the promoter. Indeed, mutations of this E box inactivated the promoter in all cells tested, suggesting it is essential for expression of eIF4E. Furthermore, the GGCCACGTG(A/T)C(C/G) sequence is shared with other in vivo targets for c-myc, but unlike other targets, it is located in the immediate promoter region. Its critical function in the eIF4E promoter coupled with the known functional significance of eIF4E in growth regulation makes it a particularly interesting target for c-myc regulation. PMID:8756633

  5. c-Myc inhibits Ras-mediated differentiation of pheochromocytoma cells by blocking c-Jun up-regulation.

    PubMed

    Vaqué, José P; Fernández-García, Belén; García-Sanz, Pablo; Ferrandiz, Nuria; Bretones, Gabriel; Calvo, Fernando; Crespo, Piero; Marín, María C; León, Javier

    2008-02-01

    Although mutant Ras proteins were originally described as transforming oncoproteins, they induce growth arrest, senescence, and/or differentiation in many cell types. c-Myc is an oncogenic transcription factor that cooperates with Ras in cellular transformation and oncogenesis. However, the Myc-Ras relationship in cellular differentiation is largely unknown. Here, we have analyzed the effects of c-Myc on PC12-derived cells (UR61 cell line), harboring an inducible N-Ras oncogene. In these cells, Ras activation induces neuronal-like differentiation by a process involving c-Jun activation. We found that c-Myc inhibited Ras-mediated differentiation by a mechanism that involves the blockade of c-Jun induction in response to Ras signal. Accordingly, ectopically expressed c-Jun could bypass c-Myc impediment of Ras-induced differentiation and activator protein 1 activation. Interestingly, it did not rescue the proliferative arrest elicited by Ras and did not enhance the differentiation-associated apoptosis. The blockade of Ras-mediated induction of c-Jun takes place at the level of c-Jun proximal promoter. Mutational analysis revealed that c-Myc regions involved in DNA binding and transactivation are required to block differentiation and c-Jun induction. c-Myc does not seem to require Miz-1 to inhibit differentiation and block c-Jun induction. Furthermore, Max is not required for c-Myc activity, as UR61 cells lack a functional Max gene. c-Myc-inhibitory effect on the Ras/c-Jun connection is not restricted to UR61 cells as it can occur in other cell types as K562 or HEK293. In conclusion, we describe a novel interplay between c-Myc and c-Jun that controls the ability of Ras to trigger the differentiation program of pheochromocytoma cells.

  6. ApoG2 induces cell cycle arrest of nasopharyngeal carcinoma cells by suppressing the c-Myc signaling pathway

    PubMed Central

    Hu, Zhe-Yu; Sun, Jian; Zhu, Xiao-Feng; Yang, Dajun; Zeng, Yi-Xin

    2009-01-01

    Background apogossypolone (ApoG2) is a novel derivate of gossypol. We previously have reported that ApoG2 is a promising compound that kills nasopharyngeal carcinoma (NPC) cells by inhibiting the antiapoptotic function of Bcl-2 proteins. However, some researchers demonstrate that the antiproliferative effect of gossypol on breast cancer cells is mediated by induction of cell cycle arrest. So this study was aimed to investigate the effect of ApoG2 on cell cycle proliferation in NPC cells. Results We found that ApoG2 significantly suppressed the expression of c-Myc in NPC cells and induced arrest at the DNA synthesis (S) phase in a large percentage of NPC cells. Immunoblot analysis showed that expression of c-Myc protein was significantly downregulated by ApoG2 and that the expression of c-Myc's downstream molecules cyclin D1 and cyclin E were inhibited whereas p21 was induced. To further identify the cause-effect relationship between the suppression of c-Myc signaling pathway and induction of cell cycle arrest, the expression of c-Myc was interfered by siRNA. The results of cell cycle analysis showed that the downregulation of c-Myc signaling pathway by siRNA interference could cause a significant arrest of NPC cell at S phase of the cell cycle. In CNE-2 xenografts, ApoG2 significantly downregulated the expression of c-Myc and suppressed tumor growth in vivo. Conclusion Our findings indicated that ApoG2 could potently disturb the proliferation of NPC cells by suppressing c-Myc signaling pathway. This data suggested that the inhibitory effect of ApoG2 on NPC cell cycle proliferation might contribute to its use in anticancer therapy. PMID:19698176

  7. Recombinant interleukin 2 regulates levels of c-myc mRNA in a cloned murine T lymphocyte.

    PubMed Central

    Reed, J C; Sabath, D E; Hoover, R G; Prystowsky, M B

    1985-01-01

    The cellular oncogene c-myc has been implicated in the regulation of growth of normal and neoplastic cells. Recently, it was suggested that c-myc gene expression may control the G0----G1-phase transition in normal lymphocytes that were stimulated to enter the cell cycle by the lectin concanavalin A (ConA). Here we describe the effects of purified recombinant interleukin 2 (rIL2) and of ConA on levels of c-myc mRNA in the noncytolytic murine T-cell clone L2. In contrast to resting (G0) primary cultures of lymphocytes, quiescent L2 cells have a higher RNA content than resting splenocytes and express receptors for interleukin 2 (IL2). Resting L2 cells are therefore best regarded as early G1-phase cells. Purified rIL2 was found to stimulate the rapid accumulation of c-myc mRNA in L2 cells. Levels of c-myc mRNA became maximal within 1 h and declined gradually thereafter. In contrast, ConA induced slower accumulation of c-myc mRNA in L2 cells, with increased levels of c-myc mRNA becoming detectable 4 to 8 h after stimulation. Experiments with the protein synthesis inhibitor cycloheximide demonstrated that the increase in levels of c-myc mRNA that were induced by ConA was a direct effect of this lectin and not secondary to IL2 production. Cyclosporin A, an immunosuppressive agent, markedly reduced the accumulation of c-myc mRNA that was induced by ConA but only slightly diminished the accumulation of c-myc mRNA that was induced by rIL2. Taken together, these data provide evidence that (i) c-myc gene expression can be regulated by at least two distinct pathways in T lymphocytes, only one of which is sensitive to cyclosporine A, and (ii) the accumulation of c-myc mRNA can be induced in T cells by IL2 during the G1 phase of the cell cycle. Images PMID:3879814

  8. Repression of miR-17-5p with elevated expression of E2F-1 and c-MYC in non-metastatic hepatocellular carcinoma and enhancement of cell growth upon reversing this expression pattern

    SciTech Connect

    El Tayebi, H.M.; Omar, K.; Hegy, S.; El Maghrabi, M.; El Brolosy, M.; Hosny, K.A.; Esmat, G.; Abdelaziz, A.I.

    2013-05-10

    Highlights: •The oncogenic miR-17-5p is downregulated in non-metastatic hepatocellular carcinoma patients. •E2F-1 and c-MYC transcripts are upregulated in non-metastatic HCC patients. •miR-17-5p forced overexpression inhibited E2F-1 and c-MYC expression in HuH-7 cells. •miR-17-5p mimicking increased HuH-7 cell growth, proliferation, migration and colony formation. •miR-17-5p is responsible for HCC progression among the c-MYC/E2F-1/miR-17-5p triad members. -- Abstract: E2F-1, c-MYC, and miR-17-5p is a triad of two regulatory loops: a negative and a positive loop, where c-MYC induces the expression of E2F-1 that induces the expression of miR-17-5p which in turn reverses the expression of E2F-1 to close the loop. In this study, we investigated this triad for the first time in hepatocellular carcinoma (HCC), where miR-17-5p showed a significant down-regulation in 23 non-metastatic HCC biopsies compared to 10 healthy tissues; however, E2F-1 and c-MYC transcripts were markedly elevated. Forced over-expression of miR-17-5p in HuH-7 cells resulted in enhanced cell proliferation, growth, migration and clonogenicity with concomitant inhibition of E2F-1 and c-MYC transcripts expressions, while antagomirs of miR-17-5p reversed these events. In conclusion, this study revealed a unique pattern of expression for miR-17-5p in non-metastatic HCC patients in contrast to metastatic HCC patients. In addition we show that miR-17-5p is the key player among the triad that tumor growth and spread.

  9. E1a promotes c-Myc-dependent replicative stress

    PubMed Central

    Valero, María Llanos; Cimas, Francisco Jose; Arias, Laura; Melgar-Rojas, Pedro; García, Elena; Callejas-Valera, Juan Luis; García-Cano, Jesús; Serrano-Oviedo, Leticia; Ángel de la Cruz-Morcillo, Miguel; Sánchez-Pérez, Isabel; Sánchez-Prieto, Ricardo

    2014-01-01

    The E1a gene from adenovirus is known to be a potent inducer of chemo/radiosensitivity in a wide range of tumors. However, the molecular bases of its radiosensitizer properties are still poorly understood. In an attempt to study this effect, U87MG cells, derived from a radio-resistant tumor as glioblastoma, where infected with lentivirus carrying E1a gene developing an acute sensitivity to ionizing radiation. The induction of radiosensitivity correlated with a marked G2/M phase accumulation and a potent apoptotic response. Our findings demonstrate that c-Myc plays a pivotal role in E1a-associated radiosensitivity through the induction of a replicative stress situation, as our data support by genetic approaches, based in interference and overexpression in U87MG cells. In fact, we present evidence showing that Chk1 is a novel transcriptional target of E1a gene through the effect exerted by this adenoviral protein onto c-Myc. Moreover, c-Myc upregulation also explains the marked phosphorylation of H2AX associated to E1a expression in the absence of DNA damage. Indeed, all these observations were applicable to other experimental models, such as T98G, LN-405 and A172, rendering the same pattern in terms of radiosensitivity, cell cycle distribution, upregulation of Chk1, c-Myc, and phosphorylation pattern of H2AX. In summary, our data propose a novel mechanism to explain how E1a mediates radiosensitivity through the signaling axis E1a→c-Myc→ replicative stress situation. This novel mechanism of E1a-mediated radiosensitivity could be the key to open new possibilities in the current therapy of glioblastoma. PMID:24196438

  10. Histone deacetylase inhibitor romidepsin induces efficient tumor cell lysis via selective down-regulation of LMP1 and c-myc expression in EBV-positive diffuse large B-cell lymphoma.

    PubMed

    Shin, Dong-Yeop; Kim, Areumnuri; Kang, Hye Jin; Park, Sunhoo; Kim, Dong Wan; Lee, Seung-Sook

    2015-08-10

    We investigated the role of the histone deacetylase inhibitor, romidepsin, in Epstein-Barr virus (EBV)-positive diffuse large B-cell lymphoma (DLBCL), an aggressive non-Hodgkin lymphoma with poor clinical outcomes. We used EBV-positive and EBV-negative DLBCL cell lines and generated two EBV-transfected cell lines, LY7/EBV and U2932/EBV. Romidepsin was cytotoxic to cultured EBV-positive cells via the activation of the caspase cascade. Moreover, in vivo mice xenograft models demonstrated the cytotoxicity of romidepsin to EBV-positive DLBCL cells. Romidepsin induced cytotoxicity via the reduction of LMP1 and c-myc expression in EBV-positive cells. Inhibiting either LMP1 or c-myc using small inhibitory RNAs caused partial cytotoxicity in EBV-positive Farage and U2932/EBV lines. The dual inhibition of LMP1 and c-myc showed a synergistic cytotoxic effect in EBV-positive cells similar in magnitude to that of romidepsin alone. In addition, either double blockade of LMP1 and c-myc activity or romidepsin single treatment activated EBV lytic cycle in EBV-positive cells. In conclusion, romidepsin exerts strong anti-tumor activity in EBV-positive DLBCL via the inhibition of both LMP1 and c-myc. Our findings indicate that romidepsin might be a promising treatment for EBV-positive DLBCL.

  11. NM23-H2 may play an indirect role in transcriptional activation of c-myc gene expression but does not cleave the nuclease hypersensitive element III[subscript 1

    SciTech Connect

    Dexheimer, Thomas S.; Carey, Steven S.; Zuohe, Song; Gokhale, Vijay M.; Hu, Xiaohui; Murata, Lauren B.; Maes, Estelle M.; Weichsel, Andrzej; Sun, Daekyu; Meuillet, Emmanuelle J.; Montfort, William R.; Hurley, Laurence H.

    2009-05-13

    The formation of G-quadruplex structures within the nuclease hypersensitive element (NHE) III{sub 1} region of the c-myc promoter and the ability of these structures to repress c-myc transcription have been well established. However, just how these extremely stable DNA secondary structures are transformed to activate c-myc transcription is still unknown. NM23-H2/nucleoside diphosphate kinase B has been recognized as an activator of c-myc transcription via interactions with the NHE III{sub 1} region of the c-myc gene promoter. Through the use of RNA interference, we confirmed the transcriptional regulatory role of NM23-H2. In addition, we find that further purification of NM23-H2 results in loss of the previously identified DNA strand cleavage activity, but retention of its DNA binding activity. NM23-H2 binds to both single-stranded guanine- and cytosine-rich strands of the c-myc NHE III{sub 1} and, to a lesser extent, to a random single-stranded DNA template. However, it does not bind to or cleave the NHE III{sub 1} in duplex form. Significantly, potassium ions and compounds that stabilize the G-quadruplex and i-motif structures have an inhibitory effect on NM23-H2 DNA-binding activity. Mutation of Arg{sup 88} to Ala{sup 88} (R88A) reduced both DNA and nucleotide binding but had minimal effect on the NM23-H2 crystal structure. On the basis of these data and molecular modeling studies, we have proposed a stepwise trapping-out of the NHE III{sub 1} region in a single-stranded form, thus allowing single-stranded transcription factors to bind and activate c-myc transcription. Furthermore, this model provides a rationale for how the stabilization of the G-quadruplex or i-motif structures formed within the c-myc gene promoter region can inhibit NM23-H2 from activating c-myc gene expression.

  12. Activation of a Novel c-Myc-miR27-Prohibitin 1 Circuitry in Cholestatic Liver Injury Inhibits Glutathione Synthesis in Mice

    PubMed Central

    Yang, Heping; Li, Tony W.H.; Zhou, Yu; Peng, Hui; Liu, Ting; Zandi, Ebrahim; Martínez-Chantar, María Luz; Mato, José M.

    2015-01-01

    Abstract Aims: We showed that chronic cholestatic liver injury induced the expression of c-Myc but suppressed that of glutamate-cysteine ligase (GCL, composed of catalytic and modifier subunits GCLC and GCLM, respectively). This was associated with reduced nuclear antioxidant response element (ARE) binding by nuclear factor-erythroid 2 related factor 2 (Nrf2). Here, we examined whether c-Myc is involved in this process. Results: Similar to bile duct ligation (BDL), lithocholic acid (LCA) treatment in vivo induced c-Myc but suppressed GCL subunits expression at day 14. Nrf2 expression and Nrf2 ARE binding fell markedly. However, Nrf2 heterodimerization with MafG was enhanced by LCA, which prompted us to examine whether LCA treatment in vivo altered proteins that bind to ARE using biotinylated ARE in pull-down assay followed by proteomics. LCA treatment enhanced c-Myc but lowered prohibitin 1 (PHB1) binding to ARE. This was a result of c-Myc-mediated induction of microRNA 27a/b (miR27a/b), which target both PHB1 and Nrf2 to reduce their expression. Knockdown of c-Myc or miR27a/b attenuated LCA-mediated suppression of Nrf2, PHB1, and GCL subunit expression, whereas overexpression of PHB1 protected against the fall in Nrf2 and GCL subunits. Both c-Myc and PHB1 directly interact with Nrf2 but c-Myc lowers Nrf2 binding to ARE while PHB1 enhances it. Innovation: This is the first work that shows how activation of this circuit in cholestatic liver injury inhibits GCL expression. Conclusions: LCA feeding and BDL activate c-Myc-miR27a/b-PHB1 circuit, with the consequence of inhibiting Nrf2 expression and ARE binding, resulting in decreased reduced glutathione synthesis and antioxidant capacity. Antioxid. Redox Signal. 22, 259–274. PMID:25226451

  13. Evaluation of the antitumor effects of c-Myc-Max heterodimerization inhibitor 100258-F4 in ovarian cancer cells.

    PubMed

    Wang, Jiandong; Ma, Xiaoli; Jones, Hannah M; Chan, Leo Li-Ying; Song, Fang; Zhang, Weiyuan; Bae-Jump, Victoria L; Zhou, Chunxiao

    2014-01-01

    Epithelial ovarian carcinoma is the most lethal gynecological cancer due to its silent onset and recurrence with resistance to chemotherapy. Overexpression of oncogene c-Myc is one of the most frequently encountered events present in ovarian carcinoma. Disrupting the function of c-Myc and its downstream target genes is a promising strategy for cancer therapy. Our objective was to evaluate the potential effects of small-molecule c-Myc inhibitor, 10058-F4, on ovarian carcinoma cells and the underlying mechanisms by which 10058-F4 exerts its actions. Using MTT assay, colony formation, flow cytometry and Annexin V FITC assays, we found that 10058-F4 significantly inhibited cell proliferation of both SKOV3 and Hey ovarian cancer cells in a dose dependent manner through induction of apoptosis and cell cycle G1 arrest. Treatment with 10058-F4 reduced cellular ATP production and ROS levels in SKOV3 and Hey cells. Consistently, primary cultures of ovarian cancer treated with 10058-F4 showed induction of caspase-3 activity and inhibition of cell proliferation in 15 of 18 cases. The response to 10058-F4 was independent the level of c-Myc protein over-expression in primary cultures of ovarian carcinoma. These novel findings suggest that the growth of ovarian cancer cells is dependent upon c-MYC activity and that targeting c-Myc-Max heterodimerization could be a potential therapeutic strategy for ovarian cancer.

  14. Cadmium Activates Multiple Signaling Pathways That Coordinately Stimulate Akt Activity to Enhance c-Myc mRNA Stability

    PubMed Central

    Tsai, Jia-Shiuan; Chao, Cheng-Han; Lin, Lih-Yuan

    2016-01-01

    Cadmium is a known environmental carcinogen. Exposure of Cd leads to the activation of several proto-oncogenes in cells. We investigated here the mechanism of c-Myc expression in hepatic cells under Cd treatment. The c-Myc protein and mRNA levels increased in dose- and time-dependent manners in HepG2 cells with Cd treatment. This increase was due to an increase in c-Myc mRNA stability. To explore the mechanism involved in enhancing the mRNA stability, several cellular signaling factors that evoked by Cd treatment were analyzed. PI3K, p38, ERK and JNK were activated by Cd. However, ERK did not participate in the Cd-induced c-Myc expression. Further analysis revealed that mTORC2 was a downstream factor of p38. PI3K, JNK and mTORC2 coordinately activated Akt. Akt was phosphorylated at Thr450 in the untreated cells. Cd treatment led to additional phosphorylation at Thr308 and Ser473. Blocking any of the three signaling factors resulted in the reduction of phosphorylation level at all three Akt sites. The activated Akt phosphorylated Foxo1 and allowed the modified protein to translocate into the cytoplasm. We conclude that Cd-induced accumulation of c-Myc requires the activation of several signaling pathways. The signals act coordinately for Akt activation and drive the Foxo1 from the nucleus to the cytoplasm. Reduction of Foxo1 in the nucleus reduces the transcription of its target genes that may affect c-Myc mRNA stability, resulting in a higher accumulation of the c-Myc proteins. PMID:26751215

  15. Gamabufotalin triggers c-Myc degradation via induction of WWP2 in multiple myeloma cells

    PubMed Central

    Wang, Chao; Deng, Sa; Zhang, Baojing; Huo, Xiaokui; Zhang, Bo; Wang, Xiaobo; Zhong, Yuping; Ma, Xiaochi

    2016-01-01

    Deciding appropriate therapy for multiple myeloma (MM) is challenging because of the occurrence of multiple chromosomal changes and the fatal nature of the disease. In the current study, gamabufotalin (GBT) was isolated from toad venom, and its tumor-specific cytotoxicity was investigated in human MM cells. We found GBT inhibited cell growth and induced apoptosis with the IC50 values <50 nM. Mechanistic studies using functional approaches identified GBT as an inhibitor of c-Myc. Further analysis showed that GBT especially evoked the ubiquitination and degradation of c-Myc protein, thereby globally repressing the expression of c-Myc target genes. GBT treatment inhibited ERK and AKT signals, while stimulating the activation of JNK cascade. An E3 ubiquitin-protein ligase, WWP2, was upregulated following JNK activation and played an important role in c-Myc ubiquitination and degradation through direct protein-protein interaction. The antitumor effect of GBT was validated in a xenograft mouse model and the suppression of MM-induced osteolysis was verified in a SCID-hu model in vivo. Taken together, our study identified the potential of GBT as a promising therapeutic agent in the treatment of MM. PMID:26894970

  16. MYU, a Target lncRNA for Wnt/c-Myc Signaling, Mediates Induction of CDK6 to Promote Cell Cycle Progression.

    PubMed

    Kawasaki, Yoshihiro; Komiya, Mimon; Matsumura, Kosuke; Negishi, Lumi; Suda, Sakiko; Okuno, Masumi; Yokota, Naoko; Osada, Tomoya; Nagashima, Takeshi; Hiyoshi, Masaya; Okada-Hatakeyama, Mariko; Kitayama, Joji; Shirahige, Katsuhiko; Akiyama, Tetsu

    2016-09-01

    Aberrant activation of Wnt/β-catenin signaling is a major driving force in colon cancer. Wnt/β-catenin signaling induces the expression of the transcription factor c-Myc, leading to cell proliferation and tumorigenesis. c-Myc regulates multiple biological processes through its ability to directly modulate gene expression. Here, we identify a direct target of c-Myc, termed MYU, and show that MYU is upregulated in most colon cancers and required for the tumorigenicity of colon cancer cells. Furthermore, we demonstrate that MYU associates with the RNA binding protein hnRNP-K to stabilize CDK6 expression and thereby promotes the G1-S transition of the cell cycle. These results suggest that the MYU/hnRNP-K/CDK6 pathway functions downstream of Wnt/c-Myc signaling and plays a critical role in the proliferation and tumorigenicity of colon cancer cells. PMID:27568568

  17. Transcriptional regulation of the c-Myc promoter by NFAT1 involves negative and positive NFAT-responsive elements.

    PubMed

    Mognol, Giuliana P; de Araujo-Souza, Patricia S; Robbs, Bruno K; Teixeira, Leonardo K; Viola, Joao P B

    2012-03-01

    A number of physiological processes in both normal and cancer cells are regulated by the proto-oncogene c-Myc. Among them, processes such as cell cycle regulation, apoptosis, angiogenesis and metastasis are also controlled by the nuclear factor of activated T cells (NFAT) family of transcription factors. It is already known that NFAT upregulates c-Myc expression by binding to an element located in the minimal c-Myc promoter. However, the importance of other NFAT sites in the context of the full promoter has not been evaluated. In this work, we demonstrate that the regulation of c-Myc by NFAT1 is more complex than previously conceived. In addition to the proximal site, NFAT1 directly binds to distal sites in the c-Myc promoter with different affinities. Promoter deletions and site-directed mutagenesis of NFAT binding sites in HEK293T cells suggest that in NFAT1-mediated transactivation, some NFAT elements are negative and dominant and others are positive and recessive. Furthermore, we demonstrate that cooperation with partner proteins, such as p300, enhances NFAT1-mediated transactivation of the c-Myc promoter. At last, the newly identified sites are also responsive to NFAT2 in HEK293T cells. However, in NIH3T3 cells, the regulation mediated by NFAT proteins is not dependent on the known NFAT sites, including the site previously described. Thus, our data suggest that the contribution of NFAT to the regulation of c-Myc expression may depend on a balance between the binding to positive and negative NFAT-responsive elements and cooperation with transcriptional cofactors, which may differ according to the context and/or cell type.

  18. Erythropoietin activates two distinct signaling pathways required for the initiation and the elongation of c-myc

    NASA Technical Reports Server (NTRS)

    Chen, C.; Sytkowski, A. J.

    2001-01-01

    Erythropoietin (Epo) stimulation of erythroid cells results in the activation of several kinases and a rapid induction of c-myc expression. Protein kinase C is necessary for Epo up-regulation of c-myc by promoting elongation at the 3'-end of exon 1. PKCepsilon mediates this signal. We now show that Epo triggers two signaling pathways to c-myc. Epo rapidly up-regulated Myc protein in BaF3-EpoR cells. The phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 blocked Myc up-regulation in a concentration-dependent manner but had no effect on the Epo-induced phosphorylation of ERK1 and ERK2. LY294002 also had no effect on Epo up-regulation of c-fos. MEK1 inhibitor PD98059 blocked both the c-myc and the c-fos responses to Epo. PD98059 and the PKC inhibitor H7 also blocked the phosphorylation of ERK1 and ERK2. PD98059 but not LY294002 inhibited Epo induction of ERK1 and ERK2 phosphorylation in normal erythroid cells. LY294002 blocked transcription of c-myc at exon 1. PD98059 had no effect on transcription from exon 1 but, rather, blocked Epo-induced c-myc elongation at the 3'-end of exon 1. These results identify two Epo signaling pathways to c-myc, one of which is PI3K-dependent operating on transcriptional initiation, whereas the other is mitogen-activated protein kinase-dependent operating on elongation.

  19. Metformin elicits anticancer effects through the sequential modulation of DICER and c-MYC.

    PubMed

    Blandino, Giovanni; Valerio, Mariacristina; Cioce, Mario; Mori, Federica; Casadei, Luca; Pulito, Claudio; Sacconi, Andrea; Biagioni, Francesca; Cortese, Giancarlo; Galanti, Sergio; Manetti, Cesare; Citro, Gennaro; Muti, Paola; Strano, Sabrina

    2012-01-01

    Diabetic patients treated with metformin have a reduced incidence of cancer and cancer-related mortality. Here we show that metformin affects engraftment and growth of breast cancer tumours in mice. This correlates with the induction of metabolic changes compatible with clear anticancer effects. We demonstrate that microRNA modulation underlies the anticancer metabolic actions of metformin. In fact, metformin induces DICER expression and its effects are severely impaired in DICER knocked down cells. Conversely, ectopic expression of DICER recapitulates the effects of metformin in vivo and in vitro. The microRNAs upregulated by metformin belong mainly to energy metabolism pathways. Among the messenger RNAs downregulated by metformin, we found c-MYC, IRS-2 and HIF1alpha. Downregulation of c-MYC requires AMP-activated protein kinase-signalling and mir33a upregulation by metformin. Ectopic expression of c-MYC attenuates the anticancer metabolic effects of metformin. We suggest that DICER modulation, mir33a upregulation and c-MYC targeting have an important role in the anticancer metabolic effects of metformin. PMID:22643892

  20. Kinetic profiling of the c-Myc transcriptome and bioinformatic analysis of repressed gene promoters.

    PubMed

    Yap, Chui-Sun; Peterson, Abigail L; Castellani, Gastone; Sedivy, John M; Neretti, Nicola

    2011-07-01

    Mammalian c-Myc is a member of a small family of three related proto-oncogenic transcription factors. c-Myc has an unusually broad array of regulatory functions, which include roles in cell cycle and apoptosis, a variety of metabolic functions, cell differentiation, senescence, and stem cell maintenance. c-Myc modulates the expression of a very large number of genes, but the magnitude of the majority of the regulatory effects is only 2-fold or less. c-Myc can both activate and repress the promoters of its target genes. Identification of genes directly regulated by c-Myc has been an enduring question in the field. We report here microarray expression profiling of a high resolution time course of c-Myc induction, using fibroblast cells in which c-Myc activity can be modulated from null to physiological. The c-Myc transcriptome dataset presented is the largest reported to date with 4,186 differentially regulated genes (1,826 upregulated, 2,360 downregulated, 1% FDR). The gene expression patterns fit well with the known biological functions of c-Myc. We describe several novel findings and present tools for further data mining. Although the mechanisms of transcriptional activation by c-Myc are well understood, how c-Myc represses an even greater number of genes remains incompletely described. One mechanism involves the binding of c-Myc to other, positively acting transcription factors, and interfering with their activities. We identified rapid-response genes likely to be direct c-Myc targets, and analyzed the promoters of the repressed genes to identify transcription factors that could be targets of c-Myc repression.

  1. Altered expression of Bcl-2, c-Myc, H-Ras, K-Ras, and N-Ras does not influence the course of mycosis fungoides

    PubMed Central

    Maj, Joanna; Jankowska-Konsur, Alina; Plomer-Niezgoda, Ewa; Sadakierska-Chudy, Anna

    2013-01-01

    Introduction Data about genetic alterations in mycosis fungoides (MF) are limited and their significance not fully elucidated. The aim of the study was to explore the expression of various oncogenes in MF and to assess their influence on the disease course. Material and methods Skin biopsies from 27 MF patients (14 with early MF and 13 with advanced disease) and 8 healthy volunteers were analyzed by real-time polymerase chain reaction (PCR) to detect Bcl-2, c-Myc, H-Ras, K-Ras and N-Ras expression. All PCR reactions were performed using an Applied Biosystems 7900HT Fast Real-Time PCR System and interpreted using Sequence Detection Systems software which utilizes the comparative delta Ct method. The level of mRNA was normalized to GAPDH expression. All data were analyzed statistically. Results All evaluated oncogenes were found to be expressed in the skin from healthy controls and MF patients. Bcl-2 (–4.2 ±2.2 vs. –2.2 ±1.1; p = 0.01), H-Ras (–3.0 ±3.3 vs. 0.6 ±2.6; p = 0.01) and N-Ras (–3.6 ±2.0 vs. –1.1 ±2.4; p = 0.03) were expressed at significantly lower levels in MF. No relationships between oncogene expression and disease stage, presence of distant metastases and survival were observed (p > 0.05 for all comparisons). Conclusions The pathogenic role and prognostic significance of analyzed oncogenes in MF seem to be limited and further studies are needed to establish better prognostic factors for patients suffering from MF. PMID:24273576

  2. Intracellular leucine zipper interactions suggest c-Myc hetero-oligomerization.

    PubMed Central

    Dang, C V; Barrett, J; Villa-Garcia, M; Resar, L M; Kato, G J; Fearon, E R

    1991-01-01

    The physiological significance of in vitro leucine zipper interactions was studied by the use of two strategies which detect specific protein-protein interactions in mammalian cells. Fusion genes were constructed which produce chimeric proteins containing leucine zipper domains from several proteins fused either to the DNA-binding domain of the Saccharomyces cerevisiae GAL4 protein or to the transcriptional activation domain of the herpes simplex virus VP16 protein. Previous studies in mammalian cells have demonstrated that a single chimeric polypeptide containing these two domains will activate transcription of a reporter gene present downstream of the GAL4 DNA-binding site. Similarly, if the GAL4 DNA-binding domain of a chimeric protein could be complexed through leucine zipper interactions with the VP16 activation domain of another chimeric protein, then transcriptional activation of the reporter gene would be detected. Using this strategy for detecting leucine zipper interactions, we observed homo-oligomerization between leucine zipper domains of the yeast protein GCN4 and hetero-oligomerization between leucine zipper regions from the mammalian transcriptional regulating proteins c-Jun and c-Fos. In contrast, homo-oligomerization of the leucine zipper domain from c-Myc was not detectable in cells. The inability of the c-Myc leucine zipper to homo-oligomerize strongly in cells was confirmed independently. The second strategy to detect leucine zipper interactions takes advantage of the observation that the addition of nuclear localization sequences to a cytoplasmic protein will allow the cytoplasmic protein to be transported to and retained in the nucleus. Chimeric genes encoding proteins with sequences from a cytoplasmic protein fused either to the GCN4 or c-Myc leucine zipper domains were constructed. Experiments with the c-Myc chimeric protein failed to demonstrate transport of the cytoplasmic marker protein to the nucleus in cells expressing the wild-type c-Myc

  3. Enforced expression of the c-myc oncogene inhibits cell differentiation by precluding entry into a distinct predifferentiation state in G/sub 0//G/sub 1/

    SciTech Connect

    Freytag, S.O.

    1988-04-01

    A broad base of data has implicated a role for the c-myc proto-oncogene in the control of the cell cycle and cell differentiation. To further define the role of myc in these processes, the authors examined the effect of enforced myc expression on several events that are thought to be important steps leading to the terminally differentiated state: (i) the ability to arrest growth in G/sub 0//G/sub 1/, (ii) the ability to replicate the genome upon initiation of the differentiation program, and (iii) the ability to loose responsiveness to mitogens and withdraw from the cell cycle. 3T3-L1 preadipocyte cell lines expressing various levels of myc mRNA were established by transfection with a recombinant myc gene under the transcriptional control of the Rous sarcoma virus (RSV) promoter. Cells that expressed high constitutive levels of pRSV myc mRNA arrested in G/sub 0//G/sub 1/ at densities similar to those of normal cells at confluence. Upon initiation of the differentiation program, such cells traversed the cell cycle with kinetics similar to those of normal cells and subsequently arrested in G/sub 0//G/sub 1/. Thus, enforced expression of myc had no effect on the ability of cells to arrest growth in G/sub 0//G/sub 1/ or to replicate the genome upon initiation of the differentiation program. Cells were then tested for their ability to reenter the cell cycle upon exposure to high concentrations of serum and for their capacity to differentiate. In contrast to normal cells, cells expressing high constitutive levels of myc RNA reentered the cell cycle when challenged with 30% serum and failed to terminally differentiate.

  4. c-myc RNA degradation in growing and differentiating cells: Possible alternate pathways

    SciTech Connect

    Swartwout, S.G. ); Kinniburgh, A.J. . Dept. of Hematology Research)

    1989-01-01

    Transcripts of the proto-oncogene c-myc are composed of a rapidly degraded polyadenylated RNA species and an apparently much more stable, nonadenylated RNA species. In this report, the extended kinetics of c-myc RNA turnover have been examined in rapidly growing cells and in cells induced to differentiate. When transcription was blocked with actinomycin D in rapidly growing cells, poly(A)/sup +/ c-myc was rapidly degraded (t/sub 1/2/ = 12 min). c-myc RNA lacking poly (A) initially remained at or near control levels; however, after 80 to 90 min it was degraded with kinetics similar to those of poly (A)/sup +/ c-myc RNA. These bizarre kinetics are due to the deadenylation of poly (A)/sup +/ c-myc RNA to form poly (A)/sup -/ c-myc, thereby initially maintaining the poly (A)/sup -/ c-myc RNA pool when transcription is blocked. In contrast to growing cells, cells induced to differentiate degraded both poly (A)/sup +/ and poly (A)/sup -/ c-myc RNA rapidly. The rapid disappearance of both RNA species in differentiating cells suggests that a large proportion of the poly (A)/sup +/ c-myc RNA was directly degraded without first being converted to poly (A)/sup -/ c-myc RNA. Others have shown that transcriptional elongation of the c-myc gene is rapidly blocked in differentiating cells. The authors therefore hypothesize that in differentiating cells a direct, rapid degradation of poly (A)/sup +/ c-myc RNA may act as a backup or fail-safe system to ensure that c-myc protein is not synthesized.

  5. Decoding c-Myc networks of cell cycle and apoptosis regulated genes in a transgenic mouse model of papillary lung adenocarcinomas

    PubMed Central

    Ciribilli, Yari; Singh, Prashant; Spanel, Reinhard; Inga, Alberto; Borlak, Jürgen

    2015-01-01

    The c-Myc gene codes for a basic-helix-loop-helix-leucine zipper transcription factor protein and is reported to be frequently over-expressed in human cancers. Given that c-Myc plays an essential role in neoplastic transformation we wished to define its activity in lung cancer and therefore studied its targeted expression to respiratory epithelium in a transgenic mouse disease model. Using histological well-defined tumors, transcriptome analysis identified novel c-Myc responsive cell cycle and apoptosis genes that were validated as direct c-Myc targets using EMSA, Western blotting, gene reporter and ChIP assays. Through computational analyses c-Myc cooperating transcription factors emerged for repressed and up-regulated genes in cancer samples, namely Klf7, Gata3, Sox18, p53 and Elf5 and Cebpα, respectively. Conversely, at promoters of genes regulated in transgenic but non-carcinomatous lung tissue enriched binding sites for c-Myc, Hbp1, Hif1 were observed. Bioinformatic analysis of tumor transcriptomic data revealed regulatory gene networks and highlighted mortalin and moesin as master regulators while gene reporter and ChIP assays in the H1299 lung cancer cell line as well as cross-examination of published ChIP-sequence data of 7 human and 2 mouse cell lines provided strong evidence for the identified genes to be c-Myc targets. The clinical significance of findings was established by evaluating expression of orthologous proteins in human lung cancer. Taken collectively, a molecular circuit for c-Myc-dependent cellular transformation was identified and the network analysis broadened the perspective for molecularly targeted therapies. PMID:26427040

  6. Decoding c-Myc networks of cell cycle and apoptosis regulated genes in a transgenic mouse model of papillary lung adenocarcinomas.

    PubMed

    Ciribilli, Yari; Singh, Prashant; Spanel, Reinhard; Inga, Alberto; Borlak, Jürgen

    2015-10-13

    The c-Myc gene codes for a basic-helix-loop-helix-leucine zipper transcription factor protein and is reported to be frequently over-expressed in human cancers. Given that c-Myc plays an essential role in neoplastic transformation we wished to define its activity in lung cancer and therefore studied its targeted expression to respiratory epithelium in a transgenic mouse disease model. Using histological well-defined tumors, transcriptome analysis identified novel c-Myc responsive cell cycle and apoptosis genes that were validated as direct c-Myc targets using EMSA, Western blotting, gene reporter and ChIP assays.Through computational analyses c-Myc cooperating transcription factors emerged for repressed and up-regulated genes in cancer samples, namely Klf7, Gata3, Sox18, p53 and Elf5 and Cebpα, respectively. Conversely, at promoters of genes regulated in transgenic but non-carcinomatous lung tissue enriched binding sites for c-Myc, Hbp1, Hif1 were observed. Bioinformatic analysis of tumor transcriptomic data revealed regulatory gene networks and highlighted mortalin and moesin as master regulators while gene reporter and ChIP assays in the H1299 lung cancer cell line as well as cross-examination of published ChIP-sequence data of 7 human and 2 mouse cell lines provided strong evidence for the identified genes to be c-Myc targets. The clinical significance of findings was established by evaluating expression of orthologous proteins in human lung cancer. Taken collectively, a molecular circuit for c-Myc-dependent cellular transformation was identified and the network analysis broadened the perspective for molecularly targeted therapies.

  7. Small-molecule modulators of c-Myc/Max and Max/Max interactions.

    PubMed

    Berg, Thorsten

    2011-01-01

    The transcription factor c-Myc is overexpressed in many tumors in human beings and has been identified as a highly promising target for cancer therapy. Most biological functions of c-Myc require heterodimerization with its activation partner Max. Inhibition of the protein-protein interactions between c-Myc and Max by small molecules has been shown to be a feasible and powerful approach toward the inhibition of c-Myc functions. More recently, stabilization of Max homodimers to reduce the amount of Max available for activating c-Myc has also been demonstrated to counteract Myc activity. This review summarizes our current knowledge on small organic molecules that inhibit c-Myc by modulating protein-protein interactions relevant for the biological function of this important oncoprotein.

  8. Bin1 mediates apoptosis by c-Myc in transformed primary cells.

    PubMed

    DuHadaway, J B; Sakamuro, D; Ewert, D L; Prendergast, G C

    2001-04-01

    The Bin1 gene encodes a c-Myc-interacting adapter protein with tumor suppressor and cell death properties. In this study, we offer evidence that Bin1 participates in a mechanism through which c-Myc activates programmed cell death in transformed primary chick or rat cells. Antisense or dominant inhibitory Bin1 genes did not affect the ability of c-Myc to drive proliferation or transformation, but they did reduce the susceptibility of cells to c-Myc-induced apoptosis. Protein-protein interaction was implicated, suggesting that Bin1 mediates a death or death sensitization signal from c-Myc. Our findings offer direct support for the "dual signal" model of Myc apoptotic function, based on interactions with a binding protein. Loss of Bin1 in human tumors may promote malignant progression in part by helping to stanch the death penalty associated with c-Myc activation.

  9. The Essential Cofactor TRRAP Recruits the Histone Acetyltransferase hGCN5 to c-Myc

    PubMed Central

    McMahon, Steven B.; Wood, Marcelo A.; Cole, Michael D.

    2000-01-01

    The c-Myc protein functions as a transcription factor to facilitate oncogenic transformation; however, the biochemical and genetic pathways leading to transformation remain undefined. We demonstrate here that the recently described c-Myc cofactor TRRAP recruits histone acetylase activity, which is catalyzed by the human GCN5 protein. Since c-Myc function is inhibited by recruitment of histone deacetylase activity through Mad family proteins, these opposing biochemical activities are likely to be responsible for the antagonistic biological effects of c-Myc and Mad on target genes and ultimately on cellular transformation. PMID:10611234

  10. Elevation of c-MYC disrupts HLA class II-mediated immune recognition of human B cell tumors.

    PubMed

    God, Jason M; Cameron, Christine; Figueroa, Janette; Amria, Shereen; Hossain, Azim; Kempkes, Bettina; Bornkamm, Georg W; Stuart, Robert K; Blum, Janice S; Haque, Azizul

    2015-02-15

    Elevated levels of the transcription factor c-myc are strongly associated with various cancers, and in particular B cell lymphomas. Although many of c-MYC's functions have been elucidated, its effect on the presentation of Ag through the HLA class II pathway has not been reported previously. This is an issue of considerable importance, given the low immunogenicity of many c-MYC-positive tumors. We report in this paper that increased c-MYC expression has a negative effect on the ability of B cell lymphomas to functionally present Ags/peptides to CD4(+) T cells. This defect was associated with alterations in the expression of distinct cofactors as well as interactions of antigenic peptides with class II molecules required for the presentation of class II-peptide complexes and T cell engagement. Using early passage Burkitt's lymphoma (BL) tumors and transformed cells, we show that compared with B lymphoblasts, BL cells express decreased levels of the class II editor HLA-DM, lysosomal thiol-reductase GILT, and a 47-kDa enolase-like protein. Functional Ag presentation was partially restored in BL cells treated with a c-MYC inhibitor, demonstrating the impact of this oncogene on Ag recognition. This restoration of HLA class II-mediated Ag presentation in early passage BL tumors/cells was linked to enhanced HLA-DM expression and a concurrent decrease in HLA-DO in BL cells. Taken together, these results reveal c-MYC exerts suppressive effects at several critical checkpoints in Ag presentation, which contribute to the immunoevasive properties of BL tumors.

  11. The E–Id protein axis modulates the activities of the PI3K–AKT–mTORC1–Hif1a and c-myc/p19Arf pathways to suppress innate variant TFH cell development, thymocyte expansion, and lymphomagenesis

    PubMed Central

    Miyazaki, Masaki; Miyazaki, Kazuko; Chen, Shuwen; Chandra, Vivek; Wagatsuma, Keisuke; Agata, Yasutoshi; Rodewald, Hans-Reimer; Saito, Rintaro; Chang, Aaron N.; Varki, Nissi; Kawamoto, Hiroshi

    2015-01-01

    It is now well established that the E and Id protein axis regulates multiple steps in lymphocyte development. However, it remains unknown how E and Id proteins mechanistically enforce and maintain the naïve T-cell fate. Here we show that Id2 and Id3 suppressed the development and expansion of innate variant follicular helper T (TFH) cells. Innate variant TFH cells required major histocompatibility complex (MHC) class I-like signaling and were associated with germinal center B cells. We found that Id2 and Id3 induced Foxo1 and Foxp1 expression to antagonize the activation of a TFH transcription signature. We show that Id2 and Id3 acted upstream of the Hif1a/Foxo/AKT/mTORC1 pathway as well as the c-myc/p19Arf module to control cellular expansion. We found that mice depleted for Id2 and Id3 expression developed colitis and αβ T-cell lymphomas. Lymphomas depleted for Id2 and Id3 expression displayed elevated levels of c-myc, whereas p19Arf abundance declined. Transcription signatures of Id2- and Id3-depleted lymphomas revealed similarities to genetic deficiencies associated with Burkitt lymphoma. We propose that, in response to antigen receptor and/or cytokine signaling, the E–Id protein axis modulates the activities of the PI3K–AKT–mTORC1–Hif1a and c-myc/p19Arf pathways to control cellular expansion and homeostatic proliferation. PMID:25691468

  12. Noncoding RNAs Regulating p53 and c-Myc Signaling.

    PubMed

    Mei, Yide; Wu, Mian

    2016-01-01

    p53 is one of the most important tumor suppressors and is known to play critical roles in the process of tumor development. Similarly, as an important proto-oncogenes, c-Myc is activated in over half of human cancers. Both p53 and c-Myc participate in almost every crucial decision of almost every cell. Therefore, it is utmost important to gain a better understanding of how they affect multiple cellular processes. The physiological and pathologic patterns of p53 and c-Myc regulations are modulated by a large number of cis-elements and transfactors (RNAs and proteins). These elements and factors are composed of a complicated network of intracellular and extracellular pathways. How the noncoding RNAs are involved in their regulations has not been comprehensively reviewed. In this chapter, we will list and describe recently published important noncoding RNAs including microRNAs and long noncoding RNAs, which act as effectors and regulators for both p53 and c-Myc regulation. The purpose of this chapter is to provide a recent progress of noncoding RNA in the regulation of p53 and c-Myc on network of cellular signaling and its potential implications in both basic science and clinical application. PMID:27376742

  13. In vivo study on the effects of microcystin extracts on the expression profiles of proto-oncogenes (c-fos, c-jun and c-myc) in liver, kidney and testis of male Wistar rats injected i.v. with toxins.

    PubMed

    Li, Huiying; Xie, Ping; Li, Guangyu; Hao, Le; Xiong, Qian

    2009-01-01

    Microcystins (MCs) are a potent liver tumor promoter, possessing potent tumor-promoting activity and weak initiating activity. Proto-oncogenes are known to be involved in the tumor-promoting mechanisms of microcystin-LR. However, few data are available on the effects of MCs on proto-oncogenes in the whole animal. To investigate the effects of MCs on the expression profile of the proto-oncogenes in different organs, male Wistar rats were injected intravenously with microcystin extracts at a dose of 86.7 mug MC-LR eq/kg bw (MC-LR eq, MC-LR equivalents). mRNA levels of three proto-oncogenes c-fos, c-jun and c-myc in liver, kidney and testis were analyzed using quantitative real-time PCR at several time points post-injection. Significant induction of these genes at transcriptional level was observed in the three organs. In addition, the increase of mRNA expression of all three genes was much higher in liver than in kidney and testis. Meanwhile, the protein levels of c-Fos and c-Jun were investigated by western blotting. Both proteins were induced in the three organs. However, elevations of protein levels were much lower than those of mRNA levels. These findings suggest that the expression of c-fos, c-jun and c-myc might be one possible mechanism for the tumor-promoting activity and initiating activity of microcystins.

  14. Farnesiferol c induces apoptosis via regulation of L11 and c-Myc with combinational potential with anticancer drugs in non-small-cell lung cancers

    PubMed Central

    Jung, Ji Hoon; Kim, Moon Joon; Lee, Hyemin; Lee, Jihyun; Kim, Jaekwang; Lee, Hyun Joo; Shin, Eun Ah; Kim, Yoon Hyeon; Kim, Bonglee; Shim, Bum Sang; Kim, Sung-Hoon

    2016-01-01

    Though Farnesiferol c (FC) has been reported to have anti-angiogenic and antitumor activity, the underlying antitumor mechanism of FC still remains unclear. Thus, in the present study, we investigated the apoptotic mechanism of FC in human H1299 and H596 non-small lung cancer cells (NSCLCs). FC significantly showed cytotoxicity, increased sub-G1 accumulation, and attenuated the expression of Bcl-2, Bcl-xL, Survivin and procaspase 3 in H1299 and H596 cells. Furthermore, FC effectively suppressed the mRNA expression of G1 arrest related genes such as Cyclin D1, E2F1 transcription factor and CDC25A by RT-PCR. Interestingly, FC inhibited the expression of c-Myc, ribosomal protein L11 (L11) and nucleolin (NCL) in H1299 and H596 cells. Of note, silencing of L11 by siRNA transfection enhanced the expression of c-Myc through a negative feedback mechanism, while c-Myc knockdown downregulated L11 in H1299 cells. Additionally, combined treatment of FC and puromycin/doxorubicin promoted the activation of caspase 9/3, and attenuated the expression of c-Myc, Cyclin D1 and CDK4 in H1299 cells compared to single treatment. Taken together, our findings suggest that FC induces apoptosis and G1 arrest via regulation of ribosomal protein L11 and c-Myc and also enhances antitumor effect of puromycin or doxorubicin in NSCLCs. PMID:27231235

  15. Antisense-mediated depletion of p300 in human cells leads to premature G1 exit and up-regulation of c-MYC.

    PubMed

    Kolli, S; Buchmann, A M; Williams, J; Weitzman, S; Thimmapaya, B

    2001-04-10

    The cAMP-response element-binding protein (CREB)-binding protein and p300 are two highly conserved transcriptional coactivators and histone acetyltransferases that integrate signals from diverse signal transduction pathways in the nucleus and also link chromatin remodeling with transcription. In this report, we have examined the role of p300 in the control of the G(1) phase of the cell cycle in nontransformed immortalized human breast epithelial cells (MCF10A) and fibroblasts (MSU) by using adenovirus vectors expressing p300-specific antisense sequences. Quiescent MCF10A and MSU cells expressing p300-specific antisense sequences synthesized p300 at much reduced levels and exited G(1) phase without serum stimulation. These cells also showed an increase in cyclin A and cyclin A- and E-associated kinase activities characteristic of S phase induction. Further analysis of the p300-depleted quiescent MCF10A cells revealed a 5-fold induction of c-MYC and a 2-fold induction of c-JUN. A direct target of c-MYC, CAD, which is required for DNA synthesis, was also found to be up-regulated, indicating that up-regulation of c-MYC functionally contributed to DNA synthesis. Furthermore, S phase induction in p300-depleted cells was reversed when antisense c-MYC was expressed in these cells, indicating that up-regulation of c-MYC may directly contribute to S phase induction. Adenovirus E1A also induced DNA synthesis and increased the levels of c-MYC and c-JUN in serum-starved MCF10A cells in a p300-dependent manner. Our results suggest an important role of p300 in cell cycle regulation at G(1) and raise the possibility that p300 may negatively regulate early response genes, including c-MYC and c-JUN, thereby preventing DNA synthesis in quiescent cells.

  16. Involvement of SIRT1 in hypoxic down-regulation of c-Myc and β-catenin and hypoxic preconditioning effect of polyphenols

    SciTech Connect

    Hong, Kyung-Soo; Park, Jun-Ik; Kim, Mi-Ju; Kim, Hak-Bong; Lee, Jae-Won; Dao, Trong Tuan; Oh, Won Keun; Kang, Chi-Dug; Kim, Sun-Hee

    2012-03-01

    SIRT1 has been found to function as a Class III deacetylase that affects the acetylation status of histones and other important cellular nonhistone proteins involved in various cellular pathways including stress responses and apoptosis. In this study, we investigated the role of SIRT1 signaling in the hypoxic down-regulations of c-Myc and β-catenin and hypoxic preconditioning effect of the red wine polyphenols such as piceatannol, myricetin, quercetin and resveratrol. We found that the expression of SIRT1 was significantly increased in hypoxia-exposed or hypoxic preconditioned HepG2 cells, which was closely associated with the up-regulation of HIF-1α and down-regulation of c-Myc and β-catenin expression via deacetylation of these proteins. In addition, blockade of SIRT1 activation using siRNA or amurensin G, a new potent SIRT1 inhibitor, abolished hypoxia-induced HIF-1α expression but increased c-Myc and β-catenin expression. SIRT1 was also found to stabilize HIF-1α protein and destabilize c-Myc, β-catenin and PHD2 under hypoxia. We also found that myricetin, quercetin, piceatannol and resveratrol up-regulated HIF-1α and down-regulated c-Myc, PHD2 and β-catenin expressions via SIRT1 activation, in a manner that mimics hypoxic preconditioning. This study provides new insights of the molecular mechanisms of hypoxic preconditioning and suggests that polyphenolic SIRT1 activators could be used to mimic hypoxic/ischemic preconditioning. -- Graphical abstract: Polyphenols mimicked hypoxic preconditioning by up-regulating HIF-1α and SIRT1 and down-regulating c-Myc, PHD2, and β-catenin. HepG2 cells were pretreated with the indicated doses of myricetin (MYR; A), quercetin (QUR; B), or piceatannol (PIC; C) for 4 h and then exposed to hypoxia for 4 h. Levels of HIF-1α, SIRT1, c-Myc, β-catenin, and PHD2 were determined by western blot analysis. The data are representative of three individual experiments. Highlights: ► SIRT1 expression is increased in hypoxia

  17. c-Myc activates multiple metabolic networks to generate substrates for cell-cycle entry.

    PubMed

    Morrish, F; Isern, N; Sadilek, M; Jeffrey, M; Hockenbery, D M

    2009-07-01

    Cell proliferation requires the coordinated activity of cytosolic and mitochondrial metabolic pathways to provide ATP and building blocks for DNA, RNA and protein synthesis. Many metabolic pathway genes are targets of the c-myc oncogene and cell-cycle regulator. However, the contribution of c-Myc to the activation of cytosolic and mitochondrial metabolic networks during cell-cycle entry is unknown. Here, we report the metabolic fates of [U-(13)C] glucose in serum-stimulated myc(-/-) and myc(+/+) fibroblasts by (13)C isotopomer NMR analysis. We demonstrate that endogenous c-myc increased (13)C labeling of ribose sugars, purines and amino acids, indicating partitioning of glucose carbons into C1/folate and pentose phosphate pathways, and increased tricarboxylic acid cycle turnover at the expense of anaplerotic flux. Myc expression also increased global O-linked N-acetylglucosamine protein modification, and inhibition of hexosamine biosynthesis selectively reduced growth of Myc-expressing cells, suggesting its importance in Myc-induced proliferation. These data reveal a central organizing function for the Myc oncogene in the metabolism of cycling cells. The pervasive deregulation of this oncogene in human cancers may be explained by its function in directing metabolic networks required for cell proliferation.

  18. c-Myc activates multiple metabolic networks to generate substrates for cell-cycle entry.

    SciTech Connect

    Morrish, Fionnuala M.; Isern, Nancy; Sadilek, Martin; Jeffrey, Mark; Hockenbery, David M.

    2009-05-18

    Cell proliferation requires the coordinated activity of cytosolic and mitochondrial metabolic pathways to provide ATP and building blocks for DNA, RNA, and protein synthesis. Many metabolic pathway genes are targets of the c-myc oncogene and cell cycle regulator. However, the contribution of c-Myc to the activation of cytosolic and mitochondrial metabolic networks during cell cycle entry is unknown. Here, we report the metabolic fates of [U-13C] glucose in serum-stimulated myc-/- and myc+/+ fibroblasts by 13C isotopomer NMR analysis. We demonstrate that endogenous c-myc increased 13C-labeling of ribose sugars, purines, and amino acids, indicating partitioning of glucose carbons into C1/folate and pentose phosphate pathways, and increased tricarboxylic acid cycle turnover at the expense of anaplerotic flux. Myc expression also increased global O-linked GlcNAc protein modification, and inhibition of hexosamine biosynthesis selectively reduced growth of Myc-expressing cells, suggesting its importance in Myc-induced proliferation. These data reveal a central organizing role for the Myc oncogene in the metabolism of cycling cells. The pervasive deregulation of this oncogene in human cancers may be explained by its role in directing metabolic networks required for cell proliferation.

  19. A role for c-myc in chemically induced renal-cell death.

    PubMed Central

    Zhan, Y; Cleveland, J L; Stevens, J L

    1997-01-01

    A variety of genes, including c-myc, are activated by chemical toxicants in vivo and in vitro. Although enforced c-myc expression induces apoptosis after withdrawing survival factors, it is not clear if activation of the endogenous c-myc gene is an apoptotic signal after toxicant exposure. The renal tubular epithelium is a target for many toxicants. c-myc expression is activated by tubular damage. In quiescent LLC-PK1 renal epithelial cells, c-myc but not max or mad mRNA is induced by the nephrotoxicant S-(1,2-dichlorovinyl)-L-cysteine (DCVC). The kinetics of DCVC-induced c-myc expression and apoptosis suggested an association between cell death and prolonged activation of c-myc expression after toxicant exposure. Accordingly, prolonged activation of an estrogen receptor-Myc fusion construct, but not a construct in which a c-Myc transactivation domain had been deleted, was sufficient to induce apoptosis in LLC-PK1 cells. Moreover, under conditions in which necrosis was the predominant cell death pathway caused by DCVC in parental cells, overexpressing c-myc biased the cell death pathway toward apoptosis. DCVC also induced ornithine decarboxylase (odc) mRNA and activated the odc promoter. Activation of the odc promoter by DCVC required consensus c-Myc-Max binding sites in odc intron 1. Inhibiting ODC activity with alpha-difluoromethylornithine delayed DCVC-induced cell death. Therefore, odc is a target gene in the DCVC apoptotic pathway involving c-myc activation and contributes to apoptosis. Finally, a structurally related cytotoxic but nongenotoxic analog of DCVC did not induce c-myc and did not activate the odc promoter or induce apoptosis. The data support the hypothesis that activation of apoptotic cell death in quiescent renal epithelial cells involves induction of c-myc. This is the first study to demonstrate that c-myc induction by a specific nephrotoxicant leads to gene activation and cell death. PMID:9343440

  20. A Mouse Strain Defective in Both T Cells and NK Cells Has Enhanced Sensitivity to Tumor Induction by Plasmid DNA Expressing Both Activated H-Ras and c-Myc

    PubMed Central

    Sheng-Fowler, Li; Tu, Wei; Fu, Haiqing; Murata, Haruhiko; Lanning, Lynda; Foseh, Gideon; Macauley, Juliete; Blair, Donald; Hughes, Stephen H.; Coffin, John M.; Lewis, Andrew M.; Peden, Keith

    2014-01-01

    As part of safety studies to evaluate the risk of residual cellular DNA in vaccines manufactured in tumorigenic cells, we have been developing in vivo assays to detect and quantify the oncogenic activity of DNA. We generated a plasmid expressing both an activated human H-ras gene and murine c-myc gene and showed that 1 µg of this plasmid, pMSV-T24-H-ras/MSV-c-myc, was capable of inducing tumors in newborn NIH Swiss mice. However, to be able to detect the oncogenicity of dominant activated oncogenes in cellular DNA, a more sensitive system was needed. In this paper, we demonstrate that the newborn CD3 epsilon transgenic mouse, which is defective in both T-cell and NK-cell functions, can detect the oncogenic activity of 25 ng of the circular form of pMSV-T24-H-ras/MSV-c-myc. When this plasmid was inoculated as linear DNA, amounts of DNA as low as 800 pg were capable of inducing tumors. Animals were found that had multiple tumors, and these tumors were independent and likely clonal. These results demonstrate that the newborn CD3 epsilon mouse is highly sensitive for the detection of oncogenic activity of DNA. To determine whether it can detect the oncogenic activity of cellular DNA derived from four human tumor-cell lines (HeLa, A549, HT-1080, and CEM), DNA (100 µg) was inoculated into newborn CD3 epsilon mice both in the presence of 1 µg of linear pMSV-T24-H-ras/MSV-c-myc as positive control and in its absence. While tumors were induced in 100% of mice with the positive-control plasmid, no tumors were induced in mice receiving any of the tumor DNAs alone. These results demonstrate that detection of oncogenes in cellular DNA derived from four human tumor-derived cell lines in this mouse system was not possible; the results also show the importance of including a positive-control plasmid to detect inhibitory effects of the cellular DNA. PMID:25302710

  1. Regulation of OGT by URI in Response to Glucose Confers c-MYC-Dependent Survival Mechanisms.

    PubMed

    Burén, Stefan; Gomes, Ana L; Teijeiro, Ana; Fawal, Mohamad-Ali; Yilmaz, Mahmut; Tummala, Krishna S; Perez, Manuel; Rodriguez-Justo, Manuel; Campos-Olivas, Ramón; Megías, Diego; Djouder, Nabil

    2016-08-01

    Cancer cells can adapt and survive under low nutrient conditions, but underlying mechanisms remain poorly explored. We demonstrate here that glucose maintains a functional complex between the co-chaperone URI, PP1γ, and OGT, the enzyme catalyzing O-GlcNAcylation. Glucose deprivation induces the activation of PKA, which phosphorylates URI at Ser-371, resulting in PP1γ release and URI-mediated OGT inhibition. Low OGT activity reduces O-GlcNAcylation and promotes c-MYC degradation to maintain cell survival. In the presence of glucose, PP1γ-bound URI increases OGT and c-MYC levels. Accordingly, mice expressing non-phosphorylatable URI (S371A) in hepatocytes exhibit high OGT activity and c-MYC stabilization, accelerating liver tumorigenesis in agreement with c-MYC oncogenic functions. Our work uncovers that URI-regulated OGT confers c-MYC-dependent survival functions in response to glucose fluctuations. PMID:27505673

  2. c-myc as a mediator of accelerated apoptosis and involution in mammary glands lacking Socs3

    PubMed Central

    Sutherland, Kate D; Vaillant, François; Alexander, Warren S; Wintermantel, Tim M; Forrest, Natasha C; Holroyd, Sheridan L; McManus, Edward J; Schutz, Gunther; Watson, Christine J; Chodosh, Lewis A; Lindeman, Geoffrey J; Visvader, Jane E

    2006-01-01

    Suppressor of cytokine signalling (SOCS) proteins are critical attenuators of cytokine-mediated signalling in diverse tissues. To determine the importance of Socs3 in mammary development, we generated mice in which Socs3 was deleted in mammary epithelial cells. No overt phenotype was evident during pregnancy and lactation, indicating that Socs3 is not a key physiological regulator of prolactin signalling. However, Socs3-deficient mammary glands exhibited a profound increase in epithelial apoptosis and tissue remodelling, resulting in precocious involution. This phenotype was accompanied by augmented Stat3 activation and a marked increase in the level of c-myc. Moreover, induction of c-myc before weaning using an inducible transgenic model recapitulated the Socs3 phenotype, and elevated expression of likely c-myc target genes, E2F-1, Bax and p53, was observed. Our data establish Socs3 as a critical attenuator of pro-apoptotic pathways that act in the developing mammary gland and provide evidence that c-myc regulates apoptosis during involution. PMID:17139252

  3. Sequential and Coordinated Actions of c-Myc and N-Myc Control Appendicular Skeletal Development

    PubMed Central

    Ota, Sara; Akiyama, Haruhiko; Keene, Douglas R.; Hurlin, Peter J.

    2011-01-01

    Background During limb development, chondrocytes and osteoblasts emerge from condensations of limb bud mesenchyme. These cells then proliferate and differentiate in separate but adjacent compartments and function cooperatively to promote bone growth through the process of endochondral ossification. While many aspects of limb skeletal formation are understood, little is known about the mechanisms that link the development of undifferentiated limb bud mesenchyme with formation of the precartilaginous condensation and subsequent proliferative expansion of chondrocyte and osteoblast lineages. The aim of this study was to gain insight into these processes by examining the roles of c-Myc and N-Myc in morphogenesis of the limb skeleton. Methodology/Principal Findings To investigate c-Myc function in skeletal development, we characterized mice in which floxed c-Myc alleles were deleted in undifferentiated limb bud mesenchyme with Prx1-Cre, in chondro-osteoprogenitors with Sox9-Cre and in osteoblasts with Osx1-Cre. We show that c-Myc promotes the proliferative expansion of both chondrocytes and osteoblasts and as a consequence controls the process of endochondral growth and ossification and determines bone size. The control of proliferation by c-Myc was related to its effects on global gene transcription, as phosphorylation of the C-Terminal Domain (pCTD) of RNA Polymerase II, a marker of general transcription initiation, was tightly coupled to cell proliferation of growth plate chondrocytes where c-Myc is expressed and severely downregulated in the absence of c-Myc. Finally, we show that combined deletion of N-Myc and c-Myc in early limb bud mesenchyme gives rise to a severely hypoplastic limb skeleton that exhibits features characteristic of individual c-Myc and N-Myc mutants. Conclusions/Significance Our results show that N-Myc and c-Myc act sequentially during limb development to coordinate the expansion of key progenitor populations responsible for forming the limb

  4. Driver or passenger effects of augmented c-Myc and Cdc20 in gliomagenesis

    PubMed Central

    Ji, Ping; Zhou, Xinhui; Liu, Qun; Fuller, Gregory N.; Phillips, Lynette M.; Zhang, Wei

    2016-01-01

    Purpose Cdc20 and c-Myc are commonly overexpressed in a broad spectrum of cancers, including glioblastoma (GBM). Despite this clear association, whether c-Myc and Cdc20 overexpression is a driver or passenger event in gliomagenesis remains unclear. Results Both c-Myc and Cdc20 induced the proliferation of primary glial progenitor cells. c-Myc also promoted the formation of soft agar anchorage-independent colonies. In the RCAS/Ntv-a glia-specific transgenic mouse model, c-Myc increased the GBM incidence from 19.1% to 47.4% by 12 weeks of age when combined with kRas and Akt3 in Ntv-a INK4a-ARF (also known as CDKN2A)-null mice. In contrast, Cdc20 decreased the GBM incidence from 19.1% to 9.1%. Moreover, cell differentiation was modulated by c-Myc in kRas/Akt3-induced GBM on the basis of Nestin/GFAP expression (glial progenitor cell differentiation), while Cdc20 had no effect on primary glial progenitor cell differentiation. Materials and Methods We used glial progenitor cells from Ntv-a newborn mice to evaluate the role of c-Myc and Cdc20 in the proliferation and transformation of GBM in vitro and in vivo. We further determined whether c-Myc and Cdc20 have a driver or passenger role in GBM development using kRas/Akt3 signals in a RCAS/Ntv-a mouse model. Conclusions These results suggest that the driver or passenger of oncogene signaling is dependent on cellular status. c-Myc is a driver when combined with kRas/Akt3 oncogenic signals in gliomagenesis, whereas Cdc20 overexpression is a passenger. Inhibition of cell differentiation of c-Myc may be a target for anti-glioma therapy. PMID:26993778

  5. O-GlcNAc transferase integrates metabolic pathways to regulate the stability of c-MYC in human prostate cancer cells.

    PubMed

    Itkonen, Harri M; Minner, Sarah; Guldvik, Ingrid J; Sandmann, Mareike Julia; Tsourlakis, Maria Christina; Berge, Viktor; Svindland, Aud; Schlomm, Thorsten; Mills, Ian G

    2013-08-15

    Metabolic disruptions that occur widely in cancers offer an attractive focus for generalized treatment strategies. The hexosamine biosynthetic pathway (HBP) senses metabolic status and produces an essential substrate for O-linked β-N-acetylglucosamine transferase (OGT), which glycosylates and thereby modulates the function of its target proteins. Here, we report that the HBP is activated in prostate cancer cells and that OGT is a central regulator of c-Myc stability in this setting. HBP genes were overexpressed in human prostate cancers and androgen regulated in cultured human cancer cell lines. Immunohistochemical analysis of human specimens (n = 1987) established that OGT is upregulated at the protein level and that its expression correlates with high Gleason score, pT and pN stages, and biochemical recurrence. RNA interference-mediated siliencing or pharmacologic inhibition of OGT was sufficient to decrease prostate cancer cell growth. Microarray profiling showed that the principal effects of OGT inhibition in prostate cancer cells were related to cell-cycle progression and DNA replication. In particular, c-MYC was identified as a candidate upstream regulator of OGT target genes and OGT inhibition elicited a dose-dependent decrease in the levels of c-MYC protein but not c-MYC mRNA in cell lines. Supporting this relationship, expression of c-MYC and OGT was tightly correlated in human prostate cancer samples (n = 1306). Our findings identify HBP as a modulator of prostate cancer growth and c-MYC as a key target of OGT function in prostate cancer cells.

  6. c-Myc regulates cell size and ploidy but is not essential for postnatal proliferation in liver

    NASA Astrophysics Data System (ADS)

    Baena, Esther; Gandarillas, Alberto; Vallespinós, Mireia; Zanet, Jennifer; Bachs, Oriol; Redondo, Clara; Fabregat, Isabel; Martinez-A., Carlos; Moreno de Alborán, Ignacio

    2005-05-01

    The c-Myc protein is a transcription factor implicated in the regulation of multiple biological processes, including cell proliferation, cell growth, and apoptosis. In vivo overexpression of c-myc is linked to tumor development in a number of mouse models. Here, we show that perinatal inactivation of c-Myc in liver causes disorganized organ architecture, decreased hepatocyte size, and cell ploidy. Furthermore, c-Myc appears to have distinct roles in proliferation in liver. Thus, postnatal hepatocyte proliferation does not require c-Myc, whereas it is necessary for liver regeneration in adult mice. These results show novel physiological functions of c-myc in liver development and hepatocyte proliferation and growth.

  7. Selective inhibition of c-Myc/Max dimerization and DNA binding by small molecules.

    PubMed

    Kiessling, Anke; Sperl, Bianca; Hollis, Angela; Eick, Dirk; Berg, Thorsten

    2006-07-01

    bZip and bHLHZip protein family members comprise a large fraction of eukaryotic transcription factors and need to bind DNA in order to exert most of their fundamental biological roles. Their binding to DNA requires homo- or heterodimerization via alpha-helical domains, which generally do not contain obvious binding sites for small molecules. We have identified two small molecules, dubbed Mycro1 and Mycro2, which inhibit the protein-protein interactions between the bHLHZip proteins c-Myc and Max. Mycros are the first inhibitors of c-Myc/Max dimerization, which have been demonstrated to inhibit DNA binding of c-Myc with preference over other dimeric transcription factors in vitro. Mycros inhibit c-Myc-dependent proliferation, gene transcription, and oncogenic transformation in the low micromolar concentration range. Our data support the idea that dimeric transcription factors can be druggable even in the absence of obvious small-molecule binding pockets.

  8. E3 Ubiquitin Ligase RLIM Negatively Regulates c-Myc Transcriptional Activity and Restrains Cell Proliferation

    PubMed Central

    Wang, Lan; Cai, Hao; Zhu, Jingjing; Yu, Long

    2016-01-01

    RNF12/RLIM is a RING domain-containing E3 ubiquitin ligase whose function has only begun to be elucidated recently. Although RLIM was reported to play important roles in some biological processes such as imprinted X-chromosome inactivation and regulation of TGF-β pathway etc., other functions of RLIM are largely unknown. Here, we identified RLIM as a novel E3 ubiquitin ligase for c-Myc, one of the most frequently deregulated oncoproteins in human cancers. RLIM associates with c-Myc in vivo and in vitro independently of the E3 ligase activity of RLIM. Moreover, RLIM promotes the polyubiquitination of c-Myc protein independently of Ser62 and Thr58 phosphorylation of c-Myc. However, RLIM-mediated ubiquitination does not affect c-Myc stability. Instead, RLIM inhibits the transcriptional activity of c-Myc through which RLIM restrains cell proliferation. Our results suggest that RLIM may function as a tumor suppressor by controlling the activity of c-Myc oncoprotein. PMID:27684546

  9. TIP30 interacts with an estrogen receptor alpha-interacting coactivator CIA and regulates c-myc transcription.

    PubMed

    Jiang, Chao; Ito, Mitsuhiro; Piening, Valerie; Bruck, Kristy; Roeder, Robert G; Xiao, Hua

    2004-06-25

    Deregulation of c-myc expression is implicated in the pathogenesis of many neoplasias. Estrogen receptor alpha (ERalpha) can increase the rate of c-myc transcription through the recruitment of a variety of cofactors to the promoter, yet the precise roles of these cofactors in transcription and tumorigenesis are largely unknown. We show here that a putative tumor suppressor TIP30, also called CC3 or Htatip2, interacts with an ERalpha-interacting coactivator CIA. Using chromatin immunoprecipitation assays, we demonstrate that TIP30 and CIA are distinct cofactors that are dynamically associated with the promoter and downstream regions of the c-myc gene in response to estrogen. Both TIP30 and CIA are recruited to the c-myc gene promoter by liganded ERalpha in the second transcription cycle. TIP30 overexpression represses ERalpha-mediated c-myc transcription, whereas TIP30 deficiency enhances c-myc transcription in both the absence and presence of estrogen. Ectopic CIA cooperates with TIP30 to repress ERalpha-mediated c-myc transcription. Moreover, virgin TIP30 knockout mice exhibit increased c-myc expression in mammary glands. Together, these results reveal an important role for TIP30 in the regulation of ERalpha-mediated c-myc transcription and suggest a mechanism for tumorigenesis promoted by TIP30 deficiency.

  10. Multiple single-stranded cis elements are associated with activated chromatin of the human c-myc gene in vivo.

    PubMed Central

    Michelotti, G A; Michelotti, E F; Pullner, A; Duncan, R C; Eick, D; Levens, D

    1996-01-01

    Transcription activation and repression of eukaryotic genes are associated with conformational and topological changes of the DNA and chromatin, altering the spectrum of proteins associated with an active gene. Segments of the human c-myc gene possessing non-B structure in vivo located with enzymatic and chemical probes. Sites hypertensive to cleavage with single-strand-specific S1 nuclease or the single-strand-selective agent potassium permanganate included the major promoters P1 and P2 as well as the far upstream sequence element (FUSE) and CT elements, which bind, respectively, the single-strand-specific factors FUSE-binding protein and heterogeneous nuclear ribonucleoprotein K in vitro. Active and inactive c-myc genes yielded different patterns of S1 nuclease and permanganate sensitivity, indicating alternative chromatin configurations of active and silent genes. The melting of specific cis elements of active c-myc genes in vivo suggested that transcriptionally associated torsional strain might assist strand separation and facilitate factor binding. Therefore, the interaction of FUSE-binding protein and heterogeneous nuclear ribonucleoprotein K with supercoiled DNA was studied. Remarkably, both proteins recognize their respective elements torsionally strained but not as liner duplexes. Single-strand- or supercoil-dependent gene regulatory proteins may directly link alterations in DNA conformation and topology with changes in gene expression. PMID:8649373

  11. Endogenous c-Myc is essential for p53-induced apoptosis in response to DNA damage in vivo.

    PubMed

    Phesse, T J; Myant, K B; Cole, A M; Ridgway, R A; Pearson, H; Muncan, V; van den Brink, G R; Vousden, K H; Sears, R; Vassilev, L T; Clarke, A R; Sansom, O J

    2014-06-01

    Recent studies have suggested that C-MYC may be an excellent therapeutic cancer target and a number of new agents targeting C-MYC are in preclinical development. Given most therapeutic regimes would combine C-MYC inhibition with genotoxic damage, it is important to assess the importance of C-MYC function for DNA damage signalling in vivo. In this study, we have conditionally deleted the c-Myc gene in the adult murine intestine and investigated the apoptotic response of intestinal enterocytes to DNA damage. Remarkably, c-Myc deletion completely abrogated the immediate wave of apoptosis following both ionizing irradiation and cisplatin treatment, recapitulating the phenotype of p53 deficiency in the intestine. Consistent with this, c-Myc-deficient intestinal enterocytes did not upregulate p53. Mechanistically, this was linked to an upregulation of the E3 Ubiquitin ligase Mdm2, which targets p53 for degradation in c-Myc-deficient intestinal enterocytes. Further, low level overexpression of c-Myc, which does not impact on basal levels of apoptosis, elicited sustained apoptosis in response to DNA damage, suggesting c-Myc activity acts as a crucial cell survival rheostat following DNA damage. We also identify the importance of MYC during DNA damage-induced apoptosis in several other tissues, including the thymus and spleen, using systemic deletion of c-Myc throughout the adult mouse. Together, we have elucidated for the first time in vivo an essential role for endogenous c-Myc in signalling DNA damage-induced apoptosis through the control of the p53 tumour suppressor protein.

  12. MicroRNA-449a enhances radiosensitivity by downregulation of c-Myc in prostate cancer cells

    PubMed Central

    Mao, Aihong; Zhao, Qiuyue; Zhou, Xin; Sun, Chao; Si, Jing; Zhou, Rong; Gan, Lu; Zhang, Hong

    2016-01-01

    MicroRNAs (miRNAs) have been reported to be involved in DNA damage response induced by ionizing radiation (IR). c-Myc is reduced when cells treated with IR or other DNA damaging agents. It is unknown whether miRNAs participate in c-Myc downregulation in response to IR. In the present study, we found that miR-449a enhanced radiosensitivity in vitro and in vivo by targeting c-Myc in prostate cancer (LNCaP) cells. MiR-449a was upregulated and c-Myc was downregulated in response to IR in LNCaP cells. Overexpression of miR-449a or knockdown of c-Myc promoted the sensitivity of LNCaP cells to IR. By establishing c-Myc as a direct target of miR-449a, we revealed that miR-449a enhanced radiosensitivity by repressing c-Myc expression in LNCaP cells. Furthermore, we showed that miR-449a enhanced radiation-induced G2/M phase arrest by directly downregulating c-Myc, which controlled the Cdc2/CyclinB1 cell cycle signal by modulating Cdc25A. These results highlight an unrecognized mechanism of miR-449a-mediated c-Myc regulation in response to IR and may provide alternative therapeutic strategies for the treatment of prostate cancer. PMID:27250340

  13. c-MYC targets the central oscillator gene Per1 and is regulated by the circadian clock at the post-transcriptional level.

    PubMed

    Repouskou, Anastasia; Prombona, Anastasia

    2016-04-01

    Cell proliferation in mammals follows a circadian rhythm while disruption of clock gene expression has been linked to tumorigenesis. Expression of the c-Myc oncogene is frequently deregulated in tumors, facilitating aberrant cell proliferation. c-MYC protein levels display circadian rhythmicity, which is compatible with an in vitro repressive role of the clock-activating complex BMAL1/CLOCK on its promoter. In this report, we provide evidence for the in vivo binding of the core circadian factor BMAL1 on the human c-Myc promoter. In addition, analysis of protein synthesis and degradation rates, as well as post-translational acetylation, demonstrate that the clock tightly controls cellular MYC levels. The oncoprotein itself is a transcription factor that by responding to mitogenic signals regulates the expression of several hundred genes. c-MYC-driven transcription is generally exerted upon dimerization with MAX and binding to E-box elements, a sequence that is also recognized by the circadian heterodimer. Our reporter assays reveal that the MYC/MAX dimer cannot affect transcription of the circadian gene Per1. However, when overexpressed, c-MYC is able to repress Per1 transactivation by BMAL1/CLOCK via targeting selective E-box sequences. Importantly, upon serum stimulation, MYC was detected in BMAL1 protein complexes. Together, these data demonstrate a novel interaction between MYC and circadian transactivators resulting in reduced clock-driven transcription. Perturbation of Per1 expression by MYC constitutes a plausible alternative explanation for the deregulated expression of clock genes observed in many types of cancer.

  14. Characterization of cis-regulatory elements of the c-myc promoter responding to human GM-CSF or mouse interleukin 3 in mouse proB cell line BA/F3 cells expressing the human GM-CSF receptor.

    PubMed Central

    Watanabe, S; Ishida, S; Koike, K; Arai, K

    1995-01-01

    Interleukin 3 (IL-3) or granulocyte macrophage colony-stimulating factor (GM-CSF) activates c-fos, c-jun, and c-myc genes and proliferation in both hematopoietic and nonhematopoietic cells. Using a series of deletion mutants of the beta subunit of human GM-CSF receptor (hGMR) and inhibitors of tyrosine kinase, two distinct signaling pathways, one for activation of c-fos and c-jun genes, and the other for cell proliferation and activation of c-myc gene have been elucidated. In contrast to wealth of information on the pathway leading to activation of c-fos/c-jun genes, knowledge of the latter is scanty. To clarify the mechanisms of activation of c-myc gene by cytokines, we established a transient transfection assay in mouse proB cell line BA/F3 cells expressing hGMR. Analyses of hGMR beta subunit mutants revealed two cytoplasmic regions involved in activation of the c-myc promoter, one is essential and the other is dispensable but enhances the activity. These regions are located at the membrane proximal and the distal regions covering amino acid positions 455-544 and 544-589, respectively. Characterization of cis-acting regulatory elements of the c-myc gene showed that the region containing the P2 promoter initiation site is sufficient to mediate the response to mIL-3 or hGM-CSF. Electrophoretic mobility shift assay using an oligonucleotide corresponding to the distal putative E2F binding site revealed that p107/E2F complex, the negative regulator of E2F, decreased, and free E2F increased after mIL-3 stimulation. These results support the thesis that mIL-3 or hGM-CSF regulates the c-myc promoter by altering composition of the E2F complexes at E2F binding site. Images PMID:7579683

  15. BET inhibitor OTX015 targets BRD2 and BRD4 and decreases c-MYC in acute leukemia cells

    PubMed Central

    Berrou, Jeannig; Dupont, Mélanie; Bertrand, Sibyl; Masse, Aline; Raffoux, Emmanuel; Itzykson, Raphaël; Delord, Marc; Riveiro, Maria E.; Herait, Patrice; Baruchel, André; Dombret, Hervé; Gardin, Claude

    2015-01-01

    The bromodomain (BRD) and extraterminal (BET) proteins including BRD2, BRD3 and BRD4 have been identified as key targets for leukemia maintenance. A novel oral inhibitor of BRD2/3/4, the thienotriazolodiazepine compound OTX015, suitable for human use, is available. Here we report its biological effects in AML and ALL cell lines and leukemic samples. Exposure to OTX015 lead to cell growth inhibition, cell cycle arrest and apoptosis at submicromolar concentrations in acute leukemia cell lines and patient-derived leukemic cells, as described with the canonical JQ1 BET inhibitor. Treatment with JQ1 and OTX15 induces similar gene expression profiles in sensitive cell lines, including a c-MYC decrease and an HEXIM1 increase. OTX015 exposure also induced a strong decrease of BRD2, BRD4 and c-MYC and increase of HEXIM1 proteins, while BRD3 expression was unchanged. c-MYC, BRD2, BRD3, BRD4 and HEXIM1 mRNA levels did not correlate however with viability following exposure to OTX015. Sequential combinations of OTX015 with other epigenetic modifying drugs, panobinostat and azacitidine have a synergic effect on growth of the KASUMI cell line. Our results indicate that OTX015 and JQ1 have similar biological effects in leukemic cells, supporting OTX015 evaluation in a Phase Ib trial in relapsed/refractory leukemia patients. PMID:25989842

  16. USP10 antagonizes c-Myc transcriptional activation through SIRT6 stabilization to suppress tumor formation.

    PubMed

    Lin, Zhenghong; Yang, Heeyoung; Tan, Can; Li, Jinping; Liu, Zhaojian; Quan, Qiu; Kong, Sinyi; Ye, Junsheng; Gao, Beixue; Fang, Deyu

    2013-12-26

    The reduced protein expression of SIRT6 tumor suppressor is involved in tumorigenesis. The molecular mechanisms underlying SIRT6 protein downregulation in human cancers remain unknown. Using a proteomic approach, we have identified the ubiquitin-specific peptidase USP10, another tumor suppressor, as one of the SIRT6-interacting proteins. USP10 suppresses SIRT6 ubiquitination to protect SIRT6 from proteasomal degradation. USP10 antagonizes the transcriptional activity of the c-Myc oncogene through SIRT6, as well as p53, to inhibit cell-cycle progression, cancer cell growth, and tumor formation. To support this conclusion, we detected significant reductions in both USP10 and SIRT6 protein expression in human colon cancers. Our study discovered crosstalk between two tumor-suppressive genes in regulating cell-cycle progression and proliferation and showed that dysregulated USP10 function promotes tumorigenesis through SIRT6 degradation.

  17. A natural small molecule, catechol, induces c-Myc degradation by directly targeting ERK2 in lung cancer

    PubMed Central

    Lim, Do Young; Shin, Seung Ho; Lee, Mee-Hyun; Malakhova, Margarita; Kurinov, Igor; Wu, Qiong; Xu, Jinglong; Jiang, Yanan; Dong, Ziming; Liu, Kangdong; Lee, Kun Yeong; Bae, Ki Beom; Choi, Bu Young; Deng, Yibin; Bode, Ann; Dong, Zigang

    2016-01-01

    Various carcinogens induce EGFR/RAS/MAPK signaling, which is critical in the development of lung cancer. In particular, constitutive activation of extracellular signal-regulated kinase 2 (ERK2) is observed in many lung cancer patients, and therefore developing compounds capable of targeting ERK2 in lung carcinogenesis could be beneficial. We examined the therapeutic effect of catechol in lung cancer treatment. Catechol suppressed anchorage-independent growth of murine KP2 and human H460 lung cancer cell lines in a dose-dependent manner. Catechol inhibited ERK2 kinase activity in vitro, and its direct binding to the ERK2 active site was confirmed by X-ray crystallography. Phosphorylation of c-Myc, a substrate of ERK2, was decreased in catechol-treated lung cancer cells and resulted in reduced protein stability and subsequent down-regulation of total c-Myc. Treatment with catechol induced G1 phase arrest in lung cancer cells and decreased protein expression related to G1-S progression. In addition, we showed that catechol inhibited the growth of both allograft and xenograft lung cancer tumors in vivo. In summary, catechol exerted inhibitory effects on the ERK2/c-Myc signaling axis to reduce lung cancer tumor growth in vitro and in vivo, including a preclinical patient-derived xenograft (PDX) model. These findings suggest that catechol, a natural small molecule, possesses potential as a novel therapeutic agent against lung carcinogenesis in future clinical approaches. PMID:27167001

  18. Cyclin D1 Is Transcriptionally Down-Regulated by ZO-2 via an E Box and the Transcription Factor c-Myc

    PubMed Central

    Huerta, Miriam; Muñoz, Rodrigo; Tapia, Rocío; Soto-Reyes, Ernesto; Ramírez, Leticia; Recillas-Targa, Félix; González-Mariscal, Lorenza

    2007-01-01

    Recent reports have indicated the participation of tight junction (TJ) proteins in the regulation of gene expression and cell proliferation. Here, we have studied the role of zona occludens (ZO)-2, a TJ peripheral protein, in the regulation of cyclin D1 transcription. We found that ZO-2 down-regulates cyclin D1 transcription in a dose-dependent manner. To understand how ZO-2 represses cyclin D1 promoter activity, we used deletion analyses and found that ZO-2 negatively regulates cyclin D1 transcription via an E box and that it diminishes cell proliferation. Because ZO-2 does not associate directly with DNA, electrophoretic mobility shift assay and chromatin immunoprecipitation (ChIP) assay were used to identify the transcription factors mediating the ZO-2–repressive effect. c-Myc was found to bind the E box present in the cyclin D1 promoter, and the overexpression of c-Myc augmented the inhibition generated by ZO-2 transfection. The presence of ZO-2 and c-Myc in the same complex was further demonstrated by immunoprecipitation. ChIP and reporter gene assays using histone deacetylases (HDACs) inhibitors demonstrated that HDACs are necessary for ZO-2 repression and that HDAC1 is recruited to the E box. We conclude that ZO-2 down-regulates cyclin D1 transcription by interacting with the c-Myc/E box element and by recruiting HDAC1. PMID:17881732

  19. Cyclin D1 is transcriptionally down-regulated by ZO-2 via an E box and the transcription factor c-Myc.

    PubMed

    Huerta, Miriam; Muñoz, Rodrigo; Tapia, Rocío; Soto-Reyes, Ernesto; Ramírez, Leticia; Recillas-Targa, Félix; González-Mariscal, Lorenza; López-Bayghen, Esther

    2007-12-01

    Recent reports have indicated the participation of tight junction (TJ) proteins in the regulation of gene expression and cell proliferation. Here, we have studied the role of zona occludens (ZO)-2, a TJ peripheral protein, in the regulation of cyclin D1 transcription. We found that ZO-2 down-regulates cyclin D1 transcription in a dose-dependent manner. To understand how ZO-2 represses cyclin D1 promoter activity, we used deletion analyses and found that ZO-2 negatively regulates cyclin D1 transcription via an E box and that it diminishes cell proliferation. Because ZO-2 does not associate directly with DNA, electrophoretic mobility shift assay and chromatin immunoprecipitation (ChIP) assay were used to identify the transcription factors mediating the ZO-2-repressive effect. c-Myc was found to bind the E box present in the cyclin D1 promoter, and the overexpression of c-Myc augmented the inhibition generated by ZO-2 transfection. The presence of ZO-2 and c-Myc in the same complex was further demonstrated by immunoprecipitation. ChIP and reporter gene assays using histone deacetylases (HDACs) inhibitors demonstrated that HDACs are necessary for ZO-2 repression and that HDAC1 is recruited to the E box. We conclude that ZO-2 down-regulates cyclin D1 transcription by interacting with the c-Myc/E box element and by recruiting HDAC1.

  20. Distinct nuclear arrangement of active and inactive c-myc genes in control and differentiated colon carcinoma cells

    SciTech Connect

    Harnicarova, Andrea; Kozubek, Stanislav . E-mail: kozubek@ibp.cz; Pachernik, Jiri; Krejci, Jana; Bartova, Eva

    2006-12-10

    Using sequential RNA-DNA fluorescence in situ hybridization, the nuclear arrangement of both the active and inactive c-myc gene as well as its transcription was investigated in colon cancer HT-29 cells induced to differentiate into enterocytes. Cytogenetic studies revealed the presence of two chromosomes 8 in HT-29 cells, of which the one containing c-myc gene amplicons was substantially larger and easily distinguished from the normal chromosome. This observation enabled detection of both activity and nuclear localization of c-myc genes in single cells and in individual chromosome territories. Similar transcriptional activity of the c-myc gene was observed in both the normal and derivative chromosome 8 territories showing no influence of the amplification on the c-myc gene expression. Our experiments demonstrate strikingly specific nuclear and territorial arrangements of active genes as compared with inactive ones: on the periphery of their territories facing to the very central region of the cell nucleus. Nuclear arrangement of c-myc genes and transcripts was conserved during cell differentiation and, therefore, independent of the level of differentiation-specific c-myc gene expression. However, after the induction of differentiation, a more internal territorial location was found for the single copy c-myc gene of normal chromosome 8, while amplicons conserved their territorial topography.

  1. Conserved features of cancer cells define their sensitivity to HAMLET-induced death; c-Myc and glycolysis.

    PubMed

    Storm, P; Aits, S; Puthia, M K; Urbano, A; Northen, T; Powers, S; Bowen, B; Chao, Y; Reindl, W; Lee, D Y; Sullivan, N L; Zhang, J; Trulsson, M; Yang, H; Watson, J D; Svanborg, C

    2011-12-01

    HAMLET is the first member of a new family of tumoricidal protein-lipid complexes that kill cancer cells broadly, while sparing healthy, differentiated cells. Many and diverse tumor cell types are sensitive to the lethal effect, suggesting that HAMLET identifies and activates conserved death pathways in cancer cells. Here, we investigated the molecular basis for the difference in sensitivity between cancer cells and healthy cells. Using a combination of small-hairpin RNA (shRNA) inhibition, proteomic and metabolomic technology, we identified the c-Myc oncogene as one essential determinant of HAMLET sensitivity. Increased c-Myc expression levels promoted sensitivity to HAMLET and shRNA knockdown of c-Myc suppressed the lethal response, suggesting that oncogenic transformation with c-Myc creates a HAMLET-sensitive phenotype. Furthermore, HAMLET sensitivity was modified by the glycolytic state of tumor cells. Glucose deprivation sensitized tumor cells to HAMLET-induced cell death and in the shRNA screen, hexokinase 1 (HK1), 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 1 and hypoxia-inducible factor 1α modified HAMLET sensitivity. HK1 was shown to bind HAMLET in a protein array containing ∼8000 targets, and HK activity decreased within 15 min of HAMLET treatment, before morphological signs of tumor cell death. In parallel, HAMLET triggered rapid metabolic paralysis in carcinoma cells. Tumor cells were also shown to contain large amounts of oleic acid and its derivatives already after 15 min. The results identify HAMLET as a novel anti-cancer agent that kills tumor cells by exploiting unifying features of cancer cells such as oncogene addiction or the Warburg effect.

  2. Dual targeting of p53 and c-MYC selectively eliminates leukaemic stem cells.

    PubMed

    Abraham, Sheela A; Hopcroft, Lisa E M; Carrick, Emma; Drotar, Mark E; Dunn, Karen; Williamson, Andrew J K; Korfi, Koorosh; Baquero, Pablo; Park, Laura E; Scott, Mary T; Pellicano, Francesca; Pierce, Andrew; Copland, Mhairi; Nourse, Craig; Grimmond, Sean M; Vetrie, David; Whetton, Anthony D; Holyoake, Tessa L

    2016-06-16

    Chronic myeloid leukaemia (CML) arises after transformation of a haemopoietic stem cell (HSC) by the protein-tyrosine kinase BCR-ABL. Direct inhibition of BCR-ABL kinase has revolutionized disease management, but fails to eradicate leukaemic stem cells (LSCs), which maintain CML. LSCs are independent of BCR-ABL for survival, providing a rationale for identifying and targeting kinase-independent pathways. Here we show--using proteomics, transcriptomics and network analyses--that in human LSCs, aberrantly expressed proteins, in both imatinib-responder and non-responder patients, are modulated in concert with p53 (also known as TP53) and c-MYC regulation. Perturbation of both p53 and c-MYC, and not BCR-ABL itself, leads to synergistic cell kill, differentiation, and near elimination of transplantable human LSCs in mice, while sparing normal HSCs. This unbiased systems approach targeting connected nodes exemplifies a novel precision medicine strategy providing evidence that LSCs can be eradicated. PMID:27281222

  3. Inversed relationship between CD44 variant and c-Myc due to oxidative stress-induced canonical Wnt activation

    SciTech Connect

    Yoshida, Go J. Saya, Hideyuki

    2014-01-10

    Highlights: •CD44 variant8–10 and c-Myc are inversely expressed in gastric cancer cells. •Redox-stress enhances c-Myc expression via canonical Wnt signal. •CD44v, but not CD44 standard, suppresses redox stress-induced Wnt activation. •CD44v expression promotes both transcription and proteasome degradation of c-Myc. •Inversed expression pattern between CD44v and c-Myc is often recognized in vivo. -- Abstract: Cancer stem-like cells express high amount of CD44 variant8-10 which protects cancer cells from redox stress. We have demonstrated by immunohistochemical analysis and Western blotting, and reverse-transcription polymerase chain reaction, that CD44 variant8-10 and c-Myc tend to show the inversed expression manner in gastric cancer cells. That is attributable to the oxidative stress-induced canonical Wnt activation, and furthermore, the up-regulation of the downstream molecules, one of which is oncogenic c-Myc, is not easily to occur in CD44 variant-positive cancer cells. We have also found out that CD44v8-10 expression is associated with the turn-over of the c-Myc with the experiments using gastric cancer cell lines. This cannot be simply explained by the model of oxidative stress-induced Wnt activation. CD44v8-10-positive cancer cells are enriched at the invasive front. Tumor tissue at the invasive area is considered to be composed of heterogeneous cellular population; dormant cancer stem-like cells with CD44v8-10 {sup high}/ Fbw7 {sup high}/ c-Myc {sup low} and proliferative cancer stem-like cells with CD44v8-10 {sup high}/ Fbw7 {sup low}/ c-Myc {sup high}.

  4. Dinuclear ruthenium complexes display loop isomer selectivity to c-MYC DNA G-quadriplex and exhibit anti-tumour activity.

    PubMed

    Zheng, Chuping; Liu, Yanan; Liu, Ying; Qin, Xiuying; Zhou, Yanhui; Liu, Jie

    2016-03-01

    G-quadruplex DNA, especially the cellular-myelocytomatosis viral oncogene (c-MYC) is closely associated with cell-cycle regulation, proliferation of tumour cells. In this work, the interaction between the c-MYC and two dinuclear Ru(II) complexes [(bpy)2Ru(bpibp)Ru(bpy)2](ClO4)4 (compound 1) and [(phen)2Ru(bpibp)Ru(phen)2](ClO4)4 (compound 2) have been studied. The data from UV-Visible, PCR-stop and Fluorescence resonance energy transfer (FRET) showed that two complexes can stabilize the structure of G-quadruplex in the c-MYC promoter and targeting the G-quadruplex loop isomers. Interestingly, the complex 2 has a greater effect on the 1:2:1 and 2:1:1 loop isomers while the 1 prefers to the 1:2:1 isomers. The mechanism studies revealed that complexes can induce apoptosis in HepG2 cells by generating ROS metabolites, triggering mitochondrial membrane potential loss and down-regulation of P-Akt (Akt also known as protein kinase B), P-p44/42 MAP kinase protein (P-p44/42), and c-MYC. Taken together, these results suggested that the two dinuclear complexes may both be candidates as anti-tumour agents as they may reduce the c-MYC gene expression. {bpibp: 4, 4'-bis (1, 10-phenanthroline-[5, 6-d] imidazole-2-yl)-biphenyl, bpy: 2,2-bipyridine, phen: 1,10-phenanthroline}.

  5. The oncogene c-Myc coordinates regulation of metabolic networks to enable rapid cell cycle entry.

    PubMed

    Morrish, Fionnuala; Neretti, Nicola; Sedivy, John M; Hockenbery, David M

    2008-04-15

    The c-myc proto-oncogene is rapidly activated by serum and regulates genes involved in metabolism and cell cycle progression. This gene is thereby uniquely poised to coordinate both the metabolic and cell cycle regulatory events required for cell cycle entry. However, this function of Myc has not been evaluated. Using a rat fibroblast model of isogenic cell lines, myc(-/-), myc(+/-), myc(+/+) and myc(-/-) cells with an inducible c-myc transgene (mycER), we show that the Myc protein programs cells to utilize both oxidative phosphorylation and glycolysis to drive cell cycle progression. We demonstrate this coordinate regulation of metabolic networks is essential, as specific inhibitors of these pathways block Myc-induced proliferation. Metabolic events temporally correlated with cell cycle entry include increased oxygen consumption, mitochondrial function, pyruvate and lactate production, and ATP generation. Treatment of normal cells with inhibitors of oxidative phosphorylation recapitulates the myc(-/-) phenotype, resulting in impaired cell cycle entry and reduced metabolism. Combined with a kinetic expression profiling analysis of genes linked to mitochondrial function, our study indicates that Myc's ability to coordinately regulate the mitochondrial metabolic network transcriptome is required for rapid cell cycle entry. This function of Myc may underlie the pervasive presence of Myc in many human cancers.

  6. Cyclin D1 inhibits whereas c-Myc enhances the cytotoxicity of cisplatin in mouse pancreatic cancer cells via regulation of several members of the NF-κB and Bcl-2 families

    PubMed Central

    El-Kady, Ayman; Sun, Yuan; Li, Ying-xia; Liao, D Joshua

    2011-01-01

    Background: Cisplatin (CDDP) is a drug used for treatment of many types of malignancy but pancreatic cancer is relatively resistant to it. This study aims to determine whether and how cyclin D1 (D1) and c-Myc influence the response of pancreatic cancer cells to CDDP. Materials and Methods: Ela-mycPT mouse pancreatic cancer cells were transfected with D1 or c-myc cDNA and treated with CDDP alone or together with NPCD, an inhibitor of cyclin dependent ckinase (CDK) 4 and 6. Reverse transcription followed by polymerase chain reaction (RT-PCR) and western blot assays were used to determine the mRNA and protein levels of interested genes. Cell viability was determined using 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Results: Treatment of Ela-mycPT1 cells with CDDP caused an increase in c-myc expression but a slightly latent decrease in D1 expression, whereas D1 and c-Myc proteins repressed each other. D1 or c-Myc rendered Ela-mycPT1 cells resistant or sensitive, respectively, to CDDP. D1 induced the expression of several members of the NF-κB family, including RelA, RelB, Nfκb1 and Nfκb2. D1 also induced BIRC5 and several pro-survival members of the Bcl-2 gene family, including Bcl-2 , Mcl-1 and Bad while it decreased the level of the pro-apoptotic Noxa. Inhibition of CDK4 or CDK6 kinase activity by NPCD did not affect these effects of D1. In contrast, c-Myc in Ela-mycPT1 and Ela-mycPT4 cells has the opposite effects to D1 on the expression of most of these apoptosis regulating genes. Conclusion: Our results suggest that induction of c-Myc and inhibition of D1 may be mechanisms for CDDP to elicit cytotoxicity. On the other hand, D1 induces whereas c-Myc represses the expression of key NF-κB family members to induce and repress, respectively, the expression of BIRC5 and several Bcl-2 family members, in turn inhibiting or enhancing the response to CDDP. PMID:22190866

  7. A long noncoding RNA connects c-Myc to tumor metabolism

    PubMed Central

    Hung, Chiu-Lien; Wang, Ling-Yu; Yu, Yen-Ling; Chen, Hong-Wu; Srivastava, Shiv; Petrovics, Gyorgy; Kung, Hsing-Jien

    2014-01-01

    Long noncoding RNAs (lncRNAs) have been implicated in a variety of physiological and pathological processes, including cancer. In prostate cancer, prostate cancer gene expression marker 1 (PCGEM1) is an androgen-induced prostate-specific lncRNA whose overexpression is highly associated with prostate tumors. PCGEM1’s tumorigenic potential has been recently shown to be in part due to its ability to activate androgen receptor (AR). Here, we report a novel function of PCGEM1 that provides growth advantages for cancer cells by regulating tumor metabolism via c-Myc activation. PCGEM1 promotes glucose uptake for aerobic glycolysis, coupling with the pentose phosphate shunt to facilitate biosynthesis of nucleotide and lipid, and generates NADPH for redox homeostasis. We show that PCGEM1 regulates metabolism at a transcriptional level that affects multiple metabolic pathways, including glucose and glutamine metabolism, the pentose phosphate pathway, nucleotide and fatty acid biosynthesis, and the tricarboxylic acid cycle. The PCGEM1-mediated gene regulation takes place in part through AR activation, but predominantly through c-Myc activation, regardless of hormone or AR status. Significantly, PCGEM1 binds directly to target promoters, physically interacts with c-Myc, promotes chromatin recruitment of c-Myc, and enhances its transactivation activity. We also identified a c-Myc binding domain on PCGEM1 that contributes to the PCGEM1-dependent c-Myc activation and target induction. Together, our data uncover PCGEM1 as a key transcriptional regulator of central metabolic pathways in prostate cancer cells. By being a coactivator for both c-Myc and AR, PCGEM1 reprograms the androgen network and the central metabolism in a tumor-specific way, making it a promising target for therapeutic intervention. PMID:25512540

  8. The effects of acute ethanol on growth in rat liver: steady state c-myc transcripts.

    PubMed

    Lumpkin, C K; Taylor, J M; Tarpley, M D; Hayden, J B; Badger, T M; McClung, J K

    1992-01-01

    In order to elucidate the effects of acute ethanol on compensatory liver growth (regeneration), the steady state c-myc mRNA levels were studied following two-thirds partial hepatectomy. After surgery, control rat livers exhibited two peaks of c-myc transcripts, at 0.5-2 h and at 8-10 h. Sham surgery did not induce c-myc mRNA expression. Ethanol (3 g/kg), administered by gavage at 1 hour prehepatectomy, had no effect on the initial peak of c-myc mRNA; however, the second peak was eliminated. Control gavage of isocaloric glucose prior to partial hepatectomy had no effects on either of the subsequent c-myc mRNA peaks. Blood alcohol levels were found to be elevated throughout the prereplicative phase. These results suggest that ethanol may disrupt proto-oncogene expression near the restriction point at the G1/S boundary of the cell cycle in hepatocytes.

  9. Quinazoline derivative QPB-15e stabilizes the c-myc promoter G-quadruplex and inhibits tumor growth in vivo

    PubMed Central

    Li, Zeng; Liu, Chen; Huang, Cheng; Meng, Xiaoming; Zhang, Lei; He, Jinhui; Li, Jun

    2016-01-01

    The ribozyme-sensitive element NHE-III1 in the P1 promoter region of the important proto-oncogene c-myc contains many guanine (G)-rich sequences. Induction and stabilization of the G-quadruplex formed by NHE-III1 can downregulate c-myc expression. In the present study, we found that QPB-15e, a quinazoline derivative designed and synthesized by our laboratory, binds to and stabilizes the c-myc G-quadruplex in vitro, thereby inhibiting double-stranded DNA replication, downregulating c-myc gene expression and arresting cancer cell proliferation. PCR termination experiments showed that QPB-15e blocked double-stranded DNA replication by inducing or stabilizing the c-myc G-quadruplex. FRET-melting further confirmed that QPB-15e improved the stability of the G-quadruplex, and CD spectroscopy indicated that the compound interacted directly with the G-rich sequence. In competitive dialysis experiments, QPB-15e bound preferentially to quadruplex DNA in various structures, especially the G-quadruplex within the c-myc promoter region. Moreover, QPB-15e reduced the weights and volumes of tumors transplanted into nude mice. These findings strongly suggest that QPB-15e is a c-myc G-quadruplex ligand with anti-tumor properties, and may be efficacious for treating cancer in humans. PMID:27144522

  10. Quinazoline derivative QPB-15e stabilizes the c-myc promoter G-quadruplex and inhibits tumor growth in vivo.

    PubMed

    Li, Zeng; Liu, Chen; Huang, Cheng; Meng, Xiaoming; Zhang, Lei; He, Jinhui; Li, Jun

    2016-06-01

    The ribozyme-sensitive element NHE-III1 in the P1 promoter region of the important proto-oncogene c-myc contains many guanine (G)-rich sequences. Induction and stabilization of the G-quadruplex formed by NHE-III1 can downregulate c-myc expression. In the present study, we found that QPB-15e, a quinazoline derivative designed and synthesized by our laboratory, binds to and stabilizes the c-myc G-quadruplex in vitro, thereby inhibiting double-stranded DNA replication, downregulating c-myc gene expression and arresting cancer cell proliferation. PCR termination experiments showed that QPB-15e blocked double-stranded DNA replication by inducing or stabilizing the c-myc G-quadruplex. FRET-melting further confirmed that QPB-15e improved the stability of the G-quadruplex, and CD spectroscopy indicated that the compound interacted directly with the G-rich sequence. In competitive dialysis experiments, QPB-15e bound preferentially to quadruplex DNA in various structures, especially the G-quadruplex within the c-myc promoter region. Moreover, QPB-15e reduced the weights and volumes of tumors transplanted into nude mice. These findings strongly suggest that QPB-15e is a c-myc G-quadruplex ligand with anti-tumor properties, and may be efficacious for treating cancer in humans.

  11. [Advances Research on C-MYC Proto-oncogene in Multiple Myeloma -Review].

    PubMed

    Huang, He; Guo, Wen-Jian; Yao, Ron-Xin

    2016-08-01

    Multiple myeloma(MM) as one of the most common tumors of hmatologic system, is characterized by malignant proliferation of plasma cells, and the chemotherapy is the main therapeutic method. MM is an incurable disease because of drug-resistance of MM cells. Although the pathogenesis of MM remains unknown, the chromosome abnormalities exit in half of the patients, particularly the highly expressed gene C-MYC. Furthermore, plenty of clinical researches indicated a high expression level of C-MYC implied worse progression and/or poor prognosis of MM. Recently, the work exploiting the compounds targeting MYC has made substantial progress, even in the MM therapy. In this article, briefly the recent advances of the research on C-MYC proto-oncogene in multiple myeloma are reviewed. PMID:27531809

  12. Suppression of c-Myc is involved in multi-walled carbon nanotubes' down-regulation of ATP-binding cassette transporters in human colon adenocarcinoma cells.

    PubMed

    Wang, Zhaojing; Xu, Yonghong; Meng, Xiangning; Watari, Fumio; Liu, Hudan; Chen, Xiao

    2015-01-01

    Over-expression of ATP-binding cassette (ABC) transporters, a large family of integral membrane proteins that decrease cellular drug uptake and accumulation by active extrusion, is one of the major causes of cancer multi-drug resistance (MDR) that frequently leads to failure of chemotherapy. Carbon nanotubes (CNTs)-based drug delivery devices hold great promise in enhancing the efficacy of cancer chemotherapy. However, CNTs' effects on the ABC transporters remain under-investigated. In this study, we found that multiwalled carbon nanotubes (MWCNTs) reduced transport activity and expression of ABC transporters including ABCB1/Pgp and ABCC4/MRP4 in human colon adenocarcinoma Caco-2 cells. Proto-oncogene c-Myc, which directly regulates ABC gene expression, was concurrently decreased in MWCNT-treated cells and forced over-expression of c-Myc reversed MWCNTs' inhibitory effects on ABCB1 and ABCC4 expression. MWCNT-cell membrane interaction and cell membrane oxidative damage were observed. However, antioxidants such as vitamin C, β-mecaptoethanol and dimethylthiourea failed to antagonize MWCNTs' down-regulation of ABC transporters. These data suggest that MWCNTs may act on c-Myc, but not through oxidative stress, to down-regulate ABC transporter expression. Our findings thus shed light on CNTs' novel cellular effects that may be utilized to develop CNTs-based drug delivery devices to overcome ABC transporter-mediated cancer chemoresistance. PMID:25461681

  13. Suppression of c-Myc is involved in multi-walled carbon nanotubes' down-regulation of ATP-binding cassette transporters in human colon adenocarcinoma cells

    SciTech Connect

    Wang, Zhaojing; Xu, Yonghong; Meng, Xiangning; Watari, Fumio; Liu, Hudan; Chen, Xiao

    2015-01-01

    Over-expression of ATP-binding cassette (ABC) transporters, a large family of integral membrane proteins that decrease cellular drug uptake and accumulation by active extrusion, is one of the major causes of cancer multi-drug resistance (MDR) that frequently leads to failure of chemotherapy. Carbon nanotubes (CNTs)-based drug delivery devices hold great promise in enhancing the efficacy of cancer chemotherapy. However, CNTs' effects on the ABC transporters remain under-investigated. In this study, we found that multiwalled carbon nanotubes (MWCNTs) reduced transport activity and expression of ABC transporters including ABCB1/Pgp and ABCC4/MRP4 in human colon adenocarcinoma Caco-2 cells. Proto-oncogene c-Myc, which directly regulates ABC gene expression, was concurrently decreased in MWCNT-treated cells and forced over-expression of c-Myc reversed MWCNTs' inhibitory effects on ABCB1 and ABCC4 expression. MWCNT-cell membrane interaction and cell membrane oxidative damage were observed. However, antioxidants such as vitamin C, β-mecaptoethanol and dimethylthiourea failed to antagonize MWCNTs' down-regulation of ABC transporters. These data suggest that MWCNTs may act on c-Myc, but not through oxidative stress, to down-regulate ABC transporter expression. Our findings thus shed light on CNTs' novel cellular effects that may be utilized to develop CNTs-based drug delivery devices to overcome ABC transporter-mediated cancer chemoresistance.

  14. Carrot and stick: HIF-alpha engages c-Myc in hypoxic adaptation.

    PubMed

    Huang, L E

    2008-04-01

    The past decade of research on hypoxic responses has provided a considerable understanding of how cells respond to hypoxic stress at the molecular level, thanks to the identification and molecular cloning of the hypoxia-inducible transcription factor, HIF-1alpha. Numerous target genes have since been identified to account for various aspects of the hypoxic response, including angiogenesis and glycolysis. Yet, fundamental questions remain regarding the mechanisms by which hypoxia controls cell proliferation, genetic instability, mitochondrial biogenesis, and oxidative respiration in cancer cells. Although the proto-oncoprotein c-Myc appears to be the diametrical opposite of HIF-1alpha in most of these processes, recent studies indicate that c-Myc is an integral part of the HIF-alpha-c-Myc molecular pathway in the hypoxic response. It has been shown that HIF-alpha engages with Myc by various mechanisms to achieve oxygen homeostasis for cell survival. This article focuses on the intricate roles of c-Myc in the hypoxic response, discusses various mechanisms controlling c-Myc activity by HIF-alpha for the regulation of hypoxia-responsive genes, and emphasizing the outcome of gene expression apparently dependent upon hypoxic conditions, cellular context, and gene promoter.

  15. Chemical intervention of the NM23-H2 transcriptional programme on c-MYC via a novel small molecule

    PubMed Central

    Shan, Chan; Lin, Jing; Hou, Jin-Qiang; Liu, Hui-Yun; Chen, Shuo-Bin; Chen, Ai-Chun; Ou, Tian-Miao; Tan, Jia-Heng; Li, Ding; Gu, Lian-Quan; Huang, Zhi-Shu

    2015-01-01

    c-MYC is an important oncogene that is considered as an effective target for anticancer therapy. Regulation of this gene's transcription is one avenue for c-MYC-targeting drug design. Direct binding to a transcription factor and generating the intervention of a transcriptional programme appears to be an effective way to modulate gene transcription. NM23-H2 is a transcription factor for c-MYC and is proven to be related to the secondary structures in the promoter. Here, we first screened our small-molecule library for NM23-H2 binders and then sifted through the inhibitors that could target and interfere with the interaction process between NM23-H2 and the guanine-rich promoter sequence of c-MYC. As a result, a quinazolone derivative, SYSU-ID-01, showed a significant interference effect towards NM23-H2 binding to the guanine-rich promoter DNA sequence. Further analyses of the compound–protein interaction and the protein–DNA interaction provided insight into the mode of action for SYSU-ID-01. Cellular evaluation results showed that SYSU-ID-01 could abrogate NM23-H2 binding to the c-MYC promoter, resulting in downregulation of c-MYC transcription and dramatically suppressed HeLa cell growth. These findings provide a new way of c-MYC transcriptional control through interfering with NM23-H2 binding to guanine-rich promoter sequences by small molecules. PMID:26117539

  16. Contrasting roles for c-Myc and L-Myc in the regulation of cellular growth and differentiation in vivo.

    PubMed Central

    Morgenbesser, S D; Schreiber-Agus, N; Bidder, M; Mahon, K A; Overbeek, P A; Horner, J; DePinho, R A

    1995-01-01

    Although myc family genes are differentially expressed during development, their expression frequently overlaps, suggesting that they may serve both distinct and common biological functions. In addition, alterations in their expression occur at major developmental transitions in many cell lineages. For example, during mouse lens maturation, the growth arrest and differentiation of epithelial cells into lens fiber cells is associated with a decrease in L- and c-myc expression and a reciprocal rise in N-myc levels. To determine whether the down-regulation of L- and c-myc are required for mitotic arrest and/or completion of differentiation and whether these genes have distinct or similar activities in the same cell type, we have studied the consequences of forced L- and c-myc expression in the lens fiber cell compartment using the alpha A-crystallin promoter in transgenic mice (alpha A/L-myc and alpha A/c-myc mice). With respect to morphological and molecular differentiation, alpha A/L-myc lenses were characterized by a severely disorganized lens fiber cell compartment and a significant decrease in the expression of a late-stage differentiation marker (MIP26); in contrast, differentiation appeared to be unaffected in alpha A/c-myc mice. Furthermore, an analysis of proliferation indicated that while alpha A/L-myc fiber cells withdrew properly from the cell cycle, inappropriate cell cycle progression occurred in the lens fiber cell compartment of alpha A/c-myc mice. These observations indicate that continued late-stage expression of L-myc affected differentiation processes directly, rather than indirectly through deregulated growth control, whereas constitutive c-myc expression inhibited proliferative arrest, but did not appear to disturb differentiation. As a direct corollary, our data indicate that L-Myc and c-Myc are involved in distinct physiological processes in the same cell type. Images PMID:7882978

  17. Conversion of Androgen Receptor Signaling From a Growth Suppressor in Normal Prostate Epithelial Cells to an Oncogene in Prostate Cancer Cells Involves a Gain of Function in c-Myc Regulation

    PubMed Central

    Vander Griend, Donald J.; Litvinov, Ivan V.; Isaacs, John T.

    2014-01-01

    In normal prostate, androgen-dependent androgen receptor (AR) signaling within prostate stromal cells induces their secretion of paracrine factors, termed “andromedins” which stimulate growth of the epithelial cells. The present studies demonstrate that androgen-dependent andromedin-driven growth stimulation is counter-balanced by androgen-induced AR signaling within normal adult prostate epithelial cells resulting in terminal G0 growth arrest coupled with terminal differentiation into ΔNp63-negative, PSA-expressing secretory luminal cells. This cell autonomous AR-driven terminal differentiation requires DNA-binding of the AR protein, is associated with decreases in c-Myc m-RNA and protein, are coupled with increases in p21, p27, and SKP-2 protein expression, and does not require functional p53. These changes result in down-regulation of Cyclin D1 protein and RB phosphoryation. shRNA knockdown documents that neither RB, p21, p27 alone or in combination are required for such AR-induced G0 growth arrest. Transgenic expression of a constitutive vector to prevent c-Myc down-regulation overrides AR-mediated growth arrest in normal prostate epithelial cells, which documents that AR-induced c-Myc down-regulation is critical in terminal growth arrest of normal prostate epithelial cells. In contrast, in prostate cancer cells, androgen-induced AR signaling paradoxically up-regulates c-Myc expression and stimulates growth as documented by inhibition of both of these responses following exposure to the AR antagonist, bicalutamide. These data document that AR signaling is converted from a growth suppressor in normal prostate epithelial cells to an oncogene in prostate cancer cells during prostatic carcinogenesis and that this conversion involves a gain of function for regulation of c-Myc expression. PMID:24948876

  18. Hsa-let-7a functions as a tumor suppressor in renal cell carcinoma cell lines by targeting c-myc

    SciTech Connect

    Liu, Yongchao; Yin, Bingde; Zhang, Changcun; Zhou, Libin; Fan, Jie

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer This study is the first to test the let-7a/c-myc loop in renal cell carcinoma cell lines. Black-Right-Pointing-Pointer Let-7a down-regulated c-myc in three renal cell carcinoma cell lines. Black-Right-Pointing-Pointer c-myc target genes were down-regulated because of the let-7a-mediated down-regulation of c-myc. Black-Right-Pointing-Pointer The let-7a/c-myc loop has a significant function in renal cell carcinoma cell lines. -- Abstract: Widespread functions of the c-myc pathway play a crucial role in renal cell carcinoma (RCC) carcinogenesis. Thus, we evaluated the connection between proto-oncogenic c-myc and anti-neoplastic hsa-let-7a (let-7a) in RCC cell lines. The levels of c-myc and let-7a in 3 RCC cell lines (769P, Caki-1 and 786O) were measured after transfecting the cells with let-7a mimics or a negative control. The change in c-myc protein level was confirmed by Western blot. The anti-neoplastic function of let-7a was evaluated using cell counting kit-8 (CCK-8) for proliferation analysis and cell flow cytometry for cell cycle analysis. The changes of downstream targets of c-myc were measured using reverse transcription quantitative real-time PCR (qRT-PCR). Our results suggest for the first time that let-7a acts as a tumor suppressor in RCC cell lines by down-regulating c-myc and c-myc target genes such as proliferating cell nuclear antigen (PCNA), cyclin D1 (CCND1) and the miR17-92 cluster, which is accompanied by proliferation inhibition and cell cycle arrest.

  19. The c-myc-regulated gene mrl encodes plasminogen activator inhibitor 1.

    PubMed Central

    Prendergast, G C; Diamond, L E; Dahl, D; Cole, M D

    1990-01-01

    The DNA sequence of the c-myc-regulated gene mrl (G. C. Prendergast and M. D. Cole, Mol. Cell. Biol. 9:124-134, 1989) reveals that it encodes plasminogen activator inhibitor 1 (PAI-1), a regulator of extracellular proteolysis. Comparison of the human and mouse PAI-1 promoters and cDNA 3' noncoding regions revealed several highly conserved sequence domains, potential targets for c-myc and other factors influencing PAI-1 expression. We discuss possible roles for PAI-1 in normal and neoplastic cell growth control. PMID:2406566

  20. Perturbation of 14q32 miRNAs-cMYC gene network in osteosarcoma.

    PubMed

    Thayanithy, Venugopal; Sarver, Aaron L; Kartha, Reena V; Li, Lihua; Angstadt, Andrea Y; Breen, Matthew; Steer, Clifford J; Modiano, Jaime F; Subramanian, Subbaya

    2012-01-01

    Osteosarcoma (OS) is the common histological form of primary bone cancer and one of the leading aggressive cancers in children under age fifteen. Although several genetic predisposing conditions have been associated with OS the understanding of its molecular etiology is limited. Here, we show that microRNAs (miRNAs) at the chr.14q32 locus are significantly downregulated in osteosarcoma compared to normal bone tissues. Bioinformatic predictions identified that a subset of 14q32 miRNAs (miR-382, miR-369-3p, miR-544 and miR-134) could potentially target cMYC transcript. The physical interaction between these 14q32 miRNAs and cMYC was validated using reporter assays. Further, restoring expression of these four 14q32 miRNAs decreased cMYC levels and induced apoptosis in Saos2 cells. We also show that exogenous expression of 14q32 miRNAs in Saos2 cells significantly downregulated miR-17-92, a transcriptional target of cMYC. The pro-apoptotic effect of 14q32 miRNAs in Saos2 cells was rescued either by overexpression of cMYC cDNA without the 3'UTR or with miR-17-92 cluster. Further, array comparative genomic hybridization studies showed no DNA copy number changes at 14q32 locus in OS patient samples suggesting that downregulation of 14q32 miRNAs are not due to deletion at this locus. Together, our data support a model where the deregulation of a network involving 14q32 miRNAs, cMYC and miR-17-92 miRNAs could contribute to osteosarcoma pathogenesis.

  1. Perturbation of 14q32 miRNAs-cMYC gene network in osteosarcoma

    PubMed Central

    Thayanithy, Venugopal; Sarver, Aaron L.; Kartha, Reena V.; Lihua, Li; Angstadt, Andrea Y.; Breen, Matthew; Steer, Clifford J.; Modiano, Jaime F.; Subramanian, Subbaya

    2013-01-01

    Osteosarcoma (OS) is the common histological form of primary bone cancer and one of the leading aggressive cancers in children under age fifteen. Although several genetic predisposing conditions have been associated with OS the understanding of its molecular etiology is limited. Here, we show that microRNAs (miRNAs) at the chr.14q32 locus are significantly downregulated in osteosarcoma compared to normal bone tissues. Bioinformatic predictions identified that a subset of 14q32 miRNAs (miR-382, miR-369-3p, miR-544 and miR-134) could potentially target cMYC transcript. The physical interaction between these 14q32 miRNAs and cMYC was validated using reporter assays. Further, restoring expression of these four 14q32 miRNAs decreased cMYC levels and induced apoptosis in Saos2 cells. We also show that exogenous expression of 14q32 miRNAs in Saos2 cells significantly downregulated miR-17∼92, a transcriptional target of cMYC. The pro-apoptotic effect of 14q32 miRNAs in Saos2 cells was rescued either by overexpression of cMYC cDNA without the 3′UTR or with miR-17∼92 cluster. Further, array comparative genomic hybridization studies showed no DNA copy number changes at 14q32 locus in OS patient samples suggesting that downregulation of 14q32 miRNAs are not due to deletion at this locus. Together, our data support a model where the deregulation of a network involving 14q32 miRNAs, cMYC and miR-17∼92 miRNAs could contribute to osteosarcoma pathogenesis. PMID:22037351

  2. cMyc-mediated activation of serine biosynthesis pathway is critical for cancer progression under nutrient deprivation conditions.

    PubMed

    Sun, Linchong; Song, Libing; Wan, Qianfen; Wu, Gongwei; Li, Xinghua; Wang, Yinghui; Wang, Jin; Liu, Zhaoji; Zhong, Xiuying; He, Xiaoping; Shen, Shengqi; Pan, Xin; Li, Ailing; Wang, Yulan; Gao, Ping; Tang, Huiru; Zhang, Huafeng

    2015-04-01

    Cancer cells are known to undergo metabolic reprogramming to sustain survival and rapid proliferation, however, it remains to be fully elucidated how oncogenic lesions coordinate the metabolic switch under various stressed conditions. Here we show that deprivation of glucose or glutamine, two major nutrition sources for cancer cells, dramatically activated serine biosynthesis pathway (SSP) that was accompanied by elevated cMyc expression. We further identified that cMyc stimulated SSP activation by transcriptionally upregulating expression of multiple SSP enzymes. Moreover, we demonstrated that SSP activation facilitated by cMyc led to elevated glutathione (GSH) production, cell cycle progression and nucleic acid synthesis, which are essential for cell survival and proliferation especially under nutrient-deprived conditions. We further uncovered that phosphoserine phosphatase (PSPH), the final rate-limiting enzyme of the SSP pathway, is critical for cMyc-driven cancer progression both in vitro and in vivo, and importantly, aberrant expression of PSPH is highly correlated with mortality in hepatocellular carcinoma (HCC) patients, suggesting a potential causal relation between this cMyc-regulated enzyme, or SSP activation in general, and cancer development. Taken together, our results reveal that aberrant expression of cMyc leads to the enhanced SSP activation, an essential part of metabolic switch, to facilitate cancer progression under nutrient-deprived conditions. PMID:25793315

  3. Frequent co-amplification and co-operation between C-MYC and PVT1 oncogenes promote malignant pleural mesothelioma

    PubMed Central

    Riquelme, Erick; Suraokar, Milind B.; Rodriguez, Jaime; Mino, Barbara; Lin, Heather Y.; Rice, David C.; Tsao, Anne; Wistuba, Ignacio I.

    2014-01-01

    Introduction Malignant pleural mesothelioma (MPM) is a deadly disease with poor prognosis and few treatment options. We characterized and elucidate the roles of C-MYC and PVT1 involved in the pathogenesis of MPM. Methods We used siRNA-mediated knockdown in MPM cell lines to determine the effect of C-MYC and PVT1 abrogation on MPM cells undergoing apoptosis, proliferation, and cisplatin sensitivity. We also characterized the expression of microRNAs (miRNAs) spanning the PVT1 region in MPM cell lines. Copy number analysis was measured by quantitative PCR and fluorescence in situ hybridization. Results Copy number analysis revealed copy number gains (CNGs) in chromosomal region 8q24 in six of twelve MPM cell lines. MicroRNA analysis showed high miR-1204 expression in MSTO-211H cell lines with ≥4 copies of PVT1. Knockdown by siRNA showed increased PARP-C levels in MSTO-211H transfected with siPVT1 but not in cells transfected with siC-MYC. C-MYC and PVT1 knockdown reduced cell proliferation and increased sensitivity to cisplatin. Analysis of the expression of apoptosis-related genes in the MSTO-211H cell line suggested that C-MYC maintains a balance between pro-apoptotic and anti-apoptotic gene expression, whereas PVT1 and to a lesser extent miR-1204, upregulate pro-apoptotic genes and downregulate anti-apoptotic genes. FISH analysis of MPM tumor specimens showed a high frequency of both CNGs (11/75) and trisomy (three copies; 11/75) for the C-MYC locus. Conclusion Our results suggest that C-MYC and PVT1 copy number gain promotes a malignant phenotype of MPM, with C-MYC CNG stimulating cell proliferation and PVT1 both stimulating proliferation and inhibiting apoptosis. PMID:24926545

  4. Prognostic Value of Beta-Tubulin-3 and c-Myc in Muscle Invasive Urothelial Carcinoma of the Bladder

    PubMed Central

    Massari, Francesco; Bria, Emilio; Ciccarese, Chiara; Munari, Enrico; Modena, Alessandra; Zambonin, Valentina; Sperduti, Isabella; Artibani, Walter; Cheng, Liang; Martignoni, Guido; Tortora, Giampaolo; Brunelli, Matteo

    2015-01-01

    Background To date, putative prognostic biomarkers have shown limited utility from the clinical perspective for bladder urothelial carcinoma. Herein, the expression of beta-tubulin-3 and c-Myc was evaluated to determine their prognostic potential. Methods In formalin fixed-paraffin embedded blocks, immunohistochemical expression of c-Myc and beta-tubulin-3 was evaluated. H score ranging from 0 to 300 was obtained by multiplying the percentage of positive cells by intensity (0–3); c-Myc and beta-tubulin-3 expression was defined: 0: negative, 1: weakly positive, 2: strongly positive. Results beta-tubulin-3 and c-Myc immunoexpression was available for 46 cases. At the univariate analysis, node-involvement, beta-tubulin-3 and c-Myc overexpression discriminate shorter DFS (HR 2.19, p = 0.043; HR 3.10, p = 0.24 and HR 3.05, p = 0.011, respectively); 2-yrs DFS log-rank analysis according to low versus high level of immunoexpression were statistically significant; beta-tubulin-3, 53% low vs 12.7% high (p = value 0.02) and c-Myc 28 low vs 8 high (p-value 0.007). Patients displaying negative beta-tubulin-3/c-Myc had statistically significant better 2-yrs DFS than those with mixed expression or double positivity (54.5% versus 18.7% versus 0%, log-rank p = 0.006). Conclusions c-Myc and beta-tubulin-3 show improvement for prognostic risk stratification in patients with muscle invasive bladder urothelial carcinoma. These molecular pathways may also be candidate to improve predictiveness to targeted therapies. PMID:26046361

  5. Absence of missense mutations in activated c-myc genes in avian leukosis virus-induced B-cell lymphomas

    SciTech Connect

    Hahn, M.; Hayward, W.S.

    1988-06-01

    The authors determined the nucleotide sequences of two independent DNA clones which contained the activated c-myc genes from avian leukosis virus-induced B-cell lymphomas. Neither of these c-myce genes contained missense mutations. This strongly supports the notion that the c-myc photo-oncogene in avian leukosis virus-induced B-cell lymphomas can be oncogenically activated by altered expression of the gene without a change in the primary structure of the gene product.

  6. C-Myc negatively controls the tumor suppressor PTEN by upregulating miR-26a in glioblastoma multiforme cells

    SciTech Connect

    Guo, Pin; Nie, Quanmin; Lan, Jin; Ge, Jianwei; Qiu, Yongming; Mao, Qing

    2013-11-08

    Highlights: •The c-Myc oncogene directly upregulates miR-26a expression in GBM cells. •ChIP assays demonstrate that c-Myc interacts with the miR-26a promoter. •Luciferase reporter assays show that PTEN is a specific target of miR-26a. •C-Myc–miR-26a suppression of PTEN may regulate the PTEN/AKT pathway. •Overexpression of c-Myc enhances the proliferative capacity of GBM cells. -- Abstract: The c-Myc oncogene is amplified in many tumor types. It is an important regulator of cell proliferation and has been linked to altered miRNA expression, suggesting that c-Myc-regulated miRNAs might contribute to tumor progression. Although miR-26a has been reported to be upregulated in glioblastoma multiforme (GBM), the mechanism has not been established. We have shown that ectopic expression of miR-26a influenced cell proliferation by targeting PTEN, a tumor suppressor gene that is inactivated in many common malignancies, including GBM. Our findings suggest that c-Myc modulates genes associated with oncogenesis in GBM through deregulation of miRNAs via the c-Myc–miR-26a–PTEN signaling pathway. This may be of clinical relevance.

  7. Evidence that the familial adenomatous polyposis gene is involved in a subset of colon cancers with a complementable defect in c-myc regulation

    SciTech Connect

    Erisman, M.D.; Scott, J.K.; Astrin, S.M. )

    1989-06-01

    Human colorectal carcinomas frequently express elevated levels of c-myc mRNA in the absence of a gross genetic change at the c-myc locus. To test the hypothesis that these tumors are defective in a gene function necessary for the regulation of c-myc expression, the authors fused an osteosarcoma cell line that exhibits normal c-myc regulation with two colon carcinoma cell lines that express deregulated levels of c-myc mRNA. Since rates of c-myc mRNA turnover in the colon carcinoma cells were found to be comparable to those in normal cells, increased message stability cannot account for the increased steady-state levels of transcripts. These finding suggest that loss of function of a trans-acting regulator is responsible for the deregulation of c-myc expression in a major fraction of colorectal carcinomas. Analysis of restriction fragment length polymorphisms in tumor/normal tissue pairs from patients with primary colorectal lesions indicated that deregulation of c-myc expression in the tumors is correlated with frequent loss of alleles of syntenic markers on chromosome 5q. Chromosome 5q is the region known to contain the gene for familial adenomatous polyposis, an inherited predisposition to colon cancer. These findings, together with the arlier finding that the colonic distribution of tumors exhibiting deregulated c-myc expression is similar to that reported for familial polyposis, provide evidence that loss of function of the familial adenomatous polyposis gene is involved in a subset of colorectal cancers in which c-myc expression is deregulated.

  8. BAF53 Forms Distinct Nuclear Complexes and Functions as a Critical c-Myc-Interacting Nuclear Cofactor for Oncogenic Transformation

    PubMed Central

    Park, Jeonghyeon; Wood, Marcelo A.; Cole, Michael D.

    2002-01-01

    The c-Myc oncoprotein functions as a transcription factor that can transform normal cells into tumor cells, as well as playing a direct role in normal cell proliferation. The c-Myc protein transactivates cellular promoters by recruiting nuclear cofactors to chromosomal sites through an N-terminal transactivation domain. We have previously reported the identification and functional characterization of four different c-Myc cofactors: TRRAP, hGCN5, TIP49, and TIP48. Here we present the identification and characterization of the actin-related protein BAF53 as a c-Myc-interacting nuclear cofactor that forms distinct nuclear complexes. In addition to the human SWI/SNF-related BAF complex, BAF53 forms a complex with TIP49 and TIP48 and a separate biochemically distinct complex containing TRRAP and a histone acetyltransferase which does not contain TIP60. Using deletion mutants of BAF53, we show that BAF53 is critical for c-Myc oncogenic activity. Our results indicate that BAF53 plays a functional role in c-Myc-interacting nuclear complexes. PMID:11839798

  9. BET protein inhibitor JQ1 attenuates Myc-amplified MCC tumor growth in vivo.

    PubMed

    Shao, Qiang; Kannan, Aarthi; Lin, Zhenyu; Stack, Brendan C; Suen, James Y; Gao, Ling

    2014-12-01

    Merkel cell carcinoma (MCC) is an aggressive neuroendocrine tumor of the skin currently with no cure. In this study, we have first demonstrated that c-Myc overexpression is common in MCC. By targeting c-Myc, bromodomain inhibitors have demonstrated antitumor efficacy in several preclinical human cancer models. Thus, we interrogated the role of c-Myc inhibition in MCC with c-Myc amplification by using the BET inhibitor JQ1. We have uncovered that c-Myc can be regulated by JQ1 in MCC cells with pathologic c-Myc activation. Moreover, JQ1 potently abrogates c-Myc expression in MCC cells and causes marked G1 cell-cycle arrest. Mechanistically, JQ1-induced cell-cycle arrest coincides with downregulation of cyclin D1 and upregulation of p21, p27, and p57, whereas JQ1 exerts no effect on apoptosis in MCC cells. Further knockdown of p21, p27, or p57 by shRNA partially protects cells from JQ1-induced cell-cycle arrest. In addition, c-Myc knockdown by shRNA generates significant cell-cycle arrest, suggesting that c-Myc overexpression plays a role in MCC pathogenesis. Most importantly, JQ1 significantly attenuates tumor growth in xenograft MCC mouse models. Our results provide initial evidence, indicating the potential clinical utility of BET protein inhibitors in the treatment of MCC with pathologic activation of c-Myc.

  10. BRD4 Regulates EZH2 Transcription through Upregulation of C-MYC and Represents a Novel Therapeutic Target in Bladder Cancer.

    PubMed

    Wu, Xinchao; Liu, Dong; Tao, Dan; Xiang, Wei; Xiao, Xingyuan; Wang, Miao; Wang, Liang; Luo, Gang; Li, Yawei; Zeng, Fuqing; Jiang, Guosong

    2016-05-01

    People who develop bladder cancer frequently succumb to the intractable disease. Current treatment strategies are limited presumably due to the underlying molecular complexity and insufficient comprehension. Therefore, exploration of new therapeutic targets in bladder cancer remains necessary. Here, we identify that bromodomain-4 protein (BRD4), an important epigenome reader of bromodomain and extraterminal domain (BET) family member, is a key upstream regulator of enhancer of zeste homologue 2 (EZH2), and represents a novel therapeutic target in bladder cancer. We found that BRD4 was significantly overexpressed in bladder cancer cells and tissues. Inhibition of BRD4 decreased bladder cancer cell proliferation concomitantly with the accumulation of cell apoptosis in vitro and suppressed tumor growth in vivo We further found that suppression of BRD4 decreased the mRNA and protein levels of EZH2, which was reversed by ectopic expression of C-MYC In particular, individual silencing of BRD4 using shRNA or the BET inhibitor JQ1 strikingly diminished the recruitment of C-MYC to EZH2 promoter in bladder cancer. Briefly, our research reveals that BRD4 positively regulates EZH2 transcription through upregulation of C-MYC, and is a novel promising target for pharmacologic treatment in transcriptional program intervention against this intractable disease. Mol Cancer Ther; 15(5); 1029-42. ©2016 AACR. PMID:26939702

  11. c-MYC responds to glucose deprivation in a cell-type-dependent manner

    PubMed Central

    Wu, S; Yin, X; Fang, X; Zheng, J; Li, L; Liu, X; Chu, L

    2015-01-01

    Metabolic reprogramming supports cancer cells’ demands for rapid proliferation and growth. Previous work shows that oncogenes, such as MYC, hypoxia-inducible factor 1 (HIF1), have a central role in driving metabolic reprogramming. A lot of metabolic enzymes, which are deregulated in most cancer cells, are the targets of these oncogenes. However, whether metabolic change affects these oncogenes is still unclear. Here we show that glucose deprivation (GD) affects c-MYC protein levels in a cell-type-dependent manner regardless of P53 mutation status. GD dephosphorylates and then decreases c-MYC protein stability through PI3K signaling pathway in HeLa cells, but not in MDA-MB-231 cells. Role of c-MYC in sensitivity of GD also varies with cell types. c-MYC-mediated glutamine metabolism partially improves the sensitivity of GD in MDA-MB-231 cells. Our results reveal that the heterogeneity of cancer cells in response to metabolic stress should be considered in metabolic therapy for cancer. PMID:27551483

  12. c-MYC responds to glucose deprivation in a cell-type-dependent manner.

    PubMed

    Wu, S; Yin, X; Fang, X; Zheng, J; Li, L; Liu, X; Chu, L

    2015-01-01

    Metabolic reprogramming supports cancer cells' demands for rapid proliferation and growth. Previous work shows that oncogenes, such as MYC, hypoxia-inducible factor 1 (HIF1), have a central role in driving metabolic reprogramming. A lot of metabolic enzymes, which are deregulated in most cancer cells, are the targets of these oncogenes. However, whether metabolic change affects these oncogenes is still unclear. Here we show that glucose deprivation (GD) affects c-MYC protein levels in a cell-type-dependent manner regardless of P53 mutation status. GD dephosphorylates and then decreases c-MYC protein stability through PI3K signaling pathway in HeLa cells, but not in MDA-MB-231 cells. Role of c-MYC in sensitivity of GD also varies with cell types. c-MYC-mediated glutamine metabolism partially improves the sensitivity of GD in MDA-MB-231 cells. Our results reveal that the heterogeneity of cancer cells in response to metabolic stress should be considered in metabolic therapy for cancer. PMID:27551483

  13. Dual roles of c-Myc in the regulation of hTERT gene

    PubMed Central

    Zhao, Yuanjun; Cheng, De; Wang, Shuwen; Zhu, Jiyue

    2014-01-01

    Human telomerase gene hTERT is important for cancer and aging. hTERT promoter is regulated by multiple transcription factors (TFs) and its activity is dependent on the chromatin environment. However, it remains unsolved how the interplay between TFs and chromatin environment controls hTERT transcription. In this study, we employed the recombinase-mediated BAC targeting and BAC recombineering techniques to dissect the functions of two proximal E-box sites at −165 and +44 nt in regulating the hTERT promoter in the native genomic contexts. Our data showed that mutations of these sites abolished promoter binding by c-Myc/Max, USF1 and USF2, decreased hTERT promoter activity, and prevented its activation by overexpressed c-Myc. Upon inhibition of histone deacetylases, mutant and wildtype promoters were induced to the same level, indicating that the E-boxes functioned to de-repress the hTERT promoter and allowed its transcription in a repressive chromatin environment. Unexpectedly, knockdown of endogenous c-Myc/Max proteins activated hTERT promoter. This activation did not require the proximal E-boxes but was accompanied by increased promoter accessibility, as indicated by augmented active histone marks and binding of multiple TFs at the promoter. Our studies demonstrated that c-Myc/Max functioned in maintaining chromatin-dependent repression of the hTERT gene in addition to activating its promoter. PMID:25170084

  14. Selective recognition of c-MYC G-quadruplex DNA using prolinamide derivatives.

    PubMed

    Chauhan, Ajay; Paladhi, Sushovan; Debnath, Manish; Dash, Jyotirmayee

    2016-06-28

    Herein we report the design, synthesis, biophysical and biological evaluation of triazole containing prolinamide derivatives as selective c-MYC G-quadruplex binding ligands. A modular synthetic route has been devised for prolinamide derivatives using a copper(i) catalyzed azide-alkyne cycloaddition (CuAAC). The Förster resonance energy transfer (FRET) melting assay indicates that prolinamide trimers can significantly stabilize G-quadruplex structures over duplex DNA compared to prolinamide dimers. The fluorescent intercalator displacement (FID) assay shows that a trimer with prolinamide side chains at the para-position of the benzene ring can discriminate between different quadruplex structures and exhibits the highest binding affinity towards the c-MYC G-quadruplex structure. Molecular modeling studies reveal that the prolinamide trimer stacks upon the terminal G-quartet of the c-MYC G-quadruplex. Atomic force microscopy (AFM) analysis reveals that the tris-prolinamide ligand can be used to regulate the assembly of novel supramolecular nanoarchitectures. Further, in vitro cellular studies with human hepatocellular carcinoma (HepG2) cells indicate that the tris-prolinamide derivatives can inhibit cell proliferation and reduce c-MYC expression in cancer cells. PMID:26963597

  15. Recessive genetic deregulation abrogates c-myc suppression by interferon and is implicated in oncogenesis

    SciTech Connect

    Kimchi, A.; Resnitzky, D.; Ber, R.; Gat, G.

    1988-07-01

    Previously the authors demonstrated that many hematopoietic tumor cells are resistant to the inhibitory effects that interferon exerts on c-myc mRNA expression without losing other receptor-mediated intracellular responses. They report here that this partial resistance was overridden in two independent stable somatic cell hybrids prepared by fusion between sensitive and resistant cells. The c-myc mRNA transcribed from the active allele of the resistant parent cell was reduced by interferon within the context of the cell hybrid. It was therefore concluded that changes in the cis-acting sequences of c-myc were not involved in this type of relaxed regulation and that resistance resulted rather from inactivation or loss of postreceptor elements which operate in trans. The growth-stimulating effect that this genetic deregulation might have on cells was tested in experimental systems of cell differentiation in which an autocrine interferon is produced. For that purpose the authors isolated variant clones of M1 myeloid cells which were partially resistant to alpha and beta interferons and tested their growth behaviour during in vitro-induced differentiation. The resistant clones displayed higher proliferative activity on days 2 and 3 of differentiation than did the sensitive clones, which stopped proliferating. The loss of c-myc responses to the self-produced interferon disrupted the normal cessation of growth during differentiation and therefore might lead cells along the pathway of neoplasia.

  16. Continued withdrawal from the cell cycle and regulation of cellular genes in mouse erythroleukemia cells blocked in differentiation by the c-myc oncogene.

    PubMed Central

    Coppola, J A; Parker, J M; Schuler, G D; Cole, M D

    1989-01-01

    Constitutive expression of the c-myc oncogene blocks dimethyl sulfoxide (DMSO)-induced differentiation of mouse erythroleukemia (MEL) cells. During the first 12 h of treatment with DMSO, MEL cells undergo a temporary decrease in the level of c-myc mRNA, followed by a temporary withdrawal from the cell cycle. We found the same shutoff of DNA synthesis during the first 12 to 30 h after DMSO induction in normal MEL cells (which differentiate) and in c-myc-transfected MEL cells (which do not differentiate). We also examined whether deregulated c-myc expression grossly interfered with the regulation of gene expression during MEL cell differentiation. We used run-on transcription assays to monitor the rate of transcription of four oncogenes (c-myc, c-myb, c-fos, and c-K-ras); all except c-K-ras showed a rapid but temporary decrease in transcription after induction in both c-myc-transfected and control cells. Finally, we found the same regulation of cytoplasmic mRNA expression in both types of cells for four oncogenes and three housekeeping genes associated with growth. We conclude that in the MEL cell system, the effects of deregulated c-myc expression do not occur through a disruption of cell cycle control early in induction, nor do they occur through gross deregulation of gene expression. Images PMID:2657403

  17. Antiproliferative and c-myc mRNA suppressive effect of tranilast on newborn human vascular smooth muscle cells in culture.

    PubMed Central

    Miyazawa, K.; Hamano, S.; Ujiie, A.

    1996-01-01

    1. Newborn human vascular smooth muscle cells (VSMCs) proliferated faster and were more sensitive to platelet-derived growth factor-BB (PDGF-BB) than those from adults. In this study, we investigated mechanism of the inhibitory effect of tranilast on PDGF-BB-induced proliferation of VSMCs from newborns. 2. Tranilast (30-300 microM) concentration-dependently inhibited the VSMC proliferation in randomly growing cultures stimulated with PDGF-BB. 3. Tranilast (30-300 microM) concentration-dependently inhibited the [3H]-thymidine incorporation into DNA in VSMCs that had been synchronized by 48 h serum depletion and then stimulated by addition of PDGF-BB. However, tranilast had little influence on unscheduled DNA synthesis in quiescent cells or on RNA and protein synthesis, unlike aphidicolin, actimomycin D, and cycloheximide. 4. In synchronized VSMC cultures, tranilast still inhibited the PDGF-BB-induced DNA synthesis even when added 18 h after stimulation of the quiescent cells. The mode of the antiproliferative action of tranilast was different from that of NiCl2, genistein, or staurosporin. In addition, flow cytometry of synchronized VSMCs treated with tranilast revealed a blockade of PDGF-inducible cell-cycle progression at the G1/S checkpoint. 5. Northern blotting showed that tranilast (30-300 microM) concentration-dependently suppressed constitutive c-myc mRNA expression even when added 18 h after PDGF-BB-stimulation of quiescent VSMCs. Tranilast still had an inhibitory effect on the induction of c-myc mRNA when de novo protein synthesis was inhibited by cycloheximide and did not shorten the degradation of c-myc mRNA at the post-transcriptional level, demonstrating that tranilast directly inhibited c-myc mRNA expression at the transcriptional level. 6. These results suggest that the inhibitory effect of tranilast on PDGF-BB-induced proliferation is due to S-phase blockade and may be, at least in part, involved in the direct suppression of c-myc gene expression

  18. C-Myc regulation by costimulatory signals modulates the generation of CD8+ memory T cells during viral infection.

    PubMed

    Haque, Mohammad; Song, Jianyong; Fino, Kristin; Wang, Youfei; Sandhu, Praneet; Song, Xinmeng; Norbury, Christopher; Ni, Bing; Fang, Deyu; Salek-Ardakani, Shahram; Song, Jianxun

    2016-01-01

    The signalling mechanisms of costimulation in the development of memory T cells remain to be clarified. Here, we show that the transcription factor c-Myc in CD8(+) T cells is controlled by costimulatory molecules, which modulates the development of memory CD8(+) T cells. C-Myc expression was dramatically reduced in Cd28(-/-) or Ox40(-/-) memory CD8(+) T cells, and c-Myc over-expression substantially reversed the defects in the development of T-cell memory following viral infection. C-Myc regulated the expression of survivin, an inhibitor of apoptosis, which promoted the generation of virus-specific memory CD8(+) T cells. Moreover, over-expression of survivin with bcl-xL, a downstream molecule of NF-κB and intracellular target of costimulation that controls survival, in Cd28(-/-) or Ox40(-/-) CD8(+) T cells, reversed the defects in the generation of memory T cells in response to viral infection. These results identify c-Myc as a key controller of memory CD8(+) T cells from costimulatory signals.

  19. C-Myc regulation by costimulatory signals modulates the generation of CD8+ memory T cells during viral infection.

    PubMed

    Haque, Mohammad; Song, Jianyong; Fino, Kristin; Wang, Youfei; Sandhu, Praneet; Song, Xinmeng; Norbury, Christopher; Ni, Bing; Fang, Deyu; Salek-Ardakani, Shahram; Song, Jianxun

    2016-01-01

    The signalling mechanisms of costimulation in the development of memory T cells remain to be clarified. Here, we show that the transcription factor c-Myc in CD8(+) T cells is controlled by costimulatory molecules, which modulates the development of memory CD8(+) T cells. C-Myc expression was dramatically reduced in Cd28(-/-) or Ox40(-/-) memory CD8(+) T cells, and c-Myc over-expression substantially reversed the defects in the development of T-cell memory following viral infection. C-Myc regulated the expression of survivin, an inhibitor of apoptosis, which promoted the generation of virus-specific memory CD8(+) T cells. Moreover, over-expression of survivin with bcl-xL, a downstream molecule of NF-κB and intracellular target of costimulation that controls survival, in Cd28(-/-) or Ox40(-/-) CD8(+) T cells, reversed the defects in the generation of memory T cells in response to viral infection. These results identify c-Myc as a key controller of memory CD8(+) T cells from costimulatory signals. PMID:26791245

  20. C-Myc regulation by costimulatory signals modulates the generation of CD8+ memory T cells during viral infection

    PubMed Central

    Haque, Mohammad; Song, Jianyong; Fino, Kristin; Wang, Youfei; Sandhu, Praneet; Song, Xinmeng; Norbury, Christopher; Ni, Bing; Fang, Deyu; Salek-Ardakani, Shahram; Song, Jianxun

    2016-01-01

    The signalling mechanisms of costimulation in the development of memory T cells remain to be clarified. Here, we show that the transcription factor c-Myc in CD8+ T cells is controlled by costimulatory molecules, which modulates the development of memory CD8+ T cells. C-Myc expression was dramatically reduced in Cd28−/− or Ox40−/− memory CD8+ T cells, and c-Myc over-expression substantially reversed the defects in the development of T-cell memory following viral infection. C-Myc regulated the expression of survivin, an inhibitor of apoptosis, which promoted the generation of virus-specific memory CD8+ T cells. Moreover, over-expression of survivin with bcl-xL, a downstream molecule of NF-κB and intracellular target of costimulation that controls survival, in Cd28−/− or Ox40−/− CD8+ T cells, reversed the defects in the generation of memory T cells in response to viral infection. These results identify c-Myc as a key controller of memory CD8+ T cells from costimulatory signals. PMID:26791245

  1. Cis activation of the c-myc gene in bovine papilloma virus type 1/human c-myc hybrid plasmids

    SciTech Connect

    Modjtahedi, N.; Feunteun, J.; Brison, O. )

    1988-01-01

    The c-myc gene amplification observed in human tumors is likely to represent an activation mechanism aiming at an increased transcription level. In order to evaluate the biological significance of this amplification in the malignant transformation the authors designed an experimental model that could possibly mimic this situation in vitro. They have constructed a series of plasmids which physically link the human c-myc gene to the bovine papilloma virus type 1 genome (BPV1) and therefore should be maintained as amplified episomes upon transformation of rodent cells. Anticipating that the high copy number will bring about the immortalizing capacity of the c-myc gene, the constructions were introduced into primary rat embryo cells. Immortal cell lines were established by transfection of the hybrid plasmids carrying either the complete BPV1 genome or the transforming region of the viral genome. The BPV1 DNA alone or the c-myc gene alone has no activity in this assay. The analysis of the established cell lines demonstrates that the transfected plasmids are present not as free copies as anticipated but rather integrated as tandem repeats. They present data which strongly suggest that the immortalization capacity of the hybrid plasmids reflects the activation of the c-myc gene by the transactivable BPV1 enhancer. Although both the BPV1 early genes and the c-myc gene are actively transcribed, most of the cell lines do not display a transformed phenotype.

  2. Specific regulation of mRNA cap methylation by the c-Myc and E2F1 transcription factors

    PubMed Central

    Cole, Michael D.; Cowling, Victoria H.

    2009-01-01

    Methylation of the mRNA 5′ guanosine cap is essential for efficient gene expression. The 5′methyl cap binds to eIF4E, which is the first step in the recruitment of mRNA to the 40S ribosomal subunit. To investigate whether mRNA cap methylation is regulated in a gene-specific manner, we established a method to detect the relative level of cap methylation on specific mRNAs. We found that two transcription factors, c-Myc and E2F1, induce cap methylation of their transcriptional target genes, and therefore, c-Myc and E2F1 upregulate gene expression by simultaneously inducing transcription and promoting translation. c-Myc-induced cap methylation is greater than transcriptional induction for the majority of its target genes, indicating that this is a major mechanism by which Myc regulates gene expression. PMID:19137018

  3. A reciprocal regulatory circuit between CD44 and FGFR2 via c-myc controls gastric cancer cell growth

    PubMed Central

    Kim, Ha-Jung; Kim, Kyoung-Mee; Choi, Eun Young; Kang, Myung-Soo

    2016-01-01

    Despite their suggested importance, the mechanistic roles of FGFR2 and gastric cancer stem cell (GCSC) marker CD44 remain unclear. We investigated cross talk between CD44 and FGFR2. FGFR2 and CD44 positively regulate each other's expression. While FGFR2 suppresses c-Myc transcription, CD44 activates it. c-Myc in turn augments FGFR2 transcription. CD44 knockdown (KD) depleted FGFR2 and other GCSC markers, decreased c-Myc and Sox2 expression, and suppressed tumor growth, whereas CD44 activation led to FGFR2 induction. FGFR2 KD decreased most GCSC marker expression, including CD44, but increased c-Myc and Sox2 expression and attenuated tumor growth. FGFR2 kinase inhibitor and FGFR2 neutralizing antibody decreased the CD44+/hi GCSC fraction. Conversely, FGFR2 overexpression increased CD44 and accelerated tumor growth in mice. FGFR2 was co-expressed and colocalized diffusively with CD44, EpCAM, and LGR5. In contrast, phospho-FGFR2 colocalized densely with CD44, forming an aggregated signaling complex that was prevented by FGFR2 inhibition. The c-Myc KD depleted FGFR2 but not CD44. Similarly to CD44+/hi phenotypes, sorted FGFR+/hi cells had larger volumes, formed more tumor spheres, grew faster in vivo with bigger tumor mass, and expressed more CD44, EpCAM, and HER2. These findings suggest that FGFR2+/hi cells have stemness properties. Moreover, in situ FGFR2 expression in patient-derived gastric cancer tissue correlated with tumorigenic potential in a xenograft model. In conclusion, CD44 and FGFR2 maintain stemness in gastric cancer by differentially regulating c-Myc transcription. PMID:27107424

  4. Structure and transforming function of transduced mutant alleles of the chicken c-myc gene.

    PubMed Central

    Patschinsky, T; Jansen, H W; Blöcker, H; Frank, R; Bister, K

    1986-01-01

    A small retroviral vector carrying an oncogenic myc allele was isolated as a spontaneous variant (MH2E21) of avian oncovirus MH2. The MH2E21 genome, measuring only 2.3 kilobases, can be replicated like larger retroviral genomes and hence contains all cis-acting sequence elements essential for encapsidation and reverse transcription of retroviral RNA or for integration and transcription of proviral DNA. The MH2E21 genome contains 5' and 3' noncoding retroviral vector elements and a coding region comprising the first six codons of the viral gag gene and 417 v-myc codons. The gag-myc junction corresponds precisely to the presumed splice junction on subgenomic MH2 v-myc mRNA, the possible origin of MH2E21. Among the v-myc codons, the first 5 are derived from the noncoding 5' terminus of the second c-myc exon, and 412 codons correspond to the c-myc coding region. The predicted sequence of the MH2E21 protein product differs from that of the chicken c-myc protein by 11 additional amino-terminal residues and by 25 amino acid substitutions and a deletion of 4 residues within the shared domains. To investigate the functional significance of these structural changes, the MH2E21 genome was modified in vitro. The gag translational initiation codon was inactivated by oligonucleotide-directed mutagenesis. Furthermore, all but two of the missense mutations were reverted, and the deleted sequences were restored by replacing most of the MH2E21 v-myc allele by the corresponding segment of the CMII v-myc allele which is isogenic to c-myc in that region. The remaining two mutations have not been found in the v-myc alleles of avian oncoviruses MC29, CMII, and OK10. Like MH2 and MH2E21, modified MH2E21 (MH2E21m1c1) transforms avian embryo cells. Like c-myc, it encodes a 416-amino-acid protein initiated at the myc translational initiation codon. We conclude that neither major structural changes, such as in-frame fusion with virion genes or internal deletions, nor specific, if any

  5. Stromal cell-mediated glycolytic switch in CLL cells involves Notch-c-Myc signaling.

    PubMed

    Jitschin, Regina; Braun, Martina; Qorraj, Mirjeta; Saul, Domenica; Le Blanc, Katarina; Zenz, Thorsten; Mougiakakos, Dimitrios

    2015-05-28

    It is well established that the stromal niche exerts a protective effect on chronic lymphocytic leukemia (CLL) cells, thereby also affecting their drug sensitivity. One hallmark of malignant cells is metabolic reprogramming, which is mostly represented by a glycolytic shift known as the Warburg effect. Because treatment resistance can be linked to metabolic alterations, we investigated whether bone marrow stromal cells impact the bioenergetics of primary CLL cells. In fact, stromal contact led to an increase of aerobic glycolysis and the cells' overall glycolytic capacity accompanied by an increased glucose uptake, expression of glucose transporter, and glycolytic enzymes. Activation of Notch signaling and of its direct transcriptional target c-Myc contributed to this metabolic switch. Based on these observations, CLL cells' acquired increased glucose dependency as well as Notch-c-Myc signaling could be therapeutically exploited in an effort to overcome stroma-mediated drug resistance.

  6. Haploinsufficiency of the c-myc transcriptional repressor FIR, as a dominant negative-alternative splicing model, promoted p53-dependent T-cell acute lymphoblastic leukemia progression by activating Notch1.

    PubMed

    Matsushita, Kazuyuki; Kitamura, Kouichi; Rahmutulla, Bahityar; Tanaka, Nobuko; Ishige, Takayuki; Satoh, Mamoru; Hoshino, Tyuji; Miyagi, Satoru; Mori, Takeshi; Itoga, Sakae; Shimada, Hideaki; Tomonaga, Takeshi; Kito, Minoru; Nakajima-Takagi, Yaeko; Kubo, Shuji; Nakaseko, Chiaki; Hatano, Masahiko; Miki, Takashi; Matsuo, Masafumi; Fukuyo, Masaki; Kaneda, Atsushi; Iwama, Atsushi; Nomura, Fumio

    2015-03-10

    FUSE-binding protein (FBP)-interacting repressor (FIR) is a c-myc transcriptional suppressor. A splice variant of FIR that lacks exon 2 in the transcriptional repressor domain (FIRΔexon2) upregulates c-myc transcription by inactivating wild-type FIR. The ratio of FIRΔexon2/FIR mRNA was increased in human colorectal cancer and hepatocellular carcinoma tissues. Because FIRΔexon2 is considered to be a dominant negative regulator of FIR, FIR heterozygous knockout (FIR⁺/⁻) C57BL6 mice were generated. FIR complete knockout (FIR⁻/⁻) was embryonic lethal before E9.5; therefore, it is essential for embryogenesis. This strongly suggests that insufficiency of FIR is crucial for carcinogenesis. FIR⁺/⁻ mice exhibited prominent c-myc mRNA upregulation, particularly in the peripheral blood (PB), without any significant pathogenic phenotype. Furthermore, elevated FIRΔexon2/FIR mRNA expression was detected in human leukemia samples and cell lines. Because the single knockout of TP53 generates thymic lymphoma, FIR⁺/⁻TP53⁻/⁻ generated T-cell type acute lymphocytic/lymphoblastic leukemia (T-ALL) with increased organ or bone marrow invasion with poor prognosis. RNA-sequencing analysis of sorted thymic lymphoma cells revealed that the Notch signaling pathway was activated significantly in FIR⁺/⁻TP53⁻/⁻ compared with that in FIR⁺/⁺TP53⁻/⁻ mice. Notch1 mRNA expression in sorted thymic lymphoma cells was confirmed using qRT-PCR. In addition, flow cytometry revealed that c-myc mRNA was negatively correlated with FIR but positively correlated with Notch1 in sorted T-ALL/thymic lymphoma cells. Moreover, the knockdown of TP53 or c-myc using siRNA decreased Notch1 expression in cancer cells. In addition, an adenovirus vector encoding FIRΔexon2 cDNA increased bleomycin-induced DNA damage. Taken together, these data suggest that the altered expression of FIRΔexon2 increased Notch1 at least partially by activating c-Myc via a TP53-independent pathway. In

  7. Haploinsufficiency of the c-myc transcriptional repressor FIR, as a dominant negative-alternative splicing model, promoted p53-dependent T-cell acute lymphoblastic leukemia progression by activating Notch1

    PubMed Central

    Rahmutulla, Bahityar; Tanaka, Nobuko; Ishige, Takayuki; Satoh, Mamoru; Hoshino, Tyuji; Miyagi, Satoru; Mori, Takeshi; Itoga, Sakae; Shimada, Hideaki; Tomonaga, Takeshi; Kito, Minoru; Nakajima-Takagi, Yaeko; Kubo, Shuji; Nakaseko, Chiaki; Hatano, Masahiko; Miki, Takashi; Matsuo, Masafumi; Fukuyo, Masaki; Kaneda, Atsushi; Iwama, Atsushi; Nomura, Fumio

    2015-01-01

    FUSE-binding protein (FBP)-interacting repressor (FIR) is a c-myc transcriptional suppressor. A splice variant of FIR that lacks exon 2 in the transcriptional repressor domain (FIRΔexon2) upregulates c-myc transcription by inactivating wild-type FIR. The ratio of FIRΔexon2/FIR mRNA was increased in human colorectal cancer and hepatocellular carcinoma tissues. Because FIRΔexon2 is considered to be a dominant negative regulator of FIR, FIR heterozygous knockout (FIR+/−) C57BL6 mice were generated. FIR complete knockout (FIR−/−) was embryonic lethal before E9.5; therefore, it is essential for embryogenesis. This strongly suggests that insufficiency of FIR is crucial for carcinogenesis. FIR+/− mice exhibited prominent c-myc mRNA upregulation, particularly in the peripheral blood (PB), without any significant pathogenic phenotype. Furthermore, elevated FIRΔexon2/FIR mRNA expression was detected in human leukemia samples and cell lines. Because the single knockout of TP53 generates thymic lymphoma, FIR+/−TP53−/− generated T-cell type acute lymphocytic/lymphoblastic leukemia (T-ALL) with increased organ or bone marrow invasion with poor prognosis. RNA-sequencing analysis of sorted thymic lymphoma cells revealed that the Notch signaling pathway was activated significantly in FIR+/−TP53−/− compared with that in FIR+/+TP53−/− mice. Notch1 mRNA expression in sorted thymic lymphoma cells was confirmed using qRT-PCR. In addition, flow cytometry revealed that c-myc mRNA was negatively correlated with FIR but positively correlated with Notch1 in sorted T-ALL/thymic lymphoma cells. Moreover, the knockdown of TP53 or c-myc using siRNA decreased Notch1 expression in cancer cells. In addition, an adenovirus vector encoding FIRΔexon2 cDNA increased bleomycin-induced DNA damage. Taken together, these data suggest that the altered expression of FIRΔexon2 increased Notch1 at least partially by activating c-Myc via a TP53-independent pathway. In conclusion

  8. Cilostazol reduces proliferation through c-Myc down-regulation in MDCK cells.

    PubMed

    Muñoz, Balam; Huerta, Miriam; López-Bayghen, Esther

    2009-08-15

    Cilostazol, a drug commonly used in the treatment of intermittent claudication is a selective phosphodiesterase III inhibitor. It affects cell proliferation, increases cAMP levels, activates the cyclic AMP-dependent protein kinase and inhibits E2F in vascular cells. Polycystic kidney disease, a common genetic disorder, is characterized by increased cell proliferation, basement membrane abnormalities and fluid secretion. An established in vitro model of this disease is the canine Madin-Darby cell line (MDCK). In this communication, we investigated the effects of cilostazol exposure in MDCK cells. A reduced cell proliferation rate with an arrest in the G1 phase of the cell cycle was detected. Accordingly, several transcription factors associated with cell cycle control were affected by cilostazol, particularly c-myc. c-Myc DNA binding as well as its transcriptional activity was severely impaired in cilostazol-treated cells. Pharmacological tools demonstrated that besides the involvement of the cyclic AMP-dependent protein kinase, the extracellular signal-regulated kinases I/II participate in the response. These results suggest that cilostazol inhibits cell proliferation through c-myc transcriptional control, also pave the way to our better understanding of molecular transactions triggered by this drug and strengthen its potential use in other malignancies.

  9. Quantitative characterization of the interactions among c-myc transcriptional regulators FUSE, FBP, and FIR.

    PubMed

    Hsiao, Hsin-Hao; Nath, Abhinav; Lin, Chi-Yen; Folta-Stogniew, Ewa J; Rhoades, Elizabeth; Braddock, Demetrios T

    2010-06-01

    Human c-myc is critical for cell homeostasis and growth but is a potent oncogenic factor if improperly regulated. The c-myc far-upstream element (FUSE) melts into single-stranded DNA upon active transcription, and the noncoding strand FUSE recruits an activator [the FUSE-binding protein (FBP)] and a repressor [the FBP-interacting repressor (FIR)] to fine-tune c-myc transcription in a real-time manner. Despite detailed biological experiments describing this unique mode of transcriptional regulation, quantitative measurements of the physical constants regulating the protein-DNA interactions remain lacking. Here, we first demonstrate that the two FUSE strands adopt different conformations upon melting, with the noncoding strand DNA in an extended, linear form. FBP binds to the linear noncoding FUSE with a dissociation constant in the nanomolar range. FIR binds to FUSE more weakly, having its modest dissociation constants in the low micromolar range. FIR is monomeric under near-physiological conditions but upon binding of FUSE dimerizes into a 2:1 FIR(2)-FUSE complex mediated by the RRMs. In the tripartite interaction, our analysis suggests a stepwise addition of FIR onto an activating FBP-FUSE complex to form a quaternary FIR(2)-FBP-FUSE inhibitory complex. Our quantitative characterization enhances understanding of DNA strand preference and the mechanism of the stepwise complex formation in the FUSE-FBP-FIR regulatory system.

  10. Design, synthesis and biological evaluation of 4-anilinoquinazoline derivatives as new c-myc G-quadruplex ligands.

    PubMed

    Jiang, Yin; Chen, Ai-Chun; Kuang, Guo-Tao; Wang, Shi-Ke; Ou, Tian-Miao; Tan, Jia-Heng; Li, Ding; Huang, Zhi-Shu

    2016-10-21

    A series of 4-anilinoquinazoline derivatives were designed and synthesized as novel c-myc promoter G-quadruplex binding ligands. Subsequent biophysical and biochemical evaluation demonstrated that the introduction of aniline group at 4-position of quinazoline ring and two side chains with terminal amino group improved their binding affinity and stabilizing ability to G-quadruplex DNA. RT-PCR assay and Western blot showed that compound 7a could down-regulate transcription and expression of c-myc gene in Hela cells, which was consistent with the behavior of an effective G-quadruplex ligand targeting c-myc oncogene. More importantly, RTCA and colony formation assays indicated that 7a obviously inhibited Hela cells proliferation, without influence on normal primary cultured mouse mesangial cells. Flow cytometric assays suggested that 7a induced Hela cells to arrest in G0/G1 phase both in a time-dependent and dose-dependent manner. PMID:27372288

  11. Determination of the dissociation constants for recombinant c-Myc, Max, and DNA complexes: The inhibitory effect of linoleic acid on the DNA-binding step

    SciTech Connect

    Jung, Kyung Chae; Rhee, Ho Sung; Park, Chi Hoon; Yang, Chul-Hak . E-mail: chulyang@plaza.snu.ac.kr

    2005-08-19

    c-Myc, the protein product of protooncogene c-myc, functions in cell proliferation, differentiation, and neoplastic disease. In this study, recombinant c-Myc and Max proteins, encompassing DNA binding (basic region) and dimerization (helix-loop-helix/leucine zipper) domain of human origin, were expressed in bacteria as Myc87 and Max85. Myc87 was purified under denatured conditions and was renatured again. The dissociation constant for the protein dimers and for dimer/DNA complexes were not detectable by isothermal titration calorimetry because of the low degree of solubility of Myc87 and Max85. Therefore, we set up equations which were used to determine the dissociation constants from the proportion of protein-DNA complexes. The dimer dissociation constants in TBS were 5.90({+-}0.54) x 10{sup -7} M for Max85/Max85 homodimer, 6.85({+-}0.25) x 10{sup -3} M for Myc87/Myc87 homodimer, and 2.55({+-}0.29) x 10{sup -8} M for Myc87/Max85 heterodimer, and the DNA-binding dissociation constants in TBS were 1.33({+-}0.21) x 10{sup -9} M for Max85/Max85/DNA, 2.27({+-}0.08) x 10{sup -12} M for Myc87/Myc87/DNA, and 4.43({+-}0.37) x 10{sup -10} M for Myc87/Max85/DNA. In addition, we revealed that linoleic acid which is known as an inhibitor for the formation of Max/Max/DNA complex reduced the affinity of Max homodimer for DNA. This result indicates that linoleic acid may bind to the DNA-binding region of Max homodimer.

  12. An improved method for the derivation of high quality iPSCs in the absence of c-Myc.

    PubMed

    Habib, Omer; Habib, Gizem; Choi, Hyun Woo; Hong, Ki-Sung; Do, Jeong Tae; Moon, Sung-Hwan; Chung, Hyung-Min

    2013-12-10

    Induced pluripotent stem cells (iPSCs) hold tremendous potential for the development of new regenerative medicine therapies and the study of molecular mechanisms of pluripotency and development. However, reactivation of c-Myc, which results in tumor formation in chimeric mice, is a major roadblock in the translation of iPSCs into therapies. Although ectopic expression of c-Myc is not absolutely required for somatic reprogramming, in the absence of c-Myc, the overall efficiency of reprogramming is drastically reduced and the reprogramming time is increased. Subtle, abnormal epigenetic modifications in iPSCs derived in the absence of c-Myc have also been documented. Therefore, we developed a reprogramming method without c-Myc to generate high-quality iPSCs, a prerequisite to harnessing the full potential of iPSCs. In this study, we determined that serum replacement (SR)-based culture conditions dramatically increased the transcription factor-mediated reprogramming of mouse embryonic fibroblast cells (MEFs). The process was shortened to approximately 8 days when Oct4/Sox2/Klf4 (3F)-transduced MEFs were first cultured for 3 days under low serum conditions (LS protocol). The 3F-derived iPSCs that were generated by this method resembled mouse ES cells (mESCs) in morphology, gene expression, and in vitro differentiation. Finally, we observed that 3F-derived iPSC colonies were able to reach definite pluripotency in terms of molecular signatures when the catalytic function of c-Myc was tolerated. The 3F induction of pluripotency described here should facilitate the use of iPSCs and may also facilitate the mechanistic dissection of somatic reprogramming. PMID:24095950

  13. Nuclear colocalization of cellular and viral myc proteins with HSP70 in myc-overexpressing cells.

    PubMed Central

    Koskinen, P J; Sistonen, L; Evan, G; Morimoto, R; Alitalo, K

    1991-01-01

    The c-myc oncogene and its viral counterpart v-myc encode phosphoproteins which have been located within cell nuclei, excluding nucleoli. We have expressed the c-myc gene under the simian virus 40 early promoter and studied the distribution of its protein product in transient expression assays in COS, HeLa, and 293 cells. We found three distinct patterns of c-myc immunofluorescence in the transfected cells: one-third of the c-myc-positive cells displayed a diffuse nuclear distribution, and in two-thirds of the cells the c-myc fluorescence was accumulated either in small amorphous or in large multilobed phase-dense nuclear structures. Unexpectedly, these structures also stained for the HSP70 heat shock protein in both heat-shocked and untreated cells. Our results indicate that both transient and stable overexpression of either the c-myc or v-myc protein induces translocation of the endogenous HSP70 protein from the cytoplasm to the nucleus, where it becomes sequestered in structures containing the myc protein. Interestingly, the closely related N-myc protein does not stimulate substantial nuclear expression of the HSP70 protein. Studies with chimeric myc proteins revealed that polypeptide sequences encoded by the second exon of c-myc are involved in colocalization with HSP70. Images PMID:1846202

  14. CUDR promotes liver cancer stem cell growth through upregulating TERT and C-Myc

    PubMed Central

    Pu, Hu; Zheng, Qidi; Li, Haiyan; Wu, Mengying; An, Jiahui; Gui, Xin; Li, Tianming; Lu, Dongdong

    2015-01-01

    Cancer up-regulated drug resistant (CUDR) is a novel non-coding RNA gene. Herein, we demonstrate excessive CUDR cooperates with excessive CyclinD1 or PTEN depletion to accelerate liver cancer stem cells growth and liver stem cell malignant transformation in vitro and in vivo. Mechanistically, we reveal the decrease of PTEN in cells may lead to increase binding capacity of CUDR to CyclinD1. Therefore, CUDR-CyclinD1 complex loads onto the long noncoding RNA H19 promoter region that may lead to reduce the DNA methylation on H19 promoter region and then to enhance the H19 expression. Strikingly, the overexpression of H19 increases the binding of TERT to TERC and reduces the interplay between TERT with TERRA, thus enhancing the cell telomerase activity and extending the telomere length. On the other hand, insulator CTCF recruits the CUDR-CyclinD1 complx to form the composite CUDR-CyclinD1-insulator CTCF complex which occupancied on the C-myc gene promoter region, increasing the outcome of oncogene C-myc. Ultimately, excessive TERT and C-myc lead to liver cancer stem cell and hepatocyte-like stem cell malignant proliferation. To understand the novel functions of long noncoding RNA CUDR will help in the development of new liver cancer therapeutic and diagnostic approaches. PMID:26513297

  15. 8q24 (C-MYC) — EDRN Public Portal

    Cancer.gov

    Chromosome region 8q24 contains the gene for MYC, also known as C-MYC. MYC is a multifunctional, nuclear phosphoprotein that plays a role in cell cycle progression, apoptosis and cellular transformation. The 8q24 region may contain a locus that influences general cancer susceptibility.

  16. c-myc regulation during retinoic acid-induced differentiation of F9 cells is posttranscriptional and associated with growth arrest.

    PubMed Central

    Dean, M; Levine, R A; Campisi, J

    1986-01-01

    We have shown that c-myc mRNA levels decrease more than 20-fold when F9 teratocarcinoma stem cells are induced to arrest growth and terminally differentiate to parietal endoderm after exposure to retinoic acid and cyclic AMP (Campisi et al., Cell 36:241-247, 1984). Here, we demonstrate that although growth arrest and full expression of the differentiated phenotype required about 3 days, c-myc mRNA declined abruptly between 8 and 16 h after the addition of retinoic acid and cyclic AMP. The decline was independent of cyclic AMP. We found little or no change in the level of c-myc transcription during differentiation, although two other genes showed marked transcriptional regulation. Thus, decreased c-myc mRNA is a consequence of very early posttranscriptional regulation directed by retinoic acid. Differentiation was not fundamental to this regulation. We have shown that sodium butyrate blocks expression of the differentiated phenotype if added within 8 h of retinoic acid and cyclic AMP (Levine et al., Dev. Biol. 105:443-450, 1984). However, butyrate did not inhibit the decrease in c-myc mRNA. Furthermore, F9 cells partially arrested growth without differentiating when grown in isoleucine-deficient medium. Under these conditions, c-myc mRNA levels also declined. Our results suggest that induction of differentiation-specific genes may be under retinoic acid-mediated control dissimilar from that responsible for the decay of c-myc mRNA. In addition, they raise the possibility that growth arrest may be initiated by reduced c-myc expression. Images PMID:3785153

  17. c-Myc Transforms Human Mammary Epithelial Cells through Repression of the Wnt Inhibitors DKK1 and SFRP1▿ †

    PubMed Central

    Cowling, Victoria H.; D'Cruz, Celina M.; Chodosh, Lewis A.; Cole, Michael D.

    2007-01-01

    c-myc is frequently amplified in breast cancer; however, the mechanism of myc-induced mammary epithelial cell transformation has not been defined. We show that c-Myc induces a profound morphological transformation in human mammary epithelial cells and anchorage-independent growth. c-Myc suppresses the Wnt inhibitors DKK1 and SFRP1, and derepression of DKK1 or SFRP1 reduces Myc-dependent transforming activity. Myc-dependent repression of DKK1 and SFRP1 is accompanied by Wnt target gene activation and endogenous T-cell factor activity. Myc-induced mouse mammary tumors have repressed SFRP1 and increased expression of Wnt target genes. DKK1 and SFRP1 inhibit the transformed phenotype of breast cancer cell lines, and DKK1 inhibits tumor formation. We propose a positive feedback loop for activation of the c-myc and Wnt pathways in breast cancer. PMID:17485441

  18. Insights into the mechanism of heterodimerization from the 1H-NMR solution structure of the c-Myc-Max heterodimeric leucine zipper.

    PubMed

    Lavigne, P; Crump, M P; Gagné, S M; Hodges, R S; Kay, C M; Sykes, B D

    1998-08-01

    The oncoprotein c-Myc (a member of the helix-loop-helix-leucine zipper (b-HLH-LZ) family of transcription factors) must heterodimerize with the b-HLH-LZ Max protein to bind DNA and activate transcription. It has been shown that the LZ domains of the c-Myc and Max proteins specifically form a heterodimeric LZ at 20 degreesC and neutral pH. This suggests that the LZ domains of the c-Myc and Max proteins are playing an important role in the heterodimerization of the corresponding gene products in vivo. Initially, to gain an insight into the energetics of heterodimerization, we studied the stability of N-terminal disulfide-linked versions of the c-Myc and Max homodimeric LZs and c-Myc-Max heterodimeric LZ by fitting the temperature-induced denaturation curves monitored by circular dichroism spectroscopy. The c-Myc LZ does not homodimerize (as previously reported) and the c-Myc-Max heterodimeric LZ is more stable than the Max homodimeric LZ at 20 degreesC and pH 7.0. In order to determine the critical interhelical interactions responsible for the molecular recognition between the c-Myc and Max LZs, the solution structure of the disulfide-linked c-Myc-Max heterodimeric LZ was solved by two-dimensional 1H-NMR techniques at 25 degreesC and pH 4.7. Both LZs are alpha-helical and the tertiary structure depicts the typical left-handed super-helical twist of a two-stranded parallel alpha-helical coiled-coil. A buried salt bridge involving a histidine on the Max LZ and two glutamate residues on the c-Myc LZ is observed at the interface of the heterodimeric LZ. A buried H-bond between an asparagine side-chain and a backbone carbonyl is also observed. Moreover, evidence for e-g interhelical salt bridges is reported. These specific interactions give insights into the preferential heterodimerization process of the two LZs. The low stabilities of the Max homodimeric LZ and the c-Myc-Max heterodimeric LZ as well as the specific interactions observed are discussed with regard to

  19. Ergosterol peroxide activates Foxo3-mediated cell death signaling by inhibiting AKT and c-Myc in human hepatocellular carcinoma cells.

    PubMed

    Li, Xiangmin; Wu, Qingping; Bu, Ming; Hu, Liming; Du, William W; Jiao, Chunwei; Pan, Honghui; Sdiri, Mouna; Wu, Nan; Xie, Yizhen; Yang, Burton B

    2016-06-01

    Sterols are the important active ingredients of fungal secondary metabolites to induce death of tumor cells. In our previous study, we found that ergosterol peroxide (5α, 8α-epidioxiergosta-6, 22-dien-3β-ol), purified from Ganoderma lucidum, induced human cancer cell death. Since the amount of purified ergosterol peroxide is not sufficient to perform in vivo experiments or apply clinically, we developed an approach to synthesize ergosterol peroxide chemically. After confirming the production of ergosterol peroxide, we examined the biological functions of the synthetic ergosterol peroxide. The results showed that ergosterol peroxide induced cell death and inhibited cell migration, cell cycle progression, and colony growth of human hepatocellular carcinoma cells. We further examined the mechanism associated with this effect and found that treatment with ergosterol peroxide increased the expression of Foxo3 mRNA and protein in HepG2 cells. The upstream signal proteins pAKT and c-Myc, which can inhibit Foxo3 functions, were clearly decreased in HepG2 cells treated with ergosterol peroxide. The levels of Puma and Bax, pro-apoptotic proteins, were effectively enhanced. Our results suggest that ergosterol peroxide stimulated Foxo3 activity by inhibiting pAKT and c-Myc and activating pro-apoptotic protein Puma and Bax to induce cancer cell death. PMID:27058618

  20. Ergosterol peroxide activates Foxo3-mediated cell death signaling by inhibiting AKT and c-Myc in human hepatocellular carcinoma cells

    PubMed Central

    Hu, Liming; Du, William W.; Jiao, Chunwei; Pan, Honghui; Sdiri, Mouna; Wu, Nan; Xie, Yizhen; Yang, Burton B.

    2016-01-01

    Sterols are the important active ingredients of fungal secondary metabolites to induce death of tumor cells. In our previous study, we found that ergosterol peroxide (5α, 8α-epidioxiergosta-6, 22-dien-3β-ol), purified from Ganoderma lucidum, induced human cancer cell death. Since the amount of purified ergosterol peroxide is not sufficient to perform in vivo experiments or apply clinically, we developed an approach to synthesize ergosterol peroxide chemically. After confirming the production of ergosterol peroxide, we examined the biological functions of the synthetic ergosterol peroxide. The results showed that ergosterol peroxide induced cell death and inhibited cell migration, cell cycle progression, and colony growth of human hepatocellular carcinoma cells. We further examined the mechanism associated with this effect and found that treatment with ergosterol peroxide increased the expression of Foxo3 mRNA and protein in HepG2 cells. The upstream signal proteins pAKT and c-Myc, which can inhibit Foxo3 functions, were clearly decreased in HepG2 cells treated with ergosterol peroxide. The levels of Puma and Bax, pro-apoptotic proteins, were effectively enhanced. Our results suggest that ergosterol peroxide stimulated Foxo3 activity by inhibiting pAKT and c-Myc and activating pro-apoptotic protein Puma and Bax to induce cancer cell death. PMID:27058618

  1. Long-range oncogenic activation of Igh-c-myc translocations by the Igh 3' regulatory region.

    PubMed

    Gostissa, Monica; Yan, Catherine T; Bianco, Julia M; Cogné, Michel; Pinaud, Eric; Alt, Frederick W

    2009-12-10

    B-cell malignancies, such as human Burkitt's lymphoma, often contain translocations that link c-myc or other proto-oncogenes to the immunoglobulin heavy chain locus (IgH, encoded by Igh). The nature of elements that activate oncogenes within such translocations has been a long-standing question. Translocations within Igh involve DNA double-strand breaks initiated either by the RAG1/2 endonuclease during variable, diversity and joining gene segment (V(D)J) recombination, or by activation-induced cytidine deaminase (AID, also known as AICDA) during class switch recombination (CSR). V(D)J recombination in progenitor B (pro-B) cells assembles Igh variable region exons upstream of mu constant region (Cmu) exons, which are the first of several sets of C(H) exons ('C(H) genes') within a C(H) locus that span several hundred kilobases (kb). In mature B cells, CSR deletes Cmu and replaces it with a downstream C(H) gene. An intronic enhancer (iEmu) between the variable region exons and Cmu promotes V(D)J recombination in developing B cells. Furthermore, the Igh 3' regulatory region (Igh3'RR) lies downstream of the C(H) locus and modulates CSR by long-range transcriptional enhancement of C(H) genes. Transgenic mice bearing iEmu or Igh3'RR sequences fused to c-myc are predisposed to B lymphomas, demonstrating that such elements can confer oncogenic c-myc expression. However, in many B-cell lymphomas, Igh-c-myc translocations delete iEmu and place c-myc up to 200 kb upstream of the Igh3'RR. Here we address the oncogenic role of the Igh3'RR by inactivating it in two distinct mouse models for B-cell lymphoma with Igh-c-myc translocations. We show that the Igh3'RR is dispensable for pro-B-cell lymphomas with V(D)J recombination-initiated translocations, but is required for peripheral B-cell lymphomas with CSR-associated translocations. As the Igh3'RR is not required for CSR-associated Igh breaks or Igh-c-myc translocations in peripheral B-cell lymphoma progenitors, we conclude that

  2. Direct inhibition of c-Myc-Max heterodimers by celastrol and celastrol-inspired triterpenoids.

    PubMed

    Wang, Huabo; Teriete, Peter; Hu, Angela; Raveendra-Panickar, Dhanya; Pendelton, Kelsey; Lazo, John S; Eiseman, Julie; Holien, Toril; Misund, Kristine; Oliynyk, Ganna; Arsenian-Henriksson, Marie; Cosford, Nicholas D P; Sundan, Anders; Prochownik, Edward V

    2015-10-20

    Many oncogenic signals originate from abnormal protein-protein interactions that are potential targets for small molecule inhibitors. However, the therapeutic disruption of these interactions has proved elusive. We report here that the naturally-occurring triterpenoid celastrol is an inhibitor of the c-Myc (Myc) oncoprotein, which is over-expressed in many human cancers. Most Myc inhibitors prevent the association between Myc and its obligate heterodimerization partner Max via their respective bHLH-ZIP domains. In contrast, we show that celastrol binds to and alters the quaternary structure of the pre-formed dimer and abrogates its DNA binding. Celastrol contains a reactive quinone methide group that promiscuously forms Michael adducts with numerous target proteins and other free sulfhydryl-containing molecules. Interestingly, triterpenoid derivatives lacking the quinone methide showed enhanced specificity and potency against Myc. As with other Myc inhibitors, these analogs rapidly reduced the abundance of Myc protein and provoked a global energy crisis marked by ATP depletion, neutral lipid accumulation, AMP-activated protein kinase activation, cell cycle arrest and apoptosis. They also inhibited the proliferation of numerous established human cancer cell lines as well as primary myeloma explants that were otherwise resistant to JQ1, a potent indirect Myc inhibitor. N-Myc amplified neuroblastoma cells showed similar responses and, in additional, underwent neuronal differentiation. These studies indicate that certain pharmacologically undesirable properties of celastrol such as Michael adduct formation can be eliminated while increasing selectivity and potency toward Myc and N-Myc. This, together with their low in vivo toxicity, provides a strong rationale for pursuing the development of additional Myc-specific triterpenoid derivatives.

  3. Direct inhibition of c-Myc-Max heterodimers by celastrol and celastrol-inspired triterpenoids.

    PubMed

    Wang, Huabo; Teriete, Peter; Hu, Angela; Raveendra-Panickar, Dhanya; Pendelton, Kelsey; Lazo, John S; Eiseman, Julie; Holien, Toril; Misund, Kristine; Oliynyk, Ganna; Arsenian-Henriksson, Marie; Cosford, Nicholas D P; Sundan, Anders; Prochownik, Edward V

    2015-10-20

    Many oncogenic signals originate from abnormal protein-protein interactions that are potential targets for small molecule inhibitors. However, the therapeutic disruption of these interactions has proved elusive. We report here that the naturally-occurring triterpenoid celastrol is an inhibitor of the c-Myc (Myc) oncoprotein, which is over-expressed in many human cancers. Most Myc inhibitors prevent the association between Myc and its obligate heterodimerization partner Max via their respective bHLH-ZIP domains. In contrast, we show that celastrol binds to and alters the quaternary structure of the pre-formed dimer and abrogates its DNA binding. Celastrol contains a reactive quinone methide group that promiscuously forms Michael adducts with numerous target proteins and other free sulfhydryl-containing molecules. Interestingly, triterpenoid derivatives lacking the quinone methide showed enhanced specificity and potency against Myc. As with other Myc inhibitors, these analogs rapidly reduced the abundance of Myc protein and provoked a global energy crisis marked by ATP depletion, neutral lipid accumulation, AMP-activated protein kinase activation, cell cycle arrest and apoptosis. They also inhibited the proliferation of numerous established human cancer cell lines as well as primary myeloma explants that were otherwise resistant to JQ1, a potent indirect Myc inhibitor. N-Myc amplified neuroblastoma cells showed similar responses and, in additional, underwent neuronal differentiation. These studies indicate that certain pharmacologically undesirable properties of celastrol such as Michael adduct formation can be eliminated while increasing selectivity and potency toward Myc and N-Myc. This, together with their low in vivo toxicity, provides a strong rationale for pursuing the development of additional Myc-specific triterpenoid derivatives. PMID:26474287

  4. Direct inhibition of c-Myc-Max heterodimers by celastrol and celastrol-inspired triterpenoids

    PubMed Central

    Wang, Huabo; Teriete, Peter; Hu, Angela; Raveendra-Panickar, Dhanya; Pendelton, Kelsey; Lazo, John S.; Eiseman, Julie; Holien, Toril; Misund, Kristine; Oliynyk, Ganna; Arsenian-Henriksson, Marie; Cosford, Nicholas D. P; Sundan, Anders; Prochownik, Edward V.

    2015-01-01

    Many oncogenic signals originate from abnormal protein-protein interactions that are potential targets for small molecule inhibitors. However, the therapeutic disruption of these interactions has proved elusive. We report here that the naturally-occurring triterpenoid celastrol is an inhibitor of the c-Myc (Myc) oncoprotein, which is over-expressed in many human cancers. Most Myc inhibitors prevent the association between Myc and its obligate heterodimerization partner Max via their respective bHLH-ZIP domains. In contrast, we show that celastrol binds to and alters the quaternary structure of the pre-formed dimer and abrogates its DNA binding. Celastrol contains a reactive quinone methide group that promiscuously forms Michael adducts with numerous target proteins and other free sulfhydryl-containing molecules. Interestingly, triterpenoid derivatives lacking the quinone methide showed enhanced specificity and potency against Myc. As with other Myc inhibitors, these analogs rapidly reduced the abundance of Myc protein and provoked a global energy crisis marked by ATP depletion, neutral lipid accumulation, AMP-activated protein kinase activation, cell cycle arrest and apoptosis. They also inhibited the proliferation of numerous established human cancer cell lines as well as primary myeloma explants that were otherwise resistant to JQ1, a potent indirect Myc inhibitor. N-Myc amplified neuroblastoma cells showed similar responses and, in additional, underwent neuronal differentiation. These studies indicate that certain pharmacologically undesirable properties of celastrol such as Michael adduct formation can be eliminated while increasing selectivity and potency toward Myc and N-Myc. This, together with their low in vivo toxicity, provides a strong rationale for pursuing the development of additional Myc-specific triterpenoid derivatives. PMID:26474287

  5. In vitro cytotoxicity and in vivo efficacy, pharmacokinetics, and metabolism of 10074-G5, a novel small-molecule inhibitor of c-Myc/Max dimerization.

    PubMed

    Clausen, Dana M; Guo, Jianxia; Parise, Robert A; Beumer, Jan H; Egorin, Merrill J; Lazo, John S; Prochownik, Edward V; Eiseman, Julie L

    2010-12-01

    The c-Myc oncoprotein is overexpressed in many tumors and is essential for maintaining the proliferation of transformed cells. To function as a transcription factor, c-Myc must dimerize with Max via the basic helix-loop-helix leucine zipper protein (bHLH-ZIP) domains in each protein. The small molecule 7-nitro-N-(2-phenylphenyl)-2,1,3-benzoxadiazol-4-amine (10074-G5) binds to and distorts the bHLH-ZIP domain of c-Myc, thereby inhibiting c-Myc/Max heterodimer formation and inhibiting its transcriptional activity. We report in vitro cytotoxicity and in vivo efficacy, pharmacodynamics, pharmacokinetics, and metabolism of 10074-G5 in human xenograft-bearing mice. In vitro, 10074-G5 inhibited the growth of Daudi Burkitt's lymphoma cells and disrupted c-Myc/Max dimerization. 10074-G5 had no effect on the growth of Daudi xenografts in C.B-17 SCID mice that were treated with 20 mg/kg 10074-G5 intravenously for 5 consecutive days. Inhibition of c-Myc/Max dimerization in Daudi xenografts was not seen 2 or 24 h after treatment. Concentrations of 10074-G5 in various matrices were determined by high-performance liquid chromatography-UV, and metabolites of 10074-G5 were identified by liquid chromatography/tandem mass spectrometry. The plasma half-life of 10074-G5 in mice treated with 20 mg/kg i.v. was 37 min, and peak plasma concentration was 58 μM, which was 10-fold higher than peak tumor concentration. The lack of antitumor activity probably was caused by the rapid metabolism of 10074-G5 to inactive metabolites, resulting in tumor concentrations of 10074-G5 insufficient to inhibit c-Myc/Max dimerization. Our identification of 10074-G5 metabolites in mice will help design new, more metabolically stable small-molecule inhibitors of c-Myc.

  6. Pre-clinical analysis of changes in intra-cellular biochemistry of glioblastoma multiforme (GBM) cells due to c-Myc silencing.

    PubMed

    Rajagopalan, Vishal; Vaidyanathan, Muthukumar; Janardhanam, Vanisree Arambakkam; Bradner, James E

    2014-10-01

    Glioblastoma Multiforme (GBM) is an aggressive form of brain Tumor that has few cures. In this study, we analyze the anti-proliferative effects of a new molecule JQ1 against GBMs induced in Wistar Rats. JQ1 is essentially a Myc inhibitor. c-Myc is also known for altering the biochemistry of a tumor cell. Therefore, the study is intended to analyze certain other oncogenes associated with c-Myc and also the change in cellular biochemistry upon c-Myc inhibition. The quantitative analysis of gene expression gave a co-expressive pattern for all the three genes involved namely; c-Myc, Bcl-2, and Akt. The cellular biochemistry analysis by transmission electron microscopy revealed high glycogen and lipid aggregation in Myc inhibited cells and excessive autophagy. The study demonstrates the role of c-Myc as a central metabolic regulator and Bcl-2 and Akt assisting in extending c-Myc half-life as well as in regulation of autophagy, so as to regulate cell survival on the whole. The study also demonstrates that transient treatment by JQ1 leads to aggressive development of tumor and therefore, accelerating death, emphasizing the importance of dosage fixation, and duration for clinical use in future.

  7. PKM2 promotes glucose metabolism and cell growth in gliomas through a mechanism involving a let-7a/c-Myc/hnRNPA1 feedback loop

    PubMed Central

    Wang, Jiajia; Zhang, Junxia; Qian, Jin; Li, Ri; Tao, Tao; Wei, Wenjin; Hu, Qi; Liu, Ning; You, Yongping

    2015-01-01

    Tumor cells metabolize more glucose to lactate in aerobic or hypoxic conditions than non-tumor cells. Pyruvate kinase isoenzyme type M2 (PKM2) is crucial for tumor cell aerobic glycolysis. We established a role for let-7a/c-Myc/hnRNPA1/PKM2 signaling in glioma cell glucose metabolism. PKM2 depletion via siRNA inhibits cell proliferation and aerobic glycolysis in glioma cells. C-Myc promotes up-regulation of hnRNPA1 expression, hnRNPA1 binding to PKM pre-mRNA, and the subsequent formation of PKM2. This pathway is downregulated by the microRNA let-7a, which functionally targets c-Myc, whereas hnRNPA1 blocks the biogenesis of let-7a to counteract its ability to downregulate the c-Myc/hnRNPA1/PKM2 signaling pathway. The down-regulation of c-Myc/hnRNPA1/PKM2 by let-7a is verified using a glioma xenograft model. These results suggest that let-7a, c-Myc and hnRNPA1 from a feedback loop, thereby regulating PKM2 expression to modulate glucose metabolism of glioma cells. These findings elucidate a new pathway mediating aerobic glycolysis in gliomas and provide an attractive potential target for therapeutic intervention. PMID:25948776

  8. miR-451 suppresses bladder cancer cell migration and invasion via directly targeting c-Myc.

    PubMed

    Wang, Jun; Zhao, Xiaomei; Shi, Jianhua; Pan, Yiwei; Chen, Qinghai; Leng, Pengfei; Wang, Yan

    2016-10-01

    MicroRNA (miRNA) expression is shown dysregulated in tumors. It has been reported that miR-451 alters gene expression and regulates tumorigenesis in various cancer tissues. However, its underlying biological significance in bladder cancer remains to be clarified. In the present study, we investigated the function and molecular mechanism of miR-451 involved in bladder cancer cell migration and invasion. Our results showed that miR-451 was downregulated in clinical bladder carcinoma tissues compared with adjacent bladder tissues. Overexpression of miR-451 significantly retarded the proliferation, migration and invasion of bladder cancer T24 and 5637 cells in vitro. Moreover, the attenuated cell migration and invasion by miR-451 was correlated with increased apoptosis. However, our dual-luciferase reporter assay validated that c-Myc, an oncogene in many tumors, was a direct target gene of miR-451 in bladder cancer. The expression of c-Myc was repressed by miR-451 in bladder cancer cells, and knockdown of c-Myc mimicked the effects of miR-451 overexpression. This discovery suggested that miR-451 is a tumor suppressor modulating bladder cancer cell migration and invasion by directly targeting c-Myc. In addition, apoptosis promoted by miR-451 may participates in this biological behavior. Therefore, target miR-451 may be a novel therapeutic intervention for bladder cancer. PMID:27571748

  9. Induction of endogenous telomerase (hTERT) by c-Myc in WI-38 fibroblasts transformed with specific genetic elements.

    PubMed

    Casillas, Mark A; Brotherton, Scott L; Andrews, Lucy G; Ruppert, J Michael; Tollefsbol, Trygve O

    2003-10-16

    Elucidation of the mechanisms governing expression of the human telomerase reverse transcriptase (hTERT) is important for understanding cancer pathogenesis. Approximately 90% of tumors express hTERT, the major catalytic component of telomerase. Activation of telomerase is an early event, and high levels of this activity correlate with poor prognosis. Recent studies have shown that the transcription factors c-Myc and Mad1 activate and repress hTERT, respectively. It is not clear how these transcription factors compete for the same recognition sequence in the hTERT core promoter region. Studies have shown that the combined expression of SV40 large T antigen (T-Ag), hTERT, and H-Ras is able to transform human cells. In this study, we used a distinct human cell type, WI-38 fetal lung fibroblasts used extensively for senescence studies. We transduced cells with amphotropic retroviral constructs containing SV40 T antigen, hTERT, and activated H-ras. Transduced cells exhibited anchorage independence in soft agar and expressed increased levels of c-Myc and endogenous hTERT. These effects were observed by 25 population doublings (PDs) following the establishment of the neoplastic cell line. During the process of transformation, we observed a switch from Mad1/Max to c-Myc/Max binding to oligonucleotide sequences containing the hTERT promoter distal and proximal E-boxes. c-Myc can bind specifically to the hTERT promoter in vitro, indicating that c-Myc expression in tumors may account for the increased expression of hTERT observed in vivo. These findings indicate that the widely used model system of WI-38 fibroblasts can be employed for transformation studies using defined genetic elements and that the endogenous hTERT and c-Myc are induced in these cells during early tumorigenesis. Such studies should have important implications in the mechanisms of hTERT and c-Myc induction in the beginning stages of tumorigenesis and facilitate extension of these studies to novel models of

  10. Structure and expression of canary myc family genes.

    PubMed Central

    Collum, R G; Clayton, D F; Alt, F W

    1991-01-01

    We found that the canary N-myc gene is highly related to mammalian N-myc genes in both the protein-coding region and the long 3' untranslated region. Examined coding regions of the canary c-myc gene were also highly related to their mammalian counterparts, but in contrast to N-myc, the canary and mammalian c-myc genes were quite divergent in their 3' untranslated regions. We readily detected N-myc and c-myc expression in the adult canary brain and found N-myc expression both at sites of proliferating neuronal precursors and in mature neurons. Images PMID:1996121

  11. c-Myc and AMPK Control Cellular Energy Levels by Cooperatively Regulating Mitochondrial Structure and Function

    PubMed Central

    Edmunds, Lia R.; Sharma, Lokendra; Wang, Huabo; Kang, Audry; d’Souza, Sonia; Lu, Jie; McLaughlin, Michael; Dolezal, James M.; Gao, Xiaoli; Weintraub, Susan T.; Ding, Ying; Zeng, Xuemei; Yates, Nathan; Prochownik, Edward V.

    2015-01-01

    The c-Myc (Myc) oncoprotein and AMP-activated protein kinase (AMPK) regulate glycolysis and oxidative phosphorylation (Oxphos) although often for different purposes. Because Myc over-expression depletes ATP with the resultant activation of AMPK, we explored the potential co-dependency of and cross-talk between these proteins by comparing the consequences of acute Myc induction in ampk+/+ (WT) and ampk-/- (KO) murine embryo fibroblasts (MEFs). KO MEFs showed a higher basal rate of glycolysis than WT MEFs and an appropriate increase in response to activation of a Myc-estrogen receptor (MycER) fusion protein. However, KO MEFs had a diminished ability to increase Oxphos, mitochondrial mass and reactive oxygen species in response to MycER activation. Other differences between WT and KO MEFs, either in the basal state or following MycER induction, included abnormalities in electron transport chain function, levels of TCA cycle-related oxidoreductases and cytoplasmic and mitochondrial redox states. Transcriptional profiling of pathways pertinent to glycolysis, Oxphos and mitochondrial structure and function also uncovered significant differences between WT and KO MEFs and their response to MycER activation. Finally, an unbiased mass-spectrometry (MS)-based survey capable of quantifying ~40% of all mitochondrial proteins, showed about 15% of them to be AMPK- and/or Myc-dependent in their steady state. Significant differences in the activities of the rate-limiting enzymes pyruvate kinase and pyruvate dehydrogenase, which dictate pyruvate and acetyl coenzyme A abundance, were also differentially responsive to Myc and AMPK and could account for some of the differences in basal metabolite levels that were also detected by MS. Thus, Myc and AMPK are highly co-dependent and appear to engage in significant cross-talk across numerous pathways which support metabolic and ATP-generating functions. PMID:26230505

  12. Recombination between two integrated proviruses, one of which was inserted near c-myc in a retrovirus-induced rat thymoma: implications for tumor progression.

    PubMed Central

    Lazo, P A; Tsichlis, P N

    1988-01-01

    Of 17 Moloney murine leukemia virus (MoMuLV)-induced rat thymomas, 2 contained rearrangements in c-myc. In one of these tumors the observed rearrangement was not due to the insertion of an intact MoMuLV provirus. The rearranged c-myc DNA fragment from this thymoma was cloned and examined by restriction endonuclease mapping, hybridization to MoMuLV proviral DNA probes, and DNA sequence analysis. These analyses revealed that the c-myc rearrangement in this tumor was due to the presence of a partially duplicated MoMuLV long terminal repeat (LTR) 5' to c-myc exon 1. The orientation of this LTR structure was opposite to the transcriptional orientation of c-myc. The sequences at the 3' flanking side of the LTR structure were derived from a cellular DNA region which maps to the same chromosome as c-myc (chromosome 7), although to a site distant from this proto-oncogene. These findings present evidence for a homologous recombination event occurring between sequences of two proviruses integrated on the same chromosome, one of which was inserted near the c-myc proto-oncogene. The recombination product contains three copies of the MoMuLV LTR 72-base-pair direct repeat and is associated with a high level of c-myc expression. The reciprocal product of this recombination was not detected. We propose that recombination between homologous sequences may play a significant role in the generation of chromosomal rearrangements and therefore in tumor induction and progression. Images PMID:3276924

  13. Self-assembly of c-myc DNA promoted by a single enantiomer ruthenium complex as a potential nuclear targeting gene carrier

    PubMed Central

    Wu, Qiong; Mei, Wenjie; Zheng, Kangdi; Ding, Yang

    2016-01-01

    Gene therapy has long been limited in the clinic, due in part to the lack of safety and efficacy of the gene carrier. Herein, a single enantiomer ruthenium(II) complex, Λ-[Ru(bpy)2(p-BEPIP)](ClO4)2 (Λ-RM0627, bpy = 4,4′-bipyridine, p-BEPIP = 2-(4-phenylacetylenephenyl)imidazole [4,5f][1, 10] phenanthroline), has been synthesized and investigated as a potential gene carrier that targets the nucleus. In this report, it is shown that Λ-RM0627 promotes self-assembly of c-myc DNA to form a nanowire structure. Further studies showed that the nano-assembly of c-myc DNA that induced Λ-RM0627 could be efficiently taken up and enriched in the nuclei of HepG2 cells. After treatment of the nano-assembly of c-myc DNA with Λ-RM0627, over-expression of c-myc in HepG2 cells was observed. In summary, Λ-RM0627 played a key role in the transfer and release of c-myc into cells, which strongly indicates Λ-RM0627 as a potent carrier of c-myc DNA that targets the nucleus of tumor cells. PMID:27381008

  14. Deubiquitinating c-Myc: USP36 steps up in the nucleolus.

    PubMed

    Sun, Xiao-Xin; Sears, Rosalie C; Dai, Mu-Shui

    2015-01-01

    Ubiquitination plays a key and complex role in the regulation of c-Myc stability, transactivation, and oncogenic activity. c-Myc is ubiquitinated by a number of ubiquitin ligases (E3s), such as SCF(Fbw7) and SCF(Skp2). Depending on the E3s, ubiquitination can either positively or negatively regulate c-Myc levels and activity. Meanwhile, c-Myc ubiquitination can be reversed by deubiquitination. An early study showed that USP28 deubiquitinates c-Myc via interacting with Fbw7α whereas a recent study reveals that USP37 deubiquitinates c-Myc independently of Fbw7 and c-Myc phosphorylation. Consequently, both USP28 and USP37 stabilize c-Myc and enhance its activity. We recently found the nucleolar USP36 as a novel c-Myc deubiquitinase that controls the end-point of c-Myc degradation pathway in the nucleolus. Here we briefly review the current understanding of ubiquitination and deubiquitination regulation of c-Myc and further discuss the USP36-c-Myc regulatory pathway.

  15. Long Non-coding RNA HOTAIR Expression in Diffuse Large B-Cell Lymphoma: In Relation to Polycomb Repressive Complex Pathway Proteins and H3K27 Trimethylation

    PubMed Central

    Oh, Eun Ji; Kim, Soo Hee; Yang, Woo Ick; Ko, Young Hyeh; Yoon, Sun Och

    2016-01-01

    Background A long non-coding RNA hox transcript antisense intergenic RNA (HOTAIR) is involved in epigenetic regulation through chromatin remodeling by recruiting polycomb repressive complex 2 (PRC2) proteins (EZH2, SUZ12, and EED) that induce histone H3 trimethylation at lysine 27 (H3K27me3). Deregulation of c-MYC and interaction between c-MYC and EZH2 are well known in lymphomagenesis; however, little is known about the expression status of HOTAIR in diffuse large B-cell lymphomas (DLBCLs). Methods The expression status of PRC2 (EZH2, SUZ12, and EED), H3K27me3, c-MYC, and BCL2 was analyzed using immunohistochemistry (n = 231), and HOTAIR was investigated by a quantification real-time polymerase chain reaction method (n = 164) in DLBCLs. Results The present study confirmed the positive correlation among PRC2 proteins, H3K27me3, and c-MYC in DLBCLs. Expression level of HOTAIR was also positively correlated to EZH2 (p < .05, respectively). Between c-MYC and HOTAIR, and between c- MYC/BCL2 co-expression and HOTAIR, however, negative correlation was observed in DLBCLs (p < .05, respectively). High level of H3K27me3 was determined as an independent prognostic marker in poor overall survival (hazard ratio, 2.0; p = .023) of DLBCL patients. High expression of HOTAIR, however, was associated with favorable overall survival (p = .004) in the univariate analysis, but the impact was not significant in the multivariate analysis. The favorable outcome of DLBCL with HOTAIR high expression levels may be related to the negative correlation with c- MYC expression or c-MYC/BCL2 co-expression. Conclusions HOTAIR expression could be one of possible mechanisms for inducing H3K27me3 via EZH2-related PRC2 activation, and induced H3K27me3 may be strongly related to aggressive DLBCLs which show poor patient outcome. PMID:27550047

  16. C-Myc regulates substrate oxidation patterns during early pressure-overload hypertrophy

    SciTech Connect

    Ledee, Dolena R.; Smith, Lincoln; Kajimoto, Masaki; Bruce, Margaret; Isern, Nancy G.; Xu, Chun; Portman, Michael A.; Olson, Aaron

    2013-11-26

    Pressure overload cardiac hypertrophy alters substrate metabolism. Prior work showed that myocardial inactivation of c-Myc (Myc) attenuated hypertrophy and decreased expression of glycolytic genes after aortic constriction. Accordingly, we hypothesize that Myc regulates substrate preferences for the citric acid cycle during pressure overload hypertrophy from transverse aortic constriction (TAC) and that these metabolic changes impact cardiac function and growth. To test this hypothesis, we subjected FVB mice with cardiac specific, inducible Myc inactivation (MycKO-TAC) and non-transgenic littermates (Cont-TAC) to transverse aortic constriction (n=7/group). A separate group underwent sham surgery (Sham, n=5). After two weeks, function was measured in isolated working hearts along with substrate fractional contributions to the citric acid cycle by using perfusate with 13C labeled mixed fatty acids, lactate, ketones and unlabeled glucose and insulin. Western blots were used to evaluate metabolic enzymes. Cardiac function was similar between groups after TAC although +dP/dT and -dP/dT trended towards improvement in MycKO-TAC versus Cont-TAC. Compared to Sham, Cont-TAC had increased free fatty acid fractional contribution with a concurrent decrease in unlabeled (presumably glucose) contribution. Myc inactivation (MycKO-TAC) inhibited these metabolic changes. Hypertrophy in general increased protein levels of PKM2; however this change was not linked to Myc status. Protein post-translation modification by O-GlcNAc was significantly greater in Cont-TAC versus both Sham and MycKO-TAC. In conclusion, Myc regulates substrate utilization during early pressure overload hypertrophy. Our results show that the metabolic switch during hypertrophy is not necessary to maintain cardiac function, but it may be important mechanism to promote cardiomyocyte growth. Myc also regulates protein O-GlcNAcylation during hypertrophy.

  17. c-Myc sensitization to oxygen deprivation-induced cell death is dependent on Bax/Bak, but is independent of p53 and hypoxia-inducible factor-1.

    PubMed

    Brunelle, Joslyn K; Santore, Matthew T; Budinger, G R Scott; Tang, Yueming; Barrett, Terrence A; Zong, Wei-Xing; Kandel, Eugene; Keith, Brian; Simon, M Celeste; Thompson, Craig B; Hay, Nissim; Chandel, Navdeep S

    2004-02-01

    Deregulated expression of c-Myc can sensitize cells to a variety of death stimuli, including loss of growth factors and oxygen. In this study, we examined whether rodent fibroblasts that conditionally express c-Myc undergo a similar mechanism of cell death in response to serum or oxygen deprivation. Our results demonstrate that murine embryonic fibroblasts from bax-/-bak-/- mice that conditionally express c-Myc did not die in response to either oxygen or serum deprivation. Fibroblasts from p53-/- mice that conditionally express c-Myc died in response to oxygen (but not serum) deprivation. The inability of p53 to regulate oxygen deprivation-induced cell death was due to the lack of induction of p53 target genes Puma, Noxa, and Pten. In contrast, serum deprivation transcriptionally induced Puma and Pten in cells that conditionally express c-Myc. The failure of p53 to regulate oxygen deprivation-induced cell death led us to hypothesize whether hypoxia-inducible factor (HIF) might be a critical regulator of cell death during oxygen deprivation. Fibroblasts from HIF-1beta-/- cells that conditionally express c-Myc were not able to transcriptionally activate HIF during oxygen deprivation. These cells died in response to oxygen deprivation. Thus, oxygen deprivation-induced cell death in fibroblasts with deregulated expression of c-Myc is independent of p53 or HIF-1 status, but is dependent on the Bcl-2 family member Bax or Bak to initiate mitochondrial dependent cell death.

  18. Rate of CRL4CRBN substrate Ikaros and Aiolos degradation underlies differential activity of lenalidomide and pomalidomide in multiple myeloma cells by regulation of c-Myc and IRF4

    PubMed Central

    Bjorklund, C C; Lu, L; Kang, J; Hagner, P R; Havens, C G; Amatangelo, M; Wang, M; Ren, Y; Couto, S; Breider, M; Ning, Y; Gandhi, A K; Daniel, T O; Chopra, R; Klippel, A; Thakurta, A G

    2015-01-01

    Recent discoveries suggest that the critical events leading to the anti-proliferative activity of the IMiD immunomodulatory agents lenalidomide and pomalidomide in multiple myeloma (MM) cells are initiated by Cereblon-dependent ubiquitination and proteasomal degradation of substrate proteins Ikaros (IKZF1) and Aiolos (IKZF3). By performing kinetic analyses, we found that the downregulation or proteasomal degradation of Ikaros and Aiolos led to specific and sequential downregulation of c-Myc followed by IRF4 and subsequent growth inhibition and apoptosis. Notably, to ensure growth inhibition and cell death, sustained downregulation of Ikaros and Aiolos, c-Myc or IRF4 expression was required. In addition, we found that the half-maximal rate, rather than the final extent of Ikaros and Aiolos degradation, correlated to the relative efficacy of growth inhibition by lenalidomide or pomalidomide. Finally, we observed that all four transcription factors were elevated in primary MM samples compared with normal plasma cells. Taken together, our results suggest a functional link between Ikaros and Aiolos, and the pathological dysregulation of c-Myc and IRF4, and provide a new mechanistic understanding of the relative efficacy of lenalidomide and pomalidomide based on the kinetics of substrate degradation and downregulation of their downstream targets. PMID:26430725

  19. Discovery of methyl 4'-methyl-5-(7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)-[1,1'-biphenyl]-3-carboxylate, an improved small-molecule inhibitor of c-Myc-max dimerization.

    PubMed

    Chauhan, Jay; Wang, Huabo; Yap, Jeremy L; Sabato, Philip E; Hu, Angela; Prochownik, Edward V; Fletcher, Steven

    2014-10-01

    c-Myc is a basic helix-loop-helix-leucine zipper (bHLH-ZIP) transcription factor that is responsible for the transcription of a wide range of target genes involved in many cancer-related cellular processes. Over-expression of c-Myc has been observed in, and directly contributes to, a variety of human cancers including those of the hematopoietic system, lung, prostate and colon. To become transcriptionally active, c-Myc must first dimerize with Myc-associated factor X (Max) via its own bHLH-ZIP domain. A proven strategy towards the inhibition of c-Myc oncogenic activity is to interfere with the structural integrity of the c-Myc-Max heterodimer. The small molecule 10074-G5 is an inhibitor of c-Myc-Max dimerization (IC50 =146 μM) that operates by binding and stabilizing c-Myc in its monomeric form. We have identified a congener of 10074-G5, termed 3jc48-3 (methyl 4'-methyl-5-(7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)-[1,1'-biphenyl]-3-carboxylate), that is about five times as potent (IC50 =34 μM) at inhibiting c-Myc-Max dimerization as the parent compound. 3jc48-3 exhibited an approximate twofold selectivity for c-Myc-Max heterodimers over Max-Max homodimers, suggesting that its mode of action is through binding c-Myc. 3jc48-3 inhibited the proliferation of c-Myc-over-expressing HL60 and Daudi cells with single-digit micromolar IC50 values by causing growth arrest at the G0 /G1 phase. Co-immunoprecipitation studies indicated that 3jc48-3 inhibits c-Myc-Max dimerization in cells, which was further substantiated by the specific silencing of a c-Myc-driven luciferase reporter gene. Finally, 3jc48-3's intracellular half-life was >17 h. Collectively, these data demonstrate 3jc48-3 to be one of the most potent, cellularly active and stable c-Myc inhibitors reported to date.

  20. Modulation of p53 and c-myc in DMBA-induced mammary tumors by oral glutamine.

    PubMed

    Todorova, Valentina K; Kaufmann, Yihong; Luo, Shaoke; Klimberg, V Suzanne

    2006-01-01

    Previous studies established that oral glutamine (GLN) reduced tumor development in implantable and 7,12-dimethylbenz(a)anthracene (DMBA)-induced breast cancer models. This finding was associated with a decrease in tumor glutathione (GSH) levels, while maintaining normal gut, blood, and breast GSH. Alterations in GSH levels contribute to the control of apoptotic and cell cycle-regulating signaling. The aim of this study was to examine the role of dietary GLN on activation of p53 and c-myc, which play critical roles in cancer development and sensitivity to radiation and chemotherapy. Mammary gland carcinomas were induced in rats by DMBA. The rats were gavaged daily with GLN or water (controls), starting 1 wk prior DMBA-application and throughout the duration of the experiment (11 wk after DMBA). Tumor DNA was examined for mutations in p53 exons 5 and 6. Protein and mRNA levels of p53, p21(WAF1/CIP1), PTEN, IGF-IR, mdm2, and c-myc in tumors of GLN-supplemented rats were compared with those of the control rats (received water). The sequencing of p53 showed that it was wild type. Increased phosphorylation of p53, as well as higher mRNA and protein levels of p21(WAF1/CIP1), PTEN, and mdm2, and lower levels of IGF-IR were detected in tumors of GLN-supplemented rats vs. controls. Both phosphorylated c-myc and c-myc mRNA levels were reduced by GLN. The up-regulation of tumor p53 signaling and down-regulation of c-myc, in addition to previously established inhibition of Akt signaling in DMBA-breast cancer model, suggest that dietary GLN could be a useful approach for increasing the effectiveness of cancer treatment.

  1. Constitutive gray hair in mice induced by melanocyte-specific deletion of c-Myc.

    PubMed

    Pshenichnaya, Irina; Schouwey, Karine; Armaro, Marzia; Larue, Lionel; Knoepfler, Paul S; Eisenman, Robert N; Trumpp, Andreas; Delmas, Véronique; Beermann, Friedrich

    2012-05-01

    c-Myc is involved in the control of diverse cellular processes and implicated in the maintenance of different tissues including the neural crest. Here, we report that c-Myc is particularly important for pigment cell development and homeostasis. Targeting c-Myc specifically in the melanocyte lineage using the floxed allele of c-Myc and Tyr::Cre transgenic mice results in a congenital gray hair phenotype. The gray coat color is associated with a reduced number of functional melanocytes in the hair bulb and melanocyte stem cells in the hair bulge. Importantly, the gray phenotype does not progress with time, suggesting that maintenance of the melanocyte through the hair cycle does not involve c-Myc function. In embryos, at E13.5, c-Myc-deficient melanocyte precursors are affected in proliferation in concordance with a reduction in numbers, showing that c-Myc is required for the proper melanocyte development. Interestingly, melanocytes from c-Myc-deficient mice display elevated levels of the c-Myc paralog N-Myc. Double deletion of c-Myc and N-Myc results in nearly complete loss of the residual pigmentation, indicating that N-Myc is capable of compensating for c-Myc loss of function in melanocytes.

  2. Lack of Cyclin-Dependent Kinase 4 Inhibits c-myc Tumorigenic Activities in Epithelial Tissues

    PubMed Central

    Miliani de Marval, Paula L.; Macias, Everardo; Rounbehler, Robert; Sicinski, Piotr; Kiyokawa, Hiroaki; Johnson, David G.; Conti, Claudio J.; Rodriguez-Puebla, Marcelo L.

    2004-01-01

    The proto-oncogene c-myc encodes a transcription factor that is implicated in the regulation of cellular proliferation, differentiation, and apoptosis and that has also been found to be deregulated in several forms of human and experimental tumors. We have shown that forced expression of c-myc in epithelial tissues of transgenic mice (K5-Myc) resulted in keratinocyte hyperproliferation and the development of spontaneous tumors in the skin and oral cavity. Although a number of genes involved in cancer development are regulated by c-myc, the actual mechanisms leading to Myc-induced neoplasia are not known. Among the genes regulated by Myc is the cyclin-dependent kinase 4 (CDK4) gene. Interestingly, previous studies from our laboratory showed that the overexpression of CDK4 led to keratinocyte hyperproliferation, although no spontaneous tumor development was observed. Thus, we tested the hypothesis that CDK4 may be one of the critical downstream genes involved in Myc carcinogenesis. Our results showed that CDK4 inhibition in K5-Myc transgenic mice resulted in the complete inhibition of tumor development, suggesting that CDK4 is a critical mediator of tumor formation induced by deregulated Myc. Furthermore, a lack of CDK4 expression resulted in marked decreases in epidermal thickness and keratinocyte proliferation compared to the results obtained for K5-Myc littermates. Biochemical analysis of the K5-Myc epidermis showed that CDK4 mediates the proliferative activities of Myc by sequestering p21Cip1 and p27Kip1 and thereby indirectly activating CDK2 kinase activity. These results show that CDK4 mediates the proliferative and oncogenic activities of Myc in vivo through a mechanism that involves the sequestration of specific CDK inhibitors. PMID:15314163

  3. Modification of the Tumor Microenvironment in KRAS or c-MYC-Induced Ovarian Cancer-Associated Peritonitis

    PubMed Central

    Kawana, Kei; Adachi, Katsuyuki; Kawata, Akira; Ogishima, Juri; Nakamura, Hiroe; Fujimoto, Asaha; Sato, Masakazu; Inoue, Tomoko; Nishida, Haruka; Furuya, Hitomi; Tomio, Kensuke; Arimoto, Takahide; Koga, Kaori; Wada-Hiraike, Osamu; Oda, Katsutoshi; Nagamatsu, Takeshi; Kiyono, Tohru; Osuga, Yutaka; Fujii, Tomoyuki

    2016-01-01

    The most common properties of oncogenes are cell proliferation and the prevention of apoptosis in malignant cells, which, as a consequence, induce tumor formation and dissemination. However, the effects of oncogenes on the tumor microenvironment (TME) have not yet been examined in detail. The accumulation of ascites accompanied by chronic inflammation and elevated concentrations of VEGF is a hallmark of the progression of ovarian cancer. We herein demonstrated the mechanisms by which oncogenes contribute to modulating the ovarian cancer microenvironment. c-MYC and KRAS were transduced into the mouse ovarian cancer cell line ID8. ID8, ID8-c-MYC, or ID8-KRAS cells were then injected into the peritoneal cavities of C57/BL6 mice and the production of ascites was assessed. ID8-c-MYC and ID8-KRAS both markedly accelerated ovarian cancer progression in vivo, whereas no significant differences were observed in proliferative activity in vitro. ID8-KRAS in particular induced the production of ascites, which accumulated between approximately two to three weeks after the injection, more rapidly than ID8 and ID8-c-MYC (between nine and ten weeks and between six and seven weeks, respectively). VEGF concentrations in ascites significantly increased in c-MYC-induced ovarian cancer, whereas the concentrations of inflammatory cytokines in ascites were significantly high in KRAS-induced ovarian cancer and were accompanied by an increased number of neutrophils in ascites. A cytokine array revealed that KRAS markedly induced the expression of granulocyte macrophage colony-stimulating factor (GM-CSF) in ID8 cells. These results suggest that oncogenes promote cancer progression by modulating the TME in favor of cancer progression. PMID:27483433

  4. Modification of the Tumor Microenvironment in KRAS or c-MYC-Induced Ovarian Cancer-Associated Peritonitis.

    PubMed

    Yoshida, Mitsuyo; Taguchi, Ayumi; Kawana, Kei; Adachi, Katsuyuki; Kawata, Akira; Ogishima, Juri; Nakamura, Hiroe; Fujimoto, Asaha; Sato, Masakazu; Inoue, Tomoko; Nishida, Haruka; Furuya, Hitomi; Tomio, Kensuke; Arimoto, Takahide; Koga, Kaori; Wada-Hiraike, Osamu; Oda, Katsutoshi; Nagamatsu, Takeshi; Kiyono, Tohru; Osuga, Yutaka; Fujii, Tomoyuki

    2016-01-01

    The most common properties of oncogenes are cell proliferation and the prevention of apoptosis in malignant cells, which, as a consequence, induce tumor formation and dissemination. However, the effects of oncogenes on the tumor microenvironment (TME) have not yet been examined in detail. The accumulation of ascites accompanied by chronic inflammation and elevated concentrations of VEGF is a hallmark of the progression of ovarian cancer. We herein demonstrated the mechanisms by which oncogenes contribute to modulating the ovarian cancer microenvironment. c-MYC and KRAS were transduced into the mouse ovarian cancer cell line ID8. ID8, ID8-c-MYC, or ID8-KRAS cells were then injected into the peritoneal cavities of C57/BL6 mice and the production of ascites was assessed. ID8-c-MYC and ID8-KRAS both markedly accelerated ovarian cancer progression in vivo, whereas no significant differences were observed in proliferative activity in vitro. ID8-KRAS in particular induced the production of ascites, which accumulated between approximately two to three weeks after the injection, more rapidly than ID8 and ID8-c-MYC (between nine and ten weeks and between six and seven weeks, respectively). VEGF concentrations in ascites significantly increased in c-MYC-induced ovarian cancer, whereas the concentrations of inflammatory cytokines in ascites were significantly high in KRAS-induced ovarian cancer and were accompanied by an increased number of neutrophils in ascites. A cytokine array revealed that KRAS markedly induced the expression of granulocyte macrophage colony-stimulating factor (GM-CSF) in ID8 cells. These results suggest that oncogenes promote cancer progression by modulating the TME in favor of cancer progression.

  5. Critical Role of c-Myc in Acute Myeloid Leukemia Involving Direct Regulation of miR-26a and Histone Methyltransferase EZH2.

    PubMed

    Salvatori, Beatrice; Iosue, Ilaria; Djodji Damas, Nkerorema; Mangiavacchi, Arianna; Chiaretti, Sabina; Messina, Monica; Padula, Fabrizio; Guarini, Anna; Bozzoni, Irene; Fazi, Francesco; Fatica, Alessandro

    2011-05-01

    Increased expression or aberrant activation of c-Myc plays an important role in leukemogenesis. Here, we show that in acute myeloid leukemia (AML), c-Myc directly controls the expression of EZH2, a component of the Polycomb repressive complex 2, and miR-26a. miR-26a is downregulated in primary blasts from AML patients and, during myeloid differentiation of AML cells, is induced together with a decrease in c-Myc and Ezh2 levels. Previously, EZH2 was shown to be regulated by miR-26a at the translational levels in lymphomas. However, we demonstrate that in AML, the variation of EZH2 mainly depends on c-Myc transcriptional control. We also show that enforced expression of miR-26a in AML cells is able to inhibit cell cycle progression by downregulating cyclin E2 expression. In addition, increased levels of miR-26a potentiate the antiproliferative effects of 1,25-dihydroxyvitamin D(3) (VitD) and stimulate myeloid differentiation. Our results identify new molecular targets of c-Myc in AML and highlight miR-26a attractiveness as a therapeutic target in leukemia.

  6. Prolactin prevents hepatocellular carcinoma by restricting innate immune activation of c-Myc in mice.

    PubMed

    Hartwell, Hadley J; Petrosky, Keiko Y; Fox, James G; Horseman, Nelson D; Rogers, Arlin B

    2014-08-01

    Women are more resistant to hepatocellular carcinoma (HCC) than men despite equal exposure to major risk factors, such as hepatitis B or C virus infection. Female resistance is hormone-dependent, as evidenced by the sharp increase in HCC incidence in postmenopausal women who do not take hormone replacement therapy. In rodent models sex-dimorphic HCC phenotypes are pituitary-dependent, suggesting that sex hormones act via the gonadal-hypophyseal axis. We found that the estrogen-responsive pituitary hormone prolactin (PRL), signaling through hepatocyte-predominant short-form prolactin receptors (PRLR-S), constrained TNF receptor-associated factor (TRAF)-dependent innate immune responses invoked by IL-1β, TNF-α, and LPS/Toll-like receptor 4 (TLR4), but not TRIF-dependent poly(I:C)/TLR3. PRL ubiquitinated and accelerated poststimulatory decay of a "trafasome" comprised of IRAK1, TRAF6, and MAP3K proteins, abrogating downstream activation of c-Myc-interacting pathways, including PI3K/AKT, mTORC1, p38 MAPK, and NF-κB. Consistent with this finding, we documented exaggerated male liver responses to immune stimuli in mice and humans. Tumor promotion through, but regulation above, the level of c-Myc was demonstrated by sex-independent HCC eruption in Alb-Myc transgenic mice. PRL deficiency accelerated liver carcinogenesis in Prl(-/-) mice of both sexes. Conversely, pharmacologic PRL mobilization using the dopamine D2 receptor antagonist domperidone prevented HCC in tumor-prone C3H/HeN males. Viewed together, our results demonstrate that PRL constrains tumor-promoting liver inflammation by inhibiting MAP3K-dependent activation of c-Myc at the level of the trafasome. PRL-targeted therapy may hold promise for reducing the burden of liver cancer in high-risk men and women.

  7. Dimerization of FIR Upon FUSE DNA Binding Suggests Mechanism of c-myc Inhibition

    SciTech Connect

    Crichlow,G.; Zhou, H.; Hsiao, H.; Frederick, K.; Debrosse, M.; Yang, Y.; Folta-Stogniew, E.; Chung, H.; Fan, C.; et al

    2008-01-01

    c-myc is essential for cell homeostasis and growth but lethal if improperly regulated. Transcription of this oncogene is governed by the counterbalancing forces of two proteins on TFIIH--the FUSE binding protein (FBP) and the FBP-interacting repressor (FIR). FBP and FIR recognize single-stranded DNA upstream of the P1 promoter, known as FUSE, and influence transcription by oppositely regulating TFIIH at the promoter site. Size exclusion chromatography coupled with light scattering reveals that an FIR dimer binds one molecule of single-stranded DNA. The crystal structure confirms that FIR binds FUSE as a dimer, and only the N-terminal RRM domain participates in nucleic acid recognition. Site-directed mutations of conserved residues in the first RRM domain reduce FIR's affinity for FUSE, while analogous mutations in the second RRM domain either destabilize the protein or have no effect on DNA binding. Oppositely oriented DNA on parallel binding sites of the FIR dimer results in spooling of a single strand of bound DNA, and suggests a mechanism for c-myc transcriptional control.

  8. Upregulation of c-MYC in cis through a Large Chromatin Loop Linked to a Cancer Risk-Associated Single-Nucleotide Polymorphism in Colorectal Cancer Cells▿

    PubMed Central

    Wright, Jason B.; Brown, Seth J.; Cole, Michael D.

    2010-01-01

    Genome-wide association studies have mapped many single-nucleotide polymorphisms (SNPs) that are linked to cancer risk, but the mechanism by which most SNPs promote cancer remains undefined. The rs6983267 SNP at 8q24 has been associated with many cancers, yet the SNP falls 335 kb from the nearest gene, c-MYC. We show that the beta-catenin-TCF4 transcription factor complex binds preferentially to the cancer risk-associated rs6983267(G) allele in colon cancer cells. We also show that the rs6983267 SNP has enhancer-related histone marks and can form a 335-kb chromatin loop to interact with the c-MYC promoter. Finally, we show that the SNP has no effect on the efficiency of chromatin looping to the c-MYC promoter but that the cancer risk-associated SNP enhances the expression of the linked c-MYC allele. Thus, cancer risk is a direct consequence of elevated c-MYC expression from increased distal enhancer activity and not from reorganization/creation of the large chromatin loop. The findings of these studies support a mechanism for intergenic SNPs that can promote cancer through the regulation of distal genes by utilizing preexisting large chromatin loops. PMID:20065031

  9. Tumor suppressor DYRK1A effects on proliferation and chemoresistance of AML cells by downregulating c-Myc.

    PubMed

    Liu, Qiang; Liu, Na; Zang, Shaolei; Liu, Heng; Wang, Pin; Ji, Chunyan; Sun, Xiulian

    2014-01-01

    Acute myeloid leukemia (AML), caused by abnormal proliferation and accumulation of hematopoietic progenitor cells, is one of the most common malignancies in adults. We reported here DYRK1A expression level was reduced in the bone marrow of adult AML patients, comparing to normal controls. Overexpression of DYRK1A inhibited the proliferation of AML cell lines by increasing the proportion of cells undergoing G0/G1 phase. We reasoned that the proliferative inhibition was due to downregulation of c-Myc by DYRK1A, through mediating its degradation. Moreover, overexpression of c-Myc markedly reversed AML cell growth inhibition induced by DYRK1A. DYRK1A also had significantly lower expression in relapsed/refractory AML patients, comparing to newly-diagnosed AML patients, which indicated the role of DYRK1A in chemoresistance of AML. Our study provided functional evidences for DYRK1A as a potential tumor suppressor in AML. PMID:24901999

  10. c-Myc quadruplex-forming sequence Pu-27 induces extensive damage in both telomeric and nontelomeric regions of DNA.

    PubMed

    Islam, Md Ashraful; Thomas, Shelia D; Murty, Vundavalli V; Sedoris, Kara J; Miller, Donald M

    2014-03-21

    Quadruplex-forming DNA sequences are present throughout the eukaryotic genome, including in telomeric DNA. We have shown that the c-Myc promoter quadruplex-forming sequence Pu-27 selectively kills transformed cells (Sedoris, K. C., Thomas, S. D., Clarkson, C. R., Muench, D., Islam, A., Singh, R., and Miller, D. M. (2012) Genomic c-Myc quadruplex DNA selectively kills leukemia. Mol. Cancer Ther. 11, 66-76). In this study, we show that Pu-27 induces profound DNA damage, resulting in striking chromosomal abnormalities in the form of chromatid or chromosomal breaks, radial formation, and telomeric DNA loss, which induces γ-H2AX in U937 cells. Pu-27 down-regulates telomeric shelterin proteins, DNA damage response mediators (RAD17 and RAD50), double-stranded break repair molecule 53BP1, G2 checkpoint regulators (CHK1 and CHK2), and anti-apoptosis gene survivin. Interestingly, there are no changes of DNA repair molecules H2AX, BRCA1, and the telomere maintenance gene, hTERT. ΔB-U937, where U937 cells stably transfected with deleted basic domain of TRF2 is partially sensitive to Pu-27 but exhibits no changes in expression of shelterin proteins. However, there is an up-regulation of CHK1, CHK2, H2AX, BRCA1, and survivin. Telomere dysfunction-induced foci assay revealed co-association of TRF1with γ-H2AX in ATM deficient cells, which are differentially sensitive to Pu-27 than ATM proficient cells. Alt (alternating lengthening of telomere) cells are relatively resistant to Pu-27, but there are no significant changes of telomerase activity in both Alt and non-Alt cells. Lastly, we show that this Pu-27-mediated sensitivity is p53-independent. The data therefore support two conclusions. First, Pu-27 induces DNA damage within both telomeric and nontelomeric regions of the genome. Second, Pu-27-mediated telomeric damage is due, at least in part, to compromise of the telomeric shelterin protein complex.

  11. Co-overexpression of bcl-2 and c-myc in uterine cervix carcinomas and premalignant lesions.

    PubMed

    Protrka, Z; Arsenijevic, S; Dimitrijevic, A; Mitrovic, S; Stankovic, V; Milosavljevic, M; Kastratovic, T; Djuric, J

    2011-01-01

    To establish the role of co-overexpression of bcl-2 and c-myc protooncogenes in uterine cervix carcinogenesis, we examined 138 tissue samples of low grade cervical squamous intraepithelial lesions (SIL), high grade SIL, portio vaginalis uteri (PVU) carcinoma in situ and PVU carcinoma invasive, stage IA-IIA (study group) and 36 samples without SIL or malignancy (control group). The expression of bcl-2 and c-myc was detected immunohistochemically using a monoclonal antibody. Fisher’s exact test (P<0.05) was used to assess statistical significance. Overexpression of bcl-2 was found to increase in direct relation to the grade of the cervical lesions. High sensitivity was of great diagnostic significance for the detection of these types of changes in the uterine cervix. On the basis of high predictive values it can be said that in patients with bcl-2 overexpression there is a great possibility that they have premalignant or malignant changes in the uterine cervix. Co-overexpression of bcl-2 and c-myc oncogenes was found only in patients with PVU invasive carcinoma (6/26-23.0%). Statistically significant difference was not found in the frequency of co-overexpression in patients with PVU invasive carcinoma in relation to the control group (Fisher’s test; P=0.064). The method's sensitivity of determining these oncogenes with the aim of detecting PVU invasive carcinoma was 23%, while specificity was 72.2%. On the basis of high predictive values (100%), speaking in statistical terms, it can be concluded that all patients with co-overexpression of bcl-2 and c-myc oncogenes will have PVU invasive carcinoma. We confirmed in our research that co-overexpression of bcl-2 and c-myc oncogenes was increased only in PVU invasive carcinoma. However, a more extensive series of samples and additional tests are required to establish the prognostic significance of bcl-2 and c-myc co-overexpression in cervical carcinogenesis. PMID:21556123

  12. c-Myc Oncoprotein: A Dual Pathogenic Role in Neoplasia and Cardiovascular Diseases?

    PubMed Central

    Napoli, Claudio; Lerman, Lilach O; de Nigris, Filomena; Sica, Vincenzo

    2002-01-01

    Abstract A growing body of evidence indicates that c-Myc can play a pivotal role both in neoplasia and cardiovascular diseases. Indeed, alterations of the basal machinery of the cell and perturbations of c-Myc-dependent signaling network are involved in the pathogenesis of certain cardiovascular disorders. Down-regulation of c-Myc induced by intervention with antioxidants or by antisense technology may protect the integrity of the arterial wall as well as neoplastic tissues. Further intervention studies are necessary to investigate the effects of tissue-specific block of c-Myc overexpression in the development of cardiovascular diseases. PMID:11988837

  13. The small Rho GTPase Rac1 controls normal human dermal fibroblasts proliferation with phosphorylation of the oncoprotein c-myc

    SciTech Connect

    Nikolova, Ekaterina; Mitev, Vanio; Zhelev, Nikolai; Deroanne, Christophe F. . E-mail: yves.poumay@fundp.ac.be

    2007-08-03

    Proliferation of dermal fibroblasts is crucial for the maintenance of skin. The small Rho GTPase, Rac1, has been identified as a key transducer of proliferative signals in various cell types, but in normal human dermal fibroblasts its significance to cell growth control has not been studied. In this study, we applied the method of RNA interference to suppress endogenous Rac1 expression and examined the consequences on human skin fibroblasts. Rac1 knock-down resulted in inhibition of DNA synthesis. This effect was not mediated by inhibition of the central transducer of proliferative stimuli, ERK1/2 or by activation of the pro-apoptotic p38. Rather, as a consequence of the suppressed Rac1 expression we observed a significant decrease in phosphorylation of c-myc, revealing for the first time that in human fibroblasts Rac1 exerts control on proliferation through c-myc phosphorylation. Thus Rac1 activates proliferation of normal fibroblasts through stimulation of c-myc phosphorylation without affecting ERK1/2 activity.

  14. Repression of PLA2R1 by c-MYC and HIF-2alpha promotes cancer growth

    PubMed Central

    Vindrieux, David; Devailly, Guillaume; Augert, Arnaud; Calvé, Benjamin Le; Ferrand, Mylène; Pigny, Pascal; Payen, Léa; Lambeau, Gérard; Perrais, Michael; Aubert, Sébastien; Simonnet, Hélène; Dante, Robert; Bernard, David

    2014-01-01

    Loss of secreted phospholipase A2 receptor (PLA2R1) has recently been found to render human primary cells more resistant to senescence whereas increased PLA2R1 expression is able to induce cell cycle arrest, cancer cell death or blockage of cancer cell transformation in vitro, suggesting that PLA2R1 displays tumor suppressive activities. Here we report that PLA2R1 expression strongly decreases in samples of human renal cell carcinoma (RCC). Knockdown of PLA2R1 increases renal cancer cell tumorigenicity supporting a role of PLA2R1 loss to promote in vivo RCC growth. Most RCC result from Von Hippel-Lindau (VHL) tumor suppressor loss-of-function and subsequent gain-of-function of the oncogenic HIF-2alpha/c-MYC pathway. Here, by genetically manipulating VHL, HIF-2alpha and c-MYC, we demonstrate that loss of VHL, stabilization of HIF-2alpha and subsequent increased c-MYC activity, binding and transcriptional repression, through induction of PLA2R1 DNA methylation closed to PLA2R1 transcriptional start site, results in decreased PLA2R1 transcription. Our results describe for the first time an oncogenic pathway leading to PLA2R1 transcriptional repression and the importance of this repression for tumor growth. PMID:24657971

  15. TA1 oncofetal rat liver cDNA and putative amino acid permease: temporal correlation with c-myc during acute CCl4 liver injury and variation of RNA levels in response to amino acids in hepatocyte cultures.

    PubMed

    Shultz, V D; Campbell, W; Karr, S; Hixson, D C; Thompson, N L

    1999-01-01

    TA1 is a rat liver oncofetal cDNA and a member of an emerging family of evolutionarily conserved molecules with homology to amino acid transporters and permeases. The aim of these studies was to characterize the regulation and role of TA1 in acute rat liver injury by examining its relation to regeneration and metabolic stress. Following a single dose of CCl4, TA1 message was expressed 3-48 h. The major 3.3-kb TA1 transcript correlated temporally with c-myc expression. A novel 2.9-kb TA1 transcript was expressed more variably 24-48 h. TA1 protein was restricted to hepatocytes in G0 and G1 phases of the cell cycle. Relative to CCl4, a much smaller increase in TA1 was noted after partial hepatectomy and TA1 preceded the peak of c-myc expression. In vitro TA1 was not induced in hepatocytes by EGF or the acute-phase cytokines IL-6 and TNF-alpha, but was found to be modulated in response to amino acid availability. TA1 expression increased in media without arginine and glutamine and was repressed by total amino acid levels 5-fold over basal MEM. Together, these results contrast with the constitutive expression observed in transformed cells and suggest an adaptive role for TA1 during liver injury.

  16. Direct visualization of the binding of c-Myc/Max heterodimeric b-HLH-LZ to E-box sequences on the hTERT promoter.

    PubMed

    Lebel, Réjean; McDuff, François-Olivier; Lavigne, Pierre; Grandbois, Michel

    2007-09-11

    Myc and Max belong to the b-HLH-LZ family of transcription factors. Heterodimerization between Myc and Max or homodimerization of Max allows these proteins to bind their cognate DNA sequence known as the E-box (CACGTG). Recent evidence has suggested that the c-Myc/Max heterodimeric b-HLH-LZ could interact to form a head-to-tail dimer of dimers and induce complex topologies such as loops in promoters containing more than one E-box sequence. In an attempt to shed light on this hypothesis, the interaction between the heterodimeric b-HLH-LZ of c-Myc/Max and a fragment of the hTERT promoter containing two E-box sequences was studied by atomic force microscopy. Specific binding events were observed at both E-box sites with equal probabilities. In accordance with previous results obtained by EMSA, we observed that the specific binding of the c-Myc/Max b-HLH-LZ bends the promoter. However no looping could be observed in a wide range of concentration encompassing the Ka (association constant) of the putative tetramer and the Ka for the specific binding of the heterodimer. In contrast, experiments performed with a mandatory c-Myc/Max b-HLH-LZ tetramer incubated with the hTERT promoter fragment allowed for the visualization of loops and cross-linked DNA strands originating from specific binding. Altogether, our results indicate that the c-Myc/Max b-HLH-LZ dimer binds specifically and equally to both E-box sites of the hTERT promoter and induces a significant bending of the promoter and that the suggested oligomerization of the c-Myc/Max heterodimeric b-HLH-LZ, if existing, is most likely too weak to induce the formation of a loop in a promoter.

  17. Solution structure of the biologically relevant G-quadruplex element in the human c-MYC promoter. Implications for G-quadruplex stabilization.

    PubMed

    Ambrus, Attila; Chen, Ding; Dai, Jixun; Jones, Roger A; Yang, Danzhou

    2005-02-15

    The nuclease hypersensitivity element III(1) (NHE III(1)) of the c-MYC promoter strongly controls the transcriptional activity of the c-MYC oncogene. The purine-rich strand of the NHE III(1) element has been shown to be a silencer element for c-MYC transcription upon formation of a G-quadruplex structure. We have determined the predominant G-quadruplex structure of this silencer element in potassium solution by NMR. The G-quadruplex structure adopts an intramolecular parallel-stranded quadruplex conformation with three guanine tetrads and three side loops, including two single-nucleotide side loops and one double-nucleotide side loop, that connect the four guanine strands. The three side loops are very stable and well-defined. The 3'-flanking sequence forms a stable fold-back stacking conformation capping the top end of the G-quadruplex structure. The 5'-flanking A and G bases cap the bottom end of the G-quadruplex, with the adenine stacking very well with the bottom tetrad. This paper reports the first solution structure of a G-quadruplex found to form in the promoter region of an oncogene (c-MYC). This G-quadruplex structure is extremely stable, with a similar melting temperature (>85 degrees C) to that of the wild-type 27-mer purine-rich NHE III(1) sequence of the c-MYC promoter. This predominant quadruplex structure has been shown to be biologically relevant, and the structural information revealed in this research provides an important basis for the design of new drug candidates that specifically target the c-MYC G-quadruplex structure and modulate gene expression. PMID:15697230

  18. Cardiac mesenchymal progenitors differentiate into adipocytes via Klf4 and c-Myc

    PubMed Central

    Kami, D; Kitani, T; Kawasaki, T; Gojo, S

    2016-01-01

    Direct reprogramming of differentiated cells to pluripotent stem cells has great potential to improve our understanding of developmental biology and disorders such as cancers, and has implications for regenerative medicine. In general, the effects of transcription factors (TFs) that are transduced into cells can be influenced by pre-existing transcriptional networks and epigenetic modifications. However, previous work has identified four key TFs, Oct4, Sox2, Klf4 and c-Myc, which can reprogram various differentiated cells to generate induced pluripotent stem cells. Here, we show that in the heart, the transduction of cardiac mesenchymal progenitors (CMPs) with Klf4 and c-Myc (KM) was sufficient to drive the differentiation of these cells into adipocytes without the use of adipogenic stimulation cocktail, that is, insulin, 3-isobutyl-1-methylxanthine (IBMX) and dexamethasone. KM-transduced CMPs exhibited a gradually increased expression of adipogenic-related genes, such as C/Ebpα, Pparγ and Fabp4, activation of the peroxisome proliferator-activated receptor (PPAR) signaling pathway, inactivation of the cell cycle-related pathway and formation of cytoplasmic lipid droplets within 10 days. In contrast, NIH3T3 fibroblasts, 3T3-L1 preadipocytes, and bone marrow-derived mesenchymal stem cells transduced with KM did not differentiate into adipocytes. Both in vitro and in vivo cardiac ischemia reperfusion injury models demonstrated that the expression of KM genes sharply increased following a reperfusion insult. These results suggest that ectopic adipose tissue formation in the heart following myocardial infarction results from CMPs that express KM following a stress response. PMID:27077806

  19. B Lymphocyte commitment program is driven by the proto-oncogene c-Myc.

    PubMed

    Vallespinós, Mireia; Fernández, David; Rodríguez, Lorena; Alvaro-Blanco, Josué; Baena, Esther; Ortiz, Maitane; Dukovska, Daniela; Martínez, Dolores; Rojas, Ana; Campanero, Miguel R; Moreno de Alborán, Ignacio

    2011-06-15

    c-Myc, a member of the Myc family of transcription factors, is involved in numerous biological functions including the regulation of cell proliferation, differentiation, and apoptosis in various cell types. Of all of its functions, the role of c-Myc in cell differentiation is one of the least understood. We addressed the role of c-Myc in B lymphocyte differentiation. We found that c-Myc is essential from early stages of B lymphocyte differentiation in vivo and regulates this process by providing B cell identity via direct transcriptional regulation of the ebf-1 gene. Our data show that c-Myc influences early B lymphocyte differentiation by promoting activation of B cell identity genes, thus linking this transcription factor to the EBF-1/Pax-5 pathway.

  20. TRRAP and GCN5 are used by c-Myc to activate RNA polymerase III transcription.

    PubMed

    Kenneth, Niall S; Ramsbottom, Ben A; Gomez-Roman, Natividad; Marshall, Lynne; Cole, Philip A; White, Robert J

    2007-09-18

    Activation of RNA polymerase (pol) II transcription by c-Myc generally involves recruitment of histone acetyltransferases and acetylation of histones H3 and H4. Here, we describe the mechanism used by c-Myc to activate pol III transcription of tRNA and 5S rRNA genes. Within 2 h of its induction, c-Myc appears at these genes along with the histone acetyltransferase GCN5 and the cofactor TRRAP. At the same time, occupancy of the pol III-specific factor TFIIIB increases and histone H3 becomes hyperacetylated, but increased histone H4 acetylation is not detected at these genes. The rapid acetylation of histone H3 and promoter assembly of TFIIIB, c-Myc, GCN5, and TRRAP are followed by recruitment of pol III and transcriptional induction. The selective acetylation of histone H3 distinguishes pol III activation by c-Myc from mechanisms observed in other systems.

  1. ECA39, a conserved gene regulated by c-Myc in mice, is involved in G1/S cell cycle regulation in yeast.

    PubMed Central

    Schuldiner, O; Eden, A; Ben-Yosef, T; Yanuka, O; Simchen, G; Benvenisty, N

    1996-01-01

    The c-myc oncogene has been shown to play a role in cell proliferation and apoptosis. The realization that myc oncogenes may control the level of expression of other genes has opened the field to search for genetic targets for Myc regulation. Recently, using a subtraction/coexpression strategy, a murine genetic target for Myc regulation, called EC439, was isolated. To further characterize the ECA39 gene, we set out to determine the evolutionary conservation of its regulatory and coding sequences. We describe the human, nematode, and budding yeast homologs of the mouse ECA39 gene. Identities between the mouse ECA39 protein and the human, nematode, or yeast proteins are 79%, 52%, and 49%, respectively. Interestingly, the recognition site for Myc binding, located 3' to the start site of transcription in the mouse gene, is also conserved in the human homolog. This regulatory element is missing in the ECA39 homologs from nematode or yeast, which also lack the regulator c-myc. To understand the function of ECA39, we deleted the gene from the yeast genome. Disruption of ECA39 which is a recessive mutation that leads to a marked alteration in the cell cycle. Mutant haploids and homozygous diploids have a faster growth rate than isogenic wild-type strains. Fluorescence-activated cell sorter analyses indicate that the mutation shortens the G1 stage in the cell cycle. Moreover, mutant strains show higher rates of UV-induced mutations. The results suggest that the product of ECA39 is involved in the regulation of G1 to S transition. Images Fig. 2 Fig. 3 Fig. 5 PMID:8692959

  2. c-Myc modulates glucose metabolism via regulation of miR-184/PKM2 pathway in clear-cell renal cell carcinoma.

    PubMed

    Huang, Jiwei; Kong, Wen; Zhang, Jin; Chen, Yonghui; Xue, Wei; Liu, Dongming; Huang, Yiran

    2016-10-01

    Renal cell carcinoma (RCC) is one of the most malignant tumors worldwide. Among all subtypes of RCC, clear-cell RCC (ccRCC) is the most common and aggressive one. The difficulty in overcoming resistance of traditional treatment is a threat for ccRCC therapies. Therefore, to understand the mechanism that underlies ccRCC progression is critical for new drug development. In the present study, we identified that miR-184 could be downregulated by c-Myc, which is different from the standard opinion that c-Myc is a target of miR-184. Overexpression of pre-miR-184 changed the metabolic and proliferation features of ccRCC cells by reducing cell glucose consumption, lactate production and cell proliferation. Further analysis by computer bioinformatics revealed that PKM2 is a target of miR-184. Both PKM2 mRNA and protein were significantly affected by addition of miR-184. Importantly, the PKM2 expression level was indeed increased in ccRCC samples, which is totally reverse compared to the decreased miR-184 expression level. Interestingly, we found that when PKM2 was knocked down in ccRCC cells, the rapid proliferation, high glucose consumption and high lactate production were all clearly inhibited, which indicates metabolic reprogramming and cancer progression blocking the in ccRCC cells. Our findings shed new light on ccRCC molecular study and provide a new and solid basis for developing ccRCC therapy.

  3. Combined loss of PUMA and p21 accelerates c-MYC-driven lymphoma development considerably less than loss of one allele of p53.

    PubMed

    Valente, L J; Grabow, S; Vandenberg, C J; Strasser, A; Janic, A

    2016-07-21

    The tumor suppressor p53 is mutated in ~50% of human cancers. P53 is activated by a range of stimuli and regulates several cellular processes, including apoptotic cell death, cell cycle arrest, senescence and DNA repair. P53 induces apoptosis via transcriptional induction of the BH3-only proteins PUMA (p53-upregulated modulator of apoptosis) and NOXA, and cell cycle arrest via p21. Induction of these processes was proposed to be critical for p53-mediated tumor suppression. It is therefore surprising that mice lacking PUMA, NOXA and p21, as well as mice bearing mutations in p53 that impair the transcriptional activation of these genes, are not tumor prone, unlike mice lacking p53 function, which spontaneously develop tumors with 100% incidence. These p53 target genes and the processes they regulate may, however, impact differently on tumor development depending on the oncogenic drivers. For example, loss of PUMA enhances c-MYC-driven lymphoma development in mice, but, interestingly, the acceleration was less impressive compared with that caused by the loss of even a single p53 allele. Different studies have reported that loss of p21 can accelerate, delay or have no impact on tumorigenesis. In an attempt to resolve this controversy, we examined whether loss of p21-mediated cell cycle arrest cooperates with PUMA deficiency in accelerating lymphoma development in Eμ-Myc mice (overexpressing c-MYC in B-lymphoid cells). We found that Eμ-Myc mice lacking both p21 and PUMA (Eμ-Myc;Puma(-/-);p21(-/-)) developed lymphoma at a rate comparable to Eμ-Myc;Puma(-/-) animals, notably with considerably longer latency than Eμ-Myc;p53(+/-)mice. Loss of p21 had no impact on the numbers, cycling or survival of pre-leukemic Eμ-Myc B-lymphoid cells, even when PUMA was lost concomitantly. These results demonstrate that even in the context of deregulated c-MYC expression, p53 must suppress tumor development by activating processes apart from, or in addition to, PUMA

  4. c-Myc and Transforming Growth Factor α Enhance the Development of Hepatic Lesions Due to Mutant β-Catenin in Transgenic Mice

    PubMed Central

    Jochem, Adam S; Holmes, Katie E; Stein, Timothy J

    2014-01-01

    Alterations in the Wnt signaling pathway are associated with diverse cancers, including hepatocellular carcinoma (HCC). The development of HCC is thought to be a multistage process in which multiple genetic alterations are necessary. Few studies have assessed the effect of aberrant Wnt signaling activity in association with other molecular alterations in HCC. Here we sought to determine whether co-overexpression of c-Myc or TGFα, 2 signaling molecules known to contribute to HCC development, enhanced the development of hepatic lesions associated with a stabilized β-catenin. The coexpression of mutant β-catenin with either c-Myc or TGFα within hepatocytes increased the severity of hepatic lesions compared with that associated with any of the transgenes expressed individually. The coexpression of mutant β-catenin with c-Myc or TGFα resulted in severe hepatomegaly necessitating the euthanasia of mice by an average of 156 and 128 d, respectively, after the cessation of doxycycline. The expression of mutant β-catenin alone resulted in mild to moderate hepatomegaly that prompted the euthanasia of mice by an average of 75 d after the cessation of doxycycline. Collectively, these findings indicate that coexpression of c-Myc or TGFα delays the onset of endstage hepatic disease yet enhances the severity of hepatic lesions due to mutant β-catenin. PMID:25402175

  5. microRNA-206 impairs c-Myc-driven cancer in a synthetic lethal manner by directly inhibiting MAP3K13

    PubMed Central

    Han, Han; Chen, Yuxing; Cheng, Li; Prochownik, Edward V.; Li, Youjun

    2016-01-01

    c-Myc (Myc) is one of the most frequently dysregulated oncogenic transcription factors in human cancer. By functionally screening a microRNA (miR) library, we identified miR-206 as being a synthetic lethal in Myc over-expressing human cancer cells. miR-206 inhibited MAP3K13, which resulted in Myc protein de-stabilization, and an inhibition of anchorage-independent growth and in vivo tumorigenesis by Myc over-expressing human cancer cells. Eliminating MAP3K13 by shRNA recapitulated the effects caused by miR-206, thus supporting the idea that miR-206's effect on Myc was mediated through MAP3K13. Conversely, enforced expression of MAP3K13 stabilized Myc by promoting its N-terminal phosphorylation and enhancing its transcriptional activity. Gene expression analyses of breast cancers expressing high levels of Myc indicated that low miR-206 expression and high MAP3K13 expression correlated with poor patient survival. The critical link between miR-206 and MAP3K13 in the development of Myc over-expressing human cancers suggests potential points of therapeutic intervention for this molecular sub-category. PMID:26918941

  6. hnRNP U interacts with the c-Myc-Max complex on the E-box promoter region inducing the ornithine decarboxylase gene.

    PubMed

    Matsuoka, Yoichiro; Uehara, Norihisa; Tsubura, Airo

    2009-08-01

    The promoter of the ornithine decarboxylase (ODC) gene contains two E-boxes, which are critical sites for transcriptional activation by the binding of c-Myc-Max heterodimers. We have identified heterogeneous nuclear ribonuclear protein U (hnRNP U) as a component of the complex formed on the E-box-containing promoter region of the ODC gene by using DNA-affinity chromatography, immunoprecipitation and chromatin immunoprecipitation assays. The N-terminal domain of hnRNP U was responsible for the association with c-Myc-Max complex. Down-regulation of hnRNP U with RNA interference blocked the induction of the ODC gene and cell growth by serum stimulation, suggesting that hnRNP U is a coactivator of the c-Myc-Max complex and essential for cell proliferation. Electrophoretic mobility-shift assays revealed that the segment between the two E-boxes in the promoter is the primary binding site of hnRNP U. The putative binding sequence was narrowed-down to a 13-nucleotide segment by comparing the sequence between the E-boxes with the binding sites of hnRNP U, which were recently identified in the promoter of Bmal1, a core component of the circadian molecular oscillator. These findings increase our knowledge of how the c-Myc-Max complex exerts its transcriptional regulatory role and suggest that hnRNP U may be a coactivator of this transcriptional activator complex.

  7. DOT1L cooperates with the c-Myc-p300 complex to epigenetically derepress CDH1 transcription factors in breast cancer progression

    PubMed Central

    Cho, Min-Hyung; Park, Ji-Hye; Choi, Hee-Joo; Park, Mi-Kyung; Won, Hee-Young; Park, Yeon-Ji; Lee, Chang Hoon; Oh, Seung-Hyun; Song, Young-Soo; Kim, Hyun Sung; Oh, Young-Ha; Lee, Jeong-Yeon; Kong, Gu

    2015-01-01

    DOT1L has emerged as an anticancer target for MLL-associated leukaemias; however, its functional role in solid tumours is largely unknown. Here we identify that DOT1L cooperates with c-Myc and p300 acetyltransferase to epigenetically activate epithelial–mesenchymal transition (EMT) regulators in breast cancer progression. DOT1L recognizes SNAIL, ZEB1 and ZEB2 promoters via interacting with the c-Myc-p300 complex and facilitates lysine-79 methylation and acetylation towards histone H3, leading to the dissociation of HDAC1 and DNMT1 in the regions. The upregulation of these EMT regulators by the DOT1L-c-Myc-p300 complex enhances EMT-induced breast cancer stem cell (CSC)-like properties. Furthermore, in vivo orthotopic xenograft models show that DOT1L is required for malignant transformation of breast epithelial cells and breast tumour initiation and metastasis. Clinically, DOT1L expression is associated with poorer survival and aggressiveness of breast cancers. Collectively, we suggest that cooperative effect of DOT1L and c-Myc-p300 is critical for acquisition of aggressive phenotype of breast cancer by promoting EMT/CSC. PMID:26199140

  8. Fluctuations between stabilizing and destabilizing electrostatic contributions of ion pairs in conformers of the c-Myc-Max leucine zipper.

    PubMed

    Kumar, S; Nussinov, R

    2000-12-01

    In solution proteins often exhibit backbone and side-chain flexibility. Yet electrostatic interactions in proteins are sensitive to motions. Hence, here we study the contribution of ion pairs toward protein stability in a range of conformers which sample the conformational space in solution. Specifically, we focus on the electrostatic contributions of ion pairs to the stability of each of the conformers in the NMR ensemble of the c-Myc-Max leucine zipper and to their average energy minimized structure. We compute the electrostatic contributions of inter- and intra-helical ion pairs and of an ion pair network. We find that the electrostatic contributions vary considerably among the 40 NMR conformers. Each ion pair, and the network, fluctuates between being stabilizing and being destabilizing. This fluctation reflects the variability in the location of the ion pairing residues and in the geometric orientation of these residues, both with respect to each other and with respect to other charged groups in the rest of the protein. Ion pair interactions in the c-Myc-Max leucine zipper in solution depend on the protein conformer which is analyzed. Hence, the overall stabilizing (or destabilizing) contribution of an ion pair is conformer population-dependent. This study indicates that free energy calculations performed using the continuum electrostatics methodology are sensitive to protein conformational details.

  9. Quantum dots (QDs) restrain human cervical carcinoma HeLa cell proliferation through inhibition of the ROCK-c-Myc signaling.

    PubMed

    Chen, Liqun; Qu, Guangbo; Zhang, Changwen; Zhang, Shuping; He, Jiuyang; Sang, Nan; Liu, Sijin

    2013-03-01

    Cancers often cause significant morbidity and even death to patients. To date, conventional therapies, such as chemotherapy, radiation and surgery, are often limited; meanwhile, novel anticancer therapeutics are urgently needed to improve clinical treatments. Rapid application of nanotechnology and nanomaterials represents a promising vista for the development of anti-cancer therapeutics. However, how to integrate the novel properties of nanotechnology and nanomaterials into cancer treatment warrants close investigation. In the current study, we report a novel finding about the inhibitory effect of CdSe quantum dots (QDs) on Rho-associated kinase (ROCK) activity in cervical carcinoma HeLa cells associated with the attenuation of the ROCK-c-Myc signaling. We mechanistically demonstrated that QD-conducted ROCK inhibition greatly diminished c-Myc protein stability due to reduced phosphorylation, and also suppressed its activity in transcribing target genes (e.g. HSPC111). Thus, the treatment of QDs greatly restrained HeLa cell growth by inducing cell cycle arrest at G1 phase due to the reduced ability of c-Myc in driving cell proliferation. Additionally, since HSPC111, one of the c-Myc targets, is involved in regulating cell growth through ribosomal biogenesis and assembly, the downregulation of HSPC111 could also contribute to diminished proliferation in HeLa cells upon QD treatment. These results together suggested that inhibition of ROCK activity or ROCK-mediated c-Myc signaling in tumor cells upon QD treatment might represent a promising strategy to restrain tumor progression for human cervical carcinoma.

  10. Detection of the c-myc oncogene product in colonic polyps and carcinomas.

    PubMed Central

    Stewart, J.; Evan, G.; Watson, J.; Sikora, K.

    1986-01-01

    The c-myc oncogene has been implicated in the processes of normal cell proliferation and differentiation. Elevated levels of c-myc mRNA and its gene product (p62c-myc), have been detected in a variety of solid tumours and cultured cel lines. Its precise role in normal cell function and in neoplastic transformation and progression has yet to be elucidated. We have used a monoclonal antibody, raised by peptide immunisation, to determine the distribution by immunoperoxidase staining of the c-myc oncogene product in archival specimens of colonic polyps and carcinomas. Samples from 42 patients with colon carcinoma, 24 with benign polyps and 15 normal colon biopsies were examined. Normal colon revealed maximum staining in the mid-zone of the crypts, corresponding to the zone of differentiation and maturation. The staining was predominantly cytoplasmic. Adenomatous polyps revealed the most intense pattern of staining in areas of dysplastic change. Colonic tumours showed a wide range of staining. Well differentiated tumours contained more cytoplasmic p62c-myc than poorly differentiated tumours. These findings suggest that the c-myc oncogene product may play an important role in the evolution of colonic neoplasia. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:3511934

  11. The c-Myc Transactivation Domain Is a Direct Modulator of Apoptotic versus Proliferative Signals

    PubMed Central

    Chang, David W.; Claassen, Gisela F.; Hann, Stephen R.; Cole, Michael D.

    2000-01-01

    We have assayed the oncogenic, proliferative, and apoptotic activities of the frequent mutations that occur in the c-myc gene in Burkitt's lymphomas. Some alleles have a modest (50 to 60%) increase in transforming activity; however, the most frequent Burkitt's lymphoma allele (T58I) had an unexpected substantial decrease in transforming activity (85%). All alleles restored the proliferation function of c-Myc in cells that grow slowly due to a c-myc knockout. There was discordance for some alleles between apoptotic and oncogenic activities, but only the T58A allele had elevated transforming activity with a concomitant reduced apoptotic potential. We discovered a novel missense mutation, MycS71F, that had a very low apoptotic activity compared to wild-type Myc, yet this mutation has never been found in lymphomas, suggesting that there is no strong selection for antiapoptotic c-Myc alleles. MycS71F also induced very low levels of cytochrome c release from mitochondria, suggesting a mechanism of action for this mutation. Phosphopeptide mapping provided a biochemical basis for the dramatically different biological activities of the transformation-defective T58I and transformation-enhanced T58A c-Myc alleles. Furthermore, the antiapoptotic survival factor insulin-like growth factor 1 was found to suppress phosphorylation of T58, suggesting that the c-Myc transactivation domain is a direct target of survival signals. PMID:10825194

  12. The long non-coding RNA PARROT is an upstream regulator of c-Myc and affects proliferation and translation.

    PubMed

    Vučićević, Dubravka; Gehre, Maja; Dhamija, Sonam; Friis-Hansen, Lennart; Meierhofer, David; Sauer, Sascha; Ørom, Ulf Andersson

    2016-06-01

    Long non-coding RNAs are important regulators of gene expression and signaling pathways. The expression of long ncRNAs is dysregulated in cancer and other diseases. The identification and characterization of long ncRNAs is often challenging due to their low expression level and localization to chromatin. Here, we identify a functional long ncRNA, PARROT (Proliferation Associated RNA and Regulator Of Translation) transcribed by RNA polymerase II and expressed at a relatively high level in a number of cell lines. The PARROT long ncRNA is associated with proliferation in both transformed and normal cell lines. We characterize the long ncRNA PARROT as an upstream regulator of c-Myc affecting cellular proliferation and translation using RNA sequencing and mass spectrometry following depletion of the long ncRNA. PARROT is repressed during senescence of human mammary epithelial cells and overexpressed in some cancers, suggesting an important association with proliferation through regulation of c-Myc. With this study, we add to the knowledge of cytoplasmic functional long ncRNAs and extent the long ncRNA-Myc regulatory network in transformed and normal cells.

  13. The long non-coding RNA PARROT is an upstream regulator of c-Myc and affects proliferation and translation

    PubMed Central

    Vučićević, Dubravka; Gehre, Maja; Dhamija, Sonam; Friis-Hansen, Lennart; Meierhofer, David; Sauer, Sascha; Ørom, Ulf Andersson

    2016-01-01

    Long non-coding RNAs are important regulators of gene expression and signaling pathways. The expression of long ncRNAs is dysregulated in cancer and other diseases. The identification and characterization of long ncRNAs is often challenging due to their low expression level and localization to chromatin. Here, we identify a functional long ncRNA, PARROT (Proliferation Associated RNA and Regulator Of Translation) transcribed by RNA polymerase II and expressed at a relatively high level in a number of cell lines. The PARROT long ncRNA is associated with proliferation in both transformed and normal cell lines. We characterize the long ncRNA PARROT as an upstream regulator of c-Myc affecting cellular proliferation and translation using RNA sequencing and mass spectrometry following depletion of the long ncRNA. PARROT is repressed during senescence of human mammary epithelial cells and overexpressed in some cancers, suggesting an important association with proliferation through regulation of c-Myc. With this study, we add to the knowledge of cytoplasmic functional long ncRNAs and extent the long ncRNA-Myc regulatory network in transformed and normal cells. PMID:27129154

  14. The long non-coding RNA PARROT is an upstream regulator of c-Myc and affects proliferation and translation.

    PubMed

    Vučićević, Dubravka; Gehre, Maja; Dhamija, Sonam; Friis-Hansen, Lennart; Meierhofer, David; Sauer, Sascha; Ørom, Ulf Andersson

    2016-06-01

    Long non-coding RNAs are important regulators of gene expression and signaling pathways. The expression of long ncRNAs is dysregulated in cancer and other diseases. The identification and characterization of long ncRNAs is often challenging due to their low expression level and localization to chromatin. Here, we identify a functional long ncRNA, PARROT (Proliferation Associated RNA and Regulator Of Translation) transcribed by RNA polymerase II and expressed at a relatively high level in a number of cell lines. The PARROT long ncRNA is associated with proliferation in both transformed and normal cell lines. We characterize the long ncRNA PARROT as an upstream regulator of c-Myc affecting cellular proliferation and translation using RNA sequencing and mass spectrometry following depletion of the long ncRNA. PARROT is repressed during senescence of human mammary epithelial cells and overexpressed in some cancers, suggesting an important association with proliferation through regulation of c-Myc. With this study, we add to the knowledge of cytoplasmic functional long ncRNAs and extent the long ncRNA-Myc regulatory network in transformed and normal cells. PMID:27129154

  15. Differential regulation of LncRNA-SARCC suppresses VHL-mutant RCC cell proliferation yet promotes VHL-normal RCC cell proliferation via modulating androgen receptor/HIF-2α/C-MYC axis under hypoxia.

    PubMed

    Zhai, W; Sun, Y; Jiang, M; Wang, M; Gasiewicz, T A; Zheng, J; Chang, C

    2016-09-15

    It is well established that hypoxia contributes to tumor progression in a hypoxia inducible factor-2α (HIF-2α)-dependent manner in renal cell carcinoma (RCC), yet the role of long noncoding RNAs (LncRNAs) involved in hypoxia-mediated RCC progression remains unclear. Here we demonstrate that LncRNA-SARCC (Suppressing Androgen Receptor in Renal Cell Carcinoma) is differentially regulated by hypoxia in a von Hippel-Lindau (VHL)-dependent manner both in RCC cell culture and clinical specimens. LncRNA-SARCC can suppress hypoxic cell cycle progression in the VHL-mutant RCC cells while derepress it in the VHL-restored RCC cells. Mechanism dissection reveals that LncRNA-SARCC can post-transcriptionally regulate androgen receptor (AR) by physically binding and destablizing AR protein to suppress AR/HIF-2α/C-MYC signals. In return, HIF-2α can transcriptionally regulate the LncRNA-SARCC expression via binding to hypoxia-responsive elements on the promoter of LncRNA-SARCC. The negative feedback modulation between LncRNA-SARCC/AR complex and HIF-2α signaling may then lead to differentially modulated RCC progression in a VHL-dependent manner. Together, these results may provide us a new therapeutic approach via targeting this newly identified signal from LncRNA-SARCC to AR-mediated HIF-2α/C-MYC signals against RCC progression.

  16. Inhibition of serine palmitoyltransferase by myriocin, a natural mycotoxin, causes induction of c-myc in mouse liver.

    PubMed

    He, Quanren; Johnson, Victor J; Osuchowski, Marcin F; Sharma, Raghubir P

    2004-04-01

    Myriocin, a fungal metabolite isolated from Myriococcum albomyces, Isaria sinclairi, and Mycelia sterilia, is a potent inhibitor of serine palmitoyltransferase (SPT), a key enzyme in de novo synthesis of sphingolipids. To evaluate the biological effects of myriocin in vivo, we investigated the levels of free sphingoid bases and expression of selected genes regulating cell growth in mouse liver. Male Balb/c mice, weighing 22 g were injected intraperitoneally with myriocin at 0, 0.1, 0.3, and 1.0 mg kg(-1) body weight daily for 5 days. Animals were euthanized 24 hours after the last treatment. Levels of plasma alanine aminotransferase and aspartate aminotransferase were not significantly altered by the treatment. A dose-dependent decrease in free sphinganine but not sphingosine was detected by high performance liquid chromatography in both liver and kidney. The decrease of free sphinganine paralleled the decrease in SPT activity. Reverse transcriptase polymerase chain reaction analysis on liver mRNA revealed an increase in expression of c-myc, but no changes in tumor necrosis factor alpha, transforming growth factor beta, and hepatocyte growth factor. Results showed that myriocin blocked de novo synthesis of sphingolipids in vivo by SPT inhibition and induced c-myc expression in liver. PMID:15180163

  17. RNAi delivery by exosome-mimetic nanovesicles - Implications for targeting c-Myc in cancer.

    PubMed

    Lunavat, Taral R; Jang, Su Chul; Nilsson, Lisa; Park, Hyun Taek; Repiska, Gabriela; Lässer, Cecilia; Nilsson, Jonas A; Gho, Yong Song; Lötvall, Jan

    2016-09-01

    To develop RNA-based therapeutics, it is crucial to create delivery vectors that transport the RNA molecule into the cell cytoplasm. Naturally released exosomes vesicles (also called "Extracellular Vesicles") have been proposed as possible RNAi carriers, but their yield is relatively small in any cell culture system. We have previously generated exosome-mimetic nanovesicles (NV) by serial extrusions of cells through nano-sized filters, which results in 100-times higher yield of extracellular vesicles. We here test 1) whether NV can be loaded with siRNA exogenously and endogenously, 2) whether the siRNA-loaded NV are taken up by recipient cells, and 3) whether the siRNA can induce functional knock-down responses in recipient cells. A siRNA against GFP was first loaded into NV by electroporation, or a c-Myc shRNA was expressed inside of the cells. The NV were efficiently loaded with siRNA with both techniques, were taken up by recipient cells, which resulted in attenuation of target gene expression. In conclusion, our study suggests that exosome-mimetic nanovesicles can be a platform for RNAi delivery to cell cytoplasm. PMID:27344366

  18. Cloning and characterization of rabbit POU5F1, SOX2, KLF4, C-MYC and NANOG pluripotency-associated genes.

    PubMed

    Táncos, Zsuzsanna; Bock, István; Nemes, Csilla; Kobolák, Julianna; Dinnyés, András

    2015-07-25

    While the rabbit (Oryctolagus cuniculus) is an important research model for aspects of human development and disease that cannot be studied in rodents, the lack of data on the genetic regulation of rabbit preimplantation development is a limitation. To assist in the understanding of this process, our aim was to isolate and characterize genes necessary for the induction and maintenance of cellular pluripotency. We are the first to report the isolation of complete coding regions of rabbit SOX2, KLF4, C-MYC and NANOG, which encode transcription factors that play crucial regulatory roles during early mammalian embryonic development. We determined the exon-intron boundaries and chromosomal localization of these genes using computational analysis. The sequences of mRNA and translated protein of the newly identified genes and those of POU5F1 were aligned to their mammalian orthologs to determine the degree of evolutionary conservation. Furthermore, the expression of these genes in embryonic and adult cells was studied at the mRNA and protein levels. We found the sequences and the expression pattern of these pluripotency-associated genes to be highly conserved between human and rabbit, indicating that the rabbit would be a valuable model for human preimplantation development. Implementing the newly identified genes either as biomarkers or as reprogramming factors might also pave the way towards the creation of stable pluripotent rabbit cell lines. PMID:25895477

  19. Anomalous behaviour of the STAT3 binding site in the human c-myc P2 promoter

    SciTech Connect

    Vougier, Stephanie; Cheung, S.-H.; Li Li; Hodgson, Glenn; Shaw, Peter E

    2007-12-21

    The Signal Transducer and Activator of Transcription 3 (STAT3) is necessary for ES cell renewal, plays critical roles during vertebrate development, and has oncogenic potential. STAT3 also mediates cytokine responses notably in the induction of acute phase response genes in the liver. Thus STAT3 is a pleiotropic regulator during cell proliferation and a cell-specific mediator of pro-inflammatory responses. How STAT3 fulfils both roles is unclear. To address this question we attempted to characterise pre-initiation complexes (PICs) on STAT3-responsive promoters containing the c-myc P2 promoter element (P2E) or c-fos Serum-Inducible Element (SIE). Although both promoters mediated cytokine responses in HepG2 cells, poor binding of STAT1 and STAT3 in vitro precluded isolation of active promoter complexes on the P2E. The inability of STAT3 to bind the P2E in vitro correlated with failure of the P2E to mediate cytokine-responsive gene expression in several other cell types. Thus the c-myc P2E behaves as a dual-purpose STAT3 element with anomalous characteristics in HepG2 cells.

  20. Physical and functional interactions of human endogenous retrovirus proteins Np9 and rec with the promyelocytic leukemia zinc finger protein.

    PubMed

    Denne, Miriam; Sauter, Marlies; Armbruester, Vivienne; Licht, Jonathan D; Roemer, Klaus; Mueller-Lantzsch, Nikolaus

    2007-06-01

    Only few of the human endogenous retrovirus (HERV) sequences in the human genome can produce proteins. We have previously reported that (i) patients with germ cell tumors often make antibodies against proteins encoded by HERV-K elements, (ii) expression of the HERV-K rec gene in transgenic mice can interfere with germ cell development and induce carcinoma in situ, and (iii) HERV-K np9 transcript is overproduced in many tumors including breast cancers. Here we document that both Np9 and Rec physically and functionally interact with the promyelocytic leukemia zinc finger (PLZF) tumor suppressor, a transcriptional repressor and chromatin remodeler implicated in cancer and the self-renewal of spermatogonial stem cells. Interaction is mediated via two different central and C-terminal domains of Np9 and Rec and the C-terminal zinc fingers of PLZF. One major target of PLZF is the c-myc proto-oncogene. Coexpression of Np9 and Rec with PLZF abrogates the transcriptional repression of the c-myc gene promoter by PLZF and results in c-Myc overproduction, altered expression of c-Myc-regulated genes, and corresponding effects on cell proliferation and survival. Thus, the human endogenous retrovirus proteins Np9 and Rec may act oncogenically by derepressing c-myc through the inhibition of PLZF.

  1. A Comparative Docking Strategy to Identify Polyphenolic Derivatives as Promising Antineoplastic Binders of G-quadruplex DNA c-myc and bcl-2 Sequences.

    PubMed

    Costa, Giosuè; Rocca, Roberta; Moraca, Federica; Talarico, Carmine; Romeo, Isabella; Ortuso, Francesco; Alcaro, Stefano; Artese, Anna

    2016-09-01

    Polyphenols are compounds ubiquitously expressed in plants and used for their multiple healthy effects in humans as anti-inflammatory, antimicrobial, antiviral, anticancer and immunomodulatory agents. Due to their ability to modulate the activity of multiple targets involved in carcinogenesis, polyphenols can be employed to inhibit the growth of cancer cells. Several studies reported their high affinity to different G-quadruplex DNA structures, including the oncogene promoters c-myc and bcl-2. In this work we applied a structure-based virtual screening approach in order to screen a database of polyphenolic derivatives and human metabolites against both c-myc and bcl-2 DNA G-quadruplex structures. A Delphinidine derivative was identified as the best "dual" candidate and, after molecular dynamics simulations, resulted able to well stabilize both receptors. PMID:27546043

  2. c-Myc plays a key role in TADs-induced apoptosis and cell cycle arrest in human hepatocellular carcinoma cells.

    PubMed

    Zhang, Dongdong; Qi, Junpeng; Liu, Rui; Dai, Bingling; Ma, Weina; Zhan, Yingzhuan; Zhang, Yanmin

    2015-01-01

    Cancer cell growth is complicated progression which is regulated and controlled by multiple factors including cell cycle, migration and apoptosis. In present study, we report that TADs, a novel derivative of taspine, has an essential role in resisting hepatocellular carcinoma growth (including arrest cell cycle) and migration, and inducing cell apoptosis. Our findings demonstrated that the TADs showed good inhibition on the hepatoma cell growth and migration, and good action on apoptosis induction. Using genome-wide microarray analysis, we found the down-regulated growth and apoptosis factors, and selected down-regulated genes were confirmed by Western blot. Knockdown of a checkpoint c-Myc by siRNA significantly attenuated tumor inhibition and apoptosis effects of TADs. Moreover, our results indicated TADs could simultaneously increase cyclin D1 protein levels and decrease amount of cyclin E, cyclin B1 and cdc2 of the cycle proteins, and also TADs reduced Bcl-2 expression, and upregulated Bad, Bak and Bax activities. In conclusion, these results illustrated that TADs is a key factor in growth and apoptosis signaling inhibitor, has potential in cancer therapy. PMID:26045987

  3. Evidence for multiple sequences and factors involved in c-myc RNA stability during amphibian oogenesis.

    PubMed

    Lefresne, J; Lemaitre, J M; Selo, M; Goussard, J; Mouton, C; Andeol, Y

    2001-04-01

    To investigate the molecular mechanisms regulating c-myc RNA stability during late amphibian oogenesis, a heterologous system was used in which synthetic Xenopus laevis c-myc transcripts, progressively deleted from their 3' end, were injected into the cytoplasm of two different host axolotl (Ambystoma mexicanum) cells: stage VI oocytes and progesterone-matured oocytes (unfertilized eggs; UFE). This in vivo strategy allowed the behavior of the exogenous c-myc transcripts to be followed and different regions involved in the stability of each intermediate deleted molecule to be identified. Interestingly, these specific regions differ in the two cellular contexts. In oocytes, two stabilizing regions are located in the 3' untranslated region (UTR) and two in the coding sequence (exons II and III) of the RNA. In UFE, the stabilizing regions correspond to the first part of the 3' UTR and to the first part of exon II. However, in UFE, the majority of synthetic transcripts are degraded. This degradation is a consequence of nuclear factors delivered after germinal vesicle breakdown and specifically acting on targeted regions of the RNA. To test the direct implication of these nuclear factors in c-myc RNA degradation, an in vitro system was set up using axolotl germinal vesicle extracts that mimic the in vivo results and confirm the existence of specific destabilizing factors. In vitro analysis revealed that two populations of nuclear molecules are implicated: one of 4.4-5S (50-65 kDa) and the second of 5.4-6S (90-110 kDa). These degrading nuclear factors act preferentially on the coding region of the c-myc RNA and appear to be conserved between axolotl and Xenopus. Thus, this experimental approach has allowed the identification of specific stabilizing sequences in c-myc RNA and the temporal identification of the different factors (cytoplasmic and/or nuclear) involved in post-transcriptional regulation of this RNA during oogenesis. PMID:11284969

  4. A null c-myc mutation causes lethality before 10.5 days of gestation in homozygotes and reduced fertility in heterozygous female mice.

    PubMed

    Davis, A C; Wims, M; Spotts, G D; Hann, S R; Bradley, A

    1993-04-01

    To directly assess c-myc function in cellular proliferation, differentiation, and embryogenesis, we have used homologous recombination in embryonic stem cells to generate both heterozygous and homozygous c-myc mutant ES cell lines. The mutation is a null allele at the protein level. Mouse chimeras from seven heterozygous cell lines transmitted the mutant allele to their offspring. The analysis of embryos from two clones has shown that the mutation is lethal in homozygotes between 9.5 and 10.5 days of gestation. The embryos are generally smaller and retarded in development compared with their littermates. Pathologic abnormalities include the heart, pericardium, neural tube, and delay or failure in turning of the embryo. Heterozygous females have reduced fertility owing to embryonic resorption before 9.5 days of gestation in 14% of implanted embryos. c-Myc protein is necessary for embryonic survival beyond 10.5 days of gestation; however, it appears to be dispensable for cell division both in ES cell lines and in the embryo before that time.

  5. Down-regulation of 5S rRNA by miR-150 and miR-383 enhances c-Myc-rpL11 interaction and inhibits proliferation of esophageal squamous carcinoma cells.

    PubMed

    Wang, Xinyu; Ren, Yanli; Wang, Zhiqiong; Xiong, Xiangyu; Han, Sichong; Pan, Wenting; Chen, Hongwei; Zhou, Liqing; Zhou, Changchun; Yuan, Qipeng; Yang, Ming

    2015-12-21

    5S rRNA plays an important part in ribosome biology and is over-expression in multiple cancers. In this study, we found that 5S rRNA is a direct target of miR-150 and miR-383 in esophageal squamous cell carcinoma (ESCC). Overexpression of miR-150 and miR-383 inhibited ESCC cell proliferation in vitro and in vivo. Moreover, 5S rRNA silencing by miR-150 and miR-383 might intensify rpL11-c-Myc interaction, which attenuated role of c-Myc as an oncogenic transcriptional factor and dysregulation of multiple c-Myc target genes. Taken together, our results highlight the involvement of miRNAs in ribosomal regulation during tumorigenesis.

  6. The Dysregulation of Polyamine Metabolism in Colorectal Cancer Is Associated with Overexpression of c-Myc and C/EBPβ rather than Enterotoxigenic Bacteroides fragilis Infection

    PubMed Central

    Snezhkina, Anastasiya V.; Lipatova, Anastasiya V.; Sadritdinova, Asiya F.; Kardymon, Olga L.; Fedorova, Maria S.; Kaprin, Andrey D.

    2016-01-01

    Colorectal cancer is one of the most common cancers in the world. It is well known that the chronic inflammation can promote the progression of colorectal cancer (CRC). Recently, a number of studies revealed a potential association between colorectal inflammation, cancer progression, and infection caused by enterotoxigenic Bacteroides fragilis (ETBF). Bacterial enterotoxin activates spermine oxidase (SMO), which produces spermidine and H2O2 as byproducts of polyamine catabolism, which, in turn, enhances inflammation and tissue injury. Using qPCR analysis, we estimated the expression of SMOX gene and ETBF colonization in CRC patients. We found no statistically significant associations between them. Then we selected genes involved in polyamine metabolism, metabolic reprogramming, and inflammation regulation and estimated their expression in CRC. We observed overexpression of SMOX, ODC1, SRM, SMS, MTAP, c-Myc, C/EBPβ (CREBP), and other genes. We found that two mediators of metabolic reprogramming, inflammation, and cell proliferation c-Myc and C/EBPβ may serve as regulators of polyamine metabolism genes (SMOX, AZIN1, MTAP, SRM, ODC1, AMD1, and AGMAT) as they are overexpressed in tumors, have binding site according to ENCODE ChIP-Seq data, and demonstrate strong coexpression with their targets. Thus, increased polyamine metabolism in CRC could be driven by c-Myc and C/EBPβ rather than ETBF infection. PMID:27433286

  7. Susceptibility of striatal neurons to excitotoxic injury correlates with basal levels of Bcl-2 and the induction of P53 and c-Myc immunoreactivity.

    PubMed

    Liang, Zhong-Qin; Wang, Xiao-Xia; Wang, Yumei; Chuang, De-Maw; DiFiglia, Marian; Chase, Thomas N; Qin, Zheng-Hong

    2005-11-01

    The present studies evaluated the potential contribution of Bcl-2, p53, and c-Myc to the differential vulnerability of striatal neurons to the excitotoxin quinolinic acid (QA). In normal rat striatum, Bcl-2 immunoreactivity (Bcl-2-i) was most intense in large aspiny interneurons including choline acetyltransferase positive (CAT+) and parvalbumin positive (PARV+) neurons, but low in a majority of medium-sized neurons. In human brain, intense Bcl-2-i was seen in large striatal neurons but not in medium-sized spiny projection neurons. QA produced degeneration of numerous medium-sized neurons, but not those enriched in Bcl-2-i. Many Bcl-2-i-enriched interneurons including those with CAT+ and PARV+ survived QA injection, while medium-sized neurons labeled for calbindin D-28K (CAL D-28+) did not. In addition, proapoptotic proteins p53-i and c-Myc-i were robustly induced in medium-sized neurons, but not in most large neurons. The selective vulnerability of striatal medium spiny neurons to degeneration in a rodent model of Huntington's disease appears to correlate with their low levels of Bcl-2-i and high levels of induced p53-i and c-Myc-i. PMID:15922606

  8. The tight junction protein ZO-2 blocks cell cycle progression and inhibits cyclin D1 expression.

    PubMed

    Gonzalez-Mariscal, Lorenza; Tapia, Rocio; Huerta, Miriam; Lopez-Bayghen, Esther

    2009-05-01

    ZO-2 is an adaptor protein of the tight junction that belongs to the MAGUK protein family. ZO-2 is a dual localization protein that in sparse cultures is present at the cell borders and the nuclei, whereas in confluent cultures it is concentrated at the cell boundaries. Here we have studied whether ZO-2 is able to regulate the expression of cyclin D1 (CD1) and cell proliferation. We have demonstrated that ZO-2 negatively regulates CD1 transcription by interacting with c-Myc at an E box present in CD1 promoter. We have further found that ZO-2 transfection into epithelial MDCK cells triggers a diminished expression of CD1 protein and decreases the rate of cell proliferation in a wound-healing assay.

  9. Somatostatin reduces sup 3 H-thymidine incorporation and c-myc, but not thyroglobulin ribonucleic acid levels in human thyroid follicular cells in vitro

    SciTech Connect

    degli Uberti, E.C.; Hanau, S.; Rossi, R.; Piva, R.; Margutti, A.; Trasforini, G.; Pansini, G.; del Senno, L. )

    1991-06-01

    The action of somatostatin (SRIH) on {sup 3}H-thymidine (thy) incorporation and on c-myc and thyroglobulin RNA levels in a suspension of follicles from normal and goitrous human thyroid was examined. SRIH, at 10{sup {minus} 7} M concentration, inhibited basal thy incorporation (maximally by 4 h lasting for up 24 h), which effect was greater in goiter than in normal thyroid and was also detected in growing adherent epithelial cells. Moreover, in a follicle suspension SRIH prevented TSH-stimulated thy incorporation, both in normal and in goitrous thyroid. Basal expression of c-myc RNA was not affected by SRIH in either tissue, whereas the TSH-stimulated c-myc RNA level was significantly reduced in goiter. No effect of SRIH was observed on basal or TSH-stimulated thyroglobulin RNA levels. SRIH did not alter basal cAMP concentrations in normal or goitrous follicles, but it significantly reduced TSH-stimulated cAMP accumulation both in normal thyroid and in goiter. Overall, our data indicate a direct inhibitory action of SRIH on growth, but not on differentiation, of human thyroid, probably by a mechanism not entirely cAMP dependent.

  10. Factor-binding element in the human c-myc promoter involved in transcriptional regulation by transforming growth factor. beta. 1 and by the retinoblastoma gene product

    SciTech Connect

    Pietenpol, J.A.; Stein, R.W.; Moses, H.L. ); Muenger, K.; Howley, P.M. )

    1991-11-15

    Previous studies have shown that transforming growth factor {beta}1 (TGF-{beta}1) inhibition of keratinocyte proliferation involves suppression of c-myc transcription, and indirect evidence has suggested that the retinoblastoma gene product (pRB) may be involved in this process. In this study, transient expression of pRB in skin keratinocytes was shown to repress transcription of the human c-myc promoter region was required for regulation by both TGF-{beta}1 and pRB. These sequences, termed the TGF-{beta} control element (TCE), lie between positions {minus}86 and {minus}63 relative to the P1 transcription start site. Oligonucleotides containing the TCE bound to several nuclear factors in mobility-shift assays using extracts from cells with or without normal pRB. Binding of some factors was inhibited by TGF-{beta}1 treatment of TGF-{beta}-sensitive but not TGF-{beta}-insensitive cells. These data indicate that pRB can suppress c-myc transcription and growth inhibition.

  11. Cooperative antiproliferative effect of coordinated ectopic expression of DLC1 tumor suppressor protein and silencing of MYC oncogene expression in liver cancer cells: Therapeutic implications

    PubMed Central

    Yang, Xuyu; Zhou, Xiaoling; Tone, Paul; Durkin, Marian E.; Popescu, Nicholas C.

    2016-01-01

    Human hepatocellular carcinoma (HCC) is one of the most common types of cancer and has a very poor prognosis; thus, the development of effective therapies for the treatment of advanced HCC is of high clinical priority. In the present study, the anti-oncogenic effect of combined knockdown of c-Myc expression and ectopic restoration of deleted in liver cancer 1 (DLC1) expression was investigated in human liver cancer cells. Expression of c-Myc in human HCC cells was knocked down by stable transfection with a Myc-specific short hairpin (sh) RNA vector. DLC1 expression in Huh7 cells was restored by adenovirus transduction, and the effects of DLC1 expression and c-Myc knockdown on Ras homolog gene family, member A (RhoA) levels, cell proliferation, soft agar colony formation and cell invasion were measured. Downregulation of c-Myc or re-expression of DLC1 led to a marked reduction in RhoA levels, which was associated with decreases in cell proliferation, soft agar colony formation and invasiveness; this inhibitory effect was augmented with a combination of DLC1 transduction and c-Myc suppression. To determine whether liver cell-specific delivery of DLC1 was able to enhance the inhibitory effect of c-Myc knockdown on tumor growth in vivo, DLC1 vector DNA complexed with galactosylated polyethylene glycol-linear polyethyleneimine was administered by tail vein injection to mice bearing subcutaneous xenografts of Huh7 cells transfected with shMyc or control shRNA. A cooperative inhibitory effect of DLC1 expression and c-Myc knockdown on the growth of Huh7-derived tumors was observed, suggesting that targeted liver cell delivery of DLC1 and c-Myc shRNA may serve as a possible gene therapy modality for the treatment of human HCC. PMID:27446476

  12. Dose-adjusted Chemotherapy for Untreated c-MYC-positive Lymphoma

    Cancer.gov

    In this trial, adult patients with newly diagnosed Burkitt lymphoma or c-MYC-positive DLBCL will be separated into low-risk and high-risk groups; those in the low-risk group will be treated with at least three cycles of dose-adjusted EPOCH-R

  13. Targeting a c-Myc inhibitory polypeptide to specific intracellular compartments using cell penetrating peptides.

    PubMed

    Bidwell, Gene L; Davis, Aisha N; Raucher, Drazen

    2009-04-01

    The therapeutic index of current anti-cancer chemotherapeutics can be improved by two major mechanisms: 1) developing drugs which are specifically toxic to the cancer cells and 2) developing methods to deliver drugs to the tumor site. In an attempt to combine these approaches, we developed a thermally responsive polypeptide inhibitor of c-Myc. This polypeptide is based on the thermally responsive Elastin-like polypeptide (ELP). When injected systemically, ELP-fused drugs will aggregate and accumulate at the tumor site where local hyperthermia is applied. ELP was fused to a peptide which blocks c-Myc/Max dimerization (H1), thereby inhibiting transcription activation by c-Myc (ELP-H1). In this study, the cellular uptake, intracellular distribution, and potency of the Pen, Tat and Bac cell penetrating peptides fused to ELP-H1 were evaluated. While Pen-ELP-H1 and Tat-ELP-H1 were localized in the cytoplasm, Bac-ELP-H1 localized to the nucleus in a subset of the cells and was the most potent inhibitor of MCF-7 cell proliferation. This data demonstrates that ELP can be targeted to the desired cellular compartment simply by choice of the CPP used, resulting in a more potent nuclear targeted c-Myc inhibitory polypeptide which may be beneficial in cancer therapy.

  14. Coexistent rearrangements of c-MYC, BCL2, and BCL6 genes in a diffuse large B-cell lymphoma.

    PubMed

    Ueda, Chiyoko; Nishikori, Momoko; Kitawaki, Toshio; Uchiyama, Takashi; Ohno, Hitoshi

    2004-01-01

    We present a patient with stage III de novo diffuse large B-cell lymphoma. The lymphoma cells showed mature B-cell immunophenotype but lacked surface immunoglobulin (Ig) expression. Long-distance and long-distance inverse polymerase chain reaction assays to detect the oncogene/Ig gene rearrangement revealed that the cells carried 3 independent fusion genes, namely, c-MYC/Ig heavy chain gene (IgH), BCL2/IgH, and Ig lambda light chain gene/BCL6. Thus, the lymphoma cells concurrently carried t(8;14)(q24;q32), t(14;18)(q32;q21), and t(3;22)(q27;q11), which developed in association with class switching, V/D/J recombination, and somatic hypermutation, respectively. The lymphoma responded to chemoradiotherapy, and the patient has been well for 2 years, suggesting that multiple oncogene rearrangements may not necessarily be associated with poor clinical outcome.

  15. Oncogene amplification detected by in situ hybridization in radiation induced rat skin tumors. [C-myc:a3

    SciTech Connect

    Yi Jin.

    1991-02-01

    Oncogene activation may play an important role in radiation induced carcinogenesis. C-myc oncogene amplification was detected by in situ hybridization in radiation-induced rat skin tumors, including squamous and basal cell carcinomas. In situ hybridization was performed with a biotinylated human c-myc third exon probe, visualized with an avidin-biotinylated alkaline phosphate detection system. No c-myc oncogene amplification was detected in normal rat skin at very early times after exposure to ionizing radiation, which is consistent with the view that c-myc amplification is more likely to be related to carcinogenesis than to normal cell proliferation. The incorporation of tritiated thymidine into the DNA of rat skin cells showed that the proliferation of epidermal cells reached a peak on the seventh day after exposure to ionizing radiation and then decreased. No connection between the proliferation of epidermal cell and c-myc oncogene amplification in normal or irradiated rat skin was found. The results indicated that c-myc amplification as measured by in situ hybridization was correlated with the Southern bolt results, but only some of the cancer cells were amplified. The c-myc positive cells were distributed randomly within regions of the tumor and exhibited a more uniform nuclear structure in comparison to the more vacuolated c-myc negative cells. No c-myc signal was detected in unirradiated normal skin or in irradiated skin cells near the tumors. C-myc amplification appears to be cell or cell cycle specific within radiation-induced carcinomas. 28 refs., 3 figs., 3 tabs.

  16. Increased radiation-induced transformation in C3H/10T1/2 cells after transfer of an exogenous c-myc gene.

    PubMed Central

    Sorrentino, V; Drozdoff, V; Zeitz, L; Fleissner, E

    1987-01-01

    C3H/10T1/2 cells were infected with a retroviral vector expressing a mouse c-myc oncogene and a drug-selection marker. The resulting cells, morphologically indistinguishable from C3H/10T1/2, displayed a greatly enhanced sensitivity to neoplastic transformation by ionizing radiation or by a chemical carcinogen. Constitutive expression of myc therefore appears to synergize with an initial carcinogenic event, providing a function analogous to a subsequent event that apparently is required for the neoplastic transformation of these cells. This cell system should prove useful in exploring early stages in radiation-induced transformation. Images PMID:3473497

  17. Targeting of c-myc and beta-globin coding sequences to cytoskeletal-bound polysomes by c-myc 3' untranslated region.

    PubMed Central

    Hesketh, J; Campbell, G; Piechaczyk, M; Blanchard, J M

    1994-01-01

    The influence of the 3' untranslated region on mRNA localization was investigated by measuring the distribution of myc, beta-globin and hybrid myc-globin mRNAs between free, cytoskeletal-bound and membrane-bound polysomes in cells transfected with either control or chimeric gene constructs. c-myc sequences and beta-globin-coding sequences linked to the myc 3' untranslated region were present at greatest enrichment in cytoskeletal-bound polysomes. beta-Globin mRNA and myc-coding sequences linked to the beta-globin 3' untranslated region were recovered largely in the free polysomes. In situ hybridization confirmed that replacement of the c-myc 3' untranslated region by that of globin caused a relocalization of the mRNA. The results suggest that mRNA localization in differentiated eukaryotic cells depends on a mechanism that involves directional information in the 3' untranslated region of mRNAs. Images Figure 2 Figure 3 PMID:8129712

  18. Activation of NF-κB and AP-1 Mediates Hyperproliferation by Inducing β-Catenin and c-Myc in Helicobacter pylori-Infected Gastric Epithelial Cells

    PubMed Central

    Byun, Eunyoung; Park, Bohye; Lim, Joo Weon

    2016-01-01

    Purpose In the gastric mucosa of Helicobacter pylori (H. pylori)-infected patients with gastritis or adenocarcinoma, proliferation of gastric epithelial cells is increased. Hyperproliferation is related to induction of oncogenes, such as β-catenin and c-myc. Even though transcription factors NF-κB and AP-1 are activated in H. pylori-infected cells, whether NF-κB or AP-1 regulates the expression of β-catenein or c-myc in H. pylori-infected cells has not been clarified. The present study was undertaken to investigate whether H. pylori-induced activation of NF-κB and AP-1 mediates the expression of oncogenes and hyperproliferation of gastric epithelial cells. Materials and Methods Gastric epithelial AGS cells were transiently transfected with mutant genes for IκBα (MAD3) and c-Jun (TAM67) or treated with a specific NF-κB inhibitor caffeic acid phenethyl ester (CAPE) or a selective AP-1 inhibitor SR-11302 to suppress activation of NF-κB or AP-1, respecively. As reference cells, the control vector pcDNA was transfected to the cells. Wild-type cells or transfected cells were cultured with or without H. pylori. Results H. pylori induced activation of NF-κB and AP-1, cell proliferation, and expression of oncogenes (β-catenein, c-myc) in AGS cells, which was inhibited by transfection of MAD3 and TAM67. Wild-type cells and the cells transfected with pcDNA showed similar activities of NF-κB and AP-1, proliferation, and oncogene expression regardless of treatment with H. pylori. Both CAPE and SR-11302 inhibited cell proliferation and expression of oncogenes in H. pylori-infected cells. Conclusion H. pylori-induced activation of NF-κB and AP-1 regulates transcription of oncogenes and mediates hyperproliferation in gastric epithelial cells. PMID:26996564

  19. [Protein expression and purification].

    PubMed

    Růčková, E; Müller, P; Vojtěšek, B

    2014-01-01

    Production of recombinant proteins is essential for many applications in both basic research and also in medicine, where recombinant proteins are used as pharmaceuticals. This review summarizes procedures involved in recombinant protein expression and purification, including molecular cloning of target genes into expression vectors, selection of the appropriate expression system, and protein purification techniques. Recombinant DNA technology allows protein engineering to modify protein stability, activity and function or to facilitate protein purification by affinity tag fusions. A wide range of cloning systems enabling fast and effective design of expression vectors is currently available. A first choice of protein expression system is usually the bacteria Escherichia coli. The main advantages of this prokaryotic expression system are low cost and simplicity; on the other hand this system is often unsuitable for production of complex mammalian proteins. Protein expression mediated by eukaryotic cells (yeast, insect and mammalian cells) usually produces properly folded and posttranslationally modified proteins. How-ever, cultivation of insect and, especially, mammalian cells is time consuming and expensive. Affinity tagged recombinant proteins are purified efficiently using affinity chromatography. An affinity tag is a protein or peptide that mediates specific binding to a chromatography column, unbound proteins are removed during a washing step and pure protein is subsequently eluted. PMID:24945544

  20. Site-Specific Oligonucleotide Binding Represses Transcription of the Human c-myc Gene in vitro

    NASA Astrophysics Data System (ADS)

    Cooney, Michael; Czernuszewicz, Graznya; Postel, Edith H.; Flint, S. Jane; Hogan, Michael E.

    1988-07-01

    A 27-base-long DNA oligonucleotide was designed that binds to duplex DNA at a single site within the 5' end of the human c-myc gene, 115 base pairs upstream from the transcription origin P1. On the basis of the physical properties of its bound complex, it was concluded that the oligonucleotide forms a colinear triplex with the duplex binding site. By means of an in vitro assay system, it was possible to show a correlation between triplex formation at -115 base pairs and repression of c-myc transcription. The possibility is discussed that triplex formation (site-specific RNA binding to a DNA duplex) could serve as the basis for an alternative program of gene control in vivo.

  1. KDM4B and KDM4A promote endometrial cancer progression by regulating androgen receptor, c-myc, and p27kip1

    PubMed Central

    Kwan, Suet-Ying; Chen, Limo; Chen, Jin-Hong; Ying, Zuo-Lin; Zhou, Ye; Gu, Wei; Wang, Li-Hua; Cheng, Wei-Wei; Zeng, Jianfang; Wan, Xiao-Ping; Mok, Samuel C.; Wong, Kwong-Kwok; Bao, Wei

    2015-01-01

    Epidemiological evidence suggests that elevated androgen levels and genetic variation related to the androgen receptor (AR) increase the risk of endometrial cancer (EC). However, the role of AR in EC is poorly understood. We report that two members of the histone demethylase KDM4 family act as major regulators of AR transcriptional activityin EC. In the MFE-296 cell line, KDM4B and AR upregulate c-myc expression, while in AN3CA cells KDM4A and AR downregulate p27kip1. Additionally, KDM4B expression is positively correlated with AR expression in EC cell lines with high baseline AR expression, while KDM4A and AR expression are positively correlated in low-AR cell lines. In clinical specimens, both KDM4B and KDM4A expression are significantly higher in EC tissues than that in normal endometrium. Finally, patients with alterations in AR, KDM4B, KDM4A, and c-myc have poor overall and disease-free survival rates. Together, these findings demonstrate that KDM4B and KDM4A promote EC progression by regulating AR activity. PMID:26397136

  2. KDM4B and KDM4A promote endometrial cancer progression by regulating androgen receptor, c-myc, and p27kip1.

    PubMed

    Qiu, Mei-Ting; Fan, Qiong; Zhu, Zhu; Kwan, Suet-Ying; Chen, Limo; Chen, Jin-Hong; Ying, Zuo-Lin; Zhou, Ye; Gu, Wei; Wang, Li-Hua; Cheng, Wei-Wei; Zeng, Jianfang; Wan, Xiao-Ping; Mok, Samuel C; Wong, Kwong-Kwok; Bao, Wei

    2015-10-13

    Epidemiological evidence suggests that elevated androgen levels and genetic variation related to the androgen receptor (AR) increase the risk of endometrial cancer (EC). However, the role of AR in EC is poorly understood. We report that two members of the histone demethylase KDM4 family act as major regulators of AR transcriptional activityin EC. In the MFE-296 cell line, KDM4B and AR upregulate c-myc expression, while in AN3CA cells KDM4A and AR downregulate p27kip1. Additionally, KDM4B expression is positively correlated with AR expression in EC cell lines with high baseline AR expression, while KDM4A and AR expression are positively correlated in low-AR cell lines. In clinical specimens, both KDM4B and KDM4A expression are significantly higher in EC tissues than that in normal endometrium. Finally, patients with alterations in AR, KDM4B, KDM4A, and c-myc have poor overall and disease-free survival rates. Together, these findings demonstrate that KDM4B and KDM4A promote EC progression by regulating AR activity. PMID:26397136

  3. An Epigenetic Pathway Regulates Sensitivity of Breast Cancer Cells to HER2 Inhibition via FOXO/c-Myc Axis.

    PubMed

    Matkar, Smita; Sharma, Paras; Gao, Shubin; Gurung, Buddha; Katona, Bryson W; Liao, Jennifer; Muhammad, Abdul Bari; Kong, Xiang-Cheng; Wang, Lei; Jin, Guanghui; Dang, Chi V; Hua, Xianxin

    2015-10-12

    Human epidermal growth factor receptor 2 (HER2) is upregulated in a subset of human breast cancers. However, the cancer cells often quickly develop an adaptive response to HER2 kinase inhibitors. We found that an epigenetic pathway involving MLL2 is crucial for growth of HER2(+) cells and MLL2 reduces sensitivity of the cancer cells to a HER2 inhibitor, lapatinib. Lapatinib-induced FOXO transcription factors, normally tumor-suppressing, paradoxically upregulate c-Myc epigenetically in concert with a cascade of MLL2-associating epigenetic regulators to dampen sensitivity of the cancer cells to lapatinib. An epigenetic inhibitor suppressing c-Myc synergizes with lapatinib to suppress cancer growth in vivo, partly by repressing the FOXO/c-Myc axis, unraveling an epigenetically regulated FOXO/c-Myc axis as a potential target to improve therapy. PMID:26461093

  4. Overexpression of c-myc is associated with adverse clinical features and worse overall survival in multiple myeloma.

    PubMed

    Szabo, Agoston Gyula; Gang, Anne Ortved; Pedersen, Mette Ølgod; Poulsen, Tim Svenstrup; Klausen, Tobias Wirenfeldt; Nørgaard, Peter

    2016-11-01

    The role of c-myc in multiple myeloma (MM) is controversial. We conducted a retrospective study of 117 patients with MM diagnosed between 2004 and 2010 at Herlev Hospital. Immunohistochemistry (IHC) and fluorescent in situ hybridization (FISH) were performed on tissue microarrays (TMAs) made from diagnostic bone marrow aspirates. Clinical data were obtained from the Danish Multiple Myeloma Database (DMMD). Overexpression of c-myc was found in 40% of patients. MYC translocation was found in 10% of patients. Overexpression of c-myc was not associated with MYC translocation. Overexpression of c-myc was associated with hypercalcemia (p = 0.02) and extramedullary myeloma (p < 0.01). Overexpression of c-myc was associated with shorter overall survival (OS) by multivariable analysis of the entire patient cohort [HR 1.92 (1.06-3.45), p = 0.03] and univariable analysis of high-dose-therapy (HDT)-ineligible patients [HR 2.01 (1.05-3.86), p = 0.04]. Further studies of c-myc overexpression in larger cohorts of patients with MM are warranted. PMID:27243588

  5. ANXA1 inhibits miRNA-196a in a negative feedback loop through NF-kB and c-Myc to reduce breast cancer proliferation

    PubMed Central

    Yuan, Yi; Anbalagan, Durkeshwari; Lee, Lay Hoon; Samy, Ramar Perumal; Shanmugam, Muthu K.; Kumar, Alan Prem; Sethi, Gautam; Lobie, Peter E.; Lim, Lina H.K.

    2016-01-01

    MiRNAs are endogenous ~22 nt RNAs which play critical regulatory roles in a wide range of biological and pathological processes, which can act as oncogenes or tumor suppressor genes depending on their target genes. We have recently shown that ANXA1 inhibits the expression of miRNAs including miR196a. Here, we show that miR196a was highly expressed in ER+ MCF-7 breast cancer cells when compared to normal mammary gland cells, with expression levels negatively correlating to ANXA1. ANXA1 inhibits the biogenesis of oncogenic miR-196a by suppressing primary-miR196a indirectly through the stimulation of c-myc and NFkB expression and activity in breast cancer cells. In a negative feedback loop, miR-196a directly inhibits ANXA1 and enhances breast cancer cell proliferation in vitro. Finally, miR196a promotes breast tumor growth in vivo. This study reports a novel regulatory circuit between ANXA1, NF-kB, c-myc and miR-196a which regulates breast cancer cell proliferation and tumor growth. PMID:27105503

  6. Microarray analysis of E-box binding-related gene expression in young and replicatively senescent human fibroblasts.

    PubMed

    Semov, Alexandre; Marcotte, Richard; Semova, Natalie; Ye, Xiangyun; Wang, Eugenia

    2002-03-01

    An E-box (CACGTG) designer microarray was developed to monitor a group of genes whose expressions share a particular regulatory mode. Sensitivity and specificity of microarray hybridization, as well as variability of microarray data, were evaluated. This designer microarray was used to generate expression profiles of E-box binding-related genes in WI-38 fibroblast cultures at three different growth states: low-passage replicating, low-passage contact-inhibited quiescent, and replicatively senescent. Microarray gene screening reveals that quiescent and senescent cells, in comparison with replicating ones, are characterized by downregulation of Pam, a protein associated with c-Myc, and upregulation of Mad family genes, Max dimerization proteins. Moreover, quiescence and senescence can be distinguished by increased expression of Irlb, c-Myc transcription factor, and Miz-1, c-Myc-interacting Zn finger protein 1, only in the former state. Senescence is characterized by downregulation of Id4, inhibitor of DNA binding 4, and Mitf, microphthalmia-associated transcription factor, in comparison with young replicating and quiescent states. Differential expression of genes detected by microarray hybridization was independently confirmed by reverse transcription polymerase chain reaction technique. Alterations in the expression of E-box-binding transcription factors and c-Myc-binding proteins demonstrate the importance of these genes in establishing the contact-inhibited quiescent or senescent phenotypes.

  7. Small-molecule inhibition of c-MYC:MAX leucine zipper formation is revealed by ion mobility mass spectrometry.

    PubMed

    Harvey, Sophie R; Porrini, Massimiliano; Stachl, Christiane; MacMillan, Derek; Zinzalla, Giovanna; Barran, Perdita E

    2012-11-28

    The leucine zipper interaction between MAX and c-MYC has been studied using mass spectrometry and drift time ion mobility mass spectrometry (DT IM-MS) in addition to circular dichroism spectroscopy. Peptides comprising the leucine zipper sequence with (c-MYC-Zip residues 402-434) and without a postulated small-molecule binding region (c-MYC-ZipΔDT residues 406-434) have been synthesized, along with the corresponding MAX leucine zipper (MAX-Zip residues 74-102). c-MYC-Zip:MAX-Zip complexes are observed both in the absence and in the presence of the reported small-molecule inhibitor 10058-F4 for both forms of c-MYC-Zip. DT IM-MS, in combination with molecular dynamics (MD), shows that the c-MYC-Zip:MAX-Zip complex [M+5H](5+) exists in two conformations, one extended with a collision cross section (CCS) of 1164 ± 9.3 Å(2) and one compact with a CCS of 982 ± 6.6 Å(2); similar values are observed for the two forms of c-MYC-ZipΔDT:MAX-Zip. Candidate geometries for the complexes have been evaluated with MD simulations. The helical leucine zipper structure previously determined from NMR measurements (Lavigne, P.; et al. J. Mol. Biol. 1998, 281, 165), altered to include the DT region and subjected to a gas-phase minimization, yields a CCS of 1247 Å(2), which agrees with the extended conformation we observe experimentally. More extensive MD simulations provide compact complexes which are found to be highly disordered, with CCSs that correspond to the compact form from experiment. In the presence of the ligand, the leucine zipper conformation is completely inhibited and only the more disordered species is observed, providing a novel method to study the effect of interactions of disordered systems and subsequent inhibition of the formation of an ordered helical complex.

  8. Microwave-assisted synthesis of phenanthroimidazole derivatives as stabilizer of c-myc G-quadruplex DNA.

    PubMed

    Liao, Siyan; Zhang, Zhao; Wu, Qiong; Wang, Xicheng; Mei, Wenjie

    2014-11-15

    c-myc G-quadruplex DNA, which plays a central role in tumor progression and resistance, has been extensively investigated as potential target of antitumor drugs. In this paper, a series of phenanthroimidazole derives have been synthesized under irradiation of microwave in yields of 51–80%. The antitumor activity of these compounds against various tumor cells has been evaluated, and the results show that these compounds exhibit great inhibition to MDA-MB-231, MCF-7 and Hela cells, especially 5 inhibit the growth of MDA-MB-231 cells with IC50 about 3.6 lM. The further studies show that 5 can bind and stabilize c-myc G4 DNA in p–p stacking mode, which confirmed by the hypochromise in the electronic spectra of 5 with the increasing of c-myc G4 DNA. When dealt with 5, the strength of CD signal attributed to c-myc G4 DNA is decreased and the FRET melting point of c-myc G4 DNA is increased. Moreover, the molecule docking calculation was conducted to show that 5 suitably stack onto the 50 G-quartet surface, and parallels to the surfaces of the G5 and G-quartet consisting of G7, G11, G16, and G20. As a result, the replication of c-myc oligomers is blocked by 5. In a word, this type of phenanthroimidazole derives can act as potential inhibitor against breast cancer cells by binding and stabilizing c-myc G4 DNA through p–p stacking.

  9. Critical B-lymphoid cell intrinsic role of endogenous MCL-1 in c-MYC-induced lymphomagenesis

    PubMed Central

    Grabow, S; Kelly, G L; Delbridge, A R D; Kelly, P N; Bouillet, P; Adams, J M; Strasser, A

    2016-01-01

    Evasion of apoptosis is critical for tumorigenesis, and sustained survival of nascent neoplastic cells may depend upon the endogenous levels of pro-survival BCL-2 family members. Indeed, previous studies using gene-targeted mice revealed that BCL-XL, but surprisingly not BCL-2, is critical for the development of c-MYC-induced pre-B/B lymphomas. However, it remains unclear whether another pro-survival BCL-2 relative contributes to their development. MCL-1 is an intriguing candidate, because it is required for cell survival during early B-lymphocyte differentiation. It is expressed abnormally high in several types of human B-cell lymphomas and is implicated in their resistance to chemotherapy. To test the B-cell intrinsic requirement for endogenous MCL-1 in lymphoma development, we conditionally deleted Mcl-1 in B-lymphoid cells of Eμ-Myc transgenic mice. We found that MCL-1 loss in early B-lymphoid progenitors delayed MYC-driven lymphomagenesis. Moreover, the lymphomas that arose when MCL-1 levels were diminished appeared to have been selected for reduced levels of BIM and/or increased levels of BCL-XL. These results underscore the importance of MCL-1 in lymphoma development and show that alterations in the levels of other cell death regulators can compensate for deficiencies in MCL-1 expression. PMID:26962682

  10. Modulation of expression of genes encoding nuclear proteins following exposure to JANUS neutrons or {gamma}-rays

    SciTech Connect

    Woloschak, G.E.; Chang-Liu, Chin-Mei

    1994-05-01

    Previous work has shown that exposure of cells to ionizing radiations causes modulation of a variety of genes, including those encoding c-fos, interleukin-1, tumor necrosis factor, and cytoskeletal elements. The experiments reported herein were designed to examine the effects of either JANUS neutron or {gamma}-ray exposure on expression of genes encoding nucleus-associated proteins (H4-histone, c-jun, c-myc, Rb, and p53). Cycling Syrian hamster embryo cells were irradiated with varying doses and dose rates of either JANUS fission-spectrum neutrons or {gamma}-rays; after incubation of the cell cultures for 1 h following radiation exposure, mRNA was harvested and analyzed by Northern blot. Results revealed induction of transcripts for c-jun, H4-histone, and (to a lesser extent) Rb following {gamma}-ray but not following neutron exposure. Expression of p53 and c-myc genes was unaffected by radiation exposure. Radiations at different doses and dose rates were compared for each of the genes studied.

  11. Antileukemia Effect of Ciclopirox Olamine Is Mediated by Downregulation of Intracellular Ferritin and Inhibition β-Catenin-c-Myc Signaling Pathway in Glucocorticoid Resistant T-ALL Cell Lines

    PubMed Central

    Zhang, Ge; Gu, Ling; Zhang, Yanle; Gao, Ju; Wei, Yuquan

    2016-01-01

    Ciclopirox olamine (CPX) is an antifungal drug that has been reported to have antitumor effects. In this study we investigated the antileukemia effects and the possible mechanisms of CPX on glucocorticoid (GC)-resistant T-cell acute lymphoblastic leukemia (T-ALL) cell lines. The results indicated that CPX inhibited the growth of GC-resistant T-ALL cells in a time- and dose-dependent manner, and this effect was closely correlated with the downregulation of intracellular ferritin. CPX induced cell cycle arrest at G1 phase by upregulation of cyclin-dependent kinase (CDK) inhibitor of p21 and downregulation of the expressions of cyclin D, retinoblastoma protein (Rb), and phosphorylated Rb (pRb). CPX also enhanced apoptotic cell death by downregulation of anti-apoptotic proteins such as Bcl-2, Bcl-xL, and Mcl-1. More importantly, CPX demonstrated a strong synergistic antileukemia effect with GC and this effect was mediated, at least in part, by inhibition of the β-catenin-c-Myc signaling pathway. These findings suggest that CPX could be a promising antileukemia drug, and modulation of the intracellular ferritin expression might be an effective method in the treatment of ALL. Therefore, integrating CPX into the current GC-containing ALL protocols could lead to the improvement of the outcome of ALL, especially GC-resistant ALL. PMID:27551974

  12. Antileukemia Effect of Ciclopirox Olamine Is Mediated by Downregulation of Intracellular Ferritin and Inhibition β-Catenin-c-Myc Signaling Pathway in Glucocorticoid Resistant T-ALL Cell Lines.

    PubMed

    Wu, Jianrong; Liu, Huajun; Zhang, Ge; Gu, Ling; Zhang, Yanle; Gao, Ju; Wei, Yuquan; Ma, Zhigui

    2016-01-01

    Ciclopirox olamine (CPX) is an antifungal drug that has been reported to have antitumor effects. In this study we investigated the antileukemia effects and the possible mechanisms of CPX on glucocorticoid (GC)-resistant T-cell acute lymphoblastic leukemia (T-ALL) cell lines. The results indicated that CPX inhibited the growth of GC-resistant T-ALL cells in a time- and dose-dependent manner, and this effect was closely correlated with the downregulation of intracellular ferritin. CPX induced cell cycle arrest at G1 phase by upregulation of cyclin-dependent kinase (CDK) inhibitor of p21 and downregulation of the expressions of cyclin D, retinoblastoma protein (Rb), and phosphorylated Rb (pRb). CPX also enhanced apoptotic cell death by downregulation of anti-apoptotic proteins such as Bcl-2, Bcl-xL, and Mcl-1. More importantly, CPX demonstrated a strong synergistic antileukemia effect with GC and this effect was mediated, at least in part, by inhibition of the β-catenin-c-Myc signaling pathway. These findings suggest that CPX could be a promising antileukemia drug, and modulation of the intracellular ferritin expression might be an effective method in the treatment of ALL. Therefore, integrating CPX into the current GC-containing ALL protocols could lead to the improvement of the outcome of ALL, especially GC-resistant ALL. PMID:27551974

  13. Proto-oncogenes and p53 protein expression in normal cervical stratified squamous epithelium and cervical intra-epithelial neoplasia.

    PubMed

    Ngan, H Y; Liu, S S; Yu, H; Liu, K L; Cheung, A N

    1999-10-01

    The aim of this study was to study the protein expression of six proto-oncogenes (epidermal growth factor receptor (EGFR), c-fms, c-myc, c-kit, c-erbB-2 and pan-ras) and one tumour suppressor gene (TP53), by immunohistochemical staining of normal cervical stratified squamous epithelium and cervical intra-epithelial neoplasia (CIN). Paraffin sections of 45 normal cervical specimens, 38 CIN grade one (CIN1), 37 CIN2 and 43 CIN3 were studied. An immunohistochemical (IHC) score was derived from the intensity of staining and the percentages of cells stained. In normal cervical specimens, a higher IHC score was found with EGFR and c-fms in superficial (S), intermediate (I) and parabasal (PB) cells compared with basal cells. In contrast, a higher IHC score was found with c-erbB-2 in basal cells in normal cervical specimens. Dysplastic cells in CIN had a higher IHC score with c-myc and c-erbB-2 than normal S/I and PB cells. Dysplastic cells had a higher score with EGFR than normal basal cells. However, a higher IHC score with EGFR and c-fms was found in normal S/I cells than dysplastic cells. These findings suggested that EGFR and c-fms were activated in more differentiated normal cells but were less active in less differentiated normal basal cells. However, EGFR was reactivated in dysplastic cells. Meanwhile, c-erbB-2 was activated in less differentiated normal basal cells and dysplastic cells, and was less active in differentiated normal cells. c-myc was activated in dysplastic cells. c-fms was more active in more differentiated normal cells and was not activated in less differentiated or dysplastic cells. c-kit, pan-ras and TP53 were not activated in normal nor dysplastic cervical cells. These results suggest EGFR, c-erbB-2 and c-myc may be important proto-oncogenes in CIN and that antibodies or anti-genes targeted against them may alter the progress of CIN to invasive cancer.

  14. Cadmium-induced cell transformation and tumorigenesis are associated with transcriptional activation of c-fos, c-jun, and c-myc proto-oncogenes: role of cellular calcium and reactive oxygen species.

    PubMed

    Joseph, P; Muchnok, T K; Klishis, M L; Roberts, J R; Antonini, J M; Whong, W Z; Ong, T

    2001-06-01

    The molecular mechanisms of carcinogenesis by cadmium were studied using BALB/c-3T3 cell transformation and nude mouse tumorigenesis models. BALB/c-3T3 cells transformed with cadmium chloride were subcutaneously injected into nude mice to develop tumors and the cell lines derived from these tumors were used in the present study. The proto-oncogenes c-fos and c-jun were overexpressed in 100% (10 out of 10) of the cell lines, while a statistically significant overexpression of c-myc was observed in 40% (4 out of 10) of the cell lines. Analysis of tumor cells stained with fluorescent dyes specific for reactive oxygen species revealed that these cells possessed markedly higher levels of superoxide anion and hydrogen peroxide compared with the nontransformed cells. Similarly, the intracellular calcium level was higher in the tumor cells compared with the nontransformed cells. Overexpression of the proto-oncogenes in these cells was blocked by treating the cells with superoxide dismutase, catalase, and 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetra acetoxy methyl ester (BAPTA/AM), which are scavengers of superoxide anion, hydrogen peroxide, and calcium, respectively. This confirmed that the overexpression of the proto-oncogenes in the tumor cells required elevated intracellular levels of reactive oxygen species and calcium. In addition to the scavengers of reactive oxygen species and calcium, inhibitors specific for transcription (actinomycin D), protein kinase C (RO-31-8220), and MAP kinase (PD 98059) also blocked the cadmium-induced overexpression of the proto-oncogenes in the tumor cells. Exposure of the nontransformed BALB/c-3T3 cells to 20 microM cadmium chloride for 1 h caused elevated intracellular levels of superoxide anion, hydrogen peroxide, and calcium, with corresponding increases in the expression levels of c-fos, c-jun, and c-myc. As in the case of the tumor cells, treating the nontransformed cells with the various modulators prior to their exposure to

  15. Effect of c-myc on the ultrastructural structure of cochleae in guinea pigs with noise induced hearing loss

    SciTech Connect

    Han, Yu; Zhong, Cuiping; Hong, Liu; Wang, Ye; Qiao, Li; Qiu, Jianhua

    2009-12-18

    Noise over-stimulation may induce hair cells loss and hearing deficit. The c-myc oncogene is a major regulator for cell proliferation, growth, and apoptosis. However, the role of this gene in the mammalian cochlea is still unclear. The study was designed to firstly investigate its function under noise condition, from the aspect of cochlear ultrastructural changes. We had established the adenoviral vector of c-myc gene and delivered the adenovirus suspension into the scala tympani of guinea pigs 4 days before noise exposure. The empty adenoviral vectors were injected as control. Then, all subjects were exposed to 4-kHz octave-band noise at 110 dB SPL for 8 h/day, 3 days consecutively. Auditory thresholds were assessed by auditory brainstem response, prior to and 7 days following noise exposure. On the seventh days after noise exposure, the cochlear sensory epithelia surface was observed microscopically and the cochleae were taken to study the ultrastructural changes. The results indicated that auditory threshold shift after noise exposure was higher in the ears treated with Ad.EGFP than that treated with Ad.c-myc-EGFP. Stereocilia loss and the disarrangement of outer hair cells were observed, with greater changes found in the Ad.EGFP group. Also, the ultrastructure changes were severe in the Ad.EGFP group, but not obvious in the Ad.c-myc-EGFP group. Therefore, c-myc gene might play an unexpected role in hearing functional and morphological protection from acoustic trauma.

  16. Nuclear localization of vascular endothelial growth factor-D and regulation of c-Myc-dependent transcripts in human lung fibroblasts.

    PubMed

    El-Chemaly, Souheil; Pacheco-Rodriguez, Gustavo; Malide, Daniela; Meza-Carmen, Victor; Kato, Jiro; Cui, Ye; Padilla, Philip I; Samidurai, Arun; Gochuico, Bernadette R; Moss, Joel

    2014-07-01

    Lymphangiogenesis and angiogenesis are processes that are, in part, regulated by vascular endothelial growth factor (VEGF)-D. The formation of lymphatic structures has been implicated in multiple lung diseases, including pulmonary fibrosis. VEGF-D is a secreted protein produced by fibroblasts and macrophages, which induces lymphangiogenesis by signaling via VEGF receptor-3, and angiogenesis through VEGF receptor-2. VEGF-D contains a central VEGF homology domain, which is the biologically active domain, with flanking N- and C-terminal propeptides. Full-length VEGF-D (∼ 50 kD) is proteolytically processed in the extracellular space, to generate VEGF homology domain that contains the VEGF-D receptor-binding sites. Here, we report that, independent of its cell surface receptors, full-length VEGF-D accumulated in nuclei of fibroblasts, and that this process appears to increase with cell density. In nuclei, full-length VEGF-D associated with RNA polymerase II and c-Myc. In cells depleted of VEGF-D, the transcriptionally regulated genes appear to be modulated by c-Myc. These findings have potential clinical implications, as VEGF-D was found in fibroblast nuclei in idiopathic pulmonary fibrosis, a disease characterized by fibroblast proliferation. These findings are consistent with actions of full-length VEGF-D in cellular homeostasis in health and disease, independent of its receptors.

  17. Far upstream element-binding protein 1 is a prognostic biomarker and promotes nasopharyngeal carcinoma progression

    PubMed Central

    Liu, Z-H; Hu, J-L; Liang, J-Z; Zhou, A-J; Li, M-Z; Yan, S-M; Zhang, X; Gao, S; Chen, L; Zhong, Q; Zeng, M-S

    2015-01-01

    Nasopharyngeal carcinoma (NPC) is a malignant epithelial tumor with tremendous invasion and metastasis capacities, and it has a high incidence in southeast Asia and southern China. Previous studies identified that far upstream element-binding protein 1 (FBP1), a transcriptional regulator of c-Myc that is one of the most frequently aberrantly expressed oncogenes in various human cancers, including NPC, is an important biomarker for many cancers. Our study aimed to investigate the expression and function of FBP1 in human NPC. Quantitative real-time RT-PCR (qRT-PCR), western blot and immunohistochemical staining (IHC) were performed in NPC cells and biopsies. Furthermore, the effect of FBP1 knockdown on cell proliferation, colony formation, side population tests and tumorigenesis in nude mice were measured by MTT, clonogenicity analysis, flow cytometry and a xenograft model, respectively. The results showed that the mRNA and protein levels of FBP1, which are positively correlated with c-Myc expression, were substantially higher in NPC than that in nasopharyngeal epithelial cells. IHC revealed that the patients with high FBP1 expression had a significantly poorer prognosis compared with the patients with low expression (P=0.020). In univariate analysis, high FBP1 and c-Myc expression predicted poorer overall survival (OS) and poorer progression-free survival. Multivariate analysis indicated that high FBP1 and c-Myc expression were independent prognostic markers. Knockdown of FBP1 reduced cell proliferation, clonogenicity and the ratio of side populations, as well as tumorigenesis in nude mice. These data indicate that FBP1 expression, which is closely correlated with c-Myc expression, is an independent prognostic factor and promotes NPC progression. Our results suggest that FBP1 can not only serve as a useful prognostic biomarker for NPC but also as a potential therapeutic target for NPC patients. PMID:26469968

  18. Expression of proto-oncogenes and gene mutation of sarcomeric proteins in patients with hypertrophic cardiomyopathy.

    PubMed

    Kai, H; Muraishi, A; Sugiu, Y; Nishi, H; Seki, Y; Kuwahara, F; Kimura, A; Kato, H; Imaizumi, T

    1998-09-21

    Several mutations of cardiac beta-myosin heavy chain (beta-MHC) gene were reported in patients with hypertrophic cardiomyopathy (HCM). Involvement of proto-oncogenes has been shown in the mechanism of experimental cardiac hypertrophy. This study sought to examine the effects of c-H-ras and c-myc expression in the steady-state myocardium on hypertrophic changes and to evaluate the possible interaction between beta-MHC mutation and proto-oncogene expression in HCM. Endomyocardial biopsy was performed in 17 HCM patients (5 beta-MHC mutations and 1 troponin T mutation) and 7 control subjects (no mutation). Reverse transcription-polymerase chain reaction analysis revealed c-H-ras expression in all members of both groups. Cardiomyocyte size was correlated with the expression level of c-H-ras (P<0.001), and c-H-ras expression was upregulated in HCM patients (P<0.01). HCM patients with a beta-MHC mutation had the higher c-H-ras expression than did control subjects or patients without a mutation (P<0.01). c-myc mRNA was expressed in 7 of 17 HCM patients but not in control subjects. Myocyte size was greater in c-myc-positive HCM patients than in control subjects and c-myc-negative HCM patients (P<0.001 and P<0.05, respectively). The proto-oncogene expression did not affect clinical findings, myocardial fibrosis, or disarray. In conclusion, c-H-ras and c-myc expression in the steady-state myocardium may play a role in the hypertrophic mechanism in HCM. It is possible that ss-MHC gene mutation has some effect on the regulation of proto-oncogene expression in HCM.

  19. Marek's disease virus-encoded analog of microRNA-155 activates the oncogene c-Myc by targeting LTBP1 and suppressing the TGF-β signaling pathway.

    PubMed

    Chi, Jia-Qi; Teng, Man; Yu, Zu-Hua; Xu, Hui; Su, Jing-Wei; Zhao, Pu; Xing, Guang-Xu; Liang, Hong-De; Deng, Rui-Guang; Qu, Liang-Hu; Zhang, Gai-Ping; Luo, Jun

    2015-02-01

    Marek's disease virus (MDV) is a representative alpha herpes virus able to induce rapid-onset T-cell lymphoma in its natural host and regarded as an ideal model for the study of virus-induced tumorigenesis. Recent studies have shown that the mdv1-miR-M4-5p, a viral analog of cellular miR-155, is critical for MDV׳s oncogenicity. However, the precise mechanism whereby it was involved in MD lymphomagenesis remained unknown. We have presently identified the host mRNA targets of mdv1-miR-M4-5 and identified the latent TGF-β binding protein 1 (LTBP1) as a critical target for it. We found that during MDV infection, down-regulation of LTBP1 expression by mdv1-miR-M4-5p led to a significant decrease of the secretion and activation of TGF-β1, with suppression of TGF-β signaling and a significant activation of expression of c-Myc, a well-known oncogene which is critical for virus-induced tumorigenesis. Our findings reveal a novel and important mechanism of how mdv1-miR-M4-5p potentially contributes to MDV-induced tumorigenesis.

  20. Modulation of telomerase activity, bTERT and c-Myc induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin during Bovine Herpesvirus 1 infection in MDBK cells.

    PubMed

    Fiorito, Filomena; Cantiello, Antonietta; Granato, Giovanna Elvira; Marfè, Gabriella; Ciarcia, Roberto; Florio, Salvatore; Pagnini, Ugo; De Martino, Luisa; Iovane, Giuseppe

    2014-02-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) influences infection of kidney cells (MDBK) with Bovine Herpesvirus 1 (BHV-1) through an increase in virus replication and an acceleration of BHV-1-induced apoptosis. Previously our group demonstrated that BHV-1, in the early stages of infection, significantly up-regulates telomerase activity in MDBK cells, while, in the late phases of infection, when BHV-1-induced apoptosis occurred, a down-regulation of telomerase activity was detected. Hence, herein, for the first time, we described the influences of TCDD on telomerase activity during virus infection. In kidney cells (MDBK) infected with BHV-1 and exposed to different doses of TCDD we explored telomerase activity by TRAP assay. Concomitantly, we examined protein levels of both bTERT and c-Myc by Western blot analysis. In all groups, TCDD induced an acceleration in down-regulation of telomerase activity. Particularly, TCDD drastically and significantly decreased telomerase activity when virus-induced apoptosis took place. This result was accompanied from an accelerated down-regulation of bTERT and c-Myc. Finally, in the presence of TCDD, we evidenced a dose-dependent overexpression of aryl hydrocarbon receptor. Hence, our data suggest that TCDD, through a significant acceleration in down-regulation of telomerase activity, bTERT and c-Myc, may contribute to accelerated BHV-1-induced apoptosis.

  1. Transcriptome Analysis of WHV/c-myc Transgenic Mice Implicates Cytochrome P450 Enzyme 17A1 as a Promising Biomarker for Hepatocellular Carcinoma.

    PubMed

    Wang, Feng; Huang, Jian; Zhu, Zhu; Ma, Xiao; Cao, Li; Zhang, Yongzhi; Chen, Wei; Dong, Yang

    2016-09-01

    Early detection of hepatocellular carcinoma (HCC) is critical for successful treatment and favorable prognosis. To identify novel HCC biomarkers, we used the WHV/c-myc transgenic (Tg) mice, an animal model of hepatocarcinogenesis. By analyzing their gene expression profiling, we investigated differentially expressed genes in livers of wild-type and Tg mice. The cytochrome P450, family 17, subfamily A, polypeptide 1 (CYP17A1), a hepatic P450 enzyme, was revealed to be overexpressed in the liver tissues of Tg mice at both preneoplastic and neoplastic stages. Mouse-to-human validation demonstrated that CYP17A1 mRNA and protein were also significantly increased in human HCC tissues compared with paired nontumor tissues (P = 0.00041 and 0.00011, respectively). Immunohistochemical studies showed that CYP17A1 was overexpressed in 67% (58 of 87) of HCC, and strong staining of CYP17A1 was observed in well-differentiated HCCs. Consistent with this, the median serum levels of CYP17A1 were also significantly higher in patients with HCC (140.2 ng/mL, n = 776) compared with healthy controls (31.4 ng/mL, n = 366) and to those with hepatitis B virus (57.5 ng/mL, n = 160), cirrhosis (46.1 ng/mL, n = 147), lung cancer (27.4 ng/mL, n = 109), and prostate cancer (42.1 ng/mL, n = 130; all P < 0.001). Notably, the elevations were seen in most AFP-negative HCC cases. Altogether, through mouse-to-human search and validation, we found that CYP17A1 is overexpressed in HCCs and it has great potentiality as a noninvasive marker for HCC detection. These results provide a rationale for the future development and clinical application of CYP17A1 measurement to diagnose HCC more precisely. Cancer Prev Res; 9(9); 739-49. ©2016 AACR. PMID:27339169

  2. MicroRNA-155 controls affinity-based selection by protecting c-MYC+ B cells from apoptosis.

    PubMed

    Nakagawa, Rinako; Leyland, Rebecca; Meyer-Hermann, Michael; Lu, Dong; Turner, Martin; Arbore, Giuseppina; Phan, Tri Giang; Brink, Robert; Vigorito, Elena

    2016-01-01

    The production of high-affinity antibodies by B cells is essential for pathogen clearance. Antibody affinity for antigen is increased through the affinity maturation in germinal centers (GCs). This is an iterative process in which B cells cycle between proliferation coupled with the acquisition of mutations and antigen-based positive selection, resulting in retention of the highest-affinity B cell clones. The posttranscriptional regulator microRNA-155 (miR-155) is critical for efficient affinity maturation and the maintenance of the GCs; however, the cellular and molecular mechanism by which miR-155 regulates GC responses is not well understood. Here, we utilized a miR-155 reporter mouse strain and showed that miR-155 is coexpressed with the proto-oncogene encoding c-MYC in positively selected B cells. Functionally, miR-155 protected positively selected c-MYC+ B cells from apoptosis, allowing clonal expansion of this population, providing an explanation as to why Mir155 deletion impairs affinity maturation and promotes the premature collapse of GCs. We determined that miR-155 directly inhibits the Jumonji family member JARID2, which enhances B cell apoptosis when overexpressed, and thereby promotes GC B cell survival. Our findings also suggest that there is cooperation between c-MYC and miR-155 during the normal GC response, a cooperation that may explain how c-MYC and miR-155 can collaboratively function as oncogenes.

  3. MicroRNA-155 controls affinity-based selection by protecting c-MYC+ B cells from apoptosis

    PubMed Central

    Nakagawa, Rinako; Leyland, Rebecca; Meyer-Hermann, Michael; Lu, Dong; Turner, Martin; Arbore, Giuseppina; Phan, Tri Giang; Brink, Robert; Vigorito, Elena

    2015-01-01

    The production of high-affinity antibodies by B cells is essential for pathogen clearance. Antibody affinity for antigen is increased through the affinity maturation in germinal centers (GCs). This is an iterative process in which B cells cycle between proliferation coupled with the acquisition of mutations and antigen-based positive selection, resulting in retention of the highest-affinity B cell clones. The posttranscriptional regulator microRNA-155 (miR-155) is critical for efficient affinity maturation and the maintenance of the GCs; however, the cellular and molecular mechanism by which miR-155 regulates GC responses is not well understood. Here, we utilized a miR-155 reporter mouse strain and showed that miR-155 is coexpressed with the proto-oncogene encoding c-MYC in positively selected B cells. Functionally, miR-155 protected positively selected c-MYC+ B cells from apoptosis, allowing clonal expansion of this population, providing an explanation as to why Mir155 deletion impairs affinity maturation and promotes the premature collapse of GCs. We determined that miR-155 directly inhibits the Jumonji family member JARID2, which enhances B cell apoptosis when overexpressed, and thereby promotes GC B cell survival. Our findings also suggest that there is cooperation between c-MYC and miR-155 during the normal GC response, a cooperation that may explain how c-MYC and miR-155 can collaboratively function as oncogenes. PMID:26657861

  4. The BET bromodomain inhibitor, JQ1, facilitates c-FLIP degradation and enhances TRAIL-induced apoptosis independent of BRD4 and c-Myc inhibition.

    PubMed

    Yao, Weilong; Yue, Ping; Khuri, Fadlo R; Sun, Shi-Yong

    2015-10-27

    Inhibition of BET bromodomains (BRDs) has emerged as a promising cancer therapeutic strategy. Accordingly, inhibitors of BRDs such as JQ1 have been actively developed and some have reached clinical testing. However, the mechanisms by which this group of inhibitors exerts their anticancer activity, including induction of apoptosis, have not been fully elucidated. This report reveals a previously uncovered activity of JQ1 in inducing c-FLIP degradation and enhancing TRAIL-induced apoptosis. JQ1 potently decreased c-FLIP (both long and short forms) levels in multiple cancer cell lines without apparently increasing the expression of DR5 and DR4. Consequently, JQ1, when combined with TRAIL, synergistically induced apoptosis; this enhanced apoptosis-inducing activity could be abolished by enforced expression of ectopic FLIPL or FLIPS. Hence it appears that JQ1 decreases c-FLIP levels, resulting in enhancement of TRAIL-induced apoptosis. Inhibition of proteasome with MG132 prevented JQ1-induced c-FLIP reduction. Moreover, JQ1 decreased c-FLIP stability. Therefore, JQ1 apparently decreases c-FLIP levels through facilitating its proteasomal degradation. Genetic inhibition of either BRD4 or c-Myc by knocking down their expression failed to mimic JQ1 in decreasing c-FLIP and enhancing TRAIL-induced apoptosis, suggesting that JQ1 induces c-FLIP degradation and enhances TRAIL-induced apoptosis independent of BRD4 or c-Myc inhibition. In summary, our findings in this study highlights a novel biological function of JQ1 in modulating apoptosis and warrant further study of the potential treatment of cancer with the JQ1 and TRAIL combination. PMID:26415225

  5. AMPK inhibits MTDH expression via GSK3β and SIRT1 activation: potential role in triple negative breast cancer cell proliferation.

    PubMed

    Gollavilli, Paradesi Naidu; Kanugula, Anantha Koteswararao; Koyyada, Rajeswari; Karnewar, Santosh; Neeli, Praveen Kumar; Kotamraju, Srigiridhar

    2015-10-01

    Recent studies have highlighted the involvement of metadherin (MTDH), an oncogenic protein, in promoting cancer progression, metastasis and chemoresistance in many cancers including mammary carcinomas. However, the molecular regulation of MTDH is still not completely understood. In this study we document that AMP activated protein kinase (AMPK) activation-induced anti-proliferative effects are, in part, mediated by inhibiting MTDH expression in MDA-MB-231 and BT-549 triple negative breast cancer (TNBC) cells. 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR), an AMPK activator, caused growth arrest, inhibition of migration and invasion of TNBC cells. Intriguingly, AICAR or metformin treatment resulted in significant downregulation of MTDH expression via inhibiting c-Myc expression. In contrast, treatment of cells with compound C, an inhibitor of AMPK, increased both c-Myc and MTDH expressions in TNBC cells. Also, AMPK activation caused increased glycogen synthase kinase 3β (GSK3β) activity by inhibiting the inactive phosphorylation at Ser9, on the one hand, and activation of sirtuin1 (SIRT1) by inhibiting Ser47 phosphorylation, as evidenced by deacetylation of p53, on the other hand. Moreover, AMPK-induced GSK3β and SIRT1 activities were found to be responsible for inhibiting c-Myc-mediated upregulation of MTDH, as LiCl (an inhibitor of GSK3β) and EX-527 (an inhibitor of SIRT1) reversed AICAR-mediated downregulation of c-Myc and MTDH expressions. Similar results were observed with siSIRT1 treatment. Furthermore, AICAR and EX-527 treatments caused increased cell death under MTDH-depleted conditions. Finally, we uncovered a novel regulation of MTDH expression and showed that AMPK activation by inducing GSK3β and SIRT1 downregulates MTDH expression via inhibiting c-Myc in TNBC cells. PMID:26236947

  6. Inhibition of bromodomain proteins for the treatment of human diffuse large B-cell lymphoma

    PubMed Central

    Trabucco, Sally E.; Gerstein, Rachel M.; Evens, Andrew M.; Bradner, James E.; Shultz, Leonard D.; Greiner, Dale L.; Zhang, Hong

    2014-01-01

    Purpose Approximately 50% of patients with diffuse large B-cell lymphoma (DLBCL) enter long-term remission after standard chemotherapy. DLBCL patients who do not respond to chemotherapy have few treatment options. There remains a critical need to identify effective and targeted therapeutics for DLBCL. Experimental Design Recent studies have highlighted the incidence of increased c-MYC protein in DLBCL and the correlation between high levels of c-MYC protein and poor survival prognosis of DLBCL patients, suggesting that c-MYC is a compelling target for DLBCL therapy. The small molecule JQ1 suppresses c-MYC expression through inhibition of the bromodomain and extra-terminal (BET) family of bromodomain proteins. We investigated whether JQ1 can inhibit proliferation of DLBCL cells in culture and xenograft models in vivo. Results We show that JQ1 at nanomolar concentrations efficiently inhibited proliferation of human DLBCL cells in a dose-dependent manner regardless of their molecular subtypes, suggesting a broad effect of JQ1 in DLBCL. The initial G1 arrest induced by JQ1 treatment in DLBCL cells was followed by either apoptosis or senescence. The expression of c-MYC was suppressed as a result of JQ1 treatment from the natural, chromosomally-translocated or amplified loci. Furthermore, JQ1 treatment significantly suppressed growth of DLBCL cells engrafted in mice and improved survival of engrafted mice. Conclusion Our results demonstrate that inhibition of the BET family of bromodomain proteins by JQ1 has potential clinical utility in the treatment of DLBCL. PMID:25009295

  7. Gene Expression Profile Changes After Short-activating RNA-mediated Induction of Endogenous Pluripotency Factors in Human Mesenchymal Stem Cells

    PubMed Central

    Voutila, Jon; Sætrom, Pål; Mintz, Paul; Sun, Guihua; Alluin, Jessica; Rossi, John J; Habib, Nagy A; Kasahara, Noriyuki

    2012-01-01

    It is now recognized that small noncoding RNA sequences have the ability to mediate transcriptional activation of specific target genes in human cells. Using bioinformatics analysis and functional screening, we screened short-activating RNA (saRNA) oligonucleotides designed to target the promoter regions of the pluripotency reprogramming factors, Kruppel-like factor 4 (KLF4) and c-MYC. We identified KLF4 and c-MYC promoter-targeted saRNA sequences that consistently induced increases in their respective levels of nascent mRNA and protein expression in a time- and dose-dependent manner, as compared with scrambled sequence control oligonucleotides. The functional consequences of saRNA-induced activation of each targeted reprogramming factor were then characterized by comprehensively profiling changes in gene expression by microarray analysis, which revealed significant increases in mRNA levels of their respective downstream pathway genes. Notably, the microarray profile after saRNA-mediated induction of endogenous KLF4 and c-MYC showed similar gene expression patterns for stem cell- and cell cycle-related genes as compared with lentiviral vector-mediated overexpression of exogenous KLF4 and c-MYC transgenes, while divergent gene expression patterns common to viral vector-mediated transgene delivery were also noted. The use of promoter-targeted saRNAs for the activation of pluripotency reprogramming factors could have broad implications for stem cell research. PMID:23344177

  8. Quantitative Expression and Co-Localization of Wnt Signalling Related Proteins in Feline Squamous Cell Carcinoma

    PubMed Central

    Marote, Georgina; Abramo, Francesca; McKay, Jenny; Thomson, Calum; Beltran, Mariana; Millar, Michael; Priestnall, Simon; Dobson, Jane; Costantino-Casas, Fernando; Petrou, Terry; McGonnell, Imelda M.; Davies, Anthony J.; Weetman, Malcolm; Garden, Oliver A.; Masters, John R.; Thrasivoulou, Christopher; Ahmed, Aamir

    2016-01-01

    Feline oral squamous cell carcinoma (FOSCC) is an aggressive neoplasm in cats. Little is known about the possible molecular mechanisms that may be involved in the initiation, maintenance and progression of FOSCC. Wnt signalling is critical in development and disease, including many mammalian cancers. In this study, we have investigated the expression of Wnt signalling related proteins using quantitative immunohistochemical techniques on tissue arrays. We constructed tissue arrays with 58 individual replicate tissue samples. We tested for the expression of four key Wnt/ß-catenin transcription targets, namely Cyclin D1 (CCND1 or CD1), FRA1, c-Myc and MMP7. All antibodies showed cross reactivity in feline tissue except MMP7. Quantitative immunohistochemical analysis of single proteins (expressed as area fraction / amount of tissue for normal vs tumor, mean ± SE) showed that the expression of CD1 (3.9 ± 0.5 vs 12.2 ± 0.9), FRA1 (5.5 ± 0.6 vs 16.8 ± 1.1) and c-Myc (5.4 ± 0.5 vs 12.5 ± 0.9) was increased in FOSCC tissue by 2.3 to 3 fold compared to normal controls (p<0.0001). By using a multilabel, quantitative fluorophore technique we further investigated if the co-localization of these proteins (all transcription factors) with each other and in the nucleus (stained with 4',6-diamidino-2-phenylindole, DAPI) was altered in FOSCC compared to normal tissue. The global intersection coefficients, a measure of the proximity of two fluorophore labeled entities, showed that there was a significant change (p < 0.01) in the co-localization for all permutations (e.g. CD1/FRA1 etc), except for the nuclear localization of CD1. Our results show that putative targets of Wnt signalling transcription are up-regulated in FOSCC with alterations in the co-localization of these proteins and could serve as a useful marker for the disease. PMID:27559731

  9. Quantitative Expression and Co-Localization of Wnt Signalling Related Proteins in Feline Squamous Cell Carcinoma.

    PubMed

    Giuliano, Antonio; Swift, Rebecca; Arthurs, Callum; Marote, Georgina; Abramo, Francesca; McKay, Jenny; Thomson, Calum; Beltran, Mariana; Millar, Michael; Priestnall, Simon; Dobson, Jane; Costantino-Casas, Fernando; Petrou, Terry; McGonnell, Imelda M; Davies, Anthony J; Weetman, Malcolm; Garden, Oliver A; Masters, John R; Thrasivoulou, Christopher; Ahmed, Aamir

    2016-01-01

    Feline oral squamous cell carcinoma (FOSCC) is an aggressive neoplasm in cats. Little is known about the possible molecular mechanisms that may be involved in the initiation, maintenance and progression of FOSCC. Wnt signalling is critical in development and disease, including many mammalian cancers. In this study, we have investigated the expression of Wnt signalling related proteins using quantitative immunohistochemical techniques on tissue arrays. We constructed tissue arrays with 58 individual replicate tissue samples. We tested for the expression of four key Wnt/ß-catenin transcription targets, namely Cyclin D1 (CCND1 or CD1), FRA1, c-Myc and MMP7. All antibodies showed cross reactivity in feline tissue except MMP7. Quantitative immunohistochemical analysis of single proteins (expressed as area fraction / amount of tissue for normal vs tumor, mean ± SE) showed that the expression of CD1 (3.9 ± 0.5 vs 12.2 ± 0.9), FRA1 (5.5 ± 0.6 vs 16.8 ± 1.1) and c-Myc (5.4 ± 0.5 vs 12.5 ± 0.9) was increased in FOSCC tissue by 2.3 to 3 fold compared to normal controls (p<0.0001). By using a multilabel, quantitative fluorophore technique we further investigated if the co-localization of these proteins (all transcription factors) with each other and in the nucleus (stained with 4',6-diamidino-2-phenylindole, DAPI) was altered in FOSCC compared to normal tissue. The global intersection coefficients, a measure of the proximity of two fluorophore labeled entities, showed that there was a significant change (p < 0.01) in the co-localization for all permutations (e.g. CD1/FRA1 etc), except for the nuclear localization of CD1. Our results show that putative targets of Wnt signalling transcription are up-regulated in FOSCC with alterations in the co-localization of these proteins and could serve as a useful marker for the disease. PMID:27559731

  10. Definition of a Skp2-c-Myc Pathway to Expand Human Beta-cells

    PubMed Central

    Tiwari, Shiwani; Roel, Chris; Tanwir, Mansoor; Wills, Rachel; Perianayagam, Nidhi; Wang, Peng; Fiaschi-Taesch, Nathalie M.

    2016-01-01

    Type 2 diabetes (T2D) is characterized by insulin resistance and reduced functional β-cell mass. Developmental differences, failure of adaptive expansion and loss of β-cells via β-cell death or de-differentiation have emerged as the possible causes of this reduced β-cell mass. We hypothesized that the proliferative response to mitogens of human β-cells from T2D donors is reduced, and that this might contribute to the development and progression of T2D. Here, we demonstrate that the proliferative response of human β-cells from T2D donors in response to cdk6 and cyclin D3 is indeed dramatically impaired. We show that this is accompanied by increased nuclear abundance of the cell cycle inhibitor, p27kip1. Increasing nuclear abundance of p27kip1 by adenoviral delivery decreases the proliferative response of β-cells from non-diabetic donors, mimicking T2D β-cells. However, while both p27kip1 gene silencing and downregulation by Skp2 overexpression increased similarly the proliferative response of human β-cells, only Skp2 was capable of inducing a significant human β-cell expansion. Skp2 was also able to double the proliferative response of T2D β-cells. These studies define c-Myc as a central Skp2 target for the induction of cell cycle entry, expansion and regeneration of human T2D β-cells. PMID:27380896

  11. Definition of a Skp2-c-Myc Pathway to Expand Human Beta-cells.

    PubMed

    Tiwari, Shiwani; Roel, Chris; Tanwir, Mansoor; Wills, Rachel; Perianayagam, Nidhi; Wang, Peng; Fiaschi-Taesch, Nathalie M

    2016-01-01

    Type 2 diabetes (T2D) is characterized by insulin resistance and reduced functional β-cell mass. Developmental differences, failure of adaptive expansion and loss of β-cells via β-cell death or de-differentiation have emerged as the possible causes of this reduced β-cell mass. We hypothesized that the proliferative response to mitogens of human β-cells from T2D donors is reduced, and that this might contribute to the development and progression of T2D. Here, we demonstrate that the proliferative response of human β-cells from T2D donors in response to cdk6 and cyclin D3 is indeed dramatically impaired. We show that this is accompanied by increased nuclear abundance of the cell cycle inhibitor, p27(kip1). Increasing nuclear abundance of p27(kip1) by adenoviral delivery decreases the proliferative response of β-cells from non-diabetic donors, mimicking T2D β-cells. However, while both p27(kip1) gene silencing and downregulation by Skp2 overexpression increased similarly the proliferative response of human β-cells, only Skp2 was capable of inducing a significant human β-cell expansion. Skp2 was also able to double the proliferative response of T2D β-cells. These studies define c-Myc as a central Skp2 target for the induction of cell cycle entry, expansion and regeneration of human T2D β-cells.

  12. Elevated levels of a specific class of nuclear phosphoproteins in cells transformed with v-ras and v-mos oncogenes and by cotransfection with c-myc and polyoma middle T genes.

    PubMed Central

    Giancotti, V; Pani, B; D'Andrea, P; Berlingieri, M T; Di Fiore, P P; Fusco, A; Vecchio, G; Philp, R; Crane-Robinson, C; Nicolas, R H

    1987-01-01

    Transformation of a rat thyroid epithelial cell line (FRTL5-C12) with Kirsten and Harvey murine sarcoma viruses (carrying the ras oncogenes) results in elevated levels of three perchloric acid-soluble nuclear phosphoproteins. These three proteins are also induced to high levels in the PC-C13 thyroid epithelial cell line when transformed by the myeloproliferative sarcoma virus (carrying the v-mos oncogene) and when transformed by transfection with the c-myc proto-oncogene followed by infection with the polyoma leukaemia virus (PyMuLV) carry the polyoma middle T antigen gene. Neither c-myc or PyMuLV alone induced high levels of the three nuclear proteins. Untransformed thyroid fibroblasts have high levels of two of the three proteins and can be transformed by PyMuLV alone resulting in the appearance of the third protein. Transformation with Harvey sarcoma virus also results in the induction of the third protein. The three phosphoproteins have been purified by h.p.l.c. and shown to be related to the HeLa protein HMGI already described. The results of these studies indicate that elevated levels of these HMGI-like proteins are associated with neoplastic transformation and/or with an undifferentiated phenotype. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:2820715

  13. Nuclear DNA phylogeny of the squirrels (Mammalia: Rodentia) and the evolution of arboreality from c-myc and RAG1.

    PubMed

    Steppan, Scott J; Storz, Brian L; Hoffmann, Robert S

    2004-03-01

    Although the family Sciuridae is large and well known, phylogenetic analyses are scarce. We report on a comprehensive molecular phylogeny for the family. Two nuclear genes (c-myc and RAG1) comprising approximately 4500 bp of data (most in exons) are applied for the first time to rodent phylogenetics. Parsimony, likelihood, and Bayesian analyses of the separate gene regions and combined data reveal five major lineages and refute the conventional elevation of the flying squirrels (Pteromyinae) to subfamily status. Instead, flying squirrels are derived from one of the tree squirrel lineages. C-myc indels corroborate the sequence-based topologies. The common ancestor of extant squirrels appears to have been arboreal, confirming the fossil evidence. The results also reveal an unexpected clade of mostly terrestrial squirrels with African and Holarctic centers of diversity. We present a revised classification of squirrels. Our results demonstrate the phylogenetic utility of relatively slowly evolving nuclear exonic data even for relatively recent clades. PMID:15012949

  14. Acinar-to-ductal metaplasia accompanies c-myc-induced exocrine pancreatic cancer progression in transgenic rodents.

    PubMed

    Grippo, Paul J; Sandgren, Eric P

    2012-09-01

    Several important characteristics of exocrine pancreatic tumor pathogenesis remain incompletely defined, including identification of the cell of origin. Most human pancreatic neoplasms are ductal adenocarcinomas. However, acinar cells have been proposed as the source of some ductal neoplasms through a process of acinar-to-ductal metaplasia. The oncogenic transcription factor c-myc is associated with human pancreatic neoplasms. Transgenic mice overexpressing c-myc under control of acinar cell-specific elastase (Ela) gene regulatory elements not only develop acinar cell carcinomas but also mixed neoplasms that display both acinar-like neoplastic cells and duct-like neoplastic cells. In this report, we demonstrate that, first, c-myc is sufficient to induce acinar hyperplasia, though neoplastic lesions develop focally. Second, cell proliferation remains elevated in the neoplastic duct cell compartment of mixed neoplasms. Third, the proliferation/apoptosis ratio in cells from all lesion types remains constant, suggesting that differential regulation of these processes is not a feature of cancer progression in this model. Fourth, before the development of mixed neoplasms, there is transcriptional activation of the duct cell-specific cytokeratin-19 gene promoter in multicellular foci of amylase-positive acinar neoplasms. This observation provides direct evidence for metaplasia as the mechanism underlying development of ductal neoplastic cells within the context of an acinar neoplasm and suggests that the stimulus for this transformation acts over a multicellular domain or field within a neoplasm. Finally, focal ductal elements develop in some acinar cell carcinomas in Ela-c-myc transgenic rats, indicating that myc-associated acinar-to-ductal metaplasia is not restricted to the mouse.

  15. C-Myc induced compensated cardiac hypertrophy increases free fatty acid utilization for the citric acid cycle.

    PubMed

    Olson, Aaron K; Ledee, Dolena; Iwamoto, Kate; Kajimoto, Masaki; O'Kelly Priddy, Colleen; Isern, Nancy; Portman, Michael A

    2013-02-01

    The protooncogene C-Myc (Myc) regulates cardiac hypertrophy. Myc promotes compensated cardiac function, suggesting that the operative mechanisms differ from those leading to heart failure. Myc regulation of substrate metabolism is a reasonable target, as Myc alters metabolism in other tissues. We hypothesize that Myc induced shifts in substrate utilization signal and promote compensated hypertrophy. We used cardiac specific Myc-inducible C57/BL6 male mice between 4-6 months old that develop hypertrophy with tamoxifen (tam) injections. Isolated working hearts and (13)Carbon ((13)C)-NMR were used to measure function and fractional contributions (Fc) to the citric acid cycle by using perfusate containing (13)C-labeled free fatty acids, acetoacetate, lactate, unlabeled glucose and insulin. Studies were performed at pre-hypertrophy (3-days tam, 3dMyc), established hypertrophy (7-days tam, 7dMyc) or vehicle control (Cont). Non-transgenic siblings (NTG) received 7-days tam or vehicle to assess drug effect. Hypertrophy was assessed by echocardiograms and heart weights. Western blots were performed on key metabolic enzymes. Hypertrophy occurred in 7dMyc only. Cardiac function did not differ between groups. Tam alone did not affect substrate contributions in NTG. Substrate utilization was not significantly altered in 3dMyc versus Cont. The free fatty acid FC was significantly greater in 7dMyc versus Cont with decreased unlabeled Fc, which is predominately exogenous glucose. Free fatty acid flux to the citric acid cycle increased while lactate flux was diminished in 7dMyc compared to Cont. Total protein levels of a panel of key metabolic enzymes were unchanged; however total protein O-GlcNAcylation was increased in 7dMyc. Substrate utilization changes for the citric acid cycle did not precede hypertrophy; therefore they are not the primary signal for cardiac growth in this model. Free fatty acid utilization and oxidation increase at established hypertrophy. Understanding the

  16. C-Myc Induced Compensated Cardiac Hypertrophy Increases Free Fatty Acid Utilization for the Citric Acid Cycle

    SciTech Connect

    Olson, Aaron; Ledee, Dolena; Iwamoto, Kate; Kajimoto, Masaki; O'Kelly-Priddy, Colleen M.; Isern, Nancy G.; Portman, Michael A.

    2013-02-01

    The protooncogene C-Myc (Myc) regulates cardiac hypertrophy. Myc promotes compensated cardiac function, suggesting that the operative mechanisms differ from those leading to heart failure. Myc regulation of substrate metabolism is a reasonable target, as Myc alters metabolism in other tissues. We hypothesize that Myc-induced shifts in substrate utilization signal and promote compensated hypertrophy. We used cardiac specific Myc-inducible C57/BL6 male mice between 4-6 months old that develop hypertrophy with tamoxifen (tam). Isolated working hearts and 13Carbon (13C )-NMR were used to measure function and fractional contributions (Fc) to the citric acid cycle by using perfusate containing 13C-labeled free fatty acids, acetoacetate, lactate, unlabeled glucose and insulin. Studies were performed at pre-hypertrophy (3-days tam, 3dMyc), established hypertrophy (7-days tam, 7dMyc) or vehicle control (cont). Non-transgenic siblings (NTG) received 7-days tam or vehicle to assess drug effect. Hypertrophy was confirmed by echocardiograms and heart weights. Western blots were performed on key metabolic enzymes. Hypertrophy occurred in 7dMyc only. Cardiac function did not differ between groups. Tam alone did not affect substrate contribution in NTG. Substrate utilization was not significantly altered in 3dMyc versus cont. The free fatty acid FC was significantly greater in 7dMyc vs cont with decreased unlabeled Fc, which is predominately exogenous glucose. Free fatty acid flux to the citric acid cycle increased while lactate flux was diminished in 7dMyc compared to cont. Total protein levels of a panel of key metabolic enzymes were unchanged; however total protein O-GlcNAcylation was increased in 7dMyc. Substrate utilization changes did not precede hypertrophy; therefore they are not the primary signal for cardiac growth in this model. Free fatty acid utilization and oxidation increase at established hypertrophy. Understanding the mechanisms whereby this change maintained

  17. c-Myc oncoprotein: cell cycle-related events and new therapeutic challenges in cancer and cardiovascular diseases.

    PubMed

    de Nigris, Filomena; Sica, Vincenzo; Herrmann, Joerg; Condorelli, Gianluigi; Chade, Alejandro R; Tajana, Gianfranco; Lerman, Amir; Lerman, Lilach O; Napoli, Claudio

    2003-01-01

    Advanced stages of both cancer and atherosclerosis are characterized by a local increase in tissue mass that may be hard to control. This increase in tissue mass can be attributed to oxidation-sensitive modification of cell cycle-related events, including cellular proliferation, differentiation, and apoptosis, which could be secondary to alteration in the activity of tumor suppressor gene and oncogene products. The oncogene c-Myc has classically been considered to be involved in carcinogenesis and has more recently been implicated in both endothelial dysfunction and atherogenesis as well. Consequently, inhibition of c-Myc-dependent signaling has become a novel therapeutic opportunity and challenge in atherosclerosis and other cardiovascular diseases. Antioxidant strategies, RNA synthesis inhibitors such as mithramycin, and gene therapeutic approaches with antisense oligonucleotides against c-Myc are some of the promising strategies. In general, the increased biologic understanding of the participation of cell cycle events and targeting these events may enable to attenuate or prevent some of the complications of vascular and neoplastic diseases. PMID:12851483

  18. Perylene and coronene derivatives binding to G-rich promoter oncogene sequences efficiently reduce their expression in cancer cells.

    PubMed

    Micheli, Emanuela; Altieri, Alessandro; Cianni, Lorenzo; Cingolani, Chiara; Iachettini, Sara; Bianco, Armandodoriano; Leonetti, Carlo; Cacchione, Stefano; Biroccio, Annamaria; Franceschin, Marco; Rizzo, Angela

    2016-06-01

    A novel approach to cancer therapeutics is emerging in the field of G-quadruplex (G4) ligands, small molecules designed to stabilize four-stranded structures that can form at telomeres as well as in other genomic sequences, including oncogene promoter sequences, 5'-UTR regions and introns. In this study, we investigated the binding activity of perylene and coronene derivatives PPL3C, CORON and EMICORON to G4 structures formed within the promoter regions of two important cancer-related genes, c-MYC and BCL-2, and their biochemical effects on gene and protein expression. In order to fully characterize the ability of the selected ligands to bind and stabilize the G4 structures originated by the c-MYC and BCL-2 promoter sequences, we performed electrospray ionization mass spectrometry (ESI-MS), Fluorescence Resonance Energy Transfer (FRET) measurements, Circular Dichroism (CD) spectra and polymerase stop assay. Altogether our results showed that the ligands had a high capacity in binding and stabilizing the G4 structures within the c-MYC and BCL-2 promoter sequences in vitro. Notably, when we evaluated by quantitative real-time PCR and western blotting analysis, the effects of treatment with the different G4 ligands on c-MYC and BCL2 expression in a human melanoma cell line, EMICORON appeared the most effective compound in reducing the mRNA and protein levels of both genes. These results encourage to consider EMICORON as a promising example of multimodal class of an antineoplastic drug, affecting different tumor crucial pathways simultaneously: telomere maintenance (as previously described), cell proliferation and apoptosis via down-regulation of both c-MYC and BCL-2 (this paper).

  19. Indole-3-carbinol induces cMYC and IAP-family downmodulation and promotes apoptosis of Epstein-Barr virus (EBV)-positive but not of EBV-negative Burkitt's lymphoma cell lines.

    PubMed

    Perez-Chacon, Gema; de Los Rios, Cristobal; Zapata, Juan M

    2014-11-01

    Indole-3-carbinol (I3C) is a natural product found in broadly consumed plants of the Brassica genus, such as broccoli, cabbage, and cauliflower, which exhibits anti-tumor effects through poorly defined mechanisms. I3C can be orally administered and clinical trials have demonstrated that I3C and derivatives are safe in humans. In this study we show that I3C efficiently induces apoptosis in cell lines derived from EBV-positive Burkitt's lymphomas (virus latency I/II), while it does not have any cytotoxic activity against EBV-negative Burkitt's lymphomas and immortalized EBV-infected lymphoblastoid cell lines (virus latency III). The effect of I3C in EBV-positive Burkitt's lymphoma is very specific, since only I3C and its C6-methylated derivative, but not other 3-substituted indoles, have an effect on cell viability. I3C treatment caused apoptosis characterized by loss of mitochondria membrane potential and caspase activation. I3C alters the expression of proteins involved in the control of apoptosis and transcription regulation in EBV-positive Burkitt's lymphoma cell lines. Among those, cMYC, cIAP1/2 and XIAP downmodulation at mRNA and protein level precede apoptosis induction, thus suggesting a role in I3C cytotoxicity. We also showed that I3C and, more particularly, its condensation dimer 3,3'-diindolylmethane (DIM) prolonged survival and reduced tumor burden of mice xenotransplanted with EBV-positive Burkitt's lymphoma Daudi cells. In summary these results, together with previous reports from clinical trials indicating the lack of toxicity in humans of I3C and derivatives, support the use of these compounds as a new therapeutic approach for treating patients with endemic (EBV-positive) Burkitt's lymphoma. PMID:25180456

  20. Involvement of RNA binding proteins AUF1 in mammary gland differentiation

    SciTech Connect

    Nagaoka, Kentaro . E-mail: akenaga@mail.ecc.u-tokyo.ac.jp; Tanaka, Tetsuya; Imakawa, Kazuhiko; Sakai, Senkiti

    2007-08-01

    The expression of many genes, such as {beta}-casein, c-myc, and cyclin D1, is altered by lactogenic hormone stimulation during mammary epithelial cell differentiation. Here, we demonstrate that post-transcriptional regulation plays an important role to establish gene expression required to initiate milk production as well as transcriptional control. AUF1 protein, a member of the AU-rich element (ARE)-binding protein family, plays a role in ARE-mRNA turnover by regulating mRNA stability and/or translational control. Cytoplasmic localization of AUF1 protein is critically linked to function. We show that as the mammary gland differentiates, AUF1 protein moves from the cytoplasm to the nucleus. Moreover, in mammary gland epithelial cells (HC11), stimulation by lactogenic hormone decreased cytoplasmic and increased nuclear AUF1 levels. Direct binding of AUF1 protein was observed on c-myc mRNA, but not {beta}-casein or cyclin D1 mRNA. AUF1 downregulation in HC11 cells increased the expression of {beta}-casein mRNA and decreased the expression of c-myc mRNA by lactogenic hormone. Conversely, overexpression of AUF1 inhibited these effects of lactogenic hormone stimulation in HC11 cells. These results suggest that AUF1 participates in mammary gland differentiation processes under the control of lactogenic hormone signals.

  1. Leptospira Protein Expression During Infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We are characterizing protein expression in vivo during experimental leptospirosis using immunofluorescence microscopy. Coding regions for several proteins were identified through analysis of Leptospira interrogans serovar Copenhageni and L. borgpetersenii serovar Hardjo genomes. In addition, codi...

  2. Expression and Characterization of Recombinant Human Secretory Leukocyte Protease Inhibitor (SLPI) Protein from Pichia pastoris

    PubMed Central

    Li, Zhiguo; Moy, Allison; Sohal, Kirti; Dam, Carolyn; Kuo, Peter; Ulrich, Beau; Whittaker, James; Whittaker, Mei; Düzgünes, Nejat; Konopka, Kryatyna; Franz, Andreas H.; Lin-Cereghino, Joan; Lin-Cereghino, Geoff P.

    2009-01-01

    The human secretory leukocyte protease inhibitor (SLPI) has been shown to possess anti-protease, anti-inflammatory and antimicrobial properties. Its presence in saliva is believed to be a major deterrent to oral transmission of human immunodeficiency virus-1. The 11.7 kD peptide is a secreted, nonglycosylated protein rich in disulfide bonds. Currently, recombinant SLPI is only available as an expensive bacterial expression product. We have investigated the utility of the methylotrophic yeast Pichia pastoris to produce and secrete SLPI with C-terminal c-myc and polyhistidine tags. The posttransformational vector amplification protocol was used to isolate strains with increased copy number, and culturing parameters were varied to optimize SLPI expression. Modification of the purification procedure allowed the secreted, recombinant protein to be isolated from the cell-free fermentation medium with cobalt affinity chromatography. This yeast-derived SLPI was shown to have an anti-protease activity comparable to the commercially available bacterial product. Thus, P. pastoris provides an efficient, cost-effective system for producing SLPI for structure function analysis studies as well as a wide array of potential therapeutic applications. PMID:19505578

  3. Signaling Pathway of GP88 (Progranulin) in Breast Cancer Cells: Upregulation and Phosphorylation of c-myc by GP88/Progranulin in Her2-Overexpressing Breast Cancer Cells

    PubMed Central

    Kim, Wes E.; Yue, Binbin; Serrero, Ginette

    2015-01-01

    Her2 is a receptor tyrosine kinase overexpressed in 25% of breast tumors. We have shown that the 88 kDa autocrine growth and survival factor GP88 (progranulin) stimulated Her2 phosphorylation and proliferation and conferred Herceptin resistance in Her2-overexpressing cells. Herein, we report that GP88 stimulates c-myc phosphorylation and upregulates c-myc levels in Her2-overexpressing cells. c-myc phosphorylation and upregulation by GP88 were not observed in non-Her2-overexpressing breast cancer cells. c-myc activation was inhibited upon treatment with ERK, PI3 kinase, and c-src pathway inhibitors, U0126, LY294002, and PP2. GP88 also stimulated c-src phosphorylation, a known upstream regulator of c-myc. Thus, we describe here a signaling pathway for GP88 in Her2-overexpressing cells, with GP88 stimulating Src phosphorylation, followed by phosphorylation and upregulation of c-myc. These data would suggest that targeting GP88 could provide a novel treatment approach in breast cancer. PMID:27168723

  4. Expression of proto-oncogenes in bovine preimplantation blastocysts.

    PubMed

    Tetens, F; Kliem, A; Tscheudschilsuren, G; Navarrete Santos, A; Fischer, B

    2000-05-01

    Proto-oncogenes are involved in the regulation of gene expression, for example after ligand binding to growth factor receptors. Expression of the proto-oncogenes c-fos, c-jun, c-ha-ras and c-myc was studied in in vivo grown and in vitro cultured bovine preimplantation blastocysts employing RT-PCR, ribonuclease protection assay and immunohistochemistry. Thirteen- and 14- day-old preimplantation blastocysts, i.e. stages before and during trophoblast elongation, were used. In in vivo-grown blastocysts c-fos, c-jun and c-ha-ras transcripts as well as c-Fos, c-Jun and c-Myc proteins were detected in all stages studied. Cultured blastocysts were treated with 10 nM epidermal growth factor and 10 nM transforming growth factor-alpha simultaneously. Epidermal growth factor and transforming growth factor-alpha treatment induced c-fos mRNA and c-Myc protein expression. The induction of downstream targets of the epidermal growth factor receptor by epidermal growth factor and transforming growth factor-alpha indicates a functional epidermal growth factor signal transduction pathway in elongating bovine blastocysts.

  5. Genomic structure and precise mapping of a thymic regulatory region on mouse chromosome 17 revealed by a c-myc transgene insertion

    SciTech Connect

    Lavenu, A.; Morello, D.; Roland, J.

    1996-06-15

    In one transgenic strain harboring a human c-myc proto-oncogene construct, the transgene was actively and exclusively expressed in the thymus, where it contributed to the development of lymphoma that corresponded to CD4{sup +}CD8{sup +} cells. Here, we have pursued the analysis of transgene expression in healthy transgenic mice and show that transgene activation occurs in the thymus 3 days before birth, at a time when CD4{sup +}CD8{sup +} lymphocytes emerge. In the adult, its expression is restricted to the CD4{sup +}CD8{sup +} cells. The region flanking the transgene insertion site was isolated and made it possible to map the preintegration locus, hereafter called Tsil (for thymus-specific integration locus) on chromosome 17 between D17Rp11e and Ras12-3. A YAC that contains both Tsil and the Pim2 locus, previously shown to be involved in progression of T-cell lymphoma, was isolated. Analysis of Tsil offers a unique opportunity to identify a regulatory region or a gene that might play an important role in T-cell maturation. 41 refs., 5 figs., 2 tabs.

  6. Three-dimensional imaging of the metabolic state of c-MYC-induced mammary tumor with the cryo-imager

    NASA Astrophysics Data System (ADS)

    Zhang, Zhihong; Liu, Qian; Luo, Qingming; Zhang, Min Z.; Blessington, Dana M.; Zhou, Lanlan; Chodosh, Lewis A.; Zheng, Gang; Chance, Britton

    2003-07-01

    This study imaged the metabolic state of a growing tumor and the relationship between energy metabolism and the ability of glucose uptake in whole tumor tissue with cryo-imaging at 77° K. A MTB/TOM mouse model, bearing c-MYC-induced mammary tumor, was very rapidly freeze-trapped 2 hrs post Pyro-2DG injection. The fluorescence signals of oxidized flavoprotein (Fp), reduced pyridine nucleotide (PN), pyro-2DG, and the reflection signal of deoxy-hemoglobin were imaged every 100 μm from the top surface to the bottom of the tumor sequentially, 9 sections in total. Each of the four signals was constructed into 3D images with Amira software. Both Fp and PN signals could be detected in the growing tumor regions, and a higher reduction state where was shown in the ratio images. The necrotic tumor regions displayed a very strong Fp signal and weak PN signal. In the bloody extravasation regions, Fp and PN signals were observably diminished. Therefore, the regions of high growth and necrosis in the tumor could be determined according to the Fp and PN signals. The content of deoxy-hemoglobin (Hb) in the tumor was positively correlated with the reduced PN signal. Pyro-2DG signal was only evident in the growing condition region in the tumor. Normalized 3D cross-correlation showed that Pyro-2DG signal was similar to the redox ratio. The results indicated that glucose uptake in the tumor was consistent with the redox state of the tumor. And both Pyro-2DG and mitochondrial NADH fluorescence showed bimodal histograms suggesting that the two population of c-MYC induced mammary tumor, one of which could be controlled by c-MYC transgene.

  7. Sleeping Beauty transposon system harboring HRAS, c-Myc and shp53 induces sarcomatoid carcinomas in mouse skin.

    PubMed

    Jung, Sunyoung; Ro, Simon Weonsang; Jung, Geunyoung; Ju, Hye-Lim; Yu, Eun-Sil; Son, Woo-Chan

    2013-04-01

    The Sleeping Beauty transposon system is used as a tool for insertional mutagenesis and oncogenesis. However, little is known about the exact histological phenotype of the tumors induced. Thus, we used immunohistochemical markers to enable histological identification of the type of tumor induced by subcutaneous injection of the HRAS, c-Myc and shp53 oncogenes in female C57BL/6 mice. The tumor was removed when it reached 100 mm3 in volume. Subsequently, we used 13 immunohistochemical markers to histologically identify the tumor type. The results suggested that the morphology of the tumor was similar to that of sarcomatoid carcinoma. PMID:23380875

  8. Reducing VDAC1 expression induces a non-apoptotic role for pro-apoptotic proteins in cancer cell differentiation.

    PubMed

    Arif, Tasleem; Krelin, Yakov; Shoshan-Barmatz, Varda

    2016-08-01

    Proteins initially identified as essential for apoptosis also mediate a wide range of non-apoptotic functions that include cell cycle progression, differentiation and metabolism. As this phenomenon was mostly reported with non-cancer cells, we considered non-conventional roles for the apoptotic machinery in the cancer setting. We found that treating glioblastoma (GBM) tumors with siRNA against VDAC1, a mitochondrial protein found at the crossroads of metabolic and survival pathways and involved in apoptosis, inhibited tumor growth while leading to differentiation of tumor cells into neuronal-like cells, as reflected in the expression of specific markers. Although VDAC1 depletion did not induce apoptosis, the expression levels of several pro-apoptotic regulatory proteins were changed. Specifically, VDAC1 deletion led to up-regulation of caspases, p53, cytochrome c, and down-regulation of SMAC/Diablo, AIF and TSPO. The down-regulated group was highly expressed in U-87MG xenografts, as well as in GBMs from human patients. We also showed that the rewired cancer-cell metabolism resulting from VDAC1 depletion reinforced cell growth arrest and differentiation via alterations in the transcription factors p53, c-Myc, HIF-1α and NF-κB. The decrease in c-Myc, HIF-1α and NF-κB levels was in accord with reduced cell proliferation, whereas increased p53 expression promoted differentiation. Thus, upon metabolic re-programing induced by VDAC1 depletion, the levels of pro-apoptotic proteins associated with cell growth decreased, while those connected to cell differentiation increased, converting GBM cells into astrocyte- and neuron-like cells. The results reveal that in tumors, pro-apoptotic proteins can perform non-apoptotic functions, acting as regulators of cell growth and differentiation, making these molecules potential new targets for cancer therapy. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy

  9. Post-transcriptional control of c-myc RNA during early development analyzed in vivo with a Xenopus-axolotl heterologous system.

    PubMed

    Andéol, Y; Lefresne, J; Simard, C; Séguin, C; Mouton, C; Signoret, J

    1998-06-01

    We have set up a heterologous in vivo system to study gene regulation at the post-transcriptional level during early development. This system uses two amphibian species, Xenopus laevis and Ambystoma mexicanum (axolotl), the development of which is three to four times slower than that of X. laevis. The stability of three different synthetic X. laevis c-myc transcripts was followed after injection into fertilized axolotl eggs. One transcript is 2.2 kilobases (kb) long (full-length). The second is 1.5-kb long with most of the 3' untranslated region (3'UTR) removed, and the third corresponds to the 3'UTR (0.7-kb). The behavior of the endogenous axolotl c-myc RNA was compared with the exogenous injected c-myc transcripts. Our results show the existence of several developmental timers controlling degradation of the c-myc molecules. The first is activated at oocyte maturation and affects both the endogenous and exogenous (2.2- and 1.5-kb) transcripts containing the coding regions. A second timer could be linked to the number of cell divisions since fertilization (6th-7th cleavages) and involves the endogenous c-myc RNAs. Another timer could involve the c-myc mRNA molecule itself, because when injected into axolotl eggs, the half-life of the 2.2-kb X. laevis transcript appears to be independent of the axolotl context. After injection into axolotl fertilized eggs, the behavior of this X. laevis full-length c-myc molecule reveals an unexpected increase in the intensity of its autoradiographic signals. This increase occurs independently of events linked to mid-blastula transition and preliminary investigations are discussed. PMID:9674116

  10. Selective inhibition of growth-related gene expression in murine keratinocytes by transforming growth factor beta.

    PubMed Central

    Coffey, R J; Bascom, C C; Sipes, N J; Graves-Deal, R; Weissman, B E; Moses, H L

    1988-01-01

    Transforming growth factor beta (TGF beta) is a potent inhibitor of epithelial cell proliferation. A nontumorigenic epidermal growth factor (EGF)-dependent epithelial cell line, BALB/MK, is reversibly growth arrested by TGF beta. TGF beta will also abrogate EGF-stimulated mitogenesis of quiescent BALB/MK cells. Increased levels of calcium (greater than 1.0 mM) will induce differentiation in BALB/MK cells; in contrast, TGF beta-mediated growth inhibition does not result in induction of terminal differentiation. In the present study, the effects of TGF beta and calcium on growth factor-inducible gene expression were examined. TGF beta markedly decreased c-myc and KC gene expression in rapidly growing BALB/MK cells and reduced the EGF induction of c-myc and KC in a quiescent population of cells. TGF beta exerted its control over c-myc expression at a posttranscriptional level, and this inhibitory effect was dependent on protein synthesis. TGF beta had no effect on c-fos gene expression, whereas 1.5 mM calcium attenuated EGF-induced c-fos expression in quiescent cells. Expression of beta-actin, however, was slightly increased in both rapidly growing and EGF-restimulated quiescent BALB/MK cells treated with TGF beta. Thus, in this system, TGF beta selectively reduced expression of certain genes associated with cell proliferation (c-myc and KC), and at least part of the TGF beta effect was at a posttranscriptional level. Images PMID:2463471

  11. HUMAN SWI/SNF DRIVES SEQUENCE-DIRECTED REPOSITIONING OF NUCLEOSOMES ON C-MYC PROMOTER DNA MINICIRCLES†

    PubMed Central

    Sims, Hillel I.; Lane, Jacqueline M.; Ulyanova, Natalia P.; Schnitzler, Gavin R.

    2008-01-01

    The human SWI/SNF (hSWI/SNF) ATP-dependent chromatin remodeling complex is a tumor suppressor and essential transcriptional coregulator. SWI/SNF complexes have been shown to alter nucleosome positions, and this activity is likely to be important for their functions. However, previous studies have largely been unable to determine the extent to which DNA sequence might control nucleosome repositioning by SWI/SNF complexes. Here, we employ a minicircle remodeling approach to provide the first evidence that hSWI/SNF moves nucleosomes in a sequence dependent manner, away from nucleosome positioning sequences favored during nucleosome assembly. This repositioning is unaffected by the presence of DNA nicks, and can occur on closed-circular DNAs in the absence of topoisomerases. We observed directed nucleosome movement on minicircles derived from the human SWI/SNF-regulated c-myc promoter, which may contribute to the previously-observed “disruption” of two promoter nucleosomes during c-myc activation in vivo. Our results suggest a model wherein hSWI/SNF-directed nucleosome movement away from default positioning sequences results in sequence-specific regulatory effects. PMID:17877373

  12. The Interaction of Telomeric DNA and C-myc22 G-Quadruplex with 11 Natural Alkaloids

    PubMed Central

    Ji, Xiaohui; Sun, Hongxia; Zhou, Huaxi; Xiang, Junfeng

    2012-01-01

    Telomeric DNA and C-myc22 are DNA G-quadruplex (G4)-forming sequences associated with tumorigenesis. Ligands that can facilitate the formation and increase the stabilization of G4 can halt tumor cell proliferation and have been regarded as potential anti-cancer drugs. In the present study, we have investigated the interaction of 11 natural alkaloids with G4 formed by telomeric DNA and C-myc22 sequences. Our results indicated that sanguinarine (San), palmatine (Pal), and berberine (Beb) of the first series (S1) can induce the formation of G4 as well as increase the stabilization ability. Daurisoline (S2-1), O-methyldauricine (S2-2), O-diacetyldaurisoline (S2-3), daurinoline (S2-4), dauricinoline (S2-5), N,N′-dimethyldauricine iodide (S2-6), and N,N′-dimethyldaurisoline iodide (S2-7) of the second series (S2) showed similar stabilization ability. We found that unsaturated ring C, N+ positively charged centers, and conjugated aromatic rings are key factors to increase the stabilization ability of S1, and we gave some advice on structure modification to S2 through structure-activity study. Besides, we found San and Pal to be cell cycle blocker in G1. San was speculated to bind to G4 through intercalation or end stacking. PMID:22480315

  13. Contrasting roles for Myc and Mad proteins in cellular growth and differentiation.

    PubMed Central

    Chin, L; Schreiber-Agus, N; Pellicer, I; Chen, K; Lee, H W; Dudast, M; Cordon-Cardo, C; DePinho, R A

    1995-01-01

    The positive effects of Myc on cellular growth and gene expression are antagonized by activities of another member of the Myc superfamily, Mad. Characterization of the mouse homolog of human mad on the structural level revealed that domains shown previously to be required in the human protein for anti-Myc repression, sequence-specific DNA-binding activity, and dimerization with its partner Max are highly conserved. Conservation is also evident on the biological level in that both human and mouse mad can antagonize the ability of c-myc to cooperate with ras in the malignant transformation of cultured cells. An analysis of c-myc and mad gene expression in the developing mouse showed contrasting patterns with respect to tissue distribution and developmental stage. Regional differences in expression were more striking on the cellular level, particularly in the mouse and human gastrointestinal system, wherein c-Myc protein was readily detected in immature proliferating cells at the base of the colonic crypts, while Mad protein distribution was restricted to the postmitotic differentiated cells in the apex of the crypts. An increasing gradient of Mad was also evident in the more differentiated subcorneal layers of the stratified squamous epithelium of the skin. Together, these observations support the view that both downregulation of Myc and accumulation of Mad may be necessary for progression of precursor cells to a growth-arrested, terminally differentiated state. Images Fig. 1 Fig. 2 Fig. 3 PMID:7667316

  14. Protein expression of matrix metalloproteinase (MMP-1, -2, -3, -9 and -14) in Ewing family tumors and medulloblastomas of pediatric patients

    PubMed Central

    Mateo, Elvis Cueva; Motta, Fabio José Nascimento; Queiroz, Rosane Gomes de Paula; Scrideli, Carlos Alberto; Tone, Luiz Gonzaga

    2012-01-01

    The matrix metalloproteinases (MMP) are endopeptidases performing proteolytic functions in the extracellular matrix and their overexpression has been suggested to be a characteristic of malignant tumors. Molecular changes such as the presence of chimeric protein Ewing’s sarcoma protein-friend leukemia virus integration 1 (EWS-FLI1) in the Ewing family of tumors (EFT) and the oncogenes C-ERBB-2, N-MYC, C-MYC in medulloblastoma (MB) promote the overexpression of MMP. In the present study, protein expression of MMP-1, -2, -3, -9 and -14 was qualitatively evaluated in 17 EFT and MB samples of children and adolescent by western blotting and optical densitometry, and the level of gene expression of some MMPs was determined by real-time quantitative polymerase chain reaction. Five MB samples (45.4%) presented expression of the five MMPs and six samples (54.6%) presented expression of at least one of them. Four EFT samples (66.6%) presented expression of MMP-2, -9 and -14, and two samples (33.4%) presented expression of at least one of these MMPs, whereas the presence of MMP-1 and -3 was not observed. Gene analysis showed that MMP-2 had a high expression in MB, while the expression of MMP-9 and MMP-14 was higher in EFT. It has been established that the expression of the MMPs might be related to a complex pathway of gene regulation.

  15. Protein expression of matrix metalloproteinase (MMP-1, -2, -3, -9 and -14) in Ewing family tumors and medulloblastomas of pediatric patients.

    PubMed

    Mateo, Elvis Cueva; Motta, Fabio José Nascimento; Queiroz, Rosane Gomes de Paula; Scrideli, Carlos Alberto; Tone, Luiz Gonzaga

    2012-09-01

    The matrix metalloproteinases (MMP) are endopeptidases performing proteolytic functions in the extracellular matrix and their overexpression has been suggested to be a characteristic of malignant tumors. Molecular changes such as the presence of chimeric protein Ewing's sarcoma protein-friend leukemia virus integration 1 (EWS-FLI1) in the Ewing family of tumors (EFT) and the oncogenes C-ERBB-2, N-MYC, C-MYC in medulloblastoma (MB) promote the overexpression of MMP. In the present study, protein expression of MMP-1, -2, -3, -9 and -14 was qualitatively evaluated in 17 EFT and MB samples of children and adolescent by western blotting and optical densitometry, and the level of gene expression of some MMPs was determined by real-time quantitative polymerase chain reaction. Five MB samples (45.4%) presented expression of the five MMPs and six samples (54.6%) presented expression of at least one of them. Four EFT samples (66.6%) presented expression of MMP-2, -9 and -14, and two samples (33.4%) presented expression of at least one of these MMPs, whereas the presence of MMP-1 and -3 was not observed. Gene analysis showed that MMP-2 had a high expression in MB, while the expression of MMP-9 and MMP-14 was higher in EFT. It has been established that the expression of the MMPs might be related to a complex pathway of gene regulation. PMID:27625820

  16. Kaiso is a key regulator of spleen germinal center formation by repressing Bcl6 expression in splenocytes

    SciTech Connect

    Koh, Dong-In; Yoon, Jae-Hyeon; Kim, Min-Kyeong; An, Haemin; Kim, Min-Young; Hur, Man-Wook

    2013-12-13

    Highlights: •Knockout of Kaiso results in concordant high expression of Bcl6 and c-Myc in spleen. •Kaiso binds the Bcl6 promoter and represses Bcl6 transcription by recruiting NCoR. •Upregulated Bcl6 increases splenocyte proliferation and causes large diffused GC. •Cell cycle-inhibition genes such as Cdkn1b and Cdkn1a are repressed by Bcl6. -- Abstract: Kaiso was previously described as a methylated DNA-binding protein and a transcription repressor interacting with the corepressor protein complex NCoR. In the current study, we show that generation-3 Kaiso knockout mice show a phenotype of splenomegaly and large diffused germinal centers (GC). In the spleens of Kaiso knockout mice, Bcl6 (a transcriptional repressor that plays a critical role in GC development in spleen) and c-Myc were highly expressed, while the cell cycle arrest genes p27 (CDKN1B), p21 (CDKN1A) and Gadd45a were downregulated. Chromatin immunoprecipitation (ChIP) and transcription assays suggested that Kaiso represses Bcl6 expression, and in Kaiso knockout mice, derepressed Bcl6 increased cell proliferation by suppressing p27 (CDKN1B), p21 (CDKN1A) and Gadd45a, while upregulating the oncogene c-Myc. Further evidence for Kaiso regulation of splenomegaly was provided by B lymphocyte Ramos cells, in which ectopic KAISO repressed BCL6 and c-MYC expression, while concomitantly increasing the expression of the cell cycle arrestors p21, p27 and Gadd45a. In summary, derepressed Bcl6 expression may be responsible for increases in GC cell proliferation and splenomegaly of Kaiso knockout mice.

  17. Detection of HER-2/neu, c-myc amplification and p53 inactivation by FISH in Egyptian patients with breast cancer.

    PubMed

    Ismail, Manal F; Aly, Magdy Sayed; Khaled, Hussein M; Mohamed, Hanaa M

    2009-01-01

    Breast cancer is a leading cause of cancer-related deaths in women worldwide. The clinical course of this disease is highly variable and clinicians continuously search for prognostic parameters that can accurately predict prognosis, and indicate a suitable adjuvant therapy for each patient. Amplification of the two oncogenes HER-2/neu and c-myc and inactivation of the tumor suppressor gene p53 are frequently encountered in breast carcinomas. The purpose of this study was to use the fluorescence in situ hybridization (FISH) for the assessment of HER-2/neu and c-myc amplification and p53 inactivation and to relate these molecular markers with the commonly used clinical and pathological factors. The study was conducted on 34 tissue samples obtained from 33 females and 1 male with breast carcinomas and 17 samples obtained from 16 females and 1 male with benign breast lesions. Results revealed that the level of HER-2/neu, c-myc and p53 in the malignant group was significantly increased as compared to the benign group. On relating the level of the molecular markers to clinicopathological factors, p53 was significantly associated with increased patient's age. The sensitivity of the investigated markers significantly increased with larger tumor size. Concerning tumor grade, HER-2/neu and p53 showed a significant increase in low-grade tumors whereas c-myc showed a highly significant increase in high-grade tumors. With regard to disease staging, HER-2/neu and c-myc were the only markers that showed significant increase at late stages of disease. p53 and HER-2/neu were significantly associated with positive lymph nodal status. A significant correlation was obtained between the levels of the three biomarkers to each other. Conclusively, the combination of HER-2/neu, c-myc and p53 can stratify patients into different risk groups. PMID:19675743

  18. Investigating actinomycin D binding to G-quadruplex, i-motif and double-stranded DNA in 27-nt segment of c-MYC gene promoter.

    PubMed

    Niknezhad, Zhila; Hassani, Leila; Norouzi, Davood

    2016-01-01

    c-MYC DNA is an attractive target for drug design, especially for cancer chemotherapy. Around 90% of c-MYC transcription is controlled by NHE III1, whose 27-nt purine-rich strand has the ability to form G-quadruplex structure. In this investigation, interaction of ActD with 27-nt G-rich strand (G/c-MYC) and its equimolar mixture with the complementary sequence, (GC/c-MYC) as well as related C-rich oligonucleotide (C/c-MYC) was evaluated. Molecular dynamic simulations showed that phenoxazine and lactone rings of ActD come close to the outer G-tetrad nucleotides indicating that ActD binds through end-stacking to the quadruplex DNA. RMSD and RMSF revealed that fluctuation of the quadruplex DNA increases upon interaction with the drug. The results of spectrophotometry and spectrofluorometry indicated that ActD most probably binds to the c-MYC quadruplex and duplex DNA via end-stacking and intercalation, respectively and polarity of ActD environment decreases due to the interaction. It was also found that binding of ActD to the GC-rich DNA is stronger than the two other forms of DNA. Circular dichroism results showed that the type of the three forms of DNA structures doesn't change, but their compactness alters due to their interaction with ActD. Finally, it can be concluded that ActD binds differently to double stranded DNA, quadruplex DNA and i-motif.

  19. Inhibiting CREPT reduces the proliferation and migration of non-small cell lung cancer cells by down-regulating cell cycle related protein

    PubMed Central

    Liu, Tao; Li, Wei-Miao; Wang, Wu-Ping; Sun, Ying; Ni, Yun-Feng; Xing, Hao; Xia, Jing-Hua; Wang, Xue-Jiao; Zhang, Zhi-Pei; Li, Xiao-Fei

    2016-01-01

    It has been reported that CREPT acts as a highly expressed oncogene in a variety of tumors, affecting cyclin D1 signal pathways. However, the distribution and clinical significance of CREPT in NSCLC remains poorly understood. Our study focused on the role of CREPT on the regulation ofnon-small cell lung cancer (NSCLC). We found that CREPT mRNA and protein expression was significantly increased in NSCLC compared with adjacent lung tissues and was increased in various NSCLC cell lines compared with the normal human bronchial epithelial (HBE) cell line. siRNA-induced knockingdown of CREPT significantly inhibited the proliferation and migration of NSCLC cell lines by arresting cell cycle in S phase. Moreover, CREPT knocking down affected the expression of cell cycle proteins including c-mycand CDC25A. Finally, we found there were obvious correlations between CREPT with c-myc expression in histological type, differentiation, and pTNM stages of NSCLC (P<0.05, rs>0.3). Immunohistofluorescence studies demonstrated a co-localization phenomenon when CREPT and c-myc were expressed. Thus, we propose that CREPT may promote NSCLC cell growth and migration through the c-myc and CDC25A signaling molecules. PMID:27347318

  20. Higher Expression of the Heterogeneous Nuclear Ribonucleoprotein K in Melanoma

    PubMed Central

    Wen, Fushi; Shen, Alex; Shanas, Reneé; Bhattacharyya, Achyut; Lian, Fangru; Hostetter, Galen; Shi, Jiaqi

    2010-01-01

    Background The heterogeneous nuclear ribonucleoprotein (hnRNP) K is an essential RNA and DNA binding protein involved in gene expression and signal transduction. The role of hnRNP K in cancer is relatively understudied. However, several cellular functions strongly indicate that hnRNP K is involved in tumorigenesis. Oncogenes c-Src, c-myc, and eIF4E are regulated by hnRNP K. We have shown an increased cytoplasmic hnRNP K in pancreatic cancer. In the present study, we investigated the altered expression of hnRNP K protein and its correlation with p-ERK in melanoma using human melanoma cell lines and tissue microarray. Materials and Methods The protein levels of hnRNP K and p-ERK in 8 human melanoma cell lines and a melanoma progression tissue microarray containing 80 melanoma, 23 dysplastic nevi, and 14 benign nevi specimens were analyzed using Western blot and immunohistochemistry analysis. hnRNP K was knocked down by siRNA, and its effect on melanoma cells was assessed. Results We showed a higher hnRNP K protein level in both melanoma cell lines and melanoma tissue specimens, which correlated with a higher c-myc expression. An increase in the cytoplasmic hnRNP K and eIF4E protein levels in melanoma cells is also seen. p-ERK level was also higher in dysplastic nevi and melanoma tissues, but did not correlate with hnRNP K protein level. We then demonstrated that knocking down of hnRNP K by siRNA inhibited melanoma cell growth and colony formation, as well as c-myc expression. Conclusions hnRNP K expression correlated with melanoma and may play a role in melanoma tumorigenesis. PMID:20499280

  1. Cooperation between the polyomavirus middle-T-antigen gene and the human c-myc oncogene in a rat thyroid epithelial differentiated cell line: model of in vitro progression.

    PubMed Central

    Berlingieri, M T; Portella, G; Grieco, M; Santoro, M; Fusco, A

    1988-01-01

    Two rat thyroid epithelial differentiated cell lines, PC Cl 3 and PC myc, were infected with the polyoma murine leukemia virus (PyMLV) carrying the Middle-T-antigen gene of polyomavirus. After infection, both cell lines acquired the typical markers of neoplastic transformation; however, the PC myc cells showed a greater malignant phenotype. Furthermore, the thyroid differentiated functions were completely suppressed in PC myc cells transformed by PyMLV, whereas they were, at least partially, retained in PC Cl 3 cells transformed by PyMLV, and in particular, thyroglobulin synthesis and secretion were not affected at all. Since no differences in the expression of the middle-T-antigen gene were observed in the two PyMLV-transformed cell lines, the different properties shown by these two infected cell lines must be ascribed to the expression of the c-myc oncogene. Images PMID:2838744

  2. Myc post-transcriptionally induces HIF1 protein and target gene expression in normal and cancer cells

    PubMed Central

    Doe, Megan R.; Ascano, Janice; Kaur, Mandeep; Cole, Michael D.

    2012-01-01

    c-Myc is frequently overexpressed in tumors and plays an important role in the regulation of cancer metabolism. Hypoxia-inducible factor-1 (HIF1), the master regulator of the hypoxic response, enhances tumorigenesis and influences metabolism via upregulation of the glycolytic pathway and suppression of mitochondrial respiration. Together, deregulated Myc and HIF1 cooperate to lend metabolic advantages to proliferating cancer cells and contribute to the Warburg Effect. Here we show that overexpression of Myc significantly stabilizes the alpha subunit of HIF1 (HIF1alpha) under normoxic conditions and enhances HIF1alpha accumulation under hypoxic conditions in cells. Post-transcriptional regulation of HIF1α by Myc led to the induction of HIF1α gene targets. Normoxic HIF1α protein expression was also dependent on Myc. Functionally; HIF1α expression was required for Myc-induced anchorage-independent growth and cell proliferation. Myc-dependent stabilization of HIF1α involved either disruption of binding to the VHL complex or post-translational protein modifications. Taken together, our findings uncover a previously uncharacterized regulatory relationship between Myc and HIF1 that has important implications for cancer metabolism and development. PMID:22186139

  3. Modeling Protein Expression and Protein Signaling Pathways

    PubMed Central

    Telesca, Donatello; Müller, Peter; Kornblau, Steven M.; Suchard, Marc A.; Ji, Yuan

    2015-01-01

    High-throughput functional proteomic technologies provide a way to quantify the expression of proteins of interest. Statistical inference centers on identifying the activation state of proteins and their patterns of molecular interaction formalized as dependence structure. Inference on dependence structure is particularly important when proteins are selected because they are part of a common molecular pathway. In that case, inference on dependence structure reveals properties of the underlying pathway. We propose a probability model that represents molecular interactions at the level of hidden binary latent variables that can be interpreted as indicators for active versus inactive states of the proteins. The proposed approach exploits available expert knowledge about the target pathway to define an informative prior on the hidden conditional dependence structure. An important feature of this prior is that it provides an instrument to explicitly anchor the model space to a set of interactions of interest, favoring a local search approach to model determination. We apply our model to reverse-phase protein array data from a study on acute myeloid leukemia. Our inference identifies relevant subpathways in relation to the unfolding of the biological process under study. PMID:26246646

  4. Bathing in carbon dioxide-enriched water alters protein expression in keratinocytes of skin tissue in rats

    NASA Astrophysics Data System (ADS)

    Kälsch, Julia; Pott, Leona L.; Takeda, Atsushi; Kumamoto, Hideo; Möllmann, Dorothe; Canbay, Ali; Sitek, Barbara; Baba, Hideo A.

    2016-10-01

    Beneficial effects of balneotherapy using naturally occurring carbonated water (CO2 enriched) have been known since the Middle Ages. Although this therapy is clinically applied for peripheral artery disease and skin disorder, the underlying mechanisms are not fully elucidated. Under controlled conditions, rats were bathed in either CO2-enriched water (CO2 content 1200 mg/L) or tap water, both at 37 °C, for 10 min daily over 4 weeks. Proliferation activity was assessed by Ki67 immunohistochemistry of the epidermis of the abdomen. The capillary density was assessed by immunodetection of isolectin-positive cells. Using cryo-fixed abdominal skin epidermis, follicle cells and stroma tissue containing capillaries were separately isolated by means of laser microdissection and subjected to proteomic analysis using label-free technique. Differentially expressed proteins were validated by immunohistochemistry. Proliferation activity of keratinocytes was not significantly different in the epidermis after bathing in CO2-enriched water, and also, capillary density did not change. Proteomic analysis revealed up to 36 significantly regulated proteins in the analyzed tissue. Based on the best expression profiles, ten proteins were selected for immunohistochemical validation. Only one protein, far upstream element binding protein 2 (FUBP2), was similarly downregulated in the epidermis after bathing in CO2-enriched water with both techniques. Low FUBP2 expression was associated with low c-Myc immune-expression in keratinocytes. Long-term bathing in CO2-enriched water showed a cellular protein response of epithelial cells in the epidermis which was detectable by two different methods. However, differences in proliferation activity or capillary density were not detected in the normal skin.

  5. Molecular features of primary mediastinal B-cell lymphoma: involvement of p16INK4A, p53 and c-myc.

    PubMed

    Scarpa, A; Moore, P S; Rigaud, G; Inghirami, G; Montresor, M; Menegazzi, M; Todeschini, G; Menestrina, F

    1999-10-01

    Primary mediastinal B-cell lymphoma (PMBL) shows chromosome 9p anomalies in 50% of cases. Based on reports that p16INK4A gene, located on this chromosomal arm, is frequently altered in aggressive lymphomas, we analysed for alterations of this gene in 27 cases of PMBL, which were part of a series of 32 PMBL cases that have been characterized for alterations in c-myc, p53, N-ras, bcl-1, bcl-2, bcl-6 and for Epstein-Barr virus (EBV) infection. Four cases showed p16INK4A gene anomalies, including three with promoter methylation and one homozygous deletion. Eight PMBLs showed c-myc rearrangements. Three additional cases showed sequence variations in the c-myc P2 promoter, two of which consisted of the same germline variation involving a novel polymorphic XhoI site. Four tumours contained p53 gene mutations and three had clonal EBV infection. One case had a bcl-6 rearrangement. In conclusion, our study shows that p16INK4, c-myc and p53 alterations occur in 15%, 25% and 13% of PMBLs, respectively. EBV monoclonality was found in 9% of cases, whereas no abnormality was detected in bcl-1, bcl-2 and N-ras. Thus, none of the common genetic aberrations seen in other types of non-Hodgkin's lymphomas appears to be stringently involved in the pathogenesis of this unique lymphoma type.

  6. A microenvironment-mediated c-Myc/miR-548m/HDAC6 amplification loop in non-Hodgkin B cell lymphomas

    PubMed Central

    Lwin, Tint; Zhao, Xiaohong; Cheng, Fengdong; Zhang, Xinwei; Huang, Andy; Shah, Bijal; Zhang, Yizhuo; Moscinski, Lynn C.; Choi, Yong Sung; Kozikowski, Alan P.; Bradner, James E.; Dalton, William S.; Sotomayor, Eduardo; Tao, Jianguo

    2013-01-01

    A dynamic interaction occurs between the lymphoma cell and its microenvironment, with each profoundly influencing the behavior of the other. Here, using a clonogenic coculture growth system and a xenograft mouse model, we demonstrated that adhesion of mantle cell lymphoma (MCL) and other non-Hodgkin lymphoma cells to lymphoma stromal cells confers drug resistance, clonogenicity, and induction of histone deacetylase 6 (HDAC6). Furthermore, stroma triggered a c-Myc/miR-548m feed-forward loop, linking sustained c-Myc activation, miR-548m downregulation, and subsequent HDAC6 upregulation and stroma-mediated cell survival and lymphoma progression in lymphoma cell lines, primary MCL and other B cell lymphoma cell lines. Treatment with an HDAC6-selective inhibitor alone or in synergy with a c-Myc inhibitor enhanced cell death, abolished cell adhesion–mediated drug resistance, and suppressed clonogenicity and lymphoma growth ex vivo and in vivo. Together, these data suggest that the lymphoma-stroma interaction in the lymphoma microenvironment directly impacts the biology of lymphoma through genetic and epigenetic regulation, with HDAC6 and c-Myc as potential therapeutic targets. PMID:24216476

  7. Molecular features of primary mediastinal B-cell lymphoma: involvement of p16INK4A, p53 and c-myc.

    PubMed

    Scarpa, A; Moore, P S; Rigaud, G; Inghirami, G; Montresor, M; Menegazzi, M; Todeschini, G; Menestrina, F

    1999-10-01

    Primary mediastinal B-cell lymphoma (PMBL) shows chromosome 9p anomalies in 50% of cases. Based on reports that p16INK4A gene, located on this chromosomal arm, is frequently altered in aggressive lymphomas, we analysed for alterations of this gene in 27 cases of PMBL, which were part of a series of 32 PMBL cases that have been characterized for alterations in c-myc, p53, N-ras, bcl-1, bcl-2, bcl-6 and for Epstein-Barr virus (EBV) infection. Four cases showed p16INK4A gene anomalies, including three with promoter methylation and one homozygous deletion. Eight PMBLs showed c-myc rearrangements. Three additional cases showed sequence variations in the c-myc P2 promoter, two of which consisted of the same germline variation involving a novel polymorphic XhoI site. Four tumours contained p53 gene mutations and three had clonal EBV infection. One case had a bcl-6 rearrangement. In conclusion, our study shows that p16INK4, c-myc and p53 alterations occur in 15%, 25% and 13% of PMBLs, respectively. EBV monoclonality was found in 9% of cases, whereas no abnormality was detected in bcl-1, bcl-2 and N-ras. Thus, none of the common genetic aberrations seen in other types of non-Hodgkin's lymphomas appears to be stringently involved in the pathogenesis of this unique lymphoma type. PMID:10520030

  8. The use of FISH-comet to detect c-Myc and TP 53 damage in extended-term lymphocyte cultures treated with terbuthylazine and carbofuran.

    PubMed

    Mladinic, Marin; Zeljezic, Davor; Shaposhnikov, Sergey A; Collins, Andrew R

    2012-05-20

    Terbuthylazine and carbofuran are suspected to cause non-Hodgkin's lymphoma and lung cancer. We evaluated the effects of prolonged exposure to low concentrations on primary DNA damage by comet assay, and on the structural integrity of c-Myc and TP 53 genes by FISH-comet. Another novelty in studying these pesticides' genotoxicity is the use of 14-day extended-term human lymphocyte cultures. Concentrations corresponded to values of ADI and OEL: for terbuthylazine 0.58 ng/ml and 8 ng/ml; for carbofuran 8 ng/ml and 21.6 ng/ml, respectively. A possible effect of metabolic activation (S9) was also considered. Carbofuran treatment induced a significant migration of DNA into the tail in a concentration-dependent manner, while for terbuthylazine the effect was significant only at the higher concentration. Terbuthylazine caused migration of both c-Myc signals into the comet tail. A significant occurrence of TP 53 signals in the tail was observed at 8 ng/ml. Prolonged carbofuran treatment significantly elevated the migration of a single c-Myc signal into the tail in a concentration-dependent manner. With S9, distribution of signals shifted toward increased presence of both signals in tail. Our results showed impaired structural integrity of c-Myc and TP 53 due to prolonged exposure to terbuthylazine and carbofuran.

  9. THE HEPARIN-BINDING DOMAIN AND V REGION OF FIBRONECTIN REGULATE APOPTOSIS BY SUPPRESSION OF P53 AND C-MYC IN HUMAN PRIMARY CELLS

    EPA Science Inventory

    In apoptosis the tumor suppressor p53 and oncogene c-myc, are usually upregulated. However, we report here an alternate pathway of regulation that is triggered by inflammatory-associated matrix fragments of fibronectin (FN) and leads to apoptosis. It is mediated by transcriptio...

  10. Fuse-binding protein 1 is a target of the EZH2 inhibitor GSK343, in osteosarcoma cells.

    PubMed

    Xiong, Xifeng; Zhang, Jinli; Liang, Weiguo; Cao, Wenjuan; Qin, Shengnan; Dai, Libing; Ye, Dongping; Liu, Zhihe

    2016-08-01

    Osteosarcoma is the primary cancer of leaf tissue and is regarded as a differentiation disease caused by genetic and epigenetic changes which interrupt the osteoblast differentiation from mesenchymal stem cells. Because of its high malignancy degree and rapid development, the morbidity and mortality are high. The enhancer of zeste homolog 2 (EZH2) is a catalytic subunit of polycomb repressive complex 2 (PRC2) and has been demonstrated to be involved in a variety of biological processes, such as cell proliferation and program cell death. EZH2 impairs gene expression by catalyzing the tri-methylation of histone H3 lysine 27 (H3K27me3) which controls gene transcription epigenetically. It is reported that EZH2 expression is higher in osteosarcoma than in osteoblastoma and the highest expression of EZH2 is found in osteosarcoma with metastasis. In the past few years, several potent inhibitors of EZH2 have been discovered, and GSK343 is one of them. In this study, we found that GSK343 inhibited osteosarcoma cell viability, restrained cell cycle transition and promoted programmed cell death. GSK343 not only inhibited the expression of EZH2 and its target, c-Myc and H3K27me3, but it also inhibited fuse binding protein 1 (FBP1) expression, another c-Myc regulator. Furthermore, we found that FBP1 physically interacts with EZH2. Based on these results, we believe that GSK343 is a potential molecule for osteosarcoma clinical treatment. Other than the inhibition on EZH2-c-Myc signal pathway, we postulate that the inhibition on FBP1-c-Myc signal pathway is another potential underlying mechanism with which GSK343 inhibits osteosarcoma cell viability.

  11. An apolar extract of Critonia morifolia inhibits c-Myc, cyclin D1, Cdc25A, Cdc25B, Cdc25C and Akt and induces apoptosis.

    PubMed

    Unger, Christine; Popescu, Ruxandra; Giessrigl, Benedikt; Rarova, Lucie; Herbacek, Irene; Seelinger, Mareike; Diaz, Rene; Wallnöfer, Bruno; Fritzer-Szekeres, Monika; Szekeres, Thomas; Frisch, Richard; Doležal, Karel; Strnad, Miroslav; De Martin, Rainer; Grusch, Michael; Kopp, Brigitte; Krupitza, Georg

    2012-06-01

    Investigating the bioactivity of traditional medical remedies under the controlled conditions of a laboratory is an option to find additional applications, novel formulations or lead structures for the development of new drugs. The present work analysed the anti‑neoplastic activity of increasing polar extracts of the rainforest plant Critonia morifolia (Asteraceae) that has been successfully used as traditional remedy to treat various inflammatory conditions in the long-lasting medical tradition of the Central American Maya, which was here also confirmed in vitro. The apolar petroleum ether extract exhibited the most potent anti‑proliferative and pro‑apoptotic effects in HL‑60 cells and triggered down-regulation of Cdc25C and cyclin D1 within 30 min followed by the inhibition of c-Myc expression and the onset of caspase-3 activation within 2 h. Subsequent to these very rapid molecular responses Chk2 and H2AX became phosphorylated (γ‑H2AX) after 4 h. Analysis of the cell cycle distribution showed an accumulation of cells in the G2-M phase within 8 h and after 24 h in S-phase. This was temporally paralleled by the down-regulation of Cdc25A, Cdc25B, Wee1 and Akt. Therefore, the attenuation of cell cycle progression in the G2-M phase was consistent with the known role of Chk2 for G2-M arrest and with the role of Cdc25B in S-phase progression. These findings suggest the presence of two distinct active principles in the petroleum ether extract of C. moriflia. These facilitated the strong apoptotic response evidenced by the rapid activation of caspase-3 that was later enforced by the inhibition of the survival kinase Akt. Importantly, the efficient down-regulation of Akt, which is successfully tested in current clinical trials, is a unique property of C. morifolia. PMID:22446629

  12. MicroRNA-486-5p enhances hepatocellular carcinoma tumor suppression through repression of IGF-1R and its downstream mTOR, STAT3 and c-Myc

    PubMed Central

    Youness, Rana Ahmed; El-Tayebi, Hend Mohamed; Assal, Reem Amr; Hosny, Karim; Esmat, Gamal; Abdelaziz, Ahmed Ihab

    2016-01-01

    The insulin-like growth factor (IGF)-axis has been paradigmatically involved in hepatocellular carcinoma (HCC) tumor initiation, progression and drug resistance. Consequently, members of the IGF-axis and most importantly, IGF-1 receptor (IGF-1R) have been considered as intriguing targets for HCC therapy. Few miRNAs have been recently reported to be associated with IGF-1R regulation. The present study aimed to investigate the role of microRNA (miRNA/miR)-486-5p in the regulation of IGF-1R and its downstream signaling cascades. miR-486-5p was markedly downregulated in hepatitis C virus-induced HCC tissues and Huh-7 cells. Forcing the expression of miR-486-5p in Huh-7 cells resulted in the repression of IGF-1R, mammalian target of rapamycin (mTOR), signal transducer and activator of transcription 3 (STAT3) and c-Myc mRNA levels. Ectopic expression of miR-486-5p in Huh-7 cells markedly repressed cellular viability, proliferation, migration and clonogenicity in a similar pattern to IGF-1R small interfering RNAs, and were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, BrdU incorporation, wound healing and colony forming assays, respectively. Overall, the study findings demonstrated that miR-486-5p acts as a tumor suppressor in HCC through the repression of essential members of the IGF-axis, including IGF-1R and its downstream mediators mTOR, STAT3 and c-Myc.

  13. MicroRNA-486-5p enhances hepatocellular carcinoma tumor suppression through repression of IGF-1R and its downstream mTOR, STAT3 and c-Myc

    PubMed Central

    Youness, Rana Ahmed; El-Tayebi, Hend Mohamed; Assal, Reem Amr; Hosny, Karim; Esmat, Gamal; Abdelaziz, Ahmed Ihab

    2016-01-01

    The insulin-like growth factor (IGF)-axis has been paradigmatically involved in hepatocellular carcinoma (HCC) tumor initiation, progression and drug resistance. Consequently, members of the IGF-axis and most importantly, IGF-1 receptor (IGF-1R) have been considered as intriguing targets for HCC therapy. Few miRNAs have been recently reported to be associated with IGF-1R regulation. The present study aimed to investigate the role of microRNA (miRNA/miR)-486-5p in the regulation of IGF-1R and its downstream signaling cascades. miR-486-5p was markedly downregulated in hepatitis C virus-induced HCC tissues and Huh-7 cells. Forcing the expression of miR-486-5p in Huh-7 cells resulted in the repression of IGF-1R, mammalian target of rapamycin (mTOR), signal transducer and activator of transcription 3 (STAT3) and c-Myc mRNA levels. Ectopic expression of miR-486-5p in Huh-7 cells markedly repressed cellular viability, proliferation, migration and clonogenicity in a similar pattern to IGF-1R small interfering RNAs, and were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, BrdU incorporation, wound healing and colony forming assays, respectively. Overall, the study findings demonstrated that miR-486-5p acts as a tumor suppressor in HCC through the repression of essential members of the IGF-axis, including IGF-1R and its downstream mediators mTOR, STAT3 and c-Myc. PMID:27698829

  14. AKT and N-Ras co-activation in the mouse liver promotes rapid carcinogenesis via mTORC1, FOXM1/SKP2, and c-Myc pathways

    PubMed Central

    Ho, Coral; Wang, Chunmei; Mattu, Sandra; Destefanis, Giulia; Ladu, Sara; Delogu, Salvatore; Armbruster, Julia; Fan, Lingling; Lee, Susie A.; Jiang, Lijie; Dombrowski, Frank; Evert, Matthias; Chen, Xin; Calvisi, Diego F.

    2011-01-01

    Activation of v-akt murine thymoma viral oncogene homolog (AKT) and Ras pathways is often implicated in carcinogenesis. However, the oncogenic cooperation between these two cascades in relationship to hepatocellular carcinoma (HCC) development remains undetermined. To investigate this issue, we generated a mouse model characterized by combined overexpression of activated forms of AKT and neuroblastoma Ras viral oncogene homolog (N-Ras) protooncogenes in the liver via hydrodynamic gene transfer. The molecular mechanisms underlying crosstalk between AKT and N-Ras were assessed in the mouse model and further evaluated in human and murine HCC cell lines. We found that co-expression of AKT and N-Ras resulted in a dramatic acceleration of liver tumor development when compared with mice overexpressing AKT alone, whereas N-Ras alone did not lead to tumor formation. At the cellular level, concomitant upregulation of AKT and N-Ras resulted in increased proliferation and microvascularization when compared with AKT injected mice. Mechanistic studies suggested that accelerated hepatocarcinogenesis driven by AKT and N-Ras resulted from a strong activation of mammalian target of rapamycin complex 1 (mTORC1). Furthermore, elevated expression of FOXM1/SKP2 and c-Myc also contributed to rapid tumor growth in AKT/Ras mice, yet via mTORC1-independent mechanisms. The biological effects of co-activation of AKT and N-Ras were then recapitulated in vitro using HCC cell lines, which supports the functional significance of mTORC1, FOXM1/SKP2 and c-Myc signaling cascades in mediating AKT and N-Ras induced liver tumor development. Conclusion Our data demonstrate the in vivo crosstalk between the AKT and Ras pathways in promoting liver tumor development, and the pivotal role of mTORC1-dependent and independent pathways in mediating AKT and Ras induced hepatocarcinogenesis. PMID:21993994

  15. Estrogen modulates the mRNA levels for cancellous bone protein of ovariectomized rats.

    PubMed

    Salih, M A; Liu, C C; Arjmandi, B H; Kalu, D N

    1993-12-01

    This study was undertaken to examine the effects of ovariectomy and 17 beta-estradiol (E2) on the gene expression of type 1 collagen, osteocalcin and the protooncogen, c-myc, in cancellous bone. Female Sprague-Dawley rats, aged 95 days, were divided into 4 groups. Group 1 was sham operated and Groups 2-4 were ovariectomized. Groups 3 and 4 received daily injections of 160 ng and 1600 ng E2/kg body weight, respectively. Groups 1 and 2 received the solvent vehicle. All animals were sacrificed after 14 days. The femurs were dissected out and cancellous bone scraped from the distal metaphysis. RNA was isolated from the cancellous bone, immobilized on filters or size-fractionated by agarose gel electrophoresis and adsorbed on filters which were then hybridized with specific cDNA probes. Ovariectomy resulted in a significant increase in the mRNAs of type 1 collagen, osteocalcin and c-myc. The increase was suppressed in animals that received 17 beta-estradiol injections. In addition, ovariectomy caused the expected decrease in cancellous bone in the proximal tibia and increased osteoclast and osteoblast numbers. The ovariectomy-induced changes were prevented by 17 beta-estradiol administration. These findings suggest that the lack of ovarian hormones shortly after ovariectomy up-regulates and estrogen administration down-regulates the expression of important cancellous bone matrix proteins as well as the protooncogen, c-myc.

  16. Differential expression of myc, max and RB1 genes in human gliomas and glioma cell lines.

    PubMed Central

    Hirvonen, H. E.; Salonen, R.; Sandberg, M. M.; Vuorio, E.; Västrik, I.; Kotilainen, E.; Kalimo, H.

    1994-01-01

    Deregulated expression of myc proto-oncogenes is implicated in several human neoplasias. We analysed the expression of c-myc, N-myc, L-myc, max and RB1 mRNAs in a panel of human gliomas and glioma cell lines and compared the findings with normal neural cells. The max and RB1 genes were included in the study because their protein products can interact with the Myc proteins, being thus putative modulators of Myc activity. Several gliomas contained c/L-myc mRNAs at levels higher than those in fetal brain, L-myc predominantly in grade II/III and c-myc in grade III gliomas. High-level N-myc expression was detected. In one small-cell glioblastoma and lower levels in five other gliomas. In contrast, glioma cell lines totally lacked N/L-myc expression. The in situ hybridisations revealed mutually exclusive topographic distribution of myc and glial fibrillary acidic protein (GFAP) mRNAs, and a lack of correlation between myc expression and proliferative activity, max and RB1 mRNAs were detected in most tumours and cell lines. The glioma cells displayed interesting alternative splicing patterns of max mRNAs encoding Max proteins which either suppress (Max) or augment (delta Max) the transforming activity of Myc. We conclude that (1) glioma cells in vivo may coexpress several myc genes, thus resembling fetal neural cells; but (2) cultured glioma cells expression only c-myc; (3) myc, max and RB1 are regulated independently in glioma cells; and (4) alternative processing of max mRNA in some glioma cells results in delta Max encoding mRNAs not seen in normal fetal brain. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8286200

  17. Data Mining for Expressivity of Recombinant Protein Expression

    NASA Astrophysics Data System (ADS)

    Kira, Satoshi; Isoai, Atsushi; Yamamura, Masayuki

    We analyzed the expressivity of recombinant proteins by using data mining methods. The expression technique of recombinant protein is a key step towards elucidating the functions of genes discovered through genomic sequence projects. We have studied the productive efficiency of recombinant proteins in fission yeast, Schizosaccharomyces pombe (S.pombe), by mining the expression results. We gathered 57 proteins whose expression levels were known roughly in the host. Correlation analysis, principal component analysis and decision tree analysis were applied to these expression data. Analysis featuring codon usage and amino acid composition clarified that the amino acid composition affected to the expression levels of a recombinant protein strongly than the effect of codon usage. Furthermore, analysis of amino acid composition showed that protein solubility and the metabolism cost of amino acids correlated with a protein expressivity. Codon usage was often interesting in the field of recombinant expressions. However, our analysis found the weak correlation codon features with expressivities. These results indicated that ready-made indices of codon bias were irrelevant ones for modeling the expressivities of recombinant proteins. Our data driven approach was an easy and powerful method to improve recombinant protein expression, and this approach should be concentrated attention with the huge amount of expression data accumulating through the post-genome era.

  18. Cyclin E/Cdk2, P/CAF, and E1A regulate the transactivation of the c-myc promoter by FOXM1

    SciTech Connect

    Wierstra, Inken Alves, Juergen

    2008-03-28

    FOXM1c transactivates the c-myc promoter by binding directly to its TATA-boxes. The present study demonstrates that the transactivation of the c-myc promoter by FOXM1c is enhanced by the key proliferation signal cyclin E/Cdk2, but repressed by P/CAF and the adenoviral oncoprotein E1A. Furthermore, FOXM1c interacts with the coactivator and histone acetyltransferase P/CAF. This study shows that, on the c-myc-P1 TATA-box, FOXM1c does not function simply as normal transcription factor just binding to an unusual site. Moreover, the inhibitory N-terminus of FOXM1c does not inhibit its transrepression domain or its EDA. Others reported that a cyclin/Cdk-binding LXL-motif of the splice variant FoxM1b is required for its interaction with Cdk2, Cdk1, and p27, its phosphorylation by Cdk1 and its activation by Cdc25B. In contrast, we now demonstrate that this LXL-motif is not required for the activation of FOXM1c by cyclin D1/Cdk4, cyclin E/Cdk and cyclin A/Cdk2 or for the repression of FOXM1c by p27.

  19. Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: synergistic action of oncogenes in vivo.

    PubMed

    Sinn, E; Muller, W; Pattengale, P; Tepler, I; Wallace, R; Leder, P

    1987-05-22

    We have derived and mated separate strains of transgenic mice that carry either the v-Ha-ras or the c-myc gene driven by the mouse mammary tumor virus (MMTV) promoter/enhancer. Mice carrying the MMTV/v-Ha-ras transgene manifest two distinct disturbances of cell growth. The first, a benign hyperplasia of the Harderian lacrimal gland, is diffuse, involves the entire gland, and likely requires only the abnormal action of the v-Ha-ras gene. The second involves the focal development of malignancies of mammary, salivary, and lymphoid tissue and likely requires additional somatic events. When the MMTV/v-Ha-ras and MMTV/c-myc strains are crossed to yield hybrid mice, their joint action results in a dramatic and synergistic acceleration of tumor formation. Since these tumors arise stochastically and are apparently monoclonal in origin, additional somatic events appear necessary for their full malignant progression, even in the presence of activated v-Ha-ras and c-myc transgenes.

  20. A Novel Secreted Protein, MYR1, Is Central to Toxoplasma ’s Manipulation of Host Cells

    DOE PAGES

    Franco, Magdalena; Panas, Michael W.; Marino, Nicole D.; Lee, Mei-Chong Wendy; Buchholz, Kerry R.; Kelly, Felice D.; Bednarski, Jeffrey J.; Sleckman, Barry P.; Pourmand, Nader; Boothroyd, John C.

    2016-02-02

    The intracellular protozoanToxoplasma gondiidramatically reprograms the transcriptome of host cells it infects, including substantially up-regulating the host oncogene c-myc. By applying a flow cytometry-based selection to infected mouse cells expressing green fluorescent protein fused to c-Myc (c-Myc–GFP), we isolated mutant tachyzoites defective in this host c-Myc up-regulation. Whole-genome sequencing of three such mutants led to the identification ofMYR1(Mycregulation1;TGGT1_254470) as essential for c-Myc induction. MYR1 is a secreted protein that requires TgASP5 to be cleaved into two stable portions, both of which are ultimately found within the parasitophorous vacuole and at the parasitophorous vacuole membrane. Deletion ofMYR1revealed that in additionmore » to its requirement for c-Myc up-regulation, the MYR1 protein is needed for the ability ofToxoplasmatachyzoites to modulate several other important host pathways, including those mediated by the dense granule effectors GRA16 and GRA24. This result, combined with its location at the parasitophorous vacuole membrane, suggested that MYR1 might be a component of the machinery that translocatesToxoplasmaeffectors from the parasitophorous vacuole into the host cytosol. Support for this possibility was obtained by showing that transit of GRA24 to the host nucleus is indeed MYR1-dependent. As predicted by this pleiotropic phenotype, parasites deficient inMYR1were found to be severely attenuated in a mouse model of infection. We conclude, therefore, that MYR1 is a novel protein that plays a critical role in howToxoplasmadelivers effector proteins to the infected host cell and that this is crucial to virulence. IMPORTANCEToxoplasma gondiiis an important human pathogen and a model for the study of intracellular parasitism. Infection of the host cell withToxoplasmatachyzoites involves the introduction of protein effectors, including many that are initially secreted into the parasitophorous vacuole but must

  1. Endoscopic appearance of AIDS-related gastrointestinal lymphoma with c-MYC rearrangements: Case report and literature review

    PubMed Central

    Tanaka, Shohei; Nagata, Naoyoshi; Mine, Sohtaro; Igari, Toru; Kobayashi, Taiichiro; Sugihara, Jun; Honda, Haruhito; Teruya, Katsuji; Kikuchi, Yoshimi; Oka, Shinichi; Uemura, Naomi

    2013-01-01

    Acquired immune deficiency syndrome (AIDS)-related lymphoma (ARL) remains the main cause of AIDS-related deaths in the highly active anti-retroviral therapy (HAART) era. Recently, rearrangement of MYC is associated with poor prognosis in patients with diffuse large B-cell lymphoma. Here, we report a rare case of gastrointestinal (GI)-ARL with MYC rearrangements and coinfected with Epstein-Barr virus (EBV) infection presenting with various endoscopic findings. A 38-year-old homosexual man who presented with anemia and was diagnosed with an human immunodeficiency virus infection for the first time. GI endoscopy revealed multiple dish-like lesions, ulcerations, bloody spots, nodular masses with active bleeding in the stomach, erythematous flat lesions in the duodenum, and multiple nodular masses in the colon and rectum. Magnified endoscopy with narrow band imaging showed a honeycomb-like pattern without irregular microvessels in the dish-like lesions of the stomach. Biopsy specimens from the stomach, duodenum, colon, and rectum revealed diffuse large B-cell lymphoma concomitant with EBV infection that was detected by high tissue EBV-polymerase chain reaction levels and Epstein-Barr virus small RNAs in situ hybridization. Fluorescence in situ hybridization analysis revealed a fusion between the immunoglobulin heavy chain (IgH) and c-MYC genes, but not between the IgH and BCL2 loci. After 1-mo of treatment with HAART and R-CHOP, endoscopic appearance improved remarkably, and the histological features of the biopsy specimens revealed no evidence of lymphoma. However, he died from multiple organ failure on the 139th day after diagnosis. The cause of his poor outcome may be related to MYC rearrangement. The GI tract involvement in ARL is rarely reported, and its endoscopic findings are various and may be different from those in non-AIDS GI lymphoma; thus, we also conducted a literature review of GI-ARL cases. PMID:23922484

  2. Endoscopic appearance of AIDS-related gastrointestinal lymphoma with c-MYC rearrangements: case report and literature review.

    PubMed

    Tanaka, Shohei; Nagata, Naoyoshi; Mine, Sohtaro; Igari, Toru; Kobayashi, Taiichiro; Sugihara, Jun; Honda, Haruhito; Teruya, Katsuji; Kikuchi, Yoshimi; Oka, Shinichi; Uemura, Naomi

    2013-08-01

    Acquired immune deficiency syndrome (AIDS)-related lymphoma (ARL) remains the main cause of AIDS-related deaths in the highly active anti-retroviral therapy (HAART) era. Recently, rearrangement of MYC is associated with poor prognosis in patients with diffuse large B-cell lymphoma. Here, we report a rare case of gastrointestinal (GI)-ARL with MYC rearrangements and coinfected with Epstein-Barr virus (EBV) infection presenting with various endoscopic findings. A 38-year-old homosexual man who presented with anemia and was diagnosed with an human immunodeficiency virus infection for the first time. GI endoscopy revealed multiple dish-like lesions, ulcerations, bloody spots, nodular masses with active bleeding in the stomach, erythematous flat lesions in the duodenum, and multiple nodular masses in the colon and rectum. Magnified endoscopy with narrow band imaging showed a honeycomb-like pattern without irregular microvessels in the dish-like lesions of the stomach. Biopsy specimens from the stomach, duodenum, colon, and rectum revealed diffuse large B-cell lymphoma concomitant with EBV infection that was detected by high tissue EBV-polymerase chain reaction levels and Epstein-Barr virus small RNAs in situ hybridization. Fluorescence in situ hybridization analysis revealed a fusion between the immunoglobulin heavy chain (IgH) and c-MYC genes, but not between the IgH and BCL2 loci. After 1-mo of treatment with HAART and R-CHOP, endoscopic appearance improved remarkably, and the histological features of the biopsy specimens revealed no evidence of lymphoma. However, he died from multiple organ failure on the 139(th) day after diagnosis. The cause of his poor outcome may be related to MYC rearrangement. The GI tract involvement in ARL is rarely reported, and its endoscopic findings are various and may be different from those in non-AIDS GI lymphoma; thus, we also conducted a literature review of GI-ARL cases. PMID:23922484

  3. Establishment of c-myc-immortalized Kupffer cell line from a C57BL/6 mouse strain.

    PubMed

    Kitani, Hiroshi; Sakuma, Chisato; Takenouchi, Takato; Sato, Mitsuru; Yoshioka, Miyako; Yamanaka, Noriko

    2014-01-01

    We recently demonstrated in several mammalian species, a novel procedure to obtain liver-macrophages (Kupffer cells) in sufficient numbers and purity using a mixed primary culture of hepatocytes. In this study, we applied this method to the C57BL/6 mouse liver and established an immortalized Kupffer cell line from this mouse strain. The hepatocytes from the C57BL/6 adult mouse liver were isolated by a two-step collagenase perfusion method and cultured in T25 culture flasks. Similar to our previous studies, the mouse hepatocytes progressively changed their morphology into a fibroblastic appearance after a few days of culture. After 7-10 days of culture, Kupffer-like cells, which were contaminants in the hepatocyte fraction at the start of the culture, actively proliferated on the mixed fibroblastic cell sheet. At this stage, a retroviral vector containing the human c-myc oncogene and neomycin resistance gene was introduced into the mixed culture. Gentle shaking of the culture flask, followed by the transfer and brief incubation of the culture supernatant, resulted in a quick and selective adhesion of Kupffer cells to a plastic dish surface. After selection with G418 and cloning by limiting dilutions, a clonal cell line (KUP5) was established. KUP5 cells displayed typical macrophage morphology and were stably passaged at 4-5 days intervals for more than 5 months, with a population doubling time of 19 h. KUP5 cells are immunocytochemically positive for mouse macrophage markers, such as Mac-1, F4/80. KUP5 cells exhibited substantial phagocytosis of polystyrene microbeads and the release of inflammatory cytokines upon lipopolysaccharide stimulation. Taken together, KUP5 cells provide a useful means to study the function of Kupffer cells in vitro. PMID:25379377

  4. Heterologous protein expression by transimmortalized differentiated liver cell lines derived from transgenic mice (hepatomas/alpha 1 antitrypsin/ONC mouse).

    PubMed

    Dalemans, W; Perraud, F; Le Meur, M; Gerlinger, P; Courtney, M; Pavirani, A

    1990-07-01

    A number of therapeutic plasma proteins are synthesized by human hepatocytes. Since many of these proteins undergo liver-specific post-translational modifications which are required for full biological activity, it may therefore be necessary to develop hepatocyte-based expression systems for their production. Using transgenic mice we have developed a transimmortalisation technique for the isolation of differentiated hepatic cell lines, already engineered to secrete human alpha 1 antitrypsin (alpha 1 AT), a plasma protein which is produced mainly in liver cells. This was achieved by co-expression of the mouse c-myc proto-oncogene and a genomic copy of the human alpha 1 AT gene, both under the control of the human alpha 1 AT promoter. Transgenic mice carrying this construct developed hepatomas producing human alpha 1 AT. Under defined culture conditions, cell lines secreting active alpha 1 AT were derived from these tumours. These cells maintain a differentiated hepatic phenotype and continue to secrete human alpha 1 AT for at least 40 generations. PMID:2257132

  5. Low expression of secreted frizzled-related protein 2 and nuclear accumulation of β-catenin in aggressive nonfunctioning pituitary adenoma

    PubMed Central

    WU, YOUTU; BAI, JIWEI; HONG, LINCHUAN; LIU, CHUNHUI; YU, SHENGYUAN; YU, GUOQIANG; ZHANG, YAZHUO

    2016-01-01

    The identification of a specific molecular marker for aggressiveness of nonfunctioning pituitary adenomas (NFPAs) is urgently required in order to guide the clinical diagnosis and treatment of NFPAs. In the present study, low expression of secreted frizzled-related protein 2 (sFRP2) in NFPAs was demonstrated by reverse transcription-quantitative polymerase chain reaction, western blot and immunohistochemical analyses. The results confirmed an abnormal accumulation of free β-catenin in the nuclei of NFPAs, which is the core step for the activation of the Wnt canonical signaling pathway. Furthermore, cyclin D1 and c-Myc, the downstream proteins of the Wnt canonical signaling pathway, were overexpressed in aggressive NFPAs. These findings demonstrated the activation of the Wnt canonical signaling pathway in aggressive NFPAs. In addition, sFRP2 expression was observed to be inversely correlated to the aggressiveness of NFPAs. Therefore, sFRP2 may act as a tumor suppressor through modulation of the cellular cytosolic pool of β-catenin in NFPAs. Furthermore, the expression of sFRP2 may serve as a biomarker for NFPAs aggressiveness and prognosis. PMID:27347125

  6. Difference in Protein Expression Profile and Chemotherapy Drugs Response of Different Progression Stages of LNCaP Sublines and Other Human Prostate Cancer Cells

    PubMed Central

    Lin, Hui-Ping; Lin, Ching-Yu; Hsiao, Ping-Hsuan; Wang, Horng-Dar; Sheng Jiang, Shih; Hsu, Jong-Ming; Jim, Wai-Tim; Chen, Marcelo; Kung, Hsing-Jien; Chuu, Chih-Pin

    2013-01-01

    Androgen ablation therapy is the primary treatment for metastatic prostate cancer. However, 80-90% of the patients who receive androgen ablation therapy ultimately develop recurrent tumors in 12-33 months after treatment with a median overall survival time of 1-2 years after relapse. LNCaP is a commonly used cell line established from a human lymph node metastatic lesion of prostatic adenocarcinoma. We previously established two relapsed androgen receptor (AR)-rich androgen-independent LNCaP sublines 104-R1 (androgen depleted for 12 months) and 104-R2 cells (androgen depleted for 24 months) from AR-positive androgen-dependent LNCaP 104-S cells. LNCaP 104-R1 and 104-R2 mimics the AR-positive hormone-refractory relapsed tumors in patients receiving androgen ablation therapy. Androgen treatment stimulates proliferation of 104-S cells, but causes growth inhibition and G1 cell cycle arrest in 104-R1 and 104-R2 cells. We investigated the protein expression profile difference between LNCaP 104-S vs. LNCaP 104-R1, 104-R2, PC-3, and DU-145 cells as well as examined the sensitivity of these prostate cancer cells to different chemotherapy drugs and small molecule inhibitors. Compared to 104-S cells, 104-R1 and 104-R2 cells express higher protein levels of AR, PSA, c-Myc, Skp2, BCL-2, P53, p-MDM2 S166, Rb, and p-Rb S807/811. The 104-R1 and 104-R2 cells express higher ratio of p-Akt S473/Akt, p-EGFR/EGFR, and p-Src/Src, but lower ratio of p-ERK/ERK than 104-S cells. PC-3 and DU-145 cells express higher c-Myc, Skp2, Akt, Akt1, and phospho-EGFR but less phospho-Akt and phospho-ERK. Overexpression of Skp2 increased resistance of LNCaP cells to chemotherapy drugs. Paclitaxel, androgen, and inhibitors for PI3K/Akt, EGFR, Src, or Bcl-2 seem to be potential choices for treatment of advanced prostate cancers. Our study provides rationale for targeting Akt, EGFR, Src, Bcl-2, and AR signaling as a treatment for AR-positive relapsed prostate tumors after hormone therapy. PMID:24349321

  7. Reconstitution of an E box-binding Myc:Max complex with recombinant full-length proteins expressed in Escherichia coli.

    PubMed

    Farina, Anthony; Faiola, Francesco; Martinez, Ernest

    2004-04-01

    The c-Myc oncoprotein (Myc) is a DNA sequence-specific transcription factor that regulates transcription of a wide variety of genes involved in the control of cell growth, proliferation, differentiation, and apoptosis and its deregulated expression is implicated in many types of human cancer. Myc has an N-terminal transcription activation domain (TAD) that interacts with various coactivators and a C-terminal basic-helix-loop-helix-leucine zipper (bHLHZip) domain required for E box-specific DNA-binding and heterodimerization with its obligatory bHLHZip protein partner Max. The analysis of the mechanisms by which the Myc:Max complex regulates transcription at the molecular level in vitro has been hampered by the difficulty in obtaining highly pure recombinant Myc:Max heterodimers that contain full-length Myc with its complete TAD domain and that have sequence-specific DNA-binding activity. Here, we describe a simple method to reconstitute recombinant Myc:Max complexes from highly purified full-length proteins expressed in Escherichia coli that are soluble and highly active in E box-specific DNA-binding in vitro. The reconstituted Myc:Max complexes are stable and lack Max:Max homodimers. This procedure should facilitate the characterization of the DNA-binding and transcription activation functions of full-length Myc:Max complexes in vitro and in particular the role of Myc TAD-interacting cofactors and Myc:Max post-translational modifications.

  8. An epigenetic auto-feedback loop regulates TGF-β type II receptor expression and function in NSCLC.

    PubMed

    Yang, Shanzhong; Cho, Yong-Jig; Jin, Lin; Yuan, Guandou; Datta, Arunima; Buckhaults, Phillip; Datta, Pran K

    2015-10-20

    The downregulation of transforming growth factor-β (TGF-β) type II receptor (TβRII) expression and function plays a pivotal role in the loss of the TGF-β-induced tumor suppressor function that contributes to lung cancer progression. The aberrant expression of miRNAs has been shown to be involved in the regulation of oncogenes and tumor suppressor genes. Our current study involving miRNA microarray, northern blot and QRT-PCR analysis shows an inverse correlation between miR-20a and TβRII expression in non-small cell lung cancer (NSCLC) tissues and cell lines. Stable expression of miR-20a downregulates TβRII in lung epithelial cells which results in an inhibition of TGF-β signaling and attenuation of TGF-β-induced cell growth suppression and apoptosis. Stable knock down of miR-20a increases TβRII expression and inhibits tumorigenicity of lung cancer cells in vivo. Oncogene c-Myc promotes miR-20a expression by activating its promoter leading to downregulation of TβRII expression and TGF-ß signaling. MiR-145, which is upregulated by TGF-β, inhibits miR-20a expression by targeting c-Myc and upregulates TβRII expression. These correlations among miRNAs and cellular proteins are supported by TCGA public database using NSCLC specimens. These results suggest a novel mechanism for the loss of TβRII expression and TGF-β-induced tumor suppressor functions in lung cancer through a complex auto-feedback loop TGF-β/miR-145/c-Myc/miR-20a/TβRII.

  9. An AU-Rich Sequence Element (UUUN[A/U]U) Downstream of the Edited C in Apolipoprotein B mRNA Is a High-Affinity Binding Site for Apobec-1: Binding of Apobec-1 to This Motif in the 3′ Untranslated Region of c-myc Increases mRNA Stability

    PubMed Central

    Anant, Shrikant; Davidson, Nicholas O.

    2000-01-01

    Apobec-1, the catalytic subunit of the mammalian apolipoprotein B (apoB) mRNA-editing enzyme, is a cytidine deaminase with RNA binding activity for AU-rich sequences. This RNA binding activity is required for Apobec-1 to mediate C-to-U RNA editing. Filter binding assays, using immobilized Apobec-1, demonstrate saturable binding to a 105-nt apoB RNA with a Kd of ∼435 nM. A series of AU-rich templates was used to identify a high-affinity (∼50 nM) binding site of consensus sequence UUUN[A/U]U, with multiple copies of this sequence constituting the high-affinity binding site. In order to determine whether this consensus site could be functionally demonstrated from within an apoB RNA, circular-permutation analysis was performed, revealing one major (UUUGAU) and one minor (UU) site located 3 and 16 nucleotides, respectively, downstream of the edited base. Secondary-structure predictions reveal a stem-loop flanking the edited base with Apobec-1 binding to the consensus site(s) at an open loop. A similar consensus (AUUUA) is present in the 3′ untranslated regions of several mRNAs, including that of c-myc, that are known to undergo rapid degradation. In this context, it is presumed that the consensus motif acts as a destabilizing element. As an independent test of the ability of Apobec-1 to bind to this sequence, F442A cells were transfected with Apobec-1 and the half-life of c-myc mRNA was determined following actinomycin D treatment. These studies demonstrated an increase in the half-life of c-myc mRNA from 90 to 240 min in control versus Apobec-1-expressing cells. Apobec-1 expression mutants, in which RNA binding activity is eliminated, failed to alter c-myc mRNA turnover. Taken together, the data establish a consensus binding site for Apobec-1 embedded in proximity to the edited base in apoB RNA. Binding to this site in other target RNAs raises the possibility that Apobec-1 may be involved in other aspects of RNA metabolism, independent of its role as an apoB RNA

  10. Expression of multiple proteins in transgenic plants

    DOEpatents

    Vierstra, Richard D.; Walker, Joseph M.

    2002-01-01

    A method is disclosed for the production of multiple proteins in transgenic plants. A DNA construct for introduction into plants includes a provision to express a fusion protein of two proteins of interest joined by a linking domain including plant ubiquitin. When the fusion protein is produced in the cells of a transgenic plant transformed with the DNA construction, native enzymes present in plant cells cleave the fusion protein to release both proteins of interest into the cells of the transgenic plant. Since the proteins are produced from the same fusion protein, the initial quantities of the proteins in the cells of the plant are approximately equal.

  11. Role of the chromobox protein CBX7 in lymphomagenesis

    PubMed Central

    Scott, Clare L.; Gil, Jésus; Hernando, Eva; Teruya-Feldstein, Julie; Narita, Masako; Martínez, Dolores; Visakorpi, Tapio; Mu, David; Cordon-Cardo, Carlos; Peters, Gordon; Beach, David; Lowe, Scott W.

    2007-01-01

    Chromobox 7 (CBX7) is a chromobox family protein and a component of the Polycomb repressive complex 1 (PRC1) that extends the lifespan of cultured epithelial cells and can act independently of BMI-1 to repress the INK4a/ARF tumor suppressor locus. To determine whether CBX7 might be oncogenic, we examined its expression pattern in a range of normal human tissues and tumor samples. CBX7 was expressed at high levels in germinal center lymphocytes and germinal center-derived follicular lymphomas, where elevated expression correlated with high c-Myc expression and a more advanced tumor grade. By targeting Cbx7 expression to the lymphoid compartment in mice, we showed that Cbx7 can initiate T cell lymphomagenesis and cooperate with c-Myc to produce highly aggressive B cell lymphomas. Furthermore, Cbx7 repressed transcription from the Ink4a/Arf locus and acted epistatically to the Arf-p53 pathway during tumorigenesis. These data identify CBX7 as a chromobox protein causally linked to cancer development and may help explain the low frequency of INK4a/ARF mutations observed in human follicular lymphoma. PMID:17374722

  12. Calmodulin-Dependent Protein Kinase mediates Hypergravity-Induced Changes in F-Actin Expression by Endothelial Cells

    NASA Technical Reports Server (NTRS)

    Love, Felisha D.; Melhado, Caroline; Bosah, Francis; Harris-Hooker, Sandra A.; Sanford, Gary L.

    1997-01-01

    A number of basic cellular functions, e.g., electrolyte concentration cell growth rate, glucose utilization, bone formation, response to growth stimulation and exocytosis are modified by microgravity or during spaceflight. Studies with intact animal during spaceflights have found lipid accumulations within the lumen of the vasculature and degeneration of the vascular wall. Capillary alterations with extensive endothelial invaginations were also seen. Hemodynamic studies have shown that there is a redistribution of blood from the lower extremities to the upper part of the body; this will alter vascular permeability, resulting in leakage into surrounding tissues. These studies indicate that changes in gravity will affect a number of physiological systems, including the vasculature. However, few studies have addressed the effect of microgravity on vascular cell function and metabolism. A major problem with ground based studies is that achieving a true microgravity hand, environment for prolonged period is not possible. On the other increasing gravity (i.e., hypergravity) is easily achieved. Several researchers have shown that hypergravity will increase the proliferation of several different cell limes (e.g., chick embryo fibroblasts) while decreasing cell motility and slowing liver regeneration following partial hepatectomy. These studies suggest that hypergravity will alter the behavior of most cells. Several investigators have shown that hypergravity affects the expression of the early response genes (c-fos and c-myc) and the activation of several protein kinases (PK's) in cells (10,11). In this study we investigated whether hypergravity alters the expression of f-actin by aortic endothelial cells, and the possible role of protein kinases (calmodulin(II)-dependent and PKA) as mediators of these effects.

  13. Effects of PSCA rs2294008 (C/T) and c-MYC rs9642880 (G/T) polymorphisms on bladder cancer: evidence from a meta-analysis

    PubMed Central

    Gao, Jie; Yang, Peng-Tao; Diao, Yan; Kang, Hua-Feng; Zhao, Yang; Lin, Shuai; Wang, Zi-Ming; Wang, Meng; Wang, Xi-Jing; Dai, Zhi-Jun

    2015-01-01

    Previous studies have investigated the associations between the two polymorphisms (prostate stem cell antigen (PSCA) rs2294008 C/T and c-MYC rs9642880 G/T) and bladder cancer (BC) risk. However, the results are inconsistent. We therefore carried out a meta-analysis to estimate the relationship between PSCA/c-MYC polymorphisms and BC risk. We searched PubMed up to November 2014 to identify potentially eligible literatures. Odds ratios (ORs) and 95% confidence intervals (CIs) were used to estimate the strength of the associations, the data were further stratified by ethnicity. Heterogeneity was evaluated by Q test and I2 statistics. Begg’s funnel plot and Egger’s test were used to assess the publication bias. 11 studies from 9 articles were identified, including a total of 16,814 cancer cases and 52,868 case-free controls. We found a significant association between PSCA rs2294008 polymorphism and BC risk (the allele contrast model: OR = 1.14, 95% CI = 1.11-1.18; homozygote comparison: OR = 1.28, 95% CI = 1.20-1.37; heterozygote comparison: OR = 1.23, 95% CI = 1.17-1.30; dominant model: OR = 1.25, 95% CI = 1.19-1.31 and recessive model: OR = 1.13, 95% CI = 1.07-1.20). Moreover, a significant increased risk of BC was confirmed both in Caucasian and in Asians. For c-MYC rs9642880 polymorphism, significant increased BC risk was detected under the following genetic models (the allele contrast model: OR = 1.20, 95% CI = 1.13-1.27; homozygote comparison: OR = 1.37, 95% CI = 1.21-1.55; heterozygote comparison: OR = 1.20, 95% CI = 1.09-1.32; dominant model: OR = 1.25, 95% CI = 1.14-1.37 and recessive model: OR = 1.26, 95% CI = 1.13-1.40). Further stratified analysis by ethnicity also observed the same results. This meta-analysis suggested that PSCA rs2294008 and c-MYC rs9642880 polymorphisms may increase the BC risk. Further studies are needed to clarify the effects. PMID:25932146

  14. Coevolution of gene expression among interacting proteins

    SciTech Connect

    Fraser, Hunter B.; Hirsh, Aaron E.; Wall, Dennis P.; Eisen,Michael B.

    2004-03-01

    Physically interacting proteins or parts of proteins are expected to evolve in a coordinated manner that preserves proper interactions. Such coevolution at the amino acid-sequence level is well documented and has been used to predict interacting proteins, domains, and amino acids. Interacting proteins are also often precisely coexpressed with one another, presumably to maintain proper stoichiometry among interacting components. Here, we show that the expression levels of physically interacting proteins coevolve. We estimate average expression levels of genes from four closely related fungi of the genus Saccharomyces using the codon adaptation index and show that expression levels of interacting proteins exhibit coordinated changes in these different species. We find that this coevolution of expression is a more powerful predictor of physical interaction than is coevolution of amino acid sequence. These results demonstrate previously uncharacterized coevolution of gene expression, adding a different dimension to the study of the coevolution of interacting proteins and underscoring the importance of maintaining coexpression of interacting proteins over evolutionary time. Our results also suggest that expression coevolution can be used for computational prediction of protein protein interactions.

  15. Triphala Extract Suppresses Proliferation and Induces Apoptosis in Human Colon Cancer Stem Cells via Suppressing c-Myc/Cyclin D1 and Elevation of Bax/Bcl-2 Ratio

    PubMed Central

    Vadde, Ramakrishna; Radhakrishnan, Sridhar; Reddivari, Lavanya; Vanamala, Jairam K. P.

    2015-01-01

    Colon cancer is the second leading cause of cancer related deaths in the USA. Cancer stem cells (CSCs) have the ability to drive continued expansion of the population of malignant cells. Therefore, strategies that target CSCs could be effective against colon cancer and in reducing the risk of relapse and metastasis. In this study, we evaluated the antiproliferative and proapoptotic effects of triphala, a widely used formulation in Indian traditional medicine, on HCT116 colon cancer cells and human colon cancer stem cells (HCCSCs). The total phenolic content, antioxidant activity, and phytochemical composition (LC-MS-MS) of methanol extract of triphala (MET) were also measured. We observed that MET contains a variety of phenolics including naringin, quercetin, homoorientin, and isorhamnetin. MET suppressed proliferation independent of p53 status in HCT116 and in HCCSCs. MET also induced p53-independent apoptosis in HCCSCs as indicated by elevated levels of cleaved PARP. Western blotting data suggested that MET suppressed protein levels of c-Myc and cyclin D1, key proteins involved in proliferation, and induced apoptosis through elevation of Bax/Bcl-2 ratio. Furthermore, MET inhibited HCCSCs colony formation, a measure of CSCs self-renewal ability. Anticancer effects of triphala observed in our study warrant future studies to determine its efficacy in vivo. PMID:26167492

  16. Association of Nuclear PIM1 Expression with Lymph Node Metastasis and Poor Prognosis in Patients with Lung Adenocarcinoma and Squamous Cell Carcinoma

    PubMed Central

    Jiang, Richeng; Wang, Xinyue; Jin, Ziliang; Li, Kai

    2016-01-01

    Increasing evidence indicates that aberrant expression of PIM1, p-STAT3 and c-MYC is involved in the pathogenesis of various solid tumors, but its prognostic value is still unclear in non-small cell lung cancer (NSCLC). Here, we sought to evaluate the expression and prognostic role of these markers in patients with lung adenocarcinoma (AD) and squamous cell carcinoma (SCC). Real time RT-PCR and Western blotting was used to analyze the mRNA and protein expression of PIM1 in NSCLC cell lines, respectively. The expression of PIM1, p-STAT3, and c-MYC was immunohistochemically tested in archival tumor samples from 194 lung AD and SCC patients. High nuclear PIM1 expression was detected in 43.3% of ADs and SCCs, and was significantly correlated with lymph node (LN) metastasis (P = 0.028) and histology (P = 0.003). High nuclear PIM1 expression (P = 0.034), locally advanced stage (P < 0.001), AD (P = 0.007) and poor pathologic differentiation (P = 0.002) were correlated with worse disease-free survival (DFS). High nuclear PIM1 expression (P = 0.009), advanced clinical stage (P < 0.001) and poor pathologic differentiation (P = 0.004) were independent unfavorable prognostic factors for overall survival (OS). High p-STAT3 expression was not associated with OS but significantly correlated with LN metastasis, while c-MYC was not significantly correlated with any clinicopathological parameter or survival. Therefore, in AD and SCC patients, nuclear PIM1 expression level is an independent factor for DFS and OS and it might serve as a predictive biomarker for outcome. PMID:26918046

  17. Absence of DNA damage after 60-Hz electromagnetic field exposure combined with ionizing radiation, hydrogen peroxide, or c-Myc overexpression.

    PubMed

    Jin, Yeung Bae; Choi, Seo-Hyun; Lee, Jae Seon; Kim, Jae-Kyung; Lee, Ju-Woon; Hong, Seung-Cheol; Myung, Sung Ho; Lee, Yun-Sil

    2014-03-01

    The principal objective of this study was to assess the DNA damage in a normal cell line system after exposure to 60 Hz of extremely low frequency magnetic field (ELF-MF) and particularly in combination with various external factors, via comet assays. NIH3T3 mouse fibroblast cells, WI-38 human lung fibroblast cells, L132 human lung epithelial cells, and MCF10A human mammary gland epithelial cells were exposed for 4 or 16 h to a 60-Hz, 1 mT uniform magnetic field in the presence or absence of ionizing radiation (IR, 1 Gy), H(2)O(2) (50 μM), or c-Myc oncogenic activation. The results obtained showed no significant differences between the cells exposed to ELF-MF alone and the unexposed cells. Moreover, no synergistic or additive effects were observed after 4 or 16 h of pre-exposure to 1 mT ELF-MF or simultaneous exposure to ELF-MF combined with IR, H(2)O(2), or c-Myc activation.

  18. Protein expression strategies for identification of novel target proteins.

    PubMed

    Schuster, M; Wasserbauer, E; Einhauer, A; Ortner, C; Jungbauer, A; Hammerschmid, F; Werner, G

    2000-04-01

    Identification of new target proteins is a novel paradigm in drug discovery. A major bottleneck of this strategy is the rapid and simultaneous expression of proteins from differential gene expression to identify eligible candidates. By searching for a generic system enabling high throughput expression analysis and purification of unknown cDNAs, we evaluated the YEpFLAG-1 yeast expression system. We have selected cDNAs encoding model proteins (eukaryotic initiation factor-5A [eIF-5A] and Homo sapiens differentiation-dependent protein-A4) and cDNA encoding an unknown protein (UP-1) for overexpression in Saccharomyces cerevisiae using fusions with a peptide that changes its conformation in the presence of Ca2+ ions, the FLAG tag (Eastman Kodak, Rochester, NY). The cDNAs encoding unknown proteins originating from a directionally cloned cDNA library were expressed in all three possible reading frames. The expressed proteins were detected by an antibody directed against the FLAG tag and/or by antibodies against the model proteins. The alpha-leader sequence, encoding a yeast mating pheromone, upstream of the gene fusion site facilitates secretion into the culture supernatant. EIF-5A could be highly overexpressed and was secreted into the culture supernatant. In contrast, the Homo sapiens differentiation-dependent protein-A4 as well as the protein UP-1, whose cDNA did not match to any known gene, could not be detected in the culture supernatant. The expression product of the correct frame remained in the cells, whereas the FLAG-tagged proteins secreted into the supernatant were short, out-of-frame products. The presence of transmembrane domains or patches of hydrophobic amino acids may preclude secretion of these proteins into the culture supernatant. Subsequently, isolation and purification of the various proteins was accomplished by affinity chromatography or affinity extraction using magnetizable beads coated with the anti-FLAG monoclonal antibody. The purity of

  19. CAPER Is Vital for Energy and Redox Homeostasis by Integrating Glucose-Induced Mitochondrial Functions via ERR-α-Gabpa and Stress-Induced Adaptive Responses via NF-κB-cMYC

    PubMed Central

    Kang, Yun Kyoung; Putluri, Nagireddy; Maity, Suman; Tsimelzon, Anna; Ilkayeva, Olga; Mo, Qianxing; Lonard, David; Michailidis, George; Sreekumar, Arun; Newgard, Christopher B.; Wang, Meng; Tsai, Sophia Y.; Tsai, Ming-Jer; O'Malley, Bert W.

    2015-01-01

    Ever since we developed mitochondria to generate ATP, eukaryotes required intimate mito-nuclear communication. In addition, since reactive oxygen species are a cost of mitochondrial oxidative phosphorylation, this demands safeguards as protection from these harmful byproducts. Here we identified a critical transcriptional integrator which eukaryotes share to orchestrate both nutrient-induced mitochondrial energy metabolism and stress-induced nuclear responses, thereby maintaining carbon-nitrogen balance, and preserving life span and reproductive capacity. Inhibition of nutrient-induced expression of CAPER arrests nutrient-dependent cell proliferation and ATP generation and induces autophagy-mediated vacuolization. Nutrient signaling to CAPER induces mitochondrial transcription and glucose-dependent mitochondrial respiration via coactivation of nuclear receptor ERR-α-mediated Gabpa transcription. CAPER is also a coactivator for NF-κB that directly regulates c-Myc to coordinate nuclear transcriptome responses to mitochondrial stress. Finally, CAPER is responsible for anaplerotic carbon flux into TCA cycles from glycolysis, amino acids and fatty acids in order to maintain cellular energy metabolism to counter mitochondrial stress. Collectively, our studies reveal CAPER as an evolutionarily conserved ‘master’ regulatory mechanism by which eukaryotic cells control vital homeostasis for both ATP and antioxidants via CAPER-dependent coordinated control of nuclear and mitochondrial transcriptomic programs and their metabolisms. These CAPER dependent bioenergetic programs are highly conserved, as we demonstrated that they are essential to preserving life span and reproductive capacity in human cells—and even in C. elegans. PMID:25830341

  20. CAPER is vital for energy and redox homeostasis by integrating glucose-induced mitochondrial functions via ERR-α-Gabpa and stress-induced adaptive responses via NF-κB-cMYC.

    PubMed

    Kang, Yun Kyoung; Putluri, Nagireddy; Maity, Suman; Tsimelzon, Anna; Ilkayeva, Olga; Mo, Qianxing; Lonard, David; Michailidis, George; Sreekumar, Arun; Newgard, Christopher B; Wang, Meng; Tsai, Sophia Y; Tsai, Ming-Jer; O'Malley, Bert W

    2015-04-01

    Ever since we developed mitochondria to generate ATP, eukaryotes required intimate mito-nuclear communication. In addition, since reactive oxygen species are a cost of mitochondrial oxidative phosphorylation, this demands safeguards as protection from these harmful byproducts. Here we identified a critical transcriptional integrator which eukaryotes share to orchestrate both nutrient-induced mitochondrial energy metabolism and stress-induced nuclear responses, thereby maintaining carbon-nitrogen balance, and preserving life span and reproductive capacity. Inhibition of nutrient-induced expression of CAPER arrests nutrient-dependent cell proliferation and ATP generation and induces autophagy-mediated vacuolization. Nutrient signaling to CAPER induces mitochondrial transcription and glucose-dependent mitochondrial respiration via coactivation of nuclear receptor ERR-α-mediated Gabpa transcription. CAPER is also a coactivator for NF-κB that directly regulates c-Myc to coordinate nuclear transcriptome responses to mitochondrial stress. Finally, CAPER is responsible for anaplerotic carbon flux into TCA cycles from glycolysis, amino acids and fatty acids in order to maintain cellular energy metabolism to counter mitochondrial stress. Collectively, our studies reveal CAPER as an evolutionarily conserved 'master' regulatory mechanism by which eukaryotic cells control vital homeostasis for both ATP and antioxidants via CAPER-dependent coordinated control of nuclear and mitochondrial transcriptomic programs and their metabolisms. These CAPER dependent bioenergetic programs are highly conserved, as we demonstrated that they are essential to preserving life span and reproductive capacity in human cells-and even in C. elegans. PMID:25830341

  1. MOPED: Model Organism Protein Expression Database.

    PubMed

    Kolker, Eugene; Higdon, Roger; Haynes, Winston; Welch, Dean; Broomall, William; Lancet, Doron; Stanberry, Larissa; Kolker, Natali

    2012-01-01

    Large numbers of mass spectrometry proteomics studies are being conducted to understand all types of biological processes. The size and complexity of proteomics data hinders efforts to easily share, integrate, query and compare the studies. The Model Organism Protein Expression Database (MOPED, htttp://moped.proteinspire.org) is a new and expanding proteomics resource that enables rapid browsing of protein expression information from publicly available studies on humans and model organisms. MOPED is designed to simplify the comparison and sharing of proteomics data for the greater research community. MOPED uniquely provides protein level expression data, meta-analysis capabilities and quantitative data from standardized analysis. Data can be queried for specific proteins, browsed based on organism, tissue, localization and condition and sorted by false discovery rate and expression. MOPED empowers users to visualize their own expression data and compare it with existing studies. Further, MOPED links to various protein and pathway databases, including GeneCards, Entrez, UniProt, KEGG and Reactome. The current version of MOPED contains over 43,000 proteins with at least one spectral match and more than 11 million high certainty spectra.

  2. All-trans retinoic acid combined with 5-Aza-2 Prime -deoxycitidine induces C/EBP{alpha} expression and growth inhibition in MLL-AF9-positive leukemic cells

    SciTech Connect

    Fujiki, Atsushi; Imamura, Toshihiko; Sakamoto, Kenichi; Kawashima, Sachiko; Yoshida, Hideki; Hirashima, Yoshifumi; Miyachi, Mitsuru; Yagyu, Shigeki; Nakatani, Takuya; Sugita, Kanji; Hosoi, Hajime

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer We tested whether ATRA and 5-Aza affect AML cell differentiation and growth. Black-Right-Pointing-Pointer Cell differentiation and growth arrest were induced in MLL-AF9-expressing cells. Black-Right-Pointing-Pointer Increased expression of C/EBP{alpha}, C/EBP{epsilon}, and PU.1 were also observed. Black-Right-Pointing-Pointer MLL-AF4/AF5q31-expressing cells are less sensitive to ATRA and 5-Aza. Black-Right-Pointing-Pointer Different MLL fusion has distinct epigenetic properties related to RA pathway. -- Abstract: The present study tested whether all-trans retinoic acid (ATRA) and 5-Aza-2 Prime -deoxycitidine (5-Aza) affect AML cell differentiation and growth in vitro by acting on the CCAAT/enhancer binding protein {alpha} (C/EBP{alpha}) and c-Myc axis. After exposure to a combination of these agents, cell differentiation and growth arrest were significantly higher in human and murine MLL-AF9-expressing cells than in MLL-AF4/AF5q31-expressing cells, which were partly associated with increased expression of C/EBP{alpha}, C/EBP{epsilon}, and PU.1, and decreased expression of c-Myc. These findings indicate that MLL-AF9-expressing cells are more sensitive to ATRA and 5-Aza, indicating that different MLL fusion proteins possess different epigenetic properties associated with retinoic acid pathway inactivation.

  3. Expression of clock proteins in developing tooth.

    PubMed

    Zheng, Li; Papagerakis, Silvana; Schnell, Santiago D; Hoogerwerf, Willemijntje A; Papagerakis, Petros

    2011-01-01

    Morphological and functional changes during ameloblast and odontoblast differentiation suggest that enamel and dentin formation is under circadian control. Circadian rhythms are endogenous self-sustained oscillations with periods of 24h that control diverse physiological and metabolic processes. Mammalian clock genes play a key role in synchronizing circadian functions in many organs. However, close to nothing is known on clock genes expression during tooth development. In this work, we investigated the expression of four clock genes during tooth development. Our results showed that circadian clock genes Bmal1, clock, per1, and per2 mRNAs were detected in teeth by RT-PCR. Immunohistochemistry showed that clock protein expression was first detected in teeth at the bell stage (E17), being expressed in EOE and dental papilla cells. At post-natal day four (PN4), all four clock proteins continued to be expressed in teeth but with different intensities, being strongly expressed within the nucleus of ameloblasts and odontoblasts and down-regulated in dental pulp cells. Interestingly, at PN21 incisor, expression of clock proteins was down-regulated in odontoblasts of the crown-analogue side but expression was persisting in root-analogue side odontoblasts. In contrast, both crown and root odontoblasts were strongly stained for all four clock proteins in first molars at PN21. Within the periodontal ligament (PDL) space, epithelial rests of Malassez (ERM) showed the strongest expression among other PDL cells. Our data suggests that clock genes might be involved in the regulation of ameloblast and odontoblast functions, such as enamel and dentin protein secretion and matrix mineralization.

  4. Transient Protein Expression by Agroinfiltration in Lettuce.

    PubMed

    Chen, Qiang; Dent, Matthew; Hurtado, Jonathan; Stahnke, Jake; McNulty, Alyssa; Leuzinger, Kahlin; Lai, Huafang

    2016-01-01

    Current systems of recombinant protein production include bacterial, insect, and mammalian cell culture. However, these platforms are expensive to build and operate at commercial scales and/or have limited abilities to produce complex proteins. In recent years, plant-based expression systems have become top candidates for the production of recombinant proteins as they are highly scalable, robust, safe, and can produce complex proteins due to having a eukaryotic endomembrane system. Newly developed "deconstructed" viral vectors delivered via Agrobacterium tumefaciens (agroinfiltration) have enabled robust plant-based production of proteins with a wide range of applications. The leafy Lactuca sativa (lettuce) plant with its strong foundation in agriculture is an excellent host for pharmaceutical protein production. Here, we describe a method for agroinfiltration of lettuce that can rapidly produce high levels of recombinant proteins in a matter of days and has the potential to be scaled up to an agricultural level. PMID:26614281

  5. Inhibition of oncogene expression by green tea and (-)-epigallocatechin gallate in mice.

    PubMed

    Hu, G; Han, C; Chen, J

    1995-01-01

    The effects of tea drinking on the tobacco-specific nitrosamine 4-(methylnitrosamine)-1-(3-pyridyl)-1-butanone (NNK)-induced mouse lung oncogene expression and the effect of topical application of the tea polyphenol component (-)-epigallocatechin-3-gallate (EGCG) on 12-O-tedradecanoylphorbol-13-acetate (TPA)-induced mouse skin oncogene expression were investigated. In the first experiment, mice were treated with NNK (1.3 mg/kg body wt ip) once a day for three days and were given 2% tea in drinking water during the whole experimental period. After four or eight weeks, the lung tissue of the mice treated with NNK displayed a significantly high level of expression in c-myc, c-raf, and c-H-ras oncogenes, and they were all inhibited by tea drinking with inhibitory rates of 50%, 20%, and 50%, respectively. In the second experiment, a single application of 10 nmol of TPA to mouse skin led to a marked increase in the transcripts' level of ornithine decarboxylase (ODC) gene, protein kinase C (PKC) gene, and c-myc oncogene at four hours after TPA administration. Topical application of EGCG (1 or 5 mumol) one hour before the application of TPA inhibited all TPA-induced gene expression in a dose-dependent fashion. These results confirm the anticarcinogenic effects of tea and suggest that a possible mechanism is the effect of tea on carcinogen-induced oncogene expression.

  6. Gamma interferon and 5-azacytidine cause transcriptional elevation of class I major histocompatibility complex gene expression in K562 leukemia cells in the absence of differentiation.

    PubMed

    Chen, E; Karr, R W; Frost, J P; Gonwa, T A; Ginder, G D

    1986-05-01

    We studied the effects of gamma interferon (IFN-gamma) on HLA class I gene expression, differentiation, and proliferative capacity of K562 human leukemia cells. In the uninduced state, K562 cells show little or no class I gene expression but actively express the erythroid-specific gamma-globin gene as well as genes associated with cell proliferation, including the transferrin receptor, c-myc, and alpha-actin genes At both the surface protein and mRNA levels, IFN-gamma induces class I and beta 2-microglobulin gene expression, but does not alter the expression of the gamma-globin, transferrin receptor, c-myc, or alpha-actin genes. A 10-fold maximal induction of both class I surface protein and mRNA occurs at 48 h and is reversible upon withdrawal of IFN-gamma from the culture medium. In vitro nuclear run-on transcription assays were performed to directly establish that IFN-gamma exerts an early effect at the level of transcription, with maximal transcription rates occurring within 4 h. The difference between the time course of transcription induction and that of mRNA accumulation suggests that the regulation of class I gene expression in this human leukemic cell line also involves posttranscriptional mechanisms. Measurements of cell proliferation rates and cell cycle distribution, as well as the reversibility of the effects of IFN-gamma, demonstrate that the selective induction of class I genes in these cells occurs in the absence of differentiation.

  7. Biotechnology Protein Expression and Purification Facility

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The purpose of the Project Scientist Core Facility is to provide purified proteins, both recombinant and natural, to the Biotechnology Science Team Project Scientists and the NRA-Structural Biology Test Investigators. Having a core facility for this purpose obviates the need for each scientist to develop the necessary expertise and equipment for molecular biology, protein expression, and protein purification. Because of this, they are able to focus their energies as well as their funding on the crystallization and structure determination of their target proteins.

  8. Ku Protein Levels, Localization and Association to Replication Origins in Different Stages of Breast Tumor Progression

    PubMed Central

    Abdelbaqi, Khalil; Di Paola, Domenic; Rampakakis, Emmanouil; Zannis-Hadjopoulos, Maria

    2013-01-01

    Human origins of DNA replication are specific sequences within the genome whereby DNA replication is initiated. A select group of proteins, known as the pre-replication (pre-RC) complex, in whose formation the Ku protein (Ku70/Ku86) was shown to play a role, bind to replication origins to initiate DNA replication. In this study, we have examined the involvement of Ku in breast tumorigenesis and tumor progression and found that the Ku protein expression levels in human breast metastatic (MCF10AC1a) cells were higher in the chromatin fraction compared to hyperplastic (MCF10AT) and normal (MCF10A) human breast cells, but remained constant in both the nuclear and cytoplasmic fractions. In contrast, in human intestinal cells, the Ku expression level was relatively constant for all cell fractions. Nascent DNA abundance and chromatin association of Ku70/86 revealed that the c-myc origin activity in MCF10AC1a is 2.5 to 5-fold higher than in MCF10AT and MCF10A, respectively, and Ku was bound to the c-myc origin more abundantly in MCF10AC1a, by approximately 1.5 to 4.2-fold higher than in MCF10AT and MCF10A, respectively. In contrast, similar nascent DNA abundance and chromatin association was found for all cell lines for the lamin B2 origin, associated with the constitutively active housekeeping lamin B2 gene. Electrophoretic mobility shift assays (EMSAs) performed on the nuclear extracts (NEs) of the three cell types revealed the presence of protein-DNA replication complexes on both the c-myc and lamin B2 origins, but an increase in binding activity was observed from normal, to transformed, to cancer cells for the c-myc origin, whereas no such difference was seen for the lamin B2 origin. Overall, the results suggest that increased Ku chromatin association, beyond wild type levels, alters cellular processes, which have been implicated in tumorigenesis. PMID:23781282

  9. Ku protein levels, localization and association to replication origins in different stages of breast tumor progression.

    PubMed

    Abdelbaqi, Khalil; Di Paola, Domenic; Rampakakis, Emmanouil; Zannis-Hadjopoulos, Maria

    2013-01-01

    Human origins of DNA replication are specific sequences within the genome whereby DNA replication is initiated. A select group of proteins, known as the pre-replication (pre-RC) complex, in whose formation the Ku protein (Ku70/Ku86) was shown to play a role, bind to replication origins to initiate DNA replication. In this study, we have examined the involvement of Ku in breast tumorigenesis and tumor progression and found that the Ku protein expression levels in human breast metastatic (MCF10AC1a) cells were higher in the chromatin fraction compared to hyperplastic (MCF10AT) and normal (MCF10A) human breast cells, but remained constant in both the nuclear and cytoplasmic fractions. In contrast, in human intestinal cells, the Ku expression level was relatively constant for all cell fractions. Nascent DNA abundance and chromatin association of Ku70/86 revealed that the c-myc origin activity in MCF10AC1a is 2.5 to 5-fold higher than in MCF10AT and MCF10A, respectively, and Ku was bound to the c-myc origin more abundantly in MCF10AC1a, by approximately 1.5 to 4.2-fold higher than in MCF10AT and MCF10A, respectively. In contrast, similar nascent DNA abundance and chromatin association was found for all cell lines for the lamin B2 origin, associated with the constitutively active housekeeping lamin B2 gene. Electrophoretic mobility shift assays (EMSAs) performed on the nuclear extracts (NEs) of the three cell types revealed the presence of protein-DNA replication complexes on both the c-myc and lamin B2 origins, but an increase in binding activity was observed from normal, to transformed, to cancer cells for the c-myc origin, whereas no such difference was seen for the lamin B2 origin. Overall, the results suggest that increased Ku chromatin association, beyond wild type levels, alters cellular processes, which have been implicated in tumorigenesis.

  10. Membrane protein expression in Lactococcus lactis.

    PubMed

    King, Martin S; Boes, Christoph; Kunji, Edmund R S

    2015-01-01

    The Gram-positive bacterium Lactococcus lactis has many properties that are ideal for the overproduction of membrane proteins in a functional form. Growth of lactococci is rapid, proceeds to high cell densities, and does not require aeration, which facilitates large-scale fermentation. The available promoter systems are strong and tightly regulated, allowing expression of toxic gene products in a controlled manner. Expressed membrane proteins are targeted exclusively to the cytoplasmic membrane, allowing the use of ionophores, ligands, and inhibitors to study activity of the membrane protein in whole cells. Constructed plasmids are stable and expression levels are highly reproducible. The relatively small genome size of the organism causes little redundancy, which facilitates complementation studies and allows for easier purification. The produced membrane proteins are often stable, as the organism has limited proteolytic capability, and they are readily solubilized from the membrane with mild detergents. Lactococci are multiple amino acid auxotrophs, allowing the incorporation of labels, such as selenomethionine. Among the few disadvantages are the low transformation frequency, AT-rich codon usage, and resistance to lysis by mechanical means, but these problems can be overcome fairly easily. We will describe in detail the protocols used to express membrane proteins in L. lactis, from cloning of the target gene to the isolation of membrane vesicles for the determination of expression levels. PMID:25857778

  11. IMP-1 displays crosstalk with K-Ras and modulates colon cancer cell survival through the novel pro-apoptotic protein CYFIP2

    PubMed Central

    Mongroo, Perry S.; Noubissi, Felicite K.; Cuatrecasas, Miriam; Kalabis, Jiri; King, Catrina E.; Johnstone, Cameron N.; Bowser, Mark J.; Castells, Antoni; Spiegelman, Vladimir S.; Rustgi, Anil K.

    2011-01-01

    Insulin-like growth factor 2 mRNA-binding protein-1 (IMP-1) is an oncofetal protein that binds directly to and stabilizes oncogenic c-Myc and regulates in turn its post-transcriptional expression and translation. In contrast to normal adult tissue, IMP-1 is re-expressed and/or overexpressed in human cancers. We demonstrate that knock-down of c-Myc in human colon cancer cell lines increases the expression of mature let-7 miRNA family members and downregulates several of its mRNA targets: IMP-1, Cdc34, and K-Ras. We further demonstrate that loss of IMP-1 inhibits Cdc34, Lin-28B, and K-Ras, and suppresses SW-480 cell proliferation and anchorage-independent growth, and promotes caspase and lamin-mediated cell death. We also found that IMP-1 binds to the coding region and 3′UTR of K-Ras mRNA. RNA microarray profiling and validation by reverse transcription PCR reveals that the p53-inducible pro-apoptotic protein, CYFIP2, is upregulated in IMP-1 knock-down SW480 cells, a novel finding. We also show that overexpression of IMP-1 increases c-Myc and K-Ras expression, and LIM2405 cell proliferation. Furthermore, we show that loss of IMP-1 induces Caspase-3 and Parp–mediated apoptosis, and inhibits K-Ras expression in SW480 cells, which is rescued by CYFIP2 knock-down. Importantly, analysis of 228 patients with colon cancers reveals that IMP-1 is significantly upregulated in differentiated colon tumors (p ≤ 0.0001) and correlates with K-Ras expression (r=0.35, p ≤ 0.0001) relative to adjacent normal mucosa. These findings indicate that IMP-1, interrelated with c-myc, acts upstream of K-Ras to promote survival through a novel mechanism that may be important in colon cancer pathogenesis. PMID:21252116

  12. Protein expression in the baculovirus system.

    PubMed

    Bernard, A; Payton, M; Radford, K R

    2001-05-01

    Insect cell-recombinant baculovirus co-cultures offer a protein production system that complements microbial systems by providing recombinant proteins in soluble form and with most post-translational modifications. Moreover, the large size of the viral genome enables cloning of large segments of DNA and consequent expression of complex protein aggregates. This unit describes methods associated with the large-scale production of recombinant proteins in the baculovirus expression system. A method for large-scale production of viral stocks is described and methods for titration of virus are provided (a plaque assay and an end-point assay). Once viral stocks have been prepared and titered, a protocol for testing the virus in small-scale cultures is provided to determine the kinetics of expression, which allows evaluation of various cell culture and infection conditions aimed at developing optimal levels of protein production (e.g., comparisons of different host cell lines, media, and environmental parameters). Support protocols provide instructions for preparing culture samples for protein analysis by SDS-PAGE and discuss analytical methods for monitoring nutrient levels in cell culture fluids. Once optimal process parameters are identified, protocols describe production of the target protein on a large scale in fermentors using either regular batch production in bioreactors or a fed-batch procedure of production in perfusion cultures. Techniques for harvesting cultures from bioreactors are also provided.

  13. An optimized system for expression and purification of secreted bacterial proteins.

    PubMed

    Geisbrecht, Brian V; Bouyain, Samuel; Pop, Mihai

    2006-03-01

    In this report, we describe an optimized system for the efficient overexpression, purification, and refolding of secreted bacterial proteins. Candidate secreted proteins were produced recombinantly in Escherichia coli as Tobacco Etch Virus protease-cleavable hexahistidine-c-myc eptiope fusion proteins. Without regard to their initial solubility, recombinant fusion proteins were extracted from whole cells with guanidium chloride, purified under denaturing conditions by immobilized metal affinity chromatography, and refolded by rapid dilution into a solution containing only Tris buffer and sodium chloride. Following concentration on the same resin under native conditions, each protein was eluted for further purification and/or characterization. Preliminary studies on a test set of 12 secreted proteins ranging in size from 13 to 130 kDa yielded between 10 and 50 mg of fusion protein per liter of induced culture at greater than 90% purity, as judged by Coomassie-stained SDS-PAGE. Of the nine proteins further purified, analytical gel filtration chromatography indicated that each was a monomer in solution and circular dichroism spectroscopy revealed that each had adopted a well-defined secondary structure. While there are many potential applications for this system,