Science.gov

Sample records for c-myc protein expression

  1. [Expression of c-myc protein on rats' brains after brain concussion].

    PubMed

    Fang, Wei-Hua; Wang, Dong-Liang; Wang, Feng

    2006-10-15

    To study the changes of expression of c-myc protein on rats' brains after brain concussion. sixty rats were randomly divided into brain concussion groups and control group. The expression of c-myc protein was microscopically observed by immunohistochemical method. No expression of c-myc protein in control group were observed. However, positive expression of c-myc protein in some neurons was seen at 20 min after brain concussion, and reach to the peak at 8h after brain concussion and then decreased gradually. These findings suggest that the detection of c-myc protein could be an index of diagnosis of brain concussion.

  2. Nuclear Localization and DNA Binding Properties of a Protein Expressed by Human c-myc Oncogene

    NASA Astrophysics Data System (ADS)

    Persson, Hakan; Leder, Philip

    1984-08-01

    Antisera to the human cellular myc oncogene product were used to identify a human c-myc specific protein with a molecular weight of 65,000. Subcellular fractionation showed that the human c-myc protein is predominantly found in the cell nucleus. The p65 Kc-myc protein binds to double- and single-stranded DNA as measured by a DNA affinity chromatography assay.

  3. Acidosis Decreases c-Myc Oncogene Expression in Human Lymphoma Cells: A Role for the Proton-Sensing G Protein-Coupled Receptor TDAG8

    PubMed Central

    Li, Zhigang; Dong, Lixue; Dean, Eric; Yang, Li V.

    2013-01-01

    Acidosis is a biochemical hallmark of the tumor microenvironment. Here, we report that acute acidosis decreases c-Myc oncogene expression in U937 human lymphoma cells. The level of c-Myc transcripts, but not mRNA or protein stability, contributes to c-Myc protein reduction under acidosis. The pH-sensing receptor TDAG8 (GPR65) is involved in acidosis-induced c-Myc downregulation. TDAG8 is expressed in U937 lymphoma cells, and the overexpression or knockdown of TDAG8 further decreases or partially rescues c-Myc expression, respectively. Acidic pH alone is insufficient to reduce c-Myc expression, as it does not decrease c-Myc in H1299 lung cancer cells expressing very low levels of pH-sensing G protein-coupled receptors (GPCRs). Instead, c-Myc is slightly increased by acidosis in H1299 cells, but this increase is completely inhibited by ectopic overexpression of TDAG8. Interestingly, TDAG8 expression is decreased by more than 50% in human lymphoma samples in comparison to non-tumorous lymph nodes and spleens, suggesting a potential tumor suppressor function of TDAG8 in lymphoma. Collectively, our results identify a novel mechanism of c-Myc regulation by acidosis in the tumor microenvironment and indicate that modulation of TDAG8 and related pH-sensing receptor pathways may be exploited as a new approach to inhibit Myc expression. PMID:24152439

  4. Acidosis decreases c-Myc oncogene expression in human lymphoma cells: a role for the proton-sensing G protein-coupled receptor TDAG8.

    PubMed

    Li, Zhigang; Dong, Lixue; Dean, Eric; Yang, Li V

    2013-10-11

    Acidosis is a biochemical hallmark of the tumor microenvironment. Here, we report that acute acidosis decreases c-Myc oncogene expression in U937 human lymphoma cells. The level of c-Myc transcripts, but not mRNA or protein stability, contributes to c-Myc protein reduction under acidosis. The pH-sensing receptor TDAG8 (GPR65) is involved in acidosis-induced c-Myc downregulation. TDAG8 is expressed in U937 lymphoma cells, and the overexpression or knockdown of TDAG8 further decreases or partially rescues c-Myc expression, respectively. Acidic pH alone is insufficient to reduce c-Myc expression, as it does not decrease c-Myc in H1299 lung cancer cells expressing very low levels of pH-sensing G protein-coupled receptors (GPCRs). Instead, c-Myc is slightly increased by acidosis in H1299 cells, but this increase is completely inhibited by ectopic overexpression of TDAG8. Interestingly, TDAG8 expression is decreased by more than 50% in human lymphoma samples in comparison to non-tumorous lymph nodes and spleens, suggesting a potential tumor suppressor function of TDAG8 in lymphoma. Collectively, our results identify a novel mechanism of c-Myc regulation by acidosis in the tumor microenvironment and indicate that modulation of TDAG8 and related pH-sensing receptor pathways may be exploited as a new approach to inhibit Myc expression.

  5. MicroRNA-130a associates with ribosomal protein L11 to suppress c-Myc expression in response to UV irradiation

    PubMed Central

    Li, Yuhuang; Challagundla, Kishore B.; Sun, Xiao-Xin; Zhang, Qinghong; Dai, Mu-Shui

    2015-01-01

    The oncoprotein c-Myc is essential for cell growth and proliferation while its deregulated overexpression is associated with most human cancers. Thus tightly regulated levels and activity of c-Myc are critical for maintaining normal cell homeostasis. c-Myc is down-regulated in response to several types of stress, including UV-induced DNA damage. Yet, mechanism underlying UV-induced c-Myc reduction is not completely understood. Here we report that L11 promotes miR-130a targeting of c-myc mRNA to repress c-Myc expression in response to UV irradiation. miR-130a targets the 3′-untranslated region (UTR) of c-myc mRNA. Overexpression of miR-130a promotes the Ago2 binding to c-myc mRNA, significantly reduces the levels of both c-Myc protein and mRNA and inhibits cell proliferation. UV treatment markedly promotes the binding of L11 to miR-130a, c-myc mRNA as well as Ago2 in cells. Inhibiting miR-130a significantly suppresses UV-mediated c-Myc reduction. We further show that L11 is relocalized from the nucleolus to the cytoplasm where it associates with c-myc mRNA upon UV treatment. Together, these results reveal a novel mechanism underlying c-Myc down-regulation in response to UV-mediated DNA damage, wherein L11 promotes miR-130a-loaded miRISC to target c-myc mRNA. PMID:25544755

  6. Ribosomal Protein L11 Recruits miR-24/miRISC To Repress c-Myc Expression in Response to Ribosomal Stress ▿

    PubMed Central

    Challagundla, Kishore B.; Sun, Xiao-Xin; Zhang, Xiaoli; DeVine, Tiffany; Zhang, Qinghong; Sears, Rosalie C.; Dai, Mu-Shui

    2011-01-01

    c-Myc promotes cell growth by enhancing ribosomal biogenesis and translation. Deregulated expression of c-Myc and aberrant ribosomal biogenesis and translation contribute to tumorigenesis. Thus, a fine coordination between c-Myc and ribosomal biogenesis is vital for normal cell homeostasis. Here, we show that ribosomal protein L11 regulates c-myc mRNA turnover. L11 binds to c-myc mRNA at its 3′ untranslated region (3′-UTR), the core component of microRNA-induced silencing complex (miRISC) argonaute 2 (Ago2), as well as miR-24, leading to c-myc mRNA reduction. Knockdown of L11 drastically increases the levels and stability of c-myc mRNA. Ablation of Ago2 abrogated the L11-mediated reduction of c-myc mRNA, whereas knockdown of L11 rescued miR-24-mediated c-myc mRNA decay. Interestingly, treatment of cells with the ribosomal stress-inducing agent actinomycin D or 5-fluorouracil significantly decreased the c-myc mRNA levels in an L11- and Ago2-dependent manner. Both treatments enhanced the association of L11 with Ago2, miR-24, and c-myc mRNA. We further show that ribosome-free L11 binds to c-myc mRNA in the cytoplasm and that this binding is enhanced by actinomycin D treatment. Together, our results identify a novel regulatory paradigm wherein L11 plays a critical role in controlling c-myc mRNA turnover via recruiting miRISC in response to ribosomal stress. PMID:21807902

  7. [Abnormal expression of c-myc, p53, p16 protein and GNAS1 gene mutation in fibrous dysplasia].

    PubMed

    Tang, Juan; Zhao, Hong-ye; Zheng, Li; Zhang, Hui-zhen; Jiang, Zhi-ming

    2009-05-01

    To study the significance of c-myc, p53 and p16 protein expression in fibrous dysplasia, to detect the GNAS1 gene mutation in fibrous dysplasia, and to explore the property of fibrous dysplasia. The expression of c-myc, p53 and p16 protein was evaluated by immunohistochemistry SP method in 35 cases of fibrous dysplasia including 1 FD with malignancy, 1 Mazabraud syndrome and 20 control cases (10 cases of bony callus, 10 cases of osteosarcoma). Genomic DNA extraction, PCR amplification and gene sequencing were used to detect GNAS1 gene mutation in 35 cases of fibrous dysplasia. C-myc protein immunoreactivity was detected in 91 percentage of FD (P = 0.001). Compared with the negative control group, the difference was significant. P16 positive was detected in 34 FD cases (P = 0.001). The difference was significant as compared with the positive control group. Positive p53 protein expression was detected in the only 1 case of fibrous dysplasia with malignant transformation. PCR amplification was successful in 12 of 35 FD cases. Two of the 12 FD cases were detected to have GNAS1 gene mutation, in which 1 case was FD of Mazabraud syndrome, 1 case was a monostotic lesion. C-myc could be another protooncogene in addition to c-fos in the fibrous dysplasia disease. P53 protein overexpression could be useful in the diagnosis of FD malignancy and in the prediction of the prognosis of FD. The abnormal expression of the gene p16 might play an important role in the formation of FD. The GNAS1 mutation exist in FD. All of the results indicate that FD could be a neoplasia disease, caused by multiple factors leading to a dysfunction of bone development.

  8. The c-MYC Protooncogene Expression in Cholesteatoma

    PubMed Central

    Palkó, Enikő; Póliska, Szilárd; Csákányi, Zsuzsanna; Katona, Gábor; Karosi, Tamás; Penyige, András; Sziklai, István

    2014-01-01

    Cholesteatoma is an epidermoid cyst, which is most frequently found in the middle ear. The matrix of cholesteatoma is histologically similar to the matrix of the epidermoid cyst of the skin (atheroma); their epithelium is characterized by hyperproliferation. The c-MYC protooncogene located on chromosome 8q24 encodes a transcription factor involved in the regulation of cell proliferation and differentiation. Previous studies have found aneuploidy of chromosome 8, copy number variation of c-MYC gene, and the presence of elevated level c-MYC protein in cholesteatoma. In this study we have compared the expression of c-MYC gene in samples taken from the matrix of 26 acquired cholesteatomas (15 children and 11 adults), 15 epidermoid cysts of the skin (atheromas; head and neck region) and 5 normal skin samples (retroauricular region) using RT-qPCR, providing the first precise measurement of the expression of c-MYC gene in cholesteatoma. We have found significantly elevated c-MYC gene expression in cholesteatoma compared to atheroma and to normal skin samples. There was no significant difference, however, in c-MYC gene expression between cholesteatoma samples of children and adults. The significant difference in c-MYC gene expression level in cholesteatoma compared to that of atheroma implies a more prominent hyperproliferative phenotype which may explain the clinical behavior typical of cholesteatoma. PMID:24683550

  9. Far upstream element-binding protein 1 (FUBP1) is a potential c-Myc regulator in esophageal squamous cell carcinoma (ESCC) and its expression promotes ESCC progression.

    PubMed

    Yang, Lei; Zhu, Jun-Ya; Zhang, Jian-Guo; Bao, Bo-Jun; Guan, Cheng-Qi; Yang, Xiao-Jing; Liu, Yan-Hua; Huang, Yue-Jiao; Ni, Run-Zhou; Ji, Li-Li

    2016-03-01

    The human far upstream element (FUSE) binding protein 1 (FUBP1) belongs to an ancient family which is required for proper regulation of the c-Myc proto-oncogene. Although c-Myc plays an important role in development of various carcinomas, the relevance of FUBP1 and their contribution to esophageal squamous cell carcinoma (ESCC) development remain unclear. In this study, we aimed to investigate the relationship between FUBP1 and c-Myc as well as their contribution to ESCC development. Western blot and immunohistochemical analyses were performed to evaluate FUBP1 expression. Coimmunoprecipitation analysis was performed to explore the correlation between FUBP1 and c-Myc in ESCC. In addition, the role of FUBP1 in ESCC proliferation was studied in ESCC cells through knocking FUBP1 down. The regulation of FUBP1 on proliferation was confirmed by Cell Counting Kit-8 (CCK-8) assay, flow cytometric assays, and clone formation assays. The expressions of FUBP1 and c-Myc were both upregulated in ESCC tissues. In addition to correlation between expression of FUBP1 and tumor grade, we also confirmed the correlation of FUBP1, c-Myc, and Ki-67 expression by twos. Moreover, upregulation of FUBP1 and c-Myc in ESCC was associated with poor survival. FUBP1 was confirmed to activate c-Myc in ESCC tissues and cells. FUBP1 was demonstrated to promote proliferation of ESCC cells. Moreover, downregulation of both FUBP1 and c-Myc was confirmed to inhibit proliferation of ESCC cells. Our results indicated that FUBP1 may potentially stimulate c-Myc expression in ESCC and its expression may promote ESCC progression.

  10. Ribosomal Protein S14 Negatively Regulates c-Myc Activity*

    PubMed Central

    Zhou, Xiang; Hao, Qian; Liao, Jun-ming; Liao, Peng; Lu, Hua

    2013-01-01

    The ribosomal gene RPS14 is associated with the cancer-prone 5q-syndrome, which is caused by an interstitial deletion of the long arm of human chromosome 5. Previously, we found that ribosomal protein S14 (RPS14) binds to and inactivates MDM2, consequently leading to p53-dependent cell-cycle arrest and growth inhibition. However, it remains elusive whether RPS14 regulates cell proliferation in a p53-independent manner. Here, we show that RPS14 interacts with the Myc homology box II (MBII) and the C-terminal basic helix-loop-helix leucine zipper (bHLH-LZ) domains of the oncoprotein c-Myc. Further, RPS14 inhibited c-Myc transcriptional activity by preventing the recruitment of c-Myc and its cofactor, TRRAP, to the target gene promoters, as thus suppressing c-Myc-induced cell proliferation. Also, siRNA-mediated RPS14 depletion elevated c-Myc transcriptional activity determined by its target gene, Nucleolin, expression. Interestingly, RPS14 depletion also resulted in the induction of c-Myc mRNA and subsequent protein levels. Consistent with this, RPS14 promoted c-Myc mRNA turnover through an Argonaute 2 (Ago2)- and microRNA-mediated pathway. Taken together, our study demonstrates that RPS14 negates c-Myc functions by directly inhibiting its transcriptional activity and mediating its mRNA degradation via miRNA. PMID:23775087

  11. Growth Suppression by Acute Promyelocytic Leukemia-Associated Protein PLZF Is Mediated by Repression of c-myc Expression

    PubMed Central

    McConnell, Melanie J.; Chevallier, Nathalie; Berkofsky-Fessler, Windy; Giltnane, Jena M.; Malani, Rupal B.; Staudt, Louis M.; Licht, Jonathan D.

    2003-01-01

    The transcriptional repressor PLZF was identified by its translocation with retinoic acid receptor alpha in t(11;17) acute promyelocytic leukemia (APL). Ectopic expression of PLZF leads to cell cycle arrest and growth suppression, while disruption of normal PLZF function is implicated in the development of APL. To clarify the function of PLZF in cell growth and survival, we used an inducible PLZF cell line in a microarray analysis to identify the target genes repressed by PLZF. One prominent gene identified was c-myc. The array analysis demonstrated that repression of c-myc by PLZF led to a reduction in c-myc-activated transcripts and an increase in c-myc-repressed transcripts. Regulation of c-myc by PLZF was shown to be both direct and reversible. An interaction between PLZF and the c-myc promoter could be detected both in vitro and in vivo. PLZF repressed the wild-type c-myc promoter in a reporter assay, dependent on the integrity of the binding site identified in vitro. PLZF binding in vivo was coincident with a decrease in RNA polymerase occupation of the c-myc promoter, indicating that repression occurred via a reduction in the initiation of transcription. Finally, expression of c-myc reversed the cell cycle arrest induced by PLZF. These data suggest that PLZF expression maintains a cell in a quiescent state by repressing c-myc expression and preventing cell cycle progression. Loss of this repression through the translocation that occurs in t(11;17) would have serious consequences for cell growth control. PMID:14645547

  12. Dynamic regulation of c-Myc proto-oncogene expression during lymphocyte development revealed by a GFP-c-Myc knock-in mouse.

    PubMed

    Huang, Ching-Yu; Bredemeyer, Andrea L; Walker, Laura M; Bassing, Craig H; Sleckman, Barry P

    2008-02-01

    c-Myc induces widely varying cellular effects, including cell proliferation and cell death. These different cellular effects are determined, in part, by c-Myc protein expression levels, which are regulated through several transcriptional and post-transcriptional pathways. c-Myc transcripts can be detected in cells at all stages of B and T lymphocyte development. However, little is known about c-Myc protein expression, and how it varies, in developing lymphocytes. Here mice have been generated in which the endogenous c-Myc locus has been modified (c-Myc(G)) so that it encodes a GFP-c-Myc fusion protein. c-Myc(G/G) mice are viable, appear normal and exhibit grossly normal lymphocyte development. Flow cytometric analyses revealed significant heterogeneity in c-Myc protein expression levels in developing c-Myc(G/G) B and T lymphocytes. GFP-c-Myc expression levels were highest in proliferating lymphocytes, suggesting that c-Myc up-regulation is important for promoting lymphocyte cell division, and demonstrating that GFP-c-Myc expression is a marker of proliferating lymphocytes in vivo.

  13. Effects of alcohol on c-Myc protein in the brain.

    PubMed

    Akinyeke, Tunde; Weber, Sydney J; Davenport, April T; Baker, Erich J; Daunais, James B; Raber, Jacob

    2017-03-01

    Alcoholism is a disorder categorized by significant impairment that is directly related to persistent and extreme use of alcohol. The effects of alcoholism on c-Myc protein expression in the brain have been scarcely studied. This is the first study to investigate the role different characteristics of alcoholism have on c-Myc protein in the brain. We analyzed c-Myc protein in the hypothalamus and amygdala from five different animal models of alcohol abuse. c-Myc protein was increased following acute ethanol exposure in a mouse knockout model and following chronic ethanol consumption in vervet monkeys. We also observed increases in c-Myc protein exposure in animals that are genetically predisposed to alcohol and methamphetamine abuse. Lastly, c-Myc protein was increased in animals that were acutely exposed to methamphetamine when compared to control treated animals. These results suggest that in substance abuse c-Myc plays an important role in the brain's response.

  14. High levels of stable p53 protein and the expression of c-myc in cultured human epithelial tissue after cobalt-60 irradiation

    SciTech Connect

    Mothersill, C.; Seymour, C.B. ); Harney, J.; Hennessy, T.P. )

    1994-03-01

    When explants of human uroepithelium or esophageal epithelium are exposed to acute doses of radiation (cobalt-60), the cells which grow out to form the primary cultures show a number of abnormal features. These include the development of characteristic nonsenescent foci. These foci have previously been shown to be c-myc positive and to have an abnormal, tumor-like ultrastructure. Expression of c-myc and the level of stable p53 proteins have now been examined in these cultures 2 weeks after irradiation. Both proteins occurred in dividing cells at the growing edge of the explant and in the foci. The expression of c-myc appeared to be correlated with growth. As expected, variation between individual cultures of normal human cells was noted in the expression of stable p53 protein. Most control uroepithelial cell cultures were negative, but a small cohort showed a wide range of values. The control cultures from the esophageal tissues had high expression of p53, and this decreased marginally after irradiation. Cells positive for p53 were always in cycle and were usually positive for c-myc as well. It would appear from these results that the expression of c-myc and the stable form of the p53 protein occur in irradiated primary cultures of normal human cells both in foci which also express a number of abnormalities and in [open quotes]edge[close quotes] cells which are dividing. Cultures of unirradiated cells from esophagus and a small number of uroepithelial samples had high levels of p53. Possible reasons for this are discussed. 33 refs., 2 figs., 3 tabs.

  15. Specific inhibition of gene expression and transactivation functions of hepatitis B virus X protein and c-myc by small interfering RNAs.

    PubMed

    Hung, Le; Kumar, Vijay

    2004-02-27

    With a view to developing therapeutic strategies against hepatocellular carcinoma (HCC), we have recently shown that co-expression of c-myc and the X protein of hepatitis B virus (HBx) resulted in the development of HCC in the X-myc transgenic mice. We now show in cell culture-based studies that small interfering RNA (siRNA) corresponding to HBx and c-myc can regulate expression and transactivation of the target genes. Expression vectors for small hairpin RNAs (shRNAs) against two different regions each of the HBx and c-myc open reading frames were constructed and their regulatory effects were investigated in COS-1 cells. A dose-dependent specific inhibition in the expression levels of HBx and c-myc was observed with individual shRNAs. Further, the recombinantly expressed shRNAs also blocked the transactivation functions of their cognate genes. Though each shRNA worked at a different efficiency, the inhibitory effects with two different shRNAs were cumulative. These results appear promising for developing a siRNA-based therapy for HCC.

  16. p53 inhibits the upregulation of sirtuin 1 expression induced by c-Myc.

    PubMed

    Yuan, Fang; Liu, Lu; Lei, Yonghong; Tang, Peifu

    2017-10-01

    Sirtuin 1 (Sirt1), a conserved NAD(+) dependent deacetylase, is a mediator of life span by calorie restriction. However, Sirt1 may paradoxically increase the risk of cancer. Accordingly, the expression level of Sirt1 is selectively elevated in numerous types of cancer cell; however, the mechanisms underlying the differential regulation remain largely unknown. The present study demonstrated that oncoprotein c-Myc was a direct regulator of Sirt1, which accounts for the upregulation of Sirt1 expression only in the cells without functional p53. In p53 deficient cells, the overexpression of c-Myc increased Sirt1 mRNA and protein expression levels as well as its promoter activity, whereas the inhibitor of c-Myc, 10058-F4, induced decreased Sirt1 basal mRNA and protein expression levels. Deletion/mutation mapping analyses revealed that c-Myc bound to the conserved E-box[-189 to -183 base pair (bp)] of the Sirt1 promoter. In addition, p53 and c-Myc shared at least response element and the presence of p53 may block the binding of c-Myc to the Sirt1 promoter, thus inhibit the c-Myc mediated upregulation of Sirt1 promoter activity. The present study indicated that the expression level of Sirt1 was tightly regulated by oncoprotein c-Myc and tumor suppressor p53, which aids an improved understanding of its expression regulation and tumor promoter role in certain conditions.

  17. DNA replication origin and transcriptional enhancer in c-myc gene share the c-myc protein binding sequences.

    PubMed Central

    Ariga, H; Imamura, Y; Iguchi-Ariga, S M

    1989-01-01

    We have previously reported that c-myc protein, or protein(s) complexed with c-myc protein, binds to the region upstream of the first exon of the c-myc gene and that this region contains an origin of cellular DNA replication (ori) and also a transcriptional enhancer. Here we show by Southwestern blotting that c-myc protein binds directly to a 7 bp sequence within the above region. Furthermore, we show that the c-myc protein binding sequences are indispensable for both ori and enhancer functions, but that additional sequences are required for maximal ori and enhancer activities. Thus, c-myc protein is a sequence specific factor which is apparently used both in initiation of DNA replication and in regulation of RNA transcription. Images PMID:2686984

  18. c-Myc activates BRCA1 gene expression through distal promoter elements in breast cancer cells

    PubMed Central

    2011-01-01

    Background The BRCA1 gene plays an important role in the maintenance of genomic stability. BRCA1 inactivation contributes to breast cancer tumorigenesis. An increasing number of transcription factors have been shown to regulate BRCA1 expression. c-Myc can act as a transcriptional activator, regulating up to 15% of all genes in the human genome and results from a high throughput screen suggest that BRCA1 is one of its targets. In this report, we used cultured breast cancer cells to examine the mechanisms of transcriptional activation of BRCA1 by c-Myc. Methods c-Myc was depleted using c-Myc-specific siRNAs in cultured breast cancer cells. BRCA1 mRNA expression and BRCA1 protein expression were determined by quantitative RT-PCR and western blot, respectively and BRCA1 promoter activities were examined under these conditions. DNA sequence analysis was conducted to search for high similarity to E boxes in the BRCA1 promoter region. The association of c-Myc with the BRCA1 promoter in vivo was tested by a chromatin immunoprecipitation assay. We investigated the function of the c-Myc binding site in the BRCA1 promoter region by a promoter assay with nucleotide substitutions in the putative E boxes. BRCA1-dependent DNA repair activities were measured by a GFP-reporter assay. Results Depletion of c-Myc was found to be correlated with reduced expression levels of BRCA1 mRNA and BRCA1 protein. Depletion of c-Myc decreased BRCA1 promoter activity, while ectopically expressed c-Myc increased BRCA1 promoter activity. In the distal BRCA1 promoter, DNA sequence analysis revealed two tandem clusters with high similarity, and each cluster contained a possible c-Myc binding site. c-Myc bound to these regions in vivo. Nucleotide substitutions in the c-Myc binding sites in these regions abrogated c-Myc-dependent promoter activation. Furthermore, breast cancer cells with reduced BRCA1 expression due to depletion of c-Myc exhibited impaired DNA repair activity. Conclusions The distal

  19. Acetylation of the c-MYC oncoprotein is required for cooperation with the HTLV-1 p30{sup II} accessory protein and the induction of oncogenic cellular transformation by p30{sup II}/c-MYC

    SciTech Connect

    Romeo, Megan M.; Ko, Bookyung; Kim, Janice; Brady, Rebecca; Heatley, Hayley C.; He, Jeffrey; Harrod, Carolyn K.; Barnett, Braden; Ratner, Lee; Lairmore, Michael D.; Martinez, Ernest; Lüscher, Bernhard; Robson, Craig N.; Henriksson, Marie; Harrod, Robert

    2015-02-15

    The human T-cell leukemia retrovirus type-1 (HTLV-1) p30{sup II} protein is a multifunctional latency-maintenance factor that negatively regulates viral gene expression and deregulates host signaling pathways involved in aberrant T-cell growth and proliferation. We have previously demonstrated that p30{sup II} interacts with the c-MYC oncoprotein and enhances c-MYC-dependent transcriptional and oncogenic functions. However, the molecular and biochemical events that mediate the cooperation between p30{sup II} and c-MYC remain to be completely understood. Herein we demonstrate that p30{sup II} induces lysine-acetylation of the c-MYC oncoprotein. Acetylation-defective c-MYC Lys→Arg substitution mutants are impaired for oncogenic transformation with p30{sup II} in c-myc{sup −/−} HO15.19 fibroblasts. Using dual-chromatin-immunoprecipitations (dual-ChIPs), we further demonstrate that p30{sup II} is present in c-MYC-containing nucleoprotein complexes in HTLV-1-transformed HuT-102 T-lymphocytes. Moreover, p30{sup II} inhibits apoptosis in proliferating cells expressing c-MYC under conditions of genotoxic stress. These findings suggest that c-MYC-acetylation is required for the cooperation between p30{sup II}/c-MYC which could promote proviral replication and contribute to HTLV-1-induced carcinogenesis. - Highlights: • Acetylation of c-MYC is required for oncogenic transformation by HTLV-1 p30{sup II}/c-MYC. • Acetylation-defective c-MYC mutants are impaired for foci-formation by p30{sup II}/c-MYC. • The HTLV-1 p30{sup II} protein induces lysine-acetylation of c-MYC. • p30{sup II} is present in c-MYC nucleoprotein complexes in HTLV-1-transformed T-cells. • HTLV-1 p30{sup II} inhibits apoptosis in c-MYC-expressing proliferating cells.

  20. Microcystin-LR stabilizes c-myc protein by inhibiting protein phosphatase 2A in HEK293 cells.

    PubMed

    Fan, Huihui; Cai, Yan; Xie, Ping; Xiao, Wuhan; Chen, Jun; Ji, Wei; Zhao, Sujuan

    2014-05-07

    Microcystin-LR is the most toxic and the most frequently encountered toxin produced by the cyanobacteria in the contaminated aquatic environment. Previous studies have demonstrated that Microcystin-LR is a potential carcinogen for animals and humans, and the International Agency for Research on Cancer has classified Microcystin-LR as a possible human carcinogen. However, the precise molecular mechanisms of Microcystin-LR-induced carcinogenesis remain a mystery. C-myc is a proto-oncogene, abnormal expression of which contributes to the tumor development. Although several studies have demonstrated that Microcystin-LR could induce c-myc expression at the transcriptional level, the exact connection between Microcystin-LR toxicity and c-myc response remains unclear. In this study, we showed that the c-myc protein increased in HEK293 cells after exposure to Microcystin-LR. Coexpression of protein phosphatase 2A and two stable c-myc protein point mutants (either c-myc(T58A) or c-myc(S62A)) showed that Microcystin-LR increased c-myc protein level mainly through inhibiting protein phosphatase 2A activity which altered the phosphorylation status of serine 62 on c-myc. In addition, we also showed that Microcystin-LR could increase c-myc promoter activity as revealed by luciferase reporter assay. And the TATA box for P1 promoter of c-myc might be involved. Our results suggested that Microcystin-LR can stimulate c-myc transcription and stabilize c-myc protein, which might contribute to hepatic tumorigenesis in animals and humans.

  1. Fluorescent Dansyl-Guanosine Conjugates that Bind c-MYC Promoter G-Quadruplex and Downregulate c-MYC Expression.

    PubMed

    Pavan Kumar, Y; Saha, Puja; Saha, Dhurjhoti; Bessi, Irene; Schwalbe, Harald; Chowdhury, Shantanu; Dash, Jyotirmayee

    2016-03-02

    The four-stranded G-quadruplex present in the c-MYC P1 promoter has been shown to play a pivotal role in the regulation of c-MYC transcription. Small-molecule compounds capable of inhibiting the c-MYC promoter activity by stabilising the c-MYC G-quadruplex could potentially be used as anticancer agents. In this context, here we report the synthesis of dansyl-guanosine conjugates through one-pot modular click reactions. The dansyl-guanosine conjugates can selectively detect c-MYC G-quadruplex over other biologically relevant quadruplexes and duplex DNA and can be useful as staining reagents for selective visualisation of c-MYC G-quadruplex over duplex DNA by gel electrophoresis. NMR spectroscopic titrations revealed the preferential binding sites of these dansyl ligands to the c-MYC G-quadruplex. A dual luciferase assay and qRT-PCR revealed that a dansyl-bisguanosine ligand represses the c-MYC expression, possibly by stabilising the c-MYC G-quadruplex. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. [The expression of c-myc in the tissues of human laryngeal squamous cell carcinoma and the effect of siRNA-mediated inhibition of c-myc on proliferation in laryngeal carcinoma Hep-2 cells].

    PubMed

    Sang, Jianzhong; Liu, Li; Tian, Fang; Jin, Hongjun; Yuan, Linlin; Lou, Weihua

    2011-08-01

    To detect the expression of c-myc in the tissue of laryngeal squamous cell carcinoma. RNA interference(RNAi) was employed to inhibit the expression of c-myc in Hep-2 cells and to evaluate the effects of c-myc as a target for gene therapy in laryngeal carcinoma. Immunohistochemistry was used to determine the protein levels of c-myc and Rb in 80 cases of laryngeal squamous cell carcinoma and 30 cases of polyp of vocal cord. Hep-2 cells were transfected with c-myc siRNA, c-myc protein and mRNA levels were detected using Western Blotting and RT-PCR. Cell viability was detected by MTT after the Hep-2 cells were transfected with c-myc siRNA for different times or transfected with different concentrations c-myc siRNA. The sensitivity of Hep-2 cells to 5-Fu transfected with or without c-myc siRNA was evaluated also by MTT. Hep-2 cells were transfected with c-myc siRNA in combination with 5-Fu for 48 h and then analyzed cell apoptosis by flow cytometry. Immunohistochemical analysis showed that c-myc was highly expressed in the tissues of laryngeal squamous cell carcinoma while the expression of Rb was lower. The protein and mRNA levels of c-myc decreased after transfected with c-myc siRNA. The results of MTT showed that the c-myc siRNA inhibited Hep-2 cells growth in a concentration-dependent manner. When transfected with c-myc siRNA(50 nmol/L), the cells were inhibited in a time-dependent manner. Compared with the untransfected cells, the viability of transfected Hep-2 cells was significantly suppressed at the same concentration of 5-Fu (P < 0.05). C-myc siRNA combination with 5-Fu could obviously increase cell apoptosis, even in the low concentration of 5-Fu (P < 0.05). The protein level of C-myc has highly expressed in tumor tissues. C-myc siRNA can effectively inhibit the expression of c-myc and has anti-proliferation effects, increasing the sensitivity of Hep-2 cells to 5-Fu. Therefore,c-myc might be a good target for cancer treatment.

  3. Functional analysis of the AUG- and CUG-initiated forms of the c-Myc protein.

    PubMed Central

    Blackwood, E M; Lugo, T G; Kretzner, L; King, M W; Street, A J; Witte, O N; Eisenman, R N

    1994-01-01

    Activation of the c-myc proto-oncogene by chromosomal translocation or proviral insertion frequently results in the separation of the c-myc coding region from its normal regulatory elements. Such rearrangements are often accompanied by loss or mutation of c-myc exon 1 sequences. These genetic alterations do not affect synthesis of the major c-myc protein, p64, which is initiated from the first AUG codon in exon 2. However they can result in mutation or loss of the CUG codon located in exon 1 that normally serves as an alternative translational initiation codon for synthesis of an N-terminally extended form of c-Myc (p67). It has been hypothesized that p67 is a functionally distinct form of c-Myc whose specific loss during c-myc rearrangements confers a selective growth advantage. Here we describe experiments designed to test the functional properties of the two c-Myc protein forms. We introduced mutations within the translational initiation codons of a normal human c-myc cDNA that alter the pattern of Myc protein synthesis (p64 vs. p67). The functions of each of these proteins were experimentally addressed using co-transformation and transcriptional activation assays. Both the p64 and p67 c-Myc proteins were independently able to collaborate with bcr-abl in the transformation of Rat-1 fibroblasts. In addition, both the exon 1- and exon 2-initiated forms of the c-Myc protein stimulated transcription of a Myc/Max-responsive reporter construct to a similar level. Given the apparent absence of functional differences between p64 and p67, we conclude that the basis for c-Myc oncogenic activation lies primarily in the overall deregulation of its expression and not in alterations in the protein. The existence of the CUG translational initiator may reflect a mechanism for the continued synthesis of c-Myc protein under conditions where AUG initiation is inhibited. Images PMID:7919540

  4. [PC-1 enhances c-myc gene expression in prostate cancer cells].

    PubMed

    Yu, Lan; Shi, Qing-Guo; Qian, Xiao-Long; Li, Shan-Hu; Wang, Hong-Tao; Wang, Le-Le; Zhou, Jian-Guang

    2010-04-01

    PC-1(Prostate and colon gene 1) gene belongs to TPD52 (Tumor Protein D52) gene family. The expression of PC-1 is found to promote androgen-independent progression. This study was conducted to assess the mechnism of promotion of androgen-independent progression in PC-1 gene. The c-myc gene expression was tested by RT-PCR and Western blotting analyses in the LNCaP-pc-1 and LNCaP-zero cell line. After separation of cytoplasm and nulear proteins of the LNCaP-pc-1 and LNCaP-zero cell line, the beta-catenin protein was detected by Western blotting. C4-2 cell line was used to examine the effects of 10058-F4 on the PC-1 gene expression. The results of RT-PCR and Western blotting indicated that PC-1 enhanced c-myc gene expression in prostate cancer cells, PC-1 was also found to enhance beta-catenin expression in nuclear. Furthermore, a small-molecule c-Myc inhibitor, 10058-F4 represses PC-1 gene expression in C4-2 cell line. Our findings suggest that PC-1 enhances c-myc gene expression in prostate cancer cells through the Wnt/beta-catenin pathway. Meanwhile, c-myc plays a feed-forward role in enhancing PC-1 driven c-myc gene expression, and promotes prostate an-drogen-independent progression.

  5. Antioxidant α-tocopherol checks lymphoma promotion via regulation of expression of protein kinase C-α and c-Myc genes and glycolytic metabolism.

    PubMed

    Sharma, Renu; Vinayak, Manjula

    2012-06-01

    Overproduction of reactive oxygen species (ROS) due to environmental challenge or metabolic imbalance leads to oxidative stress, causing overactivation of a number of oncogenes that promote cancer development. Therefore, antioxidants should be able to check cancer growth by modulating oncogene activity. The requirement of high energy during unlimited cell proliferation is fulfilled by the switching of cancerous cells to a fast glycolytic pathway bypassing the oxygen dependent respiratory pathway. Almost all cancers exhibit a high expression of lactate dehydrogenase A (LDH-A) to ensure a high energy supply. The present study focused on modulating redox-sensitive oncogenes such as protein kinase C (PKC) and c-Myc by treatment of lymphoma bearing mice with the antioxidant α-tocopherol, the most active component of vitamin E. Further, the impact of α-tocopherol on LDH activity was tested. The results showed down-regulation of expression of stress-activated genes PKC-α, c-Myc and LDH-A by α-tocopherol in cancerous mice. α-Tocopherol contributes to the check of cell proliferation by decreasing the activity of LDH-A.

  6. β-catenin regulates c-Myc and CDKN1A expression in breast cancer cells

    PubMed Central

    Xu, Jinhua; Chen, Yinghua; Huo, Dezheng; Khramtsov, Andrey; Khramtsova, Galina; Zhang, Chunling; Goss, Kathleen H.; Olopade, Olufunmilayo I.

    2015-01-01

    We previously reported that the Wnt pathway is preferentially activated in basal-like breast cancer. However, the mechanisms by which the Wnt pathway regulates down-stream targets in basal-like breast cancer, and the biological significance of this regulation, are poorly understood. In this study, we found that c-Myc is highly expressed in the basal-like subtype by microarray analyses and immunohistochemical staining. After silencing β-catenin using siRNA, c-Myc expression was decreased in non-basal-like breast cancer cells. In contrast, c-Myc mRNA and protein expression was up-regulated in the basal-like breast cancer cell lines. Decreased c-Myc promoter activity was observed after inhibiting β-catenin by siRNA in non-basal-like breast cancer cells; however, inhibition of β-catenin or over-expression of dominant-negative LEF1 had no effect on c-Myc promoter activity in basal-like breast cancer cell lines. In addition, CDKN1A mRNA and p21 protein expression were significantly increased in all breast cancer cell lines upon β-catenin silencing. Interestingly, inhibiting β-catenin expression alone did not induce apoptosis in breast cancer cell lines despite c-Myc regulation, but we observed a modest increase of cells in the G1 phase of the cell cycle and decrease of cells in S phase upon β-catenin silencing. Our findings suggest that the regulation of c-Myc in breast cancer cells is dependent on the molecular subtype, and that β-catenin-mediated regulation of c-Myc and p21 may control the balance of cell death and proliferation in breast cancer. PMID:25663530

  7. c-myc in whitefish (Coregonus lavaretus): structure, expression, and insights into possible posttranscriptional regulatory mechanism.

    PubMed

    Brzuzan, P; Kramer, C; Łakomiak, A; Jakimiuk, E; Florczyk, M; Woźny, M

    2015-10-01

    c-myc has a crucial function in growth control, differentiation, and apoptosis of vertebrate cells. Despite the important role of c-myc in mediating the biological effects, studies of c-myc gene expression and factors that control it in organisms other than mammals, such as fish, have been rare. In the current study, we asked whether c-myc mRNA of whitefish, a feasible organism for pollution monitoring in aquatic systems and a model in toxicological research, contains activity sites for regulatory motifs in its 5'- and 3'-UTRs, similar to those found in mammals. We were particularly interested in whether miRNA-34, a known negative regulator of c-myc's in mammals, is able to regulate c-myc in fish. To answer these questions, we determined the mRNA sequence of whitefish c-myc and inferred the structure of the protein that it codes for. We found that the active sites of mRNA and structures of the inferred c-myc protein are similar to those found in mammals and other fish. Remarkably, levels of c-myc mRNA expression were very high in ovaries compared to other tissues of whitefish, thus corroborating previous data in fish. Using bioinformatic searches on c-myc 3'-UTR, we confirmed the presence of two miRNA-34a (miR-34a) response elements. Luciferase reporter assay showed that activity of reporters containing either the miR response elements or entire c-myc 3'-UTR was significantly reduced (p < 0.001) by ectopic expression of miR-34a. Therefore, we further investigated possible involvement of miR-34a in c-myc gene silencing by profiling the expression of both genes in livers of whitefish treated for 8, 24, 48 h with MC-LR, a potent c-myc inducer in mammals. Although the difference was only significant at p = 0.08, the expression of c-myc mRNA in challenged whitefish after 24 h of the treatment was notably higher than that in livers of control fish. Concurrently, we noticed slight but significant up-regulation of miR-34a after 24 and 48 h of the challenge (p

  8. Loss of FBP function arrests cellular proliferation and extinguishes c-myc expression

    PubMed Central

    He, Liusheng; Liu, Juhong; Collins, Irene; Sanford, Suzanne; O'Connell, Brian; Benham, Craig J.; Levens, David

    2000-01-01

    The c-myc regulatory region includes binding sites for a large set of transcription factors. The present studies demonstrate that in the absence of FBP [far upstream element (FUSE)-binding protein], which binds to the single-stranded FUSE, the remainder of the set fails to sustain endogenous c-myc expression. A dominant-negative FBP DNA-binding domain lacking effector activity or an antisense FBP RNA, expressed via replication-defective adenovirus vectors, arrested cellular proliferation and extinguished native c-myc transcription from the P1 and P2 promoters. The dominant-negative FBP initially augmented the single-stranded character of FUSE; however, once c-myc expression was abolished, melting at FUSE could no longer be supported. In contrast, with antisense FBP RNA, the single-stranded character of FUSE decreased monotonically as the transcription of endogenous c-myc declined. Because transcription is the major source of super-coiling in vivo, we propose that by binding torsionally strained DNA, FBP measures promoter activity directly. We also show that FUSE is predicted to behave as a torsion-regulated switch poised to regulate c-myc and to confer a higher order regulation on a large repertoire of factors. PMID:10698944

  9. Posttranscriptional regulation of cellular gene expression by the c-myc oncogene

    SciTech Connect

    Prendergast, G.C.; Cole, M.D. . Dept. of Biology)

    1989-01-01

    The c-myc oncogene has been implicated in the development of many different cancers, yet the mechanism by which the c-myc protein alters cellular growth control has proven elusive. The authors used a cDNA hybridization difference assay to isolate two genes, mr1 and mr2, that were constitutively expressed (i.e., deregulated) in rodent fibroblast cell lines immortalized by transfection of a viral promoter-linked c-myc gene. Both cDNAs were serum inducible in quiescent G/sub o/ fibroblasts, suggesting that they are functionally related to cellular proliferative processes. Although there were significant differences in cytoplasmic mRNA levels between myc-immortalized and control cells, the rates of transcription and mRNA turnover of both genes were similar, suggesting that c-myc regulates mr1 and mr2 expression by some nuclear posttranscriptional mechanism. Their results provide evidence that c-myc can rapidly modulate cellular gene expression and suggest that c-myc may function in gene regulation at the level of RNA export, splicing, or nuclear RNA turnover.

  10. Acetylation of the c-MYC oncoprotein is required for cooperation with the HTLV-1 p30(II) accessory protein and the induction of oncogenic cellular transformation by p30(II)/c-MYC.

    PubMed

    Romeo, Megan M; Ko, Bookyung; Kim, Janice; Brady, Rebecca; Heatley, Hayley C; He, Jeffrey; Harrod, Carolyn K; Barnett, Braden; Ratner, Lee; Lairmore, Michael D; Martinez, Ernest; Lüscher, Bernhard; Robson, Craig N; Henriksson, Marie; Harrod, Robert

    2015-02-01

    The human T-cell leukemia retrovirus type-1 (HTLV-1) p30(II) protein is a multifunctional latency-maintenance factor that negatively regulates viral gene expression and deregulates host signaling pathways involved in aberrant T-cell growth and proliferation. We have previously demonstrated that p30(II) interacts with the c-MYC oncoprotein and enhances c-MYC-dependent transcriptional and oncogenic functions. However, the molecular and biochemical events that mediate the cooperation between p30(II) and c-MYC remain to be completely understood. Herein we demonstrate that p30(II) induces lysine-acetylation of the c-MYC oncoprotein. Acetylation-defective c-MYC Lys→Arg substitution mutants are impaired for oncogenic transformation with p30(II) in c-myc(-/-) HO15.19 fibroblasts. Using dual-chromatin-immunoprecipitations (dual-ChIPs), we further demonstrate that p30(II) is present in c-MYC-containing nucleoprotein complexes in HTLV-1-transformed HuT-102 T-lymphocytes. Moreover, p30(II) inhibits apoptosis in proliferating cells expressing c-MYC under conditions of genotoxic stress. These findings suggest that c-MYC-acetylation is required for the cooperation between p30(II)/c-MYC which could promote proviral replication and contribute to HTLV-1-induced carcinogenesis.

  11. Normal Expression of a Rearranged and Mutated c-myc Oncogene after Transfection into Fibroblasts

    NASA Astrophysics Data System (ADS)

    Richman, Adam; Hayday, Adrian

    1989-10-01

    Expression of the c-myc oncogene is deregulated in a variety of malignancies. Rearrangement and mutation of the c-myc locus is a characteristic feature of human Burkitt's lymphoma. Whether deregulation is solely a result of mutation of c-myc or whether it is influenced by the transformed B cell context has not been determined. A translocated and mutated allele of c-myc was stably transfected into fibroblasts. The rearranged allele was expressed indistinguishably from a normal c-myc gene: it had serum-regulated expression, was transcribed with normal promoter preference, and was strongly attenuated. Thus mutations by themselves are insufficient to deregulate c-myc transcription.

  12. Acetylation of the c-MYC oncoprotein is required for cooperation with the HTLV-1 p30II accessory protein and the induction of oncogenic cellular transformation by p30II/c-MYC

    PubMed Central

    Romeo, Megan M.; Ko, Bookyung; Kim, Janice; Brady, Rebecca; Heatley, Hayley C.; He, Jeffrey; Harrod, Carolyn K.; Barnett, Braden; Ratner, Lee; Lairmore, Michael D.; Martinez, Ernest; Lüscher, Bernhard; Robson, Craig N.; Henriksson, Marie; Harrod, Robert

    2014-01-01

    The human T-cell leukemia retrovirus type-1 (HTLV-1) p30II protein is a multifunctional latency-maintenance factor that negatively regulates viral gene expression and deregulates host signaling pathways involved in aberrant T-cell growth and proliferation. We have previously demonstrated that p30II interacts with the c-MYC oncoprotein and enhances c-MYC-dependent transcriptional and oncogenic functions. However, the molecular and biochemical events that mediate the cooperation between p30II and c-MYC remain to be completely understood. Herein we demonstrate that p30II induces lysine-acetylation of the c-MYC oncoprotein. Acetylation-defective c-MYC Lys→Arg substitution mutants are impaired for oncogenic transformation with p30II in c-myc−/− HO15.19 fibroblasts. Using dual-chromatin-immunoprecipitations (dual-ChIPs), we further demonstrate that p30II is present in c-MYC-containing nucleoprotein complexes in HTLV-1-transformed HuT-102 T-lymphocytes. Moreover, p30II inhibits apoptosis in proliferating cells expressing c-MYC under conditions of genotoxic stress. These findings suggest that c-MYC-acetylation is required for the cooperation between p30II/c-MYC which could promote proviral replication and contribute to HTLV-1-induced carcinogenesis. PMID:25569455

  13. Perturbation of the c-Myc-Max protein-protein interaction via synthetic α-helix mimetics.

    PubMed

    Jung, Kwan-Young; Wang, Huabo; Teriete, Peter; Yap, Jeremy L; Chen, Lijia; Lanning, Maryanna E; Hu, Angela; Lambert, Lester J; Holien, Toril; Sundan, Anders; Cosford, Nicholas D P; Prochownik, Edward V; Fletcher, Steven

    2015-04-09

    The rational design of inhibitors of the bHLH-ZIP oncoprotein c-Myc is hampered by a lack of structure in its monomeric state. We describe herein the design of novel, low-molecular-weight, synthetic α-helix mimetics that recognize helical c-Myc in its transcriptionally active coiled-coil structure in association with its obligate bHLH-ZIP partner Max. These compounds perturb the heterodimer's binding to its canonical E-box DNA sequence without causing protein-protein dissociation, heralding a new mechanistic class of "direct" c-Myc inhibitors. In addition to electrophoretic mobility shift assays, this model was corroborated by further biophysical methods, including NMR spectroscopy and surface plasmon resonance. Several compounds demonstrated a 2-fold or greater selectivity for c-Myc-Max heterodimers over Max-Max homodimers with IC50 values as low as 5.6 μM. Finally, these compounds inhibited the proliferation of c-Myc-expressing cell lines in a concentration-dependent manner that correlated with the loss of expression of a c-Myc-dependent reporter plasmid despite the fact that c-Myc-Max heterodimers remained intact.

  14. Evolutionarily conserved regions of the human c-myc protein can be uncoupled from transforming activity

    SciTech Connect

    Sarid, J.; Halazonetis, T.D.; Murphy, W.; Leder, P.

    1987-01-01

    The myc family of oncogenes contains coding sequences that have been preserved in different species for over 400 million years. This conservation (which implies functional selection) is broadly represented throughout the C-terminal portion of the human c-myc protein but is largely restricted to three cluster of amino acid sequences in the N-terminal region. The authors have examined the role that the latter three regions of the c-myc protein might play in the transforming function of the c-myc gene. Several mutations, deletions and frameshifts, were introduced into the c-myc gene, and these mutant genes were tested for their ability to collaborate with the EJ-ras oncogene to transform rat embryo fibroblasts. Complete elimination of the first two N-terminal conserved segments abolished transforming activity. In contrast, genes altered in a portion of the second or the entire third conserved segment retained their transforming activity. Thus, the latter two segments are not required for the transformation process, suggesting that they serve another function related only to the normal expression of the c-myc gene.

  15. Effects of c-myc expression on cell cycle progression.

    PubMed Central

    Hanson, K D; Shichiri, M; Follansbee, M R; Sedivy, J M

    1994-01-01

    We used targeted homologous recombination to disrupt one c-myc gene copy in a diploid fibroblast cell line and found that a twofold reduction in Myc expression resulted in lower exponential growth rates and a lengthening of the G0-to-S-phase transition (M. Shichiri, K. D. Hanson and J. M. Sedivy, Cell Growth Differ. 4:93-104, 1993). Myc is a transcription factor, and the number of target genes whose regulation could result in differential growth rates may be very large. We have approached this problem by examining effects of reduced c-myc expression in three broad areas: (i) secretion of growth factors, (ii) expression of growth factor receptors, and (iii) intracellular signal transduction between Myc and components of the intrinsic cell cycle clock. We have found no evidence that differential medium conditioning can account for the growth phenotypes. Likewise, the expression of receptors for platelet-derived growth factor, epidermal growth factor, basic fibroblast growth factor, and insulin-like growth factor I was the same in diploid and heterozygous cells (platelet-derived growth factor, epidermal growth factor, fibroblast growth factor, and insulin-like growth factor are the sole growth factors required by these cells for growth in serum-free medium). In contrast, expression of cyclin E, cyclin A, and Rb phosphorylation were delayed when quiescent c-myc heterozygous cells were stimulated to enter the cell cycle. Expression of cyclin D1, cyclin D3, and Cdk2 was not affected. The timing of cyclin E induction was the earliest observable effect of reduced Myc expression. Our data indicate that Myc contributes to regulation of proliferation by a cell-autonomous mechanism that involves the modulation of cyclin E expression and, consequently, progression through the restriction point of the cell cycle. Images PMID:8065309

  16. Digitoxin induces apoptosis in cancer cells by inhibiting nuclear factor of activated T-cells-driven c-MYC expression

    PubMed Central

    Yang, Qing Feng; Dalgard, Clifton L.; Eidelman, Ofer; Jozwik, Catherine; Pollard, Bette S.; Srivastava, Meera; Pollard, Harvey B.

    2013-01-01

    Background: Cardiac glycosides such as digitoxin have been shown to directly cause apoptotic death of cancer cells both in vitro, and in vivo. However, the mechanism connecting cardiac glycoside action to apoptosis is not known. It has been reported that compounds resembling digitoxin are able to reduce c-MYC expression. Furthermore, it has been previously shown that the transcription of c-MYC depends on nuclear factor of activated T-cells (NFAT) binding sites in the c-MYC promoter. We have therefore hypothesized that NFAT might mediate digitoxin effects on c-MYC mRNA message. Materials and Methods: We have chosen to study this process in HeLa cells where structurally intact c-MYC genes in 8q24 co-localize with human papilloma virus 18 at all integration sites. Results: Here we show that within the 1st h following treatment with digitoxin, a significant reduction in c-MYC mRNA occurs. This is followed by a precipitous loss of c-MYC protein, activation of caspase 3, and subsequent apoptotic cell death. To test the NFAT-dependence mechanism, we analyzed the effects of digitoxin on NFAT isoform-dependent auto-activation of a NFAT-luciferase expression system. Drug dependent effects on expression varied according to each of the four canonical NFAT isoforms (1, 2, 3 or 4). The most digitoxin-sensitive NFAT isoform was NFAT1. Using c-MYC chromatin immune precipitation, we find that digitoxin inhibits interaction of NFAT1 with the proximal c-MYC promoter. Conclusions: These results suggest that the carcinotoxic activity of digitoxin includes suppression of NFAT-driven c-MYC expression. PMID:23858296

  17. Digitoxin induces apoptosis in cancer cells by inhibiting nuclear factor of activated T-cells-driven c-MYC expression.

    PubMed

    Yang, Qing Feng; Dalgard, Clifton L; Eidelman, Ofer; Jozwik, Catherine; Pollard, Bette S; Srivastava, Meera; Pollard, Harvey B

    2013-01-01

    Cardiac glycosides such as digitoxin have been shown to directly cause apoptotic death of cancer cells both in vitro, and in vivo. However, the mechanism connecting cardiac glycoside action to apoptosis is not known. It has been reported that compounds resembling digitoxin are able to reduce c-MYC expression. Furthermore, it has been previously shown that the transcription of c-MYC depends on nuclear factor of activated T-cells (NFAT) binding sites in the c-MYC promoter. We have therefore hypothesized that NFAT might mediate digitoxin effects on c-MYC mRNA message. We have chosen to study this process in HeLa cells where structurally intact c-MYC genes in 8q24 co-localize with human papilloma virus 18 at all integration sites. Here we show that within the 1(st) h following treatment with digitoxin, a significant reduction in c-MYC mRNA occurs. This is followed by a precipitous loss of c-MYC protein, activation of caspase 3, and subsequent apoptotic cell death. To test the NFAT-dependence mechanism, we analyzed the effects of digitoxin on NFAT isoform-dependent auto-activation of a NFAT-luciferase expression system. Drug dependent effects on expression varied according to each of the four canonical NFAT isoforms (1, 2, 3 or 4). The most digitoxin-sensitive NFAT isoform was NFAT1. Using c-MYC chromatin immune precipitation, we find that digitoxin inhibits interaction of NFAT1 with the proximal c-MYC promoter. These results suggest that the carcinotoxic activity of digitoxin includes suppression of NFAT-driven c-MYC expression.

  18. Suppression of RNA interference on expression of c-myc of SKOV3 ovarian carcinoma cell line.

    PubMed

    Ai, Z-H; Wang, J; Xu, Y-L; Zhu, X-L; Teng, Y-C

    2013-11-01

    To investigate suppression of RNA interference (RNAi) on expression of c-myc of SKOV3 ovarian carcinoma cell line. The c-myc -siRNA was designed and synthesized, then transfected to SKOV3 ovarian carcinoma cell lines. The cell lines were divided into four groups, including the blank control group, the siRNA transfection group, the mock transfection group and the negative control group. The expression level of c-myc mRNA and protein were detected by RT-PCR and Western blotting, respectively. The growth and proliferation of SKOV3 ovarian carcinoma cell lines were observed with CCK-8 assay. After transfected with c-myc -siRNA, the expression level of c-myc mRNA and protein were down-regulated, the growth and proliferation of SKOV3 ovarian carcinoma cell line were inhibited in the siRNA transfection group. There were significant differences between the siRNA transfection group and the blank control group (p < 0.05). The silencing efficiency was 77.78%, the protein suppression rate was 67.78%, and the inhibition ratio was 56.35% by CCK-8 assay in siRNA transfection group. The down-regulation of c-myc expression of SKOV3 ovarian carcinoma cell line by c-myc -siRNA can lead to the suppression of cancer cell proliferation. The small interfering RNAs technique can inhibit the proliferation of carcinoma cell by oncogene silencing.

  19. The human cut homeodomain protein represses transcription from the c-myc promoter.

    PubMed Central

    Dufort, D; Nepveu, A

    1994-01-01

    Studies of the c-myc promoter have shown that efficient transcription initiation at the P2 start site as well as the block to elongation of transcription require the presence of the ME1a1 protein binding site upstream of the P2 TATA box. Following fractionation by size exclusion chromatography, three protein-ME1a1 DNA complexes, a, b, and c, were detected by electrophoretic mobility shift assay. A cDNA encoding a protein present in complex c was isolated by screening of an expression library with an ME1a1 DNA probe. This cDNA was found to encode the human homolog of the Drosophila Cut homeodomain protein. The bacterially expressed human Cut (hu-Cut) protein bound to the ME1a1 site, and antibodies against hu-Cut inhibited the ME1a1 binding activity c in nuclear extracts. In cotransfection experiments, the hu-Cut protein repressed transcription from the c-myc promoter, and this repression was shown to be dependent on the presence of the ME1a1 site. Using a reporter construct with a heterologous promoter, we found that c-myc exon 1 sequences were also necessary, in addition to the ME1a1 site, for repression by Cut. Taken together, these results suggest that the human homolog of the Drosophila Cut homeodomain protein is involved in regulation of the c-myc gene. Images PMID:8196661

  20. Expression of C-myc and β-catenin and their correlation in triple negative breast cancer.

    PubMed

    Wang, Jiankui; Li, Mei; Chen, Dedian; Nie, Jianyun; Xi, Yan; Yang, Xiaojuan; Chen, Yun; Yang, Zhuanqing

    2017-09-08

    The present study was planned to study the expression of C-myc and β- catenin in triple negative breast cancer (TNBC) tissue. Furthermore, their relations to clinical features of the tumor and the survival prognosis were also studied. Additionally, correlation was evaluated between the expression of C-myc and β- catenin to provide the theoretical basis for the targeted therapy of TNBC. 60 cases of patients diagnosed with TNBC for the first time were selected for the study. The immumo-histochemical staining was employed to detect the positive expression rates of C-myc and β-catenin in cancer tissues and normal mammary tissues 3 cm away from the carcinoma. Fluorescence in situ hybridization (FISH) was used to test the gene amplification of C-myc in order to analyze the relation between C-myc and the protein expression of β-catenin. Further, kept the median follow-up time to 25.0 months in order to compare the survival prognosis. The positive expression rates of C-myc and β-catenin in cancer tissues were significantly higher than those in precancerous normal tissues (P<0.05). Further, the expression rates were related with the diameter of tumor, clinical staging, pathological grading and lymphatic metastasis (P<0.5). There were 33 cases that exhibited an increase in C-myc gene copy number and the gene amplification was observed to be 55% in total. On the other hand, patients with positive expression of C-myc and β- catenin protein exhibited a shortened disease-free survival without tumor with an increasing recurrence rate and lower survival rate (P<0.05). The present study concludes that the positive expression of C-myc and β-catenin in TNBC tissue might be closely correlated with clinical features of cancer and the survival prognosis.

  1. c-myc protein in normal tissue. Effects of fixation on its apparent subcellular distribution.

    PubMed Central

    Loke, S. L.; Neckers, L. M.; Schwab, G.; Jaffe, E. S.

    1988-01-01

    The c-myc protein is thought to be a DNA-associated nuclear protein. However, immunohistochemical studies on normal or tumor tissues have shown conflicting findings on its subcellular distribution. By using various fixation procedures on cytospin preparations of HL60 cells, the authors found the subcellular distribution of the c-myc protein to be dependent on the method of fixation. When studying mouse tissues in frozen sections using a biotinylated monoclonal antibody against the c-myc protein, they found the protein to be widely distributed in various normal adult mouse tissues, in most cases localized to the nucleus. However, when these tissues were studied after formalin fixation and paraffin embedding, a loss of nuclear staining was observed concurrent with the appearance of c-myc protein immunoreactivity in the cytoplasm. It is concluded that immunohistochemical studies on the expression of this oncogene should take into consideration the effects of fixation when its subcellular distribution is being examined. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:3281469

  2. c-Myc enhances protein synthesis and cell size during B lymphocyte development

    PubMed Central

    Iritani, Brian M.; Eisenman, Robert N.

    1999-01-01

    Members of the myc family of nuclear protooncogenes play roles in cell proliferation, differentiation, and apoptosis. Moreover, inappropriate expression of c-myc genes contributes to the development of many types of cancers, including B cell lymphomas in humans. Although Myc proteins have been shown to function as transcription factors, their immediate effects on the cell have not been well defined. Here we have utilized a murine model of lymphomagenesis (Eμ-myc mice) to show that constitutive expression of a c-myc transgene under control of the Ig heavy-chain enhancer (Eμ) results in an increase in cell size of normal pretransformed B lymphocytes at all stages of B cell development. Furthermore, we show that c-Myc-induced growth occurs independently of cell cycle phase and correlates with an increase in protein synthesis. These results suggest that Myc may normally function by coordinating expression of growth-related genes in response to mitogenic signals. Deregulated c-myc expression may predispose to cancer by enhancing cell growth to levels required for unrestrained cell division. PMID:10557294

  3. Aspirin and salicylic acid decrease c-Myc expression in cancer cells: a potential role in chemoprevention.

    PubMed

    Ai, Guoqiang; Dachineni, Rakesh; Muley, Pratik; Tummala, Hemachand; Bhat, G Jayarama

    2016-02-01

    Epidemiological studies have demonstrated a significant correlation between regular aspirin use and reduced colon cancer incidence and mortality; however, the pathways by which it exerts its anti-cancer effects are still not fully explored. We hypothesized that aspirin's anti-cancer effect may occur through downregulation of c-Myc gene expression. Here, we demonstrate that aspirin and its primary metabolite, salicylic acid, decrease the c-Myc protein levels in human HCT-116 colon and in few other cancer cell lines. In total cell lysates, both drugs decreased the levels of c-Myc in a concentration-dependent fashion. Greater inhibition was observed in the nucleus than the cytoplasm, and immunofluorescence studies confirmed these observations. Pretreatment of cells with lactacystin, a proteasome inhibitor, partially prevented the downregulatory effect of both aspirin and salicylic acid, suggesting that 26S proteasomal pathway is involved. Both drugs failed to decrease exogenously expressed DDK-tagged c-Myc protein levels; however, under the same conditions, the endogenous c-Myc protein levels were downregulated. Northern blot analysis showed that both drugs caused a decrease in c-Myc mRNA levels in a concentration-dependent fashion. High-performance liquid chromatography (HPLC) analysis showed that aspirin taken up by cells was rapidly metabolized to salicylic acid, suggesting that aspirin's inhibitory effect on c-Myc may occur through formation of salicylic acid. Our result suggests that salicylic acid regulates c-Myc level at both transcriptional and post-transcription levels. Inhibition of c-Myc may represent an important pathway by which aspirin exerts its anti-cancer effect and decrease the occurrence of cancer in epithelial tissues.

  4. Linc-RoR promotes c-Myc expression through hnRNP I and AUF1

    PubMed Central

    Huang, Jianguo; Zhang, Ali; Ho, Tsui-Ting; Zhang, Ziqiang; Zhou, Nanjiang; Ding, Xianfeng; Zhang, Xu; Xu, Min; Mo, Yin-Yuan

    2016-01-01

    Linc-RoR was originally identified to be a regulator for induced pluripotent stem cells in humans and it has also been implicated in tumorigenesis. However, the underlying mechanism of Linc-RoR-mediated gene expression in cancer is poorly understood. The present study demonstrates that Linc-RoR plays an oncogenic role in part through regulation of c-Myc expression. Linc-RoR knockout (KO) suppresses cell proliferation and tumor growth. In particular, Linc-RoR KO causes a significant decrease in c-Myc whereas re-expression of Linc-RoR in the KO cells restores the level of c-Myc. Mechanistically, Linc-RoR interacts with heterogeneous nuclear ribonucleoprotein (hnRNP) I and AU-rich element RNA-binding protein 1 (AUF1), respectively, with an opposite consequence to their interaction with c-Myc mRNA. While Linc-RoR is required for hnRNP I to bind to c-Myc mRNA, interaction of Linc-RoR with AUF1 inhibits AUF1 to bind to c-Myc mRNA. As a result, Linc-RoR may contribute to the increased stability of c-Myc mRNA. Although hnRNP I and AUF1 can interact with many RNA species and regulate their functions, with involvement of Linc-RoR they would be able to selectively regulate mRNA stability of specific genes such as c-Myc. Together, these results support a role for Linc-RoR in c-Myc expression in part by specifically enhancing its mRNA stability, leading to cell proliferation and tumorigenesis. PMID:26656491

  5. Mechanistic studies for the role of cellular nucleic-acid-binding protein (CNBP) in regulation of c-myc transcription.

    PubMed

    Chen, Siqi; Su, Lijuan; Qiu, Jun; Xiao, Nannan; Lin, Jing; Tan, Jia-Heng; Ou, Tian-Miao; Gu, Lian-Quan; Huang, Zhi-Shu; Li, Ding

    2013-10-01

    Guanine-rich sequence of c-myc nuclease hypersensitive element (NHE) III1 is known to fold in G-quadruplex and subsequently serves as a transcriptional silencer. Cellular nucleic-acid-binding protein (CNBP), a highly conserved zinc-finger protein with multiple biological functions, could bind to c-myc NHE III1 region, specifically to the single strand G-rich sequence. In the present study, a variety of methods, including cloning, expression and purification of protein, EMSA, CD, FRET, Ch-IP, RNA interference, luciferase reporter assay, SPR, co-immunoprecipitation, and co-transfection, were applied to investigate the mechanism for the role of CNBP in regulating c-myc transcription. We found that human CNBP specifically bound to the G-rich sequence of c-myc NHE III1 region both in vitro and in cellulo, and subsequently promoted the formation of G-quadruplex. CNBP could induce a transient decrease followed by an increase in c-myc transcription in vivo. The interaction of CNBP with NM23-H2 was responsible for the increase of c-myc transcription. Based on above experimental results, a new mechanism, involving G-quadruplex related CNBP/NM23-H2 interaction, for the regulation of c-myc transcription was proposed. These findings indicated that the regulation of c-myc transcription through NHE III1 region might be governed by mechanisms involving complex protein-protein interactions, and suggested a new possibility of CNBP as a potential anti-cancer target based on CNBP's biological function in c-myc transcription. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Expression of c-myc gene in human ovary carcinoma cells treated with vanadate

    SciTech Connect

    Itkes, A.V.; Imamova, L.R.; Alexandrova, N.M.; Favorova, O.O.; Kisselev, L.L. )

    1990-05-01

    The widely accepted hypothesis of vanadate action on cells postulates that this ion inhibits protein phosphatase(s) that dephosphorylates protein phosphotyrosine residues. This inhibition causes tyrosine hyperphosphorylation of cell proteins followed by changes in physiological action of phosphoproteins resulting in stimulation of cell proliferation, expression of protooncogenes, and transient cell transformation. The authors have found that treatment of human ovary carcinoma (CaOv) cells with vanadate causes the increase in total protein phosphorylation from 1.5- to 2.0-fold whereas the ratio between phosphoserine, phosphothreonine, and phosphotyrosine content remains unchanged. At the same time, enhancement of c-myc gene expression (not c-fos) was observed. Hence, the increase in the ratio of phosphotyrosine to phosphoserine and phosphothreonine is not an obligatory intermediate stage before vanadate-dependent activation of c-myc expression.

  7. Regulation of c-Myc expression by the histone demethylase JMJD1A is essential for prostate cancer cell growth and survival

    PubMed Central

    Fan, Lingling; Peng, Guihong; Sahgal, Natasha; Fazli, Ladan; Gleave, Martin; Zhang, Yuji; Hussain, Arif; Qi, Jianfei

    2015-01-01

    The histone demethylase JMJD1A, which controls gene expression by epigenetic regulation of H3K9 methylation marks, functions in diverse activities, including spermatogenesis, metabolism, and stem cell self-renewal and differentiation. Here, we found that JMJD1A knockdown in prostate cancer cells antagonizes their proliferation and survival. Profiling array analyses revealed that JMJD1A-dependent genes function in cellular growth, proliferation and survival, and implicated that the c-Myc transcriptional network is de-regulated following JMJD1A inhibition. Biochemical analyses confirmed that JMJD1A enhances c-Myc transcriptional activity by upregulating c-Myc expression levels. Mechanistically, JMJD1A activity promoted recruitment of androgen receptor (AR) to the c-Myc gene enhancer and induced H3K9 demethylation, increasing AR-dependent transcription of c-Myc mRNA. In parallel, we found that JMJD1A regulated c-Myc stability, likely by inhibiting HUWE1, an E3 ubiquitin ligase known to target degradation of several substrates including c-Myc. JMJD1A (wild-type or mutant lacking histone demethylase activity) bound to HUWE1, attenuated HUWE1-dependent ubiquitination and subsequent degradation of c-Myc, increasing c-Myc protein levels. Furthermore, c-Myc knockdown in prostate cancer cells phenocopied effects of JMJD1A knockdown, and c-Myc re-expression in JMJD1A-knockdown cells partially rescued prostate cancer cell growth in vitro and in vivo. c-Myc protein levels were positively correlated with those of JMJD1A in a subset of human prostate cancer specimens. Collectively, our findings identify a critical role for JMJD1A in regulating proliferation and survival of prostate cancer cells by controlling c-Myc expression at transcriptional and post-translational levels. PMID:26279298

  8. Rapid regulation of c-myc protooncogene expression by progesterone in the avian oviduct.

    PubMed Central

    Fink, K L; Wieben, E D; Woloschak, G E; Spelsberg, T C

    1988-01-01

    The mRNA levels of genes known to be regulated by sex steroids are not altered until 1 hr or longer after steroid treatment, although the steroid receptor complexes are bound to nuclear acceptor sites within 5 min. In a search for early regulation of gene transcription, total chick oviduct RNA was isolated at various times after injection (i.p.) of progesterone and analyzed for c-myc expression. Levels of c-myc mRNA began to decrease in response to progesterone by 10 min after injection. The mRNA levels continued to decrease, reached a 70% reduction at 30 min, and returned to control values by 8 hr after steroid injection. Changes in alpha-tubulin mRNA levels were markedly less in these same RNA preparations. The effect was dependent on the dose of the steroid and was target-tissue specific. These changes occurred much more rapidly than changes in egg-white protein mRNA levels. Vehicle alone did not alter c-myc mRNA levels. Early regulated genes such as c-myc may represent the initial site of action of steroid receptors in the genome. Images PMID:3162308

  9. Cloning and characterization of a c-myc intron binding protein (MIBP1).

    PubMed

    Makino, R; Akiyama, K; Yasuda, J; Mashiyama, S; Honda, S; Sekiya, T; Hayashi, K

    1994-12-25

    The cDNA for a c-myc intron 1 binding protein 1 (MIBP1) in the rat was isolated from lambda gt11 and lambda ZAPII cDNA libraries. Sequencing of the cDNA clones revealed a long ORF which encoded a putative protein of 2437 amino acid residues. This protein has two widely separated zinc finger regions, each of which carries C2H2 motifs. When expressed in E. coli as a fusion protein, part of the MIBP1 showed sequence-specific binding to the target sequence, i.e., a 9-bp sequence in the rat c-myc intron 1. MIBP1 is most likely the rat counterpart of human MHC binding protein-2 (MBP-2/HIV-EP2), based on the 86% similarity in nucleotide sequence and 93% similarity in amno acid sequence. Northern blotting revealed a high level of MIBP1 mRNA in the brain.

  10. Hepatitis C virus-induced activation of β-catenin promotes c-Myc expression and a cascade of pro-carcinogenetic events.

    PubMed

    Higgs, M R; Lerat, H; Pawlotsky, J-M

    2013-09-26

    Chronic infection by hepatitis C virus (HCV) is a major risk factor for the onset and development of hepatocellular carcinoma (HCC), although the underlying mechanisms are unclear. The c-Myc oncogene contributes to the genesis of many types of cancers, including HCC, partly via the induction of genetic damage and the inhibition of the cellular response to genotoxic stress. Here, we show a previously undiscovered mechanistic link between HCV infection and enhanced c-Myc expression. c-Myc expression was augmented in non-tumoral liver tissues from HCV-infected individuals with or without HCC and in hepatocyte cell lines harboring an HCV replicon and the infectious HCV strain JFH1. Increased c-Myc expression was confirmed in vivo in a transgenic murine model expressing the entire HCV open reading frame, demonstrating a direct role for HCV protein expression in c-Myc induction. Mechanistically, activation of Akt by the HCV non-structural protein NS5A, and the subsequent stabilization of the transcription factor β-catenin, was demonstrated to be responsible for activation of the c-Myc promoter, and for increased c-Myc transcription. β-Catenin-dependent c-Myc expression in this context led to increased production of reactive oxygen species, mitochondrial perturbation, enhanced DNA damage and aberrant cell-cycle arrest. Together, these data provide a novel insight into the mechanisms involved in HCV-associated HCCs, strongly suggesting that c-Myc has a crucial contributory role in this process.

  11. Discovery of a Family of Genomic Sequences Which Interact Specifically with the c-MYC Promoter to Regulate c-MYC Expression

    PubMed Central

    Thomas, Shelia D.; Rouchka, Eric C.; Miller, Donald M.

    2016-01-01

    G-quadruplex forming sequences are particularly enriched in the promoter regions of eukaryotic genes, especially of oncogenes. One of the most well studied G-quadruplex forming sequences is located in the nuclease hypersensitive element (NHE) III1 of the c-MYC promoter region. The oncoprotein c-MYC regulates a large array of genes which play important roles in growth regulation and metabolism. It is dysregulated in >70% of human cancers. The silencer NHEIII1 located upstream of the P1 promoter regulates up-to 80% of c-MYC transcription and includes a G-quadruplex structure (Pu27) that is required for promoter inhibition. We have identified, for the first time, a family of seventeen G-quadruplex-forming motifs with >90% identity with Pu27, located on different chromosomes throughout the human genome, some found near or within genes involved in stem cell maintenance or neural cell development. Notably, all members of the Pu27 family interact specifically with NHEIII1 sequence, in vitro. Crosslinking studies demonstrate that Pu27 oligonucleotide binds specifically to the C-rich strand of the NHEIII1 resulting in the G-quadruplex structure stabilization. Pu27 homologous sequences (Pu27-HS) significantly inhibit leukemic cell lines proliferation in culture. Exposure of U937 cells to the Pu27-HS induces cell growth inhibition associated with cell cycle arrest that is most likely due to downregulation of c-MYC expression at the RNA and/or protein levels. Expression of SOX2, another gene containing a Pu27-HS, was affected by Pu27-HS treatment as well. Our data suggest that the oligonucleotides encoding the Pu27 family target complementary DNA sequences in the genome, including those of the c-MYC and SOX2 promoters. This effect is most likely cell type and cell growth condition dependent. The presence of genomic G-quadruplex-forming sequences homologous to Pu27 of c-MYC silencer and the fact that they interact specifically with the parent sequence suggest a common

  12. Antisense regulation of expression and transactivation functions of the tumorigenic HBx and c-myc genes.

    PubMed

    Hung, Le; Kumar, Vijay

    2006-05-26

    Earlier we have shown that the X-myc transgenic mice develop hepatocellular carcinoma (HCC) due to co-expression of c-Myc and HBx protein of hepatitis B virus [R. Lakhtakia, V. Kumar, H. Reddi, M. Mathur, S. Dattagupta, S.K. Panda, Hepatocellular carcinoma in a hepatitis B 'x' transgenic mouse model: a sequential pathological evaluation. J. Gastroenterol. Hepatol. 18 (2003) 80-91]. With the aim to develop therapeutic strategies for HCC, we constructed several mono- and bicistronic antisense recombinants against HBx and c-myc genes to regulate their expression as well as transactivation function in a human hepatoma cell line. A dose-dependent inhibition in the expression levels of HBx and c-Myc was observed with monocistronic constructs. Likewise, the bicistronic recombinants also blocked the expression as well as transactivation functions of cognate genes with equal efficacy. Further, expression of the constituent genes from the X-myc transgene could also be inhibited by these antisense constructs in cell culture. Thus, our study points towards clinical implications of antisense regulation of tumor-promoting genes in the management of HCC.

  13. Elevated c-myc protooncogene expression in autosomal recessive polycystic kidney disease

    SciTech Connect

    Cowley, B.D. Jr.; Smardo, F.L. Jr.; Grantham, J.J.; Calvet, J.P.

    1987-12-01

    The polycystic kidney diseases (PKDs) are a group of disorders characterized by the growth of epithelial cysts from the nephrons and collecting ducts of kidney tubules. The diseases can be inherited or can be provoked by environmental factors. To investigate the molecular basis of the abnormal cell growth associated with PKD, c-myc protooncogene expression was studied in a mouse model for autosomal recessive PKD. Homozygous recessive C57BL/6J (cpk/cpk) mice develop massively enlarged cystic kidneys and die from renal failure shortly after 3 weeks of age. Quantitative dot blot and RNA blot hybridization experiments in which whole kidney poly(A)/sup +/ RNA was hybridized with a c-myc RNA probe showed a 2- to 6-fold increase in c-myc mRNA at 2 weeks, and a 25- to 30-fold increase in c-myc mRNA at 3 weeks of age in polycystic mice, as compared to normal littermates. c-myc expression was also examined under two conditions in which kidney cell growth was experimentally induced in normal adult mice: compensatory renal hypertrophy and tubule regeneration following folic acid-induced renal cell injury. While compensatory hypertrophy resulted in only a small increase in c-myc, folic acid treatment gave rise after 24 hr to a 12-fold increase in c-myc RNA. The induction of c-myc by folic acid is consistent with increased cellular proliferation regenerating tubules. In contrast, polycystic kidneys show only a minimal increase in cellular proliferation over that seen in normal kidneys, while c-myc levels were found to be markedly elevated. Thus, the level of c-myc expression in cystic kidneys appears to be out of proportion to the rate of cell division, suggesting that elevated and potentially abnormal c-myc expression may be involved in the pathogenesis of PKD.

  14. Inhibition of c-myc expression induces apoptosis of WEHI 231 murine B cells.

    PubMed Central

    Wu, M; Arsura, M; Bellas, R E; FitzGerald, M J; Lee, H; Schauer, S L; Sherr, D H; Sonenshein, G E

    1996-01-01

    Treatment of WEHI 231 immature B-lymphoma cells with an antibody against their surface immunoglobulin (anti-Ig) induces apoptosis and has been studied extensively as a model of B-cell tolerance. Anti-Ig treatment of exponentially growing WEHI 231 cells results in an early transient increase in c-myc expression that is followed by a decline to below basal levels; this decrease in c-myc expression immediately precedes the induction of cell death. Here we have modulated NF-kappaB/Rel factor activity, which regulates the rate of c-myc gene transcription, to determine whether the increase or decrease in c-Myc-levels mediates apoptosis in WEHI 231 cells. Addition of the serine/threonine protease inhibitor N-tosyl-L-phenylalanine chloromethyl ketone (TPCK), which blocks the normally rapid turnover of the specific inhibitor of NF-kappaB/Rel IkappaBalpha in these cells, caused a drop in Rel-related factor binding. TPCK treatment resulted in decreased c-myc expression, preventing the usual increase seen following anti-Ig treatment. Whereas inhibition of the induction of c-myc expression mediated by anti-Ig failed to block apoptosis, reduction of c-myc expression in exponentially growing WEHI 231 cells induced apoptosis even in the absence of anti-Ig treatment. In WEHI 231 clones ectopically expressing c-Myc, apoptosis induced by treatment with TPCK or anti-Ig was significantly diminished and cells continued to proliferate. Furthermore, apoptosis of WEHI 231 cells ensued following enhanced expression of Mad1, which has been found to reduce functional c-Myc levels. These results indicate that the decline in c-myc expression resulting from the drop in NF-kappaB/Rel binding leads to activation of apoptosis of WEHI 231 B cells. PMID:8756660

  15. A statin-regulated microRNA represses human c-Myc expression and function

    PubMed Central

    Takwi, Apana A L; Li, Yan; Becker Buscaglia, Lindsey E; Zhang, Jingwen; Choudhury, Saibyasachi; Park, Ae Kyung; Liu, Mofang; Young, Ken H; Park, Woong-Yang; Martin, Robert C G; Li, Yong

    2012-01-01

    c-Myc dysregulation is one of the most common abnormalities found in human cancer. MicroRNAs (miRNAs) are functionally intertwined with the c-Myc network as multiple miRNAs are regulated by c-Myc, while others directly suppress c-Myc expression. In this work, we identified miR-33b as a primate-specific negative regulator of c-Myc. The human miR-33b gene is located at 17p11.2, a genomic locus frequently lost in medulloblastomas, of which a subset displays c-Myc overproduction. Through a small-scale screening with drugs approved by the US Food and Drug Administration (FDA), we found that lovastatin upregulated miR-33b expression, reduced cell proliferation and impaired c-Myc expression and function in miR-33b-positive medulloblastoma cells. In addition, a low dose of lovastatin treatment at a level comparable to approved human oral use reduced tumour growth in mice orthotopically xenografted with cells carrying miR-33b, but not with cells lacking miR-33b. This work presents a highly promising therapeutic option, using drug repurposing and a miRNA as a biomarker, against cancers that overexpress c-Myc. PMID:22887866

  16. Patients with high c-MYC-expressing squamous cell carcinomas of the tongue show better survival than those with low- and medium-expressing tumours.

    PubMed

    Strindlund, Klas; Troiano, Giuseppe; Sgaramella, Nicola; Coates, Philip J; Gu, Xiaolian; Boldrup, Linda; Califano, Luigi; Fahraeus, Robin; Muzio, Lorenzo Lo; Ardito, Fatima; Colella, Giuseppe; Tartaro, Gianpaolo; Franco, Renato; Norberg-Spaak, Lena; Saadat, Mohammad; Nylander, Karin

    2017-04-10

    c-MYC is a potent oncoprotein with roles in a wide range of cellular processes such as differentiation, apoptosis and growth control. Deregulation of the MYC gene is commonly seen in human tumours resulting in overexpression of the protein. Here we studied expression of c-MYC in correlation to clinical outcome in patients with primary squamous cell carcinoma of the mobile tongue. Immunohistochemistry was used to identify c-MYC in a group of 104 tongue squamous cell carcinomas with an antibody directed against the N-terminal part of the protein. Staining was evaluated by multiplying the percentage of c-MYC-expressing cells with staining intensity, giving a quick score for each tumour. All 104 tumours expressed c-MYC at varying levels. Quantitation according to per cent of positive cells and staining intensity revealed that most (15/21; 71%) high-expressing tumours were seen in males. Within the group of high c-MYC-expressing tumours, the majority were alive 2 and 5 years after treatment. The present findings show that expression of c-MYC has prognostic value in squamous cell carcinoma of the tongue, and could be useful in choice of therapy. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Negative autoregulation of c-myc transcription.

    PubMed Central

    Penn, L J; Brooks, M W; Laufer, E M; Land, H

    1990-01-01

    The introduction of activated c-myc and v-myc genes into a variety of non-established and established cells results in the suppression of endogenous c-myc expression. As measured in Rat-1 fibroblasts, the suppression occurs at the level of transcriptional initiation. Moreover, the extent of the down-regulation is proportional to the cellular concentration of c-myc protein, and the critical concentration range in which the endogenous c-myc RNA is effectively suppressed corresponds to that found in non-transformed cells. In addition, the autoregulatory mechanism is not only dependent on c-myc protein, but also requires additional trans-acting factors. These results support a role for c-myc in the regulation of cellular gene transcription and suggest that a negative feedback mechanism can act as a homeostatic regulator of c-myc expression in vivo. Images Fig. 1. Fig. 2. Fig. 4. Fig. 5. PMID:2182320

  18. Clinical significance of high c-MYC and low MYCBP2 expression and their association with Ikaros dysfunction in adult acute lymphoblastic leukemia.

    PubMed

    Ge, Zheng; Guo, Xing; Li, Jianyong; Hartman, Melanie; Kawasawa, Yuka Imamura; Dovat, Sinisa; Song, Chunhua

    2015-12-08

    Increased expression of c-MYC is observed in both Acute Myeloid Leukemia (AML) and T-cell Acute Lymphoblastic Leukemia (T-ALL). MYC binding protein 2 (MYCBP2) is a probable E3 ubiquitin ligase and its function in leukemia is unknown. IKZF1 deletion is associated with the development and poor outcome of ALL. Here, we observed significant high c-MYC expression and low MYCBP2 expression in adult ALL patients. Patients with high c-MYC expression and/or low MYCBP2 expression had higher WBC counts and a higher percentage of CD34+ or CD33+ cells, as well as splenomegaly, liver infiltration, higher BM blasts, and lower CR rate. Ikaros bound to the regulatory regions of c-MYC and MYCBP2, suppressed c-MYC and increased MYCBP2 expression in ALL cells. Expression of c-MYC mRNA was significantly higher in patients with IKZF1 deletion; conversely MYCBP2 mRNA expression was significantly lower in those patients. A CK2 inhibitor, which acts as an Ikaros activator, also suppressed c-MYC and increased MYCBP2 expression in an Ikaros (IKZF1) dependent manner in the ALL cells. In summary, our data indicated the correlation of high c-MYC expression, low MYCBP2 expression and high c-MYC plus low MYCBP2 expression with high-risk factors and proliferation markers in adult ALL patients. Our data also revealed an oncogenic role for an Ikaros/MYCBP2/c-MYC axis in adult ALL, providing a mechanism of target therapies that activate Ikaros in adult ALL.

  19. Clinical significance of high c-MYC and low MYCBP2 expression and their association with Ikaros dysfunction in adult acute lymphoblastic leukemia

    PubMed Central

    Ge, Zheng; Guo, Xing; Li, Jianyong; Hartman, Melanie; Kawasawa, Yuka Imamura; Dovat, Sinisa; Song, Chunhua

    2015-01-01

    Increased expression of c-MYC is observed in both Acute Myeloid Leukemia (AML) and T- cell Acute Lymphoblastic Leukemia (T-ALL). MYC binding protein 2 (MYCBP2) is a probable E3 ubiquitin ligase and its function in leukemia is unknown. IKZF1 deletion is associated with the development and poor outcome of ALL. Here, we observed significant high c-MYC expression and low MYCBP2 expression in adult ALL patients. Patients with high c-MYC expression and/or low MYCBP2 expression had higher WBC counts and a higher percentage of CD34+ or CD33+ cells, as well as splenomegaly, liver infiltration, higher BM blasts, and lower CR rate. Ikaros bound to the regulatory regions of c-MYC and MYCBP2, suppressed c-MYC and increased MYCBP2 expression in ALL cells. Expression of c-MYC mRNA was significantly higher in patients with IKZF1 deletion; conversely MYCBP2 mRNA expression was significantly lower in those patients. A CK2 inhibitor, which acts as an Ikaros activator, also suppressed c-MYC and increased MYCBP2 expression in an Ikaros (IKZF1) dependent manner in the ALL cells. In summary, our data indicated the correlation of high c-MYC expression, low MYCBP2 expression and high c-MYC plus low MYCBP2 expression with high-risk factors and proliferation markers in adult ALL patients. Our data also revealed an oncogenic role for an Ikaros/MYCBP2/c-MYC axis in adult ALL, providing a mechanism of target therapies that activate Ikaros in adult ALL. PMID:26517351

  20. Deregulated Methionine Adenosyltransferase α1, c-Myc and Maf Proteins Interplay Promotes Cholangiocarcinoma Growth in Mice and Humans

    PubMed Central

    Yang, Heping; Liu, Ting; Wang, Jiaohong; Li, Tony W.H.; Fan, Wei; Peng, Hui; Krishnan, Anuradha; Gores, Gregory J.; Mato, Jose M.; Lu, Shelly C.

    2016-01-01

    We reported c-Myc induction drives cholestatic liver injury and cholangiocarcinoma (CCA) in mice. We also showed induction of Maf proteins (MafG and c-Maf) contributed to cholestatic liver injury, whereas S-adenosylmethionine (SAMe) administration was protective. Here we determined whether there is interplay between c-Myc, Maf proteins and methionine adenosyltransferase α1 (MATα1), which is responsible for SAMe biosynthesis in liver. We used bile duct ligation (BDL) and lithocholic acid (LCA) treatment in mice as chronic cholestasis models, a murine CCA model, human CCA cell lines KMCH and Huh-28, human liver cancer HepG2, and human CCA specimens to study gene and protein expression, protein-protein interactions, molecular mechanisms and functional outcomes. We found c-Myc, MATα1 (encoded by MAT1A), MafG and c-Maf interact with each other directly. MAT1A expression fell in hepatocytes and bile duct epithelial cells during chronic cholestasis and in murine and human CCA. The opposite occurred with c-Myc, MafG and c-Maf expression. MATα1 interacts mainly with Mnt in normal liver but this switches to c-Maf, MafG and c-Myc in cholestatic livers and CCA. Promoter regions of these genes have E-boxes that are bound by MATα1 and Mnt in normal liver and benign bile duct epithelial cells that switched to c-Myc, c-Maf and MafG in cholestasis and CCA cells. E-box positively regulates c-Myc, MafG and c-Maf, but it negatively regulates MAT1A. MATα1 represses whereas c-Myc, MafG and c-Maf enhance E-box-driven promoter activity. Knocking down MAT1A or overexpressing MafG or c-Maf enhanced CCA growth and invasion in vivo. Conclusion We have uncovered a novel interplay between MATα1, c-Myc and Maf proteins and their deregulation during chronic cholestasis may facilitate CCA oncogenesis. PMID:26969892

  1. c-Myc inhibits TP53INP1 expression via promoter methylation in esophageal carcinoma

    SciTech Connect

    Weng, Wenhao; Yang, Qinyuan; Huang, Miaolong; Qiao, Yongxia; Xie, Yuan; Yu, Yongchun; Jing, An; Li, Zhi

    2011-02-11

    Research highlights: {yields} TP53INP1 expression is down-regulated in esophageal carcinoma and is associated with CGI-131 methylation. {yields} Inhibition of CGI-131 methylation upregulates TP53INP1 expression in ESCC cell lines. {yields} Ectopic expression of TP53INP1 inhibits growth of ESCC cells by inducing apoptosis and inhibiting cell cycle progression. {yields} c-Myc binds to the promoter of TP53INP1 in vivo and vitro and recruits DNMT3A to TP53INP1 promoter for CGI-131 methylation. -- Abstract: Tumor protein p53-induced nuclear protein 1 (TP53INP1) is a well known stress-induced protein that plays a role in both cell cycle arrest and p53-mediated apoptosis. Loss of TP53INP1 expression has been reported in human melanoma, breast carcinoma, and gastric cancer. However, TP53INP1 expression and its regulatory mechanism in esophageal squamous cell carcinoma (ESCC) remain unclear. Our findings are in agreement with previous reports in that the expression of TP53INP1 was downregulated in 28% (10/36 cases) of ESCC lesions, and this was accompanied by significant promoter methylation. Overexpression of TP53INP1 induced G1 cell cycle arrest and increased apoptosis in ESCC cell lines (EC-1, EC-109, EC-9706). Furthermore, our study showed that the oncoprotein c-Myc bound to the core promoter of TP53INP1 and recruited DNA methyltransferase 3A to methylate the local promoter region, leading to the inhibition of TP53INP1 expression. Our findings revealed that TP53INP1 is a tumor suppressor in ESCC and that c-Myc-mediated DNA methylation-associated silencing of TP53INP1 contributed to the pathogenesis of human ESCC.

  2. The expression and purification of the N-terminal activation domain of the transcription factor c-Myc: a model substrate for exploring ERK2 docking interactions.

    PubMed

    Waas, William F; Dalby, Kevin N

    2007-05-01

    ERK2 is a mitogen-activated protein kinase (MAPK) that plays pivotal roles in cell signal transduction, where it mediates effects on proliferation and differentiation by growth factors and hormones. An important substrate of ERK2 is the transcription factor c-Myc, which mediates cell cycle progression. The phosphorylation of Ser-62 on c-Myc by ERK2 is thought to contribute to the increased stability of c-Myc during the cell cycle and is thus a critical cellular event. However, the mode of c-Myc recognition by ERK2 is not understood. Early studies by Gupta and Davis concluded that ERK2 specificity determinants are located in residues 1-100 of c-Myc, its activation domain. To pursue both structural and kinetic studies a rapid, but efficient purification method, for the production of the activation domain of c-Myc from an Escherichia coli source, was developed. We chose the minimal number of high-resolution steps to maximize both yield and efficiency without sacrificing purity. Thus, GST-(c-MycDelta2-99)-His(6) was expressed in E. coli, and purified using glutathione-agarose affinity chromatography. Cleavage of the GST fusion protein by thrombin and subsequent purification by nickel-agarose affinity chromatography yielded 8 mg of purified (c-MycDelta2-99)-His(6) from one liter of LB culture. Rigorous characterization demonstrated that under standard assay conditions (c-MycDelta2-99)-His(6) is phosphorylated by ERK2 with the following Michaelis parameters: k(cat)=10.4s(-1), K(M)(c-Myc)=57.4 microM. In summary, a rapid procedure is outlined for the preparation of (c-MycDelta2-99)-His(6) that will be useful for mechanistic and biophysical studies of ERK2.

  3. p53, c-myc p62 and proliferating cell nuclear antigen (PCNA) expression in non-Hodgkin's lymphomas.

    PubMed Central

    Korkolopoulou, P; Oates, J; Kittas, C; Crocker, J

    1994-01-01

    AIMS--To investigate the immunohistochemical expression of p53 protein in non-Hodgkin's lymphomas (NHL) and its relation to that of c-myc p62 oncoprotein and proliferating cell nuclear antigen (PCNA). METHODS--Paraffin wax embedded tissue from 90 non-Hodgkin's lymphomas (72 B cell and 18 T cell) was stained immunohistochemically for p53 protein, c-myc p62 oncoprotein, and PCNA using the monoclonal antibodies DO7, c-myc 1-9 E10, and PC-10, respectively. RESULTS--Of the non-Hodgkin's lymphomas studied, 55 (61%) stained positively for p53 protein. The proportion of positive cases increased from low grade non-Hodgkin's lymphoma and was higher in tumours of T cell origin. The percentage of positive cells (labelling index or LI) was significantly lower in low grade non-Hodgkin's lymphoma, but no difference was established between intermediate and high grade non-Hodgkin's lymphoma. In a large proportion of low grade non-Hodgkin's lymphoma the LI was below 1%. c-myc p62 immunoreactivity was identified in all cases. A significant positive correlation was established between p53 LI and c-myc p62 LI (rs = 0.453) as well as between p53 LI and PCNA LI (rs = 0.338). CONCLUSIONS--p53 immunoreactivity was present in about half the cases of non-Hodgkin's lymphoma and was related to the grade of malignancy and possibly to the B or T cell origin of the tumour. It was also associated with the proliferation state as expressed by PCNA LI and c-myc p62 expression, indicating that the expression of these three cell cycle-related genes might be interrelated. Images PMID:7907610

  4. A Novel Role for c-Myc in G Protein-Coupled Receptor Kinase 4 (GRK4) Transcriptional Regulation in Human Kidney Proximal Tubule Cells*

    PubMed Central

    Gildea, John J.; Tran, Hanh T.; Van Sciver, Robert E.; Wang, Dora Bigler; Carlson, Julia M.; Felder, Robin A.

    2013-01-01

    The G coupled-protein receptor kinase 4 (GRK4) negatively regulates the dopaminergic system by desensitizing the dopamine-1-receptor (D1R). The expressional control of GRK4 has not been reported, but here, we show that the transcription factor c-Myc binds to the promoter of GRK4 and positively regulates GRK4 protein expression in human renal proximal tubule cells (RPTCs). Addition of phorbol esters (PMA) to RPTCs not only increased c-Myc binding to the GRK4 promoter, but also increased both phospho-c-Myc and GRK4 expression. The PMA-mediated increase in GRK4 expression was completely blocked by the c-Myc inhibitor, 10074-G5, indicating that GRK4 is downstream of phospho-c-Myc. The autocrine production of angiotensin II (Ang II) in RPTCs increased the phosphorylation and activation of c-Myc and subsequently GRK4 expression. 3-Amino-4-thio-butyl sulfonate (EC-33), an inhibitor of aminopeptidase A (APA), increased RPTC secretion of Ang II. EC-33 or Ang II increased the expression of both phospho-c-Myc and GRK4, which was blocked by 10074-G5. Blockade of the angiotensin II type 1 receptor (AT1R) with losartan decreased phospho-c-Myc and GRK4 expression. Both inhibition of c-Myc activity and blockade of AT1R restored the coupling of D1R to adenylyl cyclase (AC) stimulation in uncoupled RPTCs (uRPTCs) while PMA or Ang II caused the uncoupling of normally coupled RPTCs (nRPTCs). We suggest that the AT1R impairs D1R function via c-Myc activation of GRK4. This novel pathway may be involved in the increase in blood pressure in hypertension that is mediated by increased activity of the renin-angiotensin system and decreased activity of the renal dopaminergic system. PMID:23509080

  5. A novel role for c-Myc in G protein-coupled receptor kinase 4 (GRK4) transcriptional regulation in human kidney proximal tubule cells.

    PubMed

    Gildea, John J; Tran, Hanh T; Van Sciver, Robert E; Bigler Wang, Dora; Carlson, Julia M; Felder, Robin A

    2013-05-01

    The G protein-coupled receptor kinase 4 (GRK4) negatively regulates the dopaminergic system by desensitizing the dopamine-1-receptor. The expressional control of GRK4 has not been reported, but here we show that the transcription factor c-Myc binds to the promoter of GRK4 and positively regulates GRK4 protein expression in human renal proximal tubule cells (RPTCs). Addition of phorbol esters to RPTCs not only increased c-Myc binding to the GRK4 promoter but also increased both phospho-c-Myc and GRK4 expression. The phorbol ester-mediated increase in GRK4 expression was completely blocked by the c-Myc inhibitor, 10074-G5, indicating that GRK4 is downstream of phospho-c-Myc. The autocrine production of angiotensin II (Ang II) in RPTCs increased the phosphorylation and activation of c-Myc and subsequently GRK4 expression. 3-Amino-4-thio-butyl sulfonate, an inhibitor of aminopeptidase A, increased RPTC secretion of Ang II. 3-Amino-4-thio-butyl sulfonate or Ang II increased the expression of both phospho-c-Myc and GRK4, which was blocked by 10074-G5. Blockade of the Ang II type 1 receptor with losartan decreased phospho-c-Myc and GRK4 expression. Both inhibition of c-Myc activity and blockade of Ang II type 1 receptor restored the coupling of dopamine-1-receptor to adenylyl cyclase stimulation in uncoupled RPTCs, whereas phorbol esters or Ang II caused the uncoupling of normally coupled RPTCs. We suggest that the Ang II type 1 receptor impairs dopamine-1-receptor function via c-Myc activation of GRK4. This novel pathway may be involved in the increase in blood pressure in hypertension that is mediated by increased activity of the renin-angiotensin system and decreased activity of the renal dopaminergic system.

  6. Polyamine-modulated c-Myc expression in normal intestinal epithelial cells regulates p21Cip1 transcription through a proximal promoter region

    PubMed Central

    Liu, Lan; Guo, Xin; Rao, Jaladanki N.; Zou, Tongtong; Marasa, Bernard S.; Chen, Jie; Greenspon, Jose; Casero, Robert A.; Wang, Jian-Ying

    2006-01-01

    Maintenance of intestinal mucosal epithelial integrity requires cellular polyamines that regulate expression of various genes involved in cell proliferation, growth arrest and apoptosis. Our previous studies have shown that polyamines are essential for expression of the c-myc gene and that polyamine-induced c-Myc plays a critical role in stimulation of normal IEC (intestinal epithelial cell) proliferation, but the exact downstream targets of induced c-Myc are still unclear. The p21Cip1 protein is a major player in cell cycle control, which is primarily regulated at the transcriptional level. The current study was designed to determine whether induced c-Myc stimulates normal IEC proliferation by repressing p21Cip1 transcription following up-regulation of polyamines. Overexpression of the ODC (ornithine decarboxylase) gene increased levels of cellular polyamines, induced c-Myc expression and inhibited p21Cip1 transcription, as indicated by repression of p21Cip1 promoter activity and a decrease in p21Cip1 protein levels. In contrast, depletion of cellular polyamines by inhibiting ODC enzyme activity with α-difluoromethylornithine decreased c-Myc, but increased p21Cip1 transcription. Ectopic expression of wild-type c-myc not only inhibited basal levels of p21Cip1 transcription in control cells, but also prevented increased p21Cip1 in polyamine-deficient cells. Experiments using different p21Cip1 promoter mutants showed that transcriptional repression of p21Cip1 by c-Myc was mediated through Miz-1- and Sp1-binding sites within the proximal region of the p21Cip1 promoter in normal IECs. These findings confirm that p21Cip1 is one of the direct mediators of induced c-Myc following increased polyamines and that p21Cip1 repression by c-Myc is implicated in stimulation of normal IEC proliferation. PMID:16706751

  7. Enhanced expression of c-myc in hepatocytes promotes initiation and progression of alcoholic liver disease.

    PubMed

    Nevzorova, Yulia A; Cubero, Francisco J; Hu, Wei; Hao, Fengjie; Haas, Ute; Ramadori, Pierluigi; Gassler, Nikolaus; Hoss, Mareike; Strnad, Pavel; Zimmermann, Henning W; Tacke, Frank; Trautwein, Christian; Liedtke, Christian

    2016-03-01

    Progression of alcoholic liver disease (ALD) can be influenced by genetic factors, which potentially include specific oncogenes and tumor suppressors. In the present study, we tested the hypothesis that aberrant expression of the proto-oncogene c-myc might exert a crucial role in the development of ALD. Expression of c-myc was measured in biopsies of patients with ALD by quantitative real-time PCR and immunohistochemistry. Mice with transgenic expression of c-myc in hepatocytes (alb-myc(tg)) and wild-type (WT) controls were fed either control or ethanol (EtOH) containing Lieber-DeCarli diet for 4weeks to induce ALD. Hepatic c-myc was strongly upregulated in human patients with advanced ALD and in EtOH-fed WT mice. Transcriptome analysis indicated deregulation of pathways involved in ER-stress, p53 signaling, hepatic fibrosis, cell cycle regulation, ribosomal synthesis and glucose homeostasis in EtOH-fed alb-myc(tg) mice. Transgenic expression of c-myc in hepatocytes with simultaneous EtOH-uptake led to early ballooning degeneration, increased liver collagen deposition and hepatic lipotoxicity, together with excessive CYP2E1-derived reactive oxygen species (ROS) production. Moreover, EtOH-fed alb-myc(tg) mice exhibited substantial changes in mitochondrial morphology associated with energy dysfunction. Pathway analysis revealed that elevated c-myc expression and ethanol uptake synergistically lead to strong AKT activation, Mdm2 phosphorylation and as a consequence to inhibition of p53. Expression of c-myc and EtOH-uptake synergistically accelerate the progression of ALD most likely due to loss of p53-dependent protection. Thus, c-myc is a new potential marker for the early detection of ALD and identification of risk patients. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  8. Kinetics of myc-max-mad gene expression during hepatocyte proliferation in vivo: Differential regulation of mad family and stress-mediated induction of c-myc.

    PubMed

    Mauleon, Itsaso; Lombard, Marie-Noëlle; Muñoz-Alonso, Maria J; Cañelles, Matilde; Leon, Javier

    2004-02-01

    Mad proteins (Mad1, Mxi1, Mad3, Mad4, Mnt/Rox) are biochemical and biological antagonists of c-Myc oncoprotein. Mad-Max dimers repress the transcription of the same target genes activated by Myc-Max dimers. Despite the critical role of Max and Mad proteins as modulators of c-Myc functions, there are no comparative data on their regulation in vivo. We carried out a systematic analysis of c-myc, max, and mad family expression in a model of synchronized cell proliferation in vivo in adult tissues, that is, rat hepatocytes after partial hepatectomy. We confirmed the previously reported early peak of c-myc expression after hepatectomy but we show that it did not correlate with hepatocyte proliferation as it also occurred in sham-operated animals as a result of surgical stresses. A second peak of c-myc expression was observed later, at the time of the wave of DNA synthesis. No such expression was detected in sham-operated rat quiescent hepatocytes. max expression increased around 4-16 h after hepatectomy, before the peaks of c-myc and DNA synthesis. mxi1 and mad4 were slightly downregulated during liver regeneration. mnt/rox expression did not change. These expression patterns suggest a role of Myc-Max for efficient mitogenic response of hepatocytes. We also analyzed the effects of Myc and Max ectopic expression on the clonogenic growth of the rat hepatoma cells. Expression of c-Myc and Max increased clonogenic growth, whereas the reduction of c-Myc levels by an antisense vector decreased growth. The results suggest nonredundant roles for mad genes in hepatocyte proliferation and point to c-Myc as a putative target for anticancer therapy of liver cancer.

  9. Amino-terminal domains of c-myc and N-myc proteins mediate binding to the retinoblastoma gene product

    NASA Astrophysics Data System (ADS)

    Rustgi, Anil K.; Dyson, Nicholas; Bernards, Rene

    1991-08-01

    THE proteins encoded by the myc gene family are involved in the control of cell proliferation and differentiation, and aberrant expression of myc proteins has been implicated in the genesis of a variety of neoplasms1. In the carboxyl terminus, myc proteins have two domains that encode a basic domain/helix-loop-helix and a leucine zipper motif, respectively. These motifs are involved both in DNA binding and in protein dimerization2-5. In addition, myc protein family members share several regions of highly conserved amino acids in their amino termini that are essential for transformation6,7. We report here that an N-terminal domain present in both the c-myc and N-myc proteins mediates binding to the retinoblastoma gene product, pRb. We show that the human papilloma virus E7 protein competes with c-myc for binding to pRb, indicating that these proteins share overlapping binding sites on pRb. Furthermore, a mutant Rb protein from a human tumour cell line that carried a 35-amino-acid deletion in its C terminus failed to bind to c-myc. Our results suggest that c-myc and pRb cooperate through direct binding to control cell proliferation.

  10. Estrogen Induces c-myc Gene Expression via an Upstream Enhancer Activated by the Estrogen Receptor and the AP-1 Transcription Factor

    PubMed Central

    Wang, Chunyu; Mayer, Julie Ann; Mazumdar, Abhijit; Fertuck, Kirsten; Kim, Heetae; Brown, Myles

    2011-01-01

    c-myc oncogene is implicated in tumorigenesis of many cancers, including breast cancer. Although c-myc is a well-known estrogen-induced gene, its promoter has no estrogen-response element, and the underlying mechanism by which estrogen induces its expression remains obscure. Recent genome-wide studies by us and others suggested that distant elements may mediate estrogen induction of gene expression. In this study, we investigated the molecular mechanism by which estrogen induces c-myc expression with a focus on these distal elements. Estrogen rapidly induced c-myc expression in estrogen receptor (ER)-positive breast cancer cells. Although estrogen had little effect on c-myc proximal promoter activity, it did stimulate the activity of a luciferase reporter containing a distal 67-kb enhancer. Estrogen induction of this luciferase reporter was dependent upon both a half-estrogen response element and an activator protein 1 (AP-1) site within this enhancer, which are conserved across 11 different mammalian species. Small interfering RNA experiments and chromatin immunoprecipitation assays demonstrated the necessity of ER and AP-1 cross talk for estrogen to induce c-myc expression. TAM67, the AP-1 dominant negative, partially inhibited estrogen induction of c-myc expression and suppressed estrogen-induced cell cycle progression. Together, these results demonstrate a novel pathway of estrogen regulation of gene expression by cooperation between ER and AP-1 at the distal enhancer element and that AP-1 is involved in estrogen induction of the c-myc oncogene. These results solve the long-standing question in the field of endocrinology of how estrogen induces c-myc expression. PMID:21835891

  11. Anti-proliferative effects of γ-tocotrienol are associated with suppression of c-Myc expression in mammary tumour cells.

    PubMed

    Parajuli, P; Tiwari, R V; Sylvester, P W

    2015-08-01

    Aberrant c-Myc activity plays a central role in cancer transformation. γ-tocotrienol is a member of the vitamin E family that displays potent anti-cancer activity. Here, studies were conducted to determine the role of c-Myc in mediating anti-proliferative effects of γ-tocotrienol in mammary cancer cells. Treatment effects on mouse +SA and human MCF-7 mammary cancer cell proliferation were determined by MTT assay and Ki-67 staining. Protein expression was determined by western blot analysis. Immunofluorescence staining and qRT-PCR were used to characterize cellular c-Myc and MYC levels respectively. Anti-proliferative effects of γ-tocotrienol were associated with reduction in total c-Myc and phosphorylated-c-Myc-serine 62, and increase in phosphorylated-c-Myc-threonine 58 levels. γ-tocotrienol also reduced PI3K/Akt/mTOR and Ras/MEK/Erk mitogenic signalling, cyclin D1 and cyclin-dependent kinase 4 levels, and increased p27 levels. However, γ-tocotrienol had no effect on MYC mRNA levels. γ-tocotrienol also increased levels of FBW7 (E3 ligase that initiates ubiquitination of c-Myc), but had no effect on serine/threonine phosphatase PP2A or isomerase Pin 1 levels. Combined treatment with GSK3α/β inhibitor LiCl or proteasome inhibitor MG132 blocked γ-tocotrienol-induced reductions in c-Myc. These findings indicate that anti-proliferative effects of γ-tocotrienol are associated with reduction in c-Myc that results from increase in GSK-3α/β-dependent ubiquitination and degradation, rather than from reduction in c-Myc synthesis in +SA and MCF-7 mammary cancer cells. © 2015 John Wiley & Sons Ltd.

  12. The regulatory role of c-MYC on HDAC2 and PcG expression in human multipotent stem cells.

    PubMed

    Bhandari, Dilli Ram; Seo, Kwang-Won; Jung, Ji-Won; Kim, Hyung-Sik; Yang, Se-Ran; Kang, Kyung-Sun

    2011-07-01

    Myelocytomatosis oncogene (c-MYC) is a well-known nuclear oncoprotein having multiple functions in cell proliferation, apoptosis and cellular transformation. Chromosomal modification is also important to the differentiation and growth of stem cells. Histone deacethylase (HDAC) and polycomb group (PcG) family genes are well-known chromosomal modification genes. The aim of this study was to elucidate the role of c-MYC in the expression of chromosomal modification via the HDAC family genes in human mesenchymal stem cells (hMSCs). To achieve this goal, c-MYC expression was modified by gene knockdown and overexpression via lentivirus vector. Using the modified c-MYC expression, our study was focused on cell proliferation, differentiation and cell cycle. Furthermore, the relationship of c-MYC with HDAC2 and PcG genes was also examined. The cell proliferation and differentiation were checked and shown to be dramatically decreased in c-MYC knocked-down human umbilical cord blood-derived MSCs, whereas they were increased in c-MYC overexpressing cells. Similarly, RT-PCR and Western blotting results revealed that HDAC2 expression was decreased in c-MYC knocked-down and increased in c-MYC overexpressing hMSCs. Database indicates presence of c-MYC binding motif in HDAC2 promoter region, which was confirmed by chromatin immunoprecipitation assay. The influence of c-MYC and HDAC2 on PcG expression was confirmed. This might indicate the regulatory role of c-MYC over HDAC2 and PcG genes. c-MYCs' regulatory role over HDAC2 was also confirmed in human adipose tissue-derived MSCs and bone-marrow derived MSCs. From this finding, it can be concluded that c-MYC plays a vital role in cell proliferation and differentiation via chromosomal modification.

  13. Decrease of miR-622 expression promoted the proliferation, migration and invasion of cholangiocarcinoma cells by targeting regulation of c-Myc.

    PubMed

    Wu, Yi-Fei; Li, Zhuo-Ri; Cheng, Zhi-Qi; Yin, Xin-Min; Wu, Jin-Shu

    2017-09-26

    To explore the mechanism of miR-622 in regulating the proliferation, migration and invasion of cholangiocarcinoma (CCA) cells. Quantitative real-time PCR was conducted to measure the expression of miR-622 and c-Myc in CCA tissues and cell lines. Protein level of c-Myc was measured by Western blot. The effect of miR-622 on cell proliferation, migration and invasion was analyzed by MTT assay and Transwell chamber migration assay. Luciferase reporter assay was performed to measure the effect of miR-622 on c-Myc. miR-622 expression was downregulated in both CCA tissues and cell lines, while c-Myc expression was uregulated. Overexpression of miR-622 in CCA cells was statistically correlated with a decrease of cell proliferation, migration and invasion, while inhibition of miR-622 made an inverse result. We also proved c-Myc was identified as a target gene of miR-622 in CCA. Moreover, we found overexpression of c-Myc can strengthen the effects of miR-622 on the proliferation, migration and invasion of CCA cells. Decrease of miR-622 promotes the proliferation, migration and invasion of CCA cells by directly targeting c-Myc. Copyright © 2017. Published by Elsevier Masson SAS.

  14. Nuclear C-MYC expression level is associated with disease progression and potentially predictive of two year overall survival in prostate cancer.

    PubMed

    Zeng, Wen; Sun, Hanying; Meng, Fankai; Liu, Zeming; Xiong, Jing; Zhou, Sheng; Li, Fan; Hu, Jia; Hu, Zhiquan; Liu, Zheng

    2015-01-01

    Upregulation of nuclear C-MYC protein has been reported to be an early event in prostate cancer (PCa); however, its clinicopathological and prognostic significance remain controversial. We determined the association of nuclear C-MYC protein expression with clinicopathological parameters, prognosis, ETS-related gene (ERG) expression, and TMPRSS2-ERG status in PCa. Nuclear C-MYC and ERG expression by immunohistochemistry and TMPRSS2-ERG status by triple-color probe fluorescence in situ hybridization assay were determined in 50 hormone-naïve PCa patients and 31 radical prostatectomy specimens. Nuclear C-MYC immunostaining was negative, positive, and strong positive in 27.5%, 32.5%, and 40.0% of cases, respectively. C-MYC immunostaining was significantly associated with clinical T stage (P < 0.001), distant metastasis at the time of diagnosis (P < 0.001) and TMPRSS2-ERG status (P = 0.001) but not with ERG immunostaining (P = 0.818). In the Kaplan-Meier analysis, C-MYC positive cases were found to have worse 2-year OS compared with C-MYC negative cases (P = 0.027). However, in the univariate Cox analysis, only TMPRSS2-ERG status (hazard ratio [HR] 0.189, 95% CI 0.057-0.629; P = 0.007) and distant metastasis (HR 3.545, 95% CI 1.056-11.894; P = 0.040) were significantly associated with 2-year OS. After adjusting for these two factors, TMPRSS2-ERG status still impacted 2-year OS (HR 0.196, 95% CI 0.049-0.778; P = 0.020). Nuclear C-MYC overexpression may be associated with disease progression and potentially predictive of 2-year OS in PCa. This is the first study to demonstrate an association between nuclear C-MYC immunostaining and TMPRSS2-ERG status in PCa.

  15. The X protein of hepatitis B virus binds to the F box protein Skp2 and inhibits the ubiquitination and proteasomal degradation of c-Myc.

    PubMed

    Kalra, Neetu; Kumar, Vijay

    2006-01-23

    The HBx protein of hepatitis B virus is involved in deregulation of cell cycle and development of hepatocellular carcinoma. Since c-Myc also plays an important role in cell proliferation and tumor development, we studied its regulation by HBx in a human hepatoma cell line. Co-expression of HBx and c-Myc resulted in increased stability of intracellular c-Myc. HBx blocked the ubiquitination of Myc through a direct interaction with the F box region of Skp2 and destabilization of the SCF(Skp2) complex. We suggest that sustained presence of c-Myc combined with mitogenic activity inherent to HBx may be associated with cell cycle deregulation and transformation.

  16. Degrasyn activates proteasomal-dependent degradation of c-Myc.

    PubMed

    Bartholomeusz, Geoffrey; Talpaz, Moshe; Bornmann, William; Kong, Ling-Yuan; Donato, Nicholas J

    2007-04-15

    c-Myc is a highly unstable transcription factor whose deregulation and increased expression are associated with cancer. Degrasyn, a small synthetic molecule, induces rapid degradation of c-Myc protein in MM-1 multiple myeloma and other tumor cell lines. Destruction of c-Myc by degrasyn requires the presence of a region of c-Myc between amino acid residues 316 and 378 that has not previously been associated with c-Myc stability. Degrasyn-induced degradation of c-Myc depends on proteasomes but is independent of the degron regions previously shown to be important for ubiquitin-mediated targeting and proteasomal destruction of the protein. Degrasyn-dependent c-Myc proteolysis is not mediated by any previously identified c-Myc regulatory mechanism, does not require new protein synthesis, and does not depend on the nuclear localization of c-Myc. Degrasyn reduced c-Myc levels in A375 melanoma cells and in A375 tumors in nude mice, and this activity correlated with tumor growth inhibition. Together, these results suggest that degrasyn reduces the stability of c-Myc in vitro and in vivo through a unique signaling process that uses c-Myc domains not previously associated with c-Myc regulation.

  17. Rapid transcriptional down-regulation of c-myc expression during cyclic adenosine monophosphate-promoted differentiation of leukemic cells.

    PubMed

    Slungaard, A; Confer, D L; Schubach, W H

    1987-05-01

    Pharmacologic elevation of cyclic AMP (cAMP) promotes growth arrest and differentiation in a variety of transformed mammalian cells, including the HL-60 human promyelocytic leukemia cell line. However, mechanisms underlying this phenomenon are poorly understood. Because cellular oncogenes play a pivotal role in regulating proliferation and differentiation, we examined whether cAMP-promoted differentiation of HL-60 was preceded by a decrease in the expression of c-myc, a cellular oncogene both amplified and constitutively expressed in HL-60. We find that cyclic AMP elevation in HL-60 caused by three different pharmacologic regimens is followed by an abrupt, greater than 90% decrease in steady state c-myc mRNA levels within 3 h, well before detectable changes in proliferation and differentiation. This decrease, which occurs despite protein synthetic blockade, is attributable to transcriptional down-regulation of c-myc and is accompanied by changes in chromatin structure near c-myc promoter sites. Our findings establish that cAMP, a ubiquitous intracellular regulatory messenger previously known only to enhance gene transcriptional activity in higher eukaryotic cells, can also suppress transcription of a cellular oncogene, thereby suggesting a potential mechanism for cAMP-promoted differentiation.

  18. Rapid transcriptional down-regulation of c-myc expression during cyclic adenosine monophosphate-promoted differentiation of leukemic cells.

    PubMed Central

    Slungaard, A; Confer, D L; Schubach, W H

    1987-01-01

    Pharmacologic elevation of cyclic AMP (cAMP) promotes growth arrest and differentiation in a variety of transformed mammalian cells, including the HL-60 human promyelocytic leukemia cell line. However, mechanisms underlying this phenomenon are poorly understood. Because cellular oncogenes play a pivotal role in regulating proliferation and differentiation, we examined whether cAMP-promoted differentiation of HL-60 was preceded by a decrease in the expression of c-myc, a cellular oncogene both amplified and constitutively expressed in HL-60. We find that cyclic AMP elevation in HL-60 caused by three different pharmacologic regimens is followed by an abrupt, greater than 90% decrease in steady state c-myc mRNA levels within 3 h, well before detectable changes in proliferation and differentiation. This decrease, which occurs despite protein synthetic blockade, is attributable to transcriptional down-regulation of c-myc and is accompanied by changes in chromatin structure near c-myc promoter sites. Our findings establish that cAMP, a ubiquitous intracellular regulatory messenger previously known only to enhance gene transcriptional activity in higher eukaryotic cells, can also suppress transcription of a cellular oncogene, thereby suggesting a potential mechanism for cAMP-promoted differentiation. Images PMID:2437157

  19. The regulatory role of c-MYC on HDAC2 and PcG expression in human multipotent stem cells

    PubMed Central

    Bhandari, Dilli Ram; Seo, Kwang-Won; Jung, Ji-Won; Kim, Hyung-Sik; Yang, Se-Ran; Kang, Kyung-Sun

    2011-01-01

    Abstract Myelocytomatosis oncogene (c-MYC) is a well-known nuclear oncoprotein having multiple functions in cell proliferation, apoptosis and cellular transformation. Chromosomal modification is also important to the differentiation and growth of stem cells. Histone deacethylase (HDAC) and polycomb group (PcG) family genes are well-known chromosomal modification genes. The aim of this study was to elucidate the role of c-MYC in the expression of chromosomal modification via the HDAC family genes in human mesenchymal stem cells (hMSCs). To achieve this goal, c-MYC expression was modified by gene knockdown and overexpression via lentivirus vector. Using the modified c-MYC expression, our study was focused on cell proliferation, differentiation and cell cycle. Furthermore, the relationship of c-MYC with HDAC2 and PcG genes was also examined. The cell proliferation and differentiation were checked and shown to be dramatically decreased in c-MYC knocked-down human umbilical cord blood-derived MSCs, whereas they were increased in c-MYC overexpressing cells. Similarly, RT-PCR and Western blotting results revealed that HDAC2 expression was decreased in c-MYC knocked-down and increased in c-MYC overexpressing hMSCs. Database indicates presence of c-MYC binding motif in HDAC2 promoter region, which was confirmed by chromatin immunoprecipitation assay. The influence of c-MYC and HDAC2 on PcG expression was confirmed. This might indicate the regulatory role of c-MYC over HDAC2 and PcG genes. c-MYCs’ regulatory role over HDAC2 was also confirmed in human adipose tissue-derived MSCs and bone-marrow derived MSCs. From this finding, it can be concluded that c-MYC plays a vital role in cell proliferation and differentiation via chromosomal modification. PMID:20716118

  20. Use of a transfected and amplified Drosophila heat shock promoter construction for inducible production of toxic mouse c-myc proteins in CHO cells

    SciTech Connect

    Wurm, F.M.; Gwinn, K.A.; Papoulas, O.; Pallavicini, M.; Kingston, R.E.

    1987-07-24

    After transfection and selection with methotrexate, CHO cell lines were established which contained up to 2000 copies of an expression vector for c-myc protein. The vector contained the Drosophila heat shock protein 70 (hsp70) promoter fused with the coding region of the mouse c-myc gene. Incubation of cells for up to 3 hours at 43/sup 0/C resulted in at least a 100-fold induction of recombinant c-myc mRNA. When cells were shifted back to 37/sup 0/C, within 1 to 4 hours, this RNA was translated into protein to yield about 250 ..mu..g per 10/sup 9/ cells. Cells died a few hours later, suggesting that high concentrations of intracellular c-myc are cytotoxic. 47 refs., 5 figs.

  1. Galectin-3 modulates the EGFR signalling-mediated regulation of Sox2 expression via c-Myc in lung cancer.

    PubMed

    Kuo, Hong-Yi; Hsu, Hsiao-Ting; Chen, Yi-Chen; Chang, Yu-Wei; Liu, Fu-Tong; Wu, Cheng-Wen

    2016-02-01

    Galectin-3 is a ubiquitous lectin exerting multiple cellular functions such as RNA splicing, protein trafficking and apoptosis. Its expression is positively correlated with the poor prognosis in lung cancer patients. Galectin-3 can promote cancer progression through its effects on cell proliferation, cell survival or cancer metastasis. However, the role of galectin-3 in the regulation of cancer stem-like cells (CSCs) is still unclear. Here, we investigated the hypothesis that galectin-3 might regulate lung CSCs via the EGF receptor (EGFR) signaling pathway. In our study, galectin-3 facilitated EGFR activation and enhanced the sphere formation activity of lung cancer cells. Furthermore, galectin-3 promoted Sox2 expression in an EGFR activation-dependent manner; importantly, forced expression of Sox2 blunted the effect of galectin-3 knockdown on lung cancer sphere formation ability. These results suggest that galectin-3 promotes EGFR activation leading to the upregulation of Sox2 expression and lung CSCs properties. Moreover, we showed that the carbohydrate-binding activity of galectin-3 was important for the regulation of EGFR activation, Sox2 expression and sphere formation. We have recently reported that c-Myc is a transcriptional activator of Sox2. We further found that galectin-3 enhanced c-Myc protein stability leading to increased c-Myc binding to the Sox2 gene promoter. We also examined the effect of the stemness factors, Oct4, Nanog and Sox2 on the expression of galectin-3. We found that Oct4 enhanced galectin-3 expression. Our results together suggest that galectin-3 enhances lung cancer stemness through the EGFR/c-Myc/Sox2 axis; Oct4, in turn, promotes galectin-3 expression, forming a positive regulatory loop in lung CSCs.

  2. Targeting a ribonucleoprotein complex containing the caprin-1 protein and the c-Myc mRNA suppresses tumor growth in mice: an identification of a novel oncotarget.

    PubMed

    Qiu, Ya-Qi; Yang, Cheng-Wei; Lee, Yue-Zhi; Yang, Ruey-Bing; Lee, Chih-Hao; Hsu, Hsing-Yu; Chang, Chien-Chung; Lee, Shiow-Ju

    2015-02-10

    Tylophorine compounds have been the focus of drug development for decades. Tylophorine derivatives exhibit anti-cancer activities but their cellular targets remain unknown. We used a biotinylated tylophorine derivative to probe for the interacting cellular target(s) of tylophorine. Tylophorine directly binds to caprin-1 and consequently enhances the recruitment of G3BP1, c-Myc mRNA, and cyclin D2 mRNA to form a ribonucleoprotein complex. Subsequently, this tylophorine targeted ribonucleoprotein complex is sequestered to the polysomal fractions and the protein expressions of the associated mRNA-transcripts are repressed. Caprin-1 depleted carcinoma cells become more resistant to tylophorine, associated with decreased formation of the ribonucleoprotein complex targeted by tylophorine. Consequently, tylophorine downregulates c-Myc and cyclins D1/D2, causing hypophosphorylation of Rb and suppression of both processing-body formation and the Warburg effect. Gene expression profiling and gain-of-c-Myc-function experiments also revealed that the downregulated c-Myc contributes to the anti-oncogenic effects of tylophorine compounds. Furthermore, the potent tylophorine derivative dibenzoquinoline-33b elicited a similar effect, as c-Myc protein levels were also decreased in xenograft tumors treated with dibenzoquinoline-33b. Thus, tylophorine compounds exert anti-cancer activity predominantly by targeting and sequestering the caprin-1 protein and c-Myc mRNA associated ribonucleoprotein complex.

  3. Targeting a ribonucleoprotein complex containing the caprin-1 protein and the c-Myc mRNA suppresses tumor growth in mice: an identification of a novel oncotarget

    PubMed Central

    Qiu, Ya-Qi; Yang, Cheng-Wei; Lee, Yue-Zhi; Yang, Ruey-Bing; Lee, Chih-Hao; Hsu, Hsing-Yu; Chang, Chien-Chung; Lee, Shiow-Ju

    2015-01-01

    Tylophorine compounds have been the focus of drug development for decades. Tylophorine derivatives exhibit anti-cancer activities but their cellular targets remain unknown. We used a biotinylated tylophorine derivative to probe for the interacting cellular target(s) of tylophorine. Tylophorine directly binds to caprin-1 and consequently enhances the recruitment of G3BP1, c-Myc mRNA, and cyclin D2 mRNA to form a ribonucleoprotein complex. Subsequently, this tylophorine targeted ribonucleoprotein complex is sequestered to the polysomal fractions and the protein expressions of the associated mRNA-transcripts are repressed. Caprin-1 depleted carcinoma cells become more resistant to tylophorine, associated with decreased formation of the ribonucleoprotein complex targeted by tylophorine. Consequently, tylophorine downregulates c-Myc and cyclins D1/D2, causing hypophosphorylation of Rb and suppression of both processing-body formation and the Warburg effect. Gene expression profiling and gain-of-c-Myc-function experiments also revealed that the downregulated c-Myc contributes to the anti-oncogenic effects of tylophorine compounds. Furthermore, the potent tylophorine derivative dibenzoquinoline-33b elicited a similar effect, as c-Myc protein levels were also decreased in xenograft tumors treated with dibenzoquinoline-33b. Thus, tylophorine compounds exert anti-cancer activity predominantly by targeting and sequestering the caprin-1 protein and c-Myc mRNA associated ribonucleoprotein complex. PMID:25669982

  4. The enforced expression of c-Myc in pig fibroblasts triggers mesenchymal-epithelial transition (MET) via F-actin reorganization and RhoA/Rock pathway inactivation.

    PubMed

    Shi, Jun-Wen; Liu, Wei; Zhang, Ting-Ting; Wang, Sheng-Chun; Lin, Xiao-Lin; Li, Jing; Jia, Jun-Shuang; Sheng, Hong-Fen; Yao, Zhi-Fang; Zhao, Wen-Tao; Zhao, Zun-Lan; Xie, Rao-Ying; Yang, Sheng; Gao, Fei; Fan, Quan-Rong; Zhang, Meng-Ya; Yue, Min; Yuan, Jin; Gu, Wei-Wang; Yao, Kai-Tai; Xiao, Dong

    2013-04-01

    In previous studies from other labs it has been well demonstrated that the ectopic expression of c-Myc in mammary epithelial cells can induce epithelial-mesenchymal transition (EMT), whereas in our pilot experiment, epithelial-like morphological changes were unexpectedly observed in c-Myc-expressing pig fibroblasts [i.e., porcine embryonic fibroblasts (PEFs) and porcine dermal fibroblasts (PDFs)] and pig mesenchymal stem cells, suggesting that the same c-Myc gene is entitled to trigger EMT in epithelial cells and mesenchymal-epithelial transition (MET) in fibroblasts. This prompted us to characterize the existence of a MET in c-Myc-expressing PEFs and PDFs at the molecular level. qRT-PCR, immunofluorescence and western blot analysis illustrated that epithelial-like morphological changes were accompanied by the increased expression of epithelial markers [such as cell adhesion proteins (E-cadherin, α-catenin and Bves), tight junction protein occludin and cytokeratins (Krt8 and Krt18)], the reduced expression of mesenchymal markers [vimentin, fibronectin 1 (FN1), snail1, collagen family of proteins (COL1A1, COL5A2) and matrix metalloproteinase (MMP) family (MMP12 and MMP14)] and the decreased cell motility and increased cell adhesion in c-Myc-expressing PEFs and PDFs. Furthermore, the ectopic expression of c-Myc in pig fibroblasts disrupted the stress fiber network, suppressed the formation of filopodia and lamellipodia, and resulted in RhoA/Rock pathway inactivation, which finally participates in epithelial-like morphological conversion. Taken together, these findings demonstrate, for the first time, that the enforced expression of c-Myc in fibroblasts can trigger MET, to which cytoskeleton depolymerization and RhoA/Rock pathway inactivation contribute.

  5. Suppression of C-myc expression associates with anti-proliferation of aloe-emodin on gastric cancer cells.

    PubMed

    Guo, Junming; Xiao, Bingxiu; Liu, Qiong; Gong, Zhaohui; Le, Yanping

    2008-05-01

    Aloe-emodin is a hydroxyanthraquinone found in Aloe vera, as well as in leaves and roots of other plants. The mechanisms of its anticancer effect are largely unknown. The present study investigated its molecular mechanisms. Crystal violet assay showed that aloe-emodin had a long-term anti-proliferation effect on human gastric cancer MGC-803 and SGC-7901 cells. Scratch wound-healing motility assays indicated its anti-migration effect. Aloe-emodin arrested SGC-7901 cells at G2/M phase. More importantly, aloe-emodin inhibited the expressions of protein kinase C and c-myc. In conclusion, the anticancer effect of aloe-emodin on gastric cancer cells involves suppression of c-myc expression.

  6. [Regulation of p14(ARF) expression and induction of cell apoptosis with c-myc in a p53-independent pathway].

    PubMed

    Liu, Xiang-juan; Li, Fu-nian; Jiang, Dan-dan; Wang, Xin-gang; Liu, Xiang-ping; Zhang, Dian-liang; Meng, Chun-hui

    2012-08-14

    To explore the regulation of p14(ARF) expression and induction of cell apoptosis with the mutant and wild-type c-myc genes in a p53-independent pathway of signal transduction. The mutant and wild-type c-myc genes were transfected by lentivirus into HCC1937 to form the stable over-expression cell lines. Uninfected cells and lentivirus-infected ones carrying no c-myc gene acted as blank and infection controls respectively. And c-myc and p14(ARF) mRNA and protein, proliferation and apoptosis in HCC1937 with mutant and wild-type c-myc were detected by reverse transcription (RT)-PCR, Western blotting, thiazolyl blue tetrazolium bromide (MTT) and terminal deoxynucleotidyl transferase mediated X-dUTP nick end labeling (TUNEL) respectively. After the lentivirus-mediated gene transfer, c-myc mRNA and protein expression increased in the mutant and wild-type groups. p14(ARF) mRNA and protein increased in the wild-type group and the mutant group and there were significant difference between them with blank and infection controls (mutant groups: 0.560 ± 0.010, 0.154 ± 0.011, wild-type groups: 0.651 ± 0.010, 0.382 ± 0.013, both P < 0.05). The group of mutant and wild-type c-myc could promote the proliferation of cell growth. And c-myc was more effective to induce apoptosis in the wild-type group as compared with the mutant group (7.1% ± 0.7% vs 3.2% ± 0.4%, P < 0.05). In a p53-independent pathway, the over-expression of wild-type c-myc obviously up-regulates the expression of p14(ARF). And cell apoptosis may be induced through the regulation of p14(ARF)-related gene, keep balance of proliferative promotion and apoptosis induction. When there is a loss-of-function of mutant c-myc, tumorigenicity increases via a disturbed balance of proliferative promotion and apoptosis induction.

  7. Down-regulation of c-myc gene expression with induction of high molecular weight DNA fragments by fluorodeoxyuridine.

    PubMed

    Li, Z R; Yin, M B; Arredondo, M A; Schöber, C; Rustum, Y M

    1994-07-19

    5-Fluoro-2'-deoxyuridine (FdUrd), a potent inhibitor of thymidylate synthase, induces extensive bulk DNA damage at drug concentrations that produce significant in vitro growth inhibition of human ileocecal carcinoma (HCT-8) cells. Constant- and pulsed-field gel electrophoresis (CFGE and PFGE), to detect size distribution of DNA double-strand breaks and repair kinetics, in parallel with northern and western blot analyses, to quantitate c-myc gene and protein expression, were utilized to analyze drug effects. At 24-hr post in vitro drug treatment, when maximum bulk DNA damage was detected, FdUrd produced a broad range of high molecular weight DNA fragments, clustering between 0.1 and 5.7 megabases in size, and resulted in a decrease in the level of c-myc transcripts and protein with no significant effect on the level of v-myc and H-ras. These effects preceded the observed cellular growth inhibition. Addition of the reduced folate leucovorin potentiated the effects induced by FdUrd, indicating that thymidylate synthase inhibition is an important initial step in drug effect followed by DNA fragmentation and suppression of c-myc expression. Changes in the integrity of the genetic materials and regulatory genes occurred prior to the observed cell growth inhibition by FdUrd, suggesting that these molecular alterations by FdUrd may be associated with subsequent FdUrd-induced cell growth inhibition.

  8. Regulation of c-Myc Expression by Ahnak Promotes Induced Pluripotent Stem Cell Generation*

    PubMed Central

    Lim, Hee Jung; Kim, Jusong; Park, Chang-Hwan; Lee, Sang A.; Lee, Man Ryul; Kim, Kye-Seong; Kim, Jaesang; Bae, Yun Soo

    2016-01-01

    We have previously reported that Ahnak-mediated TGFβ signaling leads to down-regulation of c-Myc expression. Here, we show that inhibition of Ahnak can promote generation of induced pluripotent stem cells (iPSC) via up-regulation of endogenous c-Myc. Consistent with the c-Myc inhibitory role of Ahnak, mouse embryonic fibroblasts from Ahnak-deficient mouse (Ahnak−/− MEF) show an increased level of c-Myc expression compared with wild type MEF. Generation of iPSC with just three of the four Yamanaka factors, Oct4, Sox2, and Klf4 (hereafter 3F), was significantly enhanced in Ahnak−/− MEF. Similar results were obtained when Ahnak-specific shRNA was applied to wild type MEF. Of note, expressionof Ahnak was significantly induced during the formation of embryoid bodies from embryonic stem cells, suggesting that Ahnak-mediated c-Myc inhibition is involved in embryoid body formation and the initial differentiation of pluripotent stem cells. The iPSC from 3F-infected Ahnak−/− MEF cells (Ahnak−/−-iPSC-3F) showed expression of all stem cell markers examined and the capability to form three primary germ layers. Moreover, injection of Ahnak−/−-iPSC-3F into athymic nude mice led to development of teratoma containing tissues from all three primary germ layers, indicating that iPSC from Ahnak−/− MEF are bona fide pluripotent stem cells. Taken together, these data provide evidence for a new role for Ahnak in cell fate determination during development and suggest that manipulation of Ahnak and the associated signaling pathway may provide a means to regulate iPSC generation. PMID:26598518

  9. c-myc protein can be substituted for SV40 T antigen in SV40 DNA replication.

    PubMed Central

    Iguchi-Ariga, S M; Itani, T; Yamaguchi, M; Ariga, H

    1987-01-01

    Replicating activity of SV40 origin-containing plasmid was tested in human cells as well as in monkey CosI cells. All the plasmids possessing SV40 ori sequences could replicate, even in the absence of SV40 T antigen, in human HL-60 and Raji cells which are expressing c-myc gene at high level. The copy numbers of the replicated plasmids in these human cells were 1/100 as high as in monkey CosI cells which express SV40 T antigen constitutively. Exactly the same plasmids as the transfected original ones were recovered from the Hirt supernatant of the transfected HL-60 cells. Furthermore, replication of the SV40 ori-containing plasmids in HL-60 cells was inhibited by anti-c-myc antibody co-transfected into the cells. These results indicate that the c-myc protein can be substituted for SV40 T antigen in SV40 DNA replication. Images PMID:3037484

  10. The relationship between expressions of N-myc and c-myc oncogenes in neuroblastoma: an in situ hybridization and immunocytochemical study.

    PubMed

    Zhe, X; Chen, J; Liu, T; Zhang, L; Li, P; Wang, D

    1999-06-01

    N-myc gene amplification is the most characteristic feature of neuroblastoma. c-myc oncogene, another member of myc gene family, plays an important role in cell proliferation and differentiation. Both of them may contribute to tumorigenesis of neuroblastoma. In this study we use the in situ hybridization and immunocytochemical methods to test the frequencies of N-myc and c-myc expressions in 20 cases of human neuroblastoma at mRNA and protein levels. The positive rates of the expression of N-myc are 90% and 100% detected by in situ hybridization and immunocytochemical methods respectively. The positive rates of c-myc are 80% and 85% respectively. Sixty percent of the 20 specimens tested by in situ hybridization and 55% by immunocytochemistry show an inverse relationship between the expressions of these two oncogenes and this may indicate that there are different gene expression controlling mechanisms in different cases.

  11. PAD4 regulates proliferation of multipotent haematopoietic cells by controlling c-myc expression

    PubMed Central

    Nakashima, Katsuhiko; Arai, Satoko; Suzuki, Akari; Nariai, Yuko; Urano, Takeshi; Nakayama, Manabu; Ohara, Osamu; Yamamura, Ken-ichi; Yamamoto, Kazuhiko; Miyazaki, Toru

    2013-01-01

    Peptidylarginine deiminase 4 (PAD4) functions as a transcriptional coregulator by catalyzing the conversion of histone H3 arginine residues to citrulline residues. Although the high level of PAD4 expression in bone marrow cells suggests its involvement in haematopoiesis, its precise contribution remains unclear. Here we show that PAD4, which is highly expressed in lineage− Sca-1+ c-Kit+ (LSK) cells of mouse bone marrow compared with other progenitor cells, controls c-myc expression by catalyzing the citrullination of histone H3 on its promoter. Furthermore, PAD4 is associated with lymphoid enhancer-binding factor 1 and histone deacetylase 1 at the upstream region of the c-myc gene. Supporting these findings, LSK cells, especially multipotent progenitors, in PAD4-deficient mice show increased proliferation in a cell-autonomous fashion compared with those in wild-type mice. Together, our results strongly suggest that PAD4 regulates the proliferation of multipotent progenitors in the bone marrow by controlling c-myc expression. PMID:23673621

  12. C-myc oncogene expression in human melanoma and its relationship with tumour antigenicity.

    PubMed

    Grover, R; Ross, D A; Richman, P I; Robinson, B; Wilson, G D

    1996-08-01

    Melanoma produces specific tumour antigens which are capable of eliciting an immune response. However, this tumour evades the immune system, in part, by downregulation of class I HLA antigens on the cell surface, which are required for T cell recognition. It has been suggested that the oncogene c-myc may have a role in effecting this change in vitro, however, the relationship between oncoprotein level and tumour antigenicity has not been established in human tumours. This study measured c-myc oncoprotein in 94 melanoma specimens (46 primary tumours and 48 regional metastases) using flow cytometry and evaluated class I HLA expression with immunohistochemistry. C-myc expression was found in 91 tumours (96%) with higher expression in metastases than primary melanomas (P<0.005). Class I HLA expression was found to show great variation although metastases showed less antigenicity than primary tumours (P<0.01). Analysis of the relationship between these two parameters revealed a highly significant correlation in both primary (P<0.01) and metastatic disease (P<0.01), with high oncoprotein being associated with down regulation of cell surface antigens. Knowledge of the control of tumour antigenicity is likely to provide an objective platform for the development of new strategies for immunotherapy.

  13. The impact of C-MYC gene expression on gastric cancer cell

    PubMed Central

    Hou, Yanhong; Ashktorab, Hassan; Gao, Liucun; Xu, Yanjie; Wu, Kai; Zhai, Junshan; Zhang, Lei

    2012-01-01

    The upregulation or mutation of C-MYC has been observed in gastric, colon, breast, and lung tumors and in Burkitt’s lymphoma. However, little is known about the role C-MYC plays in gastric adenocarcinoma. In the present study, we intended to investigate the influence of C-MYC on the growth, proliferation, apoptosis, invasion, and cell cycle of the gastric cancer cell line SGC7901 and the gastric cell line HFE145. C-MYC cDNA was subcloned into a constitutive vector PCDNA3.1 followed by transfection in normal gastric cell line HFE145 by using liposome. Then stable transfectants were selected and appraised. Specific inhibition of C-MYC was achieved using a vector-based siRNA system which was transfected in gastric cancer cell line SGC7901. The apoptosis and cell cycles of these clones were analyzed by using flow cytometric assay. The growth and proliferation were analyzed by cell growth curves and colony-forming assay, respectively. The invasion of these clones was analyzed by using cell migration assay. The C-MYC stable expression clones (HFE-Myc) and C-MYC RNAi cells (SGC-MR) were detected and compared with their control groups, respectively. HFE-Myc grew faster than HFE145 and HFE-PC (HFE145 transfected with PCDNA3.1 vector). SGC-MR1, 2 grew slower than SGC7901 and SGC-MS1, 2 (SGC7901 transfected with scrambled control duplexes). The cell counts of HFE-Myc in the third, fourth, fifth, sixth, and seventh days were significantly more than those of control groups (P < 0.05). Those of SGC-MR1, 2 in the fourth, fifth, sixth, and seventh days were significantly fewer than those of control groups (P < 0.05). Cell cycle analysis showed that proportions of HFE-Myc and SGC-MR cells in G0–G1 and G2–M were different significantly with their control groups, respectively (P < 0.05). The apoptosis rate of HFE-Myc was significantly higher than those of control groups (P < 0.05). Results of colony-forming assay showed that the colony formation rate of HFE-Myc was higher than

  14. Hsp90α Mediates BMI1 Expression in Breast Cancer Stem/Progenitor Cells through Facilitating Nuclear Translocation of c-Myc and EZH2.

    PubMed

    Lee, Yueh-Chun; Chang, Wen-Wei; Chen, Yi-Ying; Tsai, Yu-Hung; Chou, Ying-Hsiang; Tseng, Hsien-Chun; Chen, Hsin-Lin; Wu, Chun-Chieh; Chang-Chien, Ju; Lee, Hsueh-Te; Yang, Huei-Fan; Wang, Bing-Yen

    2017-09-15

    Heat shock protein 90 (Hsp90) is a molecular chaperone that facilitates the correct folding and functionality of its client protein. Numerous Hsp90-client proteins are involved in cancer development. Thus, Hsp90 inhibitors have potential applications as anti-cancer drugs. We previously discovered that Hsp90α expression increased in breast cancer stem cells (BCSCs), which can initiate tumorigenesis and metastasis and resist treatment. In the present study, we further demonstrated that 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), an inhibitor of Hsp90, could suppress the self-renewal of BCSCs by downregulating B lymphoma Mo-MLV insertion region 1 homolog (BMI1), a polycomb family member with oncogenic activity in breast cancer. Through immunoprecipitation analysis, we found that BMI1 did not interact with Hsp90α and that the downregulation of BMI1 by 17-DMAG was mediated by the inhibition of c-Myc and enhancement of zeste homolog 2 (EZH2) expression. The transcriptional and BMI1 promoter-binding activities of c-Myc in BCSCs were inhibited by 17-DMAG treatment. The overexpression of EZH2 attenuated the inhibitory effect of 17-DMAG on BMI1 and c-Myc expression. Furthermore, Hsp90α could be co-immunoprecipitated with c-Myc and EZH2 and bind to the BMI1 promoter. Treatment with 17-DMAG decreased the nuclear expression of EZH2 and c-Myc but not that of Hsp90α. In conclusion, our data suggested that Hsp90α could positively regulate the self-renewal of BCSCs by facilitating the nuclear translocation of c-Myc and EZH2 to maintain BMI1 expression.

  15. Expression of activated ATF-2, CREB and c-Myc in rat colon transversum after whole-body gamma-irradiation and its contribution to pathogenesis and biodosimetry.

    PubMed

    Pejchal, Jaroslav; Osterreicher, Jan; Vilasová, Zdenka; Tichý, Ales; Vávrová, Jirina

    2008-04-01

    The purpose of our study is to examine phospho-ATF-2(Thr-69/71) (phospho-activating transcription factor-2, p-ATF-2), phospho-CREB(Ser-133) (phospho-cAMP response binding element protein, p-CREB), and phospho-c-Myc(Thr-58/Ser-62) (phosho-myelocytomatosis protooncogene, p-c-Myc) expression in irradiated rat colon transversum. Male Wistar rats were randomly divided to 28 groups and irradiated with whole-body gamma-radiation of 0, 0.25, 0.5, 0.75, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 Gy. Samples were taken 4 and 24 hours after the irradiation, immunohistochemically stained. P-ATF-2, p-CREB, and p-c-Myc expression was measured. We measured increased cytoplasmatic p-ATF-2 expression 4 hours after irradiation by 0.25 - 1, 10 Gy and 24 hours after irradiation by 0.5 - 1, 10 Gy. Increased cytoplasmatic p-CREB expression was found 4 hours after irradiation by 0.25 - 1, 9, 10 Gy and 24 hours after irradiation by 0.25 - 1, 4, 10 Gy. Increased p-c-Myc cytoplasmatic expression was found 4 hours after irradiation by 0.25, 0.75, 4, 5 Gy and 24 hours after irradiation by 0.75, 1, 10 Gy. Nuclear p-ATF-2, p-CREB, and p-c-Myc expressions were similar to their cytoplasmatic expressions. The detection of p-ATF-2 and p-CREB might be considered as a perspective biodosimetric tool for irradiated enterocytes in vivo. The use of p-c-Myc appears to be controversial due to the ambivalent expression values.

  16. Kindlin-3 interacts with the ribosome and regulates c-Myc expression required for proliferation of chronic myeloid leukemia cells.

    PubMed

    Qu, Jing; Ero, Rya; Feng, Chen; Ong, Li-Teng; Tan, Hui-Foon; Lee, Hui-Shan; Ismail, Muhammad H B; Bu, Wen-Ting; Nama, Srikanth; Sampath, Prabha; Gao, Yong-Gui; Tan, Suet-Mien

    2015-12-18

    Kindlins are FERM-containing cytoplasmic proteins that regulate integrin-mediated cell-cell and cell-extracellular matrix (ECM) attachments. Kindlin-3 is expressed in hematopoietic cells, platelets, and endothelial cells. Studies have shown that kindlin-3 stabilizes cell adhesion mediated by ß1, ß2, and ß3 integrins. Apart from integrin cytoplasmic tails, kindlins are known to interact with other cytoplasmic proteins. Here we demonstrate that kindlin-3 can associate with ribosome via the receptor for activated-C kinase 1 (RACK1) scaffold protein based on immunoprecipitation, ribosome binding, and proximity ligation assays. We show that kindlin-3 regulates c-Myc protein expression in the human chronic myeloid leukemia cell line K562. Cell proliferation was reduced following siRNA reduction of kindlin-3 expression and a significant reduction in tumor mass was observed in xenograft experiments. Mechanistically, kindlin-3 is involved in integrin α5ß1-Akt-mTOR-p70S6K signaling; however, its regulation of c-Myc protein expression could be independent of this signaling axis.

  17. Shikonin regulates C-MYC and GLUT1 expression through the MST1-YAP1-TEAD1 axis.

    PubMed

    Vališ, Karel; Talacko, Pavel; Grobárová, Valéria; Černý, Jan; Novák, Petr

    2016-12-10

    The general mechanism underlying the tumor suppressor activity of the Hippo signaling pathway remains unclear. In this study, we explore the molecular mechanisms connecting the Hippo signaling pathway with glucose metabolism. We have found that two key regulators of glycolysis, C-MYC and GLUT1, are targets of the Hippo signaling pathway in human leukemia cells. Our results revealed that activation of MST1 by the natural compound shikonin inhibited the expression of GLUT1 and C-MYC. Furthermore, RNAi experiments confirmed the regulation of GLUT1 and C-MYC expression via the MST1-YAP1-TEAD1 axis. Surprisingly, YAP1 was found to positively regulate C-MYC mRNA levels in complex with TEAD1, while it negatively regulates C-MYC levels in cooperation with MST1. Hence, YAP1 serves as a rheostat for C-MYC, which is regulated by MST1. In addition, depletion of MST1 stimulates lactate production, whereas the specific depletion of TEAD1 has an opposite effect. The inhibition of lactate production and cellular proliferation induced by shikonin also depends on the Hippo pathway activity. Finally, a bioinformatic analysis revealed conserved TEAD-binding motifs in the C-MYC and GLUT1 promoters providing another molecular data supporting our observations. In summary, regulation of glucose metabolism could serve as a new tumor suppressor mechanism orchestrated by the Hippo signaling pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Transient activation of c-MYC expression is critical for efficient platelet generation from human induced pluripotent stem cells

    PubMed Central

    Takayama, Naoya; Nishimura, Satoshi; Nakamura, Sou; Shimizu, Takafumi; Ohnishi, Ryoko; Endo, Hiroshi; Yamaguchi, Tomoyuki; Otsu, Makoto; Nishimura, Ken; Nakanishi, Mahito; Sawaguchi, Akira; Nagai, Ryozo; Takahashi, Kazutoshi; Yamanaka, Shinya; Nakauchi, Hiromitsu

    2010-01-01

    Human (h) induced pluripotent stem cells (iPSCs) are a potentially abundant source of blood cells, but how best to select iPSC clones suitable for this purpose from among the many clones that can be simultaneously established from an identical source is not clear. Using an in vitro culture system yielding a hematopoietic niche that concentrates hematopoietic progenitors, we show that the pattern of c-MYC reactivation after reprogramming influences platelet generation from hiPSCs. During differentiation, reduction of c-MYC expression after initial reactivation of c-MYC expression in selected hiPSC clones was associated with more efficient in vitro generation of CD41a+CD42b+ platelets. This effect was recapitulated in virus integration-free hiPSCs using a doxycycline-controlled c-MYC expression vector. In vivo imaging revealed that these CD42b+ platelets were present in thrombi after laser-induced vessel wall injury. In contrast, sustained and excessive c-MYC expression in megakaryocytes was accompanied by increased p14 (ARF) and p16 (INK4A) expression, decreased GATA1 expression, and impaired production of functional platelets. These findings suggest that the pattern of c-MYC expression, particularly its later decline, is key to producing functional platelets from selected iPSC clones. PMID:21098095

  19. c-MYC expression sensitizes medulloblastoma cells to radio- and chemotherapy and has no impact on response in medulloblastoma patients

    PubMed Central

    2011-01-01

    Background To study whether and how c-MYC expression determines response to radio- and chemotherapy in childhood medulloblastoma (MB). Methods We used DAOY and UW228 human MB cells engineered to stably express different levels of c-MYC, and tested whether c-MYC expression has an effect on radio- and chemosensitivity using the colorimetric 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt (MTS) assay, clonogenic survival, apoptosis assays, cell cycle analysis, and western blot assessment. In an effort to validate our results, we analyzed c-MYC mRNA expression in formalin-fixed paraffin-embedded tumor samples from well-documented patients with postoperative residual tumor and compared c-MYC mRNA expression with response to radio- and chemotherapy as examined by neuroradiological imaging. Results In DAOY - and to a lesser extent in UW228 - cells expressing high levels of c-MYC, the cytotoxicity of cisplatin, and etoposide was significantly higher when compared with DAOY/UW228 cells expressing low levels of c-MYC. Irradiation- and chemotherapy-induced apoptotic cell death was enhanced in DAOY cells expressing high levels of c-MYC. The response of 62 of 66 residual tumors was evaluable and response to postoperative radio- (14 responders (CR, PR) vs. 5 non-responders (SD, PD)) or chemotherapy (23 CR/PR vs. 20 SD/PD) was assessed. c-MYC mRNA expression was similar in primary MB samples of responders and non-responders (Mann-Whitney U test, p = 0.50, ratio 0.49, 95% CI 0.008-30.0 and p = 0.67, ratio 1.8, 95% CI 0.14-23.5, respectively). Conclusions c-MYC sensitizes MB cells to some anti-cancer treatments in vitro. As we failed to show evidence for such an effect on postoperative residual tumors when analyzed by imaging, additional investigations in xenografts and larger MB cohorts may help to define the exact function of c-MYC in modulating response to treatment. PMID:21324178

  20. Differential Regulation of N-Myc and c-Myc Synthesis, Degradation, and Transcriptional Activity by the Ras/Mitogen-activated Protein Kinase Pathway*

    PubMed Central

    Kapeli, Katannya; Hurlin, Peter J.

    2011-01-01

    Myc transcription factors are important regulators of proliferation and can promote oncogenesis when deregulated. Deregulated Myc expression in cancers can result from MYC gene amplification and translocation but also from alterations in mitogenic signaling pathways that affect Myc levels through both transcriptional and post-transcription mechanisms. For example, mutations in Ras family GTPase proteins that cause their constitutive activation can increase cellular levels of c-Myc by interfering with its rapid proteasomal degradation. Although enhanced protein stability is generally thought to be applicable to other Myc family members, here we show that c-Myc and its paralog N-Myc respond to oncogenic H-Ras (H-RasG12V) in very different ways. H-RasG12V promotes accumulation of both c-Myc and N-Myc, but although c-Myc accumulation is achieved by enhanced protein stability, N-Myc accumulation is associated with an accelerated rate of translation that overcomes a surprising H-RasG12V-mediated destabilization of N-Myc. We show that H-RasG12V-mediated degradation of N-Myc functions independently of key phosphorylation sites in the highly conserved Myc homology box I region that controls c-Myc protein stability by oncogenic Ras. Finally, we found that N-Myc and c-Myc transcriptional activity is associated with their proteasomal degradation but that N-Myc may be uniquely dependent on Ras-stimulated proteolysis for target gene expression. Taken together, these studies provide mechanistic insight into how oncogenic Ras augments N-Myc levels in cells and suggest that enhanced N-Myc translation and degradation-coupled transactivation may contribute to oncogenesis. PMID:21908617

  1. Prostaglandin E2 promotes the cell growth and invasive ability of hepatocellular carcinoma cells by upregulating c-Myc expression via EP4 receptor and the PKA signaling pathway.

    PubMed

    Xia, Shukai; Ma, Juan; Bai, Xiaoming; Zhang, Hai; Cheng, Shanyu; Zhang, Min; Zhang, Li; Du, Mingzhan; Wang, Yipin; Li, Hai; Rong, Rong; Shi, Feng; Yang, Qinyi; Leng, Jing

    2014-10-01

    Hepatocellular carcinoma (HCC) represents a major health problem worldwide. Prostaglandin E2 (PGE2), the predominant product of cyclooxygenase-2, has been implicated in hepatocarcinogenesis. However, the underlying molecular mechanisms remain to be further elucidated. c-myc, a cellular proto-oncogene, is activated or overexpressed in many types of human cancer, including HCC. The present study was designed to investigate the internal relationship and molecular mechanisms between PGE2 and c-Myc in HCC, and to define its role in HCC cell growth and invasion. Our results showed that PGE2 significantly upregulated c-Myc expression at both the mRNA and protein levels, and knockdown of c-Myc blocked PGE2-induced HCC cell growth and invasive ability in human HCC Huh-7 cells. The effect of PGE2 on c-Myc expression was mainly through the EP4 receptor, and EP4 receptor-mediated c-Myc protein upregulation largely depended on de novo biosynthesis of c-Myc mRNA and its protein. EP4 receptor signaling activated GS/AC and increased the intracellular cAMP level in Huh-7 cells. The adenylate cyclase (AC) activator forskolin mimicked the effects of the EP4 receptor agonist on c-Myc expression, while the AC inhibitor SQ22536 reduced EP4 receptor-mediated c-Myc upregulation. These data confirm the involvement of the GS/AC/cAMP pathway in EP4 receptor-mediated c-Myc upregulation. Moreover, the phosphorylation levels of CREB protein were markedly elevated by EP4 receptor signaling, and by using specific inhibitor and siRNA interference, we demonstrated that PKA/CREB was also involved in the EP4 receptor-mediated c-Myc upregulation. In summary, the present study revealed that PGE2 significantly upregulates c-Myc expression at both mRNA and protein levels through the EP4R/GS/AC/cAMP/PKA/CREB signaling pathway, thus promoting cell growth and invasion in HCC cells. Targeting of the PGE2/EP4R/c-Myc pathway may be a new therapeutic strategy to prevent and cure human HCC.

  2. V-myc- and c-myc-encoded proteins are associated with the nuclear matrix.

    PubMed Central

    Eisenman, R N; Tachibana, C Y; Abrams, H D; Hann, S R

    1985-01-01

    A series of extraction procedures were applied to avian nuclei which allowed us to define three types of association of v-myc- and c-myc-encoded proteins with nuclei: (i) a major fraction (60 to 90%) which is retained in DNA- and RNA-depleted nuclei after low- and high-salt extraction, (ii) a small fraction (1%) released during nuclease digestion of DNA in intact nuclei in the presence of low-salt buffer, and (iii) a fraction of myc protein (less than 10%) extractable with salt or detergents and found to have affinity for both single- and double-stranded DNA. Immunofluorescence analysis with anti-myc peptide sera on cells extracted sequentially with nucleases and salts confirmed the idea that myc proteins were associated with a complex residual nuclear structure (matrix-lamin fraction) which also contained avian nuclear lamin protein. Dispersal of myc proteins into the cytoplasm was found to occur during mitosis. Both c-myc and v-myc proteins were associated with the matrix-lamin, suggesting that the function of myc may relate to nuclear structural organization. Images PMID:3872410

  3. Immortalization by c-myc, H-ras, and Ela oncogenes induces differential cellular gene expression and growth factor responses

    SciTech Connect

    Kelekar, A.; Cole, M.D.

    1987-11-01

    Early-passage rat kidney cells were immortalized or rescued from senescence with three different oncogenes: viral promoter-driven c-myc, H-ras (Val-12), and adenovirus type 5 E1a. The normal c-myc and H-ras (Gly-12) were unable to immortalize cells under similar conditions. Quantitation of RNA in the ras-immortalized lines demonstrated that the H-ras oncogene was expressed at a level equivalent to that of the normal H-ras gene in established human or rat cell lines. Cell lines immortalized by different oncogenes were found to have distinct growth responses to individual growth factors in a short-term assay. E1a-immortalized cells were largely independent of serum growth factors, whereas c-myc-immortalized cells responded to serum better than to epidermal growth factor and insulin. H-ras-immortalized cells responded significantly to insulin alone and gave a maximal response to epidermal growth factor and insulin. Several cellular genes associated with platelet-derived growth factor stimulation, including c-myc, were expressed at high levels in the H-ras-immortalized cells, and c-myc expression was deregulated, suggesting that the H-ras oncogene has provided a ''competence'' function. H-ras-immortalized cells could not be morphologically transformed by secondary transfection with a long terminal repeat-c-myc oncogene, but secondary transfection of the same cells with H-ras (Val-12) produced morphologically transformed colonies that had 20- to 40-fold higher levels of H-ras oncogene expression. Thus transformation in this system is dependent on high levels of H-ras oncogene expression rather than on the presence of activated H-ras and c-myc oncogenes in the same cell.

  4. Activated α2-Macroglobulin Regulates Transcriptional Activation of c-MYC Target Genes through Cell Surface GRP78 Protein*

    PubMed Central

    Gopal, Udhayakumar; Gonzalez-Gronow, Mario; Pizzo, Salvatore Vincent

    2016-01-01

    Activated α2-macroglobulin (α2M*) signals predominantly through cell surface GRP78 (CS-GRP78) to promote proliferation and survival of cancer cells; however, the molecular mechanism remains obscure. c-MYC is an essential transcriptional regulator that controls cell proliferation. We hypothesize that α2M*/CS-GRP78-evoked key signaling events are required for transcriptional activation of c-MYC target genes. Activation of CS-GRP78 by α2M* requires ligation of the GRP78 primary amino acid sequence (Leu98–Leu115). After stimulation with α2M*, CS-GRP78 signaling activates 3-phosphoinositide-dependent protein kinase-1 (PDK1) to induce phosphorylation of PLK1, which in turn induces c-MYC transcription. We demonstrate that PLK1 binds directly to c-MYC and promotes its transcriptional activity by phosphorylating Ser62. Moreover, activated c-MYC is recruited to the E-boxes of target genes FOSL1 and ID2 by phosphorylating histone H3 at Ser10. In addition, targeting the carboxyl-terminal domain of CS-GRP78 with a mAb suppresses transcriptional activation of c-MYC target genes and impairs cell proliferation. This work demonstrates that α2M*/CS-GRP78 acts as an upstream regulator of the PDK1/PLK1 signaling axis to modulate c-MYC transcription and its target genes, suggesting a therapeutic strategy for targeting c-MYC-associated malignant progression. PMID:27002159

  5. Activated α2-Macroglobulin Regulates Transcriptional Activation of c-MYC Target Genes through Cell Surface GRP78 Protein.

    PubMed

    Gopal, Udhayakumar; Gonzalez-Gronow, Mario; Pizzo, Salvatore Vincent

    2016-05-13

    Activated α2-macroglobulin (α2M*) signals predominantly through cell surface GRP78 (CS-GRP78) to promote proliferation and survival of cancer cells; however, the molecular mechanism remains obscure. c-MYC is an essential transcriptional regulator that controls cell proliferation. We hypothesize that α2M*/CS-GRP78-evoked key signaling events are required for transcriptional activation of c-MYC target genes. Activation of CS-GRP78 by α2M* requires ligation of the GRP78 primary amino acid sequence (Leu(98)-Leu(115)). After stimulation with α2M*, CS-GRP78 signaling activates 3-phosphoinositide-dependent protein kinase-1 (PDK1) to induce phosphorylation of PLK1, which in turn induces c-MYC transcription. We demonstrate that PLK1 binds directly to c-MYC and promotes its transcriptional activity by phosphorylating Ser(62) Moreover, activated c-MYC is recruited to the E-boxes of target genes FOSL1 and ID2 by phosphorylating histone H3 at Ser(10) In addition, targeting the carboxyl-terminal domain of CS-GRP78 with a mAb suppresses transcriptional activation of c-MYC target genes and impairs cell proliferation. This work demonstrates that α2M*/CS-GRP78 acts as an upstream regulator of the PDK1/PLK1 signaling axis to modulate c-MYC transcription and its target genes, suggesting a therapeutic strategy for targeting c-MYC-associated malignant progression. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. A c-Myc regulatory subnetwork from human transposable element sequences†‡

    PubMed Central

    Wang, Jianrong; Bowen, Nathan J.; Mariño-Ramírez, Leonardo

    2010-01-01

    Transposable elements (TEs) can donate regulatory sequences that help to control the expression of human genes. The oncogene c-Myc is a promiscuous transcription factor that is thought to regulate the expression of hundreds of genes. We evaluated the contribution of TEs to the c-Myc regulatory network by searching for c-Myc binding sites derived from TEs and by analyzing the expression and function of target genes with nearby TE-derived c-Myc binding sites. There are thousands of TE sequences in the human genome that are bound by c-Myc. A conservative analysis indicated that 816–4564 of these TEs contain canonical c-Myc binding site motifs. c-Myc binding sites are over-represented among sequences derived from the ancient TE families L2 and MIR, consistent with their preservation by purifying selection. Genes associated with TE-derived c-Myc binding sites are co-expressed with each other and with c-Myc. A number of these putative TE-derived c-Myc target genes are differentially expressed between Burkitt’s lymphoma cells versus normal B cells and encode proteins with cancer-related functions. Despite several lines of evidence pointing to their regulation by c-Myc and relevance to cancer, the set of genes identified as TE-derived c-Myc targets does not significantly overlap with two previously characterized c-Myc target gene sets. These data point to a substantial contribution of TEs to the regulation of human genes by c-Myc. Genes that are regulated by TE-derived c-Myc binding sites appear to form a distinct c-Myc regulatory subnetwork. PMID:19763338

  7. Interferon modulation of c-myc expression in cloned Daudi cells: relationship to the phenotype of interferon resistance.

    PubMed Central

    Dron, M; Modjtahedi, N; Brison, O; Tovey, M G

    1986-01-01

    Treatment of interferon-sensitive Daudi cell with electrophoretically pure human interferon alpha markedly reduced the level of c-myc mRNA, increased the level of class I histocompatibility antigen (HLA) mRNA, and did not affect the level of actin mRNA within the same cells. In contrast, the level of c-myc mRNA or HLA mRNA did not change significantly following interferon treatment in different clones of Daudi cells selected for resistance to the antiproliferative action of interferon. These cells possessed interferon receptors, however, and responded to interferon modulation of other genes, including 2',5' oligoisoadenylate synthetase (M. G. Tovey, M. Dron, K. E. Mogensen, B. Lebleu, N. Metchi, and J. Begon-Lours, Guymarho, J. Gen. Virol., 64:2649-2653, 1983; M. Dron, M. G. Tovey, and P. Eid, J. Gen. Virol., 66:787-795, 1985). A clone of interferon-resistant Daudi cells which had reverted to almost complete sensitivity to both the antiproliferative action of interferon and the interferon-enhanced expression of HLA mRNA remained refractory, however, to interferon modulation of c-myc expression, suggesting that a reduced level of c-myc mRNA may not be a prerequisite for inhibition of cell proliferation in interferon-treated cells. Our results do not exclude the possibility, however, that posttranscriptional modification(s) of c-myc expression may precede an inhibition of cell proliferation in interferon-treated cells. Images PMID:3785169

  8. Interferon modulation of c-myc expression in cloned Daudi cells: relationship to the phenotype of interferon resistance.

    PubMed

    Dron, M; Modjtahedi, N; Brison, O; Tovey, M G

    1986-05-01

    Treatment of interferon-sensitive Daudi cell with electrophoretically pure human interferon alpha markedly reduced the level of c-myc mRNA, increased the level of class I histocompatibility antigen (HLA) mRNA, and did not affect the level of actin mRNA within the same cells. In contrast, the level of c-myc mRNA or HLA mRNA did not change significantly following interferon treatment in different clones of Daudi cells selected for resistance to the antiproliferative action of interferon. These cells possessed interferon receptors, however, and responded to interferon modulation of other genes, including 2',5' oligoisoadenylate synthetase (M. G. Tovey, M. Dron, K. E. Mogensen, B. Lebleu, N. Metchi, and J. Begon-Lours, Guymarho, J. Gen. Virol., 64:2649-2653, 1983; M. Dron, M. G. Tovey, and P. Eid, J. Gen. Virol., 66:787-795, 1985). A clone of interferon-resistant Daudi cells which had reverted to almost complete sensitivity to both the antiproliferative action of interferon and the interferon-enhanced expression of HLA mRNA remained refractory, however, to interferon modulation of c-myc expression, suggesting that a reduced level of c-myc mRNA may not be a prerequisite for inhibition of cell proliferation in interferon-treated cells. Our results do not exclude the possibility, however, that posttranscriptional modification(s) of c-myc expression may precede an inhibition of cell proliferation in interferon-treated cells.

  9. Immunochemical detection of proteins related to the human c-myc exon 1.

    PubMed Central

    Gazin, C; Rigolet, M; Briand, J P; Van Regenmortel, M H; Galibert, F

    1986-01-01

    Published sequence data of the human c-myc gene indicate the presence of a coding capacity for a polypeptide of 188 residues within the first exon. Using antibodies raised against five synthetic peptides corresponding to different non-over-lapping parts of this polypeptide, two proteins of 32 kd and 58 kd antigenically related to the synthetic peptides have been detected in extracts of human cells. The confidence of this detection has been reinforced by showing that epitopes corresponding to different peptides were indeed located on the same molecule and that the 58 kd protein appears to be a dimeric form of the 32 kd protein. That these proteins originate from the first exon was indicated by: hybrid-arrested translation experiments followed by immunodetection of the translation products; in vitro translation of messenger RNA derived from cloned exon 1 by SP6 polymerase transcription. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. PMID:2430795

  10. c-Myc regulates expression of NKG2D ligands ULBP1/2/3 in AML and modulates their susceptibility to NK-mediated lysis.

    PubMed

    Nanbakhsh, Arash; Pochon, Cécile; Mallavialle, Aude; Amsellem, Sophie; Bourhis, Jean Henri; Chouaib, Salem

    2014-06-05

    Cytarabine (cytosine arabinoside) is one of the most effective drugs for the treatment of patients diagnosed with acute myeloid leukemia (AML). Despite its efficiency against AML cells, the emergence of drug resistance due to prolonged chemotherapy in most patients is still a major obstacle. Several studies have shown that drug resistance mechanisms alter the sensitivity of leukemia cells to immune system effector cells. To investigate this phenomenon, parental acute myeloid cell lines, HL-60 and KG-1, were continuously exposed to increasing doses of cytarabine in order to establish equivalent resistant cell lines, HL-60(R) and KG-1(R). Our data indicate that cytarabine-resistant cells are more susceptible to natural killer (NK)-mediated cell lysis as compared with parental cytarabine-sensitive cells. The increased susceptibility correlates with the induction of UL-16 binding proteins (ULBP) 1/2/3 and NK group 2, member D (NKG2D) ligands on target cells by a mechanism involving c-Myc induction. More importantly, chromatin immunoprecipitation assay revealed that ULBP1/3 are direct targets of c-Myc. Using drug-resistant primary AML blasts as target cells, inhibition of c-Myc resulted in decreased expression of NKG2D ligands and the subsequent impairment of NK cell lysis. This study provides for the first time, the c-Myc dependent regulation of NKG2D ligands in AML. © 2014 by The American Society of Hematology.

  11. Knocking-down of CREPT prohibits the progression of oral squamous cell carcinoma and suppresses cyclin D1 and c-Myc expression.

    PubMed

    Ma, Juntao; Ren, Yipeng; Zhang, Lei; Kong, Xiangpan; Wang, Tong; Shi, Yueyi; Bu, Rongfa

    2017-01-01

    As a regulator essential for many cell cycle-related proteins, the robust expression of Cell cycle-Related and Expression-elevated Protein in Tumor (CREPT) implicates a poor diagnosis of endoderm and mesoderm-derived tumors. Whether CREPT plays the same role in the tumorigenesis derived from ectodermal tissues remains elusive. To explore the role of CREPT in ectoderm-derived tumors, cells from 7oral squamous cell carcinoma (OSCC) lines and 84clinical OSCC samples were exploited in this study. Quantitative PCR, Western blot assay and immunohistochemistry were applied in the evaluation of CREPT, cyclin D1 and c-Myc expression. Knocking-down of CREPT was performed by lentivirus delivering specific shRNA of CREPT. The effects of CREPT on OSCC were examined by cell proliferation, colony formation, apoptosis, cell migration and xenograft implantation experiments. Compared with human normal oral keratinocytes, OSCC cell lines showed a significantly elevated expression of CREPT in both mRNA and protein levels. Consistently, samples from OSCC patients also exhibited a noticeably stronger CREPT expression than the noncancerous samples. In contrast, knocking down of CREPT in OSCC cell lines significantly reduced proliferation, colony formation and migration as well as the expression of cyclin D1 and c-Myc, but promoted apoptosis. Statistical analysis also suggested that CREPT expression was significantly correlated with the T and N classification of OSCC. Furthermore, CAL27 mouse xenograft model confirmed that down-regulation of CREPT prohibited cyclin D1 and c-Myc expression, through which decreased the in vivo tumor growth, but increased the survival ratio of hosts. In OSCC cell lines, up-regulated CREPT expression enhanced cell proliferation, migration and cell cycle as well as promoted cyclin D1 and c-Myc expression as it did in endoderm and mesoderm-origin tumors. Our study strongly suggests that CREPT could be used as a marker for the OSCC prognosis and might work as a

  12. Recombinant human bone morphogenetic protein-2 inhibits gastric cancer cell proliferation by inactivating Wnt signaling pathway via c-Myc with aurora kinases

    PubMed Central

    Ye, Shuai; Park, Byung Hyun; Kim, Soo Mi

    2016-01-01

    The detailed molecular mechanisms and safety issues of recombinant human bone morphogenetic protein-2 (rhBMP-2) usage in bone graft substitution remain poorly understood. To investigate the molecular mechanisms underlying the function of rhBMP-2 in gastric cancer cells, we used microarrays to determine the gene expression patterns related to the effects of rhBMP-2. Based on a gene ontology analysis, several genes were upregulated during the regulation of the cell cycle and BMP signaling pathway. MYC was found to be significantly decreased along with its downstream target genes, the aurora kinases (AURKs), by rhBMP-2 in the network analysis. We further confirmed this finding with western blot data that rhBMP-2 inhibited c-Myc, AURKs, and β-catenin in SNU484 and SNU638 cells. An AURK inhibitor significantly decreased c-Myc expression in gastric cancer cells. Combination treatment with rhBMP-2 and AURK inhibitor resulted in significantly decreased c-Myc expression compared with gastric cancer cells treated with an rhBMP-2 or AURK inhibitor, respectively. Similar effects for decreased c-Myc expression were observed when we silenced β-catenin in gastric cancer cells. These results indicate that rhBMP-2 attenuated the growth of gastric cancer cells via the inactivation of β-catenin via c-Myc and AURKs. Therefore, our findings suggest that rhBMP-2 could be safely used with patients who undergo gastric or gastroesophageal cancer surgery. PMID:27636990

  13. c-myc Regulates Cell Proliferation during Lens Development

    PubMed Central

    Gomes, Anielle L.; Rodrigues, Paulo M. G.; Martins, Rodrigo A. P.

    2014-01-01

    Myc protooncogenes play important roles in the regulation of cell proliferation, growth, differentiation and survival during development. In various developing organs, c-myc has been shown to control the expression of cell cycle regulators and its misregulated expression is detected in many human tumors. Here, we show that c-myc gene (Myc) is highly expressed in developing mouse lens. Targeted deletion of c-myc gene from head surface ectoderm dramatically impaired ocular organogenesis, resulting in severe microphtalmia, defective anterior segment development, formation of a lens stalk and/or aphakia. In particular, lenses lacking c-myc presented thinner epithelial cell layer and growth impairment that was detectable soon after its inactivation. Defective development of c-myc-null lens was not caused by increased cell death of lens progenitor cells. Instead, c-myc loss reduced cell proliferation, what was associated with an ectopic expression of Prox1 and p27Kip1 proteins within epithelial cells. Interestingly, a sharp decrease in the expression of the forkhead box transcription factor Foxe3 was also observed following c-myc inactivation. These data represent the first description of the physiological roles played by a Myc family member in mouse lens development. Our findings support the conclusion that c-myc regulates the proliferation of lens epithelial cells in vivo and may, directly or indirectly, modulate the expression of classical cell cycle regulators in developing mouse lens. PMID:24503550

  14. Heart-specific inhibition of protooncogene c-myc attenuates cold-induced cardiac hypertrophy.

    PubMed

    Bello Roufai, M; Li, H; Sun, Z

    2007-10-01

    The protooncogene c-myc is involved in the regulation of cell growth. Although increased c-Myc expression is found in hypertrophied hearts, the role of c-Myc in the development of cardiac hypertrophy (CH) has never been determined. The aim of this study was to test the effect of heart-specific inhibition of c-Myc expression on the development of cold-induced cardiac hypertrophy (CICH). We hypothesized that heart-specific inhibition of c-Myc expression attenuates CICH. We constructed c-Myc antisense (c-MycAS) plasmid and green fluorescent protein (GFP) plasmid driven by a heart-specific promoter, alpha-myosin heavy chain (MHC). The cell culture study indicated that c-MycAS can effectively inhibit c-Myc expression and that GFP can express in the rat heart cells. Four groups of rats were used to test the effect of in vivo inhibition of cardiac c-Myc expression on the development of CICH. Three groups received an intravenous injection of c-MycAS, GFP and buffer, respectively, at the beginning of exposure to moderate cold (6.7 degrees C), while the last group received buffer and was kept at room temperature (25 degrees C) to serve as a control. Blood pressure (BP) of the cold-exposed groups receiving buffer or GFP increased significantly, whereas BP of the c-MycAS group did not increase until 28 days after exposure to cold. Thus, c-MycAS delayed and attenuated cold-induced hypertension (CIH). The antihypertensive effect of c-MycAS was probably due to the decreased cardiac output. Magnetic resonance imaging (MRI) showed that the in vivo left ventricle wall thickness of cold-exposed rats was decreased significantly by c-MycAS. Consistently, the cold-induced increase in heart weight was attenuated by inhibition of cardiac c-Myc expression. The heart specificity of alpha-MHC promoter was confirmed by the selective inhibition of c-Myc expression in the heart and by the selective expression of both GFP mRNA and GFP protein in the heart. Heart-specific inhibition of c-Myc

  15. Acidified bile acids enhance tumor progression and telomerase activity of gastric cancer in mice dependent on c-Myc expression.

    PubMed

    Wang, Xiaolong; Sun, Lei; Wang, Xijing; Kang, Huafeng; Ma, Xiaobin; Wang, Meng; Lin, Shuai; Liu, Meng; Dai, Cong; Dai, Zhijun

    2017-03-01

    c-Myc overexpression has been implicated in several malignancies including gastric cancer. Here, we report that acidified bile acids enhance tumor progression and telomerase activity in gastric cancer via c-Myc activation both in vivo and in vitro. c-Myc mRNA and protein levels were assessed in ten primary and five local recurrent gastric cancer samples by quantitative real-time polymerase chain reaction and western blotting analysis. The gastric cancer cell line MGC803 was exposed to bile salts (100 μmol/L glycochenodeoxycholic acid and deoxycholic acid) in an acid medium (pH 5.5) for 10 min daily for 60 weeks to develop an MGC803-resistant cell line. Control MGC803 cells were grown without acids or bile salts for 60 weeks as a control. Cell morphology, proliferation, colony formation and apoptosis of MGC803-resistant cells were analyzed after 60 weeks. To determine the involvement of c-Myc in tumor progression and telomere aging in MGC803-resistant cells, we generated xenografts in nude mice and measured xenograft volume and in vivo telomerase activity. The c-Myc and hTERT protein and mRNA levels were significantly higher in local recurrent gastric cancer samples than in primary gastric cancer samples. MGC803-resistant cells showed a marked phenotypic change under normal growth conditions with more clusters and acini, and exhibited increased cell viability and colony formation and decreased apoptosis in vitro. These phenotypic changes were found to be dependent on c-Myc activation using the c-Myc inhibitor 10058-F4. MGC803-resistant cells also showed a c-Myc-dependent increase in xenograft growth and telomerase activity in vivo. In conclusion, these observations support the hypothesis that acidified bile acids enhance tumor progression and telomerase activity in gastric cancer and that these effects are dependent on c-Myc activity. These findings suggest that acidified bile acids play an important role in the malignant progression of local recurrent

  16. Changes in the phenotype of human small cell lung cancer cell lines after transfection and expression of the c-myc proto-oncogene.

    PubMed Central

    Johnson, B E; Battey, J; Linnoila, I; Becker, K L; Makuch, R W; Snider, R H; Carney, D N; Minna, J D

    1986-01-01

    Small cell lung cancer growing in cell culture possesses biologic properties that allow classification into two categories: classic and variant. Compared with classic small cell lung cancer cell lines, variant lines have altered large cell morphology, shorter doubling times, higher cloning efficiencies in soft agarose, and very low levels of L dopa decarboxylase production and bombesin-like immunoreactivity. C-myc is amplified and expressed in some small cell lung cancer cell lines and all c-myc amplified lines studied to date display the variant phenotype. To investigate if c-myc amplification and expression is responsible for the variant phenotype, a normal human c-myc gene was transfected into a cloned classic small cell lung cancer cell line not amplified for or expressing detectable c-myc messenger RNA (mRNA). Clones were isolated with one to six copies of c-myc stably integrated into DNA that expressed c-myc mRNA. In addition, one clone with an integrated neo gene but a deleted c-myc gene was isolated and in this case c-myc was not expressed. C-myc expression in transfected clones was associated with altered large cell morphology, a shorter doubling time, and increased cloning efficiency, but no difference in L dopa decarboxylase levels and bombesin-like immunoreactivity. We conclude increased c-myc expression observed here in transfected clones correlates with some of the phenotypic properties distinguishing c-myc amplified variants from unamplified classic small cell lung cancer lines. Images PMID:3016030

  17. Endothelin-1 enhances the expression of the androgen receptor via activation of the c-Myc pathway in prostate cancer cells

    PubMed Central

    Lee, June G; Zheng, Rong; McCafferty-Cepero, Jennifer M; Burnstein, Kerry L; Nanus, David M; Shen, Ruoqian

    2008-01-01

    Increasing evidence suggests that androgen independent prostate cancer maintains a functional androgen receptor (AR) pathway despite the low levels of circulating androgen following androgen withdrawal, the molecular mechanisms of which are not well defined yet. To address this question, we investigated the effects of ET-1 on AR expression. Western analysis and RT-PCR revealed that in the presence of ET-1, levels of AR significantly increased in a time- and dose- dependent manner in LNCaP cells. Pre-treatments with inhibitors of Src and Phosphoinositide Kinase 3 (PI-3K) suppressed ET-1-induced AR expression. As ET-1 was reported to cause a transient increase in c-Myc mRNA levels, we examined the involvement of c-Myc in ET-1-mediated AR expression. Transient transfection of c-Myc siRNA neutralized ET-1-induced AR expression, suggesting that AR induction by ET-1 is c-Myc dependent. AR can regulate the transcription of its own gene via a mechanism in which c-Myc plays a crucial role. Therefore, we assessed if ET-1-induced-c-Myc leads to the enhancement of AR transcription. Reporter gene assays using the previously identified AR gene enhancer containing a c-Myc binding site were conducted in LNCaP cells. We found that ET-1 induced reporter gene activity from the construct containing the wild type but not mutant c-Myc binding site. Chromatin immunoprecipitation assays confirmed that ET-1 increased interaction between c-Myc and c-Myc binding sites in AR enhancer, suggesting that ET-1-induced AR transcription occurs via c-Myc-mediated AR transcription. Together, these data support the notion that ET-1, via Src/PI-3K signaling, augments c-Myc expression leading to enhanced AR expression in prostate cancer. PMID:18623111

  18. C-Myc Protein-Protein and Protein-DNA Interactions: Targets for Therapeutic Intervention.

    DTIC Science & Technology

    1996-10-01

    progression through the cell cycle (Jansen-Durr et al., 1993; Luscher and Eisenman, 1990). In the mouse, both the c- and N-Myc genes are essential for... Luscher and Eisenman, 1990), the pathways by which it does so seem to be complex. An essential insight into how c-Myc might perform these functions has...Collum and Alt, 1990; Luscher and Eisenman, 1990). Recent experiments support this idea (Amati et al., 1992; Amin et al., 1993; Gu et al., 1993; Kato et al

  19. Ketogenic HMGCS2 Is a c-Myc target gene expressed in differentiated cells of human colonic epithelium and down-regulated in colon cancer.

    PubMed

    Camarero, Nuria; Mascaró, Cristina; Mayordomo, Cristina; Vilardell, Felip; Haro, Diego; Marrero, Pedro F

    2006-09-01

    HMGCS2, the gene that regulates ketone body production, is expressed in liver and several extrahepatic tissues, such as the colon. In CaCo-2 colonic epithelial cells, the expression of this gene increases with cell differentiation. Accordingly, immunohistochemistry with specific antibodies shows that HMGCS2 is expressed mainly in differentiated cells of human colonic epithelium. Here, we used a chromatin immunoprecipitation assay to study the molecular mechanism responsible for this expression pattern. The assay revealed that HMGCS2 is a direct target of c-Myc, which represses HMGCS2 transcriptional activity. c-Myc transrepression is mediated by blockade of the transactivating activity of Miz-1, which occurs mainly through a Sp1-binding site in the proximal promoter of the gene. Accordingly, the expression of human HMGCS2 is down-regulated in 90% of Myc-dependent colon and rectum tumors. HMGCS2 protein expression is down-regulated preferentially in moderately and poorly differentiated carcinomas. In addition, it is also down-regulated in 80% of small intestine Myc-independent tumors. Based on these findings, we propose that ketogenesis is an undesirable metabolic characteristic of the proliferating cell, which is down-regulated through c-Myc-mediated repression of the key metabolic gene HMGCS2.

  20. A cyclometallated iridium(III) complex as a c-myc G-quadruplex stabilizer and down-regulator of c-myc oncogene expression.

    PubMed

    Yang, H; Ma, V P-Y; Chan, D S-H; He, H-Z; Leung, C-H; Ma, D-L

    2013-01-01

    A new cyclometallated iridium(III) complex with the 2,2'-biquinoline N-donor ligand has been synthesized and characterized. The interaction and affinity of the complex towards c-myc G-quadruplex and duplex DNA have been investigated using UV/Vis spectroscopy and gel mobility shift assay. These studies revealed that complex 1 binds to c-myc G-quadruplexes (Pu22 and Pu27) with high affinity but does not interact with duplex DNA either by intercalation or groove binding. The ability of 1 to stabilize c-myc G-quadruplex DNA in vitro has also been examined through a PCR stop assay and a cell-based luciferase reporter assay. Complex 1 displays promising cytotoxic activity against the HeLa cell line with sub-micromolar potency.

  1. Thermodynamics of protein-protein interactions of cMyc, Max, and Mad: effect of polyions on protein dimerization.

    PubMed

    Banerjee, Anamika; Hu, Jianzhong; Goss, Dixie J

    2006-02-21

    The Myc-Max-Mad network of proteins activates or represses gene transcription depending on whether the dimerization partner of Max is c-Myc or Mad. To elucidate the physical properties of these protein-protein interactions, fluorescence anisotropy of TRITC-labeled Max was used. The binding affinities and thermodynamics of dimerization of the Max-Max homodimer and c-Myc-Max and Mad-Max heterodimers were determined. Our results indicate that c-Myc and Max form the most stable heterodimer. Previous work [Kohler, J. J., Metallo, S. J., Schneider, T. L., and Schepartz, A. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 11735-9] has shown that instead of dimerizing first and then binding to DNA, these proteins use a monomer pathway in which a monomer binds to DNA followed by dimerization on the surface of the DNA. The DNA E-box affects the dimerization, but nonspecific effects may also play a role. The influence of polyions, poly-L-lysine and poly-L-glutamic acid, were investigated to determine the effects of charged polymers other than DNA on homodimerization and heterodimerization. While the positively charged poly-L-lysine, PLL, did not show any significant effect, negatively charged poly-L-glutamic acid, PLG, stabilized both heterodimers and homodimers by 2-3 kJ/mol. These data suggest that in the cell nucleus the presence of negatively charged DNA or RNA could nonspecifically aid in association of these proteins. Calculations of DeltaH degrees and DeltaS degrees from the temperature dependence of K(d) indicated that although the thermodynamic parameters for the dimer are different, the reactions for all three dimers are driven by negative (favorable) enthalpic and negative (unfavorable) entropic contributions. In the presence of PLG, entropy became more negative with the effect being largest for c-Myc-Max heterodimers. This suggests that van der Waals and H-bonding interactions are predominant in dimerization of these proteins.

  2. Survivin enhances telomerase activity via up-regulation of specificity protein 1- and c-Myc-mediated human telomerase reverse transcriptase gene transcription

    SciTech Connect

    Endoh, Teruo; Tsuji, Naoki; Asanuma, Koichi; Yagihashi, Atsuhito; Watanabe, Naoki . E-mail: watanabn@sapmed.ac.jp

    2005-05-01

    Suppression of apoptosis is thought to contribute to carcinogenesis. Survivin, a member of the inhibitor-of-apoptosis family, blocks apoptotic signaling activated by various cellular stresses. Since elevated expression of survivin observed in human cancers of varied origin was associated with poor patient survival, survivin has attracted growing attention as a potential target for cancer treatment. Immortalization of cells also is required for carcinogenesis; telomere length maintenance by telomerase is required for cancer cells to proliferate indefinitely. Yet how cancer cells activate telomerase remains unclear. We therefore examined possible interrelationships between survivin expression and telomerase activity. Correlation between survivin and human telomerase reverse transcriptase (hTERT) expression was observed in colon cancer tissues, and overexpression of survivin enhanced telomerase activity by up-regulation of hTERT expression in LS180 human colon cancer cells. DNA-binding activities of specificity protein 1 (Sp1) and c-Myc to the hTERT core promoter were increased in survivin gene transfectant cells. Phosphorylation of Sp1 and c-Myc at serine and threonine residues was enhanced by survivin, while total amounts of these proteins were unchanged. Further, 'knockdown' of survivin by a small inhibitory RNA decreased Sp1 and c-Myc phosphorylation. Thus survivin participates not only in inhibition of apoptosis, but also in prolonging cellular lifespan.

  3. c-Myc deregulation induces mRNA capping enzyme dependency.

    PubMed

    Lombardi, Olivia; Varshney, Dhaval; Phillips, Nicola M; Cowling, Victoria H

    2016-12-13

    c-Myc is a potent driver of many human cancers. Since strategies for directly targeting c-Myc protein have had limited success, upstream regulators and downstream effectors of c-Myc are being investigated as alternatives for therapeutic intervention. c-Myc regulates transcription and formation of the mRNA cap, which is important for transcript maturation and translation. However, the direct mechanism by which c-Myc upregulates mRNA capping is unclear. mRNA cap formation initiates with the linkage of inverted guanosine via a triphosphate bridge to the first transcribed nucleotide, catalysed by mRNA capping enzyme (CE/RNGTT). Here we report that c-Myc increases the recruitment of catalytically active CE to RNA polymerase II and to its target genes. c-Myc-induced target gene expression, cell proliferation and cell transformation is highly dependent on CE, but only when c-Myc is deregulated. Cells retaining normal control of c-Myc expression are insensitive to repression of CE. c-Myc expression is also dependent on CE. Therefore, inhibiting CE provides an attractive route for selective therapeutic targeting of cancer cells which have acquired deregulated c-Myc.

  4. c-Myc deregulation induces mRNA capping enzyme dependency

    PubMed Central

    Lombardi, Olivia; Varshney, Dhaval; Phillips, Nicola M.; Cowling, Victoria H.

    2016-01-01

    c-Myc is a potent driver of many human cancers. Since strategies for directly targeting c-Myc protein have had limited success, upstream regulators and downstream effectors of c-Myc are being investigated as alternatives for therapeutic intervention. c-Myc regulates transcription and formation of the mRNA cap, which is important for transcript maturation and translation. However, the direct mechanism by which c-Myc upregulates mRNA capping is unclear. mRNA cap formation initiates with the linkage of inverted guanosine via a triphosphate bridge to the first transcribed nucleotide, catalysed by mRNA capping enzyme (CE/RNGTT). Here we report that c-Myc increases the recruitment of catalytically active CE to RNA polymerase II and to its target genes. c-Myc-induced target gene expression, cell proliferation and cell transformation is highly dependent on CE, but only when c-Myc is deregulated. Cells retaining normal control of c-Myc expression are insensitive to repression of CE. c-Myc expression is also dependent on CE. Therefore, inhibiting CE provides an attractive route for selective therapeutic targeting of cancer cells which have acquired deregulated c-Myc. PMID:27756891

  5. Cord blood-derived neuronal cells by ectopic expression of Sox2 and c-Myc

    PubMed Central

    Giorgetti, Alessandra; Marchetto, Maria C. N.; Yu, Diana; Fazzina, Raffaella; Mu, Yangling; Adamo, Antonio; Paramonov, Ida; Cardoso, Julio Castaño; Monasterio, Montserrat Barragan; Bardy, Cedric; Cassiani-Ingoni, Riccardo; Liu, Guang-Hui; Gage, Fred H.; Izpisua Belmonte, Juan Carlos

    2012-01-01

    The finding that certain somatic cells can be directly converted into cells of other lineages by the delivery of specific sets of transcription factors paves the way to novel therapeutic applications. Here we show that human cord blood (CB) CD133+ cells lose their hematopoietic signature and are converted into CB-induced neuronal-like cells (CB-iNCs) by the ectopic expression of the transcription factor Sox2, a process that is further augmented by the combination of Sox2 and c-Myc. Gene-expression analysis, immunophenotyping, and electrophysiological analysis show that CB-iNCs acquire a distinct neuronal phenotype characterized by the expression of multiple neuronal markers. CB-iNCs show the ability to fire action potentials after in vitro maturation as well as after in vivo transplantation into the mouse hippocampus. This system highlights the potential of CB cells and offers an alternative means to the study of cellular plasticity, possibly in the context of drug screening research and of future cell-replacement therapies. PMID:22814375

  6. Cord blood-derived neuronal cells by ectopic expression of Sox2 and c-Myc.

    PubMed

    Giorgetti, Alessandra; Marchetto, Maria C N; Li, Mo; Yu, Diana; Fazzina, Raffaella; Mu, Yangling; Adamo, Antonio; Paramonov, Ida; Cardoso, Julio Castaño; Monasterio, Montserrat Barragan; Bardy, Cedric; Cassiani-Ingoni, Riccardo; Liu, Guang-Hui; Gage, Fred H; Izpisua Belmonte, Juan Carlos

    2012-07-31

    The finding that certain somatic cells can be directly converted into cells of other lineages by the delivery of specific sets of transcription factors paves the way to novel therapeutic applications. Here we show that human cord blood (CB) CD133(+) cells lose their hematopoietic signature and are converted into CB-induced neuronal-like cells (CB-iNCs) by the ectopic expression of the transcription factor Sox2, a process that is further augmented by the combination of Sox2 and c-Myc. Gene-expression analysis, immunophenotyping, and electrophysiological analysis show that CB-iNCs acquire a distinct neuronal phenotype characterized by the expression of multiple neuronal markers. CB-iNCs show the ability to fire action potentials after in vitro maturation as well as after in vivo transplantation into the mouse hippocampus. This system highlights the potential of CB cells and offers an alternative means to the study of cellular plasticity, possibly in the context of drug screening research and of future cell-replacement therapies.

  7. Downregulation of oncogenic RAS and c-Myc expression in MOLT-4 leukaemia cells by a salicylaldehyde semicarbazone copper(II) complex

    PubMed Central

    Goh, Yan-Yih; Yan, Yaw-Kai; Tan, Nguan Soon; Goh, Su-Ann; Li, Shang; Teoh, You-Chuan; Lee, Peter P. F.

    2016-01-01

    Copper complexes with potent anti-tumor effect have been extensively developed. Most investigations of their modes of action focused on the biomolecular targets but not the signal transduction between target binding and cell death. We have previously shown that the cytotoxic complex pyridine(2,4-dihydroxybenzaldehyde dibenzyl semicarbazone)copper(II) (complex 1) shows selective binding to human telomeric G-quadruplex DNA over double-stranded DNA in vitro. Herein, we elucidate the mechanism of action by which complex 1 induces apoptosis in MOLT-4 cells. Complex 1 accumulates in the nuclei and differentially downregulates the expression of c-Myc, c-Kit and KRAS oncogenes. Chemical affinity capture assay results show that the complex is associated with c-Myc and KRAS quadruplex sequences in MOLT-4 cells. We further showed that the reduction in Ras protein expression resulted in attenuated MEK-ERK and PI3K-Akt signalling activities, leading to the activation of caspase-dependent apoptosis. Notably, complex 1 increased the sensitivity of MOLT-4 cells to cisplatin and vice versa. Overall, we demonstrated that complex 1 induces apoptosis, at least in part, by suppressing KRAS, c-Kit and c-Myc oncogene expression and the pro-survival MEK-ERK and PI3K-Akt signalling pathways. PMID:27841290

  8. Downregulation of oncogenic RAS and c-Myc expression in MOLT-4 leukaemia cells by a salicylaldehyde semicarbazone copper(II) complex.

    PubMed

    Goh, Yan-Yih; Yan, Yaw-Kai; Tan, Nguan Soon; Goh, Su-Ann; Li, Shang; Teoh, You-Chuan; Lee, Peter P F

    2016-11-14

    Copper complexes with potent anti-tumor effect have been extensively developed. Most investigations of their modes of action focused on the biomolecular targets but not the signal transduction between target binding and cell death. We have previously shown that the cytotoxic complex pyridine(2,4-dihydroxybenzaldehyde dibenzyl semicarbazone)copper(II) (complex 1) shows selective binding to human telomeric G-quadruplex DNA over double-stranded DNA in vitro. Herein, we elucidate the mechanism of action by which complex 1 induces apoptosis in MOLT-4 cells. Complex 1 accumulates in the nuclei and differentially downregulates the expression of c-Myc, c-Kit and KRAS oncogenes. Chemical affinity capture assay results show that the complex is associated with c-Myc and KRAS quadruplex sequences in MOLT-4 cells. We further showed that the reduction in Ras protein expression resulted in attenuated MEK-ERK and PI3K-Akt signalling activities, leading to the activation of caspase-dependent apoptosis. Notably, complex 1 increased the sensitivity of MOLT-4 cells to cisplatin and vice versa. Overall, we demonstrated that complex 1 induces apoptosis, at least in part, by suppressing KRAS, c-Kit and c-Myc oncogene expression and the pro-survival MEK-ERK and PI3K-Akt signalling pathways.

  9. Identification of two novel mouse nuclear proteins that bind selectively to a methylated c-Myc recognizing sequence.

    PubMed Central

    Suetake, I; Tajima, S; Asano, A

    1993-01-01

    The c-Myc recognizes the sequence CACGTG (Blackwell, T. K., Kretzner, L., Blackwood, E.M., Eisenman, R. N., and Weintraub, H. (1990) Science 250, 1149-1151), and its binding is inhibited by methylation of the core CpG (Prendergast, G. C. and Ziff, E. B. (1991) Science 251, 186-189). We identified two novel nuclear proteins, MMBP-1 and MMBP-2, that bound specifically and under physiological salt condition to the c-Myc binding motif of which cytidine in the CpG sequence was methylated. MMBP-1 was about 42 kD and MMBP-2 was about 63 kD. MMBP-1 was found in specific cells, while MMBP-2 was found in all the cell lines tested, suggesting that MMBP-1 may modulate the role of MMBP-2 in tissue specific manner. We propose that the two proteins play a role in the regulation of c-Myc function through stabilizing or destabilizing the methylation state of the c-Myc binding motif. Images PMID:8502552

  10. Endoglin inhibits ERK-induced c-Myc and cyclin D1 expression to impede endothelial cell proliferation

    SciTech Connect

    Pan, Christopher C.; Bloodworth, Jeffrey C.; Mythreye, Karthikeyan; Lee, Nam Y.

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Endoglin inhibits ERK activation in endothelial cells. Black-Right-Pointing-Pointer Endoglin is a regulator of c-Myc and cyclin D1 expression. Black-Right-Pointing-Pointer {beta}-arrestin2 interaction with endoglin is required for ERK/c-Myc repression. Black-Right-Pointing-Pointer Endoglin impedes cellular proliferation by targeting ERK-induced mitogenic signaling. -- Abstract: Endoglin is an endothelial-specific transforming growth factor beta (TGF-{beta}) co-receptor essential for angiogenesis and vascular remodeling. Endoglin regulates a wide range of cellular processes, including cell adhesion, migration, and proliferation, through TGF-{beta} signaling to canonical Smad and Smad-independent pathways. Despite its overall pro-angiogenic role in the vasculature, the underlying mechanism of endoglin action is poorly characterized. We previously identified {beta}-arrestin2 as a binding partner that causes endoglin internalization from the plasma membrane and inhibits ERK signaling towards endothelial migration. In the present study, we examined the mechanistic role of endoglin and {beta}-arrestin2 in endothelial cell proliferation. We show that endoglin impedes cell growth through sustained inhibition of ERK-induced c-Myc and cyclin D1 expression in a TGF-{beta}-independent manner. The down-regulation of c-Myc and cyclin D1, along with growth-inhibition, are reversed when the endoglin/{beta}-arrestin2 interaction is disrupted. Given that TGF-{beta}-induced Smad signaling potently represses c-Myc in most cell types, our findings here show a novel mechanism by which endoglin augments growth-inhibition by targeting ERK and key downstream mitogenic substrates.

  11. NF-kappaB2/p52:c-Myc:hnRNPA1 pathway regulates expression of androgen receptor splice variants and enzalutamide sensitivity in prostate cancer

    PubMed Central

    Nadiminty, Nagalakshmi; Tummala, Ramakumar; Liu, Chengfei; Lou, Wei; Evans, Christopher P.; Gao, Allen C.

    2015-01-01

    Castration resistant prostate cancer (CRPC) remains dependent on androgen receptor (AR) signaling. Alternative splicing of the AR to generate constitutively active, ligand-independent variants is one of the principal mechanisms that promote the development of resistance to next-generation anti-androgens such as enzalutamide. Here, we demonstrate that the splicing factor heterogeneous nuclear RNA-binding protein A1 (hnRNPA1) plays a pivotal role in the generation of AR splice variants such as AR-V7. HnRNPA1 is overexpressed in prostate tumors compared to benign prostates and its expression is regulated by NF-kappaB2/p52 and c-Myc. CRPC cells resistant to enzalutamide exhibit higher levels of NF-kappaB2/p52, c-Myc, hnRNPA1, and AR-V7. Levels of hnRNPA1 and of AR-V7 are positively correlated with each other in PCa. The regulatory circuit involving NF-kappaB2/p52, c-Myc and hnRNPA1 plays a central role in the generation of AR splice variants. Downregulation of hnRNPA1 and consequently of AR-V7 resensitizes enzalutamide-resistant cells to enzalutamide, indicating that enhanced expression of hnRNPA1 may confer resistance to AR-targeted therapies by promoting the generation of splice variants. These findings may provide a rationale for co-targeting these pathways to achieve better efficacy through AR blockade. PMID:26056150

  12. NODAL DIFFUSE LARGE B-CELL LYMPHOMAS IN CHILDREN AND ADOLESCENTS: IMMUNOHISTOCHEMICAL EXPRESSION PATTERNS AND C-MYC TRANSLOCATION IN RELATION TO CLINICAL OUTCOME

    PubMed Central

    Gualco, Gabriela; Weiss, Lawrence M.; Harrington, William J.; Bacchi, Carlos E.

    2009-01-01

    Diffuse large B-cell lymphoma (DLBCL) is a very infrequent neoplasm in the pediatric age group; therefore there are very few studies on the immunophenotype or genetics of these cases. We studied a series of 16 patients with nodal DLBCL occurring in patients between 10 and 18 years of age. The cases were classified according to the 2008 World Health Organization classification criteria, with application of immunohistochemistry for the detection of CD10, BCL-6 and MUM1 proteins to divide the lymphomas into germinal center and non-germinal center types. In addition, TCL1, BCL-2 expression, and the Ki-67 proliferation index were evaluated by immunohistochemistry, and c-MYC and BCL-2 translocations were evaluated by FISH. All these parameters were correlated with clinical features and outcome. Our study revealed that centroblastic morphology and the germinal center type of DLBCL are more prevalent in these young patients (63%), with 37% containing a c-MYC translocation. Only one case showed a BCL-2 translocation, reflecting a double-hit case with features intermediate between DLBCL and Burkitt lymphoma. We found a higher frequency of BCL-2 expression than previously reported, with no direct influence on the outcome of the disease in univariate or multivariate analysis. The expression of TCL1 has not been specifically studied in nodal pediatric DLBCL before; we found a 31% incidence of TCL1 expression. MUM1 expression was observed in 44% of the cases and these positive cases showed a significant negative impact on clinical outcome. TCL1 is directly and significantly associated with the presence of c-MYC and a high proliferative index. The germinal center and non-germinal center subtypes showed significant differences for both overall survival and disease-free interval. C-MYC translocation was found in 37% of patients, and had a favorable impact on clinical outcome. We conclude that nodal pediatric and adolescent DLBCL are mainly of the germinal center type, with a

  13. Sodium arsenite alters cell cycle and MTHFR, MT1/2, and c-Myc protein levels in MCF-7 cells

    SciTech Connect

    Ruiz-Ramos, Ruben; Lopez-Carrillo, Lizbeth; Albores, Arnulfo; Hernandez-Ramirez, Raul U.; Cebrian, Mariano E.

    2009-12-15

    There is limited available information on the effects of arsenic on enzymes participating in the folate cycle. Therefore, our aim was to evaluate the effects of sodium arsenite on the protein levels of methylenetetrahydrofolate reductase (MTHFR) and dihydrofolate reductase (DHFR) and its further relationship with the expression MT1/2 and c-myc in MCF-7 cells. Arsenite treatment (0-10 muM) for 4 h decreased MTHFR levels in a concentration-dependent fashion without significant effects on DHFR. The effects on MTHFR were observed at arsenite concentrations not significantly affecting cell viability. We also observed an increase in S-phase recruitment at all concentrations probed. Lower concentrations (< 5 muM) induced cell proliferation, showing a high proportion of BrdU-stained cells, indicating a higher DNA synthesis rate. However, higher concentrations (>= 5 muM) or longer treatment periods induced apoptosis. Arsenite also induced dose-dependent increases in MT1/2 and c-Myc protein levels. The levels of MTHFR were inversely correlated to MT1/2 and c-Myc overexpression and increased S-phase recruitment. Our findings indicate that breast epithelial cells are responsive to arsenite and suggest that exposure may pose a risk for breast cancer. The reductions in MTHFR protein levels contribute to understand the mechanisms underlying the induction of genes influencing growth regulation, such as c-myc and MT1/2. However, further research is needed to ascertain if the effects here reported following short-time and high-dose exposure are relevant for human populations chronically exposed to low arsenic concentrations.

  14. Equol, an Isoflavone Metabolite, Regulates Cancer Cell Viability and Protein Synthesis Initiation via c-Myc and eIF4G*

    PubMed Central

    de la Parra, Columba; Borrero-Garcia, Luis D.; Cruz-Collazo, Ailed; Schneider, Robert J.; Dharmawardhane, Suranganie

    2015-01-01

    Epidemiological studies implicate dietary soy isoflavones as breast cancer preventives, especially due to their anti-estrogenic properties. However, soy isoflavones may also have a role in promoting breast cancer, which has yet to be clarified. We previously reported that equol, a metabolite of the soy isoflavone daidzein, may advance breast cancer potential via up-regulation of the eukaryotic initiation factor 4GI (eIF4GI). In estrogen receptor negative (ER−) metastatic breast cancer cells, equol induced elevated levels of eIF4G, which were associated with increased cell viability and the selective translation of mRNAs that use non-canonical means of initiation, including internal ribosome entry site (IRES), ribosome shunting, and eIF4G enhancers. These mRNAs typically code for oncogenic, survival, and cell stress molecules. Among those mRNAs translationally increased by equol was the oncogene and eIF4G enhancer, c-Myc. Here we report that siRNA-mediated knockdown of c-Myc abrogates the increase in cancer cell viability and mammosphere formation by equol, and results in a significant down-regulation of eIF4GI (the major eIF4G isoform), as well as reduces levels of some, but not all, proteins encoded by mRNAs that are translationally stimulated by equol treatment. Knockdown of eIF4GI also markedly reduces an equol-mediated increase in IRES-dependent mRNA translation and the expression of specific oncogenic proteins. However, eIF4GI knockdown did not reciprocally affect c-Myc levels or cell viability. This study therefore implicates c-Myc as a potential regulator of the cancer-promoting effects of equol via up-regulation of eIF4GI and selective initiation of translation on mRNAs that utilize non-canonical initiation, including certain oncogenes. PMID:25593313

  15. Cellular nucleic-acid-binding protein, a transcriptional enhancer of c-Myc, promotes the formation of parallel G-quadruplexes.

    PubMed

    Borgognone, Mariana; Armas, Pablo; Calcaterra, Nora B

    2010-05-27

    G-rich sequences that contain stretches of tandem guanines can form four-stranded, intramolecular stable DNA structures called G-quadruplexes (termed G4s). Regulation of the equilibrium between single-stranded and G4 DNA in promoter regions is essential for control of gene expression in the cell. G4s are highly stable structures; however, their folding kinetics are slow under physiological conditions. CNBP (cellular nucleic-acid-binding protein) is a nucleic acid chaperone that binds the G4-forming G-rich sequence located within the NHE (nuclease hypersensitivity element) III of the c-Myc proto-oncogene promoter. Several reports have demonstrated that CNBP enhances the transcription of c-Myc in vitro and in vivo; however, none of these reports have assessed the molecular mechanisms responsible for this control. In the present study, by means of Taq polymerase stop assays, electrophoretic mobility-shift assays and CD spectroscopy, we show that CNBP promotes the formation of parallel G4s to the detriment of anti-parallel G4s, and its nucleic acid chaperone activity is required for this effect. These findings are the first to implicate CNBP as a G4-folding modulator and, furthermore, assign CNBP a novel mode-of-action during c-Myc transcriptional regulation.

  16. Kaposi Sarcoma-associated Herpesvirus vIRF-3 Protein Binds to F-box of Skp2 Protein and Acts as a Regulator of c-Myc Protein Function and Stability*

    PubMed Central

    Baresova, Petra; Pitha, Paula M.; Lubyova, Barbora

    2012-01-01

    The Kaposi sarcoma-associated herpesvirus (KSHV) has been linked to Kaposi sarcoma, body cavity-based lymphoma, and Castleman disease. vIRF-3 is a KSHV latent gene that is critical for proliferation of KSHV-positive lymphoid cells. Furthermore, vIRF-3 contributes to KSHV-associated pathogenesis by stimulating c-Myc transcription activity. Here we show that vIRF-3 can associate with Skp2, a key component of the SCFskp2 ubiquitin ligase complex. Skp2 is a transcriptional co-factor for c-Myc that was shown to regulate the stability of c-Myc protein as well as c-Myc-dependent transcription. In this study, we show that vIRF-3 binds to the F-box of Skp2 and recruits it to c-Myc-regulated promoters to activate c-Myc-dependent transcription. Additionally, cells overexpressing vIRF-3 exhibit higher levels of c-Myc ubiquitylation, suggesting that ubiquitylation is necessary for c-Myc-mediated transcription. Moreover, vIRF-3 can stabilize the c-Myc protein by increasing its half-life. Collectively, these results indicate that vIRF-3 can effectively manipulate c-Myc stability and function and thus contribute to c-Myc-induced KSHV-associated lymphomagenesis. PMID:22453922

  17. Role of calcium in prolactin-stimulated c-myc gene expression and mitogenesis in Nb2 lymphoma cells

    SciTech Connect

    Murphy, P.R.; DiMattia, G.E.; Friesen, H.G.

    1988-06-01

    Receptor-activated transmembrane calcium flux has been implicated as a mediator of the actions of many growth factors and hormones. We examined the effects of PRL, calcium ionophores, and calcium antagonists on /sup 45/Ca2+ flux, c-myc gene expression, and DNA synthesis in the PRL-dependent rat Nb2 lymphoma cell line. PRL had no detectable effects on /sup 45/Ca2+ uptake or efflux, and the mitogenic effects of PRL could not be reproduced by the calcium ionophore A23187 alone or in combination with the tumor-promoting phorbol ester 12-O-tetra-decanoyl-phorbol-13 acetate (TPA). PRL, but not A23187 or TPA, stimulated c-myc gene expression in quiescent Nb2 cells. Exposure to PRL for brief periods (15 min to 4 h), followed by extensive washing, resulted in a time- and dose-dependent activation of DNA synthesis measured 16 h later. This activation was not blocked by addition of excess anti-PRL antiserum after the wash steps, indicating that the observed stimulation was not due to residual PRL. Despite the marked increase in DNA synthesis, removal of PRL after 4 h prevented mitosis, suggesting that PRL may be required throughout the cell cycle for Nb2 cell proliferation. Although continuous incubation with calcium antagonists resulted in a dose-dependent inhibition of PRL-stimulated DNA synthesis, activation of DNA synthesis by brief exposure to PRL was not inhibited by the presence of EGTA, calcium channel blockers (nifedipine, cobalt chloride), or calmodulin inhibitors (trifluoperazine, N-6-aminohexyl-5-chloronaphthalene sulfonamide). PRL-stimulated c-myc expression was attenuated, but not blocked, by the calcium channel antagonists. However, the putative intracellular calcium antagonist TMB-8 inhibited both c-myc expression and DNA synthesis in a dose-dependent manner (IC50 = 16 microM).

  18. Correlation of micro vessel density and c-Myc expression in breast tumor of mice following mesenchymal stem cell therapy.

    PubMed

    Adelipour, Maryam; Babaei, Fatemeh; Mirzababaei, Mohammadreza; Allameh, Abdolamir

    2017-04-01

    Stem cell therapy for degenerative diseases has been established; however there are controversies over the treatment of solid tumors with stem cell transplantation. In the present study, the anti-tumor action of mesenchymal stem cells (MSCs) has been examined in a mouse model of breast cancer with emphasize on tumor growth, angiogenesis and c-Myc expression in breast tumors. For this purpose, MSCs were isolated from bone marrow of Balb/c mice and characterized. A Balb/c mouse model of breast cancer was developed and subjected to cell therapy intra venous (I.V) or intra tumor (I.T) with MSCs. Tumor growth was measured using a digital caliber for until the end of experiment (30days). Then the mice were sacrificed and their tumors were removed and processed for histopathological examination, immunohistochemical assay of CD31 and measuring of c-Myc expression using quantitative PCR. Detection of the labeled-MSCs in tumors following injection of the cells (I.V or I.T) clearly showed the homing of MSCs into tumors. Tumor growth in case of MSC-treated mice by I.V and I.T routes was inhibited by approximately 28% and 34% respectively compared to controls. The suppression of angiogenesis was reflected in Micro Vessel Density (MVD) following I.V or I.T delivery of the MSCs. c-Myc gene expression in tumor tissues of mice treated I.V or IT with MSCs was down-regulated to 28.0% and 16.0% respectively compare to control groups. In conclusion, growth inhibition of breast tumors in mice due to MSC therapy is associated with modulation of c-Myc activation and angiogenesis markers.

  19. Knocking-down of CREPT prohibits the progression of oral squamous cell carcinoma and suppresses cyclin D1 and c-Myc expression

    PubMed Central

    Ma, Juntao; Ren, Yipeng; Zhang, Lei; Kong, Xiangpan; Wang, Tong; Shi, Yueyi; Bu, Rongfa

    2017-01-01

    Background As a regulator essential for many cell cycle-related proteins, the robust expression of Cell cycle-Related and Expression-elevated Protein in Tumor (CREPT) implicates a poor diagnosis of endoderm and mesoderm-derived tumors. Whether CREPT plays the same role in the tumorigenesis derived from ectodermal tissues remains elusive. Methods To explore the role of CREPT in ectoderm-derived tumors, cells from 7oral squamous cell carcinoma (OSCC) lines and 84clinical OSCC samples were exploited in this study. Quantitative PCR, Western blot assay and immunohistochemistry were applied in the evaluation of CREPT, cyclin D1 and c-Myc expression. Knocking-down of CREPT was performed by lentivirus delivering specific shRNA of CREPT. The effects of CREPT on OSCC were examined by cell proliferation, colony formation, apoptosis, cell migration and xenograft implantation experiments. Results Compared with human normal oral keratinocytes, OSCC cell lines showed a significantly elevated expression of CREPT in both mRNA and protein levels. Consistently, samples from OSCC patients also exhibited a noticeably stronger CREPT expression than the noncancerous samples. In contrast, knocking down of CREPT in OSCC cell lines significantly reduced proliferation, colony formation and migration as well as the expression of cyclin D1 and c-Myc, but promoted apoptosis. Statistical analysis also suggested that CREPT expression was significantly correlated with the T and N classification of OSCC. Furthermore, CAL27 mouse xenograft model confirmed that down-regulation of CREPT prohibited cyclin D1 and c-Myc expression, through which decreased the in vivo tumor growth, but increased the survival ratio of hosts. Conclusion In OSCC cell lines, up-regulated CREPT expression enhanced cell proliferation, migration and cell cycle as well as promoted cyclin D1 and c-Myc expression as it did in endoderm and mesoderm-origin tumors. Our study strongly suggests that CREPT could be used as a marker for

  20. Blocking c-myc and stat3 by E. coli expressed and enzyme digested siRNA in mouse melanoma

    SciTech Connect

    Hong Jie; Zhao Yingchun; Huang Weida . E-mail: whuang@fudan.edu.cn

    2006-09-22

    Tumour cells often show alteration in the signal-transduction pathways, leading to proliferation in response to external signals. Oncogene overexpression and constitutive expression is a common phenomenon in the development and progression of many human cancers. Therefore oncogenes provide potential targets for cancer therapy. RNA interference (RNAi), mediated by small interfering RNA (siRNA), silences genes with a high degree of specificity and potentially represents a general approach for molecularly targeted anti-cancer therapy. The data presented in this report evaluated the method of systemically administering combined esiRNAs to multiple targets as compared with the method of using a single kind of esiRNA to a single target. Our experimental data revealed that the mixed treatment of esiC-MYC and esiSTAT3 had a better inhibition effect than the single treatment of esiC-MYC or esiSTAT3 on mouse B16 melanoma.

  1. The Role of c-MYC in B-Cell Lymphomas: Diagnostic and Molecular Aspects

    PubMed Central

    Nguyen, Lynh; Papenhausen, Peter; Shao, Haipeng

    2017-01-01

    c-MYC is one of the most essential transcriptional factors, regulating a diverse array of cellular functions, including proliferation, growth, and apoptosis. Dysregulation of c-MYC is essential in the pathogenesis of a number of B-cell lymphomas, but is rarely reported in T-cell lymphomas. c-MYC dysregulation induces lymphomagenesis by loss of the tight control of c-MYC expression, leading to overexpression of intact c-MYC protein, in contrast to the somatic mutations or fusion proteins seen in many other oncogenes. Dysregulation of c-MYC in B-cell lymphomas occurs either as a primary event in Burkitt lymphoma, or secondarily in aggressive lymphomas such as diffuse large B-cell lymphoma, plasmablastic lymphoma, mantle cell lymphoma, or double-hit lymphoma. Secondary c-MYC changes include gene translocation and gene amplification, occurring against a background of complex karyotype, and most often confer aggressive clinical behavior, as evidenced in the double-hit lymphomas. In low-grade B-cell lymphomas, acquisition of c-MYC rearrangement usually results in transformation into highly aggressive lymphomas, with some exceptions. In this review, we discuss the role that c-MYC plays in the pathogenesis of B-cell lymphomas, the molecular alterations that lead to c-MYC dysregulation, and their effect on prognosis and diagnosis in specific types of B-cell lymphoma. PMID:28379189

  2. The Role of c-MYC in B-Cell Lymphomas: Diagnostic and Molecular Aspects.

    PubMed

    Nguyen, Lynh; Papenhausen, Peter; Shao, Haipeng

    2017-04-05

    c-MYC is one of the most essential transcriptional factors, regulating a diverse array of cellular functions, including proliferation, growth, and apoptosis. Dysregulation of c-MYC is essential in the pathogenesis of a number of B-cell lymphomas, but is rarely reported in T-cell lymphomas. c-MYC dysregulation induces lymphomagenesis by loss of the tight control of c-MYC expression, leading to overexpression of intact c-MYC protein, in contrast to the somatic mutations or fusion proteins seen in many other oncogenes. Dysregulation of c-MYC in B-cell lymphomas occurs either as a primary event in Burkitt lymphoma, or secondarily in aggressive lymphomas such as diffuse large B-cell lymphoma, plasmablastic lymphoma, mantle cell lymphoma, or double-hit lymphoma. Secondary c-MYC changes include gene translocation and gene amplification, occurring against a background of complex karyotype, and most often confer aggressive clinical behavior, as evidenced in the double-hit lymphomas. In low-grade B-cell lymphomas, acquisition of c-MYC rearrangement usually results in transformation into highly aggressive lymphomas, with some exceptions. In this review, we discuss the role that c-MYC plays in the pathogenesis of B-cell lymphomas, the molecular alterations that lead to c-MYC dysregulation, and their effect on prognosis and diagnosis in specific types of B-cell lymphoma.

  3. Tumor suppressor NDRG2 inhibits glycolysis and glutaminolysis in colorectal cancer cells by repressing c-Myc expression

    PubMed Central

    Chu, Dake; Wei, Li; Li, Xia; Yang, Guodong; Liu, Xinping; Yao, Libo; Zhang, Jian; Shen, Lan

    2015-01-01

    Cancer cells use glucose and glutamine as the major sources of energy and precursor intermediates, and enhanced glycolysis and glutamimolysis are the major hallmarks of metabolic reprogramming in cancer. Oncogene activation and tumor suppressor gene inactivation alter multiple intracellular signaling pathways that affect glycolysis and glutaminolysis. N-Myc downstream regulated gene 2 (NDRG2) is a tumor suppressor gene inhibiting cancer growth, metastasis and invasion. However, the role and molecular mechanism of NDRG2 in cancer metabolism remains unclear. In this study, we discovered the role of the tumor suppressor gene NDRG2 in aerobic glycolysis and glutaminolysis of cancer cells. NDRG2 inhibited glucose consumption and lactate production, glutamine consumption and glutamate production in colorectal cancer cells. Analysis of glucose transporters and the catalytic enzymes involved in glycolysis revealed that glucose transporter 1 (GLUT1), hexokinase 2 (HK2), pyruvate kinase M2 isoform (PKM2) and lactate dehydrogenase A (LDHA) was significantly suppressed by NDRG2. Analysis of glutamine transporter and the catalytic enzymes involved in glutaminolysis revealed that glutamine transporter ASC amino-acid transporter 2 (ASCT2) and glutaminase 1 (GLS1) was also significantly suppressed by NDRG2. Transcription factor c-Myc mediated inhibition of glycolysis and glutaminolysis by NDRG2. More importantly, NDRG2 inhibited the expression of c-Myc by suppressing the expression of β-catenin, which can transcriptionally activate C-MYC gene in nucleus. In addition, the growth and proliferation of colorectal cancer cells were suppressed significantly by NDRG2 through inhibition of glycolysis and glutaminolysis. Taken together, these findings indicate that NDRG2 functions as an essential regulator in glycolysis and glutaminolysis via repression of c-Myc, and acts as a suppressor of carcinogenesis through coordinately targeting glucose and glutamine transporter, multiple catalytic

  4. Tumor suppressor NDRG2 inhibits glycolysis and glutaminolysis in colorectal cancer cells by repressing c-Myc expression.

    PubMed

    Xu, Xinyuan; Li, Jianying; Sun, Xiang; Guo, Yan; Chu, Dake; Wei, Li; Li, Xia; Yang, Guodong; Liu, Xinping; Yao, Libo; Zhang, Jian; Shen, Lan

    2015-09-22

    Cancer cells use glucose and glutamine as the major sources of energy and precursor intermediates, and enhanced glycolysis and glutamimolysis are the major hallmarks of metabolic reprogramming in cancer. Oncogene activation and tumor suppressor gene inactivation alter multiple intracellular signaling pathways that affect glycolysis and glutaminolysis. N-Myc downstream regulated gene 2 (NDRG2) is a tumor suppressor gene inhibiting cancer growth, metastasis and invasion. However, the role and molecular mechanism of NDRG2 in cancer metabolism remains unclear. In this study, we discovered the role of the tumor suppressor gene NDRG2 in aerobic glycolysis and glutaminolysis of cancer cells. NDRG2 inhibited glucose consumption and lactate production, glutamine consumption and glutamate production in colorectal cancer cells. Analysis of glucose transporters and the catalytic enzymes involved in glycolysis revealed that glucose transporter 1 (GLUT1), hexokinase 2 (HK2), pyruvate kinase M2 isoform (PKM2) and lactate dehydrogenase A (LDHA) was significantly suppressed by NDRG2. Analysis of glutamine transporter and the catalytic enzymes involved in glutaminolysis revealed that glutamine transporter ASC amino-acid transporter 2 (ASCT2) and glutaminase 1 (GLS1) was also significantly suppressed by NDRG2. Transcription factor c-Myc mediated inhibition of glycolysis and glutaminolysis by NDRG2. More importantly, NDRG2 inhibited the expression of c-Myc by suppressing the expression of β-catenin, which can transcriptionally activate C-MYC gene in nucleus. In addition, the growth and proliferation of colorectal cancer cells were suppressed significantly by NDRG2 through inhibition of glycolysis and glutaminolysis. Taken together, these findings indicate that NDRG2 functions as an essential regulator in glycolysis and glutaminolysis via repression of c-Myc, and acts as a suppressor of carcinogenesis through coordinately targeting glucose and glutamine transporter, multiple catalytic

  5. Targeting c-MYC in Platinum-Resistant Ovarian Cancer.

    PubMed

    Reyes-González, Jeyshka M; Armaiz-Peña, Guillermo N; Mangala, Lingegowda S; Valiyeva, Fatma; Ivan, Cristina; Pradeep, Sunila; Echevarría-Vargas, Ileabett M; Rivera-Reyes, Adrian; Sood, Anil K; Vivas-Mejía, Pablo E

    2015-10-01

    The purpose of this study was to investigate the molecular and therapeutic effects of siRNA-mediated c-MYC silencing in cisplatin-resistant ovarian cancer. Statistical analysis of patient's data extracted from The Cancer Genome Atlas (TCGA) portal showed that the disease-free (DFS) and the overall (OS) survival were decreased in ovarian cancer patients with high c-MYC mRNA levels. Furthermore, analysis of a panel of ovarian cancer cell lines showed that c-MYC protein levels were higher in cisplatin-resistant cells when compared with their cisplatin-sensitive counterparts. In vitro cell viability, growth, cell-cycle progression, and apoptosis, as well as in vivo therapeutic effectiveness in murine xenograft models, were also assessed following siRNA-mediated c-MYC silencing in cisplatin-resistant ovarian cancer cells. Significant inhibition of cell growth and viability, cell-cycle arrest, and activation of apoptosis were observed upon siRNA-mediated c-MYC depletion. In addition, single weekly doses of c-MYC-siRNA incorporated into 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG-2000)-based nanoliposomes resulted in significant reduction in tumor growth. These findings identify c-MYC as a potential therapeutic target for ovarian cancers expressing high levels of this oncoprotein. ©2015 American Association for Cancer Research.

  6. The role of c-Myc-RBM38 loop in the growth suppression in breast cancer.

    PubMed

    Li, Xiao-Xia; Shi, Liang; Zhou, Xu-Jie; Wu, Jing; Xia, Tian-Song; Zhou, Wen-Bin; Sun, Xi; Zhu, Lei; Wei, Ji-Fu; Ding, Qiang

    2017-04-11

    RNA-binding protein 38 (RBM38) is a member of the RNA recognition motif (RRM) family of RNA-binding proteins (RBPs). RBM38 often exerts its function by forming regulatory loops with relevant genes. c-Myc is an oncogenic transcription factor that is upregulated in one-third of breast cancers and involved in many cellular processes in this malignancy. In our previous study, RBM38 was identified as a tumor suppressor in breast cancer. In the present study, we investigated the mechanisms underlying the regulation of this tumor suppressor. Lentivirus transfections, Western blotting analysis, qRT-PCR and immunohistochemistry were employed to study the expression of c-Myc and RBM38. Chromatin immunoprecipitation and dual-luciferase reporter assays were performed to investigate the direct relationship between c-Myc protein and the RBM38 gene. RNA immunoprecipitation combined with dual-luciferase reporter assays was conducted to confirm the direct relationship between the RBM38 protein and the c-Myc transcript. Knockdown of c-Myc increased RBM38 expression by binding directly to specific DNA sequences (5'-CACGTG-3'), known as the E-box motif, in the promoter region of RBM38 gene. Additionally, RBM38 destabilized the c-Myc transcript by directly targeting AU-rich elements (AREs) in the 3'-untranslated region (3'-UTR) of c-Myc mRNA to suppress c-Myc expression. Moreover, specific inhibitors of c-Myc transcriptional activity inhibited RBM38-induced suppression of growth, implying that RBM38 acts as a tumor suppressor via a mechanism that depends, at least partially, on the reduction of c-Myc expression in breast cancer. RBM38 and c-Myc form a unique mutually antagonistic RBM38-c-Myc loop in breast cancer.

  7. Relationship of Amplification and Expression of the C-MYC Gene with Survival among Gastric Cancer Patients.

    PubMed

    Khaleghian, Malihea; Shakoori, Abbas; Razavi, Amirnader Emami; Azimi, Cyrus

    2015-01-01

    During the past decades, the incidence and mortality rate of stomach cancer has demonstrated a great decrease in the world, but it is still one of the most common and fatal cancers especially among men worldwide, including Iran. The MYC proto-oncogene, which is located at 8q24.1, regulates 15% of genes and is activated in 20% of all human tumors. MYC amplification and overexpression of its protein product has been reported in 15-30% of gastric neoplasias. The aim of this investigation was to find the relative efficacy of CISH (chromogenic in situ hybridization) or IHC (immunohistochemistry) in diagnosis and prognosis of gastric cancer, as well as the relationship of amplification and expression of C-MYC gene with patient survival. In this cross-sectional study, 102 samples of gastric cancer were collected from patients who had undergone primary surgical resection at the Cancer Institute Hospital, Tehran University of Medical Sciences, from July 2009 to March 2014. All samples were randomly selected from those who were diagnosed with gastric adenocarcinomas. CISH and IHC methods were performed on all of them. Patients were classified into two groups. The first consisted of stage I and II cases, and the second of stage III and IV. Survival tests for both groups was carried out with referrnce to CISH test reults. Group II (stage III and IV) with CISH+ featured lower survival than those with CISH- (p=0.233), but group I (stage I and II) patients demonstrated no significant variation with CISH+ or CISH- (p=0.630). Kaplan-Meier for both groups was carried out with IHC test findings and showed similar results. This data revealed that both diffuse and intestinal types of gastric cancer occurred significantly more in men than women. Our data also showed that CISH+ patients (43%) were more frequent in comparison with IHC+ patients (14.7%). For planning treatment of gastric cancer patients, by focusing on expanding tumors, which is the greatest concern of the surgeons and

  8. The nucleolar ubiquitin-specific protease USP36 deubiquitinates and stabilizes c-Myc

    PubMed Central

    Sun, Xiao-Xin; He, Xia; Yin, Li; Komada, Masayuki; Sears, Rosalie C.; Dai, Mu-Shui

    2015-01-01

    c-Myc protein stability and activity are tightly regulated by the ubiquitin-proteasome system. Aberrant stabilization of c-Myc contributes to many human cancers. c-Myc is ubiquitinated by SCFFbw7 (a SKP1-cullin-1-F-box complex that contains the F-box and WD repeat domain-containing 7, Fbw7, as the F-box protein) and several other ubiquitin ligases, whereas it is deubiquitinated and stabilized by ubiquitin-specific protease (USP) 28. The bulk of c-Myc degradation appears to occur in the nucleolus. However, whether c-Myc is regulated by deubiquitination in the nucleolus is not known. Here, we report that the nucleolar deubiquitinating enzyme USP36 is a novel c-Myc deubiquitinase. USP36 interacts with and deubiquitinates c-Myc in cells and in vitro, leading to the stabilization of c-Myc. This USP36 regulation of c-Myc occurs in the nucleolus. Interestingly, USP36 interacts with the nucleolar Fbw7γ but not the nucleoplasmic Fbw7α. However, it abolished c-Myc degradation mediated both by Fbw7γ and by Fbw7α. Consistently, knockdown of USP36 reduces the levels of c-Myc and suppresses cell proliferation. We further show that USP36 itself is a c-Myc target gene, suggesting that USP36 and c-Myc form a positive feedback regulatory loop. High expression levels of USP36 are found in a subset of human breast and lung cancers. Altogether, these results identified USP36 as a crucial and bono fide deubiquitinating enzyme controlling c-Myc’s nucleolar degradation pathway. PMID:25775507

  9. Overexpression of c-Myc alters G(1)/S arrest following ionizing radiation.

    PubMed

    Sheen, Joon-Ho; Dickson, Robert B

    2002-03-01

    Study of the mechanism(s) of genomic instability induced by the c-myc proto-oncogene has the potential to shed new light on its well-known oncogenic activity. However, an underlying mechanism(s) for this phenotype is largely unknown. In the present study, we investigated the effects of c-Myc overexpression on the DNA damage-induced G(1)/S checkpoint, in order to obtain mechanistic insights into how deregulated c-Myc destabilizes the cellular genome. The DNA damage-induced checkpoints are among the primary safeguard mechanisms for genomic stability, and alterations of cell cycle checkpoints are known to be crucial for certain types of genomic instability, such as gene amplification. The effects of c-Myc overexpression were studied in human mammary epithelial cells (HMEC) as one approach to understanding the c-Myc-induced genomic instability in the context of mammary tumorigenesis. Initially, flow-cytometric analyses were used with two c-Myc-overexpressing, nontransformed immortal lines (184A1N4 and MCF10A) to determine whether c-Myc overexpression leads to alteration of cell cycle arrest following ionizing radiation (IR). Inappropriate entry into S phase was then confirmed with a bromodeoxyuridine incorporation assay measuring de novo DNA synthesis following IR. Direct involvement of c-Myc overexpression in alteration of the G(1)/S checkpoint was then confirmed by utilizing the MycER construct, a regulatable c-Myc. A transient excess of c-Myc activity, provided by the activated MycER, was similarly able to induce the inappropriate de novo DNA synthesis following IR. Significantly, the transient expression of full-length c-Myc in normal mortal HMECs also facilitated entry into S phase and the inappropriate de novo DNA synthesis following IR. Furthermore, irradiated, c-Myc-infected, normal HMECs developed a sub-G(1) population and a >4N population of cells. The c-Myc-induced alteration of the G(1)/S checkpoint was also compared to the effects of expression of MycS (N

  10. Rictor regulates FBXW7-dependent c-Myc and cyclin E degradation in colorectal cancer cells

    SciTech Connect

    Guo, Zheng; Zhou, Yuning; Evers, B. Mark; Wang, Qingding

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Rictor associates with FBXW7 to form an E3 complex. Black-Right-Pointing-Pointer Knockdown of rictor decreases ubiquitination of c-Myc and cylin E. Black-Right-Pointing-Pointer Knockdown of rictor increases protein levels of c-Myc and cylin E. Black-Right-Pointing-Pointer Overexpression of rictor induces the degradation of c-Myc and cyclin E proteins. Black-Right-Pointing-Pointer Rictor regulation of c-Myc and cyclin E requires FBXW7. -- Abstract: Rictor (Rapamycin-insensitive companion of mTOR) forms a complex with mTOR and phosphorylates and activates Akt. Activation of Akt induces expression of c-Myc and cyclin E, which are overexpressed in colorectal cancer and play an important role in colorectal cancer cell proliferation. Here, we show that rictor associates with FBXW7 to form an E3 complex participating in the regulation of c-Myc and cyclin E degradation. The Rictor-FBXW7 complex is biochemically distinct from the previously reported mTORC2 and can be immunoprecipitated independently of mTORC2. Moreover, knocking down of rictor in serum-deprived colorectal cancer cells results in the decreased ubiquitination and increased protein levels of c-Myc and cyclin E while overexpression of rictor induces the degradation of c-Myc and cyclin E proteins. Genetic knockout of FBXW7 blunts the effects of rictor, suggesting that rictor regulation of c-Myc and cyclin E requires FBXW7. Our findings identify rictor as an important component of FBXW7 E3 ligase complex participating in the regulation of c-Myc and cyclin E protein ubiquitination and degradation. Importantly, our results suggest that elevated growth factor signaling may contribute to decrease rictor/FBXW7-mediated ubiquitination of c-Myc and cyclin E, thus leading to accumulation of cyclin E and c-Myc in colorectal cancer cells.

  11. Suppression of c-Myc and RRM2 expression in pancreatic cancer cells by the sphingosine kinase-2 inhibitor ABC294640

    PubMed Central

    Lewis, Clayton S.; Voelkel-Johnson, Christina; Smith, Charles D.

    2016-01-01

    Pancreatic cancer remains extremely difficult to treat, with the average lifespan following diagnosis being only 3-6 months, resulting in a death to incidence ratio of 0.94. A major reason for this high mortality rate is resistance to the main chemotherapeutic agent used to treat this disease, gemcitabine. Alterations in nucleoside and gemcitabine metabolism, specifically over-expression of ribonucleotide reductase, have been implicated as a major mechanism of resistance to this drug. Here, we show that inhibition of sphingosine kinase-2 by the specific inhibitor ABC294640 is synergistically cytotoxic with gemcitabine toward three human pancreatic cancer cell lines. Treatment with ABC294640 results in decreased expression of both RRM2 and MYC in all three cell lines. Additionally, expression of c-Myc protein and phosphorylation of Rb at S780 both decrease in a dose-dependent manner in response to ABC294640, while acetylation of H3-K9 and p21 levels increase. Pretreatment with the protein phosphatase 1 inhibitor okadaic acid or the ceramide synthase inhibitor fumonisin B1 fails to prevent the effects of ABC294640 on Rb phosphorylation. These data indicate a role for sphingosine kinase-2 in E2F and c-Myc mediated transcription through alteration of histone acetylation and p21 expression. These effects of ABC294640 suggest that it may be an effective agent for pancreatic cancer, particularly in combination with gemcitabine. PMID:27517489

  12. Protein-Binding Function of RNA-Dependent Protein Kinase Promotes Proliferation through TRAF2/RIP1/NF-κB/c-Myc Pathway in Pancreatic β cells

    PubMed Central

    Gao, LiLi; Tang, Wei; Ding, ZhengZheng; Wang, DingYu; Qi, XiaoQiang; Wu, HuiWen; Guo, Jun

    2015-01-01

    Double-stranded RNA-dependent protein kinase (PKR), an intracellular pathogen recognition receptor, is involved both in insulin resistance in peripheral tissues and in downregulation of pancreatic β-cell function in a kinase-dependent manner, indicating PKR as a core component in the progression of type 2 diabetes. PKR also acts as an adaptor protein via its protein-binding domain. Here, the PKR protein-binding function promoted β-cell proliferation without its kinase activity, which is associated with enhanced physical interaction with tumor necrosis factor receptor-associated factor 2 (TRAF2) and TRAF6. In addition, the transcription of the nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB)-dependent survival gene c-Myc was upregulated significantly and is necessary for proliferation. Upregulation of the PKR protein-binding function induced the NF-κB pathway, as observed by dose-dependent degradation of IκBα, induced nuclear translocation of p65 and elevated NF-κB-dependent reporter gene expression. NF-κB-dependent reporter activity and β-cell proliferation both were suppressed by TRAF2-siRNA, but not by TRAF6-siRNA. TRAF2-siRNA blocked the ubiquitination of receptor-interacting serine/threonine-protein kinase 1 (RIP1) induced by PKR protein binding. Furthermore, RIP1-siRNA inhibited β-cell proliferation. Proinflammatory cytokines (TNFα) and glucolipitoxicity also promoted the physical interaction of PKR with TRAF2. Collectively, these data indicate a pivotal role for PKR’s protein-binding function on the proliferation of pancreatic β cells through TRAF2/RIP1/NF-κB/c-Myc pathways. Therapeutic opportunities for type 2 diabetes may arise when its kinase catalytic function, but not its protein-binding function, is downregulated. PMID:25715336

  13. Inauhzin(c) Inactivates c-Myc Independently of p53

    PubMed Central

    Jung, Ji Hoon; Liao, Jun-Ming; Zhang, Qi; Zeng, Shelya; Nguyen, Daniel; Hao, Qian; Zhou, Xiang; Cao, Bo; Kim, Sung-Hoon; Lu, Hua

    2015-01-01

    Oncogene MYC is deregulated in many human cancers, especially in lymphoma. Previously, we showed that inauhzin (INZ) activates p53 and inhibits tumor growth. However, whether INZ could suppress cancer cell growth independently of p53 activity is still elusive. Here, we report that INZ(c), a second generation of INZ, suppresses c-Myc activity and thus inhibits growth of human lymphoma cells in a p53-independent manner. INZ(c) treatment decreased c-Myc expression at both mRNA and protein level, and suppressed c-Myc transcriptional activity in human Burkitt's lymphoma Raji cells with mutant p53. Also, we showed that overexpressing ectopic c-Myc rescues the inhibition of cell proliferation by INZ(c) in Raji cells, implicating c-Myc activity is targeted by INZ(c). Interestingly, the effect of INZ(c) on c-Myc expression was impaired by disrupting the targeting of c-Myc mRNA by miRNAs via knockdown of ribosomal protein (RP) L5, RPL11, or Ago2, a subunit of RISC complex, indicating that INZ(c) targets c-Myc via miRNA pathways. These results reveal a new mechanism that INZ(c) targets c-Myc activity in human lymphoma cells. PMID:25692307

  14. c-Myc Suppression of DNA Double-strand Break Repair12

    PubMed Central

    Li, Zhaozhong; Owonikoko, Taofeek K; Sun, Shi-Yong; Ramalingam, Suresh S; Doetsch, Paul W; Xiao, Zhi-Qiang; Khuri, Fadlo R; Curran, Walter J; Deng, Xingming

    2012-01-01

    c-Myc is a transcriptional factor that functions as a central regulator of cell growth, proliferation, and apoptosis. Overexpression of c-Myc also enhances DNA double-strand breaks (DSBs), genetic instability, and tumorigenesis. However, the mechanism(s) involved remains elusive. Here, we discovered that γ-ray ionizing radiation-induced DSBs promote c-Myc to form foci and to co-localize with γ-H2AX. Conditional expression of c-Myc in HO15.19 c-Myc null cells using the Tet-Off/Tet-On inducible system results in down-regulation of Ku DNA binding and suppressed activities of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and DNA end-joining, leading to inhibition of DSB repair and enhanced chromosomal and chromatid breaks. Expression of c-Myc reduces both signal and coding joins with decreased fidelity during V(D)J recombination. Mechanistically, c-Myc directly interacts with Ku70 protein through its Myc box II (MBII) domain. Removal of the MBII domain from c-Myc abrogates its inhibitory effects on Ku DNA binding, DNA-PKcs, and DNA end-joining activities, which results in loss of c-Myc's ability to block DSB repair and V(D)J recombination. Interestingly, c-Myc directly disrupts the Ku/DNA-PKcs complex in vitro and in vivo. Thus, c-Myc suppression of DSB repair and V(D)J recombination may occur through inhibition of the nonhomologous end-joining pathway, which provides insight into the mechanism of c-Myc in the development of tumors through promotion of genomic instability. PMID:23308051

  15. The immunomodulatory benzodiazepine Bz-423 inhibits B-cell proliferation by targeting c-myc protein for rapid and specific degradation.

    PubMed

    Sundberg, Thomas B; Ney, Gina M; Subramanian, Chitra; Opipari, Anthony W; Glick, Gary D

    2006-02-01

    Myc proteins regulate cell growth and are oncogenic in many cancers. Although these proteins are validated molecular anticancer targets, new therapies aimed at modulating myc have yet to emerge. A benzodiazepine (Bz-423) that was discovered in efforts to find new drugs for lupus was found recently to have antiproliferative effects on Burkitt's lymphoma cells. We now show that the basis for the antiproliferative effects of Bz-423 is the rapid and specific depletion of c-myc protein, which is coupled to growth-suppressing effects on key regulators of proliferation and cell cycle progression. c-Myc is depleted as a result of signals coupled to Bz-423 binding its molecular target, the oligomycin sensitivity-conferring protein subunit of the mitochondrial F(1)F(o)-ATPase. Bz-423 inhibits F(1)F(o)-ATPase activity, blocking respiratory chain function and generating superoxide, which at growth-inhibiting concentrations triggers proteasomal degradation of c-myc. Bz-423-induced c-myc degradation is independent of glycogen synthase kinase but is substantially blocked by mutation of the phosphosensitive residue threonine 58, which when phosphorylated targets c-myc for ubiquitination and subsequent proteasomal degradation. Collectively, this work describes a new lead compound, with drug-like properties, which regulates c-myc by a novel molecular mechanism that may be therapeutically useful.

  16. Targeting c-Myc-activated genes with a correlation method: Detection of global changes in large gene expression network dynamics

    PubMed Central

    Remondini, D.; O'Connell, B.; Intrator, N.; Sedivy, J. M.; Neretti, N.; Castellani, G. C.; Cooper, L. N.

    2005-01-01

    This work studies the dynamics of a gene expression time series network. The network, which is obtained from the correlation of gene expressions, exhibits global dynamic properties that emerge after a cell state perturbation. The main features of this network appear to be more robust when compared with those obtained with a network obtained from a linear Markov model. In particular, the network properties strongly depend on the exact time sequence relationships between genes and are destroyed by random temporal data shuffling. We discuss in detail the problem of finding targets of the c-myc protooncogene, which encodes a transcriptional regulator whose inappropriate expression has been correlated with a wide array of malignancies. The data used for network construction are a time series of gene expression, collected by microarray analysis of a rat fibroblast cell line expressing a conditional Myc-estrogen receptor oncoprotein. We show that the correlation-based model can establish a clear relationship between network structure and the cascade of c-myc-activated genes. PMID:15867157

  17. SAP155-mediated c-myc suppressor far-upstream element-binding protein-interacting repressor splicing variants are activated in colon cancer tissues.

    PubMed

    Kajiwara, Toshiko; Matsushita, Kazuyuki; Itoga, Sakae; Tamura, Mai; Tanaka, Nobuko; Tomonaga, Takeshi; Matsubara, Hisahiro; Shimada, Hideaki; Habara, Yasuaki; Matsuo, Masafumi; Nomura, Fumio

    2013-02-01

    The c-myc transcriptional suppressor, far-upstream element (FUSE)-binding protein (FBP)-interacting repressor (FIR), is alternatively spliced in colorectal cancer tissue (Matsushita et al., Cancer Res 2006). Recently, the knockdown of SAP155 pre-mRNA-splicing factor, a subunit of SF3b, was reported to disturb FIR pre-mRNA splicing and yield FIRΔexon2, an exon 2-spliced variant of FIR, which lacks c-myc repression activity. In the present study, novel splicing variants of FIR, Δ3 and Δ4, were also generated by SAP155 siRNA, and these variants were found to be activated in human colorectal cancer tissue. Furthermore, the expression levels of FIR variant mRNA were examined in the peripheral blood of colorectal cancer patients and healthy volunteers to assess its potency for tumor detection. As expected, circulating FIR variant mRNA in the peripheral blood of cancer patients were significantly overexpressed compared to that in healthy volunteers. In particular, the area under the receiving operating characteristic curve of FIR, FIRΔexon2 or FIRΔexon2/FIR, was greater than those of conventional carcinoembryonic antigen or carbohydrate antigen 19-9. In addition, FIRΔexon2 or FIR mRNA expression in the peripheral blood was significantly reduced after operative removal of colorectal tumors. Thus, circulating FIR and FIRΔexon2 mRNA are potential novel screening markers for colorectal cancer testing with conventional carcinoembryonic antigen and or carbohydrate antigen 19-9. Taken together, our results indicate that overexpression of FIR and its splicing variants in colorectal cancer directs feed-forward or addicted circuit c-myc transcriptional activation. Clinical implications for colorectal cancers of novel FIR splicing variants are also discussed in the present paper. © 2012 Japanese Cancer Association.

  18. Kaempferol inhibits VEGF expression and in vitro angiogenesis through a novel ERK-NFκB-cMyc-p21 pathway.

    PubMed

    Luo, Haitao; Rankin, Gary O; Juliano, Noelle; Jiang, Bing-Hua; Chen, Yi Charlie

    2012-01-15

    Kaempferol has been reported to reduce the risk of ovarian cancer, but the mechanism is not completely understood. In this study, we tend to expand our understanding on how kaempferol regulates VEGF expression and angiogenesis in ovarian cancer cells. We timed VEGF secretion, and studied in-vitro angiogenesis by kaempferol treatment. Gene expression was examined by qRT-PCR, ELISA, Western Blotting, or luciferase assay, and pathways were examined by manipulating genetic components with plasmid or siRNA transfection. It was found that kaempferol time-dependently inhibited VEGF secretion, and suppressed in-vitro angiogenesis. Kaempferol down-regulated ERK phosphorelation as well as NFκB and cMyc expression, but promoted p21 expression. Examination of relationship between these genes suggested a novel ERK-NFκB-cMyc-p21-VEGF pathway, which accounts for kaempferol's angioprevention effects in ovarian cancer cells. This data supplements our comprehension of the mechanisms behind kaempferol's biological influence in ovarian cancer cells, and better characterized kaempferol toward chemoprevention.

  19. Augmented cell survival in eutopic endometrium from women with endometriosis: Expression of c-myc, TGF-beta1 and bax genes

    PubMed Central

    Johnson, M Cecilia; Torres, Marisa; Alves, Alessandra; Bacallao, Ketty; Fuentes, Ariel; Vega, Margarita; Boric, M Angélica

    2005-01-01

    Background Endometriosis is a common gynaecological disorder characterized by the presence of endometrial tissue outside of the uterus. The fragments in normal menstruation are composed of necrotic and living cells, which do not survive in ectopic locations because of programmed cell death. The aim of this study was to evaluate if the balance between cell proliferation and apoptosis is changed in eutopic endometrium from women with endometriosis throughout the menstrual cycle by studying bax (pro-apoptotic), c-myc (regulator of cell cycle) and TGF-beta1 (involved in cell differentiation) genes. Methods Eutopic endometrium was obtained from: 30 women with endometriosis (32.8 +/- 5 years) and 34 fertile eumenorrheic women (36 +/- 5.3 years). We analyzed apoptosis (TUNEL: DNA fragmentation); cell proliferation (immunohistochemistry (IHC) for Ki67); c-myc, bax and TGF-beta1 mRNA abundance (RT-PCR) and TGF-beta1 protein (IHC) in endometrial explants. Results Cell proliferation strongly decreased from proliferative to late secretory phases in glands, but not in stroma, in both endometria. Positive staining in glands and stroma from proliferative endometrium with endometriosis was 1.9- and 2.2-fold higher than control endometrium, respectively (p < 0.05). Abundance of c-myc mRNA was 65% higher in proliferative endometrium from endometriosis than normal tissue (p < 0.05). TGF-beta1 (mRNA and protein) augmented during mid secretory phase in normal endometrium, effect not observed in endometrium with endometriosis. In normal endometrium, the percentage of apoptotic epithelial and stromal cells increased more than 30-fold during late secretory phase. In contrast, in endometrium from endometriosis, not only this increase was not observed, besides bax mRNA decreased 63% versus normal endometrium (p < 0.05). At once, in early secretory phase, apoptotic stromal cells increased 10-fold with a concomitant augment of bax mRNA abundance (42%) in endometria from endometriosis (p < 0

  20. Mad3 and Mad4: novel Max-interacting transcriptional repressors that suppress c-myc dependent transformation and are expressed during neural and epidermal differentiation.

    PubMed Central

    Hurlin, P J; Quéva, C; Koskinen, P J; Steingrímsson, E; Ayer, D E; Copeland, N G; Jenkins, N A; Eisenman, R N

    1995-01-01

    The basic helix-loop-helix-leucine zipper (bHLHZip) protein Max associates with members of the Myc family, as well as with the related proteins Mad (Mad1) and Mxi1. Whereas both Myc:Max and Mad:Max heterodimers bind related E-box sequences, Myc:Max activates transcription and promotes proliferation while Mad:Max represses transcription and suppresses Myc dependent transformation. Here we report the identification and characterization of two novel Mad1- and Mxi1-related proteins, Mad3 and Mad4. Mad3 and Mad4 interact with both Max and mSin3 and repress transcription from a promoter containing CACGTG binding sites. Using a rat embryo fibroblast transformation assay, we show that both Mad3 and Mad4 inhibit c-Myc dependent cell transformation. An examination of the expression patterns of all mad genes during murine embryogenesis reveals that mad1, mad3 and mad4 are expressed primarily in growth-arrested differentiating cells. mxi1 is also expressed in differentiating cells, but is co-expressed with either c-myc, N-myc, or both in proliferating cells of the developing central nervous system and the epidermis. In the developing central nervous system and epidermis, downregulation of myc genes occurs concomitant with upregulation of mad family genes. These expression patterns, together with the demonstrated ability of Mad family proteins to interfere with the proliferation promoting activities of Myc, suggest that the regulated expression of Myc and Mad family proteins function in a concerted fashion to regulate cell growth in differentiating tissues. Images PMID:8521822

  1. An initiation site of DNA replication with transcriptional enhancer activity present upstream of the c-myc gene.

    PubMed Central

    Iguchi-Ariga, S M; Okazaki, T; Itani, T; Ogata, M; Sato, Y; Ariga, H

    1988-01-01

    We have previously reported that c-myc protein may promote cellular DNA replication by binding to initiation sites of replication. Here we report that a putative origin of human cellular DNA replication (ori) is present at approximately 2 kb upstream of the coding region of the c-myc gene itself. The c-myc protein, or protein(s) complexed with c-myc protein, bind to the upstream region (approximately 200 bp in length) which has transcriptional enhancer activity as well as autonomously replicating activity in human cells, suggesting that the c-myc protein may be an enhancer binding protein as well as a DNA replication protein. Results with deletion mutants suggest that the sequence essential to the origin of DNA replication may be adjacent to, but cannot be clearly separated from, the sequence responsible for enhancer activity. Furthermore, when cloned DNA containing putative c-myc protein binding sequences was transfected as competitor into HL-60 cells, expression of c-myc was inhibited, suggesting that c-myc protein itself may be necessary for c-myc expression. Images PMID:3053161

  2. Small molecules targeting c-Myc oncogene: promising anti-cancer therapeutics.

    PubMed

    Chen, Bing-Jia; Wu, Yan-Ling; Tanaka, Yoshimasa; Zhang, Wen

    2014-01-01

    The nuclear transcription factor c-Myc is a member of the Myc gene family with multiple functions and located on band q24.1 of chromosome 8. The c-Myc gene is activated by chromosomal translocation, rearrangement, and amplification. Its encoded protein transduces intracellular signals to the nucleus, resulting in the regulation of cell proliferation, differentiation, and apoptosis, and has the ability to transform cells and bind chromosomal DNA. c-Myc also plays a critical role in malignant transformation. The abnormal over-expression of c-Myc is frequently observed in some tumors, including carcinomas of the breast, colon, and cervix, as well as small-cell lung cancer, osteosarcomas, glioblastomas, and myeloid leukemias, therefore making it a possible target for anticancer therapy. In this minireview, we summarize unique characteristics of c-Myc and therapeutic strategies against cancer using small molecules targeting the oncogene, and discuss the prospects in the development of agents targeting c-Myc, in particular G-quadruplexes formed in c-Myc promoter and c-Myc/Max dimerization. Such information will be of importance for the research and development of c-Myc-targeted drugs.

  3. Small Molecules Targeting c-Myc Oncogene: Promising Anti-Cancer Therapeutics

    PubMed Central

    Chen, Bing-Jia; Wu, Yan-Ling; Tanaka, Yoshimasa; Zhang, Wen

    2014-01-01

    The nuclear transcription factor c-Myc is a member of the Myc gene family with multiple functions and located on band q24.1 of chromosome 8. The c-Myc gene is activated by chromosomal translocation, rearrangement, and amplification. Its encoded protein transduces intracellular signals to the nucleus, resulting in the regulation of cell proliferation, differentiation, and apoptosis, and has the ability to transform cells and bind chromosomal DNA. c-Myc also plays a critical role in malignant transformation. The abnormal over-expression of c-Myc is frequently observed in some tumors, including carcinomas of the breast, colon, and cervix, as well as small-cell lung cancer, osteosarcomas, glioblastomas, and myeloid leukemias, therefore making it a possible target for anticancer therapy. In this minireview, we summarize unique characteristics of c-Myc and therapeutic strategies against cancer using small molecules targeting the oncogene, and discuss the prospects in the development of agents targeting c-Myc, in particular G-quadruplexes formed in c-Myc promoter and c-Myc/Max dimerization. Such information will be of importance for the research and development of c-Myc-targeted drugs. PMID:25332683

  4. The c-Myc-interacting adaptor protein Bin1 activates a caspase-independent cell death program.

    PubMed

    Elliott, K; Ge, K; Du, W; Prendergast, G C

    2000-09-28

    Cell death processes are progressively inactivated during malignant development, in part by loss of tumor suppressors that can promote cell death. The Bin1 gene encodes a nucleocytosolic adaptor protein with tumor suppressor properties, initially identified through its ability to interact with and inhibit malignant transformation by c-Myc and other oncogenes. Bin1 is frequently missing or functionally inactivated in breast and prostate cancers and in melanoma. In this study, we show that Bin1 engages a caspase-independent cell death process similar to type II apoptosis, characterized by cell shrinkage, substratum detachment, vacuolated cytoplasm, and DNA degradation. Cell death induction was relieved by mutation of the BAR domain, a putative effector domain, or by a missplicing event that occurs in melanoma and inactivates suppressor activity. Cells in all phases of the cell cycle were susceptible to death and p53 and Rb were dispensable. Notably, Bin1 did not activate caspases and the broad spectrum caspase inhibitor ZVAD.fmk did not block cell death. Consistent with the lack of caspase involvement, dying cells lacked nucleosomal DNA cleavage and nuclear lamina degradation. Moreover, neither Bcl-2 or dominant inhibition of the Fas pathway had any effect. In previous work, we showed that Bin1 could not suppress cell transformation by SV40 large T antigen. Consistent with this finding, we observed that T antigen suppressed the death program engaged by Bin1. This observation was interesting in light of emerging evidence that T antigen has roles in cell immortalization and human cell transformation beyond Rb and p53 inactivation. In support of a link to c-Myc-induced death processes, AEBSF, a serine protease inhibitor that inhibits apoptosis by c-Myc, potently suppressed DNA degradation by Bin1. Our findings suggest that the tumor suppressor activity of Bin1 reflects engagement of a unique cell death program. We propose that loss of Bin1 may promote malignancy by

  5. c-myc in Kaposi's sarcoma: analyses by fluorescent in situ hybridization and immunohistochemistry.

    PubMed

    Feller, K; Yang, S; Tung, N; Lee, J; Mahalingam, M

    2014-01-01

    The c-myc proto-oncogene plays a central role in the regulation of cellular transcription, differentiation, and apoptosis, and has been shown to be deregulated in many types of human cancer. Recent findings have demonstrated its amplification in select vascular neoplasms, such as secondary angiosarcomas, suggesting a role in angiogenesis as well. In vitro studies have shown that the c-Myc protein is an important regulatory molecule of spindle cell proliferation and migration in Kaposi's sarcoma (KS). In light of these findings, our primary aim was to ascertain whether c-myc, by promoting proliferation and angiogenesis, is an essential co-factor in the aetiopathogenesis of KS. We also attempted to determine a correlation between immunohistochemical expression of the c-Myc protein and c-myc gene copy amplification using fluorescent in situ hybridization (FISH). Samples analyzed included archival tissue of KS (n = 24). PCR for detection of Kaposi's sarcoma-associated herpesvirus DNA was performed on all samples of KS. For FISH analyses, a dual-labelled technique was employed and probes for the c-myc gene and chromosome 8 were used. The monoclonal anti-c-myc antibody, 9E10, was used for immunohistochemical analyses. While FISH analyses revealed no amplification of c-myc in any of the cases of KS, immunohistochemical analyses revealed positive staining for c-Myc in 13/24 cases (54%). Amplification of the c-myc gene was not witnessed in this preliminary study of 24 cases and thus cannot be correlated with the expression of the c-Myc protein. © 2012 The Authors. Journal of the European Academy of Dermatology and Venereology © 2012 European Academy of Dermatology and Venereology.

  6. FBXO32 Targets c-Myc for Proteasomal Degradation and Inhibits c-Myc Activity.

    PubMed

    Mei, Zhichao; Zhang, Dawei; Hu, Bo; Wang, Jing; Shen, Xian; Xiao, Wuhan

    2015-06-26

    FBXO32 (MAFbx/Atrogin-1) is an E3 ubiquitin ligase that is markedly up-regulated in muscle atrophy. Although some data indicate that FBXO32 may play an important role in tumorigenesis, the molecular mechanism of FBXO32 in tumorigenesis has been poorly understood. Here, we present evidence that FBXO32 targets the oncogenic protein c-Myc for ubiquitination and degradation through the proteasome pathway. Phosphorylation of c-Myc at Thr-58 and Ser-62 is dispensable for FBXO32 to induce c-Myc degradation. Mutation of the lysine 326 in c-Myc reduces c-Myc ubiquitination and prevents the c-Myc degradation induced by FBXO32. Furthermore, overexpression of FBXO32 suppresses c-Myc activity and inhibits cell growth, but knockdown of FBXO32 enhances c-Myc activity and promotes cell growth. Finally, we show that FBXO32 is a direct downstream target of c-Myc, highlighting a negative feedback regulation loop between c-Myc and FBXO32. Thus, FBXO32 may function by targeting c-Myc. This work explains the function of FBXO32 and highlights its mechanisms in tumorigenesis.

  7. FBXO32 Targets c-Myc for Proteasomal Degradation and Inhibits c-Myc Activity*

    PubMed Central

    Mei, Zhichao; Zhang, Dawei; Hu, Bo; Wang, Jing; Shen, Xian; Xiao, Wuhan

    2015-01-01

    FBXO32 (MAFbx/Atrogin-1) is an E3 ubiquitin ligase that is markedly up-regulated in muscle atrophy. Although some data indicate that FBXO32 may play an important role in tumorigenesis, the molecular mechanism of FBXO32 in tumorigenesis has been poorly understood. Here, we present evidence that FBXO32 targets the oncogenic protein c-Myc for ubiquitination and degradation through the proteasome pathway. Phosphorylation of c-Myc at Thr-58 and Ser-62 is dispensable for FBXO32 to induce c-Myc degradation. Mutation of the lysine 326 in c-Myc reduces c-Myc ubiquitination and prevents the c-Myc degradation induced by FBXO32. Furthermore, overexpression of FBXO32 suppresses c-Myc activity and inhibits cell growth, but knockdown of FBXO32 enhances c-Myc activity and promotes cell growth. Finally, we show that FBXO32 is a direct downstream target of c-Myc, highlighting a negative feedback regulation loop between c-Myc and FBXO32. Thus, FBXO32 may function by targeting c-Myc. This work explains the function of FBXO32 and highlights its mechanisms in tumorigenesis. PMID:25944903

  8. Thermodynamics of Protein–Protein Interactions of cMyc, Max, and Mad: Effect of Polyions on Protein Dimerization†

    PubMed Central

    Banerjee, Anamika; Hu, Jianzhong; Goss, Dixie J.

    2010-01-01

    The Myc–Max–Mad network of proteins activates or represses gene transcription depending on whether the dimerization partner of Max is c-Myc or Mad. To elucidate the physical properties of these protein–protein interactions, fluorescence anisotropy of TRITC-labeled Max was used. The binding affinities and thermodynamics of dimerization of the Max–Max homodimer and c-Myc–Max and Mad–Max heterodimers were determined. Our results indicate that c-Myc and Max form the most stable heterodimer. Previous work [Kohler, J. J., Metallo, S. J., Schneider, T. L., and Schepartz, A. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 11735–9] has shown that instead of dimerizing first and then binding to DNA, these proteins use a monomer pathway in which a monomer binds to DNA followed by dimerization on the surface of the DNA. The DNA E-box affects the dimerization, but nonspecific effects may also play a role. The influence of polyions, poly-l-lysine and poly-l-glutamic acid, were investigated to determine the effects of charged polymers other than DNA on homodimerization and heterodimerization. While the positively charged poly-l-lysine, PLL, did not show any significant effect, negatively charged poly-l-glutamic acid, PLG, stabilized both heterodimers and homodimers by 2–3 kJ/mol. These data suggest that in the cell nucleus the presence of negatively charged DNA or RNA could nonspecifically aid in association of these proteins. Calculations of ΔH° and ΔS° from the temperature dependence of Kd indicated that although the thermodynamic parameters for the dimer are different, the reactions for all three dimers are driven by negative (favorable) enthalpic and negative (unfavorable) entropic contributions. In the presence of PLG, entropy became more negative with the effect being largest for c-Myc–Max heterodimers. This suggests that van der Waals and H-bonding interactions are predominant in dimerization of these proteins. PMID:16475822

  9. Human adipose tissue-derived stem cells cultured in xeno-free culture condition enhance c-MYC expression increasing proliferation but bypassing spontaneous cell transformation.

    PubMed

    Paula, Ana C C; Martins, Thaís M M; Zonari, Alessandra; Frade, Soraia P P J; Angelo, Patrícia C; Gomes, Dawidson A; Goes, Alfredo M

    2015-04-14

    Human adipose tissue-derived stem cells (hASCs) are attractive cells for therapeutic applications and are currently being evaluated in multiple clinical trials. Prior to their clinical application, hASCs must be expanded ex vivo to obtain the required number of cells for transplantation. Fetal bovine serum is the supplement most widely used for cell culture, but it has disadvantages and it is not safe for cell therapy due to the risks of pathogen transmission and immune reaction. Furthermore, the cell expansion poses a risk of accumulating genetic abnormalities that could lead to malignant cell transformation. In this study, our aim was to evaluate the proliferation pattern as well as the resistance to spontaneous transformation of hASCs during expansion in a xeno-free culture condition. hASCs were expanded in Dulbecco's modified Eagle's medium supplemented with pooled allogeneic human serum or fetal bovine serum to enable a side-by-side comparison. Cell viability and differentiation capacity toward the mesenchymal lineages were assessed, along with immunophenotype. Ki-67 expression and the proliferation kinetics were investigated. The expression of the transcription factors c-FOS and c-MYC was examined with Western blot, and MYC, CDKN2A, ERBB2 and TERT gene expression was assessed with quantitative PCR. Senescence was evaluated by β-gal staining. Karyotype analysis was performed and tumorigenesis assay in vivo was also evaluated. The hASCs expanded in medium with pooled allogeneic human serum did not show remarkable differences in morphology, viability, differentiation capacity or immunophenotype. The main difference observed was a significantly higher proliferative effect on hASCs cultured in pooled allogeneic human serum. There was no significant difference in C-FOS expression; however, C-MYC protein expression was enhanced in pooled allogeneic human serum cultures compared to fetal bovine serum cultures. No difference was observed in MYC and TERT mRNA levels

  10. Changes in the gene expression of C-myc and CD38 in HL-60 cells during differentiation induced by nicotinic acid-related compounds.

    PubMed

    Ida, Chieri; Ogata, Shin; Okumura, Katsuzumi; Taguchi, Hiroshi

    2008-03-01

    Changes in gene expression levels of c-myc and CD38 were examined during the differentiation of HL-60 cells to granulocytes due to three nicotinic acid-related compounds. CD38 expression was increased by isonicotinic acid and all-trans-retinoic acid (ATRA). Nicotinamide and nicotinamide N-oxide drastically decreased c-myc expression, but isonicotinic acid had no effect, suggesting that these compounds differentiate HL-60 to granulocytes through different pathways. These results should provide useful information as to the mechanisms of cell differentiation.

  11. Resistance to arginine deiminase treatment in melanoma cells is associated with induced argininosuccinate synthetase expression involving c-Myc/HIF-1alpha/Sp4.

    PubMed

    Tsai, Wen-Bin; Aiba, Isamu; Lee, Soo-yong; Feun, Lynn; Savaraj, Niramol; Kuo, Macus Tien

    2009-12-01

    Arginine deiminase (ADI)-based arginine depletion is a novel strategy under clinical trials for the treatment of malignant melanoma with promising results. The sensitivity of melanoma to ADI treatment is based on its auxotrophy for arginine due to a lack of argininosuccinate synthetase (AS) expression, the rate-limiting enzyme for the de novo biosynthesis of arginine. We show here that AS expression can be transcriptionally induced by ADI in melanoma cell lines A2058 and SK-MEL-2 but not in A375 cells, and this inducibility was correlated with resistance to ADI treatment. The proximal region of the AS promoter contains an E-box that is recognized by c-Myc and HIF-1alpha and a GC-box by Sp4. Through ChIP assays, we showed that under noninduced conditions, the E-box was bound by HIF-1alpha in all the three melanoma cell lines. Under arginine depletion conditions, HIF-1alpha was replaced by c-Myc in A2058 and SK-MEL-2 cells but not in A375 cells. Sp4 was constitutively bound to the GC-box regardless of arginine availability in all three cell lines. Overexpressing c-Myc by transfection upregulated AS expression in A2058 and SK-MEL-2 cells, whereas cotransfection with HIF-1alpha suppressed c-Myc-induced AS expression. These results suggest that regulation of AS expression involves interplay among positive transcriptional regulators c-Myc and Sp4, and negative regulator HIF-1alpha that confers resistance to ADI treatment in A2058 and SK-MEL-2 cells. Inability of AS induction in A375 cells under arginine depletion conditions was correlated by the failure of c-Myc to interact with the AS promoter.

  12. Disturbance of Bcl-2, Bax, Caspase-3, Ki-67 and C-myc expression in acute and subchronic exposure to benzo(a)pyrene in cervix.

    PubMed

    Gao, Meili; Li, Yongfei; Ji, Xiaoying; Xue, Xiaochang; Chen, Lan; Feng, Guodong; Zhang, Huqin; Wang, Huichun; Shah, Walayat; Hou, Zhanwu; Kong, Yu

    2016-03-01

    Epidemiological studies have demonstrated that cigarette smoking is an important cofactor or an independent risk factor for the development of cervical cancer. Benzo(a)pyrene (BaP) is one of the most potent tobacco smoke carcinogens in tobacco smoke. BaP induced DNA damage and over expression in p53 cervical tissue of mice as demonstrated in our previous study. Here we present the findings of exposure to BaP on the expression of Bcl-2, C-myc, Ki-67, Caspase-3 and Bax genes in mouse cervix. Acute intraperitoneal administration of BaP (12.5, 25, 50, 100mg/kg body weight) to ICR female mice induced a significant increase in Bcl-2, C-myc, Ki-67 mRNA and protein level till 72h except in Bcl-2 at 24h with 12.5, 25, 50mg/kg as well as at 48h with 12.5mg/kg body weight post treatment. A significant increase was also seen in Caspase-3 and Bax mRNA and protein level with peak level at 24h and gradual decrease till 72h, however, the expression of caspase-3 increased while that of Bax decreased with increasing dose of Bap after 24h. In sub chronic intraperitoneal and oral gavage administration of BaP (2.5, 5, 10mg/kg body weight), similar significant increase was observed for all the examined genes as compared to the control and vehicle groups, however the expression of Bax decreased in a dose dependent manner. The findings of this study will help in further understanding the molecular mechanism of BaP induced carcinogenesis of cervical cancer.

  13. Decline in c-myc mRNA expression but not the induction of c-fos mRNA expression is associated with differentiation of SH-SY5Y human neuroblastoma cells

    SciTech Connect

    Jalava, A.M.; Heikkilae, J.E.; Akerman, K.E.O. )

    1988-11-01

    The induction of differentiation in SH-SY5Y human neuroblastoma cells with 12-O-tetradecanoylphorbol-13-acetate (TPA) is accompanied by a rapid and a transient expression of c-fos mRNA and a down-regulation of c-myc RNA. The TPA-induced expression of c-fos mRNA was inhibited by H-7, a specific inhibitor of protein kinase C (PK-C). Dioctanoylglycerol (DiC{sub 8}) failed to induce differentiation of SH-SY5Y cells or to down-regulate c-myc mRNA but it did induce the expression of c-fos mRNA. Treatment of IMR-32 human neuroblastoma cells with TPA did not cause differentiation although c-fos mRNA was induced. Since PK-C in SH-SY5Y cells was activated by both TPA and DiC{sub 8} it is suggested that the activation of PK-C alone is not sufficient to induce differentiation in SH-SY5Y cells. The down-regulation of c-myc mRNA rather than the induction of c-fos mRNA seems to be associated with differentiation process in SH-SY5Y cells.

  14. Frontline Science: c-Myc regulates P-selectin glycoprotein ligand-1 expression in monocytes during HIV-1 infection.

    PubMed

    Connor, Ryan; Jones, Letitia D; Qiu, Xing; Thakar, Juilee; Maggirwar, Sanjay B

    2017-10-01

    Leukocyte extravasation is a crucial feature of the normal immune response to disease and infection and is implicated in various pathologies during chronic inflammatory disease. P-Selectin glycoprotein ligand-1 (PSGL-1) is critical for leukocyte extravasation; however, despite extensive study, it remains unclear how its expression is regulated, which in turn, impedes a more precise understanding of how its expression level affects transmigration. To investigate the regulation of PSGL-1, 60 subjects, with or without HIV infection, were recruited and PSGL-1 expression in monocytes was measured. PSGL-1 was found to be up-regulated on leukocytes from HIV-infected individuals, and the physiologically relevant mediators soluble CD40 ligand (sCD40L) and glutamate were able to induce PSGL-1 transcription in human monocytes ex vivo. HIV-1 induced PSGL-1 induction, and its dependence on CD40L was validated further by use of the mouse-tropic HIV (EcoHIV) mouse model of HIV infection in C57BL/6 and CD40L knockout (KO) mice. To investigate crosstalk between the signaling cascades induced by CD40L and glutamate that lead to PSGL-1 induction, a network-based, discrete dynamic model was developed. The model reveals the MAPK pathway and oxidative stress as critical mediators of crosstalk between CD40L and glutamate-induced pathways. Importantly, the model predicted induction of the c-Myc transcription factor upon cotreatment, which was validated using transcriptomic data and pharmacologic inhibition of c-Myc. This study suggests a novel systems serology approach for translational research and reveals a mechanism for PSGL-1 transcriptional regulation, which might be leveraged to identify novel targets for therapeutic intervention. © Society for Leukocyte Biology.

  15. Nickel compounds induce apoptosis in human bronchial epithelial Beas-2B cells by activation of c-Myc through ERK pathway

    SciTech Connect

    Li Qin; Suen, T.-C.; Sun Hong; Arita, Adriana; Costa, Max

    2009-03-01

    Nickel compounds are carcinogenic to humans and have been shown to alter epigenetic homeostasis. The c-Myc protein controls 15% of human genes and it has been shown that fluctuations of c-Myc protein alter global epigenetic marks. Therefore, the regulation of c-Myc by nickel ions in immortalized but not tumorigenic human bronchial epithelial Beas-2B cells was examined in this study. It was found that c-Myc protein expression was increased by nickel ions in non-tumorigenic Beas-2B and human keratinocyte HaCaT cells. The results also indicated that nickel ions induced apoptosis in Beas-2B cells. Knockout of c-Myc and its restoration in a rat cell system confirmed the essential role of c-Myc in nickel ion-induced apoptosis. Further studies in Beas-2B cells showed that nickel ion increased the c-Myc mRNA level and c-Myc promoter activity, but did not increase c-Myc mRNA and protein stability. Moreover, nickel ion upregulated c-Myc in Beas-2B cells through the MEK/ERK pathway. Collectively, the results demonstrate that c-Myc induction by nickel ions occurs via an ERK-dependent pathway and plays a crucial role in nickel-induced apoptosis in Beas-2B cells.

  16. Treatment of chronic proliferative cholangitis with c-myc shRNA

    PubMed Central

    Li, Fu-Yu; Cheng, Nan-Sheng; Cheng, Jing-Qiu; Mao, Hui; Jiang, Li-Sheng; Li, Ning; He, Sheng

    2009-01-01

    AIM: To investigate the feasibility and effectiveness of c-myc shRNA in inhibiting the hyperplastic behavior and lithogenic potentiality of chronic proliferative cholangitis (CPC), in order to prevent stone recurrence and biliary restenosis. METHODS: An animal model of CPC was established by giving intralumenally 0.5 mL of c-myc shRNA. Then, the effects of c-myc shRNA on hyperplastic behavior and lithogenic potentiality of CPC were evaluated by histological observation, immunohistochemistry, real-time PCR and Western blotting for c-myc, proliferating cell nuclear antigen (PCNA), procollagen III, mucin 5AC, enzymatic histochemistry for β-glucuronidase, and biochemistry for hydroxyproline in the diseased bile duct. RESULTS: Treatment with c-myc shRNA efficiently suppressed the hyperplasia of biliary epithelium, submucosal gland, and collagen fiber by inhibiting mRNA and protein expression of c-myc. More importantly, it decreased the lithogenic potentiality of CPC by inhibiting the expression of mucin 5AC and the secretion of endogenous β-glucuronidase. Further investigation indicated that c-myc shRNA-3 had a better inhibitory effect on CPC. CONCLUSION: Treatment with c-myc shRNA-3 can control CPC and reduce the lithogenic potentiality of CPC. PMID:19115473

  17. Signal transducer and activator of transcription STAT5 is recruited to c-Myc super-enhancer.

    PubMed

    Pinz, Sophia; Unser, Samy; Rascle, Anne

    2016-04-14

    c-Myc has been proposed as a putative target gene of signal transducer and activator of transcription 5 (STAT5). No functional STAT5 binding site has been identified so far within the c-Myc gene locus, therefore a direct transcriptional regulation by STAT5 remains uncertain. c-Myc super-enhancer, located 1.7 Mb downstream of the c-Myc gene locus, was recently reported as essential for the regulation of c-Myc gene expression by hematopoietic transcription factors and bromodomain and extra-terminal (BET) proteins and for leukemia maintenance. c-Myc super-enhancer is composed of five regulatory regions (E1-E5) which recruit transcription and chromatin-associated factors, mediating chromatin looping and interaction with the c-Myc promoter. We now show that STAT5 strongly binds to c-Myc super-enhancer regions E3 and E4, both in normal and transformed Ba/F3 cells. We also found that the BET protein bromodomain-containing protein 2 (BRD2), a co-factor of STAT5, co-localizes with STAT5 at E3/E4 in Ba/F3 cells transformed by the constitutively active STAT5-1*6 mutant, but not in non-transformed Ba/F3 cells. BRD2 binding at E3/E4 coincides with c-Myc transcriptional activation and is lost upon treatment with deacetylase and BET inhibitors, both of which inhibit STAT5 transcriptional activity and c-Myc gene expression. Our data suggest that constitutive STAT5 binding to c-Myc super-enhancer might contribute to BRD2 maintenance and thus allow sustained expression of c-Myc in Ba/F3 cells transformed by STAT5-1*6.

  18. Regulation of c-myc and c-fos mRNA levels by polyomavirus: distinct roles for the capsid protein VP/sub 1/ and the viral early proteins

    SciTech Connect

    Zullo, J.; Stiles, C.D.; Garcea, R.L.

    1987-03-01

    The levels of c-myc, c-fos, and JE mRNAs accumulate in a biphasic pattern following infection of quiescent BALB/c 3T3 mouse cells with polyomavirus. Maximal levels of c-myc and c-fos mRNAs were seen within 1 hr and were nearly undetectable at 6 hr after infection. At 12 hr after infection mRNA levels were again maximal and remained elevated thereafter. Empty virions (capsids) and recombinant VP/sub 1/ protein, purified from Escherichia coli, induced the early but not the late phase of mRNA accumulation. Virions, capsids, and recombinant VP/sub 1/ protein stimulated (/sup 3/H)thymidine nuclear labeling and c-myc mRNA accumulation in a dose-responsive manner paralleling their affinity for the cell receptor for polyoma. The second phase of mRNA accumulation is regulated by the viral early gene products, as shown by polyomavirus early gene mutants and by a transfected cell line (336a) expressing middle tumor antigen upon glucocorticoid addition. These results suggest that polyomavirus interacts with the cell membrane at the onset of infection to increase the levels of mRNA for the cellular genes associated with cell competence for DNA replication, and subsequently these levels are maintained by the action of the early viral proteins.

  19. Integrin α1β1 expression is controlled by c-MYC in colorectal cancer cells

    PubMed Central

    Boudjadi, S; Carrier, J C; Groulx, J-F; Beaulieu, J-F

    2016-01-01

    The α1β1 collagen receptor is only present in a few epithelial cell types. In the intestine, it is specifically expressed in proliferating crypt cells. This integrin has been reported to be involved in various cancers where it mediates the downstream activation of the Ras/ERK proliferative pathway. We have recently shown that integrin α1β1 is present in two-thirds of colon adenocarcinomas, but the mechanism by which ITGA1 expression is regulated is not known. DNA methylation, involved in ITGA1 repression during megakaryocyte differentiation, is not the mechanism of ITGA1 regulation in colorectal cancer cells. Our in silico analysis of the ITGA1 promoter revealed two response elements for MYC, an oncogenic factor known to regulate cancer cell proliferation, invasion and migration. In situ, the expressions of both MYC and ITGA1 are localized in the lower crypt of the normal colon and correlate in 72% of the 65 analyzed colorectal cancers. MYC pharmacological inhibition or downregulation of expression with short hairpin RNA in HT29, T84 and SW480 cells resulted in reduced ITGA1 expression at both the transcript and protein levels. Chromatin immunoprecipitation assays revealed that MYC was bound to the chromatin region of the ITGA1 proximal promoter, whereas MYC overexpression enhanced ITGA1 promoter activity that was reduced with MAD co-transfection or by the disruption of the response elements. We concluded that MYC is a key regulating factor for the control of ITGA1 expression. PMID:26096932

  20. Malignant phyllodes tumours show stromal overexpression of c-myc and c-kit.

    PubMed

    Sawyer, Elinor J; Poulsom, Richard; Hunt, F Toby; Jeffery, Rosemary; Elia, George; Ellis, Ian O; Ellis, Paul; Tomlinson, Ian P M; Hanby, Andrew M

    2003-05-01

    Phyllodes tumours are fibroepithelial neoplasms of the breast, the stroma of which can undergo malignant progression to sarcoma. The frequency of malignant lesions varies in different series from 5% to 30%. The aim of this study was to elucidate potential molecular mechanisms in the progression to malignancy in phyllodes tumours. c-myc and c-kit were studied at the protein, RNA(c-myc only) and DNA level. We chose to study c-myc as we have previously shown that Wnt signalling is important in benign, but not malignant, phyllodes tumours. If c-myc is constitutively activated in malignant tumours, this may provide an explanation for why the Wnt pathway is no longer important in these tumours. c-kit is a membrane-bound tyrosine kinase receptor and overexpression is characteristic of gastrointestinal stromal tumours. A previous report suggested that this may also be the case in malignant phyllodes tumours, and we wished to confirm this. We assessed expression of c-myc and c-kit in 30 phyllodes tumours (10 malignant) using in situ hybridization (c-myc) and immunohistochemistry (c-myc and c-kit). 9/10 malignant tumours showed c-myc expression in the stroma, compared to 7/20 benign tumours (p = 0.006, Fisher's exact test). Stromal c-kit expression was found in 5/10 malignant tumours, compared to 1/20 benign tumours (p = 0.008, Fisher's exact test). One tumour had high-level amplification of c-myc, but we found no evidence of mutations of c-kit. We hypothesize that the overexpression of c-myc may drive stromal proliferation in malignant phyllodes tumours, and that c-kit overexpression contributes to the growth of these lesions. c-kit may also be a new therapeutic target in these tumours. Copyright 2003 John Wiley & Sons, Ltd.

  1. PGE2-driven expression of c-Myc and oncomiR-17-92 contributes to apoptosis resistance in NSCLC.

    PubMed

    Krysan, Kostyantyn; Kusko, Rebecca; Grogan, Tristan; O'Hearn, James; Reckamp, Karen L; Walser, Tonya C; Garon, Edward B; Lenburg, Marc E; Sharma, Sherven; Spira, Avrum E; Elashoff, David; Dubinett, Steven M

    2014-05-01

    Aberrant expression of microRNAs (miRNA) with oncogenic capacities (oncomiRs) has been described for several different malignancies. The first identified oncomiR, miR-17-92, is frequently overexpressed in a variety of cancers and its targets include the tumor suppressor PTEN. The transcription factor c-Myc (MYC) plays a central role in proliferative control and is rapidly upregulated upon mitogenic stimulation. Expression of c-Myc is frequently deregulated in tumors, facilitating proliferation and inhibiting terminal differentiation. The c-Myc-regulated network comprises a large number of transcripts, including those encoding miRNAs. Here, prostaglandin E2 (PGE2) exposure rapidly upregulates the expression of the MYC gene followed by the elevation of miR-17-92 levels, which in turn suppresses PTEN expression, thus enhancing apoptosis resistance in non-small cell lung cancer (NSCLC) cells. Knockdown of MYC expression or the miR-17-92 cluster effectively reverses this outcome. Similarly, miR-17-92 levels are significantly elevated in NSCLC cells ectopically expressing COX-2. Importantly, circulating miR-17-92 was elevated in the blood of patients with lung cancer as compared with subjects at risk for developing lung cancer. Furthermore, in patients treated with celecoxib, miR-17-92 levels were significantly reduced. These data demonstrate that PGE2, abundantly produced by NSCLC and inflammatory cells in the tumor microenvironment, is able to stimulate cell proliferation and promote resistance to pharmacologically induced apoptosis in a c-Myc and miR-17-92-dependent manner. This study describes a novel mechanism, involving c-Myc and miR-17-92, which integrates cell proliferation and apoptosis resistance. ©2014 AACR.

  2. Hierarchical phosphorylation at N-terminal transformation-sensitive sites in c-Myc protein is regulated by mitogens and in mitosis.

    PubMed Central

    Lutterbach, B; Hann, S R

    1994-01-01

    The N-terminal domain of the c-Myc protein has been reported to be critical for both the transactivation and biological functions of the c-Myc proteins. Through detailed phosphopeptide mapping analyses, we demonstrate that there is a cluster of four regulated and complex phosphorylation events on the N-terminal domain of Myc proteins, including Thr-58, Ser-62, and Ser-71. An apparent enhancement of Ser-62 phosphorylation occurs on v-Myc proteins having a mutation at Thr-58 which has previously been correlated with increased transforming ability. In contrast, phosphorylation of Thr-58 in cells is dependent on a prior phosphorylation of Ser-62. Hierarchical phosphorylation of c-Myc is also observed in vitro with a specific glycogen synthase kinase 3 alpha, unlike the promiscuous phosphorylation observed with other glycogen synthase kinase 3 alpha and 3 beta preparations. Although both p42 mitogen-activated protein kinase and cdc2 kinase specifically phosphorylate Ser-62 in vitro and cellular phosphorylation of Thr-58/Ser-62 is stimulated by mitogens, other in vivo experiments do not support a role for these kinases in the phosphorylation of Myc proteins. Unexpectedly, both the Thr-58 and Ser-62 phosphorylation events, but not other N-terminal phosphorylation events, can occur in the cytoplasm, suggesting that translocation of the c-Myc proteins to the nucleus is not required for phosphorylation at these sites. In addition, there appears to be an unusual block to the phosphorylation of Ser-62 during mitosis. Finally, although the enhanced transforming properties of Myc proteins correlates with the loss of phosphorylation at Thr-58 and an enhancement of Ser-62 phosphorylation, these phosphorylation events do not alter the ability of c-Myc to transactivate through the CACGTG Myc/Max binding site. Images PMID:8035827

  3. Effect of Neem Leaf Extract (Azadirachta indica) on c-Myc Oncogene Expression in 4T1 Breast Cancer Cells of BALB/c Mice

    PubMed Central

    Othman, Fauziah; Motalleb, Gholamreza; Lam Tsuey Peng, Sally; Rahmat, Asmah; Basri, Rusliza; Pei Pei, Chong

    2012-01-01

    Objective: Breast cancer is the most common cause of cancer-related deaths in women both worldwide and in Malaysia. Azadirachta indica (A. Juss), commonly known as neem, is one of the most versatile medicinal plants that has gained worldwide prominence due to its medicinal properties. However, the anticancer effect of ethanolic neem leaf extract against breast cancer has not been documented. The purpose of the present study is to investigate the effect of neem leaf extract on c-Myc oncogene expression in 4T1 breast cancer BALB/c mice. Materials and Methods: In this experimental study, A total of 48 female BALB/c mice were divided randomly into four groups of 12 mice per group: i.cancer control (CC) treated with 0.5% Tween 20 in PBS, ii. 0.5 µg/mL tamoxifen citrate (CT), iii. 250 mg/kg neem leaf extract (C250), and iv. 500 mg/kg neem leaf extract (C500). in situ reverse transcription polymerase chain reaction (in situ RT-PCR) was applied to evaluate suppression of c-Myc oncogene expression in breast cancer tissue. Results: The C500 group showed significant (p<0.05) suppression of c-Myc oncogene expression compared to the CC group. Conclusion: c-Myc was found to be down regulated under the effect of 500 mg/kg ethanolic neem leaf extract. PMID:23626938

  4. Effect of Neem Leaf Extract (Azadirachta indica) on c-Myc Oncogene Expression in 4T1 Breast Cancer Cells of BALB/c Mice.

    PubMed

    Othman, Fauziah; Motalleb, Gholamreza; Lam Tsuey Peng, Sally; Rahmat, Asmah; Basri, Rusliza; Pei Pei, Chong

    2012-01-01

    Breast cancer is the most common cause of cancer-related deaths in women both worldwide and in Malaysia. Azadirachta indica (A. Juss), commonly known as neem, is one of the most versatile medicinal plants that has gained worldwide prominence due to its medicinal properties. However, the anticancer effect of ethanolic neem leaf extract against breast cancer has not been documented. The purpose of the present study is to investigate the effect of neem leaf extract on c-Myc oncogene expression in 4T1 breast cancer BALB/c mice. In this experimental study, A total of 48 female BALB/c mice were divided randomly into four groups of 12 mice per group: i.cancer control (CC) treated with 0.5% Tween 20 in PBS, ii. 0.5 µg/mL tamoxifen citrate (CT), iii. 250 mg/kg neem leaf extract (C250), and iv. 500 mg/kg neem leaf extract (C500). in situ reverse transcription polymerase chain reaction (in situ RT-PCR) was applied to evaluate suppression of c-Myc oncogene expression in breast cancer tissue. The C500 group showed significant (p<0.05) suppression of c-Myc oncogene expression compared to the CC group. c-Myc was found to be down regulated under the effect of 500 mg/kg ethanolic neem leaf extract.

  5. HBXIP and LSD1 Scaffolded by lncRNA Hotair Mediate Transcriptional Activation by c-Myc.

    PubMed

    Li, Yinghui; Wang, Zhen; Shi, Hui; Li, Hang; Li, Leilei; Fang, Runping; Cai, Xiaoli; Liu, Bowen; Zhang, Xiaodong; Ye, Lihong

    2016-01-15

    c-Myc is regarded as a transcription factor, but the basis for its function remains unclear. Here, we define a long noncoding RNA (lncRNA)/protein complex that mediates the transcriptional activation by c-Myc in breast cancer cells. Among 388 c-Myc target genes in human MCF-7 breast cancer cells, we found that their promoters could be occupied by the oncoprotein HBXIP. We confirmed that the HBXIP expression correlated with expression of the c-Myc target genes cyclin A, eIF4E, and LDHA. RNAi-mediated silencing of HBXIP abolished c-Myc-mediated upregulation of these target genes. Mechanistically, HBXIP interacted directly with c-Myc through the leucine zippers and recruited the lncRNA Hotair along with the histone demethylase LSD1, for which Hotair serves as a scaffold. Silencing of HBXIP, Hotair, or LSD1 was sufficient to block c-Myc-enhanced cancer cell growth in vitro and in vivo. Taken together, our results support a model in which the HBXIP/Hotair/LSD1 complex serves as a critical effector of c-Myc in activating transcription of its target genes, illuminating long-standing questions on how c-Myc drives carcinogenesis. ©2015 American Association for Cancer Research.

  6. c-Myc Alters Substrate Utilization and O-GlcNAc Protein Posttranslational Modifications without Altering Cardiac Function during Early Aortic Constriction

    PubMed Central

    Ledee, Dolena; Smith, Lincoln; Bruce, Margaret; Kajimoto, Masaki; Isern, Nancy; Portman, Michael A.; Olson, Aaron K.

    2015-01-01

    Hypertrophic stimuli cause transcription of the proto-oncogene c-Myc (Myc). Prior work showed that myocardial knockout of c-Myc (Myc) attenuated hypertrophy and decreased expression of metabolic genes after aortic constriction. Accordingly, we assessed the interplay between Myc, substrate oxidation and cardiac function during early pressure overload hypertrophy. Mice with cardiac specific, inducible Myc knockout (MycKO-TAC) and non-transgenic littermates (Cont-TAC) were subjected to transverse aortic constriction (TAC; n = 7/group). Additional groups underwent sham surgery (Cont-Sham and MycKO-Sham, n = 5 per group). After two weeks, function was measured in isolated working hearts along with substrate fractional contributions to the citric acid cycle by using perfusate with 13C labeled mixed fatty acids, lactate, ketone bodies and unlabeled glucose and insulin. Cardiac function was similar between groups after TAC although +dP/dT and -dP/dT trended towards improvement in MycKO-TAC versus Cont-TAC. In sham hearts, Myc knockout did not affect cardiac function or substrate preferences for the citric acid cycle. However, Myc knockout altered fractional contributions during TAC. The unlabeled fractional contribution increased in MycKO-TAC versus Cont-TAC, whereas ketone and free fatty acid fractional contributions decreased. Additionally, protein posttranslational modifications by O-GlcNAc were significantly greater in Cont-TAC versus both Cont-Sham and MycKO-TAC. In conclusion, Myc alters substrate preferences for the citric acid cycle during early pressure overload hypertrophy without negatively affecting cardiac function. Myc also affects protein posttranslational modifications by O-GlcNAc during hypertrophy, which may regulate Myc-induced metabolic changes. PMID:26266538

  7. Methylglyoxal suppresses human colon cancer cell lines and tumor growth in a mouse model by impairing glycolytic metabolism of cancer cells associated with down-regulation of c-Myc expression.

    PubMed

    He, Tiantian; Zhou, Huaibin; Li, Chunmei; Chen, Yuan; Chen, Xiaowan; Li, Chenli; Mao, Jiating; Lyu, Jianxin; Meng, Qing H

    2016-09-01

    Methylglyoxal (MG) is a highly reactive dicarbonyl compound exhibiting anti-tumor activity. The anti-tumor effects of MG have been demonstrated in some types of cancer, but its role in colon cancer and the mechanisms underlying this activity remain largely unknown. We investigated its role in human colon cancer and the underlying mechanism using human colon cancer cells and animal model. Viability, proliferation, and apoptosis were quantified in DLD-1 and SW480 colon cancer cells by using the Cell Counting Kit-8, plate colony formation assay, and flow cytometry, respectively. Cell migration and invasion were assessed by wound healing and transwell assays. Glucose consumption, lactate production, and intracellular ATP production also were assayed. The levels of c-Myc protein and mRNA were quantitated by western blot and qRT-PCR. The anti-tumor role of MG in vivo was investigated in a DLD-1 xenograft tumor model in nude mice. We demonstrated that MG inhibited viability, proliferation, migration, and invasion and induced apoptosis of DLD-1 and SW480 colon cancer cells. Treatment with MG reduced glucose consumption, lactate production, and ATP production and decreased c-Myc protein levels in these cells. Moreover, MG significantly suppressed tumor growth and c-Myc expression in vivo. Our findings suggest that MG plays an anti-tumor role in colon cancer. It inhibits cancer cell growth by altering the glycolytic pathway associated with downregulation of c-Myc protein. MG has therapeutic potential in colon cancer by interrupting cancer metabolism.

  8. Structure and function of the c-myc DNA-unwinding element-binding protein DUE-B.

    PubMed

    Kemp, Michael; Bae, Brian; Yu, John Paul; Ghosh, Maloy; Leffak, Michael; Nair, Satish K

    2007-04-06

    Local zones of easily unwound DNA are characteristic of prokaryotic and eukaryotic replication origins. The DNA-unwinding element of the human c-myc replication origin is essential for replicator activity and is a target of the DNA-unwinding element-binding protein DUE-B in vivo. We present here the 2.0A crystal structure of DUE-B and complementary biochemical characterization of its biological activity. The structure corresponds to a dimer of the N-terminal domain of the full-length protein and contains many of the structural elements of the nucleotide binding fold. A single magnesium ion resides in the putative active site cavity, which could serve to facilitate ATP hydrolytic activity of this protein. The structure also demonstrates a notable similarity to those of tRNA-editing enzymes. Consistent with this structural homology, the N-terminal core of DUE-B is shown to display both D-aminoacyl-tRNA deacylase activity and ATPase activity. We further demonstrate that the C-terminal portion of the enzyme is disordered and not essential for dimerization. However, this region is essential for DNA binding in vitro and becomes ordered in the presence of DNA.

  9. SIRT1 Limits Adipocyte Hyperplasia through c-Myc Inhibition.

    PubMed

    Abdesselem, Houari; Madani, Aisha; Hani, Ahmad; Al-Noubi, Muna; Goswami, Neha; Ben Hamidane, Hisham; Billing, Anja M; Pasquier, Jennifer; Bonkowski, Michael S; Halabi, Najeeb; Dalloul, Rajaa; Sheriff, Mohamed Z; Mesaeli, Nasrin; ElRayess, Mohamed; Sinclair, David A; Graumann, Johannes; Mazloum, Nayef A

    2016-01-29

    The expansion of fat mass in the obese state is due to increased adipocyte hypertrophy and hyperplasia. The molecular mechanism that drives adipocyte hyperplasia remains unknown. The NAD(+)-dependent protein deacetylase sirtuin 1 (SIRT1), a key regulator of mammalian metabolism, maintains proper metabolic functions in many tissues, counteracting obesity. Here we report that differentiated adipocytes are hyperplastic when SIRT1 is knocked down stably in mouse 3T3-L1 preadipocytes. This phenotype is associated with dysregulated adipocyte metabolism and enhanced inflammation. We also demonstrate that SIRT1 is a key regulator of proliferation in preadipocytes. Quantitative proteomics reveal that the c-Myc pathway is altered to drive enhanced proliferation in SIRT1-silenced 3T3-L1 cells. Moreover, c-Myc is hyperacetylated, levels of p27 are reduced, and cyclin-dependent kinase 2 (CDK2) is activated upon SIRT1 reduction. Remarkably, differentiating SIRT1-silenced preadipocytes exhibit enhanced mitotic clonal expansion accompanied by reduced levels of p27 as well as elevated levels of CCAAT/enhancer-binding protein β (C/EBPβ) and c-Myc, which is also hyperacetylated. c-Myc activation and enhanced proliferation phenotype are also found to be SIRT1-dependent in proliferating mouse embryonic fibroblasts and differentiating human SW872 preadipocytes. Reducing both SIRT1 and c-Myc expression in 3T3-L1 cells simultaneously does not induce the adipocyte hyperplasia phenotype, confirming that SIRT1 controls adipocyte hyperplasia through c-Myc regulation. A better understanding of the molecular mechanisms of adipocyte hyperplasia will open new avenues toward understanding obesity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. SIRT1 Limits Adipocyte Hyperplasia through c-Myc Inhibition*

    PubMed Central

    Abdesselem, Houari; Madani, Aisha; Hani, Ahmad; Al-Noubi, Muna; Goswami, Neha; Ben Hamidane, Hisham; Billing, Anja M.; Pasquier, Jennifer; Bonkowski, Michael S.; Halabi, Najeeb; Dalloul, Rajaa; Sheriff, Mohamed Z.; Mesaeli, Nasrin; ElRayess, Mohamed; Sinclair, David A.; Graumann, Johannes; Mazloum, Nayef A.

    2016-01-01

    The expansion of fat mass in the obese state is due to increased adipocyte hypertrophy and hyperplasia. The molecular mechanism that drives adipocyte hyperplasia remains unknown. The NAD+-dependent protein deacetylase sirtuin 1 (SIRT1), a key regulator of mammalian metabolism, maintains proper metabolic functions in many tissues, counteracting obesity. Here we report that differentiated adipocytes are hyperplastic when SIRT1 is knocked down stably in mouse 3T3-L1 preadipocytes. This phenotype is associated with dysregulated adipocyte metabolism and enhanced inflammation. We also demonstrate that SIRT1 is a key regulator of proliferation in preadipocytes. Quantitative proteomics reveal that the c-Myc pathway is altered to drive enhanced proliferation in SIRT1-silenced 3T3-L1 cells. Moreover, c-Myc is hyperacetylated, levels of p27 are reduced, and cyclin-dependent kinase 2 (CDK2) is activated upon SIRT1 reduction. Remarkably, differentiating SIRT1-silenced preadipocytes exhibit enhanced mitotic clonal expansion accompanied by reduced levels of p27 as well as elevated levels of CCAAT/enhancer-binding protein β (C/EBPβ) and c-Myc, which is also hyperacetylated. c-Myc activation and enhanced proliferation phenotype are also found to be SIRT1-dependent in proliferating mouse embryonic fibroblasts and differentiating human SW872 preadipocytes. Reducing both SIRT1 and c-Myc expression in 3T3-L1 cells simultaneously does not induce the adipocyte hyperplasia phenotype, confirming that SIRT1 controls adipocyte hyperplasia through c-Myc regulation. A better understanding of the molecular mechanisms of adipocyte hyperplasia will open new avenues toward understanding obesity. PMID:26655722

  11. Domain-specific c-Myc ubiquitylation controls c-Myc transcriptional and apoptotic activity

    PubMed Central

    Zhang, Qin; Spears, Erick; Boone, David N.; Li, Zhaoliang; Gregory, Mark A.; Hann, Stephen R.

    2013-01-01

    The oncogenic transcription factor c-Myc causes transformation and tumorigenesis, but it can also induce apoptotic cell death. Although tumor suppressors are necessary for c-Myc to induce apoptosis, the pathways and mechanisms are unclear. To further understand how c-Myc switches from an oncogenic protein to an apoptotic protein, we examined the mechanism of p53-independent c-Myc–induced apoptosis. We show that the tumor suppressor protein ARF mediates this switch by inhibiting ubiquitylation of the c-Myc transcriptional domain (TD). Whereas TD ubiquitylation is critical for c-Myc canonical transcriptional activity and transformation, inhibition of ubiquitylation leads to the induction of the noncanonical c-Myc target gene, Egr1, which is essential for efficient c-Myc–induced p53-independent apoptosis. ARF inhibits the interaction of c-Myc with the E3 ubiquitin ligase Skp2. Overexpression of Skp2, which occurs in many human tumors, inhibits the recruitment of ARF to the Egr1 promoter, leading to inhibition of c-Myc–induced apoptosis. Therapeutic strategies could be developed to activate this intrinsic apoptotic activity of c-Myc to inhibit tumorigenesis. PMID:23277542

  12. c-Myc is essential to prevent endothelial pro-inflammatory senescent phenotype.

    PubMed

    Florea, Victoria; Bhagavatula, Nithya; Simovic, Gordana; Macedo, Francisco Y; Fock, Ricardo A; Rodrigues, Claudia O

    2013-01-01

    The proto-oncogene c-Myc is vital for vascular development and promotes tumor angiogenesis, but the mechanisms by which it controls blood vessel growth remain unclear. In the present work we investigated the effects of c-Myc knockdown in endothelial cell functions essential for angiogenesis to define its role in the vasculature. We provide the first evidence that reduction in c-Myc expression in endothelial cells leads to a pro-inflammatory senescent phenotype, features typically observed during vascular aging and pathologies associated with endothelial dysfunction. c-Myc knockdown in human umbilical vein endothelial cells using lentivirus expressing specific anti-c-Myc shRNA reduced proliferation and tube formation. These functional defects were associated with morphological changes, increase in senescence-associated-β-galactosidase activity, upregulation of cell cycle inhibitors and accumulation of c-Myc-deficient cells in G1-phase, indicating that c-Myc knockdown in endothelial cells induces senescence. Gene expression analysis of c-Myc-deficient endothelial cells showed that senescent phenotype was accompanied by significant upregulation of growth factors, adhesion molecules, extracellular-matrix components and remodeling proteins, and a cluster of pro-inflammatory mediators, which include Angptl4, Cxcl12, Mdk, Tgfb2 and Tnfsf15. At the peak of expression of these cytokines, transcription factors known to be involved in growth control (E2f1, Id1 and Myb) were downregulated, while those involved in inflammatory responses (RelB, Stat1, Stat2 and Stat4) were upregulated. Our results demonstrate a novel role for c-Myc in the prevention of vascular pro-inflammatory phenotype, supporting an important physiological function as a central regulator of inflammation and endothelial dysfunction.

  13. AP4 is required for mitogen- and c-MYC-induced cell cycle progression

    PubMed Central

    Jackstadt, Rene; Hermeking, Heiko

    2014-01-01

    AP4 represents a c-MYC-inducible bHLH-LZ transcription factor, which displays elevated expression in many types of tumors. We found that serum-starved AP4-deficient mouse embryo fibroblasts (MEFs) were unable to resume proliferation and showed a delayed S-phase entry after restimulation. Furthermore, they accumulated as tetraploid cells due to a cytokinesis defect. In addition, AP4 was required for c-MYC-induced cell cycle re-entry. AP4-deficient MEFs displayed decreased expression of CDK2 (cyclin-dependent kinase 2), which we characterized as a conserved and direct AP4 target. Activation of an AP4 estrogen receptor fusion protein (AP4-ER) enhanced proliferation of human diploid fibroblasts in a CDK2-dependent manner. However, in contrast to c-MYC-ER, AP4-ER activation was not sufficient to induce cell cycle re-entry or apoptosis in serum-starved MEFs. AP4-deficiency was accompanied by increased spontaneous and c-MYC-induced DNA damage in MEFs. Furthermore, c-MYC-induced apoptosis was decreased in AP4-deficient MEFs, suggesting that induction of apoptosis by c-MYC is linked to its ability to activate AP4 and thereby cell cycle progression. Taken together, these results indicate that AP4 is a central mediator and coordinator of cell cycle progression in response to mitogenic signals and c-MYC activation. Therefore, inhibition of AP4 function may represent a therapeutic approach to block tumor cell proliferation. PMID:25261373

  14. Expression of β-catenin and c-myc during human common bile duct development: a possible role in the morphogenesis of the common bile duct

    PubMed Central

    Guo, W.L.; Zhang, Q.; Wang, J.

    2014-01-01

    β-catenin and c-myc play important roles in the development of tissues and organs. However, little is known about their expression patterns during the development of the human common bile duct. Immunohistochemistry was used to detect β-catenin and c-myc expression in common bile duct samples from postmortem tissues of 14 premature infants and 6 spontaneously aborted fetuses. The expression of β-catenin and c-myc was also analyzed by Western blot. The samples were divided into four groups based on the stage of human fetal development: 12, 13-27, 28-37, and >37 weeks. The Image-Pro Plus v. 6.0 image analysis software was used to calculate the mean qualifying score (MQS). At fetal stages 12, 13-27, 28-37, and >37 weeks, MQS of β-catenin were 612.52±262.13, 818.38±311.73, 706.33±157.19, and 350.69±110.19, respectively. There was a significant difference in MQS among the four groups (ANOVA, P=0.0155) and between the scores at >37 and 13-27 weeks (Student-Newman-Keuls, P<0.05). At fetal stages 12, 13-27, 28-37, and >37 weeks, the MQS of c-myc were 1376.64±330.04, 1224.18±171.66, 1270.24±320.75, and 741.04±219.19, respectively. There was a significant difference in MQS among the four groups (ANOVA, P=0.0087) and between the scores at >37 and 12 weeks, >37 and 13-27 weeks, and >37 and 28-37 weeks (all P<0.05, Student-Newman-Keuls). Western blots showed that β-catenin and c-myc expression were significantly higher in fetal than in postnatal control duct tissue (P<0.05). c-myc and β-catenin are involved in the normal development of the human common bile duct. PMID:25003633

  15. [Effect of Helicobacter pylori eradication on the expression level of SATB1 and c-Myc genes in gastric mucosa of patients with family history of gastric cancer].

    PubMed

    Tracz, Adam F; Peczek, Łukasz; Zuk, Karolina; Stec-Michalska, Krystyna; Nawrot, Barbara

    2013-05-01

    Helicobacter pylori (H. pylori) is a class 1 gastric carcinogen with the proved influence on gastric cancer development. The products of SATB1 and c-Myc genes play important role in cancer development and their levels are elevated in gastric cancer tissues. The aim of the study was to analyze an effect of H. pylori eradication on the expression of the SATB1 and c-Myc genes in the gastric mucosa of dyspeptic patients with family history of gastric cancer. Twenty patients enrolled to the studies were divided into two groups: nine patients (group I) without the family history of gastric cancer, and eleven patients with the family history of gastric cancer (group II). Endoscopic biopsies of gastric mucosa were taken from the antrum and corpus of H. pylori-infected subjects before and after bacteria eradication. The corresponding levels of expression were determined by analysis of the respective mRNA levels with the use of the real-time RT-PCR method. The level of each mRNA was normalized to the levels of mRNA of two reference genes, RPL29 and GAPDH. Independently of stomach topography, the antrum versus corpus, in the group I patients the levels of mRNA of SATB1 and c-Myc after eradication were higher in the following cases: SATB1/ GAPDH p = 0.017914 (antrum); SATB1/RPL29 p = 0.046400 (corpus); SATB1/GAPDH p = 0.027709 (corpus). For group II patients no statistically significant increase of the level of the c-Myc and SATB1 genes was observed. Patients with the family history of gastric cancer and H. pylori infection, with reversible histopathological changes of the gastric mucosa, have significantly higher levels of SATB1 and c-Myc genes expression as compared to the patients without family history of gastric cancer, regardless of the topography of the stomach. After successful eradication, the SATB1 mRNA level in samples of patients with the family history of gastric cancer did not increase, in contrast to the control group of patients. Presumably, the observed effect

  16. Molecular cloning of MSSP-2, a c-myc gene single-strand binding protein: characterization of binding specificity and DNA replication activity.

    PubMed Central

    Takai, T; Nishita, Y; Iguchi-Ariga, S M; Ariga, H

    1994-01-01

    We have previously reported the human cDNA encoding MSSP-1, a sequence-specific double- and single-stranded DNA binding protein [Negishi, Nishita, Saëgusa, Kakizaki, Galli, Kihara, Tamai, Miyajima, Iguchi-Ariga and Ariga (1994) Oncogene, 9, 1133-1143]. MSSP-1 binds to a DNA replication origin/transcriptional enhancer of the human c-myc gene and has turned out to be identical with Scr2, a human protein which complements the defect of cdc2 kinase in S.pombe [Kataoka and Nojima (1994) Nucleic Acid Res., 22, 2687-2693]. We have cloned the cDNA for MSSP-2, another member of the MSSP family of proteins. The MSSP-2 cDNA shares highly homologous sequences with MSSP-1 cDNA, except for the insertion of 48 bp coding 16 amino acids near the C-terminus. Like MSSP-1, MSSP-2 has RNP-1 consensus sequences. The results of the experiments using bacterially expressed MSSP-2, and its deletion mutants, as histidine fusion proteins suggested that the binding specificity of MSSP-2 to double- and single-stranded DNA is the same as that of MSSP-1, and that the RNP consensus sequences are required for the DNA binding of the protein. MSSP-2 stimulated the DNA replication of an SV40-derived plasmid containing the binding sequence for MSSP-1 or -2. MSSP-2 is hence suggested to play an important role in regulation of DNA replication. Images PMID:7838710

  17. A regulatory loop involving miR-22, Sp1, and c-Myc modulates CD147 expression in breast cancer invasion and metastasis.

    PubMed

    Kong, Ling-Min; Liao, Cheng-Gong; Zhang, Yang; Xu, Jing; Li, Yu; Huang, Wan; Zhang, Yi; Bian, Huijie; Chen, Zhi-Nan

    2014-07-15

    Breast cancer is the most common cancer in women for which the metastatic process is still poorly understood. CD147 is upregulated in breast cancer and has been associated with tumor progression, but little is known about its regulatory mechanisms. In this study, we demonstrated that CD147 was overexpressed in breast cancer tissues and cell lines, and the high expression correlated with tumor invasion and metastasis. We also found that the transcription factors Sp1 and c-Myc could bind to the CD147 promoter and enhance its expression. The CD147 mRNA has a 748-bp 3'-untranslated region (UTR) with many miRNA target sites, suggesting possible regulation by miRNAs. We discovered that miR-22 repressed CD147 expression by directly targeting the CD147 3'UTR. We also determined that miR-22 could indirectly participate in CD147 modulation by downregulating Sp1 expression. miR-22 could form an autoregulatory loop with Sp1, which repressed miR-22 transcription by binding to the miR-22 promoter. Together with the c-Myc-mediated inhibition of miR-22 expression, our investigation identified a miR-22/Sp1/c-Myc network that regulates CD147 gene transcription. In addition, miR-22 overexpression suppressed breast cancer cell invasion, metastasis, and proliferation by targeting CD147 in vitro and in vivo. Furthermore, we found that miR-22 was significantly downregulated in breast cancer tissues and that its expression was inversely correlated with the tumor-node-metastasis stage and lymphatic metastasis in patients. Our study provides the first evidence that an miR-22/Sp1/c-Myc network regulates CD147 upregulation in breast cancer and that miR-22 represses breast cancer invasive and metastatic capacities.

  18. Sulforaphane Inhibits c-Myc-Mediated Prostate Cancer Stem-Like Traits.

    PubMed

    Vyas, Avani R; Moura, Michelle B; Hahm, Eun-Ryeong; Singh, Krishna Beer; Singh, Shivendra V

    2016-11-01

    Preventive and therapeutic efficiencies of dietary sulforaphane (SFN) against human prostate cancer have been demonstrated in vivo, but the underlying mechanism(s) by which this occurs is poorly understood. Here, we show that the prostate cancer stem cell (pCSC)-like traits, such as accelerated activity of aldehyde dehydrogenase 1 (ALDH1), enrichment of CD49f+ fraction, and sphere forming efficiency, are attenuated by SFN treatment. Interestingly, the expression of c-Myc, an oncogenic transcription factor that is frequently deregulated in prostate cancer cells, was markedly suppressed by SFN both in vitro and in vivo. This is biologically relevant, because the lessening of pCSC-like phenotypes mediated by SFN was attenuated when c-Myc was overexpressed. Naturally occurring thio, sulfinyl, and sulfonyl analogs of SFN were also effective in causing suppression of c-Myc protein level. However, basal glycolysis, a basic metabolic pathway that can also be promoted by c-Myc overexpression, was not largely suppressed by SFN, implying that, in addition to c-Myc, there might be another SFN-sensitive cellular factor, which is not directly involved in basal glycolysis, but cooperates with c-Myc to sustain pCSC-like phenotypes. Our study suggests that oncogenic c-Myc is a target of SFN to prevent and eliminate the onset of human prostate cancer. J. Cell. Biochem. 117: 2482-2495, 2016. © 2016 Wiley Periodicals, Inc.

  19. c-Myc is a novel target of cell cycle arrest by honokiol in prostate cancer cells

    PubMed Central

    Hahm, Eun-Ryeong; Singh, Krishna Beer; Singh, Shivendra V.

    2016-01-01

    ABSTRACT Honokiol (HNK), a highly promising phytochemical derived from Magnolia officinalis plant, exhibits in vitro and in vivo anticancer activity against prostate cancer but the underlying mechanism is not fully clear. This study was undertaken to delineate the role of c-Myc in anticancer effects of HNK. Exposure of prostate cancer cells to plasma achievable doses of HNK resulted in a marked decrease in levels of total and/or phosphorylated c-Myc protein as well as its mRNA expression. We also observed suppression of c-Myc protein in PC-3 xenografts upon oral HNK administration. Stable overexpression of c-Myc in PC-3 and 22Rv1 cells conferred significant protection against HNK-mediated growth inhibition and G0-G1 phase cell cycle arrest. HNK treatment decreased expression of c-Myc downstream targets including Cyclin D1 and Enhancer of Zeste Homolog 2 (EZH2), and these effects were partially restored upon c-Myc overexpression. In addition, PC-3 and DU145 cells with stable knockdown of EZH2 were relatively more sensitive to growth inhibition by HNK compared with control cells. Finally, androgen receptor overexpression abrogated HNK-mediated downregulation of c-Myc and its targets particularly EZH2. The present study indicates that c-Myc, which is often overexpressed in early and late stages of human prostate cancer, is a novel target of prostate cancer growth inhibition by HNK. PMID:27341160

  20. c-Myc is a novel target of cell cycle arrest by honokiol in prostate cancer cells.

    PubMed

    Hahm, Eun-Ryeong; Singh, Krishna Beer; Singh, Shivendra V

    2016-09-01

    Honokiol (HNK), a highly promising phytochemical derived from Magnolia officinalis plant, exhibits in vitro and in vivo anticancer activity against prostate cancer but the underlying mechanism is not fully clear. This study was undertaken to delineate the role of c-Myc in anticancer effects of HNK. Exposure of prostate cancer cells to plasma achievable doses of HNK resulted in a marked decrease in levels of total and/or phosphorylated c-Myc protein as well as its mRNA expression. We also observed suppression of c-Myc protein in PC-3 xenografts upon oral HNK administration. Stable overexpression of c-Myc in PC-3 and 22Rv1 cells conferred significant protection against HNK-mediated growth inhibition and G0-G1 phase cell cycle arrest. HNK treatment decreased expression of c-Myc downstream targets including Cyclin D1 and Enhancer of Zeste Homolog 2 (EZH2), and these effects were partially restored upon c-Myc overexpression. In addition, PC-3 and DU145 cells with stable knockdown of EZH2 were relatively more sensitive to growth inhibition by HNK compared with control cells. Finally, androgen receptor overexpression abrogated HNK-mediated downregulation of c-Myc and its targets particularly EZH2. The present study indicates that c-Myc, which is often overexpressed in early and late stages of human prostate cancer, is a novel target of prostate cancer growth inhibition by HNK.

  1. Transactivation Domain of Human c-Myc Is Essential to Alleviate Poly(Q)-Mediated Neurotoxicity in Drosophila Disease Models.

    PubMed

    Raj, Kritika; Sarkar, Surajit

    2017-03-18

    Polyglutamine (poly(Q)) disorders, such as Huntington's disease (HD) and spinocerebellar ataxias, represent a group of neurological disorders which arise due to an atypically expanded poly(Q) tract in the coding region of the affected gene. Pathogenesis of these disorders inside the cells begins with the assembly of these mutant proteins in the form of insoluble inclusion bodies (IBs), which progressively sequester several vital cellular transcription factors and other essential proteins, and finally leads to neuronal dysfunction and apoptosis. We have shown earlier that targeted upregulation of Drosophila myc (dmyc) dominantly suppresses the poly(Q) toxicity in Drosophila. The present study examines the ability of the human c-myc proto-oncogene and also identifies the specific c-Myc isoform which drives the mitigation of poly(Q)-mediated neurotoxicity, so that it could be further substantiated as a potential drug target. We report for the first time that similar to dmyc, tissue-specific induced expression of human c-myc also suppresses poly(Q)-mediated neurotoxicity by an analogous mechanism. Among the three isoforms of c-Myc, the rescue potential was maximally manifested by the full-length c-Myc2 protein, followed by c-Myc1, but not by c-MycS which lacks the transactivation domain. Our study suggests that strategies focussing on the transactivation domain of c-Myc could be a very useful approach to design novel drug molecules against poly(Q) disorders.

  2. The Telomerase Activity of Selenium-Induced Human Umbilical Cord Mesenchymal Stem Cells Is Associated with Different Levels of c-Myc and p53 Expression.

    PubMed

    Hosseinzadeh Anvar, Leila; Hosseini-Asl, Saeid; Mohammadzadeh-Vardin, Mohammad; Sagha, Mohsen

    2017-01-01

    Selenium-as a trace element-is nutritionally essential for humans. It prevents cancerous growth by inhibiting the telomerase activity but the mechanism involved in regulation of telomerase activity in normal telomerase-positive cells remains to be elucidated. Here, we find out whether the effect of sodium selenite and selenomethionine on telomerase activity in human umbilical cord-derived mesenchymal stem cells (hUCMSCs) is associated with different levels of c-Myc and p53 expression. The use of different staining methods including ethidium bromide/acridine orange and DAPI in addition to telomeric repeat amplification protocol assay and real-time PCR indicated that different forms of selenium have opposite impacts on c-Myc and p53 expressions in both hUCMSCs and AGS, a gastric adenocarcinoma cell line, as a positive control. Our findings suggest that the signaling pathways involved in the regulation of telomerase activity in malignant and normal telomerase-positive cell types are somewhat different, at least on the c-Myc and P53 expression levels.

  3. Heparin suppresses the induction of c-fos and c-myc mRNA in murine fibroblasts by selective inhibition of a protein kinase C-dependent pathway.

    PubMed Central

    Wright, T C; Pukac, L A; Castellot, J J; Karnovsky, M J; Levine, R A; Kim-Park, H Y; Campisi, J

    1989-01-01

    Heparin is a complex glycosaminoglycan that inhibits the proliferation of several cell types in culture and in vivo. To begin to define the mechanism(s) by which heparin exerts its antiproliferative effects, we asked whether heparin interferes with the expression of the growth factor-inducible protooncogenes c-fos and c-myc. We show that heparin suppressed the induction of c-fos and c-myc mRNA by serum in murine (BALB/c) 3T3 fibroblasts. Using purified mitogens, we further show that suppression was most marked when protooncogene expression was induced by phorbol 12-myristate 13-acetate, an activator of protein kinase C. By contrast, there was little or no suppression when the cells were stimulated by epidermal growth factor, which, in these cells, utilizes a protein kinase C-independent pathway for the induction of gene expression. Heparin also inhibited the change in cell morphology induced by the phorbol ester but had no effect on the morphological change induced by epidermal growth factor and agents that raise intracellular cAMP. Heparin did not inhibit intracellular protein kinase C activity, phorbol ester-induced down-regulation of protein kinase C, or phosphorylation of the 80-kDa intracellular protein kinase C substrate. These results suggest that heparin inhibits a protein kinase C-dependent pathway for cell proliferation and suppresses the induction of c-fos and c-myc mRNA at a site distal to activation of the kinase. Images PMID:2541434

  4. Modulation of Cellular Migration and Survival by c-Myc through the Downregulation of Urokinase (uPA) and uPA Receptor▿ †

    PubMed Central

    Alfano, Daniela; Votta, Giuseppina; Schulze, Almut; Downward, Julian; Caputi, Mario; Stoppelli, Maria Patrizia; Iaccarino, Ingram

    2010-01-01

    It has been proposed that c-Myc proapoptotic activity accounts for most of its restraint of tumor formation. We established a telomerase-immortalized human epithelial cell line expressing an activatable c-Myc protein. We found that c-Myc activation induces, in addition to increased sensitivity to apoptosis, reductions in cell motility and invasiveness. Transcriptome analysis revealed that urokinase (uPA) and uPA receptor (uPAR) were strongly downregulated by c-Myc. Evidence is provided that the repression of uPA and uPAR may account for most of the antimigratory and proapoptotic activities of c-Myc. c-Myc is known to cooperate with Ras in cellular transformation. We therefore investigated if this cooperation could converge in the control of uPA/uPAR expression. We found that Ras is able to block the effects of c-Myc activation on apoptosis and cellular motility but not on cell invasiveness. Accordingly, the activation of c-Myc in the context of Ras expression had only minor influence on uPAR expression but still had a profound repressive effect on uPA expression. Thus, the differential regulation of uPA and uPAR by c-Myc and Ras correlates with the effects of these two oncoproteins on cell motility, invasiveness, and survival. In conclusion, we have discovered a novel link between c-Myc and uPA/uPAR. We propose that reductions of cell motility and invasiveness could contribute to the inhibition of tumorigenesis by c-Myc and that the regulation of uPA and uPAR expression may be a component of the ability of c-Myc to reduce motility and invasiveness. PMID:20123981

  5. Notch2 Signaling Regulates the Proliferation of Murine Bone Marrow-Derived Mesenchymal Stem/Stromal Cells via c-Myc Expression

    PubMed Central

    Miyamoto, Kenichi; Araki, Daisuke; Niibe, Kunimichi; Houlihan, Diarmaid D.; Morikawa, Satoru; Nakagawa, Taneaki; Nakajima, Toshihiro; Akazawa, Chihiro; Hori, Shingo; Okano, Hideyuki

    2016-01-01

    Mesenchymal stem/stromal cells (MSCs) reside in the bone marrow and maintain their stemness under hypoxic conditions. However, the mechanism underlying the effects of hypoxia on MSCs remains to be elucidated. This study attempted to uncover the signaling pathway of MSC proliferation. Under low-oxygen culture conditions, MSCs maintained their proliferation and differentiation abilities for a long term. The Notch2 receptor was up-regulated in MSCs under hypoxic conditions. Notch2-knockdown (Notch2-KD) MSCs lost their cellular proliferation ability and showed reduced gene expression of hypoxia-inducible transcription factor (HIF)-1α, HIF-2α, and c-Myc. Overexpression of the c-Myc gene in Notch2-KD MSCs allowed the cells to regain their proliferation capacity. These results suggested that Notch2 signaling is linked to c-Myc expression and plays a key role in the regulation of MSC proliferation. Our findings provide important knowledge for elucidating the self-replication competence of MSCs in the bone marrow microenvironment. PMID:27855169

  6. Notch2 Signaling Regulates the Proliferation of Murine Bone Marrow-Derived Mesenchymal Stem/Stromal Cells via c-Myc Expression.

    PubMed

    Sato, Yukio; Mabuchi, Yo; Miyamoto, Kenichi; Araki, Daisuke; Niibe, Kunimichi; Houlihan, Diarmaid D; Morikawa, Satoru; Nakagawa, Taneaki; Nakajima, Toshihiro; Akazawa, Chihiro; Hori, Shingo; Okano, Hideyuki; Matsuzaki, Yumi

    2016-01-01

    Mesenchymal stem/stromal cells (MSCs) reside in the bone marrow and maintain their stemness under hypoxic conditions. However, the mechanism underlying the effects of hypoxia on MSCs remains to be elucidated. This study attempted to uncover the signaling pathway of MSC proliferation. Under low-oxygen culture conditions, MSCs maintained their proliferation and differentiation abilities for a long term. The Notch2 receptor was up-regulated in MSCs under hypoxic conditions. Notch2-knockdown (Notch2-KD) MSCs lost their cellular proliferation ability and showed reduced gene expression of hypoxia-inducible transcription factor (HIF)-1α, HIF-2α, and c-Myc. Overexpression of the c-Myc gene in Notch2-KD MSCs allowed the cells to regain their proliferation capacity. These results suggested that Notch2 signaling is linked to c-Myc expression and plays a key role in the regulation of MSC proliferation. Our findings provide important knowledge for elucidating the self-replication competence of MSCs in the bone marrow microenvironment.

  7. Hepatitis B virus X protein upregulates Lin28A/Lin28B through Sp-1/c-Myc to enhance the proliferation of hepatoma cells.

    PubMed

    You, X; Liu, F; Zhang, T; Lv, N; Liu, Q; Shan, C; Du, Y; Kong, G; Wang, T; Ye, L; Zhang, X

    2014-01-23

    Hepatitis B virus X protein (HBx) plays critical roles in the pathogenesis of hepatocellular carcinoma (HCC). Here, we were interested in knowing whether the oncogene Lin28A and its homolog Lin28B are involved in the hepatocarcinogenesis mediated by HBx. We showed that the expression levels of Lin28A and Lin28B were increased in clinical HCC tissues, HepG2.2.15 cell line and liver tissues of p21-HBx transgenic mice. Interestingly, the expression levels of HBx were positively associated with those of Lin28A/Lin28B in clinical HCC tissues. Moreover, the overexpression of HBx resulted in the upregulation of Lin28A/Lin28B in hepatoma HepG2/H7402 cell lines by transient transfection, suggesting that HBx was able to upregulate Lin28A and Lin28B. Then, we examined the mechanism by which HBx upregulated Lin28A and Lin28B. We identified that the promoter region of Lin28A regulated by HBx was located at nt -235/-66 that contained Sp-1 binding element. Co-immunoprecipitation showed that HBx was able to interact with Sp-1 in HepG2-X cells. Moreover, chromatin immunoprecipitation (ChIP) demonstrated that HBx could bind to the promoter of Lin28A, which failed to work when Sp-1 was silenced. Electrophoretic mobility shift assay (EMSA) further identified that HBx was able to interact with Sp-1 element in Lin28A promoter via transcription factor Sp-1. In addition, we found that c-Myc was involved in the activation of Lin28B mediated by HBx. In function, Lin28A/Lin28B played important roles in HBx-enhanced proliferation of hepatoma cells in vitro and in vivo. In conclusion, HBx activates Lin28A/Lin28B through Sp-1/c-Myc in hepatoma cells. Lin28A/Lin28B serves as key driver genes in HBx-induced hepatocarcinogenesis.

  8. Antiproliferative effects of antisense oligonucleotides directed to the RNA of c-myc oncogene.

    PubMed Central

    Degols, G; Leonetti, J P; Mechti, N; Lebleu, B

    1991-01-01

    Several groups have reported the use of antisense oligonucleotides to inhibit c-myc gene expression and study its biological role. However high concentrations of free oligonucleotides were generally needed. To lower their concentration and stabilize the antisense effect against c-myc, oligonucleotides were covalently linked to poly(L-lysine) and administered in ternary complexes formed with heparin (100 micrograms/ml). A sequence specific growth inhibition was observed at concentrations lower than 1 microM, while oligonucleotide-poly(L-lysine) conjugates alone were inefficient. Similar results occurred with other polyanionic compounds. Inhibition of proliferation was correlated to a reduction of c-myc protein and to a transient decrease in c-myc mRNA level. However, implication of RNase H in this process could not be demonstrated. Images PMID:1708128

  9. c-MYC inhibition impairs hypoxia response in glioblastoma multiforme

    PubMed Central

    Falchetti, Maria Laura; Illi, Barbara; Bozzo, Francesca; Valle, Cristiana; Helmer-Citterich, Manuela; Ferrè, Fabrizio; Nasi, Sergio; Levi, Andrea

    2016-01-01

    The c-MYC oncoprotein is a DNA binding transcription factor that enhances the expression of many active genes. c-MYC transcriptional signatures vary according to the transcriptional program defined in each cell type during differentiation. Little is known on the involvement of c-MYC in regulation of gene expression programs that are induced by extracellular cues such as a changing microenvironment. Here we demonstrate that inhibition of c-MYC in glioblastoma multiforme cells blunts hypoxia-dependent glycolytic reprogramming and mitochondria fragmentation in hypoxia. This happens because c-MYC inhibition alters the cell transcriptional response to hypoxia and finely tunes the expression of a subset of Hypoxia Inducible Factor 1-regulated genes. We also show that genes whose expression in hypoxia is affected by c-MYC inhibition are able to distinguish the Proneural subtype of glioblastoma multiforme, thus potentially providing a molecular signature for this class of tumors that are the least tractable among glioblastomas. PMID:27119353

  10. A c-myc antisense oligonucleotide inhibits human retinal pigment epithelial cell proliferation.

    PubMed

    Capeáns, C; Piñeiro, A; Domínguez, F; Loidi, L; Buceta, M; Carneiro, C; Garcia-Caballero, T; Sanchez-Salorio, M

    1998-05-01

    The purpose of this work was to investigate if MYC-dependent intracellular mitogenic pathway is active in cultures of human retinal pigment epithelial (hRPE) cells and whether myc antisense phosphorotioate oligonucleotides (c-myc-AS-ODN) are useful tools for inhibiting the proliferation of hRPE cells. Cultures of hRPE cells were established from adult human corneal donors. These cells were positively stained for cytokeratins and vimentin. Myc mRNA expression was determined by Northern blot analysis and it was determined by means of immunofluorescence if MYC was expressed. C-myc-AS-ODN effect on cell proliferation was estimated by evaluating the incorporation of 5-bromo-2'-deoxy-uridine into cellular DNA. Cell number was estimated by using a tetrazolium bromide based colorimetric method. Human RPE cells in culture expressed MYC and myc mRNA as well as prothymosin alpha mRNA--a gene whose transcription is under MYC control--indicating that MYC-dependent intracellular mitogenic pathway is active in these cells. In accordance with this, we found that blocking the expression of myc by the addition of c-myc-AS-ODN to the culture medium inhibited hRPE cell proliferation. The effect of the c-myc-AS-ODN was found to be sequence specific (the use of a control oligonucleotide with the same sequence but in an opposite direction had no effect) and dose-dependent (4 microM was the lowest effective dose tested). By using RT-PCR we found that the c-myc-AS-ODN inhibition of cell proliferation was related to a diminution in c-myc mRNA expression, and by immunofluorescence we detected a diminution in c-MYC protein staining in RPE cells after 48 hr of treatment with c-myc-AS-ODN. Furthermore, growth inhibition remained for at least 5 days after addition of a single dose of the c-myc-AS-ODN to the culture. We conclude that hRPE cell proliferation is under MYC control. Blocking the expression of myc by c-myc-AS-ODN inhibited hRPE cell proliferation. These findings establish a rationale

  11. c-MYC is a radiosensitive locus in human breast cells

    PubMed Central

    Wade, M A; Sunter, N J; Fordham, S E; Long, A; Masic, D; Russell, L J; Harrison, C J; Rand, V; Elstob, C; Bown, N; Rowe, D; Lowe, C; Cuthbert, G; Bennett, S; Crosier, S; Bacon, C M; Onel, K; Scott, K; Scott, D; Travis, L B; May, F E B; Allan, J M

    2015-01-01

    Ionising radiation is a potent human carcinogen. Epidemiological studies have shown that adolescent and young women are at increased risk of developing breast cancer following exposure to ionising radiation compared with older women, and that risk is dose-dependent. Although it is well understood which individuals are at risk of radiation-induced breast carcinogenesis, the molecular genetic mechanisms that underlie cell transformation are less clear. To identify genetic alterations potentially responsible for driving radiogenic breast transformation, we exposed the human breast epithelial cell line MCF-10A to fractionated doses of X-rays and examined the copy number and cytogenetic alterations. We identified numerous alterations of c-MYC that included high-level focal amplification associated with increased protein expression. c-MYC amplification was also observed in primary human mammary epithelial cells following exposure to radiation. We also demonstrate that the frequency and magnitude of c-MYC amplification and c-MYC protein expression is significantly higher in breast cancer with antecedent radiation exposure compared with breast cancer without a radiation aetiology. Our data also demonstrate extensive intratumor heterogeneity with respect to c-MYC copy number in radiogenic breast cancer, suggesting continuous evolution at this locus during disease development and progression. Taken together, these data identify c-MYC as a radiosensitive locus, implicating this oncogenic transcription factor in the aetiology of radiogenic breast cancer. PMID:25531321

  12. c-MYC is a radiosensitive locus in human breast cells.

    PubMed

    Wade, M A; Sunter, N J; Fordham, S E; Long, A; Masic, D; Russell, L J; Harrison, C J; Rand, V; Elstob, C; Bown, N; Rowe, D; Lowe, C; Cuthbert, G; Bennett, S; Crosier, S; Bacon, C M; Onel, K; Scott, K; Scott, D; Travis, L B; May, F E B; Allan, J M

    2015-09-17

    Ionising radiation is a potent human carcinogen. Epidemiological studies have shown that adolescent and young women are at increased risk of developing breast cancer following exposure to ionising radiation compared with older women, and that risk is dose-dependent. Although it is well understood which individuals are at risk of radiation-induced breast carcinogenesis, the molecular genetic mechanisms that underlie cell transformation are less clear. To identify genetic alterations potentially responsible for driving radiogenic breast transformation, we exposed the human breast epithelial cell line MCF-10A to fractionated doses of X-rays and examined the copy number and cytogenetic alterations. We identified numerous alterations of c-MYC that included high-level focal amplification associated with increased protein expression. c-MYC amplification was also observed in primary human mammary epithelial cells following exposure to radiation. We also demonstrate that the frequency and magnitude of c-MYC amplification and c-MYC protein expression is significantly higher in breast cancer with antecedent radiation exposure compared with breast cancer without a radiation aetiology. Our data also demonstrate extensive intratumor heterogeneity with respect to c-MYC copy number in radiogenic breast cancer, suggesting continuous evolution at this locus during disease development and progression. Taken together, these data identify c-MYC as a radiosensitive locus, implicating this oncogenic transcription factor in the aetiology of radiogenic breast cancer.

  13. c-Myc/Max heterodimers bind cooperatively to the E-box sequences located in the first intron of the rat ornithine decarboxylase (ODC) gene.

    PubMed Central

    Walhout, A J; Gubbels, J M; Bernards, R; van der Vliet, P C; Timmers, H T

    1997-01-01

    The oncoprotein c-Myc plays an important role in cell proliferation, transformation, inhibition of differentiation and apoptosis. These functions most likely result from the transcription factor activity of c-Myc. As a heterodimer with Max, the c-Myc protein binds to the E-box sequence (CACGTG), which is also recognized by USF dimers. In order to test differences in target gene recognition of c-Myc/Max, Max and USF dimers, we compared the DNA binding characteristics of these proteins in vitro using vaccinia viruses expressing full-length c-Myc and Max proteins. As expected, purified c-Myc/max binds specifically to a consensus E-box. The optimal conditions for DNA binding by either c-Myc/Max, Max or USF dimers differ with respect to ionic strength and Mg2+ ion concentration. Most interestingly, the c-Myc/Max complex binds with a high affinity to its natural target, the rat ODC gene, which contains two adjacent, consensus E-boxes. High affinity binding results from teh ability of c-Myc/Max dimers to bind cooperatively to these E-boxes. We propose that differential cooperative binding by E-box binding transcription factors could contribute to target gene specificity. PMID:9162900

  14. c-Myc/Max heterodimers bind cooperatively to the E-box sequences located in the first intron of the rat ornithine decarboxylase (ODC) gene

    PubMed Central

    Walhout, AJM; Gubbels, JM; Bernards, R; van der Vliet PC; Timmers, HTM

    1997-01-01

    The oncoprotein c-Myc plays an important role in cell proliferation, transformation, inhibition of differentiation and apoptosis. These functions most likely result from the transcription factor activity of c-Myc. As a heterodimer with Max, the c-Myc protein binds to the E-box sequence (CACGTG), which is also recognized by USF dimers. In order to test differences in target gene recognition of c-Myc/Max, Max and USF dimers, we compared the DNA binding characteristics of these proteins in vitro using vaccinia viruses expressing full-length c-Myc and Max proteins. As expected, purified c-Myc/Max binds specifically to a consensus E-box. The optimal conditions for DNA binding by either c-Myc/Max, Max or USF dimers differ with respect to ionic strength and Mg2+ion concentration. Most interestingly, the c-Myc/Max complex binds with a high affinity to its natural target, the rat ODC gene, which contains two adjacent, consensus E-boxes. High affinity binding results from the ability of c-Myc/Max dimers to bind cooperatively to these E-boxes. We propose that differential cooperative binding by E-box binding transcription factors could contribute to target gene specificity. PMID:9106360

  15. ROCK has a crucial role in regulating prostate tumor growth through interaction with c-Myc.

    PubMed

    Zhang, C; Zhang, S; Zhang, Z; He, J; Xu, Y; Liu, S

    2014-12-04

    Rho-associated kinase (ROCK) has an essential role in governing cell morphology and motility, and increased ROCK activity contributes to cancer cell invasion and metastasis. Burgeoning data suggest that ROCK is also involved in the growth regulation of tumor cells. However, thus far, the molecular mechanisms responsible for ROCK-governed tumor cell growth have not been clearly elucidated. Here we showed that inhibition of ROCK kinase activity, either by a selective ROCK inhibitor Y27632 or by specific ROCK small interfering RNA (siRNA) molecules, attenuated not only motility but also the proliferation of PC3 prostate cancer cells in vitro and in vivo. Importantly, mechanistic investigation revealed that ROCK endowed cancer cells with tumorigenic capability, mainly by targeting c-Myc. ROCK could increase the transcriptional activity of c-Myc by promoting c-Myc protein stability, and ROCK inhibition reduced c-Myc-mediated expression of mRNA targets (such as HSPC111) and microRNA targets (such as miR-17-92 cluster). We provided evidence demonstrating that ROCK1 directly interacted with and phosphorylated c-Myc, resulting in stabilization of the protein and activation of its transcriptional activity. Suppression of ROCK-c-Myc downstream molecules, such as c-Myc-regulated miR-17, also impaired tumor cell growth in vitro and in vivo. In addition, c-Myc was shown to exert a positive feedback regulation on ROCK by increasing RhoA mRNA expression. Therefore, inhibition of ROCK and its stimulated signaling might prove to be a promising strategy for restraining tumor progression in prostate cancer.

  16. Therapeutic aspects of c-MYC signaling in inflammatory and cancerous colonic diseases.

    PubMed

    Sipos, Ferenc; Firneisz, Gábor; Műzes, Györgyi

    2016-09-21

    Colonic inflammation is required to heal infections, wounds, and maintain tissue homeostasis. As the seventh hallmark of cancer, however, it may affect all phases of tumor development, including tumor initiation, promotion, invasion and metastatic dissemination, and also evasion immune surveillance. Inflammation acts as a cellular stressor and may trigger DNA damage or genetic instability, and, further, chronic inflammation can provoke genetic mutations and epigenetic mechanisms that promote malignant cell transformation. Both sporadical and colitis-associated colorectal carcinogenesis are multi-step, complex processes arising from the uncontrolled proliferation and spreading of malignantly transformed cell clones with the obvious ability to evade the host's protective immunity. In cells upon DNA damage several proto-oncogenes, including c-MYC are activated in parelell with the inactivation of tumor suppressor genes. The target genes of the c-MYC protein participate in different cellular functions, including cell cycle, survival, protein synthesis, cell adhesion, and micro-RNA expression. The transcriptional program regulated by c-MYC is context dependent, therefore the final cellular response to elevated c-MYC levels may range from increased proliferation to augmented apoptosis. Considering physiological intestinal homeostasis, c-MYC displays a fundamental role in the regulation of cell proliferation and crypt cell number. However, c-MYC gene is frequently deregulated in inflammation, and overexpressed in both sporadic and colitis-associated colon adenocarcinomas. Recent results demonstrated that endogenous c-MYC is essential for efficient induction of p53-dependent apoptosis following DNA damage, but c-MYC function is also involved in and regulated by autophagy-related mechanisms, while its expression is affected by DNA-methylation, or histone acetylation. Molecules directly targeting c-MYC, or agents acting on other genes involved in the c-MYC pathway could be

  17. Therapeutic aspects of c-MYC signaling in inflammatory and cancerous colonic diseases

    PubMed Central

    Sipos, Ferenc; Firneisz, Gábor; Műzes, Györgyi

    2016-01-01

    Colonic inflammation is required to heal infections, wounds, and maintain tissue homeostasis. As the seventh hallmark of cancer, however, it may affect all phases of tumor development, including tumor initiation, promotion, invasion and metastatic dissemination, and also evasion immune surveillance. Inflammation acts as a cellular stressor and may trigger DNA damage or genetic instability, and, further, chronic inflammation can provoke genetic mutations and epigenetic mechanisms that promote malignant cell transformation. Both sporadical and colitis-associated colorectal carcinogenesis are multi-step, complex processes arising from the uncontrolled proliferation and spreading of malignantly transformed cell clones with the obvious ability to evade the host’s protective immunity. In cells upon DNA damage several proto-oncogenes, including c-MYC are activated in parelell with the inactivation of tumor suppressor genes. The target genes of the c-MYC protein participate in different cellular functions, including cell cycle, survival, protein synthesis, cell adhesion, and micro-RNA expression. The transcriptional program regulated by c-MYC is context dependent, therefore the final cellular response to elevated c-MYC levels may range from increased proliferation to augmented apoptosis. Considering physiological intestinal homeostasis, c-MYC displays a fundamental role in the regulation of cell proliferation and crypt cell number. However, c-MYC gene is frequently deregulated in inflammation, and overexpressed in both sporadic and colitis-associated colon adenocarcinomas. Recent results demonstrated that endogenous c-MYC is essential for efficient induction of p53-dependent apoptosis following DNA damage, but c-MYC function is also involved in and regulated by autophagy-related mechanisms, while its expression is affected by DNA-methylation, or histone acetylation. Molecules directly targeting c-MYC, or agents acting on other genes involved in the c-MYC pathway could be

  18. SMARCAL1 Negatively Regulates C-Myc Transcription By Altering The Conformation Of The Promoter Region.

    PubMed

    Sharma, Tapan; Bansal, Ritu; Haokip, Dominic Thangminlen; Goel, Isha; Muthuswami, Rohini

    2015-12-09

    SMARCAL1, a member of the SWI2/SNF2 protein family, stabilizes replication forks during DNA damage. In this manuscript, we provide the first evidence that SMARCAL1 is also a transcriptional co-regulator modulating the expression of c-Myc, a transcription factor that regulates 10-15% genes in the human genome. BRG1, SMARCAL1 and RNAPII were found localized onto the c-myc promoter. When HeLa cells were serum starved, the occupancy of SMARCAL1 on the c-myc promoter increased while that of BRG1 and RNAPII decreased correlating with repression of c-myc transcription. Using Active DNA-dependent ATPase A Domain (ADAAD), the bovine homolog of SMARCAL1, we show that the protein can hydrolyze ATP using a specific region upstream of the CT element of the c-myc promoter as a DNA effector. The energy, thereby, released is harnessed to alter the conformation of the promoter DNA. We propose that SMARCAL1 negatively regulates c-myc transcription by altering the conformation of its promoter region during differentiation.

  19. Androgen Receptor Promotes Ligand-Independent Prostate Cancer Progression through c-Myc Upregulation

    PubMed Central

    Gao, Lina; Schwartzman, Jacob; Gibbs, Angela; Lisac, Robert; Kleinschmidt, Richard; Wilmot, Beth; Bottomly, Daniel; Coleman, Ilsa; Nelson, Peter; McWeeney, Shannon; Alumkal, Joshi

    2013-01-01

    The androgen receptor (AR) is the principal therapeutic target in prostate cancer. For the past 70 years, androgen deprivation therapy (ADT) has been the major therapeutic focus. However, some patients do not benefit, and those tumors that do initially respond to ADT eventually progress. One recently described mechanism of such an effect is growth and survival-promoting effects of the AR that are exerted independently of the AR ligands, testosterone and dihydrotestosterone. However, specific ligand-independent AR target genes that account for this effect were not well characterized. We show here that c-Myc, which is a key mediator of ligand-independent prostate cancer growth, is a key ligand-independent AR target gene. Using microarray analysis, we found that c-Myc and AR expression levels strongly correlated with each other in tumors from patients with castration-resistant prostate cancer (CRPC) progressing despite ADT. We confirmed that AR directly regulates c-Myc transcription in a ligand-independent manner, that AR and c-Myc suppression reduces ligand-independent prostate cancer cell growth, and that ectopic expression of c-Myc attenuates the anti-growth effects of AR suppression. Importantly, treatment with the bromodomain inhibitor JQ1 suppressed c-Myc function and suppressed ligand-independent prostate cancer cell survival. Our results define a new link between two critical proteins in prostate cancer – AR and c-Myc – and demonstrate the potential of AR and c-Myc-directed therapies to improve prostate cancer control. PMID:23704919

  20. Pim1 promotes human prostate cancer cell tumorigenicity and c-MYC transcriptional activity

    PubMed Central

    2010-01-01

    Background The serine/threonine kinase PIM1 has been implicated as an oncogene in various human cancers including lymphomas, gastric, colorectal and prostate carcinomas. In mouse models, Pim1 is known to cooperate with c-Myc to promote tumorigenicity. However, there has been limited analysis of the tumorigenic potential of Pim1 overexpression in benign and malignant human prostate cancer cells in vivo. Methods We overexpressed Pim1 in three human prostate cell lines representing different disease stages including benign (RWPE1), androgen-dependent cancer (LNCaP) and androgen-independent cancer (DU145). We then analyzed in vitro and in vivo tumorigenicity as well as the effect of Pim1 overexpression on c-MYC transcriptional activity by reporter assays and gene expression profiling using an inducible MYC-ER system. To validate that Pim1 induces tumorigenicity and target gene expression by modulating c-MYC transcriptional activity, we inhibited c-MYC using a small molecule inhibitor (10058-F4) or RNA interference. Results Overexpression of Pim1 alone was not sufficient to convert the benign RWPE1 cell to malignancy although it enhanced their proliferation rates when grown as xenografts in vivo. However, Pim1 expression enhanced the in vitro and in vivo tumorigenic potentials of the human prostate cancer cell lines LNCaP and DU145. Reporter assays revealed increased c-MYC transcriptional activity in Pim1-expressing cells and mRNA expression profiling demonstrated that a large fraction of c-MYC target genes were also regulated by Pim1 expression. The c-MYC inhibitor 10058-F4 suppressed the tumorigenicity of Pim1-expressing prostate cancer cells. Interestingly, 10058-F4 treatment also led to a reduction of Pim1 protein but not mRNA. Knocking-down c-MYC using short hairpin RNA reversed the effects of Pim1 on Pim1/MYC target genes. Conclusion Our results suggest an in vivo role of Pim1 in promoting prostate tumorigenesis although it displayed distinct oncogenic activities

  1. c-Myc-Induced Survivin Is Essential for Promoting the Notch-Dependent T Cell Differentiation from Hematopoietic Stem Cells

    PubMed Central

    Haque, Rizwanul; Song, Jianyong; Haque, Mohammad; Lei, Fengyang; Sandhu, Praneet; Ni, Bing; Zheng, Songguo; Fang, Deyu; Yang, Jin-Ming; Song, Jianxun

    2017-01-01

    Notch is indispensable for T cell lineage commitment, and is needed for thymocyte differentiation at early phases. During early stages of T cell development, active Notch prevents other lineage potentials including B cell lineage and myeloid cell (e.g., dendritic cell) lineage. Nevertheless, the precise intracellular signaling pathways by which Notch promotes T cell differentiation remain unclear. Here we report that the transcription factor c-Myc is a key mediator of the Notch signaling–regulated T cell differentiation. In a well-established in vitro differentiation model of T lymphocytes from hematopoietic stem cells, we showed that Notch1 and 4 directly promoted c-Myc expression; dominant-negative (DN) c-Myc inhibited early T cell differentiation. Moreover, the c-Myc expression activated by Notch signaling increased the expression of survivin, an inhibitor of apoptosis (IAP) protein. We further demonstrated that over-expression of c-Myc increased the abundance of survivin and the T cell differentiation thereof, whereas dn c-Myc reduced survivin levels and concomitantly retarded the differentiation. The c-Myc–dependent survivin induction is functionally germane, because Notch-dependent T cell differentiation was canceled by the depletion of survivin. These results identify both c-Myc and survivin as important mediators of the Notch signaling–regulated differentiation of T lymphocytes from hematopoietic stem cells. PMID:28272325

  2. Tumor-Specific Effector CD8+ T Cells That Can Establish Immunological Memory in Humans after Adoptive Transfer Are Marked by Expression of IL7 Receptor and c-myc.

    PubMed

    Chandran, Smita S; Paria, Biman C; Srivastava, Abhishek K; Rothermel, Luke D; Stephens, Daniel J; Kammula, Udai S

    2015-08-15

    The optimal T-cell attributes for adoptive cancer immunotherapy are unclear. Recent clinical trials of ex vivo-expanded tumor-infiltrating lymphocytes indicated that differentiated T effector cells can elicit durable antitumor responses in some patients with cancer, with their antitumor activity tightly correlated with their persistence in the host. Thus, there is great interest in the definition of intrinsic biomarkers that can predict the conversion of short-lived tumor antigen-specific T effector cells into long-lived T memory cells. Long-term persistence of ex vivo-expanded tumor-specific CD8+ T effector clones has been reported in refractory metastatic melanoma patients after adoptive T-cell transfer. By using highly homogeneous clone populations from these preparations, we performed a comparative transcriptional profiling to define preinfusion molecular attributes that can be ascribed to an effector-to-memory transition. Through this route, we discovered that preinfusion T-cell clones that expressed the IL7 receptor (IL7R) and c-myc were more likely to persist longer after adoptive transfer to patients. The predictive value of these two biomarkers was strengthened by using IL7R protein, IL7-induced pSTAT5, and c-myc mRNA expression to prospectively identify human tumor-specific T effector clones capable of engraftment into immunodeficient mice. Overall, our findings reveal IL7R and c-myc expression as intrinsic biomarkers that can predict the fate of CD8+ T effector cells after adoptive transfer.

  3. Effect of teicoplanin on the expression of c-myc and c-fos proto-oncogenes in MCF-7 breast cancer cell line

    PubMed Central

    Ashouri, Saeideh; Khujin, Maryam Hosseindokht; Kazemi, Mohammad; Kheirollahi, Majid

    2016-01-01

    Background: Teicoplanin is a member of vancomycin-ristocetin family of glycopeptide antibiotics. It mediated wound healing by increasing neovascularization possibly through activation of MAP kinase signaling pathway. The aim of this study is an evaluation of c-myc and c-fos genes expression after treatment of cells by teicoplanin and determines whether this glycopeptide antibiotic exerts its proliferation effects by influencing the expression of these genes. Hence, this study was designed to elucidate one possible mechanism underlying teicoplanin effects on cell proliferation using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Materials and Methods: Breast cancer cell line, MCF-7, was cultured, and three different concentrations of teicoplanin were added to the plates. We measured the cell proliferation rate by MTT assay. After cell harvesting, total RNA was extracted to synthesize single-stranded cDNA. Real-time polymerase chain reaction was performed, and the data were analyzed. Results: It was observed that the level of c-fos and c-myc genes’ expressions was decreased at all three different concentrations of teicoplanin. Conclusion: it could be concluded that although teicoplanin is considered as an enhancing cell growth and proliferation, but probably its effect is not through MAP kinase signaling pathway or perhaps even has inhibitory effect on the expression of some genes such as c-myc and c-fos in this pathway. Hence, the mechanism of action of teicoplanin for increasing cell propagation, through cell signaling pathways or chromosomal abnormalities, remains unclear, and further studies should be conducted. PMID:28028512

  4. VDR/RXR and TCF4/β-catenin cistromes in colonic cells of colorectal tumor origin: impact on c-FOS and c-MYC gene expression.

    PubMed

    Meyer, Mark B; Goetsch, Paul D; Pike, J Wesley

    2012-01-01

    Many of the transcriptional and growth regulating activities of 1α,25-dihydroxyvitamin D(3) [1,25-(OH)(2)D(3)] in the intestine and colon are recapitulated in the human colorectal cancer cell LS180. We therefore used this line together with chromatin immunoprecipitation-seq and gene expression analyses to identify the vitamin D receptor (VDR)/retinoid X receptor (RXR) and transcription factor 7-like 2 (TCF7L2/TCF4)/β-catenin cistromes and the genes that they regulate. VDR and RXR colocalized to predominantly promoter distal, vitamin D response element-containing sites in a largely ligand-dependent manner. These regulatory sites control the expression of both known as well as novel 1,25-(OH)(2)D(3) target genes. TCF4 and β-catenin cistromes partially overlapped, contained TCF/lymphoid enhancer-binding factor consensus elements, and were only modestly influenced by 1,25-(OH)(2)D(3). However, the two heterodimer complexes colocalized at sites near a limited set of genes that included c-FOS and c-MYC; the expression of both genes was modulated by 1,25-(OH)(2)D(3). At the c-FOS gene, both VDR/RXR and TCF4/β-catenin bound to a single distal enhancer located 24 kb upstream of the transcriptional start site. At the c-MYC locus, however, binding was noted at a cluster of sites between -139 and -165 kb and at a site located -335 kb upstream. Examined as isolated enhancer fragments, these regions exhibited basal and 1,25-(OH)(2)D(3)-inducible activities that were interlinked to both VDR and β-catenin activation. These data reveal additional complexity in the regulation of target genes by 1,25-(OH)(2)D(3) and support a direct action of both VDR and the TCF4/β-catenin regulatory complex at c-FOS and c-MYC.

  5. The Histone Acetyltransferase GCN5 Expression Is Elevated and Regulated by c-Myc and E2F1 Transcription Factors in Human Colon Cancer

    PubMed Central

    Yin, Yan-Wei; Jin, Hong-Jian; Zhao, Wenjing; Gao, Beixue; Fang, Jiangao; Wei, Junmin; Zhang, Donna D.; Zhang, Jianing; Fang, Deyu

    2017-01-01

    The histone acetyltransferase GCN5 has been suggested to be involved in promoting cancer cell growth. But its role in human colon cancer development remains unknown. Herein we discovered that GCN5 expression is significantly upregulated in human colon adenocarcinoma tissues. We further demonstrate that GCN5 is upregulated in human colon cancer at the mRNA level. Surprisingly, two transcription factors, the oncogenic c-Myc and the proapoptotic E2F1, are responsible for GCN5 mRNA transcription. Knockdown of c-Myc inhibited colon cancer cell proliferation largely through downregulating GCN5 transcription, which can be fully rescued by the ectopic GCN5 expression. In contrast, E2F1 expression induced human colon cancer cell death, and suppression of GCN5 expression in cells with E2F1 overexpression further facilitated cell apoptosis, suggesting that GCN5 expression is induced by E2F1 as a possible negative feedback in suppressing E2F1-mediated cell apoptosis. In addition, suppression of GCN5 with its specific inhibitor CPTH2 inhibited human colon cancer cell growth. Our studies reveal that GCN5 plays a positive role in human colon cancer development, and its suppression holds a great therapeutic potential in antitumor therapy. PMID:26637399

  6. A proteomic study of cMyc improvement of CHO culture

    PubMed Central

    2010-01-01

    Background The biopharmaceutical industry requires cell lines to have an optimal proliferation rate and a high integral viable cell number resulting in a maximum volumetric recombinant protein product titre. Nutrient feeding has been shown to boost cell number and productivity in fed-batch culture, but cell line engineering is another route one may take to increase these parameters in the bioreactor. The use of CHO-K1 cells with a c-myc plasmid allowing for over-expressing c-Myc (designated cMycCHO) gives a higher integral viable cell number. In this study the differential protein expression in cMycCHO is investigated using two-dimensional gel electrophoresis (2-DE) followed by image analysis to determine the extent of the effect c-Myc has on the cell and the proteins involved to give the new phenotype. Results Over 100 proteins that were differentially expressed in cMycCHO cells were detected with high statistical confidence, of which 41 were subsequently identified by tandem mass spectrometry (LC-MS/MS). Further analysis revealed proteins involved in a variety of pathways. Some examples of changes in protein expression include: an increase in nucleolin, involved in proliferation and known to aid in stabilising anti-apoptotic protein mRNA levels, the cytoskeleton and mitochondrial morphology (vimentin), protein biosysnthesis (eIF6) and energy metabolism (ATP synthetase), and a decreased regulation of all proteins, indentified, involved in matrix and cell to cell adhesion. Conclusion These results indicate several proteins involved in proliferation and adhesion that could be useful for future approaches to improve proliferation and decrease adhesion of CHO cell lines which are difficult to adapt to suspension culture. PMID:20307306

  7. Definition of regions in human c-myc that are involved in transformation and nuclear localization.

    PubMed Central

    Stone, J; de Lange, T; Ramsay, G; Jakobovits, E; Bishop, J M; Varmus, H; Lee, W

    1987-01-01

    To study the relationship between the primary structure of the c-myc protein and some of its functional properties, we made in-frame insertion and deletion mutants of the normal human c-myc coding domain that was expressed from a retroviral promoter-enhancer. We assessed the effects of these mutations on the ability of c-myc protein to cotransform normal rat embryo cells with a mutant ras gene, induce foci in a Rat-1-derived cell line (Rat-1a), and localize in nuclei. Using the cotransformation assay, we found two regions of the protein (amino acids 105 to 143 and 321 to 439) where integrity was critical: one region (amino acids 1 to 104) that tolerated insertion and small deletion mutations, but not large deletions, and another region (amino acids 144) to 320) that was largely dispensable. Comparison with regions that were important for transformation of Rat-1a cells revealed that some are essential for both activities, but others are important for only one or the other, suggesting that the two assays require different properties of the c-myc protein. Deletion of each of three regions of the c-myc protein (amino acids 106 to 143, 320 to 368, and 370 to 412) resulted in partial cytoplasmic localization, as determined by immunofluorescence or immunoprecipitation following subcellular fractionation. Some abnormally located proteins retained transforming activity; most proteins lacking transforming activity appeared to be normally located. Images PMID:3299053

  8. Expression Analysis of p16, c-Myc, and mSin3A in Non-small Cell Lung Cancer by Computer Aided Scoring and Analysis (CASA).

    PubMed

    Salmaninejad, Arash; Estiar, Mehrdad Asghari; Gill, Rajbir K; Shih, Joanna H; Hewitt, Stephen; Jeon, Hyo-Sung; Fukuoka, Junya; Shilo, Konstantin; Shakoori, Abbas; Jen, Jin

    2015-01-01

    Immunohistochemical analysis (IHC) of tissue microarray (TMA) slides enables large sets of tissue samples to be analyzed simultaneously on a single slide. However, manual evaluation of small cores on a TMA slide is time consuming and error prone. We describe a computer aided scoring and analysis (CASA) method to allow facile and reliable scoring of IHC staining using TMA containing 300 non-small cell lung cancer (NSCLC) cases. In the two previous published papers utilizing our TMA slides of lung cancer we examined 18 proteins involved in the chromatin machinery. We developed our study using more proteins of the chromatin complex and several transcription factors that facilitate the chromatin machinery. Then, a total of 78 antibodies were evaluated by CASA to derive a normalized intensity value that correlated with the overall staining status of the targeting protein. The intensity values for TMA cores were then examined for association to clinical variables and predictive significance individually and with other factors. RESULTs: Using our TMA, the intensity of several protein pairs were significantly correlated with an increased risk of death in NSCLC. These included c-Myc with p16, mSin3A with p16 and c-Myc with mSinA. Predictive values of these pairs remained significant when evaluated based on standard IHC scores. Our results demonstrate the usefulness of CASA as a valuable tool for systematic assessment of TMA slides to identify potential predictive biomarkers using a large set of primary human tissues.

  9. c-Myc alters substrate utilization and O-GlcNAc protein posttranslational modifications without altering cardiac function during early aortic constriction

    DOE PAGES

    Ledee, Dolena; Smith, Lincoln; Bruce, Margaret; ...

    2015-08-12

    Pressure overload cardiac hypertrophy alters substrate metabolism. Prior work showed that myocardial inactivation of c-Myc (Myc) attenuated hypertrophy and decreased expression of metabolic genes after aortic constriction. Accordingly, we hypothesize that Myc regulates substrate preferences for the citric acid cycle during pressure overload hypertrophy from transverse aortic constriction (TAC) and that these metabolic changes impact cardiac function and growth. To test this hypothesis, we subjected mice with cardiac specific, inducible Myc inactivation (MycKO-TAC) and non-transgenic littermates (Cont-TAC) to transverse aortic constriction (TAC; n=7/group). A separate group underwent sham surgery (Sham, n=5). After two weeks, function was measured in isolated workingmore » hearts along with substrate fractional contributions to the citric acid cycle by using perfusate with 13C labeled mixed fatty acids, lactate, ketone bodies and unlabeled glucose and insulin. Cardiac function was similar between groups after TAC although +dP/dT and -dP/dT trended towards improvement in MycKO-TAC versus Cont-TAC. Compared to Sham, Cont-TAC had increased free fatty acid fractional contribution with a concurrent decrease in unlabeled (predominately glucose) contribution. The changes in free fatty acid and unlabeled fractional contributions were abrogated by Myc inactivation during TAC (MycKO-TAC). Additionally, protein posttranslational modification by O-GlcNAc was significantly greater in Cont-TAC versus both Sham and MycKO-TAC. Lastly, Myc alters substrate preferences for the citric acid cycle during early pressure overload hypertrophy without negatively affecting cardiac function. Myc also affects protein posttranslational modifications by O-GlcNAc during hypertrophy.« less

  10. c-Myc alters substrate utilization and O-GlcNAc protein posttranslational modifications without altering cardiac function during early aortic constriction

    SciTech Connect

    Ledee, Dolena; Smith, Lincoln; Bruce, Margaret; Kajimoto, Masaki; Isern, Nancy; Portman, Michael A.; Olson, Aaron K.; Bertrand, Luc

    2015-08-12

    Pressure overload cardiac hypertrophy alters substrate metabolism. Prior work showed that myocardial inactivation of c-Myc (Myc) attenuated hypertrophy and decreased expression of metabolic genes after aortic constriction. Accordingly, we hypothesize that Myc regulates substrate preferences for the citric acid cycle during pressure overload hypertrophy from transverse aortic constriction (TAC) and that these metabolic changes impact cardiac function and growth. To test this hypothesis, we subjected mice with cardiac specific, inducible Myc inactivation (MycKO-TAC) and non-transgenic littermates (Cont-TAC) to transverse aortic constriction (TAC; n=7/group). A separate group underwent sham surgery (Sham, n=5). After two weeks, function was measured in isolated working hearts along with substrate fractional contributions to the citric acid cycle by using perfusate with 13C labeled mixed fatty acids, lactate, ketone bodies and unlabeled glucose and insulin. Cardiac function was similar between groups after TAC although +dP/dT and -dP/dT trended towards improvement in MycKO-TAC versus Cont-TAC. Compared to Sham, Cont-TAC had increased free fatty acid fractional contribution with a concurrent decrease in unlabeled (predominately glucose) contribution. The changes in free fatty acid and unlabeled fractional contributions were abrogated by Myc inactivation during TAC (MycKO-TAC). Additionally, protein posttranslational modification by O-GlcNAc was significantly greater in Cont-TAC versus both Sham and MycKO-TAC. Lastly, Myc alters substrate preferences for the citric acid cycle during early pressure overload hypertrophy without negatively affecting cardiac function. Myc also affects protein posttranslational modifications by O-GlcNAc during hypertrophy.

  11. Distinct localizations and repression activities of MM-1 isoforms toward c-Myc.

    PubMed

    Hagio, Yuko; Kimura, Yumiko; Taira, Takahiro; Fujioka, Yuko; Iguchi-Ariga, Sanae M M; Ariga, Hiroyoshi

    2006-01-01

    MM-1 was identified as a c-Myc-binding protein and has been reported to repress the E-box-dependent transcription activity of c-Myc by recruiting HDAC1 complex via TIF1 beta/KAP1. In this study, originally isolated MM-1 was found to be a fusion protein comprised of the N-terminal 13 amino acids from the sequence of chromosome 14 and of the rest of the amino acids from that of chromosome 12 and was found to be expressed ubiquitously in all human tissues. Four splicing isoforms of MM-1, MM-1alpha, MM-1beta, MM-1gamma, and MM-1delta, which are derived from the sequence of chromosome 12, were then identified. Of these isoforms, MM-1alpha, MM-1gamma, and MM-1delta were found to be expressed in tissue-specific manners and MM-1beta was found to be expressed ubiquitously. Although all of the isoforms potentially possessed c-Myc- and TIF1beta-binding activities, MM-1beta and MM-1delta were found to be mainly localized in the cytoplasm and MM-1alpha and MM-1gamma were found to be localized in the nucleus together with both c-Myc and TIF1beta. Furthermore, when repression activities of MM-1 isoforms toward c-Myc transcription activity were examined by reporter gene assays in HeLa cells, MM-1alpha, MM-1gamma, and MM-1gamma, but not MM-1beta, were found to repress transcription activity of c-Myc, and the degrees of repression by MM-1gamma and MM-1delta were smaller than those by MM-1 and MM-1alpha. These results suggest that each MM-1 isoform distinctly regulates c-Myc transcription activity in respective tissues.

  12. Transcriptional Amplification in Tumor Cells with Elevated c-Myc

    PubMed Central

    Lin, Charles Y.; Lovén, Jakob; Rahl, Peter B.; Paranal, Ronald M.; Burge, Christopher B.; Bradner, James E.; Lee, Tong Ihn; Young, Richard A.

    2012-01-01

    Summary Elevated expression of the c-Myc transcription factor occurs frequently in human cancers and is associated with tumor aggression and poor clinical outcome. The effect of high levels of c-Myc on global gene regulation is poorly understood, but is widely thought to involve newly activated or repressed “Myc target genes”. We report here that in tumor cells expressing high levels of c-Myc, the transcription factor accumulates in the promoter regions of active genes and causes transcriptional amplification, producing increased levels of transcripts within the cell's gene expression program. Thus, rather than binding and regulating a new set of genes, c-Myc amplifies the output of the existing gene expression program. These results provide an explanation for the diverse effects of oncogenic c-Myc on gene expression in different tumor cells and suggest that transcriptional amplification reduces rate-limiting constraints for tumor cell growth and proliferation. PMID:23021215

  13. A dihydroindolizino indole derivative selectively stabilizes G-quadruplex DNA and down-regulates c-MYC expression in human cancer cells.

    PubMed

    Nagesh, Narayana; Raju, G; Srinivas, R; Ramesh, P; Reddy, M Damoder; Reddy, Ch Raji

    2015-01-01

    Telomeric and NHE III1, a c-MYC promoter region is abundant in guanine content and readily form G-quadruplex structures. Small molecules that stabilize G-quadruplex DNA were shown to reduce oncoprotein expression, initiate apoptosis and they may function as anticancer molecules. Electrospray ionization mass spectrometry, spectroscopy, isothermal titration calorimetry, Taq DNA polymerase stop assay, real time PCR and luciferase reporter assay. Cell migration assay to find out the effect of derivatives on normal as well as cancer cell proliferation. Among three different dihydroindolizino indole derivatives, 4-cyanophenyl group attached derivative has shown maximum affinity, selective interaction and higher stability towards G-quadruplex DNA over dsDNA. Further, as a potential G-quadruplex DNA stabilizer, 4-cyanophenyl linked dihydroindolizino indole derivative was found to be more efficient in inhibiting in vitro DNA synthesis, c-MYC expression and cancer cell proliferation among human cancer cells. The present study reveals that dihydroindolizino indole derivative having 4-cyanophenyl group has potential to stabilize G-quadruplex DNA and exhibit anticancer activity. These studies are useful in the identification and synthesis of lead derivatives that will selectively stabilize G-quadruplex DNA and function as anticancer agents. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Inhibitory effect of cytotoxic stilbenes related to resveratrol on the expression of the VEGF, hTERT and c-Myc genes.

    PubMed

    Martí-Centelles, Rosa; Falomir, Eva; Murga, Juan; Carda, Miguel; Marco, J Alberto

    2015-10-20

    A group of thirty-nine stilbene derivatives, prepared by means of Heck coupling reactions, has been investigated for their cytotoxicity, as well as for their ability to inhibit the production of the vascular endothelial growth factor (VEGF) and the activation of telomerase. The ability of these compounds to inhibit proliferation of two tumoral cell lines (HT-29 and MCF-7) and one non tumoral cell line (HEK-293) was first determined. Subsequently, we determined the capacity of the compounds to inhibit the secretion of VEGF in the aforementioned cell lines and to downregulate the expression of the VEGF, hTERT and c-Myc genes, the two latter involved in the control of the activation of telomerase. One of the synthetic stilbenes, (E)-4-(4-methoxystyryl)aniline, showed strong cytotoxicity and proved able to cause a marked decrease both in the secretion of VEGF and in the expression of the hTERT and c-Myc genes, in all cases at concentrations in the low nanomolar range. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  15. Suppression of c-Myc enhances p21(WAF1/CIP1) -mediated G1 cell cycle arrest through the modulation of ERK phosphorylation by ascochlorin.

    PubMed

    Jeong, Yun-Jeong; Hoe, Hyang-Sook; Cho, Hyun-Ji; Park, Kwan-Kyu; Kim, Dae-Dong; Kim, Cheorl-Ho; Magae, Junji; Kang, Dong Wook; Lee, Sang-Rae; Chang, Young-Chae

    2017-08-18

    Numerous anti-cancer agents inhibit cell cycle progression via a p53-dependent mechanism; however, other genes such as the proto-oncogene c-Myc are promising targets for anticancer therapy. In the present study, we provide evidence that ascochlorin, an isoprenoid antibiotic, is a non-toxic anti-cancer agent that induces G1 cell cycle arrest and p21(WAF1/CIP1) expression by downregulating of c-Myc protein expression. Ascochlorin promoted the G1 arrest, upregulated p53 and p21(WAF1/CIP1) , and downregulated c-Myc in HCT116 cells. In p53-deficient cells, ascochlorin enhanced the expression of G1 arrest-related genes except p53. Small interfering RNA (siRNA) mediated c-Myc silencing indicated that the transcriptional repression of c-Myc was related to ascochlorin-mediated modulation of p21(WAF1/CIP1) expression. Ascochlorin suppressed the stabilization of the c-Myc protein by inhibiting ERK and P70S6K/4EBP1 phosphorylation, whereas it had no effect on c-Myc degradation mediated by PI3K/Akt/GSK3β. The ERK inhibitor PD98059 and siRNA-mediated ERK silencing induced G1 arrest and p21(WAF1/CIP1) expression by downregulating c-Myc in p53-deficient cells. These results indicated that ascochlorin-induced G1 arrest is associated with the repression of ERK phosphorylation and c-Myc expression. Thus, we reveal a role for ascochlorin in inhibiting tumor growth via G1 arrest, and identify a novel regulatory mechanism for ERK /c-Myc. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. Arginine methylation regulates c-Myc-dependent transcription by altering promoter recruitment of the acetyltransferase p300.

    PubMed

    Tikhanovich, Irina; Zhao, Jie; Bridges, Brian; Kumer, Sean; Roberts, Ben; Weinman, Steven A

    2017-08-11

    Protein arginine methyltransferase 1 (PRMT1) is an essential enzyme controlling about 85% of the total cellular arginine methylation in proteins. We have shown previously that PRMT1 is an important regulator of innate immune responses and that it is required for M2 macrophage differentiation. c-Myc is a transcription factor that is critical in regulating cell proliferation and also regulates the M2 transcriptional program in macrophages. Here, we sought to determine whether c-Myc in myeloid cells is regulated by PRMT1-dependent arginine methylation. We found that PRMT1 activity was necessary for c-Myc binding to the acetyltransferase p300. PRMT1 inhibition decreased p300 recruitment to c-Myc target promoters and increased histone deacetylase 1 (HDAC1) recruitment, thereby decreasing transcription at these sites. Moreover, PRMT1 inhibition blocked c-Myc-mediated induction of several of its target genes, including peroxisome proliferator-activated receptor γ (PPARG) and mannose receptor C-type 1 (MRC1), suggesting that PRMT1 is necessary for c-Myc function in M2 macrophage differentiation. Of note, in primary human blood monocytes, p300-c-Myc binding was strongly correlated with PRMT1 expression, and in liver sections, PRMT1, c-Myc, and M2 macrophage levels were strongly correlated with each other. Both PRMT1 levels and M2 macrophage numbers were significantly lower in livers from individuals with a history of spontaneous bacterial peritonitis, known to have defective cellular immunity. In conclusion, our findings demonstrate that PRMT1 is an important regulator of c-Myc function in myeloid cells. PRMT1 loss in individuals with cirrhosis may contribute to their immune defects. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. C-Myc functions as a competing endogenous RNA in acute promyelocytic leukemia

    PubMed Central

    Ding, Ye; Wang, Ze-chuan; Zheng, Yi; Hu, Zheng; Li, Yang; Luo, Dong-feng; Wang, Shao-yuan

    2016-01-01

    Recent reports have described a new post-transcriptional regulation that RNA transcripts can crosstalk with each other by competing for their common microRNAs. These RNA transcripts termed competing endogenous RNAs (ceRNAs) regulate the distribution of miRNAs on their targets. One corollary from ceRNA interaction is that chromosomal translocation in acute promyelocytic leukemia (APL) would perturb ceRNA regulation due to altered expression of 3′UTRs. In our study, we demonstrate that expression of PML/RARα, the APL-associated fusion oncogene is repressed by c-Myc mRNA transcript independent of protein-coding function but dependent upon microRNA. Attenuation of c-Myc transcript results in PML/RARα-degraded cellular phenotypes in APL cells, but these Myc reduction-associated cell phenotypes are sufficient to abrogate in a microRNA dependent manner. We also show that let-7 microRNA family members promote differentiation of All-Trans-Retinoic Acid (ATRA)-induced NB4 cells and their activities are affected by expression levels of both c-Myc and PML/RARα through altering miRNA targets. These results indicate that c-Myc mRNA represses PML/RARα expression via altering the distribution of let-7 miRNAs on their targets. Our findings reveal a previously unrecognized role of c-Myc as a potential ceRNA for PML/RARα in APL. PMID:27486764

  18. Recombinant interleukin 2 regulates levels of c-myc mRNA in a cloned murine T lymphocyte.

    PubMed Central

    Reed, J C; Sabath, D E; Hoover, R G; Prystowsky, M B

    1985-01-01

    The cellular oncogene c-myc has been implicated in the regulation of growth of normal and neoplastic cells. Recently, it was suggested that c-myc gene expression may control the G0----G1-phase transition in normal lymphocytes that were stimulated to enter the cell cycle by the lectin concanavalin A (ConA). Here we describe the effects of purified recombinant interleukin 2 (rIL2) and of ConA on levels of c-myc mRNA in the noncytolytic murine T-cell clone L2. In contrast to resting (G0) primary cultures of lymphocytes, quiescent L2 cells have a higher RNA content than resting splenocytes and express receptors for interleukin 2 (IL2). Resting L2 cells are therefore best regarded as early G1-phase cells. Purified rIL2 was found to stimulate the rapid accumulation of c-myc mRNA in L2 cells. Levels of c-myc mRNA became maximal within 1 h and declined gradually thereafter. In contrast, ConA induced slower accumulation of c-myc mRNA in L2 cells, with increased levels of c-myc mRNA becoming detectable 4 to 8 h after stimulation. Experiments with the protein synthesis inhibitor cycloheximide demonstrated that the increase in levels of c-myc mRNA that were induced by ConA was a direct effect of this lectin and not secondary to IL2 production. Cyclosporin A, an immunosuppressive agent, markedly reduced the accumulation of c-myc mRNA that was induced by ConA but only slightly diminished the accumulation of c-myc mRNA that was induced by rIL2. Taken together, these data provide evidence that (i) c-myc gene expression can be regulated by at least two distinct pathways in T lymphocytes, only one of which is sensitive to cyclosporine A, and (ii) the accumulation of c-myc mRNA can be induced in T cells by IL2 during the G1 phase of the cell cycle. Images PMID:3879814

  19. Targeting c-MYC by antagonizing PP2A inhibitors in breast cancer.

    PubMed

    Janghorban, Mahnaz; Farrell, Amy S; Allen-Petersen, Brittany L; Pelz, Carl; Daniel, Colin J; Oddo, Jessica; Langer, Ellen M; Christensen, Dale J; Sears, Rosalie C

    2014-06-24

    The transcription factor c-MYC is stabilized and activated by phosphorylation at serine 62 (S62) in breast cancer. Protein phosphatase 2A (PP2A) is a critical negative regulator of c-MYC through its ability to dephosphorylate S62. By inactivating c-MYC and other key signaling pathways, PP2A plays an important tumor suppressor function. Two endogenous inhibitors of PP2A, I2PP2A, Inhibitor-2 of PP2A (SET oncoprotein) and cancerous inhibitor of PP2A (CIP2A), inactivate PP2A and are overexpressed in several tumor types. Here we show that SET is overexpressed in about 50-60% and CIP2A in about 90% of breast cancers. Knockdown of SET or CIP2A reduces the tumorigenic potential of breast cancer cell lines both in vitro and in vivo. Treatment of breast cancer cells in vitro or in vivo with OP449, a novel SET antagonist, also decreases the tumorigenic potential of breast cancer cells and induces apoptosis. We show that this is, at least in part, due to decreased S62 phosphorylation of c-MYC and reduced c-MYC activity and target gene expression. Because of the ubiquitous expression and tumor suppressor activity of PP2A in cells, as well as the critical role of c-MYC in human cancer, we propose that activation of PP2A (here accomplished through antagonizing endogenous inhibitors) could be a novel antitumor strategy to posttranslationally target c-MYC in breast cancer.

  20. Implication of polycomb members Bmi-1, Mel-18, and Hpc-2 in the regulation of p16INK4a, p14ARF, h-TERT, and c-Myc expression in primary breast carcinomas.

    PubMed

    Silva, Javier; García, José M; Peña, Cristina; García, Vanesa; Domínguez, Gemma; Suárez, Dolores; Camacho, Francisca I; Espinosa, Ruth; Provencio, Mariano; España, Pilar; Bonilla, Félix

    2006-12-01

    Deregulation of mammalian Polycomb group (PcG) members may contribute to human carcinogenesis. p16INK4a and p14ARF tumor suppressors, human telomerase reverse transcriptase (h-TERT), and oncoprotein c-Myc have been implicated in the regulation of the cell cycle and proliferation mediated by PcG proteins, mainly Bmi-1, in mice and in cell culture experiments. Here, we examine whether these in vitro findings can be extrapolated to the in vivo situation. We measure the expression of PcG members Bmi-1, Mel-18, and Hpc-2 and their potential targets by reverse transcription-PCR, immunostaining, and Western blotting in a series of 134 breast carcinomas and correlate the data with several clinical-pathologic variables of the tumors. Expression of PcG genes was variably detected, but overexpression of Bmi-1 was the most frequent PcG alteration observed. In addition, statistical direct correlation in expression level of the three PcG members was detected. A correlation between c-Myc and Bmi-1 expression levels was observed; however, there was no correlation between expression of Bmi-1 and p16INK4a, p14ARF, or h-TERT. However, expression of the other PcG members Mel-18 and Hpc-2 correlated with the cell cycle regulators. Moreover, PcG mRNA-altered expression correlated significantly with certain clinical-pathologic variables associated with poor prognosis. Our data suggest that the oncogenic role of Bmi-1 in human primary breast carcinomas is not determined by its capacity to inhibit INK4a/ARF proteins or to induce telomerase activity.

  1. Novel Agent Nitidine Chloride Induces Erythroid Differentiation and Apoptosis in CML Cells through c-Myc-miRNAs Axis

    PubMed Central

    Liu, Na; Li, Peng; Zang, Shaolei; Liu, Qiang; Ma, Daoxin; Sun, Xiulian; Ji, Chunyan

    2015-01-01

    The proto-oncogene c-Myc plays critical roles in human malignancies including chronic myeloid leukemia (CML), suggesting that the discovery of specific agents targeting c-Myc would be extremely valuable for CML treatment. Nitidine Chloride (NC), a natural bioactive alkaloid, is suggested to possess anti-tumor effects. However, the function of NC in leukemia and the underlying molecular mechanisms have not been established. In this study, we found that NC induced erythroid differentiation, accompanied by increased expression of erythroid differentiation markers, e. g. α-, ε-, γ-globin, CD235a, CD71 and α-hemoglobin stabilizing protein (AHSP) in CML cells. We also observed that NC induced apoptosis and upregulated cleaved caspase-3 and Parp-1 in K562 cells. These effects were associated with concomitant attenuation of c-Myc. Our study showed that NC treatment in CML cells enhanced phosphorylation of Thr58 residue and subsequently accelerated degradation of c-Myc. A specific group of miRNAs, which had been reported to be activated by c-Myc, mediated biological functions of c-Myc. We found that most of these miRNAs, especially miR-17 and miR-20a showed strong decrement after NC treatment or c-Myc interference. Furthermore, overexpression of c-Myc or miR-17/20a alleviated NC induced differentiation and apoptosis in K562 cells. More importantly, NC enhanced the effects of imatinib in K562 and primary CML cells. We further found that even imatinib resistant CML cell line (K562/G01) and CML primary cells exhibited high sensitivity to NC, which showed potential possibility to overcome imatinib resistance. Taken together, our results clearly suggested that NC promoted erythroid differentiation and apoptosis through c-Myc-miRNAs regulatory axis, providing potential possibility to overcome imatinib resistance. PMID:25647305

  2. Repression of miR-17-5p with elevated expression of E2F-1 and c-MYC in non-metastatic hepatocellular carcinoma and enhancement of cell growth upon reversing this expression pattern

    SciTech Connect

    El Tayebi, H.M.; Omar, K.; Hegy, S.; El Maghrabi, M.; El Brolosy, M.; Hosny, K.A.; Esmat, G.; Abdelaziz, A.I.

    2013-05-10

    Highlights: •The oncogenic miR-17-5p is downregulated in non-metastatic hepatocellular carcinoma patients. •E2F-1 and c-MYC transcripts are upregulated in non-metastatic HCC patients. •miR-17-5p forced overexpression inhibited E2F-1 and c-MYC expression in HuH-7 cells. •miR-17-5p mimicking increased HuH-7 cell growth, proliferation, migration and colony formation. •miR-17-5p is responsible for HCC progression among the c-MYC/E2F-1/miR-17-5p triad members. -- Abstract: E2F-1, c-MYC, and miR-17-5p is a triad of two regulatory loops: a negative and a positive loop, where c-MYC induces the expression of E2F-1 that induces the expression of miR-17-5p which in turn reverses the expression of E2F-1 to close the loop. In this study, we investigated this triad for the first time in hepatocellular carcinoma (HCC), where miR-17-5p showed a significant down-regulation in 23 non-metastatic HCC biopsies compared to 10 healthy tissues; however, E2F-1 and c-MYC transcripts were markedly elevated. Forced over-expression of miR-17-5p in HuH-7 cells resulted in enhanced cell proliferation, growth, migration and clonogenicity with concomitant inhibition of E2F-1 and c-MYC transcripts expressions, while antagomirs of miR-17-5p reversed these events. In conclusion, this study revealed a unique pattern of expression for miR-17-5p in non-metastatic HCC patients in contrast to metastatic HCC patients. In addition we show that miR-17-5p is the key player among the triad that tumor growth and spread.

  3. Non-transmissible Sendai virus vector encoding c-myc suppressor FBP-interacting repressor for cancer therapy.

    PubMed

    Matsushita, Kazuyuki; Shimada, Hideaki; Ueda, Yasuji; Inoue, Makoto; Hasegawa, Mamoru; Tomonaga, Takeshi; Matsubara, Hisahiro; Nomura, Fumio

    2014-04-21

    To investigate a novel therapeutic strategy to target and suppress c-myc in human cancers using far up stream element (FUSE)-binding protein-interacting repressor (FIR). Endogenous c-Myc suppression and apoptosis induction by a transient FIR-expressing vector was examined in vivo via a HA-tagged FIR (HA-FIR) expression vector. A fusion gene-deficient, non-transmissible, Sendai virus (SeV) vector encoding FIR cDNA, SeV/dF/FIR, was prepared. SeV/dF/FIR was examined for its gene transduction efficiency, viral dose dependency of antitumor effect and apoptosis induction in HeLa (cervical squamous cell carcinoma) cells and SW480 (colon adenocarcinoma) cells. Antitumor efficacy in a mouse xenograft model was also examined. The molecular mechanism of the anti-tumor effect and c-Myc suppression by SeV/dF/FIR was examined using Spliceostatin A (SSA), a SAP155 inhibitor, or SAP155 siRNA which induce c-Myc by increasing FIR∆exon2 in HeLa cells. FIR was found to repress c-myc transcription and in turn the overexpression of FIR drove apoptosis through c-myc suppression. Thus, FIR expressing vectors are potentially applicable for cancer therapy. FIR is alternatively spliced by SAP155 in cancer cells lacking the transcriptional repression domain within exon 2 (FIR∆exon2), counteracting FIR for c-Myc protein expression. Furthermore, FIR forms a complex with SAP155 and inhibits mutual well-established functions. Thus, both the valuable effects and side effects of exogenous FIR stimuli should be tested for future clinical application. SeV/dF/FIR, a cytoplasmic RNA virus, was successfully prepared and showed highly efficient gene transduction in in vivo experiments. Furthermore, in nude mouse tumor xenograft models, SeV/dF/FIR displayed high antitumor efficiency against human cancer cells. SeV/dF/FIR suppressed SSA-activated c-Myc. SAP155 siRNA, potentially produces FIR∆exon2, and led to c-Myc overexpression with phosphorylation at Ser62. HA-FIR suppressed endogenous c-Myc

  4. Pim1 kinase synergizes with c-MYC to induce advanced prostate carcinoma

    PubMed Central

    Wang, Jie; Kim, Jongchan; Roh, Meejeon; Franco, Omar E.; Hayward, Simon W.; Wills, Marcia L.; Abdulkadir, Sarki A.

    2010-01-01

    The oncogenic PIM1 kinase has been implicated as a cofactor for c-MYC in prostate carcinogenesis. Here we show that in human prostate tumors, coexpression of c-MYC and PIM1 is associated with higher Gleason grades. Using a tissue recombination model coupled with lentiviral-mediated gene transfer we find that Pim1 is weakly oncogenic in naïve adult mouse prostatic epithelium. However, it cooperates dramatically with c-MYC to induce prostate cancer within 6-weeks. Importantly, c-MYC/Pim1 synergy is critically dependent on Pim1 kinase activity. c-MYC/Pim1 tumors showed increased levels of the active serine-62 (S62) phosphorylated form of c-MYC. Grafts expressing a phosphomimetic c-MYCS62D mutant had higher rates of proliferation than grafts expressing wild type c-MYC but did not form tumors like c-MYC/Pim1 grafts, indicating that Pim1 cooperativity with c-MYC in vivo involves additional mechanisms other than enhancement of c-MYC activity by S62 phosphorylation. c-MYC/Pim1-induced prostate carcinomas demonstrate evidence of neuroendocrine (NE) differentiation. Additional studies, including the identification of tumor cells coexpressing androgen receptor and NE cell markers synaptophysin and Ascl1 suggested that NE tumors arose from adenocarcinoma cells through transdifferentiation. These results directly demonstrate functional cooperativity between c-MYC and PIM1 in prostate tumorigenesis in vivo and support efforts for targeting PIM1 in prostate cancer. PMID:20140016

  5. Inhibitory effect of pironetin analogue/colchicine hybrids on the expression of the VEGF, hTERT and c-Myc genes.

    PubMed

    Vilanova, Concepción; Díaz-Oltra, Santiago; Murga, Juan; Falomir, Eva; Carda, Miguel; Marco, J Alberto

    2015-08-15

    A small group of hybrid molecules composed of a colchicine moiety and a pironetin analogue fragment have been investigated for their ability to inhibit the expression of the VEGF, hTERT and c-Myc genes. The VEGF gene is involved in the generation of the vascular endothelial growth factor (VEGF) and thus in the angiogenic process whereas the two latter ones are related to the activation of telomerase. All three genes therefore may be of paramount importance in the cancer generation process. It has been found that colchicine and some of its derivatives display a measurable ability to inhibit the expression of the VEGF and the two other telomerase-related genes. In the case of some of the hybrids, the available data point to the colchicine fragment being responsible for the observed biological activities. It is the first time that the last biological feature has been reported for colchicine or derivatives thereof. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Suppression of c-Myc induces apoptosis via an AMPK/mTOR-dependent pathway by 4-O-methyl-ascochlorin in leukemia cells.

    PubMed

    Shin, Jae-Moon; Jeong, Yun-Jeong; Cho, Hyun-Ji; Magae, Junji; Bae, Young-Seuk; Chang, Young-Chae

    2016-05-01

    4-O-Methyl-ascochlorin (MAC) is a methylated derivative of the prenyl-phenol antibiotic ascochlorin, which was isolated from an incomplete fungus, Ascochyta viciae. Although the effects of MAC on apoptosis have been reported, the underlying mechanisms remain unknown. Here, we show that MAC promoted apoptotic cell death and downregulated c-Myc expression in K562 human leukemia cells. The effect of MAC on apoptosis was similar to that of 10058-F4 (a c-Myc inhibitor) or c-Myc siRNA, suggesting that the downregulation of c-Myc expression plays a role in the apoptotic effect of MAC. Further investigation showed that MAC downregulated c-Myc by inhibiting protein synthesis. MAC promoted the phosphorylation of AMP-activated protein kinase (AMPK) and inhibited the phosphorylation of mammalian target of rapamycin (mTOR) and its target proteins, including p70S6 K and 4E-BP-1. Treatment of cells with AICAR (an AMPK activator), rapamycin (an mTOR inhibitor), or mTOR siRNA downregulated c-Myc expression and induced apoptosis to a similar extent to that of MAC. These results suggest that the effect of MAC on apoptosis induction in human leukemia cells is mediated by the suppression of c-Myc protein synthesis via an AMPK/mTOR-dependent mechanism.

  7. Cooperation of Gata3, c-Myc and Notch in malignant transformation of double positive thymocytes.

    PubMed

    van Hamburg, Jan Piet; de Bruijn, Marjolein J W; Dingjan, Gemma M; Beverloo, H Berna; Diepstraten, Hans; Ling, Kam-Wing; Hendriks, Rudi W

    2008-06-01

    Gata transcription factors are critical regulators of proliferation and differentiation implicated in various human cancers, but specific genes activated by Gata proteins remain to be identified. We previously reported that enforced expression of Gata3 during T cell development in CD2-Gata3 transgenic mice induced CD4(+)CD8(+) double-positive (DP) T cell lymphoma. Here, we show that the presence of the DO11.10 T-cell receptor transgene, which directs DP cells towards the CD4 lineage, resulted in enhanced lymphoma development and a dramatic increase in thymocyte cell size in CD2-Gata3 transgenic mice. CD2-Gata3 DP cells expressed high levels of the proto-oncogene c-Myc but the Notch1 signaling pathway, which is known to induce c-Myc, was not activated. Gene expression profiling showed that in CD2-Gata3 lymphoma cells transcription of c-Myc and its target genes was further increased. A substantial fraction of CD2-Gata3 lymphomas had trisomy of chromosome 15, leading to an increased c-Myc gene dose. Interestingly, most lymphomas showed high expression of the Notch targets Deltex1 and Hes1, often due to activating Notch1 PEST domain mutations. Therefore, we conclude that enforced Gata3 expression converts DP thymocytes into a pre-malignant state, characterized by high c-Myc expression, whereby subsequent induction of Notch1 signaling cooperates to establish malignant transformation. The finding that Gata3 regulates c-Myc expression levels, in a direct or indirect fashion, may explain the parallel phenotypes of mice with overexpression or deficiency of either of the two transcription factors.

  8. HMG-I/Y, a New c-Myc Target Gene and Potential Oncogene

    PubMed Central

    Wood, Lisa J.; Mukherjee, Mita; Dolde, Christine E.; Xu, Yi; Maher, Joseph F.; Bunton, Tracie E.; Williams, John B.; Resar, Linda M. S.

    2000-01-01

    The HMG-I/Y gene encodes the HMG-I and HMG-Y proteins, which function as architectural chromatin binding proteins important in the transcriptional regulation of several genes. Although increased expression of the HMG-I/Y proteins is associated with cellular proliferation, neoplastic transformation, and several human cancers, the role of these proteins in the pathogenesis of malignancy remains unclear. To better understand the role of these proteins in cell growth and transformation, we have been studying the regulation and function of HMG-I/Y. The HMG-I/Y promoter was cloned, sequenced, and subjected to mutagenesis analysis. A c-Myc–Max consensus DNA binding site was identified as an element important in the serum stimulation of HMG-I/Y. The oncoprotein c-Myc and its protein partner Max bind to this site in vitro and activate transcription in transfection experiments. HMG-I/Y expression is stimulated by c-Myc in a Myc-estradiol receptor cell line in the presence of the protein synthesis inhibitor cycloheximide, indicating that HMG-I/Y is a direct c-Myc target gene. HMG-I/Y induction is decreased in Myc-deficient fibroblasts. HMG-I/Y protein expression is also increased in Burkitt's lymphoma cell lines, which are known to have increased c-Myc protein. Like Myc, increased expression of HMG-I protein leads to the neoplastic transformation of both Rat 1a fibroblasts and CB33 cells. In addition, Rat 1a cells overexpressing HMG-I protein form tumors in nude mice. Decreasing HMG-I/Y proteins using an antisense construct abrogates transformation in Burkitt's lymphoma cells. These findings indicate that HMG-I/Y is a c-Myc target gene involved in neoplastic transformation and a member of a new class of potential oncogenes. PMID:10891489

  9. NM23-H2 may play an indirect role in transcriptional activation of c-myc gene expression but does not cleave the nuclease hypersensitive element III[subscript 1

    SciTech Connect

    Dexheimer, Thomas S.; Carey, Steven S.; Zuohe, Song; Gokhale, Vijay M.; Hu, Xiaohui; Murata, Lauren B.; Maes, Estelle M.; Weichsel, Andrzej; Sun, Daekyu; Meuillet, Emmanuelle J.; Montfort, William R.; Hurley, Laurence H.

    2009-05-13

    The formation of G-quadruplex structures within the nuclease hypersensitive element (NHE) III{sub 1} region of the c-myc promoter and the ability of these structures to repress c-myc transcription have been well established. However, just how these extremely stable DNA secondary structures are transformed to activate c-myc transcription is still unknown. NM23-H2/nucleoside diphosphate kinase B has been recognized as an activator of c-myc transcription via interactions with the NHE III{sub 1} region of the c-myc gene promoter. Through the use of RNA interference, we confirmed the transcriptional regulatory role of NM23-H2. In addition, we find that further purification of NM23-H2 results in loss of the previously identified DNA strand cleavage activity, but retention of its DNA binding activity. NM23-H2 binds to both single-stranded guanine- and cytosine-rich strands of the c-myc NHE III{sub 1} and, to a lesser extent, to a random single-stranded DNA template. However, it does not bind to or cleave the NHE III{sub 1} in duplex form. Significantly, potassium ions and compounds that stabilize the G-quadruplex and i-motif structures have an inhibitory effect on NM23-H2 DNA-binding activity. Mutation of Arg{sup 88} to Ala{sup 88} (R88A) reduced both DNA and nucleotide binding but had minimal effect on the NM23-H2 crystal structure. On the basis of these data and molecular modeling studies, we have proposed a stepwise trapping-out of the NHE III{sub 1} region in a single-stranded form, thus allowing single-stranded transcription factors to bind and activate c-myc transcription. Furthermore, this model provides a rationale for how the stabilization of the G-quadruplex or i-motif structures formed within the c-myc gene promoter region can inhibit NM23-H2 from activating c-myc gene expression.

  10. Quantitative determination of c-myc facilitates the assessment of prognosis of OSCC patients.

    PubMed

    Pérez-Sayáns, M; Suárez-Peñaranda, J M; Padín-Iruegas, E; Gayoso-Diz, P; Reis-De Almeida, M; Barros-Angueira, F; Gándara-Vila, P; Blanco-Carrión, A; García-García, A

    2014-04-01

    Myc genes are a family of proto-oncogenes whose proteins are implicated in the regulation of cell proliferation, differentiation and apoptosis, and in regulating the activity of genes involved in cell division. The aim of the present study was to establish a quantitative description of the expression of c-myc and evaluate its relationship with other clinical and prognostic factors, as well as to establish a multivariate survival prediction model. This is a retrospective study of 68 patients diagnosed with oral squamous cell carcinoma (OSCC). We constructed a tissue microarray for investigating the expression of c-myc by immunohistochemistry. Statistical analyses were carried out, and a multivariate model that predicts survival was established. The average expression of c-myc was 50.32 (SD, 26.05) with a range from 6.60 to 99.48; similar for initial and advanced tumor stages. Non-smoking patients had higher levels of c-myc, showing statistically significant differences (Kruskal-Wallis χ2=5.975; p=0.05). We found no statistically significant relationship between the quantitative expression of c-myc and any other clinical or pathological parameters. For each unit of increase of c-myc, the risk increased by 1.15 (p<0.001; HR, 1.150; 95% CI, 1062-1245). Further study of this protein, which may have a significant diagnostic, prognostic and therapeutic value is warranted. Its determination can be valuable when used together with other markers to assess the prognosis of OSCC patients.

  11. Overexpression of SLC34A2 is an independent prognostic indicator in bladder cancer and its depletion suppresses tumor growth via decreasing c-Myc expression and transcriptional activity.

    PubMed

    Ye, Wen; Chen, Cui; Gao, Ying; Zheng, Zou-Shan; Xu, Yi; Yun, Miao; Weng, Hui-Wen; Xie, Dan; Ye, Sheng; Zhang, Jia-Xing

    2017-02-02

    Solute carrier family 34 member 2 (SLC34A2), a pH-sensitive sodium-dependent phosphate transporter, is associated with several human cancers. In this study, we investigate the clinical significance of SLC34A2 and its function in human bladder cancer (BC). The expression dynamics of SLC34A2 were examined in two independent cohorts of BC samples by quantitative PCR, western blotting and immunohistochemical staining. In the training cohort (156 cases), we applied the X-tile program software to assess the optimal cutoff points for biomarkers in order to accurately classify patients according to clinical outcome. In the validation cohort (130 cases), the cutoff score derived from X-title analysis was investigated to determine the association of SLC34A2 expression with survival outcome. A series of in vitro and in vivo assays were then performed to elucidate the function of SLC34A2 in BC and its underlying mechanisms. Results showed that SLC34A2 was significantly upregulated in BC cell lines and clinical samples. In both two cohorts of BC samples, high expression of SLC34A2 was associated with large tumor size, advanced T status and poor patients' survival. The depletion of SLC34A2 in BC suppressed cellular viability, colony formation and anchorage-independent growth in vitro, and inhibited xenograft tumor growth in vivo, whereas overexpression of SLC34A2 had the converse effect. Simultaneously, downregulation of SLC34A2 decreased the transcriptional activity and protein expression level of c-Myc in BC cells, whereas restoration of c-Myc expression could compromise the anti-proliferation effect of SLC34A2 depletion. Furthermore, miR-214 was proved as a negative regulator of SLC34A2. Our present study illustrated that SLC34A2 has an important role in promoting proliferation and tumorigenicity of BC, and may represent a novel therapeutic target for this disease.

  12. Genetic dissimilarity between primary colorectal carcinomas and their lymph node metastases: ploidy, p53, bcl-2, and c-myc expression--a pilot study.

    PubMed

    Zalata, Khaled Refaat; Elshal, Mohamed Farouk; Foda, Abd AlRahman Mohammad; Shoma, Ashraf

    2015-08-01

    The current paradigm of metastasis proposes that rare cells within primary tumors acquire metastatic capability via sequential mutations, suggesting that metastases are genetically dissimilar from their primary tumors. This study investigated the changes in the level of expression of a well-defined panel of cell proliferation, differentiation, and apoptosis markers between the primary colorectal cancer (CRC) and the corresponding synchronous lymph node (LN) metastasis from the same patients. DNA flow cytometry and immunostaining of p53, bcl-2, and c-myc were carried out on 36 cases of CRC radical resection specimens with their corresponding LN metastases. There was very low probability that the histological patterns of primary tumors and LN metastases are independent (p < 0.001). Metastatic tumors were significantly more diffusely positive for p53 than the primary tumors (p < 0.001). Conversely, primary tumors were significantly more diffusely positive for c-myc than metastatic tumors (p = 0.011). No significant difference was found between the LNs and the primary tumors in bcl-2 positivity (p = 0.538) and DNA aneuploidy (p = 0.35), with a tendency towards negative bcl-2 and less aneuploidy in LN metastases than primary tumors. In conclusion, LN metastatic colorectal carcinomas have a tendency of being less differentiated, with a higher incidence of diffuse p53 staining, lower incidence of bcl-2 staining, and less aneuploidy in comparison to their primary counterparts suggesting a more aggressive biological behavior, which could indicate the necessity for more aggressive adjuvant therapy.

  13. Inhibition of 5-lipoxygenase selectively triggers disruption of c-Myc signaling in prostate cancer cells.

    PubMed

    Sarveswaran, Sivalokanathan; Chakraborty, Debrup; Chitale, Dhananjay; Sears, Rosalie; Ghosh, Jagadananda

    2015-02-20

    Myc is up-regulated in almost all cancer types and is the subject of intense investigation because of its pleiotropic effects controlling a broad spectrum of cell functions. However, despite its recognition as a stand-alone molecular target, development of suitable strategies to block its function is hindered because of its nonenzymatic nature. We reported earlier that arachidonate 5-lipoxygenase (5-Lox) plays an important role in the survival and growth of prostate cancer cells, although details of the underlying mechanisms have yet to be characterized. By whole genome gene expression array, we observed that inhibition of 5-Lox severely down-regulates the expression of c-Myc oncogene in prostate cancer cells. Moreover, inhibition of 5-Lox dramatically decreases the protein level, nuclear accumulation, DNA binding, and transcriptional activities of c-Myc. Both the 5-Lox inhibition-induced down-regulation of c-Myc and induction of apoptosis are mitigated when the cells are treated with 5-oxoeicosatetraenoic acid, a metabolite of 5-Lox, confirming a role of 5-Lox in these processes. c-Myc is a transforming oncogene widely expressed in prostate cancer cells and maintains their transformed phenotype. Interestingly, MK591, a specific 5-Lox inhibitor, strongly affects the viability of Myc-overactivated prostate cancer cells and completely blocks their invasive and soft agar colony-forming abilities, but it spares nontransformed cells where expression of 5-Lox is undetectable. These findings indicate that the oncogenic function of c-Myc in prostate cancer cells is regulated by 5-Lox activity, revealing a novel mechanism of 5-Lox action and suggesting that the oncogenic function of c-Myc can be suppressed by suitable inhibitors of 5-Lox. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Activation of a Novel c-Myc-miR27-Prohibitin 1 Circuitry in Cholestatic Liver Injury Inhibits Glutathione Synthesis in Mice

    PubMed Central

    Yang, Heping; Li, Tony W.H.; Zhou, Yu; Peng, Hui; Liu, Ting; Zandi, Ebrahim; Martínez-Chantar, María Luz; Mato, José M.

    2015-01-01

    Abstract Aims: We showed that chronic cholestatic liver injury induced the expression of c-Myc but suppressed that of glutamate-cysteine ligase (GCL, composed of catalytic and modifier subunits GCLC and GCLM, respectively). This was associated with reduced nuclear antioxidant response element (ARE) binding by nuclear factor-erythroid 2 related factor 2 (Nrf2). Here, we examined whether c-Myc is involved in this process. Results: Similar to bile duct ligation (BDL), lithocholic acid (LCA) treatment in vivo induced c-Myc but suppressed GCL subunits expression at day 14. Nrf2 expression and Nrf2 ARE binding fell markedly. However, Nrf2 heterodimerization with MafG was enhanced by LCA, which prompted us to examine whether LCA treatment in vivo altered proteins that bind to ARE using biotinylated ARE in pull-down assay followed by proteomics. LCA treatment enhanced c-Myc but lowered prohibitin 1 (PHB1) binding to ARE. This was a result of c-Myc-mediated induction of microRNA 27a/b (miR27a/b), which target both PHB1 and Nrf2 to reduce their expression. Knockdown of c-Myc or miR27a/b attenuated LCA-mediated suppression of Nrf2, PHB1, and GCL subunit expression, whereas overexpression of PHB1 protected against the fall in Nrf2 and GCL subunits. Both c-Myc and PHB1 directly interact with Nrf2 but c-Myc lowers Nrf2 binding to ARE while PHB1 enhances it. Innovation: This is the first work that shows how activation of this circuit in cholestatic liver injury inhibits GCL expression. Conclusions: LCA feeding and BDL activate c-Myc-miR27a/b-PHB1 circuit, with the consequence of inhibiting Nrf2 expression and ARE binding, resulting in decreased reduced glutathione synthesis and antioxidant capacity. Antioxid. Redox Signal. 22, 259–274. PMID:25226451

  15. Transport of c-MYC by Kinesin-1 for proteasomal degradation in the cytoplasm.

    PubMed

    Lee, Clement M

    2014-09-01

    c-MYC is an oncogenic transcription factor that is degraded by the proteasome pathway. However, the mechanism that regulates delivery of c-MYC to the proteasome for degradation is not well characterized. Here, the results show that the motor protein complex Kinesin-1 transports c-MYC to the cytoplasm for proteasomal degradation. Inhibition of Kinesin-1 function enhanced ubiquitination of c-MYC and induced aggregation of c-MYC in the cytoplasm. Transport studies showed that the c-MYC aggregates moved from the nucleus to the cytoplasm and KIF5B is responsible for the transport in the cytoplasm. Furthermore, inhibition of the proteasomal degradation process also resulted in an accumulation of c-MYC aggregates in the cytoplasm. Moreover, Kinesin-1 was shown to interact with c-MYC and the proteasome subunit S6a. Inhibition of Kinesin-1 function also reduced c-MYC-dependent transformation activities. Taken together, the results strongly suggest that Kinesin-1 transports c-MYC for proteasomal degradation in the cytoplasm and the proper degradation of c-MYC mediated by Kinesin-1 transport is important for transformation activities of c-MYC. In addition, the results indicate that Kinesin-1 transport mechanism is important for degradation of a number of other proteins as well. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. A functional mammalian target of rapamycin complex 1 signaling is indispensable for c-Myc-driven hepatocarcinogenesis.

    PubMed

    Liu, Pin; Ge, Mengmeng; Hu, Junjie; Li, Xiaolei; Che, Li; Sun, Kun; Cheng, Lili; Huang, Yuedong; Pilo, Maria G; Cigliano, Antonio; Pes, Giovanni M; Pascale, Rosa M; Brozzetti, Stefania; Vidili, Gianpaolo; Porcu, Alberto; Cossu, Antonio; Palmieri, Giuseppe; Sini, Maria C; Ribback, Silvia; Dombrowski, Frank; Tao, Junyan; Calvisi, Diego F; Chen, Ligong; Chen, Xin

    2017-07-01

    Amplification and/or activation of the c-Myc proto-oncogene is one of the leading genetic events along hepatocarcinogenesis. The oncogenic potential of c-Myc has been proven experimentally by the finding that its overexpression in the mouse liver triggers tumor formation. However, the molecular mechanism whereby c-Myc exerts its oncogenic activity in the liver remains poorly understood. Here, we demonstrate that the mammalian target of rapamycin complex 1 (mTORC1) cascade is activated and necessary for c-Myc-dependent hepatocarcinogenesis. Specifically, we found that ablation of Raptor, the unique member of mTORC1, strongly inhibits c-Myc liver tumor formation. Also, the p70 ribosomal S6 kinase/ribosomal protein S6 and eukaryotic translation initiation factor 4E-binding protein 1/eukaryotic translation initiation factor 4E signaling cascades downstream of mTORC1 are required for c-Myc-driven tumorigenesis. Intriguingly, microarray expression analysis revealed up-regulation of multiple amino acid transporters, including solute carrier family 1 member A5 (SLC1A5) and SLC7A6, leading to robust uptake of amino acids, including glutamine, into c-Myc tumor cells. Subsequent functional studies showed that amino acids are critical for activation of mTORC1 as their inhibition suppressed mTORC1 in c-Myc tumor cells. In human hepatocellular carcinoma specimens, levels of c-Myc directly correlate with those of mTORC1 activation as well as of SLC1A5 and SLC7A6. Our current study indicates that an intact mTORC1 axis is required for c-Myc-driven hepatocarcinogenesis; thus, targeting the mTOR pathway or amino acid transporters may be an effective and novel therapeutic option for the treatment of hepatocellular carcinoma with activated c-Myc signaling. (Hepatology 2017;66:167-181). © 2017 by the American Association for the Study of Liver Diseases.

  17. Cooverexpression of EpCAM and c-myc genes in malignant breast tumours.

    PubMed

    Sadeghi, Samira; Hojati, Zohreh; Tabatabaeian, Hossein

    2017-03-01

    The overexpression of epithelial cell adhesion molecule (EpCAM), a proto-oncogene, affects progression, treatment, and diagnosis of many adenocarcinomas. C-myc has been shown to be a downstream target of EpCAM and is also one of the most important proto-oncogenes routinely overexpressed in breast cancer. However, cooverexpression of EpCAM and c-myc genes has not been investigated in breast cancer tissues, particularly in Iranian population. The aim of this study was to assess the expression of EpCAM and c-myc genes in malignant breast cancer tissues using reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) followed by analyses of the association between the outcomes. In this study, 122 fresh tissues, including 104 malignant and 18 benign samples, were disrupted by mortar and pestle, and then the RNA was isolated from the samples and converted to cDNA. The relative expression levels of EpCAM and c-myc genes were measured by 2(-ΔΔCt) method using RT-qPCR. EpCAM protein level was also assessed in 66 cases using Western blot technique. Using RT-qPCR method, our results showed that EpCAM was overexpressed in 48% of malignant and 11.1% of benign samples. Evaluating EpCAM protein overexpression in a portion of samples depicted the fully concordance rate between Western blot and RT-qPCR techniques. C-myc expression was first evaluated by RT-qPCR method, showing the overexpression rate of 39% and 28% in malignant and benign samples, respectively. These data were also quite concordant with the clinically available immunohistochemistry reports of the same samples studied in this study. Importantly, overexpression of EpCAM and c-myc was significantly associated and showed an agreement of 57.3%. This study demonstrated the cooverexpression of EpCAM and c-myc in breast tumours collected from breast cancer patients of the Iranian population. EpCAM and c-myc positive cases were significantly associated with reduced and enhanced risk of ER/PR positivity

  18. Reduced induction of c-fos but not of c-myc expressions in a nontumorigenic revertant R1 of EJ-ras-transformed NIH/3T3 cells treated with 12-O-tetradecanoylphorbol-13-acetate (TPA)

    SciTech Connect

    Suzuki, Hiroaki; Fujita, Hisakazu; Ogiso, Yoshifumi; Oda, Atsushi; Kuzumaki, Noboru; Uchino, Junichi )

    1989-10-01

    It has been reported that both c-fos and c-myc mRNAs are induced in NIH/3T3 cells after 12-O-tetradecanoylphorbol-13-acetate (TPA) treatment. The authors have studied the effect of TPA on the expression of c-fos and c-myc in EJ-ras-transformed NIH/3T3 and its nontumorigenic flat revertant R1 cells. Although TPA treatment induces c-myc mRNA, as in the case of NIH/3T3 cells, the induced level of c-fos mRNA is greatly reduced not only in slow growing EJ-ras-transformed NIH/3T3 but also in quiescent R1 cells. In addition, serum-induced c-fos expression is also reduced in EJ-ras-transformed NIH/3T3 and R1 cells. These observations suggest that the pathway from TPA to c-fos gene is different from that to c-myc gene and that the former pathway is down-regulated in association not with the transformed phenotype, but with EJ-ras expression, and it is possible that this reduced induction of c-fox is not specific to TPA.

  19. Combined use of nuclear phosphoprotein c-Myc and cellular phosphoprotein p53 for hepatocellular carcinoma detection in high-risk chronic hepatitis C patients.

    PubMed

    Attallah, A M; El-Far, M; Abdelrazek, M A; Omran, M M; Attallah, A A; Elkhouly, A A; Elkenawy, H M; Farid, K

    2017-10-01

    Hepatocellular carcinoma (HCC) is a multistage process resulting from various genetic changes. We aimed to determine nuclear phosphoprotein c-Myc and cellular phosphoprotein p53 expression and to evaluate their importance in HCC diagnosis. One hundred and twenty chronic hepatitis C (CHC) patients (60 non-HCC CHC patients and 60 HCC patients who had a single small (<5 cm) tumour) were recruited. The gene products of c-Myc and p53 were identified in liver tissues and serum samples using immunostaining, western blot and ELISA. Immunohistochemical detection of c-Myc and p53 with monospecific antibodies revealed intense and diffuse cytoplasmic staining patterns. Accumulated mutant proteins, released from tumour cells into the extracellular serum, were detected at 62 KDa, for c-Myc, and 53 KDa, for p53, using western blotting. In contrast to alpha feto-protein, there was a significant increase (p < 0.0001) in the positivity rate of c-Myc (86.7% vs. 6.7%) and p53 (78.3% vs. 8.3%) in the malignant vs. non-malignant patients. The parallel combination of c-Myc and p53 reach the absolute sensitivity (100%), for more accurate and reliable HCC detection (specificity was 87%). c-Myc and p53 are potential HCC diagnostic biomarkers, and convenient combinations of them could improve diagnostic accuracy of HCC.

  20. C-Myc regulates radiation-induced G2/M cell cycle arrest and cell death in human cervical cancer cells.

    PubMed

    Cui, Fengmei; Hou, Jun; Huang, Chengcheng; Sun, Xiujin; Zeng, Yanan; Cheng, Huiying; Wang, Hao; Li, Chao

    2017-04-01

    The study was conducted to investigate the role of c-Myc in the regulation of ionizing radiation-induced cell cycle arrest and cell death in human cervical cancer cells. Control and c-Myc-silenced Hela cells were collected at different time points after (60) Co γ-ray radiation. Flow cytometry was used to measure cell cycle distribution and apoptosis. Immunofluorescence was applied to determine the percentage of cells in M phase. Transmission electron microscopy and immunoblotting were used to detect the induction of autophagy after radiation. Immunoblotting was also used to measure the expression levels of apoptosis-related proteins. In c-Myc-silenced cells, radiation induced delayed but long-lasting G2/M arrest and an abnormal M phase compared with the control. In addition, c-Myc knockdown significantly inhibited apoptotic cell death induced by radiation. Meanwhile, radiation-induced autophagy appeared stronger in c-Myc-silenced cells. Mechanically, we found that Caspase 8 and survivin expression was decreased in c-Myc-silenced Hela-630 cells. These data showed that c-Myc serves as a co-regulator in radiation-induced G2/M cell cycle arrest and cell death in human cervical cancer cells. © 2017 Japan Society of Obstetrics and Gynecology.

  1. Rabring7 Degrades c-Myc through Complex Formation with MM-1

    PubMed Central

    Torii, Ayako; Tashiro, Erika; Miyazawa, Makoto; Ariga, Hiroyoshi; Iguchi-Ariga, Sanae M. M.

    2012-01-01

    We have reported that a novel c-Myc-binding protein, MM-1, repressed E-box-dependent transcription and transforming activities of c-Myc and that a mutation of A157R in MM-1, which is often observed in patients with leukemia or lymphoma, abrogated all of the repressive activities of MM-1 toward c-Myc, indicating that MM-1 is a novel tumor suppressor. MM-1 also binds to the ubiquitin-proteasome system, leading to degradation of c-Myc. In this study, we identified Rabring7, a Rab7-binding and RING finger-containing protein, as an MM-1-binding protein, and we found that Rabring7 mono-ubiquitinated MM-1 in the cytoplasm without degradation of MM-1. Rabring7 was also found to bind to c-Myc and to ubiquitinate c-Myc in a threonine 58-dependent manner. When c-Myc was co-transfected with MM-1 and Rabring7, c-Myc was degraded. Furthermore, it was found that c-Myc was stabilized in MM-1-knockdown cells even when Rabring7 was transfected and that Rabring7 was bound to and co-localized with MM-1 and c-Myc after MM-1 and Rabring7 had been translocated from the cytoplasm to the nucleus. These results suggest that Rabring7 stimulates c-Myc degradation via mono-ubiquitination of MM-1. PMID:22844532

  2. Rabring7 degrades c-Myc through complex formation with MM-1.

    PubMed

    Narita, Rina; Kitaura, Hirotake; Torii, Ayako; Tashiro, Erika; Miyazawa, Makoto; Ariga, Hiroyoshi; Iguchi-Ariga, Sanae M M

    2012-01-01

    We have reported that a novel c-Myc-binding protein, MM-1, repressed E-box-dependent transcription and transforming activities of c-Myc and that a mutation of A157R in MM-1, which is often observed in patients with leukemia or lymphoma, abrogated all of the repressive activities of MM-1 toward c-Myc, indicating that MM-1 is a novel tumor suppressor. MM-1 also binds to the ubiquitin-proteasome system, leading to degradation of c-Myc. In this study, we identified Rabring7, a Rab7-binding and RING finger-containing protein, as an MM-1-binding protein, and we found that Rabring7 mono-ubiquitinated MM-1 in the cytoplasm without degradation of MM-1. Rabring7 was also found to bind to c-Myc and to ubiquitinate c-Myc in a threonine 58-dependent manner. When c-Myc was co-transfected with MM-1 and Rabring7, c-Myc was degraded. Furthermore, it was found that c-Myc was stabilized in MM-1-knockdown cells even when Rabring7 was transfected and that Rabring7 was bound to and co-localized with MM-1 and c-Myc after MM-1 and Rabring7 had been translocated from the cytoplasm to the nucleus. These results suggest that Rabring7 stimulates c-Myc degradation via mono-ubiquitination of MM-1.

  3. Defective expression of Notch1 and Notch2 in connection to alterations of c-Myc and Ikaros in gamma-radiation-induced mouse thymic lymphomas.

    PubMed

    López-Nieva, P; Santos, J; Fernández-Piqueras, J

    2004-07-01

    Gamma-radiation-induced thymic lymphomas constitute a heterogeneous group of T-cell lymphomas. Some tumour suppressor genes and oncogenes have been shown to be defective in a fraction of such lymphomas, yet a considerable number of these remain elusive in terms of gene alterations. In the present work we present evidence that gamma-radiation-induced thymic lymphomas in (C57BL/6 J x BALB/c) F1 hybrid mice often exhibit increased levels of Notch1 expression, but, contrary to what was expected, they also exhibit a clearly reduced Notch2 mRNA expression, suggesting a cooperative antagonism of these genes. These results represent the first reported instance for the involvement of Notch2 inactivation in the development of thymic primary tumours while confirming the role of Notch1 as an activated oncogene. Additional analyses revealed that c-Myc over-expression and partial inactivation of Znfn1a1/Ikaros appear to be relevant events some how coupled to alterations in Notch genes inducing these kinds of tumours.

  4. c-Myc-Induced Survivin Is Essential for Promoting  the Notch-Dependent T Cell Differentiation from  Hematopoietic Stem Cells.

    PubMed

    Haque, Rizwanul; Song, Jianyong; Haque, Mohammad; Lei, Fengyang; Sandhu, Praneet; Ni, Bing; Zheng, Songguo; Fang, Deyu; Yang, Jin-Ming; Song, Jianxun

    2017-03-06

    Notch is indispensable for T cell lineage commitment, and is needed for thymocyte differentiation at early phases. During early stages of T cell development, active Notch prevents other lineage potentials including B cell lineage and myeloid cell (e.g., dendritic cell) lineage. Nevertheless, the precise intracellular signaling pathways by which Notch promotes T cell differentiation remain unclear. Here we report that the transcription factor c-Myc is a key mediator of the Notch signaling-regulated T cell differentiation. In a well-established in vitro differentiation model of T lymphocytes from hematopoietic stem cells, we showed that Notch1 and 4 directly promoted c-Myc expression; dominant-negative (DN) c-Myc inhibited early T cell differentiation. Moreover, the c-Myc expression activated by Notch signaling increased the expression of survivin, an inhibitor of apoptosis (IAP) protein. We further demonstrated that over-expression of c-Myc increased the abundance of survivin and the T cell differentiation thereof, whereas dn c-Myc reduced survivin levels and concomitantly retarded the differentiation. The c-Myc-dependent survivin induction is functionally germane, because Notch-dependent T cell differentiation was canceled by the depletion of survivin. These results identify both c-Myc and survivin as important mediators of the Notch signaling-regulated differentiation of T lymphocytes from hematopoietic stem cells.

  5. Inhibitory effects of antisense oligodeoxynucleotides targeting c-myc mRNA on smooth muscle cell proliferation and migration.

    PubMed Central

    Biro, S; Fu, Y M; Yu, Z X; Epstein, S E

    1993-01-01

    Smooth muscle cell (SMC) proliferation and migration play pivotal roles in restenosis following angioplasty. c-myc is an immediate early response gene induced by various mitogens, and several lines of evidence derived from experiments using transformed or hematopoietic cell lines, or transgenic mice, suggest its protein product plays a role in numerous signaling transduction pathways, including those modulating cell division. We therefore reasoned that a strategy employing oligodeoxynucleotides (ODNs) complementary to c-myc mRNA (antisense ODNs) might be potent inhibitors of SMC proliferation and, perhaps, of SMC migration. To evaluate this concept, we tested several antisense ODNs targeted to c-myc mRNA (15- or 18-mer ODNs complementary to different c-myc mRNA sequences) by introducing them individually into the medium of cultured rat aortic SMCs. Phosphoroamidate-modified ODNs were employed to retard degradation. Antisense ODNs inhibited, in a concentration-dependent manner, SMC proliferation and SMC migration. Maximal inhibitory effect was 50% for proliferation and > 90% for migration. These effects were associated with decreased SMC expression of c-myc-encoded protein by Western immunoblotting and immunocytochemical staining. ODNs with the same nucleotides but a scrambled sequence caused no effect. These results indicate that the c-myc gene product is involved in the signal transduction pathways mediating SMC proliferation and migration in the in vitro model we employed. The results also suggest a potential role of antisense strategies designed to inhibit c-myc expression for the prevention of coronary restenosis. Images PMID:8421701

  6. Erythropoietin activates two distinct signaling pathways required for the initiation and the elongation of c-myc

    NASA Technical Reports Server (NTRS)

    Chen, C.; Sytkowski, A. J.

    2001-01-01

    Erythropoietin (Epo) stimulation of erythroid cells results in the activation of several kinases and a rapid induction of c-myc expression. Protein kinase C is necessary for Epo up-regulation of c-myc by promoting elongation at the 3'-end of exon 1. PKCepsilon mediates this signal. We now show that Epo triggers two signaling pathways to c-myc. Epo rapidly up-regulated Myc protein in BaF3-EpoR cells. The phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 blocked Myc up-regulation in a concentration-dependent manner but had no effect on the Epo-induced phosphorylation of ERK1 and ERK2. LY294002 also had no effect on Epo up-regulation of c-fos. MEK1 inhibitor PD98059 blocked both the c-myc and the c-fos responses to Epo. PD98059 and the PKC inhibitor H7 also blocked the phosphorylation of ERK1 and ERK2. PD98059 but not LY294002 inhibited Epo induction of ERK1 and ERK2 phosphorylation in normal erythroid cells. LY294002 blocked transcription of c-myc at exon 1. PD98059 had no effect on transcription from exon 1 but, rather, blocked Epo-induced c-myc elongation at the 3'-end of exon 1. These results identify two Epo signaling pathways to c-myc, one of which is PI3K-dependent operating on transcriptional initiation, whereas the other is mitogen-activated protein kinase-dependent operating on elongation.

  7. Erythropoietin activates two distinct signaling pathways required for the initiation and the elongation of c-myc

    NASA Technical Reports Server (NTRS)

    Chen, C.; Sytkowski, A. J.

    2001-01-01

    Erythropoietin (Epo) stimulation of erythroid cells results in the activation of several kinases and a rapid induction of c-myc expression. Protein kinase C is necessary for Epo up-regulation of c-myc by promoting elongation at the 3'-end of exon 1. PKCepsilon mediates this signal. We now show that Epo triggers two signaling pathways to c-myc. Epo rapidly up-regulated Myc protein in BaF3-EpoR cells. The phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 blocked Myc up-regulation in a concentration-dependent manner but had no effect on the Epo-induced phosphorylation of ERK1 and ERK2. LY294002 also had no effect on Epo up-regulation of c-fos. MEK1 inhibitor PD98059 blocked both the c-myc and the c-fos responses to Epo. PD98059 and the PKC inhibitor H7 also blocked the phosphorylation of ERK1 and ERK2. PD98059 but not LY294002 inhibited Epo induction of ERK1 and ERK2 phosphorylation in normal erythroid cells. LY294002 blocked transcription of c-myc at exon 1. PD98059 had no effect on transcription from exon 1 but, rather, blocked Epo-induced c-myc elongation at the 3'-end of exon 1. These results identify two Epo signaling pathways to c-myc, one of which is PI3K-dependent operating on transcriptional initiation, whereas the other is mitogen-activated protein kinase-dependent operating on elongation.

  8. Kinetic profiling of the c-Myc transcriptome and bioinformatic analysis of repressed gene promoters

    PubMed Central

    Yap, Chui-Sun; Peterson, Abigail L; Castellani, Gastone

    2011-01-01

    Mammalian c-Myc is a member of a small family of three related proto-oncogenic transcription factors. c-Myc has an unusually broad array of regulatory functions, which include roles in cell cycle and apoptosis, a variety of metabolic functions, cell differentiation, senescence and stem cell maintenance. c-Myc modulates the expression of a very large number of genes, but the magnitude of the majority of the regulatory effects is only two-fold or less. c-Myc can both activate and repress the promoters of its target genes. Identification of genes directly regulated by c-Myc has been an enduring question in the field. We report here microarray expression profiling of a high resolution time course of c-Myc induction, using fibroblast cells in which c-Myc activity can be modulated from null to physiological. The c-Myc transcriptome data set presented is the largest reported to date with 4,186 differentially regulated genes (1,826 upregulated, 2,360 downregulated, 1% FDR). The gene expression patterns fit well with the known biological functions of c-Myc. We describe several novel findings and present tools for further data mining. Although the mechanisms of transcriptional activation by c-Myc are well understood, how c-Myc represses an even greater number of genes remains incompletely described. One mechanism involves the binding of c-Myc to other, positively acting transcription factors and interfering with their activities. We identified rapid-response genes likely to be direct c-Myc targets and analyzed the promoters of the repressed genes to identify transcription factors that could be targets of c-Myc repression. PMID:21623162

  9. Cooperation of Epac1/Rap1/Akt and PKA in prostaglandin E(2) -induced proliferation of human umbilical cord blood derived mesenchymal stem cells: involvement of c-Myc and VEGF expression.

    PubMed

    Jang, Min Woo; Yun, Seung Pil; Park, Jae Hong; Ryu, Jung Min; Lee, Jang Hern; Han, Ho Jae

    2012-12-01

    Prostaglandin E(2) (PGE(2)) is well known to regulate cell functions through cAMP; however, the role of exchange protein directly activated by cAMP (Epac1) and protein kinase A (PKA) in modulating such functions is unknown in human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs). Therefore, we investigated the relationship between Epac1 and PKA during PGE(2)-induced hUCB-MSC proliferation and its related signaling pathways. PGE(2) increased cell proliferation, and E-type prostaglandin (EP) 2 receptor mRNA expression level and activated cAMP generation, which were blocked by EP2 receptor selective antagonist AH 6809. PGE(2) increased Epac1 expression, Ras-related protein 1 (Rap1) activation level, and Akt phosphorylation, which were inhibited by AH 6809, adenylyl cyclase inhibitor SQ 22536, and Epac1/Rap1-specific siRNA. Also, PGE(2) increased PKA activity, which was inhibited by AH 6809, SQ 22536, and PKA inhibitor PKI. HUCB-MSCs were incubated with the Epac agonist 8-pCPT-cAMP or the PKA agonist 6-phe-cAMP to examine whether Epac1/Rap1/Akt activation was independent of PKA activation. 8-pCPT-cAMP increased Akt phosphorylation but not PKA activity. 6-Phe-cAMP increased PKA activity, but not Akt phosphorylation. Additionally, an Akt inhibitor or PKA inhibitor (PKI) did not block the PGE(2) -induced increase in PKA activity or Akt phosphorylation, respectively. Moreover, PGE(2) increased glycogen synthase kinase (GSK)-3β phosphorylation and nuclear translocation of active-β-catenin, which were inhibited by Akt inhibitor or/and PKI. PGE(2) increased c-Myc and vascular endothelial growth factor (VEGF) expression levels, which were blocked by β-catenin siRNA. In conclusion, PGE(2) stimulated hUCB-MSC proliferation through β-catenin-mediated c-Myc and VEGF expression via Epac/Rap1/Akt and PKA cooperation. Copyright © 2012 Wiley Periodicals, Inc.

  10. CT120: A New Potential Target for c-Myc in Head and Neck Cancers

    PubMed Central

    Baltaci, Elif; Seyhan, Betül; Baykara, Onur; Buyru, Nur

    2017-01-01

    Background: CT120 is a universally expressed protein with seven transmembrane domains. It functions in cell proliferation, survival and apoptosis by activating Raf/MEK/ERK and PI3K/Akt signaling pathways. Evidence suggests that CT120 plays important roles in lung carcinogenesis and oncogenic pathway activation. c-Myc is an important transcription factor modulating cell progression, apoptosis and cellular transformation. Previous studies have shown that MYC gene is amplified in many types of cancer including head and neck squamous cell carcinoma (HNSCC). Myc can regulate expression of many genes by binding to E-boxes. The aim of this study was to investigate the relationship between c-Myc protein and CT120 gene. Methods: Tumor and normal tissue samples from 50 patients with HNSCC were investigated with chromatin immunoprecipitation assay (ChIP), Illumina MiSeq, bisulphite sequencing and qRT-PCR. Results: c-Myc binds to all E-boxes except E-box 5 on CT120 promoter. The CpG dinucleotides were found to be partially methylated in all tumor and normal tissue samples. Bisulphite sequencing showed a 10% down-regulation in the methylation levels of the tumor tissues. CT120 gene was hypomethylated and up-regulated in 56% of the tumor tissue samples. Expression of c-Myc was significantly higher in tumor tissues than in non-cancerous tissue samples. MYC was overexpressed in 68% of the tumor tissue samples compared to normal tissues. The mean MYC levels were 2.42-fold higher in the tumor tissue samples. In 48% of the tumor tissues, MYC and CT120A mRNA were up- or down-regulated simultaneously (p<0.001). Conclusion: We show that CT120 gene is a target of c-Myc and it contributes to cancer progression in HNSCC. PMID:28382151

  11. CT120: A New Potential Target for c-Myc in Head and Neck Cancers.

    PubMed

    Baltaci, Elif; Seyhan, Betül; Baykara, Onur; Buyru, Nur

    2017-01-01

    Background: CT120 is a universally expressed protein with seven transmembrane domains. It functions in cell proliferation, survival and apoptosis by activating Raf/MEK/ERK and PI3K/Akt signaling pathways. Evidence suggests that CT120 plays important roles in lung carcinogenesis and oncogenic pathway activation. c-Myc is an important transcription factor modulating cell progression, apoptosis and cellular transformation. Previous studies have shown that MYC gene is amplified in many types of cancer including head and neck squamous cell carcinoma (HNSCC). Myc can regulate expression of many genes by binding to E-boxes. The aim of this study was to investigate the relationship between c-Myc protein and CT120 gene. Methods: Tumor and normal tissue samples from 50 patients with HNSCC were investigated with chromatin immunoprecipitation assay (ChIP), Illumina MiSeq, bisulphite sequencing and qRT-PCR. Results: c-Myc binds to all E-boxes except E-box 5 on CT120 promoter. The CpG dinucleotides were found to be partially methylated in all tumor and normal tissue samples. Bisulphite sequencing showed a 10% down-regulation in the methylation levels of the tumor tissues. CT120 gene was hypomethylated and up-regulated in 56% of the tumor tissue samples. Expression of c-Myc was significantly higher in tumor tissues than in non-cancerous tissue samples. MYC was overexpressed in 68% of the tumor tissue samples compared to normal tissues. The mean MYC levels were 2.42-fold higher in the tumor tissue samples. In 48% of the tumor tissues, MYC and CT120A mRNA were up- or down-regulated simultaneously (p<0.001). Conclusion: We show that CT120 gene is a target of c-Myc and it contributes to cancer progression in HNSCC.

  12. New structural determinants for c-Myc specific heterodimerization with Max and development of a novel homodimeric c-Myc b-HLH-LZ.

    PubMed

    Beaulieu, Marie-Eve; McDuff, François-Olivier; Frappier, Vincent; Montagne, Martin; Naud, Jean-François; Lavigne, Pierre

    2012-07-01

    c-Myc must heterodimerize with Max to accomplish its functions as a transcription factor. This specific heterodimerization occurs through the b-HLH-LZ (basic region, helix 1-loop-helix 2-leucine zipper) domains. In fact, many studies have shown that the c-Myc b-HLH-LZ (c-Myc'SH) preferentially forms a heterodimer with the Max b-HLH-LZ (Max'SH). The primary mechanism underlying the specific heterodimerization lies on the destabilization of both homodimers and the formation of a more stable heterodimer. In this regard, it has been widely reported that c-Myc'SH has low solubility and homodimerizes poorly and that repulsions within the LZ domain account for the homodimer instability. Here, we show that replacing one residue in the basic region and one residue in Helix 1 (H(1)) of c-Myc'SH with corresponding residues conserved in b-HLH proteins confers to c-Myc'SH a higher propensity to form a stable homodimer in solution. In stark contrast to the wild-type protein, this double mutant (L362R, R367L) of the c-Myc b-HLH-LZ (c-Myc'RL) shows limited heterodimerization with Max'SH in vitro. In addition, c-Myc'RL forms highly stable and soluble complexes with canonical as well as non-canonical E-box probes. Altogether, our results demonstrate for the first time that structural determinants driving the specific heterodimerization of c-Myc and Max are embedded in the basic region and H(1) of c-Myc and that these can be exploited to engineer a novel homodimeric c-Myc b-HLH-LZ with the ability of binding the E-box sequence autonomously and with high affinity.

  13. Energy stress-induced lncRNA FILNC1 represses c-Myc-mediated energy metabolism and inhibits renal tumor development.

    PubMed

    Xiao, Zhen-Dong; Han, Leng; Lee, Hyemin; Zhuang, Li; Zhang, Yilei; Baddour, Joelle; Nagrath, Deepak; Wood, Christopher G; Gu, Jian; Wu, Xifeng; Liang, Han; Gan, Boyi

    2017-10-04

    The roles of long non-coding RNAs in cancer metabolism remain largely unexplored. Here we identify FILNC1 (FoxO-induced long non-coding RNA 1) as an energy stress-induced long non-coding RNA by FoxO transcription factors. FILNC1 deficiency in renal cancer cells alleviates energy stress-induced apoptosis and markedly promotes renal tumor development. We show that FILNC1 deficiency leads to enhanced glucose uptake and lactate production through upregulation of c-Myc. Upon energy stress, FILNC1 interacts with AUF1, a c-Myc mRNA-binding protein, and sequesters AUF1 from binding c-Myc mRNA, leading to downregulation of c-Myc protein. FILNC1 is specifically expressed in kidney, and is downregulated in renal cell carcinoma; also, its low expression correlates with poor clinical outcomes in renal cell carcinoma. Together, our study not only identifies FILNC1 as a negative regulator of renal cancer with potential clinical value, but also reveals a regulatory mechanism by long non-coding RNAs to control energy metabolism and tumor development.FoxO are commonly down-regulated transcription factors and tumor suppressors in renal cell cancer (RCC). Here, the authors show that upon energy stress FoxOs induce the expression of the long non-coding RNA FILNC1, which inhibits survival of RCC by downregulating c-Myc and c-Myc-dependent metabolic rewiring.

  14. Alterations in TP53, cyclin D2, c-Myc, p21WAF1/CIP1 and p27KIP1 expression associated with progression in B-CLL.

    PubMed

    Halina, Antosz; Artur, Paterski; Barbara, Marzec-Kotarska; Joanna, Sajewicz; Anna, Dmoszyńska

    2010-12-01

    B-cell chronic lymphocytic leukaemia (B-CLL) originates from B lymphocytes that may differ in the activation level, maturation state or cellular subgroups in peripheral blood. Tumour progression in CLL B cells seems to result in gradual accumulation of the clone of resting B lymphocytes in the early phases (G0/G1) of the cell cycle. The G1 phase is impaired in B-CLL. We investigated the gene expression of five key cell cycle regulators: TP 53, c-Myc, cyclin D2, p21WAF1/CIP1 and p27KIP1, which primarily regulate the G1 phase of the cell cycle, or S-phase entry and ultimately control the proliferation and cell growth as well as their role in B-CLL progression. The study was conducted in peripheral blood CLL lymphocytes of 40 previously untreated patients. Statistical analysis of correlations of TP53, cyclin D2, c-Myc, p21WAF1/CIP1 and p27KIP1 expressions in B-CLL patients with different Rai stages demonstrated that the progression of disease was accompanied by increases in p53, cyclin D2 and c-Myc mRNA expression. The expression of p27KIP1 was nearly statistically significant whereas that of p21 WAF1/CIP1 showed no such correlation. Moreover, high expression levels of TP53 and c-Myc genes were found to be closely associated with more aggressive forms of the disease requiring earlier therapy.

  15. Decoding c-Myc networks of cell cycle and apoptosis regulated genes in a transgenic mouse model of papillary lung adenocarcinomas

    PubMed Central

    Ciribilli, Yari; Singh, Prashant; Spanel, Reinhard; Inga, Alberto; Borlak, Jürgen

    2015-01-01

    The c-Myc gene codes for a basic-helix-loop-helix-leucine zipper transcription factor protein and is reported to be frequently over-expressed in human cancers. Given that c-Myc plays an essential role in neoplastic transformation we wished to define its activity in lung cancer and therefore studied its targeted expression to respiratory epithelium in a transgenic mouse disease model. Using histological well-defined tumors, transcriptome analysis identified novel c-Myc responsive cell cycle and apoptosis genes that were validated as direct c-Myc targets using EMSA, Western blotting, gene reporter and ChIP assays. Through computational analyses c-Myc cooperating transcription factors emerged for repressed and up-regulated genes in cancer samples, namely Klf7, Gata3, Sox18, p53 and Elf5 and Cebpα, respectively. Conversely, at promoters of genes regulated in transgenic but non-carcinomatous lung tissue enriched binding sites for c-Myc, Hbp1, Hif1 were observed. Bioinformatic analysis of tumor transcriptomic data revealed regulatory gene networks and highlighted mortalin and moesin as master regulators while gene reporter and ChIP assays in the H1299 lung cancer cell line as well as cross-examination of published ChIP-sequence data of 7 human and 2 mouse cell lines provided strong evidence for the identified genes to be c-Myc targets. The clinical significance of findings was established by evaluating expression of orthologous proteins in human lung cancer. Taken collectively, a molecular circuit for c-Myc-dependent cellular transformation was identified and the network analysis broadened the perspective for molecularly targeted therapies. PMID:26427040

  16. Decoding c-Myc networks of cell cycle and apoptosis regulated genes in a transgenic mouse model of papillary lung adenocarcinomas.

    PubMed

    Ciribilli, Yari; Singh, Prashant; Spanel, Reinhard; Inga, Alberto; Borlak, Jürgen

    2015-10-13

    The c-Myc gene codes for a basic-helix-loop-helix-leucine zipper transcription factor protein and is reported to be frequently over-expressed in human cancers. Given that c-Myc plays an essential role in neoplastic transformation we wished to define its activity in lung cancer and therefore studied its targeted expression to respiratory epithelium in a transgenic mouse disease model. Using histological well-defined tumors, transcriptome analysis identified novel c-Myc responsive cell cycle and apoptosis genes that were validated as direct c-Myc targets using EMSA, Western blotting, gene reporter and ChIP assays.Through computational analyses c-Myc cooperating transcription factors emerged for repressed and up-regulated genes in cancer samples, namely Klf7, Gata3, Sox18, p53 and Elf5 and Cebpα, respectively. Conversely, at promoters of genes regulated in transgenic but non-carcinomatous lung tissue enriched binding sites for c-Myc, Hbp1, Hif1 were observed. Bioinformatic analysis of tumor transcriptomic data revealed regulatory gene networks and highlighted mortalin and moesin as master regulators while gene reporter and ChIP assays in the H1299 lung cancer cell line as well as cross-examination of published ChIP-sequence data of 7 human and 2 mouse cell lines provided strong evidence for the identified genes to be c-Myc targets. The clinical significance of findings was established by evaluating expression of orthologous proteins in human lung cancer. Taken collectively, a molecular circuit for c-Myc-dependent cellular transformation was identified and the network analysis broadened the perspective for molecularly targeted therapies.

  17. Systematic analysis of the contribution of c-myc mRNA constituents upon cap and IRES mediated translation.

    PubMed

    Meristoudis, Christos; Trangas, Theoni; Lambrianidou, Andromachi; Papadopoulos, Vasilios; Dimitriadis, Euthymios; Courtis, Nelly; Ioannidis, Panayotis

    2015-12-01

    Fine tuning of c-MYC expression is critical for its action and is achieved by several regulatory mechanisms. The contribution of c-myc mRNA regulatory sequences on its translational control has been investigated individually. However, putative interactions have not been addressed so far. The effect of these interactions upon the translatability of monocistronic and bicistronic chimaeric mRNAs, carrying combinations of the c-myc mRNA 5'-untranlated region (UTR), 3'-UTR, and coding region instability element (CRD) was investigated on this study. The presence of the 5'-UTR induced an increase in translatability of 50%. The presence of the CRD element, when in frame, reduced translatability by approximately 50%, regardless of the expression levels of the wild type CRD- binding protein (CRD-BP/IMP1). Conversely, overexpression of a mutated CRD-BP/IMP1 (Y396F) further impeded translation of the chimaeric mRNAs carrying its cognate sequences. The presence of the c-myc 3'-UTR increased translatability by approximately 300% affecting both cap and c-myc internal ribosome entry site (IRES) mediated translation. In addition, 3'-UTR rescued the cap mediated translation in the presence of the polyadenylation inhibitor cordycepin. Furthermore, the 3'-UTR rescued cap mediated translation under metabolic stress conditions and this was enhanced in the absence of a long poly (A) tail.

  18. Functional divergence of duplicated c-myc genes in a tetraploid fish, the common carp (Cyprinus carpio).

    PubMed

    Futami, Kunihiko; Zhang, Huan; Okamoto, Nobuaki

    2005-12-19

    The proto-oncogene c-myc is thought to be one of the most important genes in controlling cell proliferation. In a tetraploid fish, two c-myc genes (CAM1 and CAM2) were previously isolated from the common carp, Cyprinus carpio, and were shown to have different expression patterns in adult tissues. Here we found that CAM1 and CAM2 proteins had distinct properties in terms of their transcription regulation system, formation of the transcription activator complex Myc/Max, and transcriptional activation of the target gene. These results showed that the two carp c-Myc proteins have overlapping but distinct functions, suggesting that CAM1 and CAM2 are evolving to acquire different functions after an earlier tetraploidization event.

  19. Miz-1 and Max compete to engage c-Myc: implication for the mechanism of inhibition of c-Myc transcriptional activity by Miz-1.

    PubMed

    Bédard, Mikaël; Maltais, Loïka; Montagne, Martin; Lavigne, Pierre

    2017-02-01

    c-Myc is a basic helix-loop-helix leucine zipper (b-HLH-LZ) transcription factor deregulated in the majority of human cancers. As a heterodimer with Max, another b-HLH-LZ transcription factor, deregulated and persistent c-Myc accumulates at transcriptionally active promoters and enhancers and amplifies transcription. This leads to the so-called transcriptional addiction of tumor cells. Recent studies have showed that c-Myc transcriptional activities can be reversed by its association with Miz-1, a POZ transcription factor containing 13 classical zinc fingers. Although evidences have led to suggest that c-Myc interacts with both Miz-1 and Max to form a ternary repressive complex, earlier evidences also suggest that Miz-1 and Max may compete to engage c-Myc. In such a scenario, the Miz-1/c-Myc complex would be the entity responsible for the inhibition of c-Myc transcriptional amplification. Considering the implications of the Miz-1/c-Myc interaction, it is highly important to solve this duality. While two potential c-Myc interacting domains (hereafter termed MID) have been identified in Miz-1 by yeast two-hybrid, with the b-HLH-LZ as a bait, the biophysical characterization of these interactions has not been reported so far. Here, we report that the MID located between the 12th and 13th zinc finger of Miz-1 and the b-HLH-LZ of Max compete to form a complex with the b-HLH-LZ of c-Myc. Our results support the notion that the repressive action of Miz-1 on c-Myc does not rely on the formation of a ternary complex. The implications of these observations for the mechanism of inhibition of c-Myc transcriptional activity by Miz-1 are discussed. Proteins 2017; 85:199-206. © 2016 Wiley Periodicals, Inc.

  20. [Clinical features in DLBCL and translocation BCL2/c-MYC "double hit" lymphoma].

    PubMed

    Škunca, Željka; Domimis, Mara; Plninc-Peraica, Ana; Jakšić, Branimir

    2014-06-01

    Diffuse large B-cell lymphoma (DLBCL) is classified as lymphoma and various entities using the gene expression of proteins are classified into three groups. The aim of this study was to clarify the clinical, biological, immunophenotypic and cytogenetic features of DLBCL with translocation t (14; 18) and 8q24/c-MYC. Eleven DLBCL patients with dual translation were monitored during the 2000-2009 period. The characteristics of these patients included morphological, immunohistochemical and cytogenetic analysis. Study results showed that all patients had aggressive characteristics, presence of B symptoms (64%), general patient condition according to ECOG scale ≥ 2 (55%), elevated serum lactate dehydrogenase activity (73%), clinical stage III and IV (82%), extranodal involvement of the disease (73%), and IPI ≥ 2 (73%). Partial remission was achieved in 73% of all patients and all patients (73%) died within a short time. Patients were treated with CHOP and similar protocols (COP, CVP, CNOP), with the addition of MabThera. Immunophenotyping was performed and determined expression of the CD20, CD3, CD10, BCL6 and MUM1 markers. The cytogenetic analysis/fluorescence in situ hybridization revealed complex karyotype changes. Thus, we analyzed the presence of BCL2, BCL6 and c-MYC genes and found eight patients to have BCL2 and c-MYC translocation genes, while three had translocation of the BCL6 and c-MYC genes. Despite appropriate therapy, the patient prognosis is poor. The median survival in these patients was 1.85 years. DLBCL with BCL2 and c-MYC rearrangement of the subgroups of lymphoma is associated with very poor survival. The presence of these two translocations has an aggressive clinical course.

  1. c-Myc represses FOXO3a-mediated transcription of the gene encoding the p27(Kip1) cyclin dependent kinase inhibitor.

    PubMed

    Chandramohan, Vidyalakshmi; Mineva, Nora D; Burke, Brian; Jeay, Sébastien; Wu, Min; Shen, Jian; Yang, William; Hann, Stephen R; Sonenshein, Gail E

    2008-08-15

    The p27(Kip1) (p27) cyclin-dependent kinase inhibitor and c-Myc oncoprotein play essential roles in control of cell cycle progression and apoptosis. Induction of p27 (CDKN1B) gene transcription by Forkhead box O proteins such as FOXO3a leads to growth arrest and apoptosis. Previously, we observed that B cell receptor (surface IgM) engagement of WEHI 231 immature B lymphoma cells with an anti-IgM antibody results in activation of FOXO3a, growth arrest and apoptosis. As ectopic c-Myc expression in these cells prevented anti-IgM induction of p27 and cell death, we hypothesized that c-Myc represses FOXO3a-mediated transcription. Here we show that c-Myc inhibits FOXO3a-mediated activation of the p27 promoter in multiple cell lines. The mechanism of this repression was explored using a combination of co-immunoprecipitation, oligonucleotide precipitation, and chromatin immunoprecipitation experiments. The studies demonstrate a functional association of FOXO3a and c-Myc on a proximal Forkhead binding element in the p27 promoter. This association involves the Myc box II domain of c-Myc and the N-terminal DNA-binding portion of FOXO3a. Analysis of publicly available microarray datasets showed an inverse pattern of c-MYC and p27 RNA expression in primary acute myeloid leukemia, prostate cancer and tongue squamous cell carcinoma samples. The inhibition of FOXO3a-mediated activation of the p27 gene by the high aberrant expression of c-Myc in many tumor cells likely contributes to their uncontrolled proliferation and invasive phenotype.

  2. Reversible lysine-specific demethylase 1 antagonist HCI-2509 inhibits growth and decreases c-MYC in castration- and docetaxel-resistant prostate cancer cells

    PubMed Central

    Gupta, S; Weston, A; Bearrs, J; Thode, T; Neiss, A; Soldi, R; Sharma, S

    2016-01-01

    Background: Lysine-specific demethylase 1 (LSD1 or KDM1A) overexpression correlates with poor survival and castration resistance in prostate cancer. LSD1 is a coregulator of ligand-independent androgen receptor signaling promoting c-MYC expression. We examined the antitumor efficacy of LSD1 inhibition with HCI-2509 in advanced stages of prostate cancer. Methods: Cell survival, colony formation, histone methylation, c-MYC level, c-MYC expression, cell cycle changes and in vivo efficacy were studied in castration-resistant prostate cancer cells upon treatment with HCI-2509. In vitro combination studies, using HCI-2509 and docetaxel, were performed to assess the synergy. Cell survival, colony formation, histone methylation and c-myc levels were studied in docetaxel-resistant prostate cancer cells treated with HCI-2509. Results: HCI-2509 is cytotoxic and inhibits colony formation in castration-resistant prostate cancer cells. HCI-2509 treatment causes a dose-dependent increase in H3K9me2 (histone H3lysine 9) levels, a decrease in c-MYC protein, inhibition of c-MYC expression and accumulation in the G0/G1 phase of the cell cycle in these cells. PC3 xenografts in mice have a significant reduction in tumor burden upon treatment with HCI-2509 with no associated myelotoxicity or weight loss. More synergy is noted at sub-IC50 (half-maximal inhibitory concentration) doses of docetaxel and HCI-2509 in PC3 cells than in DU145 cells. HCI-2509 has growth-inhibitory efficacy and decreases the c-myc level in docetaxel-resistant prostate cancer cells. Conclusions: LSD1 inhibition with HCI-2509 decreases the c-MYC level in poorly differentiated prostate cancer cell lines and has a therapeutic potential in castration- and docetaxel-resistant prostate cancer. PMID:27349498

  3. DNA-binding domain of human c-Myc produced in escherichia coli

    SciTech Connect

    Dang, C.V.; Buckmire, M.; VanDam, H.; Lee, W.M.F.

    1989-06-01

    The authors have identified the domain of the human c-myc protein (c-Myc) produced in Escherichia coli that is responsible for the ability of the protein to bind sequence-nonspecific DNA. Using analysis of binding of DNA by proteins transferred to nitrocellulose, DNA-cellulose chromatography, and a nitrocellulose filter binding assay, they examined the binding properties of c-Myc peptides generated by cyanogen bromide cleavage, of butane c-,Myc, and of proteins that fuse portions of c-Myc to staphylococcal protein A. The results of these analyses indicated that c-Myc amino acid 265 to 318 were responsible for DNA binding and that other regions of the protein (including a highly conserved basic region and a region containing the leucine zipper motif) were not required. Some mutant c-Mycs that did not bind DNA maintained rat embryo cell-cotransforming activity, which indicated that the c-Myc property of in vitro DNA binding was not essential for this activity. These mutants, however, were unable to transform established rat fibroblasts (Rat-1a cells) that were susceptible to transformation by wild-type c-Myc, although this lack of activity may not have been due to their inability to bind DNA.

  4. The Myc negative autoregulation mechanism requires Myc-Max association and involves the c-myc P2 minimal promoter.

    PubMed Central

    Facchini, L M; Chen, S; Marhin, W W; Lear, J N; Penn, L Z

    1997-01-01

    Increasing evidence supports an important biological role for Myc in the downregulation of specific gene transcription. Recent studies suggest that c-Myc may suppress promoter activity through proteins of the basal transcription machinery. We have previously reported that Myc protein, in combination with additional cellular factors, suppresses transcription initiation from the c-myc promoter. To characterize the cis components of this Myc negative autoregulation pathway, fragments of the human c-myc promoter were inserted upstream of luciferase reporter genes and assayed for responsiveness to inducible MycER activation in Rat-1 fibroblasts. We found four- to fivefold suppression of a c-myc P2 minimal promoter fragment upon induction of wild-type MycER protein activity, while induction of a mutant MycER protein lacking amino acids 106 to 143 required for Myc autosuppression failed to elicit this response. This assay is physiologically significant, as it reflects Myc autosuppression of the endogenous c-myc gene with regard to kinetics, dose dependency, cell type specificity, and c-Myc functional domains. Analysis of mutations within the P2 minimal promoter indicated that the cis components of Myc autosuppression could not be ascribed to any known protein-binding motifs. In addition, to address the trans factors required for Myc negative autoregulation, we expressed MycEG and MaxEG leucine zipper dimerization mutants in Rat-1 cells and found that Myc-Max heterodimerization is obligatory for Myc autosuppression. Two models for the Myc autosuppression mechanism are discussed. PMID:8972190

  5. ETV6/ARG oncoprotein confers autonomous cell growth by enhancing c-Myc expression via signal transducer and activator of transcription 5 activation in the acute promyelocytic leukemia cell line HT93A.

    PubMed

    Iriyama, Noriyoshi; Hatta, Yoshihiro; Takei, Masami

    2015-01-01

    We investigated the role of ETV6/ARG fusion gene by exposing the HT93A cell line to nilotinib. HT93A cells were cultured with or without nilotinib±50 ng/mL of granulocyte colony-stimulating factor (G-CSF). Nilotinib treatment inhibited cell growth by increasing the percentage of cells in G0/G1 phase through the decrease of phosphorylated signal transducer and activator of transcription 3 (STAT3) (Y705), STAT5 (Y694) and c-Myc expression. After stimulation with G-CSF, STAT5 but not STAT3 was significantly phosphorylated in both nilotinib-treated and untreated cells. Moreover, combination therapy with nilotinib and G-CSF returned the expression level of c-Myc, cell growth and cell cycle distribution to the control level. These findings suggest that the ETV6/ARG oncoprotein contributes to autonomous cell growth by compensating for the requirement of growth factor through activating STAT5 signaling, which leads to the up-regulation of c-Myc. Our data suggest that ETV6/ARG oncoprotein is a potential target in the treatment of leukemia.

  6. Guttiferone K impedes cell cycle re-entry of quiescent prostate cancer cells via stabilization of FBXW7 and subsequent c-MYC degradation.

    PubMed

    Xi, Z; Yao, M; Li, Y; Xie, C; Holst, J; Liu, T; Cai, S; Lao, Y; Tan, H; Xu, H-X; Dong, Q

    2016-06-02

    Cell cycle re-entry by quiescent cancer cells is an important mechanism for cancer progression. While high levels of c-MYC expression are sufficient for cell cycle re-entry, the modality to block c-MYC expression, and subsequent cell cycle re-entry, is limited. Using reversible quiescence rendered by serum withdrawal or contact inhibition in PTEN(null)/p53(WT) (LNCaP) or PTEN(null)/p53(mut) (PC-3) prostate cancer cells, we have identified a compound that is able to impede cell cycle re-entry through c-MYC. Guttiferone K (GUTK) blocked resumption of DNA synthesis and preserved the cell cycle phase characteristics of quiescent cells after release from the quiescence. In vehicle-treated cells, there was a rapid increase in c-MYC protein levels upon release from the quiescence. However, this increase was inhibited in the presence of GUTK with an associated acceleration in c-MYC protein degradation. The inhibitory effect of GUTK on cell cycle re-entry was significantly reduced in cells overexpressing c-MYC. The protein level of FBXW7, a subunit of E3 ubiquitin ligase responsible for degradation of c-MYC, was reduced upon the release from the quiescence. In contrast, GUTK stabilized FBXW7 protein levels during release from the quiescence. The critical role of FBXW7 was confirmed using siRNA knockdown, which impaired the inhibitory effect of GUTK on c-MYC protein levels and cell cycle re-entry. Administration of GUTK, either in vitro prior to transplantation or in vivo, suppressed the growth of quiescent prostate cancer cell xenografts. Furthermore, elevation of FBXW7 protein levels and reduction of c-MYC protein levels were found in the xenografts of GUTK-treated compared with vehicle-treated mice. Hence, we have identified a compound that is capable of impeding cell cycle re-entry by quiescent PTEN(null)/p53(WT) and PTEN(null)/p53(mut) prostate cancer cells likely by promoting c-MYC protein degradation through stabilization of FBXW7. Its usage as a clinical modality to

  7. c-Myc is regulated by HIF-2α in chronic hypoxia and influences sensitivity to 5-FU in colon cancer

    PubMed Central

    Chung, Daniel C.

    2016-01-01

    Colorectal cancers (CRCs) invariably become hypoxic as they enlarge, and this places unique metabolic demands upon the tumor cells. Hypoxic stress can enhance the invasiveness of cancer cells and induce chemoresistance. c-Myc, an oncogene regulated by hypoxia inducible factors (HIFs), plays a critical role in cell proliferation and metabolism. However, the interplay between c-Myc and HIFs and its clinical significance in hypoxic adaptation in CRCs are unknown. We demonstrate that c-Myc mRNA and protein levels in colon cancer cells are induced within 2 h of hypoxic stress (1% O2) but are then significantly downregulated when exposed to prolonged hypoxia. In chronic hypoxia (over 8 h at 1% O2), HIF-2α but not HIF-1α gradually accumulated in colon cancer cells. Knockdown of HIF-2α increased levels of c-Myc and its downstream target cyclinD1 in chronic hypoxia, indicating that HIF-2α may function to downregulate c-Myc. Chronic hypoxia suppressed the expression of cyclinD1, CDK4, and CDK6, inducing G1 phase block and 5-flurouracil (5-FU) chemoresistance. Overexpression of c-Myc reversed the inhibition of cyclinD1, CDK4, and CDK6, which accelerated the G1/S phase transition under hypoxia and enhanced sensitivity to 5-FU. In contrast, knockdown of c-Myc impaired 5-FU chemosensitivity in colon cancer cells. In summary, HIF-2α plays an important role in regulating the expression of c-Myc in chronic hypoxia, and consequently controls the sensitivity of colon cancer cells to 5-FU treatment in this environment. PMID:27793037

  8. Elevation of c-MYC disrupts HLA class II-mediated immune recognition of human B cell tumors.

    PubMed

    God, Jason M; Cameron, Christine; Figueroa, Janette; Amria, Shereen; Hossain, Azim; Kempkes, Bettina; Bornkamm, Georg W; Stuart, Robert K; Blum, Janice S; Haque, Azizul

    2015-02-15

    Elevated levels of the transcription factor c-myc are strongly associated with various cancers, and in particular B cell lymphomas. Although many of c-MYC's functions have been elucidated, its effect on the presentation of Ag through the HLA class II pathway has not been reported previously. This is an issue of considerable importance, given the low immunogenicity of many c-MYC-positive tumors. We report in this paper that increased c-MYC expression has a negative effect on the ability of B cell lymphomas to functionally present Ags/peptides to CD4(+) T cells. This defect was associated with alterations in the expression of distinct cofactors as well as interactions of antigenic peptides with class II molecules required for the presentation of class II-peptide complexes and T cell engagement. Using early passage Burkitt's lymphoma (BL) tumors and transformed cells, we show that compared with B lymphoblasts, BL cells express decreased levels of the class II editor HLA-DM, lysosomal thiol-reductase GILT, and a 47-kDa enolase-like protein. Functional Ag presentation was partially restored in BL cells treated with a c-MYC inhibitor, demonstrating the impact of this oncogene on Ag recognition. This restoration of HLA class II-mediated Ag presentation in early passage BL tumors/cells was linked to enhanced HLA-DM expression and a concurrent decrease in HLA-DO in BL cells. Taken together, these results reveal c-MYC exerts suppressive effects at several critical checkpoints in Ag presentation, which contribute to the immunoevasive properties of BL tumors.

  9. c-Myc targeted regulators of cell metabolism in a transgenic mouse model of papillary lung adenocarcinoma

    PubMed Central

    Ciribilli, Yari; Singh, Prashant; Inga, Alberto; Borlak, Jürgen

    2016-01-01

    c-Myc's role in pulmonary cancer metabolism is uncertain. We therefore investigated c-Myc activity in papillary lung adenocarcinomas (PLAC). Genomics revealed 90 significantly regulated genes (> 3-fold) coding for cell growth, DNA metabolism, RNA processing and ribosomal biogenesis and bioinformatics defined c-Myc binding sites (TFBS) at > 95% of up-regulated genes. EMSA assays at 33 novel TFBS evidenced DNA binding activity and ChIP-seq data retrieved from public repositories confirmed these to be c-Myc bound. Dual-luciferase gene reporter assays developed for RNA-Terminal-Phosphate-Cyclase-Like-1(RCL1), Ribosomal-Protein-SA(RPSA), Nucleophosmin/Nucleoplasmin-3(NPM3) and Hexokinase-1(HK1) confirmed c-Myc functional relevance and ChIP assays with HEK293T cells over-expressing ectopic c-Myc demonstrated enriched c-Myc occupancy at predicted TFBS for RCL1, NPM3, HK1 and RPSA. Note, c-Myc recruitment on chromatin was comparable to the positive controls CCND2 and CDK4. Computational analyses defined master regulators (MR), i.e. heterogeneous nuclear ribonucleoprotein A1, nucleolin, the apurinic/apyrimidinic endonuclease 1, triosephosphate-isomerase 1, folate transporter (SLC19A1) and nucleophosmin to influence activity of up to 90% of PLAC-regulated genes. Their expression was induced by 3-, 3-, 6-, 3-, 11- and 7-fold, respectively. STRING analysis confirmed protein-protein-interactions of regulated genes and Western immunoblotting of fatty acid synthase, serine hydroxyl-methyltransferase 1, arginine 1 and hexokinase 2 showed tumor specific induction. Published knock down studies confirmed these proteins to induce apoptosis by disrupting neoplastic lipogenesis, by endorsing uracil accumulation and by suppressing arginine metabolism and glucose-derived ribonucleotide biosynthesis. Finally, translational research demonstrated high expression of MR and of 47 PLAC up-regulated genes to be associated with poor survival in lung adenocarcinoma patients (HR 3.2 p < 0.001) thus

  10. c-Myc targeted regulators of cell metabolism in a transgenic mouse model of papillary lung adenocarcinoma.

    PubMed

    Ciribilli, Yari; Singh, Prashant; Inga, Alberto; Borlak, Jürgen

    2016-10-04

    c-Myc's role in pulmonary cancer metabolism is uncertain. We therefore investigated c-Myc activity in papillary lung adenocarcinomas (PLAC). Genomics revealed 90 significantly regulated genes (> 3-fold) coding for cell growth, DNA metabolism, RNA processing and ribosomal biogenesis and bioinformatics defined c-Myc binding sites (TFBS) at > 95% of up-regulated genes. EMSA assays at 33 novel TFBS evidenced DNA binding activity and ChIP-seq data retrieved from public repositories confirmed these to be c-Myc bound. Dual-luciferase gene reporter assays developed for RNA-Terminal-Phosphate-Cyclase-Like-1(RCL1), Ribosomal-Protein-SA(RPSA), Nucleophosmin/Nucleoplasmin-3(NPM3) and Hexokinase-1(HK1) confirmed c-Myc functional relevance and ChIP assays with HEK293T cells over-expressing ectopic c-Myc demonstrated enriched c-Myc occupancy at predicted TFBS for RCL1, NPM3, HK1 and RPSA. Note, c-Myc recruitment on chromatin was comparable to the positive controls CCND2 and CDK4. Computational analyses defined master regulators (MR), i.e. heterogeneous nuclear ribonucleoprotein A1, nucleolin, the apurinic/apyrimidinic endonuclease 1, triosephosphate-isomerase 1, folate transporter (SLC19A1) and nucleophosmin to influence activity of up to 90% of PLAC-regulated genes. Their expression was induced by 3-, 3-, 6-, 3-, 11- and 7-fold, respectively. STRING analysis confirmed protein-protein-interactions of regulated genes and Western immunoblotting of fatty acid synthase, serine hydroxyl-methyltransferase 1, arginine 1 and hexokinase 2 showed tumor specific induction. Published knock down studies confirmed these proteins to induce apoptosis by disrupting neoplastic lipogenesis, by endorsing uracil accumulation and by suppressing arginine metabolism and glucose-derived ribonucleotide biosynthesis. Finally, translational research demonstrated high expression of MR and of 47 PLAC up-regulated genes to be associated with poor survival in lung adenocarcinoma patients (HR 3.2 p < 0.001) thus

  11. Vitamin K2 and cotylenin A synergistically induce monocytic differentiation and growth arrest along with the suppression of c-MYC expression and induction of cyclin G2 expression in human leukemia HL-60 cells.

    PubMed

    Maniwa, Yasuhisa; Kasukabe, Takashi; Kumakura, Shunichi

    2015-08-01

    Although all-trans retinoic acid (ATRA) is a standard and effective drug used for differentiation therapy in acute promyelocytic leukemia, ATRA-resistant leukemia cells ultimately emerge during this treatment. Therefore, the development of new drugs or effective combination therapy is urgently needed. We demonstrate that the combined treatment of vitamin K2 and cotylenin A synergistically induced monocytic differentiation in HL-60 cells. This combined treatment also synergistically induced NBT-reducing activity and non-specific esterase-positive cells as well as morphological changes to monocyte/macrophage-like cells. Vitamin K2 and cotylenin A cooperatively inhibited the proliferation of HL-60 cells in short-term and long-term cultures. This treatment also induced growth arrest at the G1 phase. Although 5 µg/ml cotylenin A or 5 µM vitamin K2 alone reduced c-MYC gene expression in HL-60 cells to approximately 45% or 80% that of control cells, respectively, the combined treatment almost completely suppressed c-MYC gene expression. We also demonstrated that the combined treatment of vitamin K2 and cotylenin A synergistically induced the expression of cyclin G2, which had a positive effect on the promotion and maintenance of cell cycle arrest. These results suggest that the combination of vitamin K2 and cotylenin A has therapeutic value in the treatment of acute myeloid leukemia.

  12. Overexpression of c-myc in the liver prevents obesity and insulin resistance.

    PubMed

    Riu, Efren; Ferre, Tura; Hidalgo, Antonio; Mas, Alex; Franckhauser, Sylvie; Otaegui, Pedro; Bosch, Fatima

    2003-09-01

    Alterations in hepatic glucose metabolism play a key role in the development of the hyperglycemia observed in type 2 diabetes. Because the transcription factor c-Myc induces hepatic glucose uptake and utilization and blocks gluconeogenesis, we examined whether hepatic overexpression of c-myc counteracts the insulin resistance induced by a high-fat diet. After 3 months on this diet, control mice became obese, hyperglycemic, and hyperinsulinemic, indicating that they had developed insulin resistance. In contrast, transgenic mice remained lean and showed improved glucose disposal and normal levels of blood glucose and insulin, indicating that they had developed neither obesity nor insulin resistance. These findings were concomitant with normalization of hepatic glucokinase and pyruvate kinase gene expression and enzyme activity, which led to normalization of intrahepatic glucose-6-phosphate and glycogen content. In the liver of control mice fed a high-fat diet, the expression of genes encoding proteins that control energy metabolism, such as sterol receptor element binding protein 1-c, peroxisome proliferator activated receptor alpha, and uncoupling protein-2, was altered. In contrast, in the liver of transgenic mice fed a high-fat diet, the expression of these genes was normal. These results suggest that c-myc overexpression counteracted the obesity and insulin resistance induced by a high-fat diet by modulating the expression of genes that regulate hepatic metabolism.

  13. Dual targeting of p53 and c-Myc selectively eliminates leukaemic stem cells

    PubMed Central

    Abraham, Sheela A; Hopcroft, Lisa EM; Carrick, Emma; Drotar, Mark E; Dunn, Karen; Williamson, Andrew JK; Korfi, Koorosh; Baquero, Pablo; Park, Laura E; Scott, Mary T; Pellicano, Francesca; Pierce, Andrew; Copland, Mhairi; Nourse, Craig; Grimmond, Sean M; Vetrie, David; Whetton, Anthony D; Holyoake, Tessa L

    2016-01-01

    Summary Chronic myeloid leukaemia (CML) arises following transformation of a haemopoietic stem cell (HSC) by protein-tyrosine kinase BCR-ABL1. Direct inhibition of BCR-ABL1 kinase has revolutionized disease management, but fails to eradicate leukaemic stem cells (LSC), which maintain CML. LSC are independent of BCR-ABL1 for survival, providing a rationale to identify and target kinase-independent pathways. Here we show using proteomics, transcriptomics and network analyses, that in human LSC aberrantly expressed proteins, in both imatinib-responder and non-responder patients are modulated in concert with p53 and c-Myc regulation. Perturbation of both p53 and c-Myc, not BCR-ABL1 itself, leads to synergistic kill, differentiation and near elimination of transplantable human LSC in mice, whilst sparing normal HSC. This unbiased systems approach targeting connected nodes exemplifies a novel precision medicine strategy providing evidence that LSC can be eradicated. PMID:27281222

  14. Human RNA polymerase II associated factor 1 complex promotes tumorigenesis by activating c-MYC transcription in non-small cell lung cancer

    SciTech Connect

    Zhi, Xiuyi; Giroux-Leprieur, Etienne; Wislez, Marie; Hu, Mu; Zhang, Yi; Shi, Huaiyin; Du, Kaiqi; Wang, Lei

    2015-10-02

    Human RNA polymerase II (RNAPII)-associated factor 1 complex (hPAF1C) plays a crucial role in protein-coding gene transcription. Overexpression of hPAF1C has been implicated in the initiation and progression of various human cancers. However, the molecular pathways involved in tumorigenesis through hPAF1C remain to be elucidated. The current study suggested hPAF1C expression as a prognostic biomarker for early stage non-small cell lung cancer (NSCLC) and patients with low hPAF1C expression levels had significantly better overall survival. Furthermore, the expression of hPAF1C was found to be positively correlated with c-MYC expression in patient tumor samples and in cancer cell lines. Mechanistic studies indicated that hPAF1C could promote lung cancer cell proliferation through regulating c-MYC transcription. These results demonstrated the prognostic value of hPAF1C in early-stage NSCLC and the role of hPAF1C in the transcriptional regulation of c-MYC oncogene during NSCLC tumorigenesis. - Highlights: • hPAF1C expression is a prognostic biomarker for early stage non-small cell lung cancer. • The expression of hPAF1C was positively correlated with c-MYC in tumor samples of patients and in several NSCLC cell lines. • hPAF1C could promote lung cancer cell proliferation through regulating c-MYC transcription.

  15. Involvement of SIRT1 in hypoxic down-regulation of c-Myc and β-catenin and hypoxic preconditioning effect of polyphenols

    SciTech Connect

    Hong, Kyung-Soo; Park, Jun-Ik; Kim, Mi-Ju; Kim, Hak-Bong; Lee, Jae-Won; Dao, Trong Tuan; Oh, Won Keun; Kang, Chi-Dug; Kim, Sun-Hee

    2012-03-01

    SIRT1 has been found to function as a Class III deacetylase that affects the acetylation status of histones and other important cellular nonhistone proteins involved in various cellular pathways including stress responses and apoptosis. In this study, we investigated the role of SIRT1 signaling in the hypoxic down-regulations of c-Myc and β-catenin and hypoxic preconditioning effect of the red wine polyphenols such as piceatannol, myricetin, quercetin and resveratrol. We found that the expression of SIRT1 was significantly increased in hypoxia-exposed or hypoxic preconditioned HepG2 cells, which was closely associated with the up-regulation of HIF-1α and down-regulation of c-Myc and β-catenin expression via deacetylation of these proteins. In addition, blockade of SIRT1 activation using siRNA or amurensin G, a new potent SIRT1 inhibitor, abolished hypoxia-induced HIF-1α expression but increased c-Myc and β-catenin expression. SIRT1 was also found to stabilize HIF-1α protein and destabilize c-Myc, β-catenin and PHD2 under hypoxia. We also found that myricetin, quercetin, piceatannol and resveratrol up-regulated HIF-1α and down-regulated c-Myc, PHD2 and β-catenin expressions via SIRT1 activation, in a manner that mimics hypoxic preconditioning. This study provides new insights of the molecular mechanisms of hypoxic preconditioning and suggests that polyphenolic SIRT1 activators could be used to mimic hypoxic/ischemic preconditioning. -- Graphical abstract: Polyphenols mimicked hypoxic preconditioning by up-regulating HIF-1α and SIRT1 and down-regulating c-Myc, PHD2, and β-catenin. HepG2 cells were pretreated with the indicated doses of myricetin (MYR; A), quercetin (QUR; B), or piceatannol (PIC; C) for 4 h and then exposed to hypoxia for 4 h. Levels of HIF-1α, SIRT1, c-Myc, β-catenin, and PHD2 were determined by western blot analysis. The data are representative of three individual experiments. Highlights: ► SIRT1 expression is increased in hypoxia

  16. Critical Role of Shp2 in Tumor Growth Involving Regulation of c-Myc

    PubMed Central

    Ren, Yuan; Chen, Zhengming; Chen, Liwei; Fang, Bin; Win-Piazza, Hla; Haura, Eric; Koomen, John M.; Wu, Jie

    2010-01-01

    Activating mutants of Shp2 protein tyrosine phosphatase, encoded by the PTPN11 gene, are linked to leukemia. In solid tumors, however, PTPN11 mutations occur at low frequencies, while the wild-type Shp2 is activated by protein tyrosine kinases (PTKs) in cancer cells and mediates PTK signaling. Therefore, it is important to address whether the wild-type Shp2 plays a functional role critical for tumor growth. Using shRNAs and a PTP-inactive mutant to inhibit Shp2, we find here that tumor growth of DU145 prostate cancer and H292 lung cancer cells depends on Shp2. Suppression of Shp2 inhibited cell proliferation, decreased c-Myc, and increased p27 expression in cell cultures. In H292 tumor tissues, c-Myc–positive cells coincided with Ki67-positive cells, and smaller tumors from Shp2 knockdown cells had less c-Myc–positive cells and more nuclear p27. Shp2-regulated c-Myc expression was mediated by Src and Erk1/2. Down-regulation of c-Myc reduced cell proliferation, while up-regulation of c-Myc in Shp2 knockdown H292 cells partially rescued the inhibitory effect of Shp2 suppression on cell proliferation. Tyrosine phosphoproteomic analysis of H292 tumor tissues showed that Shp2 could both up-regulate and down-regulate tyrosine phosphorylation on cellular proteins. Among other changes, Shp2 inhibition increased phosphorylation of Src Tyr-530 and Cdk1 Thr-14/Tyr-15 and decreased phosphorylation of Erk1- and Erk2-activating sites in the tumors. Significantly, we found that Shp2 positively regulated Gab1 Tyr-627/Tyr-659 phosphorylation. This finding reveals that Shp2 can autoregulate its own activating signal. Shp2 Tyr-62/Tyr-63 phosphorylation was observed in tumor tissues, indicating that Shp2 is activated in the tumors. PMID:21442024

  17. The Max b-HLH-LZ can transduce into cells and inhibit c-Myc transcriptional activities.

    PubMed

    Montagne, Martin; Beaudoin, Nicolas; Fortin, David; Lavoie, Christine L; Klinck, Roscoe; Lavigne, Pierre

    2012-01-01

    The inhibition of the functions of c-Myc (endogenous and oncogenic) was recently shown to provide a spectacular therapeutic index in cancer mouse models, with complete tumor regression and minimal side-effects in normal tissues. This was achieved by the systemic and conditional expression of omomyc, the cDNA of a designed mutant of the b-HLH-LZ of c-Myc named Omomyc. The overall mode of action of Omomyc consists in the sequestration of Max and the concomitant competition of the Omomyc/Max complex with the endogenous c-Myc/Max heterodimer. This leads to the inhibition of the transactivation of Myc target genes involved in proliferation and metabolism. While this body of work has provided extraordinary insights to guide the future development of new cancer therapies that target c-Myc, Omomyc itself is not a therapeutic agent. In this context, we sought to exploit the use of a b-HLH-LZ to inhibit c-Myc in a cancer cell line in a more direct fashion. We demonstrate that the b-HLH-LZ domain of Max (Max*) behaves as a bona fide protein transduction domain (PTD) that can efficiently transduce across cellular membrane via through endocytosis and translocate to the nucleus. In addition, we show that the treatment of HeLa cells with Max* leads to a reduction of metabolism and proliferation rate. Accordingly, we observe a decrease of the population of HeLa cells in S phase, an accumulation in G1/G0 and the induction of apoptosis. In agreement with these phenotypic changes, we show by q-RT-PCR that the treatment of HeLa cells with Max* leads to the activation of the transcription c-Myc repressed genes as well as the repression of the expression of c-Myc activated genes. In addition to the novel discovery that the Max b-HLH-LZ is a PTD, our findings open up new avenues and strategies for the direct inhibition of c-Myc with b-HLH-LZ analogs.

  18. c-Myc activates multiple metabolic networks to generate substrates for cell-cycle entry.

    PubMed

    Morrish, F; Isern, N; Sadilek, M; Jeffrey, M; Hockenbery, D M

    2009-07-09

    Cell proliferation requires the coordinated activity of cytosolic and mitochondrial metabolic pathways to provide ATP and building blocks for DNA, RNA and protein synthesis. Many metabolic pathway genes are targets of the c-myc oncogene and cell-cycle regulator. However, the contribution of c-Myc to the activation of cytosolic and mitochondrial metabolic networks during cell-cycle entry is unknown. Here, we report the metabolic fates of [U-(13)C] glucose in serum-stimulated myc(-/-) and myc(+/+) fibroblasts by (13)C isotopomer NMR analysis. We demonstrate that endogenous c-myc increased (13)C labeling of ribose sugars, purines and amino acids, indicating partitioning of glucose carbons into C1/folate and pentose phosphate pathways, and increased tricarboxylic acid cycle turnover at the expense of anaplerotic flux. Myc expression also increased global O-linked N-acetylglucosamine protein modification, and inhibition of hexosamine biosynthesis selectively reduced growth of Myc-expressing cells, suggesting its importance in Myc-induced proliferation. These data reveal a central organizing function for the Myc oncogene in the metabolism of cycling cells. The pervasive deregulation of this oncogene in human cancers may be explained by its function in directing metabolic networks required for cell proliferation.

  19. Depletion of NEAT1 lncRNA attenuates nucleolar stress by releasing sequestered P54nrb and PSF to facilitate c-Myc translation.

    PubMed

    Shen, Wen; Liang, Xue-Hai; Sun, Hong; De Hoyos, Cheryl L; Crooke, Stanley T

    2017-01-01

    Altered expression of NEAT1, the architectural long non-coding RNA (lncRNA) of nuclear paraspeckles, has been reported during tumorigenesis, as well as under various cellular stress conditions. Here we report that the depletion of NEAT1 lncRNA alleviates nucleolar stress during RNAP I inhibition through releasing sequestered P54nrb and PSF to facilitate the IRES-dependent translation of c-Myc. RNAP I inhibitor CX5461 disrupts the SL1-rDNA interaction and induces nucleolar disruption, demonstrated by the accumulation of fibrillarin-containing nucleoplasmic foci and nucleolar clearance of ribosomal proteins in HeLa cells. Antisense oligonucleotide-mediated depletion of NEAT1 lncRNA significantly attenuated the RNAP I inhibition and its related nucleolar disruption. Interestingly, induction in the levels of c-Myc protein was observed in NEAT1-depeleted cells under RNAP I inhibition. NEAT1-associated paraspeckle proteins P54nrb and PSF have been reported as positive regulators of c-Myc translation through interaction with c-Myc IRES. Indeed, an increased association of P54nrb and PSF with c-Myc mRNA was observed in NEAT1-depleted cells. Moreover, apoptosis was observed in HeLa cells depleted of P54nrb and PSF, further confirming the positive involvement of P54nrb and PSF in cell proliferation. Together, our results suggest that NEAT1 depletion rescues CX5461-induced nucleolar stress through facilitating c-Myc translation by relocating P54nrb/PSF from nuclear paraspeckles to c-Myc mRNAs.

  20. Depletion of NEAT1 lncRNA attenuates nucleolar stress by releasing sequestered P54nrb and PSF to facilitate c-Myc translation

    PubMed Central

    Shen, Wen; Liang, Xue-hai; Sun, Hong; De Hoyos, Cheryl L.; Crooke, Stanley T.

    2017-01-01

    Altered expression of NEAT1, the architectural long non-coding RNA (lncRNA) of nuclear paraspeckles, has been reported during tumorigenesis, as well as under various cellular stress conditions. Here we report that the depletion of NEAT1 lncRNA alleviates nucleolar stress during RNAP I inhibition through releasing sequestered P54nrb and PSF to facilitate the IRES-dependent translation of c-Myc. RNAP I inhibitor CX5461 disrupts the SL1-rDNA interaction and induces nucleolar disruption, demonstrated by the accumulation of fibrillarin-containing nucleoplasmic foci and nucleolar clearance of ribosomal proteins in HeLa cells. Antisense oligonucleotide-mediated depletion of NEAT1 lncRNA significantly attenuated the RNAP I inhibition and its related nucleolar disruption. Interestingly, induction in the levels of c-Myc protein was observed in NEAT1-depeleted cells under RNAP I inhibition. NEAT1-associated paraspeckle proteins P54nrb and PSF have been reported as positive regulators of c-Myc translation through interaction with c-Myc IRES. Indeed, an increased association of P54nrb and PSF with c-Myc mRNA was observed in NEAT1-depleted cells. Moreover, apoptosis was observed in HeLa cells depleted of P54nrb and PSF, further confirming the positive involvement of P54nrb and PSF in cell proliferation. Together, our results suggest that NEAT1 depletion rescues CX5461-induced nucleolar stress through facilitating c-Myc translation by relocating P54nrb/PSF from nuclear paraspeckles to c-Myc mRNAs. PMID:28288210

  1. c-MYC-Induced Genomic Instability

    PubMed Central

    Kuzyk, Alexandra; Mai, Sabine

    2014-01-01

    MYC dysregulation initiates a dynamic process of genomic instability that is linked to tumor initiation. Early studies using MYC-carrying retroviruses showed that these viruses were potent transforming agents. Cell culture models followed that addressed the role of MYC in transformation. With the advent of MYC transgenic mice, it became obvious that MYC deregulation alone was sufficient to initiate B-cell neoplasia in mice. More than 70% of all tumors have some form of c-MYC gene dysregulation, which affects gene regulation, microRNA expression profiles, large genomic amplifications, and the overall organization of the nucleus. These changes set the stage for the dynamic genomic rearrangements that are associated with cellular transformation. PMID:24692190

  2. c-MYC-induced genomic instability.

    PubMed

    Kuzyk, Alexandra; Mai, Sabine

    2014-04-01

    MYC dysregulation initiates a dynamic process of genomic instability that is linked to tumor initiation. Early studies using MYC-carrying retroviruses showed that these viruses were potent transforming agents. Cell culture models followed that addressed the role of MYC in transformation. With the advent of MYC transgenic mice, it became obvious that MYC deregulation alone was sufficient to initiate B-cell neoplasia in mice. More than 70% of all tumors have some form of c-MYC gene dysregulation, which affects gene regulation, microRNA expression profiles, large genomic amplifications, and the overall organization of the nucleus. These changes set the stage for the dynamic genomic rearrangements that are associated with cellular transformation.

  3. Regulation and Mechanism of Action of the c-Myc Proto-Oncogene in Human Breast Cancer.

    DTIC Science & Technology

    1996-10-01

    ubiquitously expressed nuclear phosphoprotein (1-3). Despite clear evidence that c-Myc is important in the control of cellular proliferation, differentiation... physically associate in vitro and in the yeast two-hybrid system with transcription protein YY1 (19). YY1 is a ubiquitiously expressed zinc finger...protein B23 (36), p 3 0 0 (37) and transcription factor TFE3 (A. Shrivastava and K. Calame, unpublished); YY1 has also been identified as a nuclear

  4. c-Myc is targeted to the proteasome for degradation in a SUMOylation-dependent manner, regulated by PIAS1, SENP7 and RNF4.

    PubMed

    González-Prieto, Román; Cuijpers, Sabine Ag; Kumar, Ramesh; Hendriks, Ivo A; Vertegaal, Alfred Co

    2015-01-01

    c-Myc is the most frequently overexpressed oncogene in tumors, including breast cancer, colon cancer and lung cancer. Post-translational modifications comprising phosphorylation, acetylation and ubiquitylation regulate the activity of c-Myc. Recently, it was shown that c-Myc-driven tumors are strongly dependent on the SUMO pathway. Currently, the relevant SUMO target proteins in this pathway are unknown. Here we show that c-Myc is a target protein for SUMOylation, and that SUMOylated c-Myc is subsequently ubiquitylated and degraded by the proteasome. SUMO chains appeared to be dispensable for this process, polymerization-deficient SUMO mutants supported proteolysis of SUMOylated c-Myc. These results indicate that multiple SUMO monomers conjugated to c-Myc could be sufficient to direct SUMOylated c-Myc to the ubiquitin-proteasome pathway. Knocking down the SUMO-targeted ubiquitin ligase RNF4 enhanced the levels of SUMOylated c-Myc, indicating that RNF4 could recognize a multi-SUMOylated protein as a substrate in addition to poly-SUMOylated proteins. Knocking down the SUMO E3 ligase PIAS1 resulted in reduced c-Myc SUMOylation and increased c-Myc transcriptional activity, indicating that PIAS1 mediates c-Myc SUMOylation. Increased SUMOylation of c-Myc was noted upon knockdown of the SUMO protease SENP7, indicating that it also could regulate a multi-SUMOylated protein in addition to poly-SUMOylated proteins. C-Myc lacks KxE-type SUMOylation consensus motifs. We used mass spectrometry to identify 10 SUMO acceptor lysines: K52, K148, K157, K317, K323, K326, K389, K392, K398 and K430. Intriguingly, mutating all 10 SUMO acceptor lysines did not reduce c-Myc SUMOylation, suggesting that SUMO acceptor lysines in c-Myc act promiscuously. Our results provide novel insight into the complexity of c-Myc post-translational regulation.

  5. c-Myc is targeted to the proteasome for degradation in a SUMOylation-dependent manner, regulated by PIAS1, SENP7 and RNF4

    PubMed Central

    González-Prieto, Román; Cuijpers, Sabine AG; Kumar, Ramesh; Hendriks, Ivo A; Vertegaal, Alfred CO

    2015-01-01

    c-Myc is the most frequently overexpressed oncogene in tumors, including breast cancer, colon cancer and lung cancer. Post-translational modifications comprising phosphorylation, acetylation and ubiquitylation regulate the activity of c-Myc. Recently, it was shown that c-Myc-driven tumors are strongly dependent on the SUMO pathway. Currently, the relevant SUMO target proteins in this pathway are unknown. Here we show that c-Myc is a target protein for SUMOylation, and that SUMOylated c-Myc is subsequently ubiquitylated and degraded by the proteasome. SUMO chains appeared to be dispensable for this process, polymerization-deficient SUMO mutants supported proteolysis of SUMOylated c-Myc. These results indicate that multiple SUMO monomers conjugated to c-Myc could be sufficient to direct SUMOylated c-Myc to the ubiquitin-proteasome pathway. Knocking down the SUMO-targeted ubiquitin ligase RNF4 enhanced the levels of SUMOylated c-Myc, indicating that RNF4 could recognize a multi-SUMOylated protein as a substrate in addition to poly-SUMOylated proteins. Knocking down the SUMO E3 ligase PIAS1 resulted in reduced c-Myc SUMOylation and increased c-Myc transcriptional activity, indicating that PIAS1 mediates c-Myc SUMOylation. Increased SUMOylation of c-Myc was noted upon knockdown of the SUMO protease SENP7, indicating that it also could regulate a multi-SUMOylated protein in addition to poly-SUMOylated proteins. C-Myc lacks KxE-type SUMOylation consensus motifs. We used mass spectrometry to identify 10 SUMO acceptor lysines: K52, K148, K157, K317, K323, K326, K389, K392, K398 and K430. Intriguingly, mutating all 10 SUMO acceptor lysines did not reduce c-Myc SUMOylation, suggesting that SUMO acceptor lysines in c-Myc act promiscuously. Our results provide novel insight into the complexity of c-Myc post-translational regulation. PMID:25895136

  6. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma.

    PubMed

    Weng, Andrew P; Millholland, John M; Yashiro-Ohtani, Yumi; Arcangeli, Marie Laure; Lau, Arthur; Wai, Carol; Del Bianco, Cristina; Rodriguez, Carlos G; Sai, Hong; Tobias, John; Li, Yueming; Wolfe, Michael S; Shachaf, Cathy; Felsher, Dean; Blacklow, Stephen C; Pear, Warren S; Aster, Jon C

    2006-08-01

    Human acute T-cell lymphoblastic leukemias and lymphomas (T-ALL) are commonly associated with gain-of-function mutations in Notch1 that contribute to T-ALL induction and maintenance. Starting from an expression-profiling screen, we identified c-myc as a direct target of Notch1 in Notch-dependent T-ALL cell lines, in which Notch accounts for the majority of c-myc expression. In functional assays, inhibitors of c-myc interfere with the progrowth effects of activated Notch1, and enforced expression of c-myc rescues multiple Notch1-dependent T-ALL cell lines from Notch withdrawal. The existence of a Notch1-c-myc signaling axis was bolstered further by experiments using c-myc-dependent murine T-ALL cells, which are rescued from withdrawal of c-myc by retroviral transduction of activated Notch1. This Notch1-mediated rescue is associated with the up-regulation of endogenous murine c-myc and its downstream transcriptional targets, and the acquisition of sensitivity to Notch pathway inhibitors. Additionally, we show that primary murine thymocytes at the DN3 stage of development depend on ligand-induced Notch signaling to maintain c-myc expression. Together, these data implicate c-myc as a developmentally regulated direct downstream target of Notch1 that contributes to the growth of T-ALL cells.

  7. Inhibition of c-Myc by let-7b mimic reverses mutidrug resistance in gastric cancer cells.

    PubMed

    Yang, Xiaojun; Cai, Hui; Liang, Yuhe; Chen, Lin; Wang, Xiangdong; Si, Ruohuang; Qu, Kunpeng; Jiang, Zebin; Ma, Bingqiang; Miao, Changfeng; Li, Jing; Wang, Bin; Gao, Peng

    2015-04-01

    Chemotherapy is one of the few effective choices for patients with advanced or recurrent gastric cancer (GC). However, the development of mutidrug resistance (MDR) to cancer chemotherapy is a major obstacle to the effective treatment of advanced GC. Additionally, the mechanism of MDR remains to be determined. In the present study, we tested IC50 of cisplatin (DDP), vincristine (VCR) and 5-fluorouracil (5-FU) in SGC7901, SGC7901/DDP and SGC7901/VCR gastric cancer cells using an MTT assay. The expression of let-7b and c-Myc in these cells was detected by qPCR and western blot analysis. The relationship between let-7b and c-Myc was explored using a luciferase reporter assay. Transfection of let-7b mimic or inhibitor was used to confirm the effect of let-7b on drug sensitivity in chemotherapy via the regulation of c-Myc expression. We found that the expression of let-7b was lower in chemotherapy-resistant SGC7901/DDP and SGC7901/VCR gastric cancer cells than that in chemotherapy-sensitive SGC7901 cells. By contrast, the expression of c-Myc was higher in SGC7901/DDP and SGC7901/VCR cells than that in SGC7901 cells. Furthermore, we confirmed that let-7b suppresses c-Myc gene expression at the mRNA and protein levels in a sequence-specific manner, while transfection of let-7b mimic increases drug sensitivity in chemotherapy-resistant SGC7901/DDP and SGC7901/VCR cells by targeting downregulation of c-Myc. In SGC7901 drug-sensitive cells, however, the sensitivity of chemotherapy was significantly decreased following let-7b inhibitor transfection. The present study results demonstrated that let-7b increases drug sensitivity in chemotherapy‑resistant SGC7901/DDP and SGC7901/VCR gastric cancer cells by targeting the downregulation of c-Myc and that, let-7b mimic reverses MDR by promoting cancer stem cell differentiation controlled by double-negative autoregulatory loops (Lin28/let-7 and Myc/let-7) and a double-positive autoregulatory loop (Lin28/Lin28B/Myc) existing in GC

  8. A mouse strain defective in both T cells and NK cells has enhanced sensitivity to tumor induction by plasmid DNA expressing both activated H-Ras and c-Myc.

    PubMed

    Sheng-Fowler, Li; Tu, Wei; Fu, Haiqing; Murata, Haruhiko; Lanning, Lynda; Foseh, Gideon; Macauley, Juliete; Blair, Donald; Hughes, Stephen H; Coffin, John M; Lewis, Andrew M; Peden, Keith

    2014-01-01

    As part of safety studies to evaluate the risk of residual cellular DNA in vaccines manufactured in tumorigenic cells, we have been developing in vivo assays to detect and quantify the oncogenic activity of DNA. We generated a plasmid expressing both an activated human H-ras gene and murine c-myc gene and showed that 1 µg of this plasmid, pMSV-T24-H-ras/MSV-c-myc, was capable of inducing tumors in newborn NIH Swiss mice. However, to be able to detect the oncogenicity of dominant activated oncogenes in cellular DNA, a more sensitive system was needed. In this paper, we demonstrate that the newborn CD3 epsilon transgenic mouse, which is defective in both T-cell and NK-cell functions, can detect the oncogenic activity of 25 ng of the circular form of pMSV-T24-H-ras/MSV-c-myc. When this plasmid was inoculated as linear DNA, amounts of DNA as low as 800 pg were capable of inducing tumors. Animals were found that had multiple tumors, and these tumors were independent and likely clonal. These results demonstrate that the newborn CD3 epsilon mouse is highly sensitive for the detection of oncogenic activity of DNA. To determine whether it can detect the oncogenic activity of cellular DNA derived from four human tumor-cell lines (HeLa, A549, HT-1080, and CEM), DNA (100 µg) was inoculated into newborn CD3 epsilon mice both in the presence of 1 µg of linear pMSV-T24-H-ras/MSV-c-myc as positive control and in its absence. While tumors were induced in 100% of mice with the positive-control plasmid, no tumors were induced in mice receiving any of the tumor DNAs alone. These results demonstrate that detection of oncogenes in cellular DNA derived from four human tumor-derived cell lines in this mouse system was not possible; the results also show the importance of including a positive-control plasmid to detect inhibitory effects of the cellular DNA.

  9. Elevation of c-MYC Disrupts HLA Class II-mediated Immune Recognition of Human B-cell Tumors1

    PubMed Central

    God, Jason M.; Cameron, Christine; Figueroa, Janette; Amria, Shereen; Hossain, Azim; Kempkes, Bettina; Bornkamm, Georg W.; Stuart, Robert K.; Blum, Janice S.; Haque, Azizul

    2014-01-01

    Elevated levels of the transcription factor c-myc are strongly associated with various cancers, and in particular B-cell lymphomas. While many of c-MYC’s functions have been elucidated, its effect on the presentation of antigen (Ag) through the HLA class II pathway has not previously been reported. This is an issue of considerable importance, given the low immunogenicity of many c-MYC-positive tumors. We report here that increased c-MYC expression has a negative effect on the ability of B-cell lymphomas to functionally present Ags/peptides to CD4+ T cells. This defect was associated with alterations in the expression of distinct co-factors as well as interactions of antigenic peptides with class II molecules required for the presentation of class II-peptide complexes and T cell engagement. Using early passage Burkitt’s lymphoma (BL) tumors and transformed cells, we show that compared to B-lymphoblasts, BL cells express decreased levels of the class II editor HLA-DM, lysosomal thiol-reductase GILT, and a 47kDa enolase-like protein. Functional Ag presentation was partially restored in BL cells treated with a c-MYC inhibitor, demonstrating the impact of this oncogene on Ag recognition. This restoration of HLA class II-mediated Ag presentation in early passage BL tumors/cells was linked to enhanced HLA-DM expression and a concurrent decrease in HLA-DO in BL cells. Taken together, these results reveal c-MYC exerts suppressive effects at several critical checkpoints in Ag presentation which contribute to the immunoevasive properties of BL tumors. PMID:25595783

  10. The pterocarpanquinone LQB-118 inhibits tumor cell proliferation by downregulation of c-Myc and cyclins D1 and B1 mRNA and upregulation of p21 cell cycle inhibitor expression.

    PubMed

    Martino, Thiago; Magalhães, Fernanda C J; Justo, Graça A; Coelho, Marsen G P; Netto, Chaquip D; Costa, Paulo R R; Sabino, Kátia C C

    2014-06-15

    The incidence of cancer grows annually worldwide and in Brazil it is the second cause of death. The search for anti-cancer drugs has then become urgent. It depends on the studies of natural and chemical synthesis products. The antitumor action of LQB-118, a pterocarpanquinone structurally related to lapachol, has been demonstrated to induce mechanisms linked to leukemia cell apoptosis. This work investigated some mechanisms of the in vitro antitumor action of LQB-118 on prostate cancer cells. LQB-118 reduced the expression of the c-Myc transcription factor, downregulated the cyclin D1 and cyclin B1 mRNA levels and upregulated the p21 cell cycle inhibitor. These effects resulted in cell cycle arrest in the S and G2/M phases and inhibition of tumor cell proliferation. LQB-118 also induced programmed cell death of the prostate cancer cells, as evidenced by internucleosomal DNA fragmentation and annexin-V positive cells. Except the cell cycle arrest in the S phase and enhanced c-Myc expression, all the mechanisms observed here for the in vitro antitumor action of LQB-118 were also found for Paclitaxel, a traditional antineoplastic drug. These findings suggest new molecular mechanisms for the LQB-118 in vitro antitumor action. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. A link between c-Myc-mediated transcriptional repression and neoplastic transformation.

    PubMed Central

    Lee, L A; Dolde, C; Barrett, J; Wu, C S; Dang, C V

    1996-01-01

    Recent studies indicate that the transcription factor c-Myc contributes to oncogenesis by altering the expression of genes involved in cell proliferation, but its precise function in neoplasia remains ambiguous. The ability of c-Myc to bind the sequence CAC(G/A)TG and transactivate appears to be linked to its transforming activity; however, c-Myc also represses transcription in vitro through a pyrimidine-rich cis element termed the initiator (Inr). In transfection experiments using the adenoviral major late (adML) promoter, which contains two Myc binding sites and an Inr, we determined that c-Myc represses transcription through the initiator in vivo. This activity requires the dimerization domain and amino acids 106 to 143, which are located within the transactivation domain and are necessary for neoplastic transformation. We studied a lymphoma-derived c-Myc substitution mutation at 115-Phe, which is within the region required for transcriptional suppression, and found the mutant more effective than wild-type c-Myc in transforming rodent fibroblasts and in suppressing the adML promoter. Our studies of both loss-of-function and gain-of-function c-Myc mutations suggest a link between c-Myc-mediated neoplastic transformation and transcriptional repression through the Inr. PMID:8601634

  12. A link between c-Myc-mediated transcriptional repression and neoplastic transformation.

    PubMed

    Lee, L A; Dolde, C; Barrett, J; Wu, C S; Dang, C V

    1996-04-01

    Recent studies indicate that the transcription factor c-Myc contributes to oncogenesis by altering the expression of genes involved in cell proliferation, but its precise function in neoplasia remains ambiguous. The ability of c-Myc to bind the sequence CAC(G/A)TG and transactivate appears to be linked to its transforming activity; however, c-Myc also represses transcription in vitro through a pyrimidine-rich cis element termed the initiator (Inr). In transfection experiments using the adenoviral major late (adML) promoter, which contains two Myc binding sites and an Inr, we determined that c-Myc represses transcription through the initiator in vivo. This activity requires the dimerization domain and amino acids 106 to 143, which are located within the transactivation domain and are necessary for neoplastic transformation. We studied a lymphoma-derived c-Myc substitution mutation at 115-Phe, which is within the region required for transcriptional suppression, and found the mutant more effective than wild-type c-Myc in transforming rodent fibroblasts and in suppressing the adML promoter. Our studies of both loss-of-function and gain-of-function c-Myc mutations suggest a link between c-Myc-mediated neoplastic transformation and transcriptional repression through the Inr.

  13. Cell cycle regulation of the c-Myc transcriptional activation domain.

    PubMed Central

    Seth, A; Gupta, S; Davis, R J

    1993-01-01

    The product of the c-myc gene (c-Myc) is a sequence-specific DNA-binding protein that has previously been demonstrated to be required for cell cycle progression. Here we report that the c-Myc DNA binding site confers cell cycle regulation to a reporter gene in Chinese hamster ovary cells. The observed transactivation was biphasic with a small increase in G1 and a marked increase during the S-to-G2/M transition of the cell cycle. This cell cycle regulation of transactivation potential is accounted for, in part, by regulatory phosphorylation of the c-Myc transactivation domain. Together, these data demonstrate that c-Myc may have an important role in the progression of cells through both the G1 and G2 phases of the cell cycle. Images PMID:8321217

  14. C-myc gene chromatin of estrogen receptor positive and negative breast cancer cells.

    PubMed

    Miller, T L; Huzel, N J; Davie, J R; Murphy, L C

    1993-02-01

    Expression of the c-myc protooncogene is estrogen regulated in estrogen receptor (ER) positive, hormone-dependent human breast cancer cells, but it is constitutively active in ER negative, hormone-independent breast cancer cells. To determine whether these differences are reflected in c-myc chromatin, DNase I hypersensitive sites (DHS) were mapped. Six DHS were detected in all cell lines studied, with DHS 3(2) being more prominent than DHS 3(1). The accessibility of DHS 2 was markedly greater in ER negative cells than in ER positive cells, and this relative accessibility remained unchanged when cells were grown in estrogen free medium. DHS 2, 3(1) and 3(2) map near the P0, P1 and P2 promoters, respectively. An analysis of promoter usage demonstrated that P2 was the preferred promoter. Thus, the differences in the accessibility of DHS 2 in c-myc chromatin of ER positive and negative cells likely reflects alterations in DNA-protein interactions in this region.

  15. c-myc as a mediator of accelerated apoptosis and involution in mammary glands lacking Socs3.

    PubMed

    Sutherland, Kate D; Vaillant, François; Alexander, Warren S; Wintermantel, Tim M; Forrest, Natasha C; Holroyd, Sheridan L; McManus, Edward J; Schutz, Gunther; Watson, Christine J; Chodosh, Lewis A; Lindeman, Geoffrey J; Visvader, Jane E

    2006-12-13

    Suppressor of cytokine signalling (SOCS) proteins are critical attenuators of cytokine-mediated signalling in diverse tissues. To determine the importance of Socs3 in mammary development, we generated mice in which Socs3 was deleted in mammary epithelial cells. No overt phenotype was evident during pregnancy and lactation, indicating that Socs3 is not a key physiological regulator of prolactin signalling. However, Socs3-deficient mammary glands exhibited a profound increase in epithelial apoptosis and tissue remodelling, resulting in precocious involution. This phenotype was accompanied by augmented Stat3 activation and a marked increase in the level of c-myc. Moreover, induction of c-myc before weaning using an inducible transgenic model recapitulated the Socs3 phenotype, and elevated expression of likely c-myc target genes, E2F-1, Bax and p53, was observed. Our data establish Socs3 as a critical attenuator of pro-apoptotic pathways that act in the developing mammary gland and provide evidence that c-myc regulates apoptosis during involution.

  16. miR-26a and miR-26b inhibit esophageal squamous cancer cell proliferation through suppression of c-MYC pathway.

    PubMed

    Li, Juan; Liang, Yue; Lv, Hao; Meng, Hui; Xiong, Gang; Guan, Xingying; Chen, Xuedan; Bai, Yun; Wang, Kai

    2017-08-20

    Dysregulation of c-Myc is one of the most common abnormalities in human malignancies, including esophageal cancer, one of the world's most lethal cancers. MicroRNA-26 family, including miR-26a and miR-26b, is transcriptionally suppressed by c-MYC. Our previous microarray data indicated a decreased-expression of miR-26 family in esophageal squamous cell carcinoma (ESCC). However, its roles in c-MYC pathway regulation and esophageal cancer tumorigenesis have yet not been elucidated. In this study, we expanded the detection of miR-26 expression in ESCC patients and found that the great majority of ESCC tissues showed an >50% reduction, even in the early-staged tumor. Furthermore, ectopic expression of miR-26a or miR-26b induced ESCC cell growth inhibition and G1 phase arrest. MYC binding protein (MYCBP) was identified as a direct target of miR-26. MiR-26 could dramatically decrease MYCBP mRNA and protein levels, as well as the expression of luciferase carrying MYCBP 3'-untranslated region. Moreover, knock-down of MYCBP mimicked the effect of miR-26. More importantly, miR-26 overexpression could downregulate a series of c-MYC target genes as MYCBP silence did. Taken together, these results indicate that miR-26 family can suppress esophageal cancer cell proliferation by inhibition of MYCBP, subsequently downregulate c-MYC pathway. Besides, we also found that reduction of miR-26 expression in ESCC was not due to DNA methylation. Hence, our study reveals a novel feedback loop for c-MYC pathway and implicates miR-26 as a potential target for prevention and treatment of esophageal cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Downregulation of c-Myc is involved in TLR3-mediated tumor death of neuroblastoma xenografts.

    PubMed

    Lin, Li-Ling; Huang, Chao-Cheng; Wu, Chia-Ling; Wu, Min-Tsui; Hsu, Wen-Ming; Chuang, Jiin-Haur

    2016-07-01

    Neuroblastoma (NB) is the deadliest pediatric solid tumor due to its pleomorphic molecular characteristics. In the innate immune system, toll-like receptor 3 (TLR3) recognizes viral double-stranded RNAs to initiate immune signaling. Positive TLR3 expression indicates a favorable prognosis in NB patients, and is associated with MYCN-non-amplified. However, TLR3-mediated innate immune responses remain elusive in NB. In this study, we attempted to dissect the molecular mechanism underlying TLR3-agonist polyinosinic-polycytidylic acid [poly(I:C)] treatment in NB in vivo. We established NB xenograft models in non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice with MYCN-amplified SK-N-DZ (DZ) cells or MYCN-non-amplified SK-N-AS (AS) cells. Poly(I:C) treatment led to significant tumor regression in AS xenografts, but not in DZ xenografts. Through immunohistochemical analysis, significant suppression of tumor proliferation, downregulation of c-Myc expression, and upregulation of TLR3 expression were found in the treatment group. Poly(I:C) inducing activation of TLR3/IRF3-mediated innate immunity associated with downregulation of c-Myc can be found in MYCN-non-amplified SK-N-AS cells, but not in MYCN-amplified BE(2)-M17 cells. Knockdown of TLR3 disturbed poly(I:C)-induced suppression of c-Myc and upregulation of p-IRF3 in AS cells. Furthermore, poly(I:C) treatment upregulated active NF-κB, mitochondrial antioxidant manganese superoxide dismutase and 8-hydroxydeoxyguanosine, which works with reactive oxygen species (ROS) generation and DNA damage. Upregulation of active caspase 3 and cleaved poly [ADP-ribose] polymerase 1 were found in poly(I:C)-treated AS xenografts, which indicates the induction of apoptosis. Thus, our results suggest that c-Myc overexpression may increase sensitivity to poly(I:C)-induced tumor growth arrest and ROS-mediated apoptosis in NB. This study demonstrates that c-Myc protein expression has an important role in TLR3-induced innate

  18. Effects of Low-Dose Bisphenol A on DNA Damage and Proliferation of Breast Cells: The Role of c-Myc.

    PubMed

    Pfeifer, Daniella; Chung, Young Min; Hu, Mickey C-T

    2015-12-01

    Humans are exposed to low-dose bisphenol A (BPA) through plastic consumer products and dental sealants containing BPA. Although a number of studies have investigated the mammary gland effects after high-dose BPA exposure, the study findings differ. Furthermore, there has been a lack of mechanistic studies. The objective of this study was to investigate the effect and the mechanism of low-dose BPA in mammary gland cells. We evaluated DNA damage following BPA exposure using the comet assay and immunofluorescence staining, and used cell counting and three-dimensional cultures to evaluate effects on proliferation. We examined the expressions of markers of DNA damage and cell-cycle regulators by immunoblotting and performed siRNA-mediated gene silencing to determine the role of c-Myc in regulating BPA's effects. Low-dose BPA significantly promoted DNA damage, up-regulated c-Myc and other cell-cycle regulatory proteins, and induced proliferation in parallel in estrogen receptor-α (ERα)-negative mammary cells. Silencing c-Myc diminished these BPA-induced cellular events, suggesting that c-Myc is essential for regulating effects of BPA on DNA damage and proliferation in mammary cells. Low-dose BPA exerted c-Myc-dependent genotoxic and mitogenic effects on ERα-negative mammary cells. These findings provide significant evidence of adverse effects of low-dose BPA on mammary cells.

  19. O-GlcNAc transferase integrates metabolic pathways to regulate the stability of c-MYC in human prostate cancer cells.

    PubMed

    Itkonen, Harri M; Minner, Sarah; Guldvik, Ingrid J; Sandmann, Mareike Julia; Tsourlakis, Maria Christina; Berge, Viktor; Svindland, Aud; Schlomm, Thorsten; Mills, Ian G

    2013-08-15

    Metabolic disruptions that occur widely in cancers offer an attractive focus for generalized treatment strategies. The hexosamine biosynthetic pathway (HBP) senses metabolic status and produces an essential substrate for O-linked β-N-acetylglucosamine transferase (OGT), which glycosylates and thereby modulates the function of its target proteins. Here, we report that the HBP is activated in prostate cancer cells and that OGT is a central regulator of c-Myc stability in this setting. HBP genes were overexpressed in human prostate cancers and androgen regulated in cultured human cancer cell lines. Immunohistochemical analysis of human specimens (n = 1987) established that OGT is upregulated at the protein level and that its expression correlates with high Gleason score, pT and pN stages, and biochemical recurrence. RNA interference-mediated siliencing or pharmacologic inhibition of OGT was sufficient to decrease prostate cancer cell growth. Microarray profiling showed that the principal effects of OGT inhibition in prostate cancer cells were related to cell-cycle progression and DNA replication. In particular, c-MYC was identified as a candidate upstream regulator of OGT target genes and OGT inhibition elicited a dose-dependent decrease in the levels of c-MYC protein but not c-MYC mRNA in cell lines. Supporting this relationship, expression of c-MYC and OGT was tightly correlated in human prostate cancer samples (n = 1306). Our findings identify HBP as a modulator of prostate cancer growth and c-MYC as a key target of OGT function in prostate cancer cells.

  20. Hepatocyte growth factor-stimulated renal tubular mitogenesis: effects on expression of c-myc, c-fos, c-met, VEGF and the VHL tumour-suppressor and related genes.

    PubMed Central

    Clifford, S. C.; Czapla, K.; Richards, F. M.; O'Donoghue, D. J.; Maher, E. R.

    1998-01-01

    Hepatocyte growth factor (HGF/SF) is a potent renal proximal tubular cell (PTEC) mitogen involved in renal development. HGF/SF is the functional ligand for the c-met proto-oncogene, and germline c-met mutations are associated with familial papillary renal cell carcinoma. Somatic von Hippel-Lindau disease tumour-suppressor gene (VHL) mutations are frequently detected in sporadic clear cell renal cell carcinomas (RCC), and germline VHL mutations are the commonest cause of familial clear cell RCC. pVHL binds to the positive regulatory components of the trimeric elongin (SIII) complex (elongins B and C) and has been observed to deregulate expression of the vascular endothelial growth factor (VEGF) gene. HGF/SF has similarly been reported to up-regulate expression of the VEGF gene in non-renal experimental systems. To investigate the mechanism of HGF/SF action in PTECs and, specifically, to examine potential interactions between the HGF/c-met and the VHL-mediated pathways for renal tubular growth control, we have isolated untransformed PTECs from normal kidneys, developed conditions for their culture in vitro and used these cells to investigate changes in mRNA levels of the VHL, elongin A, B and C, VEGF, c-myc, c-fos and c-met genes after HGF/SF exposure. Significant elevations in the mRNA levels of VEGF, c-myc, c-fos, c-met and elongins A, B and C, but not VHL, were detected after HGF/SF stimulation of human PTECs (P < 0.02), with a consistent order of peak levels observed over successive replicates (c-fos at 1 h, VEGF at 2-4 h, c-myc, at 4 h, followed by c-met and all three elongin subunits at 8 h). This study highlights the spectrum of changes in gene expression observed in PTECs after HGF/SF stimulation and has identified possible candidate mediators of the HGF/SF-induced mitogenic response. Our evidence would suggest that the changes in PTEC VEGF expression induced by HGF/SF are mediated by a VHL-independent pathway. Images Figure 1 PMID:9652757

  1. Androgen Receptor (AR) Suppresses Normal Human Prostate Epithelial Cell Proliferation via AR/β-catenin/TCF-4 Complex Inhibition of c-MYC Transcription

    PubMed Central

    Antony, Lizamma; van der Schoor, Freek; Dalrymple, Susan L.; Isaacs, John T.

    2016-01-01

    INTRODUCTION Physiologic testosterone continuously stimulates prostate stromal cell secretion of paracrine growth factors (PGFs), which if unopposed would induce hyperplastic overgrowth of normal prostate epithelial cells (PrECs). METHODS Lentiviral shRNA stable knock down of c-MYC, β-catenin, or TCF-4 completely inhibits normal (i.e., non-transformed) human PrECs growth. c-MYC enhancer driven reporter expression and growth is inhibited by two chemically distinct molecules, which prevent β-catenin signaling either by blocking TCF-4 binding (i.e., toxoflavin) or by stimulating degradation (i.e., AVX939). Recombinant DKK1 protein at a dose, which inhibits activation of canonical Wnt signaling does not inhibit PrEC growth. Nuclear β-catenin translocation and PrEC growth is prevented by both lack of PGFs or Akt inhibitor-I. Growth inhibition induced by lack of PGFs, toxoflavin, or Akt inhibitor-I is overcome by constitutive c-MYC transcription. RESULTS In the presence of continuous PGF signaling, PrEC hyperplasia is prevented by androgen binding to AR suppressing c-MYC transcription, resulting in G0 arrest/terminal differentiation independent of Rb, p21, p27, FoxP3, or down regulation of growth factors receptors and instead involves androgen-induced formation of AR/β-catenin/TCF-4 complexes, which suppress c-MYC transcription. Such suppression does not occur when AR is mutated in its zinc-finger binding domain. DISCUSSION Proliferation of non-transformed human PrECs is dependent upon c-MYC transcription via formation/binding of β-catenin/TCF-4 complexes at both 5′ and 3′ c-MYC enhancers stimulated by Wnt-independent, PGF induced Akt signaling. In the presence of continuous PGF signaling, PrEC hyperplasia is prevented by androgen-induced formation of AR/β-catenin/TCF-4 complexes, which retains binding to 3′ c-MYC enhancer, but now suppresses c-MYC transcription. PMID:24913829

  2. c-Myc regulates cell size and ploidy but is not essential for postnatal proliferation in liver

    PubMed Central

    Baena, Esther; Gandarillas, Alberto; Vallespinós, Mireia; Zanet, Jennifer; Bachs, Oriol; Redondo, Clara; Fabregat, Isabel; Martinez-A., Carlos; de Alborán, Ignacio Moreno

    2005-01-01

    The c-Myc protein is a transcription factor implicated in the regulation of multiple biological processes, including cell proliferation, cell growth, and apoptosis. In vivo overexpression of c-myc is linked to tumor development in a number of mouse models. Here, we show that perinatal inactivation of c-Myc in liver causes disorganized organ architecture, decreased hepatocyte size, and cell ploidy. Furthermore, c-Myc appears to have distinct roles in proliferation in liver. Thus, postnatal hepatocyte proliferation does not require c-Myc, whereas it is necessary for liver regeneration in adult mice. These results show novel physiological functions of c-myc in liver development and hepatocyte proliferation and growth. PMID:15857952

  3. c-Myc regulates cell size and ploidy but is not essential for postnatal proliferation in liver

    NASA Astrophysics Data System (ADS)

    Baena, Esther; Gandarillas, Alberto; Vallespinós, Mireia; Zanet, Jennifer; Bachs, Oriol; Redondo, Clara; Fabregat, Isabel; Martinez-A., Carlos; Moreno de Alborán, Ignacio

    2005-05-01

    The c-Myc protein is a transcription factor implicated in the regulation of multiple biological processes, including cell proliferation, cell growth, and apoptosis. In vivo overexpression of c-myc is linked to tumor development in a number of mouse models. Here, we show that perinatal inactivation of c-Myc in liver causes disorganized organ architecture, decreased hepatocyte size, and cell ploidy. Furthermore, c-Myc appears to have distinct roles in proliferation in liver. Thus, postnatal hepatocyte proliferation does not require c-Myc, whereas it is necessary for liver regeneration in adult mice. These results show novel physiological functions of c-myc in liver development and hepatocyte proliferation and growth.

  4. ADA3 regulates normal and tumor mammary epithelial cell proliferation through c-MYC.

    PubMed

    Griffin, Nicolas I; Sharma, Gayatri; Zhao, Xiangshan; Mirza, Sameer; Srivastava, Shashank; Dave, Bhavana J; Aleskandarany, Mohammed; Rakha, Emad; Mohibi, Shakur; Band, Hamid; Band, Vimla

    2016-11-16

    We have established the critical role of ADA3 as a coactivator of estrogen receptor (ER), as well as its role in cell cycle progression. Furthermore, we showed that ADA3 is predominantly nuclear in mammary epithelium, and in ER+, but is cytoplasmic in ER- breast cancers, the latter correlating with poor survival. However, the role of nuclear ADA3 in human mammary epithelial cells (hMECs), and in ER+ breast cancer cells, as well as the importance of ADA3 expression in relation to patient prognosis and survival in ER+ breast cancer have remained uncharacterized. We overexpressed ADA3 in hMECs or in ER+ breast cancer cells and assessed the effect on cell proliferation. The expression of ADA3 was analyzed then correlated with the expression of various prognostic markers, as well as survival of breast cancer patients. Overexpression of ADA3 in ER- hMECs as well as in ER+ breast cancer cell lines enhanced cell proliferation. These cells showed increased cyclin B and c-MYC, decreased p27 and increased SKP2 levels. This was accompanied by increased mRNA levels of early response genes c-FOS, EGR1, and c-MYC. Analysis of breast cancer tissue specimens showed a significant correlation of ADA3 nuclear expression with c-MYC expression. Furthermore, nuclear ADA3 and c-MYC expression together showed significant correlation with tumor grade, mitosis, pleomorphism, NPI, ER/PR status, Ki67 and p27 expression. Importantly, within ER+ cases, expression of nuclear ADA3 and c-MYC also significantly correlated with Ki67 and p27 expression. Univariate Kaplan Meier analysis of four groups in the whole, as well as the ER+ patients showed that c-MYC and ADA3 combinatorial phenotypes showed significantly different breast cancer specific survival with c-MYC-high and ADA3-Low subgroup had the worst outcome. Using multivariate analyses within the whole cohort and the ER+ subgroups, the significant association of ADA3 and c-MYC expression with patients' outcome was independent of tumor grade

  5. The C-Terminal of Nucleolin Promotes the Formation of the c-MYC G-Quadruplex and Inhibits c-MYC Promoter Activity†

    PubMed Central

    González, Verónica; Hurley, Laurence H.

    2010-01-01

    Nucleolin, the most abundant nucleolar phosphoprotein of eukaryotic cells, is known primarily for its role in ribosome biogenesis and cell proliferation. It is, however, a multifunctional protein that, depending on the cellular context, can drive either cell proliferation or apoptosis. Our laboratory recently demonstrated that nucleolin can function as a repressor of c-MYC transcription by binding to and stabilizing the formation of a G-quadruplex structure in a region of the c-MYC promoter responsible for controlling 85–90% of c-MYC’s transcriptional activity. In this study, we investigate the structural elements of nucleolin that are required for c-MYC repression. The effect of nucleolin deletion mutants on the formation and stability of the c-MYC G-quadruplex, as well as c-MYC transcriptional activity, was assessed by circular dichroic spectropolarimetry (CD),1 thermal stability, and in vitro transcription. Here we report that nucleolin’s RNA binding domains (RBDs) 3 and 4, as well as the arginine-glycine-glycine (RGG) domain, are required to repress c-MYC transcription. PMID:20932061

  6. E3 Ubiquitin Ligase RLIM Negatively Regulates c-Myc Transcriptional Activity and Restrains Cell Proliferation

    PubMed Central

    Wang, Lan; Cai, Hao; Zhu, Jingjing; Yu, Long

    2016-01-01

    RNF12/RLIM is a RING domain-containing E3 ubiquitin ligase whose function has only begun to be elucidated recently. Although RLIM was reported to play important roles in some biological processes such as imprinted X-chromosome inactivation and regulation of TGF-β pathway etc., other functions of RLIM are largely unknown. Here, we identified RLIM as a novel E3 ubiquitin ligase for c-Myc, one of the most frequently deregulated oncoproteins in human cancers. RLIM associates with c-Myc in vivo and in vitro independently of the E3 ligase activity of RLIM. Moreover, RLIM promotes the polyubiquitination of c-Myc protein independently of Ser62 and Thr58 phosphorylation of c-Myc. However, RLIM-mediated ubiquitination does not affect c-Myc stability. Instead, RLIM inhibits the transcriptional activity of c-Myc through which RLIM restrains cell proliferation. Our results suggest that RLIM may function as a tumor suppressor by controlling the activity of c-Myc oncoprotein. PMID:27684546

  7. Regulation of translocated c-myc genes transfected into plasmacytoma cells

    SciTech Connect

    Feo, S.; Harvey, R.; Showe, L.; Croce, C.M.

    1986-02-01

    The authors have transfected two translocated c-myc oncogene clones, derived from two human lymphomas carrying the t(8;14) chromosome translocation, into mouse plasmacytoma cells to study the regulation of their expression. In one case, the transfected clone contained the two coding exons of the c-myc oncogene translocated to an immunoglobulin heavy-chain switch region; in the other case, the two coding exons were translocated 5' of the enhancer element located between the heavy-chain joining region (J/sub H/) and the switch region S/sub ..mu../. Nuclease S1 protection experiments indicate that only the c-myc translocated 5' of the enhancer element is transcribed in the plasmacytoma cells. Thus, 5'-truncation of the c-myc gene per se does not lead to c-myc deregulation. Further, since the level of c-myc transcripts in the parental human lymphoma cells was 3- to 4-fold higher than in the transfectants, it seems likely that additional elements within the heavy-chain locus may play a role in the enhancement of c-myc gene transcription in lymphoma cells.

  8. Function of the c-Myc antagonist Mad1 during a molecular switch from proliferation to differentiation.

    PubMed Central

    Cultraro, C M; Bino, T; Segal, S

    1997-01-01

    Mad-Max heterodimers have been shown to antagonize Myc transforming activity by a mechanism requiring multiple protein-protein and protein-DNA interactions. However, the mechanism by which Mad functions in differentiation is unknown. Here, we present evidence that Mad functions by an active repression mechanism to antagonize the growth-promoting function(s) of Myc and bring about a transition from cellular proliferation to differentiation. We demonstrate that exogenously expressed c-Myc blocks inducer-mediated differentiation of murine erythroleukemia cells without disrupting the induction of endogenous Mad; rather, high levels of c-Myc prevent a heterocomplex switch from growth-promoting Myc-Max to growth-inhibitory Mad-Max. Cotransfection of a constitutive c-myc with a zinc-inducible mad1 results in clones expressing both genes, whereby a switch from proliferation to differentiation can be modulated. Whereas cells grown in N'N'-hexamethylene bisacetamide in the absence of zinc fail to differentiate, addition of zinc up-regulates Mad expression by severalfold and differentiation proceeds normally. Coimmunoprecipitation analysis reveals that Mad-Max complexes are in excess of Myc-Max in these cotransfectants. Moreover, we show that the Sin-binding, basic region, and leucine zipper motifs are required for Mad to function during a molecular switch from proliferation to differentiation. PMID:9111304

  9. MM-1 facilitates degradation of c-Myc by recruiting proteasome and a novel ubiquitin E3 ligase.

    PubMed

    Kimura, Yumiko; Nagao, Arisa; Fujioka, Yuko; Satou, Akiko; Taira, Takahiro; Iguchi-Ariga, Sanae M M; Ariga, Hiroyoshi

    2007-10-01

    We have reported that a novel c-Myc-binding protein, MM-1, repressed the E-box-dependent transcription activity of c-Myc by recruiting the HDAC1 complex via TIF1beta/KAP1, a transcriptional corepressor. We have also reported that a mutation of A157R in MM-1, which is often observed in patients with leukemia or lymphoma, abrogated all of the repressive activities of MM-1 toward c-Myc, indicating that MM-1 is a novel tumor suppressor. In this study, we found that MM-1 was bound to a component of proteasome and stimulated degradation of c-Myc in human cells. Knockdown of endogenous MM-1 in human HeLa cells by introduction of siRNA against MM-1 stabilized the endogenous c-Myc. To identify proteins that participate in c-Myc degradation by MM-1, in vivo and in vitro binding assays were carried out. The results showed that MM-1 directly bound to Rpt3, a subunit of 26S proteasome, and that c-Myc directly bound to Skp2, which recruited ElonginC, ElonginB and Cullin2, thereby forming a novel ubiquitin E3 ligase. Knockdown of endogenous Cullin2 stabilized the endogenous c-Myc. Thus, MM-1 is a factor that connects c-Myc to the ubiquitin E3 ligase and the proteasome.

  10. TIP30 interacts with an estrogen receptor alpha-interacting coactivator CIA and regulates c-myc transcription.

    PubMed

    Jiang, Chao; Ito, Mitsuhiro; Piening, Valerie; Bruck, Kristy; Roeder, Robert G; Xiao, Hua

    2004-06-25

    Deregulation of c-myc expression is implicated in the pathogenesis of many neoplasias. Estrogen receptor alpha (ERalpha) can increase the rate of c-myc transcription through the recruitment of a variety of cofactors to the promoter, yet the precise roles of these cofactors in transcription and tumorigenesis are largely unknown. We show here that a putative tumor suppressor TIP30, also called CC3 or Htatip2, interacts with an ERalpha-interacting coactivator CIA. Using chromatin immunoprecipitation assays, we demonstrate that TIP30 and CIA are distinct cofactors that are dynamically associated with the promoter and downstream regions of the c-myc gene in response to estrogen. Both TIP30 and CIA are recruited to the c-myc gene promoter by liganded ERalpha in the second transcription cycle. TIP30 overexpression represses ERalpha-mediated c-myc transcription, whereas TIP30 deficiency enhances c-myc transcription in both the absence and presence of estrogen. Ectopic CIA cooperates with TIP30 to repress ERalpha-mediated c-myc transcription. Moreover, virgin TIP30 knockout mice exhibit increased c-myc expression in mammary glands. Together, these results reveal an important role for TIP30 in the regulation of ERalpha-mediated c-myc transcription and suggest a mechanism for tumorigenesis promoted by TIP30 deficiency.

  11. Differential effects of c-myc and ABCB1 silencing on reversing drug resistance in HepG2/Dox cells.

    PubMed

    Yahya, Shaymaa M M; Hamed, Ahmed R; Emara, Mohamed; Soltan, Maha M; Abd-Ellatef, Gamal Eldein F; Abdelnasser, Salma M

    2016-05-01

    Multidrug resistance (MDR) in various kinds of cancers represents a true obstacle which hinders the successes of most of current available chemotherapies. ATP-binding cassette (ABC) trasporter proteins have been shown to contribute to the majority of MDR in various types of malignancies. c-myc has recently been reported to participate, at least partly, in MDR to some types of cancers. This study aimed to test whether c-myc could play a role, solely or with coordination with other ABCs, in the resistance of HepG2 cells to doxorubicin (Dox). MDR has been induced in wild-type HepG2 and has been verified both on gene and protein levels. Various assays including efflux assays as well as siRNA targeting ABCB1 and c-myc have been employed to explore the role of both candidate molecules in MDR in HepG2. Results obtained, with regard to ABCB1 silencing on HepG2/Dox cells, have shown that ABCB1-deficient cells exhibited a significant reduction in ABCC1 expression as compared to ABCB1-sufficient cells. However, these cells did not show a significant reduction in other tested ABCs (ABCC5 and ABCC10) while c-myc silencing had no significant effect on any of the studied ABCs. Moreover, silencing of ABCB1 on HepG2 significantly increased fluorescent calcein retention in HepG2 cells as compared to the control cells while downregulation of c-myc did not have any effect on fluorescent calcein retention. Altogether, this work clearly demonstrates that c-myc has no role in MDR of HepG2 to Dox which has been shown to be ABCB1-mediated in a mechanism which might involve ABCC1.

  12. c-Myc Alteration Determines the Therapeutic Response to FGFR Inhibitors.

    PubMed

    Liu, Hongyan; Ai, Jing; Shen, Aijun; Chen, Yi; Wang, Xinyi; Peng, Xia; Chen, Hui; Shen, Yanyan; Huang, Min; Ding, Jian; Geng, Meiyu

    2017-02-15

    Purpose: Lately, emerging evidence has suggested that oncogenic kinases are associated with specific downstream effectors to govern tumor growth, suggesting potential translational values in kinase-targeted cancer therapy. Tyrosine kinase FGFR, which is aberrant in various cancer types, is one of the most investigated kinases in molecularly targeted cancer therapy. Herein, we investigated whether there exists key downstream effector(s) that converges FGFR signaling and determines the therapeutic response of FGFR-targeted therapy.Experimental Design: A range of assays was used to assess the role of c-Myc in FGFR aberrant cancers and its translational relevance in FGFR-targeted therapy, including assessment of drug sensitivity using cell viability assay, signaling transduction profiling using immunoblotting, and in vivo antitumor efficacy using cancer cell line-based xenografts and patient-derived xenografts models.Results: We discovered that c-Myc functioned as the key downstream effector that preceded FGFR-MEK/ERK signaling in FGFR aberrant cancer. Disruption of c-Myc overrode the cell proliferation driven by constitutively active FGFR. FGFR inhibition in FGFR-addicted cancer facilitated c-Myc degradation via phosphorylating c-Myc at threonine 58. Ectopic expression of undegradable c-Myc mutant conferred resistance to FGFR inhibition both in vitro and in vivo c-Myc level alteration stringently determined the response to FGFR inhibitors, as demonstrated in FGFR-responsive cancer subset, as well as cancers bearing acquired or de novo resistance to FGFR inhibition.Conclusions: This study reveals a stringent association between FGFR and the downstream effector c-Myc in FGFR-dependent cancers, and suggests the potential therapeutic value of c-Myc in FGFR-targeted cancer therapy. Clin Cancer Res; 23(4); 974-84. ©2016 AACR.

  13. Endogenous c-Myc is essential for p53-induced apoptosis in response to DNA damage in vivo.

    PubMed

    Phesse, T J; Myant, K B; Cole, A M; Ridgway, R A; Pearson, H; Muncan, V; van den Brink, G R; Vousden, K H; Sears, R; Vassilev, L T; Clarke, A R; Sansom, O J

    2014-06-01

    Recent studies have suggested that C-MYC may be an excellent therapeutic cancer target and a number of new agents targeting C-MYC are in preclinical development. Given most therapeutic regimes would combine C-MYC inhibition with genotoxic damage, it is important to assess the importance of C-MYC function for DNA damage signalling in vivo. In this study, we have conditionally deleted the c-Myc gene in the adult murine intestine and investigated the apoptotic response of intestinal enterocytes to DNA damage. Remarkably, c-Myc deletion completely abrogated the immediate wave of apoptosis following both ionizing irradiation and cisplatin treatment, recapitulating the phenotype of p53 deficiency in the intestine. Consistent with this, c-Myc-deficient intestinal enterocytes did not upregulate p53. Mechanistically, this was linked to an upregulation of the E3 Ubiquitin ligase Mdm2, which targets p53 for degradation in c-Myc-deficient intestinal enterocytes. Further, low level overexpression of c-Myc, which does not impact on basal levels of apoptosis, elicited sustained apoptosis in response to DNA damage, suggesting c-Myc activity acts as a crucial cell survival rheostat following DNA damage. We also identify the importance of MYC during DNA damage-induced apoptosis in several other tissues, including the thymus and spleen, using systemic deletion of c-Myc throughout the adult mouse. Together, we have elucidated for the first time in vivo an essential role for endogenous c-Myc in signalling DNA damage-induced apoptosis through the control of the p53 tumour suppressor protein.

  14. Identification of functional networks of estrogen- and c-Myc-responsive genes and their relationship to response to tamoxifen therapy in breast cancer.

    PubMed

    Musgrove, Elizabeth A; Sergio, C Marcelo; Loi, Sherene; Inman, Claire K; Anderson, Luke R; Alles, M Chehani; Pinese, Mark; Caldon, C Elizabeth; Schütte, Judith; Gardiner-Garden, Margaret; Ormandy, Christopher J; McArthur, Grant; Butt, Alison J; Sutherland, Robert L

    2008-08-20

    Estrogen is a pivotal regulator of cell proliferation in the normal breast and breast cancer. Endocrine therapies targeting the estrogen receptor are effective in breast cancer, but their success is limited by intrinsic and acquired resistance. With the goal of gaining mechanistic insights into estrogen action and endocrine resistance, we classified estrogen-regulated genes by function, and determined the relationship between functionally-related genesets and the response to tamoxifen in breast cancer patients. Estrogen-responsive genes were identified by transcript profiling of MCF-7 breast cancer cells. Pathway analysis based on functional annotation of these estrogen-regulated genes identified gene signatures with known or predicted roles in cell cycle control, cell growth (i.e. ribosome biogenesis and protein synthesis), cell death/survival signaling and transcriptional regulation. Since inducible expression of c-Myc in antiestrogen-arrested cells can recapitulate many of the effects of estrogen on molecular endpoints related to cell cycle progression, the estrogen-regulated genes that were also targets of c-Myc were identified using cells inducibly expressing c-Myc. Selected genes classified as estrogen and c-Myc targets displayed similar levels of regulation by estrogen and c-Myc and were not estrogen-regulated in the presence of siMyc. Genes regulated by c-Myc accounted for 50% of all acutely estrogen-regulated genes but comprised 85% (110/129 genes) in the cell growth signature. siRNA-mediated inhibition of c-Myc induction impaired estrogen regulation of ribosome biogenesis and protein synthesis, consistent with the prediction that estrogen regulates cell growth principally via c-Myc. The 'cell cycle', 'cell growth' and 'cell death' gene signatures each identified patients with an attenuated response in a cohort of 246 tamoxifen-treated patients. In multivariate analysis the cell death signature was predictive independent of the cell cycle and cell growth

  15. Characterization of cis-regulatory elements of the c-myc promoter responding to human GM-CSF or mouse interleukin 3 in mouse proB cell line BA/F3 cells expressing the human GM-CSF receptor.

    PubMed

    Watanabe, S; Ishida, S; Koike, K; Arai, K

    1995-06-01

    Interleukin 3 (IL-3) or granulocyte macrophage colony-stimulating factor (GM-CSF) activates c-fos, c-jun, and c-myc genes and proliferation in both hematopoietic and nonhematopoietic cells. Using a series of deletion mutants of the beta subunit of human GM-CSF receptor (hGMR) and inhibitors of tyrosine kinase, two distinct signaling pathways, one for activation of c-fos and c-jun genes, and the other for cell proliferation and activation of c-myc gene have been elucidated. In contrast to wealth of information on the pathway leading to activation of c-fos/c-jun genes, knowledge of the latter is scanty. To clarify the mechanisms of activation of c-myc gene by cytokines, we established a transient transfection assay in mouse proB cell line BA/F3 cells expressing hGMR. Analyses of hGMR beta subunit mutants revealed two cytoplasmic regions involved in activation of the c-myc promoter, one is essential and the other is dispensable but enhances the activity. These regions are located at the membrane proximal and the distal regions covering amino acid positions 455-544 and 544-589, respectively. Characterization of cis-acting regulatory elements of the c-myc gene showed that the region containing the P2 promoter initiation site is sufficient to mediate the response to mIL-3 or hGM-CSF. Electrophoretic mobility shift assay using an oligonucleotide corresponding to the distal putative E2F binding site revealed that p107/E2F complex, the negative regulator of E2F, decreased, and free E2F increased after mIL-3 stimulation. These results support the thesis that mIL-3 or hGM-CSF regulates the c-myc promoter by altering composition of the E2F complexes at E2F binding site.

  16. Frequent coamplification and cooperation between C-MYC and PVT1 oncogenes promote malignant pleural mesothelioma.

    PubMed

    Riquelme, Erick; Suraokar, Milind B; Rodriguez, Jaime; Mino, Barbara; Lin, Heather Y; Rice, David C; Tsao, Anne; Wistuba, Ignacio I

    2014-07-01

    Malignant pleural mesothelioma (MPM) is a deadly disease with poor prognosis and few treatment options. We characterized and elucidated the roles of C-MYC and PVT1 involved in the pathogenesis of MPM. We used small interfering RNA (siRNA)-mediated knockdown in MPM cell lines to determine the effect of C-MYC and PVT1 abrogation on MPM cells undergoing apoptosis, proliferation, and cisplatin sensitivity. We also characterized the expression of microRNAs spanning the PVT1 region in MPM cell lines. Copy number analysis was measured by quantitative polymerase chain reaction and fluorescence in situ hybridization. Copy number analysis revealed copy number gains (CNGs) in chromosomal region 8q24 in six of 12 MPM cell lines. MicroRNA analysis showed high miR-1204 expression in MSTO-211H cell lines with four copies or more of PVT1. Knockdown by siRNA showed increased PARP-C levels in MSTO-211H transfected with siPVT1 but not in cells transfected with siC-MYC. C-MYC and PVT1 knockdown reduced cell proliferation and increased sensitivity to cisplatin. Analysis of the expression of apoptosis-related genes in the MSTO-211H cell line suggested that C-MYC maintains a balance between proapoptotic and antiapoptotic gene expression, whereas PVT1 and, to a lesser extent, miR-1204 up-regulate proapoptotic genes and down-regulate antiapoptotic genes. Fluorescence in situ hybridization analysis of MPM tumor specimens showed a high frequency of both CNGs (11 of 75) and trisomy (three copies; 11 of 75) for the C-MYC locus. Our results suggest that C-MYC and PVT1 CNG promotes a malignant phenotype of MPM, with C-MYC CNG stimulating cell proliferation and PVT1 both stimulating proliferation and inhibiting apoptosis.

  17. Binding studies on peptide-oligonucleotide complex: intercalation of tryptophan in GC-rich region of c-myc gene.

    PubMed

    Jain, Akanchha Aklank; Rajeswari, Moganty R

    2003-07-23

    Transcriptional regulation of the c-myc gene is essential for normal cellular proliferation; differentiation and overexpression of c-myc is associated with several human cancers. C-myc gene, particularly exon 1, which contains the conserved P1 and P2 promoter regions, has been a potential target for the intercalating drugs in chemotherapy. We have chosen a 21-mer GC-rich oligonucleotide sequence starting from 2281 to 2302 of human c-myc gene located 26 base pair upstream of P1 promoter and partially overlapping with the TATA box of P1. In this paper, we have studied the interaction of a tetrapeptide, KWGK-otBut, with duplex of the above 21-mer sequence under low-salt conditions using UV-Vis absorption, UV melting, fluorescence and circular dichroic (CD) spectroscopy. From the fluorescence quenching data, we determined the two binding constants, K1 (involving only electrostatic interactions) and K2 (involving intercalation), for the formation of (PN)1 and (PN)2 of the two-step mechanism previously established by us. Significant changes were observed in the UV difference absorption spectra and CD spectra of both KWGK and 21-mer duplex upon complex formation even at a very low peptide to nucleotide (P/N) ratios. These spectral changes accompanied by a high value of K2 (=5.13) suggest a strong binding of KWGK involving intercalation of the tryptophan in 21-mer duplex. Based on the above data along with changes observed in deltaH, deltaS and deltaG and increase in melting temperature (by about 8 degrees C) of the 21-mer duplex in presence of KWGK, we propose a model for intercalation of tryptophan of in GC-rich region of c-myc gene. Present observations may be explored in understanding the role of intercalation in protein-nucleic acid interactions in c-myc expression and these results could also help in designing oligopeptides or other low molecular weight ligands to modulate gene expression.

  18. c-Myc Modulation and Acetylation Is a Key HDAC Inhibitor Target in Cancer.

    PubMed

    Nebbioso, Angela; Carafa, Vincenzo; Conte, Mariarosaria; Tambaro, Francesco Paolo; Abbondanza, Ciro; Martens, Joost; Nees, Matthias; Benedetti, Rosaria; Pallavicini, Isabella; Minucci, Saverio; Garcia-Manero, Guillermo; Iovino, Francesco; Lania, Gabriella; Ingenito, Concetta; Belsito Petrizzi, Valeria; Stunnenberg, Hendrik G; Altucci, Lucia

    2017-05-15

    Purpose: Histone deacetylase inhibitors (HDACi) are promising anticancer drugs. Although some HDACi have entered the clinic, the mechanism(s) underlying their tumor selectivity are poorly understood.Experimental Design and Results: Using gene expression analysis, we define a core set of six genes commonly regulated in acute myeloid leukemia (AML) blasts and cell lines. MYC, the most prominently modulated, is preferentially altered in leukemia. Upon HDACi treatment, c-Myc is acetylated at lysine 323 and its expression decreases, leading to TRAIL activation and apoptosis. c-Myc binds to the TRAIL promoter on the proximal GC box through SP1 or MIZ1, impairing TRAIL activation. HDACi exposure triggers TRAIL expression, altering c-Myc-TRAIL binding. These events do not occur in normal cells. Excitingly, this inverse correlation between TRAIL and c-Myc is supported by HDACi treatment ex vivo of AML blasts and primary human breast cancer cells. The predictive value of c-Myc to HDACi responsiveness is confirmed in vivo in AML patients undergoing HDACi-based clinical trials.Conclusions: Collectively, our findings identify a key role for c-Myc in TRAIL deregulation and as a biomarker of the anticancer action of HDACi in AML. The potential improved patient stratification could pave the way toward personalized therapies. Clin Cancer Res; 23(10); 2542-55. ©2016 AACR. ©2016 American Association for Cancer Research.

  19. Transcriptional regulation of Wnt inhibitory factor-1 by Miz-1/c-Myc.

    PubMed

    Licchesi, J D F; Van Neste, L; Tiwari, V K; Cope, L; Lin, X; Baylin, S B; Herman, J G

    2010-11-04

    The Wnt signaling pathway is capable of self-regulation through positive and negative feedback mechanisms. For example, the oncoprotein c-Myc, which is upregulated by Wnt signaling activity, participates in a positive feedback loop of canonical Wnt signaling through repression of Wnt antagonists DKK1 and SFRP1. In this study, we investigated the mechanism of Wnt inhibitory factor-1 (WIF-1) silencing. Mapping of CpG island methylation of the WIF-1 promoter reveals regional methylation (-295 to -95 bp from the transcription start site) that correlates with transcriptional silencing. We identified Miz-1 as a direct activator of WIF-1 transcriptional activity, which is found at WIF-1 promoter. In addition, we show that c-Myc contributes to WIF-1 transcriptional repression in a Miz-1-dependent manner. Although the transient repression mediated by Miz-1/c-Myc is independent of de novo methylation, the stable repression by this complex is associated with CpG island methylation of the critical -295 to -95-bp region of the WIF-1 promoter. Importantly, Miz-1 and c-Myc are found at WIF-1 promoter in WIF-1 non-expressing cell lines DLD-1 and 209myc. Transient knockdown or somatic knockout of c-Myc in DLD-1 failed to restore WIF-1 expression suggesting that c-Myc is involved in initiating rather than maintaining WIF-1 epigenetic silencing. In a genome-wide screen, DNAJA4, TGFβ-induced and TRIM59 were repressed by c-Myc overexpression and DNA promoter hypermethylation. Our data reveal novel insights into c-Myc-mediated DNA methylation-dependent transcriptional silencing, a mechanism that might contribute to the dysregulation of Wnt signaling in cancer.

  20. The c-MYC-ABCB5 axis plays a pivotal role in 5-fluorouracil resistance in human colon cancer cells.

    PubMed

    Kugimiya, Naruji; Nishimoto, Arata; Hosoyama, Tohru; Ueno, Koji; Enoki, Tadahiko; Li, Tao-Sheng; Hamano, Kimikazu

    2015-07-01

    c-MYC overexpression is frequently observed in various cancers including colon cancer and regulates many biological activities such as aberrant cell proliferation, apoptosis, genomic instability, immortalization and drug resistance. However, the mechanism by which c-MYC confers drug resistance remains to be fully elucidated. In this study, we found that the c-MYC expression level in primary colorectal cancer tissues correlated with the recurrence rate following 5-fluorouracil (5-FU)-based adjuvant chemotherapy. Supporting this finding, overexpression of exogenous c-MYC increased the survival rate following 5-FU treatment in human colon cancer cells, and knockdown of endogenous c-MYC decreased it. Furthermore, c-MYC knockdown decreased the expression level of ABCB5, which is involved in 5-FU resistance. Using a chromatin immunoprecipitation assay, we found that c-MYC bound to the ABCB5 promoter region. c-MYC inhibitor (10058-F4) treatment inhibited c-MYC binding to the ABCB5 promoter, leading to a decrease in ABCB5 expression level. ABCB5 knockdown decreased the survival rate following 5-FU treatment as expected, and the ABCB5 expression level was increased in 5-FU-resistant human colon cancer cells. Finally, using a human colon cancer xenograft murine model, we found that the combined 5-FU and 10058-F4 treatment significantly decreased tumorigenicity in nude mice compared with 5-FU or 10058-F4 treatment alone. 10058-F4 treatment decreased the ABCB5 expression level in the presence or absence of 5-FU. In contrast, 5-FU treatment alone increased the ABCB5 expression level. Taken together, these results suggest that c-MYC confers resistance to 5-FU through regulating ABCB5 expression in human colon cancer cells.

  1. Long non-coding RNA GHET1 promotes gastric carcinoma cell proliferation by increasing c-Myc mRNA stability.

    PubMed

    Yang, Feng; Xue, Xuchao; Zheng, Luming; Bi, Jianwei; Zhou, Yuhong; Zhi, Kangkang; Gu, Yan; Fang, Guoen

    2014-02-01

    Long non-coding RNAs (lncRNAs), a recently characterized class of non-coding RNAs, have been shown to have important regulatory roles and are de-regulated in a variety of tumors. However, the contributions of lncRNAs to gastric carcinoma and their functional mechanisms remain largely unknown. In this study, we found that lncRNA gastric carcinoma high expressed transcript 1 (lncRNA-GHET1) was up-regulated in gastric carcinoma. The over-expression of this lncRNA correlates with tumor size, tumor invasion and poor survival. Gain-of-function and loss-of-function analyses demonstrated that GHET1 over-expression promotes the proliferation of gastric carcinoma cells in vitro and in vivo. Knockdown of GHET1 inhibits the proliferation of gastric carcinoma cells. RNA pull-down and immunoprecipitation assays confirmed that GHET1 physically associates with insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1) and enhances the physical interaction between c-Myc mRNA and IGF2BP1, consequently increasing the stability of c-Myc mRNA and expression. The expression of GHET1 and c-Myc is strongly correlated in gastric carcinoma tissues. Depletion of c-Myc abolishes the effects of GHET1 on proliferation of gastric carcinoma cells. Taken together, these findings indicate that GHET1 plays a pivotal role in gastric carcinoma cell proliferation via increasing c-Myc mRNA stability and expression, which suggests potential use of GHET1 for the prognosis and treatment of gastric carcinoma. © 2013 FEBS.

  2. A natural small molecule, catechol, induces c-Myc degradation by directly targeting ERK2 in lung cancer.

    PubMed

    Lim, Do Young; Shin, Seung Ho; Lee, Mee-Hyun; Malakhova, Margarita; Kurinov, Igor; Wu, Qiong; Xu, Jinglong; Jiang, Yanan; Dong, Ziming; Liu, Kangdong; Lee, Kun Yeong; Bae, Ki Beom; Choi, Bu Young; Deng, Yibin; Bode, Ann; Dong, Zigang

    2016-06-07

    Various carcinogens induce EGFR/RAS/MAPK signaling, which is critical in the development of lung cancer. In particular, constitutive activation of extracellular signal-regulated kinase 2 (ERK2) is observed in many lung cancer patients, and therefore developing compounds capable of targeting ERK2 in lung carcinogenesis could be beneficial. We examined the therapeutic effect of catechol in lung cancer treatment. Catechol suppressed anchorage-independent growth of murine KP2 and human H460 lung cancer cell lines in a dose-dependent manner. Catechol inhibited ERK2 kinase activity in vitro, and its direct binding to the ERK2 active site was confirmed by X-ray crystallography. Phosphorylation of c-Myc, a substrate of ERK2, was decreased in catechol-treated lung cancer cells and resulted in reduced protein stability and subsequent down-regulation of total c-Myc. Treatment with catechol induced G1 phase arrest in lung cancer cells and decreased protein expression related to G1-S progression. In addition, we showed that catechol inhibited the growth of both allograft and xenograft lung cancer tumors in vivo. In summary, catechol exerted inhibitory effects on the ERK2/c-Myc signaling axis to reduce lung cancer tumor growth in vitro and in vivo, including a preclinical patient-derived xenograft (PDX) model. These findings suggest that catechol, a natural small molecule, possesses potential as a novel therapeutic agent against lung carcinogenesis in future clinical approaches.

  3. A natural small molecule, catechol, induces c-Myc degradation by directly targeting ERK2 in lung cancer

    PubMed Central

    Lim, Do Young; Shin, Seung Ho; Lee, Mee-Hyun; Malakhova, Margarita; Kurinov, Igor; Wu, Qiong; Xu, Jinglong; Jiang, Yanan; Dong, Ziming; Liu, Kangdong; Lee, Kun Yeong; Bae, Ki Beom; Choi, Bu Young; Deng, Yibin; Bode, Ann; Dong, Zigang

    2016-01-01

    Various carcinogens induce EGFR/RAS/MAPK signaling, which is critical in the development of lung cancer. In particular, constitutive activation of extracellular signal-regulated kinase 2 (ERK2) is observed in many lung cancer patients, and therefore developing compounds capable of targeting ERK2 in lung carcinogenesis could be beneficial. We examined the therapeutic effect of catechol in lung cancer treatment. Catechol suppressed anchorage-independent growth of murine KP2 and human H460 lung cancer cell lines in a dose-dependent manner. Catechol inhibited ERK2 kinase activity in vitro, and its direct binding to the ERK2 active site was confirmed by X-ray crystallography. Phosphorylation of c-Myc, a substrate of ERK2, was decreased in catechol-treated lung cancer cells and resulted in reduced protein stability and subsequent down-regulation of total c-Myc. Treatment with catechol induced G1 phase arrest in lung cancer cells and decreased protein expression related to G1-S progression. In addition, we showed that catechol inhibited the growth of both allograft and xenograft lung cancer tumors in vivo. In summary, catechol exerted inhibitory effects on the ERK2/c-Myc signaling axis to reduce lung cancer tumor growth in vitro and in vivo, including a preclinical patient-derived xenograft (PDX) model. These findings suggest that catechol, a natural small molecule, possesses potential as a novel therapeutic agent against lung carcinogenesis in future clinical approaches. PMID:27167001

  4. Cyclin D1 Is Transcriptionally Down-Regulated by ZO-2 via an E Box and the Transcription Factor c-Myc

    PubMed Central

    Huerta, Miriam; Muñoz, Rodrigo; Tapia, Rocío; Soto-Reyes, Ernesto; Ramírez, Leticia; Recillas-Targa, Félix; González-Mariscal, Lorenza

    2007-01-01

    Recent reports have indicated the participation of tight junction (TJ) proteins in the regulation of gene expression and cell proliferation. Here, we have studied the role of zona occludens (ZO)-2, a TJ peripheral protein, in the regulation of cyclin D1 transcription. We found that ZO-2 down-regulates cyclin D1 transcription in a dose-dependent manner. To understand how ZO-2 represses cyclin D1 promoter activity, we used deletion analyses and found that ZO-2 negatively regulates cyclin D1 transcription via an E box and that it diminishes cell proliferation. Because ZO-2 does not associate directly with DNA, electrophoretic mobility shift assay and chromatin immunoprecipitation (ChIP) assay were used to identify the transcription factors mediating the ZO-2–repressive effect. c-Myc was found to bind the E box present in the cyclin D1 promoter, and the overexpression of c-Myc augmented the inhibition generated by ZO-2 transfection. The presence of ZO-2 and c-Myc in the same complex was further demonstrated by immunoprecipitation. ChIP and reporter gene assays using histone deacetylases (HDACs) inhibitors demonstrated that HDACs are necessary for ZO-2 repression and that HDAC1 is recruited to the E box. We conclude that ZO-2 down-regulates cyclin D1 transcription by interacting with the c-Myc/E box element and by recruiting HDAC1. PMID:17881732

  5. Cyclin D1 is transcriptionally down-regulated by ZO-2 via an E box and the transcription factor c-Myc.

    PubMed

    Huerta, Miriam; Muñoz, Rodrigo; Tapia, Rocío; Soto-Reyes, Ernesto; Ramírez, Leticia; Recillas-Targa, Félix; González-Mariscal, Lorenza; López-Bayghen, Esther

    2007-12-01

    Recent reports have indicated the participation of tight junction (TJ) proteins in the regulation of gene expression and cell proliferation. Here, we have studied the role of zona occludens (ZO)-2, a TJ peripheral protein, in the regulation of cyclin D1 transcription. We found that ZO-2 down-regulates cyclin D1 transcription in a dose-dependent manner. To understand how ZO-2 represses cyclin D1 promoter activity, we used deletion analyses and found that ZO-2 negatively regulates cyclin D1 transcription via an E box and that it diminishes cell proliferation. Because ZO-2 does not associate directly with DNA, electrophoretic mobility shift assay and chromatin immunoprecipitation (ChIP) assay were used to identify the transcription factors mediating the ZO-2-repressive effect. c-Myc was found to bind the E box present in the cyclin D1 promoter, and the overexpression of c-Myc augmented the inhibition generated by ZO-2 transfection. The presence of ZO-2 and c-Myc in the same complex was further demonstrated by immunoprecipitation. ChIP and reporter gene assays using histone deacetylases (HDACs) inhibitors demonstrated that HDACs are necessary for ZO-2 repression and that HDAC1 is recruited to the E box. We conclude that ZO-2 down-regulates cyclin D1 transcription by interacting with the c-Myc/E box element and by recruiting HDAC1.

  6. Potential role of the OVOL1-OVOL2 axis and c-Myc in the progression of cutaneous squamous cell carcinoma.

    PubMed

    Ito, Takamichi; Tsuji, Gaku; Ohno, Fumitaka; Nakahara, Takeshi; Uchi, Hiroshi; Furue, Masutaka

    2017-03-24

    OVOL1 and OVOL2 are ubiquitously conserved genes encoding C2H2 zinc-finger transcription factors in mammals. They promote epithelial cell proliferation, differentiation, and mesenchymal-to-epithelial transition, coordinately mediated via the Wnt signaling pathway. We previously reported that human OVOL1 and OVOL2 were preferentially expressed in the normal epidermis and hair follicles as well as their tumors, and found that OVOL1 is upregulated in Bowen's disease and downregulated in cutaneous squamous cell carcinoma. The aims of this study were to elucidate the potential role of the OVOL1-OVOL2 axis in Bowen's disease and squamous cell carcinoma, and to reveal the relationship between OVOL and c-Myc, a proto-oncogene that plays a pivotal role in the malignancy of epithelial tumors. We investigated 20 Bowen's disease and 20 squamous cell carcinoma clinical samples and a human squamous cell carcinoma cell line (A431) using immunohistochemical staining and molecular biological approaches. Immunohistochemical analysis revealed that OVOL1 was upregulated in Bowen's disease and markedly downregulated in squamous cell carcinoma; conversely, c-Myc was downregulated in Bowen's disease and upregulated in squamous cell carcinoma. OVOL2 was markedly upregulated in the nucleus of Bowen's disease cells, but the distribution of OVOL2 expression in squamous cell carcinoma varied widely; OVOL2 was typically expressed in the cytoplasm, but only sporadically in the nucleus. Furthermore, knockdown of OVOL1 using a specific small interfering RNA increased the mRNA and protein levels of c-Myc and OVOL2. Knockdown of OVOL2 did not significantly affect the mRNA and protein levels of either c-Myc or OVOL1. These results suggest that OVOL1 is an upstream suppressor of c-Myc and OVOL2, and the OVOL1-OVOL2 axis is a modulator of c-Myc, coordinately regulating the invasiveness of cutaneous squamous cell carcinoma. Taken together, this study suggests that the OVOL1-OVOL2 axis is a key

  7. Distinct nuclear arrangement of active and inactive c-myc genes in control and differentiated colon carcinoma cells

    SciTech Connect

    Harnicarova, Andrea; Kozubek, Stanislav . E-mail: kozubek@ibp.cz; Pachernik, Jiri; Krejci, Jana; Bartova, Eva

    2006-12-10

    Using sequential RNA-DNA fluorescence in situ hybridization, the nuclear arrangement of both the active and inactive c-myc gene as well as its transcription was investigated in colon cancer HT-29 cells induced to differentiate into enterocytes. Cytogenetic studies revealed the presence of two chromosomes 8 in HT-29 cells, of which the one containing c-myc gene amplicons was substantially larger and easily distinguished from the normal chromosome. This observation enabled detection of both activity and nuclear localization of c-myc genes in single cells and in individual chromosome territories. Similar transcriptional activity of the c-myc gene was observed in both the normal and derivative chromosome 8 territories showing no influence of the amplification on the c-myc gene expression. Our experiments demonstrate strikingly specific nuclear and territorial arrangements of active genes as compared with inactive ones: on the periphery of their territories facing to the very central region of the cell nucleus. Nuclear arrangement of c-myc genes and transcripts was conserved during cell differentiation and, therefore, independent of the level of differentiation-specific c-myc gene expression. However, after the induction of differentiation, a more internal territorial location was found for the single copy c-myc gene of normal chromosome 8, while amplicons conserved their territorial topography.

  8. Distinct nuclear arrangement of active and inactive c-myc genes in control and differentiated colon carcinoma cells.

    PubMed

    Harnicarová, Andrea; Kozubek, Stanislav; Pacherník, Jirí; Krejci, Jana; Bártová, Eva

    2006-12-10

    Using sequential RNA-DNA fluorescence in situ hybridization, the nuclear arrangement of both the active and inactive c-myc gene as well as its transcription was investigated in colon cancer HT-29 cells induced to differentiate into enterocytes. Cytogenetic studies revealed the presence of two chromosomes 8 in HT-29 cells, of which the one containing c-myc gene amplicons was substantially larger and easily distinguished from the normal chromosome. This observation enabled detection of both activity and nuclear localization of c-myc genes in single cells and in individual chromosome territories. Similar transcriptional activity of the c-myc gene was observed in both the normal and derivative chromosome 8 territories showing no influence of the amplification on the c-myc gene expression. Our experiments demonstrate strikingly specific nuclear and territorial arrangements of active genes as compared with inactive ones: on the periphery of their territories facing to the very central region of the cell nucleus. Nuclear arrangement of c-myc genes and transcripts was conserved during cell differentiation and, therefore, independent of the level of differentiation-specific c-myc gene expression. However, after the induction of differentiation, a more internal territorial location was found for the single copy c-myc gene of normal chromosome 8, while amplicons conserved their territorial topography.

  9. ELL targets c-Myc for proteasomal degradation and suppresses tumour growth.

    PubMed

    Chen, Yu; Zhou, Chi; Ji, Wei; Mei, Zhichao; Hu, Bo; Zhang, Wei; Zhang, Dawei; Wang, Jing; Liu, Xing; Ouyang, Gang; Zhou, Jiangang; Xiao, Wuhan

    2016-03-24

    Increasing evidence supports that ELL (eleven-nineteen lysine-rich leukaemia) is a key regulator of transcriptional elongation, but the physiological function of Ell in mammals remains elusive. Here we show that ELL functions as an E3 ubiquitin ligase and targets c-Myc for proteasomal degradation. In addition, we identify that UbcH8 serves as a ubiquitin-conjugating enzyme in this pathway. Cysteine 595 of ELL is an active site of the enzyme; its mutation to alanine (C595A) renders the protein unable to promote the ubiquitination and degradation of c-Myc. ELL-mediated c-Myc degradation inhibits c-Myc-dependent transcriptional activity and cell proliferation, and also suppresses c-Myc-dependent xenograft tumour growth. In contrast, the ELL(C595A) mutant not only loses the ability to inhibit cell proliferation and xenograft tumour growth, but also promotes tumour metastasis. Thus, our work reveals a previously unrecognized function for ELL as an E3 ubiquitin ligase for c-Myc and a potential tumour suppressor.

  10. ELL targets c-Myc for proteasomal degradation and suppresses tumour growth

    PubMed Central

    Chen, Yu; Zhou, Chi; Ji, Wei; Mei, Zhichao; Hu, Bo; Zhang, Wei; Zhang, Dawei; Wang, Jing; Liu, Xing; Ouyang, Gang; Zhou, Jiangang; Xiao, Wuhan

    2016-01-01

    Increasing evidence supports that ELL (eleven–nineteen lysine-rich leukaemia) is a key regulator of transcriptional elongation, but the physiological function of Ell in mammals remains elusive. Here we show that ELL functions as an E3 ubiquitin ligase and targets c-Myc for proteasomal degradation. In addition, we identify that UbcH8 serves as a ubiquitin-conjugating enzyme in this pathway. Cysteine 595 of ELL is an active site of the enzyme; its mutation to alanine (C595A) renders the protein unable to promote the ubiquitination and degradation of c-Myc. ELL-mediated c-Myc degradation inhibits c-Myc-dependent transcriptional activity and cell proliferation, and also suppresses c-Myc-dependent xenograft tumour growth. In contrast, the ELL(C595A) mutant not only loses the ability to inhibit cell proliferation and xenograft tumour growth, but also promotes tumour metastasis. Thus, our work reveals a previously unrecognized function for ELL as an E3 ubiquitin ligase for c-Myc and a potential tumour suppressor. PMID:27009366

  11. Conserved features of cancer cells define their sensitivity of HAMLET-induced death; c-Myc and glycolysis

    PubMed Central

    Storm, Petter; Puthia, Manoj Kumar; Aits, Sonja; Urbano, Alexander; Northen, Trent; Powers, Scott; Bowen, Ben; Chao, Yinxia; Reindl, Wolfgang; Lee, Do Yup; Sullivan, Nancy Liu; Zhang, Jianping; Trulsson, Maria; Yang, Henry; Watson, James; Svanborg, Catharina

    2014-01-01

    HAMLET is the first member of a new family of tumoricidal protein-lipid complexes that kill cancer cells broadly, while sparing healthy, differentiated cells. Many and diverse tumor cell types are sensitive to the lethal effect, suggesting that HAMLET identifies and activates conserved death pathways in cancer cells. Here we investigated the molecular basis for the difference in sensitivity between cancer cells and healthy cells. Using a combination of small hairpin RNA inhibition, proteomic and metabolomic technology we identified the c-Myc oncogene as one essential determinant of HAMLET sensitivity. Increased c-Myc expression levels promoted the sensitivity to HAMLET and shRNA knockdown of c-Myc suppressed the lethal response, suggesting that oncogenic transformation with c-Myc creates a HAMLET-sensitive phenotype. Furthermore, the HAMLET sensitivity was modified by the glycolytic state of the tumor cells. Glucose deprivation sensitized tumor cells to HAMLET-induced cell death and in the shRNA screen Hexokinase 1, PFKFB1 and HIF1α modified HAMLET sensitivity. Hexokinase 1 was shown to bind HAMLET in a protein array containing approximately 8000 targets and Hexokinase activity decreased within 15 minutes of HAMLET treatment, prior to morphological signs of tumor cell death. In parallel, HAMLET triggered rapid metabolic paralysis in carcinoma cells. The glycolytic machinery was modified and glycolysis was shifted towards the pentose phosphate pathway. Tumor cells were also shown to contain large amounts of oleic acid and its derivatives already after 15 minutes. The results identify HAMLET as a novel anti-cancer agent that kills tumor cells by exploiting unifying features of cancer cells such as oncogene-addiction or the Warburg effect. PMID:21643007

  12. Conserved features of cancer cells define their sensitivity to HAMLET-induced death; c-Myc and glycolysis.

    PubMed

    Storm, P; Aits, S; Puthia, M K; Urbano, A; Northen, T; Powers, S; Bowen, B; Chao, Y; Reindl, W; Lee, D Y; Sullivan, N L; Zhang, J; Trulsson, M; Yang, H; Watson, J D; Svanborg, C

    2011-12-01

    HAMLET is the first member of a new family of tumoricidal protein-lipid complexes that kill cancer cells broadly, while sparing healthy, differentiated cells. Many and diverse tumor cell types are sensitive to the lethal effect, suggesting that HAMLET identifies and activates conserved death pathways in cancer cells. Here, we investigated the molecular basis for the difference in sensitivity between cancer cells and healthy cells. Using a combination of small-hairpin RNA (shRNA) inhibition, proteomic and metabolomic technology, we identified the c-Myc oncogene as one essential determinant of HAMLET sensitivity. Increased c-Myc expression levels promoted sensitivity to HAMLET and shRNA knockdown of c-Myc suppressed the lethal response, suggesting that oncogenic transformation with c-Myc creates a HAMLET-sensitive phenotype. Furthermore, HAMLET sensitivity was modified by the glycolytic state of tumor cells. Glucose deprivation sensitized tumor cells to HAMLET-induced cell death and in the shRNA screen, hexokinase 1 (HK1), 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 1 and hypoxia-inducible factor 1α modified HAMLET sensitivity. HK1 was shown to bind HAMLET in a protein array containing ∼8000 targets, and HK activity decreased within 15 min of HAMLET treatment, before morphological signs of tumor cell death. In parallel, HAMLET triggered rapid metabolic paralysis in carcinoma cells. Tumor cells were also shown to contain large amounts of oleic acid and its derivatives already after 15 min. The results identify HAMLET as a novel anti-cancer agent that kills tumor cells by exploiting unifying features of cancer cells such as oncogene addiction or the Warburg effect.

  13. miR-320b suppresses cell proliferation by targeting c-Myc in human colorectal cancer cells.

    PubMed

    Wang, Hantao; Cao, Fuao; Li, Xu; Miao, Hua; E, Jifu; Xing, Junjie; Fu, Chuan-Gang

    2015-10-20

    MicroRNAs (miRNAs) are small noncoding RNAs that potentially play a critical role in tumorigenesis. Mounting evidence indicates that one specific miRNA: miR-320b is down regulated in numerous human cancers, including colorectal cancer (CRC); making the hypothesis that miR-320b may play a key role in tumorigenesis plausible. However, its role in carcinogenesis remains poorly defined. The goal of this study is to better clarify the role of miR-320b in tumor growth of CRC. Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) was conducted to detect the expression of miR-320b in CRC tissues and 5 CRC cell lines. The effect of miR-320b on cell proliferation was analyzed in vitro and in vivo. Furthermore, a luciferase reporter assay was performed to measure the target effects of miR-320b. Lastly, the messenger RNA (mRNA) and protein levels of the gene c-MYC were measured in CRC cell lines and tissues by qRT-PCR, and confirmed via Western blot and Immunohistochemical (IHC) staining. The results presented here showed that miR-320b expression was down regulated in both CRC tissues and cells. Overexpression of miR-320b in CRC cells was statistically correlated with a decrease of cell growth in vitro and in vivo, while c-MYC was identified as a target gene of miR-320b in CRC. Furthermore, it was found that up-regulation of c-Myc can attenuate the effects induced by miR-320b. Our identification of c-MYC as a target gene of miR-320b provides new insights into the pathophysiology of CRC proliferation, and identifies miR-320b as a novel therapeutic target for the treatment of CRC.

  14. Apigenin induces c-Myc-mediated apoptosis in FRO anaplastic thyroid carcinoma cells.

    PubMed

    Kim, Si Hyoung; Kang, Jun Goo; Kim, Chul Sik; Ihm, Sung-Hee; Choi, Moon Gi; Yoo, Hyung Joon; Lee, Seong Jin

    2013-04-30

    Apigenin promotes apoptosis in cancer cells. We studied the effect of apigenin on cell survival and c-Myc expression in FRO anaplastic thyroid carcinoma (ATC) cells. Apigenin caused apoptosis via the elevation of c-Myc levels in conjunction with the phosphorylation of p38 and p53. In the c-Myc siRNA-transfected and apigenin-treated cells, compared with the apigenin-treated control cells, apoptosis and phosphorylation of p38 and p53 were ameliorated. In the presence of apigenin, diminution of p38 and p53 did not affect cell survival although apigenin activated the phosphorylation of p38 and p53 via increased c-Myc levels. In conclusion, our results indicate that apigenin induces apoptosis mediated via c-Myc with concomitant phosphorylation of p53 and p38 in FRO ATC cells. These findings suggest that augmented c-Myc acts as a core regulator and is necessary for apigenin-induced apoptosis in FRO ATC cells. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. The Human Papillomavirus 16 E7 Oncoprotein Attenuates AKT Signaling To Promote Internal Ribosome Entry Site-Dependent Translation and Expression of c-MYC.

    PubMed

    Strickland, Sydney Webb; Vande Pol, Scott

    2016-06-15

    While the role of high-risk human papillomavirus (HPV) oncoproteins E6 and E7 in targeting p53 and retinoblastoma (Rb) has been intensively studied, how E6 and E7 manipulate cellular signaling cascades to promote the viral life cycle and cancer development is less understood. Keratinocytes containing the episomal HPV-16 genome had decreased activation of AKT, which was phenocopied by HPV-16 E7 expression alone. Attenuation of phosphorylated AKT (pAKT) by E7 was independent of the Rb degradation function of E7 but could be ablated by a missense mutation in the E7 carboxy terminus, H73E, thereby defining a novel structure-function phenotype for E7. Downstream of AKT, reduced phosphorylation of p70 S6K and 4E-BP1 was also observed in E7-expressing keratinocytes, which coincided with an increase in internal ribosomal entry site (IRES)-dependent translation that enhanced the expression of several cellular proteins, including MYC, Bax, and the insulin receptor. The decrease in pAKT mediated by E7 is in contrast to the widely observed increase of pAKT in invasive cervical cancers, suggesting that the activation of AKT signaling could be acquired during the progression from initial productive infections to invasive carcinomas. HPV causes invasive cervical cancers through the dysregulation of the cell cycle regulators p53 and Rb, which are degraded by the viral oncoproteins E6 and E7, respectively. Signaling cascades contribute to cancer progression and cellular differentiation, and how E6 and E7 manipulate those pathways remains unclear. The phosphoinositol 3-kinase (PI3K)/AKT pathway regulates cellular processes, including proliferation, cell survival, and cell differentiation. Surprisingly, we found that HPV-16 decreased the phosphorylation of AKT (pAKT) and that this is a function of E7 that is independent of the Rb degradation function. This is in contrast to the observed increase in AKT signaling in nearly 80% of cervical cancers, which typically show an acquired

  16. Deubiquitinating enzyme USP22 positively regulates c-Myc stability and tumorigenic activity in mammalian and breast cancer cells.

    PubMed

    Kim, Dongyeon; Hong, Ahyoung; Park, Hye In; Shin, Woo Hyun; Yoo, Lang; Jeon, Seo Jeong; Chung, Kwang Chul

    2017-02-04

    The proto-oncogene c-Myc has a pivotal function in growth control, differentiation and apoptosis and is frequently affected in human cancer, including breast cancer. Ubiquitin-specific protease 22 (USP22), a member of the USP family of deubiquitinating enzymes (DUBs), mediates deubiquitination of target proteins, including histone H2B and H2A, telomeric repeat binding factor 1, and cyclin B1. USP22 is also a component of the mammalian SAGA transcriptional co-activating complex. In this study, we explored the functional role of USP22 in modulating c-Myc stability and its physiological relevance in breast cancer progression. We found that USP22 promotes deubiquitination of c-Myc in several breast cancer cell lines, resulting in increased levels of c-Myc. Consistent with this, USP22 knockdown reduces c-Myc levels. Furthermore, overexpression of USP22 stimulates breast cancer cell growth and colony formation, and increases c-Myc tumorigenic activity. In conclusion, the present study reveals that USP22 in breast cancer cell lines increases c-Myc stability through c-Myc deubiquitination, which is closely correlated with breast cancer progression. This article is protected by copyright. All rights reserved.

  17. c-Myc directly regulates the transcription of the NBS1 gene involved in DNA double-strand break repair.

    PubMed

    Chiang, Yu-Chi; Teng, Shu-Chun; Su, Yi-Ning; Hsieh, Fon-Jou; Wu, Kou-Juey

    2003-05-23

    The c-myc proto-oncogene encodes a ubiquitous transcription factor involved in the control of cell growth and implicated in inducing tumorigenesis. Understanding the function of c-Myc and its role in cancer depends upon the identification of c-Myc target genes. Nijmegen breakage syndrome (NBS) is a chromosomal-instability syndrome associated with cancer predisposition, radiosensitivity, and chromosomal instability. The NBS gene product, NBS1 (p95 or nibrin), is a part of the hMre11 complex, a central player associated with double-strand break (DSB) repair. NBS1 contains domains characteristic for proteins involved in DNA repair, recombination, and replication. Here we show that c-Myc directly activates NBS1. c-Myc-mediated induction of NBS1 gene transcription occurs in different tissues, is independent of cell proliferation, and is mediated by a c-Myc binding site in the intron 1 region of NBS1 gene. Overexpression of NBS1 in Rat1a cells increased cell proliferation. These results indicate that NBS1 is a direct transcriptional target of c-Myc and links the function of c-Myc to the regulation of DNA DSB repair pathway operating during DNA replication.

  18. A role for transcriptional repression of p21CIP1 by c-Myc in overcoming transforming growth factor β-induced cell-cycle arrest

    PubMed Central

    Claassen, Gisela F.; Hann, Stephen R.

    2000-01-01

    c-Myc plays a vital role in cell-cycle progression. Deregulated expression of c-Myc can overcome cell-cycle arrest in order to promote cellular proliferation. Transforming growth factor β (TGFβ) treatment of immortalized human keratinocyte cells inhibits cell-cycle progression and is characterized by down-regulation of c-Myc followed by up-regulation of p21CIP1. A direct role of c-Myc in this pathway was demonstrated by the observation that ectopic expression of c-Myc overcame the cell-cycle block induced by TGFβ treatment. The induction of p21CIP1 transcription by TGFβ was blocked in human keratinocyte cells stably expressing c-Myc. Furthermore, overexpression of c-Myc in NIH 3T3 cells repressed the basal levels of p21CIP1 mRNA. Repression of p21CIP1 transcription by c-Myc occurred at the promoter level in a region near the start site of transcriptional initiation and was independent of histone deacetylase activity. These data suggest that the down-regulation of c-Myc after TGFβ signaling is important for subsequent regulation of p21CIP1 and cell-cycle inhibition. Thus, repression of the cell-cycle inhibitory gene p21CIP1 plays a role in c-Myc-dependent cell-cycle progression. PMID:10920185

  19. The IgH 3’ regulatory region and c-myc-induced B-cell lymphomagenesis

    PubMed Central

    Issaoui, Hussein; Vincent-Fabert, Christelle; Denizot, Yves

    2017-01-01

    Deregulation and mutations of c-myc have been reported in multiple mature B-cell malignancies such as Burkitt lymphoma, myeloma and plasma cell lymphoma. After translocation into the immunoglobulin heavy chain (IgH) locus, c-myc is constitutively expressed under the control of active IgH cis-regulatory enhancers. Those located in the IgH 3 regulatory region (3RR) are master control elements of transcription. Over the past decade numerous convincing demonstrations of 3RRs contribution to mature c-myc-induced lymphomagenesis have been made using transgenic models with various types of IgH-c-myc translocations and transgenes. This review highlights how IgH 3RR physiological functions play a critical role in c-myc deregulation during lymphomagenesis. PMID:27729620

  20. Proteasome activator subunit 3 promotes pancreatic cancer growth via c-Myc-glycolysis signaling axis.

    PubMed

    Guo, Jiefang; Hao, Jun; Jiang, Hongxue; Jin, Jing; Wu, Hongyu; Jin, Zhendong; Li, Zhaoshen

    2017-02-01

    Pancreatic cancer has the worst prognosis among all cancers and novel markers and therapeutic targets are desperately needed for this terribly deadly disease. Proteasome activator subunit 3 (PSME3) is highly involved in the initiation and progression of many human cancers. However, the potential effect of PSME3 on pancreatic cancer remains largely unknown. In the present study, we first found that PSME3 was significantly upregulated in pancreatic cancer cells and tissues at both mRNA and protein levels using qRT-PCR, western blot analysis, Oncomine data mining and immunohistochemical analysis. High PSME3 expression was positively correlated with tumor size and pM stage, and was significantly correlated with poor prognosis in pancreatic cancer patients revealed by Kaplan-Meier analysis. Gene set enrichment analysis demonstrated that the gene sets related to cell proliferation and metastasis were positively correlated with elevated PSME3 expression. Consistently, silencing of PSME3 suppressed cell proliferation and invasive capacity of pancreatic cancer. Mechanistically, PSME3 inhibited the degradation of c-Myc and thus enhanced glycolysis, which ultimately led to the oncogenic effects of PSME3 on pancreatic cancer. Collectively, our data suggest that PSME3 plays oncogenic roles in pancreatic cancer by inhibiting c-Myc degradation to promote glycolysis, and could serve as a novel therapeutic target for pancreatic cancer treatment. Copyright © 2016. Published by Elsevier Ireland Ltd.

  1. Induction of c-fos and c-myc mRNA by epidermal growth factor or calcium ionophore is cAMP dependent.

    PubMed Central

    Ran, W; Dean, M; Levine, R A; Henkle, C; Campisi, J

    1986-01-01

    Phorbol esters activate protein kinase C and induce expression of the c-fos and c-myc protooncogenes in density-arrested BALB/c 3T3 (A31) cells; in contrast, epidermal growth factor (EGF) does not activate protein kinase C and is a poor inducer of c-fos and c-myc in these confluent cells. We show that, when A31 cells were subconfluent and made quiescent by serum deprivation, the phorbol ester phorbol 12-myristate 13-acetate induced c-fos and c-myc mRNA poorly, whereas EGF was a better inducer. Another platelet-derived growth factor-inducible gene, JE, did not show this differential regulation by phorbol 12-myristate 13-acetate and EGF. The ability of EGF to induce protooncogene mRNA was associated with elevated levels of intracellular cAMP. First, serum-deprived cells maintained cAMP at about 2-fold higher level than density-arrested cells. Second, induction was greatly enhanced by cholera toxin and 3-isobutyl-1-methylxanthine, which increased intracellular cAMP 3- to 10-fold. The calcium ionophore A23187 mimicked EGF in that it elevated c-fos and c-myc mRNA when administered with cholera toxin and isobutylmethylxanthine. Neither cholera toxin and isobutyl-methylxanthine nor A23187 appreciably induced these mRNAs when used alone. Our results suggest that c-fos and c-myc expression can be regulated by an EGF-directed pathway that utilizes calcium and cAMP as cooperating cytoplasmic messengers. Images PMID:2430281

  2. SREBP-2 promotes stem cell-like properties and metastasis by transcriptional activation of c-Myc in prostate cancer

    PubMed Central

    Li, Xiangyan; Wu, Jason Boyang; Li, Qinlong; Shigemura, Katsumi; Chung, Leland W.K.; Huang, Wen-Chin

    2016-01-01

    Sterol regulatory element-binding protein-2 (SREBP-2) transcription factor mainly controls cholesterol biosynthesis and homeostasis in normal cells. The role of SREBP-2 in lethal prostate cancer (PCa) progression remains to be elucidated. Here, we showed that expression of SREBP-2 was elevated in advanced pathologic grade and metastatic PCa and significantly associated with poor clinical outcomes. Biofunctional analyses demonstrated that SREBP-2 induced PCa cell proliferation, invasion and migration. Furthermore, overexpression of SREBP-2 increased the PCa stem cell population, prostasphere-forming ability and tumor-initiating capability, whereas genetic silencing of SREBP-2 inhibited PCa cell growth, stemness, and xenograft tumor growth and metastasis. Clinical and mechanistic data showed that SREBP-2 was positively correlated with c-Myc and induced c-Myc activation by directly interacting with an SREBP-2-binding element in the 5′-flanking c-Myc promoter region to drive stemness and metastasis. Collectively, these clinical and experimental results reveal a novel role of SREBP-2 in the induction of a stem cell-like phenotype and PCa metastasis, which sheds light on translational potential by targeting SREBP-2 as a promising therapeutic approach in PCa. PMID:26883200

  3. c-MYC partners with BPTF in human cancer

    PubMed Central

    Richart, Laia; Real, Francisco X.; Sanchez-Arevalo Lobo, Victor Javier

    2016-01-01

    ABSTRACT The c-MYC oncogene is deregulated in virtually all human tumors and therefore constitutes an attractive therapeutic target. We found that the chromatin remodeler BPTF is a c-MYC interactor required for c-MYC chromatin recruitment and transcriptional activity. Moreover, inhibition of BPTF delays tumor development both in vitro and in vivo and its levels positively correlate with c-MYC signatures in human tumors. We propose BPTF as a therapeutic target in c-MYC-addicted tumors. PMID:27314097

  4. Acquisition of radioresistance in docetaxel-resistant human lung adenocarcinoma cells is linked with dysregulation of miR-451/c-Myc-survivin/rad-51 signaling

    PubMed Central

    Huang, Jia-Yuan; Zhang, Kai; Feng, Bing; Pan, Ban-Zhou; Chen, Jing; De, Wei; Chen, Long-Bang

    2014-01-01

    Chemoresistant tumors usually fail to respond to radiotherapy. However, the mechanisms involved in chemo- and radiotherapy cross resistance are not fully understood. Previously, we have identified microRNA (miR)-451 as a tumor suppressor in lung adenocarcinoma (LAD). However, whether miR-451 plays critical roles in chemo- and radiotherapy cross resistance in LAD is unclear. Here, we established two docetaxel-resistant LAD cell models (SPC-A1/DTX and H1299/DTX), and showed that miR-451 was significantly downregulated in docetaxel-resistant LAD cells. Gain - and loss - of - function assays indicated that re-expression of miR-451 could reverse radioresistance of docetaxel-resistant LAD cells both in vitro and in vivo through promoting apoptosis and DNA double-strand breaks (DSBs). The proto-oncogene c-Myc was identified as a direct target of miR-451, and re-expression of miR-451 inhibited survivin and rad-51 expression by reducing the amount of c-Myc protein binding to their promoters. Silencing of c-Myc could phenocopy the effects of miR-451 upregulation, and restoration of c-Myc could partially rescue the effect of miR-451 upregulation on radiosensitivity of docetaxel-resistant LAD cells. Therefore, dysregulation of miR-451/c-Myc-survivin/rad-51 signaling is responsible for radioresistance of docetaxel-resistant LAD cells, and targeting it will be a potential strategy for reversing chemo- and radiotherapy cross resistance of LAD patients. PMID:25026294

  5. [Effect of flumatinib mesylate on C-MYC, HIF-1α and VEGF in U226 line].

    PubMed

    Chang, Ming-Xing; Ma, Yan-Ping

    2013-12-01

    The objective of this study was to investigate the effect of the new generation of tyrosine kinase inhibitor flumatinib mesylate on C-MYC, HIF-1α and VEGF in multiple myeloma (MM) cell line U266. Different concentrations (1, 5, 10 µmol/L) of flumatinib mesylate were used to act on U266 cell line for 8, 16 and 24 h, and the expression of C-MYC, and HIF-1α genes was detected by real-time fluorescence-quantitative PCR, the expression of C-MYC, HIF-1α and VEGF was measured by Western blot. The results showed that the gene expression of C-MYC and HIF-1 genes decreased gradually with the increasing of flumatinib mesylate concentration (P < 0.05). At the same concentration of flumatinib mesylate, the expression of C-MYC and HIF-1α gene decreased gradually with prolonging of treatment time with the flumatinib mesylate (P < 0.05). When the flumatinib mesylate acted the U266 cell line for 16 h, the expression of C-MYC, HIF-1α and VEGF decreased gradually with the increasing of flumatinib mesylate concentration (P < 0.05). It is concluded that the flumatinib mesylate can reduce the expression of C-MYC, HIF-1 α and VEGF in U266 cell line in a time- and dose-dependent manners, so flumatinib mesylate may become a new drug for MM therapy.

  6. SIRT1 and c-Myc Promote Liver Tumor Cell Survival and Predict Poor Survival of Human Hepatocellular Carcinomas

    PubMed Central

    Jang, Kyu Yun; Noh, Sang Jae; Lehwald, Nadja; Tao, Guo-Zhong; Bellovin, David I.; Park, Ho Sung; Moon, Woo Sung; Felsher, Dean W.; Sylvester, Karl G.

    2012-01-01

    The increased expression of SIRT1 has recently been identified in numerous human tumors and a possible correlation with c-Myc oncogene has been proposed. However, it remains unclear whether SIRT1 functions as an oncogene or tumor suppressor. We sought to elucidate the role of SIRT1 in liver cancer under the influence of c-Myc and to determine the prognostic significance of SIRT1 and c-Myc expression in human hepatocellular carcinoma. The effect of either over-expression or knock down of SIRT1 on cell proliferation and survival was evaluated in both mouse and human liver cancer cells. Nicotinamide, an inhibitor of SIRT1, was also evaluated for its effects on liver tumorigenesis. The prognostic significance of the immunohistochemical detection of SIRT1 and c-Myc was evaluated in 154 hepatocellular carcinoma patients. SIRT1 and c-Myc regulate each other via a positive feedback loop and act synergistically to promote hepatocellular proliferation in both mice and human liver tumor cells. Tumor growth was significantly inhibited by nicotinamide in vivo and in vitro. In human hepatocellular carcinoma, SIRT1 expression positively correlated with c-Myc, Ki67 and p53 expression, as well as high á-fetoprotein level. Moreover, the expression of SIRT1, c-Myc and p53 were independent prognostic indicators of hepatocellular carcinoma. In conclusion, this study demonstrates that SIRT1 expression supports liver tumorigenesis and is closely correlated with oncogenic c-MYC expression. In addition, both SIRT1 and c-Myc may be useful prognostic indicators of hepatocellular carcinoma and SIRT1 targeted therapy may be beneficial in the treatment of hepatocellular carcinoma. PMID:23024800

  7. OncoPPi-informed discovery of mitogen-activated protein kinase kinase 3 as a novel binding partner of c-Myc | Office of Cancer Genomics

    Cancer.gov

    Mitogen-activated protein kinase kinase 3 (MKK3) is a dual threonine/tyrosine protein kinase that regulates inflammation, proliferation and apoptosis through specific phosphorylation and activation of the p38 mitogen-activated protein kinase. However, the role of MKK3 beyond p38-signaling remains elusive. Recently, we reported a protein-protein interaction (PPI) network of cancer-associated genes, termed OncoPPi, as a resource for the scientific community to generate new biological models. Analysis of the OncoPPi connectivity identified MKK3 as one of the major hub proteins in the network.

  8. Differential 14-3-3 sigma DNA methylation and expression in c-myc- and activated H-ras-transformed cells under r- and K-selection.

    PubMed

    Sato, Hiroyuki; Nakamura, Yukari; Motokura, Toru

    2006-05-08

    We cloned rat 14-3-3 sigma, a mediator of p53 tumor suppressor, as a target of K-selection. 14-3-3 sigma expression is suppressed with DNA methylation in breast cancers while its overexpression with hypomethylation is frequent in pancreatic cancers. These opposite findings were recapitulated through r- and K-selection of transformed rat embryo fibroblasts. 14-3-3 sigma expression was suppressed with DNA methylation after r-selection and the gene was overexpressed and demethylated in K-selected cells. 5-aza-2'-deoxycytidine recovered 14-3-3 sigma expression in r-selected cells. The presence of heterogeneous methylation patterns and expression levels before selection suggests that different 14-3-3 sigma expression levels play a role as a prerequisite for selection and clonal evolution.

  9. Inversed relationship between CD44 variant and c-Myc due to oxidative stress-induced canonical Wnt activation

    SciTech Connect

    Yoshida, Go J. Saya, Hideyuki

    2014-01-10

    Highlights: •CD44 variant8–10 and c-Myc are inversely expressed in gastric cancer cells. •Redox-stress enhances c-Myc expression via canonical Wnt signal. •CD44v, but not CD44 standard, suppresses redox stress-induced Wnt activation. •CD44v expression promotes both transcription and proteasome degradation of c-Myc. •Inversed expression pattern between CD44v and c-Myc is often recognized in vivo. -- Abstract: Cancer stem-like cells express high amount of CD44 variant8-10 which protects cancer cells from redox stress. We have demonstrated by immunohistochemical analysis and Western blotting, and reverse-transcription polymerase chain reaction, that CD44 variant8-10 and c-Myc tend to show the inversed expression manner in gastric cancer cells. That is attributable to the oxidative stress-induced canonical Wnt activation, and furthermore, the up-regulation of the downstream molecules, one of which is oncogenic c-Myc, is not easily to occur in CD44 variant-positive cancer cells. We have also found out that CD44v8-10 expression is associated with the turn-over of the c-Myc with the experiments using gastric cancer cell lines. This cannot be simply explained by the model of oxidative stress-induced Wnt activation. CD44v8-10-positive cancer cells are enriched at the invasive front. Tumor tissue at the invasive area is considered to be composed of heterogeneous cellular population; dormant cancer stem-like cells with CD44v8-10 {sup high}/ Fbw7 {sup high}/ c-Myc {sup low} and proliferative cancer stem-like cells with CD44v8-10 {sup high}/ Fbw7 {sup low}/ c-Myc {sup high}.

  10. Dinuclear ruthenium complexes display loop isomer selectivity to c-MYC DNA G-quadriplex and exhibit anti-tumour activity.

    PubMed

    Zheng, Chuping; Liu, Yanan; Liu, Ying; Qin, Xiuying; Zhou, Yanhui; Liu, Jie

    2016-03-01

    G-quadruplex DNA, especially the cellular-myelocytomatosis viral oncogene (c-MYC) is closely associated with cell-cycle regulation, proliferation of tumour cells. In this work, the interaction between the c-MYC and two dinuclear Ru(II) complexes [(bpy)2Ru(bpibp)Ru(bpy)2](ClO4)4 (compound 1) and [(phen)2Ru(bpibp)Ru(phen)2](ClO4)4 (compound 2) have been studied. The data from UV-Visible, PCR-stop and Fluorescence resonance energy transfer (FRET) showed that two complexes can stabilize the structure of G-quadruplex in the c-MYC promoter and targeting the G-quadruplex loop isomers. Interestingly, the complex 2 has a greater effect on the 1:2:1 and 2:1:1 loop isomers while the 1 prefers to the 1:2:1 isomers. The mechanism studies revealed that complexes can induce apoptosis in HepG2 cells by generating ROS metabolites, triggering mitochondrial membrane potential loss and down-regulation of P-Akt (Akt also known as protein kinase B), P-p44/42 MAP kinase protein (P-p44/42), and c-MYC. Taken together, these results suggested that the two dinuclear complexes may both be candidates as anti-tumour agents as they may reduce the c-MYC gene expression. {bpibp: 4, 4'-bis (1, 10-phenanthroline-[5, 6-d] imidazole-2-yl)-biphenyl, bpy: 2,2-bipyridine, phen: 1,10-phenanthroline}. Copyright © 2016. Published by Elsevier Inc.

  11. A circular RNA promotes tumorigenesis by inducing c-myc nuclear translocation.

    PubMed

    Yang, Qi; Du, William W; Wu, Nan; Yang, Weining; Awan, Faryal Mehwish; Fang, Ling; Ma, Jian; Li, Xiangmin; Zeng, Yan; Yang, Zhenguo; Dong, Jun; Khorshidi, Azam; Yang, Burton B

    2017-09-01

    Circular RNAs (circRNAs) are a subclass of noncoding RNAs widely expressed in mammalian cells. We report here the tumorigenic capacity of a circRNA derived from angiomotin-like1 (circ-Amotl1). Circ-Amotl1 is highly expressed in patient tumor samples and cancer cell lines. Single-cell inoculations using circ-Amotl1-transfected tumor cells showed a 30-fold increase in proliferative capacity relative to control. Agarose colony-formation assays similarly revealed a 142-fold increase. Tumor-take rate in nude mouse xenografts using 6-day (219 cells) and 3-day (9 cells) colonies were 100%, suggesting tumor-forming potential of every cell. Subcutaneous single-cell injections led to the formation of palpable tumors in 41% of mice, with tumor sizes >1 cm(3) in 1 month. We further found that this potent tumorigenicity was triggered through interactions between circ-Amotl1 and c-myc. A putative binding site was identified in silico and tested experimentally. Ectopic expression of circ-Amotl1 increased retention of nuclear c-myc, appearing to promote c-myc stability and upregulate c-myc targets. Expression of circ-Amotl1 also increased the affinity of c-myc binding to a number of promoters. Our study therefore reveals a novel function of circRNAs in tumorigenesis, and this subclass of noncoding RNAs may represent a potential target in cancer therapy.

  12. C-MYC transcriptionally amplifies SOX2 target genes to regulate self-renewal in multipotent otic progenitor cells.

    PubMed

    Kwan, Kelvin Y; Shen, Jun; Corey, David P

    2015-01-13

    Sensorineural hearing loss is caused by the loss of sensory hair cells and neurons of the inner ear. Once lost, these cell types are not replaced. Two genes expressed in the developing inner ear are c-Myc and Sox2. We created immortalized multipotent otic progenitor (iMOP) cells, a fate-restricted cell type, by transient expression of C-MYC in SOX2-expressing otic progenitor cells. This activated the endogenous C-MYC and amplified existing SOX2-dependent transcripts to promote self-renewal. RNA-seq and ChIP-seq analyses revealed that C-MYC and SOX2 occupy over 85% of the same promoters. C-MYC and SOX2 target genes include cyclin-dependent kinases that regulate cell-cycle progression. iMOP cells continually divide but retain the ability to differentiate into functional hair cells and neurons. We propose that SOX2 and C-MYC regulate cell-cycle progression of these cells and that downregulation of C-MYC expression after growth factor withdrawal serves as a molecular switch for differentiation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. C-MYC Transcriptionally Amplifies SOX2 Target Genes to Regulate Self-Renewal in Multipotent Otic Progenitor Cells

    PubMed Central

    Kwan, Kelvin Y.; Shen, Jun; Corey, David P.

    2014-01-01

    Summary Sensorineural hearing loss is caused by the loss of sensory hair cells and neurons of the inner ear. Once lost, these cell types are not replaced. Two genes expressed in the developing inner ear are c-Myc and Sox2. We created immortalized multipotent otic progenitor (iMOP) cells, a fate-restricted cell type, by transient expression of C-MYC in SOX2-expressing otic progenitor cells. This activated the endogenous C-MYC and amplified existing SOX2-dependent transcripts to promote self-renewal. RNA-seq and ChIP-seq analyses revealed that C-MYC and SOX2 occupy over 85% of the same promoters. C-MYC and SOX2 target genes include cyclin-dependent kinases that regulate cell-cycle progression. iMOP cells continually divide but retain the ability to differentiate into functional hair cells and neurons. We propose that SOX2 and C-MYC regulate cell-cycle progression of these cells and that downregulation of C-MYC expression after growth factor withdrawal serves as a molecular switch for differentiation. PMID:25497456

  14. Increased β‑catenin and c-myc expression predict aggressive growth of non-functioning pituitary adenomas: An assessment using a tissue microarray-based approach.

    PubMed

    Liu, Chunhui; Wu, Youtu; Yu, Shengyuan; Bai, Jiwei; Li, Chuzhong; Wu, Dan; Zhang, Yazhuo

    2017-04-01

    Non-functional pituitary adenomas (NFPAs) account for 80% of pituitary adenomas with the majority of these exhibiting recurrences post-surgery. Overexpression of β-catenin and c‑myc is common in numerous invasive tumors. The present study sought to investigate the correlation of β‑catenin and c‑myc expression levels with aggressive growth and recurrence of NFPAs, using immunohistochemical examination of tissue microarrays. Tissue microarrays comprised 212 NFPAs specimens and 10 healthy specimens as controls. NFPAs were categorized as non‑aggressive or aggressive. Immunohistochemical examination was performed to determine the expression of β‑catenin and c‑myc. Correlation of the expression levels of β‑catenin and c‑myc with clinicopathological parameters, including aggressiveness and recurrence, were assessed by univariate, multivariate and logistic regression analysis. Increased expression of β‑catenin and c‑myc was detected in the majority of aggressive NFPAs specimens (71.1 and 88.7%, respectively). There was a significant positive correlation between β‑catenin and c‑myc expression and aggressiveness [P=0.001, Odds Ratio (OR)=4.011; P<0.001, OR=30.833]. Only β‑catenin expression demonstrated a significant correlation with recurrence in NFPAs (P=0.021, OR=2.571). β‑catenin and c‑myc were demonstrated to be potential biomarkers for aggressive NFPAs and in the future, β-catenin may serve as a marker for aggressive behavior and recurrence in NFPAs.

  15. A long noncoding RNA connects c-Myc to tumor metabolism

    PubMed Central

    Hung, Chiu-Lien; Wang, Ling-Yu; Yu, Yen-Ling; Chen, Hong-Wu; Srivastava, Shiv; Petrovics, Gyorgy; Kung, Hsing-Jien

    2014-01-01

    Long noncoding RNAs (lncRNAs) have been implicated in a variety of physiological and pathological processes, including cancer. In prostate cancer, prostate cancer gene expression marker 1 (PCGEM1) is an androgen-induced prostate-specific lncRNA whose overexpression is highly associated with prostate tumors. PCGEM1’s tumorigenic potential has been recently shown to be in part due to its ability to activate androgen receptor (AR). Here, we report a novel function of PCGEM1 that provides growth advantages for cancer cells by regulating tumor metabolism via c-Myc activation. PCGEM1 promotes glucose uptake for aerobic glycolysis, coupling with the pentose phosphate shunt to facilitate biosynthesis of nucleotide and lipid, and generates NADPH for redox homeostasis. We show that PCGEM1 regulates metabolism at a transcriptional level that affects multiple metabolic pathways, including glucose and glutamine metabolism, the pentose phosphate pathway, nucleotide and fatty acid biosynthesis, and the tricarboxylic acid cycle. The PCGEM1-mediated gene regulation takes place in part through AR activation, but predominantly through c-Myc activation, regardless of hormone or AR status. Significantly, PCGEM1 binds directly to target promoters, physically interacts with c-Myc, promotes chromatin recruitment of c-Myc, and enhances its transactivation activity. We also identified a c-Myc binding domain on PCGEM1 that contributes to the PCGEM1-dependent c-Myc activation and target induction. Together, our data uncover PCGEM1 as a key transcriptional regulator of central metabolic pathways in prostate cancer cells. By being a coactivator for both c-Myc and AR, PCGEM1 reprograms the androgen network and the central metabolism in a tumor-specific way, making it a promising target for therapeutic intervention. PMID:25512540

  16. Akt and c-Myc differentially activate cellular metabolic programs and prime cells to bioenergetic inhibition.

    PubMed

    Fan, Yongjun; Dickman, Kathleen G; Zong, Wei-Xing

    2010-03-05

    The high glucose consumption of tumor cells even in an oxygen-rich environment, referred to as the Warburg effect, has been noted as a nearly universal biochemical characteristic of cancer cells. Targeting the glycolysis pathway has been explored as an anti-cancer therapeutic strategy to eradicate cancer based on this fundamental biochemical property of cancer cells. Oncoproteins such as Akt and c-Myc regulate cell metabolism. Accumulating studies have uncovered various molecular mechanisms by which oncoproteins affect cellular metabolism, raising a concern as to whether targeting glycolysis will be equally effective in treating cancers arising from different oncogenic activities. Here, we established a dual-regulatable FL5.12 pre-B cell line in which myristoylated Akt is expressed under the control of doxycycline, and c-Myc, fused to the hormone-binding domain of the human estrogen receptor, is activated by 4-hydroxytamoxifen. Using this system, we directly compared the effect of these oncoproteins on cell metabolism in an isogenic background. Activation of either Akt or c-Myc leads to the Warburg effect as indicated by increased cellular glucose uptake, glycolysis, and lactate generation. When cells are treated with glycolysis inhibitors, Akt sensitizes cells to apoptosis, whereas c-Myc does not. In contrast, c-Myc but not Akt sensitizes cells to the inhibition of mitochondrial function. This is correlated with enhanced mitochondrial activities in c-Myc cells. Hence, although both Akt and c-Myc promote aerobic glycolysis, they differentially affect mitochondrial functions and render cells susceptible to the perturbation of cellular metabolic programs.

  17. Quinazoline derivative QPB-15e stabilizes the c-myc promoter G-quadruplex and inhibits tumor growth in vivo

    PubMed Central

    Li, Zeng; Liu, Chen; Huang, Cheng; Meng, Xiaoming; Zhang, Lei; He, Jinhui; Li, Jun

    2016-01-01

    The ribozyme-sensitive element NHE-III1 in the P1 promoter region of the important proto-oncogene c-myc contains many guanine (G)-rich sequences. Induction and stabilization of the G-quadruplex formed by NHE-III1 can downregulate c-myc expression. In the present study, we found that QPB-15e, a quinazoline derivative designed and synthesized by our laboratory, binds to and stabilizes the c-myc G-quadruplex in vitro, thereby inhibiting double-stranded DNA replication, downregulating c-myc gene expression and arresting cancer cell proliferation. PCR termination experiments showed that QPB-15e blocked double-stranded DNA replication by inducing or stabilizing the c-myc G-quadruplex. FRET-melting further confirmed that QPB-15e improved the stability of the G-quadruplex, and CD spectroscopy indicated that the compound interacted directly with the G-rich sequence. In competitive dialysis experiments, QPB-15e bound preferentially to quadruplex DNA in various structures, especially the G-quadruplex within the c-myc promoter region. Moreover, QPB-15e reduced the weights and volumes of tumors transplanted into nude mice. These findings strongly suggest that QPB-15e is a c-myc G-quadruplex ligand with anti-tumor properties, and may be efficacious for treating cancer in humans. PMID:27144522

  18. Preparation and evaluation of nanoparticles loading plasmid DNAs inserted with siRNA fragments targeting c-Myc gene.

    PubMed

    Ma, Tao; Jiang, Jin-Ling; Liu, Ying; Ye, Zheng-Bao; Zhang, Jun

    2014-09-01

    c-Myc plays a key role in glioma cancer stem cell maintenance. A drug delivery system, nanoparticles loading plasmid DNAs inserted with siRNA fragments targeting c-Myc gene (NPs-c-Myc-siRNA-pDNAs), for the treatment of glioma, has not previously been reported. NPs-c-Myc-siRNA-pDNAs were prepared and evaluated in vitro. Three kinds of c-Myc-siRNA fragments were separately synthesized and linked with empty siRNA expression vectors in the mole ratio of 3:1 by T4 DNA ligase. The linked products were then separately transfected into Escherichia coli. DH5α followed by extraction with Endofree plasmid Mega kit (Qiagen, Hilden, Germany) obtained c-Myc-siRNA-pDNAs. Finally, the recombinant c-Myc-siRNA3-pDNAs, generating the highest transfection efficiency and the greatest apoptotic ability, were chosen for encapsulation into NPs by the double-emulsion solvent-evaporation procedure, followed by stability, transfection efficiency, as well as qualitative and quantitative apoptosis evaluation. NPs-c-Myc-siRNA3-pDNAs were obtained with spherical shape in uniform size below 150 nm, with the zeta potential about -18 mV, the encapsulation efficiency and loading capacity as 76.3 ± 5.4% and 1.91 ± 0.06%, respectively. The stability results showed that c-Myc-siRNA3-pDNAs remained structurally and functionally stable after encapsulated into NPs, and NPs could prevent the loaded c-Myc-siRNA3-pDNAs from DNase degradation. The transfection efficiency of NPs-c-Myc-siRNA3-pDNAs was proven to be positive. Furthermore, NPs-c-Myc-siRNA3-pDNAs produced significant apoptosis with the apoptotic rate at 24.77 ± 5.39% and early apoptosis cells observed. Methoxy-poly-(ethylene-glycol)-poly-(lactide-co-glycolide) nanoparticles (MPEG-PLGA-NPs) are potential delivery carriers for c-Myc-siRNA3-pDNAs.

  19. [Advances Research on C-MYC Proto-oncogene in Multiple Myeloma -Review].

    PubMed

    Huang, He; Guo, Wen-Jian; Yao, Ron-Xin

    2016-08-01

    Multiple myeloma(MM) as one of the most common tumors of hmatologic system, is characterized by malignant proliferation of plasma cells, and the chemotherapy is the main therapeutic method. MM is an incurable disease because of drug-resistance of MM cells. Although the pathogenesis of MM remains unknown, the chromosome abnormalities exit in half of the patients, particularly the highly expressed gene C-MYC. Furthermore, plenty of clinical researches indicated a high expression level of C-MYC implied worse progression and/or poor prognosis of MM. Recently, the work exploiting the compounds targeting MYC has made substantial progress, even in the MM therapy. In this article, briefly the recent advances of the research on C-MYC proto-oncogene in multiple myeloma are reviewed.

  20. c-Myc-dependent transcriptional regulation of cell cycle and nucleosomal histones during oligodendrocyte differentiation

    PubMed Central

    Magri, Laura; Gacias, Mar; Wu, Muzhou; Swiss, Victoria A; Janssen, William G; Casaccia, Patrizia

    2014-01-01

    Oligodendrocyte progenitor cells (OPCs) have the ability to divide or to arrest growth and differentiate into myelinating oligodendrocytes in the developing brain. Due to their high number and the persistence of their proliferative capacity in the adult brain, OPCs are being studied as potential targets for myelin repair and also as potential source of brain tumors. This study addresses the molecular mechanisms regulating the transcriptional changes occurring at the critical transition between proliferation and cell cycle exit in cultured OPCs. Using bioinformatic analysis of existing datasets, we identified c-Myc as a key transcriptional regulator of this transition and confirmed direct binding of this transcription factor to identified target genes using chromatin immunoprecipitation. The expression of c-Myc was elevated in proliferating OPCs, where it also bound to the promoter of genes involved in cell cycle regulation (i.e. Cdc2) or chromosome organization (i.e. H2afz). Silencing of c-Myc was associated with decreased histone acetylation at target gene promoters and consequent decrease of gene transcripts. c-Myc silencing induced also a global increase of repressive histone methylation and premature nuclear peripheral chromatin compaction and promoted the progression of OPCs towards differentiation. We conclude that c-Myc is an important modulator of the transition between proliferation and differentiation of OPCs, although its decrease is not sufficient to induce progression into a myelinating phenotype. PMID:24502923

  1. Chemical intervention of the NM23-H2 transcriptional programme on c-MYC via a novel small molecule

    PubMed Central

    Shan, Chan; Lin, Jing; Hou, Jin-Qiang; Liu, Hui-Yun; Chen, Shuo-Bin; Chen, Ai-Chun; Ou, Tian-Miao; Tan, Jia-Heng; Li, Ding; Gu, Lian-Quan; Huang, Zhi-Shu

    2015-01-01

    c-MYC is an important oncogene that is considered as an effective target for anticancer therapy. Regulation of this gene's transcription is one avenue for c-MYC-targeting drug design. Direct binding to a transcription factor and generating the intervention of a transcriptional programme appears to be an effective way to modulate gene transcription. NM23-H2 is a transcription factor for c-MYC and is proven to be related to the secondary structures in the promoter. Here, we first screened our small-molecule library for NM23-H2 binders and then sifted through the inhibitors that could target and interfere with the interaction process between NM23-H2 and the guanine-rich promoter sequence of c-MYC. As a result, a quinazolone derivative, SYSU-ID-01, showed a significant interference effect towards NM23-H2 binding to the guanine-rich promoter DNA sequence. Further analyses of the compound–protein interaction and the protein–DNA interaction provided insight into the mode of action for SYSU-ID-01. Cellular evaluation results showed that SYSU-ID-01 could abrogate NM23-H2 binding to the c-MYC promoter, resulting in downregulation of c-MYC transcription and dramatically suppressed HeLa cell growth. These findings provide a new way of c-MYC transcriptional control through interfering with NM23-H2 binding to guanine-rich promoter sequences by small molecules. PMID:26117539

  2. C-MYC aberrations as prognostic factors in diffuse large B-cell lymphoma: a meta-analysis of epidemiological studies.

    PubMed

    Zhou, Kuangguo; Xu, Danmei; Cao, Yang; Wang, Jue; Yang, Yunfan; Huang, Mei

    2014-01-01

    Various studies have investigated the prognostic value of C-MYC aberrations in diffuse large B-cell lymphoma (DLBCL). However, the role of C-MYC as an independent prognostic factor in clinical practice remains controversial. A systematic review and meta-analysis were performed to clarify the clinical significance of C-MYC aberrations in DLBCL patients. The pooled hazard ratios (HRs) for overall survival (OS) and event-free survival (EFS) were calculated as the main effect size estimates. The procedure was conducted according to the Cochrane handbook and PRISMA guidelines, including the use of a heterogeneity test, publication bias assessment, and meta-regression, as well as subgroup analyses. Twenty-four eligible studies enrolling 4662 patients were included in this meta-analysis. According to the nature of C-MYC aberrations (gene, protein, and mRNA), studies were divided into several subgroups. For DLBCL patients with C-MYC gene abnormalities, the combined HR was 2.22 (95% confidence interval, 1.89 to 2.61) for OS and 2.29 (95% confidence interval, 1.81 to 2.90) for EFS, compared to patients without C-MYC gene abnormalities. For DLBCL patients with overexpression of C-MYC protein and C-MYC mRNA, pooled HRs for OS were 2.13 and 1.62, respectively. C-MYC aberrations appeared to play an independent role among other well-known prognostic factors in DLBCL. Addition of rituximab could not overcome the inferior prognosis conferred by C-MYC. The present systematic review and meta-analysis confirm the prognostic value of C-MYC aberrations. Screening of C-MYC should have definite prognostic meaning for DLBCL stratification, thus guaranteeing a more tailored therapy.

  3. Suppression of c-Myc is involved in multi-walled carbon nanotubes' down-regulation of ATP-binding cassette transporters in human colon adenocarcinoma cells

    SciTech Connect

    Wang, Zhaojing; Xu, Yonghong; Meng, Xiangning; Watari, Fumio; Liu, Hudan; Chen, Xiao

    2015-01-01

    Over-expression of ATP-binding cassette (ABC) transporters, a large family of integral membrane proteins that decrease cellular drug uptake and accumulation by active extrusion, is one of the major causes of cancer multi-drug resistance (MDR) that frequently leads to failure of chemotherapy. Carbon nanotubes (CNTs)-based drug delivery devices hold great promise in enhancing the efficacy of cancer chemotherapy. However, CNTs' effects on the ABC transporters remain under-investigated. In this study, we found that multiwalled carbon nanotubes (MWCNTs) reduced transport activity and expression of ABC transporters including ABCB1/Pgp and ABCC4/MRP4 in human colon adenocarcinoma Caco-2 cells. Proto-oncogene c-Myc, which directly regulates ABC gene expression, was concurrently decreased in MWCNT-treated cells and forced over-expression of c-Myc reversed MWCNTs' inhibitory effects on ABCB1 and ABCC4 expression. MWCNT-cell membrane interaction and cell membrane oxidative damage were observed. However, antioxidants such as vitamin C, β-mecaptoethanol and dimethylthiourea failed to antagonize MWCNTs' down-regulation of ABC transporters. These data suggest that MWCNTs may act on c-Myc, but not through oxidative stress, to down-regulate ABC transporter expression. Our findings thus shed light on CNTs' novel cellular effects that may be utilized to develop CNTs-based drug delivery devices to overcome ABC transporter-mediated cancer chemoresistance.

  4. Suppression of c-Myc is involved in multi-walled carbon nanotubes' down-regulation of ATP-binding cassette transporters in human colon adenocarcinoma cells.

    PubMed

    Wang, Zhaojing; Xu, Yonghong; Meng, Xiangning; Watari, Fumio; Liu, Hudan; Chen, Xiao

    2015-01-01

    Over-expression of ATP-binding cassette (ABC) transporters, a large family of integral membrane proteins that decrease cellular drug uptake and accumulation by active extrusion, is one of the major causes of cancer multi-drug resistance (MDR) that frequently leads to failure of chemotherapy. Carbon nanotubes (CNTs)-based drug delivery devices hold great promise in enhancing the efficacy of cancer chemotherapy. However, CNTs' effects on the ABC transporters remain under-investigated. In this study, we found that multiwalled carbon nanotubes (MWCNTs) reduced transport activity and expression of ABC transporters including ABCB1/Pgp and ABCC4/MRP4 in human colon adenocarcinoma Caco-2 cells. Proto-oncogene c-Myc, which directly regulates ABC gene expression, was concurrently decreased in MWCNT-treated cells and forced over-expression of c-Myc reversed MWCNTs' inhibitory effects on ABCB1 and ABCC4 expression. MWCNT-cell membrane interaction and cell membrane oxidative damage were observed. However, antioxidants such as vitamin C, β-mecaptoethanol and dimethylthiourea failed to antagonize MWCNTs' down-regulation of ABC transporters. These data suggest that MWCNTs may act on c-Myc, but not through oxidative stress, to down-regulate ABC transporter expression. Our findings thus shed light on CNTs' novel cellular effects that may be utilized to develop CNTs-based drug delivery devices to overcome ABC transporter-mediated cancer chemoresistance.

  5. Contrasting roles for c-Myc and L-Myc in the regulation of cellular growth and differentiation in vivo.

    PubMed Central

    Morgenbesser, S D; Schreiber-Agus, N; Bidder, M; Mahon, K A; Overbeek, P A; Horner, J; DePinho, R A

    1995-01-01

    Although myc family genes are differentially expressed during development, their expression frequently overlaps, suggesting that they may serve both distinct and common biological functions. In addition, alterations in their expression occur at major developmental transitions in many cell lineages. For example, during mouse lens maturation, the growth arrest and differentiation of epithelial cells into lens fiber cells is associated with a decrease in L- and c-myc expression and a reciprocal rise in N-myc levels. To determine whether the down-regulation of L- and c-myc are required for mitotic arrest and/or completion of differentiation and whether these genes have distinct or similar activities in the same cell type, we have studied the consequences of forced L- and c-myc expression in the lens fiber cell compartment using the alpha A-crystallin promoter in transgenic mice (alpha A/L-myc and alpha A/c-myc mice). With respect to morphological and molecular differentiation, alpha A/L-myc lenses were characterized by a severely disorganized lens fiber cell compartment and a significant decrease in the expression of a late-stage differentiation marker (MIP26); in contrast, differentiation appeared to be unaffected in alpha A/c-myc mice. Furthermore, an analysis of proliferation indicated that while alpha A/L-myc fiber cells withdrew properly from the cell cycle, inappropriate cell cycle progression occurred in the lens fiber cell compartment of alpha A/c-myc mice. These observations indicate that continued late-stage expression of L-myc affected differentiation processes directly, rather than indirectly through deregulated growth control, whereas constitutive c-myc expression inhibited proliferative arrest, but did not appear to disturb differentiation. As a direct corollary, our data indicate that L-Myc and c-Myc are involved in distinct physiological processes in the same cell type. Images PMID:7882978

  6. c-MYC-Making Liver Sick: Role of c-MYC in Hepatic Cell Function, Homeostasis and Disease.

    PubMed

    Zheng, Kang; Cubero, Francisco Javier; Nevzorova, Yulia A

    2017-04-19

    Over 35 years ago, c-MYC, a highly pleiotropic transcription factor that regulates hepatic cell function, was identified. In recent years, a considerable increment in the number of publications has significantly shifted the way that the c-MYC function is perceived. Overexpression of c-MYC alters a wide range of roles including cell proliferation, growth, metabolism, DNA replication, cell cycle progression, cell adhesion and differentiation. The purpose of this review is to broaden the understanding of the general functions of c-MYC, to focus on c-MYC-driven pathogenesis in the liver, explain its mode of action under basal conditions and during disease, and discuss efforts to target c-MYC as a plausible therapy for liver disease.

  7. Conversion of Androgen Receptor Signaling From a Growth Suppressor in Normal Prostate Epithelial Cells to an Oncogene in Prostate Cancer Cells Involves a Gain of Function in c-Myc Regulation

    PubMed Central

    Vander Griend, Donald J.; Litvinov, Ivan V.; Isaacs, John T.

    2014-01-01

    In normal prostate, androgen-dependent androgen receptor (AR) signaling within prostate stromal cells induces their secretion of paracrine factors, termed “andromedins” which stimulate growth of the epithelial cells. The present studies demonstrate that androgen-dependent andromedin-driven growth stimulation is counter-balanced by androgen-induced AR signaling within normal adult prostate epithelial cells resulting in terminal G0 growth arrest coupled with terminal differentiation into ΔNp63-negative, PSA-expressing secretory luminal cells. This cell autonomous AR-driven terminal differentiation requires DNA-binding of the AR protein, is associated with decreases in c-Myc m-RNA and protein, are coupled with increases in p21, p27, and SKP-2 protein expression, and does not require functional p53. These changes result in down-regulation of Cyclin D1 protein and RB phosphoryation. shRNA knockdown documents that neither RB, p21, p27 alone or in combination are required for such AR-induced G0 growth arrest. Transgenic expression of a constitutive vector to prevent c-Myc down-regulation overrides AR-mediated growth arrest in normal prostate epithelial cells, which documents that AR-induced c-Myc down-regulation is critical in terminal growth arrest of normal prostate epithelial cells. In contrast, in prostate cancer cells, androgen-induced AR signaling paradoxically up-regulates c-Myc expression and stimulates growth as documented by inhibition of both of these responses following exposure to the AR antagonist, bicalutamide. These data document that AR signaling is converted from a growth suppressor in normal prostate epithelial cells to an oncogene in prostate cancer cells during prostatic carcinogenesis and that this conversion involves a gain of function for regulation of c-Myc expression. PMID:24948876

  8. Hsa-let-7a functions as a tumor suppressor in renal cell carcinoma cell lines by targeting c-myc

    SciTech Connect

    Liu, Yongchao; Yin, Bingde; Zhang, Changcun; Zhou, Libin; Fan, Jie

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer This study is the first to test the let-7a/c-myc loop in renal cell carcinoma cell lines. Black-Right-Pointing-Pointer Let-7a down-regulated c-myc in three renal cell carcinoma cell lines. Black-Right-Pointing-Pointer c-myc target genes were down-regulated because of the let-7a-mediated down-regulation of c-myc. Black-Right-Pointing-Pointer The let-7a/c-myc loop has a significant function in renal cell carcinoma cell lines. -- Abstract: Widespread functions of the c-myc pathway play a crucial role in renal cell carcinoma (RCC) carcinogenesis. Thus, we evaluated the connection between proto-oncogenic c-myc and anti-neoplastic hsa-let-7a (let-7a) in RCC cell lines. The levels of c-myc and let-7a in 3 RCC cell lines (769P, Caki-1 and 786O) were measured after transfecting the cells with let-7a mimics or a negative control. The change in c-myc protein level was confirmed by Western blot. The anti-neoplastic function of let-7a was evaluated using cell counting kit-8 (CCK-8) for proliferation analysis and cell flow cytometry for cell cycle analysis. The changes of downstream targets of c-myc were measured using reverse transcription quantitative real-time PCR (qRT-PCR). Our results suggest for the first time that let-7a acts as a tumor suppressor in RCC cell lines by down-regulating c-myc and c-myc target genes such as proliferating cell nuclear antigen (PCNA), cyclin D1 (CCND1) and the miR17-92 cluster, which is accompanied by proliferation inhibition and cell cycle arrest.

  9. Bufalin inhibits pancreatic cancer by inducing cell cycle arrest via the c-Myc/NF-κB pathway.

    PubMed

    Liu, Xia; Xiao, Xiang-Yang; Shou, Qi-Yang; Yan, Jun-Feng; Chen, Long; Fu, Hui-Ying; Wang, Jian-Chao

    2016-12-04

    Bufalin, a cardiotonic steroid isolated from toad venom (bufo gargarizans Cantor or B. melanotictus Schneider), has widely demonstrated antitumor effects and exhibits potential antitumor activity in various human cancer cells lines. The main characteristic of cancers including pancreatic cancer is the ability of uncontrolled proliferation. The aim of this study is to clarify the underlying mechanism by which bufalin inhibits pancreatic cancer cell proliferation. The effect of bufalin on the suppression of tumor growth in vivo was studied in a bioluminescent mouse model generated using the pancreatic cancer cell line BxPC3-luc2 and the cytotoxicity was evaluated in BcPc3 and Sw1990 cells with MTT. Flow cytometry and western blotting analyses were utilized to detect the effect of bufalin on the cell cycle and to detect the cell cycle-related proteins, respectively. Then, a luciferase reporter assay was applied to screen the activity of potent transcription factors following bufalin exposure and their expression was detected by western blotting. Bufalin suppressed tumor growth in a bioluminescence mouse model generated using BxPC3-luc2 cells and inhibited cell proliferation in vitro through inducing cell cycle arrest at S phase. Bufalin treatment inhibited cyclin D1 and cyclin E1 expression and therefore increased expression of p27, a regulatory molecular that controls cell cycle transition from S to G2 phase. Furthermore, luciferase reporter screening studies revealed that bufalin inhibited the expression and activity of the transcription factors c-Myc and NF-κB, which might cause cell cycle arrest at S phase and the inhibition of cell proliferation. Taken together, our results indicate that bufalin can inhibit pancreatic cancer by targeting c-Myc, thus suggesting that the mechanism of c-Myc regulation by bufalin might be worthy of further study regarding its potential as a therapeutic target for pancreatic cancer treatment. Copyright © 2016 Elsevier Ireland Ltd

  10. Costunolide and dehydrocostuslactone combination treatment inhibit breast cancer by inducing cell cycle arrest and apoptosis through c-Myc/p53 and AKT/14-3-3 pathway

    PubMed Central

    Peng, Zhangxiao; Wang, Yan; Fan, Jianhui; Lin, Xuejing; Liu, Chunying; Xu, Yang; Ji, Weidan; Yan, Chao; Su, Changqing

    2017-01-01

    Our previous studies demonstrated that volatile oil from saussurea lappa root (VOSL), rich in two natural sesquiterpene lactones, costunolide (Cos) and dehydrocostuslactone (Dehy), exerts better anti-breast cancer efficacy and lower side effects than Cos or Dehy alone in vivo, however, their anti-cancer molecular mechanisms were still unknown. In this study, we investigated the underlying mechanisms of Cos and Dehy combination treatment (CD) on breast cancer cells through proteomics technology coupled with Western blot validation. Ingenuity Pathways Analysis (IPA) results based on the differentially expressed proteins revealed that both VOSL and CD affect the 14-3-3-mediated signaling, c-Myc mediated apoptosis signaling and protein kinase A (PKA) signaling. Western blot coupled with cell cycle and apoptosis analysis validated the results of proteomics analysis. Cell cycle arrest and apoptosis were induced in a dose-dependent manner, and the expressions of p53 and p-14-3-3 were significantly up-regulated, whereas the expressions of c-Myc, p-AKT, p-BID were significantly down-regulated, furthermore, the ratio of BAX/BCL-2 were significantly increased in breast cancer cells after CD and VOSL treatment. The findings indicated that VOSL and CD could induce breast cancer cell cycle arrest and apoptosis through c-Myc/p53 and AKT/14-3-3 signaling pathways and may be novel effective candidates for breast cancer treatment. PMID:28117370

  11. Costunolide and dehydrocostuslactone combination treatment inhibit breast cancer by inducing cell cycle arrest and apoptosis through c-Myc/p53 and AKT/14-3-3 pathway.

    PubMed

    Peng, Zhangxiao; Wang, Yan; Fan, Jianhui; Lin, Xuejing; Liu, Chunying; Xu, Yang; Ji, Weidan; Yan, Chao; Su, Changqing

    2017-01-24

    Our previous studies demonstrated that volatile oil from saussurea lappa root (VOSL), rich in two natural sesquiterpene lactones, costunolide (Cos) and dehydrocostuslactone (Dehy), exerts better anti-breast cancer efficacy and lower side effects than Cos or Dehy alone in vivo, however, their anti-cancer molecular mechanisms were still unknown. In this study, we investigated the underlying mechanisms of Cos and Dehy combination treatment (CD) on breast cancer cells through proteomics technology coupled with Western blot validation. Ingenuity Pathways Analysis (IPA) results based on the differentially expressed proteins revealed that both VOSL and CD affect the 14-3-3-mediated signaling, c-Myc mediated apoptosis signaling and protein kinase A (PKA) signaling. Western blot coupled with cell cycle and apoptosis analysis validated the results of proteomics analysis. Cell cycle arrest and apoptosis were induced in a dose-dependent manner, and the expressions of p53 and p-14-3-3 were significantly up-regulated, whereas the expressions of c-Myc, p-AKT, p-BID were significantly down-regulated, furthermore, the ratio of BAX/BCL-2 were significantly increased in breast cancer cells after CD and VOSL treatment. The findings indicated that VOSL and CD could induce breast cancer cell cycle arrest and apoptosis through c-Myc/p53 and AKT/14-3-3 signaling pathways and may be novel effective candidates for breast cancer treatment.

  12. HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation.

    PubMed

    Gordan, John D; Thompson, Craig B; Simon, M Celeste

    2007-08-01

    O(2) deprivation (hypoxia) and cellular proliferation engage opposite cellular pathways, yet often coexist during tumor growth. The ability of cells to grow during hypoxia results in part from crosstalk between hypoxia-inducible factors (HIFs) and the proto-oncogene c-Myc. Acting alone, HIF and c-Myc partially regulate complex adaptations undertaken by tumor cells growing in low O(2). However, acting in concert these transcription factors reprogram metabolism, protein synthesis, and cell cycle progression, to "fine tune" adaptive responses to hypoxic environments.

  13. miRNA-320a inhibits tumor proliferation and invasion by targeting c-Myc in human hepatocellular carcinoma

    PubMed Central

    Xie, Fei; Yuan, Yuncang; Xie, Luyang; Ran, Pengzhan; Xiang, Xudong; Huang, Qionglin; Qi, Guoxiang; Guo, Xiaopeng; Xiao, Chunjie; Zheng, Shangyong

    2017-01-01

    Background Downregulated expression levels of microRNA-320a (miR-320a) were found in primary breast cancers and colorectal cancer. Previous findings indicated that miRNA-320a may involve in the cancer development. In this study, we explored the roles of miR-320a by targeting c-Myc in the tumor growth of hepatocellular carcinoma (HCC). Methods Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) was performed to detect the expression of miR-320a in 50 HCC tissues and four HCC cells. Luciferase reporter assay was conducted to confirm the direct downstream target of miR-320a in HEK-293 cells. The effect of miR-320a on endogenous c-Myc expression was investigated by transfecting miR-320a mimics into HepG2 and QGY-7703 cell lines. The c-Myc and miR-320a expressions were analyzed by immunohistochemistry (IHC) and qRT-PCR in the same HCC tissues. Furthermore, the biological functional correlation of miR-320a with c-Myc was determined by studying the effect of miR-320a mimics or c-Myc small interfering RNA (siRNA) on HCC cell proliferation and invasion. Results The expression of miR-320a was downregulated in 50 HCC tissues and 4 HCC cells. Luciferase assay revealed that c-Myc is a direct target of miR-320a. IHC and Western blot analysis showed that the c-Myc expression was inhibited by miR-320a in HCC tissues and cell lines. Upregulation of miR-320a suppressed the HCC cell proliferation and invasion capacity induced by inhibiting c-Myc, and the results were consistent with the effects of c-Myc siRNA on tumor suppression. These results revealed that miRNA-320a inhibits tumor proliferation and invasion by targeting c-Myc in HCC cells. Conclusion Our results showed that miR-320a functions as a tumor suppressor in HCC. By targeting c-Myc directly, miR-320a inhibits the HCC cell growth. Our studies provide evidence of miR-320a as a potentially target for HCC treatment. PMID:28243124

  14. Human RNA polymerase II associated factor 1 complex promotes tumorigenesis by activating c-MYC transcription in non-small cell lung cancer.

    PubMed

    Zhi, Xiuyi; Giroux-Leprieur, Etienne; Wislez, Marie; Hu, Mu; Zhang, Yi; Shi, Huaiyin; Du, Kaiqi; Wang, Lei

    2015-10-02

    Human RNA polymerase II (RNAPII)-associated factor 1 complex (hPAF1C) plays a crucial role in protein-coding gene transcription. Overexpression of hPAF1C has been implicated in the initiation and progression of various human cancers. However, the molecular pathways involved in tumorigenesis through hPAF1C remain to be elucidated. The current study suggested hPAF1C expression as a prognostic biomarker for early stage non-small cell lung cancer (NSCLC) and patients with low hPAF1C expression levels had significantly better overall survival. Furthermore, the expression of hPAF1C was found to be positively correlated with c-MYC expression in patient tumor samples and in cancer cell lines. Mechanistic studies indicated that hPAF1C could promote lung cancer cell proliferation through regulating c-MYC transcription. These results demonstrated the prognostic value of hPAF1C in early-stage NSCLC and the role of hPAF1C in the transcriptional regulation of c-MYC oncogene during NSCLC tumorigenesis. Copyright © 2015. Published by Elsevier Inc.

  15. Oncosecretomics coupled to bioenergetics identifies α-amino adipic acid, isoleucine and GABA as potential biomarkers of cancer: Differential expression of c-Myc, Oct1 and KLF4 coordinates metabolic changes.

    PubMed

    Bellance, Nadège; Pabst, Lisa; Allen, Genevara; Rossignol, Rodrigue; Nagrath, Deepak

    2012-11-01

    Bioenergetic profiling of tumors is a new challenge of cancer research and medicine as therapies are currently being developed. Meanwhile, methodological means must be proposed to gather information on tumor metabolism in order to adapt these potential therapies to the bioenergetic specificities of tumors. Studies performed on tumors and cancer cell lines have shown that cancer cells bioenergetics is highly variable. This profile changes with microenvironmental conditions (eg. substrate availability), the oncogenes activated (and the tumor suppressors inactivated) and the interaction with the stroma (i.e. reverse Warburg effect). Here, we assessed the power of metabolic footprinting (MFP) to unravel the bioenergetics and associated anabolic changes induced by three oncogenes, c-Myc, KLF4 and Oct1. The MFP approach provides a quantitative analysis of the metabolites secreted and consumed by cancer cells. We used ultra performance liquid chromatography for quantifying the amino acid uptake and secretion. To investigate the potential oncogene-mediated alterations in mitochondrial metabolism, we measured oxygen consumption rate and ATP production as well as the glucose uptake and lactate release. Our findings show that c-Myc deficiency initiates the Warburg effect along with a reduction of mitochondrial respiration. KLF4 deficiency also stimulated glycolysis, albeit without cellular respiration impairment. In contrast, Oct1 deficiency reduced glycolysis and enhanced oxidative phosphorylation efficiency. MFP revealed that c-Myc, KLF4 and Oct1 altered amino acid metabolism with specific patterns. We identified isoleucine, α-aminoadipic acid and GABA (γ-aminoisobutyric acid) as biomarkers related. Our findings establish the impact of Oct1, KLF4 and c-Myc on cancer bioenergetics and evidence a link between oncosecretomics and cellular bioenergetics profile.

  16. Mantle cell lymphoma-like lymphomas in c-myc-3'RR/p53+/− mice and c-myc-3'RR/Cdk4R24C mice: differential oncogenic mechanisms but similar cellular origin

    PubMed Central

    Rouaud, Pauline; Fiancette, Rémi; Vincent-Fabert, Christelle; Magnone, Virginie; Cogné, Michel; Dubus, Pierre; Denizot, Yves

    2012-01-01

    Mantle cell lymphoma (MCL) is a malignant lymphoproliferative B-cell disorder that does not occur spontaneously in mice but experimental mice model have been developed. Recently two different mice models prone to develop MCL-like lymphomas were generated: c-myc-3'RR/Cdk4R24C mice and c-myc-3'RR/p53+/− mice. Comparison of their gene expression profiles does not highlight specific differences other than those in relation with their specific mutational status (i.e., Cdk4R24C mutation or p53 mutation). We propose that similarly to typical human MCL and its blastoid or cyclin-D1 variants that correspond to the same genetic entity, MCL-like lymphomas of c-myc-3'RR/p53+/− mice and c-myc-3'RR/Cdk4R24C mice represent a spectrum of the same entity. PMID:22592113

  17. Prognostic Value of Beta-Tubulin-3 and c-Myc in Muscle Invasive Urothelial Carcinoma of the Bladder

    PubMed Central

    Massari, Francesco; Bria, Emilio; Ciccarese, Chiara; Munari, Enrico; Modena, Alessandra; Zambonin, Valentina; Sperduti, Isabella; Artibani, Walter; Cheng, Liang; Martignoni, Guido; Tortora, Giampaolo; Brunelli, Matteo

    2015-01-01

    Background To date, putative prognostic biomarkers have shown limited utility from the clinical perspective for bladder urothelial carcinoma. Herein, the expression of beta-tubulin-3 and c-Myc was evaluated to determine their prognostic potential. Methods In formalin fixed-paraffin embedded blocks, immunohistochemical expression of c-Myc and beta-tubulin-3 was evaluated. H score ranging from 0 to 300 was obtained by multiplying the percentage of positive cells by intensity (0–3); c-Myc and beta-tubulin-3 expression was defined: 0: negative, 1: weakly positive, 2: strongly positive. Results beta-tubulin-3 and c-Myc immunoexpression was available for 46 cases. At the univariate analysis, node-involvement, beta-tubulin-3 and c-Myc overexpression discriminate shorter DFS (HR 2.19, p = 0.043; HR 3.10, p = 0.24 and HR 3.05, p = 0.011, respectively); 2-yrs DFS log-rank analysis according to low versus high level of immunoexpression were statistically significant; beta-tubulin-3, 53% low vs 12.7% high (p = value 0.02) and c-Myc 28 low vs 8 high (p-value 0.007). Patients displaying negative beta-tubulin-3/c-Myc had statistically significant better 2-yrs DFS than those with mixed expression or double positivity (54.5% versus 18.7% versus 0%, log-rank p = 0.006). Conclusions c-Myc and beta-tubulin-3 show improvement for prognostic risk stratification in patients with muscle invasive bladder urothelial carcinoma. These molecular pathways may also be candidate to improve predictiveness to targeted therapies. PMID:26046361

  18. Frequent co-amplification and co-operation between C-MYC and PVT1 oncogenes promote malignant pleural mesothelioma

    PubMed Central

    Riquelme, Erick; Suraokar, Milind B.; Rodriguez, Jaime; Mino, Barbara; Lin, Heather Y.; Rice, David C.; Tsao, Anne; Wistuba, Ignacio I.

    2014-01-01

    Introduction Malignant pleural mesothelioma (MPM) is a deadly disease with poor prognosis and few treatment options. We characterized and elucidate the roles of C-MYC and PVT1 involved in the pathogenesis of MPM. Methods We used siRNA-mediated knockdown in MPM cell lines to determine the effect of C-MYC and PVT1 abrogation on MPM cells undergoing apoptosis, proliferation, and cisplatin sensitivity. We also characterized the expression of microRNAs (miRNAs) spanning the PVT1 region in MPM cell lines. Copy number analysis was measured by quantitative PCR and fluorescence in situ hybridization. Results Copy number analysis revealed copy number gains (CNGs) in chromosomal region 8q24 in six of twelve MPM cell lines. MicroRNA analysis showed high miR-1204 expression in MSTO-211H cell lines with ≥4 copies of PVT1. Knockdown by siRNA showed increased PARP-C levels in MSTO-211H transfected with siPVT1 but not in cells transfected with siC-MYC. C-MYC and PVT1 knockdown reduced cell proliferation and increased sensitivity to cisplatin. Analysis of the expression of apoptosis-related genes in the MSTO-211H cell line suggested that C-MYC maintains a balance between pro-apoptotic and anti-apoptotic gene expression, whereas PVT1 and to a lesser extent miR-1204, upregulate pro-apoptotic genes and downregulate anti-apoptotic genes. FISH analysis of MPM tumor specimens showed a high frequency of both CNGs (11/75) and trisomy (three copies; 11/75) for the C-MYC locus. Conclusion Our results suggest that C-MYC and PVT1 copy number gain promotes a malignant phenotype of MPM, with C-MYC CNG stimulating cell proliferation and PVT1 both stimulating proliferation and inhibiting apoptosis. PMID:24926545

  19. Anti-proliferative effects of Atractylis lancea (Thunb.) DC. via down-regulation of the c-myc/hTERT/telomerase pathway in Hep-G2 cells.

    PubMed

    Guo, Wei-Qiang; Li, Liang-Zhi; He, Zhuo-Yang; Zhang, Qi; Liu, Jia; Hu, Cui-Ying; Qin, Fen-Ju; Wang, Tao-Yun

    2013-01-01

    Atractylis lancea (Thunb.) DC. (AL), an important medicinal herb in Asia, has been shown to have anti-tumor effects on cancer cells, but the involved mechanisms are poorly understood. This study focused on potential effects and molecular mechanisms of AL on the proliferation of the Hep-G2 liver cancer cell line in vitro. Cell viability was assessed by MTT test in Hep-G2 cells incubated with an ethanol extract of AL. Then, the effects of AL on apoptosis and cell cycle progression were determined by flow cytometry. Telomeric repeat amplification protocol (TRAP) assays was performed to investigate telomerase activity. The mRNA and protein expression of human telomerase reverse transcriptase (hTERT) and c-myc were determined by real-time RT-PCR and Western blotting. Our results show that AL effectively inhibits proliferation in Hep-G2 cells in a concentration- and time-dependent manner. When Hep-G2 cells were treated with AL after 48h,the IC50 was about 72.1 μg/ mL. Apoptosis was induced by AL via arresting the cells in the G1 phase. Furthermore, AL effectively reduced telomerase activity through inhibition of mRNA and protein expression of hTERT and c-myc. Hence, these data demonstrate that AL exerts anti-proliferative effects in Hep-G2 cells via down-regulation of the c-myc/hTERT/ telomerase pathway.

  20. C-Myc negatively controls the tumor suppressor PTEN by upregulating miR-26a in glioblastoma multiforme cells

    SciTech Connect

    Guo, Pin; Nie, Quanmin; Lan, Jin; Ge, Jianwei; Qiu, Yongming; Mao, Qing

    2013-11-08

    Highlights: •The c-Myc oncogene directly upregulates miR-26a expression in GBM cells. •ChIP assays demonstrate that c-Myc interacts with the miR-26a promoter. •Luciferase reporter assays show that PTEN is a specific target of miR-26a. •C-Myc–miR-26a suppression of PTEN may regulate the PTEN/AKT pathway. •Overexpression of c-Myc enhances the proliferative capacity of GBM cells. -- Abstract: The c-Myc oncogene is amplified in many tumor types. It is an important regulator of cell proliferation and has been linked to altered miRNA expression, suggesting that c-Myc-regulated miRNAs might contribute to tumor progression. Although miR-26a has been reported to be upregulated in glioblastoma multiforme (GBM), the mechanism has not been established. We have shown that ectopic expression of miR-26a influenced cell proliferation by targeting PTEN, a tumor suppressor gene that is inactivated in many common malignancies, including GBM. Our findings suggest that c-Myc modulates genes associated with oncogenesis in GBM through deregulation of miRNAs via the c-Myc–miR-26a–PTEN signaling pathway. This may be of clinical relevance.

  1. Repression of the c-fms gene in fibroblast cells by c-Myc-MM-1-TIF1beta complex.

    PubMed

    Satou, Akiko; Hagio, Yuko; Taira, Takahiro; Iguchi-Ariga, Sanae M M; Ariga, Hiroyoshi

    2004-08-13

    MM-1 has been reported to repress the E-box-dependent transcription activity of c-Myc by recruiting histone deacetylase 1 complex via TIF1beta/KAP1. In this study, to identify target genes for c-Myc-MM-1-TIF1beta, we established rat-1 cells harboring the dominant-negative form of TIF1beta to abrogate the pathway from TIF1beta to MM-1-c-Myc. This cell line, in which transcription activity of c-Myc was activated, was found to be tumorigenic. By DNA-microarray analysis of this cell line, expression and promoter activity of the c-fms oncogene were found to be upregulated. Of the two promoters, pE1 and pE2, in the c-fms gene, pE1 promoter activity was found to be activated in an E-box-dependent manner.

  2. Wogonin inhibits multiple myeloma-stimulated angiogenesis via c-Myc/VHL/HIF-1α signaling axis.

    PubMed

    Fu, Rong; Chen, Yan; Wang, Xiao-Ping; An, Teng; Tao, Lei; Zhou, Yu-Xin; Huang, Yu-Jie; Chen, Bao-An; Li, Zhi-Yu; You, Qi-Dong; Guo, Qing-Long; Wu, Zhao-Qiu

    2016-02-02

    Angiogenesis is associated with the progression of multiple myeloma (MM). Wogonin is an active mono-flavonoid with remarkable antitumor activity. However, its impact on MM-stimulated angiogenesis remains largely unknown. Here, we demonstrated that wogonin decreased expression and secretion of pro-angiogenic factors in MM cells via c-Myc/HIF-1α signaling axis, reducing MM-stimulated angiogenesis and MM cell proliferation in vivo. Overexpression of c-Myc in MM cells disrupted the balance between VHL SUMOylation and ubiquitination, and thus inhibited proteasome-mediated HIF-1α degradation. Impaired function of VHL ubiquitination complex in c-Myc-overexpressing cells was fully reversed by wogonin treatment via increasing HIF-1α-VHL interaction and promoting HIF-1α degradation. Collectively, our in vitro and in vivo studies reveal for the first time that wogonin represses MM-stimulated angiogenesis and tumor progression via c-Myc/VHL/HIF-1α signaling axis.

  3. Wogonin inhibits multiple myeloma-stimulated angiogenesis via c-Myc/VHL/HIF-1α signaling axis

    PubMed Central

    Wang, Xiao-Ping; An, Teng; Tao, Lei; Zhou, Yu-Xin; Huang, Yu-Jie; Chen, Bao-An; Li, Zhi-Yu; You, Qi-Dong; Guo, Qing-Long; Wu, Zhao-Qiu

    2016-01-01

    Angiogenesis is associated with the progression of multiple myeloma (MM). Wogonin is an active mono-flavonoid with remarkable antitumor activity. However, its impact on MM-stimulated angiogenesis remains largely unknown. Here, we demonstrated that wogonin decreased expression and secretion of pro-angiogenic factors in MM cells via c-Myc/HIF-1α signaling axis, reducing MM-stimulated angiogenesis and MM cell proliferation in vivo. Overexpression of c-Myc in MM cells disrupted the balance between VHL SUMOylation and ubiquitination, and thus inhibited proteasome-mediated HIF-1α degradation. Impaired function of VHL ubiquitination complex in c-Myc