Sample records for c-n bond breaking

  1. Electron attachment-induced DNA single-strand breaks at the pyrimidine sites

    PubMed Central

    Gu, Jiande; Wang, Jing; Leszczynski, Jerzy

    2010-01-01

    To elucidate the contribution of pyrimidine in DNA strand breaks caused by low-energy electrons (LEEs), theoretical investigations of the LEE attachment-induced C3′–O3′, and C5′–O5′ σ bond as well as N-glycosidic bond breaking of 2′-deoxycytidine-3′,5′-diphosphate and 2′-deoxythymidine-3′,5′-diphosphate were performed using the B3LYP/DZP++ approach. The base-centered radical anions are electronically stable enough to assure that either the C–O or glycosidic bond breaking processes might compete with the electron detachment and yield corresponding radical fragments and anions. In the gas phase, the computed glycosidic bond breaking activation energy (24.1 kcal/mol) excludes the base release pathway. The low-energy barrier for the C3′–O3′ σ bond cleavage process (∼6.0 kcal/mol for both cytidine and thymidine) suggests that this reaction pathway is the most favorable one as compared to other possible pathways. On the other hand, the relatively low activation energy barrier (∼14 kcal/mol) for the C5′–O5′ σ bond cleavage process indicates that this bond breaking pathway could be possible, especially when the incident electrons have relatively high energy (a few electronvolts). The presence of the polarizable medium greatly increases the activation energies of either C–O σ bond cleavage processes or the N-glycosidic bond breaking process. The only possible pathway that dominates the LEE-induced DNA single strands in the presence of the polarizable surroundings (such as in an aqueous solution) is the C3′–O3′ σ bond cleavage (the relatively low activation energy barrier, ∼13.4 kcal/mol, has been predicted through a polarizable continuum model investigation). The qualitative agreement between the ratio for the bond breaks of C5′–O5′, C3′–O3′ and N-glycosidic bonds observed in the experiment of oligonucleotide tetramer CGAT and the theoretical sequence of the bond breaking reaction pathways have been found. This consistency between the theoretical predictions and the experimental observations provides strong supportive evidences for the base-centered radical anion mechanism of the LEE-induced single-strand bond breaking around the pyrimidine sites of the DNA single strands. PMID:20430827

  2. Site-Specific Imaging of Elemental Steps in Dehydration of Diols on TiO 2(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acharya, Danda P.; Yoon, Yeohoon; Li, Zhenjun

    2013-11-26

    The conversion of diols on partially reduced TiO 2(110) at low coverage was studied using variable-temperature scanning tunneling microscopy, temperature programmed desorption and density functional theory calculations. We find, that below ~230 K, ethane-1,2-diol and propane-1,3-diol molecules adsorb predominantly on five-fold coordinated Ti5c atoms. The dynamic equilibrium between molecularly bound and dissociated species resulting from O-H bond scission and reformation is observed. As the diols start to diffuse on the Ti5c rows above ~230 K, they dissociate irreversibly upon encountering bridging oxygen (O b) vacancy (VO’s) defects. Two dissociation pathways, one via O-H and the other via C-O bond scissionmore » leading to identical surface intermediates, hydroxyalkoxy, O b-(CH 2)n-OH (n = 2, 3) and bridging hydroxyl, HO b, are seen. For O-H bond scission, the O b-(CH 2)n-OH is found on the position of the original VO, while for C-O scission it is found on the adjacent Ob site. Theoretical calculations suggest that the observed mixture of C-O/O-H bond breaking processes are a result of the steric factors enforced upon the diols by the second OH group that is bound to a Ti5c site. At room temperature, rich dissociation/reformation dynamics of the second, Ti5c-bound O-H leads to the formation of dioxo, Ob-(CH 2)n-OTi, species. Above ~400 K, both O b-(CH 2)n-OH and Ob-(CH 2)n-OTi species convert into a new intermediate, that is centered on Ob row. Combined experimental and theoretical evidence shows that this intermediate is most likely a new dioxo, O b-(CH 2) 2-Ob, species. Further annealing leads to sequential C-Ob bond cleavage and alkene desorption above ~ 500 K. Simulations find that the sequential C-O bond breaking process follows a homolytic diradical pathway with the first C-O bond breaking event accompanied by a non-adiabatic electron transfer within the TiO 2(110) substrate.« less

  3. CH 3NO 2 decomposition/isomerization mechanism and product branching ratios: An ab initio chemical kinetic study

    NASA Astrophysics Data System (ADS)

    Zhu, R. S.; Lin, M. C.

    2009-08-01

    The low-lying energy pathways for the decomposition/isomerization of nitromethane (NM) have been investigated using different molecular orbital methods. Our results show that in addition to the commonly known CH 3 + NO 2 products formed by direct C-N bond breaking and the trans-CH 3ONO formed by nitro-nitrite isomerization, NM can also isomerize to cis-CH 3ONO via a very loose transition state (TS) lying 59.2 kcal/mol above CH 3NO 2 or 0.6 kcal/mol below the CH 3 + NO 2 asymptote predicted at the UCCSD(T)/CBS level of theory. Kinetic results indicate that in the energy range of 59 ± 1 kcal/mol, production of CH 3O + NO is dominant, whereas above the C-N bond breaking threshold, the formation of CH 3 + NO 2 sharply increases and becomes dominant. The k( E) values predicted at different energies clearly indicate that CH 3O + NO could be detected in an infrared multi-photon dissociation study, whereas in UV dissociation experiments with energies high above the C-N bond breaking threshold the CH 3 + NO 2 products are generated predominantly.

  4. Computational study of the process of hydrogen bond breaking: the case of the formamide-formic acid complex.

    PubMed

    Pacios, Luis F

    2006-11-15

    MP2/6-311++G(d,p) and B3LYP/6-311++G(d,p) quantum calculations are used to study the formamide-formic acid complex (FFAC), a system bound by two hydrogen bonds, N--H...O and O--H...O, that forms a bond ring at equilibrium. When the intermolecular separation between monomers R increases, this ring opens at a distance for which the weaker N--H...O bond breaks remaining the stronger O--H...O bond. The computational study characterizes that process addressing changes of interaction energy DeltaE, structure and properties of the electron density rho(r) as well as spatial distributions of rho(r), the electrostatic potential U(r), and the electron localization function eta(r). It is shown that the spatial derivatives of DeltaE, the topology of rho(r), and qualitative changes noticed in U(r) = 0 isocontours allow to identify a precise distance R for which one can say the N--H...O hydrogen bond has broken. Both levels of theory predict essentially the same changes of structure and electron properties associated to the process of breaking and virtually identical distances at which it takes place. (c) 2006 Wiley Periodicals, Inc. J Comput Chem, 2006.

  5. Predicting Trigger Bonds in Explosive Materials through Wiberg Bond Index Analysis.

    PubMed

    Harper, Lenora K; Shoaf, Ashley L; Bayse, Craig A

    2015-12-21

    Understanding the explosive decomposition pathways of high-energy-density materials (HEDMs) is important for developing compounds with improved properties. Rapid reaction rates make the detonation mechanisms of HEDMs difficult to understand, so computational tools are used to predict trigger bonds-weak bonds that break, leading to detonation. Wiberg bond indices (WBIs) have been used to compare bond densities in HEDMs to reference molecules to provide a relative scale for the bond strength to predict the activated bonds most likely to break to trigger an explosion. This analysis confirms that X-NO2 (X=N,C,O) bonds are trigger linkages in common HEDMs such as TNT, RDX and PETN, consistent with previous experimental and theoretical studies. Calculations on a small test set of substituted tetrazoles show that the assignment of the trigger bond depends upon the functionality of the material and that the relative weakening of the bond correlates with experimental impact sensitivities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Below-Room-Temperature C–H Bond Breaking on an Inexpensive Metal Oxide: Methanol to Formaldehyde on CeO 2(111)

    DOE PAGES

    Sutton, Jonathan E.; Danielson, Thomas; Beste, Ariana; ...

    2017-11-14

    C-H bond breaking is important for industrial commodity and specialty chemical transformations, including the upgrading of alcohols. Small primary alcohols – methanol and ethanol – are used industrially as precursors for the corresponding aldehydes at industrial scales. However, upgrading these primary alcohols involves C-H bond breaking and the processes are run at elevated temperatures (> 200 °C). In this work, new understanding from temperature programmed reaction (TPR) studies with methanol over a CeO 2(111) surface show the C-H bond breaking and the subsequent desorption of formaldehyde, even below room temperature. This is of particular interests because CeO 2 is amore » naturally abundant, inexpensive metal oxide. We combine density functional theory (DFT) and kinetic Monte Carlo (KMC) to simulate the TPR of methanol on CeO2. Our simulations show that the low temperature C H bond breaking occurs via disproportionation of adjacent methoxy species to form methanol and formaldehyde which each then desorb. We further show from DFT calculations that the same transition state with comparably low activation energies should be possible for other sustainable primary alcohols, with ethanol, 1-propanol, and 1-butanol having been explicitly calculated. In conclusion, these findings point out a new class of transition states to search for in seeking low temperature C-H bond breaking over inexpensive metal oxides.« less

  7. Below-Room-Temperature C–H Bond Breaking on an Inexpensive Metal Oxide: Methanol to Formaldehyde on CeO 2(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutton, Jonathan E.; Danielson, Thomas; Beste, Ariana

    C-H bond breaking is important for industrial commodity and specialty chemical transformations, including the upgrading of alcohols. Small primary alcohols – methanol and ethanol – are used industrially as precursors for the corresponding aldehydes at industrial scales. However, upgrading these primary alcohols involves C-H bond breaking and the processes are run at elevated temperatures (> 200 °C). In this work, new understanding from temperature programmed reaction (TPR) studies with methanol over a CeO 2(111) surface show the C-H bond breaking and the subsequent desorption of formaldehyde, even below room temperature. This is of particular interests because CeO 2 is amore » naturally abundant, inexpensive metal oxide. We combine density functional theory (DFT) and kinetic Monte Carlo (KMC) to simulate the TPR of methanol on CeO2. Our simulations show that the low temperature C H bond breaking occurs via disproportionation of adjacent methoxy species to form methanol and formaldehyde which each then desorb. We further show from DFT calculations that the same transition state with comparably low activation energies should be possible for other sustainable primary alcohols, with ethanol, 1-propanol, and 1-butanol having been explicitly calculated. In conclusion, these findings point out a new class of transition states to search for in seeking low temperature C-H bond breaking over inexpensive metal oxides.« less

  8. Ab initio simulations of bond breaking in sulfur crosslinked isoprene oligomer units

    NASA Astrophysics Data System (ADS)

    Gehrke, Sascha; Alznauer, Hans Tobias; Karimi-Varzaneh, Hossein Ali; Becker, Jörg August

    2017-12-01

    Sulfur crosslinked polyisoprene (rubber) is used in important material components for a number of technical tasks (e.g., in tires and sealings). If mechanical stress, like tension or shear, is applied on these material components, the sulfur crosslinks suffer from homolytic bond breaking. In this work, we have simulated the bond breaking mechanism of sulfur crosslinks between polyisoprene chains using Car-Parrinello molecular dynamic simulations and investigated the maximum forces which can be resisted by the crosslinks. Small model systems with crosslinks formed by chains of N = 1 to N = 6 sulfur atoms have been simulated with the slow growth-technique, known from the literature. The maximum force can be thereby determined from the calculated energies as a function of strain (elongation). The stability of the crosslink under strain is quantified in terms of the maximum force that can be resisted by the system before the crosslink breaks. As shown by our simulations, this maximum force decreases with the sulfur crosslink length N in a step like manner. Our findings indicate that in bridges with N = 1, 2, and 3 sulfur atoms predominantly, carbon-sulfur bonds break, while in crosslinks with N > 3, the breaking of a sulfur-sulfur bond is the dominant failure mechanism. The results are explained within a simple chemical bond model, which describes how the delocalization of the electrons in the generated radicals can lower their electronic energy and decrease the activation barriers. It is described which of the double bonds in the isoprene units are involved in the mechanochemistry of crosslinked rubber.

  9. Conformations and charge distributions of diazocyclopropanes

    NASA Astrophysics Data System (ADS)

    Borges, Itamar, Jr.

    Three diazo-substituted cyclopropane compounds, which have been suggested as new potential high energy compounds, were studied employing the B3LYP-DFT/6-31G(d,p) method. Geometries were optimized. Distributed multipole analysis, computed from the B3LYP-DFT/6-31G(d,p) density matrix, was used to describe the details of the molecular charge distribution of the three molecules. It was verified that electron withdrawing from the C ring atoms and charge build-up on the N atoms bonded to the ring increased with the number of diazo groups. These effects were related to increased sensitivity to impact and easiness of C bond N bond breaking in the three compounds.

  10. Distinct hydroxy-radical-induced damage of 3'-uridine monophosphate in RNA: a theoretical study.

    PubMed

    Zhang, Ru bo; Eriksson, Leif A

    2009-01-01

    RNA strand scission and base release in 3'-uridine monophosphate (UMP), induced by OH radical addition to uracil, is studied at the DFT B3LYP/6-31+G(d,p) level in the gas phase and in solution. In particular, the mechanism of hydrogen-atom transfer subsequent to radical formation, from C2' on the sugar to the C6 site on the base, is explored. The barriers of (C2'-)H2'(a) abstraction by the C6 radical site range from 11.2 to 20.0 kcal mol(-1) in the gas phase and 14.1 to 21.0 kcal mol(-1) in aqueous solution, indicating that the local surrounding governs the hydrogen-abstraction reaction in a stereoselective way. The calculated N1-C1' (N1-glycosidic bond) and beta-phosphate bond strengths show that homolytic and heterolytic bond-breaking processes are largely favored in each case, respectively. The barrier for beta-phosphate bond rupture is approximately 3.2-4.0 kcal mol(-1) and is preferred by 8-12 kcal mol(-1) over N1-glycosidic bond cleavage in both the gas phase and solution. The beta-phosphate bond-rupture reactions are exothermal in the gas phase and solution, whereas N1-C1' bond-rupture reactions require both solvation and thermal corrections at 298 K to be energetically favored. The presence of the ribose 2'-OH group and its formation of low-barrier hydrogen bonds with oxygen atoms of the 3'-phosphate linkage are highly important for hydrogen transfer and the subsequent bond-breakage reactions.

  11. Hydrogen bond disruption in DNA base pairs from (14)C transmutation.

    PubMed

    Sassi, Michel; Carter, Damien J; Uberuaga, Blas P; Stanek, Christopher R; Mancera, Ricardo L; Marks, Nigel A

    2014-09-04

    Recent ab initio molecular dynamics simulations have shown that radioactive carbon does not normally fragment DNA bases when it decays. Motivated by this finding, density functional theory and Bader analysis have been used to quantify the effect of C → N transmutation on hydrogen bonding in DNA base pairs. We find that (14)C decay has the potential to significantly alter hydrogen bonds in a variety of ways including direct proton shuttling (thymine and cytosine), thermally activated proton shuttling (guanine), and hydrogen bond breaking (cytosine). Transmutation substantially modifies both the absolute and relative strengths of the hydrogen bonding pattern, and in two instances (adenine and cytosine), the density at the critical point indicates development of mild covalent character. Since hydrogen bonding is an important component of Watson-Crick pairing, these (14)C-induced modifications, while infrequent, may trigger errors in DNA transcription and replication.

  12. Pulling monatomic gold wires with single molecules: an Ab initio simulation.

    PubMed

    Krüger, Daniel; Fuchs, Harald; Rousseau, Roger; Marx, Dominik; Parrinello, Michele

    2002-10-28

    Car-Parrinello molecular dynamics simulations demonstrate that pulling a single thiolate molecule anchored on a stepped gold surface does not preferentially break the sulfur-gold chemical bond. Instead, it is found that this process leads to the formation of a monoatomic gold nanowire, followed by breaking a gold-gold bond with a rupture force of about 1.2 nN. The simulations also indicate that previous single-molecule thiolate-gold and gold-gold rupture experiments both probe the same phenomenon, namely, the breaking of a gold-gold bond within a gold nanowire.

  13. Hugoniot curve calculation of nitromethane decomposition mixtures: A reactive force field molecular dynamics approach

    NASA Astrophysics Data System (ADS)

    Guo, Feng; Zhang, Hong; Hu, Hai-Quan; Cheng, Xin-Lu; Zhang, Li-Yan

    2015-11-01

    We investigate the Hugoniot curve, shock-particle velocity relations, and Chapman-Jouguet conditions of the hot dense system through molecular dynamics (MD) simulations. The detailed pathways from crystal nitromethane to reacted state by shock compression are simulated. The phase transition of N2 and CO mixture is found at about 10 GPa, and the main reason is that the dissociation of the C-O bond and the formation of C-C bond start at 10.0-11.0 GPa. The unreacted state simulations of nitromethane are consistent with shock Hugoniot data. The complete pathway from unreacted to reacted state is discussed. Through chemical species analysis, we find that the C-N bond breaking is the main event of the shock-induced nitromethane decomposition. Project supported by the National Natural Science Foundation of China (Grant No. 11374217) and the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2014BQ008).

  14. Dynamic Responses and Initial Decomposition under Shock Loading: A DFTB Calculation Combined with MSST Method for β-HMX with Molecular Vacancy.

    PubMed

    He, Zheng-Hua; Chen, Jun; Ji, Guang-Fu; Liu, Li-Min; Zhu, Wen-Jun; Wu, Qiang

    2015-08-20

    Despite extensive efforts on studying the decomposition mechanism of HMX under extreme condition, an intrinsic understanding of mechanical and chemical response processes, inducing the initial chemical reaction, is not yet achieved. In this work, the microscopic dynamic response and initial decomposition of β-HMX with (1 0 0) surface and molecular vacancy under shock condition, were explored by means of the self-consistent-charge density-functional tight-binding method (SCC-DFTB) in conjunction with multiscale shock technique (MSST). The evolutions of various bond lengths and charge transfers were analyzed to explore and understand the initial reaction mechanism of HMX. Our results discovered that the C-N bond close to major axes had less compression sensitivity and higher stretch activity. The charge was transferred mainly from the N-NO2 group along the minor axes and H atom to C atom during the early compression process. The first reaction of HMX primarily initiated with the fission of the molecular ring at the site of the C-N bond close to major axes. Further breaking of the molecular ring enhanced intermolecular interactions and promoted the cleavage of C-H and N-NO2 bonds. More significantly, the dynamic response behavior clearly depended on the angle between chemical bond and shock direction.

  15. Gas-Phase Chemistry of Arylimido-Functionalized Hexamolybdates [Mo6O19]2-

    NASA Astrophysics Data System (ADS)

    Cao, Jie; Wang, QianQian; Liu, Chang; An, ShuQi

    2018-04-01

    The gas-phase fragmentations of a series of arylimido derivatives of hexamolybdate [Mo6O18(NC6H5-n R n )]2- (2-10, where R = CH3, i-C3H7, OCH3, NO2; n = 1 or 2) versus the parent species [Mo6O19]2- (1) were systematically studied using electrospray tandem mass spectrometry (ESI). Fragmentation of 1 generates two molybdate fragments only, [Mo3O10]2- and [Mo4O13]2-, whereas decomposition of 2-10 went through two dissociation pathways in which path A generates a variety of molybdate fragments via breaking the Mo-N bond followed by the cleavages of the multiple Mo-O bonds, whereas path B produces a range of molybdate fragments with arylimido group via breaking the multiple Mo-O bonds on POM framework. Moreover, the presences of mixed-oxidation-state molybdate fragments are characteristic for the fragmentation. The gas-phase stability order obtained by energy-variable collision-induced dissociation (CID) experiment reveals that 2-10 are generally less stable than 1 and substitution on the benzene ring exerts a considerable effect on the stabilization of the hybrid clusters. [Figure not available: see fulltext.

  16. A study on an unusual SN2 mechanism in the methylation of benzyne through nickel-complexation.

    PubMed

    Hatakeyama, Makoto; Sakamoto, Yuki; Ogata, Koji; Sumida, Yuto; Sumida, Tomoe; Hosoya, Takamitsu; Nakamura, Shinichiro

    2017-10-11

    In this study, three reaction mechanisms of a benzyne-nickel (Ni) complex ([Ni(C 6 H 4 )(dcpe)]) with iodomethane during the methylation process were investigated, namely (a) S N 2 reaction of the benzyne-Ni complex with iodomethane, (b) concerted σ-bond metathesis during the bond breaking/forming processes, and (c) oxidative addition of iodomethane to the Ni-center and the subsequent reductive elimination process. DFT calculations revealed that the reaction barrier of the S N 2 reaction is slightly lower than those of the other mechanisms. The results of orbital analyses suggest that [Ni(C 6 H 4 )(dcpe)] forms a metallacycle structure between benzyne and the Ni II (3d 8 ) center instead of the η 2 -structure with the Ni 0 (3d 10 ) center. The metallacycle structures became inappropriate as the intermediates of oxidative addition in the formation of the Ni II -Me bond, avoiding further oxidation to the high-valent Ni IV . The high free energy along σ-bond metathesis was generated from the steric hindrance, thus invoking methylation and Ni-I bond formation concertedly.

  17. Initial hydration processes of magnesium chloride: size-selected anion photoelectron spectroscopy and ab initio calculations.

    PubMed

    Feng, Gang; Liu, Cheng-Wen; Zeng, Zhen; Hou, Gao-Lei; Xu, Hong-Guang; Zheng, Wei-Jun

    2017-06-14

    To understand the initial hydration processes of MgCl 2 , we measured photoelectron spectra of MgCl 2 (H 2 O) n - (n = 0-6) and conducted ab initio calculations on MgCl 2 (H 2 O) n - and their neutral counterparts up to n = 7. A dramatic drop in the vertical detachment energy (VDE) was observed upon addition of the first water molecule to bare MgCl 2 - . This large variation in VDE can be associated with the charge-transfer-to-solvent (CTTS) effect occurring in the MgCl 2 (H 2 O) n - clusters, as hydration induces transfer of the excess electron of MgCl 2 - to the water molecules. Investigation of the separation of Cl - -Mg 2+ ion pair shows that, in MgCl 2 (H 2 O) n - anions, breaking of the first Mg-Cl bond occurs at n = 4, while breaking of the second Mg-Cl bond takes place at n = 6. For neutral MgCl 2 (H 2 O) n clusters, breaking of the first Mg-Cl bond starts at n = 7.

  18. Effects of defects on thermal decomposition of HMX via ReaxFF molecular dynamics simulations.

    PubMed

    Zhou, Ting-Ting; Huang, Feng-Lei

    2011-01-20

    Effects of molecular vacancies on the decomposition mechanisms and reaction dynamics of condensed-phase β-HMX at various temperatures were studied using ReaxFF molecular dynamics simulations. Results show that three primary initial decomposition mechanisms, namely, N-NO(2) bond dissociation, HONO elimination, and concerted ring fission, exist at both high and lower temperatures. The contribution of the three mechanisms to the initial decomposition of HMX is influenced by molecular vacancies, and the effects vary with temperature. At high temperature (2500 K), molecular vacancies remarkably promote N-N bond cleavage and concerted ring breaking but hinder HONO formation. N-N bond dissociation and HONO elimination are two primary competing reaction mechanisms, and the former is dominant in the initial decomposition. Concerted ring breaking of condensed-phase HMX is not favored at high temperature. At lower temperature (1500 K), the most preferential initial decomposition pathway is N-N bond dissociation followed by the formation of NO(3) (O migration), although all three mechanisms are promoted by molecular vacancies. The promotion effect on concerted ring breaking is considerable at lower temperature. Products resulting from concerted ring breaking appear in the defective system but not in the perfect crystal. The mechanism of HONO elimination is less important at lower temperature. We also estimated the reaction rate constant and activation barriers of initial decomposition with different vacancy concentrations. Molecular vacancies accelerate the decomposition of condensed-phase HMX by increasing the reaction rate constant and reducing activation barriers.

  19. Crystal and molecular structure of N-(4-nitrophenyl)-β-alanine—Its vibrational spectra and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Marchewka, M. K.; Drozd, M.; Janczak, J.

    2011-08-01

    The N-(4-nitrophenyl)-β-alanine in crystalline form directly by the addition of 4-nitroaniline to the acrylic acid in aqueous solution has been obtained. The title β-alanine derivative crystallizes in the P2 1/ c space group of monoclinic system with four molecules per unit cell. The X-ray geometry of β-alanine derivative molecule has been compared with those obtained by molecular orbital calculations corresponding to the gas phase. In the crystal the molecules related by an inversion center interact via symmetrically equivalent O-H⋯O hydrogen bonds with O⋯O distance of 2.656(2) Å forming a dimeric structure. The dimers of β-alanine derivative weakly interact via N-H⋯O hydrogen bonds between the H atom of β-amine groups and one of O atom of nitro groups. The room temperature powder vibrational (infrared and Raman) measurements are in accordance with the X-ray analysis. In aqueous solution of 4-nitroaniline and acrylic acid, the double C dbnd C bond of vinyl group of acrylic acid breaks as result of 4-nitroaniline addition.

  20. Lightning - Estimates of the rates of energy dissipation and nitrogen fixation

    NASA Technical Reports Server (NTRS)

    Borucki, W. J.; Chameides, W. L.

    1984-01-01

    The nitrogen needed by plants can normally not be directly obtained from the nitrogen present in molecular form in the atmosphere. The reason for this situation is related to the great energy required to break the N-N bond. Only a few organisms, such as algae and certain bacteria, can 'fix' nitrogen. An abiological process for breaking the N-N bond is provided by lightning. The present investigation is concerned with this possibility. It is found that lightning produces approximately 2.6 x 10 to the 9th kg N per year. There are, however, uncertainties, which are mainly related to the energy of a lightning flash.

  1. Aminosilanization nanoadhesive layer for nanoelectric circuits with porous ultralow dielectric film.

    PubMed

    Zhao, Zhongkai; He, Yongyong; Yang, Haifang; Qu, Xinping; Lu, Xinchun; Luo, Jianbin

    2013-07-10

    An ultrathin layer is investigated for its potential application of replacing conventional diffusion barriers and promoting interface adhesion for nanoelectric circuits with porous ultralow dielectrics. The porous ultralow dielectric (k ≈ 2.5) substrate is silanized by 3-aminopropyltrimethoxysilane (APTMS) to form the nanoadhesive layer by performing oxygen plasma modification and tailoring the silanization conditions appropriately. The high primary amine content is obtained in favor of strong interaction between amino groups and copper. And the results of leakage current measurements of metal-oxide-semiconductor capacitor structure demonstrate that the aminosilanization nanoadhesive layer can block copper diffusion effectively and guarantee the performance of devices. Furthermore, the results of four-point bending tests indicate that the nanoadhesive layer with monolayer structure can provide the satisfactory interface toughness up to 6.7 ± 0.5 J/m(2) for Cu/ultralow-k interface. Additionally, an annealing-enhanced interface toughness effect occurs because of the formation of Cu-N bonding and siloxane bridges below 500 °C. However, the interface is weakened on account of the oxidization of amines and copper as well as the breaking of Cu-N bonding above 500 °C. It is also found that APTMS nanoadhesive layer with multilayer structure provides relatively low interface toughness compared with monolayer structure, which is mainly correlated to the breaking of interlayer hydrogen bonding.

  2. Chemisorption of 1,1-dichloroethene on the Si(1 1 1)-7 × 7 surface

    NASA Astrophysics Data System (ADS)

    Andersen, T. H.; Zahl, M. G.; Svenum, I.-H.; Børve, K. J.; Borg, A.; Sæthre, L. J.

    2007-12-01

    Chemisorption of 1,1-dichloroethene (Cl 2C dbnd CH 2) to a Si(1 1 1)-7 × 7 surface was studied by means of X-ray photoelectron spectroscopy using synchrotron radiation, recording chlorine 2p and carbon 1s spectra. For carbon 1s, spectral assignment of the chemisorbed species is based on quantum chemical calculations of chemical shifts in model compounds. The results confirm the identity of covalently bonded 1-chlorovinyl (-CCl dbnd CH 2) and vinylidene ( lbond2 C dbnd CH 2) adspecies. Upon chemisorption at room temperature it was found that about one-third of the molecules break one C-Cl bond while about two-thirds of the adsorbates break two C-Cl bonds. We do not, however, find evidence for isomerization of lbond2 C dbnd CH 2 to di-bonded vinylene (-CH dbnd CH-).

  3. Photocatalytic mechanism of high-activity anatase TiO2 with exposed (001) facets from molecular-atomic scale: HRTEM and Raman studies

    NASA Astrophysics Data System (ADS)

    Wu, Jun; Shi, Chentian; Zhang, Yupeng; Fu, Qiang; Pan, Chunxu

    2017-12-01

    Anatase TiO2 with a variant percentage of exposed (001) facets was prepared under hydrothermal processes by adjusting the volume of HF, and the photocatalytic mechanism was studied from atomic-molecular scale by HRTEM and Raman spectroscopy. It was revealed that: 1) From HRTEM observations, the surface of original TiO2 with exposed (001) facets was clean without impurity, and the crystal lattice was clear and completed; however, when mixed with methylene blue (MB) solution, there were many 1 nm molecular absorbed at the surface of TiO2; after the photocatalytic experiment, MB molecules disappeared and the TiO2 lattice image became fuzzy. 2) The broken path of the MB chemical bond was obtained by Raman spectroscopy, i.e., after the irradiation of the light, the vibrational mode of C-N-C disappeared due to the chemical bond breakage, and the groups containing C-N bond and carbon rings were gradually decomposed. Accordingly, we propose that the driving force for breaking the chemical bond and the disappearance of groups is from the surface lattice distortion of TiO2 during photocatalyzation.

  4. Silylene-Nickel Promoted Cleavage of B-O Bonds: From Catechol Borane to the Hydroborylene Ligand.

    PubMed

    Hadlington, Terrance J; Szilvási, Tibor; Driess, Matthias

    2017-06-19

    The first 16 valence electron [bis(NHC)](silylene)Ni 0 complex 1, [( TMS L)ClSi:→Ni(NHC) 2 ], bearing the acyclic amido-chlorosilylene ( TMS L)ClSi: ( TMS L=N(SiMe 3 )Dipp; Dipp=2,6-Pr i 2 C 6 H 4 ) and two NHC ligands (N-heterocyclic carbene=:C[(Pr i )NC(Me)] 2 ) was synthesized in high yield and structurally characterized. Compound 1 is capable of facile dihydrogen activation under ambient conditions to give the corresponding HSi-NiH complex 2. Most notably, 1 reacts with catechol borane to afford the unprecedented hydroborylene-coordinated (chloro)(silyl)nickel(II) complex 3, {[cat( TMS L)Si](Cl)Ni←:BH(NHC) 2 }, via the cleavage of two B-O bonds and simultaneous formation of two Si-O bonds. The mechanism for the formation of 3 was rationalized by means of DFT calculations, which highlight the powerful synergistic effects of the Si:→Ni moiety in the breaking of incredibly strong B-O bonds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manolopoulou, Marika; Guo, Qing; Malito, Enrico

    Insulin is a hormone vital for glucose homeostasis, and insulin-degrading enzyme (IDE) plays a key role in its clearance. IDE exhibits a remarkable specificity to degrade insulin without breaking the disulfide bonds that hold the insulin A and B chains together. Using Fourier transform ion cyclotron resonance (FTICR) mass spectrometry to obtain high mass accuracy, and electron capture dissociation (ECD) to selectively break the disulfide bonds in gas phase fragmentation, we determined the cleavage sites and composition of human insulin fragments generated by human IDE. Our time-dependent analysis of IDE-digested insulin fragments reveals that IDE is highly processive in itsmore » initial cleavage at the middle of both the insulin A and B chains. This ensures that IDE effectively splits insulin into inactive N- and C-terminal halves without breaking the disulfide bonds. To understand the molecular basis of the recognition and unfolding of insulin by IDE, we determined a 2.6-A resolution insulin-bound IDE structure. Our structure reveals that IDE forms an enclosed catalytic chamber that completely engulfs and intimately interacts with a partially unfolded insulin molecule. This structure also highlights how the unique size, shape, charge distribution, and exosite of the IDE catalytic chamber contribute to its high affinity ( approximately 100 nm) for insulin. In addition, this structure shows how IDE utilizes the interaction of its exosite with the N terminus of the insulin A chain as well as other properties of the catalytic chamber to guide the unfolding of insulin and allowing for the processive cleavages.« less

  6. Binding of dinitrogen to an iron-sulfur-carbon site

    NASA Astrophysics Data System (ADS)

    Čorić, Ilija; Mercado, Brandon Q.; Bill, Eckhard; Vinyard, David J.; Holland, Patrick L.

    2015-10-01

    Nitrogenases are the enzymes by which certain microorganisms convert atmospheric dinitrogen (N2) to ammonia, thereby providing essential nitrogen atoms for higher organisms. The most common nitrogenases reduce atmospheric N2 at the FeMo cofactor, a sulfur-rich iron-molybdenum cluster (FeMoco). The central iron sites that are coordinated to sulfur and carbon atoms in FeMoco have been proposed to be the substrate binding sites, on the basis of kinetic and spectroscopic studies. In the resting state, the central iron sites each have bonds to three sulfur atoms and one carbon atom. Addition of electrons to the resting state causes the FeMoco to react with N2, but the geometry and bonding environment of N2-bound species remain unknown. Here we describe a synthetic complex with a sulfur-rich coordination sphere that, upon reduction, breaks an Fe-S bond and binds N2. The product is the first synthetic Fe-N2 complex in which iron has bonds to sulfur and carbon atoms, providing a model for N2 coordination in the FeMoco. Our results demonstrate that breaking an Fe-S bond is a chemically reasonable route to N2 binding in the FeMoco, and show structural and spectroscopic details for weakened N2 on a sulfur-rich iron site.

  7. Platinum-catalyzed hydrolysis etching of SiC in water: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Van Bui, Pho; Toh, Daisetsu; Isohashi, Ai; Matsuyama, Satoshi; Inagaki, Kouji; Sano, Yasuhisa; Yamauchi, Kazuto; Morikawa, Yoshitada

    2018-05-01

    A comprehensive study of the physicochemical interactions and the reaction mechanism of SiC etching with water by Pt catalysts can reveal key details about the surface treatment and catalytic phenomena at interfaces. Therefore, density functional theory simulations were performed to study the kinetics of Pt-assisted water dissociation and breaking of a Si–C bond compared to the HF-assisted mechanism. These calculations carefully considered the elastic and chemical interaction energies at the Pt–SiC interface, activation barriers of Si–C bond dissociation, and the catalytic role of Pt. It was found that the Pt-catalyzed etching of SiC in water is initiated via hydrolysis reactions that break the topmost Si–C bonds. The activation barrier strongly depends on the elastic and chemical interactions. However, chemical interactions are a dominant factor and mainly contribute to the lowering of the activation barrier, resulting in an increased rate of reaction.

  8. Nature's Mechanisms for Tough, Self-healing Polymers and Polymer Adhesives

    NASA Astrophysics Data System (ADS)

    Hansma, Paul

    2007-03-01

    Spider silk^2 and the natural polymer adhesives in abalone shells^3 and bone^4,5 can give us insights into nature's mechanisms for tough, self-healing polymers and polymer adhesives. The natural polymer adhesives in biomaterials have been optimized by evolution. An optimized polymer adhesive has five characteristics. 1) It holds together the strong elements of the composite. 2) It yields just before the strong elements would otherwise break. 3) It dissipates large amounts of energy as it yields. 4) It self heals after it yields. 5) It takes just a few percent by weight. Both natural polymer adhesives and silk rely on sacrificial bonds and hidden length for toughness and self-healing.^6 A relatively large energy, of order 100eV, is required to stretch a polymer molecule after a weak bond, a sacrificial bond, breaks and liberates hidden length, which was previously hidden, typically in a loop or folded domain, from whatever was stretching the polymer. The bond is called sacrificial if it breaks at forces well below the forces that could otherwise break the polymer backbone, typically greater than 1nN. In many biological cases, the breaking of sacrificial bonds has been found to be reversible, thereby also providing a ``self-healing'' property to the material.^2-4 Individual polymer adhesive molecules based on sacrificial bonds and hidden length can supply forces of order 300pN over distances of 100s of nanometers. Model calculations show that a few percent by weight of adhesives based on these principles could be optimized adhesives for high performance composite materials including nanotube and graphene sheet composites. ^2N. Becker, E. Oroudjev, S. Mutz et al., Nature Materials 2 (4), 278 (2003). ^3B. L. Smith, T. E. Schaffer, M. Viani et al., Nature 399 (6738), 761 (1999). ^4J. B. Thompson, J. H. Kindt, B. Drake et al., Nature 414 (6865), 773 (2001). ^5G. E. Fantner, T. Hassenkam, J. H. Kindt et al., Nature Materials 4, 612 (2005). ^6G. E. Fantner, E. Oroudjev, G. Schitter et al., Biophysical Journal 90 (4), 1411 (2006).

  9. Quantitative Analysis of Etching Rate Profiles for 11B+-Implanted Si3N4 Film

    NASA Astrophysics Data System (ADS)

    Nakata, Jyoji; Kajiyama, Kenji

    1983-01-01

    Etching rate enhancement for 11B+-implanted Si3N4 film was investigated both experimentally and theoretically. The etching solution was concentrated H3PO4 at ˜165°C Film thicknesses were precisely measured by ellipsometry. Enhancement resulted from Si-N bond breaking. This was confirmed by a decrease of infrared absorption at a 12.0 μm wavelength for Si-N bond vibration. Main and additional peaks were observed in the etching rate profile. The former was due to nuclear damage and was well represented by the calculated etching rate profile deduced from the nuclear deposited energy density distribution. The latter existed in the surface region only when the ion projected range was shorter than the film thickness. This peak was possibly caused by charge accumulation in the insulating Si3N4 film during 11B+ implantation.

  10. Hydrogen bond breaking in aqueous solutions near the critical point

    USGS Publications Warehouse

    Mayanovic, Robert A.; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming

    2001-01-01

    The nature of water-anion bonding is examined using X-ray absorption fine structure spectroscopy on a 1mZnBr2/6m NaBr aqueous solution, to near critical conditions. Analyses show that upon heating the solution from 25??C to 500??C, a 63% reduction of waters occurs in the solvation shell of ZnBr42-, which is the predominant complex at all pressure-temperature conditions investigated. A similar reduction in the hydration shell of waters in the Br- aqua ion was found. Our results indicate that the water-anion and water-water bond breaking mechanisms occurring at high temperatures are essentially the same. This is consistent with the hydration waters being weakly hydrogen bonded to halide anions in electrolyte solutions. ?? 2001 Elsevier Science B.V.

  11. Ab initio molecular dynamics of solvation effects on reactivity at electrified interfaces

    DOE PAGES

    Herron, Jeffrey A.; Morikawa, Yoshitada; Mavrikakis, Manos

    2016-08-08

    Using ab initio molecular dynamics (as implemented in periodic, self-consistent (GGA-PBE) density functional theory (DFT) we investigated the mechanism of methanol electro-oxidation on Pt(111). We investigated the role of solvation and electrode potential on the energetics of the first proton transfer step, methanol electro-oxidation to methoxy (CH 3O) or hydroxymethyl (CH 2OH). The results show that solvation weakens the adsorption of methoxy to uncharged Pt(111), while the binding energy of methanol and hydroxymethyl are not significantly affected. The free energies of activation for breaking the C-H and O-H bonds in methanol were calculated through a Blue Moon Ensemble using constrainedmore » ab initio molecular dynamics. Calculated barriers for these elementary steps on unsolvated, uncharged Pt(111) are similar to results for climbing-image nudged elastic band calculations from the literature. Solvation reduces the barrier for both C-H and O-H bond activation steps with respect to their vapor phase values, though the effect is more pronounced for C-H bond activation due to less disruption of the hydrogen-bond network. The calculated activation energy barriers show that breaking the C-H bond of methanol is more facile than the O-H bond on solvated negatively biased, or uncharged Pt(111). Furthermore, with positive bias, O-H bond activation is enhanced, becoming slightly more facile than C-H bond activation.« less

  12. Molecular Simulations of The Formation of Gold-Molecule-Gold Junctions

    NASA Astrophysics Data System (ADS)

    Wang, Huachuan

    2013-03-01

    We perform classical molecular simulations by combining grand canonical Monte Carlo (GCMC) sampling with molecular dynamics (MD) simulation to explore the dynamic gold nanojunctions in a Alkenedithiol (ADT) solvent. With the aid of a simple driving-spring model, which can reasonably represent the long-range elasticity of the gold electrode, the spring forces are obtained during the dynamic stretching procedure. A specific multi-time-scale double reversible reference system propagator (double-RESPA) algorithm has been designed for the metal-organic complex in MD simulations to identify the detailed metal-molecule bonding geometry at metal-molecule-metal interface. We investigate the variations of bonding sites of ADT molecules on gold nanojunctions at Au (111) surface at a constant chemical potential. Simulation results show that an Au-ADT-Au interface is formed on Au nanojunctions, bond-breaking intersection is at 1-1 bond of the monatomic chain of the cross-section, instead of at the Au-S bond. Breaking force is around 1.5 nN. These are consistent with the experimental measurements.

  13. The reactions of thiophene on Mo(110) and Mo(110)-p(2×2)-S

    NASA Astrophysics Data System (ADS)

    Roberts, Jeffrey T.; Friend, C. M.

    1987-07-01

    The reactions of thiophene and 2,5-dideuterothiophene on Mo(110) and Mo(110)-p(2×2)-S have been investigated under ultrahigh vacuum conditions using temperature programmed reaction spectroscopy and Auger electron spectroscopy. Thiophene chemisorbed on Mo(110) decomposes during temperature programmed reaction to yield only gaseous dihydrogen, surface carbon, and surface sulfur. At low thiophene exposures, dihydrogen evolves from Mo(110) in a symmetric peak at 440 K. At saturation exposures, three dihydrogen peaks are detected at 360 K, at 420 K and at 565 K. Multilayers of thiophene desorb at 180 K. Temperature programmed reaction of 2,5-dideuterothiophene demonstrates that at high thiophene coverages, one of the α-C-H bonds (those nearest sulfur) breaks first. No bond breaking selectivity is observed at low thiophene exposures. The Mo(110)-p(2×2)-S surface is less active for thiophene decomposition. Thiophene adsorbed on Mo(110)-p(2×2)-S to low coverages decomposes to surface carbon surface sulfur, and hydrogen at 430 K. At reaction saturation, dihydrogen production is observed at 375 and 570 K. In addition, at moderate and high exposures, chemisorbed thiophene desorbs from Mo(110)-p(2×2)-S. At saturation the desorption temperature of the reversibly chemisorbed state is 215 K. Experiments with 2,5-dideuterothiophene demonstrate no surface selectivity for α-C-H bond breaking reactions on Mo(110)-p(2×2)-S. The decomposition mechanism and energetics of thiophene decomposition are proposed to be dependent on the coverage of thiophene. At low thiophene exposures, the ring is proposed to bond parallel to the surface. All C-H bonds in the parallel geometry are sterically available for activation by the surface, accounting for the lack of selectivity in C-H bond breaking. High thiophene coverages are suggested to result in perpendicularly bound thiophene which undergoes selective α-dehydrogenation to an α)-thiophenyl intermediate. The presence of sulfur leads to a high energy pathway for cleavage of C-H bonds in a thiophene derived intermediate. Carbon-hydrogen bonds survive on the surface up to temperatures of 650 K. Comparison of this study with work on Mo(100) demonstrates that the reaction of thiophene on molybdenum is relatively insensitive to the surface geometric structure.

  14. New method for calculations of nanostructure kinetic stability at high temperature

    NASA Astrophysics Data System (ADS)

    Fedorov, A. S.; Kuzubov, A. A.; Visotin, M. A.; Tomilin, F. N.

    2017-10-01

    A new universal method is developed for determination of nanostructure kinetic stability (KS) at high temperatures, when nanostructures can be destroyed by chemical bonds breaking due to atom thermal vibrations. The method is based on calculation of probability for any bond in the structure to stretch more than a limit value Lmax, when the bond breaks. Assuming the number of vibrations is very large and all of them are independent, using the central limit theorem, an expression for the probability of a given bond elongation up to Lmax is derived in order to determine the KS. It is shown that this expression leads to the effective Arrhenius formula, but unlike the standard transition state theory it allows one to find the contributions of different vibrations to a chemical bond cleavage. To determine the KS, only calculation of frequencies and eigenvectors of vibrational modes in the groundstate of the nanostructure is needed, while the transition states need not be found. The suggested method was tested on calculating KS of bonds in some alkanes, octene isomers and narrow graphene nanoribbons of different types and widths at the temperature T=1200 K. The probability of breaking of the C-C bond in the center of these hydrocarbons is found to be significantly higher than at the ends of the molecules. It is also shown that the KS of the octene isomers decreases when the double C˭C bond is moved to the end of the molecule, which agrees well with the experimental data. The KS of the narrowest graphene nanoribbons of different types varies by 1-2 orders of magnitude depending on the width and structure, while all of them are by several orders of magnitude less stable at high temperature than the hydrocarbons and benzene.

  15. Time resolved infrared studies of C-H bond activation by organometallics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asplund, M.C.

    This work describes how step-scan Fourier Transform Infrared spectroscopy and visible and near infrared ultrafast lasers have been applied to the study of the photochemical activation of C-H bonds in organometallic systems, which allow for the selective breaking of C-H bonds in alkanes. The author has established the photochemical mechanism of C-H activation by Tp{sup *}Rh(CO){sub 2}(Tp{sup *} = HB-Pz{sup *}{sub 3}, Pz = 3,5-dimethylpyrazolyl) in alkane solution. The initially formed monocarbonyl forms a weak solvent complex, which undergoes a change in Tp{sup *} ligand connectivity. The final C-H bond breaking step occurs at different time scales depending on themore » structure of the alkane. In linear solvents, the time scale is <50 ns and cyclic alkanes is {approximately}200 ps. The reactivity of the Tp{sup *}Rh(CO){sub 2} system has also been studied in aromatic solvents. Here the reaction proceeds through two different pathways, with very different time scales. The first proceeds in a manner analogous to alkanes and takes <50 ns. The second proceeds through a Rh-C-C complex, and takes place on a time scale of 1.8 {micro}s.« less

  16. Novosphingobium aromaticivorans uses a Nu-class glutathione S-transferase as a glutathione lyase in breaking the β-aryl ether bond of lignin

    PubMed Central

    Kontur, Wayne S.; Bingman, Craig A.; Olmsted, Charles N.; Wassarman, Douglas R.; Ulbrich, Arne; Gall, Daniel L.; Smith, Robert W.; Yusko, Larissa M.; Fox, Brian G.; Noguera, Daniel R.; Coon, Joshua J.; Donohue, Timothy J.

    2018-01-01

    As a major component of plant cell walls, lignin is a potential renewable source of valuable chemicals. Several sphingomonad bacteria have been identified that can break the β-aryl ether bond connecting most phenylpropanoid units of the lignin heteropolymer. Here, we tested three sphingomonads predicted to be capable of breaking the β-aryl ether bond of the dimeric aromatic compound guaiacylglycerol-β-guaiacyl ether (GGE) and found that Novosphingobium aromaticivorans metabolizes GGE at one of the fastest rates thus far reported. After the ether bond of racemic GGE is broken by replacement with a thioether bond involving glutathione, the glutathione moiety must be removed from the resulting two stereoisomers of the phenylpropanoid conjugate β-glutathionyl-γ-hydroxypropiovanillone (GS-HPV). We found that the Nu-class glutathione S-transferase NaGSTNu is the only enzyme needed to remove glutathione from both (R)- and (S)-GS-HPV in N. aromaticivorans. We solved the crystal structure of NaGSTNu and used molecular modeling to propose a mechanism for the glutathione lyase (deglutathionylation) reaction in which an enzyme-stabilized glutathione thiolate attacks the thioether bond of GS-HPV, and the reaction proceeds through an enzyme-stabilized enolate intermediate. Three residues implicated in the proposed mechanism (Thr51, Tyr166, and Tyr224) were found to be critical for the lyase reaction. We also found that Nu-class GSTs from Sphingobium sp. SYK-6 (which can also break the β-aryl ether bond) and Escherichia coli (which cannot break the β-aryl ether bond) can also cleave (R)- and (S)-GS-HPV, suggesting that glutathione lyase activity may be common throughout this widespread but largely uncharacterized class of glutathione S-transferases. PMID:29449375

  17. Dynamic breaking of a single gold bond

    NASA Astrophysics Data System (ADS)

    Pobelov, Ilya V.; Lauritzen, Kasper Primdal; Yoshida, Koji; Jensen, Anders; Mészáros, Gábor; Jacobsen, Karsten W.; Strange, Mikkel; Wandlowski, Thomas; Solomon, Gemma C.

    2017-07-01

    While one might assume that the force to break a chemical bond gives a measure of the bond strength, this intuition is misleading. If the force is loaded slowly, thermal fluctuations may break the bond before it is maximally stretched, and the breaking force will be less than the bond can sustain. Conversely, if the force is loaded rapidly it is more likely that the maximum breaking force is measured. Paradoxically, no clear differences in breaking force were observed in experiments on gold nanowires, despite being conducted under very different conditions. Here we explore the breaking behaviour of a single Au-Au bond and show that the breaking force is dependent on the loading rate. We probe the temperature and structural dependencies of breaking and suggest that the paradox can be explained by fast breaking of atomic wires and slow breaking of point contacts giving very similar breaking forces.

  18. A critical Examination of the Phenomenon of Bonding Area - Bonding Strength Interplay in Powder Tableting.

    PubMed

    Osei-Yeboah, Frederick; Chang, Shao-Yu; Sun, Changquan Calvin

    2016-05-01

    Although the bonding area (BA) and bonding strength (BS) interplay is used to explain complex tableting behaviors, it has never been experimentally proven. The purpose of this study is to unambiguously establish the distinct contributions of each by decoupling the contributions from BA and BS. To modulate BA, a Soluplus® powder was compressed into tablets at different temperatures and then broken following equilibration at 25°C. To modulate BS, tablets were equilibrated at different temperatures. To simultaneously modulate BA and BS, both powder compression and tablet breaking test were carried out at different temperatures. Lower tablet tensile strength is observed when the powder is compressed at a lower temperature but broken at 25°C. This is consistent with the increased resistance to polymer deformation at lower temperatures. When equilibrated at different temperatures, the tensile strength of tablets prepared under identical conditions increases with decreasing storage temperature, indicating that BS is higher at a lower temperature. When powder compression and tablet breaking are carried out at the same temperature, the profile with a maximum tensile strength at 4°C is observed due to the BA-BS interplay. By systematically varying temperature during tablet compression and breaking, we have experimentally demonstrated the phenomenon of BA-BS interplay in tableting.

  19. Observation of Spontaneous C=C Bond Breaking in the Reaction between Atomic Boron and Ethylene in Solid Neon.

    PubMed

    Jian, Jiwen; Lin, Hailu; Luo, Mingbiao; Chen, Mohua; Zhou, Mingfei

    2016-07-11

    A ground-state boron atom inserts into the C=C bond of ethylene to spontaneously form the allene-like compound H2 CBCH2 on annealing in solid neon. This compound can further isomerize to the propyne-like HCBCH3 isomer under UV light excitation. The observation of this unique spontaneous C=C bond insertion reaction is consistent with theoretical predictions that the reaction is thermodynamically exothermic and kinetically facile. This work demonstrates that the stronger C=C bond, rather than the less inert C-H bond, can be broken to form organoboron species from the reaction of a boron atom with ethylene even at cryogenic temperatures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Insertion reactions into Pd[bond]O and Pd[bond]N bonds: preparation of alkoxycarbonyl, carbonato, carbamato, thiocarbamate, and thioureide complexes of palladium(II).

    PubMed

    Ruiz, José; Martínez, M Teresa; Florenciano, Félix; Rodríguez, Venancio; López, Gregorio; Pérez, José; Chaloner, Penny A; Hitchcock, Peter B

    2003-06-02

    Mononuclear palladium hydroxo complexes of the type [Pd(N[bond]N)(C(6)F(5))(OH)] [(N[bond]N = 2,2'-bipyridine (bipy), 4,4'-dimethyl-2,2'-bipyridine (Me(2)bipy), 1,10-phenanthroline (phen), or N,N,N',N'-tetramethylethylenediamine (tmeda)] have been prepared by reaction of [Pd(N[bond]N)(C(6)F(5))(acetone)]ClO(4) with KOH in methanol. These hydroxo complexes react, in methanol, with CO (1 atm, room temperature) to yield the corresponding methoxycarbonyl complexes [Pd(N[bond]N)(C(6)F(5))(CO(2)Me)]. Similar alkoxycarbonyl complexes [Pd(N[bond]N)(C(6)F(5))(CO(2)R)] (N[bond]N = bis(3,5-dimethylpyrazol-1-yl)methane); R = Me, Et, or (i)Pr) are obtained when [Pd(N[bond]N)(C(6)F(5))Cl] is treated with KOH in the corresponding alcohol ROH and CO is bubbled through the solution. The reactions of [Pd(N[bond]N)(C(6)F(5))(OH)] (N[bond]N = bipy or Me(2)bipy) with CO(2), in tetrahydrofuran, lead to the formation of the binuclear carbonate complexes [(N[bond]N)(C(6)F(5))Pd(mu-eta(2)-CO(3))Pd(C(6)F(5))(N[bond]N)]. Complexes [Pd(N[bond]N)(C(6)F(5))(OH)] react in alcohol with PhNCS to yield the corresponding N-phenyl-O-alkylthiocarbamate complexes [Pd(N[bond]N)(C(6)F(5))[SC(OR)NPh

  1. Unexpected mechanochemical complexity in the mechanistic scenarios of disulfide bond reduction in alkaline solution

    NASA Astrophysics Data System (ADS)

    Dopieralski, Przemyslaw; Ribas-Arino, Jordi; Anjukandi, Padmesh; Krupicka, Martin; Marx, Dominik

    2017-02-01

    The reduction of disulfides has a broad importance in chemistry, biochemistry and materials science, particularly those methods that use mechanochemical activation. Here we show, using isotensional simulations, that strikingly different mechanisms govern disulfide cleavage depending on the external force. Desolvation and resolvation processes are found to be crucial, as they have a direct impact on activation free energies. The preferred pathway at moderate forces, a bimolecular SN2 attack of OH- at sulfur, competes with unimolecular C-S bond rupture at about 2 nN, and the latter even becomes barrierless at greater applied forces. Moreover, our study unveils a surprisingly rich reactivity scenario that also includes the transformation of concerted SN2 reactions into pure bond-breaking processes at specific forces. Given that these forces are easily reached in experiments, these insights will fundamentally change our understanding of mechanochemical activation in general, which is now expected to be considerably more intricate than previously thought.

  2. Role of water in aging of human butyrylcholinesterase inhibited by echothiophate: the crystal structure suggests two alternative mechanisms of aging.

    PubMed

    Nachon, Florian; Asojo, Oluwatoyin A; Borgstahl, Gloria E O; Masson, Patrick; Lockridge, Oksana

    2005-02-01

    Organophosphorus poisons (OP) bind covalently to the active-site serine of cholinesterases. The inhibited enzyme can usually be reactivated with powerful nucleophiles such as oximes. However, the covalently bound OP can undergo a suicide reaction (termed aging) yielding nonreactivatable enzyme. In human butyrylcholinesterase (hBChE), aging involves the residues His438 and Glu197 that are proximal to the active-site serine (Ser198). The mechanism of aging is known in detail for the nerve gases soman, sarin, and tabun as well as the pesticide metabolite isomalathion. Aging of soman- and sarin-inhibited acetylcholinesterase occurs by C-O bond cleavage, whereas that of tabun- and isomalathion-inhibited acetylcholinesterase occurs by P-N and P-S bond cleavage, respectively. In this work, the crystal structures of hBChE inhibited by the ophthalmic reagents echothiophate (nonaged and aged) and diisopropylfluorophosphate (aged) were solved and refined to 2.1, 2.25, and 2.2 A resolution, respectively. No appreciable shift in the position of the catalytic triad histidine was observed between the aged and nonaged conjugates of hBChE. This absence of shift contrasts with the aged and nonaged crystal structures of Torpedo californica acetylcholinesterase inhibited by the nerve agent VX. The nonaged hBChE structure shows one water molecule interacting with Glu197 and the catalytic triad histidine (His438). Interestingly, this water molecule is ideally positioned to promote aging by two mechanisms: breaking either a C-O bond or a P-O bond. Pesticides and certain stereoisomers of nerve agents are expected to undergo aging by breaking the P-O bond.

  3. Communication: Site-selective bond excision of adenine upon electron transfer

    NASA Astrophysics Data System (ADS)

    Cunha, T.; Mendes, M.; Ferreira da Silva, F.; Eden, S.; García, G.; Limão-Vieira, P.

    2018-01-01

    This work demonstrates that selective excision of hydrogen atoms at a particular site of the DNA base adenine can be achieved in collisions with electronegative atoms by controlling the impact energy. The result is based on analysing the time-of-flight mass spectra yields of potassium collisions with a series of labeled adenine derivatives. The production of dehydrogenated parent anions is consistent with neutral H loss either from selective breaking of C-H or N-H bonds. These unprecedented results open up a new methodology in charge transfer collisions that can initiate selective reactivity as a key process in chemical reactions that are dominant in different areas of science and technology.

  4. Microstructural and Mechanical Properties of Hot Roll Bonded Titanium Alloy/Low Carbon Steel Plate

    NASA Astrophysics Data System (ADS)

    Yu, Chao; Qi, Zi-chen; Yu, Hui; Xu, Cheng; Xiao, Hong

    2018-03-01

    In this paper, a titanium alloy and low carbon steel were bonded via hot rolling in a vacuum, and the effect of roll bonding temperature and reduction ratio on the microstructural and mechanical properties of the plate was studied. When the bonding temperature was between 850 and 1050 °C, the shear strength of the interface increased with an increasing reduction ratio from 18 to 70%. At a bonding temperature of 950 °C and at a rolling reduction ratio of 70%, the best bonding strength was obtained, and a shear fracture occurred on the low carbon steel matrix. At 1050 °C, brittle compounds, i.e., TiC, FeTi, and Fe2Ti, formed at the interface, which decreased the bonding strength. The large reduction ratio can break up compounds at the interface and extrude fresh metal for bonding, thereby increasing the bonding strength.

  5. The mechanism of transition-metal (Cu or Pd)-catalyzed synthesis of benzimidazoles from amidines: theoretical investigation.

    PubMed

    Li, Juan; Gu, Honghong; Wu, Caihong; Du, Lijuan

    2014-11-28

    In this study, the Cu(OAc)2- and [PdCl2(PhCN)2]-catalyzed syntheses of benzimidazoles from amidines were theoretically investigated using density functional theory calculations. For the Cu-catalyzed system, our calculations supported a four-step-pathway involving C-H activation of an arene with Cu(II) via concerted metalation-deprotonation (CMD), followed by oxidation of the Cu(II) intermediate and deprotonation of the imino group by Cu(III), and finally reductive elimination from Cu(III). In our calculations, the barriers for the CMD step and the oxidation step are the same. The results are different from the ones reported by Fu et al. in which the whole reaction mechanism includes three steps and the CMD step is rate determining. On the basis of the calculation results for the [PdCl2(PhCN)2]-catalyzed system, C-H bond breaking by CMD occurs first, followed by the rate-determining C-N bond formation and N-H deprotonation. Pd(III) species is not involved in the [PdCl2(PhCN)2]-catalyzed syntheses of benzimidazoles from amidines.

  6. Temperature dependent polymorphism of pyrazinamide: An in situ Raman and DFT study

    NASA Astrophysics Data System (ADS)

    Sharma, Poornima; Nandi, Rajib; Gangopadhyay, Debraj; Singh, Anurag; Singh, Ranjan K.

    2018-02-01

    The α and γ polymorphs of drug pyrazinamide have been detected with the help of temperature dependent Raman spectroscopic technique. Pyrazinamide is a very useful drug used for the treatment of tuberculosis (TB) and plays a significant role in destroying the dormant tubercle bacilli which are not destroyed by other common TB drugs. Temperature dependent Raman spectra suggest polymorphic phase change from α → γ form of pyrazinamide between 145 and 146 °C. In situ Raman spectra of pyrazinamide between 145 and 146 °C show the conversion of α → γ form by the shift in Cdbnd O stretching vibration accompanied by several other changes. The phase change is characterized by the breaking of two linear Nsbnd H ⋯ O type hydrogen bonds associated with Cdbnd O stretching vibration in α dimer and formation of one linear Nsbnd H ⋯ N type hydrogen bond along with a weak intramolecular Csbnd H ⋯ O type hydrogen bond in the γ dimer.

  7. Altering intra- to inter-molecular hydrogen bonding by dimethylsulfoxide: A TDDFT study of charge transfer for coumarin 343

    NASA Astrophysics Data System (ADS)

    Liu, Xiaochun; Yin, Hang; Li, Hui; Shi, Ying

    2017-04-01

    DFT and TDDFT methods were carried out to investigate the influences of intramolecular and intermolecular hydrogen bonding on excited state charge transfer for coumarin 343 (C343). Intramolecular hydrogen bonding is formed between carboxylic acid group and carbonyl group in C343 monomer. However, in dimethylsulfoxide (DMSO) solution, DMSO 'opens up' the intramolecular hydrogen bonding and forms solute-solvent intermolecular hydrogen bonded C343-DMSO complex. Analysis of frontier molecular orbitals reveals that intramolecular charge transfer (ICT) occurs in the first excited state both for C343 monomer and complex. The results of optimized geometric structures indicate that the intramolecular hydrogen bonding interaction is strengthened while the intermolecular hydrogen bonding is weakened in excited state, which is confirmed again by monitoring the shifts of characteristic peaks of infrared spectra. We demonstrated that DMSO solvent can not only break the intramolecular hydrogen bonding to form intermolecular hydrogen bonding with C343 but also alter the mechanism of excited state hydrogen bonding strengthening.

  8. Organic synthesis provides opportunities to transform drug discovery

    NASA Astrophysics Data System (ADS)

    Blakemore, David C.; Castro, Luis; Churcher, Ian; Rees, David C.; Thomas, Andrew W.; Wilson, David M.; Wood, Anthony

    2018-04-01

    Despite decades of ground-breaking research in academia, organic synthesis is still a rate-limiting factor in drug-discovery projects. Here we present some current challenges in synthetic organic chemistry from the perspective of the pharmaceutical industry and highlight problematic steps that, if overcome, would find extensive application in the discovery of transformational medicines. Significant synthesis challenges arise from the fact that drug molecules typically contain amines and N-heterocycles, as well as unprotected polar groups. There is also a need for new reactions that enable non-traditional disconnections, more C-H bond activation and late-stage functionalization, as well as stereoselectively substituted aliphatic heterocyclic ring synthesis, C-X or C-C bond formation. We also emphasize that syntheses compatible with biomacromolecules will find increasing use, while new technologies such as machine-assisted approaches and artificial intelligence for synthesis planning have the potential to dramatically accelerate the drug-discovery process. We believe that increasing collaboration between academic and industrial chemists is crucial to address the challenges outlined here.

  9. The effect of antioxidant concentration of N-isopropyl-N-phenyl-p-phenylenediamine, and 2,2,4-trimethyl-1,2-dihydroquinoline and mixing time of physical properties, thermal properties, mechanical properties and microstructure on natural rubber compound

    NASA Astrophysics Data System (ADS)

    Budiarto

    2017-03-01

    Study the influence of high concentrations of antioxidants N-isopropyl-N-phenyl-p-phenylenediamine (IPPD) and 2,2,4-trimethyl-1,2-dihydroquinoline (TMQ) and the mixing time of the vulcanization physical properties, thermal properties, mechanical properties and structure micro on natural rubber compound has been done. The purpose of this study is to compare the effect of anti-oxidants types IPPD and TMQ and mixing time of vulcanization of the physical properties, mechanical properties, microstructure and elemental composition of the synthesis of natural rubber compound. Processes of vulcanization with variations in the concentration of antioxidant IPPD and TMQ: 2, 3, and 4 grams and mixing time: 20, 30, and 40 minutes. Analysis characterization of physical properties and mechanical properties of natural rubber compound showed that the maturity value 0,499Nm (TMQ) and 0.489 Nm (IPPD), Mooney viscosity value of 26.7 (TMQ) and 20.8 (IPPD), the value of the elongation at break 583.75 % (IPPD), and 552.63% (TMQ) as well as the value of tensile strength of 28.108 M.Pa (TMQ), and 27.986 M.Pa (IPPD). Analysis of thermal properties of natural rubber compound antioxidant IPPD with DTA shows there are three endothermic peak on the curve that is temperature 405°C, 550°C and 660°C and tested by TGA showed that the curve of the total reduction in the sample are 81.745% and compound rubber antioxidant TMQ with the analysis of DTA also contained 3 endothermic peak at a temperature 397,21°C, 514,02°C, and 610,27°C and TGA analysis shows the curve of the total sample of 82.356% reduction. Gsi fun group analysis rubber-antioxidant compound IPPD / TMQ with FTIR spectrophotometer shows some typical infrared absorption peak at the wave number (1 / λ) 833-895 cm-1 for cluster / CH bonds, 1,313 cm-1 for group / single bond Si-O, 1368 cm-1 to g ugus / single bond CC, 1507 cm-1, for cluster / bond C = C, 1665 cm-1For cluster / bond-C = O, 2128 cm-1 is the group / bond CN single, 3371cm-1 for group-OH, 3506 cm-1 for cluster / CH3 bond and 3585 cm-1 showed the presence of vibration in the cluster / bond-NH. The results of morphological observation with SEM produces uneven surface (homogeneous) and are compatible at 2000 times magnification, as well as the test composition by EDX spectroscopy showed that the biggest element in the rubber compound is carbon and Zn, S, Ca, Si, Mg, Al, N. This shows that the natural rubber compound antioxidant IPPD / TMQ meet the standard of "Mechanical Properties of Industrial Tyre rubber Compounds".

  10. Ligand-to-ligand charge-transfer transitions of platinum(II) complexes with arylacetylide ligands with different chain lengths: spectroscopic characterization, effect of molecular conformations, and density functional theory calculations.

    PubMed

    Tong, Glenna So Ming; Law, Yuen-Chi; Kui, Steven C F; Zhu, Nianyong; Leung, King Hong; Phillips, David Lee; Che, Chi-Ming

    2010-06-11

    The complexes [Pt(tBu(3)tpy){C[triple bond]C(C(6)H(4)C[triple bond]C)(n-1)R}](+) (n = 1: R = alkyl and aryl (Ar); n = 1-3: R = phenyl (Ph) or Ph-N(CH(3))(2)-4; n = 1 and 2, R = Ph-NH(2)-4; tBu(3)tpy = 4,4',4''-tri-tert-butyl-2,2':6',2''-terpyridine) and [Pt(Cl(3)tpy)(C[triple bond]CR)](+) (R = tert-butyl (tBu), Ph, 9,9'-dibutylfluorene, 9,9'-dibutyl-7-dimethyl-amine-fluorene; Cl(3)tpy = 4,4',4''-trichloro-2,2':6',2''-terpyridine) were prepared. The effects of substituent(s) on the terpyridine (tpy) and acetylide ligands and chain length of arylacetylide ligands on the absorption and emission spectra were examined. Resonance Raman (RR) spectra of [Pt(tBu(3)tpy)(C[triple bond]CR)](+) (R = n-butyl, Ph, and C(6)H(4)-OCH(3)-4) obtained in acetonitrile at 298 K reveal that the structural distortion of the C[triple bond]C bond in the electronic excited state obtained by 502.9 nm excitation is substantially larger than that obtained by 416 nm excitation. Density functional theory (DFT) and time-dependent DFT (TDDFT) calculations on [Pt(H(3)tpy)(C[triple bond]CR)](+) (R = n-propyl (nPr), 2-pyridyl (Py)), [Pt(H(3)tpy){C[triple bond]C(C(6)H(4)C[triple bond]C)(n-1)Ph}](+) (n = 1-3), and [Pt(H(3)tpy){C[triple bond]C(C(6)H(4)C[triple bond]C)(n-1)C(6)H(4)-N(CH(3))(2)-4}](+)/+H(+) (n = 1-3; H(3)tpy = nonsubstituted terpyridine) at two different conformations were performed, namely, with the phenyl rings of the arylacetylide ligands coplanar ("cop") with and perpendicular ("per") to the H(3)tpy ligand. Combining the experimental data and calculated results, the two lowest energy absorption peak maxima, lambda(1) and lambda(2), of [Pt(Y(3)tpy)(C[triple bond]CR)](+) (Y = tBu or Cl, R = aryl) are attributed to (1)[pi(C[triple bond]CR)-->pi*(Y(3)tpy)] in the "cop" conformation and mixed (1)[d(pi)(Pt)-->pi*(Y(3)tpy)]/(1)[pi(C[triple bond]CR)-->pi*(Y(3)tpy)] transitions in the "per" conformation. The lowest energy absorption peak lambda(1) for [Pt(tBu(3)tpy){C[triple bond]C(C(6)H(4)C[triple bond]C)(n-1)C(6)H(4)-H-4}](+) (n = 1-3) shows a redshift with increasing chain length. However, for [Pt(tBu(3)tpy){C[triple bond]C(C6H4C[triple bond]C)(n-1)C(6)H(4)-N(CH(3))(2)-4}](+) (n = 1-3), lambda(1) shows a blueshift with increasing chain length n, but shows a redshift after the addition of acid. The emissions of [Pt(Y(3)tpy)(C[triple bond]CR)](+) (Y = tBu or Cl) at 524-642 nm measured in dichloromethane at 298 K are assigned to the (3)[pi(C[triple bond]CAr)-->pi*(Y(3)tpy)] excited states and mixed (3)[d(pi)(Pt)-->pi*(Y(3)tpy)]/(3)[pi(C[triple bond]C)-->pi*(Y(3)tpy)] excited states for R = aryl and alkyl groups, respectively. [Pt(tBu(3)tpy){C[triple bond]C(C(6)H(4)C[triple bond]C)(n-1)C(6)H(4)-N(CH(3))(2)-4}](+) (n = 1 and 2) are nonemissive, and this is attributed to the small energy gap between the singlet ground state (S(0)) and the lowest triplet excited state (T(1)).

  11. Investigation on Surface Polarization of Al2O3-capped GaN/AlGaN/GaN Heterostructure by Angle-Resolved X-ray Photoelectron Spectroscopy.

    PubMed

    Duan, Tian Li; Pan, Ji Sheng; Wang, Ning; Cheng, Kai; Yu, Hong Yu

    2017-08-17

    The surface polarization of Ga-face gallium nitride (GaN) (2 nm)/AlGaN (22 nm)/GaN channel (150 nm)/buffer/Si with Al 2 O 3 capping layer is investigated by angle-resolved X-ray photoelectron spectroscopy (ARXPS). It is found that the energy band varies from upward bending to downward bending in the interface region, which is believed to be corresponding to the polarization variation. An interfacial layer is formed between top GaN and Al 2 O 3 due to the occurrence of Ga-N bond break and Ga-O bond forming during Al 2 O 3 deposition via the atomic layer deposition (ALD). This interfacial layer is believed to eliminate the GaN polarization, thus reducing the polarization-induced negative charges. Furthermore, this interfacial layer plays a key role for the introduction of the positive charges which lead the energy band downward. Finally, a N 2 annealing at 400 °C is observed to enhance the interfacial layer growth thus increasing the density of positive charges.

  12. Probing Charge Transport through Peptide Bonds.

    PubMed

    Brisendine, Joseph M; Refaely-Abramson, Sivan; Liu, Zhen-Fei; Cui, Jing; Ng, Fay; Neaton, Jeffrey B; Koder, Ronald L; Venkataraman, Latha

    2018-02-15

    We measure the conductance of unmodified peptides at the single-molecule level using the scanning tunneling microscope-based break-junction method, utilizing the N-terminal amine group and the C-terminal carboxyl group as gold metal-binding linkers. Our conductance measurements of oligoglycine and oligoalanine backbones do not rely on peptide side-chain linkers. We compare our results with alkanes terminated asymmetrically with an amine group on one end and a carboxyl group on the other to show that peptide bonds decrease the conductance of an otherwise saturated carbon chain. Using a newly developed first-principles approach, we attribute the decrease in conductance to charge localization at the peptide bond, which reduces the energy of the frontier orbitals relative to the Fermi energy and the electronic coupling to the leads, lowering the tunneling probability. Crucially, this manifests as an increase in conductance decay of peptide backbones with increasing length when compared with alkanes.

  13. Tertiary to secondary reduction of aminomethylphosphane derived from 1-ethylpiperazine as a result of its coordination to ruthenium(II) centre - The first insight into the nature of process

    NASA Astrophysics Data System (ADS)

    Płotek, Michał; Starosta, Radosław; Komarnicka, Urszula K.; Skórska-Stania, Agnieszka; Kołoczek, Przemysław; Dudek, Karol; Kyzioł, Agnieszka

    2016-10-01

    Introduction of tertiary aminomethylphosphane P{CH2N(CH2CH2)2NCH2CH3}3 (B; tris{1-[4-ethyl(tetrahydro-1,4-diazino)]methyl}phosphane) to methanolic solution of [Ru(η5-C5H5)Cl(PPh3)2] (1) and NaBF4, instead of straightforward substitution of the chloride leads to concomitant cleavage of aminomethylphosphane's Psbnd CH2 bond. The obtained complex [Ru(η5-C5H5)PH{CH2N(CH2CH2)2NCH2CH3}2(PPh3)2]BF4 (2B‧) was fully characterized by spectroscopic methods ((NMR, IR, ESI-MS) and its solid state structure was determined with single crystal X-ray diffraction method. It was proven that the structure of 2B‧ is similar to the previously synthesized morpholine counterpart [Ru(η5-C5H5)PH{CH2N(CH2CH2)2O}2(PPh3)2]BF4 (2A‧). DFT calculations (B3LYP with the D95V(d,p) basis set for C, N, H and O and LanL2DZ with Los Alamos ECPs for Ru, P and Cl) revealed that the binding of aminomethylphosphanes to the ruthenium centre leads to the Psbnd C bonds elongation, which may finally result in breaking one of them and phosphane's reduction from tertiary to secondary ones.

  14. Initial decomposition of the condensed-phase β-HMX under shock waves: molecular dynamics simulations.

    PubMed

    Ge, Ni-Na; Wei, Yong-Kai; Ji, Guang-Fu; Chen, Xiang-Rong; Zhao, Feng; Wei, Dong-Qing

    2012-11-26

    We have performed quantum-based multiscale simulations to study the initial chemical processes of condensed-phase octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) under shock wave loading. A self-consistent charge density-functional tight-binding (SCC-DFTB) method was employed. The results show that the initial decomposition of shocked HMX is triggered by the N-NO(2) bond breaking under the low velocity impact (8 km/s). As the shock velocity increases (11 km/s), the homolytic cleavage of the N-NO(2) bond is suppressed under high pressure, the C-H bond dissociation becomes the primary pathway for HMX decomposition in its early stages. It is accompanied by a five-membered ring formation and hydrogen transfer from the CH(2) group to the -NO(2) group. Our simulations suggest that the initial chemical processes of shocked HMX are dependent on the impact velocity, which gain new insights into the initial decomposition mechanism of HMX upon shock loading at the atomistic level, and have important implications for understanding and development of energetic materials.

  15. The covalently bound diazo group as an infrared probe for hydrogen bonding environments.

    PubMed

    You, Min; Liu, Liyuan; Zhang, Wenkai

    2017-07-26

    Covalently bound diazo groups are frequently found in biomolecular substrates. The C[double bond, length as m-dash]N[double bond, length as m-dash]N asymmetric stretching vibration (ν as ) of the diazo group has a large extinction coefficient and appears in an uncongested spectral region. To evaluate the solvatochromism of the C[double bond, length as m-dash]N[double bond, length as m-dash]N ν as band for studying biomolecules, we recorded the infrared (IR) spectra of a diazo model compound, 2-diazo-3-oxo-butyric acid ethyl ester, in different solvents. The width of the C[double bond, length as m-dash]N[double bond, length as m-dash]N ν as band was linearly dependent on the Kamlet-Taft solvent parameter, which reflects the polarizability and hydrogen bond accepting ability of the solvent. Therefore, the width of the C[double bond, length as m-dash]N[double bond, length as m-dash]N ν as band could be used to probe these properties for a solvent. We found that the position of the C[double bond, length as m-dash]N[double bond, length as m-dash]N ν as band was linearly correlated with the density of hydrogen bond donor groups in the solvent. We studied the relaxation dynamics and spectral diffusion of the C[double bond, length as m-dash]N[double bond, length as m-dash]N ν as band of a natural amino acid, 6-diazo-5-oxo-l-norleucine, in water using nonlinear IR spectroscopy. The relaxation and spectral diffusion time constants of the C[double bond, length as m-dash]N[double bond, length as m-dash]N ν as band were similar to those of the N[double bond, length as m-dash]N[double bond, length as m-dash]N ν as band. We concluded that the position and width of the C[double bond, length as m-dash]N[double bond, length as m-dash]N ν as band of the diazo group could be used to probe the hydrogen bond donating and accepting ability of a solvent, respectively. These results suggest that the diazo group could be used as a site-specific IR probe for the local hydration environments.

  16. The effect of aromatization on the isotopic compositions of hydrocarbons during early diagenesis

    NASA Technical Reports Server (NTRS)

    Freeman, K. H.; Boreham, C. J.; Summons, R. E.; Hayes, J. M.

    1994-01-01

    Polycyclic aromatic hydrocarbons with varying degrees of aromatization were isolated from the Eocene Messel Shale (Rheingraben, Germany). The high abundances of these compounds and their structural resemblances to cyclic triterpenoid lipids are consistent with derivation from microbial rather than thermal processes. Compounds structurally related to oleanane contain from five to nine double bonds; those within a series of aromatized hopanoids contain from three to nine. All are products of diagenetic reactions that remove hydrogen or methyl groups, and, in several cases, break carbon-carbon bonds to open rings. Aromatized products are on average depleted in 13C relative to possible precursors by l.2% (range: l.5% enrichment to 4% depletion, n = 9). The dependence of 13C content on the number of double bonds is not, however, statistically significant and it must be concluded that there is no strong evidence for isotopic fractionation accompanying diagenetic aromatization. Isotopic differences between series (structures related to ursane, des-A-ursane, des-A-lupane, des-A-arborane, and possibly, des-A-gammacerane are present) are much greater, indicating that 13C contents are controlled primarily by source effects. Fractionations due to chromatographic isotope effects during HPLC ranged from 0.1 to 2.8%.

  17. Molecularly Tuning the Radicaloid N-H···O═C Hydrogen Bond.

    PubMed

    Lu, Norman; Chung, Wei-Cheng; Ley, Rebecca M; Lin, Kwan-Yu; Francisco, Joseph S; Negishi, Ei-Ichi

    2016-03-03

    Substituent effects on the open shell N-H···O═C hydrogen-bond has never been reported. This study examines how 12 functional groups composed of electron donating groups (EDG), halogen atoms and electron withdrawing groups (EWG) affect the N-H···O═C hydrogen-bond properties in a six-membered cyclic model system of O═C(Y)-CH═C(X)N-H. It is found that group effects on this open shell H-bonding system are significant and have predictive trends when X = H and Y is varied. When Y is an EDG, the N-H···O═C hydrogen-bond is strengthened; and when Y is an EWG, the bond is weakened; whereas the variation in electronic properties of X group do not exhibit a significant impact upon the hydrogen bond strength. The structural impact of the stronger N-H···O═C hydrogen-bond are (1) shorter H and O distance, r(H···O) and (2) a longer N-H bond length, r(NH). The stronger N-H···O═C hydrogen-bond also acts to pull the H and O in toward one another which has an effect on the bond angles. Our findings show that there is a linear relationship between hydrogen-bond angle and N-H···O═C hydrogen-bond energy in this unusual H-bonding system. In addition, there is a linear correlation of the r(H···O) and the hydrogen bond energy. A short r(H···O) distance corresponds to a large hydrogen bond energy when Y is varied. The observed trends and findings have been validated using three different methods (UB3LYP, M06-2X, and UMP2) with two different basis sets.

  18. Single-photon Coulomb explosion of methanol using broad bandwidth ultrafast EUV pulses.

    PubMed

    Luzon, Itamar; Jagtap, Krishna; Livshits, Ester; Lioubashevski, Oleg; Baer, Roi; Strasser, Daniel

    2017-05-31

    Single-photon Coulomb explosion of methanol is instigated using the broad bandwidth pulse achieved through high-order harmonics generation. Using 3D coincidence fragment imaging of one molecule at a time, the kinetic energy release (KER) and angular distributions of the products are measured in different Coulomb explosion (CE) channels. Two-body CE channels breaking either the C-O or the C-H bonds are described as well as a proton migration channel forming H 2 O + , which is shown to exhibit higher KER. The results are compared to intense-field Coulomb explosion measurements in the literature. The interpretation of broad bandwidth single-photon CE data is discussed and supported by ab initio calculations of the predominant C-O bond breaking CE channel. We discuss the importance of these findings for achieving time resolved imaging of ultrafast dynamics.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, Donghai; Lebarbier, Vanessa M.; Rousseau, Roger

    In a combined experimental and first-principles density functional theory (DFT) study, benzene steam reforming (BSR) over MgAl 2O 4 supported Rh and Ir catalysts was investigated. Experimentally, it has been found that both highly dispersed Rh and Ir clusters (1-2 nm) on the MgAl 2O 4 spinel support are stable during the BSR in the temperature range of 700-850°C. Compared to the Ir/MgAl 2O 4 catalyst, the Rh/MgAl 2O 4 catalyst is more active with higher benzene turnover frequency and conversion. At typical steam conditions with the steam-to-carbon ratio > 12, the benzene conversion is only a weak function ofmore » the H 2O concentration in the feed. This suggests that the initial benzene decomposition step rather than the benzene adsorption is most likely the rate-determined step in BSR over supported Rh and Ir catalysts. In order to understand the differences between the two catalysts, we followed with a comparative DFT study of initial benzene decomposition pathways over two representative model systems for each supported metal (Rh and Ir) catalysts. A periodic terrace (111) surface and an amorphous 50-atom metal cluster with a diameter of 1.0 nm were used to represent the two supported model catalysts under low and high dispersion conditions. Our DFT results show that the decreasing catalyst particle size enhances the benzene decomposition on supported Rh catalysts by lowering both C-C and C-H bond scission. The activation barriers of the C-C and the C-H bond scission decrease from 1.60 and 1.61 eV on the Rh(111) surface to 1.34 and 1.26 eV on the Rh50 cluster. For supported Ir catalysts, the decreasing particle size only affects the C-C scission. The activation barrier of the C-C scission of benzene decreases from 1.60 eV on the Ir(111) surface to 1.35 eV on the Ir50 cluster while the barriers of the C-H scission are practically the same. The experimentally measured higher BSR activity on the supported highly dispersed Rh catalyst can be rationalized by the thermodynamic limitation for the very first C-C bond scission of benzene on the small Ir50 catalyst. The C-C bond scission of benzene on the small Ir50 catalyst is highly endothermic although the barrier is competitive with the barriers of both the C-C and the C-H bond-breakings on the small Rh50 catalyst. The calculations also imply that, for the supported Rh catalysts the C-C and C-H bond scissions are competitive, independently of the Rh cluster sizes. After the initial dissociation step via either the C-C or the C-H bond scission, the C-H bond breaking seems to be more favorable rather than the C-C bond breaking on the larger Rh terrace surface. This work was financially supported by the United States Department of Energy’s Office of Biomass Program’s. Computing time was granted by a user project at the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nash, Connor P.; Farberow, Carrie A.; Hensley, Jesse E.

    Temperature programmed reaction (TPRxn) is a simple yet powerful tool for screening solid catalyst performance at a variety of conditions. A TPRxn system includes a reactor, furnace, gas and vapor sources, flow control, instrumentation to quantify reaction products (e.g., gas chromatograph), and instrumentation to monitor the reaction in real time (e.g., mass spectrometer). Here, we apply the TPRxn methodology to study molybdenum carbide catalysts for the deoxygenation of acetic acid, an important reaction among many in the upgrading/stabilization of biomass pyrolysis vapors. TPRxn is used to evaluate catalyst activity and selectivity and to test hypothetical reaction pathways (e.g., decarbonylation, ketonization,more » and hydrogenation). Furthermore, the results of the TPRxn study of acetic acid deoxygenation show that molybdenum carbide is an active catalyst for this reaction at temperatures above ca. 300 °C and that the reaction favors deoxygenation (i.e., C-O bond-breaking) products at temperatures below ca. 400 °C and decarbonylation (i.e., C-C bond-breaking) products at temperatures above ca. 400 °C.« less

  1. Thermal Expansion Behavior in TcO2. Toward Breaking the Tc-Tc Bond.

    PubMed

    Reynolds, Emily; Zhang, Zhaoming; Avdeev, Maxim; Thorogood, Gordon J; Poineau, Frederic; Czerwinski, Kenneth R; Kimpton, Justin A; Kennedy, Brendan J

    2017-08-07

    The structure of TcO 2 between 25 and 1000 °C has been determined in situ using X-ray powder diffraction methods and is found to remain monoclinic in space group P2 1 /c. Thermal expansion in TcO 2 is highly anisotropic, with negative thermal expansion of the b axis observed above 700 °C. This is the result of an anomalous expansion along the a axis that is a consequence of weakening of the Tc-Tc bonds.

  2. Application of Density Functional Theory to Systems Containing Metal Atoms

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.

    2006-01-01

    The accuracy of density functional theory (DFT) for problems involving metal atoms is considered. The DFT results are compared with experiment as well as results obtained using the coupled cluster approach. The comparisons include geometries, frequencies, and bond energies. The systems considered include MO2, M(OH)+n, MNO+, and MCO+2. The DFT works well for frequencies and geometries, even in case with symmetry breaking; however, some examples have been found where the symmetry breaking is quite severe and the DFT methods do not work well. The calculation of bond energies is more difficult and examples of successes as well as failures of DFT will be given.

  3. Effect of protonation on the mechanism of phosphate monoester hydrolysis and comparison with the hydrolysis of nucleoside triphosphate in biomolecular motors.

    PubMed

    Hassan, Hammad Ali; Rani, Sadaf; Fatima, Tabeer; Kiani, Farooq Ahmad; Fischer, Stefan

    2017-11-01

    Hydrolysis of phosphate groups is a crucial reaction in living cells. It involves the breaking of two strong bonds, i.e. the O a H bond of the attacking water molecule, and the PO l bond of the substrate (O a and O l stand for attacking and leaving oxygen atoms). Mechanism of the hydrolysis reaction can proceed either by a concurrent or a sequential mechanism. In the concurrent mechanism, the breaking of O a H and PO l bonds occurs simultaneously, whereas in the sequential mechanism, the O a H and PO l bonds break at different stages of the reaction. To understand how protonation affects the mechanism of hydrolysis of phosphate monoester, we have studied the mechanism of hydrolysis of protonated and deprotonated phosphate monoester at M06-2X/6-311+G**//M06-2X/6-31+G*+ZPE level of theory (where ZPE stands for zero point energy). Our calculations show that in both protonated and deprotonated cases, the breaking of the water O a H bond occurs before the breaking of the PO l bond. Because the two events are not separated by a stable intermediate, the mechanism can be categorized as semi-concurrent. The overall energy barrier is 41kcalmol -1 in the unprotonated case. Most (5/6th) of this is due to the initial breaking of the water O a H bond. This component is lowered from 34 to 25kcalmol -1 by adding one proton to the phosphate. The rest of the overall energy barrier comes from the subsequent breaking of the PO l bond and is not sensitive to protonation. This is consistent with previous findings about the effect of triphosphate protonation on the hydrolysis, where the equivalent protonation (on the γ-phosphate) was seen to lower the barrier of breaking the water O a H bond and to have little effect on the PO l bond breaking. Hydrolysis pathways of phosphate monoester with initial breaking of the PO l bond could not be found here. This is because the leaving group in phosphate monoester cannot be protonated, unlike in triphosphate hydrolysis, where protonation of the β- and γ-phosphates had been shown to promote a mechanism where the PO l bond breaks before the O a H bond does. We also point out that the charge shift due to PO l bond breaking during sequential ATP hydrolysis in bio-molecular motors onsets the week unbinding of hydrolysis product that finally leads to the product release during power stroke. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Radical Abstraction Reactions with Concerted Fragmentation in the Chain Decay of Nitroalkanes

    NASA Astrophysics Data System (ADS)

    Denisov, E. T.; Shestakov, A. F.

    2018-05-01

    Reactions of the type X• + HCR2CH2NO2 → XH + R2C=CH2 + N•O2 are exothermic, due to the breaking of weak C-N bonds and the formation of energy-intensive C=C bonds. Quantum chemistry calculations of the transition state using the reactions of Et• and EtO• with 2-nitrobutane shows that such reactions can be categorized as one-step, due to the extreme instability of the intermediate nitrobutyl radical toward decay with the formation of N•O2. Kinetic parameters that allow us to calculate the energy of activation and rate constant of such a reaction from its enthalpy are estimated using a model of intersecting parabolas. Enthalpies, energies of activation, and rate constants are calculated for a series of reactions with the participation of Et•, EtO•, RO•2, N•O2 radicals on the one hand and a series of nitroalkanes on the other. A new kinetic scheme of the chain decay of nitroalkanes with the participation of abstraction reactions with concerted fragmentation is proposed on the basis of the obtained data.

  5. Electronegativity identification of novel superhard materials.

    PubMed

    Li, Keyan; Wang, Xingtao; Zhang, Fangfang; Xue, Dongfeng

    2008-06-13

    We show that electronegativity can be used to effectively identify the hardness of crystal materials on the basis of a new microscopic model for hardness. Bond electronegativity is proposed to characterize the electron-holding energy of a bond, which is the intrinsic origin of hardness. Applying this model to c-BC(2)N materials, we confirm the proper bond composition of the experimentally observed phase of c-BC(2)N, in which the bond ratio N(C-C):N(B-N):N(B-C):N(C-N) is 3:3:1:1. A number of bonds that can or cannot form a superhard material are qualitatively distinguished, which enables us to explore novel superhard materials by screening possible elemental combinations.

  6. Topology of charge density of flucytosine and related molecules and characteristics of their bond charge distributions.

    PubMed

    Murgich, Juan; Franco, Héctor J; San-Blas, Gioconda

    2006-08-24

    The molecular charge distribution of flucytosine (4-amino-5-fluoro-2-pyrimidone), uracil, 5-fluorouracil, and thymine was studied by means of density functional theory calculations (DFT). The resulting distributions were analyzed by means of the atoms in molecules (AIM) theory. Bonds were characterized through vectors formed with the charge density value, its Laplacian, and the bond ellipticity calculated at the bond critical point (BCP). Within each set of C=O, C-H, and N-H bonds, these vectors showed little dispersion. C-C bonds formed three different subsets, one with a significant degree of double bonding, a second corresponding to single bonds with a finite ellipticity produced by hyperconjugation, and a third one formed by a pure single bond. In N-C bonds, a decrease in bond length (an increase in double bond character) was not reflected as an increase in their ellipticity, as in all C-C bonds studied. It was also found that substitution influenced the N-C, C-O, and C-C bond ellipticity much more than density and its Laplacian at the BCP. The Laplacian of charge density pointed to the existence of both bonding and nonbonding maxima in the valence shell charge concentration of N, O, and F, while only bonding ones were found for the C atoms. The nonbonding maxima related to the sites for electrophilic attack and H bonding in O and N, while sites of nucleophilic attack were suggested by the holes in the valence shell of the C atoms of the carbonyl groups.

  7. Development of a QSAR model for predicting aqueous reaction rate constants of organic chemicals with hydroxyl radicals.

    PubMed

    Luo, Xiang; Yang, Xianhai; Qiao, Xianliang; Wang, Ya; Chen, Jingwen; Wei, Xiaoxuan; Peijnenburg, Willie J G M

    2017-03-22

    Reaction with hydroxyl radicals (˙OH) is an important removal pathway for organic pollutants in the aquatic environment. The aqueous reaction rate constant (k OH ) is therefore an important parameter for fate assessment of aquatic pollutants. Since experimental determination fails to meet the requirement of being able to efficiently handle numerous organic chemicals at limited cost and within a relatively short period of time, in silico methods such as quantitative structure-activity relationship (QSAR) models are needed to predict k OH . In this study, a QSAR model with a larger and wider applicability domain as compared with existing models was developed. Following the guidelines for the development and validation of QSAR models proposed by the Organization for Economic Co-operation and Development (OECD), the model shows satisfactory performance. The applicability domain of the model has been extended and contained chemicals that have rarely been covered in most previous studies. The chemicals covered in the current model contain functional groups including [double bond splayed left]C[double bond, length as m-dash]C[double bond splayed right], -C[triple bond, length as m-dash]C-, -C 6 H 5 , -OH, -CHO, -O-, [double bond splayed left]C[double bond, length as m-dash]O, -C[double bond, length as m-dash]O(O)-, -COOH, -C[triple bond, length as m-dash]N, [double bond splayed left]N-, -NH 2 , -NH-C(O)-, -NO 2 , -N[double bond, length as m-dash]C-N[double bond splayed right], [double bond splayed left]N-N[double bond splayed right], -N[double bond, length as m-dash]N-, -S-, -S-S-, -SH, -SO 3 , -SO 4 , -PO 4 , and -X (F, Cl, Br, and I).

  8. Cocrystals of 6-propyl-2-thiouracil: N-H···O versus N-H···S hydrogen bonds.

    PubMed

    Tutughamiarso, Maya; Egert, Ernst

    2011-11-01

    In order to investigate the relative stability of N-H···O and N-H···S hydrogen bonds, we cocrystallized the antithyroid drug 6-propyl-2-thiouracil with two complementary heterocycles. In the cocrystal pyrimidin-2-amine-6-propyl-2-thiouracil (1/2), C(4)H(5)N(3)·2C(7)H(10)N(2)OS, (I), the `base pair' is connected by one N-H···S and one N-H···N hydrogen bond. Homodimers of 6-propyl-2-thiouracil linked by two N-H···S hydrogen bonds are observed in the cocrystal N-(6-acetamidopyridin-2-yl)acetamide-6-propyl-2-thiouracil (1/2), C(9)H(11)N(3)O(2)·2C(7)H(10)N(2)OS, (II). The crystal structure of 6-propyl-2-thiouracil itself, C(7)H(10)N(2)OS, (III), is stabilized by pairwise N-H···O and N-H···S hydrogen bonds. In all three structures, N-H···S hydrogen bonds occur only within R(2)(2)(8) patterns, whereas N-H···O hydrogen bonds tend to connect the homo- and heterodimers into extended networks. In agreement with related structures, the hydrogen-bonding capability of C=O and C=S groups seems to be comparable.

  9. Effect of phosphorylation on hydrogen-bonding interactions of the active site histidine of the phosphocarrier protein HPr of the phosphoenolpyruvate-dependent phosphotransferase system determined by sup 15 N NMR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Dijk, A.A.; de Lange, L.C.M.; Robillard, G.T.

    1990-09-04

    The phosphocarrier protein HPr of the phosphoenolpyruvate-dependent sugar transport system of Escherichia coli can exist in a phosphorylated and a nonphosphorylated form. During phosphorylation, the phosphoryl group is carried on a histidine residue, His15. The hydrogen-bonding state of this histidine was examined with {sup 15}N NMR. For this purpose we selectively enriched the histidine imidazole nitrogens with {sup 15}N by supplying an E. coli histidine auxotroph with the amino acid labeled either at the N{delta}1 and N{epsilon}2 positions or at only the N{delta}1 position. {sup 15}N NMR spectra of two synthesized model compound, phosphoimidazole and phosphomethylimidazole, were also recorded. Themore » authors show that, prior to phosphorylation, the protonated His15 N{epsilon}2 is strongly hydrogen bonded, most probably to a carboxylate moiety. The H-bond should strengthen the nucleophilic character of the deprotonated N{delta}1, resulting in a good acceptor for the phosphoryl group. The hydrogen bond to the His15 N{delta}1 breaks upon phosphorylation of the residue. Implications of the H-bond structure for the mechanism of phosphorylation of HPr are discussed.« less

  10. 2,4-Dinitrophenylhydrazine, redetermined at 120 K: a three-dimensional framework built from N-H...O, N-H...(O)2, N-H...pi(arene) and C-H...O hydrogen bonds.

    PubMed

    Wardell, James L; Low, John N; Glidewell, Christopher

    2006-06-01

    In the title compound, C6H6N4O4, the bond distances indicate significant bond fixation, consistent with charge-separated polar forms. The molecules are almost planar and there is an intramolecular N-H...O hydrogen bond. The molecules are linked into a complex three-dimensional framework structure by a combination of N-H...O, N-H...(O)2, N-H...pi(arene) and C-H...O hydrogen bonds.

  11. A P-H functionalized Al/P-based frustrated Lewis pair - hydrophosphination of nitriles, ring opening with cyclopropenones and evidence of P[double bond, length as m-dash]C double bond formation.

    PubMed

    Keweloh, Lukas; Aders, Niklas; Hepp, Alexander; Pleschka, Damian; Würthwein, Ernst-Ulrich; Uhl, Werner

    2018-06-12

    Hydroalumination of R-P(H)-C[triple bond, length as m-dash]C-tBu with bulky H-Al[CH(SiMe3)2]2 afforded the new P-H functionalized Al/P-based frustrated Lewis pair R-P(H)-C[[double bond, length as m-dash]C(H)-tBu]-AlR2 [R = CH(SiMe3)2; FLP 7]. A weak adduct of 7 with benzonitrile (8) was detected by NMR spectroscopy, but could not be isolated. tert-Butyl isocyanide afforded a similar, but isolable adduct (9), in which the isocyanide C atom was coordinated to aluminium. The unique reactivity of 7 became evident from its reactions with the heteroatom substituted nitriles PhO-C[triple bond, length as m-dash]N, PhCH2S-C[triple bond, length as m-dash]N and H8C4N-C[triple bond, length as m-dash]N. Hydrophosphination of the C[triple bond, length as m-dash]N triple bonds afforded imines at room temperature which were coordinated to the FLP by Al-N and P-C bonds to yield AlCPCN heterocycles (10 to 12). These processes depend on substrate activation by the FLP. Diphenylcyclopropenone and its sulphur derivative reacted with 7 by addition of the P-H bond to a C-C bond of the strained C3 ring and ring opening to afford the fragment (Z)-Ph-C(H)[double bond, length as m-dash]C(Ph)-C-X-Al (X = O, S). The C-O or C-S groups were coordinated to the FLP to yield AlCPCX heterocycles (13 and 14). The thiocarbonyl derived compound 14 contains an internally stabilized phosphenium cation with a localized P[double bond, length as m-dash]C bond, a trigonal planar coordinated P atom and a short P[double bond, length as m-dash]C distance (168.9 pm). Insight into formation mechanisms, the structural and energetic properties of FLP 7 and compounds 13 and 14 was gained by quantum chemical DFT calculations.

  12. Single-strand breakage of DNA in UV-irradiated uvrA, uvrB, and uvrC mutants of Escherichia coli.

    PubMed Central

    Tang, M S; Ross, L

    1985-01-01

    We transduced the uvrA6, uvrB5, uvrC34, and uvrC56 markers from the original mutagenized strains into an HF4714 background. Although in the original mutagenized strains uvrA6 cells are more UV sensitive than uvrB5 and uvrC34 cells, in the new background no significant difference in UV sensitivity is observed among uvrA6, uvrB5, and uvrC34 cells. No DNA single-strand breaks are detected in UV-irradiated uvrA6 or uvrB5 cells, whereas in contrast a significant number of single-strand breaks are detected in both UV-irradiated uvrC34 and uvrC56 cells. The number of single-strand breaks in these cells reaches a plateau at 20-J/m2 irradiation. Since these single-strand breaks can be detected by both alkaline sucrose and neutral formamide-sucrose gradient sedimentation, we concluded that the single-strand breaks observed in UV-irradiated uvrC cells are due to phosphodiester bond interruptions in DNA and are not due to apurinic/apyrimidinic sites. PMID:3882671

  13. Direct bonding of gallium nitride to silicon carbide: Physical, and electrical characterization

    NASA Astrophysics Data System (ADS)

    Lee, Jaeseob

    The direct bonding method is applied to the GaN/SiC system, and the processing conditions for successful direct bonding are clarified. Direct bonding of GaN/SiC is achieved at 900°C. The direct bonding of GaN to Si-face SiC is very dependent on the choice of chemical treatments, but the bonding of GaN to C-face SiC is less dependent on surface preparation. If a native oxide is present when the bonded interface is prepared, the current through the interface is decreased, which is attributed to an energy barrier due to the presence of charged interface states. TEM images indicate 10nm spaced dislocations at the interface for the GaN/SiC (Si-face), and ˜6nm for the GaN/SiC (C-face), which form to accommodate the lattice mismatch (3.4%) and twist (1˜2°) and tilt misfit (0.2° for Si-face SiC and 3° for C-face SiC). In some regions (˜30%) an amorphous oxide layer forms at the interface, which is attributed to inadequate surface preparation prior to bonding. The strain of the GaN film with a Ga/C interface was ˜0.1%, tensile strain, and that of GaN with a Ga/Si interface was ˜0.2%, tensile strain. Our analysis indicates that the GaN/SiC thermal misfit dominates the strain of the GaN after bonding. The electrical characteristics of n-p GaN/SiC heterojunctions display diode ideality factors, saturation currents, energy barrier heights, and band offsets of 1.5 +/- 0.1, 10-13 A/cm 2, 0.75 +/- 0.10 eV, and DeltaEC = 0.87 +/- 0.10 eV for the Ga/Si interface and 1.2 +/- 0.1, 10 -16 A/cm2, 0.56 +/- 0.10 eV, and Delta EC = 0.46 +/- 0.10 eV for the Ga/C interface.

  14. Topological Qubits from Valence Bond Solids

    NASA Astrophysics Data System (ADS)

    Wang, Dong-Sheng; Affleck, Ian; Raussendorf, Robert

    2018-05-01

    Topological qubits based on S U (N )-symmetric valence-bond solid models are constructed. A logical topological qubit is the ground subspace with twofold degeneracy, which is due to the spontaneous breaking of a global parity symmetry. A logical Z rotation by an angle 2 π /N , for any integer N >2 , is provided by a global twist operation, which is of a topological nature and protected by the energy gap. A general concatenation scheme with standard quantum error-correction codes is also proposed, which can lead to better codes. Generic error-correction properties of symmetry-protected topological order are also demonstrated.

  15. Bimetallic catalysis for C–C and C–X coupling reactions

    PubMed Central

    Pye, Dominic R.

    2017-01-01

    Bimetallic catalysis represents an alternative paradigm for coupling chemistry that complements the more traditional single-site catalysis approach. In this perspective, recent advances in bimetallic systems for catalytic C–C and C–X coupling reactions are reviewed. Behavior which complements that of established single-site catalysts is highlighted. Two major reaction classes are covered. First, generation of catalytic amounts of organometallic species of e.g. Cu, Au, or Ni capable of transmetallation to a Pd co-catalyst (or other traditional cross-coupling catalyst) has allowed important new C–C coupling technologies to emerge. Second, catalytic transformations involving binuclear bond-breaking and/or bond-forming steps, in some cases involving metal–metal bonds, represent a frontier area for C–C and C–X coupling processes.

  16. Highly Reactive Scandium Phosphinoalkylidene Complex: C-H and H-H Bonds Activation.

    PubMed

    Mao, Weiqing; Xiang, Li; Alvarez Lamsfus, Carlos; Maron, Laurent; Leng, Xuebing; Chen, Yaofeng

    2017-01-25

    The first scandium phosphinoalkylidene complex was synthesized and structurally characterized. The complex has the shortest Sc-C bond lengths reported to date (2.089(3) Å). DFT calculations reveal the presence of a three center π interaction in the complex. This scandium phosphinoalkylidene complex undergoes intermolecular C-H bond activation of pyridine, 4-dimethylamino pyridine and 1,3-dimethylpyrazole at room temperature. Furthermore, the complex rapidly activates H 2 under mild conditions. DFT calculations also demonstrate that the C-H activation of 1,3-dimethylpyrazole is selective for thermodynamic reasons and the relatively slow reaction is due to the need of fully breaking the chelating effect of the phosphino group to undergo the reaction whereas this is not the case for H 2 .

  17. Structure of substituted 2-(phenoxy)benzimidazoles

    NASA Astrophysics Data System (ADS)

    Pavlova, I. S.; Pervova, I. G.; Lipunova, G. N.; Novikova, R. K.; Slepukhin, P. A.; Lipunov, I. N.

    2013-03-01

    The synthesis and X-ray diffraction study of 1-benzyl-2-[2-(5-ethyltetrazole-2-yl)-phenoxy]-1H-benzimidazole and 1-benzyl-2-[2-(5-ethyltetrazole-2-yl)-4-nitrophenoxy]-1H-benzimidazole single crystals have been performed. The oxidative splitting of an azo-hydrazone group of 1-(2-hydroxy-(5-nitro)phenyl)-3-ethyl-5-(benzylbenzimidazolyl)formazans, a break in the C2-N1 bond, the interaction of o-hydroxyl group of aryl fragment with oxygen, and the formation of new 2-(phenoxy)benzimidazoles are found to occur in the presence of perchlorate iron(III).

  18. Conversion of amides to esters by the nickel-catalysed activation of amide C-N bonds.

    PubMed

    Hie, Liana; Fine Nathel, Noah F; Shah, Tejas K; Baker, Emma L; Hong, Xin; Yang, Yun-Fang; Liu, Peng; Houk, K N; Garg, Neil K

    2015-08-06

    Amides are common functional groups that have been studied for more than a century. They are the key building blocks of proteins and are present in a broad range of other natural and synthetic compounds. Amides are known to be poor electrophiles, which is typically attributed to the resonance stability of the amide bond. Although amides can readily be cleaved by enzymes such as proteases, it is difficult to selectively break the carbon-nitrogen bond of an amide using synthetic chemistry. Here we demonstrate that amide carbon-nitrogen bonds can be activated and cleaved using nickel catalysts. We use this methodology to convert amides to esters, which is a challenging and underdeveloped transformation. The reaction methodology proceeds under exceptionally mild reaction conditions, and avoids the use of a large excess of an alcohol nucleophile. Density functional theory calculations provide insight into the thermodynamics and catalytic cycle of the amide-to-ester transformation. Our results provide a way to harness amide functional groups as synthetic building blocks and are expected to lead to the further use of amides in the construction of carbon-heteroatom or carbon-carbon bonds using non-precious-metal catalysis.

  19. Nano-Welding of Multi-Walled Carbon Nanotubes on Silicon and Silica Surface by Laser Irradiation

    PubMed Central

    Yuan, Yanping; Chen, Jimin

    2016-01-01

    In this study, a continuous fiber laser (1064 nm wavelength, 30 W/cm2) is used to irradiate multi-walled carbon nanotubes (MWCNTs) on different substrate surfaces. Effects of substrates on nano-welding of MWCNTs are investigated by scanning electron microscope (SEM). For MWCNTs on silica, after 3 s irradiation, nanoscale welding with good quality can be achieved due to breaking C–C bonds and formation of new graphene layers. While welding junctions can be formed until 10 s for the MWCNTs on silicon, the difference of irradiation time to achieve welding is attributed to the difference of thermal conductivity for silica and silicon. As the irradiation time is prolonged up to 12.5 s, most of the MWCNTs are welded to a silicon substrate, which leads to their frameworks of tube walls on the silicon surface. This is because the accumulation of absorbed energy makes the temperature rise. Then chemical reactions among silicon, carbon and nitrogen occur. New chemical bonds of Si–N and Si–C achieve the welding between the MWCNTs and silicon. Vibration modes of Si3N4 appear at peaks of 363 cm−1 and 663 cm−1. There are vibration modes of SiC at peaks of 618 cm−1, 779 cm−1 and 973 cm−1. The experimental observation proves chemical reactions and the formation of Si3N4 and SiC by laser irradiation. PMID:28344293

  20. Application of Density Functional Theory to Systems Containing Metal Atoms

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Arnold, James O. (Technical Monitor)

    1997-01-01

    The accuracy of density functional theory (DFT) for problems involving metal atoms is considered. The DFT results are compared with experiment as well as results obtained using the coupled cluster approach. The comparisons include geometries, frequencies, and bond energies. The systems considered include MO2, M(OH)+(sub n), MNO+, and MCO+(sub 2). The DFT works well for frequencies and geometries, even in cases with symmetry breaking; however, some examples have been found where the symmetry breaking is quite severe and the DFT methods do not work well. The calculation of bond energies is more difficult and examples of the successes as well as failures of DFT will be given.

  1. Toughening elastomers with sacrificial bonds and watching them break.

    PubMed

    Ducrot, Etienne; Chen, Yulan; Bulters, Markus; Sijbesma, Rint P; Creton, Costantino

    2014-04-11

    Elastomers are widely used because of their large-strain reversible deformability. Most unfilled elastomers suffer from a poor mechanical strength, which limits their use. Using sacrificial bonds, we show how brittle, unfilled elastomers can be strongly reinforced in stiffness and toughness (up to 4 megapascals and 9 kilojoules per square meter) by introducing a variable proportion of isotropically prestretched chains that can break and dissipate energy before the material fails. Chemoluminescent cross-linking molecules, which emit light as they break, map in real time where and when many of these internal bonds break ahead of a propagating crack. The simple methodology that we use to introduce sacrificial bonds, combined with the mapping of where bonds break, has the potential to stimulate the development of new classes of unfilled tough elastomers and better molecular models of the fracture of soft materials.

  2. Reactions of the linear tetranuclear complex Ru sub 4 (CO) sub 10 (CH sub 3 C double bond C(H)C(H) double bond N-i-Pr) sub 2 with oxidizing reagents. Syntheses of halide-bridged (Ru(CO) sub 2 X(CH sub 3 C double bond C(H)C(H) double bond N-i-Pr)) sub 2 and fac-Ru(CO) sub 3 X(CH sub 3 C double bond C(H)C(H) double bond N-i-Pr)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mul, W.P.; Elsevier, C.J.; van Leijen, M.

    1991-01-01

    The linear tetranuclear complex Ru{sub 4}(CO){sub 10}(CH{sub 3}C{double bond}C(H)C(H){double bond}N-i-Pr){sub 2} (1), containing two {eta}{sup 5}-azaruthenacyclopentadienyl systems, reacts with oxidizing reagents (I{sub 2}, Br{sub 2}, NBS, CCl{sub 4}) at elevated temperatures (40-90C) in heptane or benzene to give the new dimeric halide-bridged organoruthenium(II) complexes (Ru(CO){sub 2}X(CH{sub 3}C{double bond}C(H)C(H){double bond}N-i-Pr)){sub 2} (X = I (3a), X = Br (3b), Cl (3c); yield 30-80%) together with (Ru(CO){sub 3}X{sub 2}){sub 2}. The reactions of 1 with CX{sub 4} (X = I, Br, Cl) are accelerated by CO, probably because Ru{sub 4}(CO){sub 12}(CH{sub 3}C{double bond}C(H)C(H){double bond}N-i-Pr){sub 2} (5), which contains two unbridged metal-metal bonds,more » is formed prior to oxidation. The halide-bridged dimers 3a-c are obtained as mixtures of four isomers, the configurations of which are discussed. Splitting of the halide bridges takes place when a solution of 3a-c is saturated with CO, whereby mononuclear fac-Ru(CO){sub 3}X(CH{sub 3}C{double bond}C(H)C(H){double bond}N-i-Pr) (4a-c) is obtained. This process is reversible; ie., passing a stream of nitrogen through a solution of 4a-c or removal of the solvent under vacuum causes the reverse reaction with reformation of 3a-c. Compounds 3a-c and 4a-c have been characterized by IR (3, 4), FD mass (3), {sup 1}H (3, 4), and {sup 13}C{l brace}H{r brace} NMR (4) spectroscopy and satisfactory elemental analyses have been obtained for 3a-c. Compounds 3 and 4 are suitable precursors for the preparation of new homo- and heteronuclear transition-metal complexes.« less

  3. Double bonds? Studies on the barrier to rotation about the cumulenic C=C bonds of tetraaryl[n]cumulenes (n = 3, 5, 7, 9).

    PubMed

    Buehringer, Martina U; Padberg, Kevin; Phleps, Martin; Maid, Harald; Placht, Christian; Neiss, Christian; Ferguson, Michael; Goerling, Andreas; Tykwinski, Rik R

    2018-03-31

    Bonding is the fundamental aspect of organic chemistry, yet the magnitude of C=C bonding in [n]cumulenes as a function of increasing chain length has yet to be experimentally verified for derivatives longer than n = 5. The synthesis of a series of apolar and unsymmetrically substituted tetraaryl[n]cumulenes (n = 3, 5, 7, 9) has been developed and rotational barriers for Z-/E-isomerization have been measured using dynamic VT-NMR spectroscopy. Both experiment and theory confirm a dramatic reduction of the rotational barrier (through estimation of G≠rot for the isomerization) from >24 to 19 to 15 to 11 kcal-1 in [n]cumulenes with n = 3, 5, 7, 9, respectively. Thus, the reduction of cumulenic bonding in longer cumulenes affords bond rotational barriers that are more characteristic of a sterically hindered single bond than that of a double bond. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Temperature-programmed deoxygenation of acetic acid on molybdenum carbide catalysts

    DOE PAGES

    Nash, Connor P.; Farberow, Carrie A.; Hensley, Jesse E.

    2017-02-07

    Temperature programmed reaction (TPRxn) is a simple yet powerful tool for screening solid catalyst performance at a variety of conditions. A TPRxn system includes a reactor, furnace, gas and vapor sources, flow control, instrumentation to quantify reaction products (e.g., gas chromatograph), and instrumentation to monitor the reaction in real time (e.g., mass spectrometer). Here, we apply the TPRxn methodology to study molybdenum carbide catalysts for the deoxygenation of acetic acid, an important reaction among many in the upgrading/stabilization of biomass pyrolysis vapors. TPRxn is used to evaluate catalyst activity and selectivity and to test hypothetical reaction pathways (e.g., decarbonylation, ketonization,more » and hydrogenation). Furthermore, the results of the TPRxn study of acetic acid deoxygenation show that molybdenum carbide is an active catalyst for this reaction at temperatures above ca. 300 °C and that the reaction favors deoxygenation (i.e., C-O bond-breaking) products at temperatures below ca. 400 °C and decarbonylation (i.e., C-C bond-breaking) products at temperatures above ca. 400 °C.« less

  5. Structural Characterization of N-Alkylated Twisted Amides: Consequences for Amide Bond Resonance and N-C Cleavage.

    PubMed

    Hu, Feng; Lalancette, Roger; Szostak, Michal

    2016-04-11

    Herein, we describe the first structural characterization of N-alkylated twisted amides prepared directly by N-alkylation of the corresponding non-planar lactams. This study provides the first experimental evidence that N-alkylation results in a dramatic increase of non-planarity around the amide N-C(O) bond. Moreover, we report a rare example of a molecular wire supported by the same amide C=O-Ag bonds. Reactivity studies demonstrate rapid nucleophilic addition to the N-C(O) moiety of N-alkylated amides, indicating the lack of n(N) to π*(C=O) conjugation. Most crucially, we demonstrate that N-alkylation activates the otherwise unreactive amide bond towards σ N-C cleavage by switchable coordination. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Aging pathways for organophosphate-inhibited human butyrylcholinesterase, including novel pathways for isomalathion, resolved by mass spectrometry.

    PubMed

    Li, He; Schopfer, Lawrence M; Nachon, Florian; Froment, Marie-Thérèse; Masson, Patrick; Lockridge, Oksana

    2007-11-01

    Some organophosphorus compounds are toxic because they inhibit acetylcholinesterase (AChE) by phosphylation of the active site serine, forming a stable conjugate: Ser-O-P(O)-(Y)-(XR) (where X can be O, N, or S and Y can be methyl, OR, or SR). The inhibited enzyme can undergo an aging process, during which the X-R moiety is dealkylated by breaking either the P-X or the X-R bond depending on the specific compound, leading to a nonreactivatable enzyme. Aging mechanisms have been studied primarily using AChE. However, some recent studies have indicated that organophosphate-inhibited butyrylcholinesterase (BChE) may age through an alternative pathway. Our work utilized matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry to study the aging mechanism of human BChE inhibited by dichlorvos, echothiophate, diisopropylfluorophosphate (DFP), isomalathion, soman, sarin, cyclohexyl sarin, VX, and VR. Inhibited BChE was aged in the presence of H2O18 to allow incorporation of (18)O, if cleavage was at the P-X bond. Tryptic-peptide organophosphate conjugates were identified through peptide mass mapping. Our results showed no aging of VX- and VR-treated BChE at 25 degrees C, pH 7.0. However, BChE inhibited by dichlorvos, echothiophate, DFP, soman, sarin, and cyclohexyl sarin aged exclusively through O-C bond cleavage, i.e., the classical X-R scission pathway. In contrast, isomalathion aged through both X-R and P-X pathways; the main aged product resulted from P-S bond cleavage and a minor product resulted from O-C and/or S-C bond cleavage.

  7. Torsional Rigidity of Single Actin Filaments and Actin-Actin Bond Breaking Force under Torsion Measured Directly by in vitro Micromanipulation

    NASA Astrophysics Data System (ADS)

    Tsuda, Yuri; Yasutake, Hironori; Ishijima, Akihiko; Yanagida, Toshio

    1996-11-01

    Knowledge of the elastic properties of actin filaments is crucial for considering its role in muscle contraction, cellular motile events, and formation of cell shape. The stiffness of actin filaments in the directions of stretching and bending has been determined. In this study, we have directly determined the torsional rigidity and breaking force of single actin filaments by measuring the rotational Brownian motion and tensile strength using optical tweezers and microneedles, respectively. Rotational angular fluctuations of filaments supplied the torsional rigidity as (8.0 ± 1.2) × 10-26 Nm2. This value is similar to that deduced from the longitudinal rigidity, assuming the actin filament to be a homogeneous rod. The breaking force of the actin-actin bond was measured while twisting a filament through various angles using microneedles. The breaking force decreased greatly under twist, e.g., from 600-320 pN when filaments were turned through 90 degrees, independent of the rotational direction. Our results indicate that an actin filament exhibits comparable flexibility in the rotational and longitudinal directions, but breaks more easily under torsional load.

  8. IR spectroscopy as a source of data on bond strengths

    NASA Astrophysics Data System (ADS)

    Finkelshtein, E. I.; Shamsiev, R. S.

    2018-02-01

    The aim of this work is the estimation of double bond strength, namely Cdbnd O bonds in ketones and aldehydes and Cdbnd C bonds in various compounds. By the breaking of these bonds one or both fragments formed are carbenes, for which experimental data on the enthalpies of formation (ΔHf298) are scarce. Thus for the estimation of ΔHf298 of the corresponding carbenes, the empirical equations were proposed based on different approximations. In addition, a quantum chemical calculations of the ΔHf298 values of carbenes were performed, and the data obtained were compared with experimental values and the results of earlier calculations. Equations for the calculation of Cdbnd O bond strengths of different ketones and aldehydes from the corresponding stretching frequencies ν(Cdbnd O) were derived. Using the proposed equations, the strengths of Cdbnd O bonds of 25 ketones and 12 conjugated aldehydes, as well as Cdbnd C bonds of 13 hydrocarbons and 7 conjugated aldehydes were estimated for the first time. Linear correlations of Cdbnd C and Cdbnd O bond strengths with the bond lengths were established, and the equations permitting the estimation of the double bond strengths and lengths with acceptable accuracy were obtained. Also, the strength of central Cdbnd C bond of stilbene was calculated for the first time. The uncertainty of the strengths of double bonds obtained may be regarded as accurate ±10-15 kJ/mol.

  9. Discrete symmetry breaking and baryon currents in U(N) and SU(N) gauge theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucini, B.; Patella, A.

    2009-06-15

    In SU(N) gauge theories with fermions in the fundamental or in a two-index (either symmetric or antisymmetric) representation formulated on a manifold with at least one compact dimension with nontrivial holonomy the discrete symmetries C, P, and T are broken at small enough size of the compact direction(s) for certain values of N. We show that for those N in the broken phase a nonzero baryon current wrapping in the compact direction exists, which provides a measurable observable for the breaking of C, P, and T. We prove that in all cases where the current is absent there is nomore » breaking of those discrete symmetries. This includes the limit N{yields}{infinity} of the SU(N) gauge theory with symmetric or antisymmetric fermions and U(N) gauge theory at any value of N. We then argue that the component of the baryon current in the compact direction is the physical order parameter for C, P, and T breaking due to the breaking of Lorentz invariance.« less

  10. Electrospray ionization tandem mass spectrometry differentiation of N-phosphoryl-[alpha]-, [beta]- and [gamma]-amino acids

    NASA Astrophysics Data System (ADS)

    Qiang, Liming; Cao, Shuxia; Zhao, Xiaoyang; Mao, Xiangju; Guo, Yanchun; Liao, Xincheng; Zhao, Yufen

    2007-10-01

    The fragmentation patterns of N-diisopropyloxyphosphoryl-l-[alpha]-Ala (DIPP-l-[alpha]-Ala), N-diisopropyloxyphosphoryl-d-[alpha]-Ala (DIPP-d-[alpha]-Ala), N-diisopropyloxyphosphoryl-[beta]-Ala (DIPP-[beta]-Ala) and N-diisopropyloxyphosphoryl-[gamma]-amino butyric acid (DIPP-[gamma]-Aba) were investigated by electrospray ionization tandem mass spectrometry (ESI-MS/MS). DIPP-d-[alpha]-Ala showed the same fragmentation pathways as DIPP-l-[alpha]-Ala. In the fragmentation of protonated DIPP-[beta]-Ala, the characteristic fragment ion [M + H - 2C3H6 - H2O - CH2CO]+ appeared and could be used to distinguish [beta]-Ala from l-[alpha]-Ala and d-[alpha]-Ala through tandem mass spectra, even though they possess the same molecular weight. In the fragmentation of protonated DIPP-[gamma]-Aba, the break of PN bond occurred and an interesting protonated lactam ion with five-membered ring was generated. Furthermore, in the MS3 spectrum of [M + Na - 2C3H6]+ ion of DIPP-[gamma]-Aba, a strong intensity of unique fragment ion, namely lactam-sodium adduct with five-membered ring, was observed, which could be considered as a mark for [gamma]-amino acids. The stepwise fragmentations of their [M + Na]+ ions and [M - H]- ions showed that they all underwent a PN to PO bond migration through a five-membered or six-membered or even seven-membered ring transition state, respectively, which supported the great affinity of hydroxyl for phosphoryl group.

  11. Probing the structural evolution and bonding properties of PtnC2-/0 (n = 1-7) clusters by density functional calculations

    NASA Astrophysics Data System (ADS)

    Lu, Sheng-Jie

    2018-05-01

    We present a theoretical investigation on the structural evolution and bonding properties of PtnC2-/0 (n = 1-7) clusters using density functional theoretical calculations. The results showed that both anionic and neutral PtnC2 (n = 1-7) clusters primarily adopt 2D planar chain-shaped or ring-based structures. The two C atoms directly interact with each other to form a Csbnd C bond for n = 1-3, while the two C atoms are separated by the Pt atoms for n = 4-7, except for neutral Pt5C2. Pt4C2- anion and Pt4C2 neutral both show σ plus π double delocalized bonding patterns.

  12. Bond breaking in epoxy systems: A combined QM/MM approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barr, Stephen A.; Ecker, Allison M.; Berry, Rajiv J., E-mail: Rajiv.Berry@us.af.mil

    2016-06-28

    A novel method to combine quantum mechanics (QM) and molecular mechanics has been developed to accurately and efficiently account for covalent bond breaking in polymer systems under high strain without the use of predetermined break locations. Use of this method will provide a better fundamental understanding of the mechano-chemical origins of fracture in thermosets. Since classical force fields cannot accurately account for bond breaking, and QM is too demanding to simulate large systems, a hybrid approach is required. In the method presented here, strain is applied to the system using a classical force field, and all bond lengths are monitored.more » When a bond is stretched past a threshold value, a zone surrounding the bond is used in a QM energy minimization to determine which, if any, bonds break. The QM results are then used to reconstitute the system to continue the classical simulation at progressively larger strain until another QM calculation is triggered. In this way, a QM calculation is only computed when and where needed, allowing for efficient simulations. A robust QM method for energy minimization has been determined, as well as appropriate values for the QM zone size and the threshold bond length. Compute times do not differ dramatically from classical molecular mechanical simulations.« less

  13. Differential scanning calorimetric study of the binding between native DNA and its primary water of hydration.

    NASA Astrophysics Data System (ADS)

    Marlowe, R. L.; Lukan, A. M.; Lee, S. A.; Anthony, L.; Rupprecht, A.

    1996-03-01

    Differential scanning calorimetry was used to measure the binding strength between calf-thymus DNA and its primary water of hydration. The specific heat of wet-spun films was found to have a broad endothermic transition near 80 ^oC and a sharp exothermic transition near 250 ^oC. The broad transition is believed to be mainly due to the breaking of the bonds of the strongly bound water of hydration. This transition was found to be reversible, as expected. Kissinger analysis indicates that the activation barrier for breaking the bonds of these water molecules is about 0.6 eV. The sharp transition appeared to be an indication of a thermal decomposition of the DNA. Samples taken above this transition lost mass, showed evidence of having melted, and had turned black in color. This transition is irreversible.

  14. Contact and Length Dependent Effects in Single-Molecule Electronics

    NASA Astrophysics Data System (ADS)

    Hines, Thomas

    Understanding charge transport in single molecules covalently bonded to electrodes is a fundamental goal in the field of molecular electronics. In the past decade, it has become possible to measure charge transport on the single-molecule level using the STM break junction method. Measurements on the single-molecule level shed light on charge transport phenomena which would otherwise be obfuscated by ensemble measurements of groups of molecules. This thesis will discuss three projects carried out using STM break junction. In the first project, the transition between two different charge transport mechanisms is reported in a set of molecular wires. The shortest wires show highly length dependent and temperature invariant conductance behavior, whereas the longer wires show weakly length dependent and temperature dependent behavior. This trend is consistent with a model whereby conduction occurs by coherent tunneling in the shortest wires and by incoherent hopping in the longer wires. Measurements are supported with calculations and the evolution of the molecular junction during the pulling process is investigated. The second project reports controlling the formation of single-molecule junctions by means of electrochemically reducing two axial-diazonium terminal groups on a molecule, thereby producing direct Au-C covalent bonds in-situ between the molecule and gold electrodes. Step length analysis shows that the molecular junction is significantly more stable, and can be pulled over a longer distance than a comparable junction created with amine anchoring bonds. The stability of the junction is explained by the calculated lower binding energy associated with the direct Au-C bond compared with the Au-N bond. Finally, the third project investigates the role that molecular conformation plays in the conductance of oligothiophene single-molecule junctions. Ethyl substituted oligothiophenes were measured and found to exhibit temperature dependent conductance and transition voltage for molecules with between two and six repeat units. While the molecule with only one repeat unit shows temperature invariant behavior. Density functional theory calculations show that at higher temperatures the oligomers with multiple repeat units assume a more planar conformation, which increases the conjugation length and decreases the effective energy barrier of the junction.

  15. A ReaxFF-based molecular dynamics study of the mechanisms of interactions between reactive oxygen plasma species and the Candida albicans cell wall

    NASA Astrophysics Data System (ADS)

    Zhao, T.; Shi, L.; Zhang, Y. T.; Zou, L.; Zhang, L.

    2017-10-01

    Atmospheric pressure non-equilibrium plasmas have attracted significant attention and have been widely used to inactivate pathogens, yet the mechanisms underlying the interactions between plasma-generated species and bio-organisms have not been elucidated clearly. In this paper, reactive molecular dynamics simulations are employed to investigate the mechanisms of interactions between reactive oxygen plasma species (O, OH, and O2) and β-1,6-glucan (a model for the C. albicans cell wall) from a microscopic point of view. Our simulations show that O and OH species can break structurally important C-C and C-O bonds, while O2 molecules exhibit only weak, non-bonded interactions with β-1,6-glucan. Hydrogen abstraction from hydroxyl or CH groups occurs first in all bond cleavage mechanisms. This is followed by a cascade of bond cleavage and double bond formation events. These lead to the destruction of the fungal cell wall. O and OH have similar effects related to their bond cleavage mechanisms. Our simulation results provide fundamental insights into the mechanisms underlying the interactions between reactive oxygen plasma species and the fungal cell wall of C. albicans at the atomic level.

  16. Degradation reaction of Diazo reactive black 5 dye with copper (II) sulfate catalyst in thermolysis treatment.

    PubMed

    Lau, Yen-Yie; Wong, Yee-Shian; Ang, Tze-Zhang; Ong, Soon-An; Lutpi, Nabilah Aminah; Ho, Li-Ngee

    2018-03-01

    The theme of present research demonstrates performance of copper (II) sulfate (CuSO 4 ) as catalyst in thermolysis process to treat reactive black 5 (RB 5) dye. During thermolysis without presence of catalyst, heat was converted to thermal energy to break the enthalpy of chemical structure bonding and only 31.62% of color removal. With CuSO 4 support as auxiliary agent, the thermally cleaved molecular structure was further destabilized and reacted with CuSO 4 . Copper ions functioned to delocalize the coordination of π of the lone paired electron in azo bond, C=C bond of the sp 2 carbon to form C-C of the sp 3 amorphous carbon in benzene and naphthalene. Further, the radicals of unpaired electrons were stabilized and RB 5 was thermally decomposed to methyl group. Zeta potential measurement was carried out to analyze the mechanism of RB 5 degradation and measurement at 0 mV verified the critical chemical concentration (CCC) (0.7 g/L copper (II) sulfate), as the maximum 92.30% color removal. The presence of copper (II) sulfate catalyst has remarkably increase the RB 5 dye degradation as the degradation rate constant without catalyst, k 1 is 6.5224 whereas the degradation rate constant with catalyst, k 2 is 25.6810. This revealed the correlation of conversion of thermal energy from heat to break the chemical bond strength, subsequent fragmentation of RB 5 dye molecular mediated by copper (II) sulfate catalyst. The novel framework on thermolysis degradation of molecular structure of RB 5 with respect to the bond enthalpy and interfacial intermediates decomposition with catalyst reaction were determined.

  17. A crossover in anisotropic nanomechanochemistry of van der Waals crystals

    NASA Astrophysics Data System (ADS)

    Shimamura, Kohei; Misawa, Masaaki; Li, Ying; Kalia, Rajiv K.; Nakano, Aiichiro; Shimojo, Fuyuki; Vashishta, Priya

    2015-12-01

    In nanoscale mechanochemistry, mechanical forces selectively break covalent bonds to essentially control chemical reactions. An archetype is anisotropic detonation of layered energetic molecular crystals bonded by van der Waals (vdW) interactions. Here, quantum molecular dynamics simulations reveal a crossover of anisotropic nanomechanochemistry of vdW crystal. Within 10-13 s from the passage of shock front, lateral collision produces NO2 via twisting and bending of nitro-groups and the resulting inverse Jahn-Teller effect, which is mediated by strong intra-layer hydrogen bonds. Subsequently, as we transition from heterogeneous to homogeneous mechanochemical regimes around 10-12 s, shock normal to multilayers becomes more reactive, producing H2O assisted by inter-layer N-N bond formation. These time-resolved results provide much needed atomistic understanding of nanomechanochemistry that underlies a wider range of technologies.

  18. Electrochemical removal of hydrogen atoms in Mg-doped GaN epitaxial layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, June Key, E-mail: junekey@jnu.ac.kr, E-mail: hskim7@jbnu.ac.kr; Hyeon, Gil Yong; Tawfik, Wael Z.

    2015-05-14

    Hydrogen atoms inside of an Mg-doped GaN epitaxial layer were effectively removed by the electrochemical potentiostatic activation (EPA) method. The role of hydrogen was investigated in terms of the device performance of light-emitting diodes (LEDs). The effect of the main process parameters for EPA such as solution type, voltage, and time was studied and optimized for application to LED fabrication. In optimized conditions, the light output of 385-nm LEDs was improved by about 26% at 30 mA, which was caused by the reduction of the hydrogen concentration by ∼35%. Further removal of hydrogen seems to be involved in the breaking ofmore » Ga-H bonds that passivate the nitrogen vacancies. An EPA process with high voltage breaks not only Mg-H bonds that generate hole carriers but also Ga-H bonds that generate electron carriers, thus causing compensation that impedes the practical increase of hole concentration, regardless of the drastic removal of hydrogen atoms. A decrease in hydrogen concentration affects the current-voltage characteristics, reducing the reverse current by about one order and altering the forward current behavior in the low voltage region.« less

  19. Electrochemical removal of hydrogen atoms in Mg-doped GaN epitaxial layers

    NASA Astrophysics Data System (ADS)

    Lee, June Key; Hyeon, Gil Yong; Tawfik, Wael Z.; Choi, Hee Seok; Ryu, Sang-Wan; Jeong, Tak; Jung, Eunjin; Kim, Hyunsoo

    2015-05-01

    Hydrogen atoms inside of an Mg-doped GaN epitaxial layer were effectively removed by the electrochemical potentiostatic activation (EPA) method. The role of hydrogen was investigated in terms of the device performance of light-emitting diodes (LEDs). The effect of the main process parameters for EPA such as solution type, voltage, and time was studied and optimized for application to LED fabrication. In optimized conditions, the light output of 385-nm LEDs was improved by about 26% at 30 mA, which was caused by the reduction of the hydrogen concentration by ˜35%. Further removal of hydrogen seems to be involved in the breaking of Ga-H bonds that passivate the nitrogen vacancies. An EPA process with high voltage breaks not only Mg-H bonds that generate hole carriers but also Ga-H bonds that generate electron carriers, thus causing compensation that impedes the practical increase of hole concentration, regardless of the drastic removal of hydrogen atoms. A decrease in hydrogen concentration affects the current-voltage characteristics, reducing the reverse current by about one order and altering the forward current behavior in the low voltage region.

  20. Copper-catalyzed transformation of ketones to amides via C(CO)-C(alkyl) bond cleavage directed by picolinamide.

    PubMed

    Ma, Haojie; Zhou, Xiaoqiang; Zhan, Zhenzhen; Wei, Daidong; Shi, Chong; Liu, Xingxing; Huang, Guosheng

    2017-09-13

    Copper catalyzed chemoselective cleavage of the C(CO)-C(alkyl) bond leading to C-N bond formation with chelation assistance of N-containing directing groups is described. Inexpensive Cu(ii)-acetate serves as a convenient catalyst for this transformation. This method highlights the emerging strategy to transform unactivated alkyl ketones into amides in organic synthesis and provides a new strategy for C-C bond cleavage.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andino, José G; Kilgore, Uriah J; Pink, Maren

    Breaking of the carbon-hydrogen bond of benzene and pyridine is observed with (PNP)V(CH 2tBu) 2 (1), and in the case of benzene, the formation of an intermediate benzyne complex (C) is proposed, and indirect proof of its intermediacy is provided by identification of (PNP)V=O(η 2-C 6H 4) in combination with DFT calculations.

  2. 4-Bromo-N-(di-n-propyl-carbamothioyl)-benzamide.

    PubMed

    Binzet, Gün; Flörke, Ulrich; Külcü, Nevzat; Arslan, Hakan

    2009-02-04

    The synthesis of the title compound, C(14)H(19)BrN(2)OS, involves the reaction of 4-bromo-benzoyl chloride with potassium thio-cyanate in acetone followed by condensation of the resulting 4-bromo-benzoyl isothio-cyanate with di-n-propyl-amine. Typical thio-urea carbonyl and thio-carbonyl double bonds, as well as shortened C-N bonds, are observed in the title compound. The short C-N bond lengths in the centre of the mol-ecule reveal the effects of resonance in this part of the mol-ecule. The asymmetric unit of the title compound contains two crystallographically independent mol-ecules, A and B. There is very little difference between the bond lengths and angles of these mol-ecules. In mol-ecule B, one di-n-propyl group is twisted in a -anti-periplanar conformation with C-C-C-H = -179.1 (3)° and the other adopts a -synclinal conformation with C-C-C-H = -56.7 (4)°; in mol-ecule A the two di-n-propyl groups are twisted in + and -anti-periplanar conformations, with C-C-C-H = -179.9 (3) and 178.2 (3)°, respectively. In the crystal, the mol-ecules are linked into dimeric pairs via pairs of N-H⋯S hydrogen bonds.

  3. Hydrogen-bonded supramolecular structures of three related 4-(5-nitro-2-furyl)-1,4-dihydropyridines.

    PubMed

    Quesada, Antonio; Argüello, Jacqueline; Squella, Juan A; Wardell, James L; Low, John N; Glidewell, Christopher

    2006-01-01

    In ethyl 5-cyano-2,6-dimethyl-4-(5-nitro-2-furyl)-1,4-dihydropyridine-3-carboxylate, C15H15N3O5, the molecules are linked into chains by a single N-H...O hydrogen bond. The molecules in diethyl 2,6-dimethyl-4-(5-nitro-2-furyl)-1,4-dihydropyridine-3,5-dicarboxylate, C17H20N2O7, are linked by a combination of one N-H...O hydrogen bond and two C-H...O hydrogen bonds into sheets built from equal numbers of R(2)(2)(17) and R(4)(4)(18) rings. In 2,6-dimethyl-4-(5-nitro-2-furyl)-1,4-dihydropyridine-3,5-dicarbonitrile, C13H10N4O3, the molecules are linked by a combination of a three-centre N-H...(O)2 hydrogen bond and two independent two-centre C-H...O hydrogen bonds into complex sheets containing four types of ring.

  4. Modeling the archetype cysteine protease reaction using dispersion corrected density functional methods in ONIOM-type hybrid QM/MM calculations; the proteolytic reaction of papain.

    PubMed

    Fekete, Attila; Komáromi, István

    2016-12-07

    A proteolytic reaction of papain with a simple peptide model substrate N-methylacetamide has been studied. Our aim was twofold: (i) we proposed a plausible reaction mechanism with the aid of potential energy surface scans and second geometrical derivatives calculated at the stationary points, and (ii) we investigated the applicability of the dispersion corrected density functional methods in comparison with the popular hybrid generalized gradient approximations (GGA) method (B3LYP) without such a correction in the QM/MM calculations for this particular problem. In the resting state of papain the ion pair and neutral forms of the Cys-His catalytic dyad have approximately the same energy and they are separated by only a small barrier. Zero point vibrational energy correction shifted this equilibrium slightly to the neutral form. On the other hand, the electrostatic solvation free energy corrections, calculated using the Poisson-Boltzmann method for the structures sampled from molecular dynamics simulation trajectories, resulted in a more stable ion-pair form. All methods we applied predicted at least a two elementary step acylation process via a zwitterionic tetrahedral intermediate. Using dispersion corrected DFT methods the thioester S-C bond formation and the proton transfer from histidine occur in the same elementary step, although not synchronously. The proton transfer lags behind (or at least does not precede) the S-C bond formation. The predicted transition state corresponds mainly to the S-C bond formation while the proton is still on the histidine Nδ atom. In contrast, the B3LYP method using larger basis sets predicts a transition state in which the S-C bond is almost fully formed and the transition state can be mainly featured by the Nδ(histidine) to N(amid) proton transfer. Considerably lower activation energy was predicted (especially by the B3LYP method) for the next amide bond breaking elementary step of acyl-enzyme formation. Deacylation appeared to be a single elementary step process in all the methods we applied.

  5. The selective activation of a C-F bond with an auxiliary strong Lewis acid: a method to change the activation preference of C-F and C-H bonds.

    PubMed

    Wang, Lin; Sun, Hongjian; Li, Xiaoyan; Fuhr, Olaf; Fenske, Dieter

    2016-11-15

    The selective activation of the C-F bonds in substituted (2,6-difluorophenyl)phenylimines (2,6-F 2 H 3 C 6 -(C[double bond, length as m-dash]NH)-n'-R-C 6 H 4 (n' = 2, R = H (1); n' = 2, R = Me (2); n' = 4, R = tBu (3))) by Fe(PMe 3 ) 4 with an auxiliary strong Lewis acid (LiBr, LiI, or ZnCl 2 ) was explored. As a result, iron(ii) halides ((H 5 C 6 -(C[double bond, length as m-dash]NH)-2-FH 3 C 6 )FeX(PMe 3 ) 3 (X = Br (8); Cl (9)) and (n-RH 4 C 6 -(C[double bond, length as m-dash]NH)-2'-FH 3 C 6 )FeX(PMe 3 ) 3 (n = 2, R = Me, X = Br (11); n = 4, R = tBu, X = I (12))) were obtained. Under similar reaction conditions, using LiBF 4 instead of LiBr or ZnCl 2 , the reaction of (2,6-difluorophenyl)phenylimine with Fe(PMe 3 ) 4 afforded an ionic complex [(2,6-F 2 H 3 C 6 -(C[double bond, length as m-dash]NH)-H 4 C 6 )Fe(PMe 3 ) 4 ](BF 4 ) (10) via the activation of a C-H bond. The method of C-F bond activation with an auxiliary strong Lewis acid is appropriate for monofluoroarylmethanimines. Without the Lewis acid, iron(ii) hydrides ((2-RH 4 C 6 -(C[double bond, length as m-dash]NH)-2'-FH 3 C 6 )FeH(PMe 3 ) 3 (R = H (13); Me (14))) were generated from the reactions of Fe(PMe 3 ) 4 with the monofluoroarylmethanimines (2-FH 4 C 6 -(C[double bond, length as m-dash]NH)-2'-RC 6 H 4 (R = H (4); Me (5))); however, in the presence of ZnCl 2 or LiBr, iron(ii) halides ((2-RH 4 C 6 -(C[double bond, length as m-dash]NH)-H 4 C 6 )FeX(PMe 3 ) 3 (R = H, X = Cl (15); R = Me, X = Br (16))) could be obtained through the activation of a C-F bond. Furthermore, a C-F bond activation with good regioselectivity in (pentafluorophenyl)arylmethanimines (F 5 C 6 -(C[double bond, length as m-dash]NH)-2,6-Y 2 C 6 H 3 (Y = F (6); H (7))) could be realized in the presence of ZnCl 2 to produce iron(ii) chlorides ((2,6-Y 2 H 3 C 6 -(C[double bond, length as m-dash]NH)-F 4 C 6 )FeCl(PMe 3 ) 3 (Y = F (17); H (18))). This series of iron(ii) halides could be used to catalyze the hydrosilylation reaction of aldehydes. Due to the stability of iron(ii) halides to high temperature, the reaction mixture was allowed to be heated to 100 °C and the reaction could finish within 0.5 h.

  6. Experimental and theoretical study on activation of the C-H bond in pyridine by [M(m)]- (M = Cu, Ag, Au, m = 1-3).

    PubMed

    Liu, Xiao-Jing; Hamilton, I P; Han, Ke-Li; Tang, Zi-Chao

    2010-09-21

    Activation of the C-H bond of pyridine by [M(m)](-) (M = Cu, Ag, Au, m = 1-3) is investigated by experiment and theory. Complexes of coinage metal clusters and the pyridyl group, [M(m)-C(5)H(4)N](-), are produced from reactions between metal clusters formed by laser ablation of coinage metal samples and pyridine molecules seeded in argon carrier gas. We examine the structure and formation mechanism of these pyridyl-coinage metal complexes. Our study shows that C(5)H(4)N bonds to the metal clusters through a M-C sigma bond and [M(m)-C(5)H(4)N](-) is produced via a stepwise mechanism. The first step is a direct insertion reaction between [M(m)](-) and C(5)H(5)N with activation of the C-H bond to yield the intermediate [HM(m)-C(5)H(4)N](-). The second step is H atom abstraction by a neutral metal atom to yield [M(m)-C(5)H(4)N](-).

  7. Coordinatively Unsaturated Metal-Organic Frameworks M3(btc)2 (M = Cr, Fe, Co, Ni, Cu, and Zn) Catalyzing the Oxidation of CO by N2O: Insight from DFT Calculations.

    PubMed

    Ketrat, Sombat; Maihom, Thana; Wannakao, Sippakorn; Probst, Michael; Nokbin, Somkiat; Limtrakul, Jumras

    2017-11-20

    The oxidation of CO by N 2 O over metal-organic framework (MOF) M 3 (btc) 2 (M = Fe, Cr, Co, Ni, Cu, and Zn) catalysts that contain coordinatively unsaturated sites has been investigated by means of density functional theory calculations. The reaction proceeds in two steps. First, the N-O bond of N 2 O is broken to form a metal oxo intermediate. Second, a CO molecule reacts with the oxygen atom of the metal oxo site, forming one C-O bond of CO 2 . The first step is a rate-determining step for both Cu 3 (btc) 2 and Fe 3 (btc) 2 , where it requires the highest activation energy (67.3 and 19.6 kcal/mol, respectively). The lower value for the iron compound compared to the copper one can be explained by the larger amount of electron density transferred from the catalytic site to the antibonding of N 2 O molecules. This, in turn, is due to the smaller gap between the highest occupied molecular orbital (HOMO) of the MOF and the lowest unoccupied molecular orbital (LUMO)  of N 2 O for Fe 3 (btc) 2 compared to Cu 3 (btc) 2 . The results indicate the important role of charge transfer for the N-O bond breaking in N 2 O. We computationally screened other MOF M 3 (btc) 2 (M = Cr, Fe, Co, Ni, Cu, and Zn) compounds in this respect and show some relationships between the activation energy and orbital properties like HOMO energies and the spin densities of the metals at the active sites of the MOFs.

  8. Enhanced Si-O Bond Breaking in Silica Glass by Water Dimer: A Hybrid Quantum-Classical Simulation Study

    NASA Astrophysics Data System (ADS)

    Kouno, Takahisa; Ogata, Shuji; Shimada, Takaaki; Tamura, Tomoyuki; Kobayashi, Ryo

    2016-05-01

    A hybrid quantum-classical simulation of a 4,608-atom silica glass is performed at a temperature of 400 K with either a water monomer or dimer inserted in a void. The quantum region that includes the water and the surrounding atoms is treated by the density-functional theory (DFT). During a simulation, the silica glass is gradually compressed or expanded. No Si-O bond breaking occurs with a water monomer until the silica glass collapses. With a water dimer, we find that Si-O bond breaking occurs through three steps in 3 out of 24 compression cases: (i) H-transfer as 2H2O → OH- + H3O+ accompanied by the adsorption of OH- at a strained Si to make it five-coordinated, (ii) breaking of a Si-O bond that originates from the five-coordinated Si, and (iii) H-transfer from H3O+ to the O of the broken Si-O bond. A separate DFT calculation confirms that the barrier energy of the bond breaking with a water dimer under compression is smaller than that with a water monomer and that the barrier energy decreases significantly when the silica glass is compressed further.

  9. Dissolution of lignin in green urea aqueous solution

    NASA Astrophysics Data System (ADS)

    Wang, Jingyu; Li, Ying; Qiu, Xueqing; Liu, Di; Yang, Dongjie; Liu, Weifeng; Qian, Yong

    2017-12-01

    The dissolution problem is the main obstacle for the value-added modification and depolymerization of industrial lignin. Here, a green urea aqueous solution for complete dissolution of various lignin is presented and the dissolution mechanism is analyzed by AFM, DLS and NMR. The results show that the molecular interaction of lignin decreases from 32.3 mN/m in pure water to 11.3 mN/m in urea aqueous solution. The immobility of 1H NMR spectra and the shift of 17O NMR spectra of urea in different lignin/urea solutions indicate that the oxygen of carbonyl in urea and the hydrogen of hydroxyl in lignin form new hydrogen bonds and break the original hydrogen bonds among lignin molecules. The shift of 1H NMR spectra of lignin and the decrease of interactions in model compound polystyrene indicate that urea also breaks the π-π interactions between aromatic rings of lignin. Lignin dissolved in urea aqueous has good antioxidant activity and it can scavenge at least 63% free radicals in 16 min.

  10. Ground-State Distortion in N-Acyl-tert-butyl-carbamates (Boc) and N-Acyl-tosylamides (Ts): Twisted Amides of Relevance to Amide N-C Cross-Coupling.

    PubMed

    Szostak, Roman; Shi, Shicheng; Meng, Guangrong; Lalancette, Roger; Szostak, Michal

    2016-09-02

    Amide N-C(O) bonds are generally unreactive in cross-coupling reactions employing low-valent transition metals due to nN → π*C═O resonance. Herein we demonstrate that N-acyl-tert-butyl-carbamates (Boc) and N-acyl-tosylamides (Ts), two classes of acyclic amides that have recently enabled the development of elusive amide bond N-C cross-coupling reactions with organometallic reagents, are intrinsically twisted around the N-C(O) axis. The data have important implications for the design of new amide cross-coupling reactions with the N-C(O) amide bond cleavage as a key step.

  11. Blue-shifted and red-shifted hydrogen bonds: Theoretical study of the CH3CHO· · ·HNO complexes

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Zhang, Weijun; Gao, Xiaoming

    The blue-shifted and red-shifted H-bonds have been studied in complexes CH3CHO?HNO. At the MP2/6-31G(d), MP2/6-31+G(d,p) MP2/6-311++G(d,p), B3LYP/6-31G(d), B3LYP/6-31+G(d,p) and B3LYP/6-311++G(d,p) levels, the geometric structures and vibrational frequencies of complexes CH3CHO?HNO are calculated by both standard and CP-corrected methods, respectively. Complex A exhibits simultaneously red-shifted C bond H?O and blue-shifted N bond H?O H-bonds. Complex B possesses simultaneously two blue-shifted H-bonds: C bond H?O and N bond H?O. From NBO analysis, it becomes evident that the red-shifted C bond H?O H-bond can be explained on the basis of the two opposite effects: hyperconjugation and rehybridization. The blue-shifted C bond H?O H-bond is a result of conjunct C bond H bond strengthening effects of the hyperconjugation and the rehybridization due to existence of the significant electron density redistribution effect. For the blue-shifted N bond H?O H-bonds, the hyperconjugation is inhibited due to existence of the electron density redistribution effect. The large blue shift of the N bond H stretching frequency is observed because the rehybridization dominates the hyperconjugation.

  12. Ab initio calculations of the effects of H+ and NH4+ on the initial decomposition of HMX.

    PubMed

    Wang, Luoxin; Tuo, Xinlin; Yi, Changhai; Wang, Xiaogong

    2008-10-01

    In this work, the effects of H(+) and NH(4)(+) on the initial decomposition of HMX were investigated on the basis of the B3P86/6-31G** and B3LYP/6-31G* calculations. Three initial decomposition pathways including the N-NO(2) bond fission, HONO elimination and C-N bond dissociation were considered for the complexes formed by HMX with H(+) (PHMX1 and PHMX2) or with NH(4)(+) (AHMX). We found that H(+) and NH(4)(+) did not evidently induce the HMX to trigger the N-NO(2) heterolysis because the energy barrier of N-NO(2) heterolysis was found to be higher than the bond dissociation energy of N-NO(2) homolytic cleavage. Meanwhile, the transition state barriers of the HONO elimination from the complexes were found to be similar to that from the isolated HMX, which means that the HONO elimination reaction of HMX was not affected by the H(+) and NH(4)(+). As for the ring-opening reaction of HMX due to the C-N bond dissociation, the calculated potential energy profile showed that the energy of the complex (AHMX) went uphill along the C-N bond length and no transition state existed on the curve. However, the transition state energy barriers of C-N bond dissociation were calculated to be only 5.0 kcal/mol and 5.5 kcal/mol for the PHMX1 and PHMX2 complexes, respectively, which were much lower than the C-N bond dissociation energy of isolated HMX. Moreover, among the three initial decomposition reactions, the C-N bond dissociation was also the most energetically favorable pathway for the PHMX1 and PHMX2. Our calculation results showed that the H(+) can significantly promote the initial thermal decomposition of C-N bond of HMX, which, however, is influenced by NH(4)(+) slightly.

  13. Efficient dehydrogenation of formic acid using Al12N12 nanocage: A DFT study

    NASA Astrophysics Data System (ADS)

    Esrafili, Mehdi D.; Nurazar, Roghaye

    2014-11-01

    We have studied the adsorption and decomposition of formic acid (HCOOH) on the surface of Al12N12 fullerene-like nanocage using density functional theory. Different adsorption modes were found for HCOOH on the Al12N12, i.e. molecular and dissociative monodentate or bidentate adsorption. Three reaction pathways were proposed to understand gas-phase HCOOH decomposition on the Al12N12 nanocage. Our results reveal that for the decomposition of HCOOH into CO2 and H2, the most favorable pathway should be the Csbnd H bond activation reaction. The reaction energies and the activation barriers obtained here suggest that for the dissociative adsorption configuration on the Al12N12 surface, the rate-determining step is the Csbnd H bond breaking.

  14. Assessing the distinguishable cluster approximation based on the triple bond-breaking in the nitrogen molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rishi, Varun; Perera, Ajith; Bartlett, Rodney J., E-mail: bartlett@qtp.ufl.edu

    2016-03-28

    Obtaining the correct potential energy curves for the dissociation of multiple bonds is a challenging problem for ab initio methods which are affected by the choice of a spin-restricted reference function. Coupled cluster (CC) methods such as CCSD (coupled cluster singles and doubles model) and CCSD(T) (CCSD + perturbative triples) correctly predict the geometry and properties at equilibrium but the process of bond dissociation, particularly when more than one bond is simultaneously broken, is much more complicated. New modifications of CC theory suggest that the deleterious role of the reference function can be diminished, provided a particular subset of termsmore » is retained in the CC equations. The Distinguishable Cluster (DC) approach of Kats and Manby [J. Chem. Phys. 139, 021102 (2013)], seemingly overcomes the deficiencies for some bond-dissociation problems and might be of use in quasi-degenerate situations in general. DC along with other approximate coupled cluster methods such as ACCD (approximate coupled cluster doubles), ACP-D45, ACP-D14, 2CC, and pCCSD(α, β) (all defined in text) falls under a category of methods that are basically obtained by the deletion of some quadratic terms in the double excitation amplitude equation for CCD/CCSD (coupled cluster doubles model/coupled cluster singles and doubles model). Here these approximate methods, particularly those based on the DC approach, are studied in detail for the nitrogen molecule bond-breaking. The N{sub 2} problem is further addressed with conventional single reference methods but based on spatial symmetry-broken restricted Hartree–Fock (HF) solutions to assess the use of these references for correlated calculations in the situation where CC methods using fully symmetry adapted SCF solutions fail. The distinguishable cluster method is generalized: 1) to different orbitals for different spins (unrestricted HF based DCD and DCSD), 2) by adding triples correction perturbatively (DCSD(T)) and iteratively (DCSDT-n), and 3) via an excited state approximation through the equation of motion (EOM) approach (EOM-DCD, EOM-DCSD). The EOM-CC method is used to identify lower-energy CC solutions to overcome singularities in the CC potential energy curves. It is also shown that UHF based CC and DC methods behave very similarly in bond-breaking of N{sub 2}, and that using spatially broken but spin preserving SCF references makes the CCSD solutions better than those for DCSD.« less

  15. DNA Strand Breaks in Mitotic Germ Cells of Caenorhabditis elegans Evaluated by Comet Assay

    PubMed Central

    Park, Sojin; Choi, Seoyun; Ahn, Byungchan

    2016-01-01

    DNA damage responses are important for the maintenance of genome stability and the survival of organisms. Such responses are activated in the presence of DNA damage and lead to cell cycle arrest, apoptosis, and DNA repair. In Caenorhabditis elegans, double-strand breaks induced by DNA damaging agents have been detected indirectly by antibodies against DSB recognizing proteins. In this study we used a comet assay to detect DNA strand breaks and to measure the elimination of DNA strand breaks in mitotic germline nuclei of C. elegans. We found that C. elegans brc-1 mutants were more sensitive to ionizing radiation and camptothecin than the N2 wild-type strain and repaired DNA strand breaks less efficiently than N2. This study is the first demonstration of direct measurement of DNA strand breaks in mitotic germline nuclei of C. elegans. This newly developed assay can be applied to detect DNA strand breaks in different C. elegans mutants that are sensitive to DNA damaging agents. PMID:26903030

  16. Preparation, structure and some chemistry of FcC[identically equal to]CC[identically equal to]CC[identically equal to]CRu(dppe)Cp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruce, Michael I.; Humphrey, Paul A.; Jevric, Martyn

    The synthesis of Fc(C{triple_bond}C){sub 3}Ru(dppe)Cp (2) from Fc(C{triple_bond}C){sub 3}SiMe{sub 3} and RuCl(dppe)Cp is described, together with its reactions with tcne to give the tetracyano-dienyl FcC{triple_bond}CC{triple_bond}C{l_brace}C[{triple_bond}C(CN){sub 2}]{r_brace}{sub 2}Ru(dppe)Cp (3) and -cyclobutenyl FcC{triple_bond}CC{triple_bond}C{l_brace}C{triple_bond}CC(CN){sub 2}C(CN){sub 2}{r_brace}Ru(dppe)Cp (4), with Co{sub 2}({mu}-dppm){sub n}(CO){sub 8-2n} (n = 0, 1) to give FcC{sub 2}{l_brace}Co{sub 2}(CO){sub 6}{r_brace}C{sub 2}{l_brace}Co{sub 2}(CO){sub 6}{r_brace}CCRu(dppe)Cp (5) and FcC{triple_bond}CC{triple_bond}CC{sub 2}{l_brace}Co{sub 2}({mu}-dppm)(CO){sub 4}{r_brace}Ru(dppe)Cp (6), respectively, and with Os{sub 3}(CO){sub 10}(NCMe){sub 2} to give Os{sub 3}{l_brace}{mu}{sub 3}-C{sub 2}C{triple_bond}CC{triple_bond}C[Ru(dppe)Cp]{r_brace}(CO){sub 10} (7). On standing in solution, the latter isomerises to the cyclo-metallated derivative Os{sub 3}({mu}-H){l_brace}{mu}{sub 3}-C[Ru(dppe)Cp]CCC[({eta}-C{sub 5}H{sub 3})FeCp]{r_brace}(CO){sub 8} (8). X-ray structural determinations of 1, 2, 6 andmore » 7 are reported.« less

  17. Interfacial characterization of Al-Al thermocompression bonds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malik, N., E-mail: nishantmalik1987@gmail.com; SINTEF ICT, Department of Microsystems and Nanotechnology, P.O. Box 124 Blindern, N-0314 Oslo; Carvalho, P. A.

    2016-05-28

    Interfaces formed by Al-Al thermocompression bonding were studied by the transmission electron microscopy. Si wafer pairs having patterned bonding frames were bonded using Al films deposited on Si or SiO{sub 2} as intermediate bonding media. A bond force of 36 or 60 kN at bonding temperatures ranging from 400–550 °C was applied for a duration of 60 min. Differences in the bonded interfaces of 200 μm wide sealing frames were investigated. It was observed that the interface had voids for bonding with 36 kN at 400 °C for Al deposited both on Si and on SiO{sub 2}. However, the dicing yield was 33% for Al onmore » Si and 98% for Al on SiO{sub 2}, attesting for the higher quality of the latter bonds. Both a bond force of 60 kN applied at 400 °C and a bond force of 36 kN applied at 550 °C resulted in completely bonded frames with dicing yields of, respectively, 100% and 96%. A high density of long dislocations in the Al grains was observed for the 60 kN case, while the higher temperature resulted in grain boundary rotation away from the original Al-Al interface towards more stable configurations. Possible bonding mechanisms and reasons for the large difference in bonding quality of the Al films deposited on Si or SiO{sub 2} are discussed.« less

  18. Contribution of Hydrogen Bonds to Paper Strength Properties.

    PubMed

    Przybysz, Piotr; Dubowik, Marcin; Kucner, Marta Anna; Przybysz, Kazimierz; Przybysz Buzała, Kamila

    2016-01-01

    The objective of this work was to investigate the influence of hydrogen bonds between fibres on static and dynamic strength properties of paper. A commercial bleached pinewood kraft pulp was soaked in water, refined in a PFI, and used to form paper webs in different solvents, such as water, methanol, ethanol, n-propanol and n-butanol, to determine the effect of their dipole moment on static and dynamic strength properties of resulting paper sheets. Paper which was formed in water, being the solvent of the highest dipole moment among the tested ones, showed the highest breaking length and tear resistance. When paper webs were formed in n-butanol, which was the least polar among the solvents, these parameters were reduced by around 75%. These results provide evidence of the importance of water in paper web formation and strong impact of hydrogen bonds between fibres on strength properties of paper.

  19. Contribution of Hydrogen Bonds to Paper Strength Properties

    PubMed Central

    Przybysz, Piotr; Dubowik, Marcin; Kucner, Marta Anna; Przybysz, Kazimierz; Przybysz Buzała, Kamila

    2016-01-01

    The objective of this work was to investigate the influence of hydrogen bonds between fibres on static and dynamic strength properties of paper. A commercial bleached pinewood kraft pulp was soaked in water, refined in a PFI, and used to form paper webs in different solvents, such as water, methanol, ethanol, n-propanol and n-butanol, to determine the effect of their dipole moment on static and dynamic strength properties of resulting paper sheets. Paper which was formed in water, being the solvent of the highest dipole moment among the tested ones, showed the highest breaking length and tear resistance. When paper webs were formed in n-butanol, which was the least polar among the solvents, these parameters were reduced by around 75%. These results provide evidence of the importance of water in paper web formation and strong impact of hydrogen bonds between fibres on strength properties of paper. PMID:27228172

  20. Positional preference of proline in alpha-helices.

    PubMed Central

    Kim, M. K.; Kang, Y. K.

    1999-01-01

    Conformational free energy calculations have been carried out for proline-containing alanine-based pentadecapeptides with the sequence Ac-(Ala)n-Pro-(Ala)m-NHMe, where n + m = 14, to figure out the positional preference of proline in alpha-helices. The relative free energy of each peptide was calculated by subtracting the free energy of the extended conformation from that of the alpha-helical one, which is used here as a measure of preference. The highest propensity is found for the peptide with proline at the N-terminus (i.e., Ncap + 1 position), and the next propensities are found at Ncap, N' (Ncap - 1), and C' (Ccap + 1) positions. These computed results are reasonably consistent with the positional propensities estimated from X-ray structures of proteins. The breaking in hydrogen bonds around proline is found to play a role in destabilizing alpha-helical conformations, which, however, provides the favored hydration of the corresponding N-H and C=O groups. The highest preference of proline at the beginning of alpha-helix appears to be due to the favored electrostatic and nonbonded energies between two residues preceding proline and the intrinsic stability of alpha-helical conformation of the proline residue itself as well as no disturbance in hydrogen bonds of alpha-helix by proline. The average free energy change for the substitution of Ala by Pro in a alpha-helix is computed to be 4.6 kcal/mol, which is in good agreement with the experimental value of approximately 4 kcal/mol estimated for an oligopeptide dimer and proteins of barnase and T4 lysozyme. PMID:10422838

  1. Different dynamics and pathway of disulfide bonds reduction of two human defensins, a molecular dynamics simulation study.

    PubMed

    Zhang, Liqun

    2017-04-01

    Human defensins are a class of antimicrobial peptides that are crucial components of the innate immune system. Both human α defensin type 5 (HD5) and human β defensin type 3 (hBD-3) have 6 cysteine residues which form 3 pairs of disulfide bonds in oxidizing condition. Disulfide bond linking is important to the protein structure stabilization, and the disulfide bond linking and breaking order have been shown to influence protein function. In this project, microsecond long molecular dynamics simulations were performed to study the structure and dynamics of HD5 and hBD-3 wildtype and analogs which have all 3 disulfide bonds released in reducing condition. The structure of hBD-3 was found to be more dynamic and flexible than HD5, based on RMSD, RMSF, and radius of gyration calculations. The disulfide bridge breaking order of HD5 and hBD-3 in reducing condition was predicted by two kinds of methods, which gave consistent results. It was found that the disulfide bonds breaking pathways for HD5 and hBD-3 are very different. The breaking of disulfide bonds can influence the dimer interface by making the dimer structure less stable for both kinds of defensin. In order to understand the difference in dynamics and disulfide bond breaking pathway, hydrophilic and hydrophobic accessible surface areas (ASA), buried surface area between cysteine pairs, entropy of cysteine pairs, and internal energy were calculated. Comparing to the wildtype, hBD-3 analog is more hydrophobic, while HD5 is more hydrophilic. For hBD-3, the disulfide breaking is mainly entropy driven, while other factors such as the solvation effects may take the major role in controlling HD5 disulfide breaking pathway. Proteins 2017; 85:665-681. © 2016 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Recognition of a novel type X═N-Hal···Hal (X = C, S, P; Hal = F, Cl, Br, I) halogen bonding.

    PubMed

    Gushchin, Pavel V; Kuznetsov, Maxim L; Haukka, Matti; Kukushkin, Vadim Yu

    2013-04-04

    The chlorination of the eight-membered platinum(II) chelates [PtCl2{NH═C(NR2)N(Ph)C(═NH)N(Ph)C(NR2)═NH}] (R = Me (1); R2 = (CH2)5 (2)) with uncomplexed imino group with Cl2 gives complexes bearing the ═N-Cl moiety [PtCl4{NH═C(NR2)N(Ph)C(═NCl)N(Ph)C(NR2)═NH}] (R = Me (3); R2 = (CH2)5 (4)). X-ray study for 3 revealed a novel type intermolecular halogen bonding ═N-Cl···Cl(-), formed between the Cl atom of the chlorinated imine and the chloride bound to the platinum(IV) center. The processing relevant structural data retrieved from the Cambridge Structural Database (CSDB) shows that this type of halogen bonding is realized in 18 more molecular species having X═N-Hal moieties (X = C, P, S, V, W; Hal = Cl, Br, I), but this weak ═N-Hal···Hal(-) bonding was totally neglected in the previous works. The presence of the halogen bonding in 3 was confirmed by theoretical calculations at the density functional theory (DFT, M06-2X) level, and its nature was analyzed.

  3. Nucleation-dependant chemical bonding paradigm: the effect of rare earth ions on the nucleation of urea in aqueous solution.

    PubMed

    Chen, Xiaoyan; Sun, Congting; Wu, Sixin; Xue, Dongfeng

    2017-03-29

    Rare earth ions can be used to construct a variety of novel structures and are favorable to chemical bonding regulation and design. In this study, the chemical bonding paradigm between rare earth ions (Ln 3+ ) and urea molecules in an aqueous solution can be tracked by the evolution of C[double bond, length as m-dash]O, NH 2 , and CN vibration bands during the urea nucleation stage. Rare earth ions such as La 3+ , Gd 3+ , and Lu 3+ can manipulate the nucleation time of urea via regulating the nucleation-dependant N-C[double bond, length as m-dash]OH-N hydrogen-bonding between urea molecules. Two types of chemical bondings between Ln 3+ and urea molecules have been confirmed, which are Ln 3+ O[double bond, length as m-dash]C-N and Ln 3+ NH 2 -C. Compared with Ln 3+ NH 2 -C, Ln 3+ prefers to coordinate with the O[double bond, length as m-dash]C bond in urea. With a higher concentration of rare earth ions in the solution, some N-C[double bond, length as m-dash]OH-N hydrogen bonds are broken as a consequence of the incorporation of Ln 3+ into the lattice, resulting in the decreased symmetry of local urea molecules in the crystalline nuclei and the consequent Ln 3+ concentration-dependent nucleation time of urea. Moreover, using the ionic electronegativity scale of Ln 3+ , the different effects of La 3+ , Gd 3+ , and Lu 3+ on urea nucleation can be further distinguished. The present study provides basic data for unrevealing the chemical bonding regulation role of rare earth ions in the formation of hydrogen bonded materials, which may give insight into the design and fabrication of novel materials utilizing rare earth ions to adjust the chemical bonding process.

  4. Role of intramolecular hydrogen bonding in the excited-state intramolecular double proton transfer (ESIDPT) of calix[4]arene: A TDDFT study

    NASA Astrophysics Data System (ADS)

    Wang, Se; Wang, Zhuang; Hao, Ce

    2016-01-01

    The time-dependent density functional theory (TDDFT) method was performed to investigate the excited-state intramolecular double proton transfer (ESIDPT) reaction of calix[4] arene (C4A) and the role of the intramolecular hydrogen bonds in the ESIDPT process. The geometries of C4A in the ground state and excited states (S1, S2 and T1) were optimized. Four intramolecular hydrogen bonds formed in the C4A are strengthened or weakened in the S2 and T1 states compared to those in the ground state. Interestingly, upon excitation to the S1 state of C4A, two protons H1 and H2 transfer along the two intramolecular hydrogen bonds O1-H1···O2 and O2-H2···O3, while the other two protons do not transfer. The ESIDPT reaction breaks the primary symmetry of C4A in the ground state. The potential energy curves of proton transfer demonstrate that the ESIDPT process follows the stepwise mechanism but not the concerted mechanism. Findings indicate that intramolecular hydrogen bonding is critical to the ESIDPT reactions in intramolecular hydrogen-bonded systems.

  5. 2-Acetyl-1,1,3,3-tetra­methyl­guanidine

    PubMed Central

    Tiritiris, Ioannis

    2012-01-01

    In the mol­ecule of the title compound, C7H15N3O, the central C atom is surrounded in a nearly ideal trigonal–planar geometry by three N atoms. The C—N bond lengths in the CN3 unit are 1.3353 (13), 1.3463 (12) and 1.3541 (13) Å, indicating an inter­mediate character between a single and a double bond for each C—N bond. The bonds between the N atoms and the terminal C-methyl groups all have values close to that of a typical single bond [1.4526 (13)–1.4614 (14) Å]. In the crystal, the guanidine mol­ecules are connected by weak C—H⋯O and C—H⋯N hydrogen bonds, generating layers parallel to the ab plane. PMID:23125768

  6. Exothermic Bond Breaking: A Persistent Misconception

    ERIC Educational Resources Information Center

    Galley, William C.

    2004-01-01

    The misconceptions regarding the nature of ATP hydrolysis and bond breaking are discussed. The students' knowledge in this area is quantitatively measured by a survey of over 600 biochemistry and physiology students.

  7. Electron-impact dissociative excitation and ionization of N{sub 2}D{sup +}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fogle, M.; Bahati, E. M.; Bannister, M. E.

    Absolute cross sections for electron-impact dissociation of N{sub 2}D{sup +} producing N{sub 2}{sup +}, ND{sup +}, and N{sup +} ion fragments were measured in the 5- to 100-eV range using a crossed electron-ion beams technique. In the 5- to 20-eV region, in which dissociative excitation (DE) is the principal contributing mechanism, N{sub 2}{sup +} production dominates. The N{sub 2}{sup +} + D dissociation channel shows a large resonant-like structure in the DE cross section, as observed previously in electron impact dissociation of triatomic dihydride species [M. Fogle, E. M. Bahati, M. E. Bannister, S. H. M. Deng, C. R. Vane,more » R. D. Thomas, and V. Zhaunerchyk, Phys. Rev. A 82, 042720 (2010)]. In the dissociative ionization (DI) region, 20- to 100-eV, N{sub 2}{sup +}, ND{sup +}, and N{sup +} ion fragment production are comparable. The observance of the ND{sup +} and N{sup +} ion fragments indicate breaking of the N - N bond along certain dissociation channels.« less

  8. A Vibrational Spectral Maker for Probing the Hydrogen-Bonding Status of Protonated Asp and Glu Residues

    PubMed Central

    Nie, Beining; Stutzman, Jerrod; Xie, Aihua

    2005-01-01

    Hydrogen bonding is a fundamental element in protein structure and function. Breaking a single hydrogen bond may impair the stability of a protein. We report an infrared vibrational spectral marker for probing the hydrogen-bond number for buried, protonated Asp or Glu residues in proteins. Ab initio computational studies were performed on hydrogen-bonding interactions of a COOH group with a variety of side-chain model compounds of polar and charged amino acids in vacuum using density function theory. For hydrogen-bonding interactions with polar side-chain groups, our results show a strong correlation between the C=O stretching frequency and the hydrogen bond number of a COOH group: ∼1759–1776 cm−1 for zero, ∼1733–1749 cm−1 for one, and 1703–1710 cm−1 for two hydrogen bonds. Experimental evidence for this correlation will be discussed. In addition, we show an approximate linear correlation between the C=O stretching frequency and the hydrogen-bond strength. We propose that a two-dimensional infrared spectroscopy, C=O stretching versus O-H stretching, may be employed to identify the specific type of hydrogen-bonding interaction. This vibrational spectral marker for hydrogen-bonding interaction is expected to enhance the power of time-resolved Fourier transform infrared spectroscopy for structural characterization of functionally important intermediates of proteins. PMID:15653739

  9. Crystal structure of 4-fluoro-N-[2-(4-fluoro-benzo-yl)hydra-zine-1-carbono-thio-yl]benzamide.

    PubMed

    Firdausiah, Syadza; Salleh Huddin, Ameera Aqeela; Hasbullah, Siti Aishah; Yamin, Bohari M; Yusoff, Siti Fairus M

    2014-09-01

    In the title compound, C15H11F2N3O2S, the dihedral angle between the fluoro-benzene rings is 88.43 (10)° and that between the central semithiocarbazide grouping is 47.00 (11)°. The dihedral angle between the amide group and attached fluoro-benzene ring is 50.52 (11)°; the equivalent angle between the carbonyl-thio-amide group and its attached ring is 12.98 (10)°. The major twists in the mol-ecule occur about the C-N-N-C bonds [torsion angle = -138.7 (2)°] and the Car-Car-C-N (ar = aromatic) bonds [-132.0 (2)°]. An intra-molecular N-H⋯O hydrogen bond occurs, which generates an S(6) ring. In the crystal, the mol-ecules are linked by N-H⋯O and N-H⋯S hydrogen bonds, generating (001) sheets. Weak C-H⋯O and C-H⋯F inter-actions are also observed.

  10. Genes on chromosomes 1 and 4 in the mouse are associated with repair of radiation-induced chromatin damage.

    PubMed

    Potter, M; Sanford, K K; Parshad, R; Tarone, R E; Price, F M; Mock, B; Huppi, K

    1988-04-01

    Early-passage skin fibroblasts from different inbred and congenic strains of mice were X-irradiated (1 Gy), and the number of chromatid breaks was determined at 2.0 h after irradiation. The cells from DBA/2N, C3H/HeN, STS/A, C57BL/6N, BALB/cJ, and AKR/N had 25 to 42 chromatid breaks per 100 metaphase cells (efficient repair phenotype). NZB/NJ had greater than 78 and BALB/cAn had 87 to 110 chromatid breaks per 100 cells (inefficient repair phenotype). Differences between BALB/cAn and BALB/c. DBA/2 congenic strains which carry less than 1% of the DBA/2 genome indicate that two genes, one on chromosome 1 linked to bcl-2-Pep-3 and the other on chromosome 4 closely linked to Fv-1, affect the efficiency with which the cells repair radiation-induced chromatin damage.

  11. Isonitrile-functionalized ruthenium nanoparticles: intraparticle charge delocalization through Ru=C=N interfacial bonds

    NASA Astrophysics Data System (ADS)

    Zhang, Fengqi; Huang, Lin; Zou, Jiasui; Yang, Jun; Kang, Xiongwu; Chen, Shaowei

    2017-09-01

    Ruthenium nanoparticles (2.06 ± 0.46 nm in diameter) stabilized by 1-hexyl-4-isocyanobenzene (CNBH), denoted as RuCNBH, were prepared by the self-assembly of isonitrile molecules onto the surface of "bare" Ru colloids by virtue of the formation of Ru=C=N- interfacial bonds. FTIR measurements showed that the stretching vibration of the terminal -N≡C bonds at 2119 cm-1 for the monomeric ligands disappeared and concurrently three new bands at 2115, 2043, and 1944 cm-1 emerged with RuCNBH nanoparticles, which was ascribed to the transformation of -N≡C to Ru=C=N- by back donation of Ru-d electrons to the π* orbital of the organic ligands. Metathesis reaction of RuCNBH with vinyl derivatives further corroborated the nature of the Ru=C interfacial bonds. When 1-isocyanopyrene (CNPy) was bounded onto the Ru nanoparticles surface through Ru=C=N interfacial bond (denoted as RuCNPy), the emission maximum was found to red-shift by 27 nm, as compared to that of the CNPy monomers, along with a reduced fluorescence lifetime, due to intraparticle charge delocalization that arose from the conjugated Ru=C=N- interfacial bonds. The results of this study further underline the significance of metal-organic interfacial bonds in the control of intraparticle charge-transfer dynamics and the optical and electronic properties of metal nanoparticles. [Figure not available: see fulltext.

  12. Structures of Highly Twisted Amides Relevant to Amide N-C Cross-Coupling: Evidence for Ground-State Amide Destabilization.

    PubMed

    Pace, Vittorio; Holzer, Wolfgang; Meng, Guangrong; Shi, Shicheng; Lalancette, Roger; Szostak, Roman; Szostak, Michal

    2016-10-04

    Herein, we show that acyclic amides that have recently enabled a series of elusive transition-metal-catalyzed N-C activation/cross-coupling reactions are highly twisted around the N-C(O) axis by a new destabilization mechanism of the amide bond. A unique effect of the N-glutarimide substituent, leading to uniformly high twist (ca. 90°) irrespective of the steric effect at the carbon side of the amide bond has been found. This represents the first example of a twisted amide that does not bear significant steric hindrance at the α-carbon atom. The (15) N NMR data show linear correlations between electron density at nitrogen and amide bond twist. This study strongly supports the concept of amide bond ground-state twist as a blueprint for activation of amides toward N-C bond cleavage. The new mechanism offers considerable opportunities for organic synthesis and biological processes involving non-planar amide bonds. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Can Internal Conversion BE Controlled by Mode-Specific Vibrational Excitation in Polyatomic Molecules

    NASA Astrophysics Data System (ADS)

    Portnov, Alexander; Epshtein, Michael; Bar, Ilana

    2017-06-01

    Nonadiabatic processes, dominated by dynamic passage of reactive fluxes through conical intersections (CIs) are considered to be appealing means for manipulating reaction paths. One approach that is considered to be effective in controlling the course of dissociation processes is the selective excitation of vibrational modes containing a considerable component of motion. Here, we have chosen to study the predissociation of the model test molecule, methylamine and its deuterated isotopologues, excited to well-characterized quantum states on the first excited electronic state, S_{1}, by following the N-H(D) bond fission dynamics through sensitive H(D) photofragment probing. The branching ratios between slow and fast H(D) photofragments, the internal energies of their counter radical photofragments and the anisotropy parameters for fast H photofragments, confirm correlated anomalies for predissociation initiated from specific rovibronic states, reflecting the existence of a dynamic resonance in each molecule. This resonance strongly depends on the energy of the initially excited rovibronic states, the evolving vibrational mode on the repulsive S_{1} part during N-H(D) bond elongation, and the manipulated passage through the CI that leads to radicals excited with C-N-H(D) bending and preferential perpendicular bond breaking, relative to the photolyzing laser polarization, in molecules containing the NH_{2} group. The indicated resonance plays an important role in the bifurcation dynamics at the CI and can be foreseen to exist in other photoinitiated processes and to control their outcome.

  14. Supramolecular hydrogen-bonding networks in bis(adeninium) phthalate phthalic acid 1.45-hydrate.

    PubMed

    Sridhar, Balasubramanian; Ravikumar, Krishnan

    2007-04-01

    In the title compound, 2C(5)H(6)N(5)(+).C(8)H(4)O(4)(2-).C(8)H(6)O(4).1.45H(2)O, the asymmetric unit comprises two adeninium cations, two half phthalate anions with crystallographic C(2) symmetry, one neutral phthalic acid molecule, and one fully occupied and one partially occupied site (0.45) for water molecules. The adeninium cations form N-H...O hydrogen bonds with the phthalate anions. The cations also form infinite one-dimensional polymeric ribbons via N-H...N interactions. In the crystal packing, hydrogen-bonded columns of cations, anions and phthalate anions extend parallel to the c axis. The water molecules crosslink adjacent columns into hydrogen-bonded layers.

  15. Intermediates in the Formation of Aromatics in Hydrocarbon Combustion

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    The formation of the first benzene ring is believed to be the rate limiting step in soot formation. Two different mechanisms have been proposed for formation of cyclic C6 species. The first involves the reaction of two acetylenes to give CH2CHCCH (vinyl acetylene), the loss of a H to give CHCHCCH (n-C41-13) or CH2CCCH (iso-C4H3), and addition of another acetylene to n-C4H3, followed by ring closure to give phenyl radical. Miller and Melius argue that only n-C4H3 leads to phenyl radical and since iso-C4H3 is more stable than n-C4H3 this mechanism is unlikely. An alternative mechanism proposed by them is formation of benzene from the dimerization of two CH2CCH (propargyl) radicals (formed by the reaction of singlet methylene with C2H2). We report reaction pathways and accurate energetics (from CASSCF/internally contracted CI calculations) for the reactions of CH(pi-2) and CH2-1 with acetylene, the reaction of vinylidene with acetylene, and the reaction of n-C4H3 and iso-C4H3 with acetylene. These calculations identify two new reactive intermediates CHCHCH ( a A"-2 ground state in Cs symmetry; spin coupling is a doublet from three singly occupied orbitals) and CHCCH (B-3 ground state in C2 symmetry) from the reaction of CH with acetylene. These species dimerize with no barrier to form benzene and para-benzyne, respectively. CHCCH is proposed as a reactive intermediate which can add to benzene to give higher polynuclear aromatic hydrocarbons or fullerenes. The addition of a C3H2 unit releases two C-C bond energies and thus the resulting addition product contains sufficient energy to break several CH bonds leading to a reduction in the H to C ratio as the cluster size increases. It is found that iso-C4H3 adds to acetylene to initially give a fulvene radical but that this species rearranges to phenyl radical. Thus, the reaction of acetylene with iso-C4H3 does lead to phenyl radical and the cyclization pathway may also contribute to formation of the initial benzene ring.

  16. TiO2 photocatalytic degradation and transformation of oxazaphosphorine drugs in an aqueous environment.

    PubMed

    Lai, Webber Wei-Po; Lin, Hank Hui-Hsiang; Lin, Angela Yu-Chen

    2015-04-28

    This study investigated the TiO2 photocatalytic degradation and transformation of the oxazaphosphorines ifosfamide (IFO), cyclophosphamide (CP) and trofosfamide (TRO). Under the optimum conditions of TiO2=100mg/L, IFO=100μg/L and solution pH=5.5, IFO was completely removed within 10min (k=0.433min(-1)). The results indicated that OHfree radicals generated by valence holes in the bulk solution were the predominant species for the degradation of IFO. At higher initial concentrations of oxazaphosphorines (20mg/L), >50% of TOC remained after 6h of reaction time, indicating that parent compounds were transformed to byproducts, which exhibit higher Microtox acute toxicities; chlorinated byproducts were likely the source of toxicity. Photocatalytic degradation pathways of the three oxazaphosphorines were proposed. IFO, CP and TRO follow very similar pathways and bond-breaking processes: ketonization and breaking of the CCl bond, the PN bond and the CN bond (N-dechloroethylation). Chloride (Cl(-)) release is likely the first and primary step in the decomposition process. Several of the identified byproducts were also metabolites, which implies that photocatalytic oxidation proceeds through pathways that are similar to metabolic pathways. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Method for metabolizing carbazole in petroleum

    DOEpatents

    Kayser, Kevin J.; Kilbane, II, John J.

    2005-09-13

    A method for selective cleavage of C--N bonds genes that encode for at least one enzyme suitable for conversion of carbazole to 2-aminobiphenyl-2,3-diol are combined with a gene encoding an amidase suitable for selectively cleaving a C--N bond in 2-aminobiphenyl-2,3-diol, forming an operon that encodes for cleavage of both C--N bonds of said carbazole. The operon is inserted into a host culture which, in turn, is contacted with the carbazole, resulting in selective cleavage of both C--N bonds of the carbazole. Also disclosed is a new microorganism that expresses a carbazole degradation trait constitutively and a method for degrading carbazole employing this microorganism.

  18. Crystal structures of 2-[(4,6-di-amino-pyrimidin-2-yl)sulfan-yl]-N-(naphthalen-1-yl)acetamide and 2-[(4,6-di-amino-pyrimidin-2-yl)sulfan-yl]-N-(4-fluoro-phen-yl)acetamide.

    PubMed

    Subasri, S; Kumar, Timiri Ajay; Sinha, Barij Nayan; Jayaprakash, Venkatesan; Viswanathan, Vijayan; Velmurugan, Devadasan

    2017-02-01

    The title compounds, C 16 H 15 N 5 OS, (I), and C 12 H 12 FN 5 OS, (II), are [(di-amino-pyrimidine)-sulfan-yl]acetamide derivatives. In (I), the pyrimidine ring is inclined to the naphthalene ring system by 55.5 (1)°, while in (II), the pyrimidine ring is inclined to the benzene ring by 58.93 (8)°. In (II), there is an intra-molecular N-H⋯N hydrogen bond and a short C-H⋯O contact. In the crystals of (I) and (II), mol-ecules are linked by pairs of N-H⋯N hydrogen bonds, forming inversion dimers with R 2 2 (8) ring motifs. In the crystal of (I), the dimers are linked by bifurcated N-H⋯(O,O) and C-H⋯O hydrogen bonds, forming layers parallel to (100). In the crystal of (II), the dimers are linked by N-H⋯O hydrogen bonds, also forming layers parallel to (100). The layers are linked by C-H⋯F hydrogen bonds, forming a three-dimensional architecture.

  19. A polarizable dipole-dipole interaction model for evaluation of the interaction energies for N-H···O=C and C-H···O=C hydrogen-bonded complexes.

    PubMed

    Li, Shu-Shi; Huang, Cui-Ying; Hao, Jiao-Jiao; Wang, Chang-Sheng

    2014-03-05

    In this article, a polarizable dipole-dipole interaction model is established to estimate the equilibrium hydrogen bond distances and the interaction energies for hydrogen-bonded complexes containing peptide amides and nucleic acid bases. We regard the chemical bonds N-H, C=O, and C-H as bond dipoles. The magnitude of the bond dipole moment varies according to its environment. We apply this polarizable dipole-dipole interaction model to a series of hydrogen-bonded complexes containing the N-H···O=C and C-H···O=C hydrogen bonds, such as simple amide-amide dimers, base-base dimers, peptide-base dimers, and β-sheet models. We find that a simple two-term function, only containing the permanent dipole-dipole interactions and the van der Waals interactions, can produce the equilibrium hydrogen bond distances compared favorably with those produced by the MP2/6-31G(d) method, whereas the high-quality counterpoise-corrected (CP-corrected) MP2/aug-cc-pVTZ interaction energies for the hydrogen-bonded complexes can be well-reproduced by a four-term function which involves the permanent dipole-dipole interactions, the van der Waals interactions, the polarization contributions, and a corrected term. Based on the calculation results obtained from this polarizable dipole-dipole interaction model, the natures of the hydrogen bonding interactions in these hydrogen-bonded complexes are further discussed. Copyright © 2013 Wiley Periodicals, Inc.

  20. N,N,N′,N′-Tetra­methyl­guanidinium tetra­phenyl­borate

    PubMed Central

    Tiritiris, Ioannis

    2012-01-01

    In the title salt, C5H14N3 +·C24H20B−, the C—N bond lengths in the central CN3 unit are 1.3322 (11), 1.3385 (12) and 1.3422 (12) Å, indicating partial double-bond character. The central C atom is bonded to the three N atoms in a nearly ideal trigonal-planar geometry [N—C—N angles = 119.51 (8), 119.81 (9) and 120.69 (8)°] and the positive charge is delocalized in the CN3 plane. The bond lengths between the N atoms and the terminal methyl groups all have values close to a typical single bond [1.4597 (12)–1.4695 (13) Å]. The crystal packing is caused by electrostatic inter­actions between cations and anions. PMID:23476307

  1. The Enzymatic Release of O6-methylguanine and 3-methyladenine from DNA Reacted with the Carcinogen N-methyl-N-nitrosourea

    PubMed Central

    Kirtikar, D. M.; Goldthwait, D. A.

    1974-01-01

    Endonuclease II (deoxyribonucleate oligonucleotidohydrolase, EC 3.1.4.30) of Escherichia coli has been shown to break phosphodiester bonds in alkylated DNA and depurinated DNA. The hypothesis that depurination is a step in the mechanism of the reaction with alkylated DNA is supported by in vitro experiments with DNA reacted with N-methyl-N-nitrosourea. Endonuclease II releases O6-methylguanine and 3-methyladenine, but not 7-methylguanine, from DNA that has been methylated by the carcinogen N-methyl-N-nitrosourea. PMID:4600266

  2. Enthalpy Costs of Making and Breaking Bonds: A Game of Generating Molecules with Proper Lewis Structures

    ERIC Educational Resources Information Center

    Bell, Peter T.; Adkins, Alyssa D.; Gamble, Rex J.; Schultz, Linda D.

    2009-01-01

    "Enthalpy Costs" is a simple card game created to assist students in developing proper Lewis structure drawing skills. Score keeping is accomplished by tracking the enthalpy changes associated with bond-making and bond-breaking processes during formation of molecules represented by proper Lewis structures. Playing the game requires the student to…

  3. Shock response of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX): The C-N bond scission studied by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Yuan, Jiao-Nan; Wei, Yong-Kai; Zhang, Xiu-Qing; Chen, Xiang-Rong; Ji, Guang-Fu; Kotni, Meena Kumari; Wei, Dong-Qing

    2017-10-01

    The shock response has a great influence on the design, synthesis, and application of energetic materials in both industrial and military areas. Therefore, the initial decomposition mechanism of bond scission at the atomistic level of condensed-phase α-RDX under shock loading has been studied based on quantum molecular dynamics simulations in combination with a multi-scale shock technique. First, based on the frontier molecular orbital theory, our calculated result shows that the N-NO2 bond is the weakest bond in the α-RDX molecule in the ground state, which may be the initial bond for pyrolysis. Second, the changes of bonds under shock loading are investigated by the changes of structures, kinetic bond lengths, and Laplacian bond orders during the simulation. Also, the variation of thermodynamic properties with time in shocked α-RDX at 10 km/s along the lattice vector a for a timescale of up to 3.5 ps is presented. By analyzing the detailed structural changes of RDX under shock loading, we find that the shocked RDX crystal undergoes a process of compression and rotation, which leads to the C-N bond initial rupture. The time variation of dynamic bond lengths in a shocked RDX crystal is calculated, and the result indicates that the C-N bond is easier to rupture than other bonds. The Laplacian bond orders are used to predict the molecular reactivity and stability. The values of the calculated bond orders show that the C-N bonds are more sensitive than other bonds under shock loading. In a word, the C-N bond scission has been validated as the initial decomposition in a RDX crystal shocked at 10 km/s. Finally, the bond-length criterion has been used to identify individual molecules in the simulation. The distance thresholds up to which two particles are considered direct neighbors and assigned to the same cluster have been tested. The species and density numbers of the initial decomposition products are collected according to the trajectory.

  4. Cocrystals of 6-methyl-2-thiouracil: presence of the acceptor-donor-acceptor/donor-acceptor-donor synthon.

    PubMed

    Hützler, Wilhelm Maximilian; Egert, Ernst

    2015-03-01

    The results of seven cocrystallization experiments of the antithyroid drug 6-methyl-2-thiouracil (MTU), C(5)H(6)N(2)OS, with 2,4-diaminopyrimidine, 2,4,6-triaminopyrimidine and 6-amino-3H-isocytosine (viz. 2,6-diamino-3H-pyrimidin-4-one) are reported. MTU features an ADA (A = acceptor and D = donor) hydrogen-bonding site, while the three coformers show complementary DAD hydrogen-bonding sites and therefore should be capable of forming an ADA/DAD N-H...O/N-H...N/N-H...S synthon with MTU. The experiments yielded one cocrystal and six cocrystal solvates, namely 6-methyl-2-thiouracil-2,4-diaminopyrimidine-1-methylpyrrolidin-2-one (1/1/2), C(5)H(6)N(2)OS·C(4)H(6)N(4)·2C(5)H(9)NO, (I), 6-methyl-2-thiouracil-2,4-diaminopyrimidine (1/1), C(5)H(6)N(2)OS·C(4)H(6)N(4), (II), 6-methyl-2-thiouracil-2,4-diaminopyrimidine-N,N-dimethylacetamide (2/1/2), 2C(5)H(6)N(2)OS·C(4)H(6)N(4)·2C(4)H(9)NO, (III), 6-methyl-2-thiouracil-2,4-diaminopyrimidine-N,N-dimethylformamide (2/1/2), C(5)H(6)N(2)OS·0.5C(4)H(6)N(4)·C(3)H(7)NO, (IV), 2,4,6-triaminopyrimidinium 6-methyl-2-thiouracilate-6-methyl-2-thiouracil-N,N-dimethylformamide (1/1/2), C(4)H(8)N(5)(+)·C(5)H(5)N(2)OS(-)·C(5)H(6)N(2)OS·2C(3)H(7)NO, (V), 6-methyl-2-thiouracil-6-amino-3H-isocytosine-N,N-dimethylformamide (1/1/1), C(5)H(6)N(2)OS·C(4)H(6)N(4)O·C(3)H(7)NO, (VI), and 6-methyl-2-thiouracil-6-amino-3H-isocytosine-dimethyl sulfoxide (1/1/1), C(5)H(6)N(2)OS·C(4)H(6)N(4)O·C(2)H(6)OS, (VII). Whereas in cocrystal (I) an R(2)(2)(8) interaction similar to the Watson-Crick adenine/uracil base pair is formed and a two-dimensional hydrogen-bonding network is observed, the cocrystals (II)-(VII) contain the triply hydrogen-bonded ADA/DAD N-H...O/N-H...N/N-H...S synthon and show a one-dimensional hydrogen-bonding network. Although 2,4-diaminopyrimidine possesses only one DAD hydrogen-bonding site, it is, due to orientational disorder, triply connected to two MTU molecules in (III) and (IV).

  5. Uranium azide photolysis results in C-H bond activation and provides evidence for a terminal uranium nitride

    NASA Astrophysics Data System (ADS)

    Thomson, Robert K.; Cantat, Thibault; Scott, Brian L.; Morris, David E.; Batista, Enrique R.; Kiplinger, Jaqueline L.

    2010-09-01

    Uranium nitride [U≡N]x is an alternative nuclear fuel that has great potential in the expanding future of nuclear power; however, very little is known about the U≡N functionality. We show, for the first time, that a terminal uranium nitride complex can be generated by photolysis of an azide (U-N=N=N) precursor. The transient U≡N fragment is reactive and undergoes insertion into a ligand C-H bond to generate new N-H and N-C bonds. The mechanism of this unprecedented reaction has been evaluated through computational and spectroscopic studies, which reveal that the photochemical azide activation pathway can be shut down through coordination of the terminal azide ligand to the Lewis acid B(C6F5)3. These studies demonstrate that photochemistry can be a powerful tool for inducing redox transformations for organometallic actinide complexes, and that the terminal uranium nitride fragment is reactive, cleaving strong C-H bonds.

  6. Crystal structure of N-[3-(di­methyl­aza­nium­yl)prop­yl]-N′,N′,N′′,N′′-tetra­methyl-N-(N,N,N′,N′-tetra­methyl­form­am­id­in­ium­yl)­guanidinium dibromide hydroxide monohydrate

    PubMed Central

    Tiritiris, Ioannis; Kantlehner, Willi

    2015-01-01

    The asymmetric unit of the title hydrated salt, C15H37N6 3+·2Br−·OH−·H2O, contains one cation, three partial-occupancy bromide ions, one hydroxide ion and one water mol­ecule. Refinement of the site-occupancy factors of the three disordered bromide ions converges with occupancies 0.701 (2), 0.831 (2) and 0.456 (2) summing to approximately two bromide ions per formula unit. The structure was refined as a two-component inversion twin with volume fractions 0.109 (8):0.891 (8) for the two domains. The central C3N unit of the bis­amidinium ion is linked to the aliphatic propyl chain by a C—N single bond. The other two bonds in this unit have double-bond character as have the four C—N bonds to the outer NMe2 groups. In contrast, the three C—N bonds to the central N atom of the (di­methyl­aza­nium­yl)propyl group have single-bond character. Delocalization of the two positive charges occurs in the N/C/N and C/N/C planes, while the third positive charge is localized on the di­methyl­ammonium group. The crystal structure is stabilized by O—H⋯O, N—H⋯Br, O—H⋯Br and C—H⋯Br hydrogen bonds, forming a three-dimensional network. PMID:26870507

  7. Carbon-sulfur bond formation by reductive elimination of gold(iii) thiolates.

    PubMed

    Currie, Lucy; Rocchigiani, Luca; Hughes, David L; Bochmann, Manfred

    2018-05-08

    Whereas the reaction of the gold(iii) pincer complex (C^N^C)AuCl with 1-adamantyl thiol (AdSH) in the presence of base affords (C^N^C)AuSAd, the same reaction in the absence of base leads to formation of aryl thioethers as the products of reductive elimination of the Au-C and Au-S ligands (C^N^C = dianion of 2-6-diphenylpyridine or 2-6-diphenylpyrazine). Although high chemical stability is usually taken as a characteristic of pincer complexes, results show that thiols are capable of cleaving one of the pincer Au-C bonds. This reaction is not simply a function of S-H acidity, since no cleavage takes place with other more acidic X-H compounds, such as carbazole, amides, phenols and malonates. The reductive C-S elimination follows a second-order rate law, -d[1a]/dt = k[1a][AdSH]. Reductive elimination is enabled by displacement of the N-donor by thiol; this provides the conformational flexibility necessary for C-S bond formation to occur. Alternatively, reductive C-S bond formation can be induced by reaction of pre-formed thiolates (C^N^C)AuSR with a strong Brønsted acid, followed by addition of SMe2 as base. On the other hand, treatment of (C^N^C)AuR (R = Me, aryl, alkynyl) with thiols under similar conditions leads to selective C-C rather than C-S bond formation. The reaction of (C^N^C)AuSAd with H+ in the absence of a donor ligand affords the thiolato-bridged complex [{(C^N-CH)Au(μ-SAd)}2]2+ which was crystallographically characterised.

  8. Hydrogen-bonding patterns in 5-fluoro-cytosine-melamine co-crystal (4/1).

    PubMed

    Mohana, Marimuthu; Muthiah, Packianathan Thomas; Sanjeewa, Liurukara D; McMillen, Colin D

    2016-04-01

    The asymmetric unit of the title compound, 4C4H4FN3O·C3H6N6, comprises of two independent 5-fluoro-cytosine (5FC) mol-ecules (A and B) and one half-mol-ecule of melamine (M). The other half of the melamine mol-ecule is generated by a twofold axis. 5FC mol-ecules A and B are linked through two different homosynthons [R 2 (2)(8) ring motif]; one is formed via a pair of N-H⋯O hydrogen bonds and the second via a pair of N-H⋯N hydrogen bonds. In addition to this pairing, the O atoms of 5FC mol-ecules A and B inter-act with the N2 amino group on both sides of the melamine mol-ecule, forming a DDAA array of quadruple hydrogen bonds and generating a supra-molecular pattern. The 5FC (mol-ecules A and B) and two melamine mol-ecules inter-act via N-H⋯O, N-H⋯N and N-H⋯O, N-H⋯N, C-H⋯F hydrogen bonds forming R 6 (6)(24) and R 4 (4)(15) ring motifs. The crystal structure is further strengthened by C-H⋯F, C-F⋯π and π-π stacking inter-actions.

  9. One barbiturate and two solvated thiobarbiturates containing the triply hydrogen-bonded ADA/DAD synthon, plus one ansolvate and three solvates of their coformer 2,4-diaminopyrimidine.

    PubMed

    Hützler, Wilhelm Maximilian; Egert, Ernst; Bolte, Michael

    2016-09-01

    A path to new synthons for application in crystal engineering is the replacement of a strong hydrogen-bond acceptor, like a C=O group, with a weaker acceptor, like a C=S group, in doubly or triply hydrogen-bonded synthons. For instance, if the C=O group at the 2-position of barbituric acid is changed into a C=S group, 2-thiobarbituric acid is obtained. Each of the compounds comprises two ADA hydrogen-bonding sites (D = donor and A = acceptor). We report the results of cocrystallization experiments of barbituric acid and 2-thiobarbituric acid, respectively, with 2,4-diaminopyrimidine, which contains a complementary DAD hydrogen-bonding site and is therefore capable of forming an ADA/DAD synthon with barbituric acid and 2-thiobarbituric acid. In addition, pure 2,4-diaminopyrimidine was crystallized in order to study its preferred hydrogen-bonding motifs. The experiments yielded one ansolvate of 2,4-diaminopyrimidine (pyrimidine-2,4-diamine, DAPY), C4H6N4, (I), three solvates of DAPY, namely 2,4-diaminopyrimidine-1,4-dioxane (2/1), 2C4H6N4·C4H8O2, (II), 2,4-diaminopyrimidine-N,N-dimethylacetamide (1/1), C4H6N4·C4H9NO, (III), and 2,4-diaminopyrimidine-1-methylpyrrolidin-2-one (1/1), C4H6N4·C5H9NO, (IV), one salt of barbituric acid, viz. 2,4-diaminopyrimidinium barbiturate (barbiturate is 2,4,6-trioxopyrimidin-5-ide), C4H7N4(+)·C4H3N2O3(-), (V), and two solvated salts of 2-thiobarbituric acid, viz. 2,4-diaminopyrimidinium 2-thiobarbiturate-N,N-dimethylformamide (1/2) (2-thiobarbiturate is 4,6-dioxo-2-sulfanylidenepyrimidin-5-ide), C4H7N4(+)·C4H3N2O2S(-)·2C3H7NO, (VI), and 2,4-diaminopyrimidinium 2-thiobarbiturate-N,N-dimethylacetamide (1/2), C4H7N4(+)·C4H3N2O2S(-)·2C4H9NO, (VII). The ADA/DAD synthon was succesfully formed in the salt of barbituric acid, i.e. (V), as well as in the salts of 2-thiobarbituric acid, i.e. (VI) and (VII). In the crystal structures of 2,4-diaminopyrimidine, i.e. (I)-(IV), R2(2)(8) N-H...N hydrogen-bond motifs are preferred and, in two structures, additional R3(2)(8) patterns were observed.

  10. Sources and distribution of allochthonous organic matter in surface sediment from the Seomjin River to the southern inner shelf of Korea

    NASA Astrophysics Data System (ADS)

    Badejo, Adegoke Olugboyega; Hyun, Sangmin; Kim, Wonnyon; Ju, Se-Jong; Song, Bareum

    2017-12-01

    The spatial distributions of δ13C, δ15N, and n-alkanes were investigated to determine the source and transportation of allochthonous organic matter from the mouth of the Seomjin River to the southern inner shelf break of Korea. Total organic carbon (%) ranged from 0.3% to 1.6% (average = 0.80%, n = 81), and the C/N ratio varied from 2.4 to 12.4 (average = 6.76, n = 81). The δ13C values ranged from -25.86 to -20.26‰ (average = -21.47‰, n = 81), and δ15N values ranged from 4.37‰ to 8.57‰ (average = 6.72‰, n = 81). The contribution of the terrestrial fraction of organic matter to the total ranged from 4.4% to 97.7% (average = 24.4%, n = 81), suggesting higher amounts around the catchment area and lower amounts in the offshore area. The concentration of total n-alkanes ( nC25 - nC35) was higher at the boundary between the outer bay and inner shelf break (BOBIS). Average chain length and the carbon preference index both indicated that major leaf wax n-alkanes accounted for the observed distribution of terrestrial organic matter, and were dominant in the inner shelf break (around BOBIS) and outer shelf break. Based on the spatial distribution of the total n-alkanes and the sum of nC27, nC29, and nC31, the terrestrial organic matter distribution was considered to be controlled by local oceanographic conditions, especially at the center of the BOBIS. In addition to enabling the distribution and source of terrestrial organic matter to be identified, the n-alkanes indicated that minor anthropogenic allochthonous organic materials were superimposed on the total organic materials in the central part of Yeosu Bay and the catchment area. The n-alkane indices revealed weathered petroleum contamination, with contamination levels being relatively low at the present time.

  11. Holistic quantum design of thermoelectric niobium oxynitride

    NASA Astrophysics Data System (ADS)

    Music, Denis; Bliem, Pascal; Hans, Marcus

    2015-06-01

    We have applied holistic quantum design to thermoelectric NbON (space group Pm-3m). Even though transport properties are central in designing efficient thermoelectrics, mechanical properties should also be considered to minimize their thermal fatigue during multiple heating/cooling cycles. Using density functional theory, elastic constants of NbON were predicted and validated by nanoindentation measurements on reactively sputtered thin films. Based on large bulk-to-shear modulus ratio and positive Cauchy pressure, ceramic NbON appears ductile. These unusual properties may be understood by analyzing the electronic structure. Nb-O bonding is of covalent-ionic nature with metallic contributions. Second neighbor O-N bonds exhibit covalent-ionic character. Upon shear loading, these O-N bonds break giving rise to easily shearable planes. Ductile NbON, together with large Seebeck coefficient and low thermal expansion, is promising for thermoelectric applications.

  12. Ab initio computational study of –N-C and –O-C bonding formation : functional group modification reaction based chitosan

    NASA Astrophysics Data System (ADS)

    Siahaan, P.; Salimah, S. N. M.; Sipangkar, M. J.; Hudiyanti, D.; Djunaidi, M. C.; Laksitorini, M. D.

    2018-04-01

    Chitosan application in pharmaceutics and cosmeceutics industries is limited by its solubility issue. Modification of -NH2 and -OH fuctional groups of chitosan by adding carboxyl group has been shown to improve its solubility and application. Attempt to synthesize carboxymethyl chitosan (CMC) from monocloroacetic acid (MCAA) has been done prior this report. However no information is available wether –OH (-O-C bonding formation) or -NH2 (-N-C bonding formation) is the preference for - CH2COOH to attach. In the current study, the reaction mechanism between chitosan and MCAA reactants into carboxymethyl chitosan (CMC) was examined by computational approach. Dimer from of chitosan used as a molecular model in calculation All the molecular structure involved in the reaction mechanism was optimized by ab initio computational on the theory and basis set HF/6-31G(d,p). The results showed that the - N-C bonding formation via SN2 than the -O-C bonding formation via SN2 which have activation energy 469.437 kJ/mol and 533.219 kJ/mol respectively. However, the -O-C bonding formation more spontaneous than the -N-C bonding formation because ΔG the formation of O-CMC-2 reaction is more negative than ΔG of formation N-CMC-2 reaction is -4.353 kJ/mol and -1.095 kJ/mol respectively. The synthesis of N,O-CMC first forms -O-CH2COOH, then continues to form -NH-CH2COOH. This information is valuable to further optimize the reaction codition for CMC synthesis.

  13. N-(Diphenyl­carbamo­yl)-N,N′,N′,N′′,N′′-penta­methyl­guanidinium tetra­phenyl­borate

    PubMed Central

    Tiritiris, Ioannis

    2013-01-01

    In the title salt, C19H25N4O+·C24H20B−, the C=N and C—N bond lengths in the CN3 unit are 1.3327 (8)/1.3364 (9) and 1.3802 (9) Å, indicating double- and single-bond character, respectively. The N—C—N angles are 118.77 (6), 120.29 (6) and 120.81 (6)°, showing only a small deviation of the CN3 plane from an ideal trigonal-planar geometry. The bonds between the N atoms and the terminal methyl C atoms all have values close to a typical single bond [1.4636 (9)–1.4772 (9) Å]. The crystal packing is caused by electrostatic inter­actions between cations and anions. PMID:23476477

  14. Nano-Welding of Multi-Walled Carbon Nanotubes on Silicon and Silica Surface by Laser Irradiation.

    PubMed

    Yuan, Yanping; Chen, Jimin

    2016-02-24

    In this study, a continuous fiber laser (1064 nm wavelength, 30 W/cm²) is used to irradiate multi-walled carbon nanotubes (MWCNTs) on different substrate surfaces. Effects of substrates on nano-welding of MWCNTs are investigated by scanning electron microscope (SEM). For MWCNTs on silica, after 3 s irradiation, nanoscale welding with good quality can be achieved due to breaking C-C bonds and formation of new graphene layers. While welding junctions can be formed until 10 s for the MWCNTs on silicon, the difference of irradiation time to achieve welding is attributed to the difference of thermal conductivity for silica and silicon. As the irradiation time is prolonged up to 12.5 s, most of the MWCNTs are welded to a silicon substrate, which leads to their frameworks of tube walls on the silicon surface. This is because the accumulation of absorbed energy makes the temperature rise. Then chemical reactions among silicon, carbon and nitrogen occur. New chemical bonds of Si-N and Si-C achieve the welding between the MWCNTs and silicon. Vibration modes of Si₃N₄ appear at peaks of 363 cm -1 and 663 cm -1 . There are vibration modes of SiC at peaks of 618 cm -1 , 779 cm -1 and 973 cm -1 . The experimental observation proves chemical reactions and the formation of Si₃N₄ and SiC by laser irradiation.

  15. Etching of enamel for direct bonding with a thulium fiber laser

    NASA Astrophysics Data System (ADS)

    Kabaş Sarp, Ayşe S.; Gülsoy, Murat

    2011-03-01

    Background: Laser etching of enamel for direct bonding can decrease the risk of surface enamel loss and demineralization which are the adverse effects of acid etching technique. However, in excess of +5.5°C can cause irreversible pulpal responses. In this study, a 1940- nm Thulium Fiber Laser in CW mode was used for laser etching. Aim: Determination of the suitable Laser parameters of enamel surface etching for direct bonding of ceramic brackets and keeping that intrapulpal temperature changes below the threshold value. Material and Method: Polycrystalline ceramic orthodontic brackets were bonded on bovine teeth by using 2 different kinds of etching techniques: Acid and Laser Etching. In addition to these 3 etched groups, there was also a group which was bonded without etching. Brackets were debonded with a material testing machine. Breaking time and the load at the breaking point were measured. Intrapulpal temperature changes were recorded by a K-type Thermocouple. For all laser groups, intrapulpal temperature rise was below the threshold value of 5.5°C. Results and Conclusion: Acid-etched group ( 11.73 MPa) significantly required more debonding force than 3- second- irradiated ( 5.03 MPa) and non-etched groups ( 3.4 MPa) but the results of acid etched group and 4- second- irradiated group (7.5 MPa) showed no significant difference. Moreover, 4- second irradiated group was over the minimum acceptable value for clinical use. Also, 3- second lasing caused a significant reduction in time according to acid-etch group. As a result, 1940- nm laser irradiation is a promising method for laser etching.

  16. Symmetry Breaking in the Supramolecular Gels of an Achiral Gelator Exclusively Driven by π-π Stacking.

    PubMed

    Shen, Zhaocun; Jiang, Yuqian; Wang, Tianyu; Liu, Minghua

    2015-12-30

    Supramolecular symmetry breaking, in which chiral assemblies with imbalanced right- and left-handedness emerge from achiral molecular building blocks, has been achieved in the organogels of a C3-symmetric molecule only via π-π stacking. Specifically, an achiral C3-symmetric benzene-1,3,5-tricarboxylate substituted with methyl cinnamate through ester bond was found to form organogels in various organic solvents. More interestingly, when gels formed in cyclohexane, symmetry breaking occurred; i.e., optically active organogels together with the helical nanofibers with predominant handedness were obtained. Furthermore, the stochastically appeared imbalanced helicity could be driven to desired handedness by utilizing slight chiral solvents such as (R)- or (S)-terpinen-4-ol. Remarkably, the handedness of supramolecular assemblies thus formed could be kept even when the chiral solvents were removed. For the first time, we show that symmetry breaking can occur in supramolecular gel system driven exclusively through π-π stacking.

  17. The 2:1 salt-type adduct formed between 6-amino-3-methyl-5-nitrosopyrimidine-2,4(1H,3H)-dione and piperidine: sheets containing 20 independent hydrogen bonds.

    PubMed

    Orozco, Fabián; Insuasty, Braulio; Cobo, Justo; Glidewell, Christopher

    2009-05-01

    The title compound, piperidinium 6-amino-3-methyl-5-nitroso-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-ide 6-amino-3-methyl-5-nitrosopyrimidine-2,4(1H,3H)-dione, C(5)H(12)N(+).C(5)H(5)N(4)O(3)(-).C(5)H(6)N(4)O(3), (I), crystallizes with Z' = 2 in the space group P1. There is an intramolecular N-H...O hydrogen bond in each pyrimidine unit and within the selected asymmetric unit the six independent components are linked by 11 hydrogen bonds, seven of the N-H...O type and four of the N-H...N type. These six-component aggregates are linked into sheets by five further hydrogen bonds, three of the N-H...O type and one each of the N-H...N and C-H...O types.

  18. Reusable ionic liquid-catalyzed oxidative coupling of azoles and benzylic compounds via sp(3) C-N bond formation under metal-free conditions.

    PubMed

    Liu, Wenbo; Liu, Chenjiang; Zhang, Yonghong; Sun, Yadong; Abdukadera, Ablimit; Wang, Bin; Li, He; Ma, Xuecheng; Zhang, Zengpeng

    2015-07-14

    The heterocyclic ionic liquid-catalyzed direct oxidative amination of benzylic sp(3) C-H bonds via intermolecular sp(3) C-N bond formation for the synthesis of N-alkylated azoles under metal-free conditions is reported for the first time. The catalyst 1-butylpyridinium iodide can be recycled and reused with similar efficacies for at least eight cycles.

  19. Cocrystallization of adamantane-1,3-dicarboxylic acid and 4,4'-bipyridine.

    PubMed

    Pan, Yue; Li, Kunhao; Bi, Wenhua; Li, Jing

    2008-02-01

    The cocrystallization of adamantane-1,3-dicarboxylic acid (adc) and 4,4'-bipyridine (4,4'-bpy) yields a unique 1:1 cocrystal, C(12)H(16)O(4).C(10)H(8)N(2), in the C2/c space group, with half of each molecule in the asymmetric unit. The mid-point of the central C-C bond of the 4,4'-bpy molecule rests on a center of inversion, while the adc molecule straddles a twofold rotation axis that passes through two of the adamantyl C atoms. The constituents of this cocrystal are joined by hydrogen bonds, the stronger of which are O-H...N hydrogen bonds [O...N = 2.6801 (17) A] and the weaker of which are C-H...O hydrogen bonds [C...O = 3.367 (2) A]. Alternate adc and 4,4'-bpy molecules engage in these hydrogen bonds to form zigzag chains. In turn, these chains are linked through pi-pi interactions along the c axis to generate two-dimensional layers. These layers are neatly packed into a stable crystalline three-dimensional form via weak C-H...O hydrogen bonds [C...O = 3.2744 (19) A] and van der Waals attractions.

  20. Carbon-14 decay as a source of non-canonical bases in DNA.

    PubMed

    Sassi, Michel; Carter, Damien J; Uberuaga, Blas P; Stanek, Chris R; Marks, Nigel A

    2014-01-01

    Significant experimental effort has been applied to study radioactive beta-decay in biological systems. Atomic-scale knowledge of this transmutation process is lacking due to the absence of computer simulations. Carbon-14 is an important beta-emitter, being ubiquitous in the environment and an intrinsic part of the genetic code. Over a lifetime, around 50 billion (14)C decays occur within human DNA. We apply ab initio molecular dynamics to quantify (14)C-induced bond rupture in a variety of organic molecules, including DNA base pairs. We show that double bonds and ring structures confer radiation resistance. These features, present in the canonical bases of the DNA, enhance their resistance to (14)C-induced bond-breaking. In contrast, the sugar group of the DNA and RNA backbone is vulnerable to single-strand breaking. We also show that Carbon-14 decay provides a mechanism for creating mutagenic wobble-type mispairs. The observation that DNA has a resistance to natural radioactivity has not previously been recognized. We show that (14)C decay can be a source for generating non-canonical bases. Our findings raise questions such as how the genetic apparatus deals with the appearance of an extra nitrogen in the canonical bases. It is not obvious whether or not the DNA repair mechanism detects this modification nor how DNA replication is affected by a non-canonical nucleobase. Accordingly, (14)C may prove to be a source of genetic alteration that is impossible to avoid due to the universal presence of radiocarbon in the environment. © 2013.

  1. N(4)-Methyl-N(4)-(2-methylphenyl)-1H-pyrazolo[3,4-d]pyrimidine-4,6-diamine-ethanol-hydrazine (1/0.865/0.135): hydrogen-bonded ribbons containing four independent ring types.

    PubMed

    Trilleras, Jorge; Quiroga, Jairo; Cobo, Justo; Glidewell, Christopher

    2009-06-01

    N(4)-Methyl-N(4)-(2-methylphenyl)-1H-pyrazolo[3,4-d]pyrimidine-4,6-diamine crystallizes from ethanol as a mixed solvate, C(13)H(14)N(6).0.865C(2)H(6)O.0.135N(2)H(4), (I), where the hydrazine has been carried through from the initial preparation. Within the heterocyclic component, the 2-methylphenyl substituent is disordered over two sets of sites. There is an intramolecular C-H...pi(arene) hydrogen bond, which may control the molecular conformation of the heterocycle. The heterocyclic molecules are linked by two independent N-H...N hydrogen bonds in a chain containing two types of R(2)(2)(8) ring. The ethanol component is linked to this chain by a combination of O-H...N and N-H...O hydrogen bonds and the hydrazine component by two N-H...N hydrogen bonds, so generating two R(3)(3)(9) rings and thus forming a ribbon containing four distinct ring types.

  2. Catalytic alkylation of remote C-H bonds enabled by proton-coupled electron transfer

    NASA Astrophysics Data System (ADS)

    Choi, Gilbert J.; Zhu, Qilei; Miller, David C.; Gu, Carol J.; Knowles, Robert R.

    2016-11-01

    Despite advances in hydrogen atom transfer (HAT) catalysis, there are currently no molecular HAT catalysts that are capable of homolysing the strong nitrogen-hydrogen (N-H) bonds of N-alkyl amides. The motivation to develop amide homolysis protocols stems from the utility of the resultant amidyl radicals, which are involved in various synthetically useful transformations, including olefin amination and directed carbon-hydrogen (C-H) bond functionalization. In the latter process—a subset of the classical Hofmann-Löffler-Freytag reaction—amidyl radicals remove hydrogen atoms from unactivated aliphatic C-H bonds. Although powerful, these transformations typically require oxidative N-prefunctionalization of the amide starting materials to achieve efficient amidyl generation. Moreover, because these N-activating groups are often incorporated into the final products, these methods are generally not amenable to the direct construction of carbon-carbon (C-C) bonds. Here we report an approach that overcomes these limitations by homolysing the N-H bonds of N-alkyl amides via proton-coupled electron transfer. In this protocol, an excited-state iridium photocatalyst and a weak phosphate base cooperatively serve to remove both a proton and an electron from an amide substrate in a concerted elementary step. The resultant amidyl radical intermediates are shown to promote subsequent C-H abstraction and radical alkylation steps. This C-H alkylation represents a catalytic variant of the Hofmann-Löffler-Freytag reaction, using simple, unfunctionalized amides to direct the formation of new C-C bonds. Given the prevalence of amides in pharmaceuticals and natural products, we anticipate that this method will simplify the synthesis and structural elaboration of amine-containing targets. Moreover, this study demonstrates that concerted proton-coupled electron transfer can enable homolytic activation of common organic functional groups that are energetically inaccessible using traditional HAT-based approaches.

  3. Catalytic alkylation of remote C-H bonds enabled by proton-coupled electron transfer.

    PubMed

    Choi, Gilbert J; Zhu, Qilei; Miller, David C; Gu, Carol J; Knowles, Robert R

    2016-11-10

    Despite advances in hydrogen atom transfer (HAT) catalysis, there are currently no molecular HAT catalysts that are capable of homolysing the strong nitrogen-hydrogen (N-H) bonds of N-alkyl amides. The motivation to develop amide homolysis protocols stems from the utility of the resultant amidyl radicals, which are involved in various synthetically useful transformations, including olefin amination and directed carbon-hydrogen (C-H) bond functionalization. In the latter process-a subset of the classical Hofmann-Löffler-Freytag reaction-amidyl radicals remove hydrogen atoms from unactivated aliphatic C-H bonds. Although powerful, these transformations typically require oxidative N-prefunctionalization of the amide starting materials to achieve efficient amidyl generation. Moreover, because these N-activating groups are often incorporated into the final products, these methods are generally not amenable to the direct construction of carbon-carbon (C-C) bonds. Here we report an approach that overcomes these limitations by homolysing the N-H bonds of N-alkyl amides via proton-coupled electron transfer. In this protocol, an excited-state iridium photocatalyst and a weak phosphate base cooperatively serve to remove both a proton and an electron from an amide substrate in a concerted elementary step. The resultant amidyl radical intermediates are shown to promote subsequent C-H abstraction and radical alkylation steps. This C-H alkylation represents a catalytic variant of the Hofmann-Löffler-Freytag reaction, using simple, unfunctionalized amides to direct the formation of new C-C bonds. Given the prevalence of amides in pharmaceuticals and natural products, we anticipate that this method will simplify the synthesis and structural elaboration of amine-containing targets. Moreover, this study demonstrates that concerted proton-coupled electron transfer can enable homolytic activation of common organic functional groups that are energetically inaccessible using traditional HAT-based approaches.

  4. Anisotropy of atomic bonds formed by p-type dopants in bulk GaN crystals

    NASA Astrophysics Data System (ADS)

    Lawniczak-Jablonska, K.; Suski, T.; Gorczyca, I.; Christensen, N. E.; Libera, J.; Kachniarz, J.; Lagarde, P.; Cortes, R.; Grzegory, I.

    The anisotropy of atomic bonds formed by acceptor dopants with nitrogen in bulk wurtzite GaN crystals was studied by means of linearly polarized synchrotron radiation used in measurements of X-ray-absorption spectra for the K-edgeof Mg and Zn dopants. These spectra correspond to i) a single acceptor N bond along the c-axis and ii) three bonds realized with N atoms occupying the ab-plane perpendicular to the c-axis. The Zn dopant formed resonant spectra similar to that characteristic for Ga cations. In the case of the Mg dopant, similarity to Ga cations was observed for triple bonds in the ab-plane, only. Practically no resonant structure for spectra detected along the c-axis was observed. The absorption spectra were compared with ab initio calculations using the full-potential linear muffin-tin-orbital method. These calculations were also used for determination of the bond length for Mg-N and Zn-N in wurtzite GaN crystals and show that introducing dopants causes an increase of the lengths of the bonds formed by both dopants. Extended X-ray-absorption fine-structure measurements performed for bulk GaN:Zn confirmed the prediction of the theory in the case of the Zn-N bond. Finally, it is suggested that the anisotropy in the length of the Mg-N bonds, related to their larger strength in the case of bonds in the ab-plane, can explain preferential formation of a superlattice consisting of Mg-rich layers arranged in ab-planes of several bulk GaN:Mg crystals observed by transmission electron microscopy. Within the sensitivity of the method used, no parasitic metallic clusters or oxide compounds formed by the considered acceptors in GaN crystals were found.

  5. Crystal structure of N′′-benzyl-N′′-[3-(benzyl­dimethyl­aza­nium­yl)prop­yl]-N,N,N′,N′-tetra­methyl­guanidinium bis­(tetra­phenyl­borate)

    PubMed Central

    Tiritiris, Ioannis; Kantlehner, Willi

    2015-01-01

    In the crystal structure of the title salt, C24H38N4 2+·2C24H20B−, the C—N bond lengths in the central CN3 unit of the guanidinium ion are 1.3364 (13), 1.3407 (13) and 1.3539 (13) Å, indicating partial double-bond character. The central C atom is bonded to the three N atoms in a nearly ideal trigonal–planar geometry and the positive charge is delocalized in the CN3 plane. The bonds between the N atoms and the terminal methyl groups of the guanidinium moiety and the four C—N bonds to the central N atom of the (benzyl­dimethyl­aza­nium­yl)propyl group have single-bond character. In the crystal, C—H⋯π inter­actions between the guanidin­ium H atoms and the phenyl C atoms of the tetra­phenyl­borate ions are present, leading to the formation of a two-dimensional supra­molecular pattern parallel to the ac plane. PMID:26870511

  6. Pressure-induced metallization of condensed phase β-HMX under shock loadings via molecular dynamics simulations in conjunction with multi-scale shock technique.

    PubMed

    Ge, Ni-Na; Wei, Yong-Kai; Zhao, Feng; Chen, Xiang-Rong; Ji, Guang-Fu

    2014-07-01

    The electronic structure and initial decomposition in high explosive HMX under conditions of shock loading are examined. The simulation is performed using quantum molecular dynamics in conjunction with multi-scale shock technique (MSST). A self-consistent charge density-functional tight-binding (SCC-DFTB) method is adapted. The results show that the N-N-C angle has a drastic change under shock wave compression along lattice vector b at shock velocity 11 km/s, which is the main reason that leads to an insulator-to-metal transition for the HMX system. The metallization pressure (about 130 GPa) of condensed-phase HMX is predicted firstly. We also detect the formation of several key products of condensed-phase HMX decomposition, such as NO2, NO, N2, N2O, H2O, CO, and CO2, and all of them have been observed in previous experimental studies. Moreover, the initial decomposition products include H2 due to the C-H bond breaking as a primary reaction pathway at extreme condition, which presents a new insight into the initial decomposition mechanism of HMX under shock loading at the atomistic level.

  7. Selective bond breaking mediated by state specific vibrational excitation in model HOD molecule through optimized femtosecond IR pulse: a simulated annealing based approach.

    PubMed

    Shandilya, Bhavesh K; Sen, Shrabani; Sahoo, Tapas; Talukder, Srijeeta; Chaudhury, Pinaki; Adhikari, Satrajit

    2013-07-21

    The selective control of O-H/O-D bond dissociation in reduced dimensionality model of HOD molecule has been explored through IR+UV femtosecond pulses. The IR pulse has been optimized using simulated annealing stochastic approach to maximize population of a desired low quanta vibrational state. Since those vibrational wavefunctions of the ground electronic states are preferentially localized either along the O-H or O-D mode, the femtosecond UV pulse is used only to transfer vibrationally excited molecule to the repulsive upper surface to cleave specific bond, O-H or O-D. While transferring from the ground electronic state to the repulsive one, the optimization of the UV pulse is not necessarily required except specific case. The results so obtained are analyzed with respect to time integrated flux along with contours of time evolution of probability density on excited potential energy surface. After preferential excitation from [line]0, 0> ([line]m, n> stands for the state having m and n quanta of excitations in O-H and O-D mode, respectively) vibrational level of the ground electronic state to its specific low quanta vibrational state ([line]1, 0> or [line]0, 1> or [line]2, 0> or [line]0, 2>) by using optimized IR pulse, the dissociation of O-D or O-H bond through the excited potential energy surface by UV laser pulse appears quite high namely, 88% (O-H ; [line]1, 0>) or 58% (O-D ; [line]0, 1>) or 85% (O-H ; [line]2, 0>) or 59% (O-D ; [line]0, 2>). Such selectivity of the bond breaking by UV pulse (if required, optimized) together with optimized IR one is encouraging compared to the normal pulses.

  8. Cinnamic acid hydrogen bonds to isoniazid and N'-(propan-2-ylidene)isonicotinohydrazide, an in situ reaction product of isoniazid and acetone.

    PubMed

    Sarcevica, Inese; Orola, Liana; Veidis, Mikelis V; Belyakov, Sergey

    2014-04-01

    A new polymorph of the cinnamic acid-isoniazid cocrystal has been prepared by slow evaporation, namely cinnamic acid-pyridine-4-carbohydrazide (1/1), C9H8O2·C6H7N3O. The crystal structure is characterized by a hydrogen-bonded tetrameric arrangement of two molecules of isoniazid and two of cinnamic acid. Possible modification of the hydrogen bonding was investigated by changing the hydrazide group of isoniazid via an in situ reaction with acetone and cocrystallization with cinnamic acid. In the structure of cinnamic acid-N'-(propan-2-ylidene)isonicotinohydrazide (1/1), C9H8O2·C9H11N3O, carboxylic acid-pyridine O-H···N and hydrazide-hydrazide N-H···O hydrogen bonds are formed.

  9. The isonitrile-nitrile isomerization: kinetic parameters, reaction mechanism and relative photoionization cross-section of the HOMO. A HeI photoelectron spectroscopy study

    NASA Astrophysics Data System (ADS)

    Wang, Dianxun; Qian, Ximei; Zhang, Qiyuan

    1997-03-01

    The isomerisation reactions from CH 3CH 2CH 2NC to CH 3CH 2CH 2CN, (CH 3) 2CHNC to (CH 3) 2CHCN and (CH 3) 3CNC to (CH 3) 3CCN are found to be of first order by using HeI photoelectron spectroscopy (PES). The activation energies obtained by PES for the isomerisation of RNC, where R is -CH 3, -CH 2CH 3, -CH 2CH 2CH 3, -CH(CH 3) 2, and -C(CH 3) 3 are similar. This can be explained by the breaking of the RN bond and the making of the RC bond in the isomerisation reaction from RNC to RCN being essentially synchronous. A transition state is proposed. The photoionization cross-sections of the HOMO for the RNC are deduced from the intercept values in the kinetic equations obtained using PES, and related to the weight of the carbon atom in the isocyano group, because the HOMOs of the RNC mainly embody the 2s lone-pair electron of the carbon atom in the isocyano group.

  10. Genes on chromosomes 1 and 4 in the mouse are associated with repair of radiation-induced chromatin damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potter, M.; Sanford, K.K.; Parshad, R.

    Early-passage skin fibroblasts from different inbred and congenic strains of mice were X-irradiated (1 Gy), and the number of chromatid breaks was determined at 2.0 h after irradiation. The cells from DBA/2N, C3H/HeN, STS/A, C57BL/6N, BALB/cJ, and AKR/N had 25 to 42 chromatid breaks per 100 metaphase cells (efficient repair phenotype). NZB/NJ had greater than 78 and BALB/cAn had 87 to 110 chromatid breaks per 100 cells (inefficient repair phenotype). Differences between BALB/cAn and BALB/c. DBA/2 congenic strains which carry less than 1% of the DBA/2 genome indicate that two genes, one on chromosome 1 linked to bcl-2-Pep-3 and themore » other on chromosome 4 closely linked to Fv-1, affect the efficiency with which the cells repair radiation-induced chromatin damage.« less

  11. New tricks for the glycyl radical enzyme family

    PubMed Central

    Backman, Lindsey R.F.; Funk, Michael A.; Dawson, Christopher D.; Drennan, Catherine. L.

    2018-01-01

    Glycyl radical enzymes (GREs) are important biological catalysts in both strict and facultative anaerobes, playing key roles both in the human microbiota and in the environment. GREs contain a backbone glycyl radical that is post-translationally installed, enabling radical-based mechanisms. GREs function in several metabolic pathways including mixed acid fermentation, ribonucleotide reduction, and the anaerobic breakdown of the nutrient choline and the pollutant toluene. By generating a substrate-based radical species within the active site, GREs enable C-C, C-O, and C-N bond breaking and formation steps that are otherwise challenging for non-radical enzymes. Identification of previously unknown family members from genomic data and the determination of structures of well-characterized GREs have expanded the scope of GRE-catalyzed reactions as well as defined key features that enable radical catalysis. Here we review the structures and mechanisms of characterized GREs, classifying members into five categories. We consider the open questions about each of the five GRE classes and evaluate the tools available to interrogate uncharacterized GREs. PMID:28901199

  12. Mechanisms of Bond Cleavage during Manganese Oxide and UV Degradation of Glyphosate: Results from Phosphate Oxygen Isotopes and Molecular Simulations.

    PubMed

    Jaisi, Deb P; Li, Hui; Wallace, Adam F; Paudel, Prajwal; Sun, Mingjing; Balakrishna, Avula; Lerch, Robert N

    2016-11-16

    Degradation of glyphosate in the presence of manganese oxide and UV light was analyzed using phosphate oxygen isotope ratios and density function theory (DFT). The preference of C-P or C-N bond cleavage was found to vary with changing glyphosate/manganese oxide ratios, indicating the potential role of sorption-induced conformational changes on the composition of intermediate degradation products. Isotope data confirmed that one oxygen atom derived solely from water was incorporated into the released phosphate during glyphosate degradation, and this might suggest similar nucleophilic substitution at P centers and C-P bond cleavage both in manganese oxide- and UV light-mediated degradation. The DFT results reveal that the C-P bond could be cleaved by water, OH - or • OH, with the energy barrier opposing bond dissociation being lowest in the presence of the radical species, and that C-N bond cleavage is favored by the formation of both nitrogen- and carbon-centered radicals. Overall, these results highlight the factors controlling the dominance of C-P or C-N bond cleavage that determines the composition of intermediate/final products and ultimately the degradation pathway.

  13. Bonding strength of alkyl-2-cyanoacrylates to bone in vitro.

    PubMed

    Kilpikari, J; Lapinsuo, M; Törmälä, P; Pätiälä, H; Rokkanen, P

    1986-10-01

    This study measured the bonding strength between alkyl-2-cyanoacrylates and bone, and examined how treatment of the bone surface with acid, and prolonged exposure to moisture, affected this strength. The initial strength of all cyanoacrylates was high (9.6-11.2 N/mm2). In long-term experiments under water, n- and i-butylcyanoacrylates lost their strength at a far slower rate than ethylcyanoacrylates. However, the butylcyanoacrylates also showed a decrease of 15% in strength after three weeks. Pretreatment of the bone surface with acid did not have a marked effect on bonding strength, although SEM investigation revealed that the acid treatment had increased the porosity of the bone surface. A study of the fracture surface proved that the adhesive film tended to loosen or break after 3 to 6 weeks under water. The decrease in the bonding strength was probably due to the degradation of the adhesive film in water which loosened mechanical bonds between the bone and adhesive. Considering clinical use it would be necessary to achieve better long-term strength.

  14. Carbon-hydrogen bond activation, C-N bond coupling, and cycloaddition reactivity of a three-coordinate nickel complex featuring a terminal imido ligand.

    PubMed

    Mindiola, Daniel J; Waterman, Rory; Iluc, Vlad M; Cundari, Thomas R; Hillhouse, Gregory L

    2014-12-15

    The three-coordinate imidos (dtbpe)Ni═NR (dtbpe = (t)Bu2PCH2CH2P(t)Bu2, R = 2,6-(i)Pr2C6H3, 2,4,6-Me3C6H2 (Mes), and 1-adamantyl (Ad)), which contain a legitimate Ni-N double bond as well as basic imido nitrogen based on theoretical analysis, readily deprotonate HC≡CPh to form the amide acetylide species (dtbpe)Ni{NH(Ar)}(C≡CPh). In the case of R = 2,6-(i)Pr2C6H3, reductive carbonylation results in formation of the (dtbpe)Ni(CO)2 along with the N-C coupled product keteneimine PhCH═C═N(2,6- (i)Pr2C6H3). Given the ability of the Ni═N bond to have biradical character as suggested by theoretical analysis, H atom abstraction can also occur in (dtbpe)Ni═N{2,6-(i)Pr2C6H3} when this species is treated with HSn((n)Bu)3. Likewise, the microscopic reverse reaction--conversion of the Ni(I) anilide (dtbpe)Ni{NH(2,6-(i)Pr2C6H3)} to the imido (dtbpe)Ni═N{2,6-(i)Pr2C6H3}--is promoted when using the radical Mes*O(•) (Mes* = 2,4,6-(t)Bu3C6H2). Reactivity studies involving the imido complexes, in particular (dtbpe)Ni═N{2,6-(i)Pr2C6H3}, are also reported with small, unsaturated molecules such as diphenylketene, benzylisocyanate, benzaldehyde, and carbon dioxide, including the formation of C-N and N-N bonds by coupling reactions. In addition to NMR spectroscopic data and combustion analysis, we also report structural studies for all the cycloaddition reactions involving the imido (dtbpe)Ni═N{2,6-(i)Pr2C6H3}.

  15. N,N,N′,N′,N′′-Penta­methyl-N′′-[3-(1,3,3-trimethyl­ureido)prop­yl]guanidinium tetra­phenyl­borate

    PubMed Central

    Tiritiris, Ioannis; Kantlehner, Willi

    2012-01-01

    In the crystal structure of the title molecular salt, C13H30N5O+·C24H20B−, discrete guanidinium cations and tetra­phenyl­borate anions are present. The C—N bond lengths in the CN3 unit are 1.3427 (12), 1.3445 (12) and 1.3453 (13) Å, indicating double-bond character. The central C atom is surrounded in a nearly ideal trigonal-planar geometry by three N atoms and the positive charge is delocalized on the CN3 plane. The bonds between the N atoms and the terminal C-methyl groups all have values close to a typical single bond [1.4595 (15)–1.4688 (12) Å]. In the crystal, cations are connected by C—H⋯O contacts generating a chain along the c axis. PMID:22798881

  16. 3-[Bis(dimethyl­amino)­methyl­ene]-1,1-diphenyl­urea

    PubMed Central

    Tiritiris, Ioannis

    2012-01-01

    In the title compound, C18H22N4O, the C=N and C—N bond lengths in the CN3 unit are 1.3179 (11), 1.3551 (11) and 1.3737 (11) Å, indicating double- and single-bond character, respectively. The N—C—N angles are 115.91 (8), 118.20 (8) and 125.69 (8), showing a deviation of the CN3 plane from an ideal trigonal–planar geometry. The bonds between the N atoms and the terminal C-methyl groups all have values close to a typical single bond [1.4529 (12)–1.4624 (12) Å]. The dihedral angle between the phenyl rings is 79.63 (4)°. In the crystal, the mol­ecules are connected via weak C—H⋯O hydrogen bonds, generating chains along [100]. PMID:23284417

  17. Synthesis of Polyheteroaromatic Compounds via Rhodium-Catalyzed Multiple C-H Bond Activation and Oxidative Annulation.

    PubMed

    Peng, Shiyong; Liu, Suna; Zhang, Sai; Cao, Shengyu; Sun, Jiangtao

    2015-10-16

    Polyheteroaromatic compounds are potential optoelectronic conjugated materials due to their electro- and photochemical properties. Transition-metal-catalyzed multiple C-H activation and sequential oxidative annulation allows rapidly assembling of those compounds from readily available starting materials. A rhodium-catalyzed cascade oxidative annulation of β-enamino esters or 4-aminocoumarins with internal alkynes is described to access those compounds, featuring multiple C-H/N-H bond cleavages and sequential C-C/C-N bond formations in one pot.

  18. (E)-N′-(4-Chloro­benzyl­idene)-1-benzofuran-2-carbohydrazide monohydrate

    PubMed Central

    Fun, Hoong-Kun; Quah, Ching Kheng; Nitinchandra; Kalluraya, Balakrishna; Babu, M.

    2012-01-01

    The title compound, C16H11ClN2O2·H2O, exists in an E conformation with respect to the N=C bond. The benzofuran ring system forms a dihedral angle of 1.26 (4)° with the benzene ring. In the crystal, mol­ecules are linked via (N,C)—H⋯O bifurcated acceptor hydrogen bonds and (O,O,C)—H⋯O trifurcated acceptor hydrogen bonds, forming layers parallel to the bc plane. PMID:22798835

  19. Potassium bis(carbonato-O,O')(ethylenediamine-N,N')cobaltate(III) monohydrate at 173 K.

    PubMed

    Belai, N; Dickman, M H; Pope, M T

    2001-07-01

    The title salt, K[Co(C2H8N2)(CO3)2].H2O, consists of a distorted octahedral cobalt complex anion and a seven-coordinate potassium cation. Both metal atoms have crystallographic twofold symmetry, one C2 axis passing through the Co atom and C--C bond, and another along a short K--O (water) bond of 2.600 A (corrected for libration). The carbonate is bidentate to both cobalt and potassium and the water forms a hydrogen bond to a carbonate O atom.

  20. Insertion of terminal alkyne into Pt-N bond of the square planar [PtI2(Me2phen)] complex.

    PubMed

    Benedetti, Michele; De Castro, Federica; Lamacchia, Vincenza; Pacifico, Concetta; Natile, Giovanni; Fanizzi, Francesco P

    2017-11-21

    The reactivity of [PtX 2 (Me 2 phen)] complexes (X = Cl, Br, I; Me 2 phen = 2,9-dimethyl-1,10-phenanthroline) with terminal alkynes has been investigated. Although the dichlorido species [PtCl 2 (Me 2 phen)] exhibits negligible reactivity, the bromido and iodido derivatives lead in short time to the formation of five-coordinate Pt(ii) complexes of the type [PtX 2 (Me 2 phen)(η 2 -CH[triple bond, length as m-dash]CR)] (X = Br, I; R = Ph, n-Bu), in equilibrium with the starting reagents. Similar to analogous complexes with simple acetylene, the five coordinate species can also undergo dissociation of an halido ligand and formation of the transient square-planar cationic species [PtX(Me 2 phen)(η 2 -CH[triple bond, length as m-dash]CR)] + . This latter can further evolve to give an unusual, sparingly soluble square planar product where the former terminal alkyne is converted into a :C[double bond, length as m-dash]C(H)(R) moiety with the α-carbon bridging the Pt(ii) core with one of the two N-donors of coordinated Me 2 phen. The final product [PtX 2 {κ 2 -N,C-(Z)-N[combining low line]1-N10-C[combining low line][double bond, length as m-dash]C(H)(R)}] (N1-N10 = 2,9-dimethyl-1,10-phenanthroline; X = Br, I) contains a Pt-N-C-C-N-C six-membered chelate ring in a square planar Pt(ii) coordination environment.

  1. Twisted Amides: From Obscurity to Broadly Useful Transition-Metal-Catalyzed Reactions by N-C Amide Bond Activation.

    PubMed

    Liu, Chengwei; Szostak, Michal

    2017-05-29

    The concept of using amide bond distortion to modulate amidic resonance has been known for more than 75 years. Two classic twisted amides (bridged lactams) ingeniously designed and synthesized by Kirby and Stoltz to feature fully perpendicular amide bonds, and as a consequence emanate amino-ketone-like reactivity, are now routinely recognized in all organic chemistry textbooks. However, only recently the use of amide bond twist (distortion) has advanced to the general organic chemistry mainstream enabling a host of highly attractive N-C amide bond cross-coupling reactions of broad synthetic relevance. In this Minireview, we discuss recent progress in this area and present a detailed overview of the prominent role of amide bond destabilization as a driving force in the development of transition-metal-catalyzed cross-coupling reactions by N-C bond activation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Facile synthesis of -C[double bond, length as m-dash]N- linked covalent organic frameworks under ambient conditions.

    PubMed

    Ding, San-Yuan; Cui, Xiao-Hui; Feng, Jie; Lu, Gongxuan; Wang, Wei

    2017-10-31

    We reported herein a facile approach for the synthesis of -C[double bond, length as m-dash]N- linked covalent organic frameworks under ambient conditions. Three known (COF-42, COF-43, and COF-LZU1) and one new (Pr-COF-42) COF materials were successfully synthesized using this method. Furthermore, this simple synthetic approach makes the large-scale synthesis of -C[double bond, length as m-dash]N- linked COFs feasible.

  3. Temporal heating profile influence on the immediate bond strength following laser tissue soldering.

    PubMed

    Rabi, Yaron; Katzir, Abraham

    2010-07-01

    Bonding of tissues by laser heating is considered as a future alternative to sutures and staples. Increasing the post-operative bond strength remains a challenging issue for laser tissue bonding, especially in organs that have to sustain considerable tension or pressure. In this study, we investigated the influence of different temporal heating profiles on the strength of soldered incisions. The thermal damage following each heating procedure was quantified, in order to assess the effect of each heating profile on the thermal damage. Incisions in porcine bowel tissue strips (1 cmx4 cm) were soldered, using a 44% liquid albumin mixed with indocyanine green and a temperature controlled laser (830 nm) tissue bonding system. Heating was done either with a linear or a step temporal heating profile. The incisions were bonded by soldering at three points, separated by 2 mm. Set-point temperatures of T(set) = 60, 70, 80, 90, 100, 110, 150 degrees C and dwell times of t(d) = 10, 20, 30, 40 seconds were investigated. The bond strength was measured immediately following each soldering by applying a gradually increased tension on the tissue edges until the bond break. Bonds formed by linear heating were stronger than the ones formed by step heating: at T(set) = 80 degrees C the bonds were 40% stronger and at T(set) = 90 degrees C the bonds strength was nearly doubled. The bond strength difference between the heating methods was larger as T(set) increased. Linear heating produced stronger bonds than step heating. The difference in the bond strength was more pronounced at high set-point temperatures and short dwell times. The bond strength could be increased with either higher set-point temperature or a longer dwell time.

  4. A Role-Play to Illustrate the Energy Changes Occurring in an Exothermic Reaction.

    ERIC Educational Resources Information Center

    Tyas, Toby; Cabot, John

    1999-01-01

    Describes a role-play activity designed to help students understand the energy changes involved in an exothermic reaction by modeling the concepts of bond-breaking takes in energy, activation energy, temperature rise, and bond breaking gives out energy. (WRM)

  5. Molecular dynamics of acetamide based ionic deep eutectic solvents

    NASA Astrophysics Data System (ADS)

    Srinivasan, H.; Dubey, P. S.; Sharma, V. K.; Biswas, R.; Mitra, S.; Mukhopadhyay, R.

    2018-04-01

    Deep eutectic solvents are multi-component mixtures that have freezing point lower than their individual components. Mixture of acetamide+ lithium nitrate in the molar ratio 78:22 and acetamide+ lithium perchlorate in the molar ratio 81:19 are found to form deep eutectic solvents with melting point lower than the room temperature. It is known that the depression in freezing point is due to the hydrogen bond breaking ability of anions in the system. Quasielastic neutron scattering experiments on these systems were carried out to study the dynamics of acetamide molecules which may be influenced by this hydrogen bond breaking phenomena. The motion of acetamide molecules is modeled using jump diffusion mechanism to demonstrate continuous breaking and reforming hydrogen bonds in the solvent. Using the jump diffusion model, it is inferred that the jump lengths of acetamide molecules are better approximated by a Gaussian distribution. The shorter residence time of acetamide in presence of perchlorate ions suggest that the perchlorate ions have a higher hydrogen bond breaking ability compared to nitrate ions.

  6. Structures and electron affinities of the di-arsenic fluorides As2Fn/As2Fn- (n=1-8).

    PubMed

    Kasalová, Veronika; Schaefer, Henry F

    2005-04-15

    Developments in the preparation of new materials for microelectronics are focusing new attention on molecular systems incorporating several arsenic atoms. A systematic investigation of the As2Fn/As2Fn- systems was carried out using Density Functional Theory methods and a DZP++ quality basis set. Global and low-lying local geometric minima and relative energies are discussed and compared. The three types of neutral-anion separations reported in this work are: the adiabatic electron affinity (EAad), the vertical electron affinity (EAvert), and the vertical detachment energy (VDE). Harmonic vibrational frequencies pertaining to the global minimum for each compound are reported. From the first four studied species (As2Fn, n=1-4), all neutral molecules and their anions are shown to be stable with respect to As-As bond breaking. The neutral As2F molecule and its anion are predicted to have Cs symmetry. We find the trans F-As-As-F isomer of C2h symmetry and a pyramidalized vinylidene-like As-As-F2- isomer of Cs symmetry to be the global minima for the As2F2 and As2F2- species, respectively. The lowest lying minima of As2F3 and As2F3- are vinyl radical-like structures F-As-As-F2 of Cs symmetry. The neutral As2F4 global minimum is a trans-bent (like Si2H4) F2-As-As-F2 isomer of C2 symmetry, while its anion is predicted to have an unusual fluorine-bridged (C(1)) structure. The global minima of the neutral As2Fn species, n=5-8, are weakly bound complexes, held together by dipole-dipole interactions. All such structures have the AsFm-AsFn form, where (m,n) is (2,3) for As2F5, (3,3) for As2F6, (4,3) for As2F7), and (5,3) for As2F8. For As2F8 the beautiful pentavalent F4As-AsF4 structure (analogous to the stable AsF5 molecule) lies about 30 kcal/mol above the AsF3 . . . AsF5 complex. The stability of AsF(5) depends crucially on the strong As-F bonds, and replacing one of these with an As-As bond (in F4As-AsF4) has a very negative impact on the molecule's stability. The anions As2Fn-, n=5-8, are shown to be stable with respect to the As-As bond breaking, and we predict that all of them have fluorine-bridged or fluorine-linked structures. The zero-point vibrational energy corrected adiabatic electron affinities are predicted to be 2.28 eV (As2F), 1.95 eV (As2F2), 2.39 eV (As2F3), 1.71 eV (As2F4), 2.72 eV (As2F5), 1.79 eV (As2F6), 5.26 eV (As2F7), and 3.40 eV (As2F8) from the BHLYP method. Vertical detachment energies are rather large, especially for species with fluorine-bridged global minima, having values up to 6.45 eV (As2F7, BHLYP).

  7. 2-Amino-5-chloro-pyrimidin-1-ium hydrogen maleate.

    PubMed

    Fun, Hoong-Kun; Hemamalini, Madhukar; Rajakannan, Venkatachalam

    2012-01-01

    In the title salt, C(4)H(5)ClN(3) (+)·C(4)H(3)O(4) (-), the 2-amino-5-chloro-pyrimidinium cation is protonated at one of its pyrimidine N atoms. In the roughly planar (r.m.s. deviation = 0.026 Å) hydrogen malate anion, an intra-molecular O-H⋯O hydrogen bond generates an S(7) ring. In the crystal, the protonated N atom and the 2-amino group of the cation are hydrogen bonded to the carboxyl-ate O atoms of the anion via a pair of N-H⋯O hydrogen bonds, forming an R(2) (2)(8) ring motif. The ion pairs are connected via further N-H⋯O hydrogen bonds and a short C-H⋯O inter-action, forming layers lying parallel to the bc plane.

  8. Transition Metal Free C-N Bond Forming Dearomatizations and Aryl C-H Aminations by in Situ Release of a Hydroxylamine-Based Aminating Agent.

    PubMed

    Farndon, Joshua J; Ma, Xiaofeng; Bower, John F

    2017-10-11

    We outline a simple protocol that accesses directly unprotected secondary amines by intramolecular C-N bond forming dearomatization or aryl C-H amination. The method is dependent on the generation of a potent electrophilic aminating agent released by in situ deprotection of O-Ts activated N-Boc hydroxylamines.

  9. Palladium-catalyzed Suzuki-Miyaura coupling of amides by carbon-nitrogen cleavage: general strategy for amide N-C bond activation.

    PubMed

    Meng, Guangrong; Szostak, Michal

    2016-06-15

    The first palladium-catalyzed Suzuki-Miyaura cross-coupling of amides with boronic acids for the synthesis of ketones by sterically-controlled N-C bond activation is reported. The transformation is characterized by operational simplicity using bench-stable, commercial reagents and catalysts, and a broad substrate scope, including substrates with electron-donating and withdrawing groups on both coupling partners, steric-hindrance, heterocycles, halides, esters and ketones. The scope and limitations are presented in the synthesis of >60 functionalized ketones. Mechanistic studies provide insight into the catalytic cycle of the cross-coupling, including the first experimental evidence for Pd insertion into the amide N-C bond. The synthetic utility is showcased by a gram-scale cross-coupling and cross-coupling at room temperature. Most importantly, this process provides a blueprint for the development of a plethora of metal catalyzed reactions of typically inert amide bonds via acyl-metal intermediates. A unified strategy for amide bond activation to enable metal insertion into N-C amide bond is outlined ().

  10. A crystalline anionic complex of scandium nitride endometallofullerene: experimental observation of single-bonded (Sc3N@Ih-C80−)2 dimers†

    PubMed Central

    Konarev, Dmitri V.; Zorina, Leokadiya V.; Khasanov, Salavat S.; Popov, Alexey A.; Otsuka, Akihiro; Yamochi, Hideki; Saito, Gunzi; Lyubovskaya, Rimma N.

    2017-01-01

    Reduction of scandium nitride clusterfullerene, Sc3N@Ih-C80, by sodium fluorenone ketyl in the presence of cryptand[2,2,2] allows the crystallization of the {cryptand[2,2,2](Na+)}2(Sc3N@Ih-C80−)2·2.5C6H4Cl2 (1) salt. The Sc3N@Ih-C80•− radical anions are dimerized to form single-bonded (Sc3N@Ih-C80−)2 dimers. PMID:27511304

  11. Cocrystal assembled by 1,4-diiodotetrafluorobenzene and phenothiazine based on C-I...π/N/S halogen bond and other assisting interactions.

    PubMed

    Wang, Hui; Jin, Wei Jun

    2017-04-01

    The halogen-bonded cocrystal of 1,4-diiodotetrafluorobenzene (1,4-DITFB) with the butterfly-shape non-planar heterocyclic compound phenothiazine (PHT) was successfully assembled by the conventional solution-based method. X-ray single-crystal diffraction analysis reveals a 3:2 stoichiometric ratio for the cocrystal (1,4-DITFB/PHT), and the cocrystal structure is constructed via C-I...π, C-I...N and C-I...S halogen bonds as well as other assisting interactions (e.g. C-H...F/S hydrogen bond, C-H...H-C and C-F...F-C bonds). The small shift of the 1,4-DITFB vibrational band to lower frequencies in FT-IR and Raman spectroscopies provide evidence to confirm the existence of the halogen bond. In addition, the non-planarity of the PHT molecule in the cocrystal results in PHT emitting weak phosphorescence and relatively strong delayed fluorescence. Thus, a wide range of delayed fluorescence and weak phosphorescence could play a significant role in selecting a proper π-conjugated system to engineer functional cocrystal and luminescent materials by halogen bonds.

  12. Correlated hydrogen bonding fluctuations and vibrational cross peaks in N-methyl acetamide: simulation based on a complete electrostatic density functional theory map.

    PubMed

    Hayashi, Tomoyuki; Mukamel, Shaul

    2006-11-21

    The coherent nonlinear response of the entire amide line shapes of N-methyl acetamide to three infrared pulses is simulated using an electrostatic density functional theory map. Positive and negative cross peaks contain signatures of correlations between the fundamentals and the combination state. The amide I-A and I-III cross-peak line shapes indicate positive correlation and anticorrelation of frequency fluctuations, respectively. These can be ascribed to correlated hydrogen bonding at C[double bond]O and N-H sites. The amide I frequency is negatively correlated with the hydrogen bond on carbonyl C[double bond]O, whereas the amide A and III are negatively and positively correlated, respectively, with the hydrogen bond on amide N-H.

  13. Carbon–hydrogen bond activation, C–N bond coupling, and cycloaddition reactivity of a three-coordinate nickel complex featuring a terminal imido ligand

    DOE PAGES

    Mindiola, Daniel J.; Waterman, Rory; Iluc, Vlad M.; ...

    2014-12-01

    Here, the three-coordinate imidos (dtbpe)Ni=NR (dtbpe = tBu 2PCH 2CH 2PtBu 2, R = 2,6- iPr 2C 6H 3, 2,4,6-Me 3C 6H 2 (Mes), and 1-adamantyl (Ad)), which contain a legitimate Ni–N double bond as well as basic imido nitrogen based on theoretical analysis, readily deprotonate HC≡CPh to form the amide acetylide species (dtbpe)Ni{NH(Ar)}(C≡CPh). In the case of R = 2,6- iPr 2C 6H 3, reductive carbonylation results in formation of the (dtbpe)Ni(CO) 2 along with the N–C coupled product keteneimine PhCH=C=N(2,6- iPr 2C 6H 3). Given the ability of the Ni=N bond to have biradical character as suggested bymore » theoretical analysis, H atom abstraction can also occur in (dtbpe)Ni=N{2,6- iPr 2C 6H 3} when this species is treated with HSn( nBu) 3. Likewise, the microscopic reverse reaction—conversion of the Ni(I) anilide (dtbpe)Ni{NH(2,6- iPr 2C 6H 3)} to the imido (dtbpe)Ni=N{2,6- iPr 2C 6H 3}—is promoted when using the radical Mes*O • (Mes* = 2,4,6- tBu 3C 6H 2). Reactivity studies involving the imido complexes, in particular (dtbpe)Ni=N{2,6- iPr 2C 6H 3}, are also reported with small, unsaturated molecules such as diphenylketene, benzylisocyanate, benzaldehyde, and carbon dioxide, including the formation of C–N and N–N bonds by coupling reactions. In addition to NMR spectroscopic data and combustion analysis, we also report structural studies for all the cycloaddition reactions involving the imido (dtbpe)Ni=N{2,6- iPr 2C 6H 3}.« less

  14. Carbon–Hydrogen Bond Activation, C–N Bond Coupling, and Cycloaddition Reactivity of a Three-Coordinate Nickel Complex Featuring a Terminal Imido Ligand

    PubMed Central

    2015-01-01

    The three-coordinate imidos (dtbpe)Ni=NR (dtbpe = tBu2PCH2CH2PtBu2, R = 2,6-iPr2C6H3, 2,4,6-Me3C6H2 (Mes), and 1-adamantyl (Ad)), which contain a legitimate Ni–N double bond as well as basic imido nitrogen based on theoretical analysis, readily deprotonate HC≡CPh to form the amide acetylide species (dtbpe)Ni{NH(Ar)}(C≡CPh). In the case of R = 2,6-iPr2C6H3, reductive carbonylation results in formation of the (dtbpe)Ni(CO)2 along with the N–C coupled product keteneimine PhCH=C=N(2,6- iPr2C6H3). Given the ability of the Ni=N bond to have biradical character as suggested by theoretical analysis, H atom abstraction can also occur in (dtbpe)Ni=N{2,6-iPr2C6H3} when this species is treated with HSn(nBu)3. Likewise, the microscopic reverse reaction—conversion of the Ni(I) anilide (dtbpe)Ni{NH(2,6-iPr2C6H3)} to the imido (dtbpe)Ni=N{2,6-iPr2C6H3}—is promoted when using the radical Mes*O• (Mes* = 2,4,6-tBu3C6H2). Reactivity studies involving the imido complexes, in particular (dtbpe)Ni=N{2,6-iPr2C6H3}, are also reported with small, unsaturated molecules such as diphenylketene, benzylisocyanate, benzaldehyde, and carbon dioxide, including the formation of C–N and N–N bonds by coupling reactions. In addition to NMR spectroscopic data and combustion analysis, we also report structural studies for all the cycloaddition reactions involving the imido (dtbpe)Ni=N{2,6-iPr2C6H3}. PMID:25437507

  15. Carbon–hydrogen bond activation, C–N bond coupling, and cycloaddition reactivity of a three-coordinate nickel complex featuring a terminal imido ligand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mindiola, Daniel J.; Waterman, Rory; Iluc, Vlad M.

    Here, the three-coordinate imidos (dtbpe)Ni=NR (dtbpe = tBu 2PCH 2CH 2PtBu 2, R = 2,6- iPr 2C 6H 3, 2,4,6-Me 3C 6H 2 (Mes), and 1-adamantyl (Ad)), which contain a legitimate Ni–N double bond as well as basic imido nitrogen based on theoretical analysis, readily deprotonate HC≡CPh to form the amide acetylide species (dtbpe)Ni{NH(Ar)}(C≡CPh). In the case of R = 2,6- iPr 2C 6H 3, reductive carbonylation results in formation of the (dtbpe)Ni(CO) 2 along with the N–C coupled product keteneimine PhCH=C=N(2,6- iPr 2C 6H 3). Given the ability of the Ni=N bond to have biradical character as suggested bymore » theoretical analysis, H atom abstraction can also occur in (dtbpe)Ni=N{2,6- iPr 2C 6H 3} when this species is treated with HSn( nBu) 3. Likewise, the microscopic reverse reaction—conversion of the Ni(I) anilide (dtbpe)Ni{NH(2,6- iPr 2C 6H 3)} to the imido (dtbpe)Ni=N{2,6- iPr 2C 6H 3}—is promoted when using the radical Mes*O • (Mes* = 2,4,6- tBu 3C 6H 2). Reactivity studies involving the imido complexes, in particular (dtbpe)Ni=N{2,6- iPr 2C 6H 3}, are also reported with small, unsaturated molecules such as diphenylketene, benzylisocyanate, benzaldehyde, and carbon dioxide, including the formation of C–N and N–N bonds by coupling reactions. In addition to NMR spectroscopic data and combustion analysis, we also report structural studies for all the cycloaddition reactions involving the imido (dtbpe)Ni=N{2,6- iPr 2C 6H 3}.« less

  16. The structure of the ends of α-helices in globular proteins: effect of additional hydrogen bonds and implications for helix formation.

    PubMed

    Leader, David P; Milner-White, E James

    2011-03-01

    We prepared a set of about 2000 α-helices from a relational database of high-resolution three-dimensional structures of globular proteins, and identified additional main chain i ← i+3 hydrogen bonds at the ends of the helices (i.e., where the hydrogen bonding potential is not fulfilled by canonical i ← i+4 hydrogen bonds). About one-third of α-helices have such additional hydrogen bonds at the N-terminus, and more than half do so at the C-terminus. Although many of these additional hydrogen bonds at the C-terminus are associated with Schellman loops, the majority are not. We compared the dihedral angles at the termini of α-helices having or lacking the additional hydrogen bonds. Significant differences were found, especially at the C-terminus, where the dihedral angles at positions C2 and C1 in the absence of additional hydrogen bonds deviate substantially from those occurring within the α-helix. Using a novel approach we show how the structure of the C-terminus of the α-helix can emerge from that of constituent overlapping α-turns and β-turns, which individually show a variation in dihedral angles at different positions. We have also considered the direction of propagation of the α-helix using this approach. If one assumes that helices start as a single α-turn and grow by successive addition of further α-turns, the paths for growth in the N → C and C → N directions differ in a way that suggests that extension in the C → N direction is favored. Copyright © 2010 Wiley-Liss, Inc.

  17. Full exploration of the Diels-Alder cycloaddition on metallofullerenes M3N@C80 (M = Sc, Lu, Gd): the D(5h) versus I(h) isomer and the influence of the metal cluster.

    PubMed

    Osuna, Sílvia; Valencia, Ramón; Rodríguez-Fortea, Antonio; Swart, Marcel; Solà, Miquel; Poblet, Josep M

    2012-07-16

    In this work a detailed investigation of the exohedral reactivity of the most important and abundant endohedral metallofullerene (EMF) is provided, that is, Sc(3)N@I(h)-C(80) and its D(5h) counterpart Sc(3)N@D(5h)-C(80) , and the (bio)chemically relevant lutetium- and gadolinium-based M(3)N@I(h)/D(5h)-C(80) EMFs (M = Sc, Lu, Gd). In particular, we analyze the thermodynamics and kinetics of the Diels-Alder cycloaddition of s-cis-1,3-butadiene on all the different bonds of the I(h)-C(80) and D(5h)-C(80) cages and their endohedral derivatives. First, we discuss the thermodynamic and kinetic aspects of the cycloaddition reaction on the hollow fullerenes and the two isomers of Sc(3)N@C(80). Afterwards, the effect of the nature of the metal nitride is analyzed in detail. In general, our BP86/TZP//BP86/DZP calculations indicate that [5,6] bonds are more reactive than [6,6] bonds for the two isomers. The [5,6] bond D(5h)-b, which is the most similar to the unique [5,6] bond type in the icosahedral cage, I(h)-a, is the most reactive bond in M(3)N@D(5h)-C(80) regardless of M. Sc(3)N@C(80) and Lu(3)N@C(80) give similar results; the regioselectivity is, however, significantly reduced for the larger and more electropositive M = Gd, as previously found in similar metallofullerenes. Calculations also show that the D(5h) isomer is more reactive from the kinetic point of view than the I(h) one in all cases which is in good agreement with experiments. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. STM/STS Study of the Sb (111) Surface

    NASA Astrophysics Data System (ADS)

    Chekmazov, S. V.; Bozhko, S. I.; Smirnov, A. A.; Ionov, A. M.; Kapustin, A. A.

    An Sb crystal is a Peierls insulator. Formation of double layers in the Sb structure is due to the shift of atomic planes (111) next but one along the C3 axis. Atomic layers inside the double layer are connected by covalent bonds. The interaction between double layers is determined mainly by Van der Waals forces. The cleave of an Sb single crystal used to be via break of Van der Waals bonds. However, using scanning tunneling microscopy (STM) and spectroscopy (STS) we demonstrated that apart from islands equal in thickness to the double layer, steps of one atomic layer in height also exist on the cleaved Sb (111) surface. Formation of "unpaired" (111) planes on the surface leads to a local break of conditions of Peierls transition. STS experiment reveals higher local density of states (LDOS) measured for "unpaired" (111) planes in comparison with those for the double layer.

  19. Reactive molecular dynamics simulation of solid nitromethane impact on (010) surfaces induced and nonimpact thermal decomposition.

    PubMed

    Guo, Feng; Cheng, Xin-lu; Zhang, Hong

    2012-04-12

    Which is the first step in the decomposition process of nitromethane is a controversial issue, proton dissociation or C-N bond scission. We applied reactive force field (ReaxFF) molecular dynamics to probe the initial decomposition mechanisms of nitromethane. By comparing the impact on (010) surfaces and without impact (only heating) for nitromethane simulations, we found that proton dissociation is the first step of the pyrolysis of nitromethane, and the C-N bond decomposes in the same time scale as in impact simulations, but in the nonimpact simulation, C-N bond dissociation takes place at a later time. At the end of these simulations, a large number of clusters are formed. By analyzing the trajectories, we discussed the role of the hydrogen bond in the initial process of nitromethane decompositions, the intermediates observed in the early time of the simulations, and the formation of clusters that consisted of C-N-C-N chain/ring structures.

  20. Towards a Molecular Movie: Real Time Observation of Hydrogen Bond Breaking by Transient 2D-IR Spectroscopy in a Cyclic Peptide

    NASA Astrophysics Data System (ADS)

    Kolano, Christoph; Helbing, Jan; Sander, Wolfram; Hamm, Peter

    Transient two-dimensional infrared spectroscopy (T2D-IR) has been used to observe in real time the non-equilibrium structural dynamics of intramolecular hydrogen bond breaking in a small cyclic disulfide-bridged peptide.

  1. Phosphines bearing alkyne substituents: synthesis and hydrophosphination polymerization.

    PubMed

    Greenberg, Sharonna; Stephan, Douglas W

    2009-09-07

    A synthetic route is described for a series of phosphines bearing pendant alkyne substituents, from the conversion of BrC(6)H(2)R(2)C[triple bond]CR' (R = Me, i-Pr; R' = Ph, SiMe(3)) to [(mu-Br)Cu(Et(2)N)(2)PC(6)H(2)R(2)C[triple bond]CR'](2) and subsequently to Cl(2)PC(6)H(2)R(2)C[triple bond]CR' and H(2)PC(6)H(2)R(2)C[triple bond]CR'. Lithiation and subsequent alkylation yield the secondary phosphines R(H)PC(6)H(2)(i-Pr)(2)C[triple bond]CPh (R = CH(2)i-Pr, CH(2)Ph). Intermolecular hydrophosphination-polymerization is used to prepare the polymeric species [RPC(6)H(2)(i-Pr)(2)CH=CPh](n), which can then be sulfurized to give [RP(S)C(6)H(2)(i-Pr)(2)CH=CPh](n). The polymeric products were characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and gel permeation chromatography. These data indicate a degree of polymerization (DP(n)) of up to 60. Discussion of the mechanism is augmented with gas-phase density functional theory calculations.

  2. Conversion of Amides to Esters by the Nickel-Catalyzed Activation of Amide C–N Bonds

    PubMed Central

    Hie, Liana; Fine Nathel, Noah F.; Shah, Tejas K.; Baker, Emma L.; Hong, Xin; Yang, Yun-Fang; Liu, Peng; Houk, K. N.; Garg, Neil K.

    2015-01-01

    Amides are common functional groups that have been well studied for more than a century.1 They serve as the key building blocks of proteins and are present in an broad range of other natural and synthetic compounds. Amides are known to be poor electrophiles, which is typically attributed to resonance stability of the amide bond.1,2 Whereas Nature can easily cleave amides through the action of enzymes, such as proteases,3 the ability to selectively break the C–N bond of an amide using synthetic chemistry is quite difficult. In this manuscript, we demonstrate that amide C–N bonds can be activated and cleaved using nickel catalysts. We have used this methodology to convert amides to esters, which is a challenging and underdeveloped transformation. The reaction methodology proceeds under exceptionally mild reaction conditions, and avoids the use of a large excess of an alcohol nucleophile. Density functional theory (DFT) calculations provide insight into the thermodynamics and catalytic cycle of this unusual transformation. Our results provide a new strategy to harness amide functional groups as synthons and are expected fuel the further use of amides for the construction of carbon–heteroatom or carbon–carbon bonds using non-precious metal catalysis. PMID:26200342

  3. METABOLIC ENGINEERING TO DEVELOP A PATHWAY FOR THE SELECTIVE CLEAVAGE OF CARBON-NITROGEN BONDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John J. Kilbane II

    The objective of the project is to develop biochemical pathways for the selective cleavage of C-N bonds in molecules found in petroleum. The initial phase of the project was focused on the isolation or development of an enzyme capable of cleaving the C-N bond in aromatic amides, specifically 2-aminobiphenyl. The objective of the second phase of the research will be to construct a biochemical pathway for the selective removal of nitrogen from carbazole by combining the carA genes from Sphingomonas sp. GTIN11 with the gene(s) encoding an appropriate deaminase. The objective of the final phase of the project will bemore » to develop derivative C-N bond cleaving enzymes that have broader substrate ranges and to demonstrate the use of such strains to selectively remove nitrogen from petroleum. During the first year of the project (October, 2002-September, 2003) enrichment culture experiments resulted in the isolation of microbial cultures that utilize aromatic amides as sole nitrogen sources, several amidase genes were cloned and were included in directed evolution experiments to obtain derivatives that can cleave C-N bonds in aromatic amides, and the carA genes from Sphingomonas sp. GTIN11, and Pseudomonas resinovorans CA10 were cloned in vectors capable of replicating in Escherichia coli. During the second year of the project (October, 2003-September, 2004) enrichment culture experiments succeeded in isolating a mixed bacterial culture that can utilize 2-aminobiphenyl as a sole nitrogen source, directed evolution experiments were focused on the aniline dioxygenase enzyme that is capable of deaminating aniline, and expression vectors were constructed to enable the expression of genes encoding C-N bond cleaving enzymes in Rhodococcus hosts. The construction of a new metabolic pathway to selectively remove nitrogen from carbazole and other molecules typically found in petroleum should lead to the development of a process to improve oil refinery efficiency by reducing the poisoning, by nitrogen, of catalysts used in the hydrotreating and catalytic cracking of petroleum. Aromatic compounds such as carbazole are representative of the difficult-to-treat organonitrogen compounds most commonly encountered in petroleum. There are two C-N bonds in carbazole and the construction of a metabolic pathway for the removal of nitrogen from carbazole will require enzymes capable cleaving both C-N bonds. A multi-component enzyme, carbazole dioxygenase, which can selectively cleave the first C-N bond has been identified and the genes that encode this enzyme have been cloned, sequenced, and are being expressed in Rhodococcus erythropolis, a bacterial culture that tolerates exposure to petroleum. An enzyme capable of selectively cleaving the second C-N bond in carbazole has not yet been identified, but enrichment culture experiments have recently succeeded in isolating a bacterial culture that is a likely candidate and may possess a suitable enzyme. Research in the near future will verify if a suitable enzyme for the cleavage of the second C-N bond in carbazole has indeed been found, then the genes encoding a suitable enzyme will be identified, cloned, and sequenced. Ultimately genes encoding enzymes for selective cleavage of both C-N bonds in carbazole will be assembled into a new metabolic pathway and the ability of the resulting bacterial culture to remove nitrogen from petroleum will be determined.« less

  4. Amide-Directed Photoredox Catalyzed C-C Bond Formation at Unactivated sp3 C-H Bonds

    PubMed Central

    Chu, John C. K.; Rovis, Tomislav

    2017-01-01

    Carbon-carbon (C-C) bond formation is paramount in the synthesis of biologically relevant molecules, modern synthetic materials and commodity chemicals such as fuels and lubricants. Traditionally, the presence of a functional group is required at the site of C-C bond formation. Strategies that allow C-C bond formation at inert carbon-hydrogen (C-H) bonds allow scientists to access molecules which would otherwise be inaccessible and to develop more efficient syntheses of complex molecules.1,2 Herein we report a method for the formation of C-C bonds by directed cleavage of traditionally non-reactive C-H bonds and their subsequent coupling with readily available alkenes. Our methodology allows for the selective C-C bond formation at single C-H bonds in molecules that contain a multitude of seemingly indifferentiable such bonds. Selectivity arises through a relayed photoredox catalyzed oxidation of an N-H bond. We anticipate our findings to serve as a starting point for functionalization at inert C-H bonds through a hydrogen atom transfer strategy. PMID:27732580

  5. Rational Design of Disulfide Bonds Increases Thermostability of a Mesophilic 1,3-1,4-β-Glucanase from Bacillus terquilensis

    PubMed Central

    Xu, Xin; Li, Qi

    2016-01-01

    1,3–1,4-β-glucanase is an important biocatalyst in brewing industry and animal feed industry, while its low thermostability often reduces its application performance. In this study, the thermostability of a mesophilic β-glucanase from Bacillus terquilensis was enhanced by rational design and engineering of disulfide bonds in the protein structure. Protein spatial configuration was analyzed to pre-exclude the residues pairs which negatively conflicted with the protein structure and ensure the contact of catalytic center. The changes in protein overall and local flexibility among the wild-type enzyme and the designated mutants were predicted to select the potential disulfide bonds for enhancement of thermostability. Two residue pairs (N31C-T187C and P102C-N125C) were chosen as engineering targets and both of them were proved to significantly enhance the protein thermostability. After combinational mutagenesis, the double mutant N31C-T187C/P102C-N125C showed a 48.3% increase in half-life value at 60°C and a 4.1°C rise in melting temperature (Tm) compared to wild-type enzyme. The catalytic property of N31C-T187C/P102C-N125C mutant was similar to that of wild-type enzyme. Interestingly, the optimal pH of double mutant was shifted from pH6.5 to pH6.0, which could also increase its industrial application. By comparison with mutants with single-Cys substitutions, the introduction of disulfide bonds and the induced new hydrogen bonds were proved to result in both local and overall rigidification and should be responsible for the improved thermostability. Therefore, the introduction of disulfide bonds for thermostability improvement could be rationally and highly-effectively designed by combination with spatial configuration analysis and molecular dynamics simulation. PMID:27100881

  6. Covalent Bonding of Pyrrolobenzodiazepines (PBDs) to Terminal Guanine Residues within Duplex and Hairpin DNA Fragments

    PubMed Central

    Mantaj, Julia; Jackson, Paul J. M.; Karu, Kersti; Rahman, Khondaker M.; Thurston, David E.

    2016-01-01

    Pyrrolobenzodiazepines (PBDs) are covalent-binding DNA-interactive agents with growing importance as payloads in Antibody Drug Conjugates (ADCs). Until now, PBDs were thought to covalently bond to C2-NH2 groups of guanines in the DNA-minor groove across a three-base-pair recognition sequence. Using HPLC/MS methodology with designed hairpin and duplex oligonucleotides, we have now demonstrated that the PBD Dimer SJG-136 and the C8-conjugated PBD Monomer GWL-78 can covalently bond to a terminal guanine of DNA, with the PBD skeleton spanning only two base pairs. Control experiments with the non-C8-conjugated anthramycin along with molecular dynamics simulations suggest that the C8-substituent of a PBD Monomer, or one-half of a PBD Dimer, may provide stability for the adduct. This observation highlights the importance of PBD C8-substituents, and also suggests that PBDs may bind to terminal guanines within stretches of DNA in cells, thus representing a potentially novel mechanism of action at the end of DNA strand breaks. PMID:27055050

  7. The unexpected mechanism underlying the high-valent mono-oxo-rhenium(V) hydride catalyzed hydrosilylation of C=N functionalities: insights from a DFT study.

    PubMed

    Wang, Jiandi; Wang, Wenmin; Huang, Liangfang; Yang, Xiaodi; Wei, Haiyan

    2015-04-07

    In this study, we theoretically investigated the mechanism underlying the high-valent mono-oxo-rhenium(V) hydride Re(O)HCl2(PPh3)2 (1) catalyzed hydrosilylation of C=N functionalities. Our results suggest that an ionic S(N)2-Si outer-sphere pathway involving the heterolytic cleavage of the Si-H bond competes with the hydride pathway involving the C=N bond inserted into the Re-H bond for the rhenium hydride (1) catalyzed hydrosilylation of the less steric C=N functionalities (phenylmethanimine, PhCH=NH, and N-phenylbenzylideneimine, PhCH=NPh). The rate-determining free-energy barriers for the ionic outer-sphere pathway are calculated to be ∼28.1 and 27.6 kcal mol(-1), respectively. These values are slightly more favorable than those obtained for the hydride pathway (by ∼1-3 kcal mol(-1)), whereas for the large steric C=N functionality of N,1,1-tri(phenyl)methanimine (PhCPh=NPh), the ionic outer-sphere pathway (33.1 kcal mol(-1)) is more favorable than the hydride pathway by as much as 11.5 kcal mol(-1). Along the ionic outer-sphere pathway, neither the multiply bonded oxo ligand nor the inherent hydride moiety participate in the activation of the Si-H bond. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Crystal structure of benzyl 3-(3-methyl-phen-yl)di-thio-carbazate.

    PubMed

    Aziz, NurFadhilah Abdul; Yusof, Enis Nadia Md; Ravoof, Thahira Begum S A; Tiekink, Edward R T

    2015-04-01

    In the title compound, C15H16N2S2, the central CN2S2 residue is almost planar (r.m.s. deviation = 0.0354 Å) and forms dihedral angles of 56.02 (4) and 75.52 (4)° with the phenyl and tolyl rings, respectively; the dihedral angle between the aromatic rings is 81.72 (5)°. The conformation about the N-N bond is gauche [C-N-N-C = -117.48 (15)°]. Overall, the mol-ecule has the shape of the letter L. In the crystal packing, supra-molecular chains along the a axis are formed by N-H⋯S(thione) hydrogen bonds whereby the thione S atom accepts two such bonds. The hydrogen bonding leads to alternating edge-shared eight-membered {⋯HNCS}2 and 10-membered {⋯HNNH⋯S}2 synthons. The chains are connected into layers by phen-yl-tolyl C-H⋯π inter-actions; the layers stack along the c axis with no specific inter-actions between them.

  9. Critical effects of alkyl chain length on fibril structures in benzene-trans(RR)- or (SS)-N,N'-alkanoyl-1,2-diaminocyclohexane gels.

    PubMed

    Sato, Hisako; Nakae, Takahiro; Morimoto, Kazuya; Tamura, Kenji

    2012-02-28

    Vibrational circular dichroism (VCD) spectra were recorded on benzene-d(6) gels formed by chiral low molecular mass gelators (LMGs), trans(RR)- or trans(SS)-N,N'-alkanoyl-1,2-diaminocyclohexane (denoted by RR-C(n) or SS-C(n), respectively; n = the number of carbon atoms in an introduced alkanoyl group). Attention was focused on the effects of alkyl chain length on the structures of the gels. When n was changed from 6 to 12, the signs of the coupled peaks around 1550 cm(-1) in the VCD spectra, which were assigned to the symmetric and asymmetric C=O stretching vibrations from the higher to lower wavenumber, respectively, critically depended on the alkyl chain length. In the case of RR-C(n), for example, the signs of the couplet were plus and minus for n = 8, 9, 10 and 12, while the signs of the same couplet were reversed for n = 6 and 7. The conformations of LMGs in fibrils were determined by comparing the observed IR and VCD spectra with those calculated for a monomeric molecule. The observed reversal of signs in the C=O couplet was rationalized in terms of the different modes of hydrogen bonding. In the case of C(8), C(9), C(10) and C(12), gelator molecules were stacked with their cyclohexyl rings in parallel, forming double anti-parallel chains of intermolecular hydrogen bonds using two pairs of >NH and >C=O groups. In case of C(6) and C(7), gelator molecules were stacked through a single chain of intermolecular hydrogen bonds using a pair of >NH and >C=O groups. The remaining pair of >NH and >C=O groups formed an intramolecular hydrogen bond.

  10. Anhydrous versus hydrated N4-substituted 1H-pyrazolo[3,4-d]pyrimidine-4,6-diamines: hydrogen bonding in two and three dimensions.

    PubMed

    Trilleras, Jorge; Quiroga, Jairo; Cobo, Justo; Marchal, Antonio; Nogueras, Manuel; Low, John N; Glidewell, Christopher

    2008-10-01

    Ten new N(4)-substituted 1H-pyrazolo[3,4-d]pyrimidine-4,6-diamines have been synthesized and the structures of nine of them are reported here, falling into two clear groups, those which are stoichiometric hydrates and those which crystallize in solvent-free forms. In each of N(4)-methyl-N(4)-phenyl-1H-pyrazolo[3,4-d]pyrimidine-4,6-diamine, C(12)H(12)N(6) (I), N(4)-cyclohexyl-N(4)-methyl-1H-pyrazolo[3,4-d]pyrimidine-4,6-diamine, C(12)H(18)N(6) (II), and N(4)-(3-chlorophenyl)-1H-pyrazolo[3,4-d]pyrimidine-4,6-diamine, C(11)H(9)ClN(6) (III), the molecules are linked into hydrogen-bonded sheets. The molecules of 2-{4-(6-amino-1H-pyrazolo[3,4-d]pyrimidin-4-yl)piperazin-1-yl}ethanol, C(11)H(17)N(7)O (IV), are linked into a three-dimensional framework, while the structure of N(4)-methyl-N(4)-(4-methylphenyl)-1H-pyrazolo[3,4-d]pyrimidine-4,6-diamine monohydrate, C(13)H(14)N(6) x H(2)O (V), is only two-dimensional despite the presence of five independent hydrogen bonds. The stoichiometric hemihydrates N(4)-ethyl-N(4)-phenyl-1H-pyrazolo[3,4-d]pyrimidine-4,6-diamine hemihydrate, C(13)H(14)N(6) x 0.5 H(2)O (VI) and N(4)-(4-methoxyphenyl)-N(4)-methyl-1H-pyrazolo[3,4-d]pyrimidine-4,6-diamine hemihydrate, C(13)H(14)N(6)O x 0.5 H(2)O (VII), exhibit remarkably similar sheet structures, despite different space groups and Z' values, Z' = 0.5 in C2/c for (VI) and Z' = 1 in P1 for (VII). N(4)-4-Benzyl-N(4)-phenyl-1H-pyrazolo[3,4-d]pyrimidine-4,6-diamine monohydrate, C(18)H(16)N(6) x H(2)O (VIII), crystallizes with Z' = 2 in P2(1)/n, and the four independent molecular components are linked into sheets by a total of 11 intermolecular hydrogen bonds. The sheet structure in {4-(pyrrolidin-1-yl)-1H-pyrazolo[3,4-d]pyrimidine-6-amine} ethanol hemisolvate hemihydrate, C(9)H(12)N(6).0.5C(2)H(6)O x 0.5 H(2)O (IX), is built from the pyrimidine and water components only; it contains eight independent hydrogen bonds, and it very closely mimics the sheets in (VI) and (VII); the ethanol molecules are pendent from these sheets. The N(4)-alkyl-N(4)-aryl-4-aminopyrazolopyrimidine molecules in (I), (V)-(VIII) all adopt very similar conformations, dominated in each case by an intramolecular C-H...pi(arene) hydrogen bond: this interaction is absent from (III) where the molecular conformation is entirely different and probably dominated by the intermolecular hydrogen bonds.

  11. On the mechanism of nitrosoarene-alkyne cycloaddition.

    PubMed

    Penoni, Andrea; Palmisano, Giovanni; Zhao, Yi-Lei; Houk, Kendall N; Volkman, Jerome; Nicholas, Kenneth M

    2009-01-21

    The thermal reaction between nitrosoarenes and alkynes produces N-hydroxyindoles as the major products. The mechanism of these novel reactions has been probed using a combination of experimental and computational methods. The reaction of nitrosobenzene (NB) with an excess of phenyl acetylene (PA) is determined to be first order in each reactant in benzene at 75 degrees C. The reaction rates have been determined for reactions between phenyl acetylene with a set of p-substituted nitrosoarenes, 4-X-C(6)H(4)NO, and of 4-O(2)N-C(6)H(4)NO with a set of p-substituted arylalkynes, 4-Y-C(6)H(4)C[triple bond]CH. The former reactions are accelerated by electron-withdrawing X groups (rho = +0.4), while the latter are faster with electron-donating Y groups (rho = -0.9). The kinetic isotope effect for the reaction of C(6)H(5)NO/C(6)D(5)NO with PhC[triple bond]CH is found to be 1.1 (+/-0.1) while that between PhC[triple bond]CH/PhC[triple bond]CD with PhNO is also 1.1 (+/-0.1). The reaction between nitrosobenzene and the radical clock probe cyclopropylacetylene affords 3-cyclopropyl indole in low yield. In addition to 3-carbomethoxy-N-hydroxyindole, the reaction between PA and o-carbomethoxy-nitrosobenzene also affords a tricyclic indole derivative, 3, likely derived from trapping of an intermediate indoline nitrone with PA and subsequent rearrangement. Computational studies of the reaction mechanism were carried out with density functional theory at the (U)B3LYP/6-31+G(d) level. The lowest energy pathway of the reaction of PhNO with alkynes was found to be stepwise; the N-C bond between nitrosoarene and acetylene is formed first, the resulting vinyl diradical undergoes cis-trans isomerization, and then the C-C bond forms. Conjugating substituents Z on the alkyne, Z-C[triple bond]CH, lower the calculated (and observed) activation barrier, Z = -H (19 kcal/mol), -Ph (15.8 kcal/mol), and -C(O)H (13 kcal/mol). The regioselectivity of the reaction, with formation of the 3-substituted indole, was reproduced by the calculations of PhNO + PhC[triple bond]CH; the rate-limiting step for formation of the 2-substituted indole is higher in energy by 11.6 kcal/mol. The effects of -NO(2), -CN, -Cl, -Br, -Me, and -OMe substituents were computed for the reactions of p-X-C(6)H(4)NO with PhC[triple bond]CH and of PhNO and/or p-NO(2)-C(6)H(4)NO with p-Y-C(6)H(4)C[triple bond]CH. The activation energies for the set of p-X-C(6)H(4)NO vary by 4.3 kcal/mol and follow the trend found experimentally, with electron-withdrawing X groups accelerating the reactions. The range of barriers for the p-Y-C(6)H(4)C[triple bond]CH reactions is smaller, about 1.5 and 1.8 kcal/mol in the cases of PhNO and p-NO(2)-PhNO, respectively. In agreement with the experiments, electron-donating Y groups on the alkyne accelerate the reactions with p-NO(2)-C(6)H(4)NO, while both ED and EW groups are predicted to facilitate the reaction. The calculated kinetic isotope effect for the reaction of C(6)H(5)NO/C(6)D(5)NO with PhC[triple bond]CH is negligible (as found experimentally) while that for PhC[triple bond]CH/PhC[triple bond]CD with PhNO (0.7) differs somewhat from the experiment (1.1). Taken together the experimental and computational results point to the operation of a stepwise diradical cycloaddition, with rate-limiting N-C bond formation and rapid C-C connection to form a bicyclic cyclohexadienyl-N-oxyl diradical, followed by fast tautomerization to the N-hydroxyindole product.

  12. Method of radiation degradation of PTFE under vacuum conditions

    NASA Astrophysics Data System (ADS)

    Korenev, Sergey

    2004-09-01

    A new method of radiation degradation of Polytetrafluoroethylene (PTFE) under vacuum conditions is considered in this report. The combination of glow gas discharge and electrical surface discharge (on surface and inside PTFE) increases the efficiency of thermal-radiation degradation. The main mechanism of this degradation method consists of the breaking of C-C and C-F bonds. The vacuum conditions allow decreasing of the concentration of toxic compounds, such as a HF. Experimental results for degradation of PTFE are presented.

  13. Osteo-odonto-keratoprosthesis (OOKP) and the testing of three different adhesives for bonding bovine teeth with optical poly-(methyl methacrylate) (PMMA) cylinder.

    PubMed

    Weisshuhn, K; Berg, I; Tinner, D; Kunz, C; Bornstein, M M; Steineck, M; Hille, K; Goldblum, D

    2014-07-01

    Preparation of the lamina during osteo-odonto-keratoprosthesis (OOKP) design is complex, and its longevity and watertightness important. To date, only acrylic bone cements have been used for bonding the optical cylinder to the tooth dentine. Our aim was to evaluate different dental adhesives for OOKP preparation. Specimens of bovine teeth were produced by preparing 1.5-mm thick dentine slices with holes having a diameter of 3.5 mm. Each group (n=10 per group) was luted with either classic poly-(methyl methacrylate) (PMMA) bone cement, universal resin cement or glass ionomer cement. All specimens underwent force measurement using a uniaxial traction machine. The highest mean force required to break the bond was measured for PMMA bone cement (128.2 N) followed by universal resin cement (127.9 N), with no statistically significant difference. Glass ionomer cement showed significantly lower force resistance (78.1 N). Excellent bonding strength combined with easy application was found for universal resin cement, and thus, it is a potential alternative to acrylic bone cement in OOKP preparation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  14. Pentaatomic planar tetracoordinate silicon with 14 valence electrons: a large-scale global search of SiX(n)Y(m)(q) (n + m = 4; q = 0, ±1, -2; X, Y = main group elements from H to Br).

    PubMed

    Xu, Jing; Ding, Yi-hong

    2015-03-05

    Designing and characterizing the compounds with exotic structures and bonding that seemingly contrast the traditional chemical rules are a never-ending goal. Although the silicon chemistry is dominated by the tetrahedral picture, many examples with the planar tetracoordinate-Si skeletons have been discovered, among which simple species usually contain the 17/18 valence electrons. In this work, we report hitherto the most extensive structural search for the pentaatomic ptSi with 14 valence electrons, that is, SiXnYm(q) (n + m = 4; q = 0, ±1, -2; X, Y = main group elements from H to Br). For 129 studied systems, 50 systems have the ptSi structure as the local minimum. Promisingly, nine systems, that is, Li3SiAs(2-), HSiY3 (Y = Al/Ga), Ca3SiAl(-), Mg4Si(2-), C2LiSi, Si3Y2 (Y = Li/Na/K), each have the global minimum ptSi. The former six systems represent the first prediction. Interestingly, in HSiY3 (Y = Al/Ga), the H-atom is only bonded to the ptSi-center via a localized 2c-2e σ bond. This sharply contradicts the known pentaatomic planar-centered systems, in which the ligands are actively involved in the ligand-ligand bonding besides being bonded to the planar center. Therefore, we proposed here that to generalize the 14e-ptSi, two strategies can be applied as (1) introducing the alkaline/alkaline-earth elements and (2) breaking the peripheral bonding. In light of the very limited global ptSi examples, the presently designed six systems with 14e are expected to enrich the exotic ptSi chemistry and welcome future laboratory confirmation. © 2014 Wiley Periodicals, Inc.

  15. Anisotropic mechanoresponse of energetic crystallites: a quantum molecular dynamics study of nano-collision

    NASA Astrophysics Data System (ADS)

    Li, Ying; Kalia, Rajiv K.; Misawa, Masaaki; Nakano, Aiichiro; Nomura, Ken-Ichi; Shimamura, Kohei; Shimojo, Fuyuki; Vashishta, Priya

    2016-05-01

    At the nanoscale, chemistry can happen quite differently due to mechanical forces selectively breaking the chemical bonds of materials. The interaction between chemistry and mechanical forces can be classified as mechanochemistry. An example of archetypal mechanochemistry occurs at the nanoscale in anisotropic detonating of a broad class of layered energetic molecular crystals bonded by inter-layer van der Waals (vdW) interactions. Here, we introduce an ab initio study of the collision, in which quantum molecular dynamic simulations of binary collisions between energetic vdW crystallites, TATB molecules, reveal atomistic mechanisms of anisotropic shock sensitivity. The highly sensitive lateral collision was found to originate from the twisting and bending to breaking of nitro-groups mediated by strong intra-layer hydrogen bonds. This causes the closing of the electronic energy gap due to an inverse Jahn-Teller effect. On the other hand, the insensitive collisions normal to multilayers are accomplished by more delocalized molecular deformations mediated by inter-layer interactions. Our nano-collision studies provide a much needed atomistic understanding for the rational design of insensitive energetic nanomaterials and the detonation synthesis of novel nanomaterials.At the nanoscale, chemistry can happen quite differently due to mechanical forces selectively breaking the chemical bonds of materials. The interaction between chemistry and mechanical forces can be classified as mechanochemistry. An example of archetypal mechanochemistry occurs at the nanoscale in anisotropic detonating of a broad class of layered energetic molecular crystals bonded by inter-layer van der Waals (vdW) interactions. Here, we introduce an ab initio study of the collision, in which quantum molecular dynamic simulations of binary collisions between energetic vdW crystallites, TATB molecules, reveal atomistic mechanisms of anisotropic shock sensitivity. The highly sensitive lateral collision was found to originate from the twisting and bending to breaking of nitro-groups mediated by strong intra-layer hydrogen bonds. This causes the closing of the electronic energy gap due to an inverse Jahn-Teller effect. On the other hand, the insensitive collisions normal to multilayers are accomplished by more delocalized molecular deformations mediated by inter-layer interactions. Our nano-collision studies provide a much needed atomistic understanding for the rational design of insensitive energetic nanomaterials and the detonation synthesis of novel nanomaterials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08769d

  16. Effect of RF power and annealing on chemical bonding and morphology of a-CN{sub x} thin films as humidity sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aziz, N. F. H; Hussain, N. S. Mohamed; Awang, R.

    2013-11-27

    Amorphous carbon nitride (a-CN{sub x}) thin films were deposited using radio frequency plasma enhanced chemical vapor deposition (rf-PECVD) technique. A set of a-CN{sub x} thin films were prepared using pure methane (CH{sub 4}) gas diluted with nitrogen (N{sub 2}) gas. The rf power was varied at 50, 60, 70, 80, 90 and 100 W. These films were then annealed at 400 °C in a quartz tube furnace in argon (Ar) gas. The effects of rf power and thermal annealing on the chemical bonding and morphology of these samples were studied. Surface profilometer was used to measure film thickness. Fourier transformmore » infra-red spectroscopy (FTIR) and Field emission scanning electron microscopy (FESEM) measurements were used to determine their chemical bonding and morphology respectively. The deposition rate of the films increased constantly with increasing rf power up to 80W, before decreasing with further increase in rf power. Fourier transform infra-red spectroscopy (FTIR) studies showed a systematic change in the spectra and revealed three main peaks included C-N, C=N, C=C and C≡N triple bond. C=N and C≡N bonds decreased with increased C-N bonds after thermal annealing process. The FESEM images showed that the structure is porous for as-deposited and covered by granule-like grain structure after thermal annealing process was done. The resistance of the a-CN{sub x} thin film changed from 23.765 kΩ to 5.845 kΩ in the relative humidity range of 5 to 92 % and the film shows a good response and repeatability as a humidity sensing materials. This work showed that rf power and thermal annealing has significant effects on the chemical bonding and surface morphology of the a-CN{sub x} films and but yield films which are potential candidate as humidity sensor device.« less

  17. Crystal structures of the three closely related compounds: bis-[(1H-tetra-zol-5-yl)meth-yl]nitramide, tri-amino-guanidinium 5-({[(1H-tetra-zol-5-yl)meth-yl](nitro)-amino}-meth-yl)tetra-zol-1-ide, and di-ammonium bis-[(tetra-zol-1-id-5-yl)meth-yl]nitramide monohydrate.

    PubMed

    Mitchell, Lauren A; Imler, Gregory H; Parrish, Damon A; Deschamps, Jeffrey R; Leonard, Philip W; Chavez, David E

    2017-07-01

    In the mol-ecule of neutral bis-[(1 H -tetra-zol-5-yl)meth-yl]nitramide, (I), C 4 H 6 N 10 O 2 , there are two intra-molecular N-H⋯O hydrogen bonds. In the crystal, N-H⋯N hydrogen bonds link mol-ecules, forming a two-dimensional network parallel to (-201) and weak C-H⋯O, C-H⋯N hydrogen bonds, and inter-molecular π-π stacking completes the three-dimensional network. The anion in the molecular salt, tri-amino-guanidinium 5-({[(1 H -tetra-zol-5-yl)meth-yl](nitro)-amino}-meth-yl)tetra-zol-1-ide, (II), CH 9 N 6 + ·C 4 H 5 N 10 O 2 - , displays intra-molecular π-π stacking and in the crystal, N-H⋯N and N-H⋯O hydrogen bonds link the components of the structure, forming a three-dimensional network. In the crystal of di-ammonium bis-[(tetra-zol-1-id-5-yl)meth-yl]nitramide monohydrate, (III), 2NH 4 + ·C 4 H 4 N 10 O 2 2- ·H 2 O, O-H⋯N, N-H⋯N, and N-H⋯O hydrogen bonds link the components of the structure into a three-dimensional network. In addition, there is inter-molecular π-π stacking. In all three structures, the central N atom of the nitramide is mainly sp 2 -hybridized. Bond lengths indicate delocalization of charges on the tetra-zole rings for all three compounds. Compound (II) was found to be a non-merohedral twin and was solved and refined in the major component.

  18. Ion implantation in ices and its relevance to the icy moons of the external planets

    NASA Astrophysics Data System (ADS)

    Strazzulla, G.; Baratta, G. A.; Fulvio, D.; Garozzo, M.; Leto, G.; Palumbo, M. E.; Spinella, F.

    2007-08-01

    Solid, atmosphere-less objects in the Solar System are continuously irradiated by energetic ions mostly in the keV-MeV energy range. Being the penetration depth of the incoming ions usually much lower than the thickness of the target, they are stopped into the ice. They deposit energy in the target induce the breaking of molecular bonds. The recombination of fragments produce different molecules. Reactive ions (e.g., H, C, N, O, S) induce all of the effects of any other ion, but in addition have a chance, by implantation in the target, to form new species containing the projectile. An ongoing research program performed at our laboratory has the aim to investigate ion implantation of reactive ions in many relevant ice mixtures. The results obtained so far indicate that some molecular species observed on icy planetary surfaces could not be native of that object but formed by implantation of reactive ions. In particular we present data obtained after: • C, N and S implantation in water ice • H implantation in carbon and sulfur dioxide

  19. Direct observation of ligand transfer and bond formation in cytochrome c oxidase by using mid-infrared chirped-pulse upconversion

    PubMed Central

    Treuffet, Johanne; Kubarych, Kevin J.; Lambry, Jean-Christophe; Pilet, Eric; Masson, Jean-Baptiste; Martin, Jean-Louis; Vos, Marten H.; Joffre, Manuel; Alexandrou, Antigoni

    2007-01-01

    We have implemented the recently demonstrated technique of chirped-pulse upconversion of midinfrared femtosecond pulses into the visible in a visible pump–midinfrared probe experiment for high-resolution, high-sensitivity measurements over a broad spectral range. We have succeeded in time-resolving the CO ligand transfer process from the heme Fe to the neighboring CuB atom in the bimetallic active site of mammalian cytochrome c oxidase, which was known to proceed in <1 ps, using the full CO vibrational signature of Fe–CO bond breaking and CuB–CO bond formation. Our differential transmission results show a delayed onset of the appearance of the CuB-bound species (200 fs), followed by a 450-fs exponential rise. Trajectories calculated by using molecular-dynamics simulations with a Morse potential for the CuB–C interaction display a similar behavior. Both experimental and calculated data strongly suggest a ballistic contribution to the transfer process. PMID:17895387

  20. Metabolic Engineering to Develop a Pathway for the Selective Cleavage of Carbon-Nitrogen Bonds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John J. Kilbane II

    The objective of the project is to develop a biochemical pathway for the selective cleavage of C-N bonds in molecules found in petroleum. Specifically a novel biochemical pathway will be developed for the selective cleavage of C-N bonds in carbazole. The cleavage of the first C-N bond in carbazole is accomplished by the enzyme carbazole dioxygenase, that catalyzes the conversion of carbazole to 2-aminobiphenyl-2,3-diol. The genes encoding carbazole dioxygenase were cloned from Sphingomonas sp. GTIN11 and from Pseudomonas resinovorans CA10. The selective cleavage of the second C-N bond has been challenging, and efforts to overcome that challenge have been themore » focus of recent research in this project. Enrichment culture experiments succeeded in isolating bacterial cultures that can metabolize 2-aminobiphenyl, but no enzyme capable of selectively cleaving the C-N bond in 2-aminobiphenyl has been identified. Aniline is very similar to the structure of 2-aminobiphenyl and aniline dioxygenase catalyzes the conversion of aniline to catechol and ammonia. For the remainder of the project the emphasis of research will be to simultaneously express the genes for carbazole dioxygenase and for aniline dioxygenase in the same bacterial host and then to select for derivative cultures capable of using carbazole as the sole source of nitrogen.« less

  1. [Stimuli phrases of adductor spasmodic dysphonia phonatory break in mandarin Chinese].

    PubMed

    Ge, Pingjiang; Ren, Qingyi; Chen, Zhipeng; Cheng, Qiuhui; Sheng, Xiaoli; Wang, Ling; Chen, Shaohua; Zhang, Siyi

    2015-12-01

    To investigate the characteristics of adductor spasmodic dysphonia phonatory break in mandarin Chinese and select the stimuli phrases. Thirty-eight patients with adductor spasmodic dysphonia were involved in this study. Standard phrase " fù mŭ xīn" and a speech corpus in mandarin Chinese with 229 syllables covering all vowel and constant of mandarin Chinese were selected. Every patient read the phrases above twice in normal speed and comfortable voice. Two auditory perpetual speech pathologists marked phonatory break syllables respectively. The frequency of phonatory break syllables and their located phrases were calculated, rated and described. The phrases including the most phonatory break syllables were selected as stimuli phrases, the phonatory break frequency of which was also higher than that of standard phrase "fù mŭ xīn". Phonatory break happened in the reading of all patients. The average number of phonatory break syllables was 14 (3-33). Phonatroy break occurred when saying 177 (77.3%) syllables in the speech corpus. The syllables "guŏ, rén, zāng, diàn, chē, gè, guăn, a, bā, ne, de" broke in 23.1%-41.0% patients. These syllables belonged to the phrases "pĭng guŏ, huŏ chē, shì de, nĭ shì gè hăo rén, wŏ mén shì yŏu zŏng shì bă qĭn shì nong dé hĕn zāng, wŏ mén nà biān yŏu wăng qiú yùn dong chăng, cān gŭan, jiŭ bā hé yī gè miàn bāo dìan, tā shì duō me kāng kăi a,wŏ yīng gāi zài xìn lĭ xiĕ yī xiē shén mē ne?". Thirty-seven patients (97.3%) had phonatory break in above mentioned words. Ratios of these words phonatory break also were more than "fù mŭ xīn". Adductor spasmodic dysphonic patients exhibited different degrees of phonatory break in mandarine Chinese. The phrases" shì de, pĭng guŏ, huŏ chē, nĭ shì gè hăo rén, wŏ mén nà biān yŏu wăng qiú yùn dong chăng, cān gŭan, jiŭ bā hé yī gè miàn bāo dìan, tā shì duō me kāng kăi a" were recommended as stimuli phrases for adductor spasmodic dysphonia evaluation.

  2. Shear induced weakening of the hydrogen bonding lattice of the energetic material 5,5'-Hydrazinebistetrazole at high-pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciezak-Jenkins, Jennifer A.; Jenkins, Timothy A.

    5,5'-Hydrazinebistetrazole (HBTA) has been studied by in-situ x-ray diffraction and vibrational spectroscopy to pressures near 25 GPa at room temperature. Analysis of the x-ray diffraction pattern of HBTA collected at ambient pressure and temperature revealed a monoclinic structure consistent with that previously reported. Under compression, the x-ray diffraction reveals little evidence of a phase transition over the pressure range studied. Slight anisotropy in response to compression was noted and the β angle decreased moderately, suggesting geometry modifications occur in the hydrogen bonding lattice and between neighboring HBTA molecules as a result of compression along the c axis. Blue shifts inmore » the Infrared active N-H stretching modes were observed, implying a weakening of the hydrogen bond with compression. The weakening of the hydrogen bonding lattice with pressure may lead to an increase in the bending angle of the C-N=N-C bridge between the tetrazole rings and an increased overlap between the π-bonding orbitals. The Raman spectra showed a number of modes associated with H-N=N-H motions of the bridge become more prominent in the spectra under compression. Additionally, the possibility that the increased bend in the angle of the C-N=N-C bridge results from a shearing deformation is discussed.« less

  3. Photo-induced oxidant-free oxidative C-H/N-H cross-coupling between arenes and azoles

    NASA Astrophysics Data System (ADS)

    Niu, Linbin; Yi, Hong; Wang, Shengchun; Liu, Tianyi; Liu, Jiamei; Lei, Aiwen

    2017-02-01

    Direct cross-coupling between simple arenes and heterocyclic amines under mild conditions is undoubtedly important for C-N bonds construction. Selective C(sp2)-H amination is more valuable. Herein we show a selective C(sp2)-H amination of arenes (alkyl-substituted benzenes, biphenyl and anisole derivatives) accompanied by hydrogen evolution by using heterocyclic azoles as nitrogen sources. The reaction is selective for C(sp2)-H bonds, providing a mild route to N-arylazoles. The KIE (kinetic isotope effect) experiment reveals the cleavage of C-H bond is not involved in the rate-determining step. Kinetic studies indicate the first-order behaviour with respect to the arene component. It is interesting that this system works without the need for any sacrificial oxidant and is highly selective for C(sp2)-H activation, whereas C(sp3)-H bonds are unaffected. This study may have significant implications for the functionalization of methylarenes which are sensitive to oxidative conditions.

  4. A comparative computational study of Csbnd N and Csbnd C bonding visible to NIR absorbing croconines

    NASA Astrophysics Data System (ADS)

    Chetti, Prabhakar; Tripathi, Anuj

    2018-03-01

    The lowest electronic excitations and charge transfer properties in two series of croconine dyes; 1) molecules with Csbnd N bonding, having an absorption in the visible region (400-600 nm) and 2) molecules with Csbnd C bonding, showing absorption in visible to near infrared (NIR) region (600-1100 nm) are analyzed by quantum-chemical calculations. The absorption maxima in Csbnd C bonding croconines (CCR) are always having 200-300 nm red shifted than its corresponding Csbnd N bonding croconines (NCR). The reason for this drastic red shift in CCR series than its corresponding NCR has been systematically studied by DFT, TDDFT and SAC-CI methods. It is found that, CCR series are with less charge transfer in nature and are having larger diradical character, whereas NCR series molecules showing larger charge transfer with lower diradical character. The change in bonding mode of central five membered croconate ring, from Csbnd N to Csbnd C, destabilization and/stabilization of HOMO LUMO levels were observed. This study may helpful in the design and synthesis of new visible to NIR absorbing croconine dyes which are useful in materials applications.

  5. Mo-Mo Quintuple Bond is Highly Reactive in H-H, C-H, and O-H σ-Bond Cleavages Because of the Polarized Electronic Structure in Transition State.

    PubMed

    Chen, Yue; Sakaki, Shigeyoshi

    2017-04-03

    The recently reported high reactivity of the Mo-Mo quintuple bond of Mo 2 (N ∧ N) 2 (1) {N ∧ N = μ-κ 2 -CH[N(2,6-iPr 2 C 6 H 3 )] 2 } in the H-H σ-bond cleavage was investigated. DFT calculations disclosed that the H-H σ-bond cleavage by 1 occurs with nearly no barrier to afford the cis-dihydride species followed by cis-trans isomerization to form the trans-dihydride product, which is consistent with the experimental result. The O-H and C-H bond cleavages by 1 were computationally predicted to occur with moderate (ΔG° ⧧ = 9.0 kcal/mol) and acceptable activation energies (ΔG° ⧧ = 22.5 kcal/mol), respectively, suggesting that the Mo-Mo quintuple bond can be applied to various σ-bond cleavages. In these σ-bond cleavage reactions, the charge-transfer (CT Mo→XH ) from the Mo-Mo quintuple bond to the X-H (X = H, C, or O) bond and that (CT XH→Mo ) from the X-H bond to the Mo-Mo bond play crucial roles. Though the HOMO (dδ-MO) of 1 is at lower energy and the LUMO + 2 (dδ*-MO) of 1 is at higher energy than those of RhCl(PMe 3 ) 2 (LUMO and LUMO + 1 of 1 are not frontier MO), the H-H σ-bond cleavage by 1 more easily occurs than that by the Rh complex. Hence, the frontier MO energies are not the reason for the high reactivity of 1. The high reactivity of 1 arises from the polarization of dδ-type MOs of the Mo-Mo quintuple bond in the transition state. Such a polarized electronic structure enhances the bonding overlap between the dδ-MO of the Mo-Mo bond and the σ*-antibonding MO of the X-H bond to facilitate the CT Mo→XH and reduce the exchange repulsion between the Mo-Mo bond and the X-H bond. This polarized electronic structure of the transition state is similar to that of a frustrated Lewis pair. The easy polarization of the dδ-type MOs is one of the advantages of the metal-metal multiple bond, because such polarization is impossible in the mononuclear metal complex.

  6. Effect of Spin Multiplicity in O2 Adsorption and Dissociation on Small Bimetallic AuAg Clusters.

    PubMed

    García-Cruz, Raúl; Poulain, Enrique; Hernández-Pérez, Isaías; Reyes-Nava, Juan A; González-Torres, Julio C; Rubio-Ponce, A; Olvera-Neria, Oscar

    2017-08-17

    To dispose of atomic oxygen, it is necessary the O 2 activation; however, an energy barrier must be overcome to break the O-O bond. This work presents theoretical calculations of the O 2 adsorption and dissociation on small pure Au n and Ag m and bimetallic Au n Ag m (n + m ≤ 6) clusters using the density functional theory (DFT) and the zeroth-order regular approximation (ZORA) to explicitly include scalar relativistic effects. The most stable Au n Ag m clusters contain a higher concentration of Au with Ag atoms located in the center of the cluster. The O 2 adsorption energy on pure and bimetallic clusters and the ensuing geometries depend on the spin multiplicity of the system. For a doublet multiplicity, O 2 is adsorbed in a bridge configuration, whereas for a triplet only one O-metal bond is formed. The charge transfer from metal toward O 2 occupies the σ* O-O antibonding natural bond orbital, which weakens the oxygen bond. The Au 3 ( 2 A) cluster presents the lowest activation energy to dissociate O 2 , whereas the opposite applies to the AuAg ( 3 A) system. In the O 2 activation, bimetallic clusters are not as active as pure Au n clusters due to the charge donated by Ag atoms being shared between O 2 and Au atoms.

  7. [Bonding properties of four different cements to glass fiber posts after different treatments].

    PubMed

    Li, Xiaojing; Zhao, Sanjun; Shen, Lijuan; Xu, Shuai; Sun, Jiaqi; Chen, Jihua

    2014-03-01

    To investigate the effect of four different cements on the bonding effectiveness of root canal dentine and fiber post before and after different treatments. A total of 216 freshly extracted sound single-root-canal mandibular premolars were randomly divided into four groups. After root canal treatment and post space preparation being conducted on the premolars, Fuji I, Fuji Cem, RelyX Unicem, RelyX ARC were used respectively to bond fiber posts and were marked with group A, B, C, and D. Microleakage, micromorphology of the bonded interfaces, and pull-out bond strength were evaluated in the immediate group, thermocycling group and thermomechanical loading group. In the immediate group, samples in group D showed the highest bond strength [(278 ± 26)N], followed by group C[ (219 ± 12) N], B[ (104 ± 23) N] and A[(73 ± 8) N]. Significant differences were found among all groups (P < 0.05) . A significant increase in bond strength was found in group A and B, whereas a decrease tendency was detected in group C and D after different treatments.Scanning electron microscope indicated that some little gaps were observed in group D after treatment, while a more intense bonding interface was found in group A and B. Microleakage scores in group A and B were lower than those in group C and D after aging treatments. Resin cement can achieve a better immediate bond strength, while resin-modified resin cement may acquire a better long-term retention.

  8. 2,3-Diamino-pyridinium sorbate-sorbic acid (1/1).

    PubMed

    Hemamalini, Madhukar; Goh, Jia Hao; Fun, Hoong-Kun

    2012-01-01

    In the title mol-ecular salt-adduct, C(5)H(8)N(3) (+)·C(6)H(7)O(2) (-)·C(6)H(8)O(2), the 2,3-diamino-pyridinium cation is essentially planar, with a maximum deviation of 0.013 (2) Å, and is protanated at its pyridine N atom. The sorbate anion and sorbic acid mol-ecules exist in extended conformations. In the crystal, the protonated N atom and one of the two amino-group H atoms are hydrogen bonded to the sorbate anion through a pair of N-H⋯O hydrogen bonds, forming an R(1) (2)(6) ring motif. The carboxyl groups of the sorbic acid mol-ecules and the carboxyl-ate groups of the sorbate anions are connected via O-H⋯O hydrogen bonds. Furthermore, the ion pairs and neutral mol-ecules are connected via inter-molecular N-H⋯O hydrogen bonds, forming sheets lying parallel to (100).

  9. Supra-molecular architecture in a co-crystal of the N(7)-H tautomeric form of N (6)-benzoyl-adenine with adipic acid (1/0.5).

    PubMed

    Swinton Darious, Robert; Thomas Muthiah, Packianathan; Perdih, Franc

    2016-06-01

    The asymmetric unit of the title co-crystal, C12H9N5O·0.5C6H10O4, consists of one mol-ecule of N (6)-benzoyl-adenine (BA) and one half-mol-ecule of adipic acid (AA), the other half being generated by inversion symmetry. The dihedral angle between the adenine and phenyl ring planes is 26.71 (7)°. The N (6)-benzoyl-adenine mol-ecule crystallizes in the N(7)-H tautomeric form with three non-protonated N atoms. This tautomeric form is stabilized by intra-molecular N-H⋯O hydrogen bonding between the carbonyl (C=O) group and the N(7)-H hydrogen atom on the Hoogsteen face of the purine ring, forming an S(7) ring motif. The two carboxyl groups of adipic acid inter-act with the Watson-Crick face of the BA mol-ecules through O-H⋯N and N-H⋯O hydrogen bonds, generating an R 2 (2)(8) ring motif. The latter units are linked by N-H⋯N hydrogen bonds, forming layers parallel to (10-5). A weak C-H⋯O hydrogen bond is also present, linking adipic acid mol-ecules in neighbouring layers, enclosing R (2) 2(10) ring motifs and forming a three-dimensional structure. C=O⋯π and C-H⋯π inter-actions are also present in the structure.

  10. Deuterium isotope effects on 13C and 15N chemical shifts of intramolecularly hydrogen-bonded enaminocarbonyl derivatives of Meldrum’s and Tetronic acid

    NASA Astrophysics Data System (ADS)

    Ullah, Saif; Zhang, Wei; Hansen, Poul Erik

    2010-07-01

    Secondary deuterium isotope effects on 13C and 15N nuclear shieldings in a series of cyclic enamino-diesters and enamino-esters and acyclic enaminones and enamino-esters have been examined and analysed using NMR and DFT (B3LYP/6-31G(d,p)) methods. One-dimensional and two-dimensional NMR spectra of enaminocarbonyl and their deuterated analogues were recorded in CDCl 3 and CD 2Cl 2 at variable temperatures and assigned. 1JNH coupling constants for the derivatives of Meldrum's and tetronic acids reveal that they exist at the NH-form. It was demonstrated that deuterium isotope effects, for the hydrogen bonded compounds, due to the deuterium substitution at the nitrogen nucleus lead to large one-bond isotope effects at nitrogen, 1Δ 15N(D), and two-bond isotope effects on carbon nuclei, 2ΔC(ND), respectively. A linear correlations exist between 2ΔC(ND) and 1Δ 15N(D) whereas the correlation with δNH is divided into two. A good agreement between the experimentally observed 2ΔC(ND) and calculated dσ 13C/dR NH was obtained. A very good correlation between calculated NH bond lengths and observed NH chemical shifts is found. The observed isotope effects are shown to depend strongly on Resonance Assisted Hydrogen bonding.

  11. Hydration dynamics of a lipid membrane: Hydrogen bond networks and lipid-lipid associations

    NASA Astrophysics Data System (ADS)

    Srivastava, Abhinav; Debnath, Ananya

    2018-03-01

    Dynamics of hydration layers of a dimyristoylphosphatidylcholine (DMPC) bilayer are investigated using an all atom molecular dynamics simulation. Based upon the geometric criteria, continuously residing interface water molecules which form hydrogen bonds solely among themselves and then concertedly hydrogen bonded to carbonyl, phosphate, and glycerol head groups of DMPC are identified. The interface water hydrogen bonded to lipids shows slower relaxation rates for translational and rotational dynamics compared to that of the bulk water and is found to follow sub-diffusive and non-diffusive behaviors, respectively. The mean square displacements and the reorientational auto-correlation functions are slowest for the interfacial waters hydrogen bonded to the carbonyl oxygen since these are buried deep in the hydrophobic core among all interfacial water studied. The intermittent hydrogen bond auto-correlation functions are calculated, which allows breaking and reformations of the hydrogen bonds. The auto-correlation functions for interfacial hydrogen bonded networks develop humps during a transition from cage-like motion to eventual power law behavior of t-3/2. The asymptotic t-3/2 behavior indicates translational diffusion dictated dynamics during hydrogen bond breaking and formation irrespective of the nature of the chemical confinement. Employing reactive flux correlation analysis, the forward rate constant of hydrogen bond breaking and formation is calculated which is used to obtain Gibbs energy of activation of the hydrogen bond breaking. The relaxation rates of the networks buried in the hydrophobic core are slower than the networks near the lipid-water interface which is again slower than bulk due to the higher Gibbs energy of activation. Since hydrogen bond breakage follows a translational diffusion dictated mechanism, chemically confined hydrogen bond networks need an activation energy to diffuse through water depleted hydrophobic environments. Our calculations reveal that the slow relaxation rates of interfacial waters in the vicinity of lipids are originated from the chemical confinement of concerted hydrogen bond networks. The analysis suggests that the networks in the hydration layer of membranes dynamically facilitate the water mediated lipid-lipid associations which can provide insights on the thermodynamic stability of soft interfaces relevant to biological systems in the future.

  12. Crystal structure of 2-amino-pyridinium 6-chloro-nicotinate.

    PubMed

    Jasmine, N Jeeva; Rajam, A; Muthiah, P Thomas; Stanley, N; Razak, I Abdul; Rosli, M Mustaqim

    2015-09-01

    In the title salt, C5H7N(+)·C6H3ClNO(-), the 2-amino-pyri-din-ium cation inter-acts with the carboxyl-ate group of the 6-chloro-nicotinate anion through a pair of independent N-H⋯O hydrogen bonds, forming an R 2 (2)(8) ring motif. In the crystal, these dimeric units are connected further via N-H⋯O hydrogen bonds, forming chains along [001]. In addition, weak C-H⋯N and C-H⋯O hydrogen bonds, together with weak π-π inter-actions, with centroid-centroid distances of 3.6560 (5) and 3.6295 (5) Å, connect the chains, forming a two-dimensional network parallel to (100).

  13. LAMMPS framework for dynamic bonding and an application modeling DNA

    NASA Astrophysics Data System (ADS)

    Svaneborg, Carsten

    2012-08-01

    We have extended the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) to support directional bonds and dynamic bonding. The framework supports stochastic formation of new bonds, breakage of existing bonds, and conversion between bond types. Bond formation can be controlled to limit the maximal functionality of a bead with respect to various bond types. Concomitant with the bond dynamics, angular and dihedral interactions are dynamically introduced between newly connected triplets and quartets of beads, where the interaction type is determined from the local pattern of bead and bond types. When breaking bonds, all angular and dihedral interactions involving broken bonds are removed. The framework allows chemical reactions to be modeled, and use it to simulate a simplistic, coarse-grained DNA model. The resulting DNA dynamics illustrates the power of the present framework. Catalogue identifier: AEME_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEME_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public Licence No. of lines in distributed program, including test data, etc.: 2 243 491 No. of bytes in distributed program, including test data, etc.: 771 Distribution format: tar.gz Programming language: C++ Computer: Single and multiple core servers Operating system: Linux/Unix/Windows Has the code been vectorized or parallelized?: Yes. The code has been parallelized by the use of MPI directives. RAM: 1 Gb Classification: 16.11, 16.12 Nature of problem: Simulating coarse-grain models capable of chemistry e.g. DNA hybridization dynamics. Solution method: Extending LAMMPS to handle dynamic bonding and directional bonds. Unusual features: Allows bonds to be created and broken while angular and dihedral interactions are kept consistent. Additional comments: The distribution file for this program is approximately 36 Mbytes and therefore is not delivered directly when download or E-mail is requested. Instead an html file giving details of how the program can be obtained is sent. Running time: Hours to days. The examples provided in the distribution take just seconds to run.

  14. Acetic Acid Can Catalyze Succinimide Formation from Aspartic Acid Residues by a Concerted Bond Reorganization Mechanism: A Computational Study

    PubMed Central

    Takahashi, Ohgi; Kirikoshi, Ryota; Manabe, Noriyoshi

    2015-01-01

    Succinimide formation from aspartic acid (Asp) residues is a concern in the formulation of protein drugs. Based on density functional theory calculations using Ace-Asp-Nme (Ace = acetyl, Nme = NHMe) as a model compound, we propose the possibility that acetic acid (AA), which is often used in protein drug formulation for mildly acidic buffer solutions, catalyzes the succinimide formation from Asp residues by acting as a proton-transfer mediator. The proposed mechanism comprises two steps: cyclization (intramolecular addition) to form a gem-diol tetrahedral intermediate and dehydration of the intermediate. Both steps are catalyzed by an AA molecule, and the first step was predicted to be rate-determining. The cyclization results from a bond formation between the amide nitrogen on the C-terminal side and the side-chain carboxyl carbon, which is part of an extensive bond reorganization (formation and breaking of single bonds and the interchange of single and double bonds) occurring concertedly in a cyclic structure formed by the amide NH bond, the AA molecule and the side-chain C=O group and involving a double proton transfer. The second step also involves an AA-mediated bond reorganization. Carboxylic acids other than AA are also expected to catalyze the succinimide formation by a similar mechanism. PMID:25588215

  15. Acetic acid can catalyze succinimide formation from aspartic acid residues by a concerted bond reorganization mechanism: a computational study.

    PubMed

    Takahashi, Ohgi; Kirikoshi, Ryota; Manabe, Noriyoshi

    2015-01-12

    Succinimide formation from aspartic acid (Asp) residues is a concern in the formulation of protein drugs. Based on density functional theory calculations using Ace-Asp-Nme (Ace = acetyl, Nme = NHMe) as a model compound, we propose the possibility that acetic acid (AA), which is often used in protein drug formulation for mildly acidic buffer solutions, catalyzes the succinimide formation from Asp residues by acting as a proton-transfer mediator. The proposed mechanism comprises two steps: cyclization (intramolecular addition) to form a gem-diol tetrahedral intermediate and dehydration of the intermediate. Both steps are catalyzed by an AA molecule, and the first step was predicted to be rate-determining. The cyclization results from a bond formation between the amide nitrogen on the C-terminal side and the side-chain carboxyl carbon, which is part of an extensive bond reorganization (formation and breaking of single bonds and the interchange of single and double bonds) occurring concertedly in a cyclic structure formed by the amide NH bond, the AA molecule and the side-chain C=O group and involving a double proton transfer. The second step also involves an AA-mediated bond reorganization. Carboxylic acids other than AA are also expected to catalyze the succinimide formation by a similar mechanism.

  16. Electronic excited state paths of Stone-Wales rearrangement in pyrene: roles of conical intersections.

    PubMed

    Yamazaki, Kaoru; Niitsu, Naoyuki; Nakamura, Kosuke; Kanno, Manabu; Kono, Hirohiko

    2012-11-26

    We investigated the reaction paths of Stone-Wales rearrangement (SWR), i.e., π/2 rotation of two carbon atoms with respect to the midpoint of the bond, in graphene and carbon nanotube quantum chemically. Our particular attention is focused on the roles of electronic excitations and conical intersections (CIs) in the reaction mechanism. We used pyrene as a model system. The reaction paths were determined by constructing potential energy surfaces at the MS-CASPT2//SA-CASSCF level of theory. We found that there are no CIs involved in SWR when both of C-C bond cleavage and formation occur simultaneously (concerted mechanism). In contrast, for the reaction path with stepwise cleavage and formation of C-C bonds, C-C bond breaking and making processes proceed through two CIs. When SWR starts from the ground (S(0)) state, the concerted and stepwise paths have an equivalent reaction barrier ΔE(‡) (9.5-9.6 eV). For the reaction path starting from excited states, only the stepwise mechanism is energetically preferable. This path contains a nonadabatic transition between the S(1) and S(0) states via a CI associated with the first stage of C-C bond cleavage and has ΔE(‡) as large as in the S(0) paths. We confirmed that the main active molecular orbitals and electron configurations for the low-lying electronic states of larger nanocarbons are the same as those in pyrene. This result suggests the importance of the nonadiabatic transitions through CIs in the photochemical reactions in large nanocarbons.

  17. Increasing the hydrolysis constant of the reactive site upon introduction of an engineered Cys¹⁴-Cys³⁹ bond into the ovomucoid third domain from silver pheasant.

    PubMed

    Hemmi, Hikaru; Kumazaki, Takashi; Kojima, Shuichi; Yoshida, Takuya; Ohkubo, Tadayasu; Yokosawa, Hideyoshi; Miura, Kin-Ichiro; Kobayashi, Yuji

    2011-08-01

    P14C/N39C is the disulfide variant of the ovomucoid third domain from silver pheasant (OMSVP3) introducing an engineered Cys¹⁴-Cys³⁹ bond near the reactive site on the basis of the sequence homology between OMSVP3 and ascidian trypsin inhibitor. This variant exhibits a narrower inhibitory specificity. We have examined the effects of introducing a Cys¹⁴-Cys³⁹ bond into the flexible N-terminal loop of OMSVP3 on the thermodynamics of the reactive site peptide bond hydrolysis, as well as the thermal stability of reactive site intact inhibitors. P14C/N39C can be selectively cleaved by Streptomyces griseus protease B at the reactive site of OMSVP3 to form a reactive site modified inhibitor. The conversion rate of intact to modified P14C/N39C is much faster than that for wild type under any pH condition. The pH-independent hydrolysis constant (K(hyd) °) is estimated to be approximately 5.5 for P14C/N39C, which is higher than the value of 1.6 for natural OMSVP3. The reactive site modified form of P14C/N39C is thermodynamically more stable than the intact one. Thermal denaturation experiments using intact inhibitors show that the temperature at the midpoint of unfolding at pH 2.0 is 59 °C for P14C/N39C and 58 °C for wild type. There have been no examples, except P14C/N39C, where introducing an engineered disulfide causes a significant increase in K(hyd) °, but has no effect on the thermal stability. The site-specific disulfide introduction into the flexible N-terminal loop of natural Kazal-type inhibitors would be useful to further characterize the thermodynamics of the reactive site peptide bond hydrolysis. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.

  18. Biomolecular structure manipulation using tailored electromagnetic radiation: a proof of concept on a simplified model of the active site of bacterial DNA topoisomerase.

    PubMed

    Jarukanont, Daungruthai; Coimbra, João T S; Bauerhenne, Bernd; Fernandes, Pedro A; Patel, Shekhar; Ramos, Maria J; Garcia, Martin E

    2014-10-21

    We report on the viability of breaking selected bonds in biological systems using tailored electromagnetic radiation. We first demonstrate, by performing large-scale simulations, that pulsed electric fields cannot produce selective bond breaking. Then, we present a theoretical framework for describing selective energy concentration on particular bonds of biomolecules upon application of tailored electromagnetic radiation. The theory is based on the mapping of biomolecules to a set of coupled harmonic oscillators and on optimal control schemes to describe optimization of temporal shape, the phase and polarization of the external radiation. We have applied this theory to demonstrate the possibility of selective bond breaking in the active site of bacterial DNA topoisomerase. For this purpose, we have focused on a model that was built based on a case study. Results are given as a proof of concept.

  19. Initial mechanisms for the unimolecular decomposition of electronically excited bisfuroxan based energetic materials.

    PubMed

    Yuan, Bing; Bernstein, Elliot R

    2017-01-07

    Unimolecular decomposition of energetic molecules, 3,3'-diamino-4,4'-bisfuroxan (labeled as A) and 4,4'-diamino-3,3'-bisfuroxan (labeled as B), has been explored via 226/236 nm single photon laser excitation/decomposition. These two energetic molecules, subsequent to UV excitation, create NO as an initial decomposition product at the nanosecond excitation energies (5.0-5.5 eV) with warm vibrational temperature (1170 ± 50 K for A, 1400 ± 50 K for B) and cold rotational temperature (<55 K). Initial decomposition mechanisms for these two electronically excited, isolated molecules are explored at the complete active space self-consistent field (CASSCF(12,12)/6-31G(d)) level with and without MP2 correction. Potential energy surface calculations illustrate that conical intersections play an essential role in the calculated decomposition mechanisms. Based on experimental observations and theoretical calculations, NO product is released through opening of the furoxan ring: ring opening can occur either on the S 1 excited or S 0 ground electronic state. The reaction path with the lowest energetic barrier is that for which the furoxan ring opens on the S 1 state via the breaking of the N1-O1 bond. Subsequently, the molecule moves to the ground S 0 state through related ring-opening conical intersections, and an NO product is formed on the ground state surface with little rotational excitation at the last NO dissociation step. For the ground state ring opening decomposition mechanism, the N-O bond and C-N bond break together in order to generate dissociated NO. With the MP2 correction for the CASSCF(12,12) surface, the potential energies of molecules with dissociated NO product are in the range from 2.04 to 3.14 eV, close to the theoretical result for the density functional theory (B3LYP) and MP2 methods. The CASMP2(12,12) corrected approach is essential in order to obtain a reasonable potential energy surface that corresponds to the observed decomposition behavior of these molecules. Apparently, highly excited states are essential for an accurate representation of the kinetics and dynamics of excited state decomposition of both of these bisfuroxan energetic molecules. The experimental vibrational temperatures of NO products of A and B are about 800-1000 K lower than previously studied energetic molecules with NO as a decomposition product.

  20. Enantioselective C(sp3)‒H bond activation by chiral transition metal catalysts.

    PubMed

    Saint-Denis, Tyler G; Zhu, Ru-Yi; Chen, Gang; Wu, Qing-Feng; Yu, Jin-Quan

    2018-02-16

    Organic molecules are rich in carbon-hydrogen bonds; consequently, the transformation of C-H bonds to new functionalities (such as C-C, C-N, and C-O bonds) has garnered much attention by the synthetic chemistry community. The utility of C-H activation in organic synthesis, however, cannot be fully realized until chemists achieve stereocontrol in the modification of C-H bonds. This Review highlights recent efforts to enantioselectively functionalize C(sp 3 )-H bonds via transition metal catalysis, with an emphasis on key principles for both the development of chiral ligand scaffolds that can accelerate metalation of C(sp 3 )-H bonds and stereomodels for asymmetric metalation of prochiral C-H bonds by these catalysts. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  1. Visualization of the Diffusion Pathway of Protons in (NH4)2Si0.5Ti0.5P4O13 as an Electrolyte for Intermediate-Temperature Fuel Cells.

    PubMed

    Sun, Chunwen; Chen, Lanli; Shi, Siqi; Reeb, Berthold; López, Carlos Alberto; Alonso, José Antonio; Stimming, Ulrich

    2018-01-16

    We demonstrate that (NH 4 ) 2 Si 0.5 Ti 0.5 P 4 O 13 is an excellent proton conductor. The crystallographic information concerning the hydrogen positions is unraveled from neutron-powder-diffraction (NPD) data for the first time. This study shows that all the hydrogen atoms are connected though H bonds, establishing a two-dimensional path between the [(Si 0.5 Ti 0.5 )P 4 O 13 2- ] n layers for proton diffusion across the crystal structure by breaking and reconstructing intermediate H-O═P bonds. This transient species probably reduces the potential energy of the H jump from an ammonium unit to the next neighboring NH 4 + unit. Both theoretical and experimental results support an interstitial-proton-conduction mechanism. The proton conductivities of (NH 4 ) 2 Si 0.5 Ti 0.5 P 4 O 13 reach 0.0061 and 0.024 S cm -1 in humid air at 125 and 250 °C, respectively. This finding demonstrates that (NH 4 ) 2 Si 0.5 Ti 0.5 P 4 O 13 is a promising electrolyte material operating at 150-250 °C. This work opens up a new avenue for designing and fabricating high-performance inorganic electrolytes.

  2. Modulating of the pnicogen-bonding by a H⋯π interaction: An ab initio study.

    PubMed

    Esrafili, Mehdi D; Sadr-Mousavi, Asma

    2017-08-01

    An ab initio study of the cooperativity in XH 2 P⋯NCH⋯Z and XH 2 P⋯CNH⋯Z complexes (X=F, Cl, Br, CN, NC; Z=C 2 H 2 ,C 6 H 6 ) connected by pnicogen-bonding and H⋯π interactions is carried out by means of MP2 computational method. A detailed analysis of the structures, interaction energies and bonding properties is performed on these systems. For each set of the complexes considered, a favorable cooperativity is observed, especially in X=F and CN complexes. However, for a given X or Z, the amount of cooperativity effects in XH 2 P⋯CNH⋯Z complexes are more important than XH 2 P⋯NCH⋯Z counterparts. Besides, the influence of a H⋯π interaction on a P⋯N (C) bond is more pronounced than that of a P⋯N (C) bond on a H⋯π bond. The quantum theory of atoms in molecules shows that ternary complexes have increased electron densities at their bond critical points relative to the corresponding binary systems. The results also indicate that the strength of the P⋯N(C) and H⋯π interactions increases in the presence of the solvent. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. catena-Poly[bis-(sulfamethoxazolium) [[trichloridocadmate(II)]-μ-chlorido] monohydrate].

    PubMed

    Subashini, Annamalai; Muthiah, Packianathan Thomas; Bocelli, Gabriele; Cantoni, Andrea

    2007-12-21

    In the title compound, {(C(10)H(12)N(3)O(3)S)(2)[CdCl(4)]·H(2)O}(n), the Cd(II) atom is five-coordinate with a distorted trigonal-bipyramidal geometry formed by chloride ions. The Cd atom and two of the Cl atoms lie on a mirror plane. The cation is protonated on the amino group N atom; it is not coordinated to cadmium, but is hydrogen bonded to the chlorido ligands. Each water mol-ecule bridges two chlorido ligands, generating ring motifs along the -Cd-Cl-Cd- chains. The isoxazole unit and the amide groups are linked through a pair of N-H⋯N hydrogen bonds. The crystal structure is stabilized by N-H⋯O, O-H⋯Cl, C-H⋯N, N-H⋯Cl and C-H⋯O hydrogen bonds.

  4. Reactions of solvated electrons initiated by sodium atom ionization at the vacuum-liquid interface.

    PubMed

    Alexander, William A; Wiens, Justin P; Minton, Timothy K; Nathanson, Gilbert M

    2012-03-02

    Solvated electrons are powerful reagents in the liquid phase that break chemical bonds and thereby create additional reactive species, including hydrogen atoms. We explored the distinct chemistry that ensues when electrons are liberated near the liquid surface rather than within the bulk. Specifically, we detected the products resulting from exposure of liquid glycerol to a beam of sodium atoms. The Na atoms ionized in the surface region, generating electrons that reacted with deuterated glycerol, C(3)D(5)(OD)(3), to produce D atoms, D(2), D(2)O, and glycerol fragments. Surprisingly, 43 ± 4% of the D atoms traversed the interfacial region and desorbed into vacuum before attacking C-D bonds to produce D(2).

  5. Role of Mediator and Effects of Temperature on ortho-C-N Bond Fusion Reactions of Aniline Using Ruthenium Templates: Isolation and Characterization of New Ruthenium Complexes of the in-Situ-Generated Ligands.

    PubMed

    Roy, Suman K; Sengupta, Debabrata; Rath, Santi Prasad; Saha, Tanushri; Samanta, Subhas; Goswami, Sreebrata

    2017-05-01

    In this work, ortho-C-N bond fusion reactions of aniline are followed by the use of two different ruthenium mediators. Reaction of aniline with [Ru III (terpy)Cl 3 ] (terpy = 2,2':6',2″-terpyridine) resulted in a trans bis-aniline ruthenium(II) complex [1] + which upon oxidation with H 2 O 2 produced compound [2] + of a bidentate ligand, N-phenyl-1,2-benzoquinonediimine, due to an oxidative ortho-C-N bond fusion reaction. Complex [1] + and aniline (neat) at 185 °C produced a bis-chelated ruthenium complex (3). A previously reported complex [Ru II (N-phenyl-1,2-benzoquinonediimine)(aniline) 2 (Cl) 2 ] (5) undergoes similar oxidation by air at 185 °C to produce complex [3]. A separate chemical reaction between aniline and strongly oxidizing tetra-n-propylammonium perruthenate [(n-pr) 4 N] + [RuO 4 ] - in air produced a ruthenium complex [4] of a N 4 -tetraamidophenylmacrocycle ligand via multiple ortho-C-N bond fusion reaction. Notably, the yield of this product is low (5%) at 100 °C but increases to 25% in refluxing aniline. All these complexes are characterized fully by their physicochemical characterizations and X-ray structure determination. From their structural parameters and other spectroscopic studies, complex [2] + is assigned as [Ru II (terpy)(N-phenyl-1,2-benzoquinonediimine)(Cl)] + whereas complex [4] is described as a ruthenium(VI) complex comprised of a reduced deprotonated N-phenyl-1,2-diamidobenzene and N 4 -tetraamidophenylmacrocyclic ligand. Complex [2] + exhibits one reversible oxidation at 1.32 V and one reversible reduction at -0.75 V vs Ag/AgCl reference electrode. EPR of the electrogenerated complexes has revealed that the oxidized complex is a ruthenium(III) complex with an axial EPR spectrum at g av = 2.06. The reduced complex [2], on the other hand, shows a single-line EPR signal at g av = 1.998. In contrast, complex [4] shows two successive one-electron oxidation waves at 0.5 and 0.8 V and an irreversible reduction wave at -0.9 V. EPR studies of the oxidized complexes [4] + and [4] 2+ reveal that oxidations are ligand centered. DFT calculations were employed to elucidate the electronic structures as well as the redox processes associated with the above complexes. Aerial ortho-C-N bond fusion reactions of aniline using two different mediators, viz. [Ru III (terpy)Cl 3 ] and [(n-pr) 4 N] + [RuO 4 ] - , have been followed. It is found that in the case of oxidizable Ru(III) mediator complex, C-N bond fusion is limited only to dimerization reaction whereas the high-valent Ru(VII) salt mediates multiple C-N bond fusion reactions leading to the formation of a novel tetradentate N 4 -tetraamidophenylmacrocyclic ligand. Valence ambiguity in the complexes of the resultant redox-active ligands is scrutinized.

  6. 4-Aza-1-azoniabicyclo­[2.2.2]octa­ne–2-amino­benzoate–2-amino­benzoic acid (1/1/1)

    PubMed Central

    Arman, Hadi D.; Kaulgud, Trupta; Tiekink, Edward R. T.

    2011-01-01

    A 4-aza-1-azoniabicyclo­[2.2.2]octane cation, a 2-amino­benzoate anion and a neutral 2-amino­benzoic acid mol­ecule comprise the asymmetric unit of the title compound, C6H13N2 +·C7H6NO2 −·C7H7NO2. An intra­molecular N—H⋯O hydrogen bond occurs in the anion and in the neutral 2-amino­benzoic acid mol­ecule. The cation provides a charge-assisted N—H⋯O hydrogen bond to the anion, and the 2-amino­benzoic acid mol­ecule forms an O—H⋯N hydrogen bond to the unprotonated amino N atom in the cation. In this way, a three-component aggregate is formed. These are connected into a three-dimensional network by amino–carboxyl­ate N—H⋯O hydrogen bonds. N—H⋯N hydrogen bonds are also observed. PMID:22219964

  7. Report of Research at Technische Universitaet Darmstadt on Ultrahard Materials in the B-C-N-Si System

    DTIC Science & Technology

    2015-06-01

    structure at the micro- and nanoscale. In other words, development of nanocomposites, multilayers, and superlattices via appropriate design and control of...C-B and C-N bonds as C-C and B-N bonds. Later, the same research group , based on first-principles total-energy, and dynamic phonon calculations...Vickers hardness values.7 Another research group employed an ab initio evolutionary algorithm42 to resolve the crystal structure of the observed

  8. Strength order and nature of the π-hole bond of cyanuric chloride and 1,3,5-triazine with halide.

    PubMed

    Wang, Hui; Li, Chen; Wang, Weizhou; Jin, Wei Jun

    2015-08-28

    The (13)C NMR chemical shift moving upfield indicates the main model of π-holeX(-) bond between cyanuric chloride/1,3,5-triazine (3ClN/3N), which possess both the π-hole and σ-hole, and X(-). (13)C NMR and UV absorption titration in acetonitrile confirmed that the bonding abilities of 3ClN/3N with X(-) follow the order I(-) > Br(-) > Cl(-), which is apparently the order of the charge transfer ability of halide to 3ClN/3N. Chemical calculations showed that the bonding abilities in solution were essentially consistent with those obtained by titration experiments. However, the results in the gas phase were the reverse, i.e., π-holeCl(-) > π-holeBr(-) > π-holeI(-) in bonding energy, which obeys the order of electrostatic interaction. In fact, the π-hole bond and σ-hole bond compete with solvation and possible anion-hydrogen bond between a solvent molecule and a halide in solution. An explanation is that the apparent charge transfer order of π-/σ-holeI(-) > π-/σ-holeBr(-) > π-/σ-holeCl(-) occurs for weak π-hole bonds and σ-hole bonds, whereas the order of electrostatic attraction of π-/σ-holeCl(-) > π-/σ-holeBr(-) > π-/σ-holeI(-) is valid for strong bonds. It can be concluded by combining energy decomposition analysis and natural bond orbital analysis that the π-holeX(-) bond and σ-holeX(-) bond are electrostatically attractive in nature regardless of whether the order is I(-) > Br(-) > Cl(-) or the reverse.

  9. Crystal structure of fac-tri-chlorido-[tris-(pyridin-2-yl-N)amine]-chromium(III).

    PubMed

    Yamaguchi-Terasaki, Yukiko; Fujihara, Takashi; Nagasawa, Akira; Kaizaki, Sumio

    2015-01-01

    In the neutral complex mol-ecule of the title compound, fac-[CrCl3(tpa)] [tpa is tris-(pyridin-2-yl)amine; C15H12N4], the Cr(III) ion is bonded to three N atoms that are constrained to a facial arrangement by the tpa ligand and by three chloride ligands, leading to a distorted octa-hedral coordination sphere. The average Cr-N and Cr-Cl bond lengths are 2.086 (5) and 2.296 (4) Å, respectively. The complex mol-ecule is located on a mirror plane. In the crystal, a combination of C-H⋯N and C-H⋯Cl hydrogen-bonding inter-actions connect the mol-ecules into a three-dimensional network.

  10. Anti-Arrhenius cleavage of covalent bonds in bottlebrush macromolecules on substrate.

    PubMed

    Lebedeva, Natalia V; Nese, Alper; Sun, Frank C; Matyjaszewski, Krzysztof; Sheiko, Sergei S

    2012-06-12

    Spontaneous degradation of bottlebrush macromolecules on aqueous substrates was monitored by atomic force microscopy. Scission of C ─ C covalent bonds in the brush backbone occurred due to steric repulsion between the adsorbed side chains, which generated bond tension on the order of several nano-Newtons. Unlike conventional chemical reactions, the rate of bond scission was shown to decrease with temperature. This apparent anti-Arrhenius behavior was caused by a decrease in the surface energy of the underlying substrate upon heating, which results in a corresponding decrease of bond tension in the adsorbed macromolecules. Even though the tension dropped minimally from 2.16 to 1.89 nN, this was sufficient to overpower the increase in the thermal energy (k(B)T) in the Arrhenius equation. The rate constant of the bond-scission reaction was measured as a function of temperature and surface energy. Fitting the experimental data by a perturbed Morse potential V = V(0)(1 - e(-βx))(2) - fx, we determined the depth and width of the potential to be V(0) = 141 ± 19 kJ/mol and β(-1) = 0.18 ± 0.03 Å, respectively. Whereas the V(0) value is in reasonable agreement with the activation energy E(a) = 80-220 kJ/mol of mechanical and thermal degradation of organic polymers, it is significantly lower than the dissociation energy of a C ─ C bond D(e) = 350 kJ/mol. Moreover, the force constant K(x) = 2β(2)V(0) = 1.45 ± 0.36 kN/m of a strained bottlebrush along its backbone is markedly larger than the force constant of a C ─ C bond K(l) = 0.44 kN/m, which is attributed to additional stiffness due to deformation of the side chains.

  11. Computational study of C(sp3)-O bond formation at a PdIV centre.

    PubMed

    Canty, Allan J; Ariafard, Alireza; Camasso, Nicole M; Higgs, Andrew T; Yates, Brian F; Sanford, Melanie S

    2017-03-14

    This report describes a computational study of C(sp 3 )-OR bond formation from Pd IV complexes of general structure Pd IV (CH 2 CMe 2 -o-C 6 H 4 -C,C')(F)(OR)(bpy-N,N') (bpy = 2,2'-bipyridine). Dissociation of - OR from the different octahedral Pd IV starting materials results in a common square-pyramidal Pd IV cation. An S N 2-type attack by - OR ( - OR = phenoxide, acetate, difluoroacetate, and nitrate) then leads to C(sp 3 )-OR bond formation. In contrast, when - OR = triflate, concerted C(sp 3 )-C(sp 2 ) bond-forming reductive elimination takes place, and the calculations indicate this outcome is the result of thermodynamic rather than kinetic control. The energy requirements for the dissociation and S N 2 steps with different - OR follow opposing trends. The S N 2 transition states exhibit "PdCO" angles in a tight range of 151.5 to 153.0°, resulting from steric interactions between the oxygen atom and the gem-dimethyl group of the ligand. Conformational effects for various OR ligands and isomerisation of the complexes were also examined as components of the solution dynamics in these systems. In all cases, the trends observed computationally agree with those observed experimentally.

  12. Nonholonomic Hamiltonian Method for Molecular Dynamics Simulations of Reacting Shocks

    NASA Astrophysics Data System (ADS)

    Fahrenthold, Eric; Bass, Joseph

    2015-06-01

    Conventional molecular dynamics simulations of reacting shocks employ a holonomic Hamiltonian formulation: the breaking and forming of covalent bonds is described by potential functions. In general these potential functions: (a) are algebraically complex, (b) must satisfy strict smoothness requirements, and (c) contain many fitted parameters. In recent research the authors have developed a new noholonomic formulation of reacting molecular dynamics. In this formulation bond orders are determined by rate equations and the bonding-debonding process need not be described by differentiable functions. This simplifies the representation of complex chemistry and reduces the number of fitted model parameters. Example applications of the method show molecular level shock to detonation simulations in nitromethane and RDX. Research supported by the Defense Threat Reduction Agency.

  13. The physicochemical essence of the purine·pyrimidine transition mismatches with Watson-Crick geometry in DNA: A·C* versa A*·C. A QM and QTAIM atomistic understanding.

    PubMed

    Brovarets', Ol'ha O; Hovorun, Dmytro M

    2015-01-01

    It was established for the first time by DFT and MP2 quantum-mechanical (QM) methods either in vacuum, so in the continuum with a low dielectric constant (ε = 4), typical for hydrophobic interfaces of specific protein-nucleic acid interactions, that the repertoire for the tautomerisation of the biologically important adenine · cytosine* (A · C*) mismatched DNA base pair, formed by the amino tautomer of the A and the imino mutagenic tautomer of the C, into the A*·C base mispair (∆G = 2.72 kcal mol(-1) obtained at the MP2 level of QM theory in the continuum with ε = 4), formed by the imino mutagenic tautomer of the A and the amino tautomer of the C, proceeds via the asynchronous concerted double proton transfer along two antiparallel H-bonds through the transition state (TSA · C* ↔ A* · C). The limiting stage of the A · C* → A* · C tautomerisation is the final proton transfer along the intermolecular N6H · · · N4 H-bond. It was found that the A · C*/A* · C DNA base mispairs with Watson-Crick geometry are associated by the N6H · · · N4/N4H · · · N6, N3H · · · N1/N1H · · · N3 and C2H · · · O2 H-bonds, respectively, while the TSA · C*↔ A* · C is joined by the N6-H-N4 covalent bridge and the N1H · · · N3 and C2H · · · O2 H-bonds. It was revealed that the A · C* ↔ A* · C tautomerisation is assisted by the true C2H · · · O2 H-bond, that in contrast to the two others conventional H-bonds exists along the entire intrinsic reaction coordinate (IRC) range herewith becoming stronger at the transition from vacuum to the continuum with ε = 4. To better understand the behavior of the intermolecular H-bonds and base mispairs along the IRC of the A · C* ↔ A* · C tautomerisation, the profiles of their electron-topological, energetical, geometrical, polar and charge characteristics are reported in this study. It was established based on the profiles of the H-bond energies that all three H-bonds are cooperative, mutually strengthening each other. The nine key points, providing a detailed physicochemical picture of the A · C* ↔ A* · C tautomerisation, were revealed and thoroughly examined along the IRC. It was shown that the A* · C base mispair with the population ~1 % obtained at the MP2 level of QM theory in the continuum with ε = 4 is thermodynamically and dynamically stable structure. Its lifetime was calculated to be 5.76 · 10(-10) s at the MP2 level of QM theory in the continuum with ε = 4. This lifetime, from the one side, enables all six low-frequency intermolecular vibrations to develop, but, from the other side, it is by order less than the time (several ns) required for the replication machinery to forcibly dissociate a base pair into the monomers during DNA replication. This means that the A* · C base mispair "slips away from the hands" of the replication machinery into the A · C* mismatched base pair. Consequently, the authors came to the conclusion that exactly the A · C* base mispair is an active player of the point mutational events and is effectively dissociated by the replication machinery into the A and C* monomers in contrast to the A* · C base mispair, playing the mediated role of a provider of the A · C* base mispair in DNA that is synthesised.

  14. Facile Synthesis and Superior Catalytic Activity of Nano-TiN@N-C for Hydrogen Storage in NaAlH4.

    PubMed

    Zhang, Xin; Ren, Zhuanghe; Lu, Yunhao; Yao, Jianhua; Gao, Mingxia; Liu, Yongfeng; Pan, Hongge

    2018-05-09

    Herein, we synthesize successfully ultrafine TiN nanoparticles (<3 nm in size) embedded in N-doped carbon nanorods (nano-TiN@N-C) by a facile one-step calcination process. The prepared nano-TiN@N-C exhibits superior catalytic activity for hydrogen storage in NaAlH 4 . Adding 7 wt % nano-TiN@N-C induces more than 100 °C reduction in the onset dehydrogenation temperature of NaAlH 4 . Approximately 4.9 wt % H 2 is rapidly released from the 7 wt % nano-TiN@N-C-containing NaAlH 4 at 140 °C within 60 min, and the dehydrogenation product is completely hydrogenated at 100 °C within 15 min under 100 bar of hydrogen, exhibiting significantly improved desorption/absorption kinetics. No capacity loss is observed for the nano-TiN@N-C-containing sample within 25 de-/hydrogenation cycles because nano-TiN functions as an active catalyst instead of a precursor. A severe structural distortion with extended bond lengths and reduced bond strengths for Al-H bonding when the [AlH 4 ] - group adsorbs on the TiN cluster is demonstrated for the first time by density functional theory calculations, which well-explains the reduced de-/hydrogenation temperatures of the nano-TiN@N-C-containing NaAlH 4 . These findings provide new insights into designing and synthesizing high-performance catalysts for hydrogen storage in complex hydrides.

  15. Strength and flexibility properties of advanced ceramic fabrics

    NASA Technical Reports Server (NTRS)

    Sawko, P. M.; Tran, H. K.

    1985-01-01

    The mechanical properties of four advanced ceramic fabrics were measured at a temperature range of 23C to 1200C. The fabrics evaluated were silica, high and low-boria content aluminoborosilicate, and silicon carbide. Properties studied included fabric break strengths from room temperature to 1200C, and bending durability after temperature conditioning at 1200C and 1400C. The interaction of the fabric and ceramic insulation was also studied for shrinkage, appearance, bend resistance, and fabric-to-insulation bonding. Based on these tests, the low-boria content aluminoborosilicate fabric retained more strength and fabric durability than the other fabrics studied at high temperature.

  16. Strength and flexibility properties of advanced ceramic fabrics

    NASA Technical Reports Server (NTRS)

    Sawko, P. M.; Tran, H. K.

    1985-01-01

    The mechanical properties of four advanced ceramic fabrics are measured at a temperature range of 23 C to 1200 C. The fabrics evaluated are silica, high-and low-boria content aluminoborosilicate, and silicon carbide. Properties studied include fabric break strengths from room temperature to 1200 C, and bending durability after temperature conditioning at 1200 C and 1400 C. The interaction of the fabric and ceramic insulation is also studied for shrinkage, appearance, bend resistance, and fabric-to-insulation bonding. Based on these tests, the low-boria content aluminoborosilicate fabric retains more strength and fabric durability than the other fabrics studied at high temperature.

  17. Reductive Elimination Leading to C-C Bond Formation in Gold(III) Complexes: A Mechanistic and Computational Study.

    PubMed

    Rocchigiani, Luca; Fernandez-Cestau, Julio; Budzelaar, Peter H M; Bochmann, Manfred

    2018-06-21

    The factors affecting the rates of reductive C-C cross-coupling reactions in gold(III) aryls were studied by using complexes that allow easy access to a series of electronically modified aryl ligands, as well as to gold methyl and vinyl complexes, by using the pincer compounds [(C^N^C)AuR] (R=C 6 F 5 , CH=CMe 2 , Me and p-C 6 H 4 X, where X=OMe, F, H, tBu, Cl, CF 3 , or NO 2 ) as starting materials (C^N^C=2,6-(4'-tBuC 6 H 3 ) 2 pyridine dianion). Protodeauration followed by addition of one equivalent SMe 2 leads to the quantitative generation of the thioether complexes [(C^N-CH)AuR(SMe 2 )] + . Upon addition of a second SMe 2 pyridine is displaced, which triggers the reductive aryl-R elimination. The rates for these cross-couplings increase in the sequence k(vinyl)>k(aryl)≫k(C 6 F 5 )>k(Me). Vinyl-aryl coupling is particularly fast, 1.15×10 -3  L mol -1  s -1 at 221 K, whereas both C 6 F 5 and Me couplings encountered higher barriers for the C-C bond forming step. The use of P(p-tol) 3 in place of SMe 2 greatly accelerates the C-C couplings. Computational modelling shows that in the C^N-bonded compounds displacement of N by a donor L is required before the aryl ligands can adopt a conformation suitable for C-C bond formation, so that elimination takes place from a four-coordinate intermediate. The C-C bond formation is the rate-limiting step. In the non-chelating case, reductive C(sp 2 )-C(sp 2 ) elimination from three-coordinate ions [(Ar 1 )(Ar 2 )AuL] + is almost barrier-free, particularly if L=phosphine. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Simple model for lambda-doublet propensities in bimolecular reactions

    NASA Technical Reports Server (NTRS)

    Bronikowski, Michael J.; Zare, Richard N.

    1990-01-01

    A simple geometric model is presented to account for lambda-doublet propensities in bimolecular reactions A + BC - AB + C. It applies to reactions in which AB is formed in a pi state, and in which the unpaired molecular orbital responsible for lambda-doubling arises from breaking the B-C bond. The lambda-doublet population ratio is predicted to be 2:1 provided that: (1) the motion of A in the transition state determines the plane of rotation of AB; (2) the unpaired pi orbital lying initially along the B-C bond may be resolved into a projection onto the AB plane of rotation and a projection perpendicular to this plane; (3) there is no preferred geometry for dissociation of ABC. The 2:1 lambda-doublet ratio is the 'unconstrained dynamics prior' lambda-doublet distribution for such reactions.

  19. N′-[(E)-3-Chloro-2-fluoro­benzyl­idene]-6-methyl­nicotinohydrazide monohydrate

    PubMed Central

    Fun, Hoong-Kun; Quah, Ching Kheng; Shyma, P. C.; Kalluraya, Balakrishna; Vidyashree, J. H. S.

    2012-01-01

    The title compound, C14H11ClFN3O·H2O, exists in an E conformation with respect to the N=C bond. The pyridine ring forms a dihedral angle of 5.00 (9)° with the benzene ring. In the crystal, the ketone O atom accepts one O—H⋯O and one C—H⋯O hydrogen bond, the water O atom accepts one N—H⋯O and two C—H⋯O hydrogen bonds and the pyridine N atom accepts one O—H⋯N hydrogen bond, forming layers parallel to the ab plane. PMID:22798798

  20. Low temperature thermal ALD of a SiNx interfacial diffusion barrier and interface passivation layer on SixGe1- x(001) and SixGe1- x(110)

    NASA Astrophysics Data System (ADS)

    Edmonds, Mary; Sardashti, Kasra; Wolf, Steven; Chagarov, Evgueni; Clemons, Max; Kent, Tyler; Park, Jun Hong; Tang, Kechao; McIntyre, Paul C.; Yoshida, Naomi; Dong, Lin; Holmes, Russell; Alvarez, Daniel; Kummel, Andrew C.

    2017-02-01

    Atomic layer deposition of a silicon rich SiNx layer on Si0.7Ge0.3(001), Si0.5Ge0.5(001), and Si0.5Ge0.5(110) surfaces has been achieved by sequential pulsing of Si2Cl6 and N2H4 precursors at a substrate temperature of 285 °C. XPS spectra show a higher binding energy shoulder peak on Si 2p indicative of SiOxNyClz bonding while Ge 2p and Ge 3d peaks show only a small amount of higher binding energy components consistent with only interfacial bonds, indicating the growth of SiOxNy on the SiGe surface with negligible subsurface reactions. Scanning tunneling spectroscopy measurements confirm that the SiNx interfacial layer forms an electrically passive surface on p-type Si0.70Ge0.30(001), Si0.50Ge0.50(110), and Si0.50Ge0.50(001) substrates as the surface Fermi level is unpinned and the electronic structure is free of states in the band gap. DFT calculations show that a Si rich a-SiO0.4N0,4 interlayer can produce lower interfacial defect density than stoichiometric a-SiO0.8N0.8, substoichiometric a-Si3N2, or stoichiometric a-Si3N4 interlayers by minimizing strain and bond breaking in the SiGe by the interlayer. Metal-oxide-semiconductor capacitors devices were fabricated on p-type Si0.7Ge0.3(001) and Si0.5Ge0.5(001) substrates with and without the insertion of an ALD SiOxNy interfacial layer, and the SiOxNy layer resulted in a decrease in interface state density near midgap with a comparable Cmax value.

  1. Induction of strand breaks by low-energy electrons (8-68 eV) in a self-assembled monolayer of oligonucleotides: Effective cross sections and attenuation lengths

    NASA Astrophysics Data System (ADS)

    Cai, Zhongli; Dextraze, Marie-Eve; Cloutier, Pierre; Hunting, Darel; Sanche, Léon

    2006-01-01

    Self-assembled monolayers of 5'-P32-labeled 3'-thiolated oligonucleotides chemisorbed on gold were bombarded by low-energy electrons (LEE) of 8-68eV. Shorter 5'-P32-oligonucleotides produced by LEE-induced strand breaks were separated with denaturing polyacrylamide gel electrophoresis and quantified by phosphor imaging. The yields of short oligonucleotides (y) decrease exponentially with their length (n), following the equation y =ae-bn, where a and b are constants, which are related to the average effective cross section per nucleotide for DNA strand break (σeff) and the attenuation length (AL=1/b) of LEE, respectively. The AL decreases with LEE energies from 2.5±0.6nm at 8eVto0.8±0.1nm at 68eV, whereas σeff increases from (3±1)×10-18to(5.1±1.6)×10-17cm2 within the same energy range. The energy dependence of σeff shows a resonance peak of (2.8±0.9)×10-17cm2 at 18eV superimposed on a monotonically rising curve. Transient electron attachment to a σ* anion state of the deoxyribose group, followed by dipolar dissociation into H- and the corresponding positive-ion radical, leading to C-O bond cleavage, is proposed to account for this maximum.

  2. Synthesis and structures of six closely related N-[3-(2-chlorobenzoyl)-5-ethylthiophen-2-yl]arylamides, together with an isolated reaction intermediate: order versus disorder, molecular conformations and hydrogen bonding in zero, one and two dimensions.

    PubMed

    Sagar, Belakavadi K; Yathirajan, Hemmige S; Rathore, Ravindranath S; Glidewell, Christopher

    2018-02-01

    Six closely related N-[3-(2-chlorobenzoyl)-5-ethylthiophen-2-yl]arylamides have been synthesized and structurally characterized, together with a representative reaction intermediate. In each of N-[3-(2-chlorobenzoyl)-5-ethylthiophen-2-yl]benzamide, C 20 H 16 ClNO 2 S, (I), N-[3-(2-chlorobenzoyl)-5-ethylthiophen-2-yl]-4-phenylbenzamide, C 26 H 20 ClNO 2 S, (II), and 2-bromo-N-[3-(2-chlorobenzoyl)-5-ethylthiophen-2-yl]benzamide, C 20 H 15 BrClNO 2 S, (III), the molecules are disordered over two sets of atomic sites, with occupancies of 0.894 (8) and 0.106 (8) in (I), 0.832 (5) and 0.168 (5) in (II), and 0.7006 (12) and 0.2994 (12) in (III). In each of N-[3-(2-chlorobenzoyl)-5-ethylthiophen-2-yl]-2-iodobenzamide, C 20 H 15 ClINO 2 S, (IV), and N-[3-(2-chlorobenzoyl)-5-ethylthiophen-2-yl]-2-methoxybenzamide, C 21 H 18 ClNO 3 S, (V), the molecules are fully ordered, but in N-[3-(2-chlorobenzoyl)-5-ethylthiophen-2-yl]-2,6-difluorobenzamide, C 20 H 14 ClF 2 NO 2 S, (VI), which crystallizes with Z' = 2 in the space group C2/c, one of the two independent molecules is fully ordered, while the other is disordered over two sets of atomic sites having occupancies of 0.916 (3) and 0.084 (3). All of the molecules in compounds (I)-(VI) exhibit an intramolecular N-H...O hydrogen bond. The molecules of (I) and (VI) are linked by C-H...O hydrogen bonds to form finite zero-dimensional dimers, which are cyclic in (I) and acyclic in (VI), those of (III) are linked by C-H...π(arene) hydrogen bonds to form simple chains, and those of (IV) and (V) are linked into different types of chains of rings, built in each case from a combination of C-H...O and C-H...π(arene) hydrogen bonds. Two C-H...O hydrogen bonds link the molecules of (II) into sheets containing three types of ring. In benzotriazol-1-yl 3,4-dimethoxybenzoate, C 15 H 13 N 3 O 4 , (VII), the benzoate component is planar and makes a dihedral angle of 84.51 (6)° with the benzotriazole unit. Comparisons are made with related compounds.

  3. Ethylene Glycol Adsorption and Reaction over CeOX(111) Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullins, David R; Chen, Tsung-Liang

    2011-01-01

    This study reports the interaction of ethylene glycol with well-ordered CeO{sub x}(111) thin film surfaces. Ethylene glycol initially adsorbs on fully oxidized CeO{sub 2}(111) and reduced CeO{sub 2-x}(111) through the formation of one C-O-Ce bond and then forms a second alkoxy bond after annealing. On fully oxidized CeO{sub 2}(111) both recombination of ethylene glycol and water desorption occur at low temperature leaving stable -OCH{sub 2}CH{sub 2}O- (ethylenedioxy) intermediates and oxygen vacancies on the surface. This ethylenedioxy intermediate goes through C-C bond scission to produce formate species which then react to produce CO and CO{sub 2}. The formation of water resultsmore » in the reduction of the ceria. On a reduced CeO{sub 2-x}(111) surface the reaction selectivity shifts toward a dehydration process. The ethylenedioxy intermediate decomposes by breaking a C-O bond and converts into an enolate species. Similar to the reaction of acetaldehyde on reduced CeO{sub 2-x}(111), the enolate reacts to produce acetaldehyde, acetylene, and ethylene. The loss of O from ethylene glycol leads to a small amount of oxidation of the reduced ceria.« less

  4. Ethylene Glycol Adsorption and Reaction over CeOX(111) Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T Chen; D Mullins

    2011-12-31

    This study reports the interaction of ethylene glycol with well-ordered CeO{sub x}(111) thin film surfaces. Ethylene glycol initially adsorbs on fully oxidized CeO{sub 2}(111) and reduced CeO{sub 2-x}(111) through the formation of one C-O-Ce bond and then forms a second alkoxy bond after annealing. On fully oxidized CeO{sub 2}(111) both recombination of ethylene glycol and water desorption occur at low temperature leaving stable -OCH{sub 2}CH{sub 2}O- (ethylenedioxy) intermediates and oxygen vacancies on the surface. This ethylenedioxy intermediate goes through C-C bond scission to produce formate species which then react to produce CO and CO{sub 2}. The formation of water resultsmore » in the reduction of the ceria. On a reduced CeO{sub 2-x}(111) surface the reaction selectivity shifts toward a dehydration process. The ethylenedioxy intermediate decomposes by breaking a C-O bond and converts into an enolate species. Similar to the reaction of acetaldehyde on reduced CeO{sub 2-x}(111), the enolate reacts to produce acetaldehyde, acetylene, and ethylene. The loss of O from ethylene glycol leads to a small amount of oxidation of the reduced ceria.« less

  5. Structural characterization of selenium and selenium-diiodine analogues of the antithyroid drug 6-n-propyl-2-thiouracil and its alkyl derivatives.

    PubMed

    Antoniadis, Constantinos D; Blake, Alexander J; Hadjikakou, Sotiris K; Hadjiliadis, Nick; Hubberstey, Peter; Schröder, Martin; Wilson, Claire

    2006-08-01

    The structures of four selenium analogues of the antithyroid drug 6-n-propyl-2-thiouracil [systematic name: 2,3-dihydro-6-n-propyl-2-thioxopyrimidin-4(1H)-one], namely 6-methyl-2-selenouracil, C(5)H(6)N(2)OSe (1), 6-ethyl-2-selenouracil, C(6)H(8)N(2)OSe (2), 6-n-propyl-2-selenouracil, C(7)H(10)N(2)OSe (3), and 6-isopropyl-2-selenouracil, C(7)H(10)N(2)OSe (4), are described, along with that of the dichloromethane monosolvate of 6-isopropyl-2-selenouracil, C(7)H(10)N(2)OSe.CH(2)Cl(2) (4.CH(2)Cl(2)). The extended structure of (1) is a two-dimensional sheet of topology 6(3) with a brick-wall architecture. The extended structures of (2) and (4) are analogous, being based on a chain of eight-membered R(8)(6)(32) hydrogen-bonded rings. In (3) and (4.CH(2)Cl(2)), R(2)(2)(8) hydrogen bonding links molecules into chains. 6-n-Propyl-2-selenouracil.I(2), C(7)H(10)N(2)OSe.I(2) (7), is a charge-transfer complex with a ;spoke' structure, the extended structure of which is based on a linear chain formed principally by intermolecular N-H...O hydrogen bonds. Re-crystallization of 6-ethyl-2-selenouracil or (7) from acetone gave crystals of the diselenides [N-(6'-ethyl-4'-pyrimidone)(6-ethyl-2-selenouracil)(2)(Se-Se)].2H(2)O (9.2H(2)O) or [N-(6'-n-propyl-4'-pyrimidone)(6-n-propyl-2-selenouracil)(2)(Se-Se)] (10), respectively: these have similar extended chain structures formed via N-H...O and C-H...O hydrogen bonds, stacked to give two-dimensional sheets. Re-crystallization of (7) from methanol/acetonitrile led via deselenation to the formation of crystals of 6-n-propyl-2-uracil (11), in which six symmetry-related molecules combine to form a six-membered R(6)(6)(24) hydrogen-bonded ring, with each pair of molecules linked by an R(2)(2)(8) motif.

  6. Crystal structure of N-(1-allyl-3-chloro-4-eth-oxy-1H-indazol-5-yl)-4-meth-oxybenzene-sulfonamide.

    PubMed

    Chicha, Hakima; Rakib, El Mostapha; Bouissane, Latifa; Saadi, Mohamed; El Ammari, Lahcen

    2014-09-01

    In the title compound, C19H20ClN3O4S, the benzene ring is inclined to the indazole ring system (r.m.s. deviation = 0.014 Å) by 65.07 (8)°. The allyl and eth-oxy groups are almost normal to the indazole ring, as indicated by the respective torsion angles [N-N-C-C = 111.6 (2) and C-C-O-C = -88.1 (2)°]. In the crystal, mol-ecules are connected by N-H⋯N hydrogen bonds, forming helical chains propagating along [010]. The chains are linked by C-H⋯O hydrogen bonds, forming a three-dimensional network.

  7. Electronic structure studies of Ni( 1 0 0 ) surface reconstructions resulting from carbon, nitrogen, or oxygen atom adsorption

    NASA Astrophysics Data System (ADS)

    Kirsch, Janet E.; Harris, Suzanne

    2003-01-01

    Solid-state Fenske-Hall band structure calculations have been used to study the different surface structures which result from adsorption of a half monolayer of C, N, or O atoms on the Ni(1 0 0) surface. C or N atoms sit nearly coplanar with the surface Ni atoms and induce the "clock" reconstruction of the surface. In contrast, adsorbed O atoms sit slightly above the Ni(1 0 0) surface plane and have little effect on the overall surface structure. The local environments of the C, N, and O atoms on these surfaces are similar to their environments in a series of late transition metal carbonyl clusters, suggesting that some of the same electronic factors may play a role in favoring the different structures. Results of the calculations indicate that when adsorbates occupy coplanar sites on Ni(1 0 0), much of the Ni-Ni bonding within the surface layer and between the surface- and second-layers is disrupted. On the C- and N-covered surfaces the disruption is more than compensated for by the formation of strong adsorbate-Ni bonds and by new Ni-Ni surface bonds resulting from the clock reconstruction. When O is forced into a coplanar site, however, both the higher electron count and increased electronegativity of the O atoms lead to severe disruption of the surface bonding and weak Ni-O bonds. When O atoms sit above the surface, they form more polar Ni-O bonds, contribute less electron density to the Ni surface bands, and cause less disruption to Ni-Ni surface bonds. These results suggest that, similar to the organometallic clusters, the site preferences of C, N, and O atoms are directly related to their electron count, and in turn to the relative occupation of both Ni-Ni and X-Ni (X=C, N, O) antibonding bands.

  8. The reactivity of phosphagermaallene Tip(t-Bu)Ge=C=PMes* with doubly and triply bonded nitrogen compounds.

    PubMed

    Ghereg, Dumitru; Gornitzka, Heinz; Escudié, Jean; Ladeira, Sonia

    2010-11-15

    Phosphagermaallene Tip(t-Bu)Ge=C=PMes* (1; Mes* = 2,4,6-tri-tert-butylphenyl, Tip = 2,4,6-triisopropylphenyl) gives, with N-benzylidenemethylamine and pivalonitrile, [2+2] cycloadditions between the Ge=C double bond and the C=N and C≡N unsaturations, leading to the formation of the corresponding four-membered heterocycles 2 and 9. With N-tert-butyl-α-phenylnitrone and benzonitrile oxide, [2+3] cycloadditions occur to form the five-membered ring derivatives 6 and 7. By treatment of 1 with derivatives which possess weak acidic hydrogens in α of the C=N or C≡N multiple bond, two types of reactions were observed: an ene reaction with methyl(benzylideneamino)acetate and a 1,2 addition with acetonitrile to afford azadienyl(germyl)ether (4) and 3-germa-1-phosphapropene (8), respectively. In the case of benzonitrile, phosphagermaallene 1 behaves as a 1,3-dipole, to give, via a cyclic phosphagermacarbene intermediate, the tricyclic derivative 10.

  9. Base Release and Modification in Solid-Phase DNA Exposed to Low-Energy Electrons.

    PubMed

    Choofong, Surakarn; Cloutier, Pierre; Sanche, Léon; Wagner, J Richard

    2016-11-01

    Ionization generates a large number of secondary low-energy electrons (LEEs) with a most probable energy of approximately 10 eV, which can break DNA bonds by dissociative electron attachment (DEA) and lead to DNA damage. In this study, we investigated radiation damage to dry DNA induced by X rays (1.5 keV) alone on a glass substrate or X rays combined with extra LEEs (average energy of 5.8 eV) emitted from a tantalum (Ta) substrate under an atmosphere of N 2 and standard ambient conditions of temperature and pressure. The targets included calf-thymus DNA and double-stranded synthetic oligonucleotides. We developed analytical methods to measure the release of non-modified DNA bases from DNA and the formation of several base modifications by LC-MS/MS with isotopic dilution for precise quantification. The results show that the yield of non-modified bases as well as base modifications increase by 20-30% when DNA is deposited on a Ta substrate compared to that on a glass substrate. The order of base release (Gua > Ade > Thy ∼ Cyt) agrees well with several theoretical studies indicating that Gua is the most susceptible site toward sugar-phosphate cleavage. The formation of DNA damage by LEEs is explained by DEA leading to the release of non-modified bases involving the initial cleavage of N1-C1', C3'-O3' or C5'-O5' bonds. The yield of base modifications was lower than the release of non-modified bases. The main LEE-induced base modifications include 5,6-dihydrothymine (5,6-dHT), 5,6-dihydrouracil (5-dHU), 5-hydroxymethyluracil (5-HmU) and 5-formyluracil (5-ForU). The formation of base modifications by LEEs can be explained by DEA and cleavage of the C-H bond of the methyl group of Thy (giving 5-HmU and 5-ForU) and by secondary reactions of H atoms and hydride anions that are generated by primary LEE reactions followed by subsequent reaction with Cyt and Thy (giving 5,6-dHU and 5,6-dHT).

  10. Supramolecular hydrogen-bonding patterns in 1:1 cocrystals of 5-fluorouracil with 4-methylbenzoic acid and 3-nitrobenzoic acid.

    PubMed

    Mohana, Marimuthu; Muthiah, Packianathan Thomas; McMillen, Colin D

    2017-03-01

    The design of a pharmaceutical cocrystal is based on the identification of specific hydrogen-bond donor and acceptor groups in active pharmaceutical ingredients (APIs) in order to choose a `complementary interacting' molecule that can act as an efficient coformer. 5-Fluorouracil (5FU) is a pyrimidine derivative with two N-H donors and C=O acceptors and shows a diversity of hydrogen-bonding motifs. Two 1:1 cocrystals of 5-fluorouracil (5FU), namely 5-fluorouracil-4-methylbenzoic acid (5FU-MBA), C 4 H 3 FN 2 O 2 ·C 8 H 8 O 2 , (I), and 5-fluorouracil-3-nitrobenzoic acid (5FU-NBA), C 4 H 3 FN 2 O 2 ·C 7 H 5 NO 4 , (II), have been prepared and characterized by single-crystal X-ray diffraction. In (I), the MBA molecules form carboxylic acid dimers [R 2 2 (8) homosynthon]. Similarly, the 5FU molecules form two types of base pair via a pair of N-H...O hydrogen bonds [R 2 2 (8) homosynthon]. In (II), 5FU interacts with the carboxylic acid group of NBA via N-H...O and O-H...O hydrogen bonds, generating an R 2 2 (8) ring motif (heterosynthon). Furthermore, the 5FU molecules form base pairs [R 2 2 (8) homosynthon] via N-H...O hydrogen bonds. Both of the crystal structures are stabilized by C-H...F interactions.

  11. The effect of nitrogen incorporation on the bonding structure of hydrogenated carbon nitride films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camero, M.; Buijnsters, J. G.; Gomez-Aleixandre, C.

    2007-03-15

    This work describes the composition and bonding structure of hydrogenated carbon nitride (a-CN{sub x}:H) films synthesized by electron cyclotron resonance chemical vapor deposition using as precursor gases argon, methane, and nitrogen. The composition of the films was derived from Rutherford backscattering and elastic recoil detection analysis and the bonding structure was examined by infrared (IR) spectroscopy and x-ray absorption near edge spectroscopy (XANES). By varying the nitrogen to methane ratio in the applied gas mixture, polymeric a-CN{sub x}:H films with N/C contents varying from 0.06 to 0.49 were obtained. Remarkably, the H content of the films ({approx}40 at. %) wasmore » rather unaffected by the nitrogenation process. The different bonding states as detected in the measured XANES C(1s) and N(1s) spectra have been correlated with those of a large number of reference samples. The XANES and IR spectroscopy results indicate that N atoms are efficiently incorporated into the amorphous carbon network and can be found in different bonding environments, such as pyridinelike, graphitelike, nitrilelike, and amino groups. The nitrogenation of the films results in the formation of N-H bonding environments at the cost of C-H structures. Also, the insertion of N induces a higher fraction of double bonds in the structure at the expense of the linear polymerlike chains, hence resulting in a more cross-linked solid. The formation of double bonds takes place through complex C=N structures and not by formation of graphitic aromatic rings. Also, the mechanical and tribological properties (hardness, friction, and wear) of the films have been studied as a function of the nitrogen content. Despite the major modifications in the bonding structure with nitrogen uptake, no significant changes in these properties are observed.« less

  12. New insights into the mechanism of interaction between CO2 and polymers from thermodynamic parameters obtained by in situ ATR-FTIR spectroscopy.

    PubMed

    Gabrienko, Anton A; Ewing, Andrew V; Chibiryaev, Andrey M; Agafontsev, Alexander M; Dubkov, Konstantin A; Kazarian, Sergei G

    2016-03-07

    This work reports new physical insights of the thermodynamic parameters and mechanisms of possible interactions occurring in polymers subjected to high-pressure CO2. ATR-FTIR spectroscopy has been used in situ to determine the thermodynamic parameters of the intermolecular interactions between CO2 and different functional groups of the polymers capable of specific interactions with sorbed CO2 molecules. Based on the measured ATR-FTIR spectra of the polymer samples subjected to high-pressure CO2 (30 bar) at different temperatures (300-340 K), it was possible to characterize polymer-polymer and CO2-polymer interactions. Particularly, the enthalpy and entropy of the formation of the specific non-covalent complexes between CO2 and the hydroxy (-OH), carbonyl (C[double bond, length as m-dash]O) and hydroxyimino ([double bond, length as m-dash]N-OH) functional groups of the polymer samples have been measured. Furthermore, the obtained spectroscopic results have provided an opportunity for the structure of these complexes to be proposed. An interesting phenomenon regarding the behavior of CO2/polymer systems has also been observed. It has been found that only for the polyketone, the value of enthalpy was negative indicating an exothermic process during the formation of the CO2-polymer non-covalent complexes. Conversely, for the polyoxime and polyalcohol samples there is a positive enthalpy determined. This is a result of the initial polymer-polymer interactions requiring more energy to break than is released during the formation of the CO2-polymer complex. The effect of increasing temperature to facilitate the breaking of the polymer-polymer interactions has also been observed. Hence, a mechanism for the formation of CO2-polymer complexes was suggested based on these results, which occurs via a two-step process: (1) the breaking of the existing polymer-polymer interactions followed by (2) the formation of new CO2-polymer non-covalent interactions.

  13. Plasma-deposited amorphous silicon carbide films for micromachined fluidic channels

    NASA Astrophysics Data System (ADS)

    Wuu, Dong-Sing; Horng, Ray-Hua; Chan, Chia-Chi; Lee, Yih-Shing

    1999-04-01

    The stress properties of the a-SiC:H films on Si by plasma-enhanced chemical vapor deposition (PECVD) are investigated. It is found that the stability of the a-SiC:H films relates to Si-H bonds breaking and changes the stress toward tensile. No evident reduction in the content of Si-H bonds after thermal cycles was found in the carbon-rich samples. Moreover, a new method to fabricate microchannels by through-hole etching with subsequent planarization is proposed. The process is based on etching out the deep grooves through a perforated a-SiC:H membrane, where poly-Si is used as a sacrificial layer to define the channel structure, followed by PECVD sealing the SiC:H membrane. In order to improve the etching performance, the agitated KOH etch is performed at low temperatures (<50°C). The process technology is demonstrated on the fabrication of microfluidic channels with the low-stress (<0.1 GPa) a-SiC:H membranes.

  14. Stimuli-controlled self-assembly of diverse tubular aggregates from one single small monomer

    NASA Astrophysics Data System (ADS)

    Shi, Qixun; Javorskis, Tomas; Bergquist, Karl-Erik; Ulčinas, Artūras; Niaura, Gediminas; Matulaitienė, Ieva; Orentas, Edvinas; Wärnmark, Kenneth

    2017-04-01

    The design and synthesis of new stimuli-responsive hydrogen-bonding monomers that display a diversity of self-assembly pathways is of central importance in supramolecular chemistry. Here we describe the aggregation properties of a simple, intrinsically C2-symmetric enantiopure bicyclic cavity compound bearing a terminally unsubstituted ureidopyrimidinone fragment fused with a pyrrole moiety in different solvents and in the absence and presence of C60 and C70 guests. The tetrameric cyclic aggregate is selectively obtained in chlorinated solvents, where only part of the available hydrogen bonding sites are utilized, whereas in toluene or upon addition of C70 guests, further aggregation into tubular supramolecular polymers is achieved. The open-end cyclic assemblies rearrange into a closed-shell capsule upon introduction of C60 with an accompanied symmetry breaking of the monomer. Our study demonstrates that a C60 switch can be used to simultaneously control the topology and occupancy of tubular assemblies resulting from the aggregation of small monomers.

  15. Verification of RDX Photolysis Mechanism

    DTIC Science & Technology

    1999-11-01

    which re-addition of HN02 was proposed to yield a hydroxydiazo intermediate that then decomposed to an alcohol . This sequence is shown for...various organic products such as alcohols , or undergo carbon- nitrogen (C-N) bond cleavage (Noller 1965). This reaction is sufficiently quanti...carbon-centered functional group such as the alcohol shown below, or C-N bond cleavage. 42 CERL TR 99/93 N02 N02 No2 ^Nv. N ’ ( ^| H2

  16. NCI calculations for understanding a physical phase transition in (C6H14N2)[Mn(H2O)6](SeO4)2

    NASA Astrophysics Data System (ADS)

    Naïli, Houcine; François, Michel; Norquist, Alexander J.; Rekik, Walid

    2017-12-01

    An organically templated manganese selenate, (C6H14N2)[Mn(H2O)6](SeO4)2, has been synthesized by slow evaporation and crystallographically characterized. The title compound crystallizes at room temperature in the monoclinic centrosymmetric space group P21/n, with the following unit cell parameters: a = 7.2373(4) Å; b = 12.5600(7) Å; c = 10.1945(7) Å; β = 91.155(4)°, V = 926.50(10) Å3and Z = 2. Its crystal structure is built of manganese(II) cations coordinated by six water molecules in octahedral geometry, disordered dabcodiium cations and selenate anions, resulting in an extensive hydrogen-bonding network. Differential scanning calorimetry (DSC) measurement indicated that the precursor undergoes a reversible phase transition at about 216 and 218 K during the cooling and heating processes respectively. Below this temperature the title compound is noncentrosymmetric with space group P21 and lattice parameters a = 7.2033(8) Å; b = 12.4981(13) Å; c = 10.0888(11) Å; β = 91.281(2)°, V = 908.04(17) Å3 and Z = 2. The disorder-order transformation of the C atoms of (C6H14N2)2+ cation may drive the structural phase transition. The low temperature phase obtained by breaking symmetry presents a fully ordered structure. The noncovalent interaction (NCI) method was used not only to locate, quantify, and visualize intermolecular interactions in the high and low temperature phases but also to confirm the phase transition detected by DSC measurement. The thermal decomposition of this new compound proceeds through four stages giving rise to the manganese oxide as final product at 850 °C.

  17. Orphenadrinium picrate picric acid.

    PubMed

    Fun, Hoong-Kun; Hemamalini, Madhukar; Siddaraju, B P; Yathirajan, H S; Narayana, B

    2010-02-24

    The asymmetric unit of the title compound N,N-dimethyl-2-[(2-methyl-phen-yl)phenyl-meth-oxy]ethanaminium picrate picric acid, C(18)H(24)NO(+)·C(6)H(2)N(3)O(7) (-)·C(6)H(3)N(3)O(7), contains one orphenadrinium cation, one picrate anion and one picric acid mol-ecule. In the orphenadrine cation, the two aromatic rings form a dihedral angle of 70.30 (7)°. There is an intra-molecular O-H⋯O hydrogen bond in the picric acid mol-ecule, which generates an S(6) ring motif. In the crystal structure, the orphenadrine cations, picrate anions and picric acid mol-ecules are connected by strong inter-molecular N-H⋯O hydrogen bonds, π⋯π inter-actions between the benzene rings of cations and anions [centroid-centroid distance = 3.5603 (9) Å] and weak C-H⋯O hydrogen bonds, forming a three-dimensional network.

  18. Understanding Nitrogen Fixation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul J. Chirik

    The purpose of our program is to explore fundamental chemistry relevant to the discovery of energy efficient methods for the conversion of atmospheric nitrogen (N{sub 2}) into more value-added nitrogen-containing organic molecules. Such transformations are key for domestic energy security and the reduction of fossil fuel dependencies. With DOE support, we have synthesized families of zirconium and hafnium dinitrogen complexes with elongated and activated N-N bonds that exhibit rich N{sub 2} functionalization chemistry. Having elucidated new methods for N-H bond formation from dihydrogen, C-H bonds and Broensted acids, we have since turned our attention to N-C bond construction. These reactionsmore » are particularly important for the synthesis of amines, heterocycles and hydrazines with a range of applications in the fine and commodity chemicals industries and as fuels. One recent highlight was the discovery of a new N{sub 2} cleavage reaction upon addition of carbon monoxide which resulted in the synthesis of an important fertilizer, oxamide, from the diatomics with the two strongest bonds in chemistry. Nitrogen-carbon bonds form the backbone of many important organic molecules, especially those used in the fertilizer and pharamaceutical industries. During the past year, we have continued our work in the synthesis of hydrazines of various substitution patterns, many of which are important precursors for heterocycles. In most instances, the direct functionalization of N{sub 2} offers a more efficient synthetic route than traditional organic methods. In addition, we have also discovered a unique CO-induced N{sub 2} bond cleavage reaction that simultaneously cleaves the N-N bond of the metal dinitrogen compound and assembles new C-C bond and two new N-C bonds. Treatment of the CO-functionalized core with weak Broensted acids liberated oxamide, H{sub 2}NC(O)C(O)NH{sub 2}, an important slow release fertilizer that is of interest to replace urea in many applications. The synthesis of ammonia, NH{sub 3}, from its elements, H{sub 2} and N{sub 2}, via the venerable Haber-Bosch process is one of the most significant technological achievements of the past century. Our research program seeks to discover new transition metal reagents and catalysts to disrupt the strong N {triple_bond} N bond in N{sub 2} and create new, fundamental chemical linkages for the construction of molecules with application as fuels, fertilizers and fine chemicals. With DOE support, our group has discovered a mild method for ammonia synthesis in solution as well as new methods for the construction of nitrogen-carbon bonds directly from N{sub 2}. Ideally these achievements will evolve into more efficient nitrogen fixation schemes that circumvent the high energy demands of industrial ammonia synthesis. Industrially, atmospheric nitrogen enters the synthetic cycle by the well-established Haber-Bosch process whereby N{sub 2} is hydrogenated to ammonia at high temperature and pressure. The commercialization of this reaction represents one of the greatest technological achievements of the 20th century as Haber-Bosch ammonia is responsible for supporting approximately 50% of the world's population and serves as the source of half of the nitrogen in the human body. The extreme reaction conditions required for an economical process have significant energy consequences, consuming 1% of the world's energy supply mostly in the form of pollution-intensive coal. Moreover, industrial H{sub 2} synthesis via the water gas shift reaction and the steam reforming of methane is fossil fuel intensive and produces CO{sub 2} as a byproduct. New synthetic methods that promote this thermodynamically favored transformation ({Delta}G{sup o} = -4.1 kcal/mol) under milder conditions or completely obviate it are therefore desirable. Most nitrogen-containing organic molecules are derived from ammonia (and hence rely on the Haber-Bosch and H{sub 2} synthesis processes) and direct synthesis from atmospheric nitrogen could, in principle, be more energy-efficient. This is particularly attractive given the interest in direct hydrazine fuel cells.« less

  19. Carboxylate-assisted ruthenium-catalyzed alkyne annulations by C-H/Het-H bond functionalizations.

    PubMed

    Ackermann, Lutz

    2014-02-18

    To improve the atom- and step-economy of organic syntheses, researchers would like to capitalize upon the chemistry of otherwise inert carbon-hydrogen (C-H) bonds. During the past decade, remarkable progress in organometallic chemistry has set the stage for the development of increasingly viable metal catalysts for C-H bond activation reactions. Among these methods, oxidative C-H bond functionalizations are particularly attractive because they avoid the use of prefunctionalized starting materials. For example, oxidative annulations that involve sequential C-H and heteroatom-H bond cleavages allow for the modular assembly of regioselectively decorated heterocycles. These structures serve as key scaffolds for natural products, functional materials, crop protecting agents, and drugs. While other researchers have devised rhodium or palladium complexes for oxidative alkyne annulations, my laboratory has focused on the application of significantly less expensive, yet highly selective ruthenium complexes. This Account summarizes the evolution of versatile ruthenium(II) complexes for annulations of alkynes via C-H/N-H, C-H/O-H, or C-H/N-O bond cleavages. To achieve selective C-H bond functionalizations, we needed to understand the detailed mechanism of the crucial C-H bond metalation with ruthenium(II) complexes and particularly the importance of carboxylate assistance in this process. As a consequence, our recent efforts have resulted in widely applicable methods for the versatile preparation of differently decorated arenes and heteroarenes, providing access to among others isoquinolones, 2-pyridones, isoquinolines, indoles, pyrroles, or α-pyrones. Most of these reactions used Cu(OAc)2·H2O, which not only acted as the oxidant but also served as the essential source of acetate for the carboxylate-assisted ruthenation manifold. Notably, the ruthenium(II)-catalyzed oxidative annulations also occurred under an ambient atmosphere of air with cocatalytic amounts of Cu(OAc)2·H2O. Moreover, substrates displaying N-O bonds served as "internal oxidants" for the syntheses of isoquinolones and isoquinolines. Detailed experimental mechanistic studies have provided strong support for a catalytic cycle that relies on initial carboxylate-assisted C-H bond ruthenation, followed by coordinative insertion of the alkyne, reductive elimination, and reoxidation of the thus formed ruthenium(0) complex.

  20. Thermodynamic trends in carbon-hydrogen bond activation in nitriles and chloroalkanes at rhodium.

    PubMed

    Evans, Meagan E; Li, Ting; Vetter, Andrew J; Rieth, Ryan D; Jones, William D

    2009-09-18

    Several transition-metal systems have been used to establish correlations between metal-carbon and carbon-hydrogen bonds. Here, the [Tp'RhL] fragment, where Tp' = tris(3,5-dimethylpyrazolyl)borate and L = neopentyl isocyanide, is used to investigate C-H bond activation in a series of linear alkylnitriles and chloroalkanes. Using a combination of kinetic techniques, relative free energies can be found for the compounds TpRhL(CH(3))H, Tp'RhL[(CH(2))(n)CN]H (n = 1-5), and Tp'RhL[(CH(2))(m)Cl]H (m = 1, 3, 4, 5). It is found that the CN and Cl substituents dramatically strengthen the M-C bond more than anticipated if in the alpha-position, with the effect on bond strength diminishing substantially as the X group moves further from the metal (i.e, beta, gamma, delta). Examination of M-C vs C-H bond strengths shows that the Tp'RhL(CH(2)X)H compounds (X = phenyl, vinyl, CN, Cl) all show a good correlation, as do the alkyl, aryl, and vinyl derivatives. The compounds in the former group, however, have stronger M-C bonds than expected based on the C-H bond strengths and consequently, their correlation is separate from the other unsubstituted compounds.

  1. 3-Methyl-7-(2-thienyl)pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione: pi-stacked bilayers built from N-H...O, C-H...O and C-H...pi hydrogen bonds.

    PubMed

    Trilleras, Jorge; Quiroga, Jairo; Cobo, Justo; Glidewell, Christopher

    2009-06-01

    In the title compound, C(12)H(9)N(3)O(2)S, the thienyl substituent is disordered over two sets of sites with occupancies of 0.749 (3) and 0.251 (3). A combination of N-H...O, C-H...O and C-H...pi hydrogen bonds links the molecules into bilayers and these bilayers are themselves linked into a continuous structure by pi-pi stacking interactions.

  2. Rhodium(III)-Catalyzed Amidation of Unactivated C(sp(3) )-H Bonds.

    PubMed

    Wang, He; Tang, Guodong; Li, Xingwei

    2015-10-26

    Nitrogenation by direct functionalization of C-H bonds represents an important strategy for constructing C-N bonds. Rhodium(III)-catalyzed direct amidation of unactivated C(sp(3) )-H bonds is rare, especially under mild reaction conditions. Herein, a broad scope of C(sp(3) )-H bonds are amidated under rhodium catalysis in high efficiency using 3-substituted 1,4,2-dioxazol-5-ones as the amide source. The protocol broadens the scope of rhodium(III)-catalyzed C(sp(3) )-H activation chemistry, and is applicable to the late-stage functionalization of natural products. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The distorted tropane of scopoline.

    PubMed

    Écija, Patricia; Cocinero, Emilio J; Lesarri, Alberto; Basterretxea, Francisco J; Fernández, José A; Castaño, Fernando

    2013-06-24

    The structural isomerization of scopine into scopoline (oscine) has been observed in a supersonic jet expansion using microwave spectroscopy. The rotational spectrum evidences a single structure in the gas phase, providing a first description of the (three-ring) structurally distorted tropane in scopoline. The absence of rotational signatures of any scopine conformation suggests a practically quantitative isomerization at the vaporization temperatures of the experiment (ca. 90 °C). The determined rotational parameters of scopoline reveal the structural consequences of the intramolecular cyclation of scopine, which breaks the original epoxy group and creates a new ether bridge and a 7β-hydroxytropane configuration. The hydroxy group further stabilizes the molecule by an O-H⋅⋅⋅N intramolecular hydrogen bond, which, in turn, forces the N-methyl group to the less stable axial form. Supporting ab initio (MP2) and DFT (B3LYP, M06-2X) calculations are included. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Oxidative 1,2-carboamination of alkenes with alkyl nitriles and amines toward γ-amino alkyl nitriles

    NASA Astrophysics Data System (ADS)

    Liu, Yan-Yun; Yang, Xu-Heng; Song, Ren-Jie; Luo, Shenglian; Li, Jin-Heng

    2017-04-01

    Difunctionalization of alkenes has become a powerful tool for quickly increasing molecular complexity in synthesis. Despite significant progress in the area of alkene difunctionalization involving the incorporation of a nitrogen atom across the C-C double bonds, approaches for the direct 1,2-carboamination of alkenes to produce linear N-containing molecules are scarce and remain a formidable challenge. Here we describe a radical-mediated oxidative intermolecular 1,2-alkylamination of alkenes with alkyl nitriles and amines involving C(sp3)-H oxidative functionalization catalysed by a combination of Ag2CO3 with iron Lewis acids. This three-component alkene 1,2-alkylamination method is initiated by the C(sp3)-H oxidative radical functionalization, which enables one-step formation of two new chemical bonds, a C-C bond and a C-N bond, to selectively produce γ-amino alkyl nitriles.

  5. C-H bond activation of hydrocarbons by an imidozirconocene complex.

    PubMed

    Hoyt, Helen M; Michael, Forrest E; Bergman, Robert G

    2004-02-04

    Monomeric imidozirconocene complexes of the type Cp2(L)Zr=NCMe3 (Cp = cyclopentadienyl, L = Lewis base) have been shown to activate the carbon-hydrogen bonds of benzene, but not the C-H bonds of saturated hydrocarbons. To our knowledge, this singularly important class of C-H activation reactions has heretofore not been observed in imidometallocene systems. The M=NR bond formed on heating the racemic ethylenebis(tetrahydro)indenyl methyl tert-butyl amide complex, however, cleanly and quantitatively activates a wide range of n-alkane, alkene, and arene C-H bonds. Mechanistic experiments support the proposal of intramolecular elimination of methane followed by a concerted addition of the hydrocarbon C-H bond. Products formed by activation of sp2 C-H bonds are generally more thermodynamically stable than those formed by activation of sp3 C-H bonds, and those resulting from reaction at primary C-H bonds are preferred over secondary sp3 C-H activation products. There is also evidence that thermodynamic selectivity among C-H bonds is sterically rather than electronically controlled.

  6. Dynamics and couplings of N-H stretching excitations of guanosine-cytidine base pairs in solution.

    PubMed

    Yang, Ming; Szyc, Łukasz; Röttger, Katharina; Fidder, Henk; Nibbering, Erik T J; Elsaesser, Thomas; Temps, Friedrich

    2011-05-12

    N-H stretching vibrations of hydrogen-bonded guanosine-cytidine (G·C) base pairs in chloroform solution are studied with linear and ultrafast nonlinear infrared (IR) spectroscopy. Assignment of the IR-active bands in the linear spectrum is made possible by combining structural information on the hydrogen bonds in G·C base pairs with literature results of density functional theory calculations, and empirical relations connecting frequency shifts and intensity of the IR-active vibrations. A local mode representation of N-H stretching vibrations is adopted, consisting of ν(G)(NH(2))(f) and ν(C)(NH(2))(f) modes for free NH groups of G and C, and of ν(G)(NH(2))(b), ν(G)(NH), and ν(C)(NH(2))(b) modes associated with N-H stretching motions of hydrogen-bonded NH groups. The couplings and relaxation dynamics of the N-H stretching excitations are studied with femtosecond mid-infrared two-dimensional (2D) and pump-probe spectroscopy. The N-H stretching vibrations of the free NH groups of G and C have an average population lifetime of 2.4 ps. Besides a vibrational population lifetime shortening to subpicosecond values observed for the hydrogen-bonded N-H stretching vibrations, the 2D spectra reveal vibrational excitation transfer from the ν(G)(NH(2))(b) mode to the ν(G)(NH) and/or ν(C)(NH(2))(b) modes. The underlying intermode vibrational couplings are on the order of 10 cm(-1).

  7. Learning probabilistic models of hydrogen bond stability from molecular dynamics simulation trajectories.

    PubMed

    Chikalov, Igor; Yao, Peggy; Moshkov, Mikhail; Latombe, Jean-Claude

    2011-02-15

    Hydrogen bonds (H-bonds) play a key role in both the formation and stabilization of protein structures. They form and break while a protein deforms, for instance during the transition from a non-functional to a functional state. The intrinsic strength of an individual H-bond has been studied from an energetic viewpoint, but energy alone may not be a very good predictor. This paper describes inductive learning methods to train protein-independent probabilistic models of H-bond stability from molecular dynamics (MD) simulation trajectories of various proteins. The training data contains 32 input attributes (predictors) that describe an H-bond and its local environment in a conformation c and the output attribute is the probability that the H-bond will be present in an arbitrary conformation of this protein achievable from c within a time duration Δ. We model dependence of the output variable on the predictors by a regression tree. Several models are built using 6 MD simulation trajectories containing over 4000 distinct H-bonds (millions of occurrences). Experimental results demonstrate that such models can predict H-bond stability quite well. They perform roughly 20% better than models based on H-bond energy alone. In addition, they can accurately identify a large fraction of the least stable H-bonds in a conformation. In most tests, about 80% of the 10% H-bonds predicted as the least stable are actually among the 10% truly least stable. The important attributes identified during the tree construction are consistent with previous findings. We use inductive learning methods to build protein-independent probabilistic models to study H-bond stability, and demonstrate that the models perform better than H-bond energy alone.

  8. Adhesive bonding and performance testing of bonded wood products

    Treesearch

    Charles R. Frihart

    2005-01-01

    Despite the importance of durable wood bonds, the factors that lead to durability are not well understood, and the internal forces exerted upon the bondline are often overlooked. Durability requires that the bonded assembly resist dimensional changes of wood with fluctuation of wood moisture levels. Both bonding and bond breaking steps need to be understood at cellular...

  9. A theoretical investigation into the strength of N-NO2 bonds, ring strain and electrostatic potential upon formation of intermolecular H-bonds between HF and the nitro group in nitrogen heterocyclic rings C n H2n N-NO2 (n = 2-5), RDX and HMX.

    PubMed

    Wang, Bao-Guo; Ren, Fu-de; Shi, Wen-Jing

    2015-11-01

    Changes in N-NO2 bond strength, ring strain energy and electrostatic potential upon formation of intermolecular H-bonds between HF and the nitro group in nitrogen heterocyclic rings C n H2n N-NO2 (n = 2-5), RDX and HMX were investigated using DFT-B3LYP and MP2(full) methods with the 6-311++G(2df,2p) and aug-cc-pVTZ basis sets. Analysis of electron density shifts was also carried out. The results indicate that H-bonding energy correlates well with the increment of ring strain energy. Upon complex formation, the strength of the N-NO2 trigger-bond is enhanced, suggesting reduced sensitivity, while judged by the increased ring strain energy, sensitivity is increased. However, some features of the molecular surface electrostatic potential, such as a local maximum above the N-NO2 bond and ring, σ + (2) and electrostatic balance parameter ν, remain essentially unchanged upon complex formation, and only a small change in the impact sensitivity h 50 is suggested. It is not sufficient to determine sensitivity solely on the basis of trigger bond or ring strain; as a global feature of a molecule, the molecular surface electrostatic potential is available to help judge the change of sensitivity in H-bonded complexes. Graphical Abstract The strengthened N-NO2 bond suggests reduced sensitivity, while it is reverse by theincreased ring strain energy upon the complex formation. However, the molecular surfaceelectrostatic potential (V S) shows the little change of h 50. The V S should be taken into accountin the analysis of explosive sensitivity in the H-bonded complex.

  10. Interpretation FTIR spectrum of seawater and sediment in the Ambon Bay (TAD)

    NASA Astrophysics Data System (ADS)

    Patty, Diana Julaidy; Loupatty, Grace; Sopalauw, Fitria

    2017-01-01

    Research has done to interpretated FTIR spectrum of seawaters and sediment of the Ambon Bay (TAD). Analysis of samples of sediment and seawater using FTIR spectroscopy. The results showed the sand sediment samples identified Stretch bond OH group (3600-3500 cm-1), N-H Stretch (3400-3300 cm-1), C≡N (2250 cm-1), and NH bending (1640 to 1550 cm-1). And for seawater samples identified bonding group that is N-H Stretch (3400-3350 cm-1), N-H bending (1640 to 1550 cm-1) and C=O (1670-1640 cm-1). The existence of functional groups, carbonyl (C=O), alcohol (OH), carboxyl (COOH) can cause the complexation of metal cations. And the results showed analysis group N-O bond-containing compounds Nitro indicate heavy metal content of Lead (Pb) and group N-H bond-containing compound Amina indicate heavy metal content of Cadmium (Cd).

  11. Single Molecule Junctions: A Laboratory for Chemistry, Mechanics and Bond Rupture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hybertsen M. S.

    Simultaneous measurement [1] of junction conductance and sustained force in single molecule junctions bridging metal electrodes provides a powerful tool in the quantitative study of the character of molecule-metal bonds. In this talk I will discuss three topics. First, I will describe chemical trends in link bond strength based on experiments and Density Functional Theory based calculations. Second, I will focus on the specific case of pyridine-linked junctions. Bond rupture from the high conductance junction structure shows a requires a force that exceeds the rupture force of gold point contacts and clearly indicates the role of additional forces, beyond themore » specific N-Au donor acceptor bond. DFT-D2 calculations with empirical addition of dispersion interactions illustrates the interplay between the donor-acceptor bonding and the non-specific van der Waals interactions between the pyridine rings and Au asperities. Third, I will describe recent efforts to characterize the diversity of junction structures realized in break-junction experiments with suitable models for the potential surfaces that are observed. [1] Venkataraman Group, Columbia University.« less

  12. Crystal structure and hydrogen-bonding patterns in 5-fluoro-cytosinium picrate.

    PubMed

    Mohana, Marimuthu; Thomas Muthiah, Packianathan; McMillen, Colin D

    2017-03-01

    In the crystal structure of the title compound, 5-fluoro-cytosinium picrate, C 4 H 5 FN 3 O + ·C 6 H 2 N 3 O 7 - , one N heteroatom of the 5-fluoro-cytosine (5FC) ring is protonated. The 5FC ring forms a dihedral angle of 19.97 (11)° with the ring of the picrate (PA - ) anion. In the crystal, the 5FC + cation inter-acts with the PA - anion through three-centre N-H⋯O hydrogen bonds, forming two conjoined rings having R 2 1 (6) and R 1 2 (6) motifs, and is extended by N-H⋯O hydrogen bonds and C-H⋯O inter-actions into a two-dimensional sheet structure lying parallel to (001). Also present in the crystal structure are weak C-F⋯π inter-actions.

  13. Aqua-(3-fluoro-benzoato-κO)(3-fluoro-benzoato-κO,O')(1,10-phenanthroline-κN,N')cobalt(II).

    PubMed

    Wang, Xiao-Hui; Sun, Li-Mei

    2012-01-01

    In the title compound, [Co(C(7)H(4)FO(2))(2)(C(12)H(8)N(2))(H(2)O)], the Co(II) ion is coordinated by two O atoms from one 3-fluoro-benzoate (fb) ligand and one O atom from another fb ligand, two N atoms from the 1,10-phenanthroline ligand and a water mol-ecule in a distorted octa-hedral geometry. An intra-molecular O-H⋯O hydrogen bond occurs. Inter-molecular O-H⋯O hydrogen bonds link pairs of mol-ecules into centrosymmetric dimers. Weak inter-molecular C-H⋯O and C-H⋯F hydrogen bonds and π-π inter-actions between the aromatic rings [shortest centroid-centroid distance = 3.4962 (2) Å] further stabilize the crystal packing.

  14. Molecular dynamics simulation, ab initio calculation, and size-selected anion photoelectron spectroscopy study of initial hydration processes of calcium chloride.

    PubMed

    He, Zhili; Feng, Gang; Yang, Bin; Yang, Lijiang; Liu, Cheng-Wen; Xu, Hong-Guang; Xu, Xi-Ling; Zheng, Wei-Jun; Gao, Yi Qin

    2018-06-14

    To understand the initial hydration processes of CaCl 2 , we performed molecular simulations employing the force field based on the theory of electronic continuum correction with rescaling. Integrated tempering sampling molecular dynamics were combined with ab initio calculations to overcome the sampling challenge in cluster structure search and refinement. The calculated vertical detachment energies of CaCl 2 (H 2 O) n - (n = 0-8) were compared with the values obtained from photoelectron spectra, and consistency was found between the experiment and computation. Separation of the Cl-Ca ion pair is investigated in CaCl 2 (H 2 O) n - anions, where the first Ca-Cl ionic bond required 4 water molecules, and both Ca-Cl bonds are broken when the number of water molecules is larger than 7. For neutral CaCl 2 (H 2 O) n clusters, breaking of the first Ca-Cl bond starts at n = 5, and 8 water molecules are not enough to separate the two ion pairs. Comparing with the observations on magnesium chloride, it shows that separating one ion pair in CaCl 2 (H 2 O) n requires fewer water molecules than those for MgCl 2 (H 2 O) n . Coincidentally, the solubility of calcium chloride is higher than that of magnesium chloride in bulk solutions.

  15. Molecular dynamics simulation, ab initio calculation, and size-selected anion photoelectron spectroscopy study of initial hydration processes of calcium chloride

    NASA Astrophysics Data System (ADS)

    He, Zhili; Feng, Gang; Yang, Bin; Yang, Lijiang; Liu, Cheng-Wen; Xu, Hong-Guang; Xu, Xi-Ling; Zheng, Wei-Jun; Gao, Yi Qin

    2018-06-01

    To understand the initial hydration processes of CaCl2, we performed molecular simulations employing the force field based on the theory of electronic continuum correction with rescaling. Integrated tempering sampling molecular dynamics were combined with ab initio calculations to overcome the sampling challenge in cluster structure search and refinement. The calculated vertical detachment energies of CaCl2(H2O)n- (n = 0-8) were compared with the values obtained from photoelectron spectra, and consistency was found between the experiment and computation. Separation of the Cl—Ca ion pair is investigated in CaCl2(H2O)n- anions, where the first Ca—Cl ionic bond required 4 water molecules, and both Ca—Cl bonds are broken when the number of water molecules is larger than 7. For neutral CaCl2(H2O)n clusters, breaking of the first Ca—Cl bond starts at n = 5, and 8 water molecules are not enough to separate the two ion pairs. Comparing with the observations on magnesium chloride, it shows that separating one ion pair in CaCl2(H2O)n requires fewer water molecules than those for MgCl2(H2O)n. Coincidentally, the solubility of calcium chloride is higher than that of magnesium chloride in bulk solutions.

  16. Nanoscopic length scale dependence of hydrogen bonded molecular associates’ dynamics in methanol

    PubMed Central

    Bertrand, C. E.; Self, J. L.; Copley, J. R. D.; Faraone, A.

    2017-01-01

    In a recent paper [C. E. Bertrand et al., J. Chem. Phys. 145, 014502 (2016)], we have shown that the collective dynamics of methanol shows a fast relaxation process related to the standard density-fluctuation heat mode and a slow non-Fickian mode originating from the hydrogen bonded molecular associates. Here we report on the length scale dependence of this slow relaxation process. Using quasielastic neutron scattering and molecular dynamics simulations, we show that the dynamics of the slow process is affected by the structuring of the associates, which is accessible through polarized neutron diffraction experiments. Using a series of partially deuterated samples, the dynamics of the associates is investigated and is found to have a similar time scale to the lifetime of hydrogen bonding in the system. Both the structural relaxation and the dynamics of the associates are thermally activated by the breaking of hydrogen bonding. PMID:28527447

  17. 13C and 19F solid-state NMR and X-ray crystallographic study of halogen-bonded frameworks featuring nitrogen-containing heterocycles.

    PubMed

    Szell, Patrick M J; Gabriel, Shaina A; Gill, Russell D D; Wan, Shirley Y H; Gabidullin, Bulat; Bryce, David L

    2017-03-01

    Halogen bonding is a noncovalent interaction between the electrophilic region of a halogen (σ-hole) and an electron donor. We report a crystallographic and structural analysis of halogen-bonded compounds by applying a combined X-ray diffraction (XRD) and solid-state nuclear magnetic resonance (SSNMR) approach. Single-crystal XRD was first used to characterize the halogen-bonded cocrystals formed between two fluorinated halogen-bond donors (1,4-diiodotetrafluorobenzene and 1,3,5-trifluoro-2,4,6-triiodobenzene) and several nitrogen-containing heterocycles (acridine, 1,10-phenanthroline, 2,3,5,6-tetramethylpyrazine, and hexamethylenetetramine). New structures are reported for the following three cocrystals, all in the P2 1 /c space group: acridine-1,3,5-trifluoro-2,4,6-triiodobenzene (1/1), C 6 F 3 I 3 ·C 13 H 9 N, 1,10-phenanthroline-1,3,5-trifluoro-2,4,6-triiodobenzene (1/1), C 6 F 3 I 3 ·C 12 H 8 N 2 , and 2,3,5,6-tetramethylpyrazine-1,3,5-trifluoro-2,4,6-triiodobenzene (1/1), C 6 F 3 I 3 ·C 8 H 12 N 2 . 13 C and 19 F solid-state magic-angle spinning (MAS) NMR is shown to be a convenient method to characterize the structural features of the halogen-bond donor and acceptor, with chemical shifts attributable to cocrystal formation observed in the spectra of both nuclides. Cross polarization (CP) from 19 F to 13 C results in improved spectral sensitivity in characterizing the perfluorinated halogen-bond donor when compared to conventional 1 H CP. Gauge-including projector-augmented wave density functional theory (GIPAW DFT) calculations of magnetic shielding constants, along with optimization of the XRD structures, provide a final set of structures in best agreement with the experimental 13 C and 19 F chemical shifts. Data for carbons bonded to iodine remain outliers due to well-known relativistic effects.

  18. An XPS study on the chemical bond structure at the interface between SiO{sub x}N{sub y} and N doped polyethylene terephthalate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding Wanyu; Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024; Li Li

    2013-03-14

    The super-thin silicon oxynitride (SiO{sub x}N{sub y}) films were deposited onto the N doped polyethylene terephthalate (PET) surface. Varying the N doping parameters, the different chemical bond structures were obtained at the interface between the SiO{sub x}N{sub y} film and the PET surface. X-ray photoelectron spectra results showed that at the initial stage of SiO{sub x}N{sub y} film growth, the C=N bonds could be broken and C-N-Si crosslink bonds could be formed at the interface of SiO{sub x}N{sub y}/PET, which C=N bonds could be formed onto the PET surface during the N doping process. At these positions, the SiO{sub x}N{submore » y} film could be crosslinked well onto the PET surface. Meanwhile, the doped N could crosslink the [SiO{sub 4}] and [SiN{sub 4}] tetrahedrons, which could easily form the dense layer structure at the initial stage of SiO{sub x}N{sub y} film growth, instead of the ring and/or chain structures of [SiO{sub 4}] tetrahedrons crosslinked by O. Finally, from the point of applying SiO{sub x}N{sub y}/PET complex as the substrate, the present work reveals a simple way to crosslink them, as well as the crosslink model and physicochemical mechanism happened at the interface of complex.« less

  19. An X-ray crystallographic and density functional theory study of (3Z)-4-(5-ethylsulfonyl-2-hydroxyanilino)pent-3-en-2-one and (3Z)-4-(5-tert-butyl-2-hydroxyanilino)pent-3-en-2-one.

    PubMed

    Akerman, Kate J; Munro, Orde Q

    2013-03-01

    The Schiff base enaminones (3Z)-4-(5-ethylsulfonyl-2-hydroxyanilino)pent-3-en-2-one, C13H17NO4S, (I), and (3Z)-4-(5-tert-butyl-2-hydroxyanilino)pent-3-en-2-one, C15H21NO2, (II), were studied by X-ray crystallography and density functional theory (DFT). Although the keto tautomer of these compounds is dominant, the O=C-C=C-N bond lengths are consistent with some electron delocalization and partial enol character. Both (I) and (II) are nonplanar, with the amino-phenol group canted relative to the rest of the molecule; the twist about the N(enamine)-C(aryl) bond leads to dihedral angles of 40.5 (2) and -116.7 (1)° for (I) and (II), respectively. Compound (I) has a bifurcated intramolecular hydrogen bond between the N-H group and the flanking carbonyl and hydroxy O atoms, as well as an intermolecular hydrogen bond, leading to an infinite one-dimensional hydrogen-bonded chain. Compound (II) has one intramolecular hydrogen bond and one intermolecular C=O...H-O hydrogen bond, and consequently also forms a one-dimensional hydrogen-bonded chain. The DFT-calculated structures [in vacuo, B3LYP/6-311G(d,p) level] for the keto tautomers compare favourably with the X-ray crystal structures of (I) and (II), confirming the dominance of the keto tautomer. The simulations indicate that the keto tautomers are 20.55 and 18.86 kJ mol(-1) lower in energy than the enol tautomers for (I) and (II), respectively.

  20. Mechanical measurement of hydrogen bonded host-guest systems under non-equilibrium, near-physiological conditions.

    PubMed

    Naranjo, Teresa; Cerrón, Fernando; Nieto-Ortega, Belén; Latorre, Alfonso; Somoza, Álvaro; Ibarra, Borja; Pérez, Emilio M

    2017-09-01

    Decades after the birth of supramolecular chemistry, there are many techniques to measure noncovalent interactions, such as hydrogen bonding, under equilibrium conditions. As ensembles of molecules rapidly lose coherence, we cannot extrapolate bulk data to single-molecule events under non-equilibrium conditions, more relevant to the dynamics of biological systems. We present a new method that exploits the high force resolution of optical tweezers to measure at the single molecule level the mechanical strength of a hydrogen bonded host-guest pair out of equilibrium and under near-physiological conditions. We utilize a DNA reporter to unambiguously isolate single binding events. The Hamilton receptor-cyanuric acid host-guest system is used as a test bed. The force required to dissociate the host-guest system is ∼17 pN and increases with the pulling rate as expected for a system under non-equilibrium conditions. Blocking one of the hydrogen bonding sites results in a significant decrease of the force-to-break by 1-2 pN, pointing out the ability of the method to resolve subtle changes in the mechanical strength of the binding due to the individual H-bonding components. We believe the method will prove to be a versatile tool to address important questions in supramolecular chemistry.

  1. Computational Study of Pincer Iridium Catalytic Systems: C-H, N-H, and C-C Bond Activation and C-C Coupling Reactions

    NASA Astrophysics Data System (ADS)

    Zhou, Tian

    Computational chemistry has achieved vast progress in the last decades in the field, which was considered to be only experimental before. DFT (density functional theory) calculations have been proven to be able to be applied to large systems, while maintaining high accuracy. One of the most important achievements of DFT calculations is in exploring the mechanism of bond activation reactions catalyzed by organometallic complexes. In this dissertation, we discuss DFT studies of several catalytic systems explored in the lab of Professor Alan S. Goldman. Headlines in the work are: (1) (R4PCP)Ir alkane dehydrogenation catalysts are highly selective and different from ( R4POCOP)Ir catalysts, predicting different rate-/selectivity-determining steps; (2) The study of the mechanism for double C-H addition/cyclometalation of phenanthrene or biphenyl by (tBu4PCP)Ir(I) and ( iPr4PCP)Ir illustrates that neutral Ir(III) C-H addition products can undergo a very facile second C-H addition, particularly in the case of sterically less-crowded Ir(I) complexes; (3) (iPr4PCP)Ir pure solid phase catalyst is highly effective in producing high yields of alpha-olefin products, since the activation enthalpy for dehydrogenation is higher than that for isomerization via an allyl pathway; higher temperatures favor the dehydrogenation/isomerization ratio; (4) (PCP)Ir(H)2(N2H4) complex follows a hydrogen transfer mechanism to undergo both dehydrogenation to form N 2 and H2, as well as hydrogen transfer followed by N-N bond cleavage to form NH3, N2, and H2; (5) The key for the catalytic effect of solvent molecule in CO insertion reaction for RMn(CO)5 is hydrogen bond assisted interaction. The basicity of the solvent determines the strength of the hydrogen bond interaction during the catalytic path and determines the catalytic power of the solvent; and (6) Dehydrogenative coupling of unactivated C-H bonds (intermolecular vinyl-vinyl, intramolecular vinyl-benzyl) is catalyzed by precursors of the (iPr4 PCP)Ir fragment. The key step for this mechanism is a Ir(III) vinyl hydride complex undergoing addition of a styrenyl ortho C-H bond to give an Ir(III) metalloindene plus H2.

  2. Cells having cathodes containing polycarbon disulfide materials

    DOEpatents

    Okamoto, Yoshi; Skotheim, Terje A.; Lee, Hung S.

    1995-08-15

    The present invention relates to an electric current producing cell which contains an anode, a cathode having as a cathode-active material one or more carbon-sulfur compounds of the formula (CS.sub.x).sub.n, in which x takes values from 1.2 to 2.3 and n is greater or equal to 2, and where the redox process does not involve polymerization and de-polymerization by forming and breaking S--S bonds in the polymer backbone. The cell also contains an electrolyte which is chemically inert with respect to the anode and the cathode.

  3. Organic Compounds Produced by Photolysis of Realistic Interstellar and Cometary Ice Analogs Containing Methanol

    NASA Technical Reports Server (NTRS)

    Bernstein, Max P.; Sandford, Scott A.; Allamandola, Louis J.; Chang, Sherwood; Scharberg, Maureen A.

    1995-01-01

    The InfraRed (IR) spectra of UltraViolet (UV) and thermally processed, methanol-containing interstellar / cometary ice analogs at temperatures from 12 to 300 K are presented. Infrared spectroscopy, H-1 and C-13 Nuclear Magnetic Resonance (NMR) spectroscopy, and gas chromatography-mass spectrometry indicate that CO (carbon monoxide), CO2 (carbon dioxide), CH4 (methane), HCO (the formyl radical), H2CO (formaldehyde), CH3CH2OH (ethanol), HC([double bond]O)NH2 (formamide), CH3C([double bond]O)NH2 (acetamide), and R[single bond]C[triple bond]N (nitriles) are formed. In addition, the organic materials remaining after photolyzed ice analogs have been warmed to room temperature contain (in rough order of decreasing abundance), (1) hexamethylenetetramine (HMT, C6H12N4), (2) ethers, alcohols, and compounds related to PolyOxyMethylene (POM, ([single bond]CH2O[single bond](sub n)), and (3) ketones (R[single bond]C([double bond]O)[single bond]R') and amides (H2NC([double bond]O)[single bond]R). Most of the carbon in these residues is thought to come from the methanol in the original ice. Deuterium and C-13 isotopic labeling demonstrates that methanol is definitely the source of carbon in HMT. High concentrations of HMT in interstellar and cometary ices could have important astrophysical consequences. The ultraviolet photolysis of HMT frozen in H2O ice readily produces the 'XCN' band observed in the spectra of protostellar objects and laboratory ices, as well as other nitriles. Thus, HMT may be a precursor of XCN and a source of CN in comets and the interstellar medium. Also, HMT is known to hydrolyze under acidic conditions to yield ammonia, formaldehyde, and amino acids. Thus, HMT may be a significant source of prebiogenic compounds on asteroidal parent bodies. A potential mechanism for the radiative formation of HMT in cosmic ices is outlined.

  4. Theoretical study of structure, bonding, and electronic behavior of novel sandwich complexes Os3(C6H6) n ( n = 1, 2)

    NASA Astrophysics Data System (ADS)

    Zhou, K.; Zhao, C. B.; Huang, W. D.

    2017-11-01

    The correlations between structural and electronic properties of the monolayer cluster Os3 and sandwich complexes of Os3(C6H6) n ( n = 1, 2) were studied with density functional theory. Every Os adopts η2 fashion to coordinate with C6H6 in Os3(C6H6), while every Os adopts η2 and η1 fashion to coordinate with below and above C6H6 rings in Os3(C6H6)2. η2 fashion is σ donation and π back bond, and η1 fashion belong to σ bond. The first binding energy between Os3 and below C6H6 ring is-114.23 kJ/mol, which is weaker than the second binding energy with-174.16 kJ/mol between Os3(C6H6) and above C6H6 ring. The reason is that the change of spin multiplicity is different, which leads the symmetry of Os3(C6H6)2 to be broken.

  5. Palladium complexes of a phosphorus ylide with two stabilizing groups: synthesis, structure, and DFT study of the bonding modes.

    PubMed

    Falvello, Larry R; Ginés, Juan Carlos; Carbó, Jorge J; Lledós, Agustí; Navarro, Rafael; Soler, Tatiana; Urriolabeitia, Esteban P

    2006-08-21

    The phosphorus ylide ligand [Ph3P=C(CO2Me)C(=NPh)CO2Me] (L1) has been prepared and fully characterized by spectroscopic, crystallographic, and density functional theory (DFT) methods (B3LYP level). The reactivity of L1 toward several cationic Pd(II) and Pt(II) precursors, with two vacant coordination sites, has been studied. The reaction of [M(C/\\X)(THF)2]ClO4 with L1 (1:1 molar ratio) gives [M(C/\\X)(L1)]ClO4 [M = Pd, C/\\X = C6H4CH2NMe2 (1), S-C6H4C(H)MeNMe2 (2), CH2-8-C9H6N (3), C6H4-2-NC5H4 (4), o-CH2C6H4P(o-tol)2 (6), eta3-C3H5 (7); M = Pt, C/\\X = o-CH2C6H4P(o-tol)2 (5); M(C/\\X) = Pd(C6F5)(SC4H8) (8), PdCl2 (9)]. In complexes 1-9, the ligand L1 bonds systematically to the metal center through the iminic N and the carbonyl O of the stabilizing CO2Me group, as is evident from the NMR data and from the X-ray structure of 3. Ligand L1 can also be orthopalladated by reaction with Pd(OAc)2 and LiCl, giving the dinuclear derivative [Pd(mu-Cl)(C6H4-2-PPh2=C(CO2Me)C(CO2Me)=NPh)]2 (10). The X-ray crystal structure of 10 is also reported. In none of the prepared complexes 1-10 was the C(alpha) atom found to be bonded to the metal center. DFT calculations and Bader analysis were performed on ylide L1 and complex 9 and its congeners in order to assess the preference of the six-membered N,O metallacycle over the four-membered C,N and five-membered C,O rings. The presence of two stabilizing groups at the ylidic C causes a reduction of its bonding capabilities. The increasing strength of the Pd-C, Pd-O, and Pd-N bonds along with other subtle effects are responsible for the relative stabilities of the different bonding modes.

  6. Syntheses, structures and redox properties of some complexes containing the Os(dppe)Cp* fragment, including [{Os(dppe)Cp*}2(mu-C triple bondCC triple bond C)].

    PubMed

    Bruce, Michael I; Costuas, Karine; Davin, Thomas; Halet, Jean-François; Kramarczuk, Kathy A; Low, Paul J; Nicholson, Brian K; Perkins, Gary J; Roberts, Rachel L; Skelton, Brian W; Smith, Mark E; White, Allan H

    2007-12-14

    The sequential conversion of [OsBr(cod)Cp*] (9) to [OsBr(dppe)Cp*] (10), [Os([=C=CH2)(dppe)Cp*]PF6 ([11]PF6), [Os(C triple bond CH)(dppe)Cp*] (12), [{Os(dppe)Cp*}2{mu-(=C=CH-CH=C=)}][PF6]2 ([13](PF6)2) and finally [{Os(dppe)Cp*}(2)(mu-C triple bond CC triple bond C)] (14) has been used to make the third member of the triad [{M(dppe)Cp*}2(mu-C triple bond CC triple bond C)] (M = Fe, Ru, Os). The molecular structures of []PF6, 12 and 14, together with those of the related osmium complexes [Os(NCMe)(dppe)Cp*]PF6 ([15]PF6) and [Os(C triple bond CPh)(dppe)Cp*] (16), have been determined by single-crystal X-ray diffraction studies. Comparison of the redox properties of 14 with those of its iron and ruthenium congeners shows that the first oxidation potential E1 varies as: Fe approximately Os < Ru. Whereas the Fe complex has been shown to undergo three sequential 1-electron oxidation processes within conventional electrochemical solvent windows, the Ru and Os compounds undergo no fewer than four sequential oxidation events giving rise to a five-membered series of redox related complexes [{M(dppe)Cp*}2(mu-C4)]n+ (n = 0, 1, 2, 3 and 4), the osmium derivatives being obtained at considerably lower potentials than the ruthenium analogues. These results are complimented by DFT and DT DFT calculations.

  7. Exploiting the Reactivity of Actinide Fluoride Bonds for the Synthesis of a New Class of Bis(azide) Uranium Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, Karla A.; Lichtscheidl, Alejandro G.; Monreal, Marisa Jennifer

    The terminal actinide fluoride bonds in (C 5Me 5) 2ThF 2(py) (py = pyridine) and (C 5Me 5) 2UF 2(O=PR 3) (R = Me, Ph) react with two equivalents of Me 3SiN 3 in toluene to form the polymeric thorium bis(azide), [(C 5Me 5) 2Th(N 3)2] ∞, and a new class of monometallic uranium bis(azide) complexes, (C 5Me 5) 2U(N 3)2(O=PR 3), respectively. Full characterization of the novel complexes (C 5Me 5) 2ThF 2(py) and (C 5Me 5) 2UF 2(O=PR 3) are reported, including the solid-state structures of (C 5Me 5) 2ThF 2(py) and (C 5Me 5) 2U(N 3) 2(O=PPhmore » 3). Lastly, electronic absorption spectral data are also reported for (C 5Me 5) 2AnF 2(py) (An = Th, U) and (C 5Me 5) 2U(N 3) 2(O=PR 3) to confirm metal oxidation state and enable elucidation of the fluoride and azide ligand bonding in these complexes.« less

  8. Exploiting the Reactivity of Actinide Fluoride Bonds for the Synthesis of a New Class of Bis(azide) Uranium Complexes

    DOE PAGES

    Erickson, Karla A.; Lichtscheidl, Alejandro G.; Monreal, Marisa Jennifer; ...

    2017-11-04

    The terminal actinide fluoride bonds in (C 5Me 5) 2ThF 2(py) (py = pyridine) and (C 5Me 5) 2UF 2(O=PR 3) (R = Me, Ph) react with two equivalents of Me 3SiN 3 in toluene to form the polymeric thorium bis(azide), [(C 5Me 5) 2Th(N 3)2] ∞, and a new class of monometallic uranium bis(azide) complexes, (C 5Me 5) 2U(N 3)2(O=PR 3), respectively. Full characterization of the novel complexes (C 5Me 5) 2ThF 2(py) and (C 5Me 5) 2UF 2(O=PR 3) are reported, including the solid-state structures of (C 5Me 5) 2ThF 2(py) and (C 5Me 5) 2U(N 3) 2(O=PPhmore » 3). Lastly, electronic absorption spectral data are also reported for (C 5Me 5) 2AnF 2(py) (An = Th, U) and (C 5Me 5) 2U(N 3) 2(O=PR 3) to confirm metal oxidation state and enable elucidation of the fluoride and azide ligand bonding in these complexes.« less

  9. Piperidine-1-carboximidamide

    PubMed Central

    Tiritiris, Ioannis

    2012-01-01

    In the title compound, C6H13N3, the C=N and C—N bond lengths in the CN3 unit are 1.3090 (17), and 1.3640 (17) (C–NH2) and 1.3773 (16) Å, indicating double- and single-bond character, respectively. The N—C—N angles are 116.82 (12), 119.08 (11) and 124.09 (11)°, showing a deviation of the CN3 plane from an ideal trigonal–planar geometry. The piperidine ring is in a chair conformation. In the crystal, mol­ecules are linked by N—H⋯N hydrogen bonds, forming a two-dimensional network along the ac plane. PMID:23284550

  10. Exceptional sensitivity of metal-aryl bond energies to ortho-fluorine substituents: influence of the metal, the coordination sphere, and the spectator ligands on M-C/H-C bond energy correlations.

    PubMed

    Clot, Eric; Mégret, Claire; Eisenstein, Odile; Perutz, Robin N

    2009-06-10

    DFT calculations are reported of the energetics of C-H oxidative addition of benzene and fluorinated benzenes, Ar(F)H (Ar(F) = C(6)F(n)H(5-n), n = 0-5) at ZrCp(2) (Cp = eta(5)-C(5)H(5)), TaCp(2)H, TaCp(2)Cl, WCp(2), ReCp(CO)(2), ReCp(CO)(PH(3)), ReCp(PH(3))(2), RhCp(PH(3)), RhCp(CO), IrCp(PH(3)), IrCp(CO), Ni(H(2)PCH(2)CH(2)PH(2)), Pt(H(2)PCH(2)CH(2)PH(2)). The change in M-C bond energy of the products fits a linear function of the number of fluorine substituents, with different coefficients corresponding to ortho-, meta-, and para-fluorine. The values of the ortho-coefficient range from 20 to 32 kJ mol(-1), greatly exceeding the values for the meta- and para-coefficients (2.0-4.5 kJ mol(-1)). Similarly, the H-C bond energies of Ar(F)H yield ortho- and para-coefficients of 10.4 and 3.4 kJ mol(-1), respectively, and a negligible meta-coefficient. These results indicate a large increase in the M-C bond energy with ortho-fluorine substitution on the aryl ring. Plots of D(M-C) vs D(H-C) yield slopes R(M-C/H-C) that vary from 1.93 to 3.05 with metal fragment, all in excess of values of 1.1-1.3 reported with other hydrocarbyl groups. Replacement of PH(3) by CO decreases R(M-C/H-C) significantly. For a given ligand set and metals in the same group of the periodic table, the value of R(M-C/H-C) does not increase with the strength of the M-C bond. Calculations of the charge on the aryl ring show that variations in ionicity of the M-C bonds correlate with variations in M-C bond energy. This strengthening of metal-aryl bonds accounts for numerous experimental results that indicate a preference for ortho-fluorine substituents.

  11. Methanol clusters (CH3OH)n, n = 3-6 in external electric fields: density functional theory approach.

    PubMed

    Rai, Dhurba; Kulkarni, Anant D; Gejji, Shridhar P; Pathak, Rajeev K

    2011-07-14

    Structural evolution of cyclic and branched-cyclic methanol clusters containing three to six molecules, under the influence of externally applied uniform static electric field is studied within the density functional theory. Akin to the situation for water clusters, the electric field is seen to stretch the intermolecular hydrogen bonds, and eventually break the H-bonded network at certain characteristic threshold field values of field strength in the range 0.009-0.016 a.u., yielding linear or branched structures with a lower energy. These structural transitions are characterized by an abrupt increase in the electric dipole moment riding over its otherwise steady nonlinear increase with the applied field. The field tends to rupture the H-bonded structure; consequently, the number of hydrogen bonds decreases with increasing field strength. Vibrational spectra analyzed for fields applied perpendicular to the cyclic ring structures bring out the shifts in the OH ring vibrations (blueshift) and the CO stretch vibrations (redshift). For a given field strength, the blueshifts increase with the number of molecules in the ring and are found to be generally larger than those in the corresponding water cluster counterparts.

  12. (Meth­oxy­methyl­idene)di­methyl­aza­nium tetra­phenyl­borate aceto­nitrile monosolvate

    PubMed Central

    Tiritiris, Ioannis; Saur, Stefan; Kantlehner, Willi

    2014-01-01

    In the cation of the title salt, C4H10NO+·C24H20B−·C2H3N, the C—N bond lengths are 1.2864 (16), 1.4651 (17) and 1.4686 (16) Å, indicating double- and single-bond character, respectively. The C—O bond length of 1.2978 (15) Å shows double-bond character, pointing towards charge delocalization within the NCO plane of the iminium ion. C—H⋯π inter­actions are present between the methine H atom and two of the phenyl rings of the tetra­phenyl­borate ion. The latter forms an aromatic pocket in which the cation is embedded. The iminium ion is further connected through a C—H⋯N hydrogen bond to the aceto­nitrile mol­ecule. This leads to the formation of a two-dimensional supramolecular pattern along the bc plane. PMID:24765028

  13. Low energy electron induced cytosine base release in 2′-deoxycytidine-3′-monophosphate via glycosidic bond cleavage: A time-dependent wavepacket study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhaskaran, Renjith; Sarma, Manabendra, E-mail: msarma@iitg.ernet.in

    2014-09-14

    Low energy electron (LEE) induced cytosine base release in a selected pyrimidine nucleotide, viz., 2′-deoxycytidine-3′-monophosphate is investigated using ab initio electronic structure methods and time dependent quantum mechanical calculations. It has been noted that the cytosine base scission is comparatively difficult process than the 3′ C–O bond cleavage from the lowest π{sup *} shape resonance in energy region <1 eV. This is mainly due to the high activation energy barrier associated with the electron transfer from the π{sup *} orbital of the base to the σ{sup *} orbital of the glycosidic N–C bond. In addition, the metastable state formed aftermore » impinging LEE (0–1 eV) has very short lifetime (10 fs) which may decay in either of the two competing auto-detachment or dissociation process simultaneously. On the other hand, the selected N–C mode may cleave to form the cytosine base anion at higher energy regions (>2 eV) via tunneling of the glycosidic bond. Resonance states generated within this energy regime will exist for a duration of ∼35–55 fs. Comparison of salient features of the two dissociation events, i.e., 3′ C–O single strand break and glycosidic N–C bond cleavage in 3′-dCMPH molecule are also provided.« less

  14. Ultrafast forward and backward electron transfer dynamics of coumarin 337 in hydrogen-bonded anilines as studied with femtosecond UV-pump/IR-probe spectroscopy.

    PubMed

    Ghosh, Hirendra N; Verma, Sandeep; Nibbering, Erik T J

    2011-02-10

    Femtosecond infrared spectroscopy is used to study both forward and backward electron transfer (ET) dynamics between coumarin 337 (C337) and the aromatic amine solvents aniline (AN), N-methylaniline (MAN), and N,N-dimethylaniline (DMAN), where all the aniline solvents can donate an electron but only AN and MAN can form hydrogen bonds with C337. The formation of a hydrogen bond with AN and MAN is confirmed with steady state FT-IR spectroscopy, where the C═O stretching vibration is a direct marker mode for hydrogen bond formation. Transient IR absorption measurements in all solvents show an absorption band at 2166 cm(-1), which has been attributed to the C≡N stretching vibration of the C337 radical anion formed after ET. Forward electron transfer dynamics is found to be biexponential with time constants τ(ET)(1) = 500 fs, τ(ET)(2) = 7 ps in all solvents. Despite the presence of hydrogen bonds of C337 with the solvents AN and MAN, no effect has been found on the forward electron transfer step. Because of the absence of an H/D isotope effect on the forward electron transfer reaction of C337 in AN, hydrogen bonds are understood to play a minor role in mediating electron transfer. In contrast, direct π-orbital overlap between C337 and the aromatic amine solvents causes ultrafast forward electron transfer dynamics. Backward electron transfer dynamics, in contrast, is dependent on the solvent used. Standard Marcus theory explains the observed backward electron transfer rates.

  15. Connecting defects and amorphization in UiO-66 and MIL-140 metal–organic frameworks: a combined experimental and computational study.

    PubMed

    Bennett, Thomas D; Todorova, Tanya K; Baxter, Emma F; Reid, David G; Gervais, Christel; Bueken, Bart; Van de Voorde, B; De Vos, Dirk; Keen, David A; Mellot-Draznieks, Caroline

    2016-01-21

    The mechanism and products of the structural collapse of the metal–organic frameworks (MOFs) UiO-66, MIL-140B and MIL-140C upon ball-milling are investigated through solid state 13C NMR and pair distribution function (PDF) studies, finding amorphization to proceed by the breaking of a fraction of metal–ligand bonding in each case. The amorphous products contain inorganic–organic bonding motifs reminiscent of the crystalline phases. Whilst the inorganic Zr6O4(OH)4 clusters of UiO-66 remain intact upon structural collapse, the ZrO backbone of the MIL-140 frameworks undergoes substantial distortion. Density functional theory calculations have been performed to investigate defective models of MIL-140B and show, through comparison of calculated and experimental 13C NMR spectra, that amorphization and defects in the materials are linked.

  16. Counteranion Driven Homochiral Assembly of a Cationic C3-Symmetric Gelator through Ion-Pair Assisted Hydrogen Bond.

    PubMed

    Maity, Arunava; Gangopadhyay, Monalisa; Basu, Arghya; Aute, Sunil; Babu, Sukumaran Santhosh; Das, Amitava

    2016-09-07

    The helical handedness in achiral self-assemblies is mostly complex due to spontaneous symmetry breaking or kinetically controlled random assembly formation. Here an attempt has been made to address this issue through chiral anion exchange. A new class of cationic achiral C3-symmetric gelator devoid of any conventional gelation assisting functional units is found to form both right- and left-handed helical structures. A chiral counteranion exchange-assisted approach is successfully introduced to control the chirality sign and thereby to obtain preferred homochiral assemblies. Formation of anion-assisted chiral assembly was confirmed by circular dichroism (CD) spectroscopy, microscopic images, and crystal structure. The X-ray crystal structure reveals the construction of helical assemblies with opposite handedness for (+)- and (-)-chiral anion reformed gelators. The appropriate counteranion driven ion-pair-assisted hydrogen-bonding interactions are found responsible for the helical bias control in this C3-symmetric gelator.

  17. Crystal structures of two mixed-valence copper cyanide complexes with N-methyl­ethylenedi­amine

    PubMed Central

    Sabatino, Alexander

    2017-01-01

    The crystal structures of two mixed-valence copper cyanide compounds involving N-methyl­ethylenedi­amine (meen), are described. In compound (I), poly[bis(μ3-cyanido-κ3 C:C:N)tris(μ2-cyanido-κ2 C:N)bis(N-methylethane-1,2-di­amine-κ2 N,N′)tricopper(I)copper(II)], [Cu4(CN)5(C3H10N2)2] or Cu4(CN)5meen2, cyanide groups link CuI atoms into a three-dimensional network containing open channels parallel to the b axis. In the network, two tetra­hedrally bound CuI atoms are bonded by the C atoms of two end-on bridging CN groups to form Cu2(CN)6 moieties with the Cu atoms in close contact at 2.560 (1) Å. Other trigonally bound CuI atoms link these units together to form the network. The CuII atoms, coordinated by two meen units, are covalently linked to the network via a cyanide bridge, and project into the open network channels. In the mol­ecular compound (II), [(N-methylethylenediamine-κ2 N,N′)copper(II)]-μ2-cyanido-κ2 C:N-[bis(cyanido-κC)copper(I)] monohydrate, [Cu2(CN)3(C3H10N2)2]·H2O or Cu2(CN)3meen2·H2O, a CN group connects a CuII atom coordinated by two meen groups with a trigonal–planar CuI atom coordinated by CN groups. The mol­ecules are linked into centrosymmetric dimers via hydrogen bonds to two water mol­ecules. In both compounds, the bridging cyanide between the CuII and CuI atoms has the N atom bonded to CuII and the C atom bonded to CuI, and the CuII atoms are in a square-pyramidal coordination. PMID:28217329

  18. Crystal structure of bis-(3-bromo-pyridine-κN)bis-(O-ethyl di-thio-carbonato-κ(2) S,S')nickel(II).

    PubMed

    Kant, Rajni; Kour, Gurvinder; Anthal, Sumati; Neerupama; Sachar, Renu

    2015-01-01

    In the title mol-ecular complex, [Ni(C3H5OS2)2(C5H4BrN)2], the Ni(2+) cation is located on a centre of inversion and has a distorted octa-hedral N2S4 environment defined by two chelating xanthate ligands and two monodentate pyridine ligands. The C-S bond lengths of the thio-carboxyl-ate group are indicative of a delocalized bond and the O-Csp (2) bond is considerably shorter than the O-Csp (3) bond, consistent with a significant contribution of one resonance form of the xanthate anion that features a formal C=O+ unit and a negative charge on each of the S atoms. The packing of the mol-ecules is stabilized by C-H⋯S and C-H⋯π inter-actions. In addition, π-π inter-actions between the pyridine rings [centroid-to-centroid distance = 3.797 (3) Å] are also present. In the crystal structure, mol-ecules are arranged in rows along [100], forming layers parallel to (010) and (001).

  19. E-H (E = B, Si, C) Bond Activation by Tuning Structural and Electronic Properties of Phosphenium Cations.

    PubMed

    Đorđević, Nemanja; Ganguly, Rakesh; Petković, Milena; Vidović, Dragoslav

    2017-12-04

    In this work, strategic enhancement of electrophilicity of phosphenium cations for the purpose of small-molecule activation was described. Our synthetic methodology for generation of novel two-coordinate phosphorus(III)-based compounds [{C 6 H 4 (MeN) 2 C} 2 C·PR] 2+ ([2a] 2+ , R = N i Pr 2 ; [2b] 2+ , R = Ph) was based on the exceptional electron-donating properties of the carbodicarbene ligand (CDC). The effects of P-centered substituent exchange and increase in the overall positive charge on small substrate activation were comparatively determined by incorporating the bis(amino)phosphenium ion [( i Pr 2 N) 2 P] + ([1] + ) in this study. Implemented structural and electronic modifications of phosphenium salts were computationally verified and subsequently confirmed by isolation and characterization of the corresponding E-H (E = B, Si, C) bond activation products. While both phosphenium mono- and dications oxidatively inserted/cleaved the B-H bond of Lewis base stabilized boranes, the increased electrophilicity of doubly charged species also afforded the activation of significantly less hydridic Si-H and C-H bonds. The preference of [2a] 2+ and [2b] 2+ to abstract the hydride rather than to insert into the corresponding bond of silanes, as well as the formation of the carbodicarbene-stabilized parent phosphenium ion [{C 6 H 4 (MeN) 2 C} 2 C·PH 2 ] + ([2·PH 2 ] + ) were experimentally validated.

  20. C-I···π Halogen Bonding Driven Supramolecular Helix of Bilateral N-Amidothioureas Bearing β-Turns.

    PubMed

    Cao, Jinlian; Yan, Xiaosheng; He, Wenbin; Li, Xiaorui; Li, Zhao; Mo, Yirong; Liu, Maili; Jiang, Yun-Bao

    2017-05-17

    We report the first example of C-I···π halogen bonding driven supramolecular helix in highly dilute solution of micromolar concentration, using alanine based bilateral I-substituted N-amidothioureas that contain helical fragments, the β-turn structures. The halogen bonding interactions afford head-to-tail linkages that help to propagate the helicity of the helical fragments. In support of this action of the halogen bonding, chiral amplification was observed in the supramolecular helix formed in acetonitrile solution. The present finding provides alternative tools in the design of self-assembling macromolecules.

  1. Changes in Soil Organic Carbon and Nitrogen as a Result of Cultivation

    DOE Data Explorer

    Post, Wilfred M [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mann, L. K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2005-01-01

    We assembed and analyzed a data base of soil organic carbon and nitrogen information from over 1100 profiles in order to explore factors related to the changes in storage of soil organic matter resulting from land conversion. The relationship between cultivated and uncultivated organic carbon and nitrogen storage in soils can be described by regression lines with uncultivated storage on the abscissa, and cultivated storage on the ordinate. The slope of the regression lines is less than 1 indicating that the amount of carbon or nitrogen lost is an increasing fraction of the intial amount stored in the soil. Average carbon loss for soils with high initial carbon is 23% for 1-meter depth. Average nitrogen loss for the same depth is 6%. In addition, for soils with very low uncultivated carbon or nitrogen storage, cultivation results in increases in storage. In soils with the same uncultivated carbon contents, profiles with higher C:N ratios lost more carbon than those with low C:N ratios, suggesting that decomposition of organic matter may, in general, be more limited by microbial ability to break carbon bonds than by nitrogen deficiency.

  2. 1,5-Bis[1-(2,4-dihy­droxy­phen­yl)ethyl­idene]carbonohydrazide dimethyl­formamide disolvate

    PubMed Central

    He, Qing-Peng; Tan, Bo; Lu, Ze-Hua

    2010-01-01

    In the title compound, C17H18N4O5·2C3H7NO, two solvent mol­ecules are linked to the main mol­ecule via N—H⋯O and O—H⋯O hydrogen bonds, forming a hydrogen-bonded trimer. Intra­molecular O—H⋯N hydrogen bonds influence the mol­ecular conformation of the main mol­ecule, and the two benzene rings form a dihedral angle of 10.55 (18)°. In the crystal, inter­molecular O—H⋯O hydrogen bonds link hydrogen-bonded trimers into ribbons extending along the b axis. PMID:21589135

  3. Chemical Modification of Graphene Oxide by Nitrogenation: An X-ray Absorption and Emission Spectroscopy Study

    DOE PAGES

    Chuang, Cheng-Hao; Ray, Sekhar C.; Mazumder, Debarati; ...

    2017-02-10

    Nitrogen-doped graphene oxides (GO:N x) were synthesized by a partial reduction of graphene oxide (GO) using urea [CO(NH 2) 2 ]. Their electronic/bonding structures were investigated using X-ray absorption near-edge structure (XANES), valence-band photoemission spectroscopy (VB-PES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). During GO:N x synthesis, different nitrogen-bonding species, such as pyrrolic/graphitic-nitrogen, were formed by replacing of oxygen-containing functional groups. At lower N-content (2.7 at%), pyrrolic-N, owing to surface and subsurface diffusion of C, N and NH is deduced from various X-ray spectroscopies. In contrast, at higher N-content (5.0 at%) graphitic nitrogen was formed in whichmore » each N-atom trigonally bonds to three distinct sp 2 -hybridized carbons with substitution of the N-atoms for C atoms in the graphite layer. Upon nitrogen substitution, the total density of state close to Fermi level is increased to raise the valence-band maximum, as revealed by VB-PES spectra, indicating an electron donation from nitrogen, molecular bonding C/N/O coordination or/and lattice structure reorganization in GO:N x . The well-ordered chemical environments induced by nitrogen dopant are revealed by XANES and RIXS measurements.« less

  4. Mechanistic Insights on C-O and C-C Bond Activation and Hydrogen Insertion during Acetic Acid Hydrogenation Catalyzed by Ruthenium Clusters in Aqueous Medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shangguan, Junnan; Olarte, Mariefel V.; Chin, Ya-Huei

    Catalytic pathways for acetic acid (CH3COOH) and hydrogen (H2) reactions on dispersed Ru clusters in the aqueous medium and the associated kinetic requirements for C-O and C-C bond cleavages and hydrogen insertion are established from rate and isotopic assessments. CH3COOH reacts with H2 in steps that either retain its carbon backbone and lead to ethanol, ethyl acetate, and ethane (47-95 %, 1-23 %, and 2-17 % carbon selectivities, respectively) or break its C-C bond and form methane (1-43 % carbon selectivities) at moderate temperatures (413-523 K) and H2 pressures (10-60 bar, 298 K). Initial CH3COOH activation is the kinetically relevantmore » step, during which CH3C(O)-OH bond cleaves on a metal site pair at Ru cluster surfaces nearly saturated with adsorbed hydroxyl (OH*) and acetate (CH3COO*) intermediates, forming an adsorbed acetyl (CH3CO*) and hydroxyl (OH*) species. Acetic acid turnover rates increase proportionally with both H2 (10-60 bar) and CH3COOH concentrations at low CH3COOH concentrations (<0.83 M), but decrease from first to zero order as the CH3COOH concentration and the CH3COO* coverages increase and the vacant Ru sites concomitantly decrease. Beyond the initial CH3C(O)-OH bond activation, sequential H-insertions on the surface acetyl species (CH3CO*) lead to C2 products and their derivative (ethanol, ethane, and ethyl acetate) and the competitive C-C bond cleavage of CH3CO* causes the eventual methane formation. The instantaneous carbon selectivities towards C2 species (ethanol, ethane, and ethyl acetate) increase linearly with the concentration of proton-type Hδ+ (derived from carboxylic acid dissociation) and chemisorbed H*. The selectivities towards C2 products decrease with increasing temperature, because of higher observed barriers for C-C bond cleavage than H-insertion. This study offers an interpretation of mechanism and energetics and provides kinetic evidence of carboxylic acid assisted proton-type hydrogen (Hδ+) shuffling during H-insertion steps in the aqueous phase, unlike those in the vapor phase, during the hydrogenation of acetic acid on Ru clusters.« less

  5. Crystal structures of 5-amino-N-phenyl-3H-1,2,4-di-thia-zol-3-iminium chloride and 5-amino-N-(4-chloro-phen-yl)-3H-1,2,4-di-thia-zol-3-iminium chloride monohydrate.

    PubMed

    Yeo, Chien Ing; Tan, Yee Seng; Tiekink, Edward R T

    2015-10-01

    The crystal and mol-ecular structures of the title salt, C8H8N3S2 (+)·Cl(-), (I), and salt hydrate, C8H7ClN3S2 (+)·Cl(-)·H2O, (II), are described. The heterocyclic ring in (I) is statistically planar and forms a dihedral angle of 9.05 (12)° with the pendant phenyl ring. The comparable angle in (II) is 15.60 (12)°, indicating a greater twist in this cation. An evaluation of the bond lengths in the H2N-C-N-C-N sequence of each cation indicates significant delocalization of π-electron density over these atoms. The common feature of the crystal packing in (I) and (II) is the formation of charge-assisted amino-N-H⋯Cl(-) hydrogen bonds, leading to helical chains in (I) and zigzag chains in (II). In (I), these are linked by chains mediated by charge-assisted iminium-N(+)-H⋯Cl(-) hydrogen bonds into a three-dimensional architecture. In (II), the chains are linked into a layer by charge-assisted water-O-H⋯Cl(-) and water-O-H⋯O(water) hydrogen bonds with charge-assisted iminium-N(+)-H⋯O(water) hydrogen bonds providing the connections between the layers to generate the three-dimensional packing. In (II), the chloride anion and water mol-ecules are resolved into two proximate sites with the major component being present with a site occupancy factor of 0.9327 (18).

  6. A pseudoatom in a cage: trimetallofullerene Y(3)@C(80) mimics y(3)n@c(80) with nitrogen substituted by a pseudoatom.

    PubMed

    Popov, Alexey A; Zhang, Lin; Dunsch, Lothar

    2010-02-23

    Y(3)C(80) obtained in the synthesis of nitride clusterfullerenes Y(3)N@C(2n) (2n = 80-88) by the reactive atmosphere method is found to be a genuine trimetallofullerene, Y(3)@C(80), with low ionization potential and divalent state of yttrium atoms. DFT studies of the electronic structure of Y(3)@C(80) show that this molecule mimics Y(3)N@C(80) with the pseudoatom (PA) instead of the nitrogen atom. Topology analysis of the electron density and electron localization function show that yttrium atoms form Y-PA bonds rather than direct Y-Y bonds. Molecular dynamics simulations show that the Y(3)PA cluster is as rigid as Y(3)N and rotates inside the fullerene cage as a single entity.

  7. (2E)-3-(6-methoxynaphthalen-2-yl)-1-(pyridin-3-yl)prop-2-en-1-one and its cyclocondensation product with guanidine, (4RS)-2-amino-4-(6-methoxynaphthalen-2-yl)-6-(pyridin-3-yl)-3,4-dihydropyrimidine monohydrate: two types of hydrogen-bonded sheet.

    PubMed

    Nayak, Prakash S; Narayana, Badiadka; Yathirajan, Hemmige S; Hosten, Eric C; Betz, Richard; Glidewell, Christopher

    2014-11-01

    The structures of a chalcone and of its cyclocondensation product with guanidine are reported. In (2E)-3-(6-methoxynaphthalen-2-yl)-1-(pyridin-3-yl)prop-2-en-1-one, C19H15NO2, (I), the planes of the pyridine and naphthalene units make dihedral angles with that of the central spacer unit of 23.61 (13) and 23.57 (15)°, respectively, and a dihedral angle of 47.24 (9)° with each other. The molecules of (I) are linked into sheets by a combination of C-H···O and C-H···π(arene) hydrogen bonds. In the cyclocondensation product (4RS)-2-amino-4-(6-methoxynaphthalen-2-yl)-6-(pyridin-3-yl)-3,4-dihydropyrimidine monohydrate, C20H18N4O·H2O, (II), the dihydropyrimidine ring adopts a conformation best described as a shallow boat. The molecular components are linked by two N-H···O hydrogen bonds, two O-H···N hydrogen bonds and one N-H···N hydrogen bond to form complex sheets, with the methoxynaphthalene interdigitated between inversion-related pairs of sheets.

  8. Crystal structure of 6-chloro-5-iso-propyl-pyrimidine-2,4(1H,3H)-dione.

    PubMed

    Haress, Nadia G; Ghabbour, Hazem A; El-Emam, Ali A; Chidan Kumar, C S; Fun, Hoong-Kun

    2014-11-01

    In the mol-ecule of the title compound, C7H9ClN2O2, the conformation is determined by intra-molecular C-H⋯O and C-H⋯Cl hydrogen bonds, which generate S(6) and S(5) ring motifs. The isopropyl group is almost perpendicular to the pyrimidine ring with torsion angles of -70.8 (3) and 56.0 (3)°. In the crystal, two inversion-related mol-ecules are linked via a pair of N-H⋯O hydrogen bonds into R 2 (2)(8) dimers; these dimers are connected into chains extending along the bc plane via an additional N-H⋯O hydrogen bond and weaker C-H⋯O hydrogen bonds. The crystal structure is further stabilized by a weak π-π inter-action [3.6465 (10) Å] between adjacent pyrimidine-dione rings arranged in a head-to-tail fashion, producing a three-dimensional network.

  9. The supramolecular architecture of tris(naphthalene-1,5-diaminium) bis(5-aminonaphthalen-1-aminium) octakis[hydrogen (5-carboxypyridin-3-yl)phosphonate].

    PubMed

    Wilk, Magdalena; Janczak, Jan; Videnova-Adrabinska, Veneta

    2012-09-01

    The asymmetric unit of the title compound, 3C(10)H(12)N(2)(2+)·2C(10)H(11)N(2)(+)·8C(6)H(5)NO(5)P(-), contains one and a half naphthalene-1,5-diaminium cations, in which the half-molecule has inversion symmetry, one 5-aminonaphthalen-1-aminium cation and four hydrogen (5-carboxypyridin-3-yl)phosphonate anions. The crystal structure is layered and consists of hydrogen-bonded anionic monolayers between which the cations are arranged. The acid monoanions are organized into one-dimensional chains along the [101] direction via hydrogen bonds established between the phosphonate sites. (C)O-H···N(py) hydrogen bonds (py is pyridine) crosslink the chains to form an undulating (010) monolayer. The cations serve both to balance the charge of the anionic network and to connect neighbouring layers via multiple hydrogen bonds to form a three-dimensional supramolecular architecture.

  10. Molecular structure and conformation of N-2-[3'-(methoxysalicylideneimino)benzyl]-3″-methoxysalicylideneimine

    NASA Astrophysics Data System (ADS)

    Dey, D. K.; Dey, S. P.; Elmali, A.; Elerman, Y.

    2001-05-01

    The Schiff base, N-2-[3'-(methoxysalicylideneimino)benzyl]-3″-methoxysalicylidene-imine, 1,2-C 6H 4[NCHC 6H 3(OMe-3')OH-2']CH 2NCHC 6H 3(OMe-3″)OH-2″, has been prepared by the reaction of 2-amino-1-benzylamine and 3-methoxysalicylaldehyde ( o-vanillin) in ethanol. The molecular structure has been confirmed by single crystal X-ray crystallography. The crystal is in the monoclinic space group P2 1/ n with a=16.179(5), b=6.715(5), c=18.780(6) Å, β=100.56(3)°, Dcalc=1.293 mg cm -3, V=2006(2) Å 3 and R=0.0357 for 3929 independent reflections. The 1H and 13C NMR spectra in CDCl 3 solution indicate the retention of solid state structure in solution. The title compound is not planar. Intramolecular hydrogen bonds occur between O(1) and N(1) [2.614(2) Å] and between O(2) and N(2) [2.585(2) Å] atoms, the hydrogen atom essentially being bonded to the oxygen atom. Minimum energy conformations from AM1 were calculated as a function of five torsion angles θ1 (C6-C7-N1-C8), θ2 (C14-N2-C15-C16), θ3 (C9-C8-N1-C7), θ4 (C13-C14-N2-C15) and θ5 (C10-C9-C8-N1), varied every 5°. The optimized geometry of the crystal structure corresponding to the non-planar conformation is the most stable conformation in all calculations. The results strongly indicate that the minimum energy conformation is primarily determined by non-bonded hydrogen-hydrogen repulsions.

  11. Structures and interactions in N-methylacetamide-water mixtures studied by IR spectra and density functional theory

    NASA Astrophysics Data System (ADS)

    Zhang, Rong; Li, Haoran; Lei, Yi; Han, Shijun

    2004-05-01

    IR spectra have been performed to study the structures and interactions in N-methylacetamide and water mixtures. Because of the competitions of acceptor and donor of the strong hydrogen bonds, some interesting phenomena of red shifts and blue shifts are observed in νCO and νN-H. It is due to the blue-shifting C-H⋯O hydrogen bond, the νC-H blue shifts more obviously. Then some representative cluster structures are suggested and further investigated by density functional theory method. The changes in bond length and frequency shift of the structures give good reasons for the red shift and blue shift, which represents excellent agreement with the IR experiment. The investigations of IR spectra and DFT calculations reveal that the weak C-H⋯O interactions play different roles compared with the classical strong hydrogen bonds in the NMA-water mixtures.

  12. Benchmarking lithium amide versus amine bonding by charge density and energy decomposition analysis arguments.

    PubMed

    Engelhardt, Felix; Maaß, Christian; Andrada, Diego M; Herbst-Irmer, Regine; Stalke, Dietmar

    2018-03-28

    Lithium amides are versatile C-H metallation reagents with vast industrial demand because of their high basicity combined with their weak nucleophilicity, and they are applied in kilotons worldwide annually. The nuclearity of lithium amides, however, modifies and steers reactivity, region- and stereo-selectivity and product diversification in organic syntheses. In this regard, it is vital to understand Li-N bonding as it causes the aggregation of lithium amides to form cubes or ladders from the polar Li-N covalent metal amide bond along the ring stacking and laddering principle. Deaggregation, however, is more governed by the Li←N donor bond to form amine adducts. The geometry of the solid state structures already suggests that there is σ- and π-contribution to the covalent bond. To quantify the mutual influence, we investigated [{(Me 2 NCH 2 ) 2 (C 4 H 2 N)}Li] 2 ( 1 ) by means of experimental charge density calculations based on the quantum theory of atoms in molecules (QTAIM) and DFT calculations using energy decomposition analysis (EDA). This new approach allows for the grading of electrostatic Li + N - , covalent Li-N and donating Li←N bonding, and provides a way to modify traditional widely-used heuristic concepts such as the -I and +I inductive effects. The electron density ρ ( r ) and its second derivative, the Laplacian ∇ 2 ρ ( r ), mirror the various types of bonding. Most remarkably, from the topological descriptors, there is no clear separation of the lithium amide bonds from the lithium amine donor bonds. The computed natural partial charges for lithium are only +0.58, indicating an optimal density supply from the four nitrogen atoms, while the Wiberg bond orders of about 0.14 au suggest very weak bonding. The interaction energy between the two pincer molecules, (C 4 H 2 N) 2 2- , with the Li 2 2+ moiety is very strong ( ca. -628 kcal mol -1 ), followed by the bond dissociation energy (-420.9 kcal mol -1 ). Partitioning the interaction energy into the Pauli (Δ E Pauli ), dispersion (Δ E disp ), electrostatic (Δ E elstat ) and orbital (Δ E orb ) terms gives a 71-72% ionic and 25-26% covalent character of the Li-N bond, different to the old dichotomy of 95 to 5%. In this regard, there is much more potential to steer the reactivity with various substituents and donor solvents than has been anticipated so far.

  13. Properties of Multiphase Polyurethane Systems.

    DTIC Science & Technology

    1983-07-01

    segment - diphenylmethane-diisocyanate/ N - methyldiethanolamine (MDI/ MDEA ). Each polymer was synthesized using a two step reaction technique. The number...OF MULTIPHASE POLYURETHANE SYSTEMS Final Report for Period July 1, 1982-June 30, 1983 Naval Air Systems Command Code 5304 C2 ONavy Contract # N 00019...and COB, UA groups. The existence of 3-dimensional hydrogen bonding (two C-O groups bonded to one N -H group) should shift the COB,UA peak to lower

  14. Modelling the cis-oxo-labile binding site motif of non-heme iron oxygenases. Water exchange and remarkable oxidation reactivity of a novel non-heme iron(IV)-oxo compound bearing a tripodal tetradentate ligand

    PubMed Central

    Company, Anna; Prat, Irene; Frisch, Jonathan R.; Ballesté, Ruben Mas; Güell, Mireia; Juhász, Gergely; Ribas, Xavi; Münck, Eckard; Luis, Josep M.; Que, Lawrence

    2011-01-01

    The spectroscopic and chemical characterization of a new synthetic non-heme iron(IV)-oxo species [FeIV(O)(Me,HPytacn)(S)]2+ (2, Me,HPytacn = 1-(2′-pyridylmethyl)-4,7-dimethyl-1,4,7-triazacyclononane, S = CH3CN or H2O) is described. 2 has been prepared by reaction of [FeII(CF3SO3)2(Me,HPytacn)] (1) with peracetic acid. Complex 2 bears a tetradentate N4 ligand that leaves two cis- sites available for binding an oxo group and a second external ligand but, unlike related iron(IV)-oxo of tetradentate ligands, it is remarkably stable at room temperature (t1/2 > 2h at 288 K). Its ability to exchange the oxygen atom of the oxo ligand with water has been analyzed in detail by means of kinetic studies, and a mechanism has been proposed on the basis of DFT calculations. Hydrogen-atom abstraction from C-H bonds and oxygen atom transfer to sulfides by 2 have also been studied. Despite its thermal stability, 2 proves to be a very powerful oxidant that is capable of breaking the strong C-H bond of cyclohexane (BDE = 99.3 kcal·mol−1). PMID:21268165

  15. N-tert-Butyl-N'-(5,7-dimethyl-1,8-naphthyridin-2-yl)urea.

    PubMed

    Lüning, U; Kühl, C; Bolte, M

    2001-08-01

    The title compound, C(15)H(20)N(4)O, has been synthesized as an AADD recognition unit for quadruple hydrogen bonds. All non-H atoms of the molecule apart from two methyl groups of the tert-butyl group lie in a common plane. An intramolecular hydrogen bond is formed connecting two N atoms. In the solid state, the title compound crystallizes as a centrosymmetric dimer connected by N-H...O=C interactions with an N...O distance of 2.824 (2) A.

  16. 1H, 13C, 15N NMR analysis of sildenafil base and citrate (Viagra) in solution, solid state and pharmaceutical dosage forms.

    PubMed

    Wawer, Iwona; Pisklak, Maciej; Chilmonczyk, Zdzisław

    2005-08-10

    Sildenafil citrate (SC) (Viagra) and sildenafil base in pure form are easily and unequivocally characterized by multinuclear NMR spectroscopy. Analysis of chemical shifts indicates that: (i) N6-H forms intramolecular hydrogen bonds, (ii) N25 is protonated in the salt and (iii) intermolecular OH...N hydrogen bonds involving N2 and N4 are present in the solid sildenafil citrate. 13C CPMAS NMR method has been proposed for the identification and quantitation of Viagra in its pharmaceutical formulations.

  17. The use of ultrasmall iron(0) nanoparticles as catalysts for the selective hydrogenation of unsaturated C-C bonds.

    PubMed

    Kelsen, Vinciane; Wendt, Bianca; Werkmeister, Svenja; Junge, Kathrin; Beller, Matthias; Chaudret, Bruno

    2013-04-28

    The performance of well-defined ultrasmall iron(0) nanoparticles (NPs) as catalysts for the selective hydrogenation of unsaturated C-C and C=X bonds is reported. Monodisperse iron nanoparticles of about 2 nm size are synthesized by the decomposition of {Fe(N[Si(CH3)3]2)2}2 under dihydrogen. They are found to be active for the hydrogenation of various alkenes and alkynes under mild conditions and weakly active for C=O bond hydrogenation.

  18. Platinum(II) 1,10-phenanthroline complexes of acetylides containing redox-active groups.

    PubMed

    Siemeling, Ulrich; Bausch, Kirstin; Fink, Heinrich; Bruhn, Clemens; Baldus, Marc; Angerstein, Brigitta; Plessow, Regina; Brockhinke, Andreas

    2005-07-21

    The new diimine ligand 3,8-di-n-pentyl-4,7-di(phenylethynyl)-1,10-phenanthroline (1) was used for the synthesis of a range of Pt(II) complexes, viz.[Pt(1)Cl2], [Pt(1)(C triple bond C-Ph)2], [Pt(1)(C triple bond C-Fc)2] and [Pt(1)(C triple bond C-p-C6H4-C triple bond C-Fc)2](Fc = ferrocenyl). Crystal structure analyses were performed for [Pt(1)Cl2] and [Pt(1)(C triple bond C-Ph)2] and revealed that the di(acetylide)pi-tweezer of the latter binds a molecule of chloroform through C-H...pi hydrogen bonds. The redox and optical properties of 1 and its complexes were investigated by (spectro-)electrochemistry, UV-Vis and luminescence spectroscopy, and an energy level diagram was derived for [Pt(1)(C triple bond C-Fc)2] and related compounds on the basis of the data collected. The ferrocenyl-substituted Pt(II) complexes are donor-sensitiser assemblies. Intramolecular quenching of the photoexcited Pt(II) diimine unit leads to very short luminescence lifetimes for [Pt(1)(C triple bond C-p-C(6)H(4)-C triple bond C-Fc)2](2 ns) and [Pt(1)(C triple bond C-Fc)2](0.3 ns), as opposed to [Pt(1)(C triple bond C-Ph)2](0.7 micros). Excimer formation has been observed for [Pt(1)(C triple bond C-Ph)(2)] at room temperature in dichloromethane and at low temperatures in frozen glassy dichloromethane and 2-methyltetrahydrofuran solution, but not in the solid state.

  19. Thermal degradation study of silicon carbide threads developed for advanced flexible thermal protection systems

    NASA Technical Reports Server (NTRS)

    Tran, Huy Kim; Sawko, Paul M.

    1992-01-01

    Silicon carbide (SiC) fiber is a material that may be used in advanced thermal protection systems (TPS) for future aerospace vehicles. SiC fiber's mechanical properties depend greatly on the presence or absence of sizing and its microstructure. In this research, silicon dioxide is found to be present on the surface of the fiber. Electron Spectroscopy for Chemical Analysis (ESCA) and Scanning Electron Microscopy (SEM) show that a thin oxide layer (SiO2) exists on the as-received fibers, and the oxide thickness increases when the fibers are exposed to high temperature. ESCA also reveals no evidence of Si-C bonding on the fiber surface on both as-received and heat treated fibers. The silicon oxide layer is thought to signal the decomposition of SiC bonds and may be partially responsible for the degradation in the breaking strength observed at temperatures above 400 C. The variation in electrical resistivity of the fibers with increasing temperature indicates a transition to a higher band gap material at 350 to 600 C. This is consistent with a decomposition of SiC involving silicon oxide formation.

  20. Three-dimensional supramolecular architecture in imidazolium hydrogen 2,3,5,6-tetrafluoroterephthalate.

    PubMed

    Yu, Li-Li; Cheng, Mei-Ling; Liu, Qi; Zhang, Zhi-Hui; Chen, Qun

    2010-04-01

    The asymmetric unit of the title salt formed between 2,3,5,6-tetrafluoroterephthalic acid (H(2)tfbdc) and imidazolium (ImH), C(3)H(5)N(2)(+).C(8)HF(4)O(4)(-), contains one Htfbdc(-) anion and one ImH(2)(+) cation, joined by a classical N-H...O hydrogen bond. The acid and base subunits are further linked by N-H...O and O-H...O hydrogen bonds into infinite two-dimensional layers with R(6)(5)(32) hydrogen-bond motifs. The resulting (4,4) network layers interpenetrate to produce an interlocked three-dimensional structure. The final three-dimensional supramolecular architecture is further stabilized by the linkages of two C-H...O interactions.

  1. METABOLIC ENGINEERING TO DEVELOP A PATHWAY FOR THE SELECTIVE CLEAVAGE OF CARBON-NITROGEN BONDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John J. Kilbane III

    The objective of the project is to develop biochemical pathways for the selective cleavage of C-N bonds in molecules found in petroleum. The initial phase of the project will focus on the isolation or development of an enzyme capable of cleaving the C-N bond in aromatic amides, specifically 2-aminobiphenyl. The objective of the second phase of the research will be to construct a biochemical pathway for the selective removal of nitrogen from carbazole by combining the carA genes from Sphingomonas sp. GTIN11 with the gene(s) encoding an appropriate amidase. The objective of the final phase of the project will bemore » to develop derivative CN bond cleaving enzymes that have broader substrate ranges and to demonstrate the use of such strains to selectively remove nitrogen from petroleum. The project is on schedule and no major difficulties have been encountered. During the first year of the project (October, 2002-September, 2003) enrichment culture experiments have resulted in the isolation of promising cultures that may be capable of cleaving C-N bonds in aromatic amides, several amidase genes have been cloned and are currently undergoing directed evolution to obtain derivatives that can cleave C-N bonds in aromatic amides, and the carA genes from Sphingomonas sp. GTIN11, and Pseudomonas resinovorans CA10 were cloned in vectors capable of replicating in Escherichia coli. Future research will address expression of these genes in Rhodococcus erythropolis. Enrichment culture experiments and directed evolution experiments continue to be a main focus of research activity and further work is required to obtain an appropriate amidase that will selectively cleave C-N bonds in aromatic substrates. Once an appropriate amidase gene is obtained it must be combined with genes encoding an enzyme capable of converting carbazole to 2'aminobiphenyl-2,3-diol: specifically carA genes. The carA genes from two sources have been cloned and are ready for construction of C-N bond cleavage pathway. The construction of a new metabolic pathway to selectively remove nitrogen from carbazole and other molecules typically found in petroleum should lead to the development of a process to improve oil refinery efficiency by reducing the poisoning, by nitrogen, of catalysts used in the hydrotreating and catalytic cracking of petroleum.« less

  2. A simple hydrogen-bonded chain in (3Z)-3-{1-[(5-phenyl-1H-pyrazol-3-yl)amino]ethylidene}-4,5-dihydrofuran-2(3H)-one, and a hydrogen-bonded ribbon of centrosymmetric rings in the self-assembled adduct (3Z)-3-{1-[(5-methyl-1H-pyrazol-3-yl)amino]ethylidene}-4,5-dihydrofuran-2(3H)-one-6-(2-hydroxyethyl)-2,5-dimethylpyrazolo[1,5-a]pyrimidin-7(4H)-one (1/1).

    PubMed

    Quiroga, Jairo; Portilla, Jaime; Cobo, Justo; Glidewell, Christopher

    2010-01-01

    (3Z)-3-{1-[(5-Phenyl-1H-pyrazol-3-yl)amino]ethylidene}-4,5-dihydrofuran-2(3H)-one, C(15)H(15)N(3)O(2), (I), and the stoichiometric adduct (3Z)-3-{1-[(5-methyl-1H-pyrazol-3-yl)amino]ethylidene}-4,5-dihydrofuran-2(3H)-one-6-(2-hydroxyethyl)-2,5-dimethylpyrazolo[1,5-a]pyrimidin-7(4H)-one (1/1), C(10)H(13)N(3)O(2).C(10)H(13)N(3)O(2), (II), in which the two components have the same composition but different constitutions, are formed in the reactions of 2-acetyl-4-butyrolactone with 5-amino-3-phenyl-1H-pyrazole and 5-amino-3-methyl-1H-pyrazole, respectively. In each compound, the furanone component contains an intramolecular N-H...O hydrogen bond. The molecules of (I) are linked into a chain by a single intermolecular N-H...O hydrogen bond, while in (II), a combination of one O-H...N hydrogen bond, within the selected asymmetric unit, and two N-H...O hydrogen bonds link the molecular components into a ribbon containing alternating centrosymmetric R(4)(4)(20) and R(6)(6)(22) rings.

  3. Different molecular conformations co-exist in each of three 2-aryl-N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)acetamides: hydrogen bonding in zero, one and two dimensions.

    PubMed

    Narayana, Badiadka; Yathirajan, Hemmige S; Rathore, Ravindranath S; Glidewell, Christopher

    2016-09-01

    4-Antipyrine [4-amino-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one] and its derivatives exhibit a range of biological activities, including analgesic, antibacterial and anti-inflammatory, and new examples are always of potential interest and value. 2-(4-Chlorophenyl)-N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)acetamide, C19H18ClN3O2, (I), crystallizes with Z' = 2 in the space group P\\overline{1}, whereas its positional isomer 2-(2-chlorophenyl)-N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)acetamide, (II), crystallizes with Z' = 1 in the space group C2/c; the molecules of (II) are disordered over two sets of atomic sites having occupancies of 0.6020 (18) and 0.3980 (18). The two independent molecules of (I) adopt different molecular conformations, as do the two disorder components in (II), where the 2-chlorophenyl substituents adopt different orientations. The molecules of (I) are linked by a combination of N-H...O and C-H...O hydrogen bonds to form centrosymmetric four-molecule aggregates, while those of (II) are linked by the same types of hydrogen bonds forming sheets. The related compound N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)-2-(3-methoxyphenyl)acetamide, C20H21N3O3, (III), is isomorphous with (I) but not strictly isostructural; again the two independent molecules adopt different molecular conformations, and the molecules are linked by N-H...O and C-H...O hydrogen bonds to form ribbons. Comparisons are made with some related structures, indicating that a hydrogen-bonded R2(2)(10) ring is the common structural motif.

  4. Ethylene glycol revisited: Molecular dynamics simulations and visualization of the liquid and its hydrogen-bond network☆

    PubMed Central

    Kaiser, Alexander; Ismailova, Oksana; Koskela, Antti; Huber, Stefan E.; Ritter, Marcel; Cosenza, Biagio; Benger, Werner; Nazmutdinov, Renat; Probst, Michael

    2014-01-01

    Molecular dynamics simulations of liquid ethylene glycol described by the OPLS-AA force field were performed to gain insight into its hydrogen-bond structure. We use the population correlation function as a statistical measure for the hydrogen-bond lifetime. In an attempt to understand the complicated hydrogen-bonding, we developed new molecular visualization tools within the Vish Visualization shell and used it to visualize the life of each individual hydrogen-bond. With this tool hydrogen-bond formation and breaking as well as clustering and chain formation in hydrogen-bonded liquids can be observed directly. Liquid ethylene glycol at room temperature does not show significant clustering or chain building. The hydrogen-bonds break often due to the rotational and vibrational motions of the molecules leading to an H-bond half-life time of approximately 1.5 ps. However, most of the H-bonds are reformed again so that after 50 ps only 40% of these H-bonds are irreversibly broken due to diffusional motion. This hydrogen-bond half-life time due to diffusional motion is 80.3 ps. The work was preceded by a careful check of various OPLS-based force fields used in the literature. It was found that they lead to quite different angular and H-bond distributions. PMID:24748697

  5. Carbon Displacement-Induced Single Carbon Atomic Chain Formation and its Effects on Sliding of SiC Fibers in SiC/graphene/SiC Composite

    DOE PAGES

    Wallace, Joseph B.; Chen, Di; Shao, Lin

    2015-11-03

    Understanding radiation effects on the mechanical properties of SiC composites is important to their application in advanced reactor designs. By means of molecular dynamics simulations, we found that due to strong interface bonding between the graphene layers and SiC, the sliding friction of SiC fibers is largely determined by the frictional behavior between graphene layers. Upon sliding, carbon displacements between graphene layers can act as seed atoms to induce the formation of single carbon atomic chains (SCACs) by pulling carbon atoms from the neighboring graphene planes. The formation, growth, and breaking of SCACs determine the frictional response to irradiation.

  6. Distal radical migration strategy: an emerging synthetic means.

    PubMed

    Li, Weipeng; Xu, Wentao; Xie, Jin; Yu, Shouyun; Zhu, Chengjian

    2018-02-05

    The remote radical migration strategy has gained considerable momentum. During the past three years, we have witnessed the rapid development of sustainable and practical C-C and C-H bond functionalization by means of long-distance 1,n-radical migration (n = 4, 5, 6) events. Its advent brings our chemical community a new platform to deal with the challenging migration transformations and thus complements the existing ionic-type migration protocols. In this review, the recent achievements in distal radical migration triggered C-C and C-H bond functionalization are summarized.

  7. Crystal structure of catena-poly[[aquadi-n-propyl­tin(IV)]-μ-oxalato

    PubMed Central

    Reichelt, Martin; Reuter, Hans

    2014-01-01

    The title compound, [Sn(C3H7)2(H2O)(C2O4)]n, represents the first diorganotin(IV) oxalate hydrate to be structurally characterized. The tin(IV) atom of the one-dimensional coordination polymer is located on a twofold rotation axis and is coordinated by two chelating oxalate ligands with two slightly different Sn—O bond lengths of 2.290 (2) and 2.365 (2) Å, two symmetry-related n-propyl groups with a Sn—C bond lengths of 2.127 (3) Å, and a water mol­ecule with a Sn—O bond length of 2.262 (2) Å. The coordination polyhedron around the SnIV atom is a slightly distorted penta­gonal bipyramid with a nearly linear axis between the trans-oriented n-propyl groups [C—Sn—C = 176.8 (1)°]. The bond angles between the oxygen atoms of the equatorial plane range from 70.48 (6)° to 76.12 (8)°. A one-dimensional coordination polymer results from the less asymmetric bilateral coordination of the centrosymmetric oxalate anion, inter­nally reflected by two slightly different C—O bond lengths of 1.248 (3) and 1.254 (3) Å. The chains of the polymer propagate parallel to [001] and are held together by hydrogen bonds between water mol­ecules and oxalate anions of neighboring chains, leading to a two-dimensional network parallel to (100). PMID:25249862

  8. Control Mechanisms of Photoisomerization in Protonated Schiff Bases.

    PubMed

    Vuković, Lela; Burmeister, Carl F; Král, Petr; Groenhof, Gerrit

    2013-03-21

    We performed ab initio excited-state molecular dynamics simulations of a gas-phase photoexcited protonated Schiff base (C1-N2═C3-C4═C5-C6) to search for control mechanisms of its photoisomerization. The excited molecule twists by ∼90° around either the N2C3 bond or the C4C5 bond and relaxes to the ground electronic state through a conical intersection with either a trans or cis outcome. We show that a large initial distortion of several dihedral angles and a specific normal vibrational mode combining pyramidalization and double-bond twisting can lead to a preferential rotation of atoms around the C4C5 bond. We also show that selective pretwisting of several dihedral angles in the initial ground state thermal ensemble (by analogy to a protein pocket) can significantly increase the fraction of photoreactive (cis → trans) trajectories. We demonstrate that new ensembles with higher degrees of control over the photoisomerization reaction can be obtained by a computational directed evolution approach on the ensembles of molecules with the pretwisted geometries.

  9. Backbone amide 15N chemical shift tensors report on hydrogen bonding interactions in proteins: A magic angle spinning NMR study.

    PubMed

    Paramasivam, Sivakumar; Gronenborn, Angela M; Polenova, Tatyana

    2018-08-01

    Chemical shift tensors (CSTs) are an exquisite probe of local geometric and electronic structure. 15 N CST are very sensitive to hydrogen bonding, yet they have been reported for very few proteins to date. Here we present experimental results and statistical analysis of backbone amide 15 N CSTs for 100 residues of four proteins, two E. coli thioredoxin reassemblies (1-73-(U- 13 C, 15 N)/74-108-(U- 15 N) and 1-73-(U- 15 N)/74-108-(U- 13 C, 15 N)), dynein light chain 8 LC8, and CAP-Gly domain of the mammalian dynactin. The 15 N CSTs were measured by a symmetry-based CSA recoupling method, ROCSA. Our results show that the principal component δ 11 is very sensitive to the presence of hydrogen bonding interactions due to its unique orientation in the molecular frame. The downfield chemical shift change of backbone amide nitrogen nuclei with increasing hydrogen bond strength is manifested in the negative correlation of the principal components with hydrogen bond distance for both α-helical and β-sheet secondary structure elements. Our findings highlight the potential for the use of 15 N CSTs in protein structure refinement. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Structure and bonding in beta-HMX-characterization of a trans-annular N...N interaction.

    PubMed

    Zhurova, Elizabeth A; Zhurov, Vladimir V; Pinkerton, A Alan

    2007-11-14

    Chemical bonding in the beta-phase of the 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX) crystal based on the experimental electron density obtained from X-ray diffraction data at 20 K, and solid state theoretical calculations, has been analyzed in terms of the quantum theory of atoms in molecules. Features of the intra- and intermolecular bond critical points and the oxygen atom lone-pair locations are discussed. An unusual N...N bonding interaction across the 8-membered ring has been discovered and characterized. Hydrogen bonding, O...O and O...C intermolecular interactions are reported. Atomic charges and features of the electrostatic potential are discussed.

  11. Synthesis and Reactivity of Siloxide and Silamide Complexes Pertaining to Bond Breaking and Aggregation Phenomena

    DTIC Science & Technology

    1992-07-01

    Dimeriza- tion of a Titanium Ketyl: (silox)3TiOCPh2. (silox) = tBu 3SiO’)." Covert, K.J.; Wolczanski, P.T. Inorg. Chem. 1989, 28, 4565-4567. "Ketyl...underwent subsequent reactivity. Acetone reacted with 14 to give isopropoxide and 2-propenoxide species, (silox)3Ti-(OCHMe2) (16) and (silox) 3Ti(OMeC...Activations by Tri-tert-butylsilylimido Complexes of Titanium . "Tri-tert-butylsilylimido Complexes of Titanium : Benzene C-H Activation and Struc- ture

  12. Conversion of fullerenes to diamonds

    DOEpatents

    Gruen, Dieter M.

    1995-01-01

    A method of forming synthetic diamond or diamond-like films on a substrate surface. The method involves the steps of providing a vapor selected from the group of fullerene molecules or an inert gas/fullerene molecule mixture, providing energy to the fullerene molecules consisting of carbon-carbon bonds, the energized fullerene molecules breaking down to form fragments of fullerene molecules including C.sub.2 molecules and depositing the energized fullerene molecules with C.sub.2 fragments onto the substrate with farther fragmentation occurring and forming a thickness of diamond or diamond-like films on the substrate surface.

  13. Spontaneous supersymmetry breaking in two dimensional lattice super QCD

    DOE PAGES

    Catterall, Simon; Veernala, Aarti

    2015-10-02

    We report on a non-perturbative study of two dimensional N=(2,2) super QCD. Our lattice formulation retains a single exact supersymmetry at non-zero lattice spacing, and contains N f fermions in the fundamental representation of a U(N c) gauge group. The lattice action we employ contains an additional Fayet-Iliopoulos term which is also invariant under the exact lattice supersymmetry. This work constitutes the first numerical study of this theory which serves as a toy model for understanding some of the issues that are expected to arise in four dimensional super QCD. As a result, we present evidence that the exact supersymmetrymore » breaks spontaneously when N f < N c in agreement with theoretical expectations.« less

  14. Crystal structures of three co-crystals of 1,2-bis-(pyridin-4-yl)ethane with 4-alk-oxy-benzoic acids: 4-eth-oxy-benzoic acid-1,2-bis-(pyridin-4-yl)ethane (2/1), 4-n-propoxybenzoic acid-1,2-bis(pyridin-4-yl)ethane (2/1) and 4-n-but-oxy-benzoic acid-1,2-bis-(pyridin-4-yl)ethane (2/1).

    PubMed

    Tabuchi, Yohei; Gotoh, Kazuma; Ishida, Hiroyuki

    2015-11-01

    The crystal structures of three hydrogen-bonded co-crystals of 4-alk-oxy-benzoic acid-1,2-bis-(pyridin-4-yl)ethane (2/1), namely, 2C9H10O3·C12H12N2, (I), 2C10H12O3·C12H12N2, (II), and 2C11H14O3·C12H12N2, (III), have been determined at 93, 290 and 93 K, respectively. In (I), the asymmetric unit consists of one 4-eth-oxy-benzoic acid mol-ecule and one half-mol-ecule of 1,2-bis-(pyridin-4-yl)ethane, which lies on an inversion centre. In (II) and (III), the asymmetric units each comprise two crystallographically independent 4-alk-oxy-benzoic acid mol-ecules and one 1,2-bis-(pyridin-4-yl)ethane mol-ecule. In each crystal, the two components are linked by O-H⋯N hydrogen bonds, forming a linear hydrogen-bonded 2:1unit of the acid and the base. Similar to the structure of 2:1 unit of (I), the units of (II) and (III) adopt nearly pseudo-inversion symmetry. The 2:1 units of (I), (II) and (III) are linked via C-H⋯O hydrogen bonds, forming tape structures.

  15. Effects of Thermal Cycling on Thermal Expansion and Mechanical Properties of Sic Fiber-reinforced Reaction-bonded Si3n4 Composites

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.; Palczer, A. R.

    1994-01-01

    Thermal expansion curves for SiC fiber-reinforced reaction-bonded Si3N4 matrix composites (SiC/RBSN) and unreinforced RBSN were measured from 25 to 1400 C in nitrogen and in oxygen. The effects of fiber/matrix bonding and cycling on the thermal expansion curves and room-temperature tensile properties of unidirectional composites were determined. The measured thermal expansion curves were compared with those predicted from composite theory. Predicted thermal expansion curves parallel to the fiber direction for both bonding cases were similar to that of the weakly bonded composites, but those normal to the fiber direction for both bonding cases resulted in no net dimensional changes at room temperature, and no loss in tensile properties from the as-fabricated condition. In contrast, thermal cycling in oxygen for both composites caused volume expansion primarily due to internal oxidation of RBSN. Cyclic oxidation affected the mechanical properties of the weakly bonded SiC/RBSN composites the most, resulting in loss of strain capability beyond matrix fracture and catastrophic, brittle fracture. Increased bonding between the SiC fiber and RBSN matrix due to oxidation of the carbon-rich fiber surface coating and an altered residual stress pattern in the composite due to internal oxidation of the matrix are the main reasons for the poor mechanical performance of these composites.

  16. Hindered Csbnd N bond rotation in triazinyl dithiocarbamates

    NASA Astrophysics Data System (ADS)

    Jung, Taesub; Do, Hee-Jin; Son, Jongwoo; Song, Jae Hee; Cha, Wansik; Kim, Yeong-Joon; Lee, Kyung-Koo; Kwak, Kyungwon

    2018-01-01

    The substituent and solvent effects on the rotation around a Csbnd N amide bond were studied for a series of triazine dibenzylcarbamodithioates. The Gibbs free energies (ΔG‡) were measured to be 16-18 kcal/mol in DMSO-d6 and toluene-d8 using variable-temperature nuclear magnetic resonance (VT-1H NMR) spectroscopy. Density functional theory (DFT) calculations reproduced the experimental observations with various substituents, as well as solvents. From the detailed analysis of the DFT results, we found that the electron donating dibenzyl amine group increased the electron population on the triazinyl ring, which decreased the rotational barrier of the Csbnd N bond in the dithiocarbamate group attached to the triazinyl ring. The higher electron population on the triazine moiety stabilizes the partial double bond character of the Ssbnd C bond, which competitively excludes the double bond character of the Csbnd N bond. Therefore, the rotational dynamics of the Csbnd N bond in dithiocarbamates can be a sensitive probe to small differences in the electron population of substituents on sulfur.

  17. Computational insights into crystal plane dependence of thermal activity of anion (C and N)-substituted titania.

    PubMed

    V, Sai Phani Kumar; Arya, Rahul; Deshpande, Parag A

    2017-11-29

    Geometry optimizations of anion (C and N) doped anatase TiO 2 were carried out by using DFT+U calculations. Various anion vacancy sites were examined to study the synergistic effects of anion doping accompanied with anion vacancy formation on lattice oxygen activation. Two non-identical crystal planes (0 0 1) and (1 0 0) were chosen for C and N substitutions. Energetically favoured N-vacancy pairs were identified on TiO 2 surfaces. Substitution of N along with anion vacancies at various sites was energetically more favoured than that of C-doping in bulk TiO 2 while the energies were comparable for surface substitutions. Bond length distributions due to the formation of differential bonds were determined. Net oxygen activation and accompanying reversible oxygen exchange capacities were compared for TiO 2-2x C x and TiO 2-3x N 2x . Substitution of C in the surface exposed (1 0 0) plane of TiO 2 resulted in 47.6% and 23.8% of bond elongation and compression, respectively, resulting in 23.8% of net oxygen activation which was higher when compared to N substitution in the (1 0 0) plane of TiO 2 resulting in a net oxygen activation of 17%.

  18. Ultrafast Independent N-H and N-C Bond Deformation Investigated with Resonant Inelastic X-Ray Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eckert, Sebastian; Norell, Jesper; Miedema, Piter S.

    Here, the femtosecond excited-state dynamics following resonant photoexcitation enable the selective deformation of N-H and N-C chemical bonds in 2-thiopyridone in aqueous solution with optical or X-ray pulses. In combination with multiconfigurational quantum-chemical calculations, the orbital-specific electronic structure and its ultrafast dynamics accessed with resonant inelastic X-ray scattering at the N 1s level using synchrotron radiation and the soft X-ray free-electron laser LCLS provide direct evidence for this controlled photoinduced molecular deformation and its ultrashort timescale.

  19. Ultrafast Independent N-H and N-C Bond Deformation Investigated with Resonant Inelastic X-Ray Scattering

    DOE PAGES

    Eckert, Sebastian; Norell, Jesper; Miedema, Piter S.; ...

    2017-04-04

    Here, the femtosecond excited-state dynamics following resonant photoexcitation enable the selective deformation of N-H and N-C chemical bonds in 2-thiopyridone in aqueous solution with optical or X-ray pulses. In combination with multiconfigurational quantum-chemical calculations, the orbital-specific electronic structure and its ultrafast dynamics accessed with resonant inelastic X-ray scattering at the N 1s level using synchrotron radiation and the soft X-ray free-electron laser LCLS provide direct evidence for this controlled photoinduced molecular deformation and its ultrashort timescale.

  20. Microwave spectroscopy of 2-(trifluoromethyl)pyridine⋯water complex: Molecular structure and hydrogen bond

    NASA Astrophysics Data System (ADS)

    Li, Xiaolong; Zheng, Yang; Gou, Qian; Feng, Gang; Xia, Zhining

    2018-01-01

    In order to explore the -CF3 substitution effect on the complexation of pyridine, we investigated the 2-(trifluoromethyl)pyridine⋯water complex by using pulsed jet Fourier transform microwave spectroscopy complemented with quantum chemical calculations. Experimental assignment and ab initio calculations confirmed that the observed complex is stabilized through N⋯H-O and O⋯H-C hydrogen bonds forming a five-membered ring structure. The bonding distance in N⋯H-O is determined to be 2.027(2) Å, whilst that in O⋯H-C interaction is 2.728(2) Å. The quantum theory of atoms in molecules analysis indicates that the interaction energy of N⋯H-O hydrogen bond is ˜22 kJ mol-1 and that for O⋯H-C hydrogen bond is ˜5 kJ mol-1. The water molecule lies almost in the plane of the aromatic ring in the complex. The -CF3 substitution to pyridine quenches the tunneling splitting path of the internal motion of water molecule.

  1. Anhydrous 1:1 proton-transfer compounds of isonipecotamide with picric acid and 3,5-dinitrosalicylic acid: 4-carbamoylpiperidinium 2,4,6-trinitrophenolate and two polymorphs of 4-carbamoylpiperidinium 2-carboxy-4,6-dinitrophenolate.

    PubMed

    Smith, Graham; Wermuth, Urs D

    2010-12-01

    The structures of the anhydrous 1:1 proton-transfer compounds of isonipecotamide (piperidine-4-carboxamide) with picric acid and 3,5-dinitrosalicylic acid, namely 4-carbamoylpiperidinium 2,4,6-trinitrophenolate, C(6)H(13)N(2)O(+)·C(6)H(2)N(3)O(7)(-), (I), and 4-carbamoylpiperidinium 2-carboxy-4,6-dinitrophenolate [two forms of which were found, the monoclinic α-polymorph, (II), and the triclinic β-polymorph, (III)], C(6)H(13)N(2)O(+)·C(7)H(3)N(2)O(7)(-), have been determined at 200 K. All three compounds form hydrogen-bonded structures, viz. one-dimensional in (II), two-dimensional in (I) and three-dimensional in (III). In (I), the cations form centrosymmetric cyclic head-to-tail hydrogen-bonded homodimers [graph set R(2)(2)(14)] through lateral duplex piperidinium-amide N-H...O interactions. These dimers are extended into a two-dimensional network structure through further interactions with phenolate and nitro O-atom acceptors, including a direct symmetric piperidinium-phenol/nitro N-H...O,O cation-anion association [graph set R(1)(2)(6)]. The monoclinic polymorph, (II), has a similar R(1)(2)(6) cation-anion hydrogen-bonding interaction to (I) but with an additional conjoint symmetrical R(1)(2)(4) interaction as well as head-to-tail piperidinium-amide N-H...O,O hydrogen bonds and amide-carboxyl N-H...O hydrogen bonds, giving a network structure which includes large R(4)(3)(20) rings. The hydrogen bonding in the triclinic polymorph, (III), is markedly different from that of monoclinic (II). The asymmetric unit contains two independent cation-anion pairs which associate through cyclic piperidinium-carboxyl N-H...O,O' interactions [graph set R(1)(2)(4)]. The cations also show the zigzag head-to-tail piperidinium-amide N-H...O hydrogen-bonded chain substructures found in (II), but in addition feature amide-nitro and amide-phenolate N-H...O associations. As well, there is a centrosymmetric double-amide N-H...O(carboxyl) bridged bis(cation-anion) ring system [graph set R(4)(2)(8)] in the three-dimensional framework. The structures reported here demonstrate the utility of the isonipecotamide cation as a synthon with previously unrecognized potential for structure assembly applications. Furthermore, the structures of the two polymorphic 3,5-dinitrosalicylic acid salts show an unusual dissimilarity in hydrogen-bonding characteristics, considering that both were obtained from identical solvent systems.

  2. Ethyl 2-[(carbamoyl-amino)-imino]-propano-ate hemihydrate.

    PubMed

    Corrêa, Charlane C; Graúdo, José Eugênio J C; de Oliveira, Luiz Fernando C; de Almeida, Mauro V; Diniz, Renata

    2011-08-01

    The title compound, C(6)H(11)N(3)O(3)·0.5H(2)O, has two independent mol-ecules and one mol-ecule of water in the asymmetric unit. The crystal packing is stabilized by inter-molecular N-H⋯N, O-H⋯O, N-H⋯O and C-H⋯O hydrogen bonds. These inter-actions form a two-dimensional array in the ab plane with a zigzag motif which has an angle close to 35° between the zigzag planes. The hydrogen bonding can be best described using the graph-set notation as N(1) = C(10)R(2) (2)(10)R(2) (2)(8) and N(2) = R(6) (4)(20)R(2) (2)(8).

  3. Activation and thermodynamic parameter study of the heteronuclear C=O···H-N hydrogen bonding of diphenylurethane isomeric structures by FT-IR spectroscopy using the regularized inversion of an eigenvalue problem.

    PubMed

    Spegazzini, Nicolas; Siesler, Heinz W; Ozaki, Yukihiro

    2012-08-02

    The doublet of the ν(C=O) carbonyl band in isomeric urethane systems has been extensively discussed in qualitative terms on the basis of FT-IR spectroscopy of the macromolecular structures. Recently, a reaction extent model was proposed as an inverse kinetic problem for the synthesis of diphenylurethane for which hydrogen-bonded and non-hydrogen-bonded C=O functionalities were identified. In this article, the heteronuclear C=O···H-N hydrogen bonding in the isomeric structure of diphenylurethane synthesized from phenylisocyanate and phenol was investigated via FT-IR spectroscopy, using a methodology of regularization for the inverse reaction extent model through an eigenvalue problem. The kinetic and thermodynamic parameters of this system were derived directly from the spectroscopic data. The activation and thermodynamic parameters of the isomeric structures of diphenylurethane linked through a hydrogen bonding equilibrium were studied. The study determined the enthalpy (ΔH = 15.25 kJ/mol), entropy (TΔS = 14.61 kJ/mol), and free energy (ΔG = 0.6 kJ/mol) of heteronuclear C=O···H-N hydrogen bonding by FT-IR spectroscopy through direct calculation from the differences in the kinetic parameters (δΔ(‡)H, -TδΔ(‡)S, and δΔ(‡)G) at equilibrium in the chemical reaction system. The parameters obtained in this study may contribute toward a better understanding of the properties of, and interactions in, supramolecular systems, such as the switching behavior of hydrogen bonding.

  4. 79/81Br nuclear quadrupole resonance spectroscopic characterization of halogen bonds in supramolecular assemblies† †Electronic supplementary information (ESI) available: 13C SSNMR spectra, powder X-ray diffractograms. See DOI: 10.1039/c8sc01094c

    PubMed Central

    Cerreia Vioglio, P.; Szell, P. M. J.; Chierotti, M. R.; Gobetto, R.

    2018-01-01

    Despite the applicability of solid-state NMR to study the halogen bond, the direct NMR detection of 79/81Br covalently bonded to carbon remains impractical due to extremely large spectral widths, even at ultra-high magnetic fields. In contrast, nuclear quadrupole resonance (NQR) offers comparatively sharp resonances. Here, we demonstrate the abilities of 79/81Br NQR to characterize the electronic changes in the C–Br···N halogen bonding motifs found in supramolecular assemblies constructed from 1,4-dibromotetrafluorobenzene and nitrogen-containing heterocycles. An increase in the bromine quadrupolar coupling constant is observed, which correlates linearly with the halogen bond distance (dBr···N). Notably, 79/81Br NQR is able to distinguish between two symmetry-independent halogen bonds in the same crystal structure. This approach offers a rapid and reliable indication for the occurrence of a halogen bond, with experimental times limited only by the observation of 79/81Br NQR resonances. PMID:29899948

  5. Effects of strong hydrogen bonds and weak intermolecular interactions on supramolecular assemblies of 4-fluorobenzylamine

    NASA Astrophysics Data System (ADS)

    Wang, Shi; Ding, Xue-Hua; Li, Yong-Hua; Huang, Wei

    2015-07-01

    A series of supramolecular salts have been obtained by the self-assembly of 4-fluorobenzylamine and halide ions or metal chloride with 18-crown-6 as the host in the hydrochloric acid medium, i.e. (C7H9FN)+ṡX- (X = Cl-, 1; Br-, 2), [(C7H9FN)2ṡ(18-crown-6)2]2+ṡ(MCl4)2- (M = Mn, 3; Co, 5; Zn, 7; Cd, 8), [(C7H9FN)ṡ(18-crown-6)]+ṡ(FeCl4)- (4) and [(C7H9FN)ṡ(18-crown-6)]+ṡ1/2(CuCl4)2- (6). Structural analyses indicate that 1-2 crystallize in the triclinic space group P-1, 4 in orthorhombic space group Pnma and 3, 5, 6-8 in the monoclinic space group P21/c or C2/c. In these compounds, extensive intermolecular interactions have been utilized for the self-assembly of diverse supramolecular architectures, ranging from strong N-H⋯X (X = O, Cl, Br) hydrogen bonds to weak C-H⋯Y (Y = F, Cl, π) interactions. N-H⋯Cl/Br hydrogen bonds offer the major driving force in the crystal packing of salts 1-2 while N-H⋯O hydrogen bonds are found in salts 3-8.

  6. 1-{(E)-[(2E)-3-(4-Meth-oxy-phen-yl)-1-phenyl-prop-2-en-1-yl-idene]amino}-3-phenyl-urea: crystal structure and Hirshfeld surface analysis.

    PubMed

    Tan, Ming Yueh; Crouse, Karen A; Ravoof, Thahira B S A; Jotani, Mukesh M; Tiekink, Edward R T

    2017-11-01

    The title compound, C 23 H 21 N 3 O 2 , is constructed about an almost planar disubstituted amino-urea residue (r.m.s. deviation = 0.0201 Å), which features an intra-molecular amine-N-H⋯N(imine) hydrogen bond. In the 'all- trans ' chain connecting this to the terminal meth-oxy-benzene residue, the conformation about each of the imine and ethyl-ene double bonds is E . In the crystal, amide-N-H⋯O(carbon-yl) hydrogen bonds connect centrosymmetrically related mol-ecules into dimeric aggregates, which also incorporate ethyl-ene-C-H⋯O(amide) inter-actions. The dimers are linked by amine-phenyl-C-H⋯π(imine-phen-yl) and meth-oxy-benzene-C-H⋯π(amine-phen-yl) inter-actions to generate a three-dimensional network. The importance of C-H⋯π inter-actions in the mol-ecular packing is reflected in the relatively high contributions made by C⋯H/H⋯C contacts to the Hirshfeld surface, i.e . 31.6%.

  7. The structural study of acetohydroxamic and oxalodihydroxamic acids in DMSO solution based on the DFT calculations of NMR spectra

    NASA Astrophysics Data System (ADS)

    Kaczor, Agnieszka; Proniewicz, Leonard M.

    2004-10-01

    The 1H and 13C NMR spectra of acetohydroxamic (aha) and oxalodihydroxamic (oxha) acids were measured in DMSO- d6 solution. The atoms chemical shifts of chosen stable entgegen and zusammen conformers of monomeric acids were computed along with some clusters of the compounds with the solvent molecules [B3LYP/6-311++G(d,p), GIAO]. The latter were proposed to explain the differences between the theoretical and experimental resonances of the protons of the N-H and O-H groups. The computed chemical shifts of aha-(DMSO) 2 and oxha-(DMSO) 2 models are in good agreement with experimental data proving that the compounds existing in solution form aggregates with DMSO. The acids are H-bonded via all the labile protons to the oxygen atoms of the solvent molecules. aha exists in the zusammen and entgegen (relative to C-N bond) forms with the relative intensities of 8:1 while the sole z, E, z-conformers (notation refers to C-N, C-C and C-N bonds, respectively) were found for oxha.

  8. Cells having cathodes containing polycarbon disulfide materials

    DOEpatents

    Okamoto, Y.; Skotheim, T.A.; Lee, H.S.

    1995-08-15

    The present invention relates to an electric current producing cell which contains an anode, a cathode having as a cathode-active material one or more carbon-sulfur compounds of the formula (CS{sub x}){sub n}, in which x takes values from 1.2 to 2.3 and n is greater or equal to 2, and where the redox process does not involve polymerization and de-polymerization by forming and breaking S--S bonds in the polymer backbone. The cell also contains an electrolyte which is chemically inert with respect to the anode and the cathode. 5 figs.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedmann, T.A.; Tallant, D.R.; Barbour, J.C.

    Carbon Nitride (CN{sub x}) films have been grown by ion-assisted pulsed-laser deposition (IAPLD). Graphite targets were laser ablated while bombarding the substrate with ions from a broad-beam Kaufman-type ion source. Ion voltage, current density, substrate temperature, and feed gas composition (N{sub 2} in Ar) were varied. Resultant films were characterized by Raman. Fourier transform infrared (FTIR), and Rutherford back scattering (RBS) spectroscopy. Samples with {approximately} 30% N/C ratio have been fabricated. The corresponding Raman and FTIR spectra indicate that nitrogen is incorporated into the samples by insertion into sp{sup 2}-bonded structures. A low level of C{identical_to}N triple bonds is alsomore » found. As the ion current and voltage are increased with a pure Ar ion beam, Raman peaks associated with nanocrystalline graphite appear in the spectra. Adding low levels of nitrogen to the ion beam first reduces the Raman intensity in the vicinity of the graphite disorder peak without adding detectable amounts of nitrogen to the films (as measured by RBS). At higher nitrogen levels in the ion beam, significant amounts of nitrogen are incorporated into the samples, and the magnitude of the ``disorder`` peak increases. By increasing the temperature of the substrate during deposition, the broad peak due mainly to sp{sup 2}-bonded C-N in the FTIR spectra is shifted to lower wavenumber. This could be interpreted as evidence of single-bonded C-N; however, it is more likely that the character of the sp{sup 2} bonding is changing.« less

  10. Pyrrole multimers and pyrrole-acetylene hydrogen bonded complexes studied in N2 and para-H2 matrixes using matrix isolation infrared spectroscopy and ab initio computations

    NASA Astrophysics Data System (ADS)

    Sarkar, Shubhra; Ramanathan, N.; Gopi, R.; Sundararajan, K.

    2017-12-01

    Hydrogen bonded interaction of pyrrole multimer and acetylene-pyrrole complexes were studied in N2 and p-H2 matrixes. DFT computations showed T-shaped geometry for the pyrrole dimer and cyclic complex for the trimer and tetramer were the most stable structures, stabilized by Nsbnd H⋯π interactions. The experimental vibrational wavenumbers observed in N2 and p-H2 matrixes for the pyrrole multimers were correlated with the computed wavenumbers. Computations performed at MP2/aug-cc-pVDZ level of theory showed that C2H2 and C4H5N forms 1:1 hydrogen-bonded complexes stabilized by Csbnd H⋯π interaction (Complex A), Nsbnd H⋯π interaction (Complex B) and π⋯π interaction (Complex C), where the former complex is the global minimum and latter two complexes were the first and second local minima, respectively. Experimentally, 1:1 C2H2sbnd C4H5N complexes A (global minimum) and B (first local minimum) were identified from the shifts in the Nsbnd H stretching, Nsbnd H bending, Csbnd H bending region of pyrrole and Csbnd H asymmetric stretching and bending region of C2H2 in N2 and p-H2 matrixes. Computations were also performed for the higher complexes and found two minima corresponding to the 1:2 C2H2sbnd C4H5N and three minima for the 2:1 C2H2sbnd C4H5N complexes. Experimentally the global minimum 1:2 and 2:1 C2H2sbnd C4H5N complexes were identified in N2 and p-H2 matrixes.

  11. Crystal Structures of New Ammonium 5-Aminotetrazolates

    PubMed Central

    Lampl, Martin; Salchner, Robert; Laus, Gerhard; Braun, Doris E.; Kahlenberg, Volker; Wurst, Klaus; Fuhrmann, Gerda; Schottenberger, Herwig; Huppertz, Hubert

    2015-01-01

    The crystal structures of three salts of anionic 5-aminotetrazole are described. The tetramethylammonium salt (P1‒) forms hydrogen-bonded ribbons of anions which accept weak C–H⋯N contacts from the cations. The cystamine salt (C2/c) shows wave-shaped ribbons of anions linked by hydrogen bonds to screw-shaped dications. The tetramethylguanidine salt (P21/c) exhibits layers of anions hydrogen-bonded to the cations. PMID:26753100

  12. Modulation of ultrafast photoinduced electron transfer in H-bonding environment: PET from aniline to coumarin 153 in the presence of an inert co-solvent cyclohexane.

    PubMed

    Barman, Nabajeet; Hossen, Tousif; Mondal, Koushik; Sahu, Kalyanasis

    2015-12-28

    Despite intensive research, the role of the H-bonding environment on ultrafast PET remains illusive. For example, coumarin 153 (C153) undergoes ultrafast photoinduced electron transfer (PET) in electron-donating solvents, in both aniline (AN) and N,N-dimethylaniline (DMA), despite their very different H-bonding abilities. Thus, donor-acceptor (AN-C153) H-bonding may have only a minor role in PET (Yoshihara and co-workers, J. Phys. Chem. A, 1998, 102, 3089). However, donor-acceptor H-bonding may be somehow less effective in the neat H-bonding environment but could become dominant in the presence of an inert solvent (Phys. Chem. Chem. Phys., 2014, 16, 6159). We successfully applied and tested the proposal here. The nature of PET modulation of C153 in the presence of a passive component cyclohexane is found to be very different for aniline and DMA. Upon addition of cyclohexane to DMA, the PET process gradually becomes retarded but in the case of AN, the PET rate was indeed found to be accelerated at some intermediate composition (mole fraction of aniline, XAN∼ 0.74) compared to that of neat aniline. It is intuitive that cyclohexane may replace some of the donors (AN or DMA) from the vicinity of the acceptor and, thus, should disfavour PET. However, in the hydrogen bonding environment using molecular dynamics simulation, for the first time, we show that the average number of aniline molecules orienting their N-H group in the proximity of the C=O group of C153 is actually higher at the intermediate mole fraction (0.74) of aniline in a mixture rather than in neat aniline. This small but finite excess of C153-AN H-bonding already present in the ground state may possibly account for the anomalous effect. The TD-DFT calculations presented here showed that the intermolecular H-bonding between C153 and AN strengthens from 21.1 kJ mol(-1) in the ground state to 33.0 kJ mol(-1) in the excited state and, consequently, H-bonding may assist PET according to the Zhao and Han model. Thus, we not only justified both the theoretical prediction (efficient H-bond assisted PET within the C153-AN pair) and experimental observation (minor H-bond assisted PET in neat solvent) but also established our previous hypothesis that an inert co-solvent can enhance the effect of H-bonding from molecular insights.

  13. UV photolysis of 4-iodo-, 4-bromo-, and 4-chlorophenol: Competition between C-Y (Y = halogen) and O-H bond fission

    NASA Astrophysics Data System (ADS)

    Sage, Alan G.; Oliver, Thomas A. A.; King, Graeme A.; Murdock, Daniel; Harvey, Jeremy N.; Ashfold, Michael N. R.

    2013-04-01

    The wavelength dependences of C-Y and O-H bond fission following ultraviolet photoexcitation of 4-halophenols (4-YPhOH) have been investigated using a combination of velocity map imaging, H Rydberg atom photofragment translational spectroscopy, and high level spin-orbit resolved electronic structure calculations, revealing a systematic evolution in fragmentation behaviour across the series Y = I, Br, Cl (and F). All undergo O-H bond fission following excitation at wavelengths λ ≲ 240 nm, on repulsive ((n/π)σ*) potential energy surfaces (PESs), yielding fast H atoms with mean kinetic energies ˜11 000 cm-1. For Y = I and Br, this process occurs in competition with prompt C-I and C-Br bond cleavage on another (n/π)σ* PES, but no Cl/Cl* products unambiguously attributable to one photon induced C-Cl bond fission are observed from 4-ClPhOH. Differences in fragmentation behaviour at longer excitation wavelengths are more marked. Prompt C-I bond fission is observed following excitation of 4-IPhOH at all λ ≤ 330 nm; the wavelength dependent trends in I/I* product branching ratio, kinetic energy release, and recoil anisotropy suggest that (with regard to C-I bond fission) 4-IPhOH behaves like a mildly perturbed iodobenzene. Br atoms are observed when exciting 4-BrPhOH at long wavelengths also, but their velocity distributions suggest that dissociation occurs after internal conversion to the ground state. O-H bond fission, by tunnelling (as in phenol), is observed only in the cases of 4-FPhOH and, more weakly, 4-ClPhOH. These observed differences in behaviour can be understood given due recognition of (i) the differences in the vertical excitation energies of the C-Y centred (n/π)σ* potentials across the series Y = I < Br < Cl and the concomitant reduction in C-Y bond strength, cf. that of the rival O-H bond, and (ii) the much increased spin-orbit coupling in, particularly, 4-IPhOH. The present results provide (another) reminder of the risks inherent in extrapolating photochemical behaviour measured for one molecule at one wavelength to other (related) molecules and to other excitation energies.

  14. Chemical Modification of Graphene Oxide by Nitrogenation: An X-ray Absorption and Emission Spectroscopy Study

    NASA Astrophysics Data System (ADS)

    Chuang, Cheng-Hao; Ray, Sekhar C.; Mazumder, Debarati; Sharma, Surbhi; Ganguly, Abhijit; Papakonstantinou, Pagona; Chiou, Jau-Wern; Tsai, Huang-Ming; Shiu, Hung-Wei; Chen, Chia-Hao; Lin, Hong-Ji; Guo, Jinghua; Pong, Way-Faung

    2017-02-01

    Nitrogen-doped graphene oxides (GO:Nx) were synthesized by a partial reduction of graphene oxide (GO) using urea [CO(NH2)2]. Their electronic/bonding structures were investigated using X-ray absorption near-edge structure (XANES), valence-band photoemission spectroscopy (VB-PES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). During GO:Nx synthesis, different nitrogen-bonding species, such as pyrrolic/graphitic-nitrogen, were formed by replacing of oxygen-containing functional groups. At lower N-content (2.7 at%), pyrrolic-N, owing to surface and subsurface diffusion of C, N and NH is deduced from various X-ray spectroscopies. In contrast, at higher N-content (5.0 at%) graphitic nitrogen was formed in which each N-atom trigonally bonds to three distinct sp2-hybridized carbons with substitution of the N-atoms for C atoms in the graphite layer. Upon nitrogen substitution, the total density of state close to Fermi level is increased to raise the valence-band maximum, as revealed by VB-PES spectra, indicating an electron donation from nitrogen, molecular bonding C/N/O coordination or/and lattice structure reorganization in GO:Nx. The well-ordered chemical environments induced by nitrogen dopant are revealed by XANES and RIXS measurements.

  15. Effects of single bond-ion and single bond-diradical form on the stretching vibration of Cdbnd N bridging bond in 4,4‧-disubstituted benzylidene anilines

    NASA Astrophysics Data System (ADS)

    Cao, Chao-Tun; Bi, Yakun; Cao, Chenzhong

    2016-06-01

    Fifty-seven samples of model compounds, 4,4‧-disubstituted benzylidene anilines, p-X-ArCH = NAr-p-Y were synthesized. Their infrared absorption spectra were recorded, and the stretching vibration frequencies νCdbnd N of the Cdbnd N bridging bond were determined. New stretching vibration mode was proposed by means of the analysis of the factors affecting νCdbnd N, that is there are mainly three modes in the stretching vibration of Cdbnd N bond: (I) polar double bond form Cdbnd N, (II) single bond-ion form C+-N- and (III) single bond-diradical form Crad -Nrad . The contributions of the forms (I) and (II) to the change of νCdbnd N can be quantified by using Hammett substituent constant (including substituent cross-interaction effects between X and Y groups), whereas the contribution of the form (III) can be quantified by employing the excited-state substituent constant. The most contribution of these three forms is the form (III), the next is the form (II), whose contribution difference was discussed with the viewpoint of energy requirements in vibration with the form (III) and form (II).

  16. The effect of redox-active cyanomanganese(I) ligands on intramolecular electron transfer to, and alkyne alignment in, M(CO)(RC[triple bond, length as m-dash]CR)Tp' (M = Mo or W) units.

    PubMed

    Adams, Christopher J; Connelly, Neil G; Onganusorn, Sriwipha

    2009-04-28

    The complexes [(eta-C(5)Me(5))(ON)LMn(micro-CN)M(CO)(RC[triple bond, length as m-dash]CR)Tp'](+) (L = CNXyl, M = Mo; L = CNBu(t), M = Mo or W, R = Ph or Me) and trans- or cis-[(dppm){(EtO)(3)P}(OC)(2)Mn(micro-CN)M(CO)(PhC[triple bond, length as m-dash]CPh)Tp'](+), and their linkage isomers [(eta-C(5)Me(5))(ON)LMn(micro-NC)M(CO)(PhC[triple bond, length as m-dash]CPh)Tp'](+) and trans- or cis-[(dppm){(EtO)(3)P}(OC)(2)Mn(micro-NC)M(CO)(PhC[triple bond, length as m-dash]CPh)Tp'](+), undergo two one-electron oxidations. The complexes [(eta-C(5)Me(5))(ON)LMn(micro-XY)M(CO)(RC[triple bond, length as m-dash]CR)Tp'](+) (XY = CN or NC) are oxidised first at the N-bound metal centre and then at the C-bound centre. For [(dppm){(EtO)(3)P}(OC)(2)Mn(micro-XY)M(CO)(PhC[triple bond, length as m-dash]CPh)Tp'](+), the trans isomers are first oxidised at manganese whereas the cis isomers are first oxidised at M. Thus, the order of one-electron oxidation of the two series of binuclear monocations is influenced by linkage isomerisation of the cyanide bridge and cis-trans isomerisation of the Mn(CO)(2) group. IR spectroscopic changes on reaction of Ag(+) with [(eta-C(5)Me(5))(ON)(Bu(t)NC)Mn(micro-CN)W(CO)(MeC[triple bond, length as m-dash]CMe)Tp'](+) are consistent with one-electron at the N-bound tungsten centre. Likewise, trans-[(dppm){(EtO)(3)P}(OC)(2)Mn(micro-NC)M(CO)(PhC[triple bond, length as m-dash]CPh)Tp'](+) (M = Mo or W) give the stable dications [(dppm){(EtO)(3)P}(OC)(2)Mn(micro-NC)M(CO)(PhC[triple bond, length as m-dash]CPh)Tp'](2+). Significantly longer Mn-P bond distances in trans-[(dppm){(EtO)(3)P}(OC)(2)Mn(micro-NC)Mo(CO)(PhC[triple bond, length as m-dash]CPh)Tp'](2+) than in trans-[(dppm){(EtO)(3)P}(OC)(2)Mn(micro-NC)Mo(CO)(PhC[triple bond, length as m-dash]CPh)Tp'](+) are consistent with one-electron oxidation first at Mn(I); the alignment of the (CN)Mn(CO)(2){P(OEt)(3)}(dppm) fragment relative to the alkyne in trans-[(dppm){(EtO)(3)P}(OC)(2)Mn(micro-NC)Mo(CO)(PhC[triple bond, length as m-dash]CPh)Tp'](+) suggests it acts as a pi-acceptor, in contrast to related species such as trans-(NC)Mn(CO)(2){P(OEt)(3)}(dppm) and (NC)Mn(NO){P(OPh)(3)}(pi-C(5)H(4)Me) which behave as simple N-donors.

  17. catena-Poly[[(benzil bis{[(pyridin-2-yl)methylidene]hydrazone}-κ⁴N,N',N'',N''')mercury(II)]-μ-chlorido-[dichloridomercury(II)]-μ-chlorido].

    PubMed

    Akkurt, Mehmet; Khandar, Ali Akbar; Tahir, Muhammad Nawaz; Hosseini-Yazdi, Seyed Abolfazl; Mahmoudi, Ghodrat

    2012-07-01

    In the title coordination polymer, [Hg₄Cl₄(C₂₆H₂₀N₆)](n), one Hg(II) ion is coordinated by four N atoms from the benzylbis((pyridin-2-yl)methyl-idenehydrazone) ligand and two Cl⁻ ions in a very distorted cis-HgCl₂N₄ octa-hedral geometry. The other Hg(II) ion is coordinated in a distorted tetra-hedral geometry by four Cl⁻ ions. Bridging chloride ions link the Hg(II) ions into a chain propagating in [010]: the Hg-Cl bridging bonds are significantly longer than the terminal bonds. The dihedral angle between the central benzene rings of the ligand is 83.3 (2)°. The packing is consolidated by weak C-H⋯Cl hydrogen bonds and C-H⋯π inter-actions.

  18. Enantioselective functionalization of allylic C-H bonds following a strategy of functionalization and diversification.

    PubMed

    Sharma, Ankit; Hartwig, John F

    2013-11-27

    We report the enantioselective functionalization of allylic C-H bonds in terminal alkenes by a strategy involving the installation of a temporary functional group at the terminal carbon atom by C-H bond functionalization, followed by the catalytic diversification of this intermediate with a broad scope of reagents. The method consists of a one-pot sequence of palladium-catalyzed allylic C-H bond oxidation under neutral conditions to form linear allyl benzoates, followed by iridium-catalyzed allylic substitution. This overall transformation forms a variety of chiral products containing a new C-N, C-O, C-S, or C-C bond at the allylic position in good yield with a high branched-to-linear selectivity and excellent enantioselectivity (ee ≤97%). The broad scope of the overall process results from separating the oxidation and functionalization steps; by doing so, the scope of nucleophile encompasses those sensitive to direct oxidative functionalization. The high enantioselectivity of the overall process is achieved by developing an allylic oxidation that occurs without acid to form the linear isomer with high selectivity. These allylic functionalization processes are amenable to an iterative sequence leading to (1,n)-functionalized products with catalyst-controlled diastereo- and enantioselectivity. The utility of the method in the synthesis of biologically active molecules has been demonstrated.

  19. Degradation of Glyphosate by Mn-Oxide May Bypass Sarcosine and Form Glycine Directly after C-N Bond Cleavage.

    PubMed

    Li, Hui; Wallace, Adam F; Sun, Mingjing; Reardon, Patrick; Jaisi, Deb P

    2018-02-06

    Glyphosate is the active ingredient of the common herbicide Roundup. The increasing presence of glyphosate and its byproducts has raised concerns about its potential impact on the environment and human health. In this research, we investigated abiotic pathways of glyphosate degradation as catalyzed by birnessite under aerobic and neutral pH conditions to determine whether certain pathways have the potential to generate less harmful intermediate products. Nuclear magnetic resonance (NMR) spectroscopy and high-performance liquid chromatography (HPLC) were utilized to identify and quantify reaction products, and density functional theory (DFT) calculations were used to investigate the bond critical point (BCP) properties of the C-N bond in glyphosate and Mn(IV)-complexed glyphosate. We found that sarcosine, the commonly recognized precursor to glycine, was not present at detectable levels in any of our experiments despite the fact that its half-life (∼13.6 h) was greater than our sampling intervals. Abiotic degradation of glyphosate largely followed the glycine pathway rather than the AMPA (aminomethylphosphonic acid) pathway. Preferential cleavage of the phosphonate adjacent C-N bond to form glycine directly was also supported by our BCP analysis, which revealed that this C-N bond was disproportionately affected by the interaction of glyphosate with Mn(IV). Overall, these results provide useful insights into the potential pathways through which glyphosate may degrade via relatively benign intermediates.

  20. Decomposition of nitrous oxide and chloromethanes absorbed on particulate matter

    NASA Technical Reports Server (NTRS)

    Rebbert, R. E.; Ausloos, P. J.

    1978-01-01

    The effect of pressure on the heterogeneous thermal and pyrolytic decomposition of nitrous oxides adsorbed on sand was studied. Results indicate that N20 adsorbed on certain sand surfaces can be decomposed by photons which nitrous oxide cannot absorb in the gas phase. There is also a thermal heterogeneous decomposition of nitrous oxide which also produces nitrogen. The photolysis of CC14, CFC13, CF2C12 adsorbed on fused quartz and on different types of sand was also investigated. There was no thermal heterogeneous reaction with any of these chloromethanes. Apparently the larger bond energy of approximately 74 kcal for the C-C1 bond compared to approximately 40 kcal for the N-O bond in N2O makes the thermal reaction inoperative for the chloromethanes.

  1. Ground state structure of high-energy-density polymeric carbon monoxide

    NASA Astrophysics Data System (ADS)

    Xia, Kang; Sun, Jian; Pickard, Chris J.; Klug, Dennis D.; Needs, Richard J.

    2017-04-01

    Crystal structure prediction methods and first-principles calculations have been used to explore low-energy structures of carbon monoxide (CO). Contrary to the standard wisdom, the most stable structure of CO at ambient pressure was found to be a polymeric structure of P n a 21 symmetry rather than a molecular solid. This phase is formed from six-membered (four carbon + two oxygen) rings connected by C=C double bonds with two double-bonded oxygen atoms attached to each ring. Interestingly, the polymeric P n a 21 phase of CO has a much higher energy density than trinitrotoluene (TNT). On compression to about 7 GPa, P n a 21 is found to transform into another chainlike phase of C c symmetry which has similar ring units to P n a 21 . On compression to 12 GPa, it is energetically favorable for CO to polymerize into a purely single bonded C m c a phase, which is stable over a wide pressure range and transforms into the previously known C m c m phase at around 100 GPa. Thermodynamic stability of these structures was verified using calculations with different density functionals, including hybrid and van der Waals corrected functionals.

  2. Hydrogen release at metal-oxide interfaces: A first principle study of hydrogenated Al/SiO2 interfaces

    NASA Astrophysics Data System (ADS)

    Huang, Jianqiu; Tea, Eric; Li, Guanchen; Hin, Celine

    2017-06-01

    The Anode Hydrogen Release (AHR) mechanism at interfaces is responsible for the generation of defects, that traps charge carriers and can induce dielectric breakdown in Metal-Oxide-Semiconductor Field Effect Transistors. The AHR has been extensively studied at Si/SiO2 interfaces but its characteristics at metal-silica interfaces remain unclear. In this study, we performed Density Functional Theory (DFT) calculations to study the hydrogen release mechanism at the typical Al/SiO2 metal-oxide interface. We found that interstitial hydrogen atoms can break interfacial Alsbnd Si bonds, passivating a Si sp3 orbital. Interstitial hydrogen atoms can also break interfacial Alsbnd O bonds, or be adsorbed at the interface on aluminum, forming stable Alsbnd Hsbnd Al bridges. We showed that hydrogenated Osbnd H, Sisbnd H and Alsbnd H bonds at the Al/SiO2 interfaces are polarized. The resulting bond dipole weakens the Osbnd H and Sisbnd H bonds, but strengthens the Alsbnd H bond under the application of a positive bias at the metal gate. Our calculations indicate that Alsbnd H bonds and Osbnd H bonds are more important than Sisbnd H bonds for the hydrogen release process.

  3. n-Nonacosadienes from the marine haptophytes Emiliania huxleyi and Gephyrocapsa oceanica.

    PubMed

    Nakamura, Hideto; Sawada, Ken; Araie, Hiroya; Suzuki, Iwane; Shiraiwa, Yoshihiro

    2015-03-01

    The hydrocarbons in cultures of marine haptophytes Emiliania huxleyi NIES837 and Gephyrocapsa oceanica NIES1315 were analyzed, and nonacosadienes and hentriacontadienes were detected as the major compounds in both strains. C29 and C31 monoenes and di-, tri- and tetra-unsaturated C33 alkenes were also detected as minor compounds but not C37 and C38 alkenes. The positions of the double bonds in the C29 and C31 alkenes were determined by mass spectrometry of their dimethyl disulfide (DMDS) adducts. Among the four C29 alkenes identified, the most abundant isomer was 2,20-nonacosadiene, and the other three compounds were 1,20-nonacosadiene, 3,20-nonacosadiene and 9-nonacosene, respectively. Hitherto, 2,20-nonacosadiene and 3,20-nonacosadiene were unknown to be natural products. The double bond at the n-9 (ω9) position in these C29 alkenes is hypothesized to be derived from precursors of unsaturated fatty acids possessing an n-9 double bond, such as (9Z)-9-octadecenoic acid. Nonacosadienes have the potential for being used as distinct haptophyte biomarkers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Hydrogen Bond Switching among Flavin and Amino Acid Side Chains in the BLUF Photoreceptor Observed by Ultrafast Infrared Spectroscopy

    PubMed Central

    Bonetti, Cosimo; Mathes, Tilo; van Stokkum, Ivo H. M.; Mullen, Katharine M.; Groot, Marie-Louise; van Grondelle, Rienk; Hegemann, Peter; Kennis, John T. M.

    2008-01-01

    BLUF domains constitute a recently discovered class of photoreceptor proteins found in bacteria and eukaryotic algae. BLUF domains are blue-light sensitive through a FAD cofactor that is involved in an extensive hydrogen-bond network with nearby amino acid side chains, including a highly conserved tyrosine and glutamine. The participation of particular amino acid side chains in the ultrafast hydrogen-bond switching reaction with FAD that underlies photoactivation of BLUF domains is assessed by means of ultrafast infrared spectroscopy. Blue-light absorption by FAD results in formation of FAD•− and a bleach of the tyrosine ring vibrational mode on a picosecond timescale, showing that electron transfer from tyrosine to FAD constitutes the primary photochemistry. This interpretation is supported by the absence of a kinetic isotope effect on the fluorescence decay on H/D exchange. Subsequent protonation of FAD•− to result in FADH• on a picosecond timescale is evidenced by the appearance of a N-H bending mode at the FAD N5 protonation site and of a FADH• C=N stretch marker mode, with tyrosine as the likely proton donor. FADH• is reoxidized in 67 ps (180 ps in D2O) to result in a long-lived hydrogen-bond switched network around FAD. This hydrogen-bond switch shows infrared signatures from the C-OH stretch of tyrosine and the FAD C4=O and C=N stretches, which indicate increased hydrogen-bond strength at all these sites. The results support a previously hypothesized rotation of glutamine by ∼180° through a light-driven radical-pair mechanism as the determinant of the hydrogen-bond switch. PMID:18708458

  5. Influence of preheating the bonding agent of a conventional three-step adhesive system and the light activated resin cement on dentin bond strength

    PubMed Central

    Holanda, Daniel Brandão Vilela; França, Fabiana Mantovani Gomes; do Amaral, Flávia Lucisano Botelho; Flório, Flávia Martão; Basting, Roberta Tarkany

    2013-01-01

    Aims: to evaluate the influence of preheating the bonding agent (Scotchbond Multipurpose Adhesive/3M ESPE) and the light-activated resin cement (RelyX Venner/3M ESPE) on dentin microtensile bond strength. Materials and Methods: The exposed flat dentin surface of 40 human third molars were randomly distributed into four groups for cementation (SR Adoro/Ivoclar Vivadent) (n = 10): G1-bond and resin cement, both at room temperature (22°C), G2-bond preheated to 58°C and cement at room temperature (22°C), G3-bond at room temperature (22°C) and the cement preheated to 58°C, G4-bond preheated to 58°C and cement preheated to 58°C. Sticks of dentin/block set measuring approximately 1 mm2 were obtained and used for the microtensile bond strength test. All sticks had their failure mode classified. Statistical analysis used: Factorial analysis of variance was applied, 2 × 2 (bond × cement) (P < 0.05). Results: Preheating the bonding agent (P = 0.8411) or the cement (P = 0.7155), yielded no significant difference. The interaction bond × cement was not significant (P = 0.9389). Conclusions: Preheating the bond and/or the light-activated resin cement did not influence dentin bond strength or fracture failure mode. PMID:24347889

  6. Phase transformations in SrAl2Si2O8 glass

    NASA Technical Reports Server (NTRS)

    Drummond, Charles H., III; Bansal, Narottam P.

    1992-01-01

    Bulk glass of SrAl2Si2O8 composition crystallized at temperatures below 1000 C into hexacelsian, a hexagonal phase which undergoes a reversible, rapid transformation to an orthorhombic phase at 758 C, and at higher temperatures crystallized as celsian, a monoclinic phase. The glass transition temperature and crystallization onset temperature were determined to be 883 C and 1086 C, respectively, from DSC at a heating rate of 20 C/min. Thermal expansion of the various phases and density and bend strengths of cold isostatically pressed glass powder bars, sintered at various temperatures, were measured. The kinetics of the hexacelsian-to-celsian transformation for SrAl2Si2O8 were studied. Hexacelsian flakes were isothermally heat treated at temperatures from 1025-1200 C for various times. Avrami plots were determined by quantitatively measuring the amount of monoclinic celsian formed at various times using x ray diffraction. The Avrami constant was determined to be 1.1, suggesting a diffusionless, one dimensional transformation mechanism. The activation energy was determined from an Arrhenius plot of 1n k vs. 1/T to be 125 kilocal/mole. This value is consistent with a mechanism which transforms the layered hexacelsian structure to a three dimensional framework celsian structure and involves the breaking of Si-O bonds.

  7. DPT tautomerization of the long A∙A Watson-Crick base pair formed by the amino and imino tautomers of adenine: combined QM and QTAIM investigation.

    PubMed

    Brovarets', Ol'ha O; Zhurakivsky, Roman O; Hovorun, Dmytro M

    2013-10-01

    Combining quantum-mechanical (QM) calculations with quantum theory of atoms in molecules (QTAIM) and using the methodology of sweeps of the energetic, electron-topological, geometric and polar parameters, which describe the course of the tautomerization along the intrinsic reaction coordinate (IRC), we showed for the first time that the biologically important A∙A base pair (Cs symmetry) formed by the amino and imino tautomers of adenine (A) tautomerizes via asynchronous concerted double proton transfer (DPT) through a transition state (TS), which is the A(+)∙A(-) zwitterion with the separated charge, with Cs symmetry. The nine key points, which can be considered as electron-topological "fingerprints" of the asynchronous concerted A∙A ↔A ∙A tautomerization process via the DPT, were detected and completely investigated along the IRC of the A∙A*↔A*∙A tautomerization. Based on the sweeps of the H-bond energies, it was found that intermolecular antiparallel N6Н⋯N6 (7.01 kcal mol(-1)) and N1H⋯N1 (6.88 kcal mol(-1)) H-bonds are significantly cooperative and mutually reinforce each other. It was shown for the first time that the A∙A ↔A ∙A tautomerization is assisted by the third C2H⋯HC2 dihydrogen bond (DHB), which, in contrast to the two others N6H⋯N6 and N1H⋯N1 H-bonds, exists within the IRC range from -2.92 to 2.92 Å. The DHB cooperatively strengthens, reaching its maximum energy 0.42 kcal mol(-1) at IRC = -0.52 Å and minimum energy 0.25 kcal mol(-1) at IRC = -2.92 Å, and is accompanied by strengthening of the two other aforementioned classical H-bonds. We established that the C2H⋯HC2 DHB completely satisfies the electron-topological criteria for H-bonding, in particular Bader's and all eight "two-molecule" Koch and Popelier's criteria. The positive value of the Grunenberg's compliance constant (5.203 Å/mdyn) at the TSA∙A ↔A ∙A proves that the C2H⋯HC2 DHB is a stabilizing interaction. NBO analysis predicts transfer of charge from σ(C2-H) bonding orbital to σ (H-C2) anti-bonding orbital; at this point, the stabilization energy E((2)) is equal to 0.19 kcal mol(-1) at the TSA∙A ↔A ∙A.

  8. C-N bond cleavage of anilines by a (salen)ruthenium(VI) nitrido complex.

    PubMed

    Man, Wai-Lun; Xie, Jianhui; Pan, Yi; Lam, William W Y; Kwong, Hoi-Ki; Ip, Kwok-Wa; Yiu, Shek-Man; Lau, Kai-Chung; Lau, Tai-Chu

    2013-04-17

    We report experimental and computational studies of the facile oxidative C-N bond cleavage of anilines by a (salen)ruthenium(VI) nitrido complex. We provide evidence that the initial step involves nucleophilic attack of aniline at the nitrido ligand of the ruthenium complex, which is followed by proton and electron transfer to afford a (salen)ruthenium(II) diazonium intermediate. This intermediate then undergoes unimolecular decomposition to generate benzene and N2.

  9. N-(2-Allyl-4-chloro-2H-indazol-5-yl)-4-meth-oxy-benzene-sulfonamide hemi-hydrate.

    PubMed

    Chicha, Hakima; Kouakou, Assoman; Rakib, El Mostapha; Saadi, Mohamed; El Ammari, Lahcen

    2013-01-01

    The fused five- and six-membered rings in the title compound, C17H16ClN3O3S·0.5H2O, are practically coplanar, with the maximum deviation from the mean plane being 0.057 (3) Å for the C atom bound to the exocyclic N atom. The indazole system makes a dihedral angle of 66.18 (12)° with the plane through the benzene ring, and it is nearly perpendicular to the allyl group, as indicated by the N-N-C-C torsion angle of 79.2 (3)°. In the crystal, the water mol-ecule, lying on a twofold axis, forms O-H⋯N and accepts N-H⋯O hydrogen bonds. Additional C-H⋯O hydrogen bonds contribute to the formation of a chain along the b-axis direction.

  10. Reaction of the thermo-labile triazenide Na[tBu3SiNNNSiMe3] with CO2: formation of the imido carbonate (tBu3SiO)(Me3SiO)C[double bond, length as m-dash]N-SitBu3 and carbamine acid (tBu3SiO)CONH2.

    PubMed

    Lerner, H-W; Bolte, M; Wagner, M

    2017-07-11

    The thermo-labile triazenide Na[tBu 3 SiNNNSiMe 3 ] was prepared by the reaction of Me 3 SiN 3 with Na(thf) 2 [SitBu 3 ] in pentane at -78 °C. Treatment of Na[tBu 3 SiNNNSiMe 3 ] with an excess of carbon dioxide in pentane at -78 °C yielded the imido carbonate (tBu 3 SiO)(Me 3 SiO)C[double bond, length as m-dash]N-SitBu 3 and the carbamine acid (tBu 3 SiO)CONH 2 along with other products. From the reaction solution we could isolate the imido carbonate (tBu 3 SiO)(Me 3 SiO)C[double bond, length as m-dash]N-SitBu 3 and carbamine acid (tBu 3 SiO)CONH 2 . At first single crystals of the carbamine acid (tBu 3 SiO)CONH 2 (triclinic, space group P1[combining macron]) were grown from this solution at room temperature. A second crop of crystals were obtained by concentrating the solution. The second charge consisted of the imido carbonate (tBu 3 SiO)(Me 3 SiO)C[double bond, length as m-dash]N-SitBu 3 (monoclinic, space group P2 1 /n).

  11. Design of Organic Nonlinear Optical Materials

    DTIC Science & Technology

    1990-06-01

    Cocrystals 6) "Dinitrourea Polymorphs with SHG Properties" 7) "Symmetry Bias in H-Bonded Crystals" Part II a-c. Attached d. Cocrystallization can be used to...environment of PNA. PNA Cocrystals and Their Crystal Structures I PNA cocrystallizes with the following guest molecules: O-N - C N NO2 NO2 0 PhO=P-Ph...Refereed Journals (and not yet publishe) "Hydrogen-Bond Directed Cocrystallization and Molecular Recognition Properties of Diarylurea," M. C. Etter, Zofia

  12. Synthesis, structure, computational and in-silico anticancer studies of N,N-diethyl-N‧-palmitoylthiourea

    NASA Astrophysics Data System (ADS)

    Asegbeloyin, Jonnie Niyi; Oyeka, Ebube Evaristus; Okpareke, Obinna; Ibezim, Akachukwu

    2018-02-01

    A new potential ONS donor ligand N,N-diethyl-N‧-palmitoylthiourea (PACDEA) with the molecular formular C21H42N2OS has been synthesized and characterized by ESI-MS, UV, FTIR 1H and 13C NMR spectroscopy and single X-ray crystallography. The asymmetric molecules crystallized in the centrosymmetric structure of monoclinic crystal system with space group P21/c. In the crystal structure of the compound, molecules are linked in a continuous chain by intermolecular Nsbnd H⋯Odbnd C hydrogen bonds, which stabilized the crystal structure. The palmitoyl moiety and N (2)-ethyl group lie on a plane, while the thiocarbonyl moiety is twisted and lying othorgonal to the plane. Non-covalent interaction (NCI) analysis on the hydrogen bonded solid state structure of the molecule revealed the presence of a significant number of non-covalent interactions including intermolecular hydrogen bonding interactions, Csbnd Hsbnd -lone pair interactions, weak Van der Waals interactions, and steric/ring closure interactions. The NCI analysis also showed the presence of intramolecular stabilizing Csbnd H⋯Odbnd C and Csbnd H⋯Sdbnd C interactions. Docking simulation revealed that the compound interacted favourably with ten selected validated anticancer drug targets, which is an indication that the compound could possess some anticancer properties.

  13. Estimation of strength in different extra Watson-Crick hydrogen bonds in DNA double helices through quantum chemical studies.

    PubMed

    Bandyopadhyay, D; Bhattacharyya, D

    2006-10-15

    It was shown earlier, from database analysis, model building studies, and molecular dynamics simulations that formation of cross-strand bifurcated or Extra Watson-Crick hydrogen (EWC) bonds between successive base pairs may lead to extra rigidity to DNA double helices of certain sequences. The strengths of these hydrogen bonds are debatable, however, as they do not have standard linear geometry criterion. We have therefore carried out detailed ab initio quantum chemical studies using RHF/6-31G(2d,2p) and B3LYP/6-31G(2p,2d) basis sets to determine strengths of several bent hydrogen bonds with different donor and acceptors. Interaction energy calculations, corrected for the basis set superposition errors, suggest that N-H...O type bent EWC hydrogen bonds are possible along same strands or across the strands between successive base pairs, leading to significant stability (ca. 4-9 kcal/mol). The N-H...N and C-H...O type interactions, however, are not so stabilizing. Hence, consideration of EWC N-H...O H-bonds can lead to a better understanding of DNA sequence directed structural features. Copyright (c) 2006 Wiley Periodicals, Inc.

  14. The structure, surface topography and mechanical properties of Si-C-N films fabricated by RF and DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Shi, Zhifeng; Wang, Yingjun; Du, Chang; Huang, Nan; Wang, Lin; Ning, Chengyun

    2011-12-01

    Silicon carbon nitride thin films were deposited on Co-Cr alloy under varying deposition conditions such as sputtering power and the partial pressure ratio of N2 to Ar by radio frequency and direct current magnetron sputtering techniques. The chemical bonding configurations, surface topography and hardness were characterized by means of X-ray photoelectron spectroscopy, atomic force microscopy and nano-indentation technique. The sputtering power exhibited important influence on the film composition, chemical bonding configurations and surface topography, the electro-negativity had primary effects on chemical bonding configurations at low sputtering power. A progressive densification of the film microstructure occurring with the carbon fraction was increased. The films prepared by RF magnetron sputtering, the relative content of the Si-N bond in the films increased with the sputtering power increased, and Si-C and Si-Si were easily detachable, and C-O, N-N and N-O on the film volatile by ion bombardment which takes place very frequently during the film formation process. With the increase of sputtering power, the films became smoother and with finer particle growth. The hardness varied between 6 GPa and 11.23 GPa depending on the partial pressure ratio of N2 to Ar. The tribological characterization of Co-Cr alloy with Si-C-N coating sliding against UHMWPE counter-surface in fetal bovine serum, shows that the wear resistance of the Si-C-N coated Co-Cr alloy/UHMWPE sliding pair show much favourable improvement over that of uncoated Co-Cr alloy/UHMWPE sliding pair. This study is important for the development of advanced coatings with tailored mechanical and tribological properties.

  15. Intramolecular CH···O hydrogen bonds in the AI and BI DNA-like conformers of canonical nucleosides and their Watson-Crick pairs. Quantum chemical and AIM analysis.

    PubMed

    Yurenko, Yevgen P; Zhurakivsky, Roman O; Samijlenko, Svitlana P; Hovorun, Dmytro M

    2011-08-01

    The aim of this work is to cast some light on the H-bonds in double-stranded DNA in its AI and BI forms. For this purpose, we have performed the MP2 and DFT quantum chemical calculations of the canonical nucleoside conformers, relative to the AI and BI DNA forms, and their Watson-Crick pairs, which were regarded as the simplest models of the double-stranded DNA. Based on the atoms-in-molecules analysis (AIM), five types of the CH···O hydrogen bonds, involving bases and sugar, were detected numerically from 1 to 3 per a conformer: C2'H···O5', C1'H···O2, C6H···O5', C8H···O5', and C6H···O4'. The energy values of H-bonds occupy the range of 2.3-5.6 kcal/mol, surely exceeding the kT value (0.62 kcal/mol). The nucleoside CH···O hydrogen bonds appeared to "survive" turns of bases against the sugar, sometimes in rather large ranges of the angle values, pertinent to certain conformations, which points out to the source of the DNA lability, necessary for the conformational adaptation in processes of its functioning. The calculation of the interactions in the dA·T nucleoside pair gives evidence, that additionally to the N6H···O4 and N1···N3H canonical H-bonds, between the bases adenine and thymine the third one (C2H···O2) is formed, which, though being rather weak (about 1 kcal/mol), satisfies the AIM criteria of H-bonding and may be classified as a true H-bond. The total energy of all the CH···O nontraditional intramolecular H-bonds in DNA nucleoside pairs appeared to be commensurable with the energy of H-bonds between the bases in Watson-Crick pairs, which implies their possible important role in the DNA shaping.

  16. Reductive amination of glutaraldehyde 2,4-dinitrophenylhydrazone using 2-picoline borane and high-performance liquid chromatographic analysis.

    PubMed

    Uchiyama, Shigehisa; Sakamoto, Hironari; Ohno, Akiko; Inaba, Yohei; Nakagome, Hideki; Kunugita, Naoki

    2012-09-21

    A typical method for the measurement of glutaraldehyde (GLA) employs 2,4-dinitrophenylhydrazine (DNPH) to form GLA-DNPhydrazone derivatives. However, this method is subject to analytical errors because GLA-DNPhydrazone is a quaternary bis-derivative and forms three geometric isomers (E-E, E-Z and Z-Z) as a result of the two C[double bond, length as m-dash]N double bonds. To overcome this issue, a method for transforming the C[double bond, length as m-dash]N double bond into a C-N single bond, using reductive amination of DNPhydrazone derivatives, has been applied. The amination reaction of GLA-DNPhydrazones with 2-picoline borane is accelerated with catalytic amounts of acid and is completed within 10 minutes in the presence of 100 mmol L(-1) phosphoric acid. Reduction of GLA-DNPhydrazone by 2-picoline borane is unique and results in the formation of N-(2,4-dinitrophenyl)-1-piperidinamine (DNPPA). NMR and LC-APCI-MS data confirmed the product identification. DNPPA is very stable and did not change when stored for at least four weeks at room temperature. DNPPA has excellent solubility of 14.6 g L(-1) at 20 °C in acetonitrile. The absorption maximum wavelength and the molar absorptivity of DNPPA were 351 nm and 4.2 × 10(4) L mol(-1) cm(-1) respectively. Complete separation between the reduced forms of C1-C10 aldehyde DNPhydrazones, including DNPPA, can be achieved by operating the reversed-phase high-performance liquid chromatograph at 351 nm in gradient mode using a C18 amide column. The reductive amination method for GLA overcomes analytical errors caused by E-E, E-Z and Z-Z geometrical isomers.

  17. Reaction mechanisms and kinetics of the elimination processes of 2-chloroethylsilane and derivatives: A DFT study using CTST, RRKM, and BET theories

    NASA Astrophysics Data System (ADS)

    Shiroudi, Abolfazl; Zahedi, Ehsan; Oliaey, Ahmad Reza; Deleuze, Michael S.

    2017-03-01

    The thermal decomposition kinetics of 2-chloroethylsilane and derivatives in the gas phase has been studied computationally using density functional theory, along with various exchange-correlation functionals (UM06-2x and ωB97XD) and the aug-cc-pVTZ basis set. The calculated energy profile has been supplemented with calculations of kinetic rate constants under atmospheric pressure and in the fall-off regime, using transition state theory (TST) and statistical Rice-Ramsperger-Kassel-Marcus (RRKM) theory. Activation energies and rate constants obtained using the UM06-2x/aug-cc-pVTZ approach are in good agreement with the experimental data. The decomposition of 2-chloroethyltriethylsilane species into the related products [C2H4 + Et3SiCl] is characterized by 6 successive structural stability domains associated to the sequence of catastrophes C8H19SiCl: 6-C†FCC†[FF]-0: C6H15SiCl + C2H4. Breaking of Si-C bonds and formation of Si-Cl bonds occur in the vicinity of the transition state.

  18. Sulfonamidation of Aryl and Heteroaryl Halides through Photosensitized Nickel Catalysis.

    PubMed

    Kim, Taehoon; McCarver, Stefan J; Lee, Chulbom; MacMillan, David W C

    2018-03-19

    Herein we report a highly efficient method for nickel-catalyzed C-N bond formation between sulfonamides and aryl electrophiles. This technology provides generic access to a broad range of N-aryl and N-heteroaryl sulfonamide motifs, which are widely represented in drug discovery. Initial mechanistic studies suggest an energy-transfer mechanism wherein C-N bond reductive elimination occurs from a triplet excited Ni II complex. Late-stage sulfonamidation in the synthesis of a pharmacologically relevant structure is also demonstrated. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Crystal structures of isomeric 3,5-di-chloro-N-(2,3-di-methyl-phen-yl)benzene-sulfonamide, 3,5-di-chloro-N-(2,6-di-methyl-phen-yl)benzene-sulfonamide and 3,5-di-chloro-N-(3,5-di-methyl-phen-yl)benzene-sulfonamide.

    PubMed

    Shakuntala, K; Naveen, S; Lokanath, N K; Suchetan, P A

    2017-05-01

    The crystal structures of three isomeric compounds of formula C 14 H 13 Cl 2 NO 2 S, namely 3,5-di-chloro- N -(2,3-di-methyl-phen-yl)-benzene-sulfonamide (I), 3,5-di-chloro- N -(2,6-di-methyl-phen-yl)benzene-sulfonamide (II) and 3,5-di-chloro- N -(3,5-di-methyl-phen-yl)benzene-sulfonamide (III) are described. The mol-ecules of all the three compounds are U-shaped with the two aromatic rings inclined at 41.3 (6)° in (I), 42.1 (2)° in (II) and 54.4 (3)° in (III). The mol-ecular conformation of (II) is stabilized by intra-molecular C-H⋯O hydrogen bonds and C-H⋯π inter-actions. The crystal structure of (I) features N-H⋯O hydrogen-bonded R 2 2 (8) loops inter-connected via C (7) chains of C-H⋯O inter-actions, forming a three-dimensional architecture. The structure also features π-π inter-actions [ Cg ⋯ Cg = 3.6970 (14) Å]. In (II), N-H⋯O hydrogen-bonded R 2 2 (8) loops are inter-connected via π-π inter-actions [inter-centroid distance = 3.606 (3) Å] to form a one-dimensional architecture running parallel to the a axis. In (III), adjacent C (4) chains of N-H⋯O hydrogen-bonded mol-ecules running parallel to [010] are connected via C-H⋯π inter-actions, forming sheets parallel to the ab plane. Neighbouring sheets are linked via offset π-π inter-actions [inter-centroid distance = 3.8303 (16) Å] to form a three-dimensional architecture.

  20. The role of amino acid side chains in stabilizing dipeptides: the laser ablation Fourier transform microwave spectrum of Ac-Val-NH2.

    PubMed

    León, I; Alonso, E R; Mata, S; Cabezas, C; Rodríguez, M A; Grabow, J-U; Alonso, J L

    2017-09-20

    The steric effects imposed by the isopropyl group of valine in the conformational stabilization of the capped dipeptide N-acetyl-l-valinamide (Ac-Val-NH 2 ) have been studied by laser ablation molecular beam Fourier transform microwave (LA-MB-FTMW) spectroscopy. The rotational and quadrupole coupling constants of the two 14 N nuclei determined in this work show that this dipeptide exists as a mixture of C 7 and C 5 conformers in the supersonic expansion. The conformers are stabilized by a C[double bond, length as m-dash]OH-N intramolecular hydrogen bond closing a seven- or a five-membered ring, respectively. The observation of both conformers is in good agreement with previous results on the related dipeptides containing different residues, confirming that the polarity/non-polarity of the side chains of the amino acid is responsible for the conformational locking/unlocking. The voluminous isopropyl group is not able to prevent the less stable C 5 conformer from forming but it destabilizes the C[double bond, length as m-dash]OH-N interaction.

  1. Connecting Dopant Bond Type with Electronic Structure in N-Doped Graphene

    DTIC Science & Technology

    2012-06-29

    dopant forms one σ-bond with its C neighbor, forms σ-bonds to two H (or one N-lone-pair orbital in the unhydrogenated case). Two electrons go into the...pyridinic groups (Table 1), the additional charge from nitrogen is forced to go to the extended carbon π-network, essentially neutralizing the p-doping...T.; Bouchet-Fabre, B.; Granier, A.; Turban, G. XPS and NEXAFS characterisation of plasma deposited vertically aligned N-doped MWCNT . Diamond Relat

  2. Crystal structure of methyl (4R)-4-(4-meth-oxy-benzo-yl)-4-{[(1R)-1-phenyl-eth-yl]carbamo-yl}butano-ate.

    PubMed

    Manchado, Alejandro; Salgado, Mateo M; Vicente, Álvaro; Díez, David; Sanz, Francisca; Garrido, Narciso M

    2017-04-01

    The title compound, C 22 H 25 NO 5 , was prepared by CAN [cerium(IV) ammonium nitrate] oxidation of the corresponding β-lactam. The dihedral angle between the benzene rings is 13.3 (4)° and the C-N-C(=O)-C torsion angle is 176.1 (6)°. In the crystal, amide- C (4) N-H⋯O and reinforcing C-H⋯O hydrogen bonds link the mol-ecules into infinite [010] chains. Further C-H⋯O hydrogen bonds cross-link the chains in the c -axis direction.

  3. Evaluation of coal-related model compounds using a tandem mass spectrometry.

    PubMed

    Li, Guo-Sheng; Dong, Xueming; Fan, Xing; You, Chun-Yan; Wu, Ge; Zhao, Yun-Peng; Lu, Yao; Wei, Xian-Yong; Ma, Feng-Yun

    2018-05-08

    Gas chromotography/mass spectrometry (GC/MS) is a routine and basic instrumental method for the analysis of complex coal conversion products in chemical industry. To further enhance practical potentials of GC/MS in chemical industry, a tandem MS method for the selection of ion pair applied in monitoring coal conversions was established by using GC/quadrupole time-of-flight MS (GC/Q-TOF MS). The corresponding fragmentation pathways were explored and suitable ion pairs were screened. Fourteen coal-related model compounds (CRMCs) were analyzed using a GC/Q-TOF MS with different collision induced dissociation (CID) energies (5-20 eV). The fragmentation pathways can offer a better understanding of chemical bond breaking, hydrogen transfer, rearrangement reactions and elimination of neutral fragments for CRMCs during the CID process. The precursor ions of aromatic hydrocarbons without alkyl chain were hard to fragment with a CID energy of 20 eV. But aromatic hydrocarbons with branched chains were prone to fragment via the loss of alkyl chains and further fragmented through ring-open reactions. Compared to C alk -C ar bond, C ar -C ar bond was hard to fragment duo to its high bond dissociation energy. The existence of heteroatoms facilitated fragmentation that was conducive to screening ion pair. The CID technique of GC/Q-TOF MS will contribute to the studies on the organic composition of coals and building monitoring methods for coal conversions via fragmentation and ion pair selection. This article is protected by copyright. All rights reserved.

  4. FT-IR and computer modeling study of hydrogen bonding in N-alkyl acrylamide-toluene binary mixtures

    NASA Astrophysics Data System (ADS)

    Rumyantsev, Misha; Kazantsev, Oleg A.; Kamorina, Sofia I.; Kamorin, Denis M.; Sivokhin, Alexey P.

    2016-10-01

    Degree of hydrogen bonding driven self-association of N-(n-butyl)acrylamide, N-(n-octyl)acrylamide, N-(sec-octyl)acrylamide and N-(tert-octyl)acrylamide in toluene was investigated using IR spectroscopy and computer modeling methods. Consistent results were demonstrated in the treatment of the Amide-I (νC=O), Amide-II (δN-H and νC-N) and Amide-A (νN-H) absorption bands in IR spectra. Thus, the content of non-bonded (free) amide groups decreases from 83-98% to 8-20% and the content of linear polyassociates increases to 80-90% with an increase in monomer concentration from 0.5 wt% to 50 wt%. The content of cyclic dimers was equal to the value between 5 and 10% regardless of the initial monomer concentration. Dependences of the association degree and the content of the linear polyassociates on the concentration were found to be similar for all of the studied amides.

  5. B-H Bond Activation by an Amidinate-Stabilized Amidosilylene: Non-Innocent Amidinate Ligand.

    PubMed

    Khoo, Sabrina; Shan, Yu-Liang; Yang, Ming-Chung; Li, Yongxin; Su, Ming-Der; So, Cheuk-Wai

    2018-05-21

    The activation of B-H and B-Cl bonds in boranes by base-stabilized low-valent silicon compounds is described. The reaction of the amidinato amidosilylene-borane adduct [L{Ar(Me 3 Si)N}SiBH 3 ] [1; L = PhC(N tBu) 2 , and Ar = 2,6- iPr 2 C 6 H 3 ] with MeOTf in toluene at room temperature formed [L{Ar(Me 3 Si)N}SiBH 2 OTf] (2). [LSiN(SiMe 3 )Ar] in compound 2 then underwent a B-H bond activation with BH 2 OTf in refluxing toluene to afford the B-H bond activation product [LB(H)Si(H)(OTf){N(SiMe 3 )Ar}] (3). On the other hand, when compound 2 was reacted with 4-dimethylaminopyridine in refluxing toluene, another B-H bond activation product [(μ-κ1:κ1-L)B(H)(DMAP)Si(H){N(Ar)SiMe 3 }]OTf (4) was afforded. Mechanistic studies show that "(μ-κ1:κ1-L)B(H)(OTf)Si(H){N(Ar)SiMe 3 }" (2A) is the key intermediate in the reactions mentioned above. The formation of 2A is further evidenced by the activation of the B-Cl bond in PhBCl 2 by the amidinato silicon(I) dimer [LSi:] 2 to form the B-Cl bond activation product [(μ-κ1:κ1-L)B(Cl)(Ph)Si(Cl)] 2 (6). Compounds 2-4 and 6 were characterized by nuclear magnetic resonance spectroscopy and X-ray crystallography.

  6. Cis Effects in the Cobalt Corrins. 1. Crystal Structures of 10-Chloroaquacobalamin Perchlorate, 10-Chlorocyanocobalamin, and 10-Chloromethylcobalamin.

    PubMed

    Brown, Kenneth L.; Cheng, Shifa; Zou, Xiang; Zubkowski, Jeffrey D.; Valente, Edward J.; Knapton, Leanne; Marques, Helder M.

    1997-08-13

    The crystal structures of 10-chloroaquacobalamin perchlorate hydrate (10-Cl-H(2)OCbl.ClO(4)) (Mo Kalpha, 0.710 73 Å, monoclinic system, P2(1), a = 11.922(4) Å, b = 26.592(10) Å, c = 13.511(5) Å, beta = 93.05(3) degrees, 10 535 independent reflections, R(1) = 0.0426), 10-chlorocyanocobalamin-acetone hydrate (10-Cl-CNCbl) (Mo Kalpha, 0.710 73 Å, orthorhombic system, P2(1)2(1)2(1), a = 16.24(3) Å, b = 21.85(5) Å, c = 26.75(8) Å, 7699 independent reflections, R(1) = 0.0698), and 10-chloromethylcobalamin-acetone hydrate (10-Cl-MeCbl) (Mo Kalpha, 0.71073 Å, orthorhombic system, P2(1)2(1)2(1), a = 16.041(14) Å, b = 22.13(2) Å, c = 26.75(4) Å, 6792 independent reflections, R(1) = 0.0554), in which the C10 meso H is substituted by Cl, are reported. An unusual feature of the structures is disorder in the C ring, consistent with a two-site occupancy in which the major conformation has the C46 methyl group in the usual position, "upwardly" axial, and the C47 methyl group equatorial, while in the minor conformation both are pseudoequatorial, above and below the corrin ring. (13)C NMR chemical shifts of C46, C47, C12, and C13 suggest that the C ring disorder may persist in solution as a ring flip. Since molecular dynamics simulations fail to reveal any population of the minor conformation, the effect is likely to be electronic rather than steric. The axial bond lengths in 10-Cl-MeCbl are very similar to those in MeCbl (d(Co)(-)(C) = 1.979(7) vs 1.99(2); to 5,6-dimethylbenzimidazole, d(Co)(-)(NB3) = 2.200(7) vs 2.19(2)), but the bonds to the four equatorial N donors, d(Co)(-)(N(eq)), are on average 0.05 Å shorter. In 10-Cl-CNCbl, d(Co)(-)(C) and d(Co)(-)(NB3) are longer (by 0.10(2) and 0.03(1) Å, respectively) than the bond lengths observed in CNCbl itself, while conversely, the C-N bond length is shorter by 0.06(2) Å, but there is little difference in d(Co)(-)(N(eq)). The Co-O bond length to coordinated water in 10-Cl-H(2)OCbl(+) is very similar to that found in H(2)OCbl(+) itself, but the d(Co)(-)(NB3) bond is longer (1.967 vs1.925(2) Å), while the average d(Co)(-)(N(eq)) is very similar. The coordinated water molecule in 10-Cl-H(2)OCbl(+) is hydrogen bonded to the c side chain carbonyl oxygen, as in H(2)OCbl(+). NMR observations indicate that the H bond between coordinated H(2)O and the c side chain amide persists in solution. The equilibrium constant, K(Co), for coordination of bzm to Co(III) is smaller in 10-Cl-MeCbl and 10-Cl-CNCbl than in their C10-unsubstituted analogs (181 vs 452; 4.57 x 10(3) vs 3.35 x 10(5)), but could not be determined for 10-Cl-H(2)OCbl because hydrolysis of the phosphodiester is competitive with the establishment of the base-off equilibrium. Substitution of H by Cl at C10 causes the bands in the electronic spectrum of 10-Cl-XCbl complexes to move to lower energy, which is consistent with an increase in electron density in the corrin pi-conjugated system. This increased electron density is not due to greater electron donation from the axial ligand as bonds between these and the metal are either longer (not shorter) or unchanged, and it most probably arises from pi-donation to the corrin by Cl at C10. As the donor power of X increases (H(2)O < CN(-) < Me), the corrin ring becomes more flexible to deformation, and the number of bond lengths and bond angles that are significantly different in XCbl and 10-Cl-XCbl increases; importantly, the C10-Cl bond length, d(C10)(-)(Cl), increases as well. Thus, despite the fact that chlorine is an inductively electron withdrawing substituent, its resonance electron donation is the more important effect on electron distribution in the corrin ring. Mulliken charges obtained from semiempirical RHF-SCF MO calculations using the ZINDO/1 model on XCbl and their 10-Cl analogs at the crystal structure geometry are shown to correlate reasonably well with (13)C NMR shifts and may be used to determine the pattern of electron distribution in these complexes. Substitution by Cl at C10 causes an increase in charge density at Co when X = H(2)O and CN(-), while the charge density on the four equatorial N donors remains virtually unchanged, but a decrease when X = Me, while the charge density on the equatorial N donors also decreases. In response, d(Co)(-)(NB3) increases in the first two complexes but the equatorial bond lengths remain virtually unchanged, while d(Co)(-)(NB3) remains unchanged and the average d(Co)(-)(N(eq)) decreases in 10-Cl-MeCbl. Furthermore, the partial charge on chlorine increases as the donor power of X increases. The small decrease in the pK(a) of coordinated H(2)O in 10-Cl-H(2)OCbl(+) compared to H(2)OCbl(+) itself (7.65 vs 8.09) is due to a decreased charge density on oxygen in 10-Cl-OHCbl compared to OHCbl. The picture that emerges, therefore, is of competitive electron donation by X and Cl toward the corrin system. In 10-Cl-CNCbl, the decrease in the C&tbd1;N bond length as Co-C increases compared to CNCbl suggests that dpi-ppi bonding between cobalt and cyanide is important. (13)C and (15)N NMR observations on 10-Cl-(13)C(15)NCbl are consistent with these effects.

  7. On the Reaction Mechanism of Acetaldehyde Decomposition on Mo(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, Donghai; Karim, Ayman M.; Wang, Yong

    2012-02-16

    The strong Mo-O bond strength provides promising reactivity of Mo-based catalysts for the deoxygenation of biomass-derived oxygenates. Combining the novel dimer saddle point searching method with periodic spin-polarized density functional theory calculations, we investigated the reaction pathways of a acetaldehyde decomposition on the clean Mo(110) surface. Two reaction pathways were identified, a selective deoxygenation and a nonselective fragmentation pathways. We found that acetaldehyde preferentially adsorbs at the pseudo 3-fold hollow site in the η2(C,O) configuration on Mo(110). Among four possible bond (β-C-H, γ-C-H, C-O and C-C) cleavages, the initial decomposition of the adsorbed acetaldehyde produces either ethylidene via the C-Omore » bond scission or acetyl via the β-C-H bond scission while the C-C and the γ-C-H bond cleavages of acetaldehyde leading to the formation of methyl (and formyl) and formylmethyl are unlikely. Further dehydrogenations of ethylidene into either ethylidyne or vinyl are competing and very facile with low activation barriers of 0.24 and 0.31 eV, respectively. Concurrently, the formed acetyl would deoxygenate into ethylidyne via the C-O cleavage rather than breaking the C-C or the C-H bonds. The selective deoxygenation of acetaldehyde forming ethylene is inhibited by relatively weaker hydrogenation capability of the Mo(110) surface. Instead, the nonselective pathway via vinyl and vinylidene dehydrogenations to ethynyl as the final hydrocarbon fragment is kinetically favorable. On the other hand, the strong interaction between ethylene and the Mo(110) surface also leads to ethylene decomposition instead of desorption into the gas phase. This work was financially supported by the National Advanced Biofuels Consortium (NABC). Computing time was granted by a user project (emsl42292) at the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). This work was financially supported by the National Advanced Biofuels Consortium (NABC). Computing time was granted by a user project (emsl42292) at the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). The EMSL is a U.S. Department of Energy (DOE) national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and supported by the DOE Office of Biological and Environmental Research. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.« less

  8. N-(1,3-Thia­zol-2-yl)benzamide

    PubMed Central

    Zonouzi, Afsaneh; Mirzazadeh, Roghieh; Rahmani, Hossein; Ng, Seik Weng

    2009-01-01

    The title compound, C10H8N2OS, features a nonplanar mol­ecule [dihedral angle between the two aromatic rings = 43.6 (1)°]. Two mol­ecules are linked by N—H⋯N hydrogen bonds about a centre of inversion, giving rise to a hydrogen-bonded dimer. PMID:21582538

  9. The crystal structure of a new ferrocenyl P,N ligand: 1-[(2,2-di-methyl-hydrazin-1-yl-idene)meth-yl]-1'-(di-phenyl-phospho-rothio-yl)ferrocene.

    PubMed

    Mouas, Toma Nardjes; Daran, Jean-Claude; Merazig, Hocine; Manoury, Eric

    2018-02-01

    The asymmetric unit of the title compound, [Fe(C 8 H 11 N 2 )(C 17 H 14 PS)], contains two independent mol-ecules ( A and B ) with very similar conformations. Each mol-ecule is built up from a ferrocene unit substituted in the 1 and 1' positions by a protected sulfur di-phenyl-phosphine and by a di-methyl-hydrazine, -C(H)=N-N(CH 3 ) 2 , fragment. The two independent mol-ecules are linked by a C-H⋯N hydrogen bond. In the crystal, the A - B dimer is linked by a pair of C-H⋯S hydrogen bonds, forming a centrosymmetric four-mol-ecule arrangement. These units are linked by C-H⋯π inter-actions, forming a supra-molecular three-dimensional structure.

  10. Copper-catalyzed aerobic oxidative N-S bond functionalization for C-S bond formation: regio- and stereoselective synthesis of sulfones and thioethers.

    PubMed

    Li, Xianwei; Xu, Yanli; Wu, Wanqing; Jiang, Chang; Qi, Chaorong; Jiang, Huanfeng

    2014-06-23

    A regio- and stereoselective synthesis of sulfones and thioethers by means of Cu(I)-catalyzed aerobic oxidative N-S bond cleavage of sulfonyl hydrazides, followed by cross-coupling reactions with alkenes and aromatic compounds to form the C sp 2-S bond, is described herein. N2 and H2O are the byproducts of this transformation, thus offering an environmentally benign process with a wide range of potential applications in organic synthesis and medicinal chemistry. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Hydrogen Bonding Interaction between Atmospheric Gaseous Amides and Methanol.

    PubMed

    Zhao, Hailiang; Tang, Shanshan; Xu, Xiang; Du, Lin

    2016-12-30

    Amides are important atmospheric organic-nitrogen compounds. Hydrogen bonded complexes of methanol (MeOH) with amides (formamide, N -methylformamide, N , N -dimethylformamide, acetamide, N -methylacetamide and N , N -dimethylacetamide) have been investigated. The carbonyl oxygen of the amides behaves as a hydrogen bond acceptor and the NH group of the amides acts as a hydrogen bond donor. The dominant hydrogen bonding interaction occurs between the carbonyl oxygen and the OH group of methanol as well as the interaction between the NH group of amides and the oxygen of methanol. However, the hydrogen bonds between the CH group and the carbonyl oxygen or the oxygen of methanol are also important for the overall stability of the complexes. Comparable red shifts of the C=O, NH- and OH-stretching transitions were found in these MeOH-amide complexes with considerable intensity enhancement. Topological analysis shows that the electron density at the bond critical points of the complexes fall in the range of hydrogen bonding criteria, and the Laplacian of charge density of the O-H∙∙∙O hydrogen bond slightly exceeds the upper value of the Laplacian criteria. The energy decomposition analysis further suggests that the hydrogen bonding interaction energies can be mainly attributed to the electrostatic, exchange and dispersion components.

  12. Hydrogen Bonding Interaction between Atmospheric Gaseous Amides and Methanol

    PubMed Central

    Zhao, Hailiang; Tang, Shanshan; Xu, Xiang; Du, Lin

    2016-01-01

    Amides are important atmospheric organic–nitrogen compounds. Hydrogen bonded complexes of methanol (MeOH) with amides (formamide, N-methylformamide, N,N-dimethylformamide, acetamide, N-methylacetamide and N,N-dimethylacetamide) have been investigated. The carbonyl oxygen of the amides behaves as a hydrogen bond acceptor and the NH group of the amides acts as a hydrogen bond donor. The dominant hydrogen bonding interaction occurs between the carbonyl oxygen and the OH group of methanol as well as the interaction between the NH group of amides and the oxygen of methanol. However, the hydrogen bonds between the CH group and the carbonyl oxygen or the oxygen of methanol are also important for the overall stability of the complexes. Comparable red shifts of the C=O, NH- and OH-stretching transitions were found in these MeOH–amide complexes with considerable intensity enhancement. Topological analysis shows that the electron density at the bond critical points of the complexes fall in the range of hydrogen bonding criteria, and the Laplacian of charge density of the O–H∙∙∙O hydrogen bond slightly exceeds the upper value of the Laplacian criteria. The energy decomposition analysis further suggests that the hydrogen bonding interaction energies can be mainly attributed to the electrostatic, exchange and dispersion components. PMID:28042825

  13. NMR Investigations of Noncovalent Carbon Tetrel Bonds. Computational Assessment and Initial Experimental Observation.

    PubMed

    Southern, Scott A; Bryce, David L

    2015-12-10

    Group IV tetrel elements may act as tetrel bond donors, whereby a region of positive electrostatic potential (σ-hole) interacts with a Lewis base. The results of calculations of NMR parameters are reported for a series of model compounds exhibiting tetrel bonding from a methyl carbon to the oxygen or nitrogen atoms in various functional groups. The (13)C chemical shift (δiso) and the (1c)J((13)C,Y) coupling (Y = (17)O, (15)N) across the tetrel bond are recorded as a function of geometry. The sensitivity of the NMR parameters to the noncovalent interaction is demonstrated via an increase in δiso and in |(1c)J((13)C,Y)| as the tetrel bond shortens. Gauge-including projector-augmented wave density functional theory (DFT) calculations of δiso are reported for crystals that exhibit tetrel bonding in the solid state. Experimental δiso values for solid sarcosine and its tetrel-bonded salts corroborate the computational findings. This work offers new insights into tetrel bonding and facilitates the incorporation of tetrel bonds as restraints in NMR crystallographic structure refinement.

  14. Understanding peptide competitive inhibition of botulinum neurotoxin A binding to SV2 protein via molecular dynamics simulations.

    PubMed

    Chang, Shan; He, Hong-Qiu; Shen, Lin; Wan, Hua

    2015-10-01

    Botulinum neurotoxins (BoNTs) are known as the most toxic natural substances. Synaptic vesicle protein 2 (SV2) has been proposed to be a protein receptor for BoNT/A. Recently, two short peptides (BoNT/A-A2 and SV2C-A3) were designed to inhibit complex formation between the BoNT/A receptor-binding domain (BoNT/A-RBD) and the synaptic vesicle protein 2C luminal domain (SV2C-LD). In this article, the two peptide complex systems are studied by molecular dynamics (MD) simulations. The structural stability analysis indicates that BoNT/A-A2 system is more stable than SV2C-A3 system. The conformational analysis implies that the β-sheet in BoNT/A-A2 system maintains its secondary structure but the two β-strands in SV2C-A3 system have remarkable conformational changes. Based on the calculation of hydrogen bonds, hydrophobic interactions and cation-π interactions, it is found that the internal hydrogen bonds play crucial roles in the structural stability of the peptides. Because of the stable secondary structure, the β-sheet in BoNT/A-A2 system establishes effective interactions at the interface and inhibits BoNT/A-RBD binding to SV2C-LD. In contrast, without other β-strands forming internal hydrogen bonds, the two isolated β-strands in SV2C-A3 system become the random coil. This conformational change breaks important hydrogen bonds and weakens cation-π interaction in the interface, so the complex formation is only partially inhibited by the two β-strands. These results are consistent with experimental studies and may be helpful in understanding the inhibition mechanisms of peptide inhibitors. © 2015 Wiley Periodicals, Inc.

  15. Crystal structure of a new amine nitrate: 4-dimethylaminopyridinium nitrate (C{sub 7}H{sub 11}N{sub 2})NO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benhassan, D., E-mail: houcine-naili@yahoo.com; Rekik, W.; Naïli, H.

    2015-12-15

    The title compound (C{sub 7}H{sub 11}N{sub 2})NO{sub 3} (I) was obtained by the slow evaporation method at room temperature. Its crystal structure consists of organic cations (C{sub 7}H{sub 11}N{sub 2}){sup +} and nitrate anions (NO{sub 3}){sup –} linked by two types of hydrogen bonds. Each monoprotonated nitrogen atom, called bifurcated, is engaged in two N–H···O hydrogen bonds with two symmetric oxygen atoms. In addition, the crystal structure stability is established by C–H···O hydrogen bonds that ensure the formation of infinite layers, parallel to (001) plane. These layers are related together through π···π interactions established between aromatic amines.

  16. Combined Experimental and Computational Study on the Unimolecular Decomposition of JP-8 Jet Fuel Surrogates. I. n-Decane (n-C10H22).

    PubMed

    Zhao, Long; Yang, Tao; Kaiser, Ralf I; Troy, Tyler P; Ahmed, Musahid; Belisario-Lara, Daniel; Ribeiro, Joao Marcelo; Mebel, Alexander M

    2017-02-16

    Exploiting a high temperature chemical reactor, we explored the pyrolysis of helium-seeded n-decane as a surrogate of the n-alkane fraction of Jet Propellant-8 (JP-8) over a temperature range of 1100-1600 K at a pressure of 600 Torr. The nascent products were identified in situ in a supersonic molecular beam via single photon vacuum ultraviolet (VUV) photoionization coupled with a mass spectroscopic analysis of the ions in a reflectron time-of-flight mass spectrometer (ReTOF). Our studies probe, for the first time, the initial reaction products formed in the decomposition of n-decane-including radicals and thermally labile closed-shell species effectively excluding mass growth processes. The present study identified 18 products: molecular hydrogen (H 2 ), C2 to C7 1-alkenes [ethylene (C 2 H 4 ) to 1-heptene (C 7 H 14 )], C1-C3 radicals [methyl (CH 3 ), vinyl (C 2 H 3 ), ethyl (C 2 H 5 ), propargyl (C 3 H 3 ), allyl (C 3 H 5 )], small C1-C3 hydrocarbons [methane (CH 4 ), acetylene (C 2 H 2 ), allene (C 3 H 4 ), methylacetylene (C 3 H 4 )], along with higher-order reaction products [1,3-butadiene (C 4 H 6 ), 2-butene (C 4 H 8 )]. On the basis of electronic structure calculations, n-decane decomposes initially by C-C bond cleavage (excluding the terminal C-C bonds) producing a mixture of alkyl radicals from ethyl to octyl. These alkyl radicals are unstable under the experimental conditions and rapidly dissociate by C-C bond β-scission to split ethylene (C 2 H 4 ) plus a 1-alkyl radical with the number of carbon atoms reduced by two and 1,4-, 1,5-, 1,6-, or 1,7-H shifts followed by C-C β-scission producing alkenes from propene to 1-octene in combination with smaller 1-alkyl radicals. The higher alkenes become increasingly unstable with rising temperature. When the C-C β-scission continues all the way to the propyl radical (C 3 H 7 ), it dissociates producing methyl (CH 3 ) plus ethylene (C 2 H 4 ). Also, at higher temperatures, hydrogen atoms can abstract hydrogen from C 10 H 22 to yield n-decyl radicals, while methyl (CH 3 ) can also abstract hydrogen or recombine with hydrogen to form methane. These n-decyl radicals can decompose via C-C-bond β-scission to C3 to C9 alkenes.

  17. A monoclinic polymorph of (1E,5E)-1,5-bis-(2-hy-droxy-benzyl-idene)thio-carbono-hydrazide.

    PubMed

    Schmitt, Bonell; Gerber, Thomas; Hosten, Eric; Betz, Richard

    2011-08-01

    The title compound, C(15)H(14)N(4)O(2)S, is a derivative of thio-ureadihydrazide. In contrast to the previously reported polymorph (ortho-rhom-bic, space group Pbca, Z = 8), the current study revealed monoclinic symmetry (space group P2(1)/n, Z = 4). The mol-ecule shows non-crystallographic C(2) as well as approximate C(s) symmetry. Intra-molecular bifurcated O-H⋯(N,S) hydrogen bonds, are present. In the crystal, inter-molecular N-H⋯S hydrogen bonds and C-H⋯π contacts connect the mol-ecules into undulating chains along the b axis. The shortest centroid-centroid distance between two aromatic systems is 4.5285 (12) Å.

  18. Three closely related 4,5,6,7-tetrahydro-1H-pyrazolo[4,3-c]pyridines: synthesis, molecular conformations and hydrogen bonding in zero, one and two dimensions.

    PubMed

    Sagar, Belakavadi K; Harsha, Kachigere B; Yathirajan, Hemmige S; Rangappa, Kanchugarakoppal S; Rathore, Ravindranath S; Glidewell, Christopher

    2017-03-01

    In each of 1-(4-fluorophenyl)-5-methylsulfonyl-3-[4-(trifluoromethyl)phenyl]-4,5,6,7-tetrahydro-1H-pyrazolo[4,3-c]pyridine, C 21 H 19 F 4 N 3 O 2 S, (I), 1-(4-chlorophenyl)-5-methylsulfonyl-3-[4-(trifluoromethyl)phenyl]-4,5,6,7-tetrahydro-1H-pyrazolo[4,3-c]pyridine, C 21 H 19 ClF 3 N 3 O 2 S, (II), and 1-(3-methylphenyl)-5-methylsulfonyl-3-[4-(trifluoromethyl)phenyl]-4,5,6,7-tetrahydro-1H-pyrazolo[4,3-c]pyridine, C 22 H 22 F 3 N 3 O 2 S, (III), the reduced pyridine ring adopts a half-chair conformation with the methylsulfonyl substituent occupying an equatorial site. Although compounds (I) and (II) are not isostructural, having the space groups Pbca and P2 1 2 1 2 1 , respectively, their molecular conformations are very similar, but the conformation of compound (III) differs from those of (I) and (II) in the relative orientation of the N-benzyl and methylsulfonyl substituents. In compounds (II) and (III), but not in (I), the trifluoromethyl groups are disordered over two sets of atomic sites. Molecules of (I) are linked into centrosymmetric dimers by C-H...π(arene) hydrogen bonds, molecules of (II) are linked by two C-H...O hydrogen bonds to form ribbons of R 3 3 (18) rings, which are themselves further linked by a C-Cl...π(arene) interaction, and a combination of C-H...O and C-H...π(arene) hydrogen bonds links the molecules of (III) into sheets. Comparisons are made with the structures of some related compounds.

  19. [Cleavage time for a hydrogen bond under a load].

    PubMed

    Bespalov, S V; Tolpygo, K B

    1993-01-01

    Statistics of the hydrogen bond formation and break in a bundle of actin and myosin filaments realizing the attractive force in the sarcomere of a muscle is studied. Purely mechanical problem of the attractive-force formation and motion of myosin heads and action globules under their action is supplemented by accounting for the irreversible processes: 1. Thermal de-excitation of the latter in the chain of hydrogen bond during the elementary act of the ATP energy use resulting in fixing the extended actin filament. 2. Break of the hydrogen bonds, realizing this fixing, due to thermal fluctuations for the time tau. The average life-time turns out to be the order of time necessary for the movement of z-membrane sarcomere for the value of action filament extension delta 1, which is necessary for the process of muscle contraction to be continued.

  20. Arylation, alkenylation, and alkylation of 2-halopyridine N-oxides with grignard reagents: a solution to the problem of C2/C6 regioselective functionalization of pyridine derivatives.

    PubMed

    Zhang, Song; Liao, Lian-Yan; Zhang, Fang; Duan, Xin-Fang

    2013-03-15

    A facile arylation, alkenylation, and alkylation of functionalized 2-halopyridine N-oxides with various Grignard reagents was developed. It represented a highly efficient and selective C-H bond functionalization of pyridine derivatives in the presence of reactive C-Cl or C-Br bonds. Using Cl or Br as a blocking group, C2/C6 site-controllable functionalization of pyridine derivatives has been achieved. Various pyridine compounds can be prepared as illustrated in the total syntheses of Onychine, dielsine, and PARP-1 inhibitor GPI 16539.

  1. Insight into Oxide-Bridged Heterobimetallic Al/Zr Olefin Polymerization Catalysts.

    PubMed

    Boulho, Cédric; Zijlstra, Harmen S; Hofmann, Alexander; Budzelaar, Peter H M; Harder, Sjoerd

    2016-11-21

    Reaction of (TBBP)AlMe⋅THF with [Cp* 2 Zr(Me)OH] gave [(TBBP)Al(THF)-O-Zr(Me)Cp* 2 ] (TBBP=3,3',5,5'-tetra-tBu-2,2'-biphenolato). Reaction of [DIPPnacnacAl(Me)-O-Zr(Me)Cp 2 ] with [PhMe 2 NH] + [B(C 6 F 5 ) 4 ] - gave a cationic Al/Zr complex that could be structurally characterized as its THF adduct [(DIPPnacnac)Al(Me)-O-Zr(THF)Cp 2 ] + [B(C 6 F 5 ) 4 ] - (DIPPnacnac=HC[(Me)C=N(2,6-iPr 2 -C 6 H 3 )] 2 ). The first complex polymerizes ethene in the presence of an alkylaluminum scavenger but in the absence of methylalumoxane (MAO). The adduct cation is inactive under these conditions. Theoretical calculations show very high energy barriers (ΔG=40-47 kcal mol -1 ) for ethene insertion with a bridged AlOZr catalyst. This is due to an unfavorable six-membered-ring transition state, in which the methyl group bridges the metal and ethene with an obtuse metal-Me-C angle that prevents synchronized bond-breaking and making. A more-likely pathway is dissociation of the Al-O-Zr complex into an aluminate and the active polymerization catalyst [Cp* 2 ZrMe] + . © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. An investigation onto the molecular structure of 5-chloro-3-(2-(4-ethylpiperazine-1-il)-2-oxoethyl)benzo[d]thiazole-2(3H)-on drug molecule before and after atmospheric pressure plasma treatment

    NASA Astrophysics Data System (ADS)

    Tanışlı, Murat; Taşal, Erol; Şahin, Neslihan; Dikmen, Gökhan

    2018-05-01

    The spectra of molecular structure for the 5-chloro-3-(2-(4-ethylpiperazine-1-il)-2-oxoethyl)benzo[d]thiazole-2(3H)-on drug molecule (abbreviated as 5KEB) before and after the atmospheric pressure plasma treatments (APPTs) of neon (Ne) and argon (Ar) were investigated. The Fourier transform infrared (FT-IR), ultraviolet visible (UV-Vis) spectra and NMR measurements of the 5KEB drug molecule dissolved in toluene and ethanol solvents were recorded and examined for liquid phases. Then FT-IR, UV-Vis spectra and NMR measurements were analysed. It is seen that some bonds of 5KEB molecule were decomposed. There were also unobserved vibrational modes. After the Ne plasma at the atmospheric pressure applied to 5KEB drug molecule dissolved in toluene, the bonds as 9Ssbnd 8C; 9Ssbnd 8C = 10 O, 8Csbnd 7N, 7Nsbnd 8C = 10O were vanished, and then the new bonds of the 7N = 8C, 7N = 8C = 10 O, 9Ssbnd 5Csbnd 4Csbnd 7N = 8C = 10O were observed. New photoproducts may be defined as the stretching peaks, stretching vibrational modes for 5KEB drug molecule in liquid phase prepared with ethanol and toluene solvents after APPT. Also, after Ar plasma at atmospheric pressure applied here, the 9Ssbnd 8C bond of the 5KEB drug molecule dissolved in toluene was broken. The isomerization process in UV-Vis was defined by π-π* and n-π* electronic transitions. According to NMR results, protons of pyridine ring, protons of CH2 group bonded to carbonyl group and protons of CH3 group more affected than other protons from Ar and Ne APPTs and these protons were eliminated by Ar and Ne APPTs.

  3. Exact valence bond entanglement entropy and probability distribution in the XXX spin chain and the potts model.

    PubMed

    Jacobsen, J L; Saleur, H

    2008-02-29

    We determine exactly the probability distribution of the number N_(c) of valence bonds connecting a subsystem of length L>1 to the rest of the system in the ground state of the XXX antiferromagnetic spin chain. This provides, in particular, the asymptotic behavior of the valence-bond entanglement entropy S_(VB)=N_(c)ln2=4ln2/pi(2)lnL disproving a recent conjecture that this should be related with the von Neumann entropy, and thus equal to 1/3lnL. Our results generalize to the Q-state Potts model.

  4. C=C bond cleavage on neutral VO3(V2O5)n clusters.

    PubMed

    Dong, Feng; Heinbuch, Scott; Xie, Yan; Bernstein, Elliot R; Rocca, Jorge J; Wang, Zhe-Chen; Ding, Xun-Lei; He, Sheng-Gui

    2009-01-28

    The reactions of neutral vanadium oxide clusters with alkenes (ethylene, propylene, 1-butene, and 1,3-butadiene) are investigated by experiments and density function theory (DFT) calculations. Single photon ionization through extreme ultraviolet radiation (EUV, 46.9 nm, 26.5 eV) is used to detect neutral cluster distributions and reaction products. In the experiments, we observe products (V(2)O(5))(n)VO(2)CH(2), (V(2)O(5))(n)VO(2)C(2)H(4), (V(2)O(5))(n)VO(2)C(3)H(4), and (V(2)O(5))(n)VO(2)C(3)H(6), for neural V(m)O(n) clusters in reactions with C(2)H(4), C(3)H(6), C(4)H(6), and C(4)H(8), respectively. The observation of these products indicates that the C=C bonds of alkenes can be broken on neutral oxygen rich vanadium oxide clusters with the general structure VO(3)(V(2)O(5))(n=0,1,2...). DFT calculations demonstrate that the reaction VO(3) + C(3)H(6) --> VO(2)C(2)H(4) + H(2)CO is thermodynamically favorable and overall barrierless at room temperature. They also provide a mechanistic explanation for the general reaction in which the C=C double bond of alkenes is broken on VO(3)(V(2)O(5))(n=0,1,2...) clusters. A catalytic cycle for alkene oxidation on vanadium oxide is suggested based on our experimental and theoretical investigations. The reactions of V(m)O(n) with C(6)H(6) and C(2)F(4) are also investigated by experiments. The products VO(2)(V(2)O(5))(n)C(6)H(4) are observed for dehydration reactions between V(m)O(n) clusters and C(6)H(6). No product is detected for V(m)O(n) clusters reacting with C(2)F(4). The mechanisms of the reactions between VO(3) and C(2)F(4)/C(6)H(6) are also investigated by calculations at the B3LYP/TZVP level.

  5. Cross-Linking Interferes With Assessing Sulfur Mustard-Induced DNA Damage in Human Peripheral Blood Lymphocytes Using the Comet Assay

    DTIC Science & Technology

    2004-01-01

    of SM to impede the migration of H,0 2 -damaged mal ian cell lethality with bifunctional alkylating agents . Chemr. Biol. Iriterui. 38:75-86.DNA is an...3100 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010-5400 N-3 position of adenine, and alkylation leads to depurination of Sulfur...mustard (SM) is a blistering agent that produces DNA DNA strands. Subsequent breakage of phosphodiester bonds at strand breaks. To detect SM-induced DNA

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Haiyan; Li, Kuo; Cody, George D.

    Acetonitrile (CH 3CN) is the simplest and one of the most stable nitriles. Reactions usually occur on the C≡N triple bond, while the C-H bond is very inert and can only be activated by a very strong base or a metal catalyst. In this study, it is demonstrated that C-H bonds can be activated by the cyano group under high pressure, but at room temperature. The hydrogen atom transfers from the CH 3 to CN along the CH···N hydrogen bond, which produces an amino group and initiates polymerization to form a dimer, 1D chain, and 2D nanoribbon with mixed spmore » 2 and sp 3 bonded carbon. Lastly, it transforms into a graphitic polymer by eliminating ammonia. This study shows that applying pressure can induce a distinctive reaction which is guided by the structure of the molecular crystal. It highlights the fact that very inert C-H can be activated by high pressure, even at room temperature and without a catalyst.« less

  7. Hydrogen bonded C-H···Y (Y = O, S, Hal) molecular complexes: A natural bond orbital analysis

    NASA Astrophysics Data System (ADS)

    Isaev, A. N.

    2016-03-01

    Hydrogen bonded C-H···Y complexes formed by H2O, H2S molecules, hydrogen halides, and halogen-ions with methane, halogen substituted methane as well as with the C2H2 and NCH molecules were studied at the MP2/aug-cc-pVDZ level. The structure of NBOs corresponding to lone pair of acceptor Y, n Y, and vacant anti-σ-bond C-H of proton donor was analyzed and estimates of second order perturbation energy E(2) characterizing donor-acceptor n Y → σ C-H * charge-transfer interaction were obtained. Computational results for complexes of methane and its halogen substituted derivatives show that for each set of analogous structures, the EnY→σ*C-H (2) energy tends to grow with an increase in the s-component percentage in the lone pair NBO of acceptor Y. Calculations for different C···Y distances show that the equilibrium geometries of complexes lie in the region where the E(2) energy is highest and it changes symbatically with the length of the covalent E-H bond when the R(C···Y) distance is varied. The performed analysis allows us to divide the hydrogen bonded complexes into two groups, depending on the pattern of overlapping for NBOs of the hydrogen bridge.

  8. Yeast Acid Phosphatases and Phytases: Production, Characterization and Commercial Prospects

    NASA Astrophysics Data System (ADS)

    Kaur, Parvinder; Satyanarayana, T.

    The element phosphorus is critical to all life forms as it forms the basic component of nucleic acids and ATP and has a number of indispensable biochemical roles. Unlike C or N, the biogeochemical cycling of phosphorus is very slow, and thus making it the growth-limiting element in most soils and aquatic systems. Phosphohydrolases (e.g. acid phosphatases and phytases) are enzymes that break the C-O-P ester bonds and provide available inorganic phosphorus from various inassimilable organic forms of phosphorus like phytates. These enzymes are of significant value in effectively combating phosphorus pollution. Although phytases and acid phosphatases are produced by various plants, animals and micro organisms, microbial sources are more promising for the production on a commercial scale. Yeasts being the simplest eukaryotes are ideal candidates for phytase and phos-phatase research due to their mostly non-pathogenic and GRAS status. They have not, however, been utilized to their full potential. This chapter focuses attention on the present state of knowledge on the production, characterization and potential commercial prospects of yeast phytases and acid phosphatases.

  9. Silane and Germane Molecular Electronics.

    PubMed

    Su, Timothy A; Li, Haixing; Klausen, Rebekka S; Kim, Nathaniel T; Neupane, Madhav; Leighton, James L; Steigerwald, Michael L; Venkataraman, Latha; Nuckolls, Colin

    2017-04-18

    This Account provides an overview of our recent efforts to uncover the fundamental charge transport properties of Si-Si and Ge-Ge single bonds and introduce useful functions into group 14 molecular wires. We utilize the tools of chemical synthesis and a scanning tunneling microscopy-based break-junction technique to study the mechanism of charge transport in these molecular systems. We evaluated the fundamental ability of silicon, germanium, and carbon molecular wires to transport charge by comparing conductances within families of well-defined structures, the members of which differ only in the number of Si (or Ge or C) atoms in the wire. For each family, this procedure yielded a length-dependent conductance decay parameter, β. Comparison of the different β values demonstrates that Si-Si and Ge-Ge σ bonds are more conductive than the analogous C-C σ bonds. These molecular trends mirror what is seen in the bulk. The conductance decay of Si and Ge-based wires is similar in magnitude to those from π-based molecular wires such as paraphenylenes However, the chemistry of the linkers that attach the molecular wires to the electrodes has a large influence on the resulting β value. For example, Si- and Ge-based wires of many different lengths connected with a methyl-thiomethyl linker give β values of 0.36-0.39 Å -1 , whereas Si- and Ge-based wires connected with aryl-thiomethyl groups give drastically different β values for short and long wires. This observation inspired us to study molecular wires that are composed of both π- and σ-orbitals. The sequence and composition of group 14 atoms in the σ chain modulates the electronic coupling between the π end-groups and dictates the molecular conductance. The conductance behavior originates from the coupling between the subunits, which can be understood by considering periodic trends such as bond length, polarizability, and bond polarity. We found that the same periodic trends determine the electric field-induced breakdown properties of individual Si-Si, Ge-Ge, Si-O, Si-C, and C-C bonds. Building from these studies, we have prepared a system that has two different, alternative conductance pathways. In this wire, we can intentionally break a labile, strained silicon-silicon bond and thereby shunt the current through the secondary conduction pathway. This type of in situ bond-rupture provides a new tool to study single molecule reactions that are induced by electric fields. Moreover, these studies provide guidance for designing dielectric materials as well as molecular devices that require stability under high voltage bias. The fundamental studies on the structure/function relationships of the molecular wires have guided the design of new functional systems based on the Si- and Ge-based wires. For example, we exploited the principle of strain-induced Lewis acidity from reaction chemistry to design a single molecule switch that can be controllably switched between two conductive states by varying the distance between the tip and substrate electrodes. We found that the strain intrinsic to the disilaacenaphthene scaffold also creates two state conductance switching. Finally, we demonstrate the first example of a stereoelectronic conductance switch, and we demonstrate that the switching relies crucially on the electronic delocalization in Si-Si and Ge-Ge wire backbones. These studies illustrate the untapped potential in using Si- and Ge-based wires to design and control charge transport at the nanoscale and to allow quantum mechanics to be used as a tool to design ultraminiaturized switches.

  10. (But­oxy­methyl­idene)di­methyl­aza­nium tetra­phenyl­borate aceto­nitrile monosolvate

    PubMed Central

    Tiritiris, Ioannis; Saur, Stefan; Kantlehner, Willi

    2014-01-01

    In the title solvated salt, C7H16NO+·C24H20B−·C2H3N, the C—N bond lengths in the cation are 1.2831 (19), 1.467 (2) and 1.465 (2) Å, indicating double- and single-bond character, respectively. The C—O bond length of 1.2950 (18) Å shows a double-bond character, pointing towards charge delocalization within the NCO plane of the iminium ion. The two C atoms of the n-butyl group are disordered over the two sites, with refined occupancy ratios of 0.890 (5):0.110 (5) and 0.888 (4):0.112 (4). In the crystal, C—H⋯π inter­actions occur between the methine H atom, H atoms of the –N(CH3)2 and –CH2 groups of the cation, and two of the phenyl rings of the tetra­phenyl­borate anion. The latter inter­action forms an aromatic pocket in which the cation is embedded. Thus, a two-dimensional pattern is created in the ac plane. PMID:24826158

  11. Cleavage of Sn-C and S-C(alkyl) bonds on an organotin scaffold: synthesis and characterization of a novel organotin-sulfite cluster bearing methyltin- and dimethyltin fragments.

    PubMed

    Shankar, Ravi; Jain, Archana; Kociok-Köhn, Gabriele; Mahon, Mary F; Molloy, Kieran C

    2010-05-17

    Hydrolysis of the mixed-ligand dimethyltin(ethoxy)ethanesulfonate, [Me(2)Sn(OEt)(OSO(2)Et)](n) (1a) in moist hexane proceeds via disproportionation and partial cleavage of Sn-C and S-C bonds to afford a novel oxo-/hydroxo- organotin cluster of the composition [(Me(2)Sn)(MeSn)(4)(OSO(2)Et)(2)(OH)(4)(O)(2)(SO(3))(2)] (1) bearing both mono- and dimethyltin fragments and in situ generated sulfite (SO(3)(2-)) anion in the structural framework. On the other hand, similar reactions with analogous mixed ligand diorganotin precursors, [R(2)Sn(OR(1))(OSO(2)R(1))](n) (R = n-Bu, R(1) = Et (2a); R = Et, R(1) = Me (3a)), result in the formation of tetranuclear diorganotin clusters, [{(n-Bu(2)Sn)(2)(OH)(OSO(2)Et)}O](2) (2) and [(Et(2)Sn)(4)(OH)(O)(2)(OSO(2)Me)(3)] (3), respectively. The activation of the Sn-C or S-C bond is not observed in these cases. These findings provide a preliminary insight into the unusual reactivity of 1a under hydrolytic conditions.

  12. HIGH-ENERGY ELECTRON IRRADIATION OF INTERSTELLAR CARBONACEOUS DUST ANALOGS: COSMIC-RAY EFFECTS ON THE CARRIERS OF THE 3.4 μ m ABSORPTION BAND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maté, Belén; Molpeceres, Germán; Jiménez-Redondo, Miguel

    2016-11-01

    The effects of cosmic rays on the carriers of the interstellar 3.4 μ m absorption band have been investigated in the laboratory. This band is attributed to stretching vibrations of CH{sub 3} and CH{sub 2} in carbonaceous dust. It is widely observed in the diffuse interstellar medium, but disappears in dense clouds. Destruction of CH{sub 3} and CH{sub 2} by cosmic rays could become relevant in dense clouds, shielded from the external ultraviolet field. For the simulations, samples of hydrogenated amorphous carbon (a-C:H) have been irradiated with 5 keV electrons. The decay of the band intensity versus electron fluence reflectsmore » a-C:H dehydrogenation, which is well described by a model assuming that H{sub 2} molecules, formed by the recombination of H atoms liberated through CH bond breaking, diffuse out of the sample. The CH bond destruction rates derived from the present experiments are in good accordance with those from previous ion irradiation experiments of HAC. The experimental simplicity of electron bombardment has allowed the use of higher-energy doses than in the ion experiments. The effects of cosmic rays on the aliphatic components of cosmic dust are found to be small. The estimated cosmic-ray destruction times for the 3.4 μ m band carriers lie in the 10{sup 8} yr range and cannot account for the disappearance of this band in dense clouds, which have characteristic lifetimes of 3 × 10{sup 7} yr. The results invite a more detailed investigation of the mechanisms of CH bond formation and breaking in the intermediate region between diffuse and dense clouds.« less

  13. Crystal structure of (E)-2-hy-droxy-4'-meth-oxy-aza-stilbene.

    PubMed

    Chantrapromma, Suchada; Kaewmanee, Narissara; Boonnak, Nawong; Chantrapromma, Kan; Ghabbour, Hazem A; Fun, Hoong-Kun

    2015-06-01

    The title aza-stilbene derivative, C14H13NO2 {systematic name: (E)-2-[(4-meth-oxy-benzyl-idene)amino]-phenol}, is a product of the condensation reaction between 4-meth-oxy-benzaldehyde and 2-amino-phenol. The mol-ecule adopts an E conformation with respect to the azomethine C=N bond and is almost planar, the dihedral angle between the two substituted benzene rings being 3.29 (4)°. The meth-oxy group is coplanar with the benzene ring to which it is attached, the Cmeth-yl-O-C-C torsion angle being -1.14 (12)°. There is an intra-molecular O-H⋯N hydrogen bond generating an S(5) ring motif. In the crystal, mol-ecules are linked via C-H⋯O hydrogen bonds, forming zigzag chains along [10-1]. The chains are linked via C-H⋯π inter-actions, forming a three-dimensional structure.

  14. Microwave-enhanced chemical processes

    DOEpatents

    Varma, Ravi

    1990-01-01

    A process for disposal of toxic wastes including chlorinated hydrocarbons, comprising, establishing a bed of non-metallic particulates having a high dielectric loss factor. Effecting intimate contact of the particulates and the toxic wastes at a temperature in excess of about 400.degree. C. in the presence of microwave radiation for a time sufficient to break the hydrocarbon chlorine bonds and provide detoxification values in excess of 80 and further detoxifying the bed followed by additional disposal of toxic wastes.

  15. Electrical properties of Al foil/n-4H-SiC Schottky junctions fabricated by surface-activated bonding

    NASA Astrophysics Data System (ADS)

    Morita, Sho; Liang, Jianbo; Matsubara, Moeko; Dhamrin, Marwan; Nishio, Yoshitaka; Shigekawa, Naoteru

    2018-02-01

    We fabricate 17-µm-thick Al foil/n-4H-SiC Schottky junctions by surface-activated bonding. Their current-voltage and capacitance-voltage characteristics are compared with those of Schottky junctions fabricated by evaporating Al layers on n-4H-SiC epilayers. We find that the ideality factor of Al foil/SiC junctions is larger than that of conventional junctions, which is due to the irradiation of the fast atom beam (FAB) of Ar. The ideality factor of Al foil/SiC junctions is improved by annealing at 400 °C. We also find that the Schottky barrier height is increased by FAB irradiation, which is likely to be due to the negative charges formed at SiC surfaces.

  16. A DFT investigation of a bulky biomimetic model catalyzing the 5'-outer ring deiodination of thyroxine.

    PubMed

    Fortino, Mariagrazia; Marino, Tiziana; Russo, Nino; Sicilia, Emilia

    2016-12-01

    This paper illustrates the outcomes of a density functional theory investigation aimed at unraveling mechanistic aspects of the 5'-outer ring deiodination process of thyroxine (T4) assisted by the sterically protected organoselenol compound BpqSeH. BpqSeH, which was previously synthesized and tested for its deiodinase activity, is able to afford the active hormone 3,5,3'-tetraiodothyronine (T3) by selective outer-ring deiodination of T4, and to protect the SeH moiety inside the nano-sized molecular cavity from further reactivity, allowing its isolation and characterization. Calculations were also performed including an imidazole ring that, mimicking a His residue in the active site of the original enzyme, plays an crucial role in deprotonating the selenol moiety. Both the suggested enol/keto tautomerization and the previously proven formation of an intermediate whose main characteristic is the presence of a Se⋯I⋯C halogen bond, were examined along the pathway leading to 5'-outer ring deiodination. The calculated potential energy surface showed that neither the pathway encompassing enol/keto tautomerism nor the formation of a halogen bond paving the way to C-I bond breaking and chalcogen-I bond forming is viable. The exergonic formation of the final selenenyl iodide product confirms the stabilization effect of the molecular cavity. Graphical Abstract Computed free energy profile describing the 5'-outer deiodination of thyroxine assisted by the steric hindered organoselenol BpqSH compound. The molecular electrostatic potential map reoported for the INT1 intermediate shows the non-covalent Se-I interaction, due to the attraction between charges of opposite sign, that weakens the C-I bond and prepares the formation of the new Se-I bond.

  17. Crystal structure of 2-((1E)-{2-[bis-(2-methyl-benzyl-sulfan-yl)methyl-idene]hydrazin-1-yl-idene}meth-yl)-6-meth-oxy-phenol.

    PubMed

    Yusof, Enis Nadia Md; Ravoof, Thahira Begum S A; Tahir, Mohamed Ibrahim Mohamed; Tiekink, Edward R T

    2015-04-01

    In the title compound, C25H26N2O2S2, the central CN2S2 atoms are almost coplanar (r.m.s. deviation = 0.0058 Å). One phenyl ring clearly lies to one side of the central plane, while the other is oriented in the plane but splayed. Despite the different relative orientations, the phenyl rings form similar dihedral angles of 64.90 (3) and 70.06 (3)° with the central plane, and 63.28 (4)° with each other. The benzene ring is twisted with respect to the central plane, forming a dihedral angle of 13.17 (7)°. The S2C=N, N-N and N-N=C bond lengths of 1.2919 (19), 1.4037 (17) and 1.2892 (19) Å, respectively, suggest limited conjugation over these atoms; the configuration about the N-N=C bond is E. An intra-molecular O-H⋯N hydrogen bond is noted. In the crystal, phen-yl-meth-oxy C-H⋯O and phen-yl-phenyl C-H⋯π inter-actions lead to supra-molecular double chains parallel to the b axis. These are connected into a layer via meth-yl-phenyl C-H⋯π inter-actions, and layers stack along the a axis, being connected by weak π-π inter-actions between phenyl rings [inter-centroid distance = 3.9915 (9) Å] so that a three-dimensional architecture ensues.

  18. Thermal Stress Evaluation of a Symmetrically Laminated Composite Plate

    DTIC Science & Technology

    1991-10-23

    o-z) parameter (in=200) dimension am(in,in), bm(in,in), cm(in,in), av(in), bv(in) dimension bmat (in, in) ,bmgrid(in, in) dimension amd(in,in),avd(in...STRESS FUNCTION COEFFICIENTS** call sfunction(a,b,h,nf,tk,theta,nl,amlbm,cm,av,bv, bmat , + amd, avd, break, tcoef, ip, gfac) c * calculate the stress...end C subroutine sfunction(a,b,h,n,tk,theta,nl,rm,rmb,tm,rv,rvb, bmat , + rind, rvd, break, tcoef, ip, gfac) c * c * This subroutine calculates the

  19. Spontaneous adsorption on a hydrophobic surface governed by hydrogen bonding.

    PubMed

    Dang, Fuquan; Hasegawa, Takeshi; Biju, Vasudevanpillai; Ishikawa, Mitsuru; Kaji, Noritada; Yasui, Takao; Baba, Yoshinobu

    2009-08-18

    Spontaneous adsorption from solution onto solid surface is a common phenomenon in nature, but the force that governs adsorption is still a matter of considerable debate. (1, 2) We found that surfactants and cellulose adsorb from solution onto a poly(methyl methacrylate) (PMMA) surface in an ordered and cooperative way governed by hydrogen bonding. The glucose rings of n-dodecyl-beta-D-maltoside (DDM) and hydroxyethylcellulose (HEC) stand perpendicular to the surface, H-bond to the surface COOMe groups with their C=O and Me-O bonds parallel to the surface, and form a tight monolayer. The non-H-bonded COOMe groups orient their C=O bonds perpendicular to the surface. In contrast, the glucose rings of hydrophobically modified hydroxyethylcellulose (HMHEC) lie flat with the side chains perpendicular to the surface and H-bond to the perpendicular-oriented C=O groups. The non-H-bonded COOMe groups orient their C=O bonds parallel but Me-O bonds near-perpendicular to the surface for stabilizing HMHEC. The current work provides a detailed picture of how surface-active molecules interact with a solid surface and self-assemble into greatly different architectures.

  20. Conformational study and structure of N-(2,5-methylphenyl)salicylaldimine

    NASA Astrophysics Data System (ADS)

    Elmali, A.; Elerman, Y.; Zeyrek, C. T.

    1998-02-01

    N-(2,5-methylphenyl)salicylaldimine (C 15H 15NO) has been investigated by X-ray analysis and AM1 semi-empirical quantum mechanical method. The crystal is in the orthorhombic space group P2 12 12 1 with a = 6.839(1), b = 7.720(4), c = 23.183(3) Å, V = 1224.1(2) Å3, Z = 4, Dc = 1.222 g cm -3 and μ(Mo K α) = 0.076 mm -1. The title structure was solved by direct methods and refined to R = 0.0364 for 1489 reflections [ I > 2 σ( I)] by full-matrix anisotropic least-squares methods. The title compound is photochromic and the molecule is not planar. There is a strong intramolecular hydrogen bond of distance 2.604(2) Å between the hydroxyl oxygen atom and imine nitrogen atom, the hydrogen atom essentially being bonded to the oxygen atom. Minimum energy conformations from AM1 were calculated as a function of three torsion angles, θ1 (C8N1C7C6), θ2 (C9C8N1C7) and θ3 (N1C7C6C5), varied every 10°. The optimized geometry of the crystal structure corresponding to non-planar conformation is the most stable conformation in all calculations. The results strongly indicate that the minimum energy conformation is primarily determined by non-bonded hydrogen-hydrogen repulsions.

  1. Effects of metal primers on the bonding of an adhesive resin cement to noble metal ceramic alloys after thermal cycling.

    PubMed

    Minami, Hiroyuki; Murahara, Sadaaki; Suzuki, Shiro; Tanaka, Takuo

    2011-12-01

    Although the effectiveness of primers for resin bonding to noble alloys has been demonstrated, no effective clinical technique for bonding to noble metal ceramic alloys has been established. The purpose of this study was to evaluate the effects of metal primers on the shear bond strength of an adhesive resin to noble metal ceramic alloys after thermal cycling. Sixty-three disk-shaped specimens (10 × 2.5 mm) were cast from high-gold-content alloys (Super Metal W-85: W85 or IFK88 GR: IFK88), a high-palladium-content alloy (Super Metal N-40: N40), and an Ag-Pd-Cu-Au alloy (Castwell M.C.12: MC12). Smaller-sized disk-shaped specimens (8 × 2.5 mm) were fabricated with MC12. Bonding surfaces were finished with 600-grit SiC-paper and airborne-particle abraded with 50-μm alumina. Pairs of disks were primed (V-Primer: VP; ML Primer: ML; or Metaltite: MT) and bonded with an adhesive resin (Super-Bond C&B). The bond strengths were determined before and after 20,000 and 50,000 thermal cycles (n=7). Data were analyzed by using a 3-way ANOVA and the Bonferroni test (α=.05). Failure modes were determined by optical microscope and SEM observation. Bond strengths to high-gold-content alloys with VP and MT significantly decreased after the thermal cycling (P<.001). Bond strengths to W85 (35.27 ±4.25 MPa) and IFK88 (33.57 ±3.56 MPa) after 50,000 thermal cycles obtained by ML were the highest (P<.001), and these groups showed combination failures. Bond strengths to N40 significantly decreased after 50,000 thermal cycles (P<.001), regardless of primers. Shear bond strengths (SBS) to high-gold-content alloys were not degraded up to 50,000 thermal cycles when primed with ML. None of the primers evaluated was effective for high-palladium-content alloy. Copyright © 2011 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  2. The physical chemistry of coordinated aqua-, ammine-, and mixed-ligand Co2+ complexes: DFT studies on the structure, energetics, and topological properties of the electron density.

    PubMed

    Varadwaj, Pradeep R; Marques, Helder M

    2010-03-07

    Spin-unrestricted DFT-X3LYP/6-311++G(d,p) calculations have been performed on a series of complexes of the form [Co(H(2)O)(6-n)(NH(3))(n)](2+) (n = 0-6) to examine their equilibrium gas-phase structures, energetics, and electronic properties in their quartet electronic ground states. In all cases Co(2+) in the energy-minimised structures is in a pseudo-octahedral environment. The calculations overestimate the Co-O and Co-N bond lengths by 0.04 and 0.08 A, respectively, compared to the crystallographically observed mean values. There is a very small Jahn-Teller distortion in the structure of [Co(H(2)O)(6)](2+) which is in contrast to the very marked distortions observed in most (but not all) structures of this cation that have been observed experimentally. The successive replacement of ligated H(2)O by NH(3) leads to an increase in complex stability by 6 +/- 1 kcal mol(-1) per additional NH(3) ligand. Calculations using UB3LYP give stabilisation energies of the complexes about 5 kcal mol(-1) smaller and metal-ligand bond lengths about 0.005 A longer than the X3LYP values since the X3LYP level accounts for the London dispersion energy contribution to the overall stabilisation energy whilst it is largely missing at the B3LYP level. From a natural population analysis (NPA) it is shown that the formation of these complexes is accompanied by ligand-to-metal charge transfer the extent of which increases with the number of NH(3) ligands in the coordination sphere of Co(2+). From an examination of the topological properties of the electron charge density using Bader's quantum theory of atoms in molecules it is shown that the electron density rho(c) at the Co-O bond critical points is generally smaller than that at the Co-N bond critical points. Hence Co-O bonds are weaker than Co-N bonds in these complexes and the stability increases as NH(3) replaces H(2)O in the metal's coordination sphere. Several indicators, including the sign and magnitude of the Laplacian of the charge density nabla(2)rho(c), the ratio of the local potential and kinetic energy densities, |V(c)|/G(c), the sign of the total energy density H(c), and the delocalisation index delta(Co,X), X = O, N, are used to show that whilst the metal-ligand bonds are predominantly ionic in nature, they gain covalent character as NH(3) replaces H(2)O, and the Co-N bond is significantly more covalent than the Co-O bond. We have shown that the delocalisation index delta(Co,X), X = O, N, is strongly correlated with the zero-point corrected stabilisation energy E demonstrating that delta can be used as a measure of the bond stability in these complexes.

  3. N,N-Dimethyl-N-propyl-propan-1-aminium chloride monohydrate.

    PubMed

    Kärnä, Minna; Lahtinen, Manu; Valkonen, Jussi

    2008-10-11

    The title compound, C(8)H(20)N(+)·Cl(-)·H(2)O, has been prepared by a simple one-pot synthesis route followed by anion exchange using resin. In the crystal structure, the cations are packed in such a way that channels exist parallel to the b axis. These channels are filled by the anions and water mol-ecules, which inter-act via O-H⋯Cl hydrogen bonds [O⋯Cl = 3.285 (3) and 3.239 (3) Å] to form helical chains. The cations are involved in weak inter-molecular C-H⋯Cl and C-H⋯O hydrogen bonds. The title compound is not isomorphous with the bromo or iodo analogues.

  4. Threefold interweaving of (4,4) nets built from R(10)10(58) rings inthe hydrogen-bonded adduct 1,4-diazabicyclo

    PubMed

    Burchell; Ferguson; Lough; Glidewell

    2000-09-01

    The 1:1 adduct of 1,4-diazabicyclo[2.2.2]octane and 5-hydroxyisophthalic acid is a salt, [H(C(6)H(12)N(2))](+). [HOC(6)H(3)(COOH)COO](-) or C(6)H(13)N(2)(+).C(8)H(5)O(5)(-). The ions are linked by three types of hydrogen bond, i.e. N-H.O, O-H.O and O-H.N, into continuous two-dimensional (4,4) nets built from a single type of R(10)(10)(58) ring. Six independent sheets of this type make up the structure and these are interwoven in sets of three.

  5. Gold(I)-assisted catalysis - a comprehensive view on the [3,3]-sigmatropic rearrangement of allyl acetate

    NASA Astrophysics Data System (ADS)

    Freindorf, Marek; Cremer, Dieter; Kraka, Elfi

    2018-03-01

    The unified reaction valley approach (URVA) combined with the local mode, ring puckering and electron density analysis is applied to elucidate the mechanistic differences of the non-catalysed and the Au[I]-N-heterocyclic carbene (NHC)-catalysed [3,3]-sigmatropic rearrangement of allyl acetate. Using a dual-level approach (DFT and DLPNO-CCSD(T)), the influence of solvation, counter-ions, bulky and electron withdrawing/donating substituents as well as the exchange of the Au[I]-NHC with a Au[I]-phosphine catalyst is investigated. The catalyst breaks up the rearrangement into two steps by switching between Au[I]-π and Au[I]-σ complexation, thus avoiding the energy-consuming CO cleavage in the first step. Based on local stretching force constants ka(C=C), we derive for the first time a quantitative measure of the π-acidity of the Au[I] catalyst; in all catalysed reactions, the bond order n(C=C) drops from 2 to 1.65. The ring puckering analysis clarifies that all reactions start and end via a six-membered ring with a boat form. All Au[I]-σ-complex intermediates show a considerable admixture of the chair form. The non-catalysed [3,3]-sigmatropic rearrangement goes through a maximum of charge separation between the allyl and acetate units at the transition state, while all catalysed reactions proceed via a minimum of charge separation reached in the region of the Au[I]-σ-complex.

  6. Crystal structure of poly[[μ-4-(hy-droxy-meth-yl)pyridine-κ(2) N:O][4-(hy-droxy-meth-yl)pyridine-κN](μ-thio-cyanato-κ(2) N:S)(thio-cyanato-κN)cadmium].

    PubMed

    Werner, Julia; Jess, Inke; Näther, Christian

    2015-06-01

    The crystal structure of the title compound, [Cd(NCS)2(C6H7NO)2] n is made up of Cd(2+) cations that are coordinated by three thio-cyanate ligands and three 4-(hy-droxy-meth-yl)pyridine ligands within distorted N4OS octa-hedra. The asymmetric unit consists of one Cd(2+) cation, two thio-cyanate anions and two 4-(hy-droxy-meth-yl)pyridine ligands in general positions. Two Cd(2+) cations are linked by two μ-1,3 N- and S-bonding thio-ycanate anions into dimers which are further linked into branched chains along [100] by two μ-1,6 N- and O-bonding 4-(hy-droxy-meth-yl)pyridine ligands. One additional N-bonded 4-(hy-droxy-meth-yl)pyridine ligand and one additional N-bonded thio-cyanate anion are only terminally bonded to the metal cation. Inter-chain O-H⋯S hydrogen bonds between the hy-droxy H atoms and one of the thio-cyanate S atoms connect the chains into a three-dimensional network.

  7. Divalent carbon(0) chemistry, part 1: Parent compounds.

    PubMed

    Tonner, Ralf; Frenking, Gernot

    2008-01-01

    Quantum-chemical calculations with DFT (BP86) and ab initio methods [MP2, SCS-MP2, CCSD(T)] have been carried out for the molecules C(PH(3))(2) (1), C(PMe(3))(2) (2), C(PPh(3))(2) (3), C(PPh(3))(CO) (4), C(CO)(2) (5), C(NHC(H))(2) (6), C(NHC(Me))(2) (7) (Me(2)N)(2)C=C=C(NMe(2))(2) (8), and NHC (9), where NHC=N-heterocyclic carbene and NHC(Me)=N-methyl-substituted NHC. The electronic structure in 1-9 was analyzed with charge- and energy-partitioning methods. The results show that the bonding situations in L(2)C compounds 1-8 can be interpreted in terms of donor-acceptor interactions between closed-shell ligands L and a carbon atom which has two lone-pair orbitals L-->C<--L. This holds particularly for the carbodiphosphoranes 1-3 where L=PR(3), which therefore are classified as divalent carbon(0) compounds. The NBO analysis suggests that the best Lewis structures for the carbodicarbenes 6 and 7 where L is a NHC ligand have C==C==C double bonds as in the tetraaminoallene 8. However, the Lewis structures of 6-8, in which two lone-pair orbitals at the central carbon atom are enforced, have only a slightly higher residual density. Visual inspection of the frontier orbitals of the latter species reveals their pronounced lone-pair character, which suggests that even the quasi-linear tetraaminoallene 8 is a "masked" divalent carbon(0) compound. This explains the very shallow bending potential of 8. The same conclusion is drawn for phosphoranylketene 4 and for carbon suboxide (5), which according to the bonding analysis have hidden double-lone-pair character. The AIM analysis and the EDA calculations support the assignment of carbodiphosphoranes as divalent carbon(0) compounds, while NHC 9 is characterized as a divalent carbon(II) compound. The L-->C((1)D) donor-acceptor bonds are roughly twice as strong as the respective L-->BH(3) bond.

  8. Unconventional hydrogen bonding to organic ions in the gas phase: Stepwise association of hydrogen cyanide with the pyridine and pyrimidine radical cations and protonated pyridine

    NASA Astrophysics Data System (ADS)

    Hamid, Ahmed M.; El-Shall, M. Samy; Hilal, Rifaat; Elroby, Shaaban; Aziz, Saadullah G.

    2014-08-01

    Equilibrium thermochemical measurements using the ion mobility drift cell technique have been utilized to investigate the binding energies and entropy changes for the stepwise association of HCN molecules with the pyridine and pyrimidine radical cations forming the C5H5N+.(HCN)n and C4H4N2+.(HCN)n clusters, respectively, with n = 1-4. For comparison, the binding of 1-4 HCN molecules to the protonated pyridine C5H5NH+(HCN)n has also been investigated. The binding energies of HCN to the pyridine and pyrimidine radical cations are nearly equal (11.4 and 12.0 kcal/mol, respectively) but weaker than the HCN binding to the protonated pyridine (14.0 kcal/mol). The pyridine and pyrimidine radical cations form unconventional carbon-based ionic hydrogen bonds with HCN (CHδ+⋯NCH). Protonated pyridine forms a stronger ionic hydrogen bond with HCN (NH+⋯NCH) which can be extended to a linear chain with the clustering of additional HCN molecules (NH+⋯NCH..NCH⋯NCH) leading to a rapid decrease in the bond strength as the length of the chain increases. The lowest energy structures of the pyridine and pyrimidine radical cation clusters containing 3-4 HCN molecules show a strong tendency for the internal solvation of the radical cation by the HCN molecules where bifurcated structures involving multiple hydrogen bonding sites with the ring hydrogen atoms are formed. The unconventional H-bonds (CHδ+⋯NCH) formed between the pyridine or the pyrimidine radical cations and HCN molecules (11-12 kcal/mol) are stronger than the similar (CHδ+⋯NCH) bonds formed between the benzene radical cation and HCN molecules (9 kcal/mol) indicating that the CHδ+ centers in the pyridine and pyrimidine radical cations have more effective charges than in the benzene radical cation.

  9. Unconventional hydrogen bonding to organic ions in the gas phase: stepwise association of hydrogen cyanide with the pyridine and pyrimidine radical cations and protonated pyridine.

    PubMed

    Hamid, Ahmed M; El-Shall, M Samy; Hilal, Rifaat; Elroby, Shaaban; Aziz, Saadullah G

    2014-08-07

    Equilibrium thermochemical measurements using the ion mobility drift cell technique have been utilized to investigate the binding energies and entropy changes for the stepwise association of HCN molecules with the pyridine and pyrimidine radical cations forming the C5H5N(+·)(HCN)n and C4H4N2 (+·)(HCN)n clusters, respectively, with n = 1-4. For comparison, the binding of 1-4 HCN molecules to the protonated pyridine C5H5NH(+)(HCN)n has also been investigated. The binding energies of HCN to the pyridine and pyrimidine radical cations are nearly equal (11.4 and 12.0 kcal/mol, respectively) but weaker than the HCN binding to the protonated pyridine (14.0 kcal/mol). The pyridine and pyrimidine radical cations form unconventional carbon-based ionic hydrogen bonds with HCN (CH(δ+)⋯NCH). Protonated pyridine forms a stronger ionic hydrogen bond with HCN (NH(+)⋯NCH) which can be extended to a linear chain with the clustering of additional HCN molecules (NH(+)⋯NCH··NCH⋯NCH) leading to a rapid decrease in the bond strength as the length of the chain increases. The lowest energy structures of the pyridine and pyrimidine radical cation clusters containing 3-4 HCN molecules show a strong tendency for the internal solvation of the radical cation by the HCN molecules where bifurcated structures involving multiple hydrogen bonding sites with the ring hydrogen atoms are formed. The unconventional H-bonds (CH(δ+)⋯NCH) formed between the pyridine or the pyrimidine radical cations and HCN molecules (11-12 kcal/mol) are stronger than the similar (CH(δ+)⋯NCH) bonds formed between the benzene radical cation and HCN molecules (9 kcal/mol) indicating that the CH(δ+) centers in the pyridine and pyrimidine radical cations have more effective charges than in the benzene radical cation.

  10. Supramolecular architecture based on [Fe(CN)6]3- metallotectons and melaminium synthons

    NASA Astrophysics Data System (ADS)

    Krichen, Firas; Walha, Siwar; Lhoste, Jérôme; Bulou, Alain; Kabadou, Ahlem; Goutenoire, François

    2017-10-01

    Assembly involving [Fe(CN)6]3- metallotectons as building units and melaminium organic cation has been envisioned in order to elaborate a hybrid supramolecular based on ionic H-bonds with formula {(H-mel)4[Fe(CN)6]Cl} (H-mel+: melaminium cation). The compound has been prepared by diffusion method and characterized by single-crystal X-ray diffraction, EDX analysis, and Raman-IR spectroscopies with assignment from ab initio calculations. The melaminium exhibit self cationic coupling with cyclic hydrogen bonds to give a one dimensional {[H-mel]+}∝ synthon. Therefore, these cationic ribbons are inter-linked via hydrogen bonds by the anionic tectons [Fe(CN)6]3- and chlorine anion resulting on a 3D network. Molecular hirshfeld surfaces revealed that the crystal structure has been supported mainly by Nsbnd H⋯N and Nsbnd H⋯Cl intermolecular Hydrogen bonds and by favoured C⋯C and C⋯N weak interactions.

  11. Hydrogen bonding interactions in PN...HX complexes: DFT and ab initio studies of structure, properties and topology.

    PubMed

    Varadwaj, Pradeep Risikrishna

    2010-05-01

    Spin-restricted DFT (X3LYP and B3LYP) and ab initio (MP2(fc) and CCSD(fc)) calculations in conjunction with the Aug-CC-pVDZ and Aug-CC-pVTZ basis sets were performed on a series of hydrogen bonded complexes PN...HX (X = F, Cl, Br) to examine the variations of their equilibrium gas phase structures, energetic stabilities, electronic properties, and vibrational characteristics in their electronic ground states. In all cases the complexes were predicted to be stable with respect to the constituent monomers. The interaction energy (Delta E) calculated using a super-molecular model is found to be in this order: PN...HF > PN...HCl > PN...HBr in the series examined. Analysis of various physically meaningful contributions arising from the Kitaura-Morokuma (KM) and reduced variational space self-consistent-field (RVS-SCF) energy decomposition procedures shows that the electrostatic energy has significant contribution to the over-all interaction energy. Dipole moment enhancement (Delta mu) was observed in these complexes expected of predominant dipole-dipole electrostatic interaction and was found to follow the trend PN...HF > PN...HCl > PN...HBr at the CCSD level. However, the DFT (X3LYP and B3LYP) and MP2 levels less accurately determined these values (in this order HF < HCl < HBr). Examination of the harmonic vibrational modes reveals that the PN and HX bands exhibit characteristic blue- and red shifts with concomitant bond contraction and elongation, respectively, on hydrogen bond formation. The topological or critical point (CP) analysis using the static quantum theory of atoms in molecules (QTAIM) of Bader was considered to classify and to gain further insight into the nature of interaction existing in the monomers PN and HX, and between them on H-bond formation. It is found from the analysis of the electron density rho ( c ), the Laplacian of electron charge density nabla(2)rho(c), and the total energy density (H ( c )) at the critical points between the interatomic regions that the interaction N...H is indeed electrostatic in origin (rho(c) > 0, nabla(2)rho(c) > 0 and H(c) > 0 at the BCP) whilst the bonds in PN (rho(c) > 0, nabla(2)rho(c) > 0 and H(c) < 0) and HX ((rho(c) > 0, nabla(2)rho(c) < 0 and H(c) < 0)) are predominantly covalent. A natural bond orbital (NBO) analysis of the second order perturbation energy lowering, E((2)), caused by charge transfer mechanism shows that the interaction N...H is n(N) --> BD*(HX) delocalization.

  12. A valence bond study of three-center four-electron pi bonding: electronegativity vs electroneutrality.

    PubMed

    DeBlase, Andrew; Licata, Megan; Galbraith, John Morrison

    2008-12-18

    Three-center four-electron (3c4e) pi bonding systems analogous to that of the ozone molecule have been studied using modern valence bond theory. Molecules studied herein consist of combinations of first row atoms C, N, and O with the addition of H atoms where appropriate in order to preserve the 3c4e pi system. Breathing orbital valence bond (BOVB) calculations were preformed at the B3LYP/6-31G**-optimized geometries in order to determine structural weights, pi charge distributions, resonance energies, and pi bond energies. It is found that the most weighted VB structure depends on atomic electronegativity and charge distribution, with electronegativity as the dominant factor. By nature, these systems are delocalized, and therefore, resonance energy is the main contributor to pi bond energies. Molecules with a single dominant VB structure have low resonance energies and therefore low pi bond energies.

  13. Effect of impurities on the mechanical and electronic properties of Au, Ag, and Cu monatomic chain nanowires

    NASA Astrophysics Data System (ADS)

    Çakır, D.; Gülseren, O.

    2011-08-01

    In this study, we have investigated the interaction of various different atomic and molecular species (H, C, O, H2, and O2) with the monatomic chains of Au, Ag, and Cu via total-energy calculations using the plane-wave pseudopotential method based on density functional theory. The stability, energetics, mechanical, and electronic properties of the clean and contaminated Au, Ag, and Cu nanowires have been presented. We have observed that the interaction of H, C, or O atoms with the monatomic chains are much stronger than the one of H2 or O2 molecules. The atomic impurities can easily be incorporated into these nanowires; they form stable and strong bonds with these one-dimensional structures when they are inserted in or placed close to the nanowires. Moreover, the metal-atomic impurity bond is much stronger than the metal-metal bond. Upon elongation, the nanowires contaminated with atomic impurities usually break from the remote metal-metal bond. We have observed both metallic and semiconducting contaminated nanowires depending on the type of impurity, whereas all clean monatomic chains of Au, Cu, and Ag exhibit metallic behavior. Our findings indicate that the stability and the electronic properties of these monatomic chains can be tuned by using appropriate molecular or atomic additives.

  14. Anisotropic toughness and strength in graphene and its atomistic origin

    NASA Astrophysics Data System (ADS)

    Hossain, M. Zubaer; Ahmed, Tousif; Silverman, Benjamin; Khawaja, M. Shehroz; Calderon, Justice; Rutten, Andrew; Tse, Stanley

    2018-01-01

    This paper presents the implication of crystallographic orientation on toughness and ideal strength in graphene under lattice symmetry-preserving and symmetry-breaking deformations. In symmetry-preserving deformation, both toughness and strength are isotropic, regardless of the chirality of the lattice; whereas, in symmetry-breaking deformation they are strongly anisotropic, even in the presence of vacancy defects. The maximum and minimum of toughness or strength occur for loading along the zigzag direction and the armchair direction, respectively. The anisotropic behavior is governed by a complex interplay among bond-stretching deformation, bond-bending deformation, and the chirality of the lattice. Nevertheless, the condition for crack-nucleation is dictated by the maximum bond-force required for bond rupture, and it is independent of the chiral angle of the lattice or loading direction. At the onset of crack-nucleation a localized nucleation zone is formed, wherein the bonds rupture locally satisfying the maximum bond-force criterion. The nucleation zone acts as the physical origin in triggering the fracture nucleation process, but its presence is undetectable from the macroscopic stress-strain data.

  15. Molecular structure, vibrational spectra, NBO analysis and molecular packing prediction of 3-nitroacetanilide by ab initio HF and density functional theory.

    PubMed

    Li, Xiao-Hong; Li, Tong-Wei; Ju, Wei-Wei; Yong, Yong-Liang; Zhang, Xian-Zhou

    2014-01-24

    Quantum chemical calculations of geometries and vibrational wavenumbers of 3-nitroacetanilide (C8H8N2O3) in the ground state were carried out by using ab initio HF and density functional theory (DFT/B3LYP) methods with 6-31+G(*) basis set. The -311++G(**) basis set is also used for B3LYP level. The scaled harmonic vibrational frequencies have been compared with experimental FT-IR spectra. Theoretical vibrational spectra of the title compound were interpreted by means of potential energies distributions (PEDs) using MOLVIB program. The theoretical spectrograms for IR spectra of the title compound have been constructed. The shortening of C-H bond length and the elongation of N-H bond length suggest the existence of weak C-H⋯O and N-H⋯O hydrogen bonds, which is confirmed by the natural bond orbital analysis. In addition, the crystal structure obtained by molecular mechanics belongs to the P2(1) space group, with lattice parameters Z=4, a=14.9989 Å, b=4.0367 Å, c=12.9913 Å, ρ=0.998 g cm(-3). Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Ultrasonic friction power during Al wire wedge-wedge bonding

    NASA Astrophysics Data System (ADS)

    Shah, A.; Gaul, H.; Schneider-Ramelow, M.; Reichl, H.; Mayer, M.; Zhou, Y.

    2009-07-01

    Al wire bonding, also called ultrasonic wedge-wedge bonding, is a microwelding process used extensively in the microelectronics industry for interconnections to integrated circuits. The bonding wire used is a 25μm diameter AlSi1 wire. A friction power model is used to derive the ultrasonic friction power during Al wire bonding. Auxiliary measurements include the current delivered to the ultrasonic transducer, the vibration amplitude of the bonding tool tip in free air, and the ultrasonic force acting on the bonding pad during the bond process. The ultrasonic force measurement is like a signature of the bond as it allows for a detailed insight into mechanisms during various phases of the process. It is measured using piezoresistive force microsensors integrated close to the Al bonding pad (Al-Al process) on a custom made test chip. A clear break-off in the force signal is observed, which is followed by a relatively constant force for a short duration. A large second harmonic content is observed, describing a nonsymmetric deviation of the signal wave form from the sinusoidal shape. This deviation might be due to the reduced geometrical symmetry of the wedge tool. For bonds made with typical process parameters, several characteristic values used in the friction power model are determined. The ultrasonic compliance of the bonding system is 2.66μm/N. A typical maximum value of the relative interfacial amplitude of ultrasonic friction is at least 222nm. The maximum interfacial friction power is at least 11.5mW, which is only about 4.8% of the total electrical power delivered to the ultrasonic generator.

  17. Structural and mechanical properties of Al-C-N films deposited at room temperature by plasma focus device

    NASA Astrophysics Data System (ADS)

    Z, A. Umar; R, Ahmad; R, S. Rawat; M, A. Baig; J, Siddiqui; T, Hussain

    2016-07-01

    The Al-C-N films are deposited on Si substrates by using a dense plasma focus (DPF) device with aluminum fitted central electrode (anode) and by operating the device with CH4/N2 gas admixture ratio of 1:1. XRD results verify the crystalline AlN (111) and Al3CON (110) phase formation of the films deposited using multiple shots. The elemental compositions as well as chemical states of the deposited Al-C-N films are studied using XPS analysis, which affirm Al-N, C-C, and C-N bonding. The FESEM analysis reveals that the deposited films are composed of nanoparticles and nanoparticle agglomerates. The size of the agglomerates increases at a higher number of focus deposition shots for multiple shot depositions. Nanoindentation results reveal the variation in mechanical properties (nanohardness and elastic modulus) of Al-C-N films deposited with multiple shots. The highest values of nanohardness and elastic modulus are found to be about 11 and 185 GPa, respectively, for the film deposited with 30 focus deposition shots. The mechanical properties of the films deposited using multiple shots are related to the Al content and C-N bonding.

  18. Orphenadrinium picrate picric acid

    PubMed Central

    Fun, Hoong-Kun; Hemamalini, Madhukar; Siddaraju, B. P.; Yathirajan, H. S.; Narayana, B.

    2010-01-01

    The asymmetric unit of the title compound N,N-dimethyl-2-[(2-methyl­phen­yl)phenyl­meth­oxy]ethanaminium picrate picric acid, C18H24NO+·C6H2N3O7 −·C6H3N3O7, contains one orphenadrinium cation, one picrate anion and one picric acid mol­ecule. In the orphenadrine cation, the two aromatic rings form a dihedral angle of 70.30 (7)°. There is an intra­molecular O—H⋯O hydrogen bond in the picric acid mol­ecule, which generates an S(6) ring motif. In the crystal structure, the orphenadrine cations, picrate anions and picric acid mol­ecules are connected by strong inter­molecular N—H⋯O hydrogen bonds, π⋯π inter­actions between the benzene rings of cations and anions [centroid–centroid distance = 3.5603 (9) Å] and weak C—H⋯O hydrogen bonds, forming a three-dimensional network. PMID:21580426

  19. Hydroalumination of Ketenimines and Subsequent Reactions with Heterocumulenes: Synthesis of Unsaturated Amide Derivatives and 1,3-Diimines.

    PubMed

    Jin, Xing; Willeke, Matthias; Lucchesi, Ralph; Daniliuc, Constantin-Gabriel; Fröhlich, Roland; Wibbeling, Birgit; Uhl, Werner; Würthwein, Ernst-Ulrich

    2015-06-19

    The series of differently substituted ketenimines 1 was hydroluminated using di-iso-butyl aluminum hydride. For the sterically congested ketenimine 1a, preferred hydroalumination of the C═N-bond was proven by X-ray crystallography (compound 5a). In situ treatment of the hydroaluminated ketenimines 5 with various heterocumulenes like carbodiimides, isocycanates, isothiocyanates and ketenimines as electrophiles and subsequent hydrolytic workup resulted in novel enamine derived amide species in case of N-attack (sterically less hindered ketenimines) under formation of a new C-N-bond or in 1,3-diimines by C-C-bond-formation in case of bulky substituents at the ketenimine-nitrogen atom. Furthermore, domino reactions with more than 1 equiv of the electrophile or by subsequent addition of two different electrophiles are possible and lead to polyfunctional amide derivatives of the biuret type which are otherwise not easily accessible.

  20. Stille coupling via C-N bond cleavage

    NASA Astrophysics Data System (ADS)

    Wang, Dong-Yu; Kawahata, Masatoshi; Yang, Ze-Kun; Miyamoto, Kazunori; Komagawa, Shinsuke; Yamaguchi, Kentaro; Wang, Chao; Uchiyama, Masanobu

    2016-09-01

    Cross-coupling is a fundamental reaction in the synthesis of functional molecules, and has been widely applied, for example, to phenols, anilines, alcohols, amines and their derivatives. Here we report the Ni-catalysed Stille cross-coupling reaction of quaternary ammonium salts via C-N bond cleavage. Aryl/alkyl-trimethylammonium salts [Ar/R-NMe3]+ react smoothly with arylstannanes in 1:1 molar ratio in the presence of a catalytic amount of commercially available Ni(cod)2 and imidazole ligand together with 3.0 equivalents of CsF, affording the corresponding biaryl with broad functional group compatibility. The reaction pathway, including C-N bond cleavage step, is proposed based on the experimental and computational findings, as well as isolation and single-crystal X-ray diffraction analysis of Ni-containing intermediates. This reaction should be widely applicable for transformation of amines/quaternary ammonium salts into multi-aromatics.

  1. Low-temperature crack-free Si3N4 nonlinear photonic circuits for CMOS-compatible optoelectronic co-integration

    NASA Astrophysics Data System (ADS)

    Casale, Marco; Kerdiles, Sebastien; Brianceau, Pierre; Hugues, Vincent; El Dirani, Houssein; Sciancalepore, Corrado

    2017-02-01

    In this communication, authors report for the first time on the fabrication and testing of Si3N4 non-linear photonic circuits for CMOS-compatible monolithic co-integration with silicon-based optoelectronics. In particular, a novel process has been developed to fabricate low-loss crack-free Si3N4 750-nm-thick films for Kerr-based nonlinear functions featuring full thermal budget compatibility with existing Silicon photonics and front-end Si optoelectronics. Briefly, differently from previous and state-of-the-art works, our nonlinear nitride-based platform has been realized without resorting to commonly-used high-temperature annealing ( 1200°C) of the film and its silica upper-cladding used to break N-H bonds otherwise causing absorption in the C-band and destroying its nonlinear functionality. Furthermore, no complex and fabrication-intolerant Damascene process - as recently reported earlier this year - aimed at controlling cracks generated in thick tensile-strained Si3N4 films has been used as well. Instead, a tailored Si3N4 multiple-step film deposition in 200-mm LPCVD-based reactor and subsequent low-temperature (400°C) PECVD oxide encapsulation have been used to fabricate the nonlinear micro-resonant circuits aiming at generating optical frequency combs via optical parametric oscillators (OPOs), thus allowing the monolithic co-integration of such nonlinear functions on existing CMOS-compatible optoelectronics, for both active and passive components such as, for instance, silicon modulators and wavelength (de-)multiplexers. Experimental evidence based on wafer-level statistics show nitride-based 112-μm-radius ring resonators using such low-temperature crack-free nitride film exhibiting quality factors exceeding Q >3 x 105, thus paving the way to low-threshold power-efficient Kerr-based comb sources and dissipative temporal solitons in the C-band featuring full thermal processing compatibility with Si photonic integrated circuits (Si-PICs).

  2. Extended reaction scope of thiamine diphosphate dependent cyclohexane-1,2-dione hydrolase: from C-C bond cleavage to C-C bond ligation.

    PubMed

    Loschonsky, Sabrina; Wacker, Tobias; Waltzer, Simon; Giovannini, Pier Paolo; McLeish, Michael J; Andrade, Susana L A; Müller, Michael

    2014-12-22

    ThDP-dependent cyclohexane-1,2-dione hydrolase (CDH) catalyzes the CC bond cleavage of cyclohexane-1,2-dione to 6-oxohexanoate, and the asymmetric benzoin condensation between benzaldehyde and pyruvate. One of the two reactivities of CDH was selectively knocked down by mutation experiments. CDH-H28A is much less able to catalyze the CC bond formation, while the ability for CC bond cleavage is still intact. The double variant CDH-H28A/N484A shows the opposite behavior and catalyzes the addition of pyruvate to cyclohexane-1,2-dione, resulting in the formation of a tertiary alcohol. Several acyloins of tertiary alcohols are formed with 54-94 % enantiomeric excess. In addition to pyruvate, methyl pyruvate and butane-2,3-dione are alternative donor substrates for CC bond formation. Thus, the very rare aldehyde-ketone cross-benzoin reaction has been solved by design of an enzyme variant. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Copper-catalyzed aerobic oxidative C-H functionalization of substituted pyridines: synthesis of imidazopyridine derivatives.

    PubMed

    Yu, Jipan; Jin, Yunhe; Zhang, Hao; Yang, Xiaobo; Fu, Hua

    2013-12-02

    A novel, efficient, and practical method for the synthesis of imidazopyridine derivatives has been developed through the copper-catalyzed aerobic oxidative C-H functionalization of substituted pyridines with N-(alkylidene)-4H-1,2,4-triazol-4-amines. The procedure occurs by cleavage of the N-N bond in the N-(alkylidene)-4H-1,2,4-triazol-4-amines and activation of an aryl C-H bond in the substituted pyridines. This is the first example of the preparation of imidazopyridine derivatives by using pyridines as the substrates by transition-metal-catalyzed C-H functionalization. This method should provide a novel and efficient strategy for the synthesis of other nitrogen heterocycles. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Ligand-Promoted Rh(III)-Catalyzed Coupling of Aryl C-H Bonds with Arylboron Reagents.

    PubMed

    Wang, Huai-Wei; Cui, Pei-Pei; Lu, Yi; Sun, Wei-Yin; Yu, Jin-Quan

    2016-04-15

    Rhodium(III)-catalyzed C-H arylation of arenes with phenylboronic acid pinacol esters has been achieved using a readily removable N-pentafluorophenylbenzamide directing group for the first time. The use of a bidentate phosphine ligand (Binap) significantly increased the yield of the cross-coupling of C-H bonds with organoboron reagents.

  5. Is the DPT tautomerization of the long A·G Watson-Crick DNA base mispair a source of the adenine and guanine mutagenic tautomers? A QM and QTAIM response to the biologically important question.

    PubMed

    Brovarets', Ol'ha O; Zhurakivsky, Roman O; Hovorun, Dmytro M

    2014-03-05

    Herein, we first address the question posed in the title by establishing the tautomerization trajectory via the double proton transfer of the adenine·guanine (A·G) DNA base mispair formed by the canonical tautomers of the A and G bases into the A*·G* DNA base mispair, involving mutagenic tautomers, with the use of the quantum-mechanical calculations and quantum theory of atoms in molecules (QTAIM). It was detected that the A·G ↔ A*·G* tautomerization proceeds through the asynchronous concerted mechanism. It was revealed that the A·G base mispair is stabilized by the N6H···O6 (5.68) and N1H···N1 (6.51) hydrogen bonds (H-bonds) and the N2H···HC2 dihydrogen bond (DH-bond) (0.68 kcal·mol(-1) ), whereas the A*·G* base mispair-by the O6H···N6 (10.88), N1H···N1 (7.01) and C2H···N2 H-bonds (0.42 kcal·mol(-1) ). The N2H···HC2 DH-bond smoothly and without bifurcation transforms into the C2H···N2 H-bond at the IRC = -10.07 Bohr in the course of the A·G ↔ A*·G* tautomerization. Using the sweeps of the energies of the intermolecular H-bonds, it was observed that the N6H···O6 H-bond is anticooperative to the two others-N1H···N1 and N2H···HC2 in the A·G base mispair, while the latters are significantly cooperative, mutually strengthening each other. In opposite, all three O6H···N6, N1H···N1, and C2H···N2 H-bonds are cooperative in the A*·G* base mispair. All in all, we established the dynamical instability of the А*·G* base mispair with a short lifetime (4.83·10(-14) s), enabling it not to be deemed feasible source of the A* and G* mutagenic tautomers of the DNA bases. The small lifetime of the А*·G* base mispair is predetermined by the negative value of the Gibbs free energy for the A*·G* → A·G transition. Moreover, all of the six low-frequency intermolecular vibrations cannot develop during this lifetime that additionally confirms the aforementioned results. Thus, the A*·G* base mispair cannot be considered as a source of the mutagenic tautomers of the DNA bases, as the A·G base mispair dissociates during DNA replication exceptionally into the A and G monomers in the canonical tautomeric form. Copyright © 2013 Wiley Periodicals, Inc.

  6. C-H bond functionalization via hydride transfer: formation of α-arylated piperidines and 1,2,3,4-tetrahydroisoquinolines via stereoselective intramolecular amination of benzylic C-H bonds.

    PubMed

    Vadola, Paul A; Carrera, Ignacio; Sames, Dalibor

    2012-08-17

    We here report a study of the intramolecular amination of sp(3) C-H bonds via the hydride transfer cyclization of N-tosylimines (HT-amination). In this transformation, 5-aryl aldehydes are subjected to N-toluenesulfonamide in the presence of BF(3)·OEt(2) to effect imine formation and HT-cyclization, leading to 2-arylpiperidines and 3-aryl-1,2,3,4-tetrahydroisoquinolines in a one-pot procedure. We examined the reactivity of a range of aldehyde substrates as a function of their conformational flexibility. Substrates of higher conformational rigidity were more reactive, giving higher yields of the desired products. However, a single substituent on the alkyl chain linking the N-tosylimine and the benzylic sp(3) C-H bonds was sufficient for HT-cyclization to occur. In addition, an examination of various arenes revealed that the electronic character of the hydridic C-H bonds dramatically affects the efficiency of the reaction. We also found that this transformation is highly stereoselective; 2-substituted aldehydes yield cis-2,5-disubstituted piperidines, while 3-substituted aldehydes afford trans-2,4-disubstituted piperidines. The stereoselectivity is a consequence of thermodynamic control. The pseudoallylic strain between the arene and tosyl group on the piperidine ring is proposed to rationalize the greater stability of the isomer with the aryl ring in the axial position. This preferential placement of the arene is proposed to affect the observed stereoselectivity.

  7. The physical mechanism on the threshold voltage temperature stability improvement for GaN HEMTs with pre-fluorination argon treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yun-Hsiang; A*STAR Institute of Microelectronics, Singapore 117685; Liang, Yung C., E-mail: chii@nus.edu.sg

    2016-06-06

    In this paper, a normally-off AlGaN/GaN MIS-HEMT with improved threshold voltage (V{sub TH}) thermal stability is reported with investigations on its physical mechanism. The normally-off operation of the device is achieved from novel short argon plasma treatment (APT) prior to the fluorine plasma treatment (FPT) on Al{sub 2}O{sub 3} gate dielectrics. For the MIS-HEMT with FPT only, its V{sub TH} drops from 4.2 V at room temperature to 0.5 V at 200 °C. Alternatively, for the device with APT-then-FPT process, its V{sub TH} can retain at 2.5 V at 200 °C due to the increased amount of deep-level traps that do not emit electrons atmore » 200 °C. This thermally stable V{sub TH} makes this device suitable for high power applications. The depth profile of the F atoms in Al{sub 2}O{sub 3}, measured by the secondary ion mass spectroscopy, reveals a significant increase in the F concentration when APT is conducted prior to FPT. The X-ray photoelectron spectroscopy (XPS) analysis on the plasma-treated Al{sub 2}O{sub 3} surfaces observes higher composition of Al-F bonds if APT was applied before FPT. The enhanced breaking of Al-O bonds due to Ar bombardment assisted in the increased incorporation of F radicals at the surface during the subsequent FPT process. The Schrödinger equation of Al{sub 2}O{sub x}F{sub y} cells, with the same Al-F compositions as obtained from XPS, was solved by Gaussian 09 molecular simulations to extract electron state distribution as a function of energy. The simulation results show creation of the deeper trap states in the Al{sub 2}O{sub 3} bandgap when APT is used before FPT. Finally, the trap distribution extracted from the simulations is verified by the gate-stress experimental characterization to confirm the physical mechanism described.« less

  8. Molecular structure, spectroscopic studies and first-order molecular hyperpolarizabilities of p-amino acetanilide.

    PubMed

    Abraham, Jose P; Sajan, D; Joe, I Hubert; Jayakumar, V S

    2008-11-15

    The infrared absorption, Raman spectra and SERS spectra of p-amino acetanilide have been analyzed with the aid of density functional theory calculations at B3LYP/6-311G(d,p) level. The electric dipole moment (mu) and the first hyperpolarizability (beta) values of the investigated molecule have been computed using ab initio quantum mechanical calculations. The calculation results also show that the synthesized molecule might have microscopic nonlinear optical (NLO) behavior with non-zero values. Computed geometries reveal that the PAA molecule is planar, while secondary amide group is twisted with respect to the phenyl ring is found, upon hydrogen bonding. The hyperconjugation of the C=O group with adjacent C-C bond and donor-acceptor interaction associated with the secondary amide have been investigated using computed geometry. The carbonyl stretching band position is found to be influenced by the tendency of phenyl ring to withdraw nitrogen lone pair, intermolecular hydrogen bonding, conjugation and hyperconjugation. The existence of intramolecular C=O...H hydrogen bonded have been investigated by means of the natural bonding orbital (NBO) analysis. The influence of the decrease of N-H and C=O bond orders and increase of C-N bond orders due to donor-acceptor interaction has been identified in the vibrational spectra. The SERS spectral analysis reveals that the large enhancement of in-plane bending, out of plane bending and ring breathing modes in the surface-enhanced Raman scattering spectrum indicates that the molecule is adsorbed on the silver surface in a 'atleast vertical' configuration, with the ring perpendicular to the silver surface.

  9. Molecular structure, spectroscopic studies and first-order molecular hyperpolarizabilities of p-amino acetanilide

    NASA Astrophysics Data System (ADS)

    Abraham, Jose P.; Sajan, D.; Joe, I. Hubert; Jayakumar, V. S.

    2008-11-01

    The infrared absorption, Raman spectra and SERS spectra of p-amino acetanilide have been analyzed with the aid of density functional theory calculations at B3LYP/6-311G(d,p) level. The electric dipole moment ( μ) and the first hyperpolarizability ( β) values of the investigated molecule have been computed using ab initio quantum mechanical calculations. The calculation results also show that the synthesized molecule might have microscopic nonlinear optical (NLO) behavior with non-zero values. Computed geometries reveal that the PAA molecule is planar, while secondary amide group is twisted with respect to the phenyl ring is found, upon hydrogen bonding. The hyperconjugation of the C dbnd O group with adjacent C-C bond and donor-acceptor interaction associated with the secondary amide have been investigated using computed geometry. The carbonyl stretching band position is found to be influenced by the tendency of phenyl ring to withdraw nitrogen lone pair, intermolecular hydrogen bonding, conjugation and hyperconjugation. The existence of intramolecular C dbnd O⋯H hydrogen bonded have been investigated by means of the natural bonding orbital (NBO) analysis. The influence of the decrease of N-H and C dbnd O bond orders and increase of C-N bond orders due to donor-acceptor interaction has been identified in the vibrational spectra. The SERS spectral analysis reveals that the large enhancement of in-plane bending, out of plane bending and ring breathing modes in the surface-enhanced Raman scattering spectrum indicates that the molecule is adsorbed on the silver surface in a 'atleast vertical' configuration, with the ring perpendicular to the silver surface.

  10. Crystal structure of 5-{4'-[(2-{2-[2-(2-ammonio-eth-oxy)eth-oxy]eth-oxy}eth-yl)carbamo-yl]-4-meth-oxy-[1,1'-biphen-yl]-3-yl}-3-oxo-1,2,5-thia-diazo-lidin-2-ide 1,1-dioxide: a potential inhibitor of the enzyme protein tyrosine phosphatase 1B (PTP1B).

    PubMed

    Ruddraraju, Kasi Viswanatharaju; Hillebrand, Roman; Barnes, Charles L; Gates, Kent S

    2015-04-01

    The title compound, C24H32N4O8S, (I), crystallizes as a zwitterion. The terminal amine N atom of the [(2-{2-[2-(2-ammonio-eth-oxy)eth-oxy]eth-oxy}eth-yl)carbamo-yl] side chain is protonated, while the 1,2,5-thia-diazo-lidin-3-one 1,1-dioxide N atom is deprotonated. The side chain is turned over on itself with an intra-molecular N-H⋯O hydrogen bond. The 1,2,5-thia-diazo-lidin-3-one 1,1-dioxide ring has an envelope conformation with the aryl-substituted N atom as the flap. Its mean plane is inclined by 62.87 (8)° to the aryl ring to which it is attached, while the aryl rings of the biphenyl unit are inclined to one another by 20.81 (8)°. In the crystal, mol-ecules are linked by N-H⋯O and N-H⋯N hydrogen bonds, forming slabs lying parallel to (010). Within the slabs there are C-H⋯O and C-H⋯N hydrogen bonds and C-H⋯π inter-actions present.

  11. N,N-Dimethyl-N′-[3-(trifluoro­methyl)­phenyl]­urea

    PubMed Central

    Yu, Da-sheng; Li, Fang-shi; Yao, Wei; Liu, Yin-hong; Lu, Chui

    2008-01-01

    The title compound, C10H11F3N2O, is an important urea-based herbicide. In the crystal structure, the mol­ecular packing is stabilized by two intra­molecular C—H⋯O hydrogen bonds and one inter­molecular N—H⋯O hydrogen bond, generating a C(4) graph-set motif running parallel to the [001] direction. The F atoms are disordered over two sites, with occupancies of 0.176 (9) and 0.824 (9). PMID:21202857

  12. N-(2-Allyl-4-eth-oxy-2H-indazol-5-yl)-4-methyl-benzene-sulfonamide.

    PubMed

    Chicha, Hakima; Rakib, El Mostapha; Bouissane, Latifa; Viale, Maurizio; Saadi, Mohamed; El Ammari, Lahcen

    2014-05-01

    The indazole ring system of the title compound, C19H21N3O3S, is almost planar (r.m.s. deviation = 0.0192 Å) and forms dihedral angles of 77.99 (15) and 83.9 (3)° with the benzene ring and allyl group, respectively. In the crystal, centrosymmetrically related mol-ecules are connected by pairs of N-H⋯O hydrogen bonds into dimers, which are further linked by C-H⋯O hydrogen bonds, forming columns parallel to the b axis.

  13. Regioselective functionalization of iminophosphoranes through Pd-mediated C-H bond activation: C-C and C-X bond formation.

    PubMed

    Aguilar, David; Navarro, Rafael; Soler, Tatiana; Urriolabeitia, Esteban P

    2010-11-21

    The orthopalladation of iminophosphoranes [R(3)P=N-C(10)H(7)-1] (R(3) = Ph(3) 1, p-Tol(3) 2, PhMe(2) 3, Ph(2)Me 4, N-C(10)H(7)-1 = 1-naphthyl) has been studied. It occurs regioselectively at the aryl ring bonded to the P atom in 1 and 2, giving endo-[Pd(μ-Cl)(C(6)H(4)-(PPh(2=N-1-C(10)H(7))-2)-κ-C,N](2) (5) or endo-[Pd(μ-Cl)(C(6)H(3)-(P(p-Tol)(2)=N-C(10)H(7)-1)-2-Me-5)-κ-C,N](2) (6), while in 3 the 1-naphthyl group is metallated instead, giving exo-[Pd(μ-Cl)(C(10)H(6)-(N=PPhMe(2))-8)-κ-C,N](2) (7). In the case of 4, orthopalladation at room temperature affords the kinetic exo isomer [Pd(μ-Cl)(C(10)H(6)-(N=PPh(2)Me)-8)-κ-C,N](2) (11exo), while a mixture of 11exo and the thermodynamic endo isomer [Pd(μ-Cl)(C(6)H(4)-(PPhMe=N-C(10)H(7)-1)-2)-κ-C,N](2) (11endo) is obtained in refluxing toluene. The heating in toluene of the acetate bridge dimer [Pd(μ-OAc)(C(10)H(6)-(N=PPh(2)Me)-8)-κ-C,N](2) (13exo) promotes the facile transformation of the exo isomer into the endo isomer [Pd(μ-OAc)(C(6)H(4)-(PPhMe=N-C(10)H(7)-1)-2)-κ-C,N](2) (13endo), confirming that the exo isomers are formed under kinetic control. Reactions of the orthometallated complexes have led to functionalized molecules. The stoichiometric reactions of the orthometallated complexes [Pd(μ-Cl)(C(10)H(6)-(N=PPhMe(2))-8)-κ-C,N](2) (7), [Pd(μ-Cl)(C(6)H(4)-(PPh(2)[=NPh)-2)](2) (17) and [Pd(μ-Cl)(C(6)H(3)-(C(O)N=PPh(3))-2-OMe-4)](2) (18) with I(2) or with CO results in the synthesis of the ortho-halogenated compounds [PhMe(2)P=N-C(10)H(6)-I-8] (19), [I-C(6)H(4)-(PPh(2)=NPh)-2] (21) and [Ph(3)P=NC(O)C(6)H(3)-I-2-OMe-5] (23) or the heterocycles [C(10)H(6)-(N=PPhMe(2))-1-(C(O))-8]Cl (20), [C(6)H(5)-(N=PPh(2)-C(6)H(4)-C(O)-2]ClO(4) (22) and [C(6)H(3)-(C(O)-1,2-N-PPh(3))-OMe-4]Cl (24).

  14. Domain walls and the C P anomaly in softly broken supersymmetric QCD

    NASA Astrophysics Data System (ADS)

    Draper, Patrick

    2018-04-01

    In ordinary QCD with light, degenerate, fundamental flavors, C P symmetry is spontaneously broken at θ =π , and domain wall solutions connecting the vacua can be constructed in chiral perturbation theory. In some cases the breaking of C P saturates a 't Hooft anomaly, and anomaly inflow requires nontrivial massless excitations on the domain walls. Analogously, C P can be spontaneously broken in supersymmetric QCD (SQCD) with light flavors and small soft breaking parameters. We study C P breaking and domain walls in softly broken SQCD with Nf

  15. (E)-2-(2-Methyl­cyclo­hexyl­idene)hydrazinecarbothio­amide

    PubMed Central

    Hicks, Justin W.; Lough, Alan J.; Wilson, Alan A.; Vasdev, Neil

    2011-01-01

    In the crystal of the title compound, C8H15N3S, mol­ecules are linked by N—H⋯S hydrogen bonds, forming chains along [10]. An intra­molecular N—H⋯N hydrogen bond is also present. PMID:22220022

  16. Nucleophilicities of Lewis Bases B and Electrophilicities of Lewis Acids A Determined from the Dissociation Energies of Complexes B⋯A Involving Hydrogen Bonds, Tetrel Bonds, Pnictogen Bonds, Chalcogen Bonds and Halogen Bonds.

    PubMed

    Alkorta, Ibon; Legon, Anthony C

    2017-10-23

    It is shown that the dissociation energy D e for the process B⋯A = B + A for 250 complexes B⋯A composed of 11 Lewis bases B (N₂, CO, HC≡CH, CH₂=CH₂, C₃H₆, PH₃, H₂S, HCN, H₂O, H₂CO and NH₃) and 23 Lewis acids (HF, HCl, HBr, HC≡CH, HCN, H₂O, F₂, Cl₂, Br₂, ClF, BrCl, H₃SiF, H₃GeF, F₂CO, CO₂, N₂O, NO₂F, PH₂F, AsH₂F, SO₂, SeO₂, SF₂, and SeF₂) can be represented to good approximation by means of the equation D e = c ' N B E A , in which N B is a numerical nucleophilicity assigned to B, E A is a numerical electrophilicity assigned to A, and c ' is a constant, conveniently chosen to have the value 1.00 kJ mol -1 here. The 250 complexes were chosen to cover a wide range of non-covalent interaction types, namely: (1) the hydrogen bond; (2) the halogen bond; (3) the tetrel bond; (4) the pnictogen bond; and (5) the chalcogen bond. Since there is no evidence that one group of non-covalent interaction was fitted any better than the others, it appears the equation is equally valid for all the interactions considered and that the values of N B and E A so determined define properties of the individual molecules. The values of N B and E A can be used to predict the dissociation energies of a wide range of binary complexes B⋯A with reasonable accuracy.

  17. Radical Cation Salt-initiated Aerobic C-H Phosphorylation of N-Benzylanilines: Synthesis of a-Aminophosphonates.

    PubMed

    Jia, Xiao Dong; Liu, Xiaofei; Yuan, Yu; Li, Pengfei; Hou, Wentao; He, Kaixuan

    2018-06-03

    A radical cation salt-initiated phosphorylation of N-benzylanilines was realized through the aerobic oxidation of sp3 C-H bond, providing a series of α-aminophosphonates in high yields. The investigation of the reaction scope revealed that this mild catalyst system is superior in good functional group tolerance and high reaction efficiency. The mechanistic study implied that the cleavage of the sp3 C-H bond was involved in the rate-determining step. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Spontaneous symmetry breaking and phase coexistence in two-color networks.

    PubMed

    Avetisov, V; Gorsky, A; Nechaev, S; Valba, O

    2016-01-01

    We consider an equilibrium ensemble of large Erdős-Renyi topological random networks with fixed vertex degree and two types of vertices, black and white, prepared randomly with the bond connection probability p. The network energy is a sum of all unicolor triples (either black or white), weighted with chemical potential of triples μ. Minimizing the system energy, we see for some positive μ the formation of two predominantly unicolor clusters, linked by a string of N_{bw} black-white bonds. We have demonstrated that the system exhibits critical behavior manifested in the emergence of a wide plateau on the N_{bw}(μ) curve, which is relevant to a spinodal decomposition in first-order phase transitions. In terms of a string theory, the plateau formation can be interpreted as an entanglement between baby universes in two-dimensional gravity. We conjecture that the observed classical phenomenon can be considered as a toy model for the chiral condensate formation in quantum chromodynamics.

  19. X-ray investigations of sulfur-containing fungicides. IV. 4'-[[Benzoyl(4-chlorophenylhydrazono)methyl]sulfonyl]acetanilide and 4'-[[benzoyl(4-methoxyphenylhydrazono)methyl]sulfonyl]acetanilide.

    PubMed

    Wolf, W M

    2001-09-01

    The conformations of the two approximately isomorphous structures 4'-[[benzoyl(4-chlorophenylhydrazono)methyl]sulfonyl]acetanilide, C(22)H(18)ClN(3)O(4)S, and 4'-[[benzoyl(4-methoxyphenylhydrazono)methyl]sulfonyl]acetanilide, C(23)H(21)N(3)O(5)S, are stabilized by resonance-assisted intramolecular hydrogen bonds linking the hydrazone moieties and sulfonyl groups. The stronger bond is observed in the former compound. The difference in electronic properties between the Cl atom and the methoxy group is too small to significantly alter the non-bonding interactions of the sulfonyl and beta-carbonyl groups.

  20. Oxidation Protection of Porous Reaction-Bonded Silicon Nitride

    NASA Technical Reports Server (NTRS)

    Fox, D. S.

    1994-01-01

    Oxidation kinetics of both as-fabricated and coated reaction-bonded silicon nitride (RBSN) were studied at 900 and 1000 C with thermogravimetry. Uncoated RBSN exhibited internal oxidation and parabolic kinetics. An amorphous Si-C-O coating provided the greatest degree of protection to oxygen, with a small linear weight loss observed. Linear weight gains were measured on samples with an amorphous Si-N-C coating. Chemically vapor deposited (CVD) Si3N4 coated RBSN exhibited parabolic kinetics, and the coating cracked severely. A continuous-SiC-fiber-reinforced RBSN composite was also coated with the Si-C-O material, but no substantial oxidation protection was observed.

  1. Symmetry and structure of carbon-nitrogen complexes in gallium arsenide from infrared spectroscopy and first-principles calculations

    NASA Astrophysics Data System (ADS)

    Künneth, Christopher; Kölbl, Simon; Wagner, Hans Edwin; Häublein, Volker; Kersch, Alfred; Alt, Hans Christian

    2018-04-01

    Molecular-like carbon-nitrogen complexes in GaAs are investigated both experimentally and theoretically. Two characteristic high-frequency stretching modes at 1973 and 2060 cm-1, detected by Fourier transform infrared absorption (FTIR) spectroscopy, appear in carbon- and nitrogen-implanted and annealed layers. From isotopic substitution, it is deduced that the chemical composition of the underlying complexes is CN2 and C2N, respectively. Piezospectroscopic FTIR measurements reveal that both centers have tetragonal symmetry. For density functional theory (DFT) calculations, linear entities are substituted for the As anion, with the axis oriented along the 〈1 0 0 〉 direction, in accordance with the experimentally ascertained symmetry. The DFT calculations support the stability of linear N-C-N and C-C-N complexes in the GaAs host crystal in the charge states ranging from + 3 to -3. The valence bonds of the complexes are analyzed using molecular-like orbitals from DFT. It turns out that internal bonds and bonds to the lattice are essentially independent of the charge state. The calculated vibrational mode frequencies are close to the experimental values and reproduce precisely the isotopic mass splitting from FTIR experiments. Finally, the formation energies show that under thermodynamic equilibrium CN2 is more stable than C2N.

  2. The triel bond: a potential force for tuning anion-π interactions

    NASA Astrophysics Data System (ADS)

    Esrafili, Mehdi D.; Mousavian, Parisasadat

    2018-02-01

    Using ab-initio calculations, the mutual influence between anion-π and B···N or B···C triel bond interactions is investigated in some model complexes. The properties of these complexes are studied by molecular electrostatic potential, noncovalent interaction index, quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) analyses. According to the results, the formation of B···N or B···C triel bond interactions in the multi-component systems makes a significant shortening of anion-π distance. Such remarkable variation in the anion-π distances has not been reported previously. The strengthening of the anion-π bonding in the multi-component systems depend significantly on the nature of the anion, and it becomes larger in the order Br- > Cl- > F-. The parameters derived from the QTAIM and NBO methodologies are used to study the mechanism of the cooperativity between the anion-π and triel bond interactions in the multi-component complexes.

  3. C-H Activation of Benzene by a Photoactivated Ni(II)(azide): Formation of a Transient Nickel Nitrido Complex.

    PubMed

    Vreeken, Vincent; Siegler, Maxime A; de Bruin, Bas; Reek, Joost N H; Lutz, Martin; van der Vlugt, Jarl Ivar

    2015-06-08

    Photochemical activation of nickel-azido complex 2 [Ni(N3)(PNP)] (PN(H)P=2,2'-di(isopropylphosphino)-4,4'-ditolylamine) in neat benzene produces diamagnetic complex 3 [Ni(Ph)(PN(P)N(H))], which is crystallographically characterized. DFT calculations support photoinitiated N2-loss of the azido complex to generate a rare, transient Ni(IV) nitrido species, which bears significant nitridyl radical character. Subsequent trapping of this nitrido through insertion into the Ni-P bond generates a coordinatively unsaturated Ni(II) imidophosphorane P=N donor. This species shows unprecedented reactivity toward 1,2-addition of a C-H bond of benzene to form 3. The structurally characterized chlorido complex 4 [Ni(Cl)(PN(P)N(H))] is generated by reaction of 3 with HCl or by direct photolysis of 2 in chlorobenzene. This is the first report of aromatic C-H bond activation by a trapped transient nitrido species of a late transition metal. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Mechanism of single metal exchange in the reactions of [M4(SPh)10]2- (M = Zn or Fe) with CoX2 (X = Cl or NO3) or FeCl2.

    PubMed

    Autissier, Valerie; Henderson, Richard A

    2008-07-21

    The kinetics of the reactions between [Zn4(SPh)10](2-) and an excess of MX2 (M = Co, X = NO3 or Cl; M = Fe, X = Cl), in which a Zn(II) is replaced by M(II), have been studied in MeCN at 25.0 degrees C. (1)H NMR spectroscopy shows that the ultimate product of the reactions is an equilibrium mixture of clusters of composition [Zn(n)M(4-n)(SPh)10](2-), and this is reflected in the multiphasic absorbance-time curves observed over protracted times (several minutes) using stopped-flow spectrophotometry to study the reactions. The kinetics of only the first phase have been determined, corresponding to the equilibrium formation of [Zn3M(SPh)10](2-). The effects of varying the concentrations of cluster, MX2, and ZnCl2 on the kinetics have been investigated. The rate law is consistent with the equilibrium nature of the metal exchange process and indicates a mechanism for the formation of [Zn3M(SPh)10](2-) involving two coupled equilibria. In the initial step binding of MX2 to a bridging thiolate in [Zn4(SPh)10](2-) results in breaking of a Zn-bridging thiolate bond. In the second step replacement of the cluster Zn involves transfer of the bridging thiolates from the Zn to M, with breaking of a Zn-bridged thiolate bond being rate-limiting. The kinetics for the reaction of ZnCl2 with [Zn3M(SPh)10](2-) (M = Fe or Co)} depends on the identity of M. This behavior indicates attack of ZnCl2 at a M-mu-SPh-Zn bridged thiolate. Similar studies on the analogous reactions between [Fe4(SPh)10](2-) and an excess of CoX2 (X = NO3 or Cl) in MeCN exhibit simpler kinetics but these are also consistent with the same mechanism.

  5. N-Methylamino Pyrimidyl Amides (MAPA): Highly Reactive, Electronically-Activated Amides in Catalytic N-C(O) Cleavage.

    PubMed

    Meng, Guangrong; Lalancette, Roger; Szostak, Roman; Szostak, Michal

    2017-09-01

    Despite recent progress in catalytic cross-coupling technologies, the direct activation of N-alkyl-N-aryl amides has been a challenging transformation. Here, we report the first Suzuki cross-coupling of N-methylamino pyrimidyl amides (MAPA) enabled by the controlled n N → π Ar conjugation and the resulting remodeling of the partial double bond character of the amide bond. The new mode of amide activation is suitable for generating acyl-metal intermediates from unactivated primary and secondary amides.

  6. Catalytic activation of carbon-carbon bonds in cyclopentanones.

    PubMed

    Xia, Ying; Lu, Gang; Liu, Peng; Dong, Guangbin

    2016-11-24

    In the chemical industry, molecules of interest are based primarily on carbon skeletons. When synthesizing such molecules, the activation of carbon-carbon single bonds (C-C bonds) in simple substrates is strategically important: it offers a way of disconnecting such inert bonds, forming more active linkages (for example, between carbon and a transition metal) and eventually producing more versatile scaffolds. The challenge in achieving such activation is the kinetic inertness of C-C bonds and the relative weakness of newly formed carbon-metal bonds. The most common tactic starts with a three- or four-membered carbon-ring system, in which strain release provides a crucial thermodynamic driving force. However, broadly useful methods that are based on catalytic activation of unstrained C-C bonds have proven elusive, because the cleavage process is much less energetically favourable. Here we report a general approach to the catalytic activation of C-C bonds in simple cyclopentanones and some cyclohexanones. The key to our success is the combination of a rhodium pre-catalyst, an N-heterocyclic carbene ligand and an amino-pyridine co-catalyst. When an aryl group is present in the C3 position of cyclopentanone, the less strained C-C bond can be activated; this is followed by activation of a carbon-hydrogen bond in the aryl group, leading to efficient synthesis of functionalized α-tetralones-a common structural motif and versatile building block in organic synthesis. Furthermore, this method can substantially enhance the efficiency of the enantioselective synthesis of some natural products of terpenoids. Density functional theory calculations reveal a mechanism involving an intriguing rhodium-bridged bicyclic intermediate.

  7. Design of new anti-Alzheimer drugs: ring-expansion synthesis and synchrotron X-ray diffraction study of dimethyl 4-ethyl-11-fluoro-1,4,5,6,7,8-hexa­hydro­azonino[5,6-b]indole-2,3-di­carboxyl­ate

    PubMed Central

    Toze, Flavien A. A.; Listratova, Anna V.; Voskressensky, Leonid G.; Chernikova, Natalia Yu.; Lobanov, Nikolai N.; Bilyachenko, Alexey N.

    2018-01-01

    The title compound, C20H23FN2O4, is the product of a ring-expansion reaction from a seven-membered fluorinated hexa­hydro­azepine to a nine-membered azonine. The nine-membered azonine ring of the mol­ecule adopts a chair–boat conformation. The C=C and C—N bond lengths [1.366 (3) and 1.407 (3) Å, respectively] indicate the presence of conjugation within the enamine CH2—C=C—N—CH2 fragment. The substituent planes at the C=C double bond of this fragment are twisted by 16.0 (3)° as a result of steric effects. The amine N(Et) N atom has a trigonal–pyramidal configuration (sum of the bond angles = 346.3°). The inter­planar angle between the two carboxyl­ate substituents is 60.39 (8)°. In the crystal, mol­ecules form zigzag chains along [010] by inter­molecular N—H⋯O hydrogen-bonding inter­actions, which are further packed in stacks toward [100]. The title azonino­indole might be considered as a candidate for the design of new Alzheimer drugs. PMID:29765710

  8. Cooperative Light-Activated Iodine and Photoredox Catalysis for the Amination of Csp3 -H Bonds.

    PubMed

    Becker, Peter; Duhamel, Thomas; Stein, Christopher J; Reiher, Markus; Muñiz, Kilian

    2017-06-26

    An unprecedented method that makes use of the cooperative interplay between molecular iodine and photoredox catalysis has been developed for dual light-activated intramolecular benzylic C-H amination. Iodine serves as the catalyst for the formation of a new C-N bond by activating a remote Csp3 -H bond (1,5-HAT process) under visible-light irradiation while the organic photoredox catalyst TPT effects the reoxidation of the molecular iodine catalyst. To explain the compatibility of the two involved photochemical steps, the key N-I bond activation was elucidated by computational methods. The new cooperative catalysis has important implications for the combination of non-metallic main-group catalysis with photocatalysis. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  9. Microwave-enhanced chemical processes

    DOEpatents

    Varma, R.

    1990-06-19

    A process is disclosed for the disposal of toxic wastes including chlorinated hydrocarbons, comprising, establishing a bed of non-metallic particulates having a high dielectric loss factor. Intimate contact of the particulates and the toxic wastes at a temperature in excess of about 400 C in the presence of microwave radiation for a time sufficient breaks the hydrocarbon chlorine bonds. Detoxification values in excess of 80 are provided and further detoxification of the bed is followed by additional disposal of toxic wastes. 1 figure.

  10. Structures of exocyclic R,R- and S,S-N(6),N(6)-(2,3-dihydroxybutan-1,4-diyl)-2'-deoxyadenosine adducts induced by 1,2,3,4-diepoxybutane.

    PubMed

    Kowal, Ewa A; Seneviratne, Uthpala; Wickramaratne, Susith; Doherty, Kathleen E; Cao, Xiangkun; Tretyakova, Natalia; Stone, Michael P

    2014-05-19

    1,3-Butadiene (BD) is an industrial and environmental chemical present in urban air and cigarette smoke, and is classified as a human carcinogen. It is oxidized by cytochrome P450 to form 1,2,3,4-diepoxybutane (DEB); DEB bis-alkylates the N(6) position of adenine in DNA. Two enantiomers of bis-N(6)-dA adducts of DEB have been identified: R,R-N(6),N(6)-(2,3-dihydroxybutan-1,4-diyl)-2'-deoxyadenosine (R,R-DHB-dA), and S,S-N(6),N(6)-(2,3-dihydroxybutan-1,4-diyl)-2'-deoxyadenosine (S,S-DHB-dA) [ Seneviratne , U. , Antsypovich , S. , Dorr , D. Q. , Dissanayake , T. , Kotapati , S. , and Tretyakova , N. ( 2010 ) Chem. Res. Toxicol. 23 , 1556 -1567 ]. Herein, the R,R-DHB-dA and S,S-DHB-dA adducts have been incorporated into the 5'-d(C(1)G(2)G(3)A(4)C(5)X(6)A(7)G(8)A(9)A(10)G(11))-3':5'-d(C(12)T(13)T(14)C(15)T(16)T(17)G(18)T(19)C(20)C(21)G(22))-3' duplex [X(6) = R,R-DHB-dA (R(6)) or S,S-DHB-dA (S(6))]. The structures of the duplexes were determined by molecular dynamics calculations, which were restrained by experimental distances obtained from NMR data. Both the R,R- and S,S-DHB-dA adducts are positioned in the major groove of DNA. In both instances, the bulky 3,4-dihydroxypyrrolidine rings are accommodated by an out-of-plane rotation about the C6-N(6) bond of the bis-alkylated adenine. In both instances, the directionality of the dihydroxypyrrolidine ring is evidenced by the pattern of NOEs between the 3,4-dihydroxypyrrolidine protons and DNA. Also in both instances, the anti conformation of the glycosyl bond is maintained, which combined with the out-of-plane rotation about the C6-N(6) bond, allows the complementary thymine, T(17), to remain stacked within the duplex, and form one hydrogen bond with the modified base, between the imine nitrogen of the modified base and the T(17) N3H imino proton. The loss of the second Watson-Crick hydrogen bonding interaction at the lesion sites correlates with the lower thermal stabilities of the R,R- and S,S-DHB-dA duplexes, as compared to the corresponding unmodified duplex. The reduced base stacking at the adduct sites may also contribute to the thermal instability.

  11. Structures of Exocyclic R,R- and S,S-N6,N6-(2,3-Dihydroxybutan-1,4-diyl)-2′-Deoxyadenosine Adducts Induced by 1,2,3,4-Diepoxybutane

    PubMed Central

    2015-01-01

    1,3-Butadiene (BD) is an industrial and environmental chemical present in urban air and cigarette smoke, and is classified as a human carcinogen. It is oxidized by cytochrome P450 to form 1,2,3,4-diepoxybutane (DEB); DEB bis-alkylates the N6 position of adenine in DNA. Two enantiomers of bis-N6-dA adducts of DEB have been identified: R,R-N6,N6-(2,3-dihydroxybutan-1,4-diyl)-2′-deoxyadenosine (R,R-DHB-dA), and S,S-N6,N6-(2,3-dihydroxybutan-1,4-diyl)-2′-deoxyadenosine (S,S-DHB-dA) [SeneviratneU., AntsypovichS., DorrD. Q., DissanayakeT., KotapatiS., and TretyakovaN. (2010) Chem. Res. Toxicol.23, 1556−156720873715]. Herein, the R,R-DHB-dA and S,S-DHB-dA adducts have been incorporated into the 5′-d(C1G2G3A4C5X6A7G8A9A10G11)-3′:5′-d(C12T13T14C15T16T17G18T19C20C21G22)-3′ duplex [X6 = R,R-DHB-dA (R6) or S,S-DHB-dA (S6)]. The structures of the duplexes were determined by molecular dynamics calculations, which were restrained by experimental distances obtained from NMR data. Both the R,R- and S,S-DHB-dA adducts are positioned in the major groove of DNA. In both instances, the bulky 3,4-dihydroxypyrrolidine rings are accommodated by an out-of-plane rotation about the C6-N6 bond of the bis-alkylated adenine. In both instances, the directionality of the dihydroxypyrrolidine ring is evidenced by the pattern of NOEs between the 3,4-dihydroxypyrrolidine protons and DNA. Also in both instances, the anti conformation of the glycosyl bond is maintained, which combined with the out-of-plane rotation about the C6-N6 bond, allows the complementary thymine, T17, to remain stacked within the duplex, and form one hydrogen bond with the modified base, between the imine nitrogen of the modified base and the T17 N3H imino proton. The loss of the second Watson–Crick hydrogen bonding interaction at the lesion sites correlates with the lower thermal stabilities of the R,R- and S,S-DHB-dA duplexes, as compared to the corresponding unmodified duplex. The reduced base stacking at the adduct sites may also contribute to the thermal instability. PMID:24741991

  12. Spectroscopic evidence of α-methylbenzyl radical in the gas phase

    NASA Astrophysics Data System (ADS)

    Lee, Gi Woo; Ahn, Hyeon Geun; Kim, Tae Kyu; Lee, Sang Kuk

    2008-11-01

    We report the observation of the spectroscopic evidence of the α-methylbenzyl radical in a corona excited supersonic expansion using a pinhole-type glass nozzle for the first time. The precursors, toluene, ethylbenzene, and isopropylbenzene, seeded in a large amount of inert carrier gas helium, were electrically discharged to produce benzyl-type radicals as a result of the breaking off of a C-H or a C-C bond from the alkyl chain. The vibronic emission spectra, obtained in the visible region from the precursors, were compared to identify the species generated in the corona discharge of the precursors, from which we found the spectroscopic evidence of the α-methylbenzyl radical.

  13. How does the long G·G* Watson-Crick DNA base mispair comprising keto and enol tautomers of the guanine tautomerise? The results of a QM/QTAIM investigation.

    PubMed

    Brovarets', Ol'ha O; Hovorun, Dmytro M

    2014-08-14

    The double proton transfer (DPT) in the long G·G* Watson-Crick base mispair (|C6N1(G*)N1C6(G)| = 36.4°; C1 symmetry), involving keto and enol tautomers of the guanine (G) nucleobase, along two intermolecular neighboring O6H···O6 (8.39) and N1···HN1 (6.14 kcal mol(-1)) H-bonds that were established to be slightly anti-cooperative, leads to its transformation into the G*·G base mispair through a single transition state (|C6N1N1C6| = 37.1°; C1), namely to the interconversion into itself. It was shown that the G·G* ↔ G*·G tautomerisation via the DPT is assisted by the third specific contact, that sequentially switches along the intrinsic reaction coordinate (IRC) in an original way: (G)N2H···N2(G*) H-bond (-25.13 to -10.37) → N2···N2 van der Waals contact (-10.37 to -9.23) → (G)N2···HN2(G*) H-bond (-9.23 to 0.79) → (G*)N2···HN2(G) H-bond (0.79 to 7.35 Bohr). The DPT tautomerisation was found to proceed through the asynchronous concerted mechanism by employing the QM/QTAIM approach and the methodology of the scans of the geometric, electron-topological, energetic, polar and NBO properties along the IRC. Nine key points, that can be considered as part of the tautomerisation repertoire, have been established and analyzed in detail. Furthermore, it was shown that the G·G* or G*·G base mispair is a thermodynamically and dynamically stable structure with a lifetime of 8.22 × 10(-10) s and all 6 low-frequency intermolecular vibrations are able to develop during this time span. Lastly, our results highlight the importance of the G·G* ↔ G*·G DPT tautomerisation, which can have implications for biological and chemical sensing applications.

  14. Boron-containing organosilane polymers and ceramic materials thereof

    NASA Technical Reports Server (NTRS)

    Riccitiello, Salvatore R. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)

    1989-01-01

    The present invention relates to a polyorgano borosilane ceramic precursor polymer comprising a plurality of repeating units of the formula: (R(sup 1) single bond B)(sub p) being linked together at B by second units of the formula: single bond (R sup 2) single bond (Si single bond R sup 3) single bond (sub q), where R(sup 1) is a lower alkyl, cycloalkyl, phenyl, or (R(sup 2)R(sup 3) single bond Si single bond B single bond)(sub n) and R(sup 2) and R(sup 3) are each independently selected from hydrogen, lower alkyl, vinyl, cycloalkyl, or aryl, n is an integer between 1 and 100; p is an integer between 1 and 100; and q is an integer between 1 and 100. These materials are prepared by combining an organo borohalide of the formula R(sup 4) single bond B single bond (X sup 1) (sub 2) where R(sup 4) is selected from halogen, lower alkyl, cycloalkyl, or aryl, and an organo halosilane of the formula: R(sup 2)(R sup 3)Si(X sup 2)(sub 2) where R(sup 2) and R (sup 3) are each independently selected from lower alkyl, cycloalkyl, or aryl, and X(sup 1) and X(sup 2) are each independently selected from halogen, in an anhydrous aprotic solvent having a boiling point at ambient pressure of not greater than 160 C with in excess of four equivalents of an alkali metal, heating the reaction mixture and recovering the polyorgano borosilane. These silicon boron polymers are useful to generate high-temperature ceramic materials, such as SiC, SiB4, and B4C, upon thermal degradation above 600 C.

  15. Effect of the SiCl₄ Flow Rate on SiBN Deposition Kinetics in SiCl₄-BCl₃-NH₃-H₂-Ar Environment.

    PubMed

    Li, Jianping; Qin, Hailong; Liu, Yongsheng; Ye, Fang; Li, Zan; Cheng, Laifei; Zhang, Litong

    2017-06-07

    To improve the thermal and mechanical stability of SiC f /SiC or C/SiC composites with SiBN interphase, SiBN coating was deposited by low pressure chemical vapor deposition (LPCVD) using SiCl₄-BCl₃-NH₃-H₂-Ar gas system. The effect of the SiCl₄ flow rate on deposition kinetics was investigated. Results show that deposition rate increases at first and then decreases with the increase of the SiCl₄ flow rate. The surface of the coating is a uniform cauliflower-like structure at the SiCl₄ flow rate of 10 mL/min and 20 mL/min. The surface is covered with small spherical particles when the flow rate is 30 mL/min. The coatings deposited at various SiCl₄ flow rates are all X-ray amorphous and contain Si, B, N, and O elements. The main bonding states are B-N, Si-N, and N-O. B element and B-N bonding decrease with the increase of SiCl₄ flow rate, while Si element and Si-N bonding increase. The main deposition mechanism refers to two parallel reactions of BCl₃+NH₃ and SiCl₄+NH₃. The deposition process is mainly controlled by the reaction of BCl₃+NH₃.

  16. Copper-catalyzed synthesis of phenanthridine derivatives under an oxygen atmosphere starting from biaryl-2-carbonitriles and Grignard reagents.

    PubMed

    Zhang, Line; Ang, Gim Yean; Chiba, Shunsuke

    2010-08-20

    A copper-catalyzed synthesis of phenanthridine derivatives was developed starting from biaryl-2-carbonitriles and Grignard reagents. The present transformation is carried out by a sequence of nucleophilic addition of Grignard reagents to biaryl-2-carbonitriles to form N-H imines and their Cu-catalyzed C-N bond formation on the aromatic C-H bond, where molecular oxygen is a prerequisite to achieve the catalytic process.

  17. Ligand-accelerated activation of strong C-H bonds of alkanes by a (salen)ruthenium(VI)-nitrido complex.

    PubMed

    Man, Wai-Lun; Lam, William W Y; Kwong, Hoi-Ki; Yiu, Shek-Man; Lau, Tai-Chu

    2012-09-03

    Kinetic and mechanistic studies on the intermolecular activation of strong C-H bonds of alkanes by a (salen)ruthenium(VI) nitride were performed. The initial, rate-limiting step, the hydrogen atom transfer (HAT) from the alkane to Ru(VI)≡N, generates Ru(V)=NH and RC·HCH(2)R. The following steps involve N-rebound and desaturation. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Evidences for Cooperative Resonance-Assisted Hydrogen Bonds in Protein Secondary Structure Analogs

    NASA Astrophysics Data System (ADS)

    Zhou, Yu; Deng, Geng; Zheng, Yan-Zhen; Xu, Jing; Ashraf, Hamad; Yu, Zhi-Wu

    2016-11-01

    Cooperative behaviors of the hydrogen bonding networks in proteins have been discovered for a long time. The structural origin of this cooperativity, however, is still under debate. Here we report a new investigation combining excess infrared spectroscopy and density functional theory calculation on peptide analogs, represented by N-methylformamide (NMF) and N-methylacetamide (NMA). Interestingly, addition of the strong hydrogen bond acceptor, dimethyl sulfoxide, to the pure analogs caused opposite effects, namely red- and blue-shift of the N-H stretching infrared absorption in NMF and NMA, respectively. The contradiction can be reconciled by the marked lowering of the energy levels of the self-associates between NMA molecules due to a cooperative effect of the hydrogen bonds. On the contrary, NMF molecules cannot form long-chain cooperative hydrogen bonds because they tend to form dimers. Even more interestingly, we found excellent linear relationships between changes on bond orders of N-H/N-C/C = O and the hydrogen bond energy gains upon the formation of hydrogen bonding multimers in NMA, suggesting strongly that the cooperativity originates from resonance-assisted hydrogen bonds. Our findings provide insights on the structures of proteins and may also shed lights on the rational design of novel molecular recognition systems.

  19. Conformational study of glyoxal bis(amidinohydrazone) by ab initio methods

    NASA Astrophysics Data System (ADS)

    Mannfors, B.; Koskinen, J. T.; Pietilä, L.-O.

    1997-08-01

    We report the first ab initio molecular orbital study on the ground state of the endiamine tautomer of glyoxal bis(amidinohydrazone) (or glyoxal bis(guanylhydrazone), GBG) free base. The calculations were performed at the following levels of theory: Hartree-Fock, second-order Møller-Plesset perturbation theory and density functional theory (B-LYP and B3-LYP) as implemented in the Gaussian 94 software. The standard basis set 6-31G(d) was found to be sufficient. The default fine grid of Gaussian 94 was used in the density functional calculations. Molecular properties, such as optimized structures, total energies and the electrostatic potential derived (CHELPG) atomic charges, were studied as functions of C-C and N-N conformations. The lowest energy conformation was found to be all- trans, in agreement with the experimental solid-state structure. The second conformer with respect to rotation around the central C-C bond was found to be the cis conformer with an MP2//HF energy of 4.67 kcal mol -1. For rotation around the N-N bond the energy increased monotonically from the trans conformation to the cis conformation, the cis energy being very high, 22.01 kcal mol -1 (MP2//HF). The atomic charges were shown to be conformation dependent, and the bond charge increments and especially the conformational changes of the bond charge increments were found to be easily transferable between structurally related systems.

  20. Crystal structure of mer-tris-{2,6-di-fluoro-3-[5-(2-fluoro-phen-yl)pyridin-2-yl-κN]pyridin-4-yl-κC4}iridium(III) di-chloro-methane hemisolvate n-hexane hemisolvate.

    PubMed

    Kang, Youngjin; Park, Ki-Min; Kim, Jinho

    2017-12-01

    The asymmetric unit of the title compound, [Ir(C 17 H 11 F 2 N 2 ) 3 ]·0.5CH 3 (CH 2 ) 4 CH 3 ·0.5CH 2 Cl 2 , comprises one Ir III atom, three 2,6-di-fluoro-3-[5-(2-fluoro-phen-yl)pyridin-2-yl]pyridin-4-yl ligands and half each of an n -hexane and a di-chloro-methane solvent mol-ecule located about crystallographic inversion centres. The Ir III atom displays a distorted octa-hedral coordination geometry, having three C , N -chelating 2,6-di-fluoro-3-[5-(2-fluoro-phen-yl)pyridin-2-yl]pyridin-4-yl ligands arranged in a meridional manner. The Ir III ion lies almost in the equatorial plane [deviation = 0.0069 (15) Å]. The average distance [2.041 (3) Å] of Ir-C bonds is slightly shorter than that [2.076 (3) Å] of Ir-N bonds. A variety of intra- and inter-molecular C-H⋯F and C-H⋯π hydrogen bonds, as well as inter-molecular C-F⋯π inter-actions, contribute to the stabilization of the mol-ecular and crystal structures, and result in the formation of a two-dimensional network parallel to the ab plane. No inter-actions between n -hexane solvent mol-ecules and the other components in the title compound are observed.

Top