Li, Shu; Lu, DanDan; Zhang, Yaling; Zhang, Yi
2014-01-01
The present study was designed to test the hypothesis that long-term treatment with hydrogen-rich saline abated testicular oxidative stress induced by nicotine in mice. The effects of hydrogen-rich saline (6 ml/kg, i.p.), vitamin C (60 mg/kg, i.p.) and vitamin E (100 mg/kg, i.p.) on reproductive system and testicular oxidative levels in nicotine-treated (4.5 mg/kg, s.b.) mice were investigated. It was found that vitamin C and vitamin E attenuated serum oxidative level, but did not lower testicular oxidative levels in mice subjected to chronic nicotine treatment, and did not improve the male reproductive damage and apoptosis induced by nicotine. Different from normal antioxidants, vitamin C and vitamin E, hydrogen-rich saline abated oxidative stress in testis, and protected against nicotine-induced male reproductive damages. Our results first demonstrated that long-term treatment with hydrogen-rich saline attenuated testicular oxidative level and improved male reproductive function in nicotine-treated mice.
NASA Astrophysics Data System (ADS)
Fredricksen, Hans Peter
The ultrasonic attenuation of 600-700 MHz surface acoustic waves by two high T(,c), cubic crystal structure, superconducting thin films has been investigated. The films studied were two, 0.5 (mu) thin, Nb(,3)Sn samples, electron-beam codeposited on LiNbO(,3) and Quartz, and eleven NbN samples from 3 x 10('3) (ANGSTROM) to <(, )200 (ANGSTROM) thin, sputter deposited on LiNbO(,3). The Nb(,3)Sn (Al5 structure) film on Quartz was difficult to measure due to defects in the Quartz caused by the high deposition temperature ((DBLTURN)700(DEGREES)C) used to make the high T(,c) form of the compound. The Nb(,3)Sn film on LiNbO(,3), however, provided information about the transition temperature and energy gap at T = 0 K when the attenuation was measured as a function of temperature in zero magnetic field. A theory is developed to predict the electron-phonon produced normal state attenuation of surface acoustic waves by a thin, loss producing film on a nonattenuating substrate. Using a viscous drag model for the attenuation, the predictions of the theory are compared to the measured normal state attenuation to find the electron mean-free-path for the Nb(,3)Sn film on LiNbO(,3). The attenuation measured for this film as a function of applied magnetic field for four temperatures below T(,c) showed the sample to be an impurity rich type II superconductor with H(,c(,2)) (T = 0 K) = 85 KG, having GLAG theory constants: (kappa)(,2)(t=1) = 28.5 and (kappa)(t=1) = 29.2. The attenuation curves of the nine thickest NbN samples were non-BCS-like and very similar. Measured as a function of temperature only, because we could not reach the high critical fields of the samples, the attenuation showed an initial drop at T(,c) of about 1-2 dB which then leveled off until the temperature was below 0.5 T(,c), where the rate of decrease was much slower than the initial drop. A qualitative description of this behavior is derived from the Kosterlitz-Thouless vortex-antivortex theory. Although the thinnest NbN film did not show an attenuation change at T(,c), the next thinnest did. In this case, the measured decrease of nearly 40 dB is explained by the change in boundary condition when the substrate surface changes from "open" to "shortened" when the film becomes superconducting.
Tian, Min; Kliewer, Kara L; Asp, Michelle L; Stout, Michael B; Belury, Martha A
2011-02-01
Cancer cachexia is characterized by muscle and adipose tissue wasting caused partly by chronic, systemic inflammation. Conjugated linoleic acids (CLAs) are a group of fatty acids with various properties including anti-inflammatory cis9, trans11 (c9t11)-CLA and lipid-mobilizing trans10, cis12 (t10c12)-CLA. The purpose of this study was to test whether dietary supplementation of a c9t11-CLA-rich oil (6:1 c9t11:t10c12) could attenuate wasting of muscle and adipose tissue in colon-26 adenocarcinoma-induced cachexia in mice. Loss of body weight, muscle and adipose tissue mass caused by tumors were not rescued by supplementation with the c9t11-CLA-rich oil. In quadriceps muscle, c9t11-CLA-rich oil exacerbated tumor-induced gene expression of inflammatory markers tumor necrosis factor-α, IL-6 receptor and the E3 ligase MuRF-1 involved in muscle proteolysis. In epididymal adipose tissue, tumor-driven delipidation and atrophy was aggravated by the c9,t11-CLA-rich oil, demonstrated by further reduced adipocyte size and lower adiponectin expression. However, expression of inflammatory cytokines and macrophage markers were not altered by tumors, or CLA supplementation. These data suggest that addition of c9t11-CLA-rich oil (0.6% c9t11, 0.1% t10c12) in diet did not ameliorate wasting in mice with cancer cachexia. Instead, it increased expression of inflammatory markers in the muscle and increased adipose delipidation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Structural basis for selective inhibition of human PKG Iα by the balanol-like compound N46.
Qin, Liying; Sankaran, Banumathi; Aminzai, Sahar; Casteel, Darren; Kim, Choel
2018-05-16
Activation of PKG Iα in nociceptive neurons induces a long-term hyperexcitability that causes chronic pain. Recently, a derivative of the fungal metabolite balanol, N46, has been reported to inhibit PKG Iα with high potency and selectivity and attenuates thermal hyperalgesia and osteoarthritic pain. Here, we determined co-crystal structures of the PKG Iα C-domain and cAMP-dependent protein kinase (PKA) Cα, each bound with N46, at 1.98 Å and 2.65 Å, respectively. N46 binds the active site with its external phenyl ring specifically interacting with the glycine-rich loop and the αC helix. Phe371 at the PKG Iα glycine-rich loop is oriented parallel to the phenyl ring of N46, forming a strong π-stacking interaction, while the analogous Phe54 in PKA Cα rotates 30º and forms a weaker interaction. Structural comparison revealed that steric hindrance between the preceding Ser53 and the propoxy group of the phenyl ring may explain the weaker interaction with PKA Cα. The analogous Gly370 in PKG Iα, however, causes little steric hindrance with Phe371. Moreover, Ile406 on the αC helix forms a hydrophobic interaction with N46 while its counterpart in PKA, Thr88, does not. Substituting these residues in PKG Iα with those in PKA Cα increases its IC50 values for N46 whereas replacing these residues in PKA Cα with those in PKG Iα reduces the IC50, consistent with our structural findings. In conclusion, our results explain the structural basis for N46-mediated selective inhibition of human PKG Iα and provide a starting point for structure-guided design of selective PKG Iα inhibitors. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.
Food restriction-induced hyperactivity: addiction or adaptation to famine?
Duclos, Martine; Ouerdani, Amel; Mormède, Pierre; Konsman, Jan Pieter
2013-06-01
Increased physical activity is present in 30-80% of anorexia nervosa patients. To explain the paradox of low food intake and excessive exercise in humans and other animals, it has been proposed that increased physical activity along with food restriction activates brain reward circuits and is addictive. Alternatively, the fleeing-famine hypothesis postulates that refusal of known scarce energy-low food sources and hyperactivity facilitate migration towards new habitats that potentially contain new energy-rich foodstuffs. The use of rewarding compounds that differ in energy density, such as the energy-free sweetener saccharin and the energy rich sucrose makes it possible to critically test the reward-addiction and fleeing-famine hypotheses. The aims of the present work were to study if sucrose and/or saccharin could attenuate food restriction-induced hyperactivity, weight loss, increased plasma corticosterone, and activation of brain structures involved in neuroendocrine control, energy balance, physical activity, and reward signaling in rats. Its major findings are that access to sucrose, but not to saccharin, attenuated food restriction-induced running wheel activity, weight loss, rises in plasma corticosterone, and expression of the cellular activation marker c-Fos in the paraventricular and arcuate hypothalamus and in the nucleus accumbens. These findings suggest that the energy-richness and easy availability of sucrose interrupted a fleeing-famine-like hyperactivity response. Since corticosterone mediates food restriction-induced wheel running (Duclos et al., 2009), we propose that the attenuating effect of sucrose consumption on plasma corticosterone plays a role in reduced wheel running and weight loss by lowering activation of the nucleus accumbens and arcuate hypothalamus in these animals. Copyright © 2012 Elsevier Ltd. All rights reserved.
Gao, Yu; Gui, Qinfang; Jin, Li; Yu, Pan; Wu, Lin; Cao, Liangbin; Wang, Qiang; Duan, Manlin
2017-02-15
Hydrogen-rich saline can selectively scavenge reactive oxygen species (ROS) and protect brain against ischemia reperfusion (I/R) injury. Endoplasmic reticulum stress (ERS) has been implicated in the pathological process of cerebral ischemia. However, very little is known about the role of hydrogen-rich saline in mediating pathophysiological reactions to ERS after I/R injury caused by cardiac arrest. The rats were randomly divided into three groups, sham group (n=30), ischemia/reperfusion group (n=40) and hydrogen-rich saline group (n=40). The rats in experimental groups were subjected to 4min of cardiac arrest and followed by resuscitation. Then they were randomized to receive 5ml/kg of either hydrogen-rich saline or normal saline. Hydrogen-rich saline significantly improves survival rate and neurological function. The beneficial effects of hydrogen-rich saline were associated with decreased levels of oxidative products, as well as the increased levels of antioxidant enzymes. Furthermore, the protective effects of hydrogen-rich saline were accompanied by the increased activity of glucose-regulated protein 78 (GRP78), the decreased activity of cysteinyl aspartate specific proteinase-12 (caspase-12) and C/EBP homologous protein (CHOP). Hydrogen-rich saline attenuates brain I/R injury may through inhibiting hippocampus ERS after cardiac arrest in rats. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chand, Shyam; Minshull, Tim A.; Priest, Jeff A.; Best, Angus I.; Clayton, Christopher R. I.; Waite, William F.
2006-08-01
The presence of gas hydrate in marine sediments alters their physical properties. In some circumstances, gas hydrate may cement sediment grains together and dramatically increase the seismic P- and S-wave velocities of the composite medium. Hydrate may also form a load-bearing structure within the sediment microstructure, but with different seismic wave attenuation characteristics, changing the attenuation behaviour of the composite. Here we introduce an inversion algorithm based on effective medium modelling to infer hydrate saturations from velocity and attenuation measurements on hydrate-bearing sediments. The velocity increase is modelled as extra binding developed by gas hydrate that strengthens the sediment microstructure. The attenuation increase is modelled through a difference in fluid flow properties caused by different permeabilities in the sediment and hydrate microstructures. We relate velocity and attenuation increases in hydrate-bearing sediments to their hydrate content, using an effective medium inversion algorithm based on the self-consistent approximation (SCA), differential effective medium (DEM) theory, and Biot and squirt flow mechanisms of fluid flow. The inversion algorithm is able to convert observations in compressional and shear wave velocities and attenuations to hydrate saturation in the sediment pore space. We applied our algorithm to a data set from the Mallik 2L-38 well, Mackenzie delta, Canada, and to data from laboratory measurements on gas-rich and water-saturated sand samples. Predictions using our algorithm match the borehole data and water-saturated laboratory data if the proportion of hydrate contributing to the load-bearing structure increases with hydrate saturation. The predictions match the gas-rich laboratory data if that proportion decreases with hydrate saturation. We attribute this difference to differences in hydrate formation mechanisms between the two environments.
Chand, S.; Minshull, T.A.; Priest, J.A.; Best, A.I.; Clayton, C.R.I.; Waite, W.F.
2006-01-01
The presence of gas hydrate in marine sediments alters their physical properties. In some circumstances, gas hydrate may cement sediment grains together and dramatically increase the seismic P- and S-wave velocities of the composite medium. Hydrate may also form a load-bearing structure within the sediment microstructure, but with different seismic wave attenuation characteristics, changing the attenuation behaviour of the composite. Here we introduce an inversion algorithm based on effective medium modelling to infer hydrate saturations from velocity and attenuation measurements on hydrate-bearing sediments. The velocity increase is modelled as extra binding developed by gas hydrate that strengthens the sediment microstructure. The attenuation increase is modelled through a difference in fluid flow properties caused by different permeabilities in the sediment and hydrate microstructures. We relate velocity and attenuation increases in hydrate-bearing sediments to their hydrate content, using an effective medium inversion algorithm based on the self-consistent approximation (SCA), differential effective medium (DEM) theory, and Biot and squirt flow mechanisms of fluid flow. The inversion algorithm is able to convert observations in compressional and shear wave velocities and attenuations to hydrate saturation in the sediment pore space. We applied our algorithm to a data set from the Mallik 2L–38 well, Mackenzie delta, Canada, and to data from laboratory measurements on gas-rich and water-saturated sand samples. Predictions using our algorithm match the borehole data and water-saturated laboratory data if the proportion of hydrate contributing to the load-bearing structure increases with hydrate saturation. The predictions match the gas-rich laboratory data if that proportion decreases with hydrate saturation. We attribute this difference to differences in hydrate formation mechanisms between the two environments.
Phytochemicals attenuating aberrant activation of ß-catenin in cancer cells
USDA-ARS?s Scientific Manuscript database
Phytochemicals are a rich source of chemoprevention agents but their effects on modulating the Wnt/ß-catenin signaling pathway have remained largely uninvestigated. Aberrantly activated Wnt signaling can result in the abnormal stabilization of ß-catenin, a key causative step in a broad spectrum of c...
Attenuation of iodine 125 radiation with vitreous substitutes in the treatment of uveal melanoma.
Oliver, Scott C N; Leu, Min Y; DeMarco, John J; Chow, Philip E; Lee, Steve P; McCannel, Tara A
2010-07-01
To demonstrate attenuation of radiation from iodine 125 ((125)I) to intraocular structures using liquid vitreous substitutes. Four candidate vitreous substitutes were tested for attenuation using empirical measurement and theoretical calculation. In vitro and ex vivo cadaveric dosimetry measurements were obtained with lithium fluoride thermoluminescent dosimeters to demonstrate the attenuation effect of vitreous substitution during (125)I simulated plaque brachytherapy. Theoretical dosimetry calculations were based on Monte Carlo simulation. In a cylindrical phantom at a 17-mm depth, liquid vitreous substitutes as compared with saline showed significant reduction of radiation penetration (48% for 1000-centistoke [cSt] silicone oil [polydimethyl-n-siloxane], 47% for 5000-cSt silicone oil [polydimethyl-n-siloxane], 40% for heavy oil [perfluorohexyloctane/polydimethyl-n-siloxane], and 35% for perfluorocarbon liquid [perfluoro-n-octane]). Human cadaveric ex vivo measurements demonstrated a 1000-cSt silicone oil to saline dose ratio of 35%, 52%, 55%, and 48% at arc lengths of 7.6, 10.6, 22.3, and 28.6 mm from the plaque edge, respectively, along the surface of the globe. Monte Carlo simulation of a human globe projected attenuation as high as 57% using 1000-cSt silicone oil. Intraocular vitreous substitutes including silicone oil, heavy oil, and perfluorocarbon liquid attenuate the radiation dose from (125)I. Cadaveric ex vivo measurements and Monte Carlo simulation both demonstrate radiation attenuation using 1000-cSt silicone oil at distances corresponding to vital ocular structures. Clinical Relevance Attenuation of radiation with silicone oil endotamponade in the treatment of uveal melanoma may significantly reduce radiation-induced injury to vital ocular structures.
S-wave attenuation structure beneath the northern Izu-Bonin arc
NASA Astrophysics Data System (ADS)
Takahashi, Tsutomu; Obana, Koichiro; Kodaira, Shuichi
2016-04-01
To understand temperature structure or magma distribution in the crust and uppermost mantle, it is essential to know their attenuation structure. This study estimated the 3-D S-wave attenuation structure in the crust and uppermost mantle at the northern Izu-Bonin arc, taking into account the apparent attenuation due to multiple forward scattering. In the uppermost mantle, two areas of high seismic attenuation (high Q -1) imaged beneath the volcanic front were mostly colocated with low-velocity anomalies. This coincidence suggests that these high- Q -1 areas in low-velocity zones are the most likely candidates for high-temperature regions beneath volcanoes. The distribution of random inhomogeneities indicated the presence of three anomalies beneath the volcanic front: Two were in high- Q -1 areas but the third was in a moderate- Q -1 area, indicating a low correlation between random inhomogeneities and Q -1. All three anomalies of random inhomogeneities were rich in short-wavelength spectra. The most probable interpretation of such spectra is the presence of volcanic rock, which would be related to accumulated magma intrusion during episodes of volcanic activity. Therefore, the different distributions of Q -1 and random inhomogeneities imply that the positions of hot regions in the uppermost mantle beneath this arc have changed temporally; therefore, they may provide important constraints on the evolutionary processes of arc crust and volcanoes.
Mairuae, Nootchanat; Cheepsunthorn, Poonlarp
2018-04-01
Iron accumulation in activated microglia has been consistently reported in neurodegenerative diseases. Previous results suggest that these cells facilitate neuroinflammation leading to neuronal cell death. Therefore, chemical compounds that alleviate the activation of iron-rich microglia may result in neuroprotection. In the present study, the effect of valproic acid (VPA) on microglial activation under iron-rich conditions was investigated. BV-2 microglial cells were exposed to lipopolysaccharide (LPS; 1 µg/ml) and iron (300 µg/ml) with or without VPA (1.6 mM). The results demonstrated that VPA attenuated the activation of iron-rich BV2 cells induced by LPS by down-regulating the mRNA expression of inducible nitric oxide (NO) synthase and interleukin 1β (IL-1β; P<0.01), to ultimately reduce the production of NO and IL-1β (P<0.01). These events were accompanied by an attenuation in the nuclear translocation of nuclear factor-κB p65 subunit (P<0.01). These findings suggest that VPA may be therapeutically useful for attenuating the activation of iron-rich microglia.
Structure and Bonding of Carbon in Clays from CI Carbonaceous Chondrites
NASA Technical Reports Server (NTRS)
Garview, Laurence a. J.; Buseck, Peter R.
2005-01-01
Carbonaceous chondrites (CC) contain a diverse suite of C-rich materials. Acid dissolution of these meteorites leaves a C-rich residue with chemical and structural affinities to kerogen. This material has primarily been analyzed in bulk, and much information has been provided regarding functional groups and elemental and isotopic compositions. However, comparatively little work has been done on C in unprocessed meteorites. Studies of CCs suggest a spatial relationship of some C-rich materials with products of aqueous alteration. Recent studies revealed discrete submicronsized, C-rich particles in Tagish Lake and a range of CM2 meteorites. A challenge is to correlate the findings from the bulk acid-residue studies with those of high-spatial resolution-mineralogical and spectroscopic observations of unprocessed meteorites. Hence, the relationship between the C-rich materials in the acid residues and its form and locations in the unprocessed meteorite remains unclear. Here we provide information on the structure and bonding of C associated with clays in CI carbonaceous chondrites. Additional information is included in the original extended abstract.
OCoc- from Ocean Colour to Organic Carbon
NASA Astrophysics Data System (ADS)
Heim, B.; Overduin, P. P.; Schirrmeister, L.; Doerffer, R.
2009-04-01
Enhanced permafrost warming and increased arctic river discharges have heightened concern about the input of terrigenous matter into Arctic coastal waters. Especially, large parts of the Central and Eastern Siberian coastline are characterized by highly erosive sedimentary ice-rich material. The ‘OCoc-from Ocean Colour to Organic Carbon' project (IPY-project 1176), funded by the German Research Foundation (DFG), is an Ocean Colour study joined with the Arctic Circum-polar Coastal Observatory Network Acco-Net (ACCO-Net: IPY-project 90) originating from the Arctic Coastal Dynamics ACD project . OCoc uses Ocean Colour satellite data for synoptic monitoring of the input of organic matter - from both fluvial and coastal sources - into the Arctic coastal waters. Initial results from the German-Russian Expedition Lena08 along the southeastern Laptev Sea Coast (Arctic Siberia, Russia) in August 2008 are presented. Ocean Colour MERIS Reduced Resolution (RR)-LIB data of the Laptev Sea Coast from August 2008 have been processed towards L2 parameters using Beam-Visat4.2© and the MERIS case2 regional processor for coastal application (C2R). C2R uses neural network procedures for the retrieval of water leaving reflectances and neural network procedures to derive the inherent optical properties (IOPs) from the water leaving reflectances. C2R output parameters are IOPs (absorption and backscattering coefficients), apparent optical properties (AOPs) (water leaving radiance reflectance, attenuation coefficient ‘k'), optical parameters such as the first attenuation depth (‘Z90') and calculated concentrations of chlorophyll, total suspended matter, and yellow substance absorption. Initial comparisons with Lena08-Expedition data (Secchi depths, cDOM) and water transparency data from former arctic cruises show that the MERIS-C2R optical parameters 'total absorption' and the first attenuation depth, 'Z90', seem adequately to represent true conditions. High attenuation values are the tracers for the organic-rich terrigenous input. The synoptic information of MERIS Ocean Colour products will provide valuable spatial and dynamical information on the Organic Carbon and sediment fluxes from the Siberian permafrost coast.
Thermoelectric and structural correlations in (S r1 -x -yC axN dy) Ti O3 perovskites
NASA Astrophysics Data System (ADS)
Somaily, H.; Kolesnik, S.; Dabrowski, B.; Chmaissem, O.
2017-08-01
Structural and thermoelectric properties are reported for a specially designed class of A -site substituted perovskite titanates, (S r1 -x -yC axN dy) Ti O3 . Two series synthesized with various A -site Sr-rich or Ca-rich (Sr-poor) concentrations were investigated using high-resolution neutron powder diffraction as a function of temperature and Nd doping. Each series was designed to have a nominally constant tolerance factor at room temperature. We determine the room temperature structures as tetragonal I 4 /m c m and orthorhombic P b n m for the Sr-rich and Ca-rich series, respectively. Three low-temperature orthorhombic structures, P b n m , I b m m , and P b c m were also observed for the Sr-rich series, whereas the symmetry of the Ca-rich series remains unchanged throughout the full measured temperature range. Thermoelectric properties of (S r1 -x -yC axN dy) Ti O3 were investigated and correlated with the structural variables. We succeeded in achieving a relatively high figure of merit Z T =0.07 at ˜400 K in the Sr-rich S r0.76C a0.16N d0.08Ti O3 composition which is comparable to that of the best n -type TE SrT i0.80N b0.20O3 oxide material reported to date. For a fixed tolerance factor, the Nd doping enhances the carrier density and effective mass at the expense of the Seebeck coefficient. Thermal conductivity greatly reduces upon Nd doping in the Ca-rich series. With an enhanced Seebeck coefficient at elevated temperatures and reduced thermal conductivity, we predict that S r0.76C a0.16N d0.08Ti O3 and similar compositions have the potential to become some of the best materials in their class of thermoelectric oxides.
Cysteine-Rich Peptide Family with Unusual Disulfide Connectivity from Jasminum sambac.
Kumari, Geeta; Serra, Aida; Shin, Joon; Nguyen, Phuong Q T; Sze, Siu Kwan; Yoon, Ho Sup; Tam, James P
2015-11-25
Cysteine-rich peptides (CRPs) are natural products with privileged peptidyl structures that represent a potentially rich source of bioactive compounds. Here, the discovery and characterization of a novel plant CRP family, jasmintides from Jasminum sambac of the Oleaceae family, are described. Two 27-amino acid jasmintides (jS1 and jS2) were identified at the gene and protein levels. Disulfide bond mapping of jS1 by mass spectrometry and its confirmation by NMR spectroscopy revealed disulfide bond connectivity of C-1-C-5, C-2-C-4, and C-3-C-6, a cystine motif that has not been reported in plant CRPs. Structural determination showed that jS1 displays a well-defined structure framed by three short antiparallel β-sheets. Genomic analysis showed that jasmintides share a three-domain precursor arrangement with a C-terminal mature domain preceded by a long pro-domain of 46 residues and an intron cleavage site between the signal sequence and pro-domain. The compact cysteine-rich structure together with an N-terminal pyroglutamic acid residue confers jasmintides high resistance to heat and enzymatic degradation, including exopeptidase treatment. Collectively, these results reveal a new plant CRP structure with an unusual cystine connectivity, which could be useful as a scaffold for designing peptide drugs.
OCoc- from Ocean Colour to Organic Carbon
NASA Astrophysics Data System (ADS)
Heim, B.; Overduin, P. P.; Schirrmeister, L.; Lantuit, H.; Doerffer, R.
2009-12-01
Enhanced permafrost warming and increased arctic river discharges have heightened concern about the input of terrigenous matter into Arctic coastal waters. The ‘OCoc-from Ocean Colour to Organic Carbon’ project (IPY-project 1176), funded by the German Research Foundation (DFG), is an Ocean Colour study joined with the Arctic Coastal Dynamics ACD network and Arctic Circum-polar Coastal Observatory Network ACCO-Net (IPY-project 90). OCoc uses Ocean Colour satellite data for synoptical monitoring of organic matter fluxes from fluvial and coastal sources. Initial results from German-Russian expeditions at the southeastern Laptev Sea Coast (Arctic Siberia, Russia) in August 2008 and August 2009 are presented. Large parts of this coastal zone are characterized by highly erosive organic-rich material. Ocean Colour MERIS Reduced Resolution (RR)-LIB data of the have been processed towards optical aquatic parameters using Beam-Visat4.2 and the MERIS case2 regional processor for coastal application (C2R). Calculated aquatic parameters are absorption and backscattering coefficients, apparent optical properties such as the first attenuation depth (‘Z90’) and calculated concentrations of chlorophyll, total suspended matter and coloured dissolved organic matter absorption from the water leaving reflectances. Initial comparisons with expedition data (Secchi depths, cDOM) show that the MERIS-C2R optical parameters ’total absorption’ and the first attenuation depth, ’Z90’, seem adequately to represent true conditions. High attenuation values in the spectral blue wavelength range may serve as tracer for the organic-rich terrigenous input. The synoptic information of Ocean Colour products will provide valuable spatial and dynamical information on the Organic Carbon and sediment fluxes from the Siberian permafrost coast.
Spectroscopic study of the dehydration and/or dehydroxylation of phyllosilicate and zeolite minerals
NASA Astrophysics Data System (ADS)
Che, Congcong; Glotch, Timothy D.; Bish, David L.; Michalski, Joseph R.; Xu, Wenqian
2011-05-01
Phyllosilicates on Mars mapped by infrared spectroscopic techniques could have been affected by dehydration and/or dehydroxylation associated with chemical weathering in hyperarid conditions, volcanism or shock heating associated with meteor impact. The effects of heat-induced dehydration and/or dehydroxylation on the infrared spectra of 14 phyllosilicates from four structural groups (kaolinite, smectite, sepiolite-palygorskite, and chlorite) and two natural zeolites are reported here. Pressed powders of size-separated phyllosilicate and natural zeolite samples were heated incrementally from 100°C to 900°C, cooled to room temperature, and measured using multiple spectroscopic techniques: midinfrared (400-4000 cm-1) attenuated total reflectance, midinfrared reflectance (400-1400 cm-1), and far-infrared reflectance (50-600 cm-1) spectroscopies. Correlated thermogravimetric analysis and X-ray diffraction data were also acquired in order to clarify the thermal transformation of each sample. For phyllosilicate samples, the OH stretching (˜3600 cm-1), OH bending (˜590-950 cm-1), and/or H2O bending (˜1630 cm-1) bands all become very weak or completely disappear upon heating to temperatures > 500°C. The spectral changes associated with SiO4 vibrations (˜1000 cm-1 and ˜500 cm-1) show large variations depending on the compositions and structures of phyllosilicates. The thermal behavior of phyllosilicate IR spectra is also affected by the type of octahedral cations. For example, spectral features of Al3+-rich smectites are more stable than those of Fe3+-rich smectites. The high-temperature (>800°C) spectral changes of trioctahedral Mg2+-rich phyllosilicates such as hectorite, saponite, and sepiolite result primarily from crystallization of enstatite. Phyllosilicates with moderate Mg2+ concentration (e.g., palygorskite, clinochlore) and dioctahedral montmorillonites (e.g., SAz-1 and SCa-3) with partial Mg2+-for-Al3+ substitution all have new spectral feature developed at ˜900 cm-1 upon heating to 800°C. Compared with phyllosilicates, spectral features of two natural zeolites, clinoptilolite and mordenite, are less affected by thermal treatments. Even after heating to 900°C, the IR spectral features attributed to Si (Al)-O stretching and bending vibration modes do not show significant differences from those of unheated zeolites.
Zhang, Jicheng; Gao, Rui; Sun, Limei; Li, Zhengyao; Zhang, Heng; Hu, Zhongbo; Liu, Xiangfeng
2016-09-14
Recently, spinel-layered integrated Li-rich cathode materials have attracted great interest due to the large enhancement of their electrochemical performances. However, the modification mechanism and the effect of the integrated spinel phase on Li-rich layered cathode materials are still not very clear. Herein, we have successfully synthesized the spinel-layered integrated Li-rich cathode material using a facile non-stoichiometric strategy (NS-LNCMO). The rate capability (84 mA h g -1 vs. 28 mA h g -1 , 10 C), cycling stability (92.4% vs. 80.5%, 0.2 C), low temperature electrochemical capability (96.5 mA h g -1 vs. 59 mA h g -1 , -20 °C), initial coulomb efficiency (92% vs. 79%) and voltage fading (2.77 V vs. 3.02 V, 200 cycles@1 C) of spinel-layered integrated Li-rich cathode materials have been significantly improved compared with a pure Li-rich phase cathode. Some new insights into the effect of the integrated spinel phase on a layered Li-rich cathode have been proposed through a comparison of the structure evolution of the integrated and Li-rich only materials before and after cycling. The Li-ion diffusion coefficient of NS-LNCMO has been enlarged by about 3 times and almost does not change even after 100 cycles indicating an enhanced structure stability. The integration of the spinel phase not only enhances the structure stability of the layered Li-rich phase during charging-discharging but also expands the interslab spacing of the Li-ion diffusion layer, and elongates TM-O covalent bond lengths, which lowers the activation barrier of Li + -transportation, and alleviates the structure strain during the cycling procedure.
Ekeanyanwu, Raphael Chukwuma; Njoku, Obioma Uzoma
2015-03-01
The antidepressant effects of the flavonoid-rich fraction of Monodora tenuifolia seed extract were examined by assessing the extent of attenuation of behavioural alterations and oxidative damage in the rats that were stressed by forced swim test. Compared with the model control group, the altered behavioural parameters were attenuated significantly (P < 0.05) in the group treated with the flavonoid-rich fraction (100 and 200 mg·kg(-1)), comparable to the group treated with the standard drug, fluoxetine (10 mg·kg(-1)). The flavonoid-rich fraction and fluoxetine improved significantly (P < 0.05) the activities of the antioxidant enzymes such as superoxide dismutase and catalase as well as other biochemical parameters such as reduced glutathione, protein, and nitrite in the brain of the stressed rats. These results suggested that the flavonoid-rich fraction of Monodora tenuifolia seed extract exerted the antidepressant-like effects which could be useful in the management of stress induced disease. Copyright © 2015 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Helling, Ch.; Tootill, D.; Woitke, P.; Lee, G.
2017-07-01
Context. Recent observations indicate potentially carbon-rich (C/O > 1) exoplanet atmospheres. Spectral fitting methods for brown dwarfs and exoplanets have invoked the C/O ratio as additional parameter but carbon-rich cloud formation modeling is a challenge for the models applied. The determination of the habitable zone for exoplanets requires the treatment of cloud formation in chemically different regimes. Aims: We aim to model cloud formation processes for carbon-rich exoplanetary atmospheres. Disk models show that carbon-rich or near-carbon-rich niches may emerge and cool carbon planets may trace these particular stages of planetary evolution. Methods: We extended our kinetic cloud formation model by including carbon seed formation and the formation of C[s], TiC[s], SiC[s], KCl[s], and MgS[s] by gas-surface reactions. We solved a system of dust moment equations and element conservation for a prescribed Drift-Phoenixatmosphere structure to study how a cloud structure would change with changing initial C/O0 = 0.43...10.0. Results: The seed formation efficiency is lower in carbon-rich atmospheres than in oxygen-rich gases because carbon is a very effective growth species. The consequence is that fewer particles make up a cloud if C/O0 > 1. The cloud particles are smaller in size than in an oxygen-rich atmosphere. An increasing initial C/O ratio does not revert this trend because a much greater abundance of condensible gas species exists in a carbon-rich environment. Cloud particles are generally made of a mix of materials: carbon dominates if C/O0 > 1 and silicates dominate if C/O0 < 1. A carbon content of 80-90% carbon is reached only in extreme cases where C/O0 = 3.0 or 10.0. Conclusions: Carbon-rich atmospheres form clouds that are made of particles of height-dependent mixed compositions, sizes and numbers. The remaining gas phase is far less depleted than in an oxygen-rich atmosphere. Typical tracer molecules are HCN and C2H2 in combination with a featureless, smooth continuum due to a carbonaceous cloud cover, unless the cloud particles become crystalline.
Bucek, Pavel; Jaumot, Joaquim; Aviñó, Anna; Eritja, Ramon; Gargallo, Raimundo
2009-11-23
Guanine-rich regions of DNA are sequences capable of forming G-quadruplex structures. The formation of a G-quadruplex structure in a region 140 base pairs (bp) upstream of the c-kit transcription initiation site was recently proposed (Fernando et al., Biochemistry, 2006, 45, 7854). In the present study, the acid-base equilibria and the thermally induced unfolding of the structures formed by a guanine-rich region and by its complementary cytosine-rich strand in c-kit were studied by means of circular dichroism and molecular absorption spectroscopies. In addition, competition between the Watson-Crick duplex and the isolated structures was studied as a function of pH value and temperature. Multivariate data analysis methods based on both hard and soft modeling were used to allow accurate quantification of the various acid-base species present in the mixtures. Results showed that the G-quadruplex and i-motif coexist with the Watson-Crick duplex over the pH range from 3.0 to 6.5, approximately, under the experimental conditions tested in this study. At pH 7.0, the duplex is practically the only species present.
ERIC Educational Resources Information Center
Myrick, M. L.; Greer, A. E.; Nieuwland, A.; Priore, R. J.; Scaffidi, J.; Andreatta, Daniele; Colavita, Paula
2006-01-01
The experiment describe the measures of the A band transitions of atmospheric oxygen, a rich series of rotation-electronic absorption lines falling in the deep red portion of the optical spectrum and clearly visible owing to attenuation of solar radiation. It combines pure physical chemistry with analytical and environmental science and provides a…
Hybrid DNA i-motif: Aminoethylprolyl-PNA (pC5) enhance the stability of DNA (dC5) i-motif structure.
Gade, Chandrasekhar Reddy; Sharma, Nagendra K
2017-12-15
This report describes the synthesis of C-rich sequence, cytosine pentamer, of aep-PNA and its biophysical studies for the formation of hybrid DNA:aep-PNAi-motif structure with DNA cytosine pentamer (dC 5 ) under acidic pH conditions. Herein, the CD/UV/NMR/ESI-Mass studies strongly support the formation of stable hybrid DNA i-motif structure with aep-PNA even near acidic conditions. Hence aep-PNA C-rich sequence cytosine could be considered as potential DNA i-motif stabilizing agents in vivo conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Molecular recognition of pyr mRNA by the Bacillus subtilis attenuation regulatory protein PyrR
Bonner, Eric R.; D’Elia, John N.; Billips, Benjamin K.; Switzer, Robert L.
2001-01-01
The pyrimidine nucleotide biosynthesis (pyr) operon in Bacillus subtilis is regulated by transcriptional attenuation. The PyrR protein binds in a uridine nucleotide-dependent manner to three attenuation sites at the 5′-end of pyr mRNA. PyrR binds an RNA-binding loop, allowing a terminator hairpin to form and repressing the downstream genes. The binding of PyrR to defined RNA molecules was characterized by a gel mobility shift assay. Titration indicated that PyrR binds RNA in an equimolar ratio. PyrR bound more tightly to the binding loops from the second (BL2 RNA) and third (BL3 RNA) attenuation sites than to the binding loop from the first (BL1 RNA) attenuation site. PyrR bound BL2 RNA 4–5-fold tighter in the presence of saturating UMP or UDP and 150- fold tighter with saturating UTP, suggesting that UTP is the more important co-regulator. The minimal RNA that bound tightly to PyrR was 28 nt long. Thirty-one structural variants of BL2 RNA were tested for PyrR binding affinity. Two highly conserved regions of the RNA, the terminal loop and top of the upper stem and a purine-rich internal bulge and the base pairs below it, were crucial for tight binding. Conserved elements of RNA secondary structure were also required for tight binding. PyrR protected conserved areas of the binding loop in hydroxyl radical footprinting experiments. PyrR likely recognizes conserved RNA sequences, but only if they are properly positioned in the correct secondary structure. PMID:11726695
Sánchez-Moreno, Carmen; Ordovás, Jose M.; Smith, Caren E.; Baraza, Juan C.; Lee, Yu-Chi; Garaulet, Marta
2011-01-01
APOA5 is one of the strongest regulators of plasma TG concentrations; nevertheless, its mechanisms of action are poorly characterized. Genetic variability at the APOA5 locus has also been associated with increased cardiovascular disease risk; however, this predisposition could be attenuated in the context of a prudent diet as traditionally consumed in the Mediterranean countries. We have investigated the interaction between a single nucleotide polymorphism (SNP) at the APOA5 gene (-1131T > C) and dietary fat that may modulate TG-rich lipoprotein concentrations and anthropometric measures in overweight and obese participants. We recruited 1465 participants from a Spanish population (20–65 y old; BMI 25–40 kg/m2) attending outpatient obesity clinics. Consistent with previous reports, we found an association between the APOA5-1131T > C SNP and TG-rich lipoprotein concentrations that were higher in carriers of the minor allele than in noncarriers (P < 0.001). Moreover, we found a significant genotype-dietary fat interaction for obesity traits. Participants homozygous for the −1131T major allele had a positive association between fat intake and obesity, whereas in those carrying the APOA5−1131C minor allele, higher fat intakes were not associated with higher BMI. Likewise, we found genotype-dietary fat interactions for TG-rich lipoproteins (P < 0.001). In conclusion, we have replicated previous gene-diet interactions between APOA5 -1131T > C SNP and fat intake for obesity traits and detected a novel interaction for TG-rich lipoprotein concentrations. Our data support the hypothesis that the minor C-allele may protect those consuming a high-fat diet from obesity and elevated concentrations of TG-rich lipoproteins. PMID:21209257
Kshirsagar, Rucha; Khan, Krishnendu; Joshi, Mamata V; Hosur, Ramakrishna V; Muniyappa, K
2017-05-23
A plethora of evidence suggests that different types of DNA quadruplexes are widely present in the genome of all organisms. The existence of a growing number of proteins that selectively bind and/or process these structures underscores their biological relevance. Moreover, G-quadruplex DNA has been implicated in the alignment of four sister chromatids by forming parallel guanine quadruplexes during meiosis; however, the underlying mechanism is not well defined. Here we show that a G/C-rich motif associated with a meiosis-specific DNA double-strand break (DSB) in Saccharomyces cerevisiae folds into G-quadruplex, and the C-rich sequence complementary to the G-rich sequence forms an i-motif. The presence of G-quadruplex or i-motif structures upstream of the green fluorescent protein-coding sequence markedly reduces the levels of gfp mRNA expression in S. cerevisiae cells, with a concomitant decrease in green fluorescent protein abundance, and blocks primer extension by DNA polymerase, thereby demonstrating the functional significance of these structures. Surprisingly, although S. cerevisiae Hop1, a component of synaptonemal complex axial/lateral elements, exhibits strong affinity to G-quadruplex DNA, it displays a much weaker affinity for the i-motif structure. However, the Hop1 C-terminal but not the N-terminal domain possesses strong i-motif binding activity, implying that the C-terminal domain has a distinct substrate specificity. Additionally, we found that Hop1 promotes intermolecular pairing between G/C-rich DNA segments associated with a meiosis-specific DSB site. Our results support the idea that the G/C-rich motifs associated with meiosis-specific DSBs fold into intramolecular G-quadruplex and i-motif structures, both in vitro and in vivo, thus revealing an important link between non-B form DNA structures and Hop1 in meiotic chromosome synapsis and recombination. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Macro- to microscale strain transfer in fibrous tissues is heterogeneous and tissue-specific.
Han, Woojin M; Heo, Su-Jin; Driscoll, Tristan P; Smith, Lachlan J; Mauck, Robert L; Elliott, Dawn M
2013-08-06
Mechanical deformation applied at the joint or tissue level is transmitted through the macroscale extracellular matrix to the microscale local matrix, where it is transduced to cells within these tissues and modulates tissue growth, maintenance, and repair. The objective of this study was to investigate how applied tissue strain is transferred through the local matrix to the cell and nucleus in meniscus, tendon, and the annulus fibrosus, as well as in stem cell-seeded scaffolds engineered to reproduce the organized microstructure of these native tissues. To carry out this study, we developed a custom confocal microscope-mounted tensile testing device and simultaneously monitored strain across multiple length scales. Results showed that mean strain was heterogeneous and significantly attenuated, but coordinated, at the local matrix level in native tissues (35-70% strain attenuation). Conversely, freshly seeded scaffolds exhibited very direct and uniform strain transfer from the tissue to the local matrix level (15-25% strain attenuation). In addition, strain transfer from local matrix to cells and nuclei was dependent on fiber orientation and tissue type. Histological analysis suggested that different domains exist within these fibrous tissues, with most of the tissue being fibrous, characterized by an aligned collagen structure and elongated cells, and other regions being proteoglycan (PG)-rich, characterized by a dense accumulation of PGs and rounder cells. In meniscus, the observed heterogeneity in strain transfer correlated strongly with cellular morphology, where rounder cells located in PG-rich microdomains were shielded from deformation, while elongated cells in fibrous microdomains deformed readily. Collectively, these findings suggest that different tissues utilize distinct strain-attenuating mechanisms according to their unique structure and cellular phenotype, and these differences likely alter the local biologic response of such tissues and constructs in response to mechanical perturbation. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Sun, Xuejun; Xiang, Zhenghua; Yang, Liqun; Huang, Shengdong; Lu, Zhijie; Sun, Yuming; Yu, Wei-Feng
2014-01-01
Background Reactive oxygen and nitrogen species are key molecules that mediate neuropathic pain. Although hydrogen is an established antioxidant, its effect on chronic pain has not been characterized. This study was to investigate the efficacy and mechanisms of hydrogen-rich normal saline induced analgesia. Methodology/Principal findings In a rat model of neuropathic pain induced by L5 spinal nerve ligation (L5 SNL), intrathecal injection of hydrogen-rich normal saline relieved L5 SNL-induced mechanical allodynia and thermal hyperalgesia. Importantly, repeated administration of hydrogen-rich normal saline did not lead to tolerance. Preemptive treatment with hydrogen-rich normal saline prevented development of neuropathic pain behavior. Immunofluorochrome analysis revealed that hydrogen-rich normal saline treatment significantly attenuated L5 SNL-induced increase of 8-hydroxyguanosine immunoreactive cells in the ipsilateral spinal dorsal horn. Western blot analysis of SDS/PAGE-fractionated tyrosine-nitrated proteins showed that L5 SNL led to increased expression of tyrosine-nitrated Mn-containing superoxide dismutase (MnSOD) in the spinal cord, and hydrogen-rich normal saline administration reversed the tyrosine-nitrated MnSOD overexpression. We also showed that the analgesic effect of hydrogen-rich normal saline was associated with decreased activation of astrocytes and microglia, attenuated expression of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in the spinal cord. Conclusion/Significance Intrathecal injection of hydrogen-rich normal saline produced analgesic effect in neuropathic rat. Hydrogen-rich normal saline-induced analgesia in neuropathic rats is mediated by reducing the activation of spinal astrocytes and microglia, which is induced by overproduction of hydroxyl and peroxynitrite. PMID:24857932
Collins, Brian; Hoffman, Jessie; Martinez, Kristina; Grace, Mary; Lila, Mary Ann; Cockrell, Chase; Nadimpalli, Anuradha; Chang, Eugene; Chuang, Chia-Chi; Zhong, Wei; Mackert, Jessica; Shen, Wan; Cooney, Paula; Hopkins, Robin; McIntosh, Michael
2016-01-01
The objective of this study was to determine if consuming an extractable or non-extractable fraction of table grapes reduced the metabolic consequences of consuming a high-fat, American-type diet. Male C57BL/6J mice were fed a low fat (LF) diet, a high fat (HF) diet, or a HF diet containing whole table grape powder (5% w/w), an extractable, polyphenol-rich (HF-EP) fraction, a non-extractable, polyphenol-poor (HF-NEP) fraction, or equal combinations of both fractions (HF-EP+NEP) from grape powder for 16 weeks. Mice fed the HF-EP and HF-EP+NEP diets had lower percentages of body fat and amounts of white adipose tissue (WAT) and improved glucose tolerance compared to the HF-fed controls. Mice fed the HF-EP+NEP diet had lower liver weights and triglyceride (TG) levels compared to the HF-fed controls. Mice fed the HF-EP+NEP diets had higher hepatic mRNA levels of hormone sensitive lipase and adipose TG lipase, and decreased expression of c-reactive protein compared to the HF-fed controls. In epididymal (visceral) WAT, the expression levels of several inflammatory genes were lower in mice fed the HF-EP and HF-EP+NEP diets compared to the HF-fed controls. Mice fed the HF diets had increased myeloperoxidase activity and impaired localization of the tight junction protein zonula occludens-1 in ileal mucosa compared to the HF-EP and HF-NEP diets. Several of these treatment effects were associated with alterations in gut bacterial community structure. Collectively, these data demonstrate that the polyphenol-rich, EP fraction from table grapes attenuated many of the adverse health consequences associated with consuming a HF diet. PMID:27133434
FT-IR study of CO 2 interaction with Na-rich montmorillonite
Krukowski, Elizabeth G.; Goodman, Angela; Rother, Gernot; ...
2015-05-27
Here, carbon capture, utilization and storage (CCUS) in saline reservoirs in sedimentary formations has the potential to reduce the impact of fossil fuel combustion on climate change by reducing CO 2 emissions to the atmosphere and storing the CO 2 in geologic formations in perpetuity. At pressure and temperature (PT) conditions relevant to CCUS, CO 2 is less dense than the pre-existing brine in the formation, and the more buoyant CO 2 will migrate to the top of the formation where it will be in contact with cap rock. Interactions between clay-rich shale cap rocks and CO 2 are poorlymore » understood at PT conditions appropriate for CCUS in saline formations. In this study, the interaction of CO 2 with clay minerals in the cap rock overlying a saline formation has been examined using Na + exchanged montmorillonite (Mt) (Na +-STx-1) (Na + Mt) as an analog for clay-rich shale. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) was used to discern mechanistic information for CO 2 interaction with hydrated (both one- and two-water layers) and relatively dehydrated (both dehydrated layers and one-water layers) Na+-STx-1 at 35 °C and 50 C and CO 2 pressure from 0 5.9 MPa. CO 2-induced perturbations associated with the water layer and Na+-STx-1 vibrational modes such as AlAlOH and AlMgOH were examined. Data indicate that CO 2 is preferentially incorporated into the interlayer space, with relatively dehydrated Na +-STx-1 capable of incorporating more CO 2 compared to hydrated Na +-STx-1. Spectroscopic data provide no evidence of formation of carbonate minerals or the interaction of CO 2 with sodium cations in the Na +-STx-1 structure.« less
Tardy, Vincent; Casiot, Corinne; Fernandez-Rojo, Lidia; Resongles, Eléonore; Desoeuvre, Angélique; Joulian, Catherine; Battaglia-Brunet, Fabienne; Héry, Marina
2018-03-01
Microbial oxidation of iron (Fe) and arsenic (As) followed by their co-precipitation leads to the natural attenuation of these elements in As-rich acid mine drainage (AMD). The parameters driving the activity and diversity of bacterial communities responsible for this mitigation remain poorly understood. We conducted batch experiments to investigate the effect of temperature (20 vs 35 °C) and nutrient supply on the rate of Fe and As oxidation and precipitation, the bacterial diversity (high-throughput sequencing of 16S rRNA gene), and the As oxidation potential (quantification of aioA gene) in AMD from the Carnoulès mine (France). In batch incubated at 20 °C, the dominance of iron-oxidizing bacteria related to Gallionella spp. was associated with almost complete iron oxidation (98%). However, negligible As oxidation led to the formation of As(III)-rich precipitates. Incubation at 35 °C and nutrient supply both stimulated As oxidation (71-75%), linked to a higher abundance of aioA gene and the dominance of As-oxidizing bacteria related to Thiomonas spp. As a consequence, As(V)-rich precipitates (70-98% of total As) were produced. Our results highlight strong links between indigenous bacterial community composition and iron and arsenic removal efficiency within AMD and provide new insights for the future development of a biological treatment of As-rich AMD.
Park, Eun-Ah; Goo, Jin Mo; Park, Sang Joon; Lee, Hyun Ju; Lee, Chang Hyun; Park, Chang Min; Yoo, Chul-Gyu; Kim, Jong Hyo
2010-09-01
To evaluate the potential of xenon ventilation computed tomography (CT) in the quantitative and visual analysis of chronic obstructive pulmonary disease (COPD). This study was approved by the institutional review board. After informed consent was obtained, 32 patients with COPD underwent CT performed before the administration of xenon, two-phase xenon ventilation CT with wash-in (WI) and wash-out (WO) periods, and pulmonary function testing (PFT). For quantitative analysis, results of PFT were compared with attenuation parameters from prexenon images and xenon parameters from xenon-enhanced images in the following three areas at each phase: whole lung, lung with normal attenuation, and low-attenuating lung (LAL). For visual analysis, ventilation patterns were categorized according to the pattern of xenon attenuation in the area of structural abnormalities compared with that in the normal-looking background on a per-lobe basis: pattern A consisted of isoattenuation or high attenuation in the WI period and isoattenuation in the WO period; pattern B, isoattenuation or high attenuation in the WI period and high attenuation in the WO period; pattern C, low attenuation in both the WI and WO periods; and pattern D, low attenuation in the WI period and isoattenuation or high attenuation in the WO period. Among various attenuation and xenon parameters, xenon parameters of the LAL in the WO period showed the best inverse correlation with results of PFT (P < .0001). At visual analysis, while emphysema (which affected 99 lobes) commonly showed pattern A or B, airway diseases such as obstructive bronchiolitis (n = 5) and bronchiectasis (n = 2) and areas with a mucus plug (n = 1) or centrilobular nodules (n = 5) showed pattern D or C. WI and WO xenon ventilation CT is feasible for the simultaneous regional evaluation of structural and ventilation abnormalities both quantitatively and qualitatively in patients with COPD. (c) RSNA, 2010.
NASA Astrophysics Data System (ADS)
Dado, Boaz; Gelbstein, Yaniv; Mogilansky, Dimitri; Ezersky, Vladimir; Dariel, Moshe P.
2010-09-01
Pseudoternary (Ge,Sn,Pb)Te compounds display favorable thermoelectric properties. Spinodal decomposition in the quasiternary (Ge,Sn,Pb)Te system is at the origin of a wide solubility gap at low Sn concentrations. The structural evolution of the spinodal decomposition was investigated as a function of aging time at 500°C, using x-ray diffraction, electron microscopy, and scanning electron microscopy. The evolution of the structure at 500°C consists initially of a short diffusion-controlled demixing stage into Pb- and Ge-rich coherent areas, with compositions corresponding to the inflection points of the free-energy curve. The Pb-rich areas adopt configurations associated with the directions of the soft elastic moduli of the cubic compound. Both the Pb- and Ge-rich areas are supersaturated and undergo in a second stage a nucleation and growth process and give rise to a biphased structure with equilibrium compositions corresponding to the boundaries of the miscibility gap. The resulting Pb-rich areas display a relatively stable microstructure suggesting the presence of long-range interactions between the Pb-rich precipitates in the Ge-rich matrix.
Rekha, P D; Vasavi, H S; Vipin, C; Saptami, K; Arun, A B
2017-03-01
Quorum sensing (QS) has been shown to play a crucial role in the pathogenesis in many bacteria, and attenuation of QS is one of the targets of antimicrobial therapy with particular interest in combating drug resistance. This study reports the QS inhibitory activity of metabolites from Cassia alata L. (Ca. alata), an important medicinal herb widely used in the treatment of microbial infections. For investigating the QS inhibition (QSI), the potential of Ca. alata L., initially, metabolites of the leaves extracted using ethanol was tested against biosensor strain Chromobacterium violaceum CV026 and C. violaceum wild-type strains. Furthermore, a purified fraction rich in flavonoids (F-AF) was used for establishing QSI activity by studying the inhibition of violacein production in C. violaceum, and QS controlled virulence and biofilm formation in Pseudomonas aeruginosa PAO1. The study results showed 50% inhibition of violacein production in C. violaceum at 0·05 mg ml -1 concentration of F-AF. In P. aeruginosa PAO1, it inhibited the tested virulence factors and biofilm formation significantly. The F-AF contained major flavonoids namely, quercetin, quercetrin and kaempferol displaying QSI activity individually against the test organisms. Present study demonstrates the quorum sensing inhibitory activity of metabolites from Cassia alata, an important medicinal herb which is commonly used worldwide in the treatment of infections caused by microorganisms. An extract prepared from the leaves of the plant showed activity against quorum sensing in Chromobacterium violaceum and was also effective against attenuating the quorum sensing controlled virulence factors in Pseudomonas aeruginosa. Activity is attributed to the rich flavonoid composition of the plant. Results of the present investigation throw an insight into the possibility of developing drug formulations using the isolated compounds against infections caused by quorum sensing-mediated pathogenicity of bacteria. © 2016 The Society for Applied Microbiology.
Yoga, Yano M. K.; Traore, Daouda A. K.; Sidiqi, Mahjooba; Szeto, Chris; Pendini, Nicole R.; Barker, Andrew; Leedman, Peter J.; Wilce, Jacqueline A.; Wilce, Matthew C. J.
2012-01-01
Poly-C-binding proteins are triple KH (hnRNP K homology) domain proteins with specificity for single stranded C-rich RNA and DNA. They play diverse roles in the regulation of protein expression at both transcriptional and translational levels. Here, we analyse the contributions of individual αCP1 KH domains to binding C-rich oligonucleotides using biophysical and structural methods. Using surface plasmon resonance (SPR), we demonstrate that KH1 makes the most stable interactions with both RNA and DNA, KH3 binds with intermediate affinity and KH2 only interacts detectibly with DNA. The crystal structure of KH1 bound to a 5′-CCCTCCCT-3′ DNA sequence shows a 2:1 protein:DNA stoichiometry and demonstrates a molecular arrangement of KH domains bound to immediately adjacent oligonucleotide target sites. SPR experiments, with a series of poly-C-sequences reveals that cytosine is preferred at all four positions in the oligonucleotide binding cleft and that a C-tetrad binds KH1 with 10 times higher affinity than a C-triplet. The basis for this high affinity interaction is finally detailed with the structure determination of a KH1.W.C54S mutant bound to 5′-ACCCCA-3′ DNA sequence. Together, these data establish the lead role of KH1 in oligonucleotide binding by αCP1 and reveal the molecular basis of its specificity for a C-rich tetrad. PMID:22344691
Yoga, Yano M K; Traore, Daouda A K; Sidiqi, Mahjooba; Szeto, Chris; Pendini, Nicole R; Barker, Andrew; Leedman, Peter J; Wilce, Jacqueline A; Wilce, Matthew C J
2012-06-01
Poly-C-binding proteins are triple KH (hnRNP K homology) domain proteins with specificity for single stranded C-rich RNA and DNA. They play diverse roles in the regulation of protein expression at both transcriptional and translational levels. Here, we analyse the contributions of individual αCP1 KH domains to binding C-rich oligonucleotides using biophysical and structural methods. Using surface plasmon resonance (SPR), we demonstrate that KH1 makes the most stable interactions with both RNA and DNA, KH3 binds with intermediate affinity and KH2 only interacts detectibly with DNA. The crystal structure of KH1 bound to a 5'-CCCTCCCT-3' DNA sequence shows a 2:1 protein:DNA stoichiometry and demonstrates a molecular arrangement of KH domains bound to immediately adjacent oligonucleotide target sites. SPR experiments, with a series of poly-C-sequences reveals that cytosine is preferred at all four positions in the oligonucleotide binding cleft and that a C-tetrad binds KH1 with 10 times higher affinity than a C-triplet. The basis for this high affinity interaction is finally detailed with the structure determination of a KH1.W.C54S mutant bound to 5'-ACCCCA-3' DNA sequence. Together, these data establish the lead role of KH1 in oligonucleotide binding by αCP1 and reveal the molecular basis of its specificity for a C-rich tetrad.
Alniss, Hasan; Zamiri, Bita; Khalaj, Melisa; Pearson, Christopher E; Macgregor, Robert B
2018-01-22
An expansion of the hexanucleotide repeat (GGGGCC)n·(GGCCCC)n in the C9orf72 promoter has been shown to be the cause of Amyotrophic lateral sclerosis and frontotemporal dementia (ALS-FTD). The C9orf72 repeat can form four-stranded structures; the cationic porphyrin (TMPyP4) binds and distorts these structures. Isothermal titration calorimetry (ITC), and circular dichroism (CD) were used to study the binding of TMPyP4 to the C-rich and G-rich DNA and RNA oligos containing the hexanucleotide repeat at pH 7.5 and 0.1 M K + . The CD spectra of G-rich DNA and RNA TMPyP4 complexes showed features of antiparallel and parallel G-quadruplexes, respectively. The shoulder at 260 nm in the CD spectrum becomes more intense upon formation of complexes between TMPyP4 and the C-rich DNA. The peak at 290 nm becomes more intense in the c-rich RNA molecules, suggesting induction of an i-motif structure. The ITC data showed that TMPyP4 binds at two independent sites for all DNA and RNA molecules. For DNA, the data are consistent with TMPyP4 stacking on the terminal tetrads and intercalation. For RNA, the thermodynamics of the two binding modes are consistent with groove binding and intercalation. In both cases, intercalation is the weaker binding mode. These findings are considered with respect to the structural differences of the folded DNA and RNA molecules and the energetics of the processes that drive site-specific recognition by TMPyP4; these data will be helpful in efforts to optimize the specificity and affinity of the binding of porphyrin-like molecules. Copyright © 2018 Elsevier Inc. All rights reserved.
Nonin-Lecomte, Sylvie; Dardel, Frédéric; Lestienne, Patrick
2005-08-01
Stretches of cytosines and guanosines have been shown in vitro to adopt non-canonical structures known as i-motifs and G-quartets, respectively. When combined, such sequences are expected to either retain their structure or form duplexes or triple helices. All these structures may occur in vivo whenever the sequence criteria are met. Such stretches are present in the circular genome of human mitochondria, as two 10 nucleotide-long perfect tandem direct repeats (DR1 and DR2). The DR1 and DR2 repeats are G-rich on the heavy strand and C-rich on the light strand. Previous results suggested that during replication, transient formation of a parallel GGC triple helix between the neo-synthesised G-rich DR1 and the double-stranded homologous DR2 could be involved in a rearrangement process leading to genome instability. In order to get structural insights into the interaction between the two repeats, we have studied by nuclear magnetic resonance (NMR) the assembly properties of a 24-mer oligodeoxyribonucleotide in which the C- and G-rich segments of the DRs are covalently tethered by a TTTT linker. We show here that this 24-mer self-associates into a triplex-containing symmetrical tetramer. The core of the structure is composed of anti-parallel Watson-Crick (WC) base pairs. Two additional strands are hydrogen-bonded to the Hoogsteen side of the Gs, thus forming CGC(+) triple helices, with G-rich ends folding into G-quartets. These results suggest that such structures could occur when the two DRs are put to close proximity in a biological context.
Vaccatides: Antifungal Glutamine-Rich Hevein-Like Peptides from Vaccaria hispanica
Wong, Ka H.; Tan, Wei Liang; Kini, Shruthi G.; Xiao, Tianshu; Serra, Aida; Sze, Sui Kwan; Tam, James P.
2017-01-01
Hevein and hevein-like peptides are disulfide-constrained chitin-binding cysteine-rich peptides. They are divided into three subfamilies, 6C-, 8C-, and 10C-hevein-like peptides, based on the number of cysteine residues. In addition, hevein-like peptides can exist in two forms, short and long. The long C-terminal form found in hevein and 10C-hevein-like peptides contain a C-terminal protein cargo. In contrast, the short form without a protein cargo is found in all three subfamilies. Here, we report the discovery and characterization of two novel glutamine-rich and protein cargo-free 8C-hevein-like peptides, vaccatides vH1 and vH2, from Vaccaria hispanica of the Caryophyllaceae family. Proteomic analyses showed that the vaccatides are 40–41 amino acids in length and contain a chitin-binding domain. NMR determination revealed that vaccatide vH2 displays a highly compact structure with a N-terminal cystine knot and an addition C-terminal disulfide bond. Stability studies showed that this compact structure renders vaccatide vH2 resistant to thermal, chemical and proteolytic degradation. The chitin-binding vH2 was shown to inhibit the mycelium growth of four phyto-pathogenic fungal strains with IC50 values in the micromolar range. Our findings show that vaccatides represent a new family of 8C-hevein-like peptides, which are protein cargo-free and glutamine-rich, characteristics that differentiate them from the prototypic hevein and the 10C-hevein-like peptides. In summary, this study enriches the existing library of hevein-like peptides and provides insight into their molecular diversity in sequence, structure and biosynthesis. Additionally, their highly disulfide-constrained structure could be used as a scaffold for developing metabolically and orally active peptidyl therapeutics. PMID:28680440
Vaccatides: Antifungal Glutamine-Rich Hevein-Like Peptides from Vaccaria hispanica.
Wong, Ka H; Tan, Wei Liang; Kini, Shruthi G; Xiao, Tianshu; Serra, Aida; Sze, Sui Kwan; Tam, James P
2017-01-01
Hevein and hevein-like peptides are disulfide-constrained chitin-binding cysteine-rich peptides. They are divided into three subfamilies, 6C-, 8C-, and 10C-hevein-like peptides, based on the number of cysteine residues. In addition, hevein-like peptides can exist in two forms, short and long. The long C-terminal form found in hevein and 10C-hevein-like peptides contain a C-terminal protein cargo. In contrast, the short form without a protein cargo is found in all three subfamilies. Here, we report the discovery and characterization of two novel glutamine-rich and protein cargo-free 8C-hevein-like peptides, vaccatides vH1 and vH2, from Vaccaria hispanica of the Caryophyllaceae family. Proteomic analyses showed that the vaccatides are 40-41 amino acids in length and contain a chitin-binding domain. NMR determination revealed that vaccatide vH2 displays a highly compact structure with a N-terminal cystine knot and an addition C-terminal disulfide bond. Stability studies showed that this compact structure renders vaccatide vH2 resistant to thermal, chemical and proteolytic degradation. The chitin-binding vH2 was shown to inhibit the mycelium growth of four phyto-pathogenic fungal strains with IC 50 values in the micromolar range. Our findings show that vaccatides represent a new family of 8C-hevein-like peptides, which are protein cargo-free and glutamine-rich, characteristics that differentiate them from the prototypic hevein and the 10C-hevein-like peptides. In summary, this study enriches the existing library of hevein-like peptides and provides insight into their molecular diversity in sequence, structure and biosynthesis. Additionally, their highly disulfide-constrained structure could be used as a scaffold for developing metabolically and orally active peptidyl therapeutics.
Means, Mary M.; Ahn, Changwoo; Noe, Gregory
2017-01-01
The resilience of constructed wetland ecosystems to severe disturbance, such as a mass herbivory eat-out or soil disturbance, remains poorly understood. In this study, we use a controlled mesocosm experiment to examine how original planting diversity affects the ability of constructed freshwater wetlands to recover structurally and functionally after a disturbance (i.e., aboveground harvesting and soil coring). We assessed if the planting richness of macrophyte species influences recovery of constructed wetlands one year after a disturbance. Mesocosms were planted in richness groups with various combinations of either 1, 2, 3, or 4 species (RG 1–4) to create a gradient of richness. Structural wetland traits measured include morphological regrowth of macrophytes, soil bulk density, soil moisture, soil %C, and soil %N. Functional wetland traits measured include above ground biomass production, soil potential denitrification, and soil potential microbial respiration. Total mesocosm cover increased along the gradient of plant richness (43.5% in RG 1 to 84.5% in RG 4) in the growing season after the disturbance, although not all planted individuals recovered. This was largely attributed to the dominance of the obligate annual species. The morphology of each species was affected negatively by the disturbance, producing shorter, and fewer stems than in the years prior to the disturbance, suggesting that the communities had not fully recovered one year after the disturbance. Soil characteristics were almost uniform across the planting richness gradient, but for a few exceptions (%C, C:N, and non-growing season soil moisture were higher slightly in RG 2). Denitrification potential (DEA) increased with increasing planting richness and was influenced by the abundance and quality of soil C. Increased open space in unplanted mesocosms and mesocosms with lower species richness increased labile C, leading to higher C mineralization rates.
Combustor oscillation attenuation via the control of fuel-supply line dynamics
Richards, George A.; Gemmen, Randall S.
1998-01-01
Combustion oscillation control in combustion systems using hydrocarbon fuels is provided by acoustically tuning a fuel-delivery line to a desired phase of the combustion oscillations for providing a pulse of a fuel-rich region at the oscillating flame front at each time when the oscillation produced pressure in the combustion chamber is in a low pressure phase. The additional heat release produced by burning such fuel-rich regions during low combustion chamber pressure effectively attenuates the combustion oscillations to a selected value.
Wu, Hai-Yan; Ji, Xiao-Yu; Yu, Wei-Wei; Du, Yu-Zhou
2014-03-10
We present the complete mitogenome of a stonefly, Cryptoperla stilifera Sivec (Plecoptera; Peltoperlidae). The mitogenome was a circular molecule consisting of 15,633 nucleotides, 37 genes and a A+T-rich region. C. stilifera mitogenome was similar to Pteronarcys princeps mitogenome (Plecoptera; Pteronarcyidae). All transfer RNA genes (tRNAs) had typical cloverleaf secondary structures except for trnSer (AGN), where the stem-loop structure of the dihydrouridine (DHU) arm was missing. The A+T-rich region of C. stilifera had two stem-loops and each had two interlink. Three conserved sequence blocks (CSBs) were present in the A+T-rich regions of C. stilifera, Peltoperla tarteri and Peltoperla arcuata. Moreover, many polynucleotide stretches (Poly N, N=A, T and C) in the A+T-rich region of C. stilifera Phylogenetic relationships of Polyneopteran species were constructed based on the nucleotide sequences of 13 protein coding genes (PCGs). Both maximum likelihood (ML) and Bayesian inference (BI) analyses supported Grylloblattodea as the sister group to Plecoptera+Dermaptera and Embiidina and Phasmatodea as sister groups. Copyright © 2014 Elsevier B.V. All rights reserved.
Sairyo, Masami; Kobayashi, Takuya; Masuda, Daisaku; Kanno, Koutaro; Zhu, Yinghong; Okada, Takeshi; Koseki, Masahiro; Ohama, Tohru; Nishida, Makoto; Sakata, Yasushi; Yamashita, Shizuya
2018-02-01
Fasting and postprandial hypertriglyceridemia (PHTG) are caused by the accumulation of triglyceride (TG)-rich lipoproteins and their remnants, which have atherogenic effects. Fibrates can improve fasting and PHTG; however, reduction of remnants is clinically needed to improve health outcomes. In the current study, we investigated the effects of a novel selective peroxisome proliferator-activated receptor α modulator (SPPARMα), K-877 (Pemafibrate), on PHTG and remnant metabolism. Male C57BL/6J mice were fed a high-fat diet (HFD) only, or an HFD containing 0.0005% K-877 or 0.05% fenofibrate, from 8 to 12 weeks of age. After 4 weeks of feeding, we measured plasma levels of TG, free fatty acids (FFA), total cholesterol (TC), HDL-C, and apolipoprotein (apo) B-48/B-100 during fasting and after oral fat loading (OFL). Plasma lipoprotein profiles after OFL, which were assessed by high performance liquid chromatography (HPLC), and fasting lipoprotein lipase (LPL) activity were compared among the groups. Both K-877 and fenofibrate suppressed body weight gain and fasting and postprandial TG levels and enhanced LPL activity in mice fed an HFD. As determined by HPLC, K-877 and fenofibrate significantly decreased the abundance of TG-rich lipoproteins, including remnants, in postprandial plasma. Both K-877 and fenofibrate decreased intestinal mRNA expression of ApoB and Npc1l1; however, hepatic expression of Srebp1c and Mttp was increased by fenofibrate but not by K-877.Hepatic mRNA expression of apoC-3 was decreased by K-877 but not by fenofibrate. K-877 may attenuate PHTG by suppressing the postprandial increase of chylomicrons and the accumulation of chylomicron remnants more effectively than fenofibrate.
Hege, Marianne; Jung, Finn; Sellmann, Cathrin; Jin, Chengjun; Ziegenhardt, Doreen; Hellerbrand, Claus; Bergheim, Ina
2018-01-01
Results of in vitro and in vivo studies suggest that consumption of beer is less harmful for the liver than consumption of spirits. It also has been suggested that secondary plant compounds derived from hops such as xanthohumol or iso-α-acids may have beneficial effects on the development of liver diseases of various etiologies. The aim of this study was to determine whether iso-α-acids consumed in doses achieved by "normal" beer consumption have beneficial effects on health. Female C57 Bl/6 J mice, pretreated for 4 d with an iso-α-acid-rich extract (∼30% iso-α-acids from hops, 0.75 mg/kg body weight), were fed one bolus of ethanol (6 g/kg body weight intragastric) or an iso-caloric maltodextrin solution. Markers of liver damage, toll-like receptor-4 signaling, and lipid peroxidation were determined. Furthermore, the effect of isohumulone on the lipopolysaccharide-dependent activation of J774 A.1 macrophages, used as a model of Kupffer cells, was determined. In the liver, acute ethanol administration led to a significant accumulation of fat (∼10-fold), which was accompanied by significantly higher inducible nitric oxide synthase protein level, elevated nitric oxide production, and increased plasminogen activator inhibitor 1 protein concentration when compared to controls. In mice pretreated with iso-α-acids, these effects of alcohol were markedly attenuated. Pretreatment of J774 A.1 macrophages with isohumulone significantly attenuated lipopolysaccharide-induced mRNA expression of inducible nitric oxide synthase and interleukin-6 as well as the release of nitric oxide. Taken together, iso-α-acids markedly attenuated the development of acute alcohol-induced damage in mice. Copyright © 2017 Elsevier Inc. All rights reserved.
Reis, Pedro A.A.; Rosado, Gustavo L.; Silva, Lucas A.C.; Oliveira, Luciana C.; Oliveira, Lucas B.; Costa, Maximiller D.L.; Alvim, Fátima C.; Fontes, Elizabeth P.B.
2011-01-01
The molecular chaperone binding protein (BiP) participates in the constitutive function of the endoplasmic reticulum (ER) and protects the cell against stresses. In this study, we investigated the underlying mechanism by which BiP protects plant cells from stress-induced cell death. We found that enhanced expression of BiP in soybean (Glycine max) attenuated ER stress- and osmotic stress-mediated cell death. Ectopic expression of BiP in transgenic lines attenuated the leaf necrotic lesions that are caused by the ER stress inducer tunicamycin and also maintained shoot turgidity upon polyethylene glycol-induced dehydration. BiP-mediated attenuation of stress-induced cell death was confirmed by the decreased percentage of dead cell, the reduced induction of the senescence-associated marker gene GmCystP, and reduced DNA fragmentation in BiP-overexpressing lines. These phenotypes were accompanied by a delay in the induction of the cell death marker genes N-RICH PROTEIN-A (NRP-A), NRP-B, and GmNAC6, which are involved in transducing a cell death signal generated by ER stress and osmotic stress through the NRP-mediated signaling pathway. The prosurvival effect of BiP was associated with modulation of the ER stress- and osmotic stress-induced NRP-mediated cell death signaling, as determined in transgenic tobacco (Nicotiana tabacum) lines with enhanced (sense) and suppressed (antisense) BiP levels. Enhanced expression of BiP prevented NRP- and NAC6-mediated chlorosis and the appearance of senescence-associated markers, whereas silencing of endogenous BiP accelerated the onset of leaf senescence mediated by NRPs and GmNAC6. Collectively, these results implicate BiP as a negative regulator of the stress-induced NRP-mediated cell death response. PMID:22007022
NASA Technical Reports Server (NTRS)
Kang, C.; Berger, I.; Lockshin, C.; Ratliff, R.; Moyzis, R.; Rich, A.
1995-01-01
In most metazoans, the telomeric cytosine-rich strand repeating sequence is d(TAACCC). The crystal structure of this sequence was solved to 1.9-A resolution. Four strands associate via the cytosine-containing parts to form a four-stranded intercalated structure held together by C.C+ hydrogen bonds. The base-paired strands are parallel to each other, and the two duplexes are intercalated into each other in opposite orientations. One TAA end forms a highly stabilized loop with the 5' thymine Hoogsteen-base-paired to the third adenine. The 5' end of this loop is in close proximity to the 3' end of one of the other intercalated cytosine strands. Instead of being entirely in a DNA duplex, this structure suggests the possibility of an alternative conformation for the cytosine-rich telomere strands.
Anti-infective bovine colostrum oligosaccharides: Campylobacter jejuni as a case study.
Lane, Jonathan A; Mariño, Karina; Naughton, Julie; Kavanaugh, Devon; Clyne, Marguerite; Carrington, Stephen D; Hickey, Rita M
2012-07-02
Campylobacter jejuni is the leading cause of acute bacterial infectious diarrhea in humans. Unlike in humans, C. jejuni is a commensal within the avian host. Heavily colonized chickens often fail to display intestinal disease, and no cellular attachment or invasion has been demonstrated in-vivo. Recently, researchers have shown that the reason for the attenuation of C. jejuni virulence may be attributed to the presence of chicken intestinal mucus and more specifically chicken mucin. Since mucins are heavily glycosylated molecules this observation would suggest that glycan-based compounds may act as anti-infectives against C. jejuni. Considering this, we have investigated naturally sourced foods for potential anti-infective glycans. Bovine colostrum rich in neutral and acidic oligosaccharides has been identified as a potential source of anti-infective glycans. In this study, we tested oligosaccharides isolated and purified from the colostrum of Holstein Friesian cows for anti-infective activity against a highly invasive strain of C. jejuni. During our initial studies we structurally defined 37 bovine colostrum oligosaccharides (BCO) by HILIC-HPLC coupled with exoglycosidase digests and off-line mass spectroscopy, and demonstrated the ability of C. jejuni to bind to some of these structures, in-vitro. We also examined the effect of BCO on C. jejuni adhesion to, invasion of and translocation of HT-29 cells. BCO dramatically reduced the cellular invasion and translocation of C. jejuni, in a concentration dependent manner. Periodate treatment of the BCO prior to inhibition studies resulted in a loss of the anti-infective activity of the glycans suggesting a direct oligosaccharide-bacterial interaction. This was confirmed when the BCO completely prevented C. jejuni binding to chicken intestinal mucin, in-vitro. This study builds a strong case for the inclusion of oligosaccharides sourced from cow's milk in functional foods. However, it is only through further understanding the structure and function of milk oligosaccharides that such compounds can reach their potential as food ingredients. Copyright © 2012 Elsevier B.V. All rights reserved.
Fernandez-Rojo, L; Héry, M; Le Pape, P; Braungardt, C; Desoeuvre, A; Torres, E; Tardy, V; Resongles, E; Laroche, E; Delpoux, S; Joulian, C; Battaglia-Brunet, F; Boisson, J; Grapin, G; Morin, G; Casiot, C
2017-10-15
Passive water treatments based on biological attenuation can be effective for arsenic-rich acid mine drainage (AMD). However, the key factors driving the biological processes involved in this attenuation are not well-known. Here, the efficiency of arsenic (As) removal was investigated in a bench-scale continuous flow channel bioreactor treating As-rich AMD (∼30-40 mg L -1 ). In this bioreactor, As removal proceeds via the formation of biogenic precipitates consisting of iron- and arsenic-rich mineral phases encrusting a microbial biofilm. Ferrous iron (Fe(II)) oxidation and iron (Fe) and arsenic removal rates were monitored at two different water heights (4 and 25 mm) and with/without forced aeration. A maximum of 80% As removal was achieved within 500 min at the lowest water height. This operating condition promoted intense Fe(II) microbial oxidation and subsequent precipitation of As-bearing schwertmannite and amorphous ferric arsenate. Higher water height slowed down Fe(II) oxidation, Fe precipitation and As removal, in relation with limited oxygen transfer through the water column. The lower oxygen transfer at higher water height could be partly counteracted by aeration. The presence of an iridescent floating film that developed at the water surface was found to limit oxygen transfer to the water column and delayed Fe(II) oxidation, but did not affect As removal. The bacterial community structure in the biogenic precipitates in the bottom of the bioreactor differed from that of the inlet water and was influenced to some extent by water height and aeration. Although potential for microbial mediated As oxidation was revealed by the detection of aioA genes, removal of Fe and As was mainly attributable to microbial Fe oxidation activity. Increasing the proportion of dissolved As(V) in the inlet water improved As removal and favoured the formation of amorphous ferric arsenate over As-sorbed schwertmannite. This study proved the ability of this bioreactor-system to treat extreme As concentrations and may serve in the design of future in-situ bioremediation system able to treat As-rich AMD. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Guo, Yu-Cong; Cai, Chen; Zhang, Yun-Hong
2018-05-01
Attenuated total reflectance - Fourier transform infrared (ATR-FTIR) spectra of ethylene glycol-water (abbreviated as EG-H2O) mixtures were measured at 298 K with the ethylene glycol molar ratio ranging from 0.01 to 1400. The two bands at 1033 and 1082 cm-1 were assigned to be the C-C stretching vibration modes related to the trans- and gauche- conformation of EG. The absorbance of the two bands was found to be sensitive to the molar ratios. We made theoretical calculation for ten conformations of the EG molecules to understand the conformational transformation of EG molecules changing with EG-H2O molar ratios. The absorbance ratio (A1033/A1082) was used to determine the trans- and gauche- conformation ratio with the calculated (AνO-C-C-O-T/AνO-C-C-O-G) as standard. When the molar ratio of water and EG (xH2O/xEG) is smaller than 0.4, strong associations formed by the intermolecular hydrogen bonds were dominant in the solutions and the proportion of gauche- conformation was about 0.5. Within the region of 0.4< xH2O/xEG < 20, the intermolecular hydrogen bonds structure between EG molecules were broken by the water molecules and the structure of most EG molecules changed from trans- to gauche- conformation. The blue shift of the peaks indicated the increasing hydrogen bonding between water and EG. When xH2O/xEG is larger than 20, the monomers of molecules started to appear in the EG-H2O solution. The gauche- conformation was the dominated conformation in the dilute EG-H2O solution with proportion of 0.87. In the CH2 rocking vibration (δC-H) region, the computational results showed that the majority bands in this region were influenced by the gauche- conformation which can be divided into group G1 or G2. The transformation between the gauche- conformations of EG molecules can be studied by combining the experimental results and the computational results, The proportion of G1 for the EG-rich solution was about 0.71 while it decreased to 0.55 for the H2O-rich solution.
Protective effect of hydrogen-rich saline against radiation-induced immune dysfunction
Zhao, Sanhu; Yang, Yanyong; Liu, Wen; Xuan, Zhiqiang; Wu, Shouming; Yu, Shunfei; Mei, Ke; Huang, Yijuan; Zhang, Pei; Cai, Jianming; Ni, Jin; Zhao, Yaoxian
2014-01-01
Recent studies showed that hydrogen can be used as an effective radioprotective agent through scavenging free radicals. This study was undertaken to evaluate the radioprotective effects of hydrogen on immune system in mice. H2 was dissolved in physiological saline using an apparatus produced by our department. Spleen index and histological analysis were used to evaluate the splenic structural damage. Spleen superoxide dismutase, GSH, MDA were measured to appraise the antioxidant capacity and a DCF assay for the measurement of radical oxygen species. Cell apoptosis was evaluated by an Annexin V-FITC and propidium iodide staining method as well as the apoptotic proteins such as Bcl-2, Bax, caspase-3 and c-caspase-3. CD4+ and CD8+ T cells subtypes were detected by flow cytometry with FITC-labelled antimouse CD4 and PE antimouse CD8 staining. Real-time PCR was utilized to determine the CD4+ T cell subtypes and related cytokines. Our study demonstrated that pre-treatment with H2 could increase the spleen index and attenuate the radiation damage on splenic structure. Radical oxygen species level was also reduced by H2 treatment. H2 also inhibited radiation-induced apoptosis in splenocytes and down-regulated pro-apoptotic proteins in living mice. Radiation-induced imbalance of T cells was attenuated by H2. Finally, we found that H2 could regulate the polarization of CD4+ T cells and the level of related cytokines. This study suggests H2 as an effective radioprotective agent on immune system by scavenging reactive oxygen species. PMID:24618260
Combustor oscillation attenuation via the control of fuel-supply line dynamics
Richards, G.A.; Gemmen, R.S.
1998-09-22
Combustion oscillation control in combustion systems using hydrocarbon fuels is provided by acoustically tuning a fuel-delivery line to a desired phase of the combustion oscillations for providing a pulse of a fuel-rich region at the oscillating flame front at each time when the oscillation produced pressure in the combustion chamber is in a low pressure phase. The additional heat release produced by burning such fuel-rich regions during low combustion chamber pressure effectively attenuates the combustion oscillations to a selected value. 9 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hooten, Gwendolyn; Cato, Rebecca; Looney, Brian
At the US Department of Energy (DOE), Office of Legacy Management, Mound, Ohio, Site, chlorinated organic contaminants (cVOCs) originating from the former solid-waste landfill have impacted groundwater in Operable Unit 1 (OU-1). The baseline groundwater remedy was groundwater pump and treat (P&T). Since the source materials have been removed from the landfill, the Mound core team, which consists of DOE, US Environmental Protection Agency (US EPA), Ohio EPA, and other stakeholders, is assessing the feasibility of switching from the active P&T remedy to a passive attenuation-based remedy. Toward this end, an enhanced attenuation (EA) strategy based on the creation ofmore » structured geochemical zones was developed. This EA strategy addresses the residual areas of elevated cVOCs in soil and groundwater while minimizing the rebound of groundwater concentrations above regulatory targets (e.g., maximum contaminant levels [MCLs]) and avoiding plume expansion while the P&T system is turned off. The EA strategy has improved confidence and reduced risk on the OU-1 groundwater transition path to monitored natural attenuation (MNA). To better evaluate the EA strategy, DOE is conducting a field demonstration to evaluate the use of edible oils to enhance the natural attenuation processes. The field demonstration is designed to determine whether structured geochemical zones can be established that expedite the attenuation of cVOCs in the OU-1 groundwater. The EA approach at OU-1 was designed based on “structured geochemical zones” and relies on groundwater flow through a succession of anaerobic and aerobic zones. The anaerobic zones stimulate relatively rapid degradation of the original solvent source compounds (e.g., cVOCs such as tetrachloroethene [PCE] and trichloroethene [TCE]). The surrounding aerobic areas encourage relatively rapid degradation of daughter products (such as dichloroethene [DCE] and vinyl chloride [VC]) as well as enhanced cometabolism of TCE resulting from the utilization of methane and other reduced hydrocarbons that are formed and released from the anaerobic zones.« less
Qamar, Arman; Khetarpal, Sumeet A; Khera, Amit V; Qasim, Atif; Rader, Daniel J; Reilly, Muredach P
2015-08-01
Triglyceride-rich lipoproteins have emerged as causal risk factors for developing coronary heart disease independent of low-density lipoprotein cholesterol levels. Apolipoprotein C-III (ApoC-III) modulates triglyceride-rich lipoprotein metabolism through inhibition of lipoprotein lipase and hepatic uptake of triglyceride-rich lipoproteins. Mutations causing loss-of-function of ApoC-III lower triglycerides and reduce coronary heart disease risk, suggestive of a causal role for ApoC-III. Little data exist about the relationship of ApoC-III, triglycerides, and atherosclerosis in patients with type 2 diabetes mellitus (T2DM). Here, we examined the relationships between plasma ApoC-III, triglycerides, and coronary artery calcification in patients with T2DM. Plasma ApoC-III levels were measured in a cross-sectional study of 1422 subjects with T2DM but without clinically manifest coronary heart disease. ApoC-III levels were positively associated with total cholesterol (Spearman r=0.36), triglycerides (r=0.59), low-density lipoprotein cholesterol (r=0.16), fasting glucose (r=0.16), and glycosylated hemoglobin (r=0.12; P<0.0001 for all). In age, sex, and race-adjusted analysis, ApoC-III levels were positively associated with coronary artery calcification (Tobit regression ratio, 1.78; 95% confidence interval, 1.27-2.50 per SD increase in ApoC-III; P<0.001). As expected for an intermediate mediator, these findings were attenuated when adjusted for both triglycerides (Tobit regression ratio, 1.43; 95% confidence interval, 0.94-2.18; P=0.086) and separately for very low-density lipoprotein cholesterol (Tobit regression ratio, 1.14; 95% confidence interval, 0.75-1.71; P=0.53). In persons with T2DM, increased plasma ApoC-III is associated with higher triglycerides, less favorable cardiometabolic phenotypes, and higher coronary artery calcification, a measure of subclinical atherosclerosis. Therapeutic inhibition of ApoC-III may thus be a novel strategy for reducing plasma triglyceride-rich lipoproteins and cardiovascular risk in T2DM. © 2015 American Heart Association, Inc.
NASA Astrophysics Data System (ADS)
Misse, Patrick R. N.; Mbarki, Mohammed; Fokwa, Boniface P. T.
2012-08-01
Powder samples and single crystals of the new complex boride series Crx(Rh1-yRuy)7-xB3 (x=0.88-1; y=0-1) have been synthesized by arc-melting the elements under purified argon atmosphere on a water-cooled copper crucible. The products, which have metallic luster, were structurally characterized by single-crystal and powder X-ray diffraction as well as EDX measurements. Within the whole solid solution range the hexagonal Th7Fe3 structure type (space group P63mc, no. 186, Z=2) was identified. Single-crystal structure refinement results indicate the presence of chromium at two sites (6c and 2b) of the available three metal Wyckoff sites, with a pronounced preference for the 6c site. An unexpected Rh/Ru site preference was found in the Ru-rich region only, leading to two different magnetic behaviors in the solid solution: The Rh-rich region shows a temperature-independent (Pauli) paramagnetism whereas an additional temperature-dependent paramagnetic component is found in the Ru-rich region.
Pleiotropic effects of apolipoprotein C3 on HDL functionality and adipose tissue metabolic activity.
Zvintzou, Evangelia; Lhomme, Marie; Chasapi, Stella; Filou, Serafoula; Theodoropoulos, Vassilis; Xapapadaki, Eva; Kontush, Anatol; Spyroulias, George; Tellis, Constantinos C; Tselepis, Alexandros D; Constantinou, Caterina; Kypreos, Kyriakos E
2017-09-01
APOC3 is produced mainly by the liver and intestine and approximately half of plasma APOC3 associates with HDL. Though it was believed that APOC3 associates with HDL by simple binding to preexisting particles, recent data support that biogenesis of APOC3-containing HDL (APOC3-HDL) requires Abca1. Moreover, APOC3-HDL contributes to plasma triglyceride homeostasis by preventing APOC3 association with triglyceride-rich lipoproteins. Interestingly, APOC3-HDL also shows positive correlation with the morbidly obese phenotype. However, the roles of APOC3 in HDL functionality and adipose tissue metabolic activity remain unknown. Therefore, here we investigated the direct effects of APOC3 expression on HDL structure and function, as well as white adipose tissue (WAT) and brown adipose tissue (BAT) metabolic activity. C57BL/6 mice were infected with an adenovirus expressing human APOC3 or a recombinant attenuated control adenovirus expressing green fluorescent protein and blood and tissue samples were collected at 5 days postinfection. HDL was then analyzed for its apolipoprotein and lipid composition and particle functionality. Additionally, purified mitochondria from BAT and WAT were analyzed for uncoupling protein 1, cytochrome c (Cytc), and Cytc oxidase subunit 4 protein levels as an indirect measure of their metabolic activity. Serum metabolomic analysis was performed by NMR. Combined, our data show that APOC3 modulates HDL structure and function, while it selectively promotes BAT metabolic activation. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.
Solution structure of the catalytic domain of RICH protein from goldfish.
Kozlov, Guennadi; Denisov, Alexey Y; Pomerantseva, Ekaterina; Gravel, Michel; Braun, Peter E; Gehring, Kalle
2007-03-01
Regeneration-induced CNPase homolog (RICH) is an axonal growth-associated protein, which is induced in teleost fish upon optical nerve injury. RICH consists of a highly acidic N-terminal domain, a catalytic domain with 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) activity and a C-terminal isoprenylation site. In vitro RICH and mammalian brain CNPase specifically catalyze the hydrolysis of 2',3'-cyclic nucleotides to produce 2'-nucleotides, but the physiologically relevant in vivo substrate remains unknown. Here, we report the NMR structure of the catalytic domain of goldfish RICH and describe its binding to CNPase inhibitors. The structure consists of a twisted nine-stranded antiparallel beta-sheet surrounded by alpha-helices on both sides. Despite significant local differences mostly arising from a seven-residue insert in the RICH sequence, the active site region is highly similar to that of human CNPase. Likewise, refinement of the catalytic domain of rat CNPase using residual dipolar couplings gave improved agreement with the published crystal structure. NMR titrations of RICH with inhibitors point to a similar catalytic mechanism for RICH and CNPase. The results suggest a functional importance for the evolutionarily conserved phosphodiesterase activity and hint of a link with pre-tRNA splicing.
Mishra, Arun K; Driessen, Nicole N; Appelmelk, Ben J; Besra, Gurdyal S
2011-01-01
Approximately one third of the world's population is infected with Mycobacterium tuberculosis, the causative agent of tuberculosis. This bacterium has an unusual lipid-rich cell wall containing a vast repertoire of antigens, providing a hydrophobic impermeable barrier against chemical drugs, thus representing an attractive target for vaccine and drug development. Apart from the mycolyl–arabinogalactan–peptidoglycan complex, mycobacteria possess several immunomodulatory constituents, notably lipomannan and lipoarabinomannan. The availability of whole-genome sequences of M. tuberculosis and related bacilli over the past decade has led to the identification and functional characterization of various enzymes and the potential drug targets involved in the biosynthesis of these glycoconjugates. Both lipomannan and lipoarabinomannan possess highly variable chemical structures, which interact with different receptors of the immune system during host–pathogen interactions, such as Toll-like receptors-2 and C-type lectins. Recently, the availability of mutants defective in the synthesis of these glycoconjugates in mycobacteria and the closely related bacterium, Corynebacterium glutamicum, has paved the way for host–pathogen interaction studies, as well as, providing attenuated strains of mycobacteria for the development of new vaccine candidates. This review provides a comprehensive account of the structure, biosynthesis and immunomodulatory properties of these important glycoconjugates. PMID:21521247
NASA Astrophysics Data System (ADS)
Kumagami, Manabu; Ogami, Yasuhiro; Tamaki, Yuichi; Kobayashi, Hideaki
Numerical analysis of CH4/O2/H2O laminar premixed flame under various conditions of pressure, equivalence ratio and steam concentration was performed using GRI-Mech 3.0 and the mechanism proposed by Davis and Law, which consists of C1 to C6 hydrocarbons in addition to GRI-Mech 3.0. The pressure dependence of laminar burning velocity and flame structure under fuel-rich conditions was focused on. Effects of the formation of higher hydrocarbons under fuel-rich conditions were also clarified using the mechanism proposed by Davis and Law. Results showed that for extremely fuel-rich conditions, laminar burning velocity increases as pressure increases for both mechanisms. The increase of laminar burning velocity is caused by the shift of the oxidation pathway of CH3 radical from the C2 Route to the C1 Route. The formation of C3-C6 hydrocarbons has only a small effect on laminar burning velocity. Under fuel-rich conditions, super-adiabatic flame temperature (SAFT) occurs and its pressure dependency was clarified.
Power, Krista A; Lu, Jenifer T; Monk, Jennifer M; Lepp, Dion; Wu, Wenqing; Zhang, Claire; Liu, Ronghua; Tsao, Rong; Robinson, Lindsay E; Wood, Geoffrey A; Wolyn, David J
2016-11-01
This study investigated the effects of cooked whole asparagus (ASP) versus its equivalent level of purified flavonoid glycoside, rutin (RUT), on dextran sodium sulfate (DSS)-induced colitis and subsequent colitis recovery in mice. C57BL/6 male mice were fed an AIN-93G basal diet (BD), or BD supplemented with 2% cooked ASP or 0.025% RUT for 2 wks prior to and during colitis induction with 2% DSS in water for 7 days, followed by 5 days colitis recovery. In colitic mice, both ASP and RUT upregulated mediators of improved barrier integrity and enhanced mucosal injury repair (e.g. Muc1, IL-22, Rho-A, Rac1, and Reg3γ), increased the proportion of mouse survival, and improved disease activity index. RUT had the greatest effect in attenuating DSS-induced colonic damage indicated by increased crypt and goblet cell restitution, reduced colonic myeloperoxidase, as well as attenuated DSS-induced microbial dysbiosis (reduced Enterobacteriaceae and Bacteroides, and increased unassigned Clostridales, Oscillospira, Lactobacillus, and Bifidobacterium). These findings demonstrate that dietary cooked ASP and its flavonoid glycoside, RUT, may be useful in attenuating colitis severity by modulating the colonic microenvironment resulting in reduced colonic inflammation, promotion of colonic mucosal injury repair, and attenuation of colitis-associated microbial dysbiosis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Structural and electronic properties of boron-doped double-walled silicon carbide nanotubes
NASA Astrophysics Data System (ADS)
Behzad, Somayeh; Moradian, Rostam; Chegel, Raad
2010-12-01
The effects of boron doping on the structural and electronic properties of (6,0)@(14,0) double-walled silicon carbide nanotube (DWSiCNT) are investigated by using spin-polarized density functional theory. It is found that boron atom could be more easily doped in the inner tube. Our calculations indicate that a Si site is favorable for B under C-rich condition and a C site is favorable under Si-rich condition. Additionally, B-substitution at either single carbon or silicon atom site in DWSiCNT could induce spontaneous magnetization.
Ahmed, Saami; Kaushik, Mahima; Chaudhary, Swati; Kukreti, Shrikant
2018-05-01
Sequence recognition and conformational polymorphism enable DNA to emerge out as a substantial tool in fabricating the devices within nano-dimensions. These DNA associated nano devices work on the principle of conformational switches, which can be facilitated by many factors like sequence of DNA/RNA strand, change in pH or temperature, enzyme or ligand interactions etc. Thus, controlling these DNA conformational changes to acquire the desired function is significant for evolving DNA hybridization biosensor, used in genetic screening and molecular diagnosis. For exploring this conformational switching ability of cytosine-rich DNA oligonucleotides as a function of pH for their potential usage as biosensors, this study has been designed. A C-rich stretch of DNA sequence (5'-TCCCCCAATTAATTCCCCCA-3'; SG20c) has been investigated using UV-Thermal denaturation, poly-acrylamide gel electrophoresis and CD spectroscopy. The SG20c sequence is shown to adopt various topologies of i-motif structure at low pH. This pH dependent transition of SG20c from unstructured single strand to unimolecular and bimolecular i-motif structures can further be exploited for its utilization as switching on/off pH-based biosensors. Copyright © 2018. Published by Elsevier B.V.
Sato, Kazuki; Yoshiga, Toyoshi; Hasegawa, Koichi
2016-06-15
Photorhabdus luminescens is a Gram-negative entomopathogenic bacterium which symbiotically associates with the entomopathogenic nematode Heterorhabditis bacteriophora P. luminescens is highly virulent to many insects and nonsymbiotic nematodes, including Caenorhabditis elegans To understand the virulence mechanisms of P. luminescens, we obtained virulence-deficient and -attenuated mutants against C. elegans through a transposon-mutagenized library. From the genetic screening, we identified the pdxB gene, encoding erythronate-4-phosphate dehydrogenase, as required for de novo vitamin B6 biosynthesis. Mutation in pdxB caused growth deficiency of P. luminescens in nutrient-poor medium, which was restored under nutrient-rich conditions or by supplementation with pyridoxal 5'-phosphate (PLP), an active form of vitamin B6 Supplementation with three other B6 vitamers (pyridoxal, pyridoxine, and pyridoxamine) also restored the growth of the pdxB mutant, suggesting the existence of a salvage pathway for vitamin B6 biosynthesis in P. luminescens Moreover, supplementation with PLP restored the virulence-deficient phenotype against C. elegans Combining these results with the fact that pdxB mutation also caused attenuation of insecticidal activity, we concluded that the production of appropriate amounts of vitamin B6 is critical for P. luminescens pathogenicity. The Gram-negative entomopathogenic bacterium Photorhabdus luminescens symbiotically associates with the entomopathogenic nematode Heterorhabditis bacteriophora P. luminescens is highly virulent to many insects and nonsymbiotic nematodes, including Caenorhabditis elegans We have obtained several virulence-deficient and -attenuated P. luminescens mutants against C. elegans through genetic screening. From the genetic analysis, we present the vitamin B6 biosynthetic pathways in P. luminescens that are important for its insecticidal activity. Mutation in pdxB, encoding erythronate-4-phosphate dehydrogenase and required for the de novo vitamin B6 biosynthesis pathway, caused virulence deficiency against C. elegans and growth deficiency of P. luminescens in nutrient-poor medium. Because such phenotypes were restored under nutrient-rich conditions or by supplementation with B6 vitamers, we showed the presence of the two vitamin B6 synthetic pathways (de novo and salvage) in P. luminescens and also showed that the ability to produce an appropriate amount of vitamin B6 is critical for P. luminescens pathogenicity. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Spacecraft ceramic protective shield
NASA Technical Reports Server (NTRS)
Larriva, Rene F. (Inventor); Nelson, Anne (M.); Czechanski, James G. (Inventor); Poff, Ray E. (Inventor)
1995-01-01
A low areal density protective shield apparatus, and method for making same, for protecting spacecraft structures from impact with hypervelocity objects, including a bumper member comprising a bumper ceramic layer, a bumper shock attenuator layer, and a bumper confining layer. The bumper ceramic layer can be SiC or B.sub.4 C; the bumper shock attenuator layer can be zirconia felt; and the bumper confining layer can be aluminum. A base armor member can be spaced from the bumper member and a ceramic fiber-based curtain can be positioned between the bumper and base armor members.
Phase Transformation and Aging Behavior of Al0.5CoCrFeNiSi0.2 High-Entropy Alloy
NASA Astrophysics Data System (ADS)
Zhang, C.; Wu, G. F.; Dai, P. Q.
2015-05-01
An Al0.5CoCrFeNiSi0.2 high-entropy alloy was prepared by vacuum arc melting. The alloy was aged from 700 to 1100 °C. The effects of aging on the phase transformation and mechanical performances were explored. The as-cast alloy showed a dendritic (DR) microstructure. The DR region was an Fe,Cr-rich FCC phase, while the interdendritic (ID) region was a spinodal structure composed of Fe,Cr-rich BCC (A2) and Ni,Al-rich BCC (B2) phases. At aging temperatures between 700 and 900 °C, the Fe,Cr-rich BCC (A2) phase in the ID region transformed into σ and Fe,Cr-rich FCC phases. Meanwhile, some Ni,Al-rich FCC phase particles precipitated from the DR region. During aging at 1100 °C, the DR microstructure disappeared, and a microstructure composed of Fe,Cr-rich FCC and Ni,Al-rich BCC (B2) phases both possessing a lamellar shape was developed. The alloy exhibited evident hardening and lower tensile strain when the aging temperature was lower than 1000 °C, which was mainly attributed to the generation of the σ phase in the ID region. However, a contrasting behavior was observed when the aging temperature was higher than 1000 °C, which was attributed to the redissolution of the σ phase and the microstructure coarsening.
2012-01-01
A computational study of the dependence of the electronic band structure and density of states on the chemical surface passivation of cubic porous silicon carbide (pSiC) was performed using ab initio density functional theory and the supercell method. The effects of the porosity and the surface chemistry composition on the energetic stability of pSiC were also investigated. The porous structures were modeled by removing atoms in the [001] direction to produce two different surface chemistries: one fully composed of silicon atoms and one composed of only carbon atoms. The changes in the electronic states of the porous structures as a function of the oxygen (O) content at the surface were studied. Specifically, the oxygen content was increased by replacing pairs of hydrogen (H) atoms on the pore surface with O atoms attached to the surface via either a double bond (X = O) or a bridge bond (X-O-X, X = Si or C). The calculations show that for the fully H-passivated surfaces, the forbidden energy band is larger for the C-rich phase than for the Si-rich phase. For the partially oxygenated Si-rich surfaces, the band gap behavior depends on the O bond type. The energy gap increases as the number of O atoms increases in the supercell if the O atoms are bridge-bonded, whereas the band gap energy does not exhibit a clear trend if O is double-bonded to the surface. In all cases, the gradual oxygenation decreases the band gap of the C-rich surface due to the presence of trap-like states. PMID:22913486
An OTA-C filter for ECG acquisition systems with highly linear range and less passband attenuation
NASA Astrophysics Data System (ADS)
Jihai, Duan; Chuang, Lan; Weilin, Xu; Baolin, Wei
2015-05-01
A fifth order operational transconductance amplifier-C (OTA-C) Butterworth type low-pass filter with highly linear range and less passband attenuation is presented for wearable bio-telemetry monitoring applications in a UWB wireless body area network. The source degeneration structure applied in typical small transconductance circuit is improved to provide a highly linear range for the OTA-C filter. Moreover, to reduce the passband attenuation of the filter, a cascode structure is employed as the output stage of the OTA. The OTA-based circuit is operated in weak inversion due to strict power limitation in the biomedical chip. The filter is fabricated in a SMIC 0.18-μm CMOS process. The measured results for the filter have shown a passband gain of -6.2 dB, while the -3-dB frequency is around 276 Hz. For the 0.8 VPP sinusoidal input at 100 Hz, a total harmonic distortion (THD) of -56.8 dB is obtained. An electrocardiogram signal with noise interference is fed into this chip to validate the function of the designed filter. Project supported by the National Natural Science Foundation of China (Nos. 61161003, 61264001, 61166004) and the Guangxi Natural Science Foundation (No. 2013GXNSFAA019333).
NASA Astrophysics Data System (ADS)
Chen, Biao; Lu, Huihui; Zhao, Naiqin; Shi, Chunsheng; Liu, Enzuo; He, Chunnian; Ma, Liying
2018-05-01
Hollow or continuous porous hierarchical MoS2/C structures with large Li-ion and electron transport kinetics, and high structural stability are urgent needs for their application in lithium ion batteries. In this regard, a novel continuous porous micro-sphere constructed from defect-rich, interlayer-expanded, and few-layered MoS2/C nanosheets is successfully synthesized through a facile one-pot hydrothermal method. The polyvinyl pyrrolidone surfactant serves as carbon source and supporter, while the CS2 works as soft template and sulfur source during hydrothermal process. The morphologies, structures, and electrochemical properties are systematically characterized. Importantly, it should be noted that the unique porous micro-spheres with merits of rich-defect, expanded-interlayer, few-layer (<5 layers), abundant pores and integrating carbon are favorable for lithium ion batteries application. When the uniform composites are used as lithium ion batteries anode materials, they deliver a high reversible capacity, excellent cycling performance (average capacity fading of 0.037% per cycle at 0.2 A g-1), and good rate capability.
Neutron imaging of hydrogen-rich fluids in geomaterials and engineered porous media: A review
NASA Astrophysics Data System (ADS)
Perfect, E.; Cheng, C.-L.; Kang, M.; Bilheux, H. Z.; Lamanna, J. M.; Gragg, M. J.; Wright, D. M.
2014-02-01
Recent advances in visualization technologies are providing new discoveries as well as answering old questions with respect to the phase structure and flow of hydrogen-rich fluids, such as water and oil, within porous media. Magnetic resonance and x-ray imaging are sometimes employed in this context, but are subject to significant limitations. In contrast, neutrons are ideally suited for imaging hydrogen-rich fluids in abiotic non-hydrogenous porous media because they are strongly attenuated by hydrogen and can "see" through the solid matrix in a non-destructive fashion. This review paper provides an overview of the general principles behind the use of neutrons to image hydrogen-rich fluids in both 2-dimensions (radiography) and 3-dimensions (tomography). Engineering standards for the neutron imaging method are examined. The main body of the paper consists of a comprehensive review of the diverse scientific literature on neutron imaging of static and dynamic experiments involving variably-saturated geomaterials (rocks and soils) and engineered porous media (bricks and ceramics, concrete, fuel cells, heat pipes, and porous glass). Finally some emerging areas that offer promising opportunities for future research are discussed.
Shimizu, Youské; Shimizu, Takashi; Nara, Masayuki; Kikumoto, Mahito; Kojima, Hiroaki; Morii, Hisayuki
2013-04-01
Members of the kinesin-13 sub-family, including KIF2C, depolymerize microtubules. The positive charge-rich 'neck' region extending from the N-terminus of the catalytic head is considered to be important in the depolymerization activity. Chemically synthesized peptides, covering the basic region (A182-E200), induced a sigmoidal increase in the turbidity of a microtubule suspension. The increase was suppressed by salt addition or by reduction of basicity by amino acid substitutions. Electron microscopic observations revealed ring structures surrounding the microtubules at high peptide concentrations. Using the peptide A182-D218, we also detected free thin straight filaments, probably protofilaments disintegrated from microtubules. Therefore, the neck region, even without the catalytic head domain, may induce lateral disintegration of microtubules. With microtubules lacking anion-rich C-termini as a result of subtilisin treatment, addition of the peptide induced only a moderate increase in turbidity, and rings and protofilaments were rarely detected, while aggregations, also thought to be caused by lateral disintegration, were often observed in electron micrographs. Thus, the C-termini are not crucial for the action of the peptides in lateral disintegration but contribute to structural stabilization of the protofilaments. Previous structural studies indicated that the neck region of KIF2C is flexible, but our IR analysis suggests that the cation-rich region (K190-A204) forms β-structure in the presence of microtubules, which may be of significance with regard to the action of the neck region. Therefore, the neck region of KIF2C is sufficient to cause disintegration of microtubules into protofilaments, and this may contribute to the ability of KIF2C to cause depolymerization of microtubules. © 2013 The Authors Journal compilation © 2013 FEBS.
NASA Astrophysics Data System (ADS)
Byrnes, J. S.; Bezada, M.
2017-12-01
Melt can be retained in the mantle at triple junctions between grain boundaries, be spread in thin films along two-grain boundaries, or be organized by shear into elongate melt-rich bands. Which of these geometries is most prevalent is unknown. This ambiguity makes the interpretation of anomalous seismic velocities and quality factors difficult, since different geometries would result in different mechanical effects. Here, we compare observations of seismic attenuation beneath the Salton Trough and the Snake River Plain; two regions where the presence of melt has been inferred. The results suggest that seismic attenuation is diagnostic of melt geometry. We measure the relative attenuation of P waves from deep focus earthquakes using a time-domain method. Even though the two regions are underlain by comparably strong low-velocity anomalies, their attenuation signature is very different. The upper mantle beneath the Salton Trough is sufficiently attenuating that the presence of melt must lower Qp, while attenuation beneath the Snake River Plain is not anomalous with respect to surrounding regions. These seemingly contradictory results can be reconciled if different melt geometries characterize each region. SKS splitting from the Salton Trough suggests that melt is organized into melt-rich bands, while this is not the case for the Snake River Plain. We infer that beneath the Snake River Plain melt is retained at triple junctions between grain boundaries, a geometry that is not predicted to cause seismic attenuation. More elongate geometries beneath the Salton Trough may cause seismic attenuation via the melt-squirt mechanism. In light of these results, we conclude that prior observations of low seismic velocities with somewhat high quality factors beneath the East Pacific Rise and Southern California suggest that melt does not organize into elongate bands across much of the asthenosphere.
Harford, Terri J.; Linfield, Debra T.; Altawallbeh, Ghaith; Midura, Ronald J.; Ivanov, Andrei I.; Piedimonte, Giovanni
2017-01-01
Airway epithelium forms a barrier to the outside world and has a crucial role in susceptibility to viral infections. Cyclic adenosine monophosphate (cAMP) is an important second messenger acting via two intracellular signaling molecules: protein kinase A (PKA) and the guanidine nucleotide exchange factor, Epac. We sought to investigate effects of increased cAMP level on the disruption of model airway epithelial barrier caused by RSV infection and the molecular mechanisms underlying cAMP actions. Human bronchial epithelial cells were infected with RSV-A2 and treated with either cAMP releasing agent, forskolin, or cAMP analogs. Structure and functions of the Apical Junctional Complex (AJC) were evaluated by measuring transepithelial electrical resistance and permeability to FITC-dextran, and determining localization of AJC proteins by confocal microscopy. Increased intracellular cAMP level significantly attenuated RSV-induced disassembly of AJC. These barrier-protective effects of cAMP were due to the activation of PKA signaling and did not involve Epac activity. Increased cAMP level reduced RSV-induced reorganization of the actin cytoskeleton, including apical accumulation of an essential actin-binding protein, cortactin, and inhibited expression of the RSV F protein. These barrier-protective and antiviral-function of cAMP signaling were evident even when cAMP level was increased after the onset of RSV infection. Taken together, our study demonstrates that cAMP/PKA signaling attenuated RSV-induced disruption of structure and functions of the model airway epithelial barrier by mechanisms involving the stabilization of epithelial junctions and inhibition of viral biogenesis. Improving our understanding of the mechanisms involved in RSV-induced epithelial dysfunction and viral pathogenesis will help to develop novel anti-viral therapeutic approaches. PMID:28759570
Niknezhad, Zhila; Hassani, Leila; Norouzi, Davood
2016-01-01
c-MYC DNA is an attractive target for drug design, especially for cancer chemotherapy. Around 90% of c-MYC transcription is controlled by NHE III1, whose 27-nt purine-rich strand has the ability to form G-quadruplex structure. In this investigation, interaction of ActD with 27-nt G-rich strand (G/c-MYC) and its equimolar mixture with the complementary sequence, (GC/c-MYC) as well as related C-rich oligonucleotide (C/c-MYC) was evaluated. Molecular dynamic simulations showed that phenoxazine and lactone rings of ActD come close to the outer G-tetrad nucleotides indicating that ActD binds through end-stacking to the quadruplex DNA. RMSD and RMSF revealed that fluctuation of the quadruplex DNA increases upon interaction with the drug. The results of spectrophotometry and spectrofluorometry indicated that ActD most probably binds to the c-MYC quadruplex and duplex DNA via end-stacking and intercalation, respectively and polarity of ActD environment decreases due to the interaction. It was also found that binding of ActD to the GC-rich DNA is stronger than the two other forms of DNA. Circular dichroism results showed that the type of the three forms of DNA structures doesn't change, but their compactness alters due to their interaction with ActD. Finally, it can be concluded that ActD binds differently to double stranded DNA, quadruplex DNA and i-motif. Copyright © 2015 Elsevier B.V. All rights reserved.
Nuclear transition moment measurements of neutron rich nuclei
NASA Astrophysics Data System (ADS)
Starosta, Krzysztof
2009-10-01
The Recoil Distance Method (RDM) and related Doppler Shift Attenuation Method (DSAM) are well-established tools for lifetime measurements following nuclear reactions near the Coulomb barrier. Recently, the RDM was implemented at National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University using NSCL/K"oln plunger device and a unique combination of the state-of-the-art instruments available there. Doppler-shift lifetime measurements following Coulomb excitation, knock-out, and fragmentation at intermediate energies of ˜100 MeV/u hold the promise of providing lifetime information for excited states in a wide range of unstable nuclei. So far, the method was used to investigate the collectivity of the neutron-rich ^16,18,20C, ^62,64,66Fe, ^70,72Ni, ^110,114Pd isotopes and also of the neutron-deficient N=Z ^64Ge. A significant fraction of these experiments was performed using NSCL's Segmented Germanium Array instrumented with the Digital Data Acquisition System which enables gamma-ray tracking. The impact of GRETINA and gamma-ray tracking on RDM and DSAM studies of neutron-rich nuclei will be discussed.
Sanders, Barbara P.; de los Rios Oakes, Isabel; van Hoek, Vladimir; Bockstal, Viki; Kamphuis, Tobias; Uil, Taco G.; Song, Yutong; Cooper, Gillian; Crawt, Laura E.; Martín, Javier; Zahn, Roland; Lewis, John; Wimmer, Eckard; Custers, Jerome H. H. V.; Schuitemaker, Hanneke; Cello, Jeronimo; Edo-Matas, Diana
2016-01-01
The poliovirus vaccine field is moving towards novel vaccination strategies. Withdrawal of the Oral Poliovirus Vaccine and implementation of the conventional Inactivated Poliovirus Vaccine (cIPV) is imminent. Moreover, replacement of the virulent poliovirus strains currently used for cIPV with attenuated strains is preferred. We generated Cold-Adapted Viral Attenuation (CAVA) poliovirus strains by serial passage at low temperature and subsequent genetic engineering, which contain the capsid sequences of cIPV strains combined with a set of mutations identified during cold-adaptation. These viruses displayed a highly temperature sensitive phenotype with no signs of productive infection at 37°C as visualized by electron microscopy. Furthermore, decreases in infectious titers, viral RNA, and protein levels were measured during infection at 37°C, suggesting a block in the viral replication cycle at RNA replication, protein translation, or earlier. However, at 30°C, they could be propagated to high titers (9.4–9.9 Log10TCID50/ml) on the PER.C6 cell culture platform. We identified 14 mutations in the IRES and non-structural regions, which in combination induced the temperature sensitive phenotype, also when transferred to the genomes of other wild-type and attenuated polioviruses. The temperature sensitivity translated to complete absence of neurovirulence in CD155 transgenic mice. Attenuation was also confirmed after extended in vitro passage at small scale using conditions (MOI, cell density, temperature) anticipated for vaccine production. The inability of CAVA strains to replicate at 37°C makes reversion to a neurovirulent phenotype in vivo highly unlikely, therefore, these strains can be considered safe for the manufacture of IPV. The CAVA strains were immunogenic in the Wistar rat potency model for cIPV, inducing high neutralizing antibody titers in a dose-dependent manner in response to D-antigen doses used for cIPV. In combination with the highly productive PER.C6 cell culture platform, the stably attenuated CAVA strains may serve as an attractive low-cost and (bio)safe option for the production of a novel next generation IPV. PMID:27032093
Sanders, Barbara P; de Los Rios Oakes, Isabel; van Hoek, Vladimir; Bockstal, Viki; Kamphuis, Tobias; Uil, Taco G; Song, Yutong; Cooper, Gillian; Crawt, Laura E; Martín, Javier; Zahn, Roland; Lewis, John; Wimmer, Eckard; Custers, Jerome H H V; Schuitemaker, Hanneke; Cello, Jeronimo; Edo-Matas, Diana
2016-03-01
The poliovirus vaccine field is moving towards novel vaccination strategies. Withdrawal of the Oral Poliovirus Vaccine and implementation of the conventional Inactivated Poliovirus Vaccine (cIPV) is imminent. Moreover, replacement of the virulent poliovirus strains currently used for cIPV with attenuated strains is preferred. We generated Cold-Adapted Viral Attenuation (CAVA) poliovirus strains by serial passage at low temperature and subsequent genetic engineering, which contain the capsid sequences of cIPV strains combined with a set of mutations identified during cold-adaptation. These viruses displayed a highly temperature sensitive phenotype with no signs of productive infection at 37°C as visualized by electron microscopy. Furthermore, decreases in infectious titers, viral RNA, and protein levels were measured during infection at 37°C, suggesting a block in the viral replication cycle at RNA replication, protein translation, or earlier. However, at 30°C, they could be propagated to high titers (9.4-9.9 Log10TCID50/ml) on the PER.C6 cell culture platform. We identified 14 mutations in the IRES and non-structural regions, which in combination induced the temperature sensitive phenotype, also when transferred to the genomes of other wild-type and attenuated polioviruses. The temperature sensitivity translated to complete absence of neurovirulence in CD155 transgenic mice. Attenuation was also confirmed after extended in vitro passage at small scale using conditions (MOI, cell density, temperature) anticipated for vaccine production. The inability of CAVA strains to replicate at 37°C makes reversion to a neurovirulent phenotype in vivo highly unlikely, therefore, these strains can be considered safe for the manufacture of IPV. The CAVA strains were immunogenic in the Wistar rat potency model for cIPV, inducing high neutralizing antibody titers in a dose-dependent manner in response to D-antigen doses used for cIPV. In combination with the highly productive PER.C6 cell culture platform, the stably attenuated CAVA strains may serve as an attractive low-cost and (bio)safe option for the production of a novel next generation IPV.
Geetha, Rajagopalan; Sathiya Priya, Chandrasekaran; Anuradha, Carani Venkatraman
2017-12-25
Mitochondrial oxidative stress plays a major role in the pathogenesis of myocardial apoptosis in metabolic syndrome (MS) patients. In this study, we investigated the effect of troxerutin (TX), an antioxidant on mitochondrial oxidative stress and apoptotic markers in heart of mice fed fat and fructose-rich diet. Adult male Mus musculus mice were fed either control diet or high fat, high fructose diet (HFFD) for 60 days to induce MS. Mice from each dietary group were divided into two on the 16th day and were either treated or untreated with TX (150 mg/kg bw, p.o) for the next 45 days. At the end of the study, mitochondrial reactive oxygen species (ROS) generation, oxidative stress markers, levels of intracellular calcium, cardiolipin content, cytochrome c release and apoptotic markers were examined in the myocardium. HFFD-feeding resulted in diminution of antioxidants and increased ROS production, lipid peroxidation and oxidatively modified adducts of 8-OHG, 4-HNE and 3-NT. Further increase in Ca 2+ levels, low levels of calcium transporters and decrease in cardiolipin content were noted. Changes in the mitochondrial structure were observed by electron microscopy. Furthermore, cytochrome c release, increase in proapoptotic proteins (APAF-1, BAX, caspases-9 and-3) and decrease in antiapoptotic protein (BCL-2) in HFFD-fed mice suggest myocardial apoptosis. These changes were significantly restored by TX supplementation. TX administration effectively attenuated cardiac apoptosis and exerted a protective role by increasing antioxidant potential and by improving mitochondrial function. Thus, TX could be a promising therapeutic candidate for treating cardiac disease in MS patients. Copyright © 2017 Elsevier B.V. All rights reserved.
Siles, José A; Margesin, Rosa
2018-05-01
The study of microbial communities involved in soil bioremediation is important to identify the specific microbial characteristics that determine improved decontamination rates. Here, we characterized bacterial, archaeal, and fungal communities in terms of (i) abundance (using quantitative PCR) and (ii) taxonomic diversity and structure (using Illumina amplicon sequencing) during the bioremediation of long-term hydrocarbon-contaminated soil from an Alpine former military site during 15 weeks comparing biostimulation (inorganic NPK fertilization) vs. natural attenuation and considering the effect of temperature (10 vs. 20 °C). Although a considerable amount of total petroleum hydrocarbon (TPH) loss could be attributed to natural attenuation, significantly higher TPH removal rates were obtained with NPK fertilization and at increased temperature, which were related to the stimulation of the activities of indigenous soil microorganisms. Changing structures of bacterial and fungal communities significantly explained shifts in TPH contents in both natural attenuation and biostimulation treatments at 10 and 20 °C. However, archaeal communities, in general, and changing abundances and diversities in bacterial and fungal communities did not play a decisive role on the effectiveness of soil bioremediation. Gammaproteobacteria and Bacteroidia classes, within bacterial community, and undescribed/novel groups, within fungal community, proved to be actively involved in TPH removal in natural attenuation and biostimulation at both temperatures.
Color Richness in Cephalopod Chromatophores Originating from High Refractive Index Biomolecules.
Dinneen, Sean R; Osgood, Richard M; Greenslade, Margaret E; Deravi, Leila F
2017-01-05
Cephalopods are arguably one of the most photonically sophisticated marine animals, as they can rapidly adapt their dermal color and texture to their surroundings using both structural and pigmentary coloration. Their chromatophore organs facilitate this process, but the molecular mechanism potentiating color change is not well understood. We hypothesize that the pigments, which are localized within nanostructured granules in the chromatophore, enhance the scattering of light within the dermal tissue. To test this, we extracted the phenoxazone-based pigments from the chromatophore and extrapolated their complex refractive index (RI) from experimentally determined real and approximated imaginary portions of the RI. Mie theory was used to calculate the absorbance and scattering cross sections (cm 2 /particle) across a broad diameter range at λ = 589 nm. We observed that the pigments were more likely to scatter attenuated light than absorb it and that these characteristics may contribute to the color richness of cephalopods.
NASA Astrophysics Data System (ADS)
Rastsvetaeva, R. K.; Rozenberg, K. A.; Chukanov, N. V.; Möckel, S.
2009-07-01
The iron-rich variety of zanazziite Ca2[Mg0.65Fe0.35□1.0][Mg1.90Fe1.25Al0.5Mn0.35]Σ4Be4(PO4)6(OH)4(H2O,OH)2 · 4H2O, which is a heteropolyhedral framework roscherite-group beryllophos-phate from the Sapucaia pegmatite (Minas Gerais, Brazil), was studied by X-ray diffraction. The refinement was carried out in the triclinic and monoclinic systems. It was found that the cation distribution on octahedral sites in the crystal structure is in better agreement with the monoclinic symmetry ( a = 15.876 Å, b = 11.860 Å, c = 6.607 Å, β = 95.49°, sp. gr. C2/ c). In the sample under study, no ordering of Mg or Fe atoms in octahedral sites is observed in sp. gr. P bar 1 , unlike the more iron-rich member of the roscherite group (atencioite).
NASA Astrophysics Data System (ADS)
Mugford, Ian; Street-Perrot, Alayne; Santín, Cristina; Denman, Huw
2014-05-01
Anthropogenic charcoal deposits, characterised by thick charcoal-rich soil horizons, offer an invaluable Late Quaternary record of pyrogenic carbon (PyC) additions to soils. A traditional source of archaeological, anthracological and palaeoecological data, the potential contribution of anthropogenic charcoal deposits to soil science and assessment of carbon (C) sequestration is often overlooked. If addition of biochar to soils is to form a key component of a low-C economy, crucial questions must be addressed relating to its longevity and behaviour in the soil environment. With rare exceptions, previous studies have focussed on short-term incubation experiments and field or pot trials, often neglecting important natural soil and environmental processes. This study addresses these issues by comparing the physicochemical properties of European anthropogenic charcoal-rich deposits, with 14C ages ranging from > 43 ka to Modern, to native soils (nearby control sites). We will present results from a study of 23 charcoal-rich soil cores, collected from a 'Pre-historic' ditch mound, a Bronze Age burnt mound, a Roman furnace, and post-mediaeval and Modern Meilers, situated along a climatic gradient from Mediterranean (Southern Italy) to Humid Temperate (South Wales). The ability of charcoal to alter fertility and retain plant-available nutrients was assessed by measuring soil cation- exchange capacity. Retention of refractory C by the charcoal deposits was evaluated from their total organic C (TOC) contents, atomic H:C and O:C ratios, and residues after acid- dichromate oxidation. Picked charcoal fragments were also compared with modern biochars and biomass using: 1) their thermogravimetric recalcitrance (R50) indices (Harvey et al. 2012); and 2) attenuated total reflectance (ATR) FT-IR data, to gauge the development of functional groups linked to the long-term oxidation of the particle surfaces. Radiocarbon dating was used to assess the ages of the deposits. Our study attests to the considerable potential of anthropogenic charcoal deposits as a tool to predict the fate, functioning and C-sequestration potential of PyC in soils on long (102 - 103yr) time scales, which are inaccessible to field and laboratory experiments. Centuries to millennia after charcoal addition, these charcoal-rich soils have undergone limited environmental degradation and still display significant recalcitrance and C-sequestration potential.
DOT National Transportation Integrated Search
2011-06-01
Damage to structures due to vibrations from pile driving operations is of great concern to engineers. This : research has stemmed from the need to address potential damage to concrete-filled pipe piles and recently : placed concrete structures that c...
The Effect of Fe-Ti-rich Cumulate Overturn on Evolution of the Lunar Interior
NASA Astrophysics Data System (ADS)
Mallik, A.; Ejaz, T.; Shcheka, S.; Garapic, G.; Petitgirard, S.; Blanchard, I.
2017-12-01
The last 5% of magma ocean crystallized Fe-Ti rich cumulates (FTC) emplaced below the anorthitic crust [1]. Due to gravitational instability, FTC underwent diapiric downwelling [2], associated with overturn of the lunar mantle. Petrological studies on Apollo basalts with variable TiO2 place their sources between 1.5-3 GPa. This indicates the presence of heterogeneous Ti-rich domains in the lunar interior which could either be produced by inefficient overturn and mixing [3], or due to post-overturn upwelling of FTC from the core-mantle boundary (CMB) [4]. Also, a seismically attenuating layer at the CMB ( 4.5 GPa) maybe associated with partial melt of overturned FTC [5]. Thus, it is important to investigate the phase equilibria of FTC with and without assimilation with the surrounding mantle, to understand better the effect of the overturn process on lunar evolution. We performed phase equilibria experiments at 2 and 4.5 GPa, 1230 to 1700 °C using a multi-anvil apparatus on FTC and a 1:1 mixture of FTC and mantle composition. FTC produced Fe-Ti rich (FeO 13-26 wt.%, TiO2 11-18 wt.%), Mg-poor (MgO 6-10 wt.%) basalts with residues of clinopyroxene+quartz+Fe-metal±spinel, while the mixture of FTC and mantle produced Fe-Ti-Mg rich (FeO 10-13 wt.%, TiO2 5-11 wt.% and MgO 20-30 wt.%) basalts with residues of orthopyroxene+olivine+Fe-metal±spinel±garnet. We find that partial melting of overturned cumulates within the lunar mantle can reproduce certain chemical attributes of Apollo high Ti basalts. Also, to test whether the partial melt of overturned cumulates can be stable at the CMB to produce the attenuating layer, we estimated the densities of these melt compositions using the published range of KT and K' of high Fe-Ti picrites. We find that the densities obtained from the published spread in K' and KT values yield inconclusive results about the stability of these partial melts at the CMB. This is being resolved by in-situ experimental determination of the densities of the high Fe-Ti melt compositions, currently underway. If these partial melts are indeed stable at the CMB, they bracket the present-day CMB temperature between 1300-1490 °C (5 to 30% partial melting [5]).[1] Snyder et al. (1992), GCA [2] Hess & Permentier (1995), EPSL [3] Brown & Grove (2015), GCA [4] Zhong et al. (2000), EPSL [5] Weber et al. (2011), Science
NASA Astrophysics Data System (ADS)
Oravova, Lucie; Zhang, Zhiying; Church, Nathan; Harrison, Richard J.; Howard, Christopher J.; Carpenter, Michael A.
2013-03-01
Hematite, Fe2O3, provides in principle a model system for multiferroic (ferromagnetic/ferroelastic) behavior at low levels of strain coupling. The elastic and anelastic behavior associated with magnetic phase transitions in a natural polycrystalline sample have therefore been studied by resonant ultrasound spectroscopy (RUS) in the temperature range from 11 to 1072 K. Small changes in softening and attenuation are interpreted in terms of weak but significant coupling of symmetry-breaking and non-symmetry-breaking strains with magnetic order parameters in the structural sequence R\\overline{3}c{1}^{\\prime}\\rightarrow C 2/c\\rightarrow R\\overline{3}c. The R\\overline{3}c{1}^{\\prime}\\rightarrow C 2/c transition at TN = 946 ± 1 K is an example of a multiferroic transition which has both ferromagnetic (from canting of antiferromagnetically ordered spin moments) and ferroelastic (rhombohedral → monoclinic) character. By analogy with the improper ferroelastic transition in Pb3(PO4)2, W and W‧ ferroelastic twin walls which are also 60° and 120° magnetic domain walls should develop. These have been tentatively identified from microstructures reported in the literature. The very low attenuation in the stability field of the C2/c structure in the polycrystalline sample used in the present study, in comparison with the strong acoustic dissipation reported for single crystal samples, implies, however, that the individual grains each consist of a single ferroelastic domain or that the twin walls are strongly pinned by grain boundaries. This absence of attenuation allows an intrinsic loss mechanism associated with the transition point to be seen and interpreted in terms of local coupling of shear strains with fluctuations which have relaxation times in the vicinity of ˜10-8 s. The first order C 2/c\\rightarrow R\\overline{3}c (Morin) transition occurs through a temperature interval of coexisting phases but the absence of an acoustic loss peak suggests that the relaxation time for interface motion is short in comparison with the time scale of the applied stress (at ˜0.1-1 MHz). Below the Morin transition a pattern of attenuation which resembles that seen below ferroelastic transitions has been found, even though the ideal low temperature structure cannot contain ferroelastic twins. This loss behavior is tentatively ascribed to the presence of local ferromagnetically ordered defect regions which are coupled locally to shear strains.
Immersing lungs in hydrogen-rich saline attenuates lung ischaemia-reperfusion injury.
Takahashi, Mamoru; Chen-Yoshikawa, Toyofumi F; Saito, Masao; Tanaka, Satona; Miyamoto, Ei; Ohata, Keiji; Kondo, Takeshi; Motoyama, Hideki; Hijiya, Kyoko; Aoyama, Akihiro; Date, Hiroshi
2017-03-01
Anti-oxidant effects of hydrogen have been reported in studies examining ischaemia-reperfusion injury (IRI). In this study, we evaluated the therapeutic efficacy of immersing lungs in hydrogen-rich saline on lung IRI. Lewis rats were divided into three groups: (i) sham, (ii) normal saline and (iii) hydrogen-rich saline. In the first experiment, the left thoracic cavity was filled with either normal saline or hydrogen-rich saline for 1 h. Then, we measured the hydrogen concentration in the left lung using a sensor gas chromatograph ( N = 3 per group). In the second experiment, lung IRI was induced by occlusion of the left pulmonary hilum for 1 h, followed by reperfusion for 3 h. During the ischaemic period, the left thoracic cavity was filled with either normal saline or hydrogen-rich saline. After reperfusion, we assessed lung function, histological changes and cytokine production ( N = 5-7 per group). Immersing lungs in hydrogen-rich saline resulted in an elevated hydrogen concentration in the lung (6.9 ± 2.9 μmol/1 g lung). After IRI, pulmonary function (pulmonary compliance and oxygenation levels) was significantly higher in the hydrogen-rich saline group than in the normal saline group ( P < 0.05). Similarly, pro-inflammatory cytokine levels (interleukin-1β and interleukin-6) in the left lung were significantly lower in the hydrogen-rich saline group than in the normal saline group ( P < 0.05). Immersing lungs in hydrogen-rich saline delivered hydrogen into the lung and consequently attenuated lung IRI. Hydrogen-rich solution appears to be a promising approach to managing lung IRI. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Mahmoud, Ayman M; Abd El-Twab, Sanaa M; Abdel-Reheim, Eman S
2017-06-01
Beneficial effects of white mulberry against diabetes mellitus have been reported. However, the molecular mechanisms of how white mulberry can attenuate diabetic retinopathy remain poorly understood. Here, the mechanism underlying the protective effect of Morus alba leaves ethanolic extract on oxidative stress, inflammation, apoptosis, and angiogenesis in diabetic retinopathy was investigated. Diabetes was induced by injection of streptozotocin. One week after, M. alba (100 mg/kg) was administrated to the rats daily for 16 weeks. Morus alba extract showed high content of polyphenolics and free radical scavenging activity. Oral M. alba administration significantly attenuated hyperglycemia and weight loss, and decreased sorbitol, fructose, protein kinase C, pro-inflammatory cytokines, and oxidative stress markers in retinas of the diabetic rats. Moreover, M. alba produced marked down-regulation of caspase-3 and Bax, with concomitant up-regulation of Bcl-2 in the diabetic retinas. M. alba also reduced the expression of VEGF in the retina. These results indicate that M. alba has protective effect on diabetic retinopathy with possible mechanisms of inhibiting hyperglycemia-induced oxidative stress, apoptosis, inflammation, polyol pathway activation, and VEGF expression in the retina.
Engel, Ulrike; Ozbek, Suat; Streitwolf-Engel, Ruth; Petri, Barbara; Lottspeich, Friedrich; Holstein, Thomas W; Oezbek, Suat; Engel, Ruth
2002-10-15
The novel protein Nowa was identified in nematocysts, explosive organelles of Hydra, jellyfish, corals and other CNIDARIA: Biogenesis of these organelles is complex and involves assembly of proteins inside a post-Golgi vesicle to form a double-layered capsule with a long tubule. Nowa is the major component of the outer wall, which is formed very early in morphogenesis. The high molecular weight glycoprotein has a modular structure with an N-terminal sperm coating glycoprotein domain, a central C-type lectin-like domain, and an eightfold repeated cysteine-rich domain at the C-terminus. Interestingly, the cysteine-rich domains are homologous to the cysteine-rich domains of minicollagens. We have previously shown that the cysteines of these minicollagen cysteine-rich domains undergo an isomerization process from intra- to intermolecular disulfide bonds, which mediates the crosslinking of minicollagens to networks in the inner wall of the capsule. The minicollagen cysteine-rich domains present in both proteins provide a potential link between Nowa in the outer wall and minicollagens in the inner wall. We propose a model for nematocyst formation that integrates cytoskeleton rearrangements around the post-Golgi vesicle and protein assembly inside the vesicle to generate a complex structure that is stabilized by intermolecular disulfide bonds.
Knaryan, Varduhi H; Samantaray, Supriti; Varghese, Merina; Srinivasan, Ambika; Galoyan, Armen A; Mohanakumar, Kochupurackal P
2006-08-01
Proline-rich-polypeptides (PRPs) isolated from bovine hypothalamus have been shown to render protection against neuronal injury of the brain and spinal cord. We examined two PRPs containing 15 and 10 amino acid residues (PRP-1 and PRP-4 synthetic polypeptide) for their effect, if any, on dopaminergic neuronal damage caused by the parkinsonian neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Effects of these PRPs on hydroxyl radical ((*)OH) generation in a Fenton-like reaction as well as from isolated mitochondria were monitored, employing a sensitive salicylate hydroxylation procedure. Balb/c mice treated (i.p., twice, 16 h apart) with MPTP (30 mg/kg) or PRP-1 (1.6 mg/kg), but not PRP-4 (1.6 mg/kg) showed significant loss of striatal dopamine and norepinephrine as assayed by an HPLC-electrochemical procedure. Pretreatment with the PRPs, 30 min prior to the neurotoxin administration failed to attenuate MPTP-induced striatal dopamine or norepinephrine depletion, but significantly attenuated the MPTP-induced decrease in dopamine turnover. A significant increase in the generation of (*)OH by the PRPs in a Fenton-like reaction or from isolated mitochondria suggests their pro-oxidant action, and explains their failure to protect against MPTP-induced parkinsonism in mice.
Driban, Jeffrey B.; Barr, Ann E.; Amin, Mamta; Sitler, Michael R.; Barbe, Mary F.
2011-01-01
We used our voluntary rat model of reaching and grasping to study the effect of performing a high-repetition and high-force (HRHF) task for 12 weeks on wrist joints. We also studied the effectiveness of ibuprofen, administered in the last 8 weeks, in attenuating HRHF-induced changes in these joints. With HRHF task performance, ED1+ and COX2+ cells were present in subchondral radius, carpal bones and synovium; IL-1alpha and TNF-alpha increased in distal radius/ulna/carpal bones; chondrocytes stained with Terminal deoxynucleotidyl Transferase- (TDT-) mediated dUTP-biotin nick end-labeling (TUNEL) increased in wrist articular cartilages; superficial structural changes (e.g., pannus) and reduced proteoglycan staining were observed in wrist articular cartilages. These changes were not present in normal controls or ibuprofen treated rats, although IL-1alpha was increased in reach limbs of trained controls. HRHF-induced increases in serum C1,2C (a biomarker of collagen I and II degradation), and the ratio of collagen degradation to synthesis (C1,2C/CPII; the latter a biomarker of collage type II synthesis) were also attenuated by ibuprofen. Thus, ibuprofen treatment was effective in attenuating HRHF-induced inflammation and early articular cartilage degeneration. PMID:21403884
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadoh, Taizoh, E-mail: sadoh@ed.kyushu-u.ac.jp; Chikita, Hironori; Miyao, Masanobu
2015-09-07
Ultra-low temperature (≤300 °C) growth of Ge-rich SiGe on Si substrates is strongly desired to realize advanced electronic and optical devices, which can be merged onto Si large-scale integrated circuits (LSI). To achieve this, annealing characteristics of a-GeSn/c-Si structures are investigated under wide ranges of the initial Sn concentrations (0%–26%) and annealing conditions (300–1000 °C, 1 s–48 h). Epitaxial growth triggered by SiGe mixing is observed after annealing, where the annealing temperatures necessary for epitaxial growth significantly decrease with increasing initial Sn concentration and/or annealing time. As a result, Ge-rich (∼80%) SiGe layers with Sn concentrations of ∼2% are realized by ultra-low temperature annealingmore » (300 °C, 48 h) for a sample with the initial Sn concentration of 26%. The annealing temperature (300 °C) is in the solid-liquid coexisting temperature region of the phase diagram for Ge-Sn system. From detailed analysis of crystallization characteristics and composition profiles in grown layers, it is suggested that SiGe mixing is generated by a liquid-phase reaction even at ultra-low temperatures far below the melting temperature of a-GeSn. This ultra-low-temperature growth technique of Ge-rich SiGe on Si substrates is expected to be useful to realize next-generation LSI, where various multi-functional devices are integrated on Si substrates.« less
Structural insights into the stabilization of MALAT1 noncoding RNA by a bipartite triple helix
Brown, Jessica A.; Bulkley, David; Wang, Jimin; Valenstein, Max L.; Yario, Therese A.; Steitz, Thomas A.; Steitz, Joan A.
2014-01-01
Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a highly-abundant nuclear long noncoding RNA that promotes malignancy. A 3′-stem-loop structure is predicted to confer stability by engaging a downstream A-rich tract in a triple helix, similar to the expression and nuclear retention element (ENE) from the KSHV polyadenylated nuclear RNA. The 3.1-Å resolution crystal structure of the human MALAT1 ENE and A-rich tract reveals a bipartite triple helix containing stacks of five and four U•A-U triples separated by a C+•G-C triplet and C-G doublet, extended by two A-minor interactions. In vivo decay assays indicate that this blunt-ended triple helix, with the 3′ nucleotide in a U•A-U triple, inhibits rapid nuclear RNA decay. Interruption of the triple helix by the C-G doublet induces a “helical reset” that explains why triple-helical stacks longer than six do not occur in nature. PMID:24952594
The El Teniente porphyry Cu-Mo deposit from a hydrothermal rutile perspective
NASA Astrophysics Data System (ADS)
Rabbia, Osvaldo M.; Hernández, Laura B.; French, David H.; King, Robert W.; Ayers, John C.
2009-11-01
Mineralogical, textural, and chemical analyses (EPMA and PIXE) of hydrothermal rutile in the El Teniente porphyry Cu-Mo deposit help to better constrain ore formation processes. Rutile formed from igneous Ti-rich phases (sphene, biotite, Ti-magnetite, and ilmenite) by re-equilibration and/or breakdown under hydrothermal conditions at temperatures ranging between 400°C and 700°C. Most rutile nucleate and grow at the original textural position of its Ti-rich igneous parent mineral phase. The distribution of Mo content in rutile indicates that low-temperature (˜400-550°C), Mo-poor rutile (5.4 ± 1.1 ppm) is dominantly in the Mo-rich mafic wallrocks (high-grade ore), while high-temperature (˜550-700°C), Mo-rich rutile (186 ± 20 ppm) is found in the Mo-poor felsic porphyries (low-grade ore). Rutile from late dacite ring dikes is a notable exception to this distribution pattern. The Sb content in rutile from the high-temperature potassic core of the deposit to its low-temperature propylitic fringe remains relatively constant (35 ± 3 ppm). Temperature and Mo content of the hydrothermal fluids in addition to Mo/Ti ratio, modal abundance and stability of Ti-rich parental phases are key factors constraining Mo content and provenance in high-temperature (≥550°C) rutile. The initial Mo content of parent mineral phases is controlled by melt composition and oxygen fugacity as well as timing and efficiency of fluid-melt separation. Enhanced reduction of SO2-rich fluids and sulfide deposition in the Fe-rich mafic wallrocks influences the low-temperature (≤550°C) rutile chemistry. The data are consistent with a model of fluid circulation of hot (>550°C), oxidized (ƒO2 ≥ NNO + 1.3), SO2-rich and Mo-bearing fluids, likely exsolved from deeper crystallizing parts of the porphyry system and fluxed through the upper dacite porphyries and related structures, with metal deposition dominantly in the Fe-rich mafic wallrocks.
Enhanced Attenuation: Chlorinated Organics
2008-04-01
attenuation capacity of the aquifer downgradient from the source (e.g., permeable reactive barriers or phytoremediation ) Selection of EA remedies should be...ranging from very aggressive source destruction and removal methods to less energy-intensive methods, such as phytoremediation . In many cases, it...plumes that include chlorinated organics. The flux of organic-rich leachate to underlying aquifers can create favorable conditions for the natural
NASA Astrophysics Data System (ADS)
Saidi, Raja; Tlili, Ali; Jamoussi, Fakher
2016-12-01
The porcelanite rock of Ypresian phosphatic series of the Gafsa-Metlaoui basin (south-western Tunisia), is composed mainly of opal CT, and presents a variable percentage of carbonates and fibrous clays. This rock is treated with flux calcination at different temperatures in order to prepare a specific filter aid for cleaning melting sulfur which can be used for the production of sulfuric acid. This work presents the effect of heating on the mineralogy and grain size distribution of carbonate-rich porcelanite (Tm1) and clay-rich porcelanite (Gh) compared to flux calcined silica-rich porcelanite (CHM3) and diatomaceous filtration aids. The porcelanite samples used in this work come from three localities of the Gafsa-Metlaoui basin: Kef El Ghis (Gh), Tamarza (Tm1) and Mides (CHM3). Flux calcination at 1000 °C provokes a mineralogical transformation on carbonate-rich porcelanite samples. The opal CT transforms to opal C and becomes neater and more stable. The Thermal treatment of porcelanite (Tm1) incites also the apparition of new peaks of wollastonite. However, the structural change of opal CT to opal C by heat treatment is blocked for flux calcination of clay-rich porcelanite. The opal CT of fluxing clay-rich porcelanite becomes more ordered without significant change to opal C. The difference between fluxing carbonate-rich porcelanite (Tm1) and fluxing clay-rich porcelanite (Gh) appears also with granulometric distribution histogram of the tow heated samples. All raw samples have unimodal granulometric distribution (1-100 μm). After calcination with alkaline flux at 1000 °C fluxing carbonate-rich porcelanite displays bimodal granulometric distribution and a new mode appears systematically, between 0.1 μm and 1 μm. This occurs for fluxing silica-riche porcelanite and diatomaceous filtration aids as well and corresponds to the opal C formed after heat treatment. Whereas fluxing clay-rich porcelanite present trimodal granulometric distribution and a third mode appears (100-300 μm), which due to silica glass phase. Since, the granulometric rearrangement of porcelanite during thermal treatment may due to mineralogical transformation of opal CT to opal C and crystal grow.
Ivarsson, M; Lindblom, S; Broman, C; Holm, N G
2008-03-01
In this paper we describe carbon-rich filamentous structures observed in association with the zeolite mineral phillipsite from sub-seafloor samples drilled and collected during the Ocean Drilling Program (ODP) Leg 197 at the Emperor Seamounts. The filamentous structures are approximately 5 microm thick and approximately 100-200 microm in length. They are found attached to phillipsite surfaces in veins and entombed in vein-filling carbonates. The carbon content of the filaments ranges between approximately 10 wt% C and 55 wt% C. They further bind to propidium iodide (PI), which is a dye that binds to damaged cell membranes and remnants of DNA. Carbon-rich globular microstructures, 1-2 microm in diameter, are also found associated with the phillipsite surfaces as well as within wedge-shaped cavities in phillipsite assemblages. The globules have a carbon content that range between approximately 5 wt% C and 55 wt% C and they bind to PI. Ordinary globular iron oxides found throughout the samples differ in that they contain no carbon and do not bind to the dye PI. The carbon-rich globules are mostly concentrated to a film-like structure that is attached to the phillipsite surfaces. This film has a carbon content that ranges between approximately 25 wt% C and 75 wt% C and partially binds to PI. EDS analyses show that the carbon in all structures described are not associated with calcium and therefore not bound in carbonates. The carbon content and the binding to PI may indicate that the filamentous structures could represent fossilized filamentous microorganisms, the globules could represent fossilized microbial cells and the film-like structures could represent a microbially produced biofilm. Our results extend the knowledge of possible habitable niches for a deep biosphere in sub-seafloor environments and suggests, as phillipsite is one of the most common zeolite mineral in volcanic rocks of the oceanic crust, that it could be a common feature in the oceanic crust elsewhere.
Proteins in Load-Bearing Junctions: The Histidine-Rich Metal-Binding Protein of Mussel Byssus†,‡
Zhao, Hua; Waite, J. Herbert
2007-01-01
Building complex load-bearing scaffolds depends on effective ways of joining functionally different biomacromolecules. The junction between collagen fibers and foamlike adhesive plaques in mussel byssus is robust despite the strikingly dissimilar connected structures. mcfp-4, the matrix protein from this junction, and its presecreted form from the foot tissue of Mytilus californianus were isolated and characterized. mcfp-4 has a mass of ∼93 kDa as determined by MALDI-TOF mass spectrometry. Its composition is dominated by histidine (22 mol %), but levels of lysine, arginine, and aspartate are also significant. A small amount of 3,4-dihydroxyphenyl-L-alanine (2 mol %) can be detected by amino acid analysis and redox cycling assays. The cDNA-deduced sequence of mcfp-4 reveals multiple variants with highly repetitive internal structures, including ∼36 tandemly repeated His-rich decapeptides (e.g., HVHTHRVLHK) in the N-terminal half and 16 somewhat more degenerate aspartate-rich undecapeptides (e.g., DDHVNDIAQTA) in the C-terminal half. Incubation of a synthetic peptide based on the His-rich decapeptide with Fe3+, Co2+, Ni2+, Zn2+, and Cu2+ indicates that only Cu is strongly bound. MALDI-TOF mass spectrometry of the peptide modified with diethyl pyrocarbonate before and after Cu binding suggests that histidine residues dominate Cu binding. In contrast, the aspartate-rich undecapeptides preferentially bind Ca2+. mcfp-4 is strategically positioned to function as a macromolecular bifunctional linker by using metal ions to couple its own His-rich domains to the His-rich termini of the preCOLs. Ca2+ may mediate coupling of the C-terminus to other calcium-binding plaque proteins. PMID:17115717
Presciutti, Federica; Capitani, Donatella; Sgamellotti, Antonio; Brunetti, Brunetto Giovanni; Costantino, Ferdinando; Viel, Stéphane; Segre, Annalaura
2005-12-01
The aim of this study is to clarify the structure of an iron-rich clay and the structural changes involved in the firing process as a preliminary step to get information on ancient ceramic technology. To this purpose, illite-rich clay samples fired at different temperatures were characterized using a multitechnique approach, i.e., by electron paramagnetic resonance, scanning electron microscopy with electron dispersion X-ray spectrometry, X-ray powder diffraction, magic angle spinning and multiple quantum magic angle spinning NMR. During firing, four main reaction processes occur: dehydration, dehydroxylation, structural breakdown, and recrystallization. When the results are combined from all characterization methods, the following conclusions could be obtained. Interlayer H2O is located close to aluminum in octahedral sites and is driven off at temperatures lower than 600 degrees C. Between 600 and 700 degrees C dehydroxylation occurs whereas, between 800 and 900 degrees C, the aluminum in octahedral sites disappears, due to the breakdown of the illite structure, and all iron present is oxidized to Fe3+. In samples fired at 1000 and 1100 degrees C iron clustering was observed as well as large single crystals of iron with the occurrence of ferro- or ferrimagnetic effects. Below 900 degrees C the aluminum in octahedral sites presents a continuous distribution of chemical shift, suggesting the presence of slightly distorted sites. Finally, over the whole temperature range, the presence of at least two tetrahedral aluminum sites was revealed, characterized by different values of the quadrupolar coupling constant.
Matsuo, A Y; Val, A L
2002-03-01
The present study analyzes Na+ and K+ disturbances caused by low pH in two catfish species from the Amazon River. Corydoras adolfoi inhabits ion-poor, black-stained, low pH (3.5-4.0) waters, while C. schwartzi is native to ion-rich waters at circumneutral pH. Fish were exposed to pH 3.5 Ca2+-free, and Ca2+-enriched (approximately 500 micromol/l) water to determine the protective effects of calcium. Net Na+ and K+ fluxes were measured in the water collected from the fish experimental chambers. C. adolfoi was unable to control the Na+ efflux at low pH, exhibiting Na+ loss up to -594 +/- 84 nmol g(-1) h(-1) during the first hour. After 3 and 6 h, net Na+ flux increased by 7- and 23-fold, respectively. In C. schwartzi, at pH 3.5, the initial high Na+ loss (-1,063 +/- 73 nmol g(-1) h(-1)) was gradually attenuated. A K+ loss occurred in both species, but remained relatively constant throughout exposure. High [Ca2+] affected ion losses in both species. C. adolfoi had 70% loss attenuation, indicating incapacity to control Na+ efflux. In C. schwartzi, elevated [Ca2+] completely prevented the Na+ losses caused by exposure to low pH. Rather different patterns were seen for K+ fluxes, with C. adolfoi showing no K+ disruption when exposed to low pH/high [Ca2+]. Thus, C. adolfoi loses Na+ during acid exposure, but has the ability to control K+ loss, while C. schwartzi controls diffusive Na+ loss but exhibits a slightly higher K+ loss. Ion balance was influenced by [Ca2+] at low pH in C. schwartzi but not in C. adolfoi.
Panchal, Sunil K; Poudyal, Hemant; Arumugam, Thiruma V; Brown, Lindsay
2011-06-01
Metabolic syndrome (obesity, diabetes, and hypertension) increases hepatic and cardiovascular damage. This study investigated preventive or reversal responses to rutin in high-carbohydrate, high-fat diet-fed rats as a model of metabolic syndrome. Rats were divided into 6 groups: 2 groups were fed a corn starch-rich diet for 8 or 16 wk, 2 groups were fed a high-carbohydrate, high-fat diet for 8 or 16 wk, and 2 groups received rutin (1.6 g/kg diet) in either diet for the last 8 wk only of the 16-wk protocol. Metabolic changes and hepatic and cardiovascular structure and function were then evaluated in these rats. The corn starch-rich diet contained 68% carbohydrate (mainly cornstarch) and 0.7% fat, whereas the high-carbohydrate, high-fat diet contained 50% carbohydrate (mainly fructose) and 24% fat (mainly beef tallow) along with 25% fructose in drinking water (total 68% carbohydrate using mean food and water intakes). The high-carbohydrate, high-fat diet produced obesity, dyslipidemia, hypertension, impaired glucose tolerance, hepatic steatosis, infiltration of inflammatory cells in the liver and the heart, higher cardiac stiffness, endothelial dysfunction, and higher plasma markers of oxidative stress with lower expression of markers for oxidative stress and apoptosis in the liver. Rutin reversed or prevented metabolic changes such as abdominal fat pads and glucose tolerance, reversed or prevented changes in hepatic and cardiovascular structure and function, reversed oxidative stress and inflammation in the liver and heart, and normalized expression of liver markers. These results suggest a non-nutritive role for rutin to attenuate chronic changes in metabolic syndrome.
Rodriguez Lanzi, Cecilia; de Rosas, Inés; Perdicaro, Diahann J; Ponce, María Teresa; Martinez, Liliana; Miatello, Roberto M; Cavagnaro, Bruno; Vazquez Prieto, Marcela A
2016-12-01
We evaluated the effects of Syrah red wine treated with salicylic acid (RW SA) and its control red wine (RW) on metabolic parameters, systolic blood pressure and adipose tissue insulin signaling in high-fructose (F) fed rats. Grape treated with SA increased the anthocyanin (ANTs) levels in RW. F induced increased systolic blood pressure, dislipidemia and insulin resistance (HOMA:IR). F rats treated with RW significantly prevented these alterations while RW SA partially attenuated triglycerides levels and HOMA:IR without modifications in HDL cholesterol levels. F impaired the adipose tissue response to insulin. Supplementation with RW and RW SA partially attenuated these alterations. Rats supplemented with RW SA had lesser beneficial effects on metabolic alterations than control RW, while both RW and RW SA attenuated altered adipose response to insulin. More studies are necessary to deeply evaluate the effect on SA-induced RW rich in ANTs levels on metabolic alterations associated to MetS.
Lorah, M.M.; Dyer, L.J.; Burris, D.R.
2007-01-01
Anaerobic biodegradation was conducted in a forested wetland where a plume of trichloroethylene discharges from a sand aquifer through organic-rich wetland and stream-bottom sediments. The rapid response of the wetland hydrology to precipitation events altered groundwater flow and geochemistry during wet conditions in the spring compared to the drier conditions in the summer and fall. During dry conditions, partial reductive dechlorination of trichloroethylene to cis-1,2-dichloroethylene occurred in methanogenic wetland porewater. Influx of oxygenated recharge during wet conditions led to a change from methanogenic to iron-reducing conditions and a lack of 1,2-dichloroethylene production in the wet spring conditions. During these wet conditions, dilution was the primary attenuation mechanism evident for trichloroethylene in the wetland porewater. Trichloroethylene degradation was insignificant in anaerobic microcosms constructed with the shallow wetland sediment. Natural attenuation of chlorinated solvents by anaerobic biodegradation may not be efficient at all wetland sites, despite organic-rich characteristics of the sediment.
Dual-phase Cr-Ta alloys for structural applications
Liu, Chain T.; Brady, Michael P.; Zhu, Jiahong; Tortorelli, Peter F.
2001-01-01
Dual phase alloys of chromium containing 2 to 11 atomic percent tantalum with minor amounts of Mo, Cr, Ti, Y, La, Cr, Si and Ge are disclosed. These alloys contain two phases including Laves phase and Cr-rich solid solution in either eutectic structures or dispersed Laves phase particles in the Cr-rich solid solution matrix. The alloys have superior mechanical properties at high temperature and good oxidation resistance when heated to above 1000.degree. C. in air.
NASA Astrophysics Data System (ADS)
Yuan, Wu; Kut, Carmen; Liang, Wenxuan; Li, Xingde
2017-03-01
Cancer is known to alter the local optical properties of tissues. The detection of OCT-based optical attenuation provides a quantitative method to efficiently differentiate cancer from non-cancer tissues. In particular, the intraoperative use of quantitative OCT is able to provide a direct visual guidance in real time for accurate identification of cancer tissues, especially these without any obvious structural layers, such as brain cancer. However, current methods are suboptimal in providing high-speed and accurate OCT attenuation mapping for intraoperative brain cancer detection. In this paper, we report a novel frequency-domain (FD) algorithm to enable robust and fast characterization of optical attenuation as derived from OCT intensity images. The performance of this FD algorithm was compared with traditional fitting methods by analyzing datasets containing images from freshly resected human brain cancer and from a silica phantom acquired by a 1310 nm swept-source OCT (SS-OCT) system. With graphics processing unit (GPU)-based CUDA C/C++ implementation, this new attenuation mapping algorithm can offer robust and accurate quantitative interpretation of OCT images in real time during brain surgery.
To be or not to be Asymmetric? VLTI/MIDI and the Mass-loss Geometry of AGB Stars
NASA Astrophysics Data System (ADS)
Paladini, C.; Klotz, D.; Sacuto, S.; Lagadec, E.; Wittkowski, M.; Richichi, A.; Hron, J.; Jorissen, A.; Groenewegen, M. A. T.; Kerschbaum, F.; Verhoelst, T.; Rau, G.; Olofsson, H.; Zhao-Geisler, R.; Matter, A.
2017-06-01
The Mid-infrared Interferometric instrument (MIDI) at the Very Large Telescope Interferometer (VLTI) has been used to spatially resolve the dust-forming region of 14 asymptotic giant branch (AGB) stars with different chemistry (O-rich and C-rich) and variability types (Miras, semi-regular, and irregular variables). The main goal of the programme was to detect deviations from spherical symmetry in the dust-forming region of these stars. All the stars of the sample are well resolved with the VLTI, and five are asymmetric and O-rich. This finding contrasts with observations in the near-infrared, where the C-rich objects are found to be more asymmetric than the O-rich ones. The nature of the asymmetric structures so far detected (dusty discs versus blobs)remains uncertain and will require imaging on milli-arcsecond scales.
Attenuation and scattering tomography of the deep plumbing system of Mount St. Helens
De Siena, Luca; Thomas, Christine; Waite, Greg P.; Moran, Seth C.; Klemme, Stefan
2014-01-01
We present a combined 3-D P wave attenuation, 2-D S coda attenuation, and 3-D S coda scattering tomography model of fluid pathways, feeding systems, and sediments below Mount St. Helens (MSH) volcano between depths of 0 and 18 km. High-scattering and high-attenuation shallow anomalies are indicative of magma and fluid-rich zones within and below the volcanic edifice down to 6 km depth, where a high-scattering body outlines the top of deeper aseismic velocity anomalies. Both the volcanic edifice and these structures induce a combination of strong scattering and attenuation on any seismic wavefield, particularly those recorded on the northern and eastern flanks of the volcanic cone. North of the cone between depths of 0 and 10 km, a low-velocity, high-scattering, and high-attenuation north-south trending trough is attributed to thick piles of Tertiary marine sediments within the St. Helens Seismic Zone. A laterally extended 3-D scattering contrast at depths of 10 to 14 km is related to the boundary between upper and lower crust and caused in our interpretation by the large-scale interaction of the Siletz terrane with the Cascade arc crust. This contrast presents a low-scattering, 4–6 km2 “hole” under the northeastern flank of the volcano. We infer that this section represents the main path of magma ascent from depths greater than 6 km at MSH, with a small north-east shift in the lower plumbing system of the volcano. We conclude that combinations of different nonstandard tomographic methods, leading toward full-waveform tomography, represent the future of seismic volcano imaging.
Cranberry extract attenuates hepatic inflammation in high fat-fed obese mice
Glisan, Shannon L.; Ryan, Caroline; Neilson, Andrew P.; Lambert, Joshua D.
2016-01-01
Cranberry (Vaccinium macrocarpon) consumption has been associated with health beneficial effects. Non-alcoholic fatty liver disease (NAFLD) is a co-morbidity of obesity. In the present study, we investigated the effect of a polyphenol-rich cranberry extract (CBE) on hepatic inflammation in high fat-fed obese C57BL/6J mice. Following dietary treatment with 0.8% CBE for 10 weeks, we observed no change in body weight or visceral fat mass in CBE supplemented mice compared to high fat-fed control mice. We did observe a significant decrease in plasma alanine aminotransferase (31%) and histological severity of NAFLD (33% decrease in area of involvement, 29% decrease in lipid droplet size) compared to high fat-fed controls. Hepatic protein levels of tumor necrosis factor alpha and C-C chemokine ligand 2 were reduced by 28% and 19%, respectively, following CBE supplementation. CBE significantly decreased hepatic mRNA levels of toll-like receptor 4 (TLR4, 63%) and nuclear factorκ B (NFκB, 24%), as well as a number of genes related to the nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 inflammasome. In conclusion, CBE reduced NAFLD and hepatic inflammation in high fat-fed obese C57BL/6J mice. These effects appear to be related to mitigation of TLR4-NFκB related signaling, however further studies into the underlying mechanisms of these hepatoprotective effects are needed. PMID:27619543
Kolli, R Prakash; Seidman, David N
2014-12-01
The composition of co-precipitated and collocated NbC carbide precipitates, Fe3C iron carbide (cementite), and Cu-rich precipitates are studied experimentally by atom-probe tomography (APT). The Cu-rich precipitates located at a grain boundary (GB) are also studied. The APT results for the carbides are supplemented with computational thermodynamics predictions of composition at thermodynamic equilibrium. Two types of NbC carbide precipitates are distinguished based on their stoichiometric ratio and size. The Cu-rich precipitates at the periphery of the iron carbide and at the GB are larger than those distributed in the α-Fe (body-centered cubic) matrix, which is attributed to short-circuit diffusion of Cu along the GB. Manganese segregation is not observed at the heterophase interfaces of the Cu-rich precipitates that are located at the periphery of the iron carbide or at the GB, which is unlike those located at the edge of the NbC carbide precipitates or distributed in the α-Fe matrix. This suggests the presence of two populations of NiAl-type (B2 structure) phases at the heterophase interfaces in multicomponent Fe-Cu steels.
Membrane stiffening by STOML3 facilitates mechanosensation in sensory neurons
Qi, Yanmei; Andolfi, Laura; Frattini, Flavia; Mayer, Florian; Lazzarino, Marco; Hu, Jing
2015-01-01
Sensing force is crucial to maintain the viability of all living cells. Despite its fundamental importance, how force is sensed at the molecular level remains largely unknown. Here we show that stomatin-like protein-3 (STOML3) controls membrane mechanics by binding cholesterol and thus facilitates force transfer and tunes the sensitivity of mechano-gated channels, including Piezo channels. STOML3 is detected in cholesterol-rich lipid rafts. In mouse sensory neurons, depletion of cholesterol and deficiency of STOML3 similarly and interdependently attenuate mechanosensitivity while modulating membrane mechanics. In heterologous systems, intact STOML3 is required to maintain membrane mechanics to sensitize Piezo1 and Piezo2 channels. In C57BL/6N, but not STOML3−/− mice, tactile allodynia is attenuated by cholesterol depletion, suggesting that membrane stiffening by STOML3 is essential for mechanical sensitivity. Targeting the STOML3–cholesterol association might offer an alternative strategy for control of chronic pain. PMID:26443885
NASA Technical Reports Server (NTRS)
Loo, B. H.; Burns, D. H.; Lee, Y. G. L.; Emerson, M. T.
1991-01-01
Fourier transform infrared (FTIR) and Raman spectroscopic techniques were used to study the solution concentration gradient in succino nitrile-rich and water-rich homogeneous solutions. The spectroscopic data shows significant concentration dependency. Although FTIR-attenuated total reflectance could not yield surface spectra since the evanescent infrared wave penetrated deep into the bulk solution, it showed that water-rich clusters were decreased at higher temperatures. This result is consistent with the calorimetric results reported earlier.
Is torrefaction of polysaccharides-rich biomass equivalent to carbonization of lignin-rich biomass?
Bilgic, E; Yaman, S; Haykiri-Acma, H; Kucukbayrak, S
2016-01-01
Waste biomass species such as lignin-rich hazelnut shell (HS) and polysaccharides-rich sunflower seed shell (SSS) were subjected to torrefaction at 300°C and carbonization at 600°C under nitrogen. The structural variations in torrefied and carbonized biomasses were compared. Also, the burning characteristics under dry air and pure oxygen (oxy-combustion) conditions were investigated. It was concluded that the effects of carbonization on HS are almost comparable with the effects of torrefaction on SSS in terms of devolatilization and deoxygenation potentials and the increases in carbon content and the heating value. Consequently, it can be proposed that torrefaction does not provide efficient devolatilization from the lignin-rich biomass while it is relatively more efficient for polysaccharides-rich biomass. Heat-induced variations in biomass led to significant changes in the burning characteristics under both burning conditions. That is, low temperature reactivity of biomass reduced considerably and the burning shifted to higher temperatures with very high burning rates. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nonin, S; Phan, A T; Leroy, J L
1997-09-15
Repetitive cytosine-rich DNA sequences have been identified in telomeres and centromeres of eukaryotic chromosomes. These sequences play a role in maintaining chromosome stability during replication and may be involved in chromosome pairing during meiosis. The C-rich repeats can fold into an 'i-motif' structure, in which two parallel-stranded duplexes with hemiprotonated C.C+ pairs are intercalated. Previous NMR studies of naturally occurring repeats have produced poor NMR spectra. This led us to investigate oligonucleotides, based on natural sequences, to produce higher quality spectra and thus provide further information as to the structure and possible biological function of the i-motif. NMR spectroscopy has shown that d(5mCCTTTACC) forms an i-motif dimer of symmetry-related and intercalated folded strands. The high-definition structure is computed on the basis of the build-up rates of 29 intraresidue and 35 interresidue nuclear Overhauser effect (NOE) connectivities. The i-motif core includes intercalated interstrand C.C+ pairs stacked in the order 2*.8/1.7*/1*.7/2.8* (where one strand is distinguished by an asterisk and the numbers relate to the base positions within the repeat). The TTTA sequences form two loops which span the two wide grooves on opposite sides of the i-motif core; the i-motif core is extended at both ends by the stacking of A6 onto C2.C8+. The lifetimes of pairs C2.C8+ and 5mC1.C7+ are 1 ms and 1 s, respectively, at 15 degrees C. Anomalous exchange properties of the T3 imino proton indicate hydrogen bonding to A6 N7 via a water bridge. The d(5mCCTTTTCC) deoxyoligonucleotide, in which position 6 is occupied by a thymidine instead of an adenine, also forms a symmetric i-motif dimer. However, in this structure the two TTTT loops are located on the same side of the i-motif core and the C.C+ pairs are formed by equivalent cytidines stacked in the order 8*.8/1.1*/7*.7/2.2*. Oligodeoxynucleotides containing two C-rich repeats can fold and dimerize into an i-motif. The change of folding topology resulting from the substitution of a single nucleoside emphasizes the influence of the loop residues on the i-motif structure formed by two folded strands.
Monteiro, Gaby E R; Jansen van Vuren, Petrus; Wichgers Schreur, Paul J; Odendaal, Lieza; Clift, Sarah J; Kortekaas, Jeroen; Paweska, Janusz T
2018-04-02
The NSs protein encoded by the S segment of Rift Valley fever virus (RVFV) is the major virulence factor, counteracting the host innate antiviral defence. It contains five highly conserved cysteine residues at positions 39, 40, 149, 178 and 194, which are thought to stabilize the tertiary and quaternary structure of the protein. Here, we report significant differences between clinical, virological, histopathological and host gene responses in BALB/c mice infected with wild-type RVFV (wtRVFV) or a genetic mutant having a double cysteine-to-serine substitution at residues 39 and 40 of the NSs protein (RVFV-C39S/C40S). Mice infected with the wtRVFV developed a fatal acute disease; characterized by high levels of viral replication, severe hepatocellular necrosis, and massive up-regulation of transcription of genes encoding type I and -II interferons (IFN) as well as pro-apoptotic and pro-inflammatory cytokines. The RVFV-C39S/C40S mutant did not cause clinical disease and its attenuated virulence was consistent with virological, histopathological and host gene expression findings in BALB/c mice. Clinical signs in mice infected with viruses containing cysteine-to-serine substitutions at positions 178 or 194 were similar to those occurring in mice infected with the wtRVFV, while a mutant containing a substitution at position 149 caused mild, non-fatal disease in mice. As mutant RVFV-C39S/C40S showed an attenuated phenotype in mice, the molecular mechanisms behind this attenuation were further investigated. The results show that two mechanisms are responsible for the attenuation; (1) loss of the IFN antagonistic propriety characteristic of the wtRVFV NSs and (2) the inability of the attenuated mutant to degrade Proteine Kinase R (PKR). Copyright © 2018. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Minsun; Yoon, Sung-il; Wilson, Ian A.
2012-06-20
Mitochondrial NLRX1 is a member of the family of nucleotide-binding domain and leucine-rich-repeat-containing proteins (NLRs) that mediate host innate immunity as intracellular surveillance sensors against common molecular patterns of invading pathogens. NLRX1 functions in antiviral immunity, but the molecular mechanism of its ligand-induced activation is largely unknown. The crystal structure of the C-terminal fragment (residues 629975) of human NLRX1 (cNLRX1) at 2.65 {angstrom} resolution reveals that cNLRX1 consists of an N-terminal helical (LRRNT) domain, central leucine-rich repeat modules (LRRM), and a C-terminal three-helix bundle (LRRCT). cNLRX1 assembles into a compact hexameric architecture that is stabilized by intersubunit and interdomain interactionsmore » of LRRNT and LRRCT in the trimer and dimer components of the hexamer, respectively. Furthermore, we find that cNLRX1 interacts directly with RNA and supports a role for NLRX1 in recognition of intracellular viral RNA in antiviral immunity.« less
The interior structure of Ceres as revealed by surface topography
NASA Astrophysics Data System (ADS)
Fu, Roger R.; Ermakov, Anton I.; Marchi, Simone; Castillo-Rogez, Julie C.; Raymond, Carol A.; Hager, Bradford H.; Zuber, Maria T.; King, Scott D.; Bland, Michael T.; Cristina De Sanctis, Maria; Preusker, Frank; Park, Ryan S.; Russell, Christopher T.
2017-10-01
Ceres, the largest body in the asteroid belt (940 km diameter), provides a unique opportunity to study the interior structure of a volatile-rich dwarf planet. Variations in a planetary body's subsurface rheology and density affect the rate of topographic relaxation. Preferential attenuation of long wavelength topography (≥150 km) on Ceres suggests that the viscosity of its crust decreases with increasing depth. We present finite element (FE) geodynamical simulations of Ceres to identify the internal structures and compositions that best reproduce its topography as observed by the NASA Dawn mission. We infer that Ceres has a mechanically strong crust with maximum effective viscosity ∼1025 Pa s. Combined with density constraints, this rheology suggests a crustal composition of carbonates or phyllosilicates, water ice, and at least 30 volume percent (vol.%) low-density, high-strength phases most consistent with salt and/or clathrate hydrates. The inference of these crustal materials supports the past existence of a global ocean, consistent with the observed surface composition. Meanwhile, we infer that the uppermost ≥60 km of the silicate-rich mantle is mechanically weak with viscosity <1021 Pa s, suggesting the presence of liquid pore fluids in this region and a low temperature history that avoided igneous differentiation due to late accretion or efficient heat loss through hydrothermal processes.
The interior structure of Ceres as revealed by surface topography
Fu, Roger R.; Ermakov, Anton; Marchi, Simone; Castillo-Rogez, Julie C.; Raymond, Carol A.; Hager, Bradford; Zuber, Maria; King, Scott D.; Bland, Michael T.; De Sanctis, Maria Cristina; Preusker, Frank; Park, Ryan S.; Russell, Christopher T.
2017-01-01
Ceres, the largest body in the asteroid belt (940 km diameter), provides a unique opportunity to study the interior structure of a volatile-rich dwarf planet. Variations in a planetary body's subsurface rheology and density affect the rate of topographic relaxation. Preferential attenuation of long wavelength topography (≥150 km) on Ceres suggests that the viscosity of its crust decreases with increasing depth. We present finite element (FE) geodynamical simulations of Ceres to identify the internal structures and compositions that best reproduce its topography as observed by the NASA Dawn mission. We infer that Ceres has a mechanically strong crust with maximum effective viscosity ∼1025 Pa s. Combined with density constraints, this rheology suggests a crustal composition of carbonates or phyllosilicates, water ice, and at least 30 volume percent (vol.%) low-density, high-strength phases most consistent with salt and/or clathrate hydrates. The inference of these crustal materials supports the past existence of a global ocean, consistent with the observed surface composition. Meanwhile, we infer that the uppermost ≥60 km of the silicate-rich mantle is mechanically weak with viscosity <1021 Pa s, suggesting the presence of liquid pore fluids in this region and a low temperature history that avoided igneous differentiation due to late accretion or efficient heat loss through hydrothermal processes.
Chen, Wuxi; Wang, Haijun; Zhang, Ke; Gao, Feng; Chen, Shulin; Li, Demao
2016-08-01
This study aimed to evaluate the physicochemical properties and storage stability of microencapsulated DHA-rich oil spray dried with different wall materials: model 1 (modified starch, gum arabic, and maltodextrin), model 2 (soy protein isolate, gum arabic, and maltodextrin), and model 3 (casein, glucose, and lactose). The results indicated that model 3 exhibited the highest microencapsulation efficiency (98.66 %) and emulsion stability (>99 %), with a moisture content and mean particle size of 1.663 % and 14.173 μm, respectively. Differential scanning calorimetry analysis indicated that the Tm of DHA-rich oil microcapsules was high, suggesting that the entire structure of the microcapsules remained stable during thermal processing. A thermogravimetric analysis curve showed that the product lost 5 % of its weight at 172 °C and the wall material started to degrade at 236 °C. The peroxide value of microencapsulated DHA-rich oil remained at one ninth after accelerated oxidation at 45 °C for 8 weeks to that of the unencapsulated DHA-rich oil, thus revealing the promising oxidation stability of DHA-rich oil in microcapsules.
Cytochalasin E alters the cytoskeleton and decreases ENaC activity in Xenopus 2F3 cells.
Reifenberger, Matthew S; Yu, Ling; Bao, Hui-Fang; Duke, Billie Jeanne; Liu, Bing-Chen; Ma, He-Ping; Alli, Ahmed A; Eaton, Douglas C; Alli, Abdel A
2014-07-01
Numerous reports have linked cytoskeleton-associated proteins with the regulation of epithelial Na(+) channel (ENaC) activity. The purpose of the present study was to determine the effect of actin cytoskeleton disruption by cytochalasin E on ENaC activity in Xenopus 2F3 cells. Here, we show that cytochalasin E treatment for 60 min can disrupt the integrity of the actin cytoskeleton in cultured Xenopus 2F3 cells. We show using single channel patch-clamp experiments and measurements of short-circuit current that ENaC activity, but not its density, is altered by cytochalasin E-induced disruption of the cytoskeleton. In nontreated cells, 8 of 33 patches (24%) had no measurable ENaC activity, whereas in cytochalasin E-treated cells, 17 of 32 patches (53%) had no activity. Analysis of those patches that did contain ENaC activity showed channel open probability significantly decreased from 0.081 ± 0.01 in nontreated cells to 0.043 ± 0.01 in cells treated with cytochalasin E. Transepithelial current from mpkCCD cells treated with cytochalasin E, cytochalasin D, or latrunculin B for 60 min was decreased compared with vehicle-treated cells. The subcellular expression of fodrin changed significantly, and several protein elements of the cytoskeleton decreased at least twofold after 60 min of cytochalasin E treatment. Cytochalasin E treatment disrupted the association between ENaC and myristoylated alanine-rich C-kinase substrate. The results presented here suggest disruption of the actin cytoskeleton by different compounds can attenuate ENaC activity through a mechanism involving changes in the subcellular expression of fodrin, several elements of the cytoskeleton, and destabilization of the ENaC-myristoylated alanine-rich C-kinase substrate complex. Copyright © 2014 the American Physiological Society.
Cytochalasin E alters the cytoskeleton and decreases ENaC activity in Xenopus 2F3 cells
Reifenberger, Matthew S.; Yu, Ling; Bao, Hui-Fang; Duke, Billie Jeanne; Liu, Bing-Chen; Ma, He-Ping; Eaton, Douglas C.; Alli, Abdel A.
2014-01-01
Numerous reports have linked cytoskeleton-associated proteins with the regulation of epithelial Na+ channel (ENaC) activity. The purpose of the present study was to determine the effect of actin cytoskeleton disruption by cytochalasin E on ENaC activity in Xenopus 2F3 cells. Here, we show that cytochalasin E treatment for 60 min can disrupt the integrity of the actin cytoskeleton in cultured Xenopus 2F3 cells. We show using single channel patch-clamp experiments and measurements of short-circuit current that ENaC activity, but not its density, is altered by cytochalasin E-induced disruption of the cytoskeleton. In nontreated cells, 8 of 33 patches (24%) had no measurable ENaC activity, whereas in cytochalasin E-treated cells, 17 of 32 patches (53%) had no activity. Analysis of those patches that did contain ENaC activity showed channel open probability significantly decreased from 0.081 ± 0.01 in nontreated cells to 0.043 ± 0.01 in cells treated with cytochalasin E. Transepithelial current from mpkCCD cells treated with cytochalasin E, cytochalasin D, or latrunculin B for 60 min was decreased compared with vehicle-treated cells. The subcellular expression of fodrin changed significantly, and several protein elements of the cytoskeleton decreased at least twofold after 60 min of cytochalasin E treatment. Cytochalasin E treatment disrupted the association between ENaC and myristoylated alanine-rich C-kinase substrate. The results presented here suggest disruption of the actin cytoskeleton by different compounds can attenuate ENaC activity through a mechanism involving changes in the subcellular expression of fodrin, several elements of the cytoskeleton, and destabilization of the ENaC-myristoylated alanine-rich C-kinase substrate complex. PMID:24829507
NASA Astrophysics Data System (ADS)
Chen, Xing-Yuan; Lai, Guo-Xia; Gu, Di; Zhu, Wei-Ling; Lai, Tian-Shu; Zhao, Yu-Jun
2018-04-01
The XTiO3 (X = Mn, Fe, Co and Ni) materials with R3c structure could be grown under critical conditions based on first-principles calculations and thermodynamic stability analysis. FeTiO3 and MnTiO3 could be synthesized relatively easily under metal-rich and O-poor conditions, while NiTiO3 could be stable under Ni-rich, O-rich and Ti-poor conditions. The predicted R3c CoTiO3 under thermodynamic equilibrium conditions is suggested to be synthesized under Co-rich, O-rich and Ti-poor conditions, but the calculated phonon dispersion indicates R3c CoTiO3 becomes unstable under the dynamical conditions. The ferroelectric behavior in the XTiO3 (X = Mn, Fe, Co and Ni) system could be dominated by the Ti ion with d0 state and the strong hybridization between Ti and O, while the magnetic property is mainly caused by the contribution of 3d transition metal.
NASA Astrophysics Data System (ADS)
Rau, Gioia; Paladini, C.; Hron, J.; Aringer, B.; Eriksson, K.; Groenewegen, M. A. T.; Nowotny, W.
We compare in a systematic way spectrometric, photometric and mid-infrared (VLTI/MIDI) interferometric measurements with different types of model atmospheres. Self-consistent dynamic model atmospheres in particular were used to interpret in a consistent way the dynamic behavior of gas and dust. The results underline how the joint use of different kind of observations, as photometry, spectroscopy and interferometry, is essential to understand the atmospheres of pulsating C-rich AGB stars. The sample of C-rich stars discussed in this work provides crucial constraints for the atmospheric structure.
Kumaki, Yasuhiro; Nitta, Katsutoshi; Hikichi, Kunio; Matsumoto, Takeshi; Matsushima, Norio
2004-07-01
Plant glycine-rich RNA-binding proteins (GRRBPs) contain a glycine-rich region at the C-terminus whose structure is quite unknown. The C-terminal glycine-rich part is interposed with arginine and tyrosine (arginine/glycine/tyrosine (RGY)-rich domain). Comparative sequence analysis of forty-one GRRBPs revealed that the RGY-rich domain contains multiple repeats of Tyr-(Xaa)h-(Arg)k-(Xaa)l, where Xaa is mainly Gly, "k" is 1 or 2, and "h" and "l" range from 0 to 10. Two peptides, 1 (G1G2Y3G4G5G6R7R8D9G10) and 2 (G1G2R3R4D5G6G7Y8G9G10), corresponding to sections of the RGY-rich domain in Zea mays RAB15, were selected for CD and NMR experiments. The CD spectra indicate a unique, positive band near 228 nm in both peptides that has been ascribed to tyrosine residues in ordered structures. The pH titration by NMR revealed that a side chain-side chain interaction, presumably an H-Nepsilon...O=Cgamma hydrogen bonding interaction in the salt bridge, occurs between Arg (i) and Asp (i + 2). 1D GOESY experiments indicated the presence of NOE between the aromatic side chain proton and the arginine side chain proton in the two peptides suggesting strongly that the Arg (i) aromatic side chain interacts directly with the Tyr (i +/- 4 or i +/- 5) side chain.
Fat Quality Influences the Obesogenic Effect of High Fat Diets
Crescenzo, Raffaella; Bianco, Francesca; Mazzoli, Arianna; Giacco, Antonia; Cancelliere, Rosa; di Fabio, Giovanni; Zarrelli, Armando; Liverini, Giovanna; Iossa, Susanna
2015-01-01
High fat and/or carbohydrate intake are associated with an elevated risk for obesity and chronic diseases such as diabetes and cardiovascular diseases. The harmful effects of a high fat diet could be different, depending on dietary fat quality. In fact, high fat diets rich in unsaturated fatty acids are considered less deleterious for human health than those rich in saturated fat. In our previous studies, we have shown that rats fed a high fat diet developed obesity and exhibited a decrease in oxidative capacity and an increase in oxidative stress in liver mitochondria. To investigate whether polyunsaturated fats could attenuate the above deleterious effects of high fat diets, energy balance and body composition were assessed after two weeks in rats fed isocaloric amounts of a high-fat diet (58.2% by energy) rich either in lard or safflower/linseed oil. Hepatic functionality, plasma parameters, and oxidative status were also measured. The results show that feeding on safflower/linseed oil diet attenuates the obesogenic effect of high fat diets and ameliorates the blood lipid profile. Conversely, hepatic steatosis and mitochondrial oxidative stress appear to be negatively affected by a diet rich in unsaturated fatty acids. PMID:26580650
Fat Quality Influences the Obesogenic Effect of High Fat Diets.
Crescenzo, Raffaella; Bianco, Francesca; Mazzoli, Arianna; Giacco, Antonia; Cancelliere, Rosa; di Fabio, Giovanni; Zarrelli, Armando; Liverini, Giovanna; Iossa, Susanna
2015-11-16
High fat and/or carbohydrate intake are associated with an elevated risk for obesity and chronic diseases such as diabetes and cardiovascular diseases. The harmful effects of a high fat diet could be different, depending on dietary fat quality. In fact, high fat diets rich in unsaturated fatty acids are considered less deleterious for human health than those rich in saturated fat. In our previous studies, we have shown that rats fed a high fat diet developed obesity and exhibited a decrease in oxidative capacity and an increase in oxidative stress in liver mitochondria. To investigate whether polyunsaturated fats could attenuate the above deleterious effects of high fat diets, energy balance and body composition were assessed after two weeks in rats fed isocaloric amounts of a high-fat diet (58.2% by energy) rich either in lard or safflower/linseed oil. Hepatic functionality, plasma parameters, and oxidative status were also measured. The results show that feeding on safflower/linseed oil diet attenuates the obesogenic effect of high fat diets and ameliorates the blood lipid profile. Conversely, hepatic steatosis and mitochondrial oxidative stress appear to be negatively affected by a diet rich in unsaturated fatty acids.
TIA-1 RRM23 binding and recognition of target oligonucleotides
Waris, Saboora; García-Mauriño, Sofía M.; Sivakumaran, Andrew; Beckham, Simone A.; Loughlin, Fionna E.; Gorospe, Myriam; Díaz-Moreno, Irene; Wilce, Matthew C.J.
2017-01-01
Abstract TIA-1 (T-cell restricted intracellular antigen-1) is an RNA-binding protein involved in splicing and translational repression. It mainly interacts with RNA via its second and third RNA recognition motifs (RRMs), with specificity for U-rich sequences directed by RRM2. It has recently been shown that RRM3 also contributes to binding, with preferential binding for C-rich sequences. Here we designed UC-rich and CU-rich 10-nt sequences for engagement of both RRM2 and RRM3 and demonstrated that the TIA-1 RRM23 construct preferentially binds the UC-rich RNA ligand (5΄-UUUUUACUCC-3΄). Interestingly, this binding depends on the presence of Lys274 that is C-terminal to RRM3 and binding to equivalent DNA sequences occurs with similar affinity. Small-angle X-ray scattering was used to demonstrate that, upon complex formation with target RNA or DNA, TIA-1 RRM23 adopts a compact structure, showing that both RRMs engage with the target 10-nt sequences to form the complex. We also report the crystal structure of TIA-1 RRM2 in complex with DNA to 2.3 Å resolution providing the first atomic resolution structure of any TIA protein RRM in complex with oligonucleotide. Together our data support a specific mode of TIA-1 RRM23 interaction with target oligonucleotides consistent with the role of TIA-1 in binding RNA to regulate gene expression. PMID:28184449
TIA-1 RRM23 binding and recognition of target oligonucleotides.
Waris, Saboora; García-Mauriño, Sofía M; Sivakumaran, Andrew; Beckham, Simone A; Loughlin, Fionna E; Gorospe, Myriam; Díaz-Moreno, Irene; Wilce, Matthew C J; Wilce, Jacqueline A
2017-05-05
TIA-1 (T-cell restricted intracellular antigen-1) is an RNA-binding protein involved in splicing and translational repression. It mainly interacts with RNA via its second and third RNA recognition motifs (RRMs), with specificity for U-rich sequences directed by RRM2. It has recently been shown that RRM3 also contributes to binding, with preferential binding for C-rich sequences. Here we designed UC-rich and CU-rich 10-nt sequences for engagement of both RRM2 and RRM3 and demonstrated that the TIA-1 RRM23 construct preferentially binds the UC-rich RNA ligand (5΄-UUUUUACUCC-3΄). Interestingly, this binding depends on the presence of Lys274 that is C-terminal to RRM3 and binding to equivalent DNA sequences occurs with similar affinity. Small-angle X-ray scattering was used to demonstrate that, upon complex formation with target RNA or DNA, TIA-1 RRM23 adopts a compact structure, showing that both RRMs engage with the target 10-nt sequences to form the complex. We also report the crystal structure of TIA-1 RRM2 in complex with DNA to 2.3 Å resolution providing the first atomic resolution structure of any TIA protein RRM in complex with oligonucleotide. Together our data support a specific mode of TIA-1 RRM23 interaction with target oligonucleotides consistent with the role of TIA-1 in binding RNA to regulate gene expression. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Attenuation of Cigarette Smoke-Induced Airway Mucus Production by Hydrogen-Rich Saline in Rats
Zhang, Jingxi; Dong, Yuchao; Xu, Wujian; Li, Qiang
2013-01-01
Background Over-production of mucus is an important pathophysiological feature in chronic airway disease such as chronic obstructive pulmonary disease (COPD) and asthma. Cigarette smoking (CS) is the leading cause of COPD. Oxidative stress plays a key role in CS-induced airway abnormal mucus production. Hydrogen protected cells and tissues against oxidative damage by scavenging hydroxyl radicals. In the present study we investigated the effect of hydrogen on CS-induced mucus production in rats. Methods Male Sprague-Dawley rats were divided into four groups: sham control, CS group, hydrogen-rich saline pretreatment group and hydrogen-rich saline control group. Lung morphology and tissue biochemical changes were determined by immunohistochemistry, Alcian Blue/periodic acid-Schiff staining, TUNEL, western blot and realtime RT-PCR. Results Hydrogen-rich saline pretreatment attenuated CS-induced mucus accumulation in the bronchiolar lumen, goblet cell hyperplasia, muc5ac over-expression and abnormal cell apoptosis in the airway epithelium as well as malondialdehyde increase in the BALF. The phosphorylation of EGFR at Tyr1068 and Nrf2 up-regulation expression in the rat lungs challenged by CS exposure were also abrogated by hydrogen-rich saline. Conclusion Hydrogen-rich saline pretreatment ameliorated CS-induced airway mucus production and airway epithelium damage in rats. The protective role of hydrogen on CS-exposed rat lungs was achieved at least partly by its free radical scavenging ability. This is the first report to demonstrate that intraperitoneal administration of hydrogen-rich saline protected rat airways against CS damage and it could be promising in treating abnormal airway mucus production in COPD. PMID:24376700
Reverter, Miriam; Cutmore, Scott C; Bray, Rodney; Cribb, Thomas H; Sasal, Pierre
2016-10-01
We studied the monogenean communities of 34 species of butterflyfish from the tropical Indo-West Pacific, identifying 13 dactylogyrid species (including two species that are presently undescribed). Monogenean assemblages differed significantly between host species in terms of taxonomic structure, intensity and prevalence. Parasite richness ranged from 0 (Chaetodon lunulatus) to 11 (C. auriga, C. citrinellus and C. lunula). Host specificity varied between the dactylogyrids species, being found on 2-29 of the 34 chaetodontid species examined. Sympatric butterflyfish species were typically parasitized by different combinations of dactylogyrid species, suggesting the existence of complex host-parasite interactions. We identified six clusters of butterflyfish species based on the similarities of their dactylogyrid communities. Dactylogyrid richness and diversity were not related to host size, diet specialization, depth range or phylogeny of butterflyfish species. However, there was a weak positive correlation between monogenean richness and diversity and host geographical range. Most communities of dactylogyrids were dominated by Haliotrema aurigae and H. angelopterum, indicating the importance of the genus Haliotrema in shaping monogenean communities of butterflyfishes. This study casts light on the structure of the monogenean communities of butterflyfishes, suggesting that the diversity and complexity of community structures arises from a combination of host species-specific parameters.
Chen, Zhaoyong; Yan, Xiaoyan; Xu, Ming; Cao, Kaifeng; Zhu, Huali; Li, Lingjun; Duan, Junfei
2017-09-13
In the family of high-performance cathode materials for lithium-ion batteries, lithium-rich layered oxides come out in front because of a high reversible capacity exceeding 250 mAh g -1 . However, the long-term energy retention and high energy densities for lithium-rich layered oxide cathode materials require a stable structure with large surface areas. Here we propose a "bubble template" reaction to build "honeycomb-like" hollow microsphere architecture for a Li 1.2 Mn 0.52 Ni 0.2 Co 0.08 O 2 cathode material. Our material is designed with ca. 8-μm-sized secondary particles with hollow and highly exposed porous structures that promise a large flexible volume to achieve superior structure stability and high rate capability. Our preliminary electrochemical experiments show a high capacity of 287 mAh g -1 at 0.1 C and a capacity retention of 96% after 100 cycles at 1.0 C. Furthermore, the rate capability is superior without any other modifications, reaching 197 mAh g -1 at 3.0 C with a capacity retention of 94% after 100 cycles. This approach may shed light on a new material engineering for high-performance cathode materials.
Structural changes in the nano-oxide layer with annealing in specular spin valves
NASA Astrophysics Data System (ADS)
Jang, S. H.; Kim, Y. W.; Kang, T.; Kim, H. J.; Kim, K. Y.
2003-05-01
We investigated microstructural changes in a nano-oxide layer (NOL) with annealing in specular spin valves (SVs) by cross-sectional transmission electron microscopy and x-ray photoelectron spectroscopy analysis. In the SV annealed at high temperature of 400 °C, an increase in thickness and a local breakdown of the NOL were observed. This local coarsening of the NOL is closely related to the formation of Mn oxides in the oxide-rich part of the NOL through Mn diffusion. Thus, the chemical structure of the NOL changes to the structure with Mn oxide-rich content after annealing.
Umanzor, Schery; Ladah, Lydia; Zertuche-González, José A
2017-10-01
Intertidal macroalgae can modulate their biophysical environment by ameliorating physical conditions and creating habitats. Exploring how seaweed aggregations made up of different species at different densities modify the local environment may help explain how associated organisms respond to the attenuation of extreme physical conditions. Using Silvetia compressa, Chondracanthus canaliculatus, and Pyropia perforata, we constructed monocultures representing the leathery, corticated and foliose functional forms as well as a mixed tri-culture assemblage including the former three, at four densities. Treatment quadrats were installed in the intertidal where we measured irradiance, temperature, particle retention, and water motion underneath the canopies. Additionally, we examined the abundance and richness of the understory microphytobenthos with settlement slides. We found that the density and species composition of the assemblages modulated the amelioration of extreme physical conditions, with macroalgal aggregations of greater structural complexity due to their form and density showing greater physical factor attenuation. However, increasing the number of species within a patch did not directly result in increased complexity and therefore, did not necessarily cause greater amelioration of the environment. Microphytobenthic composition was also affected by species composition and density, with higher abundances under S. compressa and C. canaliculatus canopies at high and mid densities. These results support the idea that the environmental modifications driven by these macroalgae have a significant effect on the dynamics of the intertidal environment by promoting distinct temporal and spatial patchiness in the microphytobenthos, with potentially significant effects on the overall productivity of these ecosystems. © 2017 Phycological Society of America.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Louw, Enette B.; Mitchell, Gareth D.; Wang, Juan
The structural transformations of coal and the resultant char morphologies are strongly dependent on the initial structure and degree of thermoplasticity achieved during coal-to-char transition. These are a function of petrographic composition, rank, particle size, and heating rate and strongly affect combustion behavior. This study compares the devolatilization and subsequent combustion behavior of an inertinite-rich (87.7% dmmf) and a vitrinite-rich (91.8% dmmf) South African coal, wet-screened to a narrow particle size distribution of 200 x 400 mesh. Pyrolysis chars were generated under rapid-heating conditions (104-105 °C/s) in a drop-tube reactor to closely resemble chars generated in pulverized combustion conditions. Themore » inertinite-rich coal took ~ 400 ms to devolatilize in the drop-tube, compared to only ~ 240 ms for the vitrinite-rich sample. The chemical and physical structure (the constitution) of the chars were investigated through a range of chemical, physical, and optical characteristics including the maceral differences, and high ash yields. To evaluate the combustion reactivity non-isothermal burn-out profiles were obtained through thermogravimetrical analyses (TGA) in air. The vitrinite-rich char had on average 20% higher reaction rates than the inertinite-rich char under the various combustion conditions. The char samples were de-ashed with HCl and HF acid which resulted in an increase in combustion reactivity. The maximum reaction rate of the high-ash (36% ash yield) inertinite-rich char increased with 80% after de-ashing. While the vitrinite-rich char with an ash yield of 15%, had a 20% increase in reactivity after de-ashing. The ash acted as a barrier, and the removal of ash most likely increased the access to reactive surface area. The chemical and physical structures of the chars were characterized through a range of different analytical techniques to quantify the factors contributing to reactivity differences. The morphologies of the chars were characterized with SEM and optical microscopy, while quantitative information on the ordered nature of chars was obtained through XRD on de-ashed chars. The inertinite-rich coal experienced limited fluidity during heat-treatment, resulting in slower devolatilization, limited growth in crystallite height (11.8 to 12.6Å), only rounding of particle edges, and producing > 40% of mixed-dense type chars. The vitrinite-char showed more significant structural transformations; producing mostly (80%) extensively swollen crassisphere, tenuisphere, and network-type chars, and XRD showed a large increase in crystallite height (4.3 to 11.7Å). Nitrogen adsorption and small-angle X-ray scattering (SAXS) were utilized to compare the nitrogen surface areas and pore size distributions. Both chars were mostly mesoporous but the inertinite-rich char had double the average pore size, which also resulted in a larger nitrogen surface area since nitrogen can only access surface areas in larger pores. The BET surface area was 3.9 and 2.7 m2/g for the inertinite- and vitrinite-rich chars respectively. SAXS data showed that the vitrinite-rich char had 60% higher frequencies of pores in the micropore range. Helium porosimetry indicated that the inertinite-rich coal and resultant char had higher densities than the vitrinite coal and char; 1.6 and 2.0 g/cm3, compared to 1.3 and 1.9 g/cm3 (dry basis). Non-isothermal TGA burnout profiles showed the inertinite-rich char had a burnout temperature of 680°C, slightly higher than the vitrinite-rich char’s 650 °C. This, along with the peak shape and position in the burnout profiles indicate that the vitrinite-rich char has a higher reactivity. The higher reactivity is due to a combination of factors likely including less organization, grater porosity and access to the reactive site, less ash blocking, and char morphology differences.« less
Buhrow, Leann M; Clark, Shawn M; Loewen, Michele C
2016-01-01
Virus-induced gene silencing (VIGS) has become an emerging technology for the rapid, efficient functional genomic screening of monocot and dicot species. The barley stripe mosaic virus (BSMV) has been described as an effective VIGS vehicle for the evaluation of genes involved in wheat and barley phytopathogenesis; however, these studies have been obscured by BSMV-induced phenotypes and defense responses. The utility of BSMV VIGS may be improved using a BSMV genetic background which is more tolerable to the host plant especially upon secondary infection of highly aggressive, necrotrophic pathogens such as Fusarium graminearum. BSMV-induced VIGS in Triticum aestivum (bread wheat) cv. 'Fielder' was assessed for the study of wheat genes putatively related to Fusarium Head Blight (FHB), the necrotrophism of wheat and other cereals by F. graminearum. Due to the lack of 'Fielder' spike viability and increased accumulation of Fusarium-derived deoxynivalenol contamination upon co-infection of BSMV and FHB, an attenuated BSMV construct was generated by the addition of a glycine-rich, C-terminal peptide to the BSMV γ b protein. This attenuated BSMV effectively silenced target wheat genes while limiting disease severity, deoxynivalenol contamination, and yield loss upon Fusarium co-infection compared to the original BSMV construct. The attenuated BSMV-infected tissue exhibited reduced abscisic, jasmonic, and salicylic acid defense phytohormone accumulation upon secondary Fusarium infection. Finally, the attenuated BSMV was used to investigate the role of the salicylic acid-responsive pathogenesis-related 1 in response to FHB. The use of an attenuated BSMV may be advantageous in characterizing wheat genes involved in phytopathogenesis, including Fusarium necrotrophism, where minimal viral background effects on defense are required. Additionally, the attenuated BSMV elicits reduced defense hormone accumulation, suggesting that this genotype may have applications for the investigation of phytohormone-related signaling, developmental responses, and pathogen defense.
Iron rich low cost superalloys. Ph.D. Thesis. Final Report
NASA Technical Reports Server (NTRS)
Wayne, S. F.
1985-01-01
An iron-rich low-cost superalloy was developed. The alloy, when processed by conventional chill casting, has physical and mechanical properties that compare favorably with existing nickel and cobalt based superalloys while containing significantly lower amounts of strategic elements. Studies were also made on the properties of Cr(20)-Mn(10)-C(3.4)-Fe(bal.), a eutectic alloy processed by chill casting and directional solidification which produced an aligned microstructure consisting of M7C3 fibers in a gamma-Fe matrix. Thermal expansion of the M7C3 (M = Fe, Cr, Mn) carbide lattice was measured up to 800 C and found to be highly anisotropic, with the a-axis being the predominant mode of expansion. Repetitive impact sliding wear experiments performed with the Fe rich eutectic alloy showed that the directionally solidified microstructure greatly improved the alloy's wear resistance as compared to the chill cast microstructure and conventional nickel base superalloys. Studies on the molybdenum cementite phase prove that the crystal structure of the xi phase is not orthorhombic. The crystal structure of the xi phase is made up of octahedra building elements consisting of four Mo and two Fe atoms and trigonal prisms consisting of four Fe and two Mo atoms. The voids are occupied by carbon atoms. The previous chemical formula for the molybdenum cementite MoFe2C is now clearly seen to be Mo12Fe22C10.
Combined TEM and NanoSIMS Analysis of Subgrains in a SiC AB Grain
NASA Astrophysics Data System (ADS)
Hynes, K. M.; Amari, S.; Bernatowicz, T. J.; Lebsack, E.; Gyngard, F.; Nittler, L. R.
2011-03-01
We report the results of NanoSIMS and TEM analysis, including isotopic, structural, chemical, and subgrain data, on a SiC AB grain. This grain contains the first oldhamite subgrains observed in a presolar grain, as well as TiC- and Fe-rich subgrains.
A stable lithium-rich surface structure for lithium-rich layered cathode materials
Kim, Sangryun; Cho, Woosuk; Zhang, Xiaobin; Oshima, Yoshifumi; Choi, Jang Wook
2016-01-01
Lithium ion batteries are encountering ever-growing demand for further increases in energy density. Li-rich layered oxides are considered a feasible solution to meet this demand because their specific capacities often surpass 200 mAh g−1 due to the additional lithium occupation in the transition metal layers. However, this lithium arrangement, in turn, triggers cation mixing with the transition metals, causing phase transitions during cycling and loss of reversible capacity. Here we report a Li-rich layered surface bearing a consistent framework with the host, in which nickel is regularly arranged between the transition metal layers. This surface structure mitigates unwanted phase transitions, improving the cycling stability. This surface modification enables a reversible capacity of 218.3 mAh g−1 at 1C (250 mA g−1) with improved cycle retention (94.1% after 100 cycles). The present surface design can be applied to various battery electrodes that suffer from structural degradations propagating from the surface. PMID:27886178
NASA Technical Reports Server (NTRS)
Chan, Q. H. S.; Zolensky, M. E.; Kebukawa, Y.; Franchi, I.; Wright, I.; Zhao, I.; Rahman, Z.; Utas, J.
2018-01-01
Primitive xenolithic CI-like carbonaceous (C) clasts are sometimes hosted within meteorites of a different origin (ordinary chondrite, ureilite, howardite, and eucrite). These xenoliths contain aggregates of macromolecular carbon (MMC), which are often present as discrete grains and exhibit a wide range of structural order and chemical compositions. The Carancas meteorite is a H4-5 that impacted south of Lake Titicaca, Peru in 2007. While the meteorite exhibits extensive recrystallization of the matrix indicating metamorphism, it contains dark, CI-like clasts that show no evidence of heating. Similar to other xenolithic clasts, the examined C clast of Carancas contains MMC, which however exists in the form of a vein-like structure dissimilar to the typical occurrence of MMC in meteorites. We investigated the organic and isotopic compositions of the organic-rich vein with C,N,O-X-ray absorption near-edge structure (XANES), Raman spectroscopy, and NanoSIMS, in order to constrain its possible origin.
New experimental investigation of cluster structures in 10 Be and 16 C neutron-rich nuclei
NASA Astrophysics Data System (ADS)
Dell'Aquila, L.; Acosta, D.; Auditore, L.; Cardella, G.; De Filippo, E.; De Luca, S.; Francalanza, L.; Gnoffo, B.; Lanzalone, G.; Lombardo, I.; Martorana, N. S.; Norella, S.; Pagano, A.; Pagano, E. V.; Papa, M.; Pirrone, S.; Politi, G.; Quattrocchi, L.; Rizzo, F.; Russotto, P.; Trifirò, A.; Trimarchi, M.; Verde, G.; Vigilante, M.
2017-11-01
The existence of cluster structures in ^{10} Be and ^{16} C neutron-rich isotopes is investigated via projectile break-up reactions induced on polyethylene (CH _2 target. We used a fragmentation beam constituted by 55MeV/u ^{10} Be and 49MeV/u ^{16} C beams provided by the FRIBs facility at INFN-LNS. Invariant mass spectra of 4{He}+ 6 He and 6{He} + ^{10} Be breakup fragments are reconstructed by means of the CHIMERA 4π detector to investigate the presence of excited states of projectile nuclei characterized by cluster structure. In the first case, we suggest the presence of a new state in ^{10} Be at 13.5MeV. A non-vanishing yield corresponding to 20.6MeV excitation energy of ^{16} C was observed in the 6{He} + ^{10} Be cluster decay channel. To improve the results of the present analysis, a new experiment has been performed recently, taking advantage of the coupling of CHIMERA and FARCOS. In the paper we describe the data reduction process of the new experiment together with preliminary results.
Use Of New Industrial Coatings for the U.S. Navy Waterfront Structures
2008-01-01
as a coating for the interior and exterior of piping systems, which either are located in harsh environments or are transporting substances with...SSPC SP 10 Surfaces) (5). SyslCm Coating Sys\\~m A Zinc -rich urethane/MIOa·filled urethane/urethane 314/315/314 B Zinc -rich urethane/MIO-filled...urethanc/MIO-urethane 336/3361336 C Zinc -rich urethancl1vfiO & Alb-fined urethaneiMIO-fiIled 337/3401336 ,1 MicaceQus iron oxide. b Aluminum. urethane
A virus vector based on Canine Herpesvirus for vaccine applications in canids.
Strive, T; Hardy, C M; Wright, J; Reubel, G H
2007-01-31
Canine Herpesvirus (CHV) is being developed as a virus vector for the vaccination of European red foxes. However, initial studies using recombinant CHV vaccines in foxes revealed viral attenuation and lack of antibody response to inserted foreign antigens. These findings were attributed both to inactivation of the thymidine kinase (TK) gene and excess foreign genetic material in the recombinant viral genome. In this study, we report an improved CHV-bacterial artificial chromosome (BAC) vector system designed to overcome attenuation in foxes. A non-essential region was identified in the CHV genome as an alternative insertion site for foreign genes. Replacement of a guanine/cytosine (GC)-rich intergenic region between UL21 and UL22 of CHV with a marker gene did not change growth behaviour in vitro, showing that this region is not essential for virus growth in cell culture. We subsequently produced a CHV-BAC vector with an intact TK gene in which the bacterial genes and the antigen expression cassette were inserted into this GC-rich locus. Unlike earlier constructs, the new CHV-BAC allowed self-excision of the bacterial genes via homologous recombination after transfection of BACs into cell culture. The BAC-CHV system was used to produce a recombinant virus that constitutively expressed porcine zona pellucida subunit C protein between the UL21 and UL22 genes of CHV. Complete self-excision of the bacterial genes from CHV was achieved within one round of replication whilst retaining antigen gene expression.
Chen, Yali; Jiang, Jinyao; Miao, Huibing; Chen, Xingjuan; Sun, Xuejun; Li, Yongjun
2013-03-01
Hydrogen-rich saline has been reported to prevent neointimal hyperplasia induced by carotid balloon injury. The purpose of the present study was to further investigate the molecular mechanisms underlying this phenomenon. Daily injection of a hydrogen-rich saline solution (HRSS) in rats was employed to study the effect of hydrogen on balloon injury-induced neointimal hyperplasia and the neointima/media ratio was assessed. HRSS significantly decreased the neointima area and neointima/media ratio in a dose-dependent manner. In vitro effects of hydrogen on fetal bovine serum (FBS)-induced vascular smooth muscle cell (VSMC) proliferation were also investigated. Hydrogen-rich medium (HRM) inhibited rat VSMC proliferation and migration induced by 10% FBS. FBS-induced reactive oxygen species (ROS) production and activation of intracellular Ras, MEK1/2, ERK1/2, proliferative cell nuclear antigen (PCNA), Akt were significantly inhibited by HRM. In addition, HRM blocked FBS-induced progression from the G0/G1 to the S-phase and increased the apoptosis rate of VSMCs. These results showed that hydrogen-rich saline was able to attenuate FBS-induced VSMC proliferation and neointimal hyperplasia by inhibiting ROS production and inactivating the Ras-ERK1/2-MEK1/2 and Akt pathways. Thus, HRSS may have potential therapeutic relevance for the prevention of human restenosis.
Ribeiro, Fabio Schneider; de Abreu da Silva, Isabel Caetano; Carneiro, Vitor Coutinho; Belgrano, Fabrício dos Santos; Mohana-Borges, Ronaldo; de Andrade Rosa, Ivone; Benchimol, Marlene; Souza, Nathalia Rocha Quintino; Mesquita, Rafael Dias; Sorgine, Marcos Henrique Ferreira; Gazos-Lopes, Felipe; Vicentino, Amanda Roberta Revoredo; Wu, Wenjie; de Moraes Maciel, Renata; da Silva-Neto, Mario Alberto Cardoso; Fantappié, Marcelo Rosado
2012-01-01
The mosquito Aedes aegypti can spread the dengue, chikungunya and yellow fever viruses. Thus, the search for key molecules involved in the mosquito survival represents today a promising vector control strategy. High Mobility Group Box (HMGB) proteins are essential nuclear factors that maintain the high-order structure of chromatin, keeping eukaryotic cells viable. Outside the nucleus, secreted HMGB proteins could alert the innate immune system to foreign antigens and trigger the initiation of host defenses. In this work, we cloned and functionally characterized the HMGB1 protein from Aedes aegypti (AaHMGB1). The AaHMGB1 protein typically consists of two HMG-box DNA binding domains and an acidic C-terminus. Interestingly, AaHMGB1 contains a unique alanine/glutamine-rich (AQ-rich) C-terminal region that seems to be exclusive of dipteran HMGB proteins. AaHMGB1 is localized to the cell nucleus, mainly associated with heterochromatin. Circular dichroism analyses of AaHMGB1 or the C-terminal truncated proteins revealed α-helical structures. We showed that AaHMGB1 can effectively bind and change the topology of DNA, and that the AQ-rich and the C-terminal acidic regions can modulate its ability to promote DNA supercoiling, as well as its preference to bind supercoiled DNA. AaHMGB1 is phosphorylated by PKA and PKC, but not by CK2. Importantly, phosphorylation of AaHMGB1 by PKA or PKC completely abolishes its DNA bending activity. Thus, our study shows that a functional HMGB1 protein occurs in Aedes aegypt and we provide the first description of a HMGB1 protein containing an AQ-rich regulatory C-terminus. PMID:22802955
2013-01-01
Background Arecae semen, the dried slice of areca nuts, is a traditional Chinese medicine used to treat intestinal parasitosis, rectal tenesmus and diarrhea. Areca nuts contain a rich amount of polyphenols that have been shown to modulate the functionality of mast cells and T cells. The objective of this study is to investigate the effect of polyphenol-enriched areca nut extracts (PANE) against food allergy, a T cell-mediated immune disorder. Methods BALB/c mice were left untreated or administered with PANE (0.05% and 0.1%) via drinking water throughout the entire experiment. The mice were sensitized with ovalbumin (OVA) twice by intraperitoneal injection, and then repeatedly challenged with OVA by gavage to induce food allergic responses. Results PANE administration attenuated OVA-induced allergic responses, including the occurrence of diarrhea and the infiltration and degranulation of mast cells in the duodenum. The serum level of OVA-specific IgE and the expression of interleukin-4 in the duodenum were suppressed by PANE treatment. In addition, PANE administration induced Gr-1+, IL-10+ and Gr-1+IL-10+ cells in the duodenum. Conclusion These results demonstrate that oral intake of areca-derived polyphenols attenuates food allergic responses accompanied with a decreased Th2 immunity and an enhanced induction of functional myeloid-derived suppressor cells. PMID:23816049
Suzuki, Yohei; Sato, Tadashi; Sugimoto, Masataka; Baskoro, Hario; Karasutani, Keiko; Mitsui, Aki; Nurwidya, Fariz; Arano, Naoko; Kodama, Yuzo; Hirano, Shin-Ichi; Ishigami, Akihito; Seyama, Kuniaki; Takahashi, Kazuhisa
2017-10-07
Chronic obstructive pulmonary disease (COPD) is predominantly a cigarette smoke (CS)-triggered disease with features of chronic systemic inflammation. Oxidants derived from CS can induce DNA damage and stress-induced premature cellular senescence in the respiratory system, which play significant roles in COPD. Therefore, antioxidants should provide benefits for the treatment of COPD; however, their therapeutic potential remains limited owing to the complexity of this disease. Recently, molecular hydrogen (H 2 ) has been reported as a preventive and therapeutic antioxidant. Molecular H 2 can selectively reduce hydroxyl radical accumulation with no known side effects, showing potential applications in managing oxidative stress, inflammation, apoptosis, and lipid metabolism. However, there have been no reports on the efficacy of molecular H 2 in COPD patients. In the present study, we used a mouse model of COPD to investigate whether CS-induced histological damage in the lungs could be attenuated by administration of molecular H 2 . We administered H 2 -rich pure water to senescence marker protein 30 knockout (SMP30-KO) mice exposed to CS for 8 weeks. Administration of H 2 -rich water attenuated the CS-induced lung damage in the SMP30-KO mice and reduced the mean linear intercept and destructive index of the lungs. Moreover, H 2 -rich water significantly restored the static lung compliance in the CS-exposed mice compared with that in the CS-exposed H 2 -untreated mice. Moreover, treatment with H 2 -rich water decreased the levels of oxidative DNA damage markers such as phosphorylated histone H2AX and 8-hydroxy-2'-deoxyguanosine, and senescence markers such as cyclin-dependent kinase inhibitor 2A, cyclin-dependent kinase inhibitor 1, and β-galactosidase in the CS-exposed mice. These results demonstrated that H 2 -rich pure water attenuated CS-induced emphysema in SMP30-KO mice by reducing CS-induced oxidative DNA damage and premature cell senescence in the lungs. Our study suggests that administration of molecular H 2 may be a novel preventive and therapeutic strategy for COPD. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Larsen, R. B.; Sorensen, B. E.; Muller, A.
2008-12-01
In a recent publication on the Skaergaard intrusion evidence for the formation of silica-rich melts by silicate- silicate liquid immiscibility was proposed (Jakobsen et al., Geology 33, 2005). Coexisting iron-rich and silica- rich microscopic melt inclusions were trapped in apatite during crystallisation of the Skaergaard melts. Given this evidence for liquid immiscibility it is possible to explain the formation of macroscopic accumulations of silica rich entities throughout the magmatic stratigraphy. Previously, the formation and emplacement of these granophyric entities were challenging to explain. Examples include decimetre to metre size granophyric /melano-granophyric aggregates in either gabbroic pegmatite, in chimney shaped columns intersecting the layering or in isolated pods. Particularly, the presence of numerous granophyric pods a few metres above large gabbroic pegmatite were enigmatic. Moving the granophyric melts from the pegmatite where they formed (Larsen and Brooks, Journal of Petrology 35, 1994) and several metres across the magmatic stratigraphy would require unconsolidated cumulates i.e. a crystal mush. Geothermobarometric estimates from fluid inclusions, amphibole and feldspars show that the silica-rich aggregations solidified between 900 and 660 C at P from 1.8 to 2.9 kb. However, to be true products of liquid immiscibility they should form at T > 1050 C. With an average of 960 ppm Zr, the silica-rich aggregates are extremely Zr rich. Zr saturation thermometry imply minimum T's of 1070 (c. 2000 ppm Zr) to 900 C (c. 700 ppm Zr). Ti in Zr thermometry is progressing and may further constrain the T of formation. Although large uncertainties apply, a T of 1070 C or higher, would agree with a formation by liquid immiscibility. Assuming T > 1070 C the cumulus stratigraphy was unconsolidated with > 30 vol% intercumulus melts in the lower part of the magmachamber. With a density of 2.4-2.6 g/cm3, the silica-rich melts were much lighter than the ambient mush (c. 3.2 g/cm3) and may have migrated diapirically and/or along syn-magmatic semi-ductile fault systems (as observed in Lower Zone c and the Middle Zone). With an onset of silica-rich melt migration at T > 1070 C in the Lower Zone, large proportions of the magma chamber was molten and, at least theoretically, it was possible to reintroduce the silica-rich melts in the convecting magma. 19 chimney shaped structures of granophyric and melano-granophyric rocks in MZ with diameters of 2-5 metres, imply that the transfer of silica-rich melts was not only a trivial matter but substantially may have interacted with the cumulates they transgressed or the ambient convecting melt if they migrated this far.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Nobuhiro; Department of Biochemistry, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602; Yamazaki, Yasuo
2008-10-01
The structures of pseudechetoxin and pseudecin suggest that both proteins bind to cyclic nucleotide-gated ion channels in a manner in which the concave surface occludes the pore entrance. Cyclic nucleotide-gated (CNG) ion channels play pivotal roles in sensory transduction by retinal photoreceptors and olfactory neurons. The elapid snake toxins pseudechetoxin (PsTx) and pseudecin (Pdc) are the only known protein blockers of CNG channels. These toxins belong to a cysteine-rich secretory protein (CRISP) family containing an N-terminal pathogenesis-related proteins of group 1 (PR-1) domain and a C-terminal cysteine-rich domain (CRD). PsTx and Pdc are highly homologous proteins, but their blocking affinitiesmore » on CNG channels are different: PsTx blocks both the olfactory and retinal channels with ∼15–30-fold higher affinity than Pdc. To gain further insights into their structure and function, the crystal structures of PsTx, Pdc and Zn{sup 2+}-bound Pdc were determined. The structures revealed that most of the amino-acid-residue differences between PsTx and Pdc are located around the concave surface formed between the PR-1 domain and the CRD, suggesting that the concave surface is functionally important for CNG-channel binding and inhibition. A structural comparison in the presence and absence of Zn{sup 2+} ion demonstrated that the concave surface can open and close owing to movement of the CRD upon Zn{sup 2+} binding. The data suggest that PsTx and Pdc occlude the pore entrance and that the dynamic motion of the concave surface facilitates interaction with the CNG channels.« less
Thermal tuning the reversible optical band gap of self-assembled polystyrene photonic crystals
NASA Astrophysics Data System (ADS)
Vakili Tahami, S. H.; Pourmahdian, S.; Shirkavand Hadavand, B.; Azizi, Z. S.; Tehranchi, M. M.
2016-11-01
Nano-sized polymeric colloidal particles could undergo self-organization into three-dimensional structures to produce desired optical properties. In this research, a facile emulsifier-free emulsion polymerization method was employed to synthesize highly mono-disperse sub-micron polystyrene colloids. A high quality photonic crystal (PhC) structure was prepared by colloidal polystyrene. The reversible thermal tuning effect on photonic band gap position as well as the attenuation of the band gap was investigated in detail. The position of PBG can be tuned from 420 nm to 400 nm by varying the temperature of the PhC structure, reversibly. This reversible effect provides a reconfigurable PhC structure which could be used as thermo-responsive shape memory polymers.
NASA Astrophysics Data System (ADS)
Dong, M. T.; Menke, W. H.
2017-12-01
Seismic attenuation exhibits strong geographic variability in northeastern North America, with the highest values associated with the previously-recognized Northern Appalachian Anomaly (NAA) in southern New England. The shear wave quality factor at 100 km depth is 14s<25, the ratio of P-wave and S-wave quality factors is QP/Qs=1.2±0.03, and the frequency dependence parameter is α=0.39±0.025. The high values of Qp/Qs and α are compatible with laboratory measurements of unmelted rock and incompatible with widespread melting. The low Qs (high shear attenuation) implies high mantle temperatures ( 1550-1650°C) at 100 km depth (assuming no melt). Small-scale variations in attenuation suggests structural heterogeneity within the NAA, possibly due to lithospheric delamination caused by directional asthenospheric flow.
NASA Astrophysics Data System (ADS)
Ren, Bo; Chen, Changjun; Zhang, Min
2018-04-01
Stellite 6 cobalt-based alloy powder was used to produce Co-Cr-W alloy using laser additive manufacturing technology, and then different heat treatment strategies were carried out on the deposited sample. The characteristics of microstructure under different heat treatment conditions were investigated using scanning electron microscopy with energy dispersive spectroscopy, transmission electron microscope, and x-ray diffraction. The results show that the as-deposited sample has few cracks or pores, and the microstructure is typical dendritic structure, and lamellar eutectic carbides are rich in Cr in interdendritic. The matrix mainly consists of γ phases and a few ɛ phases. Some γ phases transform into ɛ phases after 900°C/6 h aging treatment and lamellar eutectic carbides transform into blocky carbides presenting as a network, most of the carbides are rich in Cr and a few are rich in W. When heat treated at 1200°C/1 h followed by water cooling and then treated at 900°C/6 h followed by furnace cooling, it can be found that some γ phases transform into ɛ phases. The carbides transform into elliptical M23C6 carbides that are rich in Cr with the size of 1 to 3 μm and a part of W-rich carbides.
Insights into the attenuated sorption of organic compounds on black carbon aged in soil.
Luo, Lei; Lv, Jitao; Chen, Zien; Huang, Rixiang; Zhang, Shuzhen
2017-12-01
Sorption of organic compounds on fresh black carbons (BCs) can be greatly attenuated in soil over time. We examined herein the changes in surface properties of maize straw-derived BCs (biochars) after aged in a black soil and their effects on the sorptive behaviors of naphthalene, phenanthrene and 1,3-dinitrobenzene. Dissolved fulvic and humic acids extracted from the soil were used to explore the role of dissolved organic carbon (DOC) in the aging of biochars. Chromatography analysis indicated that DOC molecules with relatively large molecular weight were preferentially adsorbed on the biochars during the aging processes. DOC sorption led to blockage of the biochar's micropores according to N 2 and CO 2 adsorption analyses. Surface chemistry of the biochars was also substantially modified, with more O-rich functional groups on the aged biochars compared to the original biochars, as evidenced by Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and X-ray photoelectron spectroscopy (XPS) analyses. The changes in both the physical and chemical surface properties of biochars by DOC led to significant attenuation of the sorption capacity and nonlinearity of the nonionic organic compounds on the aged biochars. Among the tested organic compounds, phenanthrene was the most attenuated in its sorption by the aging treatments, possibly because of its relatively large molecular size and hydrophobicity. The information can help gain a mechanistic understanding of interactions between BCs and organic compounds in soil environment. Copyright © 2017 Elsevier Ltd. All rights reserved.
The Effects of Stoichiometry on the Mechanical Properties of Icosahedral Boron Carbide Under Loading
2012-11-19
ranging from 10% to 20% C using glancing incidence x - ray diffraction and similar experimental studies of structure as a function of stoichiometry were...blue) positions. it has been suggested that x - ray diffraction analysis of a series of boron-rich materials indicates a distinct change in the c lattice...Angstroms, angles in degrees, volume in cubic Angstroms). Structure Formula % C a b c α β γ Volume Experiment37 B5.6C 15.2 5.19 5.19 5.19 65.18 65.18
NASA Astrophysics Data System (ADS)
Kim, Il To; Song, Myeong Jun; Shin, Seoyoon; Shin, Moo Whan
2018-03-01
Many efforts are continuously devoted to developing high-efficiency, low-cost, and highly scalable oxygen reduction reaction (ORR) electrocatalysts to replace precious metal catalysts. Herein, we successfully synthesize Co- and defect-rich carbon nanofibers (CNFs) using an efficient heat treatment approach involving the pyrolysis of electrospun fibers at 370 °C under air. The heat treatment process produces Co-decorated CNFs with a high Co mass ratio, enriched pyridinic N, Co-pyridinic Nx clusters, and defect-rich carbon structures. The synergistic effects from composition and structural changes in the designed material increase the number of catalytically active sites for the ORR in an alkaline solution. The prepared Co- and defect-rich CNFs exhibit excellent ORR activities with a high ORR onset potential (0.954 V vs. RHE), a large reduction current density (4.426 mA cm-2 at 0.40 V), and a nearly four-electron pathway. The catalyst also exhibits a better long-term durability than commercial Pt/C catalysts. This study provides a novel hybrid material as an efficient ORR catalyst and important insight into the design strategy for CNF-based hybrid materials as electrochemical electrodes.
Impaired postprandial endothelial function depends on the type of fat consumed by healthy men.
Berry, Sarah E E; Tucker, Sally; Banerji, Radhika; Jiang, Benyu; Chowienczyk, Phillip J; Charles, Sonia M; Sanders, Thomas A B
2008-10-01
Postprandial lipemia impairs endothelial function possibly via an oxidative stress mechanism. A stearic acid-rich triacylglycerol (TAG) (shea butter) results in a blunted postprandial increase in plasma TAG compared with an oleic acid-rich TAG; however, its acute effects on endothelial function and oxidative stress are unknown. A randomized crossover trial (n = 17 men) compared the effects of 50 g fat, rich in stearic acid [shea butter blend (SA)] or oleic acid [high oleic sunflower oil (HO)], on changes in endothelial function [brachial artery flow-mediated dilatation (FMD)], arterial tone [pulse wave analysis (PWA), and carotid-femoral pulse wave velocity (PWV(c-f))], and oxidative stress (plasma 8-isoprostane F2alpha) at fasting and 3 h following the test meals. The postprandial increase in plasma TAG was lower (66% lower incremental area under curve) following the SA meal [28.3 (9.7, 46.9)] than after the HO meal [83.4 (57.0, 109.8); P < 0.001] (geometric means with 95% CI, arbitary units). Following the HO meal, there was a decrease in FMD [-3.0% (-4.4, -1.6); P < 0.001] and an increase in plasma 8-isoprostane F2alpha [10.4ng/L (3.8, 16.9); P = 0.005] compared with fasting values, but no changes followed the SA meal. The changes in 8-isoprostane F2alpha and FMD differed between meals and were 14.0 ng/L (6.4, 21.6; P = 0.001) and 1.75% (0.10, 3.39; P = 0.02), respectively. The reductions in PWA and PWV c-f did not differ between meals. This study demonstrates that a stearic acid-rich fat attenuates the postprandial impairment in endothelial function compared with an oleic acid-rich fat and supports the hypothesis that postprandial lipemia impairs endothelial function via an increase in oxidative stress.
Ma, Hongtao; Chen, Hongguang; Dong, Aili; Wang, Yanyan; Bian, Yingxue; Xie, Keliang
2017-02-01
To investigate the role of autophagy in hydrogen-rich saline attenuating post-herpetic neuralgia( PHN) in rats. A total of 100 male SD rats were randomly divided into the five groups( n = 20) : control group,PHN group,PHN group treated with hydrogen-rich saline( PHN-H2group),PHN group treated with hydrogen-rich saline and3-MA( PHN-H2-3-MA group),PHN group treated with hydrogen-rich saline and rapamycin( PHN-H2-Rap group). PHN models were established by varicella-zoster virus( VZV) inoculation. After modeling,15 mg / kg 3-MA or 10 mg / kg rapamycin were intraperitoneally injected in corresponding rats with PHN once two days for 3 times. Hydrogen-rich saline( 10 m L / kg)was injected intraperitoneally twice a day for 7 consecutive days in PHN-H2 group,PHN-H2-3-MA group and PHN-H2-Rap group after VZV injection. The paw withdrawal thresholds( PWT) of 50 rats were detected at 3,7,14 and 21 days after modeling. Spinal cord enlargements of the other 50 rats were collected to examine tumor necrosis factor α( TNF-α),interleukine 1β( IL-1β) and IL-6 by ELISA and autophagy protein microtubule-associated protein 1 light chain 3( LC3),beclin 1and P62 by Western blotting. Compared with the control group,the rats in the PHN group presented with decreased PWT,increased levels of TNF-α,IL-1β,IL-6,LC3Ⅱ and beclin 1,and down-regulated P62 expression. Compared with PHN group,the rats in the PHN-H2 group and PHN-H2-Rap group showed increased PWT,decreased levels of TNF-α,IL-1β and IL-6,further up-regulated expressions of LC3 and beclin 1 as wel as P62 expression. Compared with PHN-H2 group,the rats in the PHN-H2-3-MA group had reduced PWT,elevated expressions of TNF-α,IL-1β and IL-6,suppressed expressions of LC3 and beclin 1,and enhanced p62 expression. Hydrogen-rich saline attenuated PWT and inhibited the release of cytokines TNF-α,IL-1β,IL-6 in rats with PHN via activating autophagy.
Ma, Hongtao; Chen, Hongguang; Dong, Aili; Wang, Yanyan; Bian, Yingxue; Xie, Keliang
2017-02-01
Objective To investigate the role of autophagy in hydrogen-rich saline attenuating post-herpetic neuralgia (PHN) in rats. Methods A total of 100 male SD rats were randomly divided into the five groups (n=20): control group, PHN group, PHN group treated with hydrogen-rich saline (PHN-H 2 group), PHN group treated with hydrogen-rich saline and 3-MA (PHN-H 2 -3-MA group), PHN group treated with hydrogen-rich saline and rapamycin (PHN-H 2 -Rap group). PHN models were established by varicella-zoster virus (VZV) inoculation. After modeling, 15 mg/kg 3-MA or 10 mg/kg rapamycin were intraperitoneally injected in corresponding rats with PHN once two days for 3 times. Hydrogen-rich saline (10 mL/kg) was injected intraperitoneally twice a day for 7 consecutive days in PHN-H 2 group, PHN-H 2 -3-MA group and PHN-H 2 -Rap group after VZV injection. The paw withdrawal thresholds (PWT) of 50 rats were detected at 3, 7, 14 and 21 days after modeling. Spinal cord enlargements of the other 50 rats were collected to examine tumor necrosis factor α (TNF-α), interleukine 1β (IL-1β) and IL-6 by ELISA and autophagy protein microtubule-associated protein 1 light chain 3 (LC3), beclin 1 and P62 by Western blotting. Results Compared with the control group, the rats in the PHN group presented with decreased PWT, increased levels of TNF-α, IL-1β, IL-6, LC3II and beclin 1, and down-regulated P62 expression. Compared with PHN group, the rats in the PHN-H 2 group and PHN-H 2 -Rap group showed increased PWT, decreased levels of TNF-α, IL-1β and IL-6, further up-regulated expressions of LC3 and beclin 1 as well as P62 expression. Compared with PHN-H 2 group, the rats in the PHN-H 2 -3-MA group had reduced PWT, elevated expressions of TNF-α, IL-1β and IL-6, suppressed expressions of LC3 and beclin 1, and enhanced p62 expression. Conclusion Hydrogen-rich saline attenuated PWT and inhibited the release of cytokines TNF-α, IL-1β, IL-6 in rats with PHN via activating autophagy.
Wang, Hang; Li, Hongyi; Gilbert, Jack A; Li, Haibo; Wu, Longhua; Liu, Meng; Wang, Liling; Zhou, Qiansheng; Yuan, Junxiang; Zhang, Zhijian
2015-11-01
Manure from swine treated with antimicrobials as feed additives is a major source for the expansion of the antibiotic resistance gene (ARG) reservoir in the environment. Vermicomposting via housefly larvae (Musca domestica) can be efficiently used to treat manure and regenerate biofertilizer, but few studies have investigated its effect on ARG attenuation. Here, we tracked the abundances of 9 ARGs and the composition and structure of the bacterial communities in manure samples across 6 days of full-scale manure vermicomposting. On day 6, the abundances of genes encoding tetracycline resistance [tet(M), tet(O), tet(Q), and tet(W)] were reduced (P < 0.05), while those of genes encoding sulfonamide resistance (sul1 and sul2) were increased (P < 0.05) when normalized to 16S rRNA. The abundances of tetracycline resistance genes were correlated (P < 0.05) with the changing concentrations of tetracyclines in the manure. The overall diversity and richness of the bacteria significantly decreased during vermicomposting, accompanied by a 100 times increase in the relative abundance of Flavobacteriaceae spp. Variations in the abundances of ARGs were correlated with the changing microbial community structure and the relative abundances of the family Ruminococcaceae, class Bacilli, or phylum Proteobacteria. Vermicomposting, as a waste management practice, can reduce the overall abundance of ARGs. More research is warranted to assess the use of this waste management practice as a measure to attenuate the dissemination of antimicrobial residues and ARGs from livestock production before vermicompost can be safely used as biofertilizer in agroecosystems. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Wang, Hang; Li, Hongyi; Gilbert, Jack A.; Li, Haibo; Wu, Longhua; Liu, Meng; Wang, Liling; Zhou, Qiansheng; Yuan, Junxiang
2015-01-01
Manure from swine treated with antimicrobials as feed additives is a major source for the expansion of the antibiotic resistance gene (ARG) reservoir in the environment. Vermicomposting via housefly larvae (Musca domestica) can be efficiently used to treat manure and regenerate biofertilizer, but few studies have investigated its effect on ARG attenuation. Here, we tracked the abundances of 9 ARGs and the composition and structure of the bacterial communities in manure samples across 6 days of full-scale manure vermicomposting. On day 6, the abundances of genes encoding tetracycline resistance [tet(M), tet(O), tet(Q), and tet(W)] were reduced (P < 0.05), while those of genes encoding sulfonamide resistance (sul1 and sul2) were increased (P < 0.05) when normalized to 16S rRNA. The abundances of tetracycline resistance genes were correlated (P < 0.05) with the changing concentrations of tetracyclines in the manure. The overall diversity and richness of the bacteria significantly decreased during vermicomposting, accompanied by a 100 times increase in the relative abundance of Flavobacteriaceae spp. Variations in the abundances of ARGs were correlated with the changing microbial community structure and the relative abundances of the family Ruminococcaceae, class Bacilli, or phylum Proteobacteria. Vermicomposting, as a waste management practice, can reduce the overall abundance of ARGs. More research is warranted to assess the use of this waste management practice as a measure to attenuate the dissemination of antimicrobial residues and ARGs from livestock production before vermicompost can be safely used as biofertilizer in agroecosystems. PMID:26296728
Dong, Wen-Wen; Zhang, Yun-Qian; Zhu, Xiao-Yan; Mao, Yan-Fei; Sun, Xue-Jun; Liu, Yu-Jian; Jiang, Lai
2017-05-19
BACKGROUND Fibrotic change is one of the important reasons for the poor prognosis of patients with acute respiratory distress syndrome (ARDS). The present study investigated the effects of hydrogen-rich saline, a selective hydroxyl radical scavenger, on lipopolysaccharide (LPS)-induced pulmonary fibrosis. MATERIAL AND METHODS Male ICR mice were divided randomly into 5 groups: Control, LPS-treated plus vehicle treatment, and LPS-treated plus hydrogen-rich saline (2.5, 5, or 10 ml/kg) treatment. Twenty-eight days later, fibrosis was assessed by determination of collagen deposition, hydroxyproline, and type I collagen levels. Development of epithelial-to-mesenchymal transition (EMT) was identified by examining protein expressions of E-cadherin and α-smooth muscle actin (α-SMA). Transforming growth factor (TGF)-β1 content, total antioxidant capacity (T-AOC), malondialdehyde (MDA) content, catalase (CAT), and superoxide dismutase (SOD) activity were determined. RESULTS Mice exhibited increases in collagen deposition, hydroxyproline, type I collagen contents, and TGF-β1 production in lung tissues after LPS treatment. LPS-induced lung fibrosis was associated with increased expression of α-SMA, as well as decreased expression of E-cadherin. In addition, LPS treatment increased MDA levels but decreased T-AOC, CAT, and SOD activities in lung tissues, indicating that LPS induced pulmonary oxidative stress. Hydrogen-rich saline treatment at doses of 2.5, 5, or 10 ml/kg significantly attenuated LPS-induced pulmonary fibrosis. LPS-induced loss of E-cadherin in lung tissues was largely reversed, whereas the acquisition of α-SMA was dramatically decreased by hydrogen-rich saline treatment. In addition, hydrogen-rich saline treatment significantly attenuated LPS-induced oxidative stress. CONCLUSIONS Hydrogen-rich saline may protect against LPS-induced EMT and pulmonary fibrosis through suppressing oxidative stress.
Characterization of clay scales forming in Philippine geothermal wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reyes, A.G.; Cardile, C.M.
1989-01-01
Smectite scales occur in 24 out of the 36 blocked wells located in Tongonan, Palinpinon and Bacon-Manito. These comprise 2-85% of the well scales and form at depths of 33-2620 m, where measured and fluid inclusion temperatures are 40-320{sup 0}C. Most, however, occur below the production casing show where temperatures are {ge}230{sup 0}C, often at depths coinciding with aquifers. The clay scales are compositionally and structurally different from the bentonite used in drilling, which is essentially sodium-rich montmorillonite. The clay deposits are expanding, generally disordered, and combine the characteristics of a montmorillonite, saponite and vermiculite in terms of reaction tomore » cationic exchange treatments, structure and composition. Six types of clay scales are identified, but the predominant one, comprising 60-100% of the clay deposits in a well, is Mg- and Fe-rich and referred to as a vermiculitic species. The crystallinity, degree of disorder, textures, optical characteristics, structure and relative amounts of structural Al, Mg and Fe vary with time, temperature and fluid composition, but not with depth and measured pressure. Despite its variance from bentonite characteristics, one of the dominant suggested mechanisms of clay scale formation uses the drilling mud in the well as a substrate, from which the Mg- and Fe-rich clay evolves.« less
Remuzgo, César; Oewel, Thaís S; Daffre, Sirlei; Lopes, Thiago R S; Dyszy, Fabio H; Schreier, Shirley; Machado-Santelli, Gláucia M; Teresa Machini, M
2014-11-01
Although glycine-rich antimicrobial peptides (AMPs) are found in animals and plants, very little has been reported on their chemistry, structure activity-relationship, and properties. We investigated those topics for Shepherin I (Shep I), a glycine-rich AMP with the unique amino acid sequence G(1)YGGHGGHGGHGGHGGHGGHGHGGGGHG(28). Shep I and analogues were synthesized by the solid-phase method at 60 °C using conventional heating. Purification followed by chemical characterization confirmed the products' identities and high purity. Amino acid analysis provided their peptide contents. All peptides were active against the clinically important Candida species, but ineffective against bacteria and mycelia fungi. Truncation of the N- or C-terminal portion reduced Shep I antifungal activity, the latter being more pronounced. Carboxyamidation of Shep I did not affect the activity against C. albicans or C. tropicalis, but increased activity against S. cerevisiae. Carboxyamidated analogues Shep I (3-28)a and Shep I (6-28)a were equipotent to Shep I and Shep Ia against Candida species. As with most cationic AMPs, all peptides had their activity significantly reduced in high-salt concentrations, a disadvantage that is defeated if 10 µM ZnCl2 is present. At 100 µM, the peptides were practically not hemolytic. Shep Ia also killed C. albicans MDM8 and ATCC 90028 cells. Fluo-Shep Ia, an analogue labeled with 5(6)-carboxyfluorescein, was rapidly internalized by C. albicans MDM8 cells, a salt-sensitive process dependent on metabolic energy and temperature. Altogether, such results shed light on the chemistry, structural requirements for activity, and other properties of candidacidal glycine-rich peptides. Furthermore, they show that Shep Ia may have strong potential for use in topical application.
Kakiuchi, Yasutaka; Nagai, Jun; Gotoh, Mari; Hotta, Harumi; Murofushi, Hiromu; Ogawa, Tomoyo; Ueda, Hiroshi; Murakami-Murofushi, Kimiko
2011-05-14
Cyclic phosphatidic acid (cPA) is a structural analog of lysophosphatidic acid (LPA), but possesses different biological functions, such as the inhibition of autotaxin (ATX), an LPA-synthesizing enzyme. As LPA is a signaling molecule involved in nociception in the peripheral and central systems, cPA is expected to possess analgesic activity. We characterized the effects of cPA and 2-carba-cPA (2ccPA), a chemically stable cPA analog, on acute and chronic pain. (1) The systemic injection of 2ccPA significantly inhibited somato-cardiac and somato-somatic C-reflexes but not the corresponding A-reflexes in anesthetized rats. (2) 2ccPA reduced sensitivity measured as the paw withdrawal response to electrical stimulation applied to the hind paws of mice through the C-fiber, but not Aδ or Aβ. (3) In mice, pretreatment with 2ccPA dose-dependently inhibited the second phase of formalin-induced licking and biting responses. (4) In mice, pretreatment and repeated post-treatments with 2ccPA significantly attenuated thermal hyperalgesia and mechanical allodynia following partial ligation of the sciatic nerve. (5) In rats, repeated post-treatments with 2ccPA also significantly attenuated thermal hyperalgesia and mechanical allodynia following chronic sciatic nerve constriction. Our results suggest that cPA and its stable analog 2ccPA inhibit chronic and acute inflammation-induced C-fiber stimulation, and that the central effects of 2ccPA following repeated treatments attenuate neuropathic pain.
Carresi, Cristina; Musolino, Vincenzo; Gliozzi, Micaela; Maiuolo, Jessica; Mollace, Rocco; Nucera, Saverio; Maretta, Alessia; Sergi, Domenico; Muscoli, Saverio; Gratteri, Santo; Palma, Ernesto; Bosco, Francesca; Giancotta, Caterina; Muscoli, Carolina; Marino, Fabiola; Aquila, Iolanda; Torella, Daniele; Romeo, Franco; Mollace, Vincenzo
2018-04-12
Doxorubicin (DOXO) is one of the most widely used antineoplastic drugs. Despite its highly beneficial effects against several malignancies, the clinical use of DOXO is often associated to cardiomyopathy that leads to congestive heart failure. Here we investigated the antioxidant and cardioprotective effects of a polyphenol-rich fraction of citrus bergamot (BPF), in DOXO-induced cardiac damage in rats. Moreover, we evaluated the effect of BPF on cardiomyocyte survival and resident endogenous cardiac stem/progenitor cell (eCSC) activation. Adult male Wistar rats were i.p. injected with saline (serving as controls, CTRL, n = 10), BPF (20 mg/kg daily for 14 consecutive days, n = 10), DOXO (6 doses of 2,5 mg/Kg from day 1 to day 14, n = 10), and DOXO + BPF (n = 10). Animals were then sacrificed 7 days later (i.e., at 21 days). DOXO administration reduced cardiac function at 21 days, an adverse effect significantly attenuated in animals receiving DOXO + BPF. No changes were detected in rats receiving just saline or BPF alone. The cardioprotective effect of BPF on DOXO acute toxicity was also associated with a significant antioxidant effect coupled with protective autophagy restoration, and attenuation of cardiomyocyte apoptosis and reactive hypertrophy. Finally, treatment of rats with BPF prevented eCSCs attrition by DOXO which was followed by a limited but significant increase of newly-formed BrdU + cardiomyocytes. In conclusion, BPF reduces DOXO-induced cardiotoxicity by counteracting reactive oxygen species (ROS) overproduction, thereby restoring protective autophagy and attenuating cardiomyocyte apoptosis and pathologic remodeling. This beneficial effects on the early toxicity of DOXO is associated with enhanced CSCs survival and regenerative potential. Overall these data point to a potential clinical role by diet supplementation with polyphenol-rich fraction of citrus bergamot in counteracting antracycline-induced cardiomyopathy. Copyright © 2018. Published by Elsevier Ltd.
Cranberry extract attenuates hepatic inflammation in high-fat-fed obese mice.
Glisan, Shannon L; Ryan, Caroline; Neilson, Andrew P; Lambert, Joshua D
2016-11-01
Cranberry (Vaccinium macrocarpon) consumption has been associated with health beneficial effects. Nonalcoholic fatty liver disease (NAFLD) is a comorbidity of obesity. In the present study, we investigated the effect of a polyphenol-rich cranberry extract (CBE) on hepatic inflammation in high fat (HF)-fed obese C57BL/6J mice. Following dietary treatment with 0.8% CBE for 10 weeks, we observed no change in body weight or visceral fat mass in CBE-supplemented mice compared to HF-fed control mice. We did observe a significant decrease in plasma alanine aminotransferase (31%) and histological severity of NAFLD (33% decrease in area of involvement, 29% decrease in lipid droplet size) compared to HF-fed controls. Hepatic protein levels of tumor necrosis factor α and C-C chemokine ligand 2 were reduced by 28% and 19%, respectively, following CBE supplementation. CBE significantly decreased hepatic mRNA levels of toll-like receptor 4 (TLR4, 63%) and nuclear factor κB (NFκB, 24%), as well as a number of genes related to the nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing 3 inflammasome. In conclusion, CBE reduced NAFLD and hepatic inflammation in HF-fed obese C57BL/6J mice. These effects appear to be related to mitigation of TLR4-NFκB related signaling; however, further studies into the underlying mechanisms of these hepatoprotective effects are needed. Copyright © 2016 Elsevier Inc. All rights reserved.
Taub, Pam R.; Ramirez‐Sanchez, Israel; Ciaraldi, Theodore P.; Perkins, Guy; Murphy, Anne N.; Naviaux, Robert; Hogan, Michael; Maisel, Alan S.; Henry, Robert R.; Ceballos, Guillermo
2012-01-01
Abstract (‐)‐Epicatechin (Epi), a flavanol in cacao stimulates mitochondrial volume and cristae density and protein markers of skeletal muscle (SkM) mitochondrial biogenesis in mice. Type 2 diabetes mellitus (DM2) and heart failure (HF) are diseases associated with defects in SkM mitochondrial structure/function. A study was implemented to assess perturbations and to determine the effects of Epi‐rich cocoa in SkM mitochondrial structure and mediators of biogenesis. Five patients with DM2 and stage II/III HF consumed dark chocolate and a beverage containing approximately 100 mg of Epi per day for 3 months. We assessed changes in protein and/or activity levels of oxidative phosphorylation proteins, porin, mitofilin, nNOS, nitric oxide, cGMP, SIRT1, PGC1α, Tfam, and mitochondria volume and cristae abundance by electron microscopy from SkM. Apparent major losses in normal mitochondria structure were observed before treatment. Epi‐rich cocoa increased protein and/or activity of mediators of biogenesis and cristae abundance while not changing mitochondrial volume density. Epi‐rich cocoa treatment improves SkM mitochondrial structure and in an orchestrated manner, increases molecular markers of mitochondrial biogenesis resulting in enhanced cristae density. Future controlled studies are warranted using Epi‐rich cocoa (or pure Epi) to translate improved mitochondrial structure into enhanced cardiac and/or SkM muscle function. Clin Trans Sci 2012; Volume 5: 43–47 PMID:22376256
Lin, Chun-Ming; Hou, Yixuan; Marthaler, Douglas G; Gao, Xiang; Liu, Xinsheng; Zheng, Lanlan; Saif, Linda J; Wang, Qiuhong
2017-03-01
Although porcine epidemic diarrhea (PED) has caused huge economic losses in the pork industry worldwide, an effective live, attenuated vaccine is lacking. In this study, an original US, highly virulent PED virus (PEDV) strain PC22A was serially passaged in Vero CCL81 and Vero BI cells. The virus growth kinetics in cell culture, virulence in neonatal pigs and the whole genomic sequences of selected passages were examined. Increased virus titers and sizes of syncytia were observed at the 65th passage level (P65) and P120, respectively. Based on the severity of clinical signs, histopathological lesions and the distribution of PEDV antigens in the gut, the virulence of P100 and above, but not P95C13 (CCL81), was markedly reduced in 4-day-old, caesarian-derived, colostrum-deprived piglets. Subsequently, the attenuation of P120 and P160 was confirmed in 4-day-old, conventional suckling piglets. Compared with P120, P160 replicated less efficiently in the intestine of pigs and induced a lower rate of protection after challenge. Sequence analysis revealed that the virulent viruses [P3 and P95C13 (CCL81)] had one, one, sixteen (including an early termination of nine amino acids) and two amino acid differences in non-structure protein 1 (nsp1), nsp4, spike and membrane proteins, respectively, from the fully attenuated P160. However, the overall pattern of attenuation-related genetic changes in PC22A differed from those of the other four pairs of PEDV wild type strains and their attenuated derivatives. These results suggest that PEDV attenuation can occur through multiple molecular mechanisms. The knowledge provides insights into potential molecular mechanisms of PEDV attenuation. Copyright © 2017 Elsevier B.V. All rights reserved.
Colforsin-induced vasodilation in chronic hypoxic pulmonary hypertension in rats.
Yokochi, Ayumu; Itoh, Hiroo; Maruyama, Junko; Zhang, Erquan; Jiang, Baohua; Mitani, Yoshihide; Hamada, Chikuma; Maruyama, Kazuo
2010-06-01
Colforsin, a water-soluble forskolin derivative, directly activates adenylate cyclase and thereby increases the 3',5'-cyclic adenosine monophosphate (cAMP) level in vascular smooth muscle cells. In this study, we investigated the vasodilatory action of colforsin on structurally remodeled pulmonary arteries from rats with pulmonary hypertension (PH). A total of 32 rats were subjected to hypobaric hypoxia (380 mmHg, 10% oxygen) for 10 days to induce chronic hypoxic PH, while 39 rats were kept in room air. Changes in isometric force were recorded in endothelium-intact (+E) and -denuded (-E) pulmonary arteries from the PH and control (non-PH) rats. Colforsin-induced vasodilation was impaired in both +E and -E arteries from PH rats compared with their respective controls. Endothelial removal did not influence colforsin-induced vasodilation in the arteries from control rats, but attenuated it in arteries from PH rats. The inhibition of nitric oxide (NO) synthase did not influence colforsin-induced vasodilation in +E arteries from controls, but attenuated it in +E arteries from PH rats, shifting its concentration-response curve closer to that of -E arteries from PH rats. Vasodilation induced by 8-bromo-cAMP (a cell-permeable cAMP analog) was also impaired in -E arteries from PH rats, but not in +E arteries from PH rats, compared with their respective controls. cAMP-mediated vasodilatory responses without beta-adrenergic receptor activation are impaired in structurally remodeled pulmonary arteries from PH rats. In these arteries, endothelial cells presumably play a compensatory role against the impaired cAMP-mediated vasodilatory response by releasing NO (and thereby attenuating the impairment). The results suggest that colforsin could be effective in the treatment of PH.
Ma, Athen; Mondragón, Raúl J.
2015-01-01
A core comprises of a group of central and densely connected nodes which governs the overall behaviour of a network. It is recognised as one of the key meso-scale structures in complex networks. Profiling this meso-scale structure currently relies on a limited number of methods which are often complex and parameter dependent or require a null model. As a result, scalability issues are likely to arise when dealing with very large networks together with the need for subjective adjustment of parameters. The notion of a rich-club describes nodes which are essentially the hub of a network, as they play a dominating role in structural and functional properties. The definition of a rich-club naturally emphasises high degree nodes and divides a network into two subgroups. Here, we develop a method to characterise a rich-core in networks by theoretically coupling the underlying principle of a rich-club with the escape time of a random walker. The method is fast, scalable to large networks and completely parameter free. In particular, we show that the evolution of the core in World Trade and C. elegans networks correspond to responses to historical events and key stages in their physical development, respectively. PMID:25799585
Ma, Athen; Mondragón, Raúl J
2015-01-01
A core comprises of a group of central and densely connected nodes which governs the overall behaviour of a network. It is recognised as one of the key meso-scale structures in complex networks. Profiling this meso-scale structure currently relies on a limited number of methods which are often complex and parameter dependent or require a null model. As a result, scalability issues are likely to arise when dealing with very large networks together with the need for subjective adjustment of parameters. The notion of a rich-club describes nodes which are essentially the hub of a network, as they play a dominating role in structural and functional properties. The definition of a rich-club naturally emphasises high degree nodes and divides a network into two subgroups. Here, we develop a method to characterise a rich-core in networks by theoretically coupling the underlying principle of a rich-club with the escape time of a random walker. The method is fast, scalable to large networks and completely parameter free. In particular, we show that the evolution of the core in World Trade and C. elegans networks correspond to responses to historical events and key stages in their physical development, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thimmaiah, Srinivasa; Tener, Zachary; Lamichhane, Tej N.
Here, the γ-region of the Mn–Al phase diagram between 45 and 70 at.% Al was re-investigated by a combination of powder and single crystal X-ray diffraction as well as EDS analysis to establish the distribution of Mn and Al atoms. Single crystals of γ-Mn 5–x Al 8+x were grown using Sn-flux at 650 °C. The crystal structure, atomic coordinates and site occupancy parameters of γ-Mn 5–x Al 8+x phases were refined from single crystal X-ray data. The γ-Mn 5-x Al 8+x phase adopts the rhombohedral Cr 5Al 8-type structure rather than a cubic γ-brass structure. The refined compositions from twomore » crystals extracted from the Al-rich and Mn-rich sides are, respectively, Mn 4.76Al 8.24(2) (I) and Mn 6.32Al 6.68(2) (II). The structure was refined in the acentric R3m space group (No.160, Z=6), in order to compare with other reported rhombohedral γ-brasses. In addition, according to X-ray powder diffraction analysis, at the Al-rich side the γ-phase coexists with LT–Mn 4Al 11 and, at the Mn-rich side, with a hitherto unknown phase. The refined lattice parameters from powder patterns fall in the range a=12.6814(7)–12.6012(5) Å and c=7.9444(2)–7.9311(2) Å from Al-rich to Mn-rich loadings, and the corresponding rhombohedral angles distorted from a pseudo-cubic cell were found to be 89.1(1)°–88.9(1)°. Magnetic susceptibility and magnetization studies of Mn 4.92Al 8.08(2) are consistent with moment bearing Mn and suggest a spin glass state below 27 K. Tight-binding electronic structure calculations (LMTO-ASA with LSDA) showed that the calculated Fermi level for γ-“Mn 5Al 8” falls within a pseudogap of the density of states, a result which is in accordance with a Hume-Rothery stabilization mechanism γ-brass type phases.« less
USDA-ARS?s Scientific Manuscript database
Objectives: The present study was carried out to determine if lyophilized acai fruit pulp (genus, Euterpe), rich in polyphenolics and other bioactive antioxidant and anti-inflammatory phytochemicals, is efficacious in reversing age-related cognitive deficits in aged rats. Methods: The diets of 19-mo...
Tetrahelical structural family adopted by AGCGA-rich regulatory DNA regions
NASA Astrophysics Data System (ADS)
Kocman, Vojč; Plavec, Janez
2017-05-01
Here we describe AGCGA-quadruplexes, an unexpected addition to the well-known tetrahelical families, G-quadruplexes and i-motifs, that have been a focus of intense research due to their potential biological impact in G- and C-rich DNA regions, respectively. High-resolution structures determined by solution-state nuclear magnetic resonance (NMR) spectroscopy demonstrate that AGCGA-quadruplexes comprise four 5'-AGCGA-3' tracts and are stabilized by G-A and G-C base pairs forming GAGA- and GCGC-quartets, respectively. Residues in the core of the structure are connected with edge-type loops. Sequences of alternating 5'-AGCGA-3' and 5'-GGG-3' repeats could be expected to form G-quadruplexes, but are shown herein to form AGCGA-quadruplexes instead. Unique structural features of AGCGA-quadruplexes together with lower sensitivity to cation and pH variation imply their potential biological relevance in regulatory regions of genes responsible for basic cellular processes that are related to neurological disorders, cancer and abnormalities in bone and cartilage development.
Ghosh, Dhiman; Singh, Pradeep K.; Sahay, Shruti; Jha, Narendra Nath; Jacob, Reeba S.; Sen, Shamik; Kumar, Ashutosh; Riek, Roland; Maji, Samir K.
2015-01-01
Mechanistic understanding of nucleation dependent polymerization by α-synuclein (α-Syn) into toxic oligomers and amyloids is important for the drug development against Parkinson's disease. However the structural and morphological characterization during nucleation and subsequent fibrillation process of α-Syn is not clearly understood. Using a variety of complementary biophysical techniques monitoring entire pathway of nine different synucleins, we found that transition of unstructured conformation into β-sheet rich fibril formation involves helix-rich intermediates. These intermediates are common for all aggregating synucleins, contain high solvent-exposed hydrophobic surfaces, are cytotoxic to SHSY-5Y cells and accelerate α-Syn aggregation efficiently. A multidimensional NMR study characterizing the intermediate accompanied with site-specific fluorescence study suggests that the N-terminal and central portions mainly participate in the helix-rich intermediate formation while the C-terminus remained in an extended conformation. However, significant conformational transitions occur at the middle and at the C-terminus during helix to β-sheet transition as evident from Trp fluorescence study. Since partial helix-rich intermediates were also observed for other amyloidogenic proteins such as Aβ and IAPP, we hypothesize that this class of intermediates may be one of the important intermediates for amyloid formation pathway by many natively unstructured protein/peptides and represent a potential target for drug development against amyloid diseases. PMID:25784353
Sulfated Hexasaccharides Attenuate Metastasis by Inhibition of P-selectin and Heparanase1
Borsig, Lubor; Vlodavsky, Israel; Ishai-Michaeli, Rivka; Torri, Giangiacomo; Vismara, Elena
2011-01-01
Development of compounds that target both heparanase and selectins is emerging as a promising approach for cancer therapy. Selectins are vascular cell adhesion molecules that mediate tumor cell interactions with platelets, leukocytes, and the vascular endothelium. Heparanase is an endoglycosidase that degrades heparan sulfate in the tumor microenvironment, cell surfaces, and vessel wall. Acting together, these molecules facilitate tumor cell arrest, extravasation, and metastasis. Here, we report the preparation of novel semisynthetic sulfated tri mannose C-C-linked dimers (STMCs) endowed with heparanase and selectin inhibitory activity. The P-selectin specificity of the STMC was defined by the anomeric linkage of the C-C bond. This STMC hexasaccharide is an effective inhibitor of P-selectin in vivo. We show that selective inhibition of heparanase attenuates metastasis in B16-BL6 melanoma cells, expressing high levels of this endoglycosidase, but has no effect on the metastasis of MC-38 carcinoma cells that express little or no heparanase activity. P-selectin-specific STMC attenuated metastasis in both animal models, indicating that inhibition of tumor cell interaction with the vascular endothelium is critical for cancer dissemination. Thus, the small size, the stability of the C-C bond, and the chemically defined structure of the newly generated STMCs make them superior to heparin derivatives and signify STMCs as valuable candidates for further evaluation. PMID:21532885
Offor, Ugochukwu; Ajayi, Sunday Adelaja; Jegede, Isaac Ayoola; Kharwa, Salem; Naidu, Edwin Coleridge; Azu, Onyemaechi Okpara
2017-03-01
There is paucity of literature regarding the nephrotoxicity of antiretroviral drugs and its interaction with plant-based adjuvants. This study investigates the attenuating effect of kolaviron in nevirapine-therapy on the histological structure of the kidneys of adult male Sprague-Dawley rats. To determine the attenuating influence of anti-oxidant status of kolaviron on the kidneys of experimental animals following nevirapine administration. Forty eight pathogen-free adult male Sprague-Dawley rats were used for this study. The animals were divided into 8 groups (A-H) with 6 animals in each group. Group A was given normal saline as the control; group B was given nevirapine; group C was given kolaviron; group D was given vitamin C; group E was given nevirapine and kolaviron; group F was given nevirapine and vitamin C; Group G was given nevirapine and kolaviron (kolaviron withdrawn after day 28) and group H was given corn oil. The experiment lasted 56 days after which the animals were sacrificed, blood samples were collected through cardiac puncture for serum analysis and the kidneys were harvested and prepared for H& E histological examination. Nevirapine caused histoarchitectural damage in the glomerular apparatus with resultant increase in kidney/body weight ratio (p<0.001). Adjuvant treatment with kolaviron attenuated these nephrotoxic effects. Serum anti-oxidant enzyme (SOD and CAT) activities were significantly reduced in kolaviron and vitamin C treated animals, whereas in the nevirapine group these parameters were significantly elevated (P<0.05). However, co-administration of nevirapine and vitamin C did not improve the histoarchitecture of the kidney. Adjuvant treatment with kolaviron (an anti-oxidant) for 56 days appears to attenuate the nephrotoxicity of nevirapine in this model.
Ginkgotides: Proline-Rich Hevein-Like Peptides from Gymnosperm Ginkgo biloba
Wong, Ka H.; Tan, Wei Liang; Serra, Aida; Xiao, Tianshu; Sze, Siu Kwan; Yang, Daiwen; Tam, James P.
2016-01-01
Hevein and hevein-like peptides belong to the family of chitin-binding cysteine-rich peptides. They are classified into three subfamilies, the prototypic 8C- and the 6C- and 10C-hevein-like peptides. Thus far, only five 8C-hevein-like peptides have been characterized from three angiosperms and none from gymnosperm. To determine their occurrence and distribution in the gymnosperm, Ginkgo biloba leaves were examined. Here, we report the discovery and characterization of 11 novel 8C-hevein-like peptides, namely ginkgotides gB1–gB11. Proteomic analysis showed that the ginkgotides contain 41–44 amino acids (aa), a chitin-binding domain and are Pro-rich, a distinguishing feature that differs from other hevein-like peptides. Solution NMR structure determination revealed that gB5 contains a three β-stranded structure shaped by a cystine knot with an additional disulfide bond at the C-terminus. Transcriptomic analysis showed that the ginkgotide precursors contain a three-domain architecture, comprised of a C-terminal tail (20 aa) that is significantly shorter than those of other 8C- and 10C-hevein-like peptides, which generally contain a protein cargo such as a Barwin-like protein (126 aa) or class I chitinase (254 aa). Transcriptomic data mining found an additional 48 ginkgotide homologs in 39 different gymnosperms. Phylogenetic analysis revealed that ginkgotides and their homologs belong to a new class of 8C-hevein-like peptides. Stability studies showed that ginkgotides are highly resistant to thermal, acidic and endopeptidase degradation. Ginkgotides flanked at both the N- and C-terminal ends by Pro were resistant to exopeptidase degradation by carboxypeptidase A and aminopeptidase. Antifungal assays showed that ginkgotides inhibit the hyphal growth of phyto-pathogenic fungi. Taken together, ginkgotides represent the first suite of hevein-like peptides isolated and characterized from gymnosperms. As a group, they represent a novel class of 8C-hevein-like peptides that are Pro-rich and protein-cargo free. Our findings also suggest that the ginkgotide scaffold could be useful for engineering metabolic-stable peptide therapeutics. PMID:27857717
Ginkgotides: Proline-Rich Hevein-Like Peptides from Gymnosperm Ginkgo biloba.
Wong, Ka H; Tan, Wei Liang; Serra, Aida; Xiao, Tianshu; Sze, Siu Kwan; Yang, Daiwen; Tam, James P
2016-01-01
Hevein and hevein-like peptides belong to the family of chitin-binding cysteine-rich peptides. They are classified into three subfamilies, the prototypic 8C- and the 6C- and 10C-hevein-like peptides. Thus far, only five 8C-hevein-like peptides have been characterized from three angiosperms and none from gymnosperm. To determine their occurrence and distribution in the gymnosperm, Ginkgo biloba leaves were examined. Here, we report the discovery and characterization of 11 novel 8C-hevein-like peptides, namely ginkgotides gB1-gB11. Proteomic analysis showed that the ginkgotides contain 41-44 amino acids (aa), a chitin-binding domain and are Pro-rich, a distinguishing feature that differs from other hevein-like peptides. Solution NMR structure determination revealed that gB5 contains a three β-stranded structure shaped by a cystine knot with an additional disulfide bond at the C-terminus. Transcriptomic analysis showed that the ginkgotide precursors contain a three-domain architecture, comprised of a C-terminal tail (20 aa) that is significantly shorter than those of other 8C- and 10C-hevein-like peptides, which generally contain a protein cargo such as a Barwin-like protein (126 aa) or class I chitinase (254 aa). Transcriptomic data mining found an additional 48 ginkgotide homologs in 39 different gymnosperms. Phylogenetic analysis revealed that ginkgotides and their homologs belong to a new class of 8C-hevein-like peptides. Stability studies showed that ginkgotides are highly resistant to thermal, acidic and endopeptidase degradation. Ginkgotides flanked at both the N- and C-terminal ends by Pro were resistant to exopeptidase degradation by carboxypeptidase A and aminopeptidase. Antifungal assays showed that ginkgotides inhibit the hyphal growth of phyto-pathogenic fungi. Taken together, ginkgotides represent the first suite of hevein-like peptides isolated and characterized from gymnosperms. As a group, they represent a novel class of 8C-hevein-like peptides that are Pro-rich and protein-cargo free. Our findings also suggest that the ginkgotide scaffold could be useful for engineering metabolic-stable peptide therapeutics.
Influence of vitamin C and vitamin E on redox signaling: Implications for exercise adaptations.
Cobley, James N; McHardy, Helen; Morton, James P; Nikolaidis, Michalis G; Close, Graeme L
2015-07-01
The exogenous antioxidants vitamin C (ascorbate) and vitamin E (α-tocopherol) often blunt favorable cell signaling responses to exercise, suggesting that redox signaling contributes to exercise adaptations. Current theories posit that this antioxidant paradigm interferes with redox signaling by attenuating exercise-induced reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation. The well-documented in vitro antioxidant actions of ascorbate and α-tocopherol and characterization of the type and source of the ROS/RNS produced during exercise theoretically enable identification of redox-dependent mechanisms responsible for the blunting of favorable cell signaling responses to exercise. This review aimed to apply this reasoning to determine how the aforementioned antioxidants might attenuate exercise-induced ROS/RNS production. The principal outcomes of this analysis are (1) neither antioxidant is likely to attenuate nitric oxide signaling either directly (reaction with nitric oxide) or indirectly (reaction with derivatives, e.g., peroxynitrite); (2) neither antioxidant reacts appreciably with hydrogen peroxide, a key effector of redox signaling; (3) ascorbate but not α-tocopherol has the capacity to attenuate exercise-induced superoxide generation; and (4) alternate mechanisms, namely pro-oxidant side reactions and/or reduction of bioactive oxidized macromolecule adducts, are unlikely to interfere with exercise-induced redox signaling. Out of all the possibilities considered, ascorbate-mediated suppression of superoxide generation with attendant implications for hydrogen peroxide signaling is arguably the most cogent explanation for blunting of favorable cell signaling responses to exercise. However, this mechanism is dependent on ascorbate accumulating at sites rich in NADPH oxidases, principal contributors to contraction-mediated superoxide generation, and outcompeting nitric oxide and superoxide dismutase isoforms. The major conclusions of this review are: (1) direct evidence for interference of ascorbate and α-tocopherol with exercise-induced ROS/RNS production is lacking; (2) theoretical analysis reveals that both antioxidants are unlikely to have a major impact on exercise-induced redox signaling; and (3) it is worth considering alternate redox-independent mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.
Early demethylation of non-CpG, CpC-rich, elements in the myogenin 5′-flanking region
Fuso, Andrea; Ferraguti, Giampiero; Grandoni, Francesco; Ruggeri, Raffaella; Scarpa, Sigfrido; Strom, Roberto
2010-01-01
The dynamic changes and structural patterns of DNA methylation of genes without CpG islands are poorly characterized. The relevance of CpG to the non-CpG methylation equilibrium in transcriptional repression is unknown. In this work, we analyzed the DNA methylation pattern of the 5′-flanking of the myogenin gene, a positive regulator of muscle differentiation with no CpG island and low CpG density, in both C2C12 muscle satellite cells and embryonic muscle. Embryonic brain was studied as a non-expressing tissue. High levels of both CpG and non-CpG methylation were observed in non-expressing experimental conditions. Both CpG and non-CpG methylation rapidly dropped during muscle differentiation and myogenin transcriptional activation with active demethylation dynamics. Non-CpG demethylation occurred more rapidly than CpG demethylation. Demethylation spread from initially highly methylated short CpC-rich elements to a virtually unmethylated status. These short elements have a high CpC content and density, share some motifs and largely coincide with putative recognition sequences of some differentiation-related transcription factors. Our findings point to a dynamically controlled equilibrium between CpG and non-CpG active demethylation in the transcriptional control of tissue-specific genes. The short CpC-rich elements are new structural features of the methylation machinery, whose functions may include priming the complete demethylation of a transcriptionally crucial DNA region. PMID:20935518
Nucleation of Hydrogen Deficient Carbon Clusters in Circumstellar Envelopes of Carbon Stars
NASA Astrophysics Data System (ADS)
Chiong, C. C.; Asvany, O.; Balucani, N.; Lee, Y. T.; Kaiser, R. I.
2001-04-01
Hydrogen deficient carbon clusters HCn and H2Cn are thought to resemble the crucial link between naked carbon clusters such as C2/C3, polycyclic aromatic hydrocarbons, and carbon rich interstellar/circumstellar grains. To fully understand the astrophysical significance of these grain nuclei condensation processes, it is of paramount significance to elucidate first detailed mechanism how these simple precursors are formed in outflow of carbon rich stars. Due to this importance, we initiated in our laboratory a systematic research program to investigate reactions of C2 and C3 clusters in their singlet X1Σ
Modified spontaneous emission of silicon nanocrystals embedded in artificial opals
NASA Astrophysics Data System (ADS)
Janda, Petr; Valenta, Jan; Rehspringer, Jean-Luc; Mafouana, Rodrigue R.; Linnros, Jan; Elliman, Robert G.
2007-10-01
Si nanocrystals (NCs) were embedded in synthetic silica opals by means of Si-ion implantation or opal impregnation with porous-Si suspensions. In both types of sample photoluminescence (PL) is strongly Bragg-reflection attenuated (up to 75%) at the frequency of the opal stop-band in a direction perpendicular to the (1 1 1) face of the perfect hcp opal structure. Time-resolved PL shows a rich distribution of decay rates, which contains both shorter and longer decay components compared with the ordinary stretched exponential decay of Si NCs. This effect reflects changes in the spontaneous emission rate of Si NCs due to variations in the local density of states of real opal containing defects.
NASA Astrophysics Data System (ADS)
Hu, Wen-Juan; Xie, Fen-Yan; Chen, Qiang; Weng, Jing
2008-10-01
We present polyethylene oxide (PEO) functional films polymerized by rf plasma-enhanced vapour chemical deposition (rf-PECVD) on p-Si (100) surface with precursor ethylene glycol dimethyl ether (EGDME) and diluted Ar in pulsed plasma mode. The influences of discharge parameters on the film properties and compounds are investigated. The film structure is analysed by Fourier transform infrared (FTIR) spectroscopy. The water contact angle measurement and atomic force microscope (AFM) are employed to examine the surface polarity and to detect surface morphology, respectively. It is concluded that the smaller duty cycle in pulsed plasma mode contributes to the rich C-O-C (EO) group on the surfaces. As an application, the adsorption behaviour of platelet-rich plasma on plasma polymerization films performed in-vitro is explored. The shapes of attached cells are studied in detail by an optic invert microscope, which clarifies that high-density C-O-C groups on surfaces are responsible for non-fouling adsorption behaviour of the PEO films.
Climate mediates the effects of disturbance on ant assemblage structure
Gibb, Heloise; Sanders, Nathan J.; Dunn, Robert R.; Watson, Simon; Photakis, Manoli; Abril, Silvia; Andersen, Alan N.; Angulo, Elena; Armbrecht, Inge; Arnan, Xavier; Baccaro, Fabricio B.; Bishop, Tom R.; Boulay, Raphael; Castracani, Cristina; Del Toro, Israel; Delsinne, Thibaut; Diaz, Mireia; Donoso, David A.; Enríquez, Martha L.; Fayle, Tom M.; Feener, Donald H.; Fitzpatrick, Matthew C.; Gómez, Crisanto; Grasso, Donato A.; Groc, Sarah; Heterick, Brian; Hoffmann, Benjamin D.; Lach, Lori; Lattke, John; Leponce, Maurice; Lessard, Jean-Philippe; Longino, John; Lucky, Andrea; Majer, Jonathan; Menke, Sean B.; Mezger, Dirk; Mori, Alessandra; Munyai, Thinandavha C.; Paknia, Omid; Pearce-Duvet, Jessica; Pfeiffer, Martin; Philpott, Stacy M.; de Souza, Jorge L. P.; Tista, Melanie; Vasconcelos, Heraldo L.; Vonshak, Merav; Parr, Catherine L.
2015-01-01
Many studies have focused on the impacts of climate change on biological assemblages, yet little is known about how climate interacts with other major anthropogenic influences on biodiversity, such as habitat disturbance. Using a unique global database of 1128 local ant assemblages, we examined whether climate mediates the effects of habitat disturbance on assemblage structure at a global scale. Species richness and evenness were associated positively with temperature, and negatively with disturbance. However, the interaction among temperature, precipitation and disturbance shaped species richness and evenness. The effect was manifested through a failure of species richness to increase substantially with temperature in transformed habitats at low precipitation. At low precipitation levels, evenness increased with temperature in undisturbed sites, peaked at medium temperatures in disturbed sites and remained low in transformed sites. In warmer climates with lower rainfall, the effects of increasing disturbance on species richness and evenness were akin to decreases in temperature of up to 9°C. Anthropogenic disturbance and ongoing climate change may interact in complicated ways to shape the structure of assemblages, with hot, arid environments likely to be at greatest risk. PMID:25994675
Quantifying contributions to light attenuation in estuaries and ...
In Narragansett Bay, light attenuation by total suspended sediments (TSS), colored dissolved organic matter (CDOM), and phytoplankton chlorophyll-a (chl-a) pigment is 129, 97, and 70%, respectively, of that by pure seawater. Spatial distribution of light attenuation indicates higher values in the upper Bay, where rivers with sediment and nutrient-rich waters enter and elevate TSS, CDOM, and chl-a concentrations. The temporal trends of light attenuation during the summer months (July–August) differed at various locations in the Bay, having the highest values in July. For the same period, spectral methods overestimated attenuation throughout the Bay. These findings quantify the behavior of light attenuation in space and time, providing information that can guide decisions related to improving water clarity and help understanding the effects of various environmental and management scenarios on it. The methods developed can be used to study the effect of various environmental and management scenarios on the recovery efforts for SAV beds in estuarine and coastal systems. An innovative normalization for light attenuation is presented to validate comparison between water clarity of the same or different systems in space and time.
Shen, Xiao-Fei; Teng, Yan; Sha, Kai-Hui; Wang, Xin-Yuan; Yang, Xiao-Long; Guo, Xiao-Juan; Ren, Lai-Bin; Wang, Xiao-Ying; Li, Jingyu; Huang, Ning
2016-11-12
Uropathogenic Escherichia coli (UPEC), the primary uropathogen, adhere to and invade bladder epithelial cells (BECs) to establish a successful urinary tract infection (UTI). Emerging antibiotic resistance requires novel nonantibiotic strategies. Our previous study indicated that luteolin attenuated adhesive and invasive abilities as well as cytotoxicity of UPEC on T24 BECs through down-regulating UPEC virulence factors. The aims of this study were to investigate the possible function of the flavonoid luteolin and the mechanisms by which luteolin functions in UPEC-induced bladder infection. Firstly, obvious reduction of UPEC invasion but not adhesion were observed in luteolin-pretreated 5637 and T24 BECs sa well as mice bladder via colony counting. The luteolin-mediated suppression of UPEC invasion was linked to elevated levels of intracellular cAMP induced by inhibiting the activity of cAMP-phosphodiesterases (cAMP-PDEs), which resulting activation of protein kinase A, thereby negatively regulating Rac1-GTPase-mediated actin polymerization. Furthermore, p38 MAPK was primarily and ERK1/2 was partially involved in luteolin-mediated suppression of UPEC invasion and actin polymerization, as confirmed with chemical activators of p38 MAPK and ERK1/2. These data suggest that luteolin can protect bladder epithelial cells against UPEC invasion. Therefore, luteolin or luteolin-rich products as dietary supplement may be beneficial to control the UPEC-related bladder infections, and cAMP-PDEs may be a therapy target for UTIs treatment. © 2016 BioFactors, 42(6):674-685, 2016. © 2016 International Union of Biochemistry and Molecular Biology.
NASA Astrophysics Data System (ADS)
Kiefer, Johannes; Noack, Kristina; Bartelmess, Juergen; Walter, Christian; Dörnenburg, Heike; Leipertz, Alfred
2010-02-01
The spectroscopic discrimination of the two structurally similar polyunsaturated C 20 fatty acids (PUFAs) 5,8,11,14,17-eicosapentaenoic acid and 5,8,11,14-eicosatetraenoic acid (arachidonic acid) is shown. For this purpose their vibrational structures are studied by means of attenuated total reflection (ATR) Fourier-transform infrared (FT-IR) spectroscopy. The fingerprint regions of the recorded spectra are found to be almost identical, while the C-H stretching mode regions around 3000 cm -1 show such significant differences as results of electronic and molecular structure alterations based on the different degree of saturation that both fatty acids can be clearly distinguished from each other.
DOE Office of Scientific and Technical Information (OSTI.GOV)
González-Páez, Gonzalo E.; Wolan, Dennis W.
2012-09-05
Cysteine protease SpeB is secreted from Streptococcus pyogenes and has been studied as a potential virulence factor since its identification almost 70 years ago. Here, we report the crystal structures of apo mature SpeB to 1.06 {angstrom} resolution as well as complexes with the general cysteine protease inhibitor trans-epoxysuccinyl-L-leucylamido(4-guanidino)butane and a novel substrate mimetic peptide inhibitor. These structures uncover conformational changes associated with maturation of SpeB from the inactive zymogen to its active form and identify the residues required for substrate binding. With the use of a newly developed fluorogenic tripeptide substrate to measure SpeB activity, we determined IC{sub 50}more » values for trans-epoxysuccinyl-L-leucylamido(4-guanidino)butane and our new peptide inhibitor and the effects of mutations within the C-terminal active site loop. The structures and mutational analysis suggest that the conformational movements of the glycine-rich C-terminal loop are important for the recognition and recruitment of biological substrates and release of hydrolyzed products.« less
Lee, Chia-Chen; Hsu, Wei-Hsuan; Shen, Siou-Ru; Cheng, Yu-Hsiang; Wu, She-Ching
2012-01-01
Fagopyrum tataricum (buckwheat) is used for the treatment of type 2 diabetes mellitus in Taiwan. This study was to evaluate the antihyperglycemic and anti-insulin resistance effects of 75% ethanol extracts of buckwheat (EEB) in FL83B hepatocytes by high-glucose (33 mM) induction and in C57BL/6 mice by fructose-rich diet (FRD; 60%) induction. The active compounds of EEB (100 μg/mL; 50 mg/kg bw), quercetin (6 μg/mL; 3 mg/kg bw), and rutin (23 μg/mL; 11.5 mg/kg bw) were also employed to treat FL83B hepatocytes and animal. Results indicated that EEB, rutin, and quercetin + rutin significantly improved 2-NBDG uptake via promoting Akt phosphorylation and preventing PPARγ degradation caused by high-glucose induction for 48 h in FL83B hepatocytes. We also found that EEB could elevate hepatic antioxidant enzymes activities to attenuate insulin resistance as well as its antioxidation caused by rutin and quercetin. Finally, EEB also inhibited increases in blood glucose and insulin levels of C57BL/6 mice induced by FRD. PMID:22548048
Broadband attenuation measurements of phospholipid-shelled ultrasound contrast agents.
Raymond, Jason L; Haworth, Kevin J; Bader, Kenneth B; Radhakrishnan, Kirthi; Griffin, Joseph K; Huang, Shao-Ling; McPherson, David D; Holland, Christy K
2014-02-01
The aim of this study was to characterize the frequency-dependent acoustic attenuation of three phospholipid-shelled ultrasound contrast agents (UCAs): Definity, MicroMarker and echogenic liposomes. A broadband through-transmission technique allowed for measurement over 2 to 25 MHz with a single pair of transducers. Viscoelastic shell parameters of the UCAs were estimated using a linearized model developed by N. de Jong, L. Hoff, T. Skotland and N. Bom (Ultrasonics 1992; 30:95-103). The effect of diluent on the attenuation of these UCA suspensions was evaluated by performing attenuation measurements in 0.5% (w/v) bovine serum albumin and whole blood. Changes in attenuation and shell parameters of the UCAs were investigated at room temperature (25°C) and physiologic temperature (37°C). The attenuation of the UCAs diluted in 0.5% (w/v) bovine serum albumin was found to be identical to the attenuation of UCAs in whole blood. For each UCA, attenuation was higher at 37°C than at 25°C, underscoring the importance of conducting characterization studies at physiologic temperature. Echogenic liposomes exhibited a larger increase in attenuation at 37°C versus 25°C than either Definity or MicroMarker. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Nakhla: a Martian Meteorite with Indigenous Organic Carbonaceous Features
NASA Technical Reports Server (NTRS)
McKay, D. S.; Gibson, E. K.; Thomas-Keprta, K. L.; Clemett, S. J.; Le, L.; Rahman, Z.; Wentworth, S. J.
2011-01-01
The Nakhla meteorite possesses discrete, well defined, structurally coherent morphologies of carbonaceous phases present within iddingsite alteration zones. Based upon both isotopic measurements and analysis of organic phases the presence of pre-terrestrial organics is now recognized. Within the microcrystalline layers of Nakhla s iddingsite, discrete clusters of salt crystals are present. These salts are predominantly halite (NaCl) with minor MgCl2 crystals. Some CaSO4, likely gypsum, appears to be partially intergrown with some of the halite. EDX mapping shows discrete C-rich features are interspersed among these crystals. A hollow semi-spherical bowl structure ( 3 m ) has been identified and analyzed after using a focused ion beam (FIB) to cut a transverse TEM thin section of the feature and the underlying iddingsite. TEM/EDX analysis reveals that the feature is primarily carbonaceous containing C with lesser amounts of Si, S, Ca, Cl, F, Na, and minor Mn and Fe; additionally a small peak consistent with N, which has been previously seen in Nakhla carbonaceous matter, is also present. Selected area electron diffraction (SAED) shows that this C-rich material is amorphous (lacking any long-range crystallographic order) and is not graphite or carbonate. Micro-Raman spectra acquired from the same surface from which the FIB section was extracted demonstrate a typical kerogen-like D and G band structure with a weak absorption peak at 1350 and a stronger peak at 1600/cm. The C-rich feature is intimately associated with both the surrounding halite and underlying iddingsite matrix. Both iddingsite and salts are interpreted as having formed as evaporate assemblages from progressive evaporation of water bodies on Mars. This assemblage, sans the carbonaceous moieties, closely resembles iddingsite alteration features previously described which were interpreted as indigenous Martian assemblages. These distinctive macromolecular carbonaceous structures in Nakhla may represent one of the sources of the high molecular weight organic material previously identified in Nakhla. While we do not speculate on the origin of these unique carbonaceous structures, we note that the significance of such observations is that it may allow us to construct a C-cycle for Mars based on the C chemistry of the Martian meteorites with obvious implications for astrobiology and the prebiotic evolution of Mars. In any case, our observations strongly suggest that organic C exists as micrometersize, discrete structures on Mars.
Schicks, J M; Luzi, M; Beeskow-Strauch, B
2011-11-24
Microscopy, confocal Raman spectroscopy and powder X-ray diffraction (PXRD) were used for in situ investigations of the CO(2)-hydrocarbon exchange process in gas hydrates and its driving forces. The study comprises the exposure of simple structure I CH(4) hydrate and mixed structure II CH(4)-C(2)H(6) and CH(4)-C(3)H(8) hydrates to gaseous CO(2) as well as the reverse reaction, i.e., the conversion of CO(2)-rich structure I hydrate into structure II mixed hydrate. In the case of CH(4)-C(3)H(8) hydrates, a conversion in the presence of gaseous CO(2) from a supposedly more stable structure II hydrate to a less stable structure I CO(2)-rich hydrate was observed. PXRD data show that the reverse process requires longer initiation times, and structural changes seem to be less complete. Generally, the exchange process can be described as a decomposition and reformation process, in terms of a rearrangement of molecules, and is primarily induced by the chemical potential gradient between hydrate phase and the provided gas phase. The results show furthermore the dependency of the conversion rate on the surface area of the hydrate phase, the thermodynamic stability of the original and resulting hydrate phase, as well as the mobility of guest molecules and formation kinetics of the resulting hydrate phase.
Kim, Ae-Jung; Park, Soojin
2006-01-01
Mulberry fruit (Morus Lhou Koidz.), a rich source of the major anthocyanin, cyanidin 3-glucoside (C3G), has traditionally been used for the treatment of inflammatory conditions including rheumatic arthritis. In this study, we evaluated the efficacy of orally administrated methanolic mulberry fruit extract (ME) in carrageenan-induced arthritic rats, based on previously observed in vitro antioxidant and anti-inflammatory activities. A significant attenuation of hind paw inflammation characterized by fluid accumulation, uric acid production, and rheumatoid factors induced by carrageenan was observed following the intake of both ME (50 mg/kg of body weight) and C3G (10 mg/kg of body weight). Moreover, alterations in hematological parameters such as serum triglyceride, high-density lipoprotein-cholesterol, and atherogenic index following carrageenan administration were partially reversed by the administration of ME. It is concluded that dietary mulberry fruit extracts elicited protection against carrageenan-induced inflammation.
Descriptions of carbon isotopes within the energy density functional theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ismail, Atef; Cheong, Lee Yen; Yahya, Noorhana
2014-10-24
Within the energy density functional (EDF) theory, the structure properties of Carbon isotopes are systematically studied. The shell model calculations are done for both even-A and odd-A nuclei, to study the structure of rich-neutron Carbon isotopes. The EDF theory indicates the single-neutron halo structures in {sup 15}C, {sup 17}C and {sup 19}C, and the two-neutron halo structures in {sup 16}C and {sup 22}C nuclei. It is also found that close to the neutron drip-line, there exist amazing increase in the neutron radii and decrease on the binding energies BE, which are tightly related with the blocking effect and correspondingly themore » blocking effect plays a significant role in the shell model configurations.« less
Natural Attenuation of Persistent Chemical Warfare Agent VX ...
Report Natural attenuation of persistent CWAs such as VX was investigated and occurs, given sufficient time (days to weeks). Natural attenuation was found to be faster at warmer temperatures (i.e., 35 °C and 25 °C) than cooler temperatures (i.e., 10 °C). Attenuation of VX was material dependent with a general trend of faster to slower attenuation in the order ceramic tile - galvanized metal - silanized glass - painted drywall. Trace amounts of VX may still be present weeks to months after a contamination event.
Reilly, Samantha M.; Lyons, Daniel F.; Wingate, Sara E.; Wright, Robert T.; Correia, John J.; Jameson, David M.; Wadkins, Randy M.
2014-01-01
The four-stranded i-motif (iM) conformation of cytosine-rich DNA has importance to a wide variety of biochemical systems that range from their use in nanomaterials to potential roles in oncogene regulation. The iM structure is formed at slightly acidic pH, where hemiprotonation of cytosine results in a stable C-C+ basepair. Here, we performed fundamental studies to examine iM formation from a C-rich strand from the promoter of the human c-MYC gene. We used a number of biophysical techniques to characterize both the hydrodynamic properties and folding kinetics of a folded iM. Our hydrodynamic studies using fluorescence anisotropy decay and analytical ultracentrifugation show that the iM structure has a compact size in solution and displays the rigidity of a double strand. By studying the rates of circular dichroism spectral changes and quenching of fluorescent cytidine analogs, we also established a mechanism for the folding of a random coil oligo into the iM. In the course of determining this folding pathway, we established that the fluorescent dC analogs tC° and PdC can be used to monitor individual residues of an iM structure and to determine the pKa of an iM. We established that the C-C+ hydrogen bonding of certain bases initiates the folding of the iM structure. We also showed that substitutions in the loop regions of iMs give a distinctly different kinetic signature during folding compared with bases that are intercalated. Our data reveal that the iM passes through a distinct intermediate form between the unfolded and folded forms. Taken together, our results lay the foundation for using fluorescent dC analogs to follow structural changes during iM formation. Our technique may also be useful for examining folding and structural changes in more complex iMs. PMID:25296324
Li, Jing; O'Connor, Kathleen L; Greeley, George H; Blackshear, Perry J; Townsend, Courtney M; Evers, B Mark
2005-03-04
Myristoylated alanine-rich protein kinase C substrate (MARCKS) is a cellular substrate for protein kinase C (PKC). Recently, we have shown that PKC isoforms-alpha and -delta, as well as the Rho/Rho kinase (ROK) pathway, play a role in phorbol 12-myristate 13-acetate (PMA)-mediated secretion of the gut peptide neurotensin (NT) in the BON human endocrine cell line. Here, we demonstrate that activation of MARCKS protein is important for PMA- and bombesin (BBS)-mediated NT secretion in BON cells. Small interfering RNA (siRNA) to MARCKS significantly inhibited, whereas overexpression of wild-type MARCKS significantly increased PMA-mediated NT secretion. Endogenous MARCKS and green fluorescent protein-tagged wild-type MARCKS were translocated from membrane to cytosol upon PMA treatment, further confirming MARCKS activation. MARCKS phosphorylation was inhibited by PKC-delta siRNA, ROKalpha siRNA, and C3 toxin (a Rho protein inhibitor), suggesting that the PKC-delta and the Rho/ROK pathways are necessary for MARCKS activation. The phosphorylation of PKC-delta was inhibited by C3 toxin, demonstrating that the role of MARCKS in NT secretion was regulated by PKC-delta downstream of the Rho/ROK pathway. BON cell clones stably transfected with the receptor for gastrin releasing peptide, a physiologic stimulant of NT, and treated with BBS, the amphibian equivalent of gastrin releasing peptide, demonstrated a similar MARCKS phosphorylation as noted with PMA. BBS-mediated NT secretion was attenuated by MARCKS siRNA. Collectively, these findings provide evidence for novel signaling pathways, including the sequential regulation of MARCKS activity by Rho/ROK and PKC-delta proteins, in stimulated gut peptide secretion.
Endale, Mehari; Im, Eun Ju; Lee, Joo Young; Kim, Sung Dae; Song, Yong-Bum; Kwak, Yi-Seong; Kim, Chaekyun; Kim, Seung-Hyung; Roh, Seong-Soo; Rhee, Man Hee
2014-01-01
Despite a multitude of reports on anti-inflammatory properties of ginseng extracts or individual ginsenosides, data on antiarthritic effect of ginseng saponin preparation with mixed ginsenosides is limited. On the other hand, a combined therapy of safe and inexpensive plant-derived natural products such as ginsenosides can be considered as an alternative to treat arthritis. Our previous in vitro data displayed a strong anti-inflammatory action of red ginseng saponin fraction-A (RGSF-A). We, herein, report a marked antiarthritic property of RGSF-A rich in ginsenoside Rb1, Rc, and Rb2. Collagen-induced arthritic (CIA) mice were treated with RGSF-A or methotrexate (MTX) for 5 weeks. Joint pathology, serum antibody production and leukocye activation, cytokine production in the circulation, lymph nodes, and joints were examined. RGSF-A markedly reduced severity of arthritis, cellular infiltration, and cartilage damage. It suppressed CD3+/CD69+, CD4+/CD25+, CD8+ T-cell, CD19+, B220/CD23+ B-cell, MHCII+/CD11c+, and Gr-1+/CD11b+ cell activations. It further suppressed anti-CII- or anti-RF-IgG/IgM, TNF-α, IL-1β, IL-17, and IL-6 secretions but stimulated IL-10 levels in the serum, joint, or splenocyte. RGSF-A attenuated arthritis severity, modified leukocyte activations, and restored cytokine imbalances, suggesting that it can be considered as an antiarthritic agent with the capacity to ameliorate the immune and inflammatory responses in CIA mice. PMID:24833816
2016-01-01
The origin of the diffuse interstellar bands (DIBs), one of the longest-standing mysteries of the interstellar medium (ISM), is explored within the framework of The Heterogeneous dust Evolution Model for Interstellar Solids (THEMIS). The likely nature of the DIB carriers and their evolution is here explored within the framework of the structures and sub-structures inherent to doped hydrogenated amorphous carbon grains in the ISM. Based on the natural aromatic-rich moieties (asphaltenes) recovered from coal and oil, the likely structure of their interstellar analogues is investigated within the context of the diffuse band problem. It is here proposed that the top-down evolution of interstellar carbonaceous grains, and, in particular, a-C(:H) nanoparticles, is at the heart of the formation and evolution of the DIB carriers and their associations with small molecules and radicals, such as C2, C3, CH and CN. It is most probable that the DIBs are carried by dehydrogenated, ionized, hetero-cyclic, olefinic and aromatic-rich moieties that form an integral part of the contiguous structure of hetero-atom-doped hydrogenated amorphous carbon nanoparticles and their daughter fragmentation products. Within this framework, it is proposed that polyene structures in all their variants could be viable DIB carrier candidates. PMID:28083089
NASA Astrophysics Data System (ADS)
Jones, A. P.
2016-12-01
The origin of the diffuse interstellar bands (DIBs), one of the longest-standing mysteries of the interstellar medium (ISM), is explored within the framework of The Heterogeneous dust Evolution Model for Interstellar Solids (THEMIS). The likely nature of the DIB carriers and their evolution is here explored within the framework of the structures and sub-structures inherent to doped hydrogenated amorphous carbon grains in the ISM. Based on the natural aromatic-rich moieties (asphaltenes) recovered from coal and oil, the likely structure of their interstellar analogues is investigated within the context of the diffuse band problem. It is here proposed that the top-down evolution of interstellar carbonaceous grains, and, in particular, a-C(:H) nanoparticles, is at the heart of the formation and evolution of the DIB carriers and their associations with small molecules and radicals, such as C2, C3, CH and CN. It is most probable that the DIBs are carried by dehydrogenated, ionized, hetero-cyclic, olefinic and aromatic-rich moieties that form an integral part of the contiguous structure of hetero-atom-doped hydrogenated amorphous carbon nanoparticles and their daughter fragmentation products. Within this framework, it is proposed that polyene structures in all their variants could be viable DIB carrier candidates.
Caliendo, Cinzia; Hamidullah, Muhammad
2016-01-01
The propagation of surface acoustic Love modes along ZnO/glass-based structures was modeled and analysed with the goal of designing a sensor able to detect changes in the environmental parameters, such as liquid viscosity changes and minute amounts of mass supported in the viscous liquid medium. Love mode propagation was modeled by numerically solving the system of coupled electro-mechanical field equations and Navier–Stokes equations. The phase and group velocities and the attenuation of the acoustic wave propagating along the 30° tilted c-axis ZnO/glass structure contacting a viscous non-conductive liquid were calculated for different ZnO guiding layer thicknesses, added mass thicknesses, and liquid viscosity and density. The three sensor responses, i.e., the wave phase and group velocity, and attenuation changes are calculated for different environmental parameters and related to the sensor velocity and attenuation sensitivities. The resulted sensitivities to liquid viscosity and added mass were optimized by adjusting the ZnO guiding layer thickness corresponding to a sensitivity peak. The present analysis is valuable for the manufacture and application of the ZnO-glass structure Love wave sensors for the detection of liquid properties, such as viscosity, density and mass anchored to the sensor surface. PMID:27918419
Lee, Jia-Jye; Galatioto, Josephine; Rao, Satish; Ramirez, Francesco; Costa, Kevin D.
2018-01-01
Marfan syndrome (MFS) is an autosomal dominant disease of the connective tissue due to mutations in the fibrillin-1 gene (FBN1). This study aimed at characterizing microelastic properties of the ascending aorta wall and lung parenchyma tissues from wild type (WT) and age-matched Fbn1 hypomorphic mice (Fbn1mgR/mgR mice) to identify tissue-specific biomechanical effects of aging and disease in MFS. Atomic force microscopy (AFM) was used to indent lung parenchyma and aortic wall tissues, using Hybrid Eshelby Decomposition analysis to extract layer-specific properties of the intima and media. The intima stiffened with age and was not different between WT and Fbn1mgR/mgR tissues, whereas the media layer of mutant aortas showed progressive structural and mechanical degradation with a modulus that was 50% softer than WT by 3.5 months of age. Similarly, mutant mice displayed progressive structural and mechanical deterioration of lung tissue, which was over 85% softer than WT by 3.5 months of age. Chronic treatment with the angiotensin type I receptor antagonist, losartan, attenuated the aorta and lung tissue degradation, resulting in structural and mechanical properties not significantly different from age-matched WT controls. By revealing micromechanical softening of elastin-rich aorta and lung tissues with disease progression in fibrillin-1 deficient mice, our findings support the use of losartan as a prophylactic treatment that may abrogate the life-threatening symptoms of MFS. PMID:27090893
Lee, Jia-Jye; Galatioto, Josephine; Rao, Satish; Ramirez, Francesco; Costa, Kevin D
2016-10-01
Marfan syndrome (MFS) is an autosomal dominant disease of the connective tissue due to mutations in the fibrillin-1 gene (FBN1). This study aimed at characterizing microelastic properties of the ascending aortic wall and lung parenchyma tissues from wild type (WT) and age-matched Fbn1 hypomorphic mice (Fbn1(mgR/mgR) mice) to identify tissue-specific biomechanical effects of aging and disease in MFS. Atomic force microscopy was used to indent lung parenchyma and aortic wall tissues, using Hybrid Eshelby Decomposition analysis to extract layer-specific properties of the intima and media. The intima stiffened with age and was not different between WT and Fbn1(mgR/mgR) tissues, whereas the media layer of MFS aortas showed progressive structural and mechanical degradation with a modulus that was 50% softer than WT by 3.5 months of age. Similarly, MFS mice displayed progressive structural and mechanical deterioration of lung tissue, which was over 85% softer than WT by 3.5 months of age. Chronic treatment with the angiotensin type I receptor antagonist, losartan, attenuated the aorta and lung tissue degradation, resulting in structural and mechanical properties not significantly different from age-matched WT controls. By revealing micromechanical softening of elastin-rich aorta and lung tissues with disease progression in fibrillin-1 deficient mice, our findings support the use of losartan as a prophylactic treatment that may abrogate the life-threatening symptoms of MFS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olivares, C.; Lorente, M.A.; Cassani, F.
1996-08-01
Four surface sections from the Venzuelan Andes were chosen for this study. The results show interesting trends for exploration of the Andean Belt. In the Eastern Andes (Trujillo), sections San Lazaro and Chejende yield thick, post-mature, highly tectonically disturbed La Luna Formation. San Lazaro section has a fault contact showing La Luna post-mature, inertinitic shales in contact with gray shales, ftanites and carbonates bearing marginally mature, highly fluorescent organic gels. Biomarkers show a high level of hopanes, predominance of C27/C29, and S/R ratio=64% characteristic of marine, moderate mature organic matter. Chejende section has almost the same pattern of marine organicmore » matter (COT=9%) but post-mature. In the Central Andes (Merida), El Valle and San Javier sections yield extremely rich source rocks with very different organic matter. El Valle section (Tres Esquinas Member) has very rich structured algal matter (COT=8%), marginally mature, which is correlated with a short term carbon isotope ({delta}{sup 13}C) fluctuation found in the Campanian-Santonian (anoxic?) cycle. The abundance of C27/C29, and high levels of hopanes are related to marine anoxic conditions. The San Javier section shows evidence of a very rich type I/II kerogen, bearing algal-bacterial amorphous masses, marginally mature and rich (COT=3%); this pattern matches with the abundance of C27/C29 as well as with the ratio S/R=64%, which means moderate maturity. From these results, two provinces can be separated today: a highly tectonized, post-mature, Eastern Andes Province and a very rich, marginally mature, Central Andes Province.« less
Kerimi, Asimina; Nyambe-Silavwe, Hilda; Pyner, Alison; Oladele, Ebun; Gauer, Julia S; Stevens, Yala; Williamson, Gary
2018-03-09
The secoiridoid oleuropein, as found in olives and olive leaves, modulates some biomarkers of diabetes risk in vivo. A possible mechanism may be to attenuate sugar digestion and absorption. We explored the potential of oleuropein, prepared from olive leaves in a water soluble form (OLE), to inhibit digestive enzymes (α-amylase, maltase, sucrase), and lower [ 14 C(U)]-glucose uptake in Xenopus oocytes expressing human GLUT2 and [ 14 C(U)]-glucose transport across differentiated Caco-2 cell monolayers. We conducted 7 separate crossover, controlled, randomised intervention studies on healthy volunteers (double-blinded and placebo-controlled for the OLE supplement) to assess the effect of OLE on post-prandial blood glucose after consumption of bread, glucose or sucrose. OLE inhibited intestinal maltase, human sucrase, glucose transport across Caco-2 monolayers, and uptake of glucose by GLUT2 in Xenopus oocytes, but was a weak inhibitor of human α-amylase. OLE, in capsules, in solution or as naturally present in olives, did not affect post-prandial glucose derived from bread, while OLE in solution attenuated post-prandial blood glucose after consumption of 25 g sucrose, but had no effect when consumed with 50 g of sucrose or glucose. The combined inhibition of sucrase activity and of glucose transport observed in vitro was sufficient to modify digestion of low doses of sucrose in healthy volunteers. In comparison, the weak inhibition of α-amylase by OLE was not enough to modify blood sugar when consumed with a starch-rich food, suggesting that a threshold potency is required for inhibition of digestive enzymes in order to translate into in vivo effects.
Iodine-Rich Imidazolium Iodate and Periodate Salts: En Route to Single-Based Biocidal Agents.
He, Chunlin; Hooper, Joseph P; Shreeve, Jean'ne M
2016-12-19
Two classes of iodine-rich salts that consist of iodine-rich cations and iodate (IO 3 - ) or periodate (IO 4 - ) anions were synthesized. The synthesis of analogous I 3 O 8 - salts was more difficult because of poor solubility and hydrolytic instability. All iodine-rich salts were fully characterized by infrared, 1 H nuclear magnetic resonance, and 13 C nuclear magnetic resonance spectroscopy as well as elemental analyses. The molecular structures of compounds 15 and 24 were elucidated by X-ray single-crystal diffraction. Additionally, the heats of formation were calculated with Gaussian 03. The detonation properties and biocidal efficiency were calculated and evaluated using CHEETAH 7.
Design and R&D of RICH detectors for EIC experiments
NASA Astrophysics Data System (ADS)
Del Dotto, A.; Wong, C.-P.; Allison, L.; Awadi, M.; Azmoun, B.; Barbosa, F.; Brooks, W.; Cao, T.; Chiu, M.; Cisbani, E.; Contalbrigo, M.; Datta, A.; Demarteau, M.; Durham, J. M.; Dzhygadlo, R.; Fields, D.; Furletova, Y.; Gleason, C.; Grosse-Perdekamp, M.; Harris, J.; He, X.; van Hecke, H.; Horn, T.; Huang, J.; Hyde, C.; Ilieva, Y.; Kalicy, G.; Kimball, M.; Kistenev, E.; Kulinich, Y.; Liu, M.; Majka, R.; McKisson, J.; Mendez, R.; Nadel-Turonski, P.; Park, K.; Peters, K.; Rao, T.; Pisani, R.; Qiang, Y.; Rescia, S.; Rossi, P.; Sarsour, M.; Schwarz, C.; Schwiening, J.; da Silva, C. L.; Smirnov, N.; Stein, H.; Stevens, J.; Sukhanov, A.; Syed, S.; Tate, A.; Toh, J.; Towell, C.; Towell, R.; Tsang, T.; Wagner, R.; Wang, J.; Woody, C.; Xi, W.; Xie, J.; Zhao, Z. W.; Zihlmann, B.; Zorn, C.
2017-12-01
An Electron-Ion Collider (EIC) has been proposed to further explore the strong force and QCD, focusing on the structure and the interaction of gluon-dominated matter. A generic detector R&D program (EIC PID consortium) for the particle identification in EIC experiments was formed to explore technologically advanced solutions in this scope. In this context two Ring Imaging Cherenkov (RICH) counters have been proposed: a modular RICH detector which consists of an aerogel radiator, a Fresnel lens, a mirrored box, and pixelated photon sensor; a dual-radiator RICH, consisting of an aerogel radiator and C2F6 gas in a mirror-focused configuration. We present the simulations of the two detectors and their estimated performance.
NASA Astrophysics Data System (ADS)
Cheng, Rui; Xu, Jing; Zhang, Xiafei; Shi, Zhilu; Zhang, Qi; Jin, Yan
2017-03-01
Herein, the conformational switch of G-rich oligonucleotide (GDNA) demonstrated the obvious functional switch of GDNA which was found to significantly affect the fluorescence of the in-situ synthesized DNA/silver nanocluster (DNA-AgNC) in homogeneous solution. We envisioned that the allosteric interaction between GDNA and DNA-AgNC would be possible to be used for screening telomere-binding ligands. A unimolecular probe (12C5TG) is ingeniously designed consisting of three contiguous DNA elements: G-rich telomeric DNA (GDNA) as molecular recognition sequence, T-rich DNA as linker and C-rich DNA as template of DNA-AgNC. The quantum yield and stability of 12C5TG-AgNC is greatly improved because the nearby deoxyguanosines tended to protect DNA/AgNC against oxidation. However, in the presence of ligands, the formation of G-quadruplex obviously quenched the fluorescence of DNA-AgNC. By taking full advantage of intramolecular allosteric effect, telomere-binding ligands were selectively and label-free screened by using deoxyguanines and G-quadruplex as natural fluorescence enhancer and quencher of DNA-AgNC respectively. Therefore, the functional switching of G-rich structure offers a cost-effective, facile and reliable way to screen drugs, which holds a great potential in bioanalysis as well.
Li, Yan; Harir, Mourad; Lucio, Marianna; Gonsior, Michael; Koch, Boris P; Schmitt-Kopplin, Philippe; Hertkorn, Norbert
2016-12-01
Deciphering the molecular codes of dissolved organic matter (DOM) improves our understanding of its role in the global element cycles and its active involvement in ecosystem services. This study demonstrates comprehensive characterization of DOM by an initial polarity-based stepwise solid phase extraction (SPE) with single methanol elution of the cartridges, but separate collection of equal aliquots of eluate. The reduction of molecular complexity in the individual DOM fractions attenuates intermolecular interactions and substantially increases the disposable resolution of any structure selective characterization. Suwannee River DOM (SR DOM) was used to collect five distinct SPE fractions with overall 91% DOC recovery. Optical spectroscopy (UV and fluorescence spectroscopy), high-field Fourier transform ion cyclotron mass spectrometry (FTICR MS) and nuclear magnetic resonance (NMR) spectroscopy showed analogous hierarchical clustering among the five eluates corroborating the robustness of this approach. Two abundant moderately hydrophobic fractions contained most of the SR DOM compounds, with substantial proportions of aliphatics, carboxylic-rich alicyclic molecules, carbohydrates and aromatics. A minor early eluting hydrophilic fraction was highly aliphatic and presented a large diversity of alicyclic carboxylic acids, whereas the two late eluting, minor hydrophobic fractions appeared as a largely defunctionalized mixture of aliphatic molecules. Comparative mass analysis showed that fractionation of SR DOM was governed by multiple molecular interactions depending on O/C ratio, molecular weight and aromaticity. The traditional optical indices SUVA 254 and fluorescence index (FI) indicated the relative aromaticity in agreement with FTICR mass and NMR spectra; the classical fluorescent peaks A and C were observed in all four latter eluates. This versatile approach can be easily expanded to preparative scale under field conditions, and transferred to different DOM sources and SPE conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, Yonggang; Wang, Qingfei; Liu, Zhenpu; ...
2015-06-10
High-performance solid electrolytes are critical for realizing all-solid-state batteries with enhance safety and cycling efficiency. However, currently available candidates (sulfides and the NASICON-typ ceramics) still suffer from drawbacks such as inflammability, high-cost and unfavorable machinability Here we present the structural manipulation approaches to improve the sodium ionic conductivity in series of affordable Na-rich antiperovskites. Experimentally, the whole solid solutions of Na 3OX (X ¼ Cl Br, I) are synthesized via a facile and timesaving route from the cheapest raw materials (Na, NaOH an NaX). The materials are nonflammable, suitable for thermoplastic processing due to low melting temperature (<300° C) withoutmore » decomposing. Notably, owing to the flexibility of perovskite-type structure it's feasible to control the local structure features by means of size-mismatch substitution an unequivalent-doping for a favorable sodium ionic diffusion pathway. Enhancement of sodium ioni conductivity by 2 magnitudes is demonstrated by these chemical tuning methods. The optimized sodiu ionic conductivity in Na 2.9Sr 0.05OBr 0.6I 0.4 bulk samples reaches 1.9 10 - 3 S/cm at 200° C and even highe at elevated temperature. Here, we believe further chemical tuning efforts on Na-rich antiperovskites wil promote their performance greatly for practical all-solid state battery applications.« less
Temperature Dependence of Attenuation of Coplanar Waveguide on 4H High Resistivity SIC Through 540C
NASA Technical Reports Server (NTRS)
Ponchak, G. E.; Schwartz, Z.; Alterovitz, S. A.; Downey, A. N.; Freeman, J. C.
2003-01-01
For the first time, the temperature and frequency dependence of the attenuation of a Coplanar Waveguide (CPW) on 4H, High Resistivity Sic substrate is reported. The low frequency attenuation increases by 2 dB/cm at 500 C and the high frequency attenuation increases by 3.3 dB/cm at 500 C compared to room temperature.
Coastal Zone Color Scanner data of rich coastal waters
NASA Technical Reports Server (NTRS)
Wrigley, R. C.; Klooster, S. A.
1983-01-01
Comparisons of chlorophyll concentrations and diffuse attenuation coefficients measured from ships off the central California coast were made with satellite derived estimates of the same parameters using data from the Coastal Zone Color Scanner. Very high chlorophyll concentrations were encountered in Monterey Bay. Although lower chlorophyll values acquired off Pt. Sur agreed satisfactorily with the satellite data, the high chlorophyll values departed markedly from agreement. Two possible causes for the disagreement are suggested. Comparison of diffuse attenuation coefficients from the same data sets showed closer agreement.
Effect of environmental temperature on shock absorption properties of running shoes.
Dib, Mansour Y; Smith, Jay; Bernhardt, Kathie A; Kaufman, Kenton R; Miles, Kevin A
2005-05-01
To determine the effect of temperature changes on the shock attenuation of 4 running shoe shock absorption systems. Prospective. Motion analysis laboratory. The shock attenuation of 4 different running shoes representing common shock absorption systems (Nike Air Triax, Asics Gel Nimbus IV, Adidas a3 cushioning, Adidas Supernova cushion) was measured at ambient temperatures of -20 degrees C, -10 degrees C, 0 degrees C, +10 degrees C, +20 degrees C, +30 degrees C, +40 degrees C, and +50 degrees C. Repeated-measures analysis of variance was used to determine differences between shoes. Shock attenuation as indicated by peak deceleration (g) measured by a mechanical impactor following ASTM Standard F1614-99. Shock attenuation decreased significantly with reduced temperature for each shoe tested. The Adidas a3 shoe exhibited significantly higher peak decelerations (lower shock attenuation) at cold temperatures compared with the other shoes. Cold ambient temperatures significantly reduce the shock attenuation of commonly used running shoes. These findings have important clinical implications for individuals training in extreme weather environments, particularly those with a history of lower limb overuse injuries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riha, B.; Looney, B.; Noonkester, J.
Groundwater beneath T-Area, a former laboratory and semiworks operation at the Department of Energy (DOE) Savannah River Site (SRS), is contaminated by chlorinated solvents (cVOCs). Since the contamination was detected in the 1980s, the cVOCs at T-Area have been treated by a combination of soil vapor extraction and groundwater pump and treat. The site received approval to temporarily discontinue the active groundwater treatment and implement a treatability study of enhanced attenuation - an engineering and regulatory strategy that has recently been developed by DOE and the Interstate Technology and Regulatory Council (ITRC 2007). Enhanced attenuation uses active engineering solutions tomore » alter the target site in such a way that the contaminant plume will passively stabilize and shrink and to document that the action will be effective, timely, and sustainable. The paradigm recognizes that attenuation remedies are fundamentally based on a mass balance. Thus, long-term plume dynamics can be altered either by reducing the contaminant loading from the source or by increasing the rate of natural attenuation processes within all, or part of, the plume volume. The combination of technologies that emerged for T-Area included: (1) neat (pure) vegetable oil deployment in the deep vadose zone in the former source area, (2) emulsified vegetable oil deployment within the footprint of the groundwater plume, and (3) identification of attenuation mechanisms and rates for the distal portion of the plume. In the first part, neat oil spreads laterally forming a thin layer on the water table to intercept and reduce future cVOC loading (via partitioning) and reduce oxygen inputs (via biostimulation). In the second and third parts, emulsified oil forms active bioremediation reactor zones within the plume footprint to degrade existing groundwater contamination (via reductive dechlorination and/or cometabolism) and stimulates long-term attenuation capacity in the distal plume (via cometabolism). For TArea, the enhanced attenuation development process proved to be a powerful tool in developing a strategy that provides a high degree of performance while minimizing adverse collateral impacts of the remediation (e.g., energy use and wetland damage) and minimizing life-cycle costs. As depicted in Figure 1, Edible oil deployment results in the development of structured geochemical zones and serves to decrease chlorinated compound concentrations in two ways: (1) physical sequestration, which reduces effective aqueous concentration and mobility; and (2) stimulation of anaerobic, abiotic and cometabolic degradation processes. In the central deployment area, contaminant initially partitions into the added oil phase. Biodegradation of the added organic substrate depletes the aquifer of oxygen and other terminal electron acceptors and creates conditions conducive to anaerobic degradation processes. The organic substrate is fermented to produce hydrogen, which is used as an electron donor for anaerobic dechlorination by organisms such as Dehalococcoides. Daughter products leaving the central treatment zone are amenable to aerobic oxidation. Further, the organic compounds leaving the central deployment zone (e.g., methane and propane) stimulate and enhance down gradient aerobic cometabolism which degrades both daughter compounds and several parent cVOCs. Figure 1 depicts TCE concentration reduction processes (labeled in green) along with their corresponding breakdown products in a structured geochemical zone scenario. A consortium of bacteria with the same net effect of Dehalococcoides may be present in the structured geochemical zones leading to the degradation of TCE and daughter products. Figure 2 shows a schematic of the documented cVOC degradation processes in both the anaerobic and aerobic structured geochemical zones. Specific aerobic and anaerobic bacteria and their degradation pathways are also listed in the diagram and have either been confirmed in the field or the laboratory. See references in the bibliography in Section 11.« less
Structural health monitoring technology for bolted carbon-carbon thermal protection panels
NASA Astrophysics Data System (ADS)
Yang, Jinkyu
2005-12-01
The research in this dissertation is motivated by the need for reliable inspection technologies for the detection of bolt loosening in Carbon-Carbon (C-C) Thermal Protection System (TPS) panels on Space Operation Vehicles (SOV) using minimal human intervention. A concept demonstrator of the Structural Health Monitoring (SHM) system was developed to autonomously detect the degradation of the mechanical integrity of the standoff C-C TPS panels. This system assesses the torque levels of the loosened bolts in the C-C TPS panel, as well as identifies the location of those bolts accordingly. During the course of building the proposed SHM prototype, efforts have been focused primarily on developing a trustworthy diagnostic scheme and a responsive sensor suite. Based on the microcontact conditions and damping phenomena of ultrasonic waves across the bolted joints, an Attenuation-based Diagnostic Method was proposed to assess the fastener integrity by observing the attenuation patterns of the resultant sensor signals. Parametric model studies and prototype testing validated the theoretical explanation of the attenuation-based method. Once the diagnostic scheme was determined, the implementation of a sensor suite was the next step. A new PZT-embedded sensor washer was developed to enhance remote sensing capability and achieve sufficient sensitivity by guiding diagnostic waves primarily through the inspection areas. The sensor-embedded washers replace the existing washers to constitute the sensor network, as well as to avoid jeopardizing the integrity of the original fastener components. After sensor design evolution and appropriate algorithm development, verification tests were conducted using a shaker and a full-scale oven, which simulated the acoustic and thermal environments during the re-entry process, respectively. The test results revealed that the proposed system successfully identifies the loss of the preload for the bolted joints that were loosened. The sensors were also found to be durable under the cyclic mechanical and thermal loads without major failures.
Oh, Pilgun; Oh, Seung -Min; Li, Wangda; ...
2016-05-30
The Ni-rich layered oxides with a Ni content of >0.5 are drawing much attention recently to increase the energy density of lithium-ion batteries. However, the Ni-rich layered oxides suffer from aggressive reaction of the cathode surface with the organic electrolyte at the higher operating voltages, resulting in consequent impedance rise and capacity fade. To overcome this difficulty, we present here a heterostructure composed of a Ni-rich LiNi 0.7Co 0.15Mn 0.15O 2 core and a Li-rich Li 1.2-xNi 0.2Mn 0.6O 2 shell, incorporating the advantageous features of the structural stability of the core and chemical stability of the shell. With amore » unique chemical treatment for the activation of the Li 2MnO 3 phase of the shell, a high capacity is realized with the Li-rich shell material. Aberration-corrected scanning transmission electron microscopy (STEM) provides direct evidence for the formation of surface Li-rich shell layer. Finally, the heterostructure exhibits a high capacity retention of 98% and a discharge- voltage retention of 97% during 100 cycles with a discharge capacity of 190 mA h g -1 (at 2.0–4.5 V under C/3 rate, 1C = 200 mA g -1).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.
2011-06-08
Prior laboratory testing identified sodium nitrate and nitrite to be the most promising agents to minimize hydrogen generation from uranium metal aqueous corrosion in Hanford Site K Basin sludge. Of the two, nitrate was determined to be better because of higher chemical capacity, lower toxicity, more reliable efficacy, and fewer side reactions than nitrite. The present lab tests were run to determine if nitrate’s beneficial effects to lower H2 generation in simulated and genuine sludge continued for simulated sludge mixed with agents to immobilize water to help meet the Waste Isolation Pilot Plant (WIPP) waste acceptance drainable liquid criterion. Testsmore » were run at ~60°C, 80°C, and 95°C using near spherical high-purity uranium metal beads and simulated sludge to emulate uranium-rich KW containerized sludge currently residing in engineered containers KW-210 and KW-220. Immobilization agents tested were Portland cement (PC), a commercial blend of PC with sepiolite clay (Aquaset II H), granulated sepiolite clay (Aquaset II G), and sepiolite clay powder (Aquaset II). In all cases except tests with Aquaset II G, the simulated sludge was mixed intimately with the immobilization agent before testing commenced. For the granulated Aquaset II G clay was added to the top of the settled sludge/solution mixture according to manufacturer application directions. The gas volumes and compositions, uranium metal corrosion mass losses, and nitrite, ammonia, and hydroxide concentrations in the interstitial solutions were measured. Uranium metal corrosion rates were compared with rates forecast from the known uranium metal anoxic water corrosion rate law. The ratios of the forecast to the observed rates were calculated to find the corrosion rate attenuation factors. Hydrogen quantities also were measured and compared with quantities expected based on non-attenuated H2 generation at the full forecast anoxic corrosion rate to arrive at H2 attenuation factors. The uranium metal corrosion rates in water alone and in simulated sludge were near or slightly below the metal-in-water rate while nitrate-free sludge/Aquaset II decreased rates by about a factor of 3. Addition of 1 M nitrate to simulated sludge decreased the corrosion rate by a factor of ~5 while 1 M nitrate in sludge/Aquaset II mixtures decreased the corrosion rate by ~2.5 compared with the nitrate-free analogues. Mixtures of simulated sludge with Aquaset II treated with 1 M nitrate had uranium corrosion rates about a factor of 8 to 10 lower than the water-only rate law. Nitrate was found to provide substantial hydrogen mitigation for immobilized simulant sludge waste forms containing Aquaset II or Aquaset II G clay. Hydrogen attenuation factors of 1000 or greater were determined at 60°C for sludge-clay mixtures at 1 M nitrate. Hydrogen mitigation for tests with PC and Aquaset II H (which contains PC) were inconclusive because of suspected failure to overcome induction times and fully enter into anoxic corrosion. Lessening of hydrogen attenuation at ~80°C and ~95°C for simulated sludge and Aquaset II was observed with attenuation factors around 100 to 200 at 1 M nitrate. Valuable additional information has been obtained on the ability of nitrate to attenuate hydrogen gas generation from solution, simulant K Basin sludge, and simulant sludge with immobilization agents. Details on characteristics of the associated reactions were also obtained. The present testing confirms prior work which indicates that nitrate is an effective agent to attenuate hydrogen from uranium metal corrosion in water and simulated K Basin sludge to show that it is also effective in potential candidate solidified K Basin waste forms for WIPP disposal. The hydrogen mitigation afforded by nitrate appears to be sufficient to meet the hydrogen generation limits for shipping various sludge waste streams based on uranium metal concentrations and assumed waste form loadings.« less
Nakano, Jinichiro
2013-02-01
The thermodynamic properties of the Fe-Mn-C system were investigated by using an analytical model constructed by a CALPHAD approach. The stacking fault energy (SFE) of the fcc structure with respect to the hcp phase was always constant at T 0 , independent of the composition and temperature when other related parameters were assumed to be constant. Experimental limits for the thermal hcp formation and the mechanical (deformation-induced) hcp formation were separated by the SFE at T 0 . The driving force for the fcc to hcp transition, defined as a dimensionless value -d G m /( RT ), was determined in the presence of Fe-rich and Mn-rich composition sets in each phase. Carbon tended to partition to the Mn-rich phase rather than to the Fe-rich phase for the compositions studied. The results obtained revealed a thermo-mechanical correlation with empirical yield strength, maximum true stress and maximum true strain. The proportionality between thermodynamics and mechanical properties is discussed.
Microwave emission and crop residues
NASA Technical Reports Server (NTRS)
Jackson, Thomas J.; O'Neill, Peggy E.
1991-01-01
A series of controlled experiments were conducted to determine the significance of crop residues or stubble in estimating the emission of the underlying soil. Observations using truck-mounted L and C band passive microwave radiometers showed that for dry wheat and soybeans the dry residue caused negligible attenuation of the background emission. Green residues, with water contents typical of standing crops, did have a significant effect on the background emission. Results for these green residues also indicated that extremes in plant structure, as created using parallel and perpendicular stalk orientations, can cause very large differences in the degree of attenuation.
Carbon-rich Planets: Atmospheric Spectra, Thermal Inversions, And Formation Conditions
NASA Astrophysics Data System (ADS)
Madhusudhan, Nikku; Mousis, O.; Lunine, J.; Johnson, T.
2011-05-01
Carbon-rich planets (CRPs) are the exotic new members in the repertoire of extrasolar planets. The first CRP atmosphere was discovered recently, for the extremely irradiated hot Jupiter WASP-12b. In this work, we report several candidate carbon-rich planets amongst the known sample of transiting exoplanets, along with follow-up theoretical and observational efforts that aim at confirming these candidates. We also discuss the atmospheric chemistry and temperature structure of carbon-rich giant planets, their formation via core accretion, and the chemistry and apportionment of ices, rock, and volatiles in their envelopes. Our results show that CRP atmospheres probe a unique region in composition space, especially at high T. For C/O ≥ 1, most of the oxygen is occupied by CO for T > 1400 K and P < 1bar, causing a substantial depletion in water vapor, and an overabundance of methane compared to equilibrium chemistry with solar abundances. Adopting gas phase elemental abundances in the disk similar to those estimated in the star gives a C/O ratio in planetesimals and then in the envelope of WASP-12b similar to or below the solar C/O. Under these conditions, a C/O ratio of 1 in WASP-12b would require that the oxygen abundance in the disk is depleted by a factor of 0.41.
Narayana, N; Cox, S; Shaltiel, S; Taylor, S S; Xuong, N
1997-04-15
The crystal structure of the hexahistidine-tagged mouse recombinant catalytic subunit (H6-rC) of cAMP-dependent protein kinase (cAPK), complexed with a 20-residue peptide inhibitor from the heat-stable protein kinase inhibitor PKI(5-24) and adenosine, was determined at 2.2 A resolution. Novel crystallization conditions were required to grow the ternary complex crystals. The structure was refined to a final crystallographic R-factor of 18.2% with good stereochemical parameters. The "active" enzyme adopts a "closed" conformation as found in rC:PKI(5-24) [Knighton et al. (1991a,b) Science 253, 407-414, 414-420] and packs in a similar manner with the peptide providing a major contact surface. This structure clearly defines the subsites of the unique nucleotide binding site found in the protein kinase family. The adenosine occupies a mostly hydrophobic pocket at the base of the cleft between the two lobes and is completely buried. The missing triphosphate moiety of ATP is filled with a water molecule (Wtr 415) which replaces the gamma-phosphate of ATP. The glycine-rich loop between beta1 and beta2 helps to anchor the phosphates while the ribose ring is buried beneath beta-strand 2. Another ordered water molecule (Wtr 375) is pentacoordinated with polar atoms from adenosine, Leu 49 in beta-strand 1, Glu 127 in the linker strand between the two lobes, Tyr 330, and a third water molecule, Wtr 359. The conserved nucleotide fold can be defined as a lid comprised of beta-strand 1, the glycine-rich loop, and beta-strand 2. The adenine ring is buried beneath beta-strand 1 and the linker strand (120-127) that joins the small and large lobes. The C-terminal tail containing Tyr 330, a segment that lies outside the conserved core, covers this fold and anchors it in a closed conformation. The main-chain atoms of the flexible glycine-rich loop (residues 50-55) in the ATP binding domain have a mean B-factor of 41.4 A2. This loop is quite mobile, in striking contrast to the other conserved loops that converge at the active site cleft. The catalytic loop (residues 166-171) and the Mg2+ positioning loop (residues 184-186) are a stable part of the large lobe and have low B-factors in all structures solved to date. The stability of the glycine-rich loop is highly dependent on the ligands that occupy the active site cleft with maximum stability achieved in the ternary complex containing Mg x ATP and the peptide inhibitor. In this ternary complex the gamma-phosphate is secured between both lobes by hydrogen bonds to the backbone amide of Ser 53 in the glycine-rich loop and the amino group of Lys 168 in the catalytic loop. In the adenosine ternary complex the water molecule replacing the gamma-phosphate hydrogen bonds between Lys 168 and Asp 166 and makes no contact with the small lobe. This glycine-rich loop is thus the most mobile component of the active site cleft, with the tip of the loop being highly sensitive to what occupies the gamma-subsite.
Conversion of polymers of methyl- and vinylsilane to Si-C ceramics
NASA Technical Reports Server (NTRS)
Hurwitz, Frances I.; Kacik, Terrance A.; Bu, Xin-Ya; Masnovi, John; Heimann, Paula J.; Beyene, Kassahun
1994-01-01
Poly(methylsilane) and poly(vinylsilane) were synthesized using a titanocene catalyst, and their pyrolytic conversion to ceramics was followed using a combination of thermal analysis and infrared spectroscopy. The two polymers have distinctly different backbone structures, as determined by Si NMR; methylsilane polymerizes to a polysilane, while vinylsilane polymers have predominately polycarbosilane backbone, with some polysilane structure as well. The pyrolysis path and char yield were dependent primarily on backbone structure, with little influence of polymer molecular weight. The majority of the weight loss on conversion occurs below 650 degrees C, although bond rearrangement continues to 1400 degrees C. Poly(vinylsilane) produced a C-rich Si-C ceramic in which the carbon was dispersed on a sufficiently fine level to show resistance to oxidation on heating in air to 1400 degrees C.
Gupta, Sanjay Kumar; Baghel, Madhav Singh; Bhuyan, Chaturbhuja; Ravishankar, B.; Ashok, B. K.; Patil, Panchakshari D.
2012-01-01
Population in an industrialized world is afflicted by urinary stone disease. Kidney stones are common in all kinds of urolithiasis. One distinguished formulation mentioned by Sushruta for management of Ashmari (urolithiasis) is Pashanabhedadi Ghrita (PBG), which is in clinical practice since centuries. Validation of drug is the requirement of time through the experimental study. In this study, trial of PBG has been made against ammonium oxalate rich diet and gentamicin injection induced renal calculi in albino rats. The calculi were induced by gentamicin injection and ammonium oxalate rich diet. Test drug was administered concomitantly in the dose of 900 mg/kg for 15 consecutive days. Rats were sacrificed on the 16th day. Parameters like kidney weight, serum biochemical, kidney tissue and histopathology of kidney were studied. Concomitant treatment of PBG attenuates blood biochemical parameters non-significantly, where as it significantly attenuated lipid peroxidation and enhanced glutathione and glutathione peroxidase activities. It also decreased crystal deposition markedly into the renal tubules in number as well as size and prevented damage to the renal tubules. The findings showed that PBG is having significant anti-urolithiatic activities against ammonium oxalate rich diet plus gentamicine injection induced urolithiasis in rats. PMID:23723654
Gupta, Sanjay Kumar; Baghel, Madhav Singh; Bhuyan, Chaturbhuja; Ravishankar, B; Ashok, B K; Patil, Panchakshari D
2012-07-01
Population in an industrialized world is afflicted by urinary stone disease. Kidney stones are common in all kinds of urolithiasis. One distinguished formulation mentioned by Sushruta for management of Ashmari (urolithiasis) is Pashanabhedadi Ghrita (PBG), which is in clinical practice since centuries. Validation of drug is the requirement of time through the experimental study. In this study, trial of PBG has been made against ammonium oxalate rich diet and gentamicin injection induced renal calculi in albino rats. The calculi were induced by gentamicin injection and ammonium oxalate rich diet. Test drug was administered concomitantly in the dose of 900 mg/kg for 15 consecutive days. Rats were sacrificed on the 16(th) day. Parameters like kidney weight, serum biochemical, kidney tissue and histopathology of kidney were studied. Concomitant treatment of PBG attenuates blood biochemical parameters non-significantly, where as it significantly attenuated lipid peroxidation and enhanced glutathione and glutathione peroxidase activities. It also decreased crystal deposition markedly into the renal tubules in number as well as size and prevented damage to the renal tubules. The findings showed that PBG is having significant anti-urolithiatic activities against ammonium oxalate rich diet plus gentamicine injection induced urolithiasis in rats.
Bugna, G C; Chanton, J P; Stauffer, T B; MacIntyre, W G; Libelo, E L
2005-07-01
The relative importance of jet fuel biodegradation relative to the respiration of natural organic matter in a contaminated organic-rich aquifer underlying a fire training area at Tyndall Air Force Base, Florida, USA was determined with isotopic measurements. Thirteen wells were sampled and analyzed for BTX (benzene, toluene, xylene), dissolved inorganic carbon (DIC) and CH4 concentrations, and delta13C and 14C of DIC. Results range from non-detectable to 3790 ppb, 1.4-24 mM, 0.2-776 microM, +5.8 per thousand to -22 per thousand, and from 52 to 99 pmc, respectively. Residual fuel was confined to two center wells underlying the fire training area. DIC and CH4 concentrations were elevated down-gradient of the contamination, but also at sites that were not in the apparent flow path of the contaminated groundwater. DIC exhibited greatest delta13C enrichment at highest DIC and CH4 concentrations indicating that CH4 production was an important respiration mode. Radiocarbon-depleted DIC was observed at sites with high hydrocarbon concentrations and down-gradient of the site. The results indicate that while natural attenuation was not rapidly reducing the quantity of free product overlying the aquifer at the site of contamination, it was at least constraining its flow away from the spill site. Apparently under the conditions of this study, BTX was degraded as rapidly as it was dissolved.
Multiple functions of the leucine-rich repeat protein LrrA of Treponema denticola.
Ikegami, Akihiko; Honma, Kiyonobu; Sharma, Ashu; Kuramitsu, Howard K
2004-08-01
The gene lrrA, encoding a leucine-rich repeat protein, LrrA, that contains eight consensus tandem repeats of 23 amino acid residues, has been identified in Treponema denticola ATCC 35405. A leucine-rich repeat is a generally useful protein-binding motif, and proteins containing this repeat are typically involved in protein-protein interactions. Southern blot analysis demonstrated that T. denticola ATCC 35405 expresses the lrrA gene, but the gene was not identified in T. denticola ATCC 33520. In order to analyze the functions of LrrA in T. denticola, an lrrA-inactivated mutant of strain ATCC 35405 and an lrrA gene expression transformant of strain ATCC 33520 were constructed. Characterization of the mutant and transformant demonstrated that LrrA is associated with the extracytoplasmic fraction of T. denticola and expresses multifunctional properties. It was demonstrated that the attachment of strain ATCC 35405 to HEp-2 cell cultures and coaggregation with Tannerella forsythensis were attenuated by the lrrA mutation. In addition, an in vitro binding assay demonstrated specific binding of LrrA to a portion of the Tannerella forsythensis leucine-rich repeat protein, BspA, which is mediated by the N-terminal region of LrrA. It was also observed that the lrrA mutation caused a reduction of swarming in T. denticola ATCC 35405 and consequently attenuated tissue penetration. These results suggest that the leucine-rich repeat protein LrrA plays a role in the attachment and penetration of human epithelial cells and coaggregation with Tannerella forsythensis. These properties may play important roles in the virulence of T. denticola.
Hydrogen-rich scandium compounds at high pressures
NASA Astrophysics Data System (ADS)
Abe, Kazutaka
2017-10-01
Scandium hydrides at high pressures have been investigated by using ab initio density functional calculations. Although the stable scandium hydride so far known to have the highest content rate of hydrogen is ScH3, other more hydrogen-rich compounds are found to be possible at high pressures. These are ScH4 in the I 4 /m m m structure above 160 GPa, ScH6 in the P 63/m m c structure from 135 to 265 GPa, and ScH6 in the I m 3 ¯m structure above 265 GPa. The three phases are all metallic, and the superconducting transition temperatures estimated from the extended McMillan equation are 67 K in the I 4 /m m m ScH4 at 195 GPa, 63 K in the P 63/m m c ScH6 at 145 GPa, and 130 K in the I m 3 ¯m ScH6 at 285 GPa. While the I 4 /m m m tetrahydride and the I m 3 ¯m hexahydride were similarly predicted for yttrium (another group-3 element), the P 63/m m c hexahydride is possible only for scandium. The smaller atomic size of scandium stabilizes the P 63/m m c structure, and other nearby d -block elements, whose atomic sizes are smaller or comparable, might be likewise capable of forming such polyhydrides.
Michalak, Gregory; Kadirvel, Ramanathan; Dai, Daying; Gilvarry, Michael; Duffy, Sharon; Kallmes, David F; McCollough, Cynthia; Leng, Shuai
2017-01-01
Background and purpose Because computed tomography (CT) is the most commonly used imaging modality for the evaluation of acute ischemic stroke patients, developing CT-based techniques for improving clot characterization could prove useful. The purpose of this in-vitro study was to determine which single-energy or dual-energy CT techniques provided optimum discrimination between red blood cell (RBC) and fibrin-rich clots. Materials and methods Seven clot types with varying fibrin and RBC densities were made (90% RBC, 99% RBC, 63% RBC, 36% RBC, 18% RBC and 0% RBC with high and low fibrin density) and their composition was verified histologically. Ten of each clot type were created and scanned with a second generation dual source scanner using three single (80 kV, 100 kV, 120 kV) and two dual-energy protocols (80/Sn 140 kV and 100/Sn 140 kV). A region of interest (ROI) was placed over each clot and mean attenuation was measured. Receiver operating characteristic curves were calculated at each energy level to determine the accuracy at differentiating RBC-rich clots from fibrin-rich clots. Results Clot attenuation increased with RBC content at all energy levels. Single-energy at 80 kV and 120 kV and dual-energy 80/Sn 140 kV protocols allowed for distinguishing between all clot types, with the exception of 36% RBC and 18% RBC. On receiver operating characteristic curve analysis, the 80/Sn 140 kV dual-energy protocol had the highest area under the curve for distinguishing between fibrin-rich and RBC-rich clots (area under the curve 0.99). Conclusions Dual-energy CT with 80/Sn 140 kV had the highest accuracy for differentiating RBC-rich and fibrin-rich in-vitro thrombi. Further studies are needed to study the utility of non-contrast dual-energy CT in thrombus characterization in acute ischemic stroke. PMID:28604189
Performance of PRP Associated with Porous Chitosan as a Composite Scaffold for Regenerative Medicine
Shimojo, Andréa Arruda Martins; Perez, Amanda Gomes Marcelino; Galdames, Sofia Elisa Moraga; Brissac, Isabela Cambraia de Souza; Santana, Maria Helena Andrade
2015-01-01
This study aimed to evaluate the in vitro performance of activated platelet-rich plasma associated with porous sponges of chitosan as a composite scaffold for proliferation and osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells. The sponges were prepared by controlled freezing (−20, −80, or −196°C) and lyophilization of chitosan solutions (1, 2, or 3% w/v). The platelet-rich plasma was obtained from controlled centrifugation of whole blood and activated with calcium and autologous serum. The composite scaffolds were prepared by embedding the sponges with the activated platelet-rich plasma. The results showed the performance of the scaffolds was superior to that of activated platelet-rich plasma alone, in terms of delaying the release of growth factors and increased proliferation of the stem cells. The best preparation conditions of chitosan composite scaffolds that coordinated the physicochemical and mechanical properties and cell proliferation were 3% (w/v) chitosan and a −20°C freezing temperature, while −196°C favored osteogenic differentiation. Although the composite scaffolds are promising for regenerative medicine, the structures require stabilization to prevent the collapse observed after five days. PMID:25821851
NASA Astrophysics Data System (ADS)
Farid, Ghulam; Murtaza, Ghulam; Umair, Muhammad; Shahab Arif, Hafiz; Saad Ali, Hafiz; Muhammad, Nawaz; Ahmad, Mukhtar
2018-05-01
Sol-Gel auto combustion technique was used to synthesis La3+substituted LiCoO2 lithium-rich cathode materials to improve the cycling performance and rate capability. Samples with different concentration of La containing LiCo1‑xLaxO2 (with 0 ≤ x ≤ 0.20) were chemically prepared and calcined the obtained powders at 850 °C for 6 h. Various techniques for the investigation of lanthanum behaviour in LiCoO2 have been utilised, such as x-ray diffraction (XRD), Field emission scanning electron microscope (FESEM), Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Near Edge x-ray absorption spectroscopy (NEXAS), Galvanostatic charge-discharge tests and cyclic voltammetry (CV). The formation of a hexagonal lattice of the α-NaFeO2 structure of LiCoO2, having space group R-3m is confirmed by x-ray diffraction analysis. FESEM results reveal that by increasing La contents the grain growth becomes distinct, well defined and smaller grains obtained. ATR-FTIR confirms the functional bonding in the prepared samples, as well XANES spectra reveals the electronic configuration valence state, chemical bonding character and local coordination of a specific atom. Maximum discharging capacities were observed in the La-doped material which is 182.38 mAhg‑1 and 56.2 mAhg‑1 at 0.1C and 5 C respectively and on average, this is more than 5% higher as compared to the pure LiCoO2. After 5C, the discharge capacity of the doped material at 0.1C can again reach 163.83 mAhg‑1, about 89% of the discharge capacity obtained in the first cycle. When 2032 type coin cells were cycled at a constant rate, an excellent cycling performance with capacity retention by a factor of ∼2 in comparison to the pristine LiCoO2 was observed for the composite cathode containing 4.0 mol% La. This reveals the structural stability induced by La doping. Remarkable improvement in reversibility and stability of the La-doped electrodes shown by cyclic voltammetry (CV). These composite cathodes might be very useful for high rate power applications.
NASA Technical Reports Server (NTRS)
Reynaud, F.
1988-01-01
In electron diffraction patterns of nickel-rich beta-NiAl alloys, many anomalies are observed. One of these is the appearance of diffuse intensity maxima between the reflexions of the B2 structure. This is explained by the short-range ordering of the excess nickel atoms on the simple cubic sublattice occupied only by aluminum atoms in the stoichiometric, perfectly ordered NiAl alloy. After annealing Ni 37.5 atomic percent Al and Ni 37.75 atomic percent Al for 1 week at 300 and 400 C, the diffuse intensity maxima transformed into sharp superstructure reflexions. These reflexions are explained by the formation of the four possible variants of an ordered hexagonal superstructure corresponding to the Ni2Al composition. This structure is closely related to the Ni2Al3 structure (same space group) formed by the ordering of vacancies on the nickel sublattice in aluminum-rich beta-NiAl alloys.
2013-01-01
Background In stark contrast to the wealth of detail about C. elegans developmental biology and molecular genetics, biologists lack basic data for understanding the abundance and distribution of Caenorhabditis species in natural areas that are unperturbed by human influence. Methods Here we report the analysis of dense sampling from a small, remote site in the Amazonian rain forest of the Nouragues Natural Reserve in French Guiana. Results Sampling of rotting fruits and flowers revealed proliferating populations of Caenorhabditis, with up to three different species co-occurring within a single substrate sample, indicating remarkable overlap of local microhabitats. We isolated six species, representing the highest local species richness for Caenorhabditis encountered to date, including both tropically cosmopolitan and geographically restricted species not previously isolated elsewhere. We also documented the structure of within-species molecular diversity at multiple spatial scales, focusing on 57 C. briggsae isolates from French Guiana. Two distinct genetic subgroups co-occur even within a single fruit. However, the structure of C. briggsae population genetic diversity in French Guiana does not result from strong local patterning but instead presents a microcosm of global patterns of differentiation. We further integrate our observations with new data from nearly 50 additional recently collected C. briggsae isolates from both tropical and temperate regions of the world to re-evaluate local and global patterns of intraspecific diversity, providing the most comprehensive analysis to date for C. briggsae population structure across multiple spatial scales. Conclusions The abundance and species richness of Caenorhabditis nematodes is high in a Neotropical rainforest habitat that is subject to minimal human interference. Microhabitat preferences overlap for different local species, although global distributions include both cosmopolitan and geographically restricted groups. Local samples for the cosmopolitan C. briggsae mirror its pan-tropical patterns of intraspecific polymorphism. It remains an important challenge to decipher what drives Caenorhabditis distributions and diversity within and between species. PMID:23311925
NASA Technical Reports Server (NTRS)
Nguyen, H. C.
1984-01-01
The microstructure, phase chemistry, and creep and hot tensile properties were studied as a function of tantalum and carbon levels in Mar-M247 type single crystal alloys. Microstructural studies showed that several types of carbides (MC, M23C6 and M5C) are present in the normal carbon (0.10 wt % C) alloys after heat treatment. In general, the composition of the MC carbides changes from titanium rich to tantalum rich as the tantalum level in the alloy increases. Small M23C6 carbides are present in all alloys. Tungsten rich M6C carbides are also observed in the alloy containing no tantalum. No carbides are present in the low carbon (0.01 wt % C) alloy series. The morphology of gamma prime is observed to be sensitive to heat treatment and tantalum level in the alloy. Cuboidal gamma prime is present in all the as cast structures. After heat treatment, the gamma prime precipitates tend to have a more spheroidal like morphology, and this tendency increases as the tantalum level decreases. On prolonged aging, the gamma prime reverts back to a cuboidal morphology or under stress at high temperatures, forms a rafted structure. The weight fraction and lattice parameter of the spheroidal gamma prime increases with increasing tantalum content. Changes in the phase chemistry of the gamma prime matrix and gamma prime have also been analyzed using phase extraction techniques. The partitioning ratio decreases for tungsten and aluminum and increases for tantalum as the tantalum content increases for both alloy series; no significant changes occur in the partitioning ratios of the other alloying elements. A reduction in secondary creep rate and an increase in rupture time result from increasing the tantalum content and decreasing the carbon level.
Climate mediates the effects of disturbance on ant assemblage structure.
Gibb, Heloise; Sanders, Nathan J; Dunn, Robert R; Watson, Simon; Photakis, Manoli; Abril, Silvia; Andersen, Alan N; Angulo, Elena; Armbrecht, Inge; Arnan, Xavier; Baccaro, Fabricio B; Bishop, Tom R; Boulay, Raphael; Castracani, Cristina; Del Toro, Israel; Delsinne, Thibaut; Diaz, Mireia; Donoso, David A; Enríquez, Martha L; Fayle, Tom M; Feener, Donald H; Fitzpatrick, Matthew C; Gómez, Crisanto; Grasso, Donato A; Groc, Sarah; Heterick, Brian; Hoffmann, Benjamin D; Lach, Lori; Lattke, John; Leponce, Maurice; Lessard, Jean-Philippe; Longino, John; Lucky, Andrea; Majer, Jonathan; Menke, Sean B; Mezger, Dirk; Mori, Alessandra; Munyai, Thinandavha C; Paknia, Omid; Pearce-Duvet, Jessica; Pfeiffer, Martin; Philpott, Stacy M; de Souza, Jorge L P; Tista, Melanie; Vasconcelos, Heraldo L; Vonshak, Merav; Parr, Catherine L
2015-06-07
Many studies have focused on the impacts of climate change on biological assemblages, yet little is known about how climate interacts with other major anthropogenic influences on biodiversity, such as habitat disturbance. Using a unique global database of 1128 local ant assemblages, we examined whether climate mediates the effects of habitat disturbance on assemblage structure at a global scale. Species richness and evenness were associated positively with temperature, and negatively with disturbance. However, the interaction among temperature, precipitation and disturbance shaped species richness and evenness. The effect was manifested through a failure of species richness to increase substantially with temperature in transformed habitats at low precipitation. At low precipitation levels, evenness increased with temperature in undisturbed sites, peaked at medium temperatures in disturbed sites and remained low in transformed sites. In warmer climates with lower rainfall, the effects of increasing disturbance on species richness and evenness were akin to decreases in temperature of up to 9°C. Anthropogenic disturbance and ongoing climate change may interact in complicated ways to shape the structure of assemblages, with hot, arid environments likely to be at greatest risk. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
2017-05-04
Wallraff *Correspondence: philipp.kurpiers@phys.ethz.ch Department of Physics, ETH Zürich, Zürich, CH-8093, Switzerland Abstract Low- loss waveguides...and single photon levels. More specifically, we characterize the frequency-dependent loss of a range of coaxial and rectangular microwave waveguides...down to 0.005 dB/m using a resonant-cavity technique. We study the loss tangent and relative permittivity of commonly used dielectric waveguide materials
Design and R&D of RICH detectors for EIC experiments
Del Dotto, A.; Wong, C. -P.; Allison, L.; ...
2017-03-18
An Electron-Ion Collider (EIC) has been proposed to further explore the strong force and QCD, focusing on the structure and the interaction of gluon-dominated matter. A generic detector R&D program (EIC PID consortium) for the particle identification in EIC experiments was formed to explore technologically advanced solutions in this scope. In this context two Ring Imaging Cherenkov (RICH) counters have been proposed: a modular RICH detector which consists of an aerogel radiator, a Fresnel lens, a mirrored box, and pixelated photon sensor; a dual-radiator RICH, consisting of an aerogel radiator and C 2F 6 gas in a mirror-focused configuration. Asmore » a result, we present the simulations of the two detectors and their estimated performance.« less
6-shogaol-rich extract from ginger up-regulates the antioxidant defense systems in cells and mice.
Bak, Min-Ji; Ok, Seon; Jun, Mira; Jeong, Woo-Sik
2012-07-04
The rhizome of ginger (Zingiber officinale Roscoe) is known to have several bioactive compounds including gingerols and shogaols which possess beneficial health properties such as anti-inflammatory and chemopreventive effects. Based on recent observations that 6-shogaol may have more potent bioactivity than 6-gingerol, we obtained a 6-shogaol-rich extract from ginger and examined its effects on the nuclear factor E2-related factor2 (Nrf2)/antioxidant response element (ARE) pathway in vitro and in vivo. 6-Shogaol-rich extract was produced by extracting ginger powder with 95% ethanol at 80 °C after drying at 80 °C (GEE8080). GEE8080 contained over 6-fold more 6-shogaol compared to the room temperature extract (GEE80RT). In HepG2 cells, GEE8080 displayed much stronger inductions of ARE-reporter gene activity and Nrf2 expression than GEE80RT. GEE8080 stimulated phosphorylations of mitogen-activated protein kinases (MAPKs) such as ERK, JNK, and p38. Moreover, the GEE8080-induced expressions of Nrf2 and HO-1 were attenuated by treatments of SB202190 (a p38 specific inhibitor) and LY294002 (an Akt specific inhibitor). In a mouse model, the GEE8080 decreased the diethylnitrosamine (DEN)-mediated elevations of serum aspartate transaminase and alanine transaminase as well as the DEN-induced hepatic lipid peroxidation. Inductions of Nrf2 and HO-1 by GEE8080 were also confirmed in the mice. In addition, the administration of GEE8080 to the mice also restored the DEN-reduced activity and protein expression of hepatic antioxidant enzymes such as superoxide dismutase, glutathione peroxidase and catalase. In conclusion, GEE8080, a 6-shogaol-rich ginger extract, may enhance antioxidant defense mechanism through the induction of Nrf2 and HO-1 regulated by p38 MAPK and PI3k/Akt pathway in vitro and in vivo.
Gravity Effects in Small-Scale Structural Modeling
1988-12-01
attenuating material (Reference 23). The materials tested were cellular concrete with fly ash, expanded polystyrene concrete with fly ash, foamed...polyurethane, foamed sulfer and molded expanded polystyrene . The studies showed that with proper adjustments in the cement content, water-cement ratio and foam...Compression (Ou,c) 4000 100 Tension (Ou,t) 400 10 E/Quc 1000 1000 Ou,c/Ou,t 10 10 Further analysis of the properties of expanded polystyrene concrete with
Liu, Hao; Smedskjaer, Morten M; Tao, Haizheng; Jensen, Lars R; Zhao, Xiujian; Yue, Yuanzheng
2016-04-28
It has been reported that the configurational heat capacity (C(p,conf)) first increases and then becomes saturated with increasing B2O3/SiO2 ratio in borate-silicate mixed glasses. Through Raman spectroscopy measurements, we have, in this work, found an implication for the intermediate range order (IRO) structural connection to the composition dependence of the C(p,conf) of borate-silicate mixed glasses. In the silica-rich compositions, the C(p,conf) rapidly increases with increasing B2O3 content. This is attributed to the increase of the content of the B-O-Si network units ([B2Si2O8](2-)) and 6-membered borate rings with 1 or 2 B(4). In the boron-rich compositions, the C(p,conf) is almost constant, independent of the increase in the B2O3/SiO2 ratio. This is likely attributed to the counteraction between the decrease of the fraction of two types of metaborate groups and the increase of the fraction of other borate superstructural units (particularly 6-membered borate rings). The overall results suggest that the glasses containing more types of superstructural units have a larger C(p,conf).
The effects of annealing on the microstructure and mechanical properties of Fe 28Ni 18Mn 33Al 21
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Fanling; Qiu, Jingwen; Baker, Ian
In this paper, As-cast Fe 28Ni 18Mn 33Al 21, which consists of aligned, 50 nm, (Ni, Al)-rich B2, and (Fe, Mn)-rich f.c.c. phases, was annealed at a variety of temperatures up to 1423 K and the microstructure and mechanical properties were examined. It was shown that the as-cast microstructure arises from a eutectoid transformation at ~1300 K. Annealing at temperatures ≤1073 K produces β-Mn-structured precipitates and hardness values up to 816 HV, while annealing at temperatures >1073 K leads to dramatic coarsening of the two-phase B2/f.c.c. microstructure (up to 5.5 µm after 50 h at 1273 K), but does notmore » lead to β-Mn precipitation. Interestingly, annealing at temperatures >1073 K delays the onset of β-Mn precipitation during subsequent anneals at lower temperatures. Coarsening the B2/f.c.c. lamellar structure by annealing at higher temperatures softens it and leads to increases in ductility from fracture before yield to ~8 % elongation. Finally, the presence of β-Mn precipitates makes the very fine, brittle B2/f.c.c. microstructures even more brittle, but significant ductility (8.4 % elongation) is possible even with β-Mn precipitates present if the B2/f.c.c. matrix is coarse and, hence, more ductile.« less
The effects of annealing on the microstructure and mechanical properties of Fe 28Ni 18Mn 33Al 21
Meng, Fanling; Qiu, Jingwen; Baker, Ian; ...
2015-08-20
In this paper, As-cast Fe 28Ni 18Mn 33Al 21, which consists of aligned, 50 nm, (Ni, Al)-rich B2, and (Fe, Mn)-rich f.c.c. phases, was annealed at a variety of temperatures up to 1423 K and the microstructure and mechanical properties were examined. It was shown that the as-cast microstructure arises from a eutectoid transformation at ~1300 K. Annealing at temperatures ≤1073 K produces β-Mn-structured precipitates and hardness values up to 816 HV, while annealing at temperatures >1073 K leads to dramatic coarsening of the two-phase B2/f.c.c. microstructure (up to 5.5 µm after 50 h at 1273 K), but does notmore » lead to β-Mn precipitation. Interestingly, annealing at temperatures >1073 K delays the onset of β-Mn precipitation during subsequent anneals at lower temperatures. Coarsening the B2/f.c.c. lamellar structure by annealing at higher temperatures softens it and leads to increases in ductility from fracture before yield to ~8 % elongation. Finally, the presence of β-Mn precipitates makes the very fine, brittle B2/f.c.c. microstructures even more brittle, but significant ductility (8.4 % elongation) is possible even with β-Mn precipitates present if the B2/f.c.c. matrix is coarse and, hence, more ductile.« less
Cartridge Casing Catcher With Reduced Firearm Ejection Port Flash and Noise
2009-05-26
acoustic tuner structure comprises at least one of a quarter wave tuner, a Quincke tuner, and a Helmholtz tuner. The magnetic material comprises magnetic...of noise) will be attenuated. FIG. 2B illustrates a Herschel- Quincke (usually simply called Quincke ) or interference tuner 10’. The Quincke tnner... Quincke tuner, and a Helmholtz resonator similar to the acoustic tnners illustrated in FIGS. 2(A-C), respectively. The acoustic tnner structure 240 of
Lahr, Roni M; Mack, Seshat M; Héroux, Annie; Blagden, Sarah P; Bousquet-Antonelli, Cécile; Deragon, Jean-Marc; Berman, Andrea J
2015-09-18
La-related protein 1 (LARP1) regulates the stability of many mRNAs. These include 5'TOPs, mTOR-kinase responsive mRNAs with pyrimidine-rich 5' UTRs, which encode ribosomal proteins and translation factors. We determined that the highly conserved LARP1-specific C-terminal DM15 region of human LARP1 directly binds a 5'TOP sequence. The crystal structure of this DM15 region refined to 1.86 Å resolution has three structurally related and evolutionarily conserved helix-turn-helix modules within each monomer. These motifs resemble HEAT repeats, ubiquitous helical protein-binding structures, but their sequences are inconsistent with consensus sequences of known HEAT modules, suggesting this structure has been repurposed for RNA interactions. A putative mTORC1-recognition sequence sits within a flexible loop C-terminal to these repeats. We also present modelling of pyrimidine-rich single-stranded RNA onto the highly conserved surface of the DM15 region. These studies lay the foundation necessary for proceeding toward a structural mechanism by which LARP1 links mTOR signalling to ribosome biogenesis. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Lahr, Roni M.; Mack, Seshat M.; Heroux, Annie; ...
2015-07-22
La-related protein 1 (LARP1) regulates the stability of many mRNAs. These include 5'TOPs, mTOR-kinase responsive mRNAs with pyrimidine-rich 5' UTRs, which encode ribosomal proteins and translation factors. We determined that the highly conserved LARP1-specific C-terminal DM15 region of human LARP1 directly binds a 5'TOP sequence. The crystal structure of this DM15 region refined to 1.86 Å resolution has three structurally related and evolutionarily conserved helix-turn-helix modules within each monomer. These motifs resemble HEAT repeats, ubiquitous helical protein-binding structures, but their sequences are inconsistent with consensus sequences of known HEAT modules, suggesting this structure has been repurposed for RNA interactions. Amore » putative mTORC1-recognition sequence sits within a flexible loop C-terminal to these repeats. We also present modelling of pyrimidine-rich single-stranded RNA onto the highly conserved surface of the DM15 region. Ultimately, these studies lay the foundation necessary for proceeding toward a structural mechanism by which LARP1 links mTOR signalling to ribosome biogenesis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oh, Pilgun; Oh, Seung -Min; Li, Wangda
The Ni-rich layered oxides with a Ni content of >0.5 are drawing much attention recently to increase the energy density of lithium-ion batteries. However, the Ni-rich layered oxides suffer from aggressive reaction of the cathode surface with the organic electrolyte at the higher operating voltages, resulting in consequent impedance rise and capacity fade. To overcome this difficulty, we present here a heterostructure composed of a Ni-rich LiNi 0.7Co 0.15Mn 0.15O 2 core and a Li-rich Li 1.2-xNi 0.2Mn 0.6O 2 shell, incorporating the advantageous features of the structural stability of the core and chemical stability of the shell. With amore » unique chemical treatment for the activation of the Li 2MnO 3 phase of the shell, a high capacity is realized with the Li-rich shell material. Aberration-corrected scanning transmission electron microscopy (STEM) provides direct evidence for the formation of surface Li-rich shell layer. Finally, the heterostructure exhibits a high capacity retention of 98% and a discharge- voltage retention of 97% during 100 cycles with a discharge capacity of 190 mA h g -1 (at 2.0–4.5 V under C/3 rate, 1C = 200 mA g -1).« less
LeEix1 functions as a decoy receptor to attenuate LeEix2 signaling.
Bar, Maya; Sharfman, Miya; Avni, Adi
2011-03-01
The receptors for the fungal elicitor EIX (LeEix1 and LeEix2) belong to a class of leucine-rich repeat cell-surface glycoproteins with a signal for receptor-mediated endocytosis. Both receptors are able to bind the EIX elicitor while only the LeEix2 receptor mediates defense responses. We show that LeEix1 acts as a decoy receptor and attenuates EIX induced internalization and signaling of the LeEix2 receptor. We demonstrate that BAK1 binds LeEix1 but not LeEix2. In plants where BAK1 was silenced, LeEix1 was no longer able to attenuate plant responses to EIX, indicating that BAK1 is required for this attenuation. We suggest that LeEix1 functions as a decoy receptor for LeEix2, a function which requires the kinase activity of BAK1.
Bowles, Marlin L; Jones, Michael D
2013-03-01
Understanding temporal effects of fire frequency on plant species diversity and vegetation structure is critical for managing tallgrass prairie (TGP), which occupies a mid-continental longitudinal precipitation and productivity gradient. Eastern TGP has contributed little information toward understanding whether vegetation-fire interactions are uniform or change across this biome. We resampled 34 fire-managed mid- and late-successional ungrazed TGP remnants occurring across a dry to wet-mesic moisture gradient in the Chicago region of Illinois, USA. We compared hypotheses that burning acts either as a stabilizing force or causes change in diversity and structure, depending upon fire frequency and successional stage. Based on western TGP, we expected a unimodal species richness distribution across a cover-productivity gradient, variable functional group responses to fire frequency, and a negative relationship between fire frequency and species richness. Species diversity was unimodal across the cover gradient and was more strongly humpbacked in stands with greater fire frequency. In support of a stabilizing hypothesis, temporal similarity of late-successional vegetation had a logarithmic relationship with increasing fire frequency, while richness and evenness remained stable. Temporal similarity within mid-successional stands was not correlated with fire frequency, while richness increased and evenness decreased over time. Functional group responses to fire frequency were variable. Summer forb richness increased under high fire frequency, while C4 grasses, spring forbs, and nitrogen-fixing species decreased with fire exclusion. On mesic and wet-mesic sites, vegetation structure measured by the ratio of woody to graminoid species was negatively correlated with abundance of forbs and with fire frequency. Our findings that species richness responds unimodally to an environmental-productivity gradient, and that fire exclusion increases woody vegetation and leads to loss of C4 and N-fixing species, suggest that these processes are uniform across the TGP biome and not affected by its rainfall-productivity gradient. However, increasing fire frequency in eastern TGP appears to increase richness of summer forbs and stabilize late-successional vegetation in the absence of grazing, and these processes may differ across the longitudinal axis of TGP. Managing species diversity in ungrazed eastern TGP may be dependent upon high fire frequency that removes woody vegetation and prevents biomass accumulation.
Structural change of the frustule of diatom by thermal treatment
NASA Astrophysics Data System (ADS)
Arasuna, Akane; Okuno, Masayuki
2018-12-01
The external skeleton, frustule, of a diatom is composed of hydrous amorphous silica and amino acids. In this study, the structural changes in the frustule of Chaetoceros calcitrans after thermal treatment up to 1200 °C were investigated using X-ray diffraction and attenuated total reflection infrared spectroscopy and Raman spectroscopy. Their structural changes after thermal treatment give important information to elucidate the unheated structure of the frustule and its crystallization process. In addition, this study is almost the first report to discuss the structure of diatom frustule in detail with Raman spectrum. The unheated structure of the frustule has the relatively ordered and dominant six-membered ring structure made of SiO4 tetrahedra. The sample heated at 800 °C has the more ordered six-membered ring structure observed in quartz or cristobalite. Water molecules and silanol (Si-OH) included in the frustule are dehydrated at this temperature. This dehydration may promote the formation of ordered and polymerized structure. The structure of the frustule after heating at 1200 °C is similar to that of low-cristobalite. However, additional heating is required for complete crystallization.
Lignin-rich biomass of cotton by-products for biorefineries via pyrolysis.
Chen, Jiao; Liang, Jiajin; Wu, Shubin
2016-10-01
Pyrolysis was demonstrated to investigate the thermal decomposition characteristics and potential of lignin-rich cotton by-products cotton exocarp (CE) and spent mushroom substrate consisted of cotton by-products (MSC) for biorefineries. The chemical component and structure alteration of CE and MSC was found to affect their thermochemical behaviors. The bio-oil yield from CE was 58.13wt% while the maximum yield from MSC was 45.01% at 600°C. The phenolic compounds obtained from CE and MSC were 33.9% and 39.2%, respectively. The yield of acetic acid from MSC between 400 and 600°C was about 30-38% lower than that from CE, which suggests the high quality of bio-oil was obtained. Biochar from MSC via slow pyrolysis had a high mass yield (44.38wt%) with well-developed pore structure. Copyright © 2016 Elsevier Ltd. All rights reserved.
2010-09-01
starting materials at high concentration, such as plasmid DNA (3.6 µg/µL), pure lipofectamine, and pure cholesterol as received from the manufacturer, as...24), including analyzing the chemical composition of individual triglyceride -rich lipoproteins (25). A Raman spectrum appears when a small portion of...J. C., Keim, N. L., and Huser, T. (2005) Raman spectroscopic analysis of biochemical changes in individual triglyceride -rich lipoproteins in the pre
Kinetic studies of methane-ethane mixed gas hydrates by neutron diffraction and Raman spectroscopy.
Murshed, M Mangir; Kuhs, Werner F
2009-04-16
In situ formations of CH(4)-C(2)H(6) mixed gas hydrates were made using high flux neutron diffraction at 270 K and 5 MPa. For this purpose, a feed gas composition of CH(4) and C(2)H(6) (95 mol% CH(4)) was employed. The rates of transformation of spherical grains of deuterated ice Ih into hydrates were measured by time-resolved neutron powder diffraction on D20 at ILL, Grenoble. Phase fractions of the crystalline constituents were obtained from Rietveld refinements. A concomitant formation of structure type I (sI) and structure type II (sII) hydrates were observed soon after the gas pressure was applied. The initial fast formation of sII hydrate reached its maximum volume and started declining very slowly. The formation of sI hydrate followed a sigmoid growth kinetics that slowed down due to diffusion limitation. This observation has been interpreted in terms of a kinetically favored nucleation of the sII hydrate along with a slow transformation into sI. Both powder diffraction and Raman spectroscopic results suggest that a C(2)H(6)-rich sII hydrate was formed at the early part of the clathration, which slowly decreased to approximately 3% after a reaction of 158 days as confirmed by synchrotron XRD. The final persistence of a small portion of sII hydrate points to a miscibility gap between CH(4)-rich sI and C(2)H(6)-rich sII hydrates.
NASA Astrophysics Data System (ADS)
Longbottom, T. L.; Hockaday, W. C.
2016-12-01
Kerogen represents the largest terrestrial organic carbon (OC) reservoir on earth and is vulnerable to remineralization upon exposure to earth's atmosphere. Oxidative weathering of ancient sedimentary organic matter is an immensely transformative process with poorly-constrained mechanisms and flux values in contemporary carbon cycle models. The weathered residuum of organic-rich mudrocks serves as parent material for many modern soils, and it is likely that the structure and dynamics of the resulting soil organic matter pool is inherited directly from kerogen-rich bedrock. We used a combination of solid-state 13-C nuclear magnetic resonance (NMR) spectroscopy, and carbon isotope techniques to describe molecular and isotopic changes that occur throughout oxidative weathering of marine kerogens, and the subsequent formation of modern soils, in two outcropping Cretaceous mudstones of the Eagle Ford and Pepper Formations in central, TX. Gradational production of O-containing functionalities was observed, coupled with reductions in characteristically abundant polymethylenic components of type II kerogens. Organic matter structural parameters, derived from C-H dephasing NMR experiments, also provide the basis for a novel weathering index that accounts for the degree of post-sedimentary diagenetic alteration of samples along the kerogen-soil continuum. Molecular and isotopic mixing models were employed in estimating the proportions of modern and ancient C in soils, as increased incorporation and vulnerability of ancient OC under climatic shifts in temperature and/or precipitation is likely.
Takahara, Ikuko; Akazawa, Yuko; Tabuchi, Maiko; Matsuda, Katsuya; Miyaaki, Hisamitsu; Kido, Youko; Kanda, Yasuko; Taura, Naota; Ohnita, Ken; Takeshima, Fuminao; Sakai, Yusuke; Eguchi, Susumu; Nakashima, Masahiro; Nakao, Kazuhiko
2017-01-01
A high serum level of saturated free fatty acids (FFAs) is associated with the development of nonalcoholic fatty liver disease (NAFLD). X-box binding protein-1 (XBP-1) is activated by FFA treatment upon splicing. XBP-1 is a transcription factor induced by the endoplasmic reticulum (ER) stress sensor endoribonuclease inositol-requiring enzyme 1 alpha (IRE1α). However, the role of XBP-1 in NAFLD remains relatively unexplored. Toyocamycin was recently reported to attenuate the activation of XBP-1, possibly by inducing a conformational change in IRE1α. In this study, we examined the effect of toyocamycin on hepatocyte lipoapoptosis and steatosis. We also explored the effects of toyocamycin in a mouse model of NAFLD. Huh-7 cells and isolated rat primary hepatocytes were treated with palmitic acid (PA), which is a saturated FFA, in the presence or absence of toyocamycin. In addition, male C57BL/6J mice were fed a diet rich in saturated fat, fructose, and cholesterol (FFC) for 4 months, after which the effect of toyocamycin was assessed. Toyocamycin attenuated FFA-induced steatosis. It also significantly reduced PA-induced hepatocyte lipoapoptosis. In addition, toyocamycin reduced the expression of cytosine-cytosine-adenosine-adenosine-thymidine enhancer-binding protein homologous protein (CHOP), which is a key player in ER stress-mediated apoptosis, as well as its downstream cell death modulator, death receptor 5. In the in vivo study, toyocamycin ameliorated the liver injury caused by FFC-induced NAFLD. It also reduced hepatic steatosis and the expression of lipogenic genes. The data we obtained suggest that toyocamycin attenuates hepatocyte lipogenesis and ameliorates NAFLD in vivo and may therefore be beneficial in the treatment of NAFLD in humans.
NASA Astrophysics Data System (ADS)
Goel, V.; Mishra, S.; Ahlawat, A. S.; Sharma, C.; Kotnala, R. K.
2017-12-01
Aerosol particles are generally considered as chemically homogeneous spheres in the retrieval techniques of ground and space borne observations which is not accurate approach and can lead to erroneous observations. For better simulation of optical and radiative properties of aerosols, a good knowledge of aerosol's morphology, chemical composition and internal structure is essential. Till date, many studies have reported the morphology and chemical composition of particles but very few of them provide internal structure and spatial distribution of different chemical species within the particle. The research on the effect of particle internal structure and its contribution to particle optics is extremely limited. In present work, we characterize the PM10 particles collected form typical arid (the Thar Desert, Rajasthan, India) and typical urban (New Delhi, India) environment using microscopic techniques. The particles were milled several times to investigate their internal structure. The EDS (Energy Dispersive X-ray Spectroscopy) spectra were recorded after each milling to check the variation in the chemical composition. In arid environment, Fe, Ca, C, Al, and Mg rich shell was observed over a Si rich particle whereas in urban environment, shell of Hg, Ag, C and N was observed over a Cu rich particle. Based on the observations, different model shapes [homogenous sphere and spheroid; heterogeneous sphere and spheroid; core shell] have been considered for assessing the associated uncertainties with the routine modeling of optical properties where volume equivalent homogeneous sphere approximation is considered. The details will be discussed during presentation.
Crystal structure of centrosymmetric 12-layer sodium-rich eudialyte
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rozenberg, K. A.; Rastsvetaeva, R. K., E-mail: rast@ns.crys.ras.ru; Verin, I. A.
2009-05-15
The structure of a new representative of the eudialyte group with the formula (Na,Sr,K){sub 18}Ca{sub 6}Zr{sub 3}Fe[Si{sub 25}O{sub 72}](OH){sub 2}Cl . H{sub 2}O from the Lovozero massif (Kola Peninsula) was studied by X-ray diffraction. The trigonal unit-cell parameters are a = 14.226 A, c = 30.339 A, sp. gr. R3-barm; the R factor is 0.045 based on 990 reflections. This sample is of interest as a sodium-rich and iron-poor mineral having a rare centrosymmetric structure, in which the M(2) site is occupied predominantly by sodium atoms. The dependence of the formation of centrosymmetric and non-centrosymmetric structures on the composition ofmore » eudialyte-group minerals was analyzed.« less
The micro-structure of laminar premixed, atmospheric-pressure, fuel-rich flames of n-heptane/oxygen/argon has been studied at two equivalence ratios (C/O = 0.63 and C/O = 0.67). A heated quartz microprobe coupled to an online gas chromatography/mass spectrometry (HP 5890 Serie...
Julia I. Burton; Adrian Ares; Sara E. Mulford; Deanna H. Olson; Klaus J. Puettmann
2013-01-01
Concerns about climate change have generated worldwide interest in managing forests for the uptake and storage of carbon (C). Simultaneously, preserving and enhancing structural, functional, and species diversity in forests remains an important objective. Therefore, understanding tradeoffs and synergies among C storage and sequestration and diversity in managed forests...
Farias, Ariel A; Jaksic, Fabian M
2011-07-01
1. Changes in land use and habitat fragmentation are major drivers of global change, and studying their effects on biodiversity constitutes a major research programme. However, biodiversity is a multifaceted concept, with a functional component linking species richness to ecosystem function. Currently, the interaction between functional and taxonomic components of biodiversity under realistic scenarios of habitat degradation is poorly understood. 2. The expected functional richness (FR)-species richness relationship (FRSR) is positive, and attenuated for functional redundancy in species-rich assemblages. Further, environmental filters are expected to flatten that association by sorting species with similar traits. Thus, analysing FRSR can inform about the response of biodiversity to environmental gradients and habitat fragmentation, and its expected functional consequences. 3. Top predators affect ecosystem functioning through prey consumption and are particularly vulnerable to changes in land use and habitat fragmentation, being good indicators of ecosystem health and suitable models for assessing the effects of habitat fragmentation on their FR. 4. Thus, this study analyses the functional redundancy of a vertebrate predator assemblage at temperate forest fragments in a rural landscape of Chiloe island (Chile), testing the existence of environmental filters by contrasting an empirically derived FRSR against those predicted from null models, and testing the association between biodiversity components and the structure of forest fragments. 5. Overall, contrasts against null models indicate that regional factors determine low levels of FR and redundancy for the vertebrate predator assemblage studied, while recorded linear FRSR indicates proportional responses of the two biodiversity components to the structure of forest fragments. Further, most species were positively associated with either fragment size or shape complexity, which are highly correlated. This, and the absence of ecological filters at the single-fragment scale, rendered taxonomically and functionally richer predator assemblages at large complex-shaped fragments. 6. These results predict strong effects of deforestation on both components of biodiversity, potentially affecting the functioning of remnants of native temperate forest ecosystems. Thus, the present study assesses general responses of functional and taxonomic components of biodiversity to a specific human-driven process. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.
Liu, Chanmin; Ma, Jieqiong; Sun, Jianmei; Cheng, Chao; Feng, Zhaojun; Jiang, Hong; Yang, Wei
2017-08-30
The flavonoid-rich extract from Paulownia fortunei flowers (EPF) has been reported to prevent obesity and other lipid metabolism disease. However, the mechanism of its protective effects is not yet clear. The objective of this study was to investigate molecular factors involved in the hypoglycemic and hypolipidemic effects of EPF in obese mice fed a high-fat diet (HFD). Male h ICR (Institute of Cancer Research) mice were fed a HFD containing or not containing the EPF (50 or 100 mg/kg) for eight weeks. EPF reduced body weight gain, lipid accumulation in livers and levels of lipid, glucose and insulin in plasma as well as reduced insulin resistance as compared with the HFD group. EPF significantly decreased serum aminotransferase activity of the HFD group. We observed that EPF administration significantly increased the level of AMP-activated kinase (AMPK) phosphorylation and prevented fat deposits in livers and HepG2 cells, but these effects were blocked by compound C (an AMPK inhibitor). The protective effects of EPF were probably associated with the decrease in HMGCR, SREBP-1c and FAS expressions and the increase in CPT1 and phosphor-IRS-1 expressions. Our results suggest that EPF might be a potential natural candidate for the treatment and/or prevention of overweight and hepatic and metabolic-related alterations induced by HFD.
Ma, Jieqiong; Sun, Jianmei; Cheng, Chao; Feng, Zhaojun; Jiang, Hong; Yang, Wei
2017-01-01
The flavonoid-rich extract from Paulownia fortunei flowers (EPF) has been reported to prevent obesity and other lipid metabolism disease. However, the mechanism of its protective effects is not yet clear. The objective of this study was to investigate molecular factors involved in the hypoglycemic and hypolipidemic effects of EPF in obese mice fed a high-fat diet (HFD). Male h ICR (Institute of Cancer Research) mice were fed a HFD containing or not containing the EPF (50 or 100 mg/kg) for eight weeks. EPF reduced body weight gain, lipid accumulation in livers and levels of lipid, glucose and insulin in plasma as well as reduced insulin resistance as compared with the HFD group. EPF significantly decreased serum aminotransferase activity of the HFD group. We observed that EPF administration significantly increased the level of AMP-activated kinase (AMPK) phosphorylation and prevented fat deposits in livers and HepG2 cells, but these effects were blocked by compound C (an AMPK inhibitor). The protective effects of EPF were probably associated with the decrease in HMGCR, SREBP-1c and FAS expressions and the increase in CPT1 and phosphor-IRS-1 expressions. Our results suggest that EPF might be a potential natural candidate for the treatment and/or prevention of overweight and hepatic and metabolic-related alterations induced by HFD. PMID:28867797
DOE Office of Scientific and Technical Information (OSTI.GOV)
Persson, P. O. A.; Ryves, L.; Tucker, M. D.
2008-10-01
Ti/C and TiC/C multilayers with periods ranging from 2 to 18 nm were grown by filtered high current pulsed cathodic arc. The growth was monitored in situ by ellipsometry and cantilever stress measurements. The ellipsometry results reveal that the optical properties of the carbon vary as a function of thickness. Correspondingly, the stress in each carbon layer as measured in situ exhibits two well defined values: initially the stress is low and then takes on a higher value for the remainder of the layer. Transmission electron microscopy shows that the initial growth of carbon on Ti or TiC layer ismore » oriented with graphitic basal planes aligned parallel to the interface. After 2-4 nm of growth, the graphitic structure transforms to amorphous carbon. Electron energy loss spectroscopy shows that the carbon layer simultaneously undergoes a transition from sp{sup 2} rich to sp{sup 3} rich material.« less
Xing, Zhaoyu; Pan, Wanma; Zhang, Jing; Xu, Xianlin; Zhang, Xuemei; He, Xiaozhou; Fan, Min
2017-01-01
The current research was designed to study the role of hydrogen in renal fibrosis and the renal epithelial to mesenchymal transition (EMT) induced by transforming growth factor-β1 (TGF-β1). Hydrogen rich water (HW) was used to treat animal and cell models. Unilateral ureteral obstruction (UUO) was performed on Balb/c mice to create a model of renal fibrosis. Human kidney proximal tubular epithelial cells (HK-2 cells) were treated with TGF-β1 for 36 h to induce EMT. Serum creatinine (Scr) and blood urea nitrogen (BUN) were measured to test renal function, in addition, kidney histology and immunohistochemical staining of alpha-smooth muscle actin (α-SMA) positive cells was performed to examine the morphological changes. The treatment with UUO induced a robust fibrosis of renal interstitium, shrink of glomerulus and partial fracture of basement membrane. Renal function was also impaired in the experimental group with UUO, with an increase of Scr and BUN in serum. After that, Western-blot was performed to examine the expression of α-SMA, fibronectin, E-cadherin, Smad2 and Sirtuin-1 (Sirt1). The treatment with HW attenuated the development of fibrosis and deterioration of renal function in UUO model. In HK-2 cells, the pretreatment of HW abolished EMT induced by TGF-β1. The down-regulation the expression of Sirt1 induced by TGF-β1 which was dampened by the treatment with HW. Sirtinol, a Sirt1 inhibitor, reversed the effect of HW on EMT induced by TGF-β1. HW can inhibit the development of fibrosis in kidney and prevents HK-2 cells from undergoing EMT which is mediated through Sirt1, a downstream molecule of TGF-β1.
Brown, Michael C; Dobrikov, Mikhail I; Gromeier, Matthias
2014-11-01
Translation machinery is a major recipient of the principal mitogenic signaling networks involving Raf-ERK1/2 and phosphoinositol 3-kinase (PI3K)-mechanistic target of rapamycin (mTOR). Picornavirus internal ribosomal entry site (IRES)-mediated translation and cytopathogenic effects are susceptible to the status of such signaling cascades in host cells. We determined that tumor-specific cytotoxicity of the poliovirus/rhinovirus chimera PVSRIPO is facilitated by Raf-ERK1/2 signals to the mitogen-activated protein kinase (MAPK)-interacting kinase (MNK) and its effects on the partitioning/activity of the Ser/Arg (SR)-rich protein kinase (SRPK) (M. C. Brown, J. D. Bryant, E. Y. Dobrikova, M. Shveygert, S. S. Bradrick, V. Chandramohan, D. D. Bigner, and M, Gromeier, J. Virol. 22:13135-13148, 2014, doi:http://dx.doi.org/10.1128/JVI.01883-14). Here, we show that MNK regulates SRPK via mTOR and AKT. Our investigations revealed a MNK-controlled mechanism acting on mTORC2-AKT. The resulting suppression of AKT signaling attenuates SRPK activity to enhance picornavirus type 1 IRES translation and favor PVSRIPO tumor cell toxicity and killing. Oncolytic immunotherapy with PVSRIPO, the type 1 live-attenuated poliovirus (PV) (Sabin) vaccine containing a human rhinovirus type 2 (HRV2) IRES, is demonstrating early promise in clinical trials with intratumoral infusion in recurrent glioblastoma (GBM). Our investigations demonstrate that the core mechanistic principle of PVSRIPO, tumor-selective translation and cytotoxicity, relies on constitutive ERK1/2-MNK signals that counteract the deleterious effects of runaway AKT-SRPK activity in malignancy. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Brown, Michael C.; Dobrikov, Mikhail I.
2014-01-01
ABSTRACT Translation machinery is a major recipient of the principal mitogenic signaling networks involving Raf-ERK1/2 and phosphoinositol 3-kinase (PI3K)-mechanistic target of rapamycin (mTOR). Picornavirus internal ribosomal entry site (IRES)-mediated translation and cytopathogenic effects are susceptible to the status of such signaling cascades in host cells. We determined that tumor-specific cytotoxicity of the poliovirus/rhinovirus chimera PVSRIPO is facilitated by Raf-ERK1/2 signals to the mitogen-activated protein kinase (MAPK)-interacting kinase (MNK) and its effects on the partitioning/activity of the Ser/Arg (SR)-rich protein kinase (SRPK) (M. C. Brown, J. D. Bryant, E. Y. Dobrikova, M. Shveygert, S. S. Bradrick, V. Chandramohan, D. D. Bigner, and M, Gromeier, J. Virol. 22:13135–13148, 2014, doi:http://dx.doi.org/10.1128/JVI.01883-14). Here, we show that MNK regulates SRPK via mTOR and AKT. Our investigations revealed a MNK-controlled mechanism acting on mTORC2-AKT. The resulting suppression of AKT signaling attenuates SRPK activity to enhance picornavirus type 1 IRES translation and favor PVSRIPO tumor cell toxicity and killing. IMPORTANCE Oncolytic immunotherapy with PVSRIPO, the type 1 live-attenuated poliovirus (PV) (Sabin) vaccine containing a human rhinovirus type 2 (HRV2) IRES, is demonstrating early promise in clinical trials with intratumoral infusion in recurrent glioblastoma (GBM). Our investigations demonstrate that the core mechanistic principle of PVSRIPO, tumor-selective translation and cytotoxicity, relies on constitutive ERK1/2-MNK signals that counteract the deleterious effects of runaway AKT-SRPK activity in malignancy. PMID:25187540
Baldwin, Jessie; Collins, Brian; Wolf, Patricia G.; Martinez, Kristina; Shen, Wan; Chuang, Chia-Chi; Zhong, Wei; Cooney, Paula; Cockrell, Chase; Chang, Eugene; Gaskins, H. Rex; McIntosh, Michael K.
2016-01-01
Our objective was to determine if consuming table grapes reduces adiposity and its metabolic consequences and alters gut microbiota in mice fed a high fat (HF), butter-rich diet. C57BL/6J mice were fed a low fat (LF) diet or HF diet with 3% or 5% grapes for 11 weeks. Total body and inguinal fat were moderately, but significantly reduced in mice fed both levels of grapes compared to their controls. Mice fed 5% grapes had lower liver weights and triglyceride levels, and decreased expression of glycerol-3-phosphate acyltransferase (Gpat1) compared to the 5% controls. Mice fed 3% grapes had lower hepatic mRNA levels of peroxisome proliferator-activated receptor gamma 2, sterol-CoA desaturase 1, fatty-acid binding protein 4, and Gpat1 compared to the 3% controls. Although grape feeding had only a minor impact on markers of inflammation or lipogenesis in adipose tissue or intestine, 3% grapes decreased the intestinal abundance of sulfidogenic Desulfobacter spp., and the Bilophila wadsworthia-specific dissimilatory sulfite reductase gene (dsrA-Bw), and tended to increase the abundance of the beneficial bacterium Akkermansia muciniphila compared to controls. Additionally, Bifidobacterium, Lactobacillus, Allobaculum, and several other genera correlated negatively with adiposity. Allobaculum in particular was increased in the LF and 3% grapes groups compared to the HF-fed controls. Notably, grape feeding attenuated the HF-induced impairment in epithelial localization of the intestinal tight junction protein zonula occludens. Collectively, these data indicate that some of the adverse health consequences of consuming a HF diet rich in saturated fat can be attenuated by table grape consumption. PMID:26423887
Baldwin, Jessie; Collins, Brian; Wolf, Patricia G; Martinez, Kristina; Shen, Wan; Chuang, Chia-Chi; Zhong, Wei; Cooney, Paula; Cockrell, Chase; Chang, Eugene; Gaskins, H Rex; McIntosh, Michael K
2016-01-01
Our objective was to determine if consuming table grapes reduces adiposity and its metabolic consequences and alters gut microbiota in mice fed a high-fat (HF), butter-rich diet. C57BL/6J mice were fed a low-fat (LF) diet or HF diet with 3% or 5% grapes for 11weeks. Total body and inguinal fat were moderately but significantly reduced in mice fed both levels of grapes compared to their controls. Mice fed 5% grapes had lower liver weights and triglyceride levels and decreased expression of glycerol-3-phosphate acyltransferase (Gpat1) compared to the 5% controls. Mice fed 3% grapes had lower hepatic mRNA levels of peroxisome proliferator-activated receptor gamma 2, sterol-CoA desaturase 1, fatty-acid binding protein 4 and Gpat1 compared to the 3% controls. Although grape feeding had only a minor impact on markers of inflammation or lipogenesis in adipose tissue or intestine, 3% of grapes decreased the intestinal abundance of sulfidogenic Desulfobacter spp. and the Bilophila wadsworthia-specific dissimilatory sulfite reductase gene and tended to increase the abundance of the beneficial bacterium Akkermansia muciniphila compared to controls. In addition, Bifidobacterium, Lactobacillus, Allobaculum and several other genera correlated negatively with adiposity. Allobaculum in particular was increased in the LF and 3% grapes groups compared to the HF-fed controls. Notably, grape feeding attenuated the HF-induced impairment in epithelial localization of the intestinal tight junction protein zonula occludens. Collectively, these data indicate that some of the adverse health consequences of consuming an HF diet rich in saturated fat can be attenuated by table grape consumption. Copyright © 2015 Elsevier Inc. All rights reserved.
Cowan, Christopher B.; Patel, Dhara A.; Good, Theresa A.
2009-01-01
β-Amyloid peptide (Aβ), the primary protein component in senile plaques associated with Alzheimer’s disease (AD), has been implicated in neurotoxicity associated with AD. Previous studies have shown that the Aβ-neuronal membrane interaction plays a role in the mechanism of Aβ toxicity. More specifically, it is thought that Aβ interacts with ganglioside rich and sialic acid rich regions of cell surfaces. In light of such evidence, we have used a number of different sialic acid compounds of different valency or number of sialic acid moieties per molecule to attenuate Aβ toxicity in a cell culture model. In this work, we proposed various mathematical models of Aβ interaction with both the cell membrane and with the multivalent sialic acid compounds, designed to act as membrane mimics. These models allow us to explore the mechanism of action of this class of sialic acid membrane mimics in attenuating the toxicity of Aβ. The mathematical models, when compared with experimental data, facilitate the discrimination between different modes of action of these materials. Understanding the mechanism of action of Aβ toxicity inhibitors should provide insight into the design of the next generation of molecules that could be used to prevent Aβ toxicity associated with Alzheimer’s disease. PMID:19217912
Fish oil and olive oil-rich diets modify ozone-induced cardiovascular effect in rats
Rationale: Air pollution exposure has been associated with adverse cardiovascular health effects. Our clinical studies suggest that fish oil (FO) and olive oil (OO) supplementations attenuate the cardiovascular responses to inhaled concentrated ambient particles. This study was...
NASA Astrophysics Data System (ADS)
Venkatesh, Lakshmi Narayanan; Suresh Babu, Pitchuka; Gundakaram, Ravi Chandra; Doherty, Roger D.; Joshi, Shrikant V.; Samajdar, Indradev
2017-04-01
Microstructural evolution with superheating was studied in chromium carbide-nickel coatings deposited by laser cladding. At lower superheating, selective growth of <0001> direction from the high density of Cr7C3 grains nucleated resulted in a columnar structure with (0001) texture. Increased superheating lead to the loss of columnar structure as well as the (0001) texture. The hexagonal Cr7C3 showed an unusual isotropic nanoindentation hardness evidently correlated with its low c/ a ratio. However, the rod-like morphology of the carbide dendrites resulted in significant anisotropy in the hardness of the composite.
Fission and Properties of Neutron-Rich Nuclei
NASA Astrophysics Data System (ADS)
Hamilton, Joseph H.; Ramayya, A. V.; Carter, H. K.
2008-08-01
Opening session. Nuclear processes in stellar explosions / M. Wiescher. In-beam [symbol]-ray spectroscopy of neutron-rich nuclei at NSCL / A. Gade -- Nuclear structure I. Shell-model structure of neutron-rich nuclei beyond [symbol]Sn / A. Covello ... [et al.]. Shell structure and evolution of collectivity in nuclei above the [symbol]Sn core / S. Sarkar and M. S. Sarkar. Heavy-ion fusion using density-constrained TDHF / A. S. Umar and V. E. Oberacker. Towards an extended microscopic theory for upper-fp shell nuclei / K. P. Drumev. Properties of the Zr and Pb isotopes near the drip-line / V. N. Tarasov ... [et al.]. Identification of high spin states in [symbol] Cs nuclei and shell model calculations / K. Li ... [et al.]. Recent measurements of spherical and deformed isomers using the Lohengrin fission-fragment spectrometer / G. S. Simpson ... [et al.] -- Nuclear structure II. Nuclear structure investigation with rare isotope spectroscopic investigations at GSI / P. Boutachkov. Exploring the evolution of the shell structures by means of deep inelastic reactions / G. de Anaelis. Probing shell closures in neutron-rich nuclei / R. Krücken for the S277 and REX-ISOLDEMINIBALL collaborations. Structure of Fe isotopes at the limits of the pf-shell / N. Hoteling ... [et al.]. Spectroscopy of K isomers in shell-stabilized trans-fermium nuclei / S. K. Tandel ... [et al.] -- Radioactive ion beam facilities. SPIRAL2 at GANIL: a world leading ISOL facility for the next decade / S. Gales. New physics at the International Facility for Antiproton and Ion Research (FAIR) next to GSI / I. Augustin ... [et al.]. Radioactive beams from a high powered ISOL system / A. C. Shotter. RlKEN RT beam factory / T. Motobayashi. NSCL - ongoing activities and future perspectives / C. K. Gelbke. Rare isotope beams at Argonne / W. F. Henning. HRIBF: scientific highlights and future prospects / J. R. Beene. Radioactive ion beam research done in Dubna / G. M. Ter-Akopian ... [et al.] -- Fission I. Fission-fragment spectroscopy with STEFF / A. G. Smith ... [et al.]. Gamma ray multiplicity of [symbol]Cf spontaneous fission using LiBerACE / D. L. Bleuel ... [et al.]. Excitation energy dependence of fragment mass and total kinetic energy distributions in proton-induced fission of light actinides / I. Nishinaka ... [et al.]. A dynamical calculation of multi-modal nuclear fission / T. Wada and T. Asano. Structure of fission potential energy surfaces in ten-dimensional spaces / V. V. Pashkevich, Y. K Pyatkov and A. V. Unzhakova. A possible enhancement of nuclear fission in scattering with low energy charged particles / V. Gudkov. Dynamical multi-break processes in the [symbol]Sn + [symbol]Ni system at 35 MeV/Nucleon / M. Papa and ISOSPIN-RE VERSE collaboration -- New experimental techniques. MTOF - a high resolution isobar separator for studies of exotic decays / A. Piechaczek ... [et al.]. Development of ORRUBA: a silicon array for the measurement of transfer reactions in inverse kinematics / S. D. Pain ... [et al.]. Indian national gamma array: present & future / R. K. Bhowmik. Absolute intensities of [symbol] rays emitted in the decay of [symbol]U / H. C. Griffin -- Superheavy elements theory and experiments / M. G. Itkis ... [et al.]. Study of superheavy elements at SHIP / S. Hofinann. Heaviest nuclei from [symbol]Ca-induced reactions / Yu. Ts. Oaanessian. Superheavy nuclei and giant nuclear systems / W. Greiner and V. Zagrebaev. Fission approach to alpha-decay of superheavy nuclei / D.N. Poenaru and W. Greiner. Superheavy elements in the Magic Islands / C. Samanta. Relativistic mean field studies of superheavy nuclei / A. V. Afanas jev. Understanding the synthesis of the heaviest nuclei / W. Loveland -- Mass measurements and g-factors. G factor measurements in neutron-rich [symbol]Cf fission fragments, measured using the gammasphere array / R. Orlandi ... [et al.]. Technique for measuring angular correlations and g-factors in neutron rich nuclei produced by the spontaneous fission of [symbol]Cf / A. V. Daniel ... [et al.]. Magnetic moment measurements in a radioactive beam environment / N. Benczer-Koller and G. Kumbartzki. g-Factor measurements of picosecond states: opportunities and limitations of the recoil-in-vacuum method / N. J. Stone ... [et al.]. Precision mass measurements and trap-assisted spectroscopy of fission products from Ni to Pd / A. Jokinen -- Fission II. Fission research at IRMM / F.-J. Hambsch. Fission yield measurements at the IGISOL facility with JYFLTRAP / H. Penttilä ... [et al.]. Fission of radioactive beams and dissipation in nuclear matter / A. Heinz (for the CHARMS collaboration). Fission of [symbol]U at 80 MeVlu and search for new neutron-rich isotopes / C.M. Folden, III ... [et al.]. Measurement of the average energy and multiplicity of prompt-fission neutrons and gamma rays from [symbol], [symbol], and [symbol] for incident neutron energies of 1 to 200 MeV / R. C. Haight ... [et al.]. Fission measurements with DANCE / M. Jandel ... [et al.]. Measured and calculated neutron-induced fission cross sections of [symbol]Pu / F. Tovesson and T. S. Hill. The fission barrier landscape / L. Phair and L. G. Moretto. Fast neutron-induced fission of some actinides and sub-actinides / A. B. Lautev ... [et al.] -- Fission III/Nuclear structure III. Complex structure in even-odd staggering of fission fragment yields / M. Caamāno and F. Rejmund. The surrogate method: past, present and future / S. R. Lesher ... [et al]. Effects of nuclear incompressibility on heavy-ion fusion / H. Esbensen and Ş. Mişicu. High spin states in [symbol]Pm / A. Dhal ... [et al]. Structure of [symbol]Sm, spherical vibrator versus softly deformed rotor / J. B. Gupta -- Astrophysics. Measuring the astrophysical S-factor in plasmas / A. Bonasera ... [et al.]. Is there shell quenching or shape coexistence in Cd isotopes near N = 82? / J. K. Hwang, A. V. Ramayya and J. H. Hamilton. Spectroscopy of neutron-rich palladium and cadmium isostopes near A= 120 / M. A. Stoyer and W. B. Walters -- Nuclear structure IV. First observation of new neutron-rich magnesium, aluminum and silicon isotopes / A. Stolz ... [et al.]. Spectroscopy of [symbol]Na revolution of shell structure with isospin / V. Tripathi ... [et al.]. Rearrangement of proton single particle orbitals in neutron-rich potassium isotopes - spectroscopy of [symbol]K / W. Królas ... [et al.]. Laser spectroscopy and the nature of the shape transition at N [symbol] 60 / B. Cheal ... [et al.]. Study of nuclei near stability as fission fragments following heavy-ion reactions / N. Fotiadis. [symbol]C and [symbol]N: lifetime measurements of their first-excited states / M. Wiedeking ... [et al.] -- Nuclear astrophysics. Isomer spectroscopy near [symbol]Sn - first observation of excited states in [symbol]Cd / M. Pfitzner ... [et al.]. Nuclear masses and what they imply for the structures of neutron rich nuclei / A. Awahamian and A. Teymurazyan. Multiple nucleosynthesis processes in the early universe / F. Montes. Single-neutron structure of neutron-rich nuclei near N = 50 and N = 82 / J. A. Cizewski ... [et al.]. [symbol]Cadmium: ugly duckling or young swan / W. B. Walters ... [et al.] -- Nuclear structure V. Evidence for chiral doublet bands in [symbol]Ru / Y. X. Luo ... [et al.]. Unusual octupole shape deformation terms and K-mixing / J. O. Rasmussen ... [et al.]. Spin assignments, mixing ratios, and g-factors in neutron rich [symbol]Cf fission products / C. Goodin ... [et al.]. Level structures and double [symbol]-bands in [symbol]Mo, [symbol]Mo and [symbol]Ru / S. J. Zhu ... [et al.] -- Nuclear theory. Microscopic dynamics of shape coexistence phenomena around [symbol]Se and [symbol]Kr / N. Hinohara ... [et al.]. Nuclear structure, double beta decay and test of physics beyond the standard model / A. Faessler. Collective modes in elastic nuclear matter / Ş. Mişicu and S. Bastrukov. From N = Z to neutron rich: magnetic moments of Cu isotopes at and above the [symbol]Ni and [symbol]Ni double shell closures - what next? / N. J. Stone, J. R. Stone and U. Köster -- Nuclear structure VI. Decay studies of nuclei near [symbol]Ni / R. Grzywacz. Weakening of the [symbol]Ni core for Z > 28, N > 50? / J. A. Winger ... [et al.]. Coulomb excitation of the odd-A [symbol]Cu isotopes with MINIBALL and REX-ISOLDE / I. Stefanescu ... [et al.]. Neutron single particle states and isomers in odd mass nickel isotopes near [symbol]Ni / M. M. Raiabali ... [et al.]. [symbol] and [symbol]-delayed neutron decay studies of [symbol]Ch at the HRIBF / S. V. Ilvushkin ... [et al.] -- Posters. Properties of Fe, Ni and Zn isotope chains near the drip-line / V. N. Tarasov ... [et al.]. Probing nuclear structure of [symbol]Xe / J. B. Gupta. Shape coexistence in [symbol]Zr and large deformation in [symbol]Zr / J. K. Hwang ... [et al.]. Digital electronics and their application to beta decay spectroscopy / S. N. Liddick, S. Padgett and R. Grzywacz. Nuclear shape and structure in neutron-rich [symbol]Tc / Y. X. Luo ... [et al.]. Speeding up the r-process. Investigation of first forbidden [symbol] decays in N > 50 isotopes near [symbol]Ni / S. Padgett ... [et al.]. Yields of fission products from various actinide targets / E. H. Sveiewski ... [et al.].
Deng, Qianchun; Wang, Yong; Wang, Chengtao; Ji, Baoping; Cong, Renhuai; Zhao, Lei; Chen, Peng; Zang, Xixi; Lu, Feng; Han, Fei; Huang, Fenghong
2018-04-25
The effects of administering omega-3 (ω-3) polyunsaturated fatty acid (PUFA)-rich oils on visible-light-induced retinal damage were investigated in rabbits. The mole percentages of α-linolenic acid in sea buckthorn berry oil, sea buckthorn oil (SO), sea buckthorn seed oil and flaxseed oil (FO) were 2.12%, 12.98%, 31.56% and 55.41%, respectively. Algal oil (AO) contains 33.34% docosahexaenoic acid. SO has the highest total phenolic content (63.42 ± 0.59 mg SAE per 100 g) amongst these oils. The administration of SO, FO and AO provided structural and functional protection to the retina. In the retina, we observed a significant increase in the levels of DHA in the AO group compared with the normal group. The mechanism of retinal protection by SO, FO and AO involves up-regulating the expression of nuclear factor erythroid-2 related factor 2 and haem oxygenase-1. The levels of interleukin-1 β, tumour necrosis factor-alpha, interleukin-8, and cyclooxygenase 2 in the retina were significantly reduced with AO treatment. The administration of AO resulted in the down-regulation of nuclear factor kappa B mRNA expression. In addition, the treatment with AO significantly attenuated the light-induced apoptosis and angiogenesis in the retina. These results suggest that dietary ω-3 PUFA-rich oils protect against visible-light-induced retinal damage.
Tsuchiya, Yosuke; Yanagimoto, Kenichi; Nakazato, Koichi; Hayamizu, Kohsuke; Ochi, Eisuke
2016-06-01
This study investigated the effect of eicosapentaenoic and docosahexaenoic acids-rich fish oil (EPA + DHA) supplementation on eccentric contraction-induced muscle damage. Twenty-four healthy men were randomly assigned to consume the EPA + DHA supplement (EPA, n = 12) or placebo (PL, n = 12) by the double-blind method. Participants consumed EPA + DHA or placebo supplement for 8 weeks prior to exercise and continued it until 5 days after exercise. The EPA group consumed EPA + DHA-rich fish oil containing 600 mg EPA and 260 mg DHA per day. Subjects performed five sets of six maximal eccentric elbow flexion exercises. Changes in the maximal voluntary contraction (MVC) torque, range of motion (ROM), upper arm circumference, muscle soreness as well as serum creatine kinase, myoglobin, IL-6, and TNF-α levels in blood were assessed before, immediately after, and 1, 2, 3, and 5 days after exercise. MVC was significantly higher in the EPA group than in the PL group at 2-5 days after exercise (p < 0.05). ROM was also significantly greater in the EPA group than in the PL group at 1-5 days after exercise (p < 0.05). At only 3 days after exercise, muscle soreness of the brachialis was significantly greater in the PL group than in the EPA group (p < 0.05), with a concomitant increase in serum IL-6 levels in the PL group. Eight-week EPA + DHA supplementation attenuates strength loss and limited ROM after exercise. The supplementation also attenuates muscle soreness and elevates cytokine level, but the effect is limited.
Cao, Xiaoyan; Drosos, Marios; Leenheer, Jerry A; Mao, Jingdong
2016-02-16
A lignite humic acid (HA) was separated from inorganic and non-HA impurities (i.e., aluminosilicates, metals) and fractionated by a combination of dialysis and XAD-8 resin. Fractionation revealed a more homogeneous structure of lignite HA. New and more specific structural information on the main lignite HA fraction is obtained by solid-state nuclear magnetic resonance (NMR) spectroscopy. Quantitative (13)C multiple cross-polarization (multiCP) NMR indicated oxidized phenyl propane structures derived from lignin. MultiCP experiments, conducted on potassium HA salts titrated to pH 10 and pH 12, revealed shifts consistent with carboxylate and phenolate formation, but structural changes associated with enolate formation from aromatic beta keto acids were not detected. Two-dimensional (1)H-(13)C heteronuclear correlation (2D HETCOR) NMR indicated aryl-aliphatic ketones, aliphatic and aromatic carboxyl groups, phenol, and methoxy phenyl ethers. Acidic protons from carboxyl groups in both the lignite HA fraction and a synthetic HA-like polycondensate were found to be hydrogen-bonded with electron-rich aromatic rings. Our results coupled with published infrared spectra provide evidence for the preferential hydrogen bonding of acidic hydrogens with electron-rich aromatic rings rather than adjacent carbonyl groups. These hydrogen-bonding interactions likely result from stereochemical arrangements in primary structures and folding.
Wang, Yong; Huo, Yazhen; Zhao, Liang; Lu, Feng; Wang, Ou; Yang, Xue; Ji, Baoping; Zhou, Feng
2016-07-01
Cyanidin-3-glucoside (C3G) is a major anthocyanin in berries and a potential nutritional supplement for preventing retinal degeneration. However, the protective mechanism of C3G and its metabolites, protocatechuic acid (PCA) and ferulic acid (FA), remain unclear. The molecular mechanisms of C3G and its metabolites against retinal photooxidative damage in vivo are investigated. Pigmented rabbits were orally administered C3G, PCA, and FA (0.11 mmol/kg/day) for 3 weeks. Electroretinography, histological analysis, and TUNEL assay showed that C3G and its metabolites attenuated retinal cell apoptosis. The expression of oxidative stress markers were upregulated after light exposure but attenuated by C3G and FA, which may be attributed to the elevated secretion and expression of heme oxygenase (HO-1) and nuclear factor erythroid-2 related factor 2 (Nrf2). C3G, PCA, and FA attenuated the secretion or expression of inflammation-related genes; FA suppressed nuclear factor kappa B (NF-κB) activation. The treatments attenuated the light-induced changes on certain apoptotic proteins and angiogenesis-related cytokines. C3G and FA reduced light-induced retinal oxidative stress by activating the Nrf2/HO-1 antioxidant pathway. FA attenuated the light-induced retinal inflammation by suppressing NF-κB activation. C3G and its metabolites attenuated the photooxidation-induced apoptosis and angiogenesis in the retina. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Intercomparison of attenuation correction algorithms for single-polarized X-band radars
NASA Astrophysics Data System (ADS)
Lengfeld, K.; Berenguer, M.; Sempere Torres, D.
2018-03-01
Attenuation due to liquid water is one of the largest uncertainties in radar observations. The effects of attenuation are generally inversely proportional to the wavelength, i.e. observations from X-band radars are more affected by attenuation than those from C- or S-band systems. On the other hand, X-band radars can measure precipitation fields in higher temporal and spatial resolution and are more mobile and easier to install due to smaller antennas. A first algorithm for attenuation correction in single-polarized systems was proposed by Hitschfeld and Bordan (1954) (HB), but it gets unstable in case of small errors (e.g. in the radar calibration) and strong attenuation. Therefore, methods have been developed that restrict attenuation correction to keep the algorithm stable, using e.g. surface echoes (for space-borne radars) and mountain returns (for ground radars) as a final value (FV), or adjustment of the radar constant (C) or the coefficient α. In the absence of mountain returns, measurements from C- or S-band radars can be used to constrain the correction. All these methods are based on the statistical relation between reflectivity and specific attenuation. Another way to correct for attenuation in X-band radar observations is to use additional information from less attenuated radar systems, e.g. the ratio between X-band and C- or S-band radar measurements. Lengfeld et al. (2016) proposed such a method based isotonic regression of the ratio between X- and C-band radar observations along the radar beam. This study presents a comparison of the original HB algorithm and three algorithms based on the statistical relation between reflectivity and specific attenuation as well as two methods implementing additional information of C-band radar measurements. Their performance in two precipitation events (one mainly convective and the other one stratiform) shows that a restriction of the HB is necessary to avoid instabilities. A comparison with vertically pointing micro rain radars (MRR) reveals good performance of two of the methods based in the statistical k-Z-relation: FV and α. The C algorithm seems to be more sensitive to differences in calibration of the two systems and requires additional information from C- or S-band radars. Furthermore, a study of five months of radar observations examines the long-term performance of each algorithm. From this study conclusions can be drawn that using additional information from less attenuated radar systems lead to best results. The two algorithms that use this additional information eliminate the bias caused by attenuation and preserve the agreement with MRR observations.
NASA Astrophysics Data System (ADS)
McCreary, Meghan; Chakraborty, Himadri
2013-05-01
The ground state structure of the simplest two-fullerene onion system, the C60@C240 molecule, is solved in the Kohn-Sham framework of local density approximation (LDA). Calculations are carried out with delocalized carbon valence electrons after modeling the onion ion-core of sixty C4+ ions from C60 and two hundred and forty of those from C240 in a smeared out jellium-type double-shell structure. Ionization cross sections of all the levels are then calculated in both independent particle LDA and many-particle time dependent LDA approaches at photon energies above the plasmon resonances. These high-energy results exhibit rich structures of energy dependent oscillations from the quantum interference of electron waves produced at the edges of the fullerene layers. A detailed scrutiny of these structures is conducted by Fourier transforming the spectra to the configuration space that relates the oscillations to the onion geometry. Supported by NSF and DOE.
Cherifi, Tamazight; Jacques, Mario; Quessy, Sylvain; Fravalo, Philippe
2017-01-01
Biofilm formation by the pathogen Listeria monocytogenes is a major concern in food industries. The aim of this work was to elucidate the effect of nutrient limitation on both biofilm architecture and on the viability of the bacteria in microfluidic growth conditions. Biofilm formation by two L. monocytogenes strains was performed in a rich medium (BHI) and in a 10-fold diluted BHI (BHI/10) at 30°C for 24 h by using both static conditions and the microfluidic system Bioflux. In dynamic conditions, biofilms grown in rich and poor medium showed significant differences as well in structure and in the resulting biovolume. In BHI/10, biofilm was organized in a knitted network where cells formed long chains, whereas in the rich medium, the observed structure was homogeneous cellular multilayers. Biofilm biovolume production in BHI/10 was significantly higher than in BHI in these dynamic conditions. Interestingly, biovolume of dead cells in biofilms formed under limited nutrient conditions (BHI/10) was significantly higher than in biofilms formed in the BHI medium. In the other hand, in static conditions, biofilm is organized in a multilayer cells and dispersed cells in a rich medium BHI and poor medium BHI/10 respectively. There was significantly more biomass in the rich medium compared to BHI/10 but no difference was noted in the dead/damaged subpopulation showing how L. monocytogenes biofilm could be affected by the growth conditions. This work demonstrated that nutrient concentration affects biofilm structure and the proportion of dead cells in biofilms under microfluidic condition. Our study also showed that limited nutrients play an important role in the structural stability of L. monocytogenes biofilm by enhancing cell death and liberating extracellular DNA.
Cherifi, Tamazight; Jacques, Mario; Quessy, Sylvain; Fravalo, Philippe
2017-01-01
Biofilm formation by the pathogen Listeria monocytogenes is a major concern in food industries. The aim of this work was to elucidate the effect of nutrient limitation on both biofilm architecture and on the viability of the bacteria in microfluidic growth conditions. Biofilm formation by two L. monocytogenes strains was performed in a rich medium (BHI) and in a 10-fold diluted BHI (BHI/10) at 30°C for 24 h by using both static conditions and the microfluidic system Bioflux. In dynamic conditions, biofilms grown in rich and poor medium showed significant differences as well in structure and in the resulting biovolume. In BHI/10, biofilm was organized in a knitted network where cells formed long chains, whereas in the rich medium, the observed structure was homogeneous cellular multilayers. Biofilm biovolume production in BHI/10 was significantly higher than in BHI in these dynamic conditions. Interestingly, biovolume of dead cells in biofilms formed under limited nutrient conditions (BHI/10) was significantly higher than in biofilms formed in the BHI medium. In the other hand, in static conditions, biofilm is organized in a multilayer cells and dispersed cells in a rich medium BHI and poor medium BHI/10 respectively. There was significantly more biomass in the rich medium compared to BHI/10 but no difference was noted in the dead/damaged subpopulation showing how L. monocytogenes biofilm could be affected by the growth conditions. This work demonstrated that nutrient concentration affects biofilm structure and the proportion of dead cells in biofilms under microfluidic condition. Our study also showed that limited nutrients play an important role in the structural stability of L. monocytogenes biofilm by enhancing cell death and liberating extracellular DNA. PMID:28567031
NASA Astrophysics Data System (ADS)
Hu, Yongxiang; Behrenfeld, Mike; Hostetler, Chris; Pelon, Jacques; Trepte, Charles; Hair, John; Slade, Wayne; Cetinic, Ivona; Vaughan, Mark; Lu, Xiaomei; Zhai, Pengwang; Weimer, Carl; Winker, David; Verhappen, Carolus C.; Butler, Carolyn; Liu, Zhaoyan; Hunt, Bill; Omar, Ali; Rodier, Sharon; Lifermann, Anne; Josset, Damien; Hou, Weilin; MacDonnell, David; Rhew, Ray
2016-06-01
Beam attenuation coefficient, c, provides an important optical index of plankton standing stocks, such as phytoplankton biomass and total particulate carbon concentration. Unfortunately, c has proven difficult to quantify through remote sensing. Here, we introduce an innovative approach for estimating c using lidar depolarization measurements and diffuse attenuation coefficients from ocean color products or lidar measurements of Brillouin scattering. The new approach is based on a theoretical formula established from Monte Carlo simulations that links the depolarization ratio of sea water to the ratio of diffuse attenuation Kd and beam attenuation C (i.e., a multiple scattering factor). On July 17, 2014, the CALIPSO satellite was tilted 30° off-nadir for one nighttime orbit in order to minimize ocean surface backscatter and demonstrate the lidar ocean subsurface measurement concept from space. Depolarization ratios of ocean subsurface backscatter are measured accurately. Beam attenuation coefficients computed from the depolarization ratio measurements compare well with empirical estimates from ocean color measurements. We further verify the beam attenuation coefficient retrievals using aircraft-based high spectral resolution lidar (HSRL) data that are collocated with in-water optical measurements.
NASA Astrophysics Data System (ADS)
Zhao, Bingyi; Cai, Qizhou; Li, Xinwei; Li, Bing; Cheng, Jingfan
2018-03-01
A novel grain refiner consisting of TiC nanoparticles (NPs) supported by Ti powders (abbr. TiC/Ti refiner) was prepared by high-energy milling. The addition of 0.5 wt% TiC/Ti refiner converted the structure of pure Al from coarse dendrites to fine equiaxed grains with the average grain size of 114.7 μm, and it also increased the nucleation temperature of α(Al) from 656.7 to 664.4 °C. When TiC/Ti refiner was introduced into Al melt, the heat released from the Al-Ti reaction promoted the uniform dispersion of TiC NPs. The dissolution of the reaction product TiAl3 released Ti atoms into the melt and thus formed a "Ti-rich transition region" around TiC NPs. The dispersive TiC NPs could act as the heterogeneous nuclei for α(Al) and the "Ti-rich transition region" further improved the lattice orientation relationship between Al (\\bar{1}1\\bar{1} ) and TiC (11\\bar{1} ) planes, which eventually resulted in the refining of α(Al).
NASA Astrophysics Data System (ADS)
Lange, Simone; Burda, Hynek; Wegner, Regina E.; Dammann, Philip; Begall, Sabine; Kawalika, Mathias
2007-02-01
Subterranean mammals rely to a great extent on audition for communication and to be alerted to danger. The only hitherto published report on burrow acoustics revealed that in tunnels of blind mole-rats ( Spalax ehrenbergi), airborne sounds of 440 Hz propagated best whereas lower and higher frequencies were effectively attenuated. Morpho-functional analyses classify the ear of subterranean mammals as a low-sensitivity and low-frequency device. Concordantly, hearing is characterized by low sensitivity and a restricted frequency range tuned to low frequencies (0.5-4 kHz). Some authors considered the restricted hearing in subterranean mammals vestigial and degenerate due to under-stimulation. In contrast to this view stand a rich (mostly low-frequency) vocal repertoire and progressive structural specializations of the middle and inner ear. Thus, other authors considered these hearing characteristics adaptive. To test the hypothesis that acoustical environment in burrows of different species of subterranean mammals is similar, we measured sound attenuation in burrows of Fukomys mole-rats (formerly known as Cryptomys, cf. Kock et al. 2006) of two differently sized species at different locations in Zambia. We show that in these burrows, low-frequency sounds (200-800 Hz) are not only least attenuated but also their amplitude may be amplified like in a stethoscope (up to two times over 1 m). We suggest that hearing sensitivity has decreased during evolution of subterranean mammals to avoid over-stimulation of the ear in their natural environment.
High-fluence Ga-implanted silicon-The effect of annealing and cover layers
NASA Astrophysics Data System (ADS)
Fiedler, J.; Heera, V.; Hübner, R.; Voelskow, M.; Germer, S.; Schmidt, B.; Skorupa, W.
2014-07-01
The influence of SiO2 and SiNx cover layers on the dopant distribution as well as microstructure of high fluence Ga implanted Si after thermal processing is investigated. The annealing temperature determines the layer microstructure and the cover layers influence the obtained Ga profile. Rapid thermal annealing at temperatures up to 750 °C leads to a polycrystalline layer structure containing amorphous Ga-rich precipitates. Already after a short 20 ms flash lamp annealing, a Ga-rich interface layer is observed for implantation through the cover layers. This effect can partly be suppressed by annealing temperatures of at least 900 °C. However, in this case, Ga accumulates in larger, cone-like precipitates without disturbing the surrounding Si lattice parameters. Such a Ga-rich crystalline Si phase does not exist in the equilibrium phase diagram according to which the Ga solubility in Si is less than 0.1 at. %. The Ga-rich areas are capped with SiOx grown during annealing which only can be avoided by the usage of SiNx cover layers.
Nakano, Jinichiro
2013-01-01
The thermodynamic properties of the Fe–Mn–C system were investigated by using an analytical model constructed by a CALPHAD approach. The stacking fault energy (SFE) of the fcc structure with respect to the hcp phase was always constant at T0, independent of the composition and temperature when other related parameters were assumed to be constant. Experimental limits for the thermal hcp formation and the mechanical (deformation-induced) hcp formation were separated by the SFE at T0. The driving force for the fcc to hcp transition, defined as a dimensionless value –dGm/(RT), was determined in the presence of Fe-rich and Mn-rich composition sets in each phase. Carbon tended to partition to the Mn-rich phase rather than to the Fe-rich phase for the compositions studied. The results obtained revealed a thermo-mechanical correlation with empirical yield strength, maximum true stress and maximum true strain. The proportionality between thermodynamics and mechanical properties is discussed. PMID:27877555
Nakano, Jinichiro
2013-03-15
Thermodynamic properties of the Fe-Mn-C system were investigated by using an analytical model constructed by a CALPHAD approach. Stacking fault energy (SFE) of the fcc structure with respect to the hcp phase was always constant at T 0, independent of composition and temperature when the other related parameters were assumed to be constant. Experimental limits for the thermal hcp formation and the mechanical (deformation-induced) hcp formation were separated by the SFE at T 0. The driving force for the fcc to hcp transition, defined as a dimensionless value –dG m/(RT), was determined in the presence of Fe-rich and Mn-rich compositionmore » sets in each phase. Carbon tended to partition to the Mn-rich phase rather than to the Fe-rich phase for the studied compositions. The obtained results revealed a thermo-mechanical correlation with empirical yield strength, maximum true stress and maximum true strain. The proportionality between thermodynamics and mechanical properties is discussed.« less
Nb-Based Nb-Al-Fe Alloys: Solidification Behavior and High-Temperature Phase Equilibria
NASA Astrophysics Data System (ADS)
Stein, Frank; Philips, Noah
2018-03-01
High-melting Nb-based alloys hold significant promise for the development of novel high-temperature materials for structural applications. In order to understand the effect of alloying elements Al and Fe, the Nb-rich part of the ternary Nb-Al-Fe system was investigated. A series of Nb-rich ternary alloys were synthesized from high-purity Nb, Al, and Fe metals by arc melting. Solidification paths were identified and the liquidus surface of the Nb corner of the ternary system was established by analysis of the as-melted microstructures and thermal analysis. Complementary analysis of heat-treated samples yielded isothermal sections at 1723 K and 1873 K (1450 °C and 1600 °C).
2016-01-01
Doxorubicin (DOX) remains the most effective anticancer agent which is widely used in several adult and pediatric cancers, but its application is limited for its cardiotoxicity and hepatotoxicity. Hydrogen, as a selective antioxidant, is a promising potential therapeutic option for many diseases. In this study, we found that intraperitoneal injection of hydrogen-rich saline (H2 saline) ameliorated the mortality, cardiac dysfunction, and histopathological changes caused by DOX in rats. Meanwhile, serum brain natriuretic peptide (BNP), aspartate transaminase (AST), alanine transaminase (ALT), albumin (ALB), tissue reactive oxygen species (ROS), and malondialdehyde (MDA) levels were also attenuated after H2 saline treatment. What is more, we further demonstrated that H2 saline treatment could inhibit cardiac and hepatic inflammation and apoptosis relative proteins expressions by western blotting test. In conclusion, our results revealed a protective effect of H2 saline on DOX-induced cardiotoxicity and hepatotoxicity in rats by inhibiting inflammation and apoptosis. PMID:28104928
NASA Technical Reports Server (NTRS)
Ponchak, George E.; Schwartz, Zachary D.; Alterovitz, Samuel A.; Downey, Alan N.
2004-01-01
Wireless sensors for high temperature applications such as oil drilling and mining, automobiles, and jet engine performance monitoring require circuits built on wide bandgap semiconductors. In this paper, the characteristics of microwave transmission lines on 4H-High Purity Semi-Insulating SiC and 6H, p-type SiC is presented as a function of temperature and frequency. It is shown that the attenuation of 6H, p-type substrates is too high for microwave circuits, large leakage current will flow through the substrate, and that unusual attenuation characteristics are due to trapping in the SiC. The 4H-HPSI SiC is shown to have low attenuation and leakage currents over the entire temperature range.
Magnetic and thermal properties of amorphous TbFeCo alloy films
NASA Astrophysics Data System (ADS)
Wang, Ke; Dong, Shuo; Huang, Ya; Qiu, Yuzhen
2017-07-01
Amorphous TbFeCo material with perpendicular magnetic anisotropy is currently attracting more attention for potential applications in spintronic devices and logic memories. We systematically investigate magnetic, structural, thermal, optical and electrical properties of TbFeCo alloy films. It shows out-of-plane easy axis of the films turns into in-plane orientation after annealing. Significant increase in saturation magnetization in the temperature range between 400 and 450 °C is revealed by thermomagnetic measurements. The occurrence of crystallization and oxidation at high temperatures is confirmed by X-ray diffraction measurements. Pronounced changes in optical reflectance and sheet resistance are observed with temperature, in line with structural relaxation and change. The activation barriers for crystallization and oxidation are determined to be 1.01 eV and 0.83 eV, respectively, for FeCo-rich and Tb-rich samples. Better thermal stability against crystallization and oxidation is demonstrated in the FeCo-rich sample than the Tb-rich type. Our results provide some useful information for the alloy used in device fabrication.
Pennanen, Mirkka; Raade, Merja; Louhimo, Johanna; Sane, Timo; Heiskanen, Ilkka; Arola, Johanna; Haglund, Caj
2013-12-01
Characterisation of adrenal tumours is an important clinical problem. Unenhanced CT is the primary imaging modality to assess the nature of these lesions. To study the correlation between unenhanced CT attenuation value and the specific histopathology, as well as the proportion of lipid-poor eosinophilic cells in adrenocortical tumours. We studied retrospectively primary adrenocortical tumours that had been operated on at Helsinki University Central Hospital between 2002 and 2008. Of 171 tumours, 79 had appropriate preoperative CT scans and were included in the study. We evaluated the unenhanced CT attenuation values (Hounsfield units, HU) of these tumours and determined their histopathological diagnosis by the Weiss scoring system. We also assessed the proportion of lipid-poor eosinophilic cells for each tumour. Unenhanced CT attenuation value (HU) in adrenocortical tumours correlated well with the proportion of lipid-poor eosinophilic cells (rs=0.750, p<0.001). HU and Weiss score also had a correlation (rs=0.582, p<0.001). Unenhanced CT attenuation value correlates well with the percentage of lipid-poor eosinophilic cells, but unenhanced CT attenuation value fails to differentiate between benign lipid-poor adenomas and malignant adrenocortical tumours. All adrenocortical tumours with unenhanced CT attenuation value ≤10 HU are histologically benign lipid-rich tumours.
The Fe{sup 2+}/Fe{sup 3+} ratio in natural and heat-treated iron-rich eudialytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rastsvetaeva, R. K., E-mail: rast@ns.crys.ras.ru; Aksenov, S. M.; Rozenberg, K. A.
2011-03-15
The structures of natural iron-rich eudialyte (specimen 3458 from the Khibiny massif, the Kola Peninsula) and two heat-treated samples of this mineral calcined at 700 and 800 Degree-Sign C were determined by X-ray diffraction. The trigonal unit-cell parameters (sp. gr. R3m) are as follows: a = 14.2645(1) Angstrom-Sign , c = 29.9635(5) Angstrom-Sign ; a = 14.1307(1) Angstrom-Sign , c = 30.1229(3) Angstrom-Sign ; a = 14.1921(2) Angstrom-Sign , c = 30.2417(5) Angstrom-Sign , respectively. It was found that Fe{sup 3+} ions in the calcined eudialytes, as well as impurities in the starting specimen, occupy the square-pyramidal Fe{sup 3+}(V) sites,more » whereas Fe{sup 2+} ions are in the planar-tetragonal Fe{sup 2+}(IV) sites.« less
Environmental effects on the tensile strength of chemically vapor deposited silicon carbide fibers
NASA Technical Reports Server (NTRS)
Bhatt, R. T.; Kraitchman, M. D.
1985-01-01
The room temperature and elevated temperature tensile strengths of commercially available chemically vapor-deposited (CVD) silicon carbide fibers were measured after 15 min heat treatment to 1600 C in various environments. These environments included oxygen, air, argon and nitrogen at one atmosphere and vacuum at 10/9 atmosphere. Two types of fibers were examined which differed in the SiC content of their carbon-rich coatings. Threshold temperature for fiber strength degradation was observed to be dependent on the as-received fiber-flaw structure, on the environment and on the coating. Fractographic analyses and flexural strength measurements indicate that tensile strength losses were caused by surface degradation. Oxidation of the surface coating is suggested as one possible degradation mechanism. The SiC fibers containing the higher percentage of SiC near the surface of the carbon-rich coating show better strength retention and higher elevated temperature strength.
Yi, Ting-Feng; Li, Yan-Mei; Yang, Shuang-Yuan; Zhu, Yan-Rong; Xie, Ying
2016-11-30
Layered Li-rich, Co-free, and Mn-based cathode material, Li 1.17 Ni 0.25-x Mn 0.58 Mg x O 2 (0 ≤ x ≤ 0.05), was successfully synthesized by a coprecipitation method. All prepared samples have typical Li-rich layered structure, and Mg has been doped in the Li 1.17 Ni 0.25 Mn 0.58 O 2 material successfully and homogeneously. The morphology and the grain size of all material are not changed by Mg doping. All materials have a estimated size of about 200 nm with a narrow particle size distribution. The electrochemical property results show that Li 1.17 Ni 0.25-x Mn 0.58 Mg x O 2 (x = 0.01 and 0.02) electrodes exhibit higher rate capability than that of the pristine one. Li 1.17 Ni 0.25-x Mn 0.58 Mg x O 2 (x = 0.02) indicates the largest reversible capacity of 148.3 mAh g -1 and best cycling stability (capacity retention of 95.1%) after 100 cycles at 2C charge-discharge rate. Li 1.17 Ni 0.25-x Mn 0.58 Mg x O 2 (x = 0.02) also shows the largest discharge capacity of 149.2 mAh g -1 discharged at 1C rate at elevated temperature (55 °C) after 50 cycles. The improved electrochemical performances may be attributed to the decreased polarization, reduced charge transfer resistance, enhanced the reversibility of Li + ion insertion/extraction, and increased lithium ion diffusion coefficient. This promising result gives a new understanding for designing the structure and improving the electrochemical performance of Li-rich cathode materials for the next-generation lithium-ion battery with high rate cycling performance.
Mineralogy controls on reactive transport of Marcellus Shale waters.
Cai, Zhang; Wen, Hang; Komarneni, Sridhar; Li, Li
2018-07-15
Produced or flowback waters from Marcellus Shale gas extraction (MSWs) typically are highly saline and contain chemicals including trace metals, which pose significant concerns on water quality. The natural attenuation of MSW chemicals in groundwater is poorly understood due to the complex interactions between aquifer minerals and MSWs, limiting our capabilities to monitor and predict. Here we combine flow-through experiments and process-based reactive transport modeling to understand mechanisms and quantify the retention of MSW chemicals in a quartz (Qtz) column, a calcite-rich (Cal) column, and a clay-rich (Vrm, vermiculite) column. These columns were used to represent sand, carbonate, and clay-rich aquifers. Results show that the types and extent of water-rock interactions differ significantly across columns. Although it is generally known that clay-rich media retard chemicals and that quartz media minimize water-rock interactions, results here have revealed insights that differ from previous thoughts. We found that the reaction mechanisms are much more complex than merely sorption and mineral precipitation. In clay rich media, trace metals participate in both ion exchange and mineral precipitation. In fact, the majority of metals (~50-90%) is retained in the solid via mineral precipitation, which is surprising because we typically expect the dominance of sorption in clay-rich aquifers. In the Cal column, trace metals are retained not only through precipitation but also solid solution partitioning, leading to a total of 75-99% retention. Even in the Qtz column, trace metals are retained at unexpectedly high percentages (~20-70%) due to precipitation. The reactive transport model developed here quantitatively differentiates the relative importance of individual processes, and bridges a limited number of experiments to a wide range of natural conditions. This is particularly useful where relatively limited knowledge and data prevent the prediction of complex rock-contaminant interactions and natural attenuation. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Karaoǧlu, Haydar; Romanowicz, Barbara
2018-06-01
We present a global upper-mantle shear wave attenuation model that is built through a hybrid full-waveform inversion algorithm applied to long-period waveforms, using the spectral element method for wavefield computations. Our inversion strategy is based on an iterative approach that involves the inversion for successive updates in the attenuation parameter (δ Q^{-1}_μ) and elastic parameters (isotropic velocity VS, and radial anisotropy parameter ξ) through a Gauss-Newton-type optimization scheme that employs envelope- and waveform-type misfit functionals for the two steps, respectively. We also include source and receiver terms in the inversion steps for attenuation structure. We conducted a total of eight iterations (six for attenuation and two for elastic structure), and one inversion for updates to source parameters. The starting model included the elastic part of the relatively high-resolution 3-D whole mantle seismic velocity model, SEMUCB-WM1, which served to account for elastic focusing effects. The data set is a subset of the three-component surface waveform data set, filtered between 400 and 60 s, that contributed to the construction of the whole-mantle tomographic model SEMUCB-WM1. We applied strict selection criteria to this data set for the attenuation iteration steps, and investigated the effect of attenuation crustal structure on the retrieved mantle attenuation structure. While a constant 1-D Qμ model with a constant value of 165 throughout the upper mantle was used as starting model for attenuation inversion, we were able to recover, in depth extent and strength, the high-attenuation zone present in the depth range 80-200 km. The final 3-D model, SEMUCB-UMQ, shows strong correlation with tectonic features down to 200-250 km depth, with low attenuation beneath the cratons, stable parts of continents and regions of old oceanic crust, and high attenuation along mid-ocean ridges and backarcs. Below 250 km, we observe strong attenuation in the southwestern Pacific and eastern Africa, while low attenuation zones fade beneath most of the cratons. The strong negative correlation of Q^{-1}_μ and VS anomalies at shallow upper-mantle depths points to a common dominant origin for the two, likely due to variations in thermal structure. A comparison with two other global upper-mantle attenuation models shows promising consistency. As we updated the elastic 3-D model in alternate iterations, we found that the VS part of the model was stable, while the ξ structure evolution was more pronounced, indicating that it may be important to include 3-D attenuation effects when inverting for ξ, possibly due to the influence of dispersion corrections on this less well-constrained parameter.
NASA Astrophysics Data System (ADS)
Ektarawong, A.; Simak, S. I.; Hultman, L.; Birch, J.; Tasnádi, F.; Wang, F.; Alling, B.
2016-04-01
The elastic properties of alloys between boron suboxide (B6O) and boron carbide (B13C2), denoted by (B6O)1-x(B13C2)x, as well as boron carbide with variable carbon content, ranging from B13C2 to B4C are calculated from first-principles. Furthermore, the mixing thermodynamics of (B6O)1-x(B13C2)x is studied. A superatom-special quasirandom structure approach is used for modeling different atomic configurations, in which effects of configurational disorder between the carbide and suboxide structural units, as well as between boron and carbon atoms within the units, are taken into account. Elastic properties calculations demonstrate that configurational disorder in B13C2, where a part of the C atoms in the CBC chains substitute for B atoms in the B12 icosahedra, drastically increase the Young's and shear modulus, as compared to an atomically ordered state, B12(CBC). These calculated elastic moduli of the disordered state are in excellent agreement with experiments. Configurational disorder between boron and carbon can also explain the experimentally observed almost constant elastic moduli of boron carbide as the carbon content is changed from B4C to B13C2. The elastic moduli of the (B6O)1-x(B13C2)x system are also practically unchanged with composition if boron-carbon disorder is taken into account. By investigating the mixing thermodynamics of the alloys, in which the Gibbs free energy is determined within the mean-field approximation for the configurational entropy, we outline the pseudo-binary phase diagram of (B6O)1-x(B13C2)x. The phase diagram reveals the existence of a miscibility gap at all temperatures up to the melting point. Also, the coexistence of B6O-rich as well as ordered or disordered B13C2-rich domains in the material prepared through equilibrium routes is predicted.
The chemical structure of macromolecular fractions of a sulfur-rich oil
NASA Astrophysics Data System (ADS)
Richnow, Hans H.; Jenisch, Angela; Michaelis, Walter
1993-06-01
A selective stepwise chemical degradation has been developed for structural studies of highmolecularweight (HMW) fractions of sulfur-rich oils. The degradation steps are: (i) desulfurization (ii) cleavage of oxygen-carbon bonds (iii) oxidation of aromatic structural units. After each step, the remaining macromolecular matter was subjected to the subsequent reaction. This degradation scheme was applied to the asphaltene, the resin and a macromolecular fraction of low polarity (LPMF) of the Rozel Point oil. Total amounts of degraded low-molecular-weight compounds increased progressively in the order asphaltene < resin < LPMF. Desulfurization yielded mainly phytane, steranes and triterpanes. Oxygen-carbon bond cleavage resulted in hydrocarbon fractions predominated by n-alkanes and acyclic isoprenoids. The oxidation step afforded high amounts of linear carboxylic acids in the range of C 11 to C 33. The released compounds provide a more complete picture of the molecular structure of the oil fractions than previously available. Labelling experiments with deuterium atoms allowed to characterize the site of bonding and the type of linkage for the released compounds. Evidence is presented that subunits of the macromolecular network are attached simultaneously by oxygen and sulfur (n-alkanes, hopanes) or by sulfur and aromatic units ( n-alkanes, steranes).
Structure and physicochemical properties of starches in lotus (Nelumbo nucifera Gaertn.) rhizome
Yu, Huaguang; Cheng, Libao; Yin, Jingjing; Yan, Shunjun; Liu, Kejun; Zhang, Fengmin; Xu, Bin; Li, Liangjun
2013-01-01
The type and content of starch are believed to be the most critical factors in determining the storage and processing quality of lotus rhizome species, and the intention of this study is to survey the structure and properties of starches isolated from rhizomes of two lotus cultivars using X-ray powder diffraction, solid-state nuclear magnetic resonance spectroscopy, attenuated total reflectance-Fourier transform infrared spectroscopy, scanning electron microscope, differential scanning calorimetry, and rapid viscosity analyzer (RVA). Starch in rhizome of cultivar Meirenhong exhibited C-type X-ray diffraction pattern, while starch in rhizome of cultivar Wawalian showed A-type pattern. 13C cross-polarization magic-angle spinning nuclear magnetic resonance (13C CP-MAS NMR) also confirmed the polymorphs. The relative crystallinity of two starches was quantitatively estimated from two methods and compared. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) results indicated that the external regions of the starch granules had a great level of ordered structure. Starch granules in Meirenhong showed oval-shaped granules, while starch granules in Wawalian were elongated and oval in shape with relatively large size. Gelatinization temperatures of starch in Meirenhong and Wawalian were 330.5 and 342.4 K, respectively, and the gelatinization temperature range of Meirenhong was significantly wider than that of Wawalian. Starch in rhizome of cultivar Meirenhong showed lower pasting temperature, lower hot and cool viscosities, lower setback, and higher peak viscosity and breakdown than those of Wawalian in RVA pasting profiles at 6% starch concentration. PMID:24804031
NASA Astrophysics Data System (ADS)
Dong, Mingduo T.; Menke, William H.
2017-11-01
Seismic attenuation exhibits strong geographic variability in northeastern North America, with the highest values associated with the previously recognized Northern Appalachian Anomaly (NAA) in southern New England. The shear wave quality factor at 100 km depth is 14 < QS < 25, the ratio of P wave and S wave quality factors is QP/QS = 1.2 ± 0.03 (95%), and the frequency dependence parameter is α = 0.39 ± 0.025 (95%). The high values of QP/QS and α are compatible with laboratory measurements of unmelted rock and, in the case of α, incompatible with widespread melting. The low QS implies high mantle temperatures ( 1,550-1,650°C) at 100 km depth (assuming no melt). Small-scale variations in attenuation suggest structural heterogeneity within the NAA, possibly due to lithospheric delamination caused by asthenospheric flow.
Guo, Jian-You; Han, Chun-Chao
2010-01-01
Diabetes mellitus is accompanied by hormonal and neurochemical changes that can be associated with anxiety and depression. Both diabetes and depression negatively interact, in that depression leads to poor metabolic control and hyperglycemia exacerbates depression. We hypothesize one novel vanadium complex of vanadium-enriched Cordyceps sinensis (VECS), which is beneficial in preventing depression in diabetes, and influences the long-term course of glycemic control. Vanadium compounds have the ability to imitate the action of insulin, and this mimicry may have further favorable effects on the level of treatment satisfaction and mood. C. sinensis has an antidepressant-like activity, and attenuates the diabetes-induced increase in blood glucose concentrations. We suggest that the VECS may be a potential strategy for contemporary treatment of depression and diabetes through the co-effect of C. sinensis and vanadium. The validity of the hypothesis can most simply be tested by examining blood glucose levels, and swimming and climbing behavior in streptozotocin-induced hyperglycemic rats. PMID:19948751
Zhang, Ruowen; Che, Xun; Zhang, Jingjie; Li, Yang; Li, Jingxia; Deng, Xu; Zhu, Junlan; Jin, Honglei; Zhao, Qinshi; Huang, Chuanshu
2016-10-11
Cheliensisin A (Chel A), a styryl-lactone compound extracted from Goniothalamus cheliensis, is reported to have significant anti-cancer effects in various cancer cells. Here we demonstrated that Chel A treatment resulted in apoptosis and an inhibition of anchorage-independent growth in human bladder cancer T24, T24T and U5637 cells. Mechanistic studies showed that such effect is mediated by PH domain and Leucine rich repeat Protein Phosphatases (PHLPP2) protein. Chel A treatment led to PHLPP2 degradation and subsequently increased in c-Jun phosphorylation. Moreover PHLPP2 degradation could be attenuated by inhibition of autophagy, which was mediated by Beclin 1. Collectively, we discover that Chel A treatment induces Beclin-dependent autophagy, consequently mediates PHLPP2 degradation and JNK/C-Jun phosphorylation and activation, further in turn contributing to apoptosis in human bladder cancer cells. Current studies provide a significant insight into understanding of anticancer effect of Chel A in treatment of human bladder cancer.
Maruthanila, V L; Poornima, J; Mirunalini, S
2014-01-01
Rising evidence provides credible support towards the potential role of bioactive products derived from cruciferous vegetables such as broccoli, cauliflower, kale, cabbage, brussels sprouts, turnips, kohlrabi, bok choy, and radishes. Many epidemiological studies point out that Brassica vegetable protects humans against cancer since they are rich sources of glucosinolates in addition to possessing a high content of flavonoids, vitamins, and mineral nutrients. Indole-3-carbinol (I3C) belongs to the class of compounds called indole glucosinolate, obtained from cruciferous vegetables, and is well-known for tits anticancer properties. In particular, I3C and its dimeric product, 3,3'-diindolylmethane (DIM), have been generally investigated for their value against a number of human cancers in vitro as well as in vivo. This paper reviews an in-depth study of the anticancer activity and the miscellaneous mechanisms underlying the anticarcinogenicity thereby broadening its therapeutic marvel.
Li, Yang; Li, Jingxia; Deng, Xu; Zhu, Junlan; Jin, Honglei; Zhao, Qinshi; Huang, Chuanshu
2016-01-01
Cheliensisin A (Chel A), a styryl-lactone compound extracted from Goniothalamus cheliensis, is reported to have significant anti-cancer effects in various cancer cells. Here we demonstrated that Chel A treatment resulted in apoptosis and an inhibition of anchorage-independent growth in human bladder cancer T24, T24T and U5637 cells. Mechanistic studies showed that such effect is mediated by PH domain and Leucine rich repeat Protein Phosphatases (PHLPP2) protein. Chel A treatment led to PHLPP2 degradation and subsequently increased in c-Jun phosphorylation. Moreover PHLPP2 degradation could be attenuated by inhibition of autophagy, which was mediated by Beclin 1. Collectively, we discover that Chel A treatment induces Beclin-dependent autophagy, consequently mediates PHLPP2 degradation and JNK/C-Jun phosphorylation and activation, further in turn contributing to apoptosis in human bladder cancer cells. Current studies provide a significant insight into understanding of anticancer effect of Chel A in treatment of human bladder cancer. PMID:27556506
Affane, Fouad; Louala, Sabrine; El Imane Harrat, Nour; Bensalah, Fatima; Chekkal, Hadjera; Allaoui, Amine; Lamri-Senhadji, Myriem
2018-04-15
Fish by-products valorization on account of their richness in bioactive compounds may represent a better alternative to marine products with a view to economic profitability and sustainable development. In this study, we compared the effect of sardine by-product proteins (SBy-P), with those of the fillets (SF-P) or casein (Cas), on growth parameters, serum leptin level, lipids disorders, lipid peroxidation and reverse cholesterol transport, in diet-induced obese rats. Obesity was induced by feeding rats a high-fat diet (20% sheep fat), during 12 weeks. At body weight (BW) of 400 ± 20 g, eighteen obese rats were divided into three homogenous groups and continue to consume the high-fat diet for 4 weeks containing either, 20% SBy-P, SF-P or Cas. The results showed that SBy-P, compared to SF-P and Cas, efficiently reduced food intake (FI), BW gain and serum leptin level, and improved blood lipids levels and reverse cholesterol transport by reducing total cholesterol (TC), triacylglycerols (TG) and low-density lipoprotein cholesterol (LDL-HDL 1 -C) serum levels, increasing the level of high-density lipoprotein cholesterol (HDL 2 -C and HDL 3 -C), and enhancing lecithin: cholesterol acyltransferase (LCAT) activity. Furthermore, they attenuated lipid peroxidation by increasing atheroprotective activity of the paraoxonase-1 (PON-1). Sardine by-product proteins due to their richness in certain essential amino acids, highlight weight-loss, lipid-lowering, antioxidant and anti-atherogenic potentials, contributing to the improvement of the complications associated with obesity. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, Sooyeon; Jo, Eunmi; Chung, Kyung Yoon
Ni-rich lithium transition metal oxides have received significant attention due to their high capacities and rate capabilities determined via theoretical calculations. Although the structural properties of these materials are strongly correlated with the electrochemical performance, their structural stability during the high-rate electrochemical reactions has not been fully evaluated yet. In this work, transmission electron microscopy is used to investigate the crystallographic and electronic structural modifications of Ni-based cathode materials at a high charge/discharge rate of 10 C. It is found that the high-rate electrochemical reactions induce structural inhomogeneity near the surface of Ni-rich cathode materials, which limits Li transport andmore » reduces their capacities. Furthermore, this study establishes a correlation between the high-rate electrochemical performance of the Ni-based materials and their structural evolution, which can provide profound insights for designing novel cathode materials having both high energy and power densities.« less
Hwang, Sooyeon; Jo, Eunmi; Chung, Kyung Yoon; ...
2017-11-08
Ni-rich lithium transition metal oxides have received significant attention due to their high capacities and rate capabilities determined via theoretical calculations. Although the structural properties of these materials are strongly correlated with the electrochemical performance, their structural stability during the high-rate electrochemical reactions has not been fully evaluated yet. In this work, transmission electron microscopy is used to investigate the crystallographic and electronic structural modifications of Ni-based cathode materials at a high charge/discharge rate of 10 C. It is found that the high-rate electrochemical reactions induce structural inhomogeneity near the surface of Ni-rich cathode materials, which limits Li transport andmore » reduces their capacities. Furthermore, this study establishes a correlation between the high-rate electrochemical performance of the Ni-based materials and their structural evolution, which can provide profound insights for designing novel cathode materials having both high energy and power densities.« less
Takahashi, Melissa K; Watters, Kyle E; Gasper, Paul M; Abbott, Timothy R; Carlson, Paul D; Chen, Alan A; Lucks, Julius B
2016-06-01
Antisense RNA-mediated transcriptional regulators are powerful tools for controlling gene expression and creating synthetic gene networks. RNA transcriptional repressors derived from natural mechanisms called attenuators are particularly versatile, though their mechanistic complexity has made them difficult to engineer. Here we identify a new structure-function design principle for attenuators that enables the forward engineering of new RNA transcriptional repressors. Using in-cell SHAPE-Seq to characterize the structures of attenuator variants within Escherichia coli, we show that attenuator hairpins that facilitate interaction with antisense RNAs require interior loops for proper function. Molecular dynamics simulations of these attenuator variants suggest these interior loops impart structural flexibility. We further observe hairpin flexibility in the cellular structures of natural RNA mechanisms that use antisense RNA interactions to repress translation, confirming earlier results from in vitro studies. Finally, we design new transcriptional attenuators in silico using an interior loop as a structural requirement and show that they function as desired in vivo. This work establishes interior loops as an important structural element for designing synthetic RNA gene regulators. We anticipate that the coupling of experimental measurement of cellular RNA structure and function with computational modeling will enable rapid discovery of structure-function design principles for a diverse array of natural and synthetic RNA regulators. © 2016 Takahashi et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Thermodynamics of Nucleic Acid ‘Shape Readout’ by an Aminosugar†
Xi, Hongjuan; Davis, Erik; Ranjan, Nihar; Xue, Liang; Hyde-Volpe, David; Arya, Dev P.
2012-01-01
Recognition of nucleic acids is important for our understanding of nucleic acid structure as well as for our understanding of nucleic acid-protein interactions. In addition to the direct readout mechanisms of nucleic acids such as H-bonding, shape recognition of nucleic acids is being increasingly recognized to play an equally important role in DNA recognition. Competition Dialysis, UV, Flourescent Intercalator displacement (FID), Computational Docking, and calorimetry studies were conducted to study the interaction of neomycin with a variety of nucleic acid conformations (shapes). At pH 5.5, these results suggest: (1) Neomycin binds three RNA structures (16S A site rRNA, poly(rA)•poly(rA), and poly(rA)•poly(rU)) with high affinities, Ka~107M−1. (2) The binding of neomycin to A-form GC-rich oligomer d(A2G15C15T2)2 has comparable affinity to RNA structures. (3) The binding of neomycin to DNA•RNA hybrids shows a three-fold variance attributable to their structural differences (poly(dA) •poly(rU), Ka=9.4×106M−1 and poly(rA)•poly(dT), Ka=3.1×106M−1). (4) The interaction of neomycin with DNA triplex poly(dA)•2poly(dT) yields a binding affinity of Ka=2.4×105M−1. (5) Poly(dA-dT)2 showed the lowest association constant for all nucleic acids studied (Ka=<105). (6) Neomycin binds to G-quadruplexes with Ka~104-105M−1. (7) Computational studies show that the decrease in major groove width in the B to A transition correlates with increasing neomycin affinity. Neomycin’s affinity for various nucleic acid structures can be ranked as follows, RNAs and GC-rich d(A2G15C15T2)2 structures > poly(dA)•poly(rU) > poly(rA)•poly(dT) > T•A-T triplex , G-quadruplexes, B-form AT-rich or GC-rich DNA sequences. The results illustrate the first example of a small molecule based ‘shape readout’ of different nucleic acid conformations. PMID:21863895
Lu, Zhenmei; He, Zhili; Parisi, Victoria A.; Kang, Sanghoon; Deng, Ye; Van Nostrand, Joy D.; Masoner, Jason R.; Cozzarelli, Isabelle M.; Suflita, Joseph M.; Zhou, Jizhong
2012-01-01
The functional gene diversity and structure of microbial communities in a shallow landfill leachate-contaminated aquifer were assessed using a comprehensive functional gene array (GeoChip 3.0). Water samples were obtained from eight wells at the same aquifer depth immediately below a municipal landfill or along the predominant downgradient groundwater flowpath. Functional gene richness and diversity immediately below the landfill and the closest well were considerably lower than those in downgradient wells. Mantel tests and canonical correspondence analysis (CCA) suggested that various geochemical parameters had a significant impact on the subsurface microbial community structure. That is, leachate from the unlined landfill impacted the diversity, composition, structure, and functional potential of groundwater microbial communities as a function of groundwater pH, and concentrations of sulfate, ammonia, and dissolved organic carbon (DOC). Historical geochemical records indicate that all sampled wells chronically received leachate, and the increase in microbial diversity as a function of distance from the landfill is consistent with mitigation of the impact of leachate on the groundwater system by natural attenuation mechanisms.
40 CFR 721.10024 - 10H-Phenothiazine, ar-(C9-rich C8-10-branched alkyl) derivs.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false 10H-Phenothiazine, ar-(C9-rich C8-10... New Uses for Specific Chemical Substances § 721.10024 10H-Phenothiazine, ar-(C9-rich C8-10-branched... substance identified as 10H-phenothiazine, ar-(C9-rich C8-10-branched alkyl) derivs (PMN P-01-771; CAS No...
NSTAR Extended Life Test Discharge Chamber Flake Analysis
NASA Technical Reports Server (NTRS)
deGroh, Kim K.; Banks, Bruce A.; Karniotis, Christina A.
2005-01-01
The Extended Life Test (ELT) of the NASA Solar Electric Propulsion Technology Readiness (NSTAR) ion thruster was concluded after 30,352 hours of operation. The ELT was conducted using the Deep Space 1 (DS1) back-up flight engine, a 30 cm diameter xenon ion thruster. Post-test inspection of the ELT engine revealed numerous contaminant flakes distributed over the bottom of the cylindrical section of the anode within the discharge chamber (DC). Extensive analyses were conducted to determine the source of the particles, which is critical to the understanding of degradation mechanisms of long life ion thruster operation. Analyses included: optical microscopy (OM) and particle length histograms, field emission scanning electron microscopy (FESEM) combined with energy dispersive spectroscopy (EDS), and atomic oxygen plasma exposure tests. Analyses of the particles indicate that the majority of the DC flakes consist of a layered structure, typically with either two or three layers. The flakes comprising two layers were typically found to have a molybdenum-rich (Mo-rich) layer on one side and a carbon-rich (C-rich) layer on the other side. The flakes comprising three layers were found to be sandwich-like structures with Mo-rich exterior layers and a C-rich interior layer. The presence of the C-rich layers indicates that these particles were produced by sputter deposition build-up on a surface external to the discharge chamber from ion sputter erosion of the graphite target in the test chamber. This contaminant layer became thick enough that particles spalled off, and then were electro-statically attracted into the ion thruster interior, where they were coated with Mo from internal sputter erosion of the screen grid and cathode components. Atomic oxygen tests provided evidence that the DC chamber flakes are composed of a significant fraction of carbon. Particle size histograms further indicated that the source of the particles was spalling of carbon flakes from downstream surfaces. Analyses of flakes taken from the downstream surface of the accelerator grid provided additional supportive information. The production of the downstream carbon flakes, and hence the potential problems associated with the flake particles in the ELT ion thruster engine is a facility induced effect and would not occur in the space environment.
Investigations of Nuclear Structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarantites, Demetrios; Reviol, W.
The proposal addresses studies of nuclear structure at low-energies and development of instrumentation for that purpose. The structure studies deal with features of neutron-rich nuclei with unexplored shapes (football- or pear-shaped nuclei). The regions of interest are: neutron rich nuclei like 132-138Sn, or 48-54Ca, and the Zr, Mo, and Ru isotopes. The tools used can be grouped as follows: either Gammasphere or Gretina multi-gamma detector arrays and auxiliary detectors (Microball, Neutron Shell, and the newly completed Phoswich Wall).The neutron-rich nuclei are accessed by radioactive-beam binary reactions or by 252Cf spontaneous fission. The experiments with heavy radioactive beams aim at excitingmore » the beam nuclei by pick-up or transfer a neutron or a proton from a light target like 13C, 9Be, 11B or 14N .For these binary-reaction studies the Phoswich Wall detector system is essential. It is based on four multi-anode photomultiplier tubes on which CsI and thin fast-timing plastic scintillators are attached. Their signals are digitized with a high density microchip system.« less
Exposure to particulate matter (PM) is associated with increased cardiovascular disease morbidity and mortality. These correlations are strengthened in individuals with pre-existing cardiovascular disease, including hypertension. Extensive evidence supports a significant role for...
Gille, H; Messer, W
1991-01-01
The leftmost region of the Escherichia coli origin of DNA replication (oriC) contains three tandemly repeated AT-rich 13mers which have been shown to become single-stranded during the early stages of initiation in vitro. Melting is induced by the ATP form of DnaA, the initiator protein of DNA replication. KMnO4 was used to probe for single-stranded regions and altered DNA conformation during the initiation of DNA replication at oriC in vitro and in vivo. Unpairing in the AT-rich 13mer region is thermodynamically stable even in the absence of DnaA protein, but only when divalent cations are omitted from the reaction. In the presence of Mg2+, oriC melting is strictly DnaA dependent. The sensitive region is distinct from that detected in the absence of DnaA as it is located further to the left within the minimal origin. In addition, the DNA is severely distorted between the three 13mers and the IHF binding site in oriC. A change of conformation can also be observed during the initiation of DNA replication in vivo. This is the first in vivo evidence for a structural change at the 13mers during initiation complex formation. Images PMID:2026151
Madiraju, Padma; Hossain, Ekhtear; Anand-Srivastava, Madhu B
2018-02-07
We showed previously that natriuretic peptide receptor-C (NPR-C) agonist, C-ANP 4-23 , attenuated the enhanced expression of Giα proteins in vascular smooth muscle cells (VSMC) from spontaneously hypertensive rats (SHR) through the inhibition of enhanced oxidative stress. Since the enhanced levels of endogenous angiotensin II (Ang II) contribute to the overexpression of Giα proteins and augmented oxidative stress in VSMC from SHR, the present study was undertaken to investigate if C-ANP 4-23 could also attenuate angiotensin II (Ang II)-induced oxidative stress and associated signaling. Ang II treatment of aortic VSMC augmented the levels of superoxide anion (O 2 - ), NADPH oxidase activity, and the expression of NADPH oxidase subunits and C-ANP 4-23 treatment attenuated all these to control levels. In addition, Ang II-induced enhanced levels of thiobarbituric acid-reactive substances (TBARS) and protein carbonyl content were also attenuated toward control levels by C-ANP 4-23 treatment. On the other hand, Ang II inhibited the levels of nitric oxide (NO) and augmented the levels of peroxynitrite (OONO - ) in VSMC which were restored to control levels by C-ANP 4-23 treatment. Furthermore, C-ANP 4-23 treatment attenuated Ang II-induced enhanced expression of Giα proteins, phosphorylation of p38, JNK, and ERK 1,2 as well as hyperproliferation of VSMC as determined by DNA synthesis, and metabolic activity. These results indicate that C-ANP 4-23 , via the activation of NPR-C, attenuates Ang II-induced enhanced nitroxidative stress, overexpression of Giα proteins, increased activation of the p38/JNK/ERK 1,2 signaling pathways, and hyperproliferation of VSMC. It may be suggested that C-ANP 4-23 could be used as a therapeutic agent in the treatment of vascular remodeling associated with hypertension and atherosclerosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Del Dotto, A.; Wong, C. -P.; Allison, L.
An Electron-Ion Collider (EIC) has been proposed to further explore the strong force and QCD, focusing on the structure and the interaction of gluon-dominated matter. A generic detector R&D program (EIC PID consortium) for the particle identification in EIC experiments was formed to explore technologically advanced solutions in this scope. In this context two Ring Imaging Cherenkov (RICH) counters have been proposed: a modular RICH detector which consists of an aerogel radiator, a Fresnel lens, a mirrored box, and pixelated photon sensor; a dual-radiator RICH, consisting of an aerogel radiator and C 2F 6 gas in a mirror-focused configuration. Asmore » a result, we present the simulations of the two detectors and their estimated performance.« less
NASA Astrophysics Data System (ADS)
Zazzo, Antoine; Balasse, Marie; Patterson, William P.
2005-07-01
We present the first high-resolution carbon isotope and carbonate content profiles generated through the thickness of enamel from a steer fed C 3- then C 4-dominant food. Carbonate contents decrease by ˜2 wt% from the enamel surface to the innermost enamel layer, and each carbon isotope profile shows a mixture of enamel portions mineralized over several months. Downward and outward increasing contribution of C 4 food to the enamel δ 13C values reveal two components of the mineralization gradient: a vertical component from the tip of the tooth crown to the neck, and a horizontal component from the enamel-dentine junction to the outer enamel. We use our results to infer mineralization parameters for bovines and to calculate expected isotopic attenuations for an array of environmental inputs and microsampling strategies, using the model developed by Passey and Cerling [ Geochim. Cosmochim. Acta. 66 (2002) 3225-3234]. Although it seems unlikely that any strategy will perfectly isolate discrete time slices, sampling the innermost enamel layer might offer the advantage of significantly reducing the isotope damping that would become independent of the structure of the input signal.
Goldoni, Silvia; Iozzo, Renato V
2008-12-01
Decorin, the prototype member of the small leucine-rich proteoglycans, resides in the tumor microenvironment and affects the biology of various types of cancer by downregulating the activity of several receptors involved in cell growth and survival. Decorin binds to and modulates the signaling of the epidermal growth factor receptor and other members of the ErbB family of receptor tyrosine kinases. It exerts its antitumor activity by a dual mechanism: via inhibition of these key receptors through their physical downregulation coupled with attenuation of their signaling, and by binding to and sequestering TGFbeta. Decorin also modulates the insulin-like growth factor receptor and the low-density lipoprotein receptor-related protein 1, which indirectly affects the TGFbeta receptor pathway. When expressed in tumor xenograft-bearing mice or injected systemically, decorin inhibits both primary tumor growth and metastatic spreading. In this review, we summarize the latest reports on decorin and related molecules that are relevant to cancer and bring forward the idea of decorin as an anticancer therapeutic and possible prognostic marker for patients affected by various types of tumors. We also discuss the role of lumican and LRIG1, a novel cell growth inhibitor homologous to decorin. (c) 2008 Wiley-Liss, Inc.
Biotransformation and bioactivation reactions of alicyclic amines in drug molecules.
Bolleddula, Jayaprakasam; DeMent, Kevin; Driscoll, James P; Worboys, Philip; Brassil, Patrick J; Bourdet, David L
2014-08-01
Aliphatic nitrogen heterocycles such as piperazine, piperidine, pyrrolidine, morpholine, aziridine, azetidine, and azepane are well known building blocks in drug design and important core structures in approved drug therapies. These core units have been targets for metabolic attack by P450s and other drug metabolizing enzymes such as aldehyde oxidase and monoamine oxidase (MAOs). The electron rich nitrogen and/or α-carbons are often major sites of metabolism of alicyclic amines. The most common biotransformations include N-oxidation, N-conjugation, oxidative N-dealkylation, ring oxidation, and ring opening. In some instances, the metabolic pathways generate electrophilic reactive intermediates and cause bioactivation. However, potential bioactivation related adverse events can be attenuated by structural modifications. Hence it is important to understand the biotransformation pathways to design stable drug candidates that are devoid of metabolic liabilities early in the discovery stage. The current review provides a comprehensive summary of biotransformation and bioactivation pathways of aliphatic nitrogen containing heterocycles and strategies to mitigate metabolic liabilities.
Dissociation behavior of methane--ethane mixed gas hydrate coexisting structures I and II.
Kida, Masato; Jin, Yusuke; Takahashi, Nobuo; Nagao, Jiro; Narita, Hideo
2010-09-09
Dissociation behavior of methane-ethane mixed gas hydrate coexisting structures I and II at constant temperatures less than 223 K was studied with use of powder X-ray diffraction and solid-state (13)C NMR techniques. The diffraction patterns at temperatures less than 203 K showed both structures I and II simultaneously convert to Ih during the dissociation, but the diffraction pattern at temperatures greater than 208 K showed different dissociation behavior between structures I and II. Although the diffraction peaks from structure II decreased during measurement at constant temperatures greater than 208 K, those from structure I increased at the initial step of dissociation and then disappeared. This anomalous behavior of the methane-ethane mixed gas hydrate coexisting structures I and II was examined by using the (13)C NMR technique. The (13)C NMR spectra revealed that the anomalous behavior results from the formation of ethane-rich structure I. The structure I hydrate formation was associated with the dissociation rate of the initial methane-ethane mixed gas hydrate.
Pore-Scale Modeling of Pore Structure Effects on P-Wave Scattering Attenuation in Dry Rocks
Li, Tianyang; Qiu, Hao; Wang, Feifei
2015-01-01
Underground rocks usually have complex pore system with a variety of pore types and a wide range of pore size. The effects of pore structure on elastic wave attenuation cannot be neglected. We investigated the pore structure effects on P-wave scattering attenuation in dry rocks by pore-scale modeling based on the wave theory and the similarity principle. Our modeling results indicate that pore size, pore shape (such as aspect ratio), and pore density are important factors influencing P-wave scattering attenuation in porous rocks, and can explain the variation of scattering attenuation at the same porosity. From the perspective of scattering attenuation, porous rocks can safely suit to the long wavelength assumption when the ratio of wavelength to pore size is larger than 15. Under the long wavelength condition, the scattering attenuation coefficient increases as a power function as the pore density increases, and it increases exponentially with the increase in aspect ratio. For a certain porosity, rocks with smaller aspect ratio and/or larger pore size have stronger scattering attenuation. When the pore aspect ratio is larger than 0.5, the variation of scattering attenuation at the same porosity is dominantly caused by pore size and almost independent of the pore aspect ratio. These results lay a foundation for pore structure inversion from elastic wave responses in porous rocks. PMID:25961729
IRC +10 216 in 3-D: morphology of a TP-AGB star envelope
Guélin, M.; Patel, N.A.; Bremer, M.; Cernicharo, J.; Castro-Carrizo, A.; Pety, J.; Fonfría, J.P.; Agúndez, M.; Santander-García, M.; Quintana-Lacaci, G.; Velilla Prieto, L.; Blundell, R.; Thaddeus, P.
2017-01-01
During their late pulsating phase, AGB stars expel most of their mass in the form of massive dusty envelopes, an event that largely controls the composition of interstellar matter. The envelopes, however, are distant and opaque to visible and NIR radiation: their structure remains poorly known and the mass-loss process poorly understood. Millimeter-wave interferometry, which combines the advantages of longer wavelength, high angular resolution and very high spectral resolution is the optimal investigative tool for this purpose. Mm waves pass through dust with almost no attenuation. Their spectrum is rich in molecular lines and hosts the fundamental lines of the ubiquitous CO molecule, allowing a tomographic reconstruction of the envelope structure. The circumstellar envelope IRC +10 216 and its central star, the C-rich TP-AGB star closest to the Sun, are the best objects for such an investigation. Two years ago, we reported the first detailed study of the CO(2-1) line emission in that envelope, made with the IRAM 30-m telescope. It revealed a series of dense gas shells, expanding at a uniform radial velocity. The limited resolution of the telescope (HPBW 11″) did not allow us to resolve the shell structure. We now report much higher angular resolution observations of CO(2-1), CO(1-0), CN(2-1) and C4H(24-23) made with the SMA, PdB and ALMA interferometers (with synthesized half-power beamwidths of 3″, 1″ and 0.3″, respectively). Although the envelope appears much more intricate at high resolution than with an 11″ beam, its prevailing structure remains a pattern of thin, nearly concentric shells. The average separation between the brightest CO shells is 16″ in the outer envelope, where it appears remarkably constant. Closer to the star (< 40″), the shell pattern is denser and less regular, showing intermediary arcs. Outside the small (r < 0.3″) dust formation zone, the gas appears to expand radially at a constant velocity, 14.5 km s−1, with small turbulent motions. Based on that property, we have reconstructed the 3-D structure of the outer envelope and have derived the gas temperature and density radial profiles in the inner (r < 25″) envelope. The shell-intershell density contrast is found to be typically 3. The over-dense shells have spherical or slightly oblate shapes and typically extend over a few steradians, implying isotropic mass loss. The regular spacing of shells in the outer envelope supports the model of a binary star system with a period of 700 years and a near face-on elliptical orbit. The companion fly-by triggers enhanced episodes of mass loss near periastron. The densification of the shell pattern observed in the central part of the envelope suggests a more complex scenario for the last few thousand years. ⋆ PMID:29456257
NASA Astrophysics Data System (ADS)
Chen, Zhangqi; Liu, Zi-Kui; Zhao, Ji-Cheng
2018-05-01
Diffusion coefficients of seven binary systems (Ti-Mo, Ti-Nb, Ti-Ta, Ti-Zr, Zr-Mo, Zr-Nb, and Zr-Ta) at 1200 °C, 1000 °C, and 800 °C were experimentally determined using three Ti-Mo-Nb-Ta-Zr diffusion multiples. Electron probe microanalysis (EPMA) was performed to collect concentration profiles at the binary diffusion regions. Forward simulation analysis (FSA) was then applied to extract both impurity and interdiffusion coefficients in Ti-rich and Zr-rich part of the bcc phase. Excellent agreements between our results and most of the literature data validate the high-throughput approach combining FSA with diffusion multiples to obtain a large amount of systematic diffusion data, which will help establish the diffusion (mobility) databases for the design and development of biomedical and structural Ti alloys.
NASA Astrophysics Data System (ADS)
Chen, Zhangqi; Liu, Zi-Kui; Zhao, Ji-Cheng
2018-07-01
Diffusion coefficients of seven binary systems (Ti-Mo, Ti-Nb, Ti-Ta, Ti-Zr, Zr-Mo, Zr-Nb, and Zr-Ta) at 1200 °C, 1000 °C, and 800 °C were experimentally determined using three Ti-Mo-Nb-Ta-Zr diffusion multiples. Electron probe microanalysis (EPMA) was performed to collect concentration profiles at the binary diffusion regions. Forward simulation analysis (FSA) was then applied to extract both impurity and interdiffusion coefficients in Ti-rich and Zr-rich part of the bcc phase. Excellent agreements between our results and most of the literature data validate the high-throughput approach combining FSA with diffusion multiples to obtain a large amount of systematic diffusion data, which will help establish the diffusion (mobility) databases for the design and development of biomedical and structural Ti alloys.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hang; Li, Hongyi; Gilbert, Jack A.
Manure from swine treated with antimicrobials as feed additives is a major source for the expansion of the antibiotic resistance gene (ARG) reservoir in the environment. Vermicomposting via housefly larvae (Musca domestica) can be efficiently used to treat manure and regenerate biofertilizer, but few studies have investigated its effect on ARG attenuation. Here, we tracked the abundances of 9 ARGs and the composition and structure of the bacterial communities in manure samples across 6 days of full-scale manure vermicomposting. On day 6, the abundances of genes encoding tetracycline resistance [tet(M),tet(O),tet(Q), andtet(W)] were reduced (P< 0.05), while those of genes encodingmore » sulfonamide resistance (sul1andsul2) were increased (P< 0.05) when normalized to 16S rRNA. The abundances of tetracycline resistance genes were correlated (P< 0.05) with the changing concentrations of tetracyclines in the manure. The overall diversity and richness of the bacteria significantly decreased during vermicomposting, accompanied by a 100 times increase in the relative abundance ofFlavobacteriaceaespp. Variations in the abundances of ARGs were correlated with the changing microbial community structure and the relative abundances of the familyRuminococcaceae, classBacilli, or phylumProteobacteria. Vermicomposting, as a waste management practice, can reduce the overall abundance of ARGs. More research is warranted to assess the use of this waste management practice as a measure to attenuate the dissemination of antimicrobial residues and ARGs from livestock production before vermicompost can be safely used as biofertilizer in agroecosystems.« less
40 CFR 721.10025 - 10H-Phenothiazine, ar, ar′-(C9-rich C8-10-branched alkyl) derivs.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false 10H-Phenothiazine, ar, arâ²-(C9-rich... Significant New Uses for Specific Chemical Substances § 721.10025 10H-Phenothiazine, ar, ar′-(C9-rich C8-10... chemical substances identified as 10H-phenothiazine, ar, ar′-(C9-rich C8-10-branched alkyl) derivs (PMN P...
Roy, Sujit; Banerjee, Victor; Das, Kali Pada
2015-01-01
Here, we have investigated the physical and molecular basis of stability of Arabidopsis DNA Pol λ, the sole X family DNA polymerase member in plant genome, under UV-B and salinity stress in connection with the function of the N-terminal BRCT (breast cancer-associated C terminus) domain and Ser-Pro rich region in the regulation of the overall structure of this protein. Tryptophan fluorescence studies, fluorescence quenching and Bis-ANS binding experiments using purified recombinant full length Pol λ and its N-terminal deletion forms have revealed UV-B induced conformational change in BRCT domain deficient Pol λ. On the other hand, the highly conserved C-terminal catalytic core PolX domain maintained its tertiary folds under similar condition. Circular dichroism (CD) and fourier transform infrared (FT-IR) spectral studies have indicated appreciable change in the secondary structural elements in UV-B exposed BRCT domain deficient Pol λ. Increased thermodynamic stability of the C-terminal catalytic core domain suggested destabilizing effect of the N-terminal Ser-Pro rich region on the protein structure. Urea-induced equilibrium unfolding studies have revealed increased stability of Pol λ and its N-terminal deletion mutants at high NaCl concentration. In vivo aggregation studies using transient expression systems in Arabidopsis and tobacco indicated possible aggregation of Pol λ lacking the BRCT domain. Immunoprecipitation assays revealed interaction of Pol λ with the eukaryotic molecular chaperone HSP90, suggesting the possibility of regulation of Pol λ stability by HSP90 in plant cell. Overall, our results have provided one of the first comprehensive information on the biophysical characteristics of Pol λ and indicated the importance of both BRCT and Ser-Pro rich modules in regulating the stability of this protein under genotoxic stress in plants.
The Seismic Attenuation Structure of the East Pacific Rise
1992-02-27
Kanamori, R. W. Clayton, Three- dimensional attenuation structure of Kilauea -East rift zone, Hawaii , J. Geophys. Res., submitted, 1990. Holt, M., Underwater...and J. J. Zucca, Active high-resolution seismic tomography of compressional wave velocity and attenuation at Medicine Lake volcano , northern California...zones of anomalously high S-wave attenuation in the upper crust near Ruapehu and Ngauruhoe volcanoes , New Zealand, J. Volcanol. Geotherm. Res., 10, 125
The Local Tissue Environment During the September 29, 1989 Solar Particle Event
NASA Technical Reports Server (NTRS)
Kim, M.-H. Y.; Wilson, J. W.; Cucinotta, F. A.; Simonsen, L. C.; Atwell, W.; Badavi, F. F.; Miller, J.
2004-01-01
The solar particle event (SPE) of September 29, 1989, produced an iron-rich spectrum with energies approaching 1 GeV/amu with an energy power index of 2.5. These high charge and energy (HZE) ions of the iron-rich SPEs challenge conventional methods of SPE shield design and assessment of astronaut risks. Shield and risk assessments are evaluated using the HZETRN code with computerized anatomical man (CAM) model for astronaut s body tissues. Since the HZE spectra decline rapidly with energy and HZE attenuation in materials is limited by their penetration power, details of the mass distributions about the sensitive tissues (shielding materials and the astronaut's body) are important determining factors of the exposure levels. Typical space suit and lightly shielded structures allow significant contributions from HZE components to some critical body tissues and have important implications on the models for risk assessment. Only a heavily shielded equipment room of a space vehicle or habitat provides sufficient shielding for the early response at sensitive organs from this event. The February 23, 1956 event of similar spectral characteristics and ten times this event may have important medical consequences without a well-shielded region.
Asymmetric twins in rhombohedral boron carbide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujita, Takeshi, E-mail: tfujita@wpi-aimr.tohoku.ac.jp; Guan, Pengfei; Madhav Reddy, K.
2014-01-13
Superhard materials consisting of light elements have recently received considerable attention because of their ultrahigh specific strength for a wide range of applications as structural and functional materials. However, the failure mechanisms of these materials subjected to high stresses and dynamic loading remain to be poorly known. We report asymmetric twins in a complex compound, boron carbide (B{sub 4}C), characterized by spherical-aberration-corrected transmission electron microscopy. The atomic structure of boron-rich icosahedra at rhombohedral vertices and cross-linked carbon-rich atomic chains can be clearly visualized, which reveals unusual asymmetric twins with detectable strains along the twin interfaces. This study offers atomic insightsmore » into the structure of twins in a complex material and has important implications in understanding the planar defect-related failure of superhard materials under high stresses and shock loading.« less
Hadjadj, Nasreddine; Dems, Mohamed AbdEsselem; Merazig, Hocine; Bendjeddou, Lamia
2018-04-01
Due to their rich structural chemistry and wide variety of applications, borate materials have provided a rich area of research. In a continuation of this research, diethylammonium bis(2-oxidobenzoato-κ 2 O 1 ,O 2 )borate, C 4 H 12 N + ·BO 4 (C 7 H 4 O) 2 - , (1), and propylammonium bis(2-oxidobenzoato-κ 2 O 1 ,O 2 )borate, C 3 H 10 N + ·BO 4 (C 7 H 4 O) 2 - , (2), have been synthesized by the reaction of boric acid with salicylic acid under ambient conditions. In both structures, the B atom exhibits a slightly distorted tetrahedral environment formed by the bidentate coordination of two salicylate anions via the O atoms of the central carboxylate and oxide groups. In the crystals of salts (1) and (2), mixed cation-anion layers lying parallel to the (101) plane are formed through N-H...O, C-H...O and C-H...π/N-H...O hydrogen-bonding interactions, resulting, in each case, in a two-dimensional supramolecular architecture in the solid state. The photoluminescence properties of the salts were studied using the as-synthesized samples and reveal that salts (1) and (2) both display a strong blue-light emission, with maxima at 489 and 491 nm, respectively. In DFT/TD-DFT (time-dependent density functional theory) studies, the blue emission appears to be derived from an intramolecular charge transfer (ICT) excited state. In addition, IR and UV-Vis spectroscopies were used to investigate the title salts.
Strathearn, Katherine E.; Yousef, Gad G.; Grace, Mary H.; Roy, Susan L.; Tambe, Mitali A.; Ferruzzi, Mario G.; Wu, Qing-Li; Simon, James E.; Lila, Mary Ann; Rochet, Jean-Christophe
2014-01-01
Neuropathological evidence indicates that dopaminergic cell death in Parkinson’s disease (PD) involves impairment of mitochondrial complex I, oxidative stress, microglial activation, and the formation of Lewy bodies. Epidemiological findings suggest that the consumption of berries rich in anthocyanins and proanthocyanidins may reduce PD risk. In this study, we investigated whether extracts rich in anthocyanins, proanthocyanidins, or other polyphenols suppress the neurotoxic effects of rotenone in a primary cell culture model of PD. Dopaminergic cell death elicited by rotenone was suppressed by extracts prepared from blueberries, grape seed, hibiscus, blackcurrant, and Chinese mulberry. Extracts rich in anthocyanins and proanthocyanidins exhibited greater neuroprotective activity than extracts rich in other polyphenols, and a number of individual anthocyanins interfered with rotenone neurotoxicity. The blueberry and grape seed extracts rescued rotenone-induced defects in mitochondrial respiration in a dopaminergic cell line, and a purple basal extract attenuated nitrite release from microglial cells stimulated by lipopolysaccharide. These findings suggest that anthocyanin- and proanthocyanidin-rich botanical extracts may alleviate neurodegeneration in PD via enhancement of mitochondrial function. PMID:24502982
Ortiz-Avila, Omar; Gallegos-Corona, Marco Alonso; Sánchez-Briones, Luis Alberto; Calderón-Cortés, Elizabeth; Montoya-Pérez, Rocío; Rodriguez-Orozco, Alain R; Campos-García, Jesús; Saavedra-Molina, Alfredo; Mejía-Zepeda, Ricardo; Cortés-Rojo, Christian
2015-08-01
Electron transport chain (ETC) dysfunction, excessive ROS generation and lipid peroxidation are hallmarks of mitochondrial injury in the diabetic liver, with these alterations also playing a role in the development of non-alcoholic fatty liver disease (NAFLD). Enhanced mitochondrial sensitivity to lipid peroxidation during diabetes has been also associated to augmented content of C22:6 in membrane phospholipids. Thus, we aimed to test whether avocado oil, a rich source of C18:1 and antioxidants, attenuates the deleterious effects of diabetes on oxidative status of liver mitochondria by decreasing unsaturation of acyl chains of membrane lipids and/or by improving ETC functionality and decreasing ROS generation. Streptozocin-induced diabetes elicited a noticeable increase in the content of C22:6, leading to augmented mitochondrial peroxidizability index and higher levels of lipid peroxidation. Mitochondrial respiration and complex I activity were impaired in diabetic rats with a concomitant increase in ROS generation using a complex I substrate. This was associated to a more oxidized state of glutathione, All these alterations were prevented by avocado oil except by the changes in mitochondrial fatty acid composition. Avocado oil did not prevented hyperglycemia and polyphagia although did normalized hyperlipidemia. Neither diabetes nor avocado oil induced steatosis. These results suggest that avocado oil improves mitochondrial ETC function by attenuating the deleterious effects of oxidative stress in the liver of diabetic rats independently of a hypoglycemic effect or by modifying the fatty acid composition of mitochondrial membranes. These findings might have also significant implications in the progression of NAFLD in experimental models of steatosis.
NASA Astrophysics Data System (ADS)
Xie, Wei; Tamura, Takahiro; Yanase, Takashi; Nagahama, Taro; Shimada, Toshihiro
2018-04-01
The effect of C doping to hexagonal boron nitride (h-BN) to its electronic structure is examined by first principles calculations using the association from π-electron systems of organic molecules embedded in a two-dimensional insulator. In a monolayered carbon-doped structure, odd-number doping with carbon atoms confers metallic properties with different work functions. Various electronic interactions occur between two layers with odd-number carbon substitution. A direct sp3 covalent chemical bond is formed when C replaces adjacent B and N in different layers. A charge transfer complex between layers is found when C replaces B and N in the next-neighboring region, which results in narrower band gaps (e.g., 0.37 eV). Direct bonding between C and B atoms is found when two C atoms in different layers are at a certain distance.
Molecular beam epitaxially grown copper indium diselenide and copper gallium diselenide films
NASA Astrophysics Data System (ADS)
Yoon, Seokhyun
2005-12-01
To eliminate the influence of grain boundaries, CuInSe2 (CIS) and CuGaSe2 (CGS) films were grown on (100) GaAs wafers. The effects of Cu to III metal ratio and dosing with Na on the growth mode and defect properties were studied at two growth temperatures. The impact of post-annealing in Se on the defect structure of CGS film was also studied. Two-dimensional simulations were used to better understand the role of grain boundary on cell performance. For growth at 360°C, the In-rich CIS films were polycrystalline, whereas the Cu-rich CIS films were epitaxial exhibiting a Stranski-Krastanov (S-K) growth mode. It is proposed that a Cu-Se secondary phase enhances the mobility of adatoms, allowing epitaxial growth to a critical thickness, at which point segregation at the nucleation sites became faster the rate of growth. Island structures, embedded in a matrix region, were oriented along the [01-1] directed edges with surface undulations apparent on the matrix surface with dominant {112} crystal planes. At the higher growth temperature of 464°C, the CIS films grew epitaxially without the need of a Cu-Se phase. Both CIS films grown at low and high temperatures were nearly relaxed. The segregation of epitaxial Cu1.5Se was also observed in the Cu-rich, Na-dosed CIS film, which is attributed to a surfactant effect of Na. At a growth temperature of 438°C, CGS films showed a S-K growth mode and nearly pseudomorphic growth. Hemispherical islands with twins were observed in the Ga-rich CGS films and epitaxial Cu1.5Se phase were identified in the top region of the island structure. From the PL analysis of Cu-rich, Na-dosed CGS film after Se-annealing, a new defect level located 20 meV above the valence band edge was identified as NaGa acceptor state. Two-dimensional simulation of the impact of grain boundaries on device performance showed that the short circuit current decreases sharply along with the other device parameters below a critical grain size due to the complete depletion. The increase of dark saturation current with decreasing grain size was predicted due to an increase in the recombination current.
Vazdar, Mario; Heyda, Jan; Mason, Philip E; Tesei, Giulio; Allolio, Christoph; Lund, Mikael; Jungwirth, Pavel
2018-06-19
It is a textbook knowledge that charges of the same polarity repel each other. For two monovalent ions in the gas phase at a close contact this repulsive interaction amounts to hundreds of kilojoules per mole. In aqueous solutions, however, this Coulomb repulsion is strongly attenuated by a factor equal to the dielectric constant of the medium. The residual repulsion, which now amounts only to units of kilojoules per mole, may be in principle offset by attractive interactions. Probably the smallest cationic pair, where a combination of dispersion and cavitation forces overwhelms the Coulomb repulsion, consists of two guanidinium ions in water. Indeed, by a combination of molecular dynamics with electronic structure calculations and electrophoretic, as well as spectroscopic, experiments, we have demonstrated that aqueous guanidinium cations form (weakly) thermodynamically stable like-charge ion pairs. The importance of pairing of guanidinium cations in aqueous solutions goes beyond a mere physical curiosity, since it has significant biochemical implications. Guanidinium chloride is known to be an efficient and flexible protein denaturant. This is due to the ability of the orientationally amphiphilic guanidinium cations to disrupt various secondary structural motifs of proteins by pairing promiscuously with both hydrophobic and hydrophilic groups, including guanidinium-containing side chains of arginines. The fact that the cationic guanidinium moiety forms the dominant part of the arginine side chain implies that the like-charge ion pairing may also play a role for interactions between peptides and proteins. Indeed, arginine-arginine pairing has been frequently found in structural protein databases. In particular, when strengthened by a presence of negatively charged glutamate, aspartate, or C-terminal carboxylic groups, this binding motif helps to stabilize peptide or protein dimers and is also found in or near active sites of several enzymes. The like-charge pairing of the guanidinium side-chain groups may also hold the key to the understanding of the arginine "magic", that is, the extraordinary ability of arginine-rich polypeptides to passively penetrate across cellular membranes. Unlike polylysines, which are also highly cationic but lack the ease in crossing membranes, polyarginines do not exhibit mutual repulsion. Instead, they accumulate at the membrane, weaken it, and might eventually cross in a concerted, "train-like" manner. This behavior of arginine-rich cell penetrating peptides can be exploited when devising smart strategies how to deliver in a targeted way molecular cargos into the cell.
Constitutively Active SPAK Causes Hyperkalemia by Activating NCC and Remodeling Distal Tubules.
Grimm, P Richard; Coleman, Richard; Delpire, Eric; Welling, Paul A
2017-09-01
Aberrant activation of with no lysine (WNK) kinases causes familial hyperkalemic hypertension (FHHt). Thiazide diuretics treat the disease, fostering the view that hyperactivation of the thiazide-sensitive sodium-chloride cotransporter (NCC) in the distal convoluted tubule (DCT) is solely responsible. However, aberrant signaling in the aldosterone-sensitive distal nephron (ASDN) and inhibition of the potassium-excretory renal outer medullary potassium (ROMK) channel have also been implicated. To test these ideas, we introduced kinase-activating mutations after Lox-P sites in the mouse Stk39 gene, which encodes the terminal kinase in the WNK signaling pathway, Ste20-related proline-alanine-rich kinase (SPAK). Renal expression of the constitutively active (CA)-SPAK mutant was specifically targeted to the early DCT using a DCT-driven Cre recombinase. CA-SPAK mice displayed thiazide-treatable hypertension and hyperkalemia, concurrent with NCC hyperphosphorylation. However, thiazide-mediated inhibition of NCC and consequent restoration of sodium excretion did not immediately restore urinary potassium excretion in CA-SPAK mice. Notably, CA-SPAK mice exhibited ASDN remodeling, involving a reduction in connecting tubule mass and attenuation of epithelial sodium channel (ENaC) and ROMK expression and apical localization. Blocking hyperactive NCC in the DCT gradually restored ASDN structure and ENaC and ROMK expression, concurrent with the restoration of urinary potassium excretion. These findings verify that NCC hyperactivity underlies FHHt but also reveal that NCC-dependent changes in the driving force for potassium secretion are not sufficient to explain hyperkalemia. Instead, a DCT-ASDN coupling process controls potassium balance in health and becomes aberrantly activated in FHHt. Copyright © 2017 by the American Society of Nephrology.
In vitro bioactivity investigation of alkali treated Ti6Al7Nb alloy foams
NASA Astrophysics Data System (ADS)
Butev, Ezgi; Esen, Ziya; Bor, Sakir
2015-02-01
Biocompatible Ti6Al7Nb alloy foams with 70% porosity manufactured by space holder method were activated via alkali treatment using 5 M NaOH solution at 60 °C. The interconnected pore structures enabled formation of homogenous sodium rich coating on the foam surfaces by allowing penetration of alkali solution throughout the pores which had average size of 200 μm. The resulted coating layer having 500 nm thickness exhibited porous network morphology with 100 nm pore size. On the other hand, heat treatment conducted subsequent to alkali treatment at 600 °C in air transformed sodium rich coating into crystalline bioactive sodium titanate phases. Although the coatings obtained by additional heat treatment were mechanically stable and preserved their morphology, oxidation of the samples deteriorated the compressive strength significantly without affecting the elastic modulus. However, heat treated samples revealed better hydroxyapatite formation when soaked in simulated body fluid (SBF) compared to alkali treated foams. On the other hand, untreated surfaces containing bioactive TiO2 layer were observed to comprise of Ca and P rich precipitates only rather than hydroxyapatite within 15 days. The apatite formed on the treated porous surfaces was observed to have flower-like structure with Ca/P ratio around 1.5 close to that of natural bone.
An Innovative Concept for Spacebased Lidar Measurement of Ocean Carbon Biomass
NASA Technical Reports Server (NTRS)
Hu, Yongxiang; Behrenfeld, Michael; Hostetler, Chris; Pelon, Jacques; Trepte, Charles; Hair, John; Slade, Wayne; Cetinic, Ivona; Vaughan, Mark; Lu, Xiaomei;
2015-01-01
Beam attenuation coefficient, c, provides an important optical index of plankton standing stocks, such as phytoplankton biomass and total particulate carbon concentration. Unfortunately, c has proven difficult to quantify through remote sensing. Here, we introduce an innovative approach for estimating c using lidar depolarization measurements and diffuse attenuation coefficients from ocean color products or lidar measurements of Brillouin scattering. The new approach is based on a theoretical formula established from Monte Carlo simulations that links the depolarization ratio of sea water to the ratio of diffuse attenuation Kd and beam attenuation C (i.e., a multiple scattering factor). On July 17, 2014, the CALIPSO satellite was tilted 30Âdeg off-nadir for one nighttime orbit in order to minimize ocean surface backscatter and demonstrate the lidar ocean subsurface measurement concept from space. Depolarization ratios of ocean subsurface backscatter are measured accurately. Beam attenuation coefficients computed from the depolarization ratio measurements compare well with empirical estimates from ocean color measurements. We further verify the beam attenuation coefficient retrievals using aircraft-based high spectral resolution lidar (HSRL) data that are collocated with in-water optical measurements.
NASA Astrophysics Data System (ADS)
Agrawal, M.; Ravikiran, L.; Dharmarasu, N.; Radhakrishnan, K.; Karthikeyan, G. S.; Zheng, Y.
2017-01-01
The stress evolution of GaN/AlN heterostructure grown on 6H-SiC substrate by plasma assisted molecular beam epitaxy (PA-MBE) has been studied. AlN nucleation layer and GaN layer were grown as a function of III/V ratio. GaN/AlN structure is found to form buried cracks when AlN is grown in the intermediate growth regime(III/V˜1)and GaN is grown under N-rich growth regime (III/V<1). The III/V ratio determines the growth mode of the layers that influences the lattice mismatch at the GaN/AlN interface. The lattice mismatch induced interfacial stress at the GaN/AlN interface relaxes by the formation of buried cracks in the structure. Additionally, the stress also relaxes by misorienting the AlN resulting in two misorientations with different tilts. Crack-free layers were obtained when AlN and GaN were grown in the N-rich growth regime (III/V<1) and metal rich growth regime (III/V≥1), respectively. AlGaN/GaN high electron mobility transistor (HEMT) heterostructure was demonstrated on 2-inch SiC that showed good two dimensional electron gas (2DEG) properties with a sheet resistance of 480 Ω/sq, mobility of 1280 cm2/V.s and sheet carrier density of 1×1013 cm-2.
Dong, Chunsheng; Deng, Fei; Li, Dan; Wang, Hualin; Hu, Zhihong
2007-09-01
Baculovirus P10 protein is a small conserved protein and is expressed as bundles of filaments in the host cell during the late phase of virus infection. So far the published results on the domain responsible for filament structural formation have been contradictory. Electron microscopy revealed that the C-terminus basic region was involved in filament structural formation in the Autographa californica multiple nucleocapsid nucleopolyhedrovirus (AcMNPV) [van Oers, M.M., Flipsen, J.T., Reusken, C.B., Sliwinsky, E.L., Vlak, J.M., 1993. Functional domains of the p10 protein of Autographa californica nuclear polyhedorsis virus. J. Gen. Virol. 74, 563-574.]. While in the Helicoverpa armigera nucleopolyhedrovirus (HearNPV), the heptad repeats region but not the C-terminus domain was proven to be responsible for filament formation [Dong, C., Li, D., Long, G., Deng, F., Wang, H., Hu, Z., 2005. Identification of functional domains required for HearNPV P10 filament formation. Virology 338, 112-120.]. In this manuscript, fluorescence confocal microscopy was applied to study AcMNPV P10 filament formation. A set of plasmids containing different P10 structural domains fused with a fluorescent protein were constructed and transfected into Sf-9 cells. The data indicated that the heptad repeats region, but not the proline-rich region or the C-terminus basic region, is essential for AcMNPV P10 filament formation. Co-transfection of P10s tagged with different fluorescent revealed that P10s with defective heptad repeats region could not interact with intact heptad repeats region or even full-length P10s to form filament structure. Within the heptad repeats region, deletion of the three amino acids spacing of AcMNPV P10 appeared to have no significant impact on the formation of filament structures, but the content of the heptad repeats region appeared to play a role in the morphology of the filaments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Saumen; Touw, Debra S.; Peacock, Anna F.A.
Over the past two decades, designed metallopeptides have held the promise for understanding a variety of fundamental questions in metallobiochemistry; however, these dreams have not yet been realized because of a lack of structural data to elaborate the protein scaffolds before metal complexation and the resultant metalated structures which ultimately exist. This is because there are few reports of structural characterization of such systems either in their metalated or nonmetalated forms and no examples where an apo structure and the corresponding metalated peptide assembly have both been defined by X-ray crystallography. Herein we present X-ray structures of two de novomore » designed parallel three-stranded coiled coils (designed using the heptad repeat (a {yields} g)) CSL9C (CS = Coil Ser) and CSL19C in their nonmetalated forms, determined to 1.36 and 2.15 {angstrom} resolutions, respectively. Leucines from either position 9 (a site) or 19 (d site) are replaced by cysteine to generate the constructs CSL9C and CSL19C, respectively, yielding thiol-rich pockets at the hydrophobic interior of these peptides, suitable to bind heavy metals such as As(III), Hg(II), Cd(II), and Pb(II). We use these structures to understand the inherent structural differences between a and d sites to clarify the basis of the observed differential spectroscopic behavior of metal binding in these types of peptides. Cys side chains of (CSL9C){sub 3} show alternate conformations and are partially preorganized for metal binding, whereas cysteines in (CSL19C){sub 3} are present as a single conformer. Zn(II) ions, which do not coordinate or influence Cys residues at the designed metal sites but are essential for forming X-ray quality crystals, are bound to His and Glu residues at the crystal packing interfaces of both structures. These 'apo' structures are used to clarify the changes in metal site organization between metalated As(CSL9C){sub 3} and to speculate on the differential basis of Hg(II) binding in a versus d peptides. Thus, for the first time, one can establish general rules for heavy metal binding to Cys-rich sites in designed proteins which may provide insight for understanding how heavy metals bind to metallochaperones or metalloregulatory proteins.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vance, Eric R.; La Robina, Michael; Li, Huijun
2007-07-01
A synroc-D ceramic consisting mostly of spinel, hollandite, pyrochlore-structured CaUTi{sub 2}O{sub 7}, UO{sub 2}, and Ti-rich regions shows promise for immobilisation of a HLW containing mainly Al and U, together with fission products. Ceramics with virtually zero porosities and waste loadings of 50-60 wt% on an oxide basis were prepared by cold crucible melting (CCM) at {approx}1500 deg. C, and also by subsolidus hot isostatic pressing (HIP) at 1100 deg. C to prevent volatile losses. PCT leaching test values for Cs were < 13 g/L, with all other normalised elemental extractions being well below 1 g/L. (authors)
Structural variations in indium tin tellurides and their thermoelectric properties
NASA Astrophysics Data System (ADS)
Neudert, Lukas; Schwarzmüller, Stefan; Schmitzer, Silvia; Schnick, Wolfgang; Oeckler, Oliver
2018-02-01
Indium-doped tin tellurides are promising and thoroughly investigated thermoelectric materials. Due to the low solubility of In2Te3 in SnTe and vice versa, samples with the nominal composition (SnTe)3-3x(In2Te3)x with 0.136 ≤ x ≤ 0.75 consist of a defect-rocksalt-type Sn-rich and a defect-sphalerite-type In-rich phase which are endotaxially intergrown and form nanoscale heterostructures. Such nanostructures are kinetically inert and become more pronounced with increasing overall In content. The vacancies often show short-range ordering. These phenomena are investigated by temperature-dependent X-ray diffraction and HRTEM as well as STEM with element mapping by X-ray spectroscopy. The combination of real-structure effects leads to very low lattice thermal conductivity from room temperature up to 500 °C. Thermoelectric figures of merit ZT of heterostructured materials with x = 0.136 reach ZT values up to 0.55 at 400 °C.
Hydrothermal synthesis of barium strontium titanate and bismuth titanate materials
NASA Astrophysics Data System (ADS)
Xu, Huiwen
Hydrothermal processing facilitates the synthesis of crystalline ceramic materials of varying composition or complex crystal structure. The present work can be divided into two parts. First is to study the low temperature hydrothermal synthesis of bismuth titanate. Second is to study both thermodynamic and kinetic aspects of the hydrothermally synthesized barium strontium titanate. A chelating agent was used to form a Bi-Ti gel precursor. By hydrothermally treating the Bi-Ti gel, crystalline bismuth titanate has been synthesized at 160°C for the first time. Microstructural evolution during the low temperature synthesis of bismuth titanate can be divided into two stages, including condensation of Bi-Ti gel particles and crystallization of bismuth titanate. Crystallization of bismuth titanate occurred by an in situ transformation mechanism at an early stage followed by a dissolution-reprecipitation mechanism. Phase separation was observed in hydrothermally synthesized barium strontium titanate (BST). By hydrothermally treating BST powders between 250°C--300°C, an asymmetrical miscibility gap was found in the BaTiO3-SrTiO 3 system at low temperatures (T ≤ 320°C). A subregular solid solution model was applied to calculate the equilibrium compositions and the Gibbs free energy of formation of BST solid solution at low temperatures (T ≤ 320°C). The Gibbs free energy of formation of Sr-rich BST phase is larger than that of Ba-rich BST phase. Kinetic studies of single phase BST solid solution at 80°C show that, compared to the BaTiO3 or Ba-rich BST, SrTiO3 and Sr-rich BST powders form at lower reaction rates.
Gwon, Taehong; Mohamed, Ahmed Yousef; Yoo, Chanyoung; Park, Eui-Sang; Kim, Sanggyun; Yoo, Sijung; Lee, Han-Koo; Cho, Deok-Yong; Hwang, Cheol Seong
2017-11-29
The local bonding structures of Ge x Te 1-x (x = 0.5, 0.6, and 0.7) films prepared through atomic layer deposition (ALD) with Ge(N(Si(CH 3 ) 3 ) 2 ) 2 and ((CH 3 ) 3 Si) 2 Te precursors were investigated using Ge K-edge X-ray absorption spectroscopy (XAS). The results of the X-ray absorption fine structure analyses show that for all of the compositions, the as-grown films were amorphous with a tetrahedral Ge coordination of a mixture of Ge-Te and Ge-Ge bonds but without any signature of Ge-GeTe decomposition. The compositional evolution in the valence band electronic structures probed through X-ray photoelectron spectroscopy suggests a substantial chemical influence of additional Ge on the nonstoichiometric GeTe. This implies that the ALD process can stabilize Ge-abundant bonding networks like -Te-Ge-Ge-Te- in amorphous GeTe. Meanwhile, the XAS results on the Ge-rich films that had undergone post-deposition annealing at 350 °C show that the parts of the crystalline Ge-rich GeTe became separated into Ge crystallites and rhombohedral GeTe in accordance with the bulk phase diagram, whereas the disordered GeTe domains still remained, consistent with the observations of transmission electron microscopy and Raman spectroscopy. Therefore, amorphousness in GeTe may be essential for the nonsegregated Ge-rich phases and the low growth temperature of the ALD enables the achievement of the structurally metastable phases.
Guédin, Aurore; Lin, Linda Yingqi; Armane, Samir; Lacroix, Laurent; Mergny, Jean-Louis; Thore, Stéphane; Yatsunyk, Liliya A
2018-06-01
Guanine-rich DNA has the potential to fold into non-canonical G-quadruplex (G4) structures. Analysis of the genome of the social amoeba Dictyostelium discoideum indicates a low number of sequences with G4-forming potential (249-1055). Therefore, D. discoideum is a perfect model organism to investigate the relationship between the presence of G4s and their biological functions. As a first step in this investigation, we crystallized the dGGGGGAGGGGTACAGGGGTACAGGGG sequence from the putative promoter region of two divergent genes in D. discoideum. According to the crystal structure, this sequence folds into a four-quartet intramolecular antiparallel G4 with two lateral and one diagonal loops. The G-quadruplex core is further stabilized by a G-C Watson-Crick base pair and a A-T-A triad and displays high thermal stability (Tm > 90°C at 100 mM KCl). Biophysical characterization of the native sequence and loop mutants suggests that the DNA adopts the same structure in solution and in crystalline form, and that loop interactions are important for the G4 stability but not for its folding. Four-tetrad G4 structures are sparse. Thus, our work advances understanding of the structural diversity of G-quadruplexes and yields coordinates for in silico drug screening programs and G4 predictive tools.
The effects of DNA supercoiling on G-quadruplex formation.
Sekibo, Doreen A T; Fox, Keith R
2017-12-01
Guanine-rich DNAs can fold into four-stranded structures that contain stacks of G-quartets. Bioinformatics studies have revealed that G-rich sequences with the potential to adopt these structures are unevenly distributed throughout genomes, and are especially found in gene promoter regions. With the exception of the single-stranded telomeric DNA, all genomic G-rich sequences will always be present along with their C-rich complements, and quadruplex formation will be in competition with the corresponding Watson-Crick duplex. Quadruplex formation must therefore first require local dissociation (melting) of the duplex strands. Since negative supercoiling is known to facilitate the formation of alternative DNA structures, we have investigated G-quadruplex formation within negatively supercoiled DNA plasmids. Plasmids containing multiple copies of (G3T)n and (G3T4)n repeats, were probed with dimethylsulphate, potassium permanganate and S1 nuclease. While dimethylsulphate footprinting revealed some evidence for G-quadruplex formation in (G3T)n sequences, this was not affected by supercoiling, and permanganate failed to detect exposed thymines in the loop regions. (G3T4)n sequences were not protected from DMS and showed no reaction with permanganate. Similarly, both S1 nuclease and 2D gel electrophoresis of DNA topoisomers did not detect any supercoil-dependent structural transitions. These results suggest that negative supercoiling alone is not sufficient to drive G-quadruplex formation. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Takahashi, Melissa K.; Watters, Kyle E.; Gasper, Paul M.; Abbott, Timothy R.; Carlson, Paul D.; Chen, Alan A.
2016-01-01
Antisense RNA-mediated transcriptional regulators are powerful tools for controlling gene expression and creating synthetic gene networks. RNA transcriptional repressors derived from natural mechanisms called attenuators are particularly versatile, though their mechanistic complexity has made them difficult to engineer. Here we identify a new structure–function design principle for attenuators that enables the forward engineering of new RNA transcriptional repressors. Using in-cell SHAPE-Seq to characterize the structures of attenuator variants within Escherichia coli, we show that attenuator hairpins that facilitate interaction with antisense RNAs require interior loops for proper function. Molecular dynamics simulations of these attenuator variants suggest these interior loops impart structural flexibility. We further observe hairpin flexibility in the cellular structures of natural RNA mechanisms that use antisense RNA interactions to repress translation, confirming earlier results from in vitro studies. Finally, we design new transcriptional attenuators in silico using an interior loop as a structural requirement and show that they function as desired in vivo. This work establishes interior loops as an important structural element for designing synthetic RNA gene regulators. We anticipate that the coupling of experimental measurement of cellular RNA structure and function with computational modeling will enable rapid discovery of structure–function design principles for a diverse array of natural and synthetic RNA regulators. PMID:27103533
Mieher, Joshua L; Larson, Matthew R; Schormann, Norbert; Purushotham, Sangeetha; Wu, Ren; Rajashankar, Kanagalaghatta R; Wu, Hui; Deivanayagam, Champion
2018-07-01
The high-resolution structure of glucan binding protein C (GbpC) at 1.14 Å, a sucrose-dependent virulence factor of the dental caries pathogen Streptococcus mutans , has been determined. GbpC shares not only structural similarities with the V regions of AgI/II and SspB but also functional adherence to salivary agglutinin (SAG) and its scavenger receptor cysteine-rich domains (SRCRs). This is not only a newly identified function for GbpC but also an additional fail-safe binding mechanism for S. mutans Despite the structural similarities with S. mutans antigen I/II (AgI/II) and SspB of Streptococcus gordonii , GbpC remains unique among these surface proteins in its propensity to adhere to dextran/glucans. The complex crystal structure of GbpC with dextrose (β-d-glucose; Protein Data Bank ligand BGC) highlights exclusive structural features that facilitate this interaction with dextran. Targeted deletion mutant studies on GbpC's divergent loop region in the vicinity of a highly conserved calcium binding site confirm its role in biofilm formation. Finally, we present a model for adherence to dextran. The structure of GbpC highlights how artfully microbes have engineered the lectin-like folds to broaden their functional adherence repertoire. Copyright © 2018 American Society for Microbiology.
Service evaluation of aluminum-brazed titanium (ABTi). [aircraft structures
NASA Technical Reports Server (NTRS)
Elrod, S. D.
1981-01-01
Long term creep-rupture, flight service and jet engine exhaust tests on aluminum-brazed titanium (ABTi), originally initiated under the DOT/SST follow-on program, were completed. These tests included exposure to natural airline service environments for up to 6 years. The results showed that ABTi has adequate corrosion resistance for long time commercial airplane structural applications. Special precautions are required for those sandwich structures designed for sound attenuation that utilize perforated skins. ABTi was also shown to have usable creep-rupture strength and to be metallurgically stable at temperatures up to 425 C (800 F).
NASA Technical Reports Server (NTRS)
Lebofsky, L. A.; Jones, T. D.; Herbert, F.
1989-01-01
Asteroids appear in light of telescopic and meteority studies to be the most accessible repositories of early solar system history available. In the cooler regions of the outer asteroid belt, apparently unaffected by severe heating, the C, P, and D populations appear to harbor significant inventories of volatiles; the larger primordial belt population may have had an even greater percentage of volatile-rich, low-albedo asteroids, constituting a potent asteroid for veneering early terrestrial planet atmospheres. The volatile-rich asteroids contain carbon, structurally bound and adsorbed water, as well as remnants of interstellar material predating the solar system.
Disorder-derived, strong tunneling attenuation in bis-phosphonate monolayers.
Pathak, Anshuma; Bora, Achyut; Liao, Kung-Ching; Schmolke, Hannah; Jung, Antje; Klages, Claus-Peter; Schwartz, Jeffrey; Tornow, Marc
2016-03-09
Monolayers of alkyl bisphosphonic acids (bisPAs) of various carbon chain lengths (C4, C8, C10, C12) were grown on aluminum oxide (AlO(x)) surfaces from solution. The structural and electrical properties of these self-assembled monolayers (SAMs) were compared with those of alkyl monophosphonic acids (monoPAs). Through contact angle (CA) and Kelvin-probe (KP) measurements, ellipsometry, and infrared (IR) and x-ray photoelectron (XPS) spectroscopies, it was found that bisPAs form monolayers that are relatively disordered compared to their monoPA analogs. Current-voltage (J-V) measurements made with a hanging Hg drop top contact show tunneling to be the prevailing transport mechanism. However, while the monoPAs have an observed decay constant within the typical range for dense monolayers, β(mono) = 0.85 ± 0.03 per carbon atom, a surprisingly high value, β(bis) = 1.40 ± 0.05 per carbon atom, was measured for the bisPAs. We attribute this to a strong contribution of 'through-space' tunneling, which derives from conformational disorder in the monolayer due to strong interactions of the distal phosphonic acid groups; they likely form a hydrogen-bonding network that largely determines the molecular layer structure. Since bisPA SAMs attenuate tunnel currents more effectively than do the corresponding monoPA SAMs, they may find future application as gate dielectric modification in organic thin film devices.
Disorder-derived, strong tunneling attenuation in bis-phosphonate monolayers
NASA Astrophysics Data System (ADS)
Pathak, Anshuma; Bora, Achyut; Liao, Kung-Ching; Schmolke, Hannah; Jung, Antje; Klages, Claus-Peter; Schwartz, Jeffrey; Tornow, Marc
2016-03-01
Monolayers of alkyl bisphosphonic acids (bisPAs) of various carbon chain lengths (C4, C8, C10, C12) were grown on aluminum oxide (AlO x ) surfaces from solution. The structural and electrical properties of these self-assembled monolayers (SAMs) were compared with those of alkyl monophosphonic acids (monoPAs). Through contact angle (CA) and Kelvin-probe (KP) measurements, ellipsometry, and infrared (IR) and x-ray photoelectron (XPS) spectroscopies, it was found that bisPAs form monolayers that are relatively disordered compared to their monoPA analogs. Current-voltage (J-V) measurements made with a hanging Hg drop top contact show tunneling to be the prevailing transport mechanism. However, while the monoPAs have an observed decay constant within the typical range for dense monolayers, β mono = 0.85 ± 0.03 per carbon atom, a surprisingly high value, β bis = 1.40 ± 0.05 per carbon atom, was measured for the bisPAs. We attribute this to a strong contribution of ‘through-space’ tunneling, which derives from conformational disorder in the monolayer due to strong interactions of the distal phosphonic acid groups; they likely form a hydrogen-bonding network that largely determines the molecular layer structure. Since bisPA SAMs attenuate tunnel currents more effectively than do the corresponding monoPA SAMs, they may find future application as gate dielectric modification in organic thin film devices.
Reis, Pedro A A; Rosado, Gustavo L; Silva, Lucas A C; Oliveira, Luciana C; Oliveira, Lucas B; Costa, Maximiller D L; Alvim, Fátima C; Fontes, Elizabeth P B
2011-12-01
The molecular chaperone binding protein (BiP) participates in the constitutive function of the endoplasmic reticulum (ER) and protects the cell against stresses. In this study, we investigated the underlying mechanism by which BiP protects plant cells from stress-induced cell death. We found that enhanced expression of BiP in soybean (Glycine max) attenuated ER stress- and osmotic stress-mediated cell death. Ectopic expression of BiP in transgenic lines attenuated the leaf necrotic lesions that are caused by the ER stress inducer tunicamycin and also maintained shoot turgidity upon polyethylene glycol-induced dehydration. BiP-mediated attenuation of stress-induced cell death was confirmed by the decreased percentage of dead cell, the reduced induction of the senescence-associated marker gene GmCystP, and reduced DNA fragmentation in BiP-overexpressing lines. These phenotypes were accompanied by a delay in the induction of the cell death marker genes N-RICH PROTEIN-A (NRP-A), NRP-B, and GmNAC6, which are involved in transducing a cell death signal generated by ER stress and osmotic stress through the NRP-mediated signaling pathway. The prosurvival effect of BiP was associated with modulation of the ER stress- and osmotic stress-induced NRP-mediated cell death signaling, as determined in transgenic tobacco (Nicotiana tabacum) lines with enhanced (sense) and suppressed (antisense) BiP levels. Enhanced expression of BiP prevented NRP- and NAC6-mediated chlorosis and the appearance of senescence-associated markers, whereas silencing of endogenous BiP accelerated the onset of leaf senescence mediated by NRPs and GmNAC6. Collectively, these results implicate BiP as a negative regulator of the stress-induced NRP-mediated cell death response.
The Dynamic Atmospheres of Carbon Rich Giants: Constraining Models Via Interferometry
NASA Astrophysics Data System (ADS)
Rau, Gioia; Hron, Josef; Paladini, Claudia; Aringer, Bernard; Eriksson, Kjell; Marigo, Paola
2016-07-01
Dynamic models for the atmospheres of C-rich Asymptotic Giant Branch stars are quite advanced and have been overall successful in reproducing spectroscopic and photometric observations. Interferometry provides independent information and is thus an important technique to study the atmospheric stratification and to further constrain the dynamic models. We observed a sample of six C-rich AGBs with the mid infrared interferometer VLTI/MIDI. These observations, combined with photometric and spectroscopic data from the literature, are compared with synthetic observables derived from dynamic model atmospheres (DMA, Eriksson et al. 2014). The SEDs can be reasonably well modelled and the interferometry supports the extended and multi-component structure of the atmospheres, but some differences remain. We discuss the possible reasons for these differences and we compare the stellar parameters derived from this comparison with stellar evolution models. Finally, we point out the high potential of MATISSE, the second generation VLTI instrument allowing interferometric imaging in the L, M, and N bands, for further progress in this field.
Bucsella, Blanka; Takács, Ágnes; von Reding, Walter; Schwendener, Urs; Kálmán, Franka; Tömösközi, Sándor
2017-04-01
Novel aleurone-rich wheat milling fraction developed and produced on industry scale is investigated. The special composition of the novel flour with high protein, dietary fiber and fat content results in a unique combination of the mixing and viscosity properties. Due to the high lipid concentration, the fraction is exposed to fast rancidity. Dry heat (100°C for 12min) and hydrothermal treatment processes (96°C for 6min with 0-20 L/h steam) were applied on the aleurone-rich flour to modify the technological properties. The chemical, structural changes; the extractability of protein, carbohydrate and phenolic components and the rheological characteristics of the flours were evaluated. The dry treated flour decreased protein and carbohydrate extractability, shortened dough development time, reduced gel strength and enhanced the gelling ability. Hydrothermal treatment caused changes in the phenolic content improved the dough stability and -resistance. Heat treatment processes were able to extend the stability of the flour. Copyright © 2016 Elsevier Ltd. All rights reserved.
Energy dependence of radiation interaction parameters of some organic compounds
NASA Astrophysics Data System (ADS)
Singh, Mohinder; Tondon, Akash; Sandhu, B. S.; Singh, Bhajan
2018-04-01
Gamma rays interact with a material through photoelectric absorption, Compton scattering, Rayleigh scattering and Pair production in the intermediate energy range. The probability of occurrence of a particular type of process depends on the energy of incident gamma rays, atomic number of the material, scattering angle and geometrical conditions. Various radiological parameters for organic compounds, namely ethylene glycol (C2H6O2), propylene glycol (C3H8O2), glycerin (C3H8O3), isoamyl alcohol (C5H12O), butanone (C4H8O), acetophenone (C8H8O2), cyclohexanone (C6H10O), furfural (C5H4O2), benzaldehyde (C7H6O), cinnamaldehyde (C9H8O), glutaraldehyde (C5H8O2), aniline (C6H7N), benzyl amine (C6H7N), nitrobenzene (C6H5NO2), ethyl benzene (C8H10), ethyl formate (C3H6O2) and water (H2O) are presented at 81, 122, 356 and 511 keV energies employing NaI(Tl) scintillation detector in narrow-beam transmission geometry. The radiation interaction parameters such as mass attenuation, molar extinction and mass energy absorption coefficients, half value layer, total atomic and effective electronic cross-sections and CT number have been evaluated for these organic compounds. The general trend of values of mass attenuation coefficients, half value layer, molar extinction coefficients, total atomic and effective electronic cross-sections and mass energy absorption coefficients shows a decrease with increase in incident gamma photon energy. The values of CT number are found to increases linearly with increase of effective atomic number (Zeff). The variation in CT number around Zeff ≈ 3.3 shows the peak like structure with respect to water and the correlation between CT number and linear attenuation coefficient is about 0.99. Appropriate equations are fitted to these experimentally determined parameters for the organic compounds at incident photon energy ranging from 81 keV to 511 keV used in the present study. Experimental values are compared with the theoretical data obtained using WinXcom software package, and are found in good agreement.
On the Interior of Carbon-Rich Exoplanets: New Insight from Si-C System at Ultra High Pressure
NASA Astrophysics Data System (ADS)
Miozzi Ferrini, F.; Morard, G.; Antonangeli, D.; Clark, A. N.; Edmund, E.; Fiquet, G.; Mezouar, M.
2017-12-01
The variability in the mass/radius ratio of the more than 3200 exoplanets discovered so far, is a direct consequence of the large diversity of their internal composition. Exoplanets with a mass between 1 and 10 times the mass of the Earth are typically referred to as super-Earths, and their mineralogical composition depends on that of the protoplanetary disk. The key variable in determining the chemical makeup of such planets is the C/O ratio. Values of C/O ratio smaller than 0.8 correspond to an interior dominated by silicates (e.g. terrestrial planets), whereas for C/O ratios > 0.8 the interior is enriched in carbon. In these C-rich planets, Si may form carbides instead of silicates (Duffy et al., 2015). The detection of planet 55 Cancri e, with a particularly high C/O ratio, has increased the interest in carbon-rich planets. 55 Cancri e has been modelled as a layered structure made by different assemblages of carbon, silicon and iron (Madhusudan et al., 2012). However, the accuracy of such type of models suffers the lack of experimental data on the Si - C system at extreme conditions of pressure and temperature. Experimental equations of state are limited to 80 GPa (Nisr et al., 2017) and little is known about subsolidus relation, with only one theoretical study from Wilson and Militzer (2004) at multi-megabar pressures. Here we present experiments on SiC samples by synchrotron X-ray diffraction, in laser heated diamond anvil cell between 30-200 GPa and 300-3500 K. The results show evidences of coexistence of SiC with Si or C, without the appearance of intermediate compounds. Moreover, between 60 and 75 GPa, SiC undergoes a phase transition from the zinc blend structure (B3), to the rock salt structure (B1). This phase transition, also reported in previous literature work (e.g. Daviau and Lee, 2017), corresponds to a change in the atoms coordination, and is accompanied by an important volume reduction. Acknowledgements: This work was supported by the ERC PlanetDive advanced grant 670787. ReferencesDuffy T. 2015. Mineralogy of Super-Earth Planets. Treatise on Geophysics. Volume 2. Elsevier Daviau K. & Lee K.K.M. 2017. Physical Review B, 95(13), 134108 Madhusudhan N. et al., 2012. Astrophys. J. 759, L40. Nisr C. et al., 2017. J. Geophys. Res. Planets., 122, 124-133. Wilson H.F. & Militzer B. 2004. Astrophys. J. 793, 34.
40 CFR 721.10022 - Benzenamine, N-phenyl-, ar′-(C9-rich C8-10-branched alkyl) derivs.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Significant New Uses for Specific Chemical Substances § 721.10022 Benzenamine, N-phenyl-, ar′-(C9-rich C8-10... chemical substance identified as benzenamine, N-phenyl-, ar′-(C9-rich C8-10-branched alkyl) derivs (PMN P...
Mechanisms of nutrient attenuation in a subsurface flow riparian wetland.
Casey, R E; Taylor, M D; Klaine, S J
2001-01-01
Riparian wetlands are transition zones between terrestrial and aquatic environments that have the potential to serve as nutrient filters for surface and ground water due to their topographic location. We investigated a riparian wetland that had been receiving intermittent inputs of NO3- and PO4(3-) during storm runoff events to determine the mechanisms of nutrient attenuation in the wetland soils. Few studies have shown whether infrequent pulses of NO3- are sufficient to maintain substantial denitrifying communities. Denitrification rates were highest at the upstream side of the wetland where nutrient-rich runoff first enters the wetland (17-58 microg N2O-N kg soil(-1) h(-1)) and decreased further into the wetland. Carbon limitation for denitrification was minor in the wetland soils. Samples not amended with dextrose had 75% of the denitrification rate of samples with excess dextrose C. Phosphate sorption isotherms suggested that the wetland soils had a high capacity for P retention. The calculated soil PO4(3-) concentration that would yield an equilibrium aqueous P04(3-) concentration of 0.05 mg P L(-1) was found to be 100 times greater than the soil PO4(3-) concentration at the time of sampling. This indicated that the wetland could retain a large additional mass of PO4(3-) without increasing the dissolved P04(3-) concentrations above USEPA recommended levels for lentic waters. These results demonstrated that denitrification can be substantial in systems receiving pulsed NO3- inputs and that sorption could account for extensive PO4(3-) attenuation observed at this site.
Microstructural characterization of a Zr-Ti-Ni-Mn-V-Cr based AB 2-type battery alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Zhan
1999-01-01
Transmission Electron Microscopy (TEM), combined with X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) was employed to investigate a proprietary and multicomponent AB 2 type Nickel-Metal Hydride (Ni-MH) battery alloy. This material was prepared by High Pressure Gas Atomization (HPGA) and examined in both the as-atomized and heat treated condition. TEM examination showed a heavily faulted dendritic growth structure in as-atomized powder. Selected Area Diffraction (SAD) showed that this region consisted of both a cubic C15 structure with lattice constant a=7.03 and a hexagonal C14 structure with lattice parameter a=4.97 Å, c=8.11 Å. The Orientation Relationship (OR) between the C14 and C15 structures was determined to be (111)[1more » $$\\bar{1}$$0] C15//(0001)[11$$\\bar{2}$$0] C14. An interdendritic phase possessing the C14 structure was also seen. There was also a very fine grain region consisting of the C14 structure. Upon heat treatment, the faulted structure became more defined and appeared as intercalation layers within the grains. Spherical particles rich in Zr and Ni appeared scattered at the grain boundaries instead of the C14 interdendritic phase. The polycrystalline region also changed to a mixture of C14 and C15 structures. These results as well as phase stability of the C15 and C14 structures based on a consideration of atomic size factor and the average electron concentration are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, Ye-Wei; Kong, Xu; Lin, Lin, E-mail: ywmao@pmo.ac.cn, E-mail: xkong@ustc.edu.cn, E-mail: linlin@shao.ac.cn
Variations in the attenuation law have a significant impact on observed spectral energy distributions for galaxies. As one important observational property for galaxies at ultraviolet and infrared wavelength bands, the correlation between infrared-to-ultraviolet luminosity ratio and ultraviolet color index (or ultraviolet spectral slope), i.e., the IRX-UV relation (or IRX-β relation), offered a widely used formula for correcting dust attenuation in galaxies, but the usability appears to be in doubt now because of considerable dispersion in this relation found by many studies. In this paper, on the basis of spectral synthesis modeling and spatially resolved measurements of four nearby spiral galaxies,more » we provide an interpretation of the deviation in the IRX-UV relation with variations in the attenuation law. From both theoretical and observational viewpoints, two components in the attenuation curve, the linear background and the 2175 Å bump, are suggested to be the parameters in addition to the stellar population age (addressed in the first paper of this series) in the IRX-UV function; different features in the attenuation curve are diagnosed for the galaxies in our sample. Nevertheless, it is often difficult to ascertain the attenuation law for galaxies in actual observations. Possible reasons for preventing the successful detection of the parameters in the attenuation curve are also discussed in this paper, including the degeneracy of the linear background and the 2175 Å bump in observational channels, the requirement for young and dust-rich systems to study, and the difficulty in accurate estimates of dust attenuations at different wavelength bands.« less
NASA Astrophysics Data System (ADS)
Mao, Ye-Wei; Kong, Xu; Lin, Lin
2014-07-01
Variations in the attenuation law have a significant impact on observed spectral energy distributions for galaxies. As one important observational property for galaxies at ultraviolet and infrared wavelength bands, the correlation between infrared-to-ultraviolet luminosity ratio and ultraviolet color index (or ultraviolet spectral slope), i.e., the IRX-UV relation (or IRX-β relation), offered a widely used formula for correcting dust attenuation in galaxies, but the usability appears to be in doubt now because of considerable dispersion in this relation found by many studies. In this paper, on the basis of spectral synthesis modeling and spatially resolved measurements of four nearby spiral galaxies, we provide an interpretation of the deviation in the IRX-UV relation with variations in the attenuation law. From both theoretical and observational viewpoints, two components in the attenuation curve, the linear background and the 2175 Å bump, are suggested to be the parameters in addition to the stellar population age (addressed in the first paper of this series) in the IRX-UV function; different features in the attenuation curve are diagnosed for the galaxies in our sample. Nevertheless, it is often difficult to ascertain the attenuation law for galaxies in actual observations. Possible reasons for preventing the successful detection of the parameters in the attenuation curve are also discussed in this paper, including the degeneracy of the linear background and the 2175 Å bump in observational channels, the requirement for young and dust-rich systems to study, and the difficulty in accurate estimates of dust attenuations at different wavelength bands.
[Studying of molecular mechanisms of rubella virus attenuation evidence from Russian strain C-77].
Dmitriev, G V; Borisova, T K; Faĭzuloev, E B; Zabiiaka, Iu I; Desiatskova, R G; Zverev, V V
2012-01-01
Live attenuated rubella vaccine is used for vaccination. Temperature-sensitive (ts) phenotype was proved for almost all rubella vaccine strains, and the acquisition of the ts phenotype during cold adaptation was strongly correlated with the attenuation of the wild-type viruses. Nevertheless, the molecular mechanisms of the attenuation have been insufficiently understood for rubella virus. Study ofthese mechanisms, identifying genotypic markers of attenuation, which together with the sequence analyses could be used for genetic stability control of vaccine strains, is still of current interest. In this work, we determined nearly complete genome sequences of attenuated (ca) and the wildtype progenitor (wt) of the rubella virus strain C-77 isolated in Russia. Possible genetic determinants of attenuation were detected. Thus, 13 nucleotide differences leading to 6 amino acid substitutions were found. Four amino acid substitutions were found to be almost unique. Special consideration should be given to Tyr1042Cys substitution in the protease domain of C-77 strain, because it most probably plays the crucial role in acquisition of ts-phenotype.
CTC1-mediated C-strand fill-in is an essential step in telomere length maintenance
Feng, Xuyang; Hsu, Shih-Jui; Kasbek, Christopher; Chaiken, Mary
2017-01-01
Abstract To prevent progressive telomere shortening as a result of conventional DNA replication, new telomeric DNA must be added onto the chromosome end. The de novo DNA synthesis involves elongation of the G-rich strand of the telomere by telomerase. In human cells, the CST complex (CTC1-STN1-TEN1) also functions in telomere replication. CST first aids in duplication of the telomeric dsDNA. Then after telomerase has extended the G-rich strand, CST facilitates fill-in synthesis of the complementary C-strand. Here, we analyze telomere structure after disruption of human CTC1 and demonstrate that functional CST is essential for telomere length maintenance due to its role in mediating C-strand fill-in. Removal of CTC1 results in elongation of the 3΄ overhang on the G-rich strand. This leads to accumulation of RPA and telomeric DNA damage signaling. G-overhang length increases with time after CTC1 disruption and at early times net G-strand growth is apparent, indicating telomerase-mediated G-strand extension. In contrast, C-strand length decreases continuously, indicating a deficiency in C-strand fill-in synthesis. The lack of C-strand maintenance leads to gradual shortening of the telomeric dsDNA, similar to that observed in cells lacking telomerase. Thus, telomerase-mediated G-strand extension and CST-mediated C-strand fill-in are equally important for telomere length maintenance. PMID:28334750
High-fluence Ga-implanted silicon—The effect of annealing and cover layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiedler, J., E-mail: jan.fiedler@hzdr.de; Heera, V.; Hübner, R.
2014-07-14
The influence of SiO{sub 2} and SiN{sub x} cover layers on the dopant distribution as well as microstructure of high fluence Ga implanted Si after thermal processing is investigated. The annealing temperature determines the layer microstructure and the cover layers influence the obtained Ga profile. Rapid thermal annealing at temperatures up to 750 °C leads to a polycrystalline layer structure containing amorphous Ga-rich precipitates. Already after a short 20 ms flash lamp annealing, a Ga-rich interface layer is observed for implantation through the cover layers. This effect can partly be suppressed by annealing temperatures of at least 900 °C. However, in this case,more » Ga accumulates in larger, cone-like precipitates without disturbing the surrounding Si lattice parameters. Such a Ga-rich crystalline Si phase does not exist in the equilibrium phase diagram according to which the Ga solubility in Si is less than 0.1 at. %. The Ga-rich areas are capped with SiO{sub x} grown during annealing which only can be avoided by the usage of SiN{sub x} cover layers.« less
Spasojevic, Marko J.; Grace, James B.; Harrison, Susan; Damschen, Ellen Ingman
2013-01-01
1. The physiological tolerance hypothesis proposes that plant species richness is highest in warm and/or wet climates because a wider range of functional strategies can persist under such conditions. Functional diversity metrics, combined with statistical modeling, offer new ways to test whether diversity-environment relationships are consistent with this hypothesis. 2. In a classic study by R. H. Whittaker (1960), herb species richness declined from mesic (cool, moist, northerly) slopes to xeric (hot, dry, southerly) slopes. Building on this dataset, we measured four plant functional traits (plant height, specific leaf area, leaf water content and foliar C:N) and used them to calculate three functional diversity metrics (functional richness, evenness, and dispersion). We then used a structural equation model to ask if ‘functional diversity’ (modeled as the joint responses of richness, evenness, and dispersion) could explain the observed relationship of topographic climate gradients to species richness. We then repeated our model examining the functional diversity of each of the four traits individually. 3. Consistent with the physiological tolerance hypothesis, we found that functional diversity was higher in more favorable climatic conditions (mesic slopes), and that multivariate functional diversity mediated the relationship of the topographic climate gradient to plant species richness. We found similar patterns for models focusing on individual trait functional diversity of leaf water content and foliar C:N. 4. Synthesis. Our results provide trait-based support for the physiological tolerance hypothesis, suggesting that benign climates support more species because they allow for a wider range of functional strategies.
Phosphorus K-edge XANES spectroscopy of mineral standards
Ingall, Ellery D.; Brandes, Jay A.; Diaz, Julia M.; de Jonge, Martin D.; Paterson, David; McNulty, Ian; Elliott, W. Crawford; Northrup, Paul
2011-01-01
Phosphorus K-edge X-ray absorption near-edge structure (XANES) spectroscopy was performed on phosphate mineral specimens including (a) twelve specimens from the apatite group covering a range of compositional variation and crystallinity; (b) six non-apatite calcium-rich phosphate minerals; (c) 15 aluminium-rich phosphate minerals; (d) ten phosphate minerals rich in either reduced iron or manganese; (e) four phosphate minerals rich in either oxidized iron or manganese; (f) eight phosphate minerals rich in either magnesium, copper, lead, zinc or rare-earth elements; and (g) four uranium phosphate minerals. The identity of all minerals examined in this study was independently confirmed using X-ray powder diffraction. Minerals were distinguished using XANES spectra with a combination of pre-edge features, edge position, peak shapes and post-edge features. Shared spectral features were observed in minerals with compositions dominated by the same specific cation. Analyses of apatite-group minerals indicate that XANES spectral patterns are not strongly affected by variations in composition and crystallinity typical of natural mineral specimens. PMID:21335905
Balasco, Nicole; Barone, Daniela; Vitagliano, Luigi
2015-01-01
Recent structural investigations have shown that the C-terminal domain (CTD) of the transcription factor RfaH undergoes unique structural modifications that have a profound impact into its functional properties. These modifications cause a complete change in RfaH(CTD) topology that converts from an α-hairpin to a β-barrel fold. To gain insights into the determinants of this major structural conversion, we here performed computational studies (protein structure prediction and molecular dynamics simulations) on RfaH(CTD). Although these analyses, in line with literature data, suggest that the isolated RfaH(CTD) has a strong preference for the β-barrel fold, they also highlight that a specific region of the protein is endowed with a chameleon conformational behavior. In particular, the Leu-rich region (residues 141-145) has a good propensity to adopt both α-helical and β-structured states. Intriguingly, in the RfaH homolog NusG, whose CTD uniquely adopts the β-barrel fold, the corresponding region is rich in residues as Val or Ile that present a strong preference for the β-structure. On this basis, we suggest that the presence of this Leu-rich element in RfaH(CTD) may be responsible for the peculiar structural behavior of the domain. The analysis of the sequences of RfaH family (PfamA code PF02357) unraveled that other members potentially share the structural properties of RfaH(CTD). These observations suggest that the unusual conformational behavior of RfaH(CTD) may be rare but not unique.
NASA Astrophysics Data System (ADS)
Wang, Aiwu; Wang, Chundong; Fu, Li; Wong-Ng, Winnie; Lan, Yucheng
2017-10-01
The graphitic carbon nitride (g-C3N4) which is a two-dimensional conjugated polymer has drawn broad interdisciplinary attention as a low-cost, metal-free, and visible-light-responsive photocatalyst in the area of environmental remediation. The g-C3N4-based materials have excellent electronic band structures, electron-rich properties, basic surface functionalities, high physicochemical stabilities and are "earth-abundant." This review summarizes the latest progress related to the design and construction of g-C3N4-based materials and their applications including catalysis, sensing, imaging, and white-light-emitting diodes. An outlook on possible further developments in g-C3N4-based research for emerging properties and applications is also included.
Anthocyanins in chokeberry and purple maize attenuate diet-induced metabolic syndrome in rats.
Bhaswant, Maharshi; Shafie, Siti Raihanah; Mathai, Michael L; Mouatt, Peter; Brown, Lindsay
2017-09-01
Increased consumption of fruits and vegetables as functional foods leads to the reduction of signs of metabolic syndrome. The aim of this study was to measure and compare cardiovascular, liver, and metabolic parameters following chronic administration of the same dose of anthocyanins either from chokeberry (CB) or purple maize (PM) in rats with diet-induced metabolic syndrome. Male Wistar rats were fed a maize starch (C) or high-carbohydrate, high-fat diet (H) and divided into six groups for 16 wk. The rats were fed C, C with CB or PM for the last 8 wk (CCB or CPM), H, H with CB or PM for the last 8 wk (HCB or HPM); CB and PM rats received ∼8 mg anthocyanins/kg daily. The rats were monitored for changes in blood pressure, cardiovascular and hepatic structure and function, glucose tolerance, and adipose tissue mass. HCB and HPM rats showed reduced visceral adiposity index, total body fat mass, and systolic blood pressure; improved glucose tolerance, liver, and cardiovascular structure and function; decreased plasma triacylglycerols and total cholesterol compared with H rats. Inflammatory cell infiltration was reduced in heart and liver. CB and PM interventions gave similar responses, suggesting that anthocyanins are the bioactive molecules in the attenuation or reversal of metabolic syndrome by prevention of inflammation-induced damage. Copyright © 2016 Elsevier Inc. All rights reserved.
Naville, Magali; Gautheret, Daniel
2010-01-01
Bacterial transcription attenuation occurs through a variety of cis-regulatory elements that control gene expression in response to a wide range of signals. The signal-sensing structures in attenuators are so diverse and rapidly evolving that only a small fraction have been properly annotated and characterized to date. Here we apply a broad-spectrum detection tool in order to achieve a more complete view of the transcriptional attenuation complement of key bacterial species. Our protocol seeks gene families with an unusual frequency of 5' terminators found across multiple species. Many of the detected attenuators are part of annotated elements, such as riboswitches or T-boxes, which often operate through transcriptional attenuation. However, a significant fraction of candidates were not previously characterized in spite of their unmistakable footprint. We further characterized some of these new elements using sequence and secondary structure analysis. We also present elements that may control the expression of several non-homologous genes, suggesting co-transcription and response to common signals. An important class of such elements, which we called mobile attenuators, is provided by 3' terminators of insertion sequences or prophages that may be exapted as 5' regulators when inserted directly upstream of a cellular gene. We show here that attenuators involve a complex landscape of signal-detection structures spanning the entire bacterial domain. We discuss possible scenarios through which these diverse 5' regulatory structures may arise or evolve.
NASA Astrophysics Data System (ADS)
Li, Gang; Lu, Xiaofeng; Zhu, Xiaolei; Huang, Jian; Liu, Luwei; Wu, Yixiong
2018-05-01
This study presents the interface microstructure, mechanical properties and corrosion resistance of dissimilar joints between Inconel 52M overlays and 316L stainless steel during multipass laser welding for nuclear power plants. The results indicate that the microstructure at the interface beside 316L stainless steel consists of cellular with the width of 30-40 μm, which also exhibits numerous Cr and Mo-rich precipitates like flocculent structure and in chains along grain boundaries as a mixed chemical solution for etching. Many dendritic structure with local melting characteristics and Nb-rich precipitates are exhibited at the interface beside Inconel 52M overlays. Such Nb-rich precipitates at the interface beside Inconel 52M overlays deteriorate the tensile strength and toughness of dissimilar joints at room temperature. The tensile strength of 316L stainless steel at 350 °C significantly decreases with the result that dissimilar joints are fractured in 316L stainless steel. The correlation between corrosion behavior and microstructure of weld metals is also discussed. The difference in high corrosion potential between Nb-rich precipitates and the matrix could result in establishing effective galvanic couples, and thus accelerating the corrosion of weld metals.
Nanographenes as electron-deficient cores of donor-acceptor systems.
Liu, Yu-Min; Hou, Hao; Zhou, Yan-Zhen; Zhao, Xin-Jing; Tang, Chun; Tan, Yuan-Zhi; Müllen, Klaus
2018-05-15
Conjugation of nanographenes (NGs) with electro-active molecules can establish donor-acceptor π-systems in which the former generally serve as the electron-donating moieties due to their electronic-rich nature. In contrast, here we report a series of reversed donor-acceptor structures are obtained by C-N coupling of electron-deficient perchlorinated NGs with electron-rich anilines. Selective amination at the vertexes of the NGs is unambiguously shown through X-ray crystallography. By varying the donating ability of the anilino groups, the optical and assembly properties of donor-acceptor NGs can be finely modulated. The electron-deficient concave core of the resulting conjugates can host electron-rich guest molecules by intermolecular donor-acceptor interactions and gives rise to charge-transfer supramolecular architectures.
Motoyama, Takayuki; Osada, Hiroyuki
2016-12-15
The diversity of natural products is greater than that of combinatorial chemistry compounds and is similar to that of drugs. Compounds rich in sp 3 carbons, such as natural products, typically exhibit high structural complexity and high specificity to molecular targets. Microorganisms can synthesize such sp 3 carbon-rich compounds and can be used as excellent factories for making bioactive compounds. Here, we mainly focus on pathway engineering of two sp 3 carbon-rich bioactive indole alkaloids, fumitremorgin C and terpendole E. We also demonstrate the importance of activation of secondary metabolism by focusing on tenuazonic acid, a bioactive tetramic acid compound, as an example. Copyright © 2016 Elsevier Ltd. All rights reserved.
Almost output regulation of LFT systems via gain-scheduling control
NASA Astrophysics Data System (ADS)
Yuan, Chengzhi; Duan, Chang; Wu, Fen
2018-05-01
Output regulation of general uncertain systems is a meaningful yet challenging problem. In spite of the rich literature in the field, the problem has not yet been addressed adequately due to the lack of an effective design mechanism. In this paper, we propose a new design framework for almost output regulation of uncertain systems described in the general form of linear fractional transformation (LFT) with time-varying parametric uncertainties and unknown external perturbations. A novel semi-LFT gain-scheduling output regulator structure is proposed, such that the associated control synthesis conditions guaranteeing both output regulation and ? disturbance attenuation performance are formulated as a set of linear matrix inequalities (LMIs) plus parameter-dependent linear matrix equations, which can be solved separately. A numerical example has been used to demonstrate the effectiveness of the proposed approach.
Junctions between i-motif tetramers in supramolecular structures
Guittet, Eric; Renciuk, Daniel; Leroy, Jean-Louis
2012-01-01
The symmetry of i-motif tetramers gives to cytidine-rich oligonucleotides the capacity to associate into supramolecular structures (sms). In order to determine how the tetramers are linked together in such structures, we have measured by gel filtration chromatography and NMR the formation and dissociation kinetics of sms built by oligonucleotides containing two short C stretches separated by a non-cytidine-base. We show that a stretch of only two cytidines either at the 3′- or 5′-end is long enough to link the tetramers into sms. The analysis of the properties of sms formed by oligonucleotides differing by the length of the oligo-C stretches, the sequence orientation and the nature of the non-C base provides a model of the junction connecting the tetramers in sms. PMID:22362739
Tano, Yoshio; Shimizu, Hiroyuki; Martin, Javier; Nishimura, Yorihiro; Simizu, Bunsiti; Miyamura, Tatsuo
2007-10-10
A candidate inactivated poliovirus vaccine derived from live-attenuated Sabin strains (sIPV), which are used in the oral poliovirus vaccine (OPV), was prepared in a large-production scale. The modification of viral antigenic epitopes during the formalin inactivation process was investigated by capture ELISA assays using type-specific and antigenic site-specific monoclonal antibodies (MoAbs). The major antigenic site 1 was modified during the formalin inactivation of Sabin 1. Antigenic sites 1-3 were slightly modified during the formalin inactivation of Sabin 2 strain. Sites 1 and 3 were altered on inactivated Sabin 3 virus. These alterations were different to those shown by wild-type Saukett strain, used in conventional IPV (cIPV). It has been previously reported that type 1 sIPV showed higher immunogenicity to type 1 cIPV whereas types 2 and 3 sIPV induced lower level of immunogenicity than their cIPV counterparts. Our results suggest that the differences in epitope structure after formalin inactivation may account, at least in part, for the observed differences in immunogenicity between Sabin and wild-type inactivated poliovaccines.
Metastable phase formation in the Au-Si system via ultrafast nanocalorimetry
NASA Astrophysics Data System (ADS)
Zhang, M.; Wen, J. G.; Efremov, M. Y.; Olson, E. A.; Zhang, Z. S.; Hu, L.; de la Rama, L. P.; Kummamuru, R.; Kavanagh, K. L.; Ma, Z.; Allen, L. H.
2012-05-01
We have investigated the stability and solidification of nanometer size Au-Si droplets using an ultrafast heating/cooling nanocalorimetry and in situ growth techniques. The liquid can be supercooled to very low temperatures for both Au-rich (ΔT ˜ 95 K) and Si-rich (ΔT ˜ 220 K) samples. Solidification of a unique metastable phase δ1 is observed with a composition of 74 ± 4 at. % Au and a b-centered orthorhombic structure (a = 0.92, b = 0.72, and c = 1.35 nm; body-center in the a-c plane), which grows heteroepitaxially to Aus. Its melting temperature Tm is 305 ± 5 °C. There is competition during formation between the eutectic and δ1 phases but δ1 is the only metastable alloy observed. For small size droplets, both the δ1 and eutectic phases show considerable depression of the melting point (size-dependent melting).
NASA Astrophysics Data System (ADS)
Upton, R.; Bach, E.; Hofmockel, K. S.
2017-12-01
Microbes are mediators of soil carbon (C) and are influenced in membership and activity by nitrogen (N) fertilization and inter-annual abiotic factors. Microbial communities and their extracellular enzyme activities (EEA) are important parameters that influence ecosystem C cycling properties and are often included in microbial explicit C cycling models. In an effort to generate model relevant, empirical findings, we investigated how both microbial community structure and C degrading enzyme activity are influenced by inter-annual variability and N inputs in bioenergy crops. Our study was performed at the Comparison of Biofuel Systems field-site from 2011 to 2014, in three bioenergy cropping systems, continuous corn (CC) and two restored prairies, both fertilized (FP) and unfertilized (P). We hypothesized microbial community structure would diverge during the prairie restoration, leading to changes in C cycling enzymes over time. Using a sequencing approach (16S and ITS) we determined the bacterial and fungal community structure response to the cropping system, fertilization, and inter-annual variability. Additionally, we used EEA of β-glucosidase, cellobiohydrolase, and β-xylosidase to determine inter-annual and ecosystem impacts on microbial activity. Our results show cropping system was a main effect for microbial community structure, with corn diverging from both prairies to be less diverse. Inter-annual changes showed that a drought occurring in 2012 significantly impacted microbial community structure in both the P and CC, decreasing microbial richness. However, FP increased in microbial richness, suggesting the application of N increased resiliency to drought. Similarly, the only year in which C cycling enzymes were impacted by ecosystem was 2012, with FP supporting higher potential enzymatic activity then CC and P. The highest EEA across all ecosystems occurred in 2014, suggesting the continued root biomass and litter build-up in this no till system provides increased C cycling activity. Our results showed that diverse cropping systems still benefit from N fertilization to confer resiliency to abiotic stress factors. Long-term studies for microbial mediation of soil C are necessary for modeling the impacts of restoration on SOC to assure inclusion of sustainability and resiliency.
Moshchanetskii, P V; Pivovarova, T A; Belyi, A V; Kondrat'eva, T F
2014-01-01
Oxidation of flotation concentrate of a pyrrhotite-rich sulfide ore by acidophilic chemolithoautotrophic microbial communities at 35, 40, and 45 degrees C was investigated. According to the physicochemical parameters of the liquid phase of the pulp, as well as the results of analysis of the solid residue after biooxidation and cyanidation, the community developed at 40 degrees C exhibited the highest rate of oxidation. The degree of gold recovery at 35, 40, and 45 degrees C was 89.34, 94.59, and 83.25%, respectively. At 40 degrees C, the highest number of microbial cells (6.01 x 10(9) cells/mL) was observed. While temperature had very little effect on the species composition of microbial communities, except for the absence of Leptospirillum ferriphilum at 35 degrees C, the shares of individual species in the communities varied with temperature. Relatively high numbers of Sulfobacillus thermosulfidooxidans, the organism oxidizing iron and elemental sulfur at higher rates than other acidophilic chemolithotrophic species, were observed at 40 degrees C.
Correlation between reflectance and photoluminescent properties of al-rich ZnO nano-structures
NASA Astrophysics Data System (ADS)
Khan, Firoz; Baek, Seong-Ho; Ahmad, Nafis; Lee, Gun Hee; Seo, Tae Hoon; Suh, Eun-kyung; Kim, Jae Hyun
2015-05-01
Al rich zinc oxide nano-structured films were synthesized using spin coating sol-gel technique. The films were annealed in oxygen ambient in the temperature range of 200-700 °C. The structural, optical, and photoluminescence (PL) properties of the films were studied at various annealing temperatures using X-ray diffraction spectroscopy, field emission scanning electron microscopy, photoluminescence emission spectra measurement, and Raman and UV-Vis spectroscopy. The optical band gap was found to decrease with the increase of the annealing temperature following the Gauss Amp function due to the confinement of the exciton. The PL peak intensity in the near band region (INBE) was found to increase with the increase of the annealing temperature up to 600 °C, then to decrease fast to a lower value for the annealing temperature of 700 °C due to crystalline quality. The Raman peak of E2 (low) was red shifted from 118 cm-1 to 126 cm-1 with the increase of the annealing temperature. The intensity of the second order phonon (TA+LO) at 674 cm-1 was found to decrease with the increase of the annealing temperature. The normalized values of the reflectance and the PL intensity in the NBE region were highest for the annealing temperature of 600 °C. A special correlation was found between the reflectance at λ = 1000 nm and the normalized PL intensity in the green region due to scattering due to presence of grains.
Mushtaq, Ameeq Ul; Lee, Yejin; Hwang, Eunha; Bang, Jeong Kyu; Hong, Eunmi; Byun, Youngjoo; Song, Ji-Joon; Jeon, Young Ho
2018-01-01
MeCP2 is a chromatin associated protein which is highly expressed in brain and relevant with Rett syndrome (RTT). There are AT-hook motifs in MeCP2 which can bind with AT-rich DNA, suggesting a role in chromatin binding. Here, we report the identification and characterization of another AT-rich DNA binding motif (residues 295 to 313) from the C-terminal transcription repression domain of MeCP2 by nuclear magnetic resonance (NMR) and isothermal calorimetry (ITC). This motif shows a micromolar affinity to AT-rich DNA, and it binds to the minor groove of DNA like AT-hook motifs. Together with the previous studies, our results provide an insight into a critical role of this motif in chromatin structure and function. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Adamczewski-Musch, J.; Akishin, P.; Becker, K.-H.; Belogurov, S.; Bendarouach, J.; Boldyreva, N.; Chernogorov, A.; Deveaux, C.; Dobyrn, V.; Dürr, M.; Eschke, J.; Förtsch, J.; Heep, J.; Höohne, C.; Kampert, K.-H.; Kochenda, L.; Kopfer, J.; Kravtsov, P.; Kres, I.; Lebedev, S.; Lebedeva, E.; Leonova, E.; Linev, S.; Mahmoud, T.; Michel, J.; Miftakhov, N.; Niebur, W.; Ovcharenko, E.; Pauly, C.; Pfeifer, D.; Querchfeld, S.; Rautenberg, J.; Reinecke, S.; Riabov, Y.; Roshchin, E.; Samsonov, V.; Tarasenkova, O.; Traxler, M.; Ugur, C.; Vznuzdaev, E.; Vznuzdaev, M.
2016-05-01
The CBM RICH detector will use CO2 as radiator gas, focussing glass mirrors with Al+MgF2 reflective and protective coating and Hamamatsu H12700 MAPMTs as photon detectors. The detector will serve for electron to pion separation up to momenta of 8 GeV/c and thus enable in CBM the measurement of electromagnetic radiation from the early and dense fireball in A+A collisions at SIS 100. In this article, the current status of the CBM RICH development will be presented including new measurements of the radiation hardness of the H12700 MAPMT and WLS coatings with p-terphenyl, the new concept for the readout electronics, and optimizations ongoing with respect to the mirror mount structure and overall geometry. Prior to the usage in CBM, part of the already ordered MAPMTs will be used to upgrade the HADES RICH detector for a new measurement campaign at SIS 18 from 2018-2020.
Menković, N; Savikin-Fodulović, K; Savin, K
2000-03-01
The chemical investigation of MeOH extracts of Gentiana lutea leaves and flowers showed that xanthones were one of the dominant class of compounds. Secoiridoids and flavonoids were also recorded. The amount of secondary metabolites varied depending on development stage. In the phase of flowering, leaves are rich with compounds possessing C-glycoside structures while O-glycoside structures accumulate mainly before flowering.
USDA-ARS?s Scientific Manuscript database
The shift in equilibrium towards excess reactive oxygen or nitrogen species production from innate antioxidant defenses in brain is a critical factor in the declining neural function and cognitive deficit accompanying age. Previous studies from our laboratory have reported that walnuts, rich in poly...
Han, Linna; Li, Feng; Yu, Qijian; Li, Dapeng
2018-01-01
The aim of this study was to investigate in vitro antioxidant activities and cytoprotective effect of Maillard reaction products (MRPs) from phloridzin (Pz)-amino acid model systems. Their structures were also characterised by Fourier transform-infrared spectroscopy (FTIR). MRPs were prepared from the Pz-methionine (Met), Pz-lysine (Lys), Pz-isoleucine (Ile), Pz-histidine (His) or Pz-glutamic acid (Glu) model system. The Pz-Lys MRPs, rich in antioxidant potency, were subjected to ultrafiltration to yield four MRPs fractions with different molecular weights (Mw). The fraction with Mw 30-50 kDa had significantly (P < 0.05) higher antioxidant activity than other fractions. Moreover, it significantly (P < 0.05) attenuated the 2,2'-azobis(2-methylpropionamidine) dihydrochloride (AAPH)-elicited decrease in cell viability in HepG2 cells in a concentration-dependent manner. FTIR analysis indicated that the fraction with Mw 30-50 kDa had the strong stretching vibration for the OH, NH, CH, CO and CC groups, suggesting the formation of intermediate MRPs during Maillard reaction. The results obtained in this study may provide some basis for the purported health-promoting effects of MRPs and their potential application as antioxidant agents in food industry. Also, it is important for our understanding of the variation of bioactive substances in food during thermal processing. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Li, Yu; Wu, Chuan; Bai, Ying; Liu, Lu; Wang, Hui; Wu, Feng; Zhang, Na; Zou, Yufeng
2016-07-27
Tuning hierarchical micro/nanostructure of electrode materials is a sought-after means to reinforce their electrochemical performance in the energy storage field. Herein, we introduce a type of hierarchical mesoporous Li[Li0.2Ni0.2Mn0.6]O2 microsphere composed of nanoparticles synthesized via an ice templating combined coprecipitation strategy. It is a low-cost, eco-friendly, and easily operated method using ice as a template to control material with homogeneous morphology and rich porous channels. The as-prepared material exhibits remarkably enhanced electrochemical performances with higher capacity, more excellent cycling stability and more superior rate property, compared with the sample prepared by conventional coprecipitation method. It has satisfactory initial discharge capacities of 280.1 mAh g(-1) at 0.1 C, 207.1 mAh g(-1) at 2 C, and 152.4 mAh g(-1) at 5 C, as well as good cycle performance. The enhanced electrochemical performance can be ascribed to the stable hierarchical microsized structure and the improved lithium-ion diffusion kinetics from the highly porous structure.
Zeilinger, Michael; Fässler, Thomas F
2014-10-28
A reinvestigation of the lithium-rich section of the Li-Ge phase diagram reveals the existence of two new phases, Li17Ge4 and Li4.10Ge (Li16.38Ge4). Their structures are determined by X-ray diffraction experiments of large single crystals obtained from equilibrated melts with compositions Li95Ge5 and Li85Ge15. Excess melt is subsequently removed through isothermal centrifugation at 400 °C and 530 °C, respectively. Li17Ge4 crystallizes in the space group F4[combining macron]3m (a = 18.8521(3) Å, V = 6700.1(2) Å(3), Z = 20, T = 298 K) and Li4.10Ge (Li16.38Ge4) in Cmcm (a = 4.5511(2) Å, b = 22.0862(7) Å, c = 13.2751(4) Å, V = 1334.37(8) Å(3), Z = 16, T = 123 K). Both phases are isotypic with their Si counterparts and are further representative of the Li17Pb4 and Li4.11Si structure types. Additionally, the solid solutions Li17Si4-xGex follows Vegard's law. A comparison of the GeLin coordination polyhedra shows that isolated Ge atoms are 13- and 14-coordinated in Li17Ge4, whereas in Li16.38Ge4 the Ge atoms possess coordination numbers 12 and 13. Regarding the thermodynamic stability, Li16.38Ge4 is assigned a high-temperature phase existing between ∼400 °C and 627 °C, whereas Li17Ge4 decomposes peritectically at 520-522 °C. Additionally, the decomposition of Li16.38Ge4 below ∼400 °C was found to be very sluggish. These findings are manifested by differential scanning calorimetry, long-term annealing experiments and the results from melt equilibration experiments. Interestingly, the thermodynamic properties of the lithium-rich tetrelides Li17Tt4 and Li4.1Tt (Li16.4Tt4) are very similar (Tt = Si, Ge). Besides Li15Tt4, Li14Tt6, Li12Tt7, and LiTt, the title compounds are further examples of isotypic tetrelides in the systems Li-Tt.
Tang, Yuanyuan; Chui, Stephen Sin-Yin; Shih, Kaimin; Zhang, Lingru
2011-04-15
The feasibility of incorporating copper-laden sludge into low-cost ceramic products, such as construction ceramics, was investigated by sintering simulated copper-laden sludge with four aluminum-rich ceramic precursors. The results indicated that all of these precursors (γ-Al(2)O(3), corundum, kaolinite, mullite) could crystallochemically stabilize the hazardous copper in the more durable copper aluminate spinel (CuAl(2)O(4)) structure. To simulate the process of copper transformation into a spinel structure, CuO was mixed with the four aluminum-rich precursors, and fired at 650-1150 °C for 3 h. The products were examined using powder X-ray diffraction (XRD) and scanning electron microscopic techniques. The efficiency of copper transformation among crystalline phases was quantitatively determined through Rietveld refinement analysis of the XRD data. The sintering experiment revealed that the optimal sintering temperature for CuAl(2)O(4) formation was around 1000 °C and that the efficiency of copper incorporation into the crystalline CuAl(2)O(4) structure after 3 h of sintering ranged from 40 to 95%, depending on the type of aluminum precursor used. Prolonged leaching tests were carried out by using acetic acid with an initial pH value of 2.9 to leach CuO and CuAl(2)O(4) samples for 22 d. The sample leachability analysis revealed that the CuAl(2)O(4) spinel structure was more superior to stabilize copper, and suggested a promising and reliable technique for incorporating copper-laden sludge or its incineration ash into usable ceramic products. Such results also demonstrated the potential of a waste-to-resource strategy by using waste materials as part of the raw materials with the attainable temperature range used in the production of ceramics.
NASA Astrophysics Data System (ADS)
Wang, Zhong-Jie; Ni, Wen; Li, Ke-Qing; Huang, Xiao-Yan; Zhu, Li-Ping
2011-08-01
The crystallization process of iron-rich glass-ceramics prepared from the mixture of nickel slag (NS) and blast furnace slag (BFS) with a small amount of quartz sand was investigated. A modified melting method which was more energy-saving than the traditional methods was used to control the crystallization process. The results show that the iron-rich system has much lower melting temperature, glass transition temperature ( T g), and glass crystallization temperature ( T c), which can result in a further energy-saving process. The results also show that the system has a quick but controllable crystallization process with its peak crystallization temperature at 918°C. The crystallization of augite crystals begins from the edge of the sample and invades into the whole sample. The crystallization process can be completed in a few minutes. A distinct boundary between the crystallized part and the non-crystallized part exists during the process. In the non-crystallized part showing a black colour, some sphere-shaped augite crystals already exist in the glass matrix before samples are heated to T c. In the crystallized part showing a khaki colour, a compact structure is formed by augite crystals.
USDA-ARS?s Scientific Manuscript database
Bone can be adversely affected by obesity and cancer-associated complications including wasting. The objective of this study was to determine whether a high-fat diet and a deficiency in monocyte chemotactic protein-1 (MCP-1) altered bone structural defects found in male C57BL/6 mice with Lewis lung...
NASA Astrophysics Data System (ADS)
Ogiso, M.
2017-12-01
Heterogeneous attenuation structure is important for not only understanding the earth structure and seismotectonics, but also ground motion prediction. Attenuation of ground motion in high frequency range is often characterized by the distribution of intrinsic and scattering attenuation parameters (intrinsic Q and scattering coefficient). From the viewpoint of ground motion prediction, both intrinsic and scattering attenuation affect the maximum amplitude of ground motion while scattering attenuation also affect the duration time of ground motion. Hence, estimation of both attenuation parameters will lead to sophisticate the ground motion prediction. In this study, we try to estimate both parameters in southwestern Japan in a tomographic manner. We will conduct envelope fitting of seismic coda since coda has sensitivity to both intrinsic attenuation and scattering coefficients. Recently, Takeuchi (2016) successfully calculated differential envelope when these parameters have fluctuations. We adopted his equations to calculate partial derivatives of these parameters since we did not need to assume homogeneous velocity structure. Matrix for inversion of structural parameters would become too huge to solve in a straightforward manner. Hence, we adopted ART-type Bayesian Reconstruction Method (Hirahara, 1998) to project the difference of envelopes to structural parameters iteratively. We conducted checkerboard reconstruction test. We assumed checkerboard pattern of 0.4 degree interval in horizontal direction and 20 km in depth direction. Reconstructed structures well reproduced the assumed pattern in shallower part while not in deeper part. Since the inversion kernel has large sensitivity around source and stations, resolution in deeper part would be limited due to the sparse distribution of earthquakes. To apply the inversion method which described above to actual waveforms, we have to correct the effects of source and site amplification term. We consider these issues to estimate the actual intrinsic and scattering structures of the target region.Acknowledgment We used the waveforms of Hi-net, NIED. This study was supported by the Earthquake Research Institute of the University of Tokyo cooperative research program.
Lybatides from Lycium barbarum Contain An Unusual Cystine-stapled Helical Peptide Scaffold.
Tan, Wei Liang; Wong, Ka H; Lei, Jian; Sakai, Naoki; Tan, Hong Wei; Hilgenfeld, Rolf; Tam, James P
2017-07-12
Cysteine-rich peptides (CRPs) of 2-6 kDa are generally thermally and proteolytically stable because of their multiple cross-bracing disulfide bonds. Here, we report the discovery and characterization of two novel cystine-stapled CRPs, designated lybatide 1 and 2 (lyba1 and lyba2), from the cortex of Lycium barbarum root. Lybatides, 32 to 33 amino acids in length, are hyperstable and display a novel disulfide connectivity with a cysteine motif of C-C-C-C-CC-CC which contains two pairs of adjacent cysteines (-CC-CC). X-ray structure analysis revealed the presence of a single cystine-stabilized (α + π)-helix in lyba2, a rare feature of CRPs. Together, our results suggest that lybatides, one of the smallest four-disulfide-constrained plant CRPs, is a new family of CRPs. Additionally, this study provides new insights into the molecular diversity of plant cysteine-rich peptides and the unusual lybatide scaffold could be developed as a useful template for peptide engineering and therapeutic development.
Syn, Wing-Kin; Lagaisse, Kimberly; van Hul, Noemi; Heindryckx, Femke; Sowa, Jan-Peter; Peeters, Liesbeth; Van Vlierberghe, Hans; Leclercq, Isabelle A.; Canbay, Ali
2016-01-01
Chronic cholangiopathies, such as primary and secondary sclerosing cholangitis, are progressive disease entities, associated with periportal accumulation of inflammatory cells, encompassing monocytes and macrophages, peribiliary extracellular matrix (ECM) deposition and ductular reaction (DR). This study aimed to elucidate the relevance of macrophages in the progression of chronic cholangiopathies through macrophage depletion in a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) mouse model. One group of mice received a single i.p. injection of Clodronate encapsulated liposomes (CLOLipo) at day 7 of a 14 day DDC treatment, while control animals were co-treated with PBSLipo instead. Mice were sacrificed after 7 or respectively 14 days of treatment for immunohistochemical assessment of macrophage recruitment (F4/80), ECM deposition (Sirius Red, Laminin) and DR (CK19). Macrophage depletion during a 14 day DDC treatment resulted in a significant inhibition of ECM deposition. Porto-lobular migration patterns of laminin-rich ECM and ductular structures were significantly attenuated and a progression of DR was effectively inhibited by macrophage depletion. CLOLipo co-treatment resulted in a confined DR to portal regions without amorphous cell clusters. This study suggests that therapeutic options selectively directed towards macrophages might represent a feasible treatment for chronic cholestatic liver diseases. PMID:27618307
Sigma phases in an 11%Cr ferritic/martensitic steel with the normalized and tempered condition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Yinzhong, E-mail: shenyz@sjtu.edu.cn
At the present time 9–12% Cr ferritic/martensitic (F/M) steels with target operating temperatures up to 650 °C and higher are being developed in order to further increase thermal efficiency so as to reduce coal consumption and air pollution. An 11% Cr F/M steel was prepared by reference to the nominal chemical composition of SAVE12 steel with an expected maximum use temperature of 650 °C. The precipitate phases of the 11% Cr F/M steel normalized at 1050 °C for 0.5 h and tempered at 780 °C for 1.5 h were investigated by transmission electron microscopy. Except for Cr-/Cr-Fe-Co-rich M{sub 23}C{sub 6},more » Nb-/V-/Ta-Nb-/Nd-rich MX, Fe-rich M{sub 5}C{sub 2}, Co-rich M{sub 3}C and Fe-Co-rich M{sub 6}C phases previously identified in the steel, two types of sigma phases consisting of σ-FeCr and σ-FeCrW were found to be also present in the normalized and tempered steel. Identified σ-FeCr and σ-FeCrW phases have a simple tetragonal crystal structure with estimated lattice parameters a/c = 0.8713/0.4986 and 0.9119/0.5053 nm, respectively. The compositions in atomic pct of the observed sigma phases were determined to be approximately 50Fe-50Cr for the σ-FeCr, and 30Fe-55Cr-10W in addition to a small amount of Ta, Co and Mn for the σ-FeCrW. The sigma phases in the steel exhibit various blocky morphologies, and appear to have a smaller amount compared with the dominant phases Cr-rich M{sub 23}C{sub 6} and Nb-/V-/Ta-Nb-rich MX of the steel. The σ-FeCr phase in the steel was found to precipitate at δ-ferrite/martensite boundaries, suggesting that δ-ferrite may rapidly induce the formation of sigma phase at δ-ferrite/martensite boundaries in high Cr F/M steels containing δ-ferrite. The formation mechanism of sigma phases in the steel is also discussed in terms of the presence of δ-ferrite, M{sub 23}C{sub 6} precipitation, precipitation/dissolution of M{sub 2}X, and steel composition. - Highlights: •Precipitate phases in normalized and tempered 11%Cr F/M steel are presented in detail. • σ-FeCr phase, 50Fe50Cr (in at.%), was identified in normalized and tempered 11%Cr F/M steel. • σ-FeCrW phase, 30Fe55Cr10W (in at.%), was identified in normalized and tempered 11%Cr F/M steel. • Sigma phase in the 11%Cr F/M steel was found to precipitate at δ-ferrite/martensite boundaries. • δ-ferrite may rapidly induce the sigma phase formation at δ-ferrite/martensite boundaries.« less
The Characteristics and Generating Mechanism of Large Precipitates in Ti-Containing H13 Tool Steel
NASA Astrophysics Data System (ADS)
Xie, You; Cheng, Guoguang; Chen, Lie; Zhang, Yandong; Yan, Qingzhong
2017-02-01
The characteristics of large precipitates in H13 tool steel with 0.015wt% Ti were studied. The result shows that three types of phases larger than 1 μm exist in the as-cast ingot, that is, (Ti, V) (C, N) type phase, (V, Mo, Cr)C type phase and sulfide. (Ti, V) (C, N) type phase could be further classified as the homogeneous Ti-rich one and the Ti-V-rich one in which Ti/V ratio gradually changes. (V, Mo, Cr)C type phase contains the V-rich one and the Mo-Cr-rich one. The compositional characteristics in all of them have little relation with the cutting position or cooling rate. The precipitating process could be well described through calculation by Thermo-Calc software. During solidification, the primary phase (Ti, V)(C, N) first starts to precipitate in the form of Ti-rich carbonitride. With the development of solidification, the ratio of Ti decreases and that of V increases. Then the primary phase Ti-V-rich (Ti, V)(C, N) and V-rich (V, Mo, Cr)C appears successively. Mo-Cr-rich (V, Mo, Cr)C phase does not precipitate until the solidification process reaches to the end. Sulfide precipitates before (V, Mo, Cr)C type phase and it could act as the nucleus of (V, Mo, Cr)C.
Sanders, Barbara P; Oakes, Isabel de los Rios; van Hoek, Vladimir; Liu, Ying; Marissen, Wilfred; Minor, Philip D; Wimmer, Eckard; Schuitemaker, Hanneke; Custers, Jerome H H V; Macadam, Andrew; Cello, Jeronimo; Edo-Matas, Diana
2015-11-27
As poliovirus eradication draws closer, alternative Inactivated Poliovirus Vaccines (IPV) are needed to overcome the risks associated with continued use of the Oral Poliovirus Vaccine and of neurovirulent strains used during manufacture of conventional (c) IPV. We have previously demonstrated the susceptibility of the PER.C6(®) cell line to cIPV strains; here we investigated the suspension cell culture platform for growth of attenuated poliovirus strains. We examined attenuated Sabin strain productivity on the PER.C6(®) cell platform compared to the conventional Vero cell platform. The suitability of the suspension cell platform for propagation of rationally-attenuated poliovirus strains (stabilized Sabin type 3 S19 derivatives and genetically attenuated and stabilized MonoCre(X) strains), was also assessed. Yields were quantified by infectious titer determination and D-antigen ELISA using either serotype-specific polyclonal rabbit sera for Sabin strains or monoclonal cIPV-strain-specific antibodies for cIPV, S19 and MonoCre(X) strains. PER.C6(®) cells supported the replication of Sabin strains to yields of infectious titers that were in the range of cIPV strains at 32.5°C. Sabin strains achieved 30-fold higher yields (p<0.0001) on the PER.C6(®) cell platform as compared to the Vero cell platform in infectious titer and D-antigen content. Furthermore, Sabin strain productivity on the PER.C6(®) cell platform was maintained at 10l scale. Yields of infectious titers of S19 and MonoCre(X) strains were 0.5-1 log10 lower than seen for cIPV strains, whereas D-antigen yield and productivities in doses/ml using rationally-attenuated strains were in line with yields reported for cIPV strains. Sabin and rationally-attenuated polioviruses can be grown to high infectious titers and D-antigen yields. Sabin strain infection shows increased productivity on the PER.C6(®) cell platform as compared to the conventional Vero cell platform. Novel cell platforms with the potential for higher yields could contribute to increased affordability of a next generation of IPV vaccines needed for achieving and maintaining poliovirus eradication. Copyright © 2015 Elsevier Ltd. All rights reserved.
Vineetha, Vadavanath Prabhakaran; Girija, Seetharaman; Soumya, Rema Sreenivasan; Raghu, Kozhiparambil Gopalan
2014-03-01
Evidences suggest that apple peel has a wide range of polyphenols having antioxidant activity and its consumption has been linked with improved health benefits. Arsenic trioxide (ATO) is a very effective drug for the treatment of acute promyelocytic leukemia (APL) but it leads to cardiotoxicity mediated through alterations in various cardiac ion channels and by increasing the intracellular calcium level and reactive oxygen species (ROS). The aim of the present investigation was to study the effect of methanolic extract of apple peel (APME) and aqueous extract of apple peel (APAE) on ATO (5 μM) induced toxicity in the H9c2 cardiac myoblast cell line. We estimated the cellular status of innate antioxidant enzymes, level of ROS, mitochondrial superoxide, glutathione and intracellular calcium with ATO and apple peel extracts. Prior to the cell line based study, we had evaluated the antioxidant potential of apple peel extract by 1,1-diphenyl-2-picrylhydrazyl (DPPH), total reducing power (TRP), superoxide anion and hydroxyl radical scavenging activity, in addition to quantifying total phenolic and flavonoid content. Both the extracts showed considerable antioxidant activity in cell-free chemical assays. In addition, both APME and APAE prevented the alteration in antioxidant status induced by ATO in H9c2 cells. Significant differential alterations had been observed in the activity of lactate dehydrogenase, superoxide dismutase, catalase, glutathione, glutathione peroxidase, thioredoxin reductase, xanthine oxidase, calcium overload and caspase 3 activity with ATO. The overall result revealed the protective property of polyphenol-rich apple peel extract against ATO induced cardiac toxicity via its antioxidant activity.
Zúñiga-Ripa, Amaia; Barbier, Thibault; Conde-Álvarez, Raquel; Martínez-Gómez, Estrella; Palacios-Chaves, Leyre; Gil-Ramírez, Yolanda; Grilló, María Jesús; Letesson, Jean-Jacques; Iriarte, Maite
2014-01-01
The brucellae are the etiological agents of brucellosis, a worldwide-distributed zoonosis. These bacteria are facultative intracellular parasites and thus are able to adjust their metabolism to the extra- and intracellular environments encountered during an infectious cycle. However, this aspect of Brucella biology is imperfectly understood, and the nutrients available in the intracellular niche are unknown. Here, we investigated the central pathways of C metabolism used by Brucella abortus by deleting the putative fructose-1,6-bisphosphatase (fbp and glpX), phosphoenolpyruvate carboxykinase (pckA), pyruvate phosphate dikinase (ppdK), and malic enzyme (mae) genes. In gluconeogenic but not in rich media, growth of ΔppdK and Δmae mutants was severely impaired and growth of the double Δfbp-ΔglpX mutant was reduced. In macrophages, only the ΔppdK and Δmae mutants showed reduced multiplication, and studies with the ΔppdK mutant confirmed that it reached the replicative niche. Similarly, only the ΔppdK and Δmae mutants were attenuated in mice, the former being cleared by week 10 and the latter persisting longer than 12 weeks. We also investigated the glyoxylate cycle. Although aceA (isocitrate lyase) promoter activity was enhanced in rich medium, aceA disruption had no effect in vitro or on multiplication in macrophages or mouse spleens. The results suggest that B. abortus grows intracellularly using a limited supply of 6-C (and 5-C) sugars that is compensated by glutamate and possibly other amino acids entering the Krebs cycle without a critical role of the glyoxylate shunt. PMID:24936050
Walkable Worlds give a Rich Self-Similar Structure to the Real Line
NASA Astrophysics Data System (ADS)
Rosinger, Elemér E.
2010-05-01
It is a rather universal tacit and unquestioned belief—and even more so among physicists—that there is one and only one real line, namely, given by the coodinatisation of Descartes through the usual field R of real numbers. Such a dramatically limiting and thus harmful belief comes, unknown to equally many, from the similarly tacit acceptance of the ancient Archimedean Axiom in Euclid's Geometry. The consequence of that belief is a similar belief in the uniqueness of the coordinatization of the plane by the usual field C of complex numbers, and therefore, of the various spaces, manifolds, etc., be they finite or infinite dimensional, constructed upon the real or complex numbers, including the Hilbert spaces used in Quantum Mechanics. A near total lack of awareness follows therefore about the rich self-similar structure of other possible coordinatisations of the real line, possibilities given by various linearly ordered scalar fields obtained through the ultrapower construction. Such fields contain as a rather small subset the usual field R of real numbers. The concept of walkable world, which has highly intuitive and pragmatic algebraic and geometric meaning, illustrates the mentioned rich self-similar structure.
Russell, Anthony G; Watanabe, Yoh-ichi; Charette, J Michael; Gray, Michael W
2005-01-01
Box C/D ribonucleoprotein (RNP) particles mediate O2'-methylation of rRNA and other cellular RNA species. In higher eukaryotic taxa, these RNPs are more complex than their archaeal counterparts, containing four core protein components (Snu13p, Nop56p, Nop58p and fibrillarin) compared with three in Archaea. This increase in complexity raises questions about the evolutionary emergence of the eukaryote-specific proteins and structural conservation in these RNPs throughout the eukaryotic domain. In protists, the primarily unicellular organisms comprising the bulk of eukaryotic diversity, the protein composition of box C/D RNPs has not yet been extensively explored. This study describes the complete gene, cDNA and protein sequences of the fibrillarin homolog from the protozoon Euglena gracilis, the first such information to be obtained for a nucleolus-localized protein in this organism. The E.gracilis fibrillarin gene contains a mixture of intron types exhibiting markedly different sizes. In contrast to most other E.gracilis mRNAs characterized to date, the fibrillarin mRNA lacks a spliced leader (SL) sequence. The predicted fibrillarin protein sequence itself is unusual in that it contains a glycine-lysine (GK)-rich domain at its N-terminus rather than the glycine-arginine-rich (GAR) domain found in most other eukaryotic fibrillarins. In an evolutionarily diverse collection of protists that includes E.gracilis, we have also identified putative homologs of the other core protein components of box C/D RNPs, thereby providing evidence that the protein composition seen in the higher eukaryotic complexes was established very early in eukaryotic cell evolution.
Li, Juan; Zhu, Jin-long; Lou, Shi-di; Wang, Ping; Zhang, You-sen; Wang, Lin; Yin, Ruo-chun; Zhang, Ping-ping
2018-01-01
Abstract Coptotermes suzhouensis (Isoptera: Rhinotermitidae) is a significant subterranean termite pest of wooden structures and is widely distributed in southeastern China. The complete mitochondrial DNA sequence of C. suzhouensis was analyzed in this study. The mitogenome was a circular molecule of 15,764 bp in length, which contained 13 protein-coding genes (PCGs), 22 transfer RNA genes, two ribosomal RNA genes, and an A+T-rich region with a gene arrangement typical of Isoptera mitogenomes. All PCGs were initiated by ATN codons and terminated by complete termination codons (TAA), except COX2, ND5, and Cytb, which ended with an incomplete termination codon T. All tRNAs displayed a typical clover-leaf structure, except for tRNASer(AGN), which did not contain the stem-loop structure in the DHU arm. The A+T content (69.23%) of the A+T-rich region (949 bp) was higher than that of the entire mitogenome (65.60%), and two different sets of repeat units (A+B) were distributed in this region. Comparison of complete mitogenome sequences with those of Coptotermes formosanus indicated that the two taxa have very high genetic similarity. Forty-one representative termite species were used to construct phylogenetic trees by maximum likelihood, maximum parsimony, and Bayesian inference methods. The phylogenetic analyses also strongly supported (BPP, MLBP, and MPBP = 100%) that all C. suzhouensis and C. formosanus samples gathered into one clade with genetic distances between 0.000 and 0.002. This study provides molecular evidence for a more robust phylogenetic position of C. suzhouensis and inferrs that C. suzhouensis was the synonymy of C. formosanus. PMID:29718488
NASA Astrophysics Data System (ADS)
Watanabe, Yumiko; Stewart, Brian W.; Ohmoto, Hiroshi
2004-05-01
A ˜17-m paleosol sequence at Schagen, South Africa, which developed on a serpentinized dunite intrusion in a granite-gneiss terrain ˜2.6 Ga ago, is characterized by an alternating succession of thick (˜1-3 m) carbonate-rich (dolomite and calcite) zones and silicate-rich (serpentines, talc, and quartz) zones; the upper ˜8 m section is especially rich in organic C (up to ˜1.4 wt.%). Petrologic and geochemical data suggest the upper ˜8 m section is composed of at least three soil profiles that developed on: (i) silicate-rich rock fragments (and minerals) that were transported from local sources (serpentinite and granite) by fluvial and/or eolian processes; and (ii) dolomite and calcite zones that formed by locally discharged groundwater. The Mg and Fe in the paleosol sequence were largely supplied from local sources (mostly serpentinite), but the Ca, Sr, and HCO 3- were supplied by groundwater that originated from a surrounding granite-gneiss terrain. In the uppermost soil profile, the (Fe is retained, the Fe 3+/Fe 2+ ratio increases, and ferri-stilpnomelane is abundant. These data suggest the atmospheric pO 2 was much greater than ˜10 -3.7 atm (>0.1% present atmospheric level [PAL]). The carbonaceous matter in the soils is intimately associated with clays (talc, chlorite, and ferri-stilpnomelane) and occurs mostly as seams (20 μm to 1 mm thick) that parallel the soil horizons. These occurrences, crystallographic structures, H/C ratios, and δ 13C org values (-17.4 to -14.4‰ PDB) suggest that the carbonaceous matter is a remnant of in situ microbial mats, originally ˜1 to ˜20 mm thick. The microbial mats developed: (a) mostly on soil surfaces during the formation of silicate-rich soils, and (b) at the bottom of an evaporating, anoxic, alkaline pond during the precipitation of the Fe-rich dolomite. These δ 13C org values are difficult to be explained by a current popular idea of a methane- and organic haze-rich Archean atmosphere (Pavlov et al., 2001); these values, however, can be easily explained if the microbial mats were composed of cyanobacteria and heterotrophs that utilized the remnants of cyanobacteria in a strongly evaporating environment.
The effect of iron on montmorillonite stability. (II) Experimental investigation
NASA Astrophysics Data System (ADS)
Wilson, James; Cressey, Gordon; Cressey, Barbara; Cuadros, Javier; Ragnarsdottir, K. Vala; Savage, David; Shibata, Masahiro
2006-01-01
Several designs proposed for high-level nuclear waste (HLW) repositories include steel waste canisters surrounded by montmorillonite clay. This work investigates montmorillonite stability in the presence of native Fe, magnetite and aqueous solutions under hydrothermal conditions. Two series of experiments were conducted. In the first, mixtures of Na-montmorillonite, magnetite, native Fe, calcite, and NaCl solutions were reacted at 250 °C, Psat for between 93 and 114 days. In the second series, the starting mixtures included Na-montmorillonite, native Fe and solutions of FeCl 2 which were reacted at temperatures of 80, 150, and 250 °C, Psat, for 90-92 days. Experiments were analysed using XRD, FT-IR, TEM, ICP-AES, and ICP-MS. In the first series of experiments, native Fe oxidised to produce magnetite and the starting montmorillonite material was transformed to Fe-rich smectite only when the Fe was added predominantly as Fe metal rather than Fe oxide (magnetite). The Fe-rich smectite was initially Fe(II)-rich, which oxidised to produce an Fe(III)-rich form on exposure to air. The expansion of this material on ethylene glycol solvation was much reduced compared to the montmorillonite starting material. TEM imaging shows that partial loss of tetrahedral sheets occurred during transformation of the montmorillonite, resulting in adjacent layers becoming H-bonded with a 7 Å repeat. The reduced swelling property of the Fe-smectite product may be due predominantly to the structural disruption of smectite layers and the formation of H-bonds. Solute activities corresponded to the approximate stability field calculated for hypothetical Fe(II)-saponite. In the second series of experiments, significant smectite alteration was only observed at 250 °C and the product contained a small proportion of a 7 Å repeat structure, observable by XRD. In these experiments, solute activities coincide with berthierine. The experiments indicate that although bentonite is still a desirable choice of backfill material for HLW repositories, some loss of expandability may result if montmorillonite is altered to Fe-rich smectite at the interface between steel canisters and bentonite.
Crystal Structure of the Frizzled-Like Cysteine-Rich Domain of the Receptor Tyrosine Kinase MuSK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stiegler, A.; Burden, S; Hubbard, S
Muscle-specific kinase (MuSK) is an essential receptor tyrosine kinase for the establishment and maintenance of the neuromuscular junction (NMJ). Activation of MuSK by agrin, a neuronally derived heparan-sulfate proteoglycan, and LRP4 (low-density lipoprotein receptor-related protein-4), the agrin receptor, leads to clustering of acetylcholine receptors on the postsynaptic side of the NMJ. The ectodomain of MuSK comprises three immunoglobulin-like domains and a cysteine-rich domain (Fz-CRD) related to those in Frizzled proteins, the receptors for Wnts. Here, we report the crystal structure of the MuSK Fz-CRD at 2.1 {angstrom} resolution. The structure reveals a five-disulfide-bridged domain similar to CRDs of Frizzled proteinsmore » but with a divergent C-terminal region. An asymmetric dimer present in the crystal structure implicates surface hydrophobic residues that may function in homotypic or heterotypic interactions to mediate co-clustering of MuSK, rapsyn, and acetylcholine receptors at the NMJ.« less
Effects of spatial scale of sampling on food web structure
Wood, Spencer A; Russell, Roly; Hanson, Dieta; Williams, Richard J; Dunne, Jennifer A
2015-01-01
This study asks whether the spatial scale of sampling alters structural properties of food webs and whether any differences are attributable to changes in species richness and connectance with scale. Understanding how different aspects of sampling effort affect ecological network structure is important for both fundamental ecological knowledge and the application of network analysis in conservation and management. Using a highly resolved food web for the marine intertidal ecosystem of the Sanak Archipelago in the Eastern Aleutian Islands, Alaska, we assess how commonly studied properties of network structure differ for 281 versions of the food web sampled at five levels of spatial scale representing six orders of magnitude in area spread across the archipelago. Species (S) and link (L) richness both increased by approximately one order of magnitude across the five spatial scales. Links per species (L/S) more than doubled, while connectance (C) decreased by approximately two-thirds. Fourteen commonly studied properties of network structure varied systematically with spatial scale of sampling, some increasing and others decreasing. While ecological network properties varied systematically with sampling extent, analyses using the niche model and a power-law scaling relationship indicate that for many properties, this apparent sensitivity is attributable to the increasing S and decreasing C of webs with increasing spatial scale. As long as effects of S and C are accounted for, areal sampling bias does not have a special impact on our understanding of many aspects of network structure. However, attention does need be paid to some properties such as the fraction of species in loops, which increases more than expected with greater spatial scales of sampling. PMID:26380704
Design and fabrication of two kind of SOI-based EA-type VOAs
NASA Astrophysics Data System (ADS)
Yuan, Pei; Wang, Yue; Wu, Yuanda; An, Junming; Hu, Xiongwei
2018-06-01
SOI-based variable optical attenuators based on electro-absorption mechanism are demonstrated in this paper. Two different doping structures are adopted to realize the attenuation: a structure with a single lateral p-i-n diode and a structure with several lateral p-i-n diodes connected in series. The VOAs with lateral p-i-n diodes connected in series (series VOA) can greatly improve the device attenuation efficiency compared to VOAs with a single lateral p-i-n diode structure (single VOA), which is verified by the experimental results that the attenuation efficiency of the series VOA and the single VOA is 3.76 dB/mA and 0.189 dB/mA respectively. The corresponding power consumption at 20 dB attenuation is 202 mW (series VOA) and 424 mW (single VOA) respectively. The raise time is 34.5 ns (single VOA) and 45.5 ns (series VOA), and the fall time is 37 ns (single VOA) and 48.5 ns (series VOA).
Le, Peisi; Fratini, Emiliano; Ito, Kanae; ...
2016-01-28
We present the hypothesis that the mechanical properties of cement pastes depend strongly on their porosities. In a saturated paste, the porosity links to the free water volume after hydration. Structural water, constrained water, and free water have different dynamical behavior. Hence, it should be possible to extract information on pore system by exploiting the water dynamics. With our experiments we investigated the slow dynamics of hydration water confined in calcium- and magnesium-silicate-hydrate (C-S-H and M-S-H) gels using high-resolution quasi-elastic neutron scattering (QENS) technique. C-S-H and M-S-H are the chemical binders present in calcium rich and magnesium rich cements. Wemore » measured three M-S-H samples: pure M-S-H, M-S-H with aluminum-silicate nanotubes (ASN), and M-S-H with carboxyl group functionalized ASN (ASN-COOH). A C-S-H sample with the same water content (i.e. 0.3) is also studied for comparison. We found that structural water in the gels contributes to the elastic component of the QENS spectrum, while constrained water and free water contribute the quasi-elastic component. The quantitative analysis suggests that the three components vary for different samples and indicate the variance in the system porosity, which controls the mechanical properties of cement pastes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le, Peisi; Fratini, Emiliano; Ito, Kanae
We present the hypothesis that the mechanical properties of cement pastes depend strongly on their porosities. In a saturated paste, the porosity links to the free water volume after hydration. Structural water, constrained water, and free water have different dynamical behavior. Hence, it should be possible to extract information on pore system by exploiting the water dynamics. With our experiments we investigated the slow dynamics of hydration water confined in calcium- and magnesium-silicate-hydrate (C-S-H and M-S-H) gels using high-resolution quasi-elastic neutron scattering (QENS) technique. C-S-H and M-S-H are the chemical binders present in calcium rich and magnesium rich cements. Wemore » measured three M-S-H samples: pure M-S-H, M-S-H with aluminum-silicate nanotubes (ASN), and M-S-H with carboxyl group functionalized ASN (ASN-COOH). A C-S-H sample with the same water content (i.e. 0.3) is also studied for comparison. We found that structural water in the gels contributes to the elastic component of the QENS spectrum, while constrained water and free water contribute the quasi-elastic component. The quantitative analysis suggests that the three components vary for different samples and indicate the variance in the system porosity, which controls the mechanical properties of cement pastes.« less
Neuroprotective effect of bilberry extract in a murine model of photo-stressed retina
Osada, Hideto; Okamoto, Tomohiro; Kawashima, Hirohiko; Toda, Eriko; Miyake, Seiji; Nagai, Norihiro; Kobayashi, Saori; Tsubota, Kazuo; Ozawa, Yoko
2017-01-01
Excessive exposure to light promotes degenerative and blinding retinal diseases such as age-related macular degeneration and retinitis pigmentosa. However, the underlying mechanisms of photo-induced retinal degeneration are not fully understood, and a generalizable preventive intervention has not been proposed. Bilberry extract is an antioxidant-rich supplement that ameliorates ocular symptoms. However, its effects on photo-stressed retinas have not been clarified. In this study, we examined the neuroprotective effects of bilberry extract against photo-stress in murine retinas. Light-induced visual function impairment recorded by scotopic and phototopic electroretinograms showing respective rod and cone photoreceptor function was attenuated by oral administration of bilberry extract through a stomach tube in Balb/c mice (750 mg/kg body weight). Bilberry extract also suppressed photo-induced apoptosis in the photoreceptor cell layer and shortening of the outer segments of rod and cone photoreceptors. Levels of photo-induced reactive oxygen species (ROS), oxidative and endoplasmic reticulum (ER) stress markers, as measured by real-time reverse transcriptase polymerase chain reaction, were reduced by bilberry extract treatment. Reduction of ROS by N-acetyl-L-cysteine, a well-known antioxidant also suppressed ER stress. Immunohistochemical analysis of activating transcription factor 4 expression showed the presence of ER stress in the retina, and at least in part, in Müller glial cells. The photo-induced disruption of tight junctions in the retinal pigment epithelium was also attenuated by bilberry extract, repressing an oxidative stress marker, although ER stress markers were not repressed. Our results suggest that bilberry extract attenuates photo-induced apoptosis and visual dysfunction most likely, and at least in part, through ROS reduction, and subsequent ER stress attenuation in the retina. This study can help understand the mechanisms of photo-stress and contribute to developing a new, potentially useful therapeutic approach using bilberry extract for preventing retinal photo-damage. PMID:28570634
Neuroprotective effect of bilberry extract in a murine model of photo-stressed retina.
Osada, Hideto; Okamoto, Tomohiro; Kawashima, Hirohiko; Toda, Eriko; Miyake, Seiji; Nagai, Norihiro; Kobayashi, Saori; Tsubota, Kazuo; Ozawa, Yoko
2017-01-01
Excessive exposure to light promotes degenerative and blinding retinal diseases such as age-related macular degeneration and retinitis pigmentosa. However, the underlying mechanisms of photo-induced retinal degeneration are not fully understood, and a generalizable preventive intervention has not been proposed. Bilberry extract is an antioxidant-rich supplement that ameliorates ocular symptoms. However, its effects on photo-stressed retinas have not been clarified. In this study, we examined the neuroprotective effects of bilberry extract against photo-stress in murine retinas. Light-induced visual function impairment recorded by scotopic and phototopic electroretinograms showing respective rod and cone photoreceptor function was attenuated by oral administration of bilberry extract through a stomach tube in Balb/c mice (750 mg/kg body weight). Bilberry extract also suppressed photo-induced apoptosis in the photoreceptor cell layer and shortening of the outer segments of rod and cone photoreceptors. Levels of photo-induced reactive oxygen species (ROS), oxidative and endoplasmic reticulum (ER) stress markers, as measured by real-time reverse transcriptase polymerase chain reaction, were reduced by bilberry extract treatment. Reduction of ROS by N-acetyl-L-cysteine, a well-known antioxidant also suppressed ER stress. Immunohistochemical analysis of activating transcription factor 4 expression showed the presence of ER stress in the retina, and at least in part, in Müller glial cells. The photo-induced disruption of tight junctions in the retinal pigment epithelium was also attenuated by bilberry extract, repressing an oxidative stress marker, although ER stress markers were not repressed. Our results suggest that bilberry extract attenuates photo-induced apoptosis and visual dysfunction most likely, and at least in part, through ROS reduction, and subsequent ER stress attenuation in the retina. This study can help understand the mechanisms of photo-stress and contribute to developing a new, potentially useful therapeutic approach using bilberry extract for preventing retinal photo-damage.
Coronal Heating Observed with Hi-C
NASA Technical Reports Server (NTRS)
Winebarger, Amy R.
2013-01-01
The recent launch of the High-Resolution Coronal Imager (Hi-C) as a sounding rocket has offered a new, different view of the Sun. With approx 0.3" resolution and 5 second cadence, Hi-C reveals dynamic, small-scale structure within a complicated active region, including coronal braiding, reconnection regions, Alfven waves, and flows along active region fans. By combining the Hi-C data with other available data, we have compiled a rich data set that can be used to address many outstanding questions in solar physics. Though the Hi-C rocket flight was short (only 5 minutes), the added insight of the small-scale structure gained from the Hi-C data allows us to look at this active region and other active regions with new understanding. In this talk, I will review the first results from the Hi-C sounding rocket and discuss the impact of these results on the coronal heating problem.
Aberrant wound-healing response in mitomycin C-treated leaking blebs: a histopathologic study.
Elner, Victor M; Newman-Casey, Paula Anne; Patil, A Jayaprakash; Flint, Andrew; Biswas, Jyotirmay; Moroi, Sayoko E; Pushparaj, Vaijayanthi; Edward, Deepak P
2009-08-01
To characterize histopathologic features of leaking mitomycin C-treated blebs and aberrant wound healing that may lead to persistent conjunctival thinning and leakage. Forty mitomycin C-treated filtering blebs excised for persistent leaks from 40 patients were examined histopathologically using hematoxylin-eosin, periodic acid-Schiff, Masson trichrome, and Alcian blue histochemical stains. Ninety percent of the leaking blebs contained epithelial-stromal domes with areas of acellular stroma covered by attenuated epithelium. Seventy-five percent of the blebs demonstrated varying degrees of fibrovascular repair growing from the bleb margin, either beneath or interdigitating with the acellular zone. A novel observation in 65% of specimens was Alcian blue-positive myxoid stroma at the interface between the fibrovascular proliferation and the epithelial-stromal dome. The association between the presence of fibrovascular proliferation and Alcian blue-staining myxoid stroma was significant by Fisher exact test (P = .002). A desirable filtration bleb requires a sufficient reparative fibrovascular response to maintain an epithelial-stromal barrier to prevent leakage. Fibroblasts must lay down a continuous collagen-rich fibrous layer, rather than merely myxoid stroma, beneath the conjunctival epithelium to promote bleb stability. Surgical techniques and postsurgical care should aim to attain this desired outcome.
Suppression of tumor growth by palm tocotrienols via the attenuation of angiogenesis.
Weng-Yew, Wong; Selvaduray, Kanga Rani; Ming, Cheng Hwee; Nesaretnam, Kalanithi
2009-01-01
Previous studies have revealed that tocotrienol-rich fractions (TRF) from palm oil inhibit the proliferation and the growth of solid tumors. The anticancer activity of TRF is said to be caused by several mechanisms, one of which is antiangiogenesis. In this study, we looked at the antiangiogenic effects of TRF. In vitro investigations of the antiangiogenic activities of TRF, delta-tocotrienol (deltaT3), and alpha-tocopherol (alphaToc) were carried out in human umbilical vein endothelial cells (HUVEC). TRF and deltaT3 significantly inhibited cell proliferation from 4 microg/ml onward (P < 0.05). Cell migration was inhibited the most by deltaT3 at 12 microg/ml. Anti-angiogenic properties of TRF were carried out further in vivo using the chick embryo chorioallantoic membrane (CAM) assay and BALB/c mice model. TRF at 200 microg/ml reduced the vascular network on CAM. TRF treatment of 1 mg/mouse significantly reduced 4T1 tumor volume in BALB/c mice. TRF significantly reduced serum vascular endothelial growth factor (VEGF) level in BALB/c mice. In conclusion, this study showed that palm tocotrienols exhibit anti-angiogenic properties that may assist in tumor regression.
Structural Network Disorganization in Subjects at Clinical High Risk for Psychosis.
Schmidt, André; Crossley, Nicolas A; Harrisberger, Fabienne; Smieskova, Renata; Lenz, Claudia; Riecher-Rössler, Anita; Lang, Undine E; McGuire, Philip; Fusar-Poli, Paolo; Borgwardt, Stefan
2017-05-01
Previous network studies in chronic schizophrenia patients revealed impaired structural organization of the brain's rich-club members, a set of highly interconnected hub regions that play an important integrative role for global brain communication. Moreover, impaired rich-club connectivity has also been found in unaffected siblings of schizophrenia patients, suggesting that abnormal rich-club connectivity is related to familiar, possibly reflecting genetic, vulnerability for schizophrenia. However, no study has yet investigated whether structural rich-club organization is also impaired in individuals with a clinical risk syndrome for psychosis. Diffusion tensor imaging and probabilistic tractography was used to construct structural whole-brain networks in 24 healthy controls and 24 subjects with an at-risk mental state (ARMS). Graph theory was applied to quantify the structural rich-club organization and global network properties. ARMS subjects revealed a significantly altered structural rich-club organization compared with the control group. The disruption of rich-club organization was associated with the severity of negative psychotic symptoms and led to an elevated level of modularity in ARMS subjects. This study shows that abnormal structural rich-club organization is already evident in clinical high-risk subjects for psychosis and further demonstrates the impact of rich-club disorganization on global network communication. Together with previous evidence in chronic schizophrenia patients and unaffected siblings, our findings suggest that abnormal structural rich-club organization may reflect an endophenotypic marker of psychosis. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center.
Abassi, Zaid A; Barac, Yaron D; Kostin, Sawa; Roguin, Ariel; Ovcharenko, Elena; Awad, Hoda; Blank, Ayelet; Bar-Am, Orit; Amit, Tamar; Schaper, Jutta; Youdim, Moussa; Binah, Ofer
2011-07-01
Despite the availability of many pharmacological and mechanical therapies, the mortality rate among patients with congestive heart failure (CHF) remains high. We tested the hypothesis that TVP1022 (the S-isomer of rasagiline; Azilect), a neuroprotective and cytoprotective molecule, is also cardioprotective in the settings of experimental CHF in rats. In rats with volume overload-induced CHF, we investigated the therapeutic efficacy of TVP1022 (7.5 mg/kg) on cardiac function, structure, biomarkers, and kidney function. Treatment with TVP1022 for 7 days before CHF induction prevented the increase in left ventricular end-diastolic area and end-systolic area, and the decrease in fractional shortening measured 14 days after CHF induction. Additionally, TVP1022 pretreatment attenuated CHF-induced cardiomyocyte hypertrophy, fibrosis, plasma and ventricular B-type natriuretic peptide levels, and reactive oxygen species expression. Further, in CHF rats, TVP1022 decreased cytochrome c and caspase 3 expression, thereby contributing to the cardioprotective efficacy of the drug. TVP1022 also enhanced the urinary Na(+) excretion and improved the glomerular filtration rate. Similar cardioprotective effects were obtained when TVP1022 was given to rats after CHF induction. TVP1022 attenuated the adverse functional, structural, and molecular alterations in CHF, rendering this drug a promising candidate for improving cardiac and renal function in this disease state.
Preparation and characterisation of Isophthalic-Bi2O3 polymer composite gamma radiation shields
NASA Astrophysics Data System (ADS)
Ambika, M. R.; Nagaiah, N.; Harish, V.; Lokanath, N. K.; Sridhar, M. A.; Renukappa, N. M.; Suman, S. K.
2017-01-01
Bi2O3 filled Isophthalic resin based polymer composites of different weight % (0, 5, 10, 20, 30, 40, 50 & 60) were fabricated by open mould cast technique. Gamma attenuation study was carried out using NaI (Tl) gamma ray spectrometer for Cs-137. The shielding parameters such as attenuation coefficient, HVL & λ were investigated. The distribution of the filler within the matrix was studied using Scanning Electron Microscopy. X ray diffractometer and Fourier Transform Infrared Spectroscopy were employed to study the structural changes if any. The thermal stability and mechanical strength of the composites were investigated using TGA & UTM respectively. Dielectric properties and AC conductivity were also studied using LCR meter. The composites are found to be thermally stable upto 200 °C. There were no such structural changes observed and all the composites show very low conductivity. The mechanical strength of the composites was found to increase upon adding the bismuth oxide with a slight decrease when the concentration of the filler exceeds 40 wt%. Attenuation results reveal that, the shielding efficiency increases with the increase of the filler wt% and are comparable to those of the conventional shielding materials. Hence, Bi2O3 filled composites can be used for gamma shielding applications.
Hydrogen-rich water attenuates experimental periodontitis in a rat model.
Kasuyama, Kenta; Tomofuji, Takaaki; Ekuni, Daisuke; Tamaki, Naofumi; Azuma, Tetsuji; Irie, Koichiro; Endo, Yasumasa; Morita, Manabu
2011-12-01
Reactive oxygen species (ROS) contribute to the development of periodontitis. As molecular hydrogen can act as a scavenger of ROS, we examined the effects of treatment with hydrogen-rich water on a rat model of periodontitis. A ligature was placed around the maxillary molars for 4 weeks to induce periodontitis, and the animals were given drinking water with or without hydrogen-rich water. The rats with periodontitis which were treated with pure water showed a time-dependent increase in serum ROS level. Compared with the rats without periodontitis, the periodontitis-induced rats which were given pure water also showed polymorphonuclear leucocyte infiltration and alveolar bone loss at 4 weeks. Hydrogen-rich water intake inhibited an increase in serum ROS level and lowered expression of 8-hydroxydeoxyguanosine and nitrotyrosine in the periodontal tissue at 4 weeks. Such conditions prevented polymorphonuclear leucocyte infiltration and osteoclast differentiation following periodontitis progression. Furthermore, inflammatory signalling pathways, such as mitogen-activated protein kinases, were less activated in periodontal lesions from hydrogen-rich water-treated rats as compared with pure water-treated rats. Consuming hydrogen-rich water might be beneficial in suppressing periodontitis progression by decreasing gingival oxidative stress. © 2011 John Wiley & Sons A/S.
Effect of temperature on removal of trace organic chemicals in managed aquifer recharge systems.
Alidina, Mazahirali; Shewchuk, Justin; Drewes, Jörg E
2015-03-01
This study was undertaken to investigate whether changes in temperature experienced in MAR systems affect attenuation of trace organic chemicals (TOrCs). A set of laboratory-scale soil columns were placed in a temperature-controlled environmental chamber and operated at five different temperature set-points (30, 20, 10, 8 and 4°C) covering the range of typical groundwater temperatures in cold, moderate and arid climate regions. Removal of bulk organic carbon both in the infiltration zone as well as during deeper infiltration was independent of temperature. Of the 22 TOrCs investigated, only six chemicals exhibited changes in attenuation as a function of temperature. Attenuation of four of the compounds (diclofenac, gemfibrozil, ketoprofen and naproxen) decreased as the temperature was reduced from 30°C to 4°C, likely due to decreased microbial activity at lower temperatures. As the temperature was decreased, however, attenuation of oxybenzone and trimethoprim were noted to increase. This increased attenuation was likely due to more efficient sorption at lower temperatures, though possible changes in the microbial composition as the temperature decreased may also have contributed to this change. Changes in rate constants of attenuation (ka) for the biotransformed TOrCs with temperature suggested the existence of a critical temperature at 10°C for three of the four TOrCs, where significant changes to rates of attenuation occurred. Results from this study indicated that for most TOrCs, changes in temperature do not impact their attenuation. Thus, seasonal changes in temperature are not considered to be a major concern for attenuation of most TOrCs in MAR systems. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mechanism of generation of large (Ti,Nb,V)(C,N)-type precipitates in H13 + Nb tool steel
NASA Astrophysics Data System (ADS)
Xie, You; Cheng, Guo-guang; Chen, Lie; Zhang, Yan-dong; Yan, Qing-zhong
2016-11-01
The characteristics and generation mechanism of (Ti,Nb,V)(C,N) precipitates larger than 2 μm in Nb-containing H13 bar steel were studied. The results show that two types of (Ti,Nb,V)(C,N) phases exist—a Ti-V-rich one and an Nb-rich one—in the form of single or complex precipitates. The sizes of the single Ti-V-rich (Ti,Nb,V)(C,N) precipitates are mostly within 5 to 10 μm, whereas the sizes of the single Nb-rich precipitates are mostly 2-5 μm. The complex precipitates are larger and contain an inner Ti-V-rich layer and an outer Nb-rich layer. The compositional distribution of (Ti,Nb,V)(C,N) is concentrated. The average composition of the single Ti-V-rich phase is (Ti0.511V0.356Nb0.133)(C x N y ), whereas that for the single Nb-rich phase is (Ti0.061V0.263Nb0.676)(C x N y ). The calculation results based on the Scheil-Gulliver model in the Thermo-Calc software combining with the thermal stability experiments show that the large phases precipitate during the solidification process. With the development of solidification, the Ti-V-rich phase precipitates first and becomes homogeneous during the subsequent temperature reduction and heat treatment processes. The Nb-rich phase appears later.
NASA Astrophysics Data System (ADS)
Iatan, E. L.; Berbeleac, I.
2012-04-01
Bucium Rodu maar-diatreme and Frasin dome volcanic structures and related Au-Ag epithermal deposits are located in the northeastern part of the South Apuseni Mountains, and belong to Bucium-Rosia Montana-Baia de Aries metallogenic district, within so called "Golden Quadrilateral". The microthermometric measurements were carried out using double polished sections, on bipyramidal magmatic quartz phenocrysts and hydrothermal quartz phenocrysts. Depending on the clarity of the quartz, samples were polished down to 200 - 400 μm thick. A standard microscope for transmitted and reflected light was used for the sample petrography. Linkam THM SG600 heating-freezing stage, combined with a Nikon E 400 microscope and a Nikon DXM 1200F digital camera, were used to measure the fluid inclusions homogenization temperatures. The Frasin magmatic quartz phenocrysts, occurs as well-formed bipyramidal β -form quartz phenocrysts and contain apatite, zircon, melt inclusions and fluid inclusions. They reach up to 1 cm in diameter and their cracks are re-filled with carbonate, sericite and sulfides. The size of fluid inclusions ranges from very fine (2-3 μm) up to 25 μm. Primary and pseudosecondary fluid inclusions are not common, they occur in small groups with sizes ranging between 5-20 μm, having two phases: liquid and vapor. Based on the homogenization temperatures and phase proportions at room temperature, we could separate 2 types/fields of range for primary and pseudosecondary fluid inclusions as follows: 1. Liquid rich fluid inclusions (50-60 vol. % liquid) with Th=370-406°C and 2. Vapor rich fluid inclusions (10-30 vol. % liquid) with Th=420-519°C. All of the fluid inclusions homogenize by the disappearance of the vapor phase. Microthermometric data from hydrothermal quartz crystals were obtained from quartz phenocrysts of carbonate-quartz-base metal sulfides-gold veins of the dacite breccias. Primary fluid inclusions from hydrothermal quartz crystals have sizes up to 50 μm and comprise two phases: liquid and vapor. Liquid rich inclusions comprise 70% of fluid inclusion population and have the proportion of two liquid phase ranging between 60-90 vol. % liquid. Based on the homogenization temperatures and phase proportions at room temperature, we could separate 3 types/fields of range of hydrothermal fluid inclusions as follows: 1. Liquid rich fluid inclusions (80-90 vol. % liquid) with Th=234-293°C, 2. Liquid rich fluid inclusions (50-80 vol. % liquid) with Th=324-399°C; 3. Vapor rich inclusions (95-70 vol. % vapor) Th=424-497°C. Vapor rich inclusions comprise 30% of fluid inclusions population and have the proportion of vapor ranging between 95-70%. The microthermometric measurements showed high Th ranging between 424-497°C. The presence of high temperature fluids trapped in hydrothermal quartz that are not common with epithermal stage (<300°C) suggests the existence of a second vent of reheated fluids showing a polistadial activity in the region. Acknowledgements: This work was supported by the strategic grant POSDRU/89/1.5/S58852, Project "Postdoctoral program for training scientific researches" co-financed by the European Social Found within the Sectorial Operational Program Human Resources Development 2007-2013".
Aoubala, M; Holt, J; Clegg, R A; Rowlands, D J; Harris, M
2001-07-01
Hepatitis C virus (HCV) is an important cause of chronic liver disease, but the molecular mechanisms of viral pathogenesis remain to be established. The HCV non-structural protein NS3 complexes with NS4A and has three enzymatic activities: a proteinase and a helicase/NTPase. Recently, catalytically inactive NS3 fragments containing an arginine-rich motif have been reported to interact with, and inhibit, the catalytic subunit of cAMP-dependent protein kinase (PKA C-subunit). Here we demonstrate that full-length, catalytically active NS3/4A, purified from recombinant baculovirus-infected insect cells, is also able to inhibit PKA C-subunit in vitro. This inhibition was abrogated by mutation of either the arginine-rich motif or the conserved helicase motif II, both of which also abolished NTPase activity. As PKA C-subunit inhibition was also enhanced by poly(U) (an activator of NS3 NTPase activity), we hypothesized that PKA C-subunit inhibition could be due to NS3/4A-mediated ATP hydrolysis. This was confirmed by experiments in which a constant ATP concentration was maintained by addition of an ATP regeneration system--under these conditions PKA C-subunit inhibition was not observed. Interestingly, the mutations also abrogated the ability of wild-type NS3/4A to inhibit the PKA-regulated transcription factor CREB in transiently transfected hepatoma cells. Our data are thus not consistent with the previously proposed model in which the arginine-rich motif of NS3 was suggested to act as a pseudosubstrate inhibitor of PKA C-subunit. However, in vivo effects of NS3/4A suggest that ATPase activity may play a role in viral pathology in the infected liver.
The Ni-rich part of the Al–Ge–Ni phase diagram
Jandl, Isabella; Reichmann, Thomas L.; Richter, Klaus W.
2013-01-01
The Ni-rich part of the ternary system Al–Ge–Ni (xNi > 50 at.%) was investigated by means of optical microscopy, powder X-ray diffraction (XRD), differential thermal analysis (DTA) and scanning electron microscopy (SEM). The two isothermal sections at 550 °C and 700 °C were determined. Within these two sections a new ternary phase, designated as τ4, AlyGe9−yNi13±x (hP66, Ga3Ge6Ni13-type) was detected and investigated by single crystal X-ray diffraction. Another ternary low temperature phase, τ5, was found only in the isothermal section at 550 °C around the composition AlGeNi4. This compound was found to crystallise in the Co2Si type structure (oP12, Pnma). The structure was identified by Rietveld refinement of powder data. The NiAs type (B8) phase based on binary Ge3Ni5 revealed an extended solid solubility of Al and the two isotypic compounds AlNi3 and GeNi3 form a complete solid solution. Based on DTA results, six vertical sections at 55, 60, 70, 75 and 80 at.% Ni and at a constant Al:Ni ratio of 1:3 were constructed. Furthermore, the liquidus surface projection and the reaction scheme (Scheil diagram) were completed by combining our results with previous results from the Ni-poor part of the phase diagram. Six invariant ternary reactions were identified in the Ni-rich part of the system. PMID:27087754
Zhu, Jun; Cai, Bolei; Ma, Qin; Chen, Fulin; Wu, Wei
2013-10-01
Clinical application of platelet-rich plasma (PRP)-based injectable tissue engineering is limited by weak mechanical properties and a rapid fibrinolytic rate. We proposed a new strategy, a cell bricks-stabilized PRP injectable system, to engineer and regenerate cartilage with stable morphology and structure in vivo. Chondrocytes from the auricular cartilage of rabbits were isolated and cultured to form cell bricks (fragmented cell sheet) or cell expansions. Fifteen nude mice were divided evenly (n = 5) into cells-PRP (C-P), cell bricks-PRP (CB-P) and cell bricks-cells-PRP (CB-C-P) groups. Cells, cell bricks or a cell bricks/cells mixture were suspended in PRP and were injected subcutaneously in animals. After 8 weeks, all the constructs were replaced by white resilient tissue; however, specimens from the CB-P and CB-C-P groups were well maintained in shape, while the C-P group appeared distorted, with a compressed outline. Histologically, all groups presented lacuna-like structures, glycosaminoglycan-enriched matrices and positive immunostaining of collagen type II. Different from the uniform structure presented in CB-C-P samples, CB-P presented interrupted, island-like chondrogenesis and contracted structure; fibrous interruption was shown in the C-P group. The highest percentage of matrix was presented in CB-C-P samples. Collagen and sGAG quantification confirmed that the CB-C-P constructs had statistically higher amounts than the C-P and CB-P groups; statistical differences were also found among the groups in terms of biomechanical properties and gene expression. We concluded that cell bricks-enriched PRP gel sufficiently enhanced the morphological stability of the constructs, maintained chondrocyte phenotypes and favoured chondrogenesis in vivo, which suggests that such an injectable, completely biological system is a suitable cell carrier for cell-based cartilage repair. Copyright © 2012 John Wiley & Sons, Ltd.
Xie, Keliang; Wang, Weina; Chen, Hongguang; Han, Huanzhi; Liu, Daquan; Wang, Guolin; Yu, Yonghao
2015-07-01
Sepsis is the leading cause of death in critically ill patients. In recent years, molecular hydrogen, as an effective free radical scavenger, has been shown a selective antioxidant and anti-inflammatory effect, and it is beneficial in the treatment of sepsis. Rho-associated coiled-coil protein kinase (ROCK) participates in junction between normal cells, and regulates vascular endothelial permeability. In this study, we used lipopolysaccharide to stimulate vascular endothelial cells and explored the effects of hydrogen-rich medium on the regulation of adhesion of monocytes to endothelial cells and vascular endothelial permeability. We found that hydrogen-rich medium could inhibit adhesion of monocytes to endothelial cells and decrease levels of adhesion molecules, whereas the levels of transepithelial/endothelial electrical resistance values and the expression of vascular endothelial cadherin were increased after hydrogen-rich medium treatment. Moreover, hydrogen-rich medium could lessen the expression of ROCK, as a similar effect of its inhibitor Y-27632. In addition, hydrogen-rich medium could also inhibit adhesion of polymorphonuclear neutrophils to endothelial cells. In conclusion, hydrogen-rich medium could regulate adhesion of monocytes/polymorphonuclear neutrophils to endothelial cells and vascular endothelial permeability, and this effect might be related to the decreased expression of ROCK protein.
Drug and tobacco detection using neutron transmission/attenuation
NASA Astrophysics Data System (ADS)
Miller, Thomas G.
1994-10-01
A neutron transmission/attenuation spectrometer has been used to obtain the neutron attenuation signature of cocaine, heroin, hashish, methamphetamine, pipe tobacco and chewing tobacco. A pulsed `white neutron' source was created by bombarding a thick beryllium target with a 5 MeV pulsed deuteron beam. The neutron intensity was measured from about 0.75 MeV to about 4 MeV with the suitcase in and out of the neutron beam to determine the neutron attenuation. Experiments were performed for drugs and tobacco alone and when imbedded in an `average suitcase'. The experimentally determined neutron attenuation curves were used to determine the atomic ratios C/O, N/O, and H/C through the samples using measured neutron cross sections.
Wan, Rui; Wang, Zhao; Xie, Shuguang
2014-02-15
Autochthonous microbiota plays a crucial role in natural attenuation of s-triazine herbicides in agricultural soil. Soil microcosm study was carried out to investigate the shift in the structures of soil autochthonous microbial communities and the potential degraders associated with natural simazine attenuation. The relative abundance of soil autochthonous degraders and the structures of microbial communities were assessed using quantitative PCR (q-PCR) and terminal restriction fragment length polymorphism (TRFLP), respectively. Phylogenetic composition of bacterial community was also characterized using clone library analysis. Soil autochthonous microbiota could almost completely clean up simazine (100 mg kg(-1)) in 10 days after herbicide application, indicating a strong self-remediation potential of agricultural soil. A significant increase in the proportion of s-triazine-degrading atzC gene was found in 6 days after simazine amendment. Simazine application could alter the community structures of total bacteria and ammonia-oxidizing archaea (AOA) and bacteria (AOB). AOA were more responsive to simazine application compared to AOB and bacteria. Actinobacteria, Alphaproteobacteria and Gammaproteobacteria were the dominant bacterial groups either at the initial stage after simazine amendment or at the end stage of herbicide biodegradation, but Actinobacteria predominated at the middle stage of biodegradation. Microorganisms from several bacterial genera might be involved in simazine biodegradation. This work could add some new insights on the bioremediation of herbicides contaminated agricultural soils. Copyright © 2013 Elsevier B.V. All rights reserved.
Molecular equilibria and condensation sequences in carbon rich gases
NASA Technical Reports Server (NTRS)
Sharp, C. M.; Wasserburg, G. J.
1993-01-01
Chemical equilibria in stellar atmospheres have been investigated by many authors. Lattimer, Schramm, and Grossman presented calculations in both O rich and C rich environments and predicted possible presolar condensates. A recent paper by Cherchneff and Barker considered a C rich composition with PAH's included in the calculations. However, the condensation sequences of C bearing species have not been investigated in detail. In a carbon rich gas surrounding an AGB star, it is often assumed that graphite (or diamond) condenses out before TiC and SiC. However, Lattimer et al. found some conditions under which TiC condenses before graphite. We have performed molecular equilibrium calculations to establish the stability fields of C(s), TiC(s), and SiC(s) and other high temperature phases under conditions of different pressures and C/O. The preserved presolar interstellar dust grains so far discovered in meteorites are graphite, diamond, SiC, TiC, and possibly Al2O3.
Structure-activity relationships in beta-defensin peptides.
Taylor, Karen; Barran, Perdita E; Dorin, Julia R
2008-01-01
The beta-defensins comprise a large family of small cationic antimicrobial peptides widely distributed in plants, mammals and insects. These cysteine rich peptides display multifunctional properties with implications as potential therapeutic agents. Recent research has highlighted their role in both the innate and adaptive immune systems as well as being novel melanocortin ligands. Studies investigating structure and function provide an insight into the molecular basis of their immunological properties. (c) 2007 Wiley Periodicals, Inc.
Domeradzka, Natalia E; Werten, Marc W T; de Vries, Renko; de Wolf, Frits A
2016-06-10
Specific coupling of de novo designed recombinant protein polymers for the construction of precisely structured nanomaterials is of interest for applications in biomedicine, pharmaceutics and diagnostics. An attractive coupling strategy is to incorporate specifically interacting peptides into the genetic design of the protein polymers. An example of such interaction is the binding of particular proline-rich ligands by so-called WW-domains. In this study, we investigated whether these domains can be produced in the yeast Pichia pastoris as part of otherwise non-interacting protein polymers, and whether they bring about polymer coupling upon mixing. We constructed two variants of a highly hydrophilic protein-based polymer that differ only in their C-terminal extensions. One carries a C-terminal WW domain, and the other a C-terminal proline-rich ligand (PPxY). Both polymers were produced in P. pastoris with a purified protein yield of more than 2 g L(-1) of cell-free broth. The proline-rich module was found to be O-glycosylated, and uncommonly a large portion of the attached oligosaccharides was phosphorylated. Glycosylation was overcome by introducing a Ser → Ala mutation in the PPxY peptide. Tryptophan fluorescence monitored during titration of the polymer containing the WW domain with either the glycosylated or nonglycosylated PPxY-containing polymer revealed binding. The complementary polymers associated with a Kd of ~3 µM, regardless of glycosylation state of the PPxY domain. Binding was confirmed by isothermal titration calorimetry, with a Kd of ~9 µM. This article presents a blueprint for the production in P. pastoris of protein polymers that can be coupled using the noncovalent interaction between WW domains and proline-rich ligands. The availability of this highly specific coupling tool will hereafter allow us to construct various supramolecular structures and biomaterials.
Chang, M X; Nie, P; Xie, H X; Sun, B J; Gao, Q
2005-01-01
The cDNAs and genes of two different types of leucine-rich repeat-containing proteins from grass carp (Ctenopharyngodon idellus) were cloned. Homology search revealed that the two genes, designated as GC-GARP and GC-LRG, have 37% and 32% deduced amino-acid sequence similarities with human glycoprotein A repetitions predominant precursor (GARP) and leucine-rich alpha2-glycoprotein (LRG), respectively. The cDNAs of GC-GARP and GC-LRG encoded 664 and 339 amino acid residues, respectively. GC-GARP and GC-LRG contain many distinct structural and/or functional motifs of the leucine-rich repeat (LRR) subfamily, such as multiple conserved 11-residue segments with the consensus sequence LxxLxLxxN/CxL (x can be any amino acid). The genes GC-GARP and GC-LRG consist of two exons, with 4,782 bp and 2,119 bp in total length, respectively. The first exon of each gene contains a small 5'-untranslated region and partial open reading frame. The putative promoter region of GC-GARP was found to contain transcription factor binding sites for GATA-1, IRF4, Oct-1, IRF-7, IRF-1, AP1, GATA-box and NFAT, and the promoter region of GC-LRG for MYC-MAX, MEIS1, ISRE, IK3, HOXA9 and C/EBP alpha. Phylogenetic analysis showed that GC-GARP and mammalian GARPs were clustered into one branch, while GC-LRG and mammalian LRGs were in another branch. The GC-GARP gene was only detected in head kidney, and GC-LRG in the liver, spleen and heart in the copepod (Sinergasilus major)-infected grass carp, indicating the induction of gene expression by the parasite infection. The results obtained in the present study provide insight into the structure of fish LRR genes, and further study should be carried out to understand the importance of LRR proteins in host-pathogen interactions.
NASA Astrophysics Data System (ADS)
An, Lingling; Jing, Min; Xiao, Bo; Bai, Xiao-Yan; Zeng, Qing-Dao; Zhao, Ke-Qing
2016-09-01
Disk-like liquid crystals (DLCs) can self-assemble to ordered columnar mesophases and are intriguing one-dimensional organic semiconductors with high charge carrier mobility. To improve their applicable property of mesomorphic temperature ranges, we exploit the binary mixtures of electronic donor-acceptor DLC materials. The electron-rich 2,3,6,7,10,11-hexakis(alkoxy)triphenylenes (C4, C6, C8, C10, C12) and an electron-deficient tetrapentyl triphenylene-2,3,6,10-tetracarboxylate have been prepared and their binary mixtures have been investigated. The mesomorphism of the 1:1 (molar ratio) mixtures has been characterized by polarizing optical microscopy (POM), differential scanning calorimetry (DSC), and small angel x-ray scattering (SAXS). The self-assembled monolayer structure of a discogen on a solid-liquid interface has been imaged by the high resolution scanning tunneling microscopy (STM). The match of peripheral chain length has important influence on the mesomorphism of the binary mixtures. Project supported by the National Natural Science Foundation of China (Grant Nos. 51273133 and 51443004).
Performance characteristics of zinc-rich coatings applied to carbon steel
NASA Technical Reports Server (NTRS)
Paton, W. J.
1973-01-01
A program was conducted to evaluate the performance of topcoated and untopcoated zinc-rich coatings. Sacrificial coatings of this type are required for protecting carbon steel structures from the aggressive KSC sea coast environment. A total of 59 commercially available zinc-rich coatings and 47 topcoated materials were exposed for an 18-month period. Test panels were placed in special racks placed approximately 30.5 m (100 feet) above the high tide line at the KSC Corrosion Test Site. Laboratory tests to determine the temperature resistance, abrasion resistance, and adhesion of the untopcoated zinc-rich coatings were also performed. It has been concluded that: (1) The inorganic types of zinc-rich coatings are far superior to the organic types in the KSC environment. (2) Organic zinc-rich coatings applied at 0.1 - 0.15 mm (4-6 mils) film thickness provide better corrosion protection than when applied at the manufacturers' recommended nominal film thickness of .08 mm (3 mils). (3) Topcoats are not necessary, or even desirable, when used in conjunction with zinc-rich coatings in the KSC environment. (4) Some types of inorganic zinc-rich coatings require an extended outdoor weathering period in order to obtain adequate mechanical properties. and (5) A properly formulated inorganic zinc-rich coating is not affected by a 24-hour thermal exposure to 400 C (752 F).
NASA Astrophysics Data System (ADS)
Urai, Janos L.; Feenstra, Anne
2001-06-01
Metabauxite lenses embedded in marble on Naxos consist of diasporites below the 420°C isograd, and dehydrate into corundum-rich rocks with increasing grades of metamorphism. While the diasporites are essentially undeformed, the corundum-rich rocks are strongly deformed, even though both diasporites and corundum-rich rocks are much stronger than the surrounding intensely deformed marbles. The observed structures can be explained as an effect of high fluid pressures during the prograde diaspore-corundum dehydration reaction, which causes dramatic temporary weakening of the metabauxites (to a strength comparable to that of the surrounding deforming marbles). Deformation of the metabauxite is thus largely restricted to the time span the phase transformation occurred, allowing the dehydrating bauxite mass to deform together with the surrounding marbles.
Genèse d'un horizon tacheté par déferruginisation dans une couverture à latérite du Bassin amazonien
NASA Astrophysics Data System (ADS)
Rosolen, Vania; Lamotte, Mathieu; Boulet, René; Trichet, Jean; Rouer, Olivier; José Melfi, Adolpho
A mottled horizon in a laterite cover (without any duricrust) was studied by microscopy and quantitative chemical microanalysis. Apart from the voids, light red spots consisting of Fe-rich particles (≈2 μm) are set in clayey plasma. Dark red spots consisted of concentrations of Fe-rich particles. These patterns are inherited. On the border of structural or biological voids, where Fe-depletion features are systematic, gray or yellow spots result from dissolution of the Fe-rich particles and impregnation of the plasma by iron, respectively. The present Fe-depletion is the dominant process that explains the mottled differentiation and the absence of lateritic duricrust. To cite this article: V. Rosolen et al., C. R. Geoscience 334 (2002) 187-195.
The RICH detector of the CBM experiment
NASA Astrophysics Data System (ADS)
Adamczewski-Musch, J.; Akishin, P.; Becker, K.-H.; Belogurov, S.; Bendarouach, J.; Boldyreva, N.; Deveaux, C.; Dobyrn, V.; Dürr, M.; Eschke, J.; Förtsch, J.; Heep, J.; Höhne, C.; Kampert, K.-H.; Kochenda, L.; Kopfer, J.; Kravtsov, P.; Kres, I.; Lebedev, S.; Lebedeva, E.; Leonova, E.; Linev, S.; Mahmoud, T.; Michel, J.; Miftakhov, N.; Niebur, W.; Ovcharenko, E.; Patel, V.; Pauly, C.; Pfeifer, D.; Querchfeld, S.; Rautenberg, J.; Reinecke, S.; Riabov, Y.; Roshchin, E.; Samsonov, V.; Schetinin, V.; Tarasenkova, O.; Traxler, M.; Ugur, C.; Vznuzdaev, E.; Vznuzdaev, M.
2017-12-01
The CBM-RICH detector is designed to identify electrons with momenta up to 8 GeV/c and high purity as this is essential for the CBM physics program. The detector consist of a CO2-gaseous radiator, a spherical mirror system, and Multi-Anode PhotoMultiplier Tubes (MAPMT) of type H12700 from Hamamatsu as photon detectors. The detector concept was verified through R&D studies and a laterally scaled prototype. The results were summarized in a TDR, in which open issues were defined concerning the readout electronics, the shielding of the magnetic stray field in the MAPMT region, the radiation hardness of the MAPMT sensors, and the mechanical holding structure of the mirror system. In this article an overview is given on the CBM RICH development with focus on those open issues.
40 CFR 721.10023 - Benzenamine, N-phenyl-, ar ar′-(C9-rich C88-10-branched alkyl) derivs.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzenamine, N-phenyl-, ar arâ²-(C9... Significant New Uses for Specific Chemical Substances § 721.10023 Benzenamine, N-phenyl-, ar ar′-(C9-rich C88...) The chemical substance identified as benzenamine, N-phenyl-, ar,ar′-(C9-rich C8-10-branched alkyl...
(-) Epicatechin regulates blood lipids and attenuates hepatic steatosis in rats fed high fat diet
USDA-ARS?s Scientific Manuscript database
(-)-Epicatechin (EC) is a natural flavanol monomer found in cocoa, green tea and a variety of other plant foods. Recent studies have shown that EC and foods rich in EC exerted vascular protective effects. In this study, effects of EC on blood lipids and hepatic steatosis, and the underlying mechani...
USDA-ARS?s Scientific Manuscript database
Age-related increases in oxidative stress and inflammation are associated with loss of cognitive and motor functions. Previous research has shown that supplementation with berry fruits can modulate signaling in primary hippocampal neurons or BV-2 mouse microglial cells. Because of the high polypheno...
Thermal restraint of a bacterial exopolysaccharide of shallow vent origin.
Caccamo, Maria Teresa; Zammuto, Vincenzo; Gugliandolo, Concetta; Madeleine-Perdrillat, Claire; Spanò, Antonio; Magazù, Salvatore
2018-07-15
To dynamically characterize the thermal properties of the fructose-rich exopolysaccharide (EPS1-T14), produced by the marine thermophilic Bacillus licheniformis T14, the Attenuated Total Reflectance Fourier Transform Infra-Red spectroscopy was coupled to variable temperature ranging from ambient to 80°C. The spectra were analyzed by the following innovative mathematical tools: i) non-ideal spectral deviation, ii) OH-stretching band frequency center shift, iii) spectral distance, and iv) wavelet cross-correlation analysis. The thermal restraint analysis revealed that the whole EPS1-T14 system possessed high stability until 80°C, and suggested that fucose was mainly involved in the EPS1-T14 thermal stability, whereas glucose was responsible for its molecular flexibility. Our results provide novel insights into the thermal stability properties of the whole EPS1-T14 and into the role of its main monosaccharidic units. As a new biopolymer, the thermostable EPS1-T14 could be used in traditional biotechnology fields and in new biomedical areas, as nanocarriers, requiring high temperature processes. Copyright © 2018 Elsevier B.V. All rights reserved.
Role of mutations G-480 and C-6203 in the attenuation phenotype of Sabin type 1 poliovirus.
McGoldrick, A; Macadam, A J; Dunn, G; Rowe, A; Burlison, J; Minor, P D; Meredith, J; Evans, D J; Almond, J W
1995-12-01
Of the 55 point mutations which distinguish the type 1 poliovirus vaccine strain (Sabin 1) from its neurovirulent progenitor (P1/Mahoney), two have been strongly implicated by previous studies as determinants of the attenuation phenotype. A change of an A to a G at position 480, located within the 5' noncoding region, has been suggested to be the major attenuating mutation, analogous to the mutations at positions 481 and 472 in poliovirus types 2 and 3, respectively. In addition, the change of a U to a C at position 6203, resulting in an amino acid change in the polymerase protein 3D, has also been implicated as a determinant of attenuation, albeit to a lesser extent. To assess the contributions of these mutations to attenuation and temperature sensitivity, reciprocal changes were generated at these positions in infectious cDNA clones of Sabin 1 and P1/Mahoney. Assays in tissue culture and primates indicated that the two mutations make some contribution to the temperature sensitivity of the Sabin 1 strain but that neither is a strong determinant of attenuation.
NASA Astrophysics Data System (ADS)
Wen, Hongwei; Liu, Yue; Wang, Shengpei; Zhang, Jishui; Peng, Yun; He, Huiguang
2017-03-01
Tourette syndrome (TS) is a childhood-onset neurobehavioral disorder. At present, the topological disruptions of the whole brain white matter (WM) structural networks remain poorly understood in TS children. Considering the unique position of the topologically central role of densely interconnected brain hubs, namely the rich club regions, therefore, we aimed to investigate whether the rich club regions and their related connections would be particularly vulnerable in early TS children. In our study, we used diffusion tractography and graph theoretical analyses to explore the rich club structures in 44 TS children and 48 healthy children. The structural networks of TS children exhibited significantly increased normalized rich club coefficient, suggesting that TS is characterized by increased structural integrity of this centrally embedded rich club backbone, potentially resulting in increased global communication capacity. In addition, TS children showed a reorganization of rich club regions, as well as significantly increased density and decreased number in feeder connections. Furthermore, the increased rich club coefficients and feeder connections density of TS children were significantly positively correlated to tic severity, indicating that TS may be characterized by a selective alteration of the structural connectivity of the rich club regions, tending to have higher bridging with non-rich club regions, which may increase the integration among tic-related brain circuits with more excitability but less inhibition for information exchanges between highly centered brain regions and peripheral areas. In all, our results suggest the disrupted rich club organization in early TS children and provide structural insights into the brain networks.
Hou, Lin; Hou, Sijia
2017-01-01
Restoration of degraded forest ecosystem is crucial for regional sustainable development. To protect the country's fragile and fragmented environment, the Chinese government initiated an ecological engineering project, the Natural Forest Protection Program, in seventeen provinces in China beginning in 1998. Fully hillside-closed forest protection (vegetation restoration naturally without any artificial disturbance) was one of vital measures of the Natural Forest Protection Program applied nation wide. Whether plant diversity, biomass and age structure of dominant tree species and soil nutrients in protected stands may become better with increase of protected period are still open problems. We investigated community diversity, biomass of dominant tree species, age structures, and analyzed soil chemical properties of a Pinus tabulaeformis population at protected sites representing different protected ages at Huanglongshan Forest Bureau on the Loess Plateau, Shaanxi, China. Plant species richness of Pinus tabulaeformis community was significantly affected ( p < 0.05) by forest protection and the effect attenuated with protection age. Shannon evenness index of plant species generally increased with protection age. Stands protected for 45 years had the highest tree biomass and considerable natural regeneration capacity. Contents of organic carbon, available phosphorus and available potassium in top soil increased in protected stands less than 45 years, however decreased significantly thereafter. Long-term forest protection also decreased the content of mineral nitrogen in top soil. We found that the richness of shrubs and herbs was significantly affected by forest protection, and evenness indices of tree, shrub and herb increased inconsistently with protected ages. Forest protection created more complex age structures and tree densities with increasing age of protection. Content of soil mineral nitrogen at 0-20 cm soil depth showed a decreasing trend in stands of up to 30 years. Soil available phosphorus and potassium contents were higher in stands with greater proportions of big and medium trees. Long-term protection (>45 years) of Pinus tabulaeformis stands in southeast Loess Plateau, China, may be associated with decreasing plant species richness, proportion of medium to large trees, dominant biomass of Pinus tabulaeformis and soil nutrients.
Nutritional leucine supplementation attenuates cardiac failure in tumour-bearing cachectic animals.
Toneto, Aline Tatiane; Ferreira Ramos, Luiz Alberto; Salomão, Emilianne Miguel; Tomasin, Rebeka; Aereas, Miguel Arcanjo; Gomes-Marcondes, Maria Cristina Cintra
2016-12-01
The condition known as cachexia presents in most patients with malignant tumours, leading to a poor quality of life and premature death. Although the cancer-cachexia state primarily affects skeletal muscle, possible damage in the cardiac muscle remains to be better characterized and elucidated. Leucine, which is a branched chain amino acid, is very useful for preserving lean body mass. Thus, this amino acid has been studied as a coadjuvant therapy in cachectic cancer patients, but whether this treatment attenuates the effects of cachexia and improves cardiac function remains poorly understood. Therefore, using an experimental cancer-cachexia model, we evaluated whether leucine supplementation ameliorates cachexia in the heart. Male Wistar rats were fed either a leucine-rich or a normoprotein diet and implanted or not with subcutaneous Walker-256 carcinoma. During the cachectic stage (approximately 21 days after tumour implantation), when the tumour mass was greater than 10% of body weight, the rats were subjected to an electrocardiogram analysis to evaluate the heart rate, QT-c, and T wave amplitude. The myocardial tissues were assayed for proteolytic enzymes (chymotrypsin, alkaline phosphatase, cathepsin, and calpain), cardiomyopathy biomarkers (myeloperoxidase, tissue inhibitor of metalloproteinases, and total plasminogen activator inhibitor 1), and caspase-8, -9, -3, and -7 activity. Both groups of tumour-bearing rats, especially the untreated group, had electrocardiography alterations that were suggestive of ischemia, dilated cardiomyopathy, and sudden death risk. Additionally, the rats in the untreated tumour-bearing group but not their leucine-supplemented littermates exhibited remarkable increases in chymotrypsin activity and all three heart failure biomarkers analysed, including an increase in caspase-3 and -7 activity. Our data suggest that a leucine-rich diet could modulate heart damage, cardiomyocyte proteolysis, and apoptosis driven by cancer-cachexia. Further studies must be conducted to elucidate leucine's mechanisms of action, which potentially includes the modulation of the heart's inflammatory process.
Cocoa antioxidants and cardiovascular health.
Keen, Carl L; Holt, Roberta R; Oteiza, Patricia I; Fraga, César G; Schmitz, Harold H
2005-01-01
An increasing body of epidemiologic evidence supports the concept that diets rich in fruits and vegetables can promote health and attenuate, or delay, the onset of various diseases. Epidemiologic data support the idea that these health benefits are causally linked to the consumption of certain flavonoids present in fruit and vegetables. In the context of cardiovascular health, a particular group of flavonoids, namely, the flavan-3-ols (flavanols), has received attention. Flavanol-rich, plant-derived foods and beverages include wine, tea, and various fruits and berries, as well as cocoa and cocoa products. Numerous dietary intervention studies in humans and animals indicate that flavanol-rich foods and beverages might exert cardioprotective effects with respect to vascular function and platelet reactivity. This review discusses the bioactivity of flavanols in the context of cardiovascular health, with respect to their bioavailability, their antioxidant properties, and their vascular effects.
NASA Astrophysics Data System (ADS)
Zubkova, N. V.; Chukanov, N. V.; Pekov, I. V.; Schäfer, C.; Yapaskurt, V. O.; Pushcharovsky, D. Yu.
2015-09-01
Structure (R=0.0213) of lanthanum-rich fluorbritholite (Ce) [(Ce2.47La2.31Nd0.22Pr0.13Y0.07)5.20Ca4.20Th0.27Mn0.19Sr0.09]9.95(Si5.37P0.63)6O24.16F1.95 from sanidinite in Laacher See, Eifel, Germany was studied on a monocrystal. The structure [space group P63/m, a = 9.58949 (13), c = 7.0289 (11) Å, V = 559.770 (14)Å3] is identical to structures of members of apatite supergroup. Relationships of major cations in polyhedra M(1)O9 = (Ca0.6 REE 0.4), and in polyhedral M(2)O6F = ( REE 0.7Ca0.3). Substantial structural order M(1) and M(2) is defined, simplified structural formula: (Ca, LREE)2( LREE,Ca)3(SiO4)3F. Analysis of data on crystal chemistry of britholite was carried out. It was demonstrated that distribution of cations on M(1)and M(2)-positions is always characteristic of partial structural order. Clear tendency of LREE concentration in M(2) position was noted.
Gao, Yong-Guang; Yan, Xian-Zhong; Song, Ai-Xin; Chang, Yong-Gang; Gao, Xue-Chao; Jiang, Nan; Zhang, Qi; Hu, Hong-Yu
2006-12-01
The interactions of huntingtin (Htt) with the SH3 domain- or WW domain-containing proteins have been implicated in the pathogenesis of Huntington's disease (HD). We report the specific interactions of Htt proline-rich region (PRR) with the SH3GL3-SH3 domain and HYPA-WW1-2 domain pair by NMR. The results show that Htt PRR binds with the SH3 domain through nearly its entire chain, and that the binding region on the domain includes the canonical PxxP-binding site and the specificity pocket. The C terminus of PRR orients to the specificity pocket, whereas the N terminus orients to the PxxP-binding site. Htt PRR can also specifically bind to WW1-2; the N-terminal portion preferentially binds to WW1, while the C-terminal portion binds to WW2. This study provides structural insights into the specific interactions between Htt PRR and its binding partners as well as the alteration of these interactions that involve PRR, which may have implications for the understanding of HD.
Ryden, P; Selvendran, R R
1990-01-01
1. Polymers were solubilized from the cell walls of parenchyma from mature runner-bean pods with minimum degradation by successive extractions with cyclohexane-trans-1,2-diamine-NNN'N'-tetra-acetate (CDTA), Na2CO3 and KOH to leave the alpha-cellulose residue, which contained cross-linked pectic polysaccharides and Hyp-rich glycoproteins. These were solubilized with chlorite/acetic acid and cellulase. The polymers were fractionated by anion-exchange chromatography, and fractions were subjected to methylation analysis. 2. The pectic polysaccharides differed in their ease of extraction, and a small proportion were highly cross-linked. The bulk of the pectic polysaccharides solubilized by CDTA and Na2CO3 were less branched than those solubilized by KOH. There was good evidence that most of the pectic polysaccharides were not degraded during extraction. 3. The protein-containing fractions included Hyp-rich and Hyp-poor glycoproteins associated with easily extractable pectic polysaccharides, Hyp-rich glycoproteins solubilized with 4M-KOH+borate, the bulk of which were not associated with pectic polysaccharides, and highly cross-linked Hyp-rich glycoproteins. 4. Isodityrosine was not detected, suggesting that it does not have a (major) cross-linking role in these walls. Instead, it is suggested that phenolics, presumably linked to C-5 of 3,5-linked Araf residues of Hyp-rich glycoproteins, serve to cross-link some of the polymers. 5. There were two main types of xyloglucan, with different degrees of branching. The bulk of the less branched xyloglucans were solubilized by more-concentrated alkali. The anomeric configurations of the sugars in one of the highly branched xyloglucans were determined by 13C-n.m.r. spectroscopy. 6. The structural features of the cell-wall polymers and complexes are discussed in relation to the structure of the cell walls of parenchyma tissues. PMID:2167068
Hemalatha, K; Jayakumar, M; Prakash, A S
2018-01-23
The resurgence of sodium-ion batteries in recent years is due to their potential ability to form intercalation compounds possessing a high specific capacity and energy density comparable to existing lithium systems. To comprehend the role of cobalt substitution in the structure and electrochemical performance of Na 0.67 MnO 2 , the solid solutions of P2-Na 0.67 Mn x Co 1-x O 2 (x = 0.25, 0.5, 0.75) are synthesized and characterized. The XRD-Rietveld analysis revealed that the Co-substitution in Na 0.67 MnO 2 decreases lattice parameters 'a' and 'c' resulting in the contraction of MO 6 octahedra and the enlargement of inter-layer 'd' spacing. XPS indicates that the isovalent cobalt substitution in Na 0.67 MnO 2 results in the partial/complete replacement of Jahn-Teller active trivalent manganese to form low-spin complexes of better structural stability. The Na-ion diffusion coefficient, D Na + , derived from cyclic voltammetry and impedance spectroscopy, confirmed the enhanced mass transport in Co-rich phases compared to Mn-rich phases. Furthermore, higher diffusion coefficient values are observed for Co 3+ /Co 4+ than for their Mn 3+ /Mn 4+ redox processes. In addition, Co-rich phases exhibit a high structural stability and superior capacity retention, whereas Mn-rich phases discharge higher capacities.
NASA Astrophysics Data System (ADS)
Wang, Gang; Wang, Jianwei; Chen, Shengbing; Wen, Jihong
2011-12-01
Periodic arrays of piezoelectric patches connected by enhanced resonant shunting circuits are attached to a slender beam to control the propagation of vibration. Numerical models based on the transfer matrix methodology are constructed to predict the band structure, attenuation factors and the transmission of vibration in the proposed smart structure. The vibration attenuations of the proposed smart structure and that with the passive resonant shunting circuits are compared in order to verify the efficiency of the enhanced resonant shunting circuits. Vibration experiments are conducted in order to validate the theoretical predictions. The specimen with a combination of different types of resonant shunting circuits is also studied in order to gain wider attenuation frequency ranges.
Impact of drying on pore structures in ettringite-rich cements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galan, I., E-mail: isabelgalan@abdn.ac.uk; Beltagui, H.; García-Maté, M.
Drying techniques affect the properties of cement pastes to varying extents. The effect of different drying techniques on calcium sulfoaluminate-based (C$A) cements and their constituent phases is reported for a range of simulated and commercial C$A pastes which are benchmarked against an OPC paste. The recommended methodologies used to dry samples were identified from the literature and include D-drying and solvent exchange. These methods were used in conjunction with mercury intrusion porosimetry (MIP) and X-ray powder diffraction (XRPD) measurements to assess the changes in pore structure and the damage to crystalline phases, respectively. D-drying and isopropanol exchange are the mostmore » satisfactory and least damaging methods for drying C$A based pastes.« less
Solid-State NMR Studies Reveal Native-like β-Sheet Structures in Transthyretin Amyloid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Kwang Hun; Dasari, Anvesh K. R.; Hung, Ivan
Structural characterization of amyloid rich in cross-β structures is crucial for unraveling the molecular basis of protein misfolding and amyloid formation associated with a wide range of human disorders. Elucidation of the β-sheet structure in noncrystalline amyloid has, however, remained an enormous challenge. Here we report structural analyses of the β-sheet structure in a full-length transthyretin amyloid using solid-state NMR spectroscopy. Magic-angle-spinning (MAS) solid-state NMR was employed to investigate native-like β-sheet structures in the amyloid state using selective labeling schemes for more efficient solid-state NMR studies. Analyses of extensive long-range 13 C- 13 C correlation MAS spectra obtained with selectivelymore » 13 CO- and 13 Cα-labeled TTR reveal that the two main β-structures in the native state, the CBEF and DAGH β-sheets, remain intact after amyloid formation. The tertiary structural information would be of great use for examining the quaternary structure of TTR amyloid.« less
Solid-State NMR Studies Reveal Native-like β-Sheet Structures in Transthyretin Amyloid
Lim, Kwang Hun; Dasari, Anvesh K. R.; Hung, Ivan; ...
2016-09-02
Structural characterization of amyloid rich in cross-β structures is crucial for unraveling the molecular basis of protein misfolding and amyloid formation associated with a wide range of human disorders. Elucidation of the β-sheet structure in noncrystalline amyloid has, however, remained an enormous challenge. Here we report structural analyses of the β-sheet structure in a full-length transthyretin amyloid using solid-state NMR spectroscopy. Magic-angle-spinning (MAS) solid-state NMR was employed to investigate native-like β-sheet structures in the amyloid state using selective labeling schemes for more efficient solid-state NMR studies. Analyses of extensive long-range 13 C- 13 C correlation MAS spectra obtained with selectivelymore » 13 CO- and 13 Cα-labeled TTR reveal that the two main β-structures in the native state, the CBEF and DAGH β-sheets, remain intact after amyloid formation. The tertiary structural information would be of great use for examining the quaternary structure of TTR amyloid.« less
NASA Astrophysics Data System (ADS)
Wu, Ifong; Ishigami, Shinobu; Gotoh, Kaoru; Matsumoto, Yasushi
The attenuation effect of the walls of a building on the electromagnetic (EM) field generated by an indoor power line communication (PLC) system is numerically investigated using the finite integration (FI) method. In particular, we focus on the frequency range 2-6MHz, for which the attenuation effect has not yet been sufficiently analyzed. We model a single, finite-sized wall instead of an entire house, to focus on the dependence of the EM field on the wall structure and also reduce the computational resources required. The EM field strength is evaluated at many points on a view plane 10m from the wall model, and the results are statistically processed to determine the attenuation effect of the wall. We show that the leakage of an EM field at 2-6MHz is suppressed by about 30dB by a reinforced concrete wall. We also show that the main contributor to the attenuation effect is the rebar in the wall. We then investigate the relation between the attenuation effect of a single-wall model and that of a house model. The results show that the attenuation effect of a house model is almost the same as that of a 15-m-wall model. We conclude that the use of a single-wall model instead of a house model is effective in determining the attenuation of the EM leakage. This simple structure reduces analytic space, time, and memory in the evaluation of the dependence on the wall structure of the EM leakage from indoor PLC systems.
Ulu, Arzu; Harris, Todd R; Morisseau, Christophe; Miyabe, Christina; Inoue, Hiromi; Schuster, Gertrud; Dong, Hua; Iosif, Ana-Maria; Liu, Jun-Yan; Weiss, Robert H; Chiamvimonvat, Nipavan; Imig, John D; Hammock, Bruce D
2013-01-01
The mechanisms underlying the anti-inflammatory and anti-hypertensive effects of long chain ω-3 polyunsaturated fatty acids (PUFAs) are still unclear. The epoxides of an ω-6 fatty acid, arachidonic acid (epoxyeicosatrienoic acids; EETs) also exhibit anti-hypertensive and anti-inflammatory effects. Thus, we hypothesized that the major ω-3 PUFAs including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) may lower blood pressure and attenuate renal markers of inflammation through their epoxide metabolites. Here, we supplemented mice with an ω-3 rich diet for three weeks in a murine model of angiotensin-II dependent hypertension. Also, since EPA and DHA epoxides are metabolized by soluble epoxide hydrolase (sEH), we tested the combination of a sEH inhibitor and the ω-3 rich diet. Our results show that ω-3 rich diet in combination with the sEH inhibitor lowered Ang-II increased blood pressure, further increased renal levels of EPA and DHA epoxides, reduced renal markers of inflammation (i.e. prostaglandins and MCP-1), down-regulated an epithelial sodium channel and up-regulated Angiotensin converting enzyme-2 message (ACE-2) and significantly modulated cyclooxygenase and lipoxygenase metabolic pathways. Overall, our findings suggest that epoxides of the ω-3 PUFAs contribute to lowering SBP and attenuating inflammation in part by reduced prostaglandins and MCP-1 and by up-regulation of ACE-2 in angiotensin-II dependent hypertension. PMID:23676336
Lifetime measurement of neutron-rich even-even molybdenum isotopes
NASA Astrophysics Data System (ADS)
Ralet, D.; Pietri, S.; Rodríguez, T.; Alaqeel, M.; Alexander, T.; Alkhomashi, N.; Ameil, F.; Arici, T.; Ataç, A.; Avigo, R.; Bäck, T.; Bazzacco, D.; Birkenbach, B.; Boutachkov, P.; Bruyneel, B.; Bruce, A. M.; Camera, F.; Cederwall, B.; Ceruti, S.; Clément, E.; Cortés, M. L.; Curien, D.; De Angelis, G.; Désesquelles, P.; Dewald, M.; Didierjean, F.; Domingo-Pardo, C.; Doncel, M.; Duchêne, G.; Eberth, J.; Gadea, A.; Gerl, J.; Ghazi Moradi, F.; Geissel, H.; Goigoux, T.; Goel, N.; Golubev, P.; González, V.; Górska, M.; Gottardo, A.; Gregor, E.; Guastalla, G.; Givechev, A.; Habermann, T.; Hackstein, M.; Harkness-Brennan, L.; Henning, G.; Hess, H.; Hüyük, T.; Jolie, J.; Judson, D. S.; Jungclaus, A.; Knoebel, R.; Kojouharov, I.; Korichi, A.; Korten, W.; Kurz, N.; Labiche, M.; Lalović, N.; Louchart-Henning, C.; Mengoni, D.; Merchán, E.; Million, B.; Morales, A. I.; Napoli, D.; Naqvi, F.; Nyberg, J.; Pietralla, N.; Podolyák, Zs.; Pullia, A.; Prochazka, A.; Quintana, B.; Rainovski, G.; Reese, M.; Recchia, F.; Reiter, P.; Rudolph, D.; Salsac, M. D.; Sanchis, E.; Sarmiento, L. G.; Schaffner, H.; Scheidenberger, C.; Sengele, L.; Singh, B. S. Nara; Singh, P. P.; Stahl, C.; Stezowski, O.; Thoele, P.; Valiente Dobon, J. J.; Weick, H.; Wendt, A.; Wieland, O.; Winfield, J. S.; Wollersheim, H. J.; Zielinska, M.; PreSPEC Collaboration
2017-03-01
Background: In the neutron-rich A ≈100 mass region, rapid shape changes as a function of nucleon number as well as coexistence of prolate, oblate, and triaxial shapes are predicted by various theoretical models. Lifetime measurements of excited levels in the molybdenum isotopes allow the determination of transitional quadrupole moments, which in turn provides structural information regarding the predicted shape change. Purpose: The present paper reports on the experimental setup, the method that allowed one to measure the lifetimes of excited states in even-even molybdenum isotopes from mass A =100 up to mass A =108 , and the results that were obtained. Method: The isotopes of interest were populated by secondary knock-out reaction of neutron-rich nuclei separated and identified by the GSI fragment separator at relativistic beam energies and detected by the sensitive PreSPEC-AGATA experimental setup. The latter included the Lund-York-Cologne calorimeter for identification, tracking, and velocity measurement of ejectiles, and AGATA, an array of position sensitive segmented HPGe detectors, used to determine the interaction positions of the γ ray enabling a precise Doppler correction. The lifetimes were determined with a relativistic version of the Doppler-shift-attenuation method using the systematic shift of the energy after Doppler correction of a γ -ray transition with a known energy. This relativistic Doppler-shift-attenuation method allowed the determination of mean lifetimes from 2 to 250 ps. Results: Even-even molybdenum isotopes from mass A =100 to A =108 were studied. The decays of the low-lying states in the ground-state band were observed. In particular, two mean lifetimes were measured for the first time: τ =29 .7-9.1+11.3 ps for the 4+ state of 108Mo and τ =3 .2-0.7+0.7 ps for the 6+ state of 102Mo. Conclusions: The reduced transition strengths B (E 2 ) , calculated from lifetimes measured in this experiment, compared to beyond-mean-field calculations, indicate a gradual shape transition in the chain of molybdenum isotopes when going from A =100 to A =108 with a maximum reached at N =64 . The transition probabilities decrease for 108Mo which may be related to its well-pronounced triaxial shape indicated by the calculations.
Regnery, J; Wing, A D; Alidina, M; Drewes, J E
2015-08-01
This study developed relationships between the attenuation of emerging trace organic chemicals (TOrC) during managed aquifer recharge (MAR) as a function of retention time, system characteristics, and operating conditions using controlled laboratory-scale soil column experiments simulating MAR. The results revealed that MAR performance in terms of TOrC attenuation is primarily determined by key environmental parameters (i.e., redox, primary substrate). Soil columns with suboxic and anoxic conditions performed poorly (i.e., less than 30% attenuation of moderately degradable TOrC) in comparison to oxic conditions (on average between 70-100% attenuation for the same compounds) within a residence time of three days. Given this dependency on redox conditions, it was investigated if key parameter-dependent rate constants are more suitable for contaminant transport modeling to properly capture the dynamic TOrC attenuation under field-scale conditions. Laboratory-derived first-order removal kinetics were determined for 19 TOrC under three different redox conditions and rate constants were applied to MAR field data. Our findings suggest that simplified first-order rate constants will most likely not provide any meaningful results if the target compounds exhibit redox dependent biotransformation behavior or if the intention is to exactly capture the decline in concentration over time and distance at field-scale MAR. However, if the intention is to calculate the percent removal after an extended time period and subsurface travel distance, simplified first-order rate constants seem to be sufficient to provide a first estimate on TOrC attenuation during MAR. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Joshi, A.; LAL, S.
2017-12-01
Attenuation property of the medium determines the amplitude of seismic waves at different locations during an earthquake. Attenuation can be defined by the inverse of the parameter known as quality factor `Q' (Knopoff, 1964). It has been observed that the peak ground acceleration in the strong motion accelerogram is associated with arrival of S-waves which is controlled mainly by the shear wave attenuation characteristics of the medium. In the present work attenuation structure is obtained using the modified inversion algorithm given by Joshi et al. (2010). The modified inversion algorithm is designed to provide three dimensional attenuation structure of the region at different frequencies. A strong motion network is installed in the Kumaon Himalaya by the Department of Earth Sciences, Indian Institute of Technology Roorkee under a major research project sponsored by the Ministry of Earth Sciences, Government of India. In this work the detailed three dimensional shear wave quality factor has been determined for the Kumaon Himalaya using strong motion data obtained from this network. In the present work 164 records from 26 events recorded at 15 stations located in an area of 129 km x 62 km has been used. The shear wave attenuation structure for the Kumaon Himalaya has been calculated by dividing the study region into 108 three dimensional rectangular blocks of size 22 km x 11 km x 5 km. The input to the inversion algorithm is the acceleration spectra of S wave identified from each record. A total of 164 spectra from equal number of accelerograms with sampling frequency of .024 Hz is used as an input to the algorithms. A total of 2048 three dimensional attenuation structure is obtained upto frequency of 50 Hz. The obtained structure at various frequencies is compared with the existing geological models in the region and it is seen that the obtained model correlated well with the geological model of the region. References: Joshi, A., Mohanty, M., Bansal, A. R., Dimri, V. P. and Chadha, R. K., 2010, Use of spectral acceleration data for determination of three dimensional attenuation structure in the Pithoragarh region of Kumaon Himalaya, J Seismol., 14, 247-272. Knopoff, L., 1964, Q, Reviews of Geophysics, 2, 625-660.
NASA Astrophysics Data System (ADS)
Li, Yifeng; Wang, Jianqiu; Han, En-Hou; Yang, Chengdong
2018-01-01
Cr-rich inclusions were discovered in 152 cladding at the inner wall of domestic dissimilar metal weld joint, and their morphologies, microstructures, mechanical properties and corrosion behaviors were systematically characterized by SEM, TEM, nanoindentation and FIB. The results indicate that the Cr-rich inclusions originate from large-size Cr particles in 152 welding electrode flux, and they are 50-150 μm in size in most cases, and there is a continuous transition zone of 2-5 μm in width between the Cr inclusion core and 152 cladding matrix, and the transition zone consists of Ni & Fe-rich dendritic austenite and Cr23C6 and Cr matrix. The transition zone has the highest nanoindentation hardness (7.66 GPa), which is much harder than the inclusion core (5.14 GPa) and 152 cladding (3.71 GPa). In-situ microscopic tensile tests show that cracks initialize preferentially in transition zone, and then propagate into the inclusion core, and creep further into 152 cladding after penetrating the core area. The inclusion core and its transition zone both share similar oxide film structure with nickel-base 152 cladding matrix in simulated primary water, while those two parts present better general corrosion resistance than 152 cladding matrix due to higher Cr concentration.
Schilter, David; Rauchfuss, Thomas B.; Stein, Matthias
2012-01-01
A series of mixed-valence iron-nickel dithiolates is described that exhibits structures similar to those of mixed-valence diiron dithiolates. Interaction of tricarbonyl salt [(dppe)Ni(pdt)Fe(CO)3]BF4 ([1]BF4, dppe = Ph2PCH2CH2PPh2, pdtH2 = HSCH2CH2CH2SH) with P-donor ligands (L) afforded the substituted derivatives [(dppe)Ni(pdt)Fe(CO)2L]BF4 incorporating L = PHCy2 ([1a]BF4), PPh(NEt2)2 ([1b]BF4), P(NMe2)3 ([1c]BF4), P(i-Pr)3 ([1d]BF4) and PCy3 ([1e]BF4). The related precursor [(dcpe)Ni(pdt)Fe(CO)3]BF4 ([2]BF4, dcpe = Cy2PCH2CH2PCy2) gave the more electron-rich family of compounds [(dcpe)Ni(pdt)Fe(CO)2L]BF4 for L = PPh2(2-pyridyl) ([2a]BF4), PPh3 ([2b]BF4) and PCy3 ([2c]BF4). For bulky and strongly basic monophosphorus ligands, the salts feature distorted Fe coordination geometries: crystallographic analyses of [1e]BF4 and [2c]BF4 showed they adopt ‘rotated’ Fe(I) centers, in which PCy3 occupies a basal site and one CO ligand partially bridges the Ni and Fe centers. Like the undistorted mixed-valence derivatives, the new class of complexes are described as Ni(II)Fe(I) (S = ½) systems according to EPR spectroscopy, although with attenuated 31P hyperfine interactions. DFT calculations using the BP86, B3LYP, and PBE0 exchange-correlation functionals agree with the structural and spectroscopic data, suggesting that the spin for [1e]+ is localized in a Fe(I)-centered d(z2) orbital, orthogonal to the Fe-P bond. The PCy3 complexes, rare examples of species featuring ‘rotated’ Fe centers, both structurally and spectroscopically resemble mixed-valence diiron dithiolates. Also reproducing the NiS2Fe core of the [NiFe]-H2ase active site, the hybrid models incorporate key features of the two major classes of H2ase. Furthermore, cyclic voltammetry experiments suggest that the highly basic phosphine ligands enable a second oxidation corresponding to the couple [(dxpe)Ni(pdt)Fe(CO)2L]+/2+. The resulting unsaturated 32e− dications represent the closest approach to modeling the highly electrophilic Ni-SIa state. In the case of L = PPh2(2-pyridyl) chelation of this ligand accompanies the second oxidation. PMID:22838645
2012-01-01
Background A cholesterol-palmitoyl interaction has been reported to occur in the dimeric interface of the β2-adrenergic receptor crystal structure. We sought to investigate whether a similar phenomenon could be observed with μ-opioid receptor (OPRM1), and if so, to assess the role of cholesterol in this class of G protein-coupled receptor (GPCR) signaling. Results C3.55(170) was determined to be the palmitoylation site of OPRM1. Mutation of this Cys to Ala did not affect the binding of agonists, but attenuated receptor signaling and decreased cholesterol associated with the receptor signaling complex. In addition, both attenuation of receptor palmitoylation (by mutation of C3.55[170] to Ala) and inhibition of cholesterol synthesis (by treating the cells with simvastatin, a HMG-CoA reductase inhibitor) impaired receptor signaling, possibly by decreasing receptor homodimerization and Gαi2 coupling; this was demonstrated by co-immunoprecipitation, immunofluorescence colocalization and fluorescence resonance energy transfer (FRET) analyses. A computational model of the OPRM1 homodimer structure indicated that a specific cholesterol-palmitoyl interaction can facilitate OPRM1 homodimerization at the TMH4-TMH4 interface. Conclusions We demonstrate that C3.55(170) is the palmitoylation site of OPRM1 and identify a cholesterol-palmitoyl interaction in the OPRM1 complex. Our findings suggest that this interaction contributes to OPRM1 signaling by facilitating receptor homodimerization and G protein coupling. This conclusion is supported by computational modeling of the OPRM1 homodimer. PMID:22429589
NASA Astrophysics Data System (ADS)
Lin, Xinyu; Guo, Weiming; Zhang, Tianhe; Huang, Jingru; Tong, Yi; Zhang, Tonglai
2017-08-01
Two nitrogen-rich energetic salts (NH4)2(bto) (1) and (NH3OH)2(bto)·H2O (2) [H2bto = Bis (1H-tetrazol-5-yl) methanone oxime] were synthesized by an improved method in which water was used as solvent. These compounds were characterized by FT-IR spectroscopy, elemental analysis and single crystal X-ray diffraction. Their crystal structures were confirmed to belong to monoclinic system with space group P21 for 1 and Pc for 2, respectively. The detailed thermal behaviours were investigated by using differential scanning calorimetry (DSC) and thermogravimetric method (TG) (decomposition temperature >250 °C). The enthalpies of formation were calculated through the experimental values of combustion enthalpy. In addition, the sensitivities toward impact and friction were tested with standard methods, and those results indicated that two compounds are all insensitive (impact >40 J and friction >360 N). In short, both of the compounds show potential usages as energetic materials. The improved process opens a door for exploring nitrogen-rich salts based on Bis (1H-tetrazol-5-yl) methanone oxime.
de Araujo, Gabriel L. B.; Benmore, Chris J.; Byrn, Stephen R.
2017-04-11
For many years, the idea of analyzing atom-atom contacts in amorphous drug-polymer systems has been of major interest, because this method has always had the potential to differentiate between amorphous systems with domains and amorphous systems which are molecular mixtures. In this study, local structure of ionic and noninonic interactions were studied by High-Energy X-ray Diffraction and Pair Distribution Function (PDF) analysis in amorphous solid dispersions of lapatinib in hypromellose phthalate (HPMCP) and hypromellose (HPMC-E3). The strategy of extracting lapatinib intermolecular drug interactions from the total PDF x-ray pattern was successfully applied allowing the detection of distinct nearest neighbor contactsmore » for the HPMC-E3 rich preparations showing that lapatinib molecules do not cluster in the same way as observed in HPMC-P, where ionic interactions are present. Orientational correlations up to nearest neighbor molecules at about 4.3 Å were observed for polymer rich samples; both observations showed strong correlation to the stability of the systems. Lasty, the superior physical stability of 1:3 LP:HPMCP was consistent with the absence of significant intermolecular interactions in (ΔD inter LP(r)) in the range of 3.0 to 6.0 Å, which are attributed to C-C, C-N and C-O nearest neighbor contacts present in drug-drug interactions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Araujo, Gabriel L. B.; Benmore, Chris J.; Byrn, Stephen R.
For many years, the idea of analyzing atom-atom contacts in amorphous drug-polymer systems has been of major interest, because this method has always had the potential to differentiate between amorphous systems with domains and amorphous systems which are molecular mixtures. In this study, local structure of ionic and noninonic interactions were studied by High-Energy X-ray Diffraction and Pair Distribution Function (PDF) analysis in amorphous solid dispersions of lapatinib in hypromellose phthalate (HPMCP) and hypromellose (HPMC-E3). The strategy of extracting lapatinib intermolecular drug interactions from the total PDF x-ray pattern was successfully applied allowing the detection of distinct nearest neighbor contactsmore » for the HPMC-E3 rich preparations showing that lapatinib molecules do not cluster in the same way as observed in HPMC-P, where ionic interactions are present. Orientational correlations up to nearest neighbor molecules at about 4.3 Å were observed for polymer rich samples; both observations showed strong correlation to the stability of the systems. Lasty, the superior physical stability of 1:3 LP:HPMCP was consistent with the absence of significant intermolecular interactions in (ΔD inter LP(r)) in the range of 3.0 to 6.0 Å, which are attributed to C-C, C-N and C-O nearest neighbor contacts present in drug-drug interactions.« less
NMR studies of DNA oligomers and their interactions with minor groove binding ligands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fagan, Patricia A.
1996-05-01
The cationic peptide ligands distamycin and netropsin bind noncovalently to the minor groove of DNA. The binding site, orientation, stoichiometry, and qualitative affinity of distamycin binding to several short DNA oligomers were investigated by NMR spectroscopy. The oligomers studied contain A,T-rich or I,C-rich binding sites, where I = 2-desaminodeoxyguanosine. I•C base pairs are functional analogs of A•T base pairs in the minor groove. The different behaviors exhibited by distamycin and netropsin binding to various DNA sequences suggested that these ligands are sensitive probes of DNA structure. For sites of five or more base pairs, distamycin can form 1:1 or 2:1more » ligand:DNA complexes. Cooperativity in distamycin binding is low in sites such as AAAAA which has narrow minor grooves, and is higher in sites with wider minor grooves such as ATATAT. The distamycin binding and base pair opening lifetimes of I,C-containing DNA oligomers suggest that the I,C minor groove is structurally different from the A,T minor groove. Molecules which direct chemistry to a specific DNA sequence could be used as antiviral compounds, diagnostic probes, or molecular biology tools. The author studied two ligands in which reactive groups were tethered to a distamycin to increase the sequence specificity of the reactive agent.« less
NASA Astrophysics Data System (ADS)
de Araujo, Gabriel L. B.; Benmore, Chris J.; Byrn, Stephen R.
2017-04-01
For many years, the idea of analyzing atom-atom contacts in amorphous drug-polymer systems has been of major interest, because this method has always had the potential to differentiate between amorphous systems with domains and amorphous systems which are molecular mixtures. In this study, local structure of ionic and noninonic interactions were studied by High-Energy X-ray Diffraction and Pair Distribution Function (PDF) analysis in amorphous solid dispersions of lapatinib in hypromellose phthalate (HPMCP) and hypromellose (HPMC-E3). The strategy of extracting lapatinib intermolecular drug interactions from the total PDF x-ray pattern was successfully applied allowing the detection of distinct nearest neighbor contacts for the HPMC-E3 rich preparations showing that lapatinib molecules do not cluster in the same way as observed in HPMC-P, where ionic interactions are present. Orientational correlations up to nearest neighbor molecules at about 4.3 Å were observed for polymer rich samples; both observations showed strong correlation to the stability of the systems. Finally, the superior physical stability of 1:3 LP:HPMCP was consistent with the absence of significant intermolecular interactions in (Δ) in the range of 3.0 to 6.0 Å, which are attributed to C-C, C-N and C-O nearest neighbor contacts present in drug-drug interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dangi, Beni B.; Kim, Yong S.; Krasnokutski, Serge A.
2015-05-20
We report on laboratory simulation experiments mimicking the chemical processing of model atmospheres of exoplanets containing C3 and C4 hydrocarbons at moderate temperatures of 400 K upon interaction of catalytic surfaces of micrometeoroids. By utilizing an ultrasonic levitator device and heating singly levitated particles under simulated microgravity conditions, Raman spectroscopy is utilized as a non-invasive tool to probe on line and in situ the conversion of C3 and C4 hydrocarbons to refractory carbonaceous matter on the surfaces of levitated particles. Secondary Ion Mass Spectrometry and electron microscopic imaging were also conducted to gain further insight into the elementary composition andmore » structures of the refractories formed. Our results provide compelling evidence that in the presence of a catalytic surface, which can be supplied in the form of micrometeoroids and atmospheric dust particles, hydrocarbon gases present in the atmospheres of exoplanets can be converted to refractory, carbon-rich carbonaceous matter of mainly graphitic structure with a carbon content of at least 90% at elevated temperatures. This finding might explain the low methane to carbon monoxide (CH{sub 4}–CO) ratio in the hot Neptune GJ 436b, where the abundant methane photochemically converts to higher order hydrocarbons and ultimately to refractory graphite-like carbon in the presence of a silicon surface.« less
Yamazaki, Tomomi; Shiraishi, Sayaka; Kishimoto, Kyoko; Miura, Shinji; Ezaki, Osamu
2011-06-01
The effects of a diet rich in saturated fat on fatty liver formation and the related mechanisms that induce fatty liver were examined. C57BL/6J mice were fed butter or safflower oil as a high-fat (HF) diet (40% fat calories) for 2, 4, 10, or 17 weeks. Although both HF diets induced similar levels of obesity, HF butter-fed mice showed a two to threefold increase in liver triacylglycerol (TG) concentration compared to HF safflower oil-fed mice at 4 or 10 weeks without hyperinsulinemia. At 4 weeks, increases in peroxisome proliferator-activated receptor γ2 (PPARγ2), CD36, and adipose differentiation-related protein (ADRP) mRNAs were observed in HF butter-fed mice; at 10 weeks, an increase in sterol regulatory element-binding protein-1c (SREBP-1c) was observed; at 17 weeks, these increases were attenuated. At 4 weeks, a single injection of adenoviral vector-based short hairpin interfering RNA against PPARγ2 in HF butter-fed mice reduced PPARγ protein and mRNA of its target genes (CD36 and ADRP) by 43%, 43%, and 39%, respectively, with a reduction in liver TG concentration by 38% in 5 days. PPARγ2 knockdown also reduced mRNAs in lipogenic genes (fatty-acid-synthase, stearoyl-CoA desaturase 1, acetyl-CoA carboxylase 1) without alteration of SREBP-1c mRNA. PPARγ2 knockdown reduced mRNAs in genes related to inflammation (CD68, interleukin-1β, tumor necrosis factor-α, and monocyte chemoattractant protein-1). In conclusion, saturated fatty acid-rich oil induced fatty liver in mice, and this was triggered initially by an increase in PPARγ2 protein in the liver, which led to increased expression of lipogenic genes. Inactivation of PPARγ2 may improve fatty liver induced by HF saturated fat. Copyright © 2011 Elsevier Inc. All rights reserved.
Bioavailability of organoclay formulations of atrazine in soil.
Trigo, Carmen; Koskinen, William C; Celis, Rafael; Sadowsky, Michael J; Hermosín, María C; Cornejo, Juan
2010-11-24
Pesticide formulations based on organoclays have been proposed to prolong the efficacy and reduce the environmental impact of pesticides in soil. This research addressed the question of whether atrazine in organoclay-based formulations is irreversibly sorbed or is bioavailable for bacterial degradation in soil. Different cations of l-carnitine (CAR), tyramine (TYRAM), hexadimethrine (HEXADIM), phenyltrimethylammonium (PTMA), hexadecyltrimethylammonium (HDTMA), and Fe(III) were incorporated into Na-rich Wyoming montmorillonite (SWy-2) and Ca-rich Arizona montmorillonite (SAz-1) at 100% of the cation exchange capacity (CEC) of the clays as a strategy to enhance the affinity of the clay minerals for atrazine. A Buse loam soil from Becker, MN, was treated with three organoclay-based formulations of 14C-atrazine or free herbicide and incubated for 2 weeks. To determine the bioavailability of 14C-atrazine, the soil was inoculated with Pseudomonas sp. strain ADP, which rapidly mineralizes atrazine. At day 0, and after a 2 week incubation, mineralization and the amount of 14C-atrazine residues distributed between the aqueous-extractable, methanol-extractable, and bound fractions in the soil were determined to characterize the availability of nonaged and aged atrazine residues. By the end of the 2 week incubation, the microorganisms had mineralized >80% of the initial readily available (water-extractable) and >70% of the less readily available (methanol-extractable) 14C-atrazine in the soil. Bound residues increased from <4% at day 0 to ∼17% after the 2 week incubation for both the formulated and free forms of atrazine. The results of these incubation experiments show that the bioavailabilities of atrazine were similar in the case of the organoclay formulations and as free atrazine. This indicated that whereas more atrazine was sorbed and less likely to be transported in soil, when formulated as organoclay complexes, it was ultimately accessible to degrading bacteria, so that the herbicide is likely to be naturally attenuated by soil microorganisms.
Voluntary and forced exercise differentially alters the gut microbiome in C57BL/6J mice.
Allen, Jacob M; Berg Miller, Margret E; Pence, Brandt D; Whitlock, Keith; Nehra, Vandana; Gaskins, H Rex; White, Bryan A; Fryer, John D; Woods, Jeffrey A
2015-04-15
We have previously shown that voluntary wheel running (VWR) attenuates, whereas forced treadmill running (FTR) exacerbates, intestinal inflammation and clinical outcomes in a mouse model of colitis. As the gut microbiome is implicated in colitis, we hypothesized that VWR and FTR would differentially affect the gut microbiome. Mice (9-10/treatment) were randomly assigned to VWR, FTR, or sedentary home cage control (SED) for 6 wk. VWR were given running wheel access, whereas FTR ran on a treadmill for 40 min/day at 8-12 m/min, 5% grade. Forty-eight hours after the last exercise session, DNA was isolated from the fecal pellets and cecal contents, and the conserved bacterial 16S rRNA gene was amplified and sequenced using the Illumina Miseq platform. Permutational multivariate analysis of variance based on weighted UniFrac distance matrix revealed different bacterial clusters between feces and cecal contents in all groups (P < 0.01). Interestingly, the community structures of the three treatment groups clustered separately from each other in both gut regions (P < 0.05). Contrary to our hypothesis, the α-diversity metric, Chao1, indicated that VWR led to reduced bacterial richness compared with FTR or SED (P < 0.05). Taxonomic evaluation revealed that both VWR and FTR altered many individual bacterial taxa. Of particular interest, Turicibacter spp., which has been strongly associated with immune function and bowel disease, was significantly lower in VWR vs. SED/FTR. These data indicate that VWR and FTR differentially alter the intestinal microbiome of mice. These effects were observed in both the feces and cecum despite vastly different community structures between each intestinal region. Copyright © 2015 the American Physiological Society.
Wong, Weng-Yew; Ward, Leigh C; Fong, Chee Wai; Yap, Wei Ney; Brown, Lindsay
2017-02-01
This study tested the hypothesis that γ- and δ-tocotrienols are more effective than α-tocotrienol and α-tocopherol in attenuating the signs of diet-induced metabolic syndrome in rats. Five groups of rats were fed a corn starch-rich (C) diet containing 68 % carbohydrates as polysaccharides, while the other five groups were fed a diet (H) high in simple carbohydrates (fructose and sucrose in food, 25 % fructose in drinking water, total 68 %) and fats (beef tallow, total 24 %) for 16 weeks. Separate groups from each diet were supplemented with either α-, γ-, δ-tocotrienol or α-tocopherol (85 mg/kg/day) for the final 8 of the 16 weeks. H rats developed visceral obesity, hypertension, insulin resistance, cardiovascular remodelling and fatty liver. α-Tocopherol, α-, γ- and δ-tocotrienols reduced collagen deposition and inflammatory cell infiltration in the heart. Only γ- and δ-tocotrienols improved cardiovascular function and normalised systolic blood pressure compared to H rats. Further, δ-tocotrienol improved glucose tolerance, insulin sensitivity, lipid profile and abdominal adiposity. In the liver, these interventions reduced lipid accumulation, inflammatory infiltrates and plasma liver enzyme activities. Tocotrienols were measured in heart, liver and adipose tissue showing that chronic oral dosage delivered tocotrienols to these organs despite low or no detection of tocotrienols in plasma. In rats, δ-tocotrienol improved inflammation, heart structure and function, and liver structure and function, while γ-tocotrienol produced more modest improvements, with minimal changes with α-tocotrienol and α-tocopherol. The most important mechanism of action is likely to be reduction in organ inflammation.
Das, Kali Pada
2015-01-01
Here, we have investigated the physical and molecular basis of stability of Arabidopsis DNA Pol λ, the sole X family DNA polymerase member in plant genome, under UV-B and salinity stress in connection with the function of the N-terminal BRCT (breast cancer-associated C terminus) domain and Ser-Pro rich region in the regulation of the overall structure of this protein. Tryptophan fluorescence studies, fluorescence quenching and Bis-ANS binding experiments using purified recombinant full length Pol λ and its N-terminal deletion forms have revealed UV-B induced conformational change in BRCT domain deficient Pol λ. On the other hand, the highly conserved C-terminal catalytic core PolX domain maintained its tertiary folds under similar condition. Circular dichroism (CD) and fourier transform infrared (FT-IR) spectral studies have indicated appreciable change in the secondary structural elements in UV-B exposed BRCT domain deficient Pol λ. Increased thermodynamic stability of the C-terminal catalytic core domain suggested destabilizing effect of the N-terminal Ser-Pro rich region on the protein structure. Urea-induced equilibrium unfolding studies have revealed increased stability of Pol λ and its N-terminal deletion mutants at high NaCl concentration. In vivo aggregation studies using transient expression systems in Arabidopsis and tobacco indicated possible aggregation of Pol λ lacking the BRCT domain. Immunoprecipitation assays revealed interaction of Pol λ with the eukaryotic molecular chaperone HSP90, suggesting the possibility of regulation of Pol λ stability by HSP90 in plant cell. Overall, our results have provided one of the first comprehensive information on the biophysical characteristics of Pol λ and indicated the importance of both BRCT and Ser-Pro rich modules in regulating the stability of this protein under genotoxic stress in plants. PMID:26230318
Park, Minkyu; Anumol, Tarun; Daniels, Kevin D; Wu, Shimin; Ziska, Austin D; Snyder, Shane A
2017-08-01
Ozone oxidation has been demonstrated to be an effective treatment process for the attenuation of trace organic compounds (TOrCs); however, predicting TOrC attenuation by ozone processes is challenging in wastewaters. Since ozone is rapidly consumed, determining the exposure times of ozone and hydroxyl radical proves to be difficult. As direct potable reuse schemes continue to gain traction, there is an increasing need for the development of real-time monitoring strategies for TOrC abatement in ozone oxidation processes. Hence, this study is primarily aimed at developing indicator and surrogate models for the prediction of TOrC attenuation by ozone oxidation. To this end, the second-order kinetic equations with a second-phase R ct value (ratio of hydroxyl radical exposure to molecular ozone exposure) were used to calculate comparative kinetics of TOrC attenuation and the reduction of indicator and spectroscopic surrogate parameters, including UV absorbance at 254 nm (UVA 254 ) and total fluorescence (TF). The developed indicator model using meprobamate as an indicator compound and the surrogate models with UVA 254 and TF exhibited good predictive power for the attenuation of 13 kinetically distinct TOrCs in five filtered and unfiltered wastewater effluents (R 2 values > 0.8). This study is intended to help provide a guideline for the implementation of indicator/surrogate models for real-time monitoring of TOrC abatement with ozone processes and integrate them into a regulatory framework in water reuse. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lineation-parallel c-axis Fabric of Quartz Formed Under Water-rich Conditions
NASA Astrophysics Data System (ADS)
Wang, Y.; Zhang, J.; Li, P.
2014-12-01
The crystallographic preferred orientation (CPO) of quartz is of great significance because it records much valuable information pertinent to the deformation of quartz-rich rocks in the continental crust. The lineation-parallel c-axis CPO (i.e., c-axis forming a maximum parallel to the lineation) in naturally deformed quartz is generally considered to form under high temperature (> ~550 ºC) conditions. However, most laboratory deformation experiments on quartzite failed to produce such a CPO at high temperatures up to 1200 ºC. Here we reported a new occurrence of the lineation-parallel c-axis CPO of quartz from kyanite-quartz veins in eclogite. Optical microstructural observations, fourier transform infrared (FTIR) and electron backscattered diffraction (EBSD) techniques were integrated to illuminate the nature of quartz CPOs. Quartz exhibits mostly straight to slightly curved grain boundaries, modest intracrystalline plasticity, and significant shape preferred orientation (SPO) and CPOs, indicating dislocation creep dominated the deformation of quartz. Kyanite grains in the veins are mostly strain-free, suggestive of their higher strength than quartz. The pronounced SPO and CPOs in kyanite were interpreted to originate from anisotropic crystal growth and/or mechanical rotation during vein-parallel shearing. FTIR results show quartz contains a trivial amount of structurally bound water (several tens of H/106 Si), while kyanite has a water content of 384-729 H/106 Si; however, petrographic observations suggest quartz from the veins were practically deformed under water-rich conditions. We argue that the observed lineation-parallel c-axis fabric in quartz was inherited from preexisting CPOs as a result of anisotropic grain growth under stress facilitated by water, but rather than due to a dominant c-slip. The preservation of the quartz CPOs probably benefited from the preexisting quartz CPOs which renders most quartz grains unsuitably oriented for an easy a-slip at lower temperatures and the weak deformation during subsequent exhumation. This hypothesis provides a reasonable explanation for the observations that most lineation-parallel c-axis fabrics of quartz were found in veins and that deformation experiments on quartz-rich rocks at high temperature failed to produce such CPOs.
Griffith, Jocelyn C.; Lee, William G.; Orlovich, David A.
2017-01-01
The cultivation of grasslands can modify both bacterial community structure and impact on nutrient cycling as well as the productivity and diversity of plant communities. In this study, two pristine New Zealand grassland sites dominated by indigenous tall tussocks (Chionochloa pallens or C. teretifolia) were examined to investigate the extent and predictability of variation of the bacterial community. The contribution of free-living bacteria to biological nitrogen fixation is predicted to be ecologically significant in these soils; therefore, the diazotrophic community was also examined. The C. teretifolia site had N-poor and poorly-drained peaty soils, and the C. pallens had N-rich and well-drained fertile soils. These soils also differ in the proportion of organic carbon (C), Olsen phosphorus (P) and soil pH. The nutrient-rich soils showed increased relative abundances of some copiotrophic bacterial taxa (including members of the Proteobacteria, Bacteroidetes and Firmicutes phyla). Other copiotrophs, Actinobacteria and the oliogotrophic Acidobacteria showed increased relative abundance in nutrient-poor soils. Greater diversity based on 16S rRNA gene sequences and the Tax4Fun prediction of enhanced spore formation associated with nutrient-rich soils could indicate increased resilience of the bacterial community. The two sites had distinct diazotrophic communities with higher diversity in C. teretifolia soils that had less available nitrate and ammonium, potentially indicating increased resilience of the diazotroph community at this site. The C. teretifolia soils had more 16S rRNA gene and nifH copies per g soil than the nutrient rich site. However, the proportion of the bacterial community that was diazotrophic was similar in the two soils. We suggest that edaphic and vegetation factors are contributing to major differences in the composition and diversity of total bacterial and diazotrophic communities at these sites. We predict the differences in the communities at the two sites will result in different responses to environmental change. PMID:28658306
Role of the Disulfide Bond in Prion Protein Amyloid Formation: A Thermodynamic and Kinetic Analysis.
Honda, Ryo
2018-02-27
Prion diseases are associated with the structural conversion of prion protein (PrP) to a β-sheet-rich aggregate, PrP Sc . Previous studies have indicated that a reduction of the disulfide bond linking C179 and C214 of PrP yields an amyloidlike β-rich aggregate in vitro. To gain mechanistic insights into the reduction-induced aggregation, here I characterized how disulfide bond reduction modulates the protein folding/misfolding landscape of PrP, by examining 1) the equilibrium stabilities of the native (N) and aggregated states relative to the unfolded (U) state, 2) the transition barrier separating the U and aggregated states, and 3) the final structure of amyloidlike misfolded aggregates. Kinetic and thermodynamic experiments revealed that disulfide bond reduction decreases the equilibrium stabilities of both the N and aggregated states by ∼3 kcal/mol, without changing either the amyloidlike aggregate structure, at least at the secondary structural level, or the transition barrier of aggregation. Therefore, disulfide bond reduction modulates the protein folding/misfolding landscape by entropically stabilizing disordered states, including the U and transition state of aggregation. This also indicates that the equilibrium stability of the N state, but not the transition barrier of aggregation, is the dominant factor determining the reduction-induced aggregation of PrP. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Tomatsu, T.; Kumagai, H.; Dawson, P.B.
2001-01-01
We estimate the P-wave velocity and attenuation structures beneath the Kirishima volcanic complex, southern Japan, by inverting the complex traveltimes (arrival times and pulse widths) of waveform data obtained during an active seismic experiment conducted in 1994. In this experiment, six 200-250 kg shots were recorded at 163 temporary seismic stations deployed on the volcanic complex. We use first-arrival times for the shots, which were hand-measured interactively. The waveform data are Fourier transformed into the frequency domain and analysed using a new method based on autoregressive modelling of complex decaying oscillations in the frequency domain to determine pulse widths for the first-arrival phases. A non-linear inversion method is used to invert 893 first-arrival times and 325 pulse widths to estimate the velocity and attenuation structures of the volcanic complex. Wavefronts for the inversion are calculated with a finite difference method based on the Eikonal equation, which is well suited to estimating the complex traveltimes for the structures of the Kirishima volcano complex, where large structural heterogeneities are expected. The attenuation structure is derived using ray paths derived from the velocity structure. We obtain 3-D velocity and attenuation structures down to 1.5 and 0.5 km below sea level, respectively. High-velocity pipe-like structures with correspondingly low attenuation are found under the summit craters. These pipe-like structures are interpreted as remnant conduits of solidified magma. No evidence of a shallow magma chamber is visible in the tomographic images.
Carbon substitution for oxygen in silicates in planetary interiors
Sen, Sabyasachi; Widgeon, Scarlett J.; Navrotsky, Alexandra; Mera, Gabriela; Tavakoli, Amir; Ionescu, Emanuel; Riedel, Ralf
2013-01-01
Amorphous silicon oxycarbide polymer-derived ceramics (PDCs), synthesized from organometallic precursors, contain carbon- and silica-rich nanodomains, the latter with extensive substitution of carbon for oxygen, linking Si-centered SiOxC4-x tetrahedra. Calorimetric studies demonstrated these PDCs to be thermodynamically more stable than a mixture of SiO2, C, and silicon carbide. Here, we show by multinuclear NMR spectroscopy that substitution of C for O is also attained in PDCs with depolymerized silica-rich domains containing lithium, associated with SiOxC4-x tetrahedra with nonbridging oxygen. We suggest that significant (several percent) substitution of C for O could occur in more complex geological silicate melts/glasses in contact with graphite at moderate pressure and high temperature and may be thermodynamically far more accessible than C for Si substitution. Carbon incorporation will change the local structure and may affect physical properties, such as viscosity. Analogous carbon substitution at grain boundaries, at defect sites, or as equilibrium states in nominally acarbonaceous crystalline silicates, even if present at levels at 10–100 ppm, might form an extensive and hitherto hidden reservoir of carbon in the lower crust and mantle. PMID:24043830
Carbon substitution for oxygen in silicates in planetary interiors.
Sen, Sabyasachi; Widgeon, Scarlett J; Navrotsky, Alexandra; Mera, Gabriela; Tavakoli, Amir; Ionescu, Emanuel; Riedel, Ralf
2013-10-01
Amorphous silicon oxycarbide polymer-derived ceramics (PDCs), synthesized from organometallic precursors, contain carbon- and silica-rich nanodomains, the latter with extensive substitution of carbon for oxygen, linking Si-centered SiO(x)C(4-x) tetrahedra. Calorimetric studies demonstrated these PDCs to be thermodynamically more stable than a mixture of SiO2, C, and silicon carbide. Here, we show by multinuclear NMR spectroscopy that substitution of C for O is also attained in PDCs with depolymerized silica-rich domains containing lithium, associated with SiO(x)C(4-x) tetrahedra with nonbridging oxygen. We suggest that significant (several percent) substitution of C for O could occur in more complex geological silicate melts/glasses in contact with graphite at moderate pressure and high temperature and may be thermodynamically far more accessible than C for Si substitution. Carbon incorporation will change the local structure and may affect physical properties, such as viscosity. Analogous carbon substitution at grain boundaries, at defect sites, or as equilibrium states in nominally acarbonaceous crystalline silicates, even if present at levels at 10-100 ppm, might form an extensive and hitherto hidden reservoir of carbon in the lower crust and mantle.
NASA Astrophysics Data System (ADS)
Seong, Tae-Yeon; Bae, In-Tae; Choi, Chel-Jong; Noh, D. Y.; Zhao, Y.; Tu, C. W.
1999-03-01
Transmission electron microscope (TEM), transmission electron diffraction (TED), and synchrotron x-ray diffraction (XRD) studies have been performed to investigate microstructural behavior of gas source molecular beam epitaxial GaN1-xPx layers grown on (0001) GaN/sapphire at temperatures (Tg) in the range 500-760 °C. TEM, TED, and XRD results indicate that the samples grown at Tg⩽600 °C undergo phase separation resulting in a mixture of GaN-rich and GaP-rich GaNP with zinc-blende structure. However, the samples grown at Tg⩾730 °C are found to be binary zinc-blende GaN(P) single crystalline materials. As for the 500 °C layer, the two phases are randomly oriented and distributed, whereas the 600 °C layer consists of phases that are elongated and inclined by 60°-70° clockwise from the [0001]α-GaN direction. The samples grown at Tg⩾730 °C are found to consist of two types of microdomains, namely, GaN(P)I and GaN(P)II; the former having twin relation to the latter.
Song, Dandan; Liu, Xuelei; Diao, Yugang; Sun, Yingjie; Gao, Guangjie; Zhang, Tiezheng; Chen, Keyan; Pei, Ling
2018-06-20
Myocardial ischemia, hypoxia and reperfusion injury are induced by aortic occlusion, cardiac arrest and resuscitation during cardiopulmonary bypass (CPB), which can severely affect cardiac function. The aim of the present study was to investigate the effects of hydrogen‑rich solution (HRS) and aquaporin (AQP) on cardiopulmonary bypass (CPB)‑induced myocardial injury, and determine the mechanism of the phosphatidylinositol 3‑kinase (PI3K)/protein kinase B (Akt) signaling pathway. Sprague Dawley rats were divided into a sham operation group, a CPB surgery group and a HRS group. A CPB model was established, and the hemodynamic parameters were determined at the termination of CPB. The myocardial tissues were observed by hematoxylin and eosin, and Masson staining. The levels of myocardial injury markers [adult cardiac troponin I (cTnI), lactate dehydrogenase (LDH), creatine kinase MB (CK‑MB) and brain natriuretic peptide (BNP)], inflammatory factors [interleukin (IL)‑1β, IL‑6 and tumor necrosis factor‑α (TNF‑α)] and oxidative stress indicators [superoxide dismutase (SOD), malondialdehyde (MDA) and myeloperoxidase (MPO)] were determined by ELISA. Furthermore, H9C2 cells were treated with HRS following hypoxia/reoxygenation. Cell viability and cell apoptosis were investigated. The expression of apoptosis regulator Bcl‑2 (Bcl‑2), apoptosis regulator Bax (Bax), caspase 3, AQP‑1, AQP‑4, phosphorylated (p)‑Akt, heme oxygenase 1 (HO‑1) and nuclear factor erythroid 2‑related factor 2 (Nrf2) were investigated using western blotting and quantitative‑polymerase chain reaction of tissues and cells. Following CPB, myocardial cell arrangement was disordered, myocardial injury markers (cTnI, LDH, CK‑MB and BNP), inflammatory cytokines (IL‑1β, IL‑6 and TNF‑α) and MDA levels were significantly increased compared with the sham group; whereas the SOD levels were significantly downregulated following CPB compared with the sham group. HRS attenuated myocardial injury, reduced the expression levels of cTnI, LDH, CK‑MB, BNP, IL‑1β, IL‑6, TNF‑α, MDA and MPO, and increased SOD release. Levels of Bcl‑2, AQP‑1, AQP‑4, p‑Akt, HO‑1 and Nrf2 were significantly increased following HRS; whereas Bax and caspase‑3 expression levels were significantly reduced following CPB. HRS treatment significantly increased the viability of myocardial cells, reduced the rate of myocardial cell apoptosis and the release of MDA and LDH compared with the CPB group. A PI3K inhibitor (LY294002) was revealed to reverse the protective effect of HRS treatment. HRS was demonstrated to attenuate CPB‑induced myocardial injury, suppress AQP‑1 and AQP‑4 expression following CPB treatment and protect myocardial cells via the PI3K/Akt signaling pathway.
Carapelli, Antonio; Comandi, Sara; Convey, Peter; Nardi, Francesco; Frati, Francesco
2008-01-01
Background Mitogenomics data, i.e. complete mitochondrial genome sequences, are popular molecular markers used for phylogenetic, phylogeographic and ecological studies in different animal lineages. Their comparative analysis has been used to shed light on the evolutionary history of given taxa and on the molecular processes that regulate the evolution of the mitochondrial genome. A considerable literature is available in the fields of invertebrate biochemical and ecophysiological adaptation to extreme environmental conditions, exemplified by those of the Antarctic. Nevertheless, limited molecular data are available from terrestrial Antarctic species, and this study represents the first attempt towards the description of a mitochondrial genome from one of the most widespread and common collembolan species of Antarctica. Results In this study we describe the mitochondrial genome of the Antarctic collembolan Cryptopygus antarcticus Willem, 1901. The genome contains the standard set of 37 genes usually present in animal mtDNAs and a large non-coding fragment putatively corresponding to the region (A+T-rich) responsible for the control of replication and transcription. All genes are arranged in the gene order typical of Pancrustacea. Three additional short non-coding regions are present at gene junctions. Two of these are located in positions of abrupt shift of the coding polarity of genes oriented on opposite strands suggesting a role in the attenuation of the polycistronic mRNA transcription(s). In addition, remnants of an additional copy of trnL(uag) are present between trnS(uga) and nad1. Nucleotide composition is biased towards a high A% and T% (A+T = 70.9%), as typically found in hexapod mtDNAs. There is also a significant strand asymmetry, with the J-strand being more abundant in A and C. Within the A+T-rich region, some short sequence fragments appear to be similar (in position and primary sequence) to those involved in the origin of the N-strand replication of the Drosophila mtDNA. Conclusion The mitochondrial genome of C. antarcticus shares several features with other pancrustacean genomes, although the presence of unusual non-coding regions is also suggestive of molecular rearrangements that probably occurred before the differentiation of major collembolan families. Closer examination of gene boundaries also confirms previous observations on the presence of unusual start and stop codons, and suggests a role for tRNA secondary structures as potential cleavage signals involved in the maturation of the primary transcript. Sequences potentially involved in the regulation of replication/transcription are present both in the A+T-rich region and in other areas of the genome. Their position is similar to that observed in a limited number of insect species, suggesting unique replication/transcription mechanisms for basal and derived hexapod lineages. This initial description and characterization of the mitochondrial genome of C. antarcticus will constitute the essential foundation prerequisite for investigations of the evolutionary history of one of the most speciose collembolan genera present in Antarctica and other localities of the Southern Hemisphere. PMID:18593463
Lshikawa, Kazutaka; Okamoto, Masayuki; Aoyagi, Satoka
2016-06-28
A hair cuticle, which consists of flat overlapping scales that surround the hair fiber, protects inner tissues against external stimuli. The outermost surface of the cuticle is covered with a thin membrane containing proteins and lipids called the epicuticle. In a previous study, the authors conducted a depth profile analysis of a hair cuticle's amino acid composition to characterize its multilayer structure. Time-of-flight secondary ion mass spectrometry with a bismuth primary ion source was used in combination with the C60 sputtering technique for the analysis. It was confirmed that the lipids and cysteine-rich layer exist on the outermost cuticle surface, which is considered to be the epicuticle, though the detailed structure of the epicuticle has not been clarified. In this study, depth profile analysis of the cuticle surface was conducted using the argon gas cluster ion beam (Ar-GCIB) sputtering technique, in order to characterize the structure of the epicuticle. The shallow depth profile of the cuticle surface was investigated using an Ar-GCIB impact energy of 5 keV. Compared to the other amino acid peaks rich in the epicuticle, the decay of 18-methyleicosanic acid (18-MEA) thiolate peak was the fastest. This result suggests that the outermost surface of the hair is rich in 18-MEA. In conclusion, our results indicate that the outermost surfaces of cuticles have a multilayer (lipid and protein layers), which is consistent with the previously proposed structure.
Does turbidity induced by Carassius carassius limit phytoplankton growth? A mesocosm study.
He, Hu; Hu, En; Yu, Jinlei; Luo, Xuguang; Li, Kuanyi; Jeppesen, Erik; Liu, Zhengwen
2017-02-01
It is well established that benthivorous fish in shallow lakes can create turbid conditions that influence phytoplankton growth both positively, as a result of elevated nutrient concentration in the water column, and negatively, due to increased attenuation of light. The net effect depends upon the degree of turbidity induced by the benthivores. Stocked Carassius carassius dominate the benthivorous fish fauna in many nutrient-rich Chinese subtropical and tropical shallow lakes, but the role of the species as a potential limiting factor in phytoplankton growth is ambiguous. Clarification of this relationship will help determine the management strategy and cost of restoring eutrophic lakes in China and elsewhere. Our outdoor mesocosm experiment simulating the effect of high density of crucian carp on phytoplankton growth and community structure in eutrophic shallow lakes suggests that stocking with this species causes resuspension of sediment, thereby increasing light attenuation and elevating nutrient concentrations. However, the effect of light attenuation was insufficient to offset the impact of nutrient enhancement on phytoplankton growth, and significant increases in both phytoplankton biomass and chlorophyll a concentrations were recorded. Crucian carp stocking favored the dominance of diatoms and led to lower percentages (but not biomass) of buoyant cyanobacteria. The dominance of diatoms may be attributed to a competitive advantage of algal cells with high sedimentation velocity in an environment subjected to frequent crucian carp-induced resuspension and entrainment of benthic algae caused by the fish foraging activities. Our study demonstrates that turbidity induced by stocked crucian carp does not limit phytoplankton growth in eutrophic waters. Thus, removal of this species (and presumably other similar taxa) from subtropical or tropical shallow lakes, or suspension of aquaculture, is unlikely to boost phytoplankton growth, despite the resulting improvements in light availability.
Wu, Longkun; Wang, Limin; Qi, Baokun; Zhang, Xiaonan; Chen, Fusheng; Li, Yang; Sui, Xiaonan; Jiang, Lianzhou
2018-05-30
The understanding of the structure morphology of oil-rich emulsion from enzyme-assisted extraction processing (EAEP) was a critical step to break the oil-rich emulsion structure in order to recover oil. Albeit EAEP method has been applied as an alternative way to conventional solvent extraction method, the structure morphology of oil-rich emulsion was still unclear. The current study aimed to investigate the structure morphology of oil-rich emulsion from EAEP using 3D confocal Raman imaging technique. With increasing the enzymatic hydrolysis duration from 1 to 3 h, the stability of oil-rich emulsion was decreased as visualized in the 3D confocal Raman images that the protein and oil were mixed together. The subsequent Raman spectrum analysis further revealed that the decreased stability of oil-rich emulsion was due to the protein aggregations via SS bonds or protein-lipid interactions. The conformational transfer in protein indicated the formation of a compact structure. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, S.; Takahashi, Y. K.; Sakuraba, Y., E-mail: Sakuraba.Yuya@nims.go.jp
2016-03-21
We have investigated the structure and magneto-transport properties of Co{sub 2}Mn(Ge{sub 0.75}Ga{sub 0.25}) (CMGG) Heusler alloy thin films with near-stoichiometric and Mn-rich compositions in order to understand the effect of Co-Mn anti-sites on bulk spin polarization. Anomalous x-ray diffraction measurements using synchrotron radiated x-rays confirmed that Co{sub Mn} anti-sites easily form in the near-stoichiometric CMGG compound at annealing temperature higher than 400 °C, while it can be suppressed in Mn-rich CMGG films. Accordingly, large enhancement in negative anisotropic magnetoresistance of CMGG films and giant magnetoresistance (GMR) in current-perpendicular-to-plane (CPP) pseudo spin valves were observed in the Mn-rich composition. A large resistance-areamore » product change (ΔRA) of 12.8 mΩ μm{sup 2} was demonstrated in the CPP-GMR pseudo spin valves using the Mn-rich CMGG layers after annealing at 600 °C. It is almost twice of the maximum output observed in the CPP-GMR pseudo spin valves using the near-stoichiometric CMGG. These indicate that the spin polarization of CMGG is enhanced in the Mn-rich composition through suppressing the formation of Co{sub Mn}-antisites in CMGG films, being consistent with first-principle calculation results.« less
Repetitively Pulsed Electric Laser Acoustic Studies. Volume 1.
1983-09-01
V a=[I (i/x)CS’]=I+HS’ b=CS1’ C:(z-iHwM)/(z- iwM )=H(x/i) S’=(1-S)/S. S=(D-d)/D=fraction open area of the attenuator. 67 ’-. -, .,"..-/ We note, that...the structure becomes • .’ ~u’:uz/(z- iwm ) (4.2)" where, as before, z=r-iwgHp and u is the average velocity ampli- tude of the gas in the porous...Again, making use of Eq. 4.2, these relations can be summarized as U. :C’u (4.4) pp-iwm1 C’u C’=z/(z- iwm ), z=r-iwgHp 5. Equations of motion. In terms of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gago, R.; Centro de Micro-Analisis de Materiales, Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid; Vinnichenko, M.
2005-07-01
The evolution of sp{sup 2} hybrids in amorphous carbon (a-C) films deposited at different substrate temperatures was studied experimentally and theoretically. The bonding structure of a-C films prepared by filtered cathodic vacuum arc was assessed by the combination of visible Raman spectroscopy, x-ray absorption, and spectroscopic ellipsometry, while a-C structures were generated by molecular-dynamics deposition simulations with the Brenner interatomic potential to determine theoretical sp{sup 2} site distributions. The experimental results show a transition from tetrahedral a-C (ta-C) to sp{sup 2}-rich structures at {approx}500 K. The sp{sup 2} hybrids are mainly arranged in chains or pairs whereas graphitic structures aremore » only promoted for sp{sup 2} fractions above 80%. The theoretical analysis confirms the preferred pairing of isolated sp{sup 2} sites in ta-C, the coalescence of sp{sup 2} clusters for medium sp{sup 2} fractions, and the pronounced formation of rings for sp{sup 2} fractions >80%. However, the dominance of sixfold rings is not reproduced theoretically, probably related to the functional form of the interatomic potential used.« less
Suzuki, Akiko; Endo, Takeshi
2002-02-06
We have cloned a cDNA encoding a novel protein referred to as ermelin from mouse C2 skeletal muscle cells. This protein contained six hydrophobic amino acid stretches corresponding to transmembrane domains, two histidine-rich sequences, and a sequence homologous to the fusion peptides of certain fusion proteins. Ermelin also contained a novel modular sequence, designated as HELP domain, which was highly conserved among eukaryotes, from yeast to higher plants and animals. All these HELP domain-containing proteins, including mouse KE4, Drosophila Catsup, and Arabidopsis IAR1, possessed multipass transmembrane domains and histidine-rich sequences. Ermelin was predominantly expressed in brain and testis, and induced during neuronal differentiation of N1E-115 neuroblastoma cells but downregulated during myogenic differentiation of C2 cells. The mRNA was accumulated in hippocampus and cerebellum of brain and central areas of seminiferous tubules in testis. Epitope-tagging experiments located ermelin and KE4 to a network structure throughout the cytoplasm. Staining with the fluorescent dye DiOC(6)(3) identified this structure as the endoplasmic reticulum. These results suggest that at least some, if not all, of the HELP domain-containing proteins are multipass endoplasmic reticulum membrane proteins with functions conserved among eukaryotes.
Small-sized PdCu nanocapsules on 3D graphene for high-performance ethanol oxidation
NASA Astrophysics Data System (ADS)
Hu
2014-02-01
A one-pot solvothermal process has been developed for direct preparation of PdCu nanocapsules (with a size of ca. 10 nm) on three-dimensional (3D) graphene. Due to the 3D pore-rich network of graphene and the unique hollow structure of PdCu nanocapsules with a wall thickness of ca. 3 nm, the newly-prepared PdCu/3D graphene hybrids activated electrochemically have great electrocatalytic activity towards ethanol oxidation in alkaline media, much better than single-phase Pd and commercial E-TEK 20% Pt/C catalysts promising for application in direct ethanol fuel cells.A one-pot solvothermal process has been developed for direct preparation of PdCu nanocapsules (with a size of ca. 10 nm) on three-dimensional (3D) graphene. Due to the 3D pore-rich network of graphene and the unique hollow structure of PdCu nanocapsules with a wall thickness of ca. 3 nm, the newly-prepared PdCu/3D graphene hybrids activated electrochemically have great electrocatalytic activity towards ethanol oxidation in alkaline media, much better than single-phase Pd and commercial E-TEK 20% Pt/C catalysts promising for application in direct ethanol fuel cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr05722d
NASA Astrophysics Data System (ADS)
Nicchio, Matheus A.; Nogueira, Francisco C. C.; Balsamo, Fabrizio; Souza, Jorge A. B.; Carvalho, Bruno R. B. M.; Bezerra, Francisco H. R.
2018-02-01
In this work we describe the deformation mechanisms and processes that occurred during the evolution of cataclastic deformation bands developed in the feldspar-rich conglomerates of the Rio do Peixe Basin, NE Brazil. We studied bands with different deformation intensities, ranging from single cm-thick tabular bands to more evolved clustering zones. The chemical identification of cataclastic material within deformation bands was performed using compositional mapping in SEM images, EDX and XRD analyses. Deformation processes were identified by microstructural analysis and by the quantification of comminution intensity, performed using digital image processing. The deformation bands are internally non homogeneous and developed during five evolutionary stages: (1) moderate grain size reduction, grain rotation and grain border comminution; (2) intense grain size reduction with preferential feldspar fragmentation; (3) formation of subparallel C-type slip zones; (4) formation of S-type structures, generating S-C-like fabric; and (5) formation of C‧-type slip zones, generating well-developed foliation that resembles S-C-C‧-type structures in a ductile environment. Such deformation fabric is mostly imparted by the preferential alignment of intensely comminuted feldspar fragments along thin slip zones developed within deformation bands. These processes were purely mechanical (i.e., grain crushing and reorientation). No clays or fluids were involved in such processes.
Nicolucci, P; Schuch, F
2012-06-01
To use the Monte Carlo code PENELOPE to study attenuation and tissue equivalence properties of a-Al2O3:C for OSL dosimetry. Mass attenuation coefficients of α-Al2O3 and α-Al2O3:C with carbon percent weight concentrations from 1% to 150% were simulated with PENELOPE Monte Carlo code and compared to mass attenuation coefficients from soft tissue for photon beams ranging from 50kV to 10MV. Also, the attenuation of primary photon beams of 6MV and 10MV and the generation of secondary electrons by α-Al2O3 :C dosimeters positioned on the entrance surface of a water phantom were studied. A difference of up to 90% was found in the mass attenuation coefficient between the pure \\agr;-A12O3 and the material with 150% weight concentration of dopant at 1.5 keV, corresponding to the K-edge photoelectric absorption of aluminum. However for energies above 80 keV the concentration of carbon does not affect the mass attenuation coefficient and the material presents tissue equivalence for the beams studied. The ratio between the mass attenuation coefficients for \\agr-A12O3:C and for soft tissue are less than unit due to the higher density of the \\agr-A12O3 (2.12 g/cm s ) and its tissue equivalence diminishes to lower concentrations of carbon and for lower energies due to the relation of the radiation interaction effects with atomic number. The larger attenuation of the primary photon beams by the dosimeter was 16% at 250 keV and the maximum increase in secondary electrons fluence to the entrance surface of the phantom was found as 91% at 2MeV. The use of the OSL dosimeters in radiation therapy can be optimized by use of PENELOPE Monte Carlo simulation to provide a study of the attenuation and response characteristics of the material. © 2012 American Association of Physicists in Medicine.
Hepatic hepcidin gene expression in dogs with a congenital portosystemic shunt.
Frowde, P E; Gow, A G; Burton, C A; Powell, R; Lipscomb, V J; House, A K; Mellanby, R J; Tivers, M S
2014-01-01
Microcytic anemia is common in dogs with a congenital portosystemic shunt (cPSS) and typically resolves after surgical attenuation of the anomalous vessel. However, the pathophysiology of the microcytic anemia remains poorly understood. Hepcidin has been a key role in controlling iron transport in both humans and animals and in mediating anemia of inflammatory disease in humans. The role of hepcidin in the development of microcytic anemia in dogs with a cPSS has not been examined. To determine whether hepatic hepcidin mRNA expression decreases, while red blood cell count (RBC) and mean corpuscular volume (MCV) increase in dogs after surgical attenuation of a cPSS. Eighteen client-owned dogs with confirmed cPSS undergoing surgical attenuation. Prospective study. Red blood cell count (RBC) and mean corpuscular volume (MCV), together with hepatic gene expression of hepcidin, were measured in dogs before and after partial attenuation of a cPSS. There was a significant increase in both RBC (median pre 6.17 × 10(12) /L, median post 7.08 × 10(12) /L, P < .001) and MCV (median pre 61.5fl, median post 65.5fl, P = .006) after partial surgical attenuation of the cPSS. Despite the increase in both measured red blood cell parameters, hepatic gene expression of hepcidin remained unchanged. This study found no evidence that dysregulated production of hepcidin was associated with anemia in dogs with a cPSS. Copyright © 2014 by the American College of Veterinary Internal Medicine.
NASA Astrophysics Data System (ADS)
Jean, A.; Chaker, M.; Diawara, Y.; Leung, P. K.; Gat, E.; Mercier, P. P.; Pépin, H.; Gujrathi, S.; Ross, G. G.; Kieffer, J. C.
1992-10-01
Hydrogenated amorphous a-SixC1-x:H films with various compositions (0.2≤x≤0.8) were prepared by a radio frequency (rf 100 kHz) glow discharge decomposition of a silane and methane mixture diluted in argon. The deposition system used was a commercially available plasma enhanced chemical vapor deposition reactor allowing a high throughput (22 wafers of 4 in. diameter each run). The properties of the films such as thickness, density, and stress were investigated. The composition, including hydrogen content and Si/C ratio, and the structure of the films were systematically examined by means of several diagnostics including electron recoil detection, x-ray photoelectron spectroscopy, and infrared (IR) absorption analysis. Thickness and density of the films were dependent on the film composition, while the stress of the films was highly compressive (3×109-1×1010 dynes/cm2). Density was about 2.4 g/cm3 for nearly stoichiometric SiC films. The hydrogen content of the films was practically constant at 27 at. % over the whole investigated composition range. The IR analyses suggested that the structure of the silicon carbide films is inorganic-like over the whole range of compositions. From stoichiometric to carbon-rich films, the structure mainly consists of a tetrahedral network where silicon atoms are randomly replaced by carbon atoms and one hydrogen atom is bonded to silicon (SiH group). However, the presence of SiH2 groups and microvoids was observed in the structure of Si-rich silicon carbide films. Finally, the development of SiC membranes for x-ray lithography was presented including the control of film stress by means of rapid thermal annealing. Silicon carbide membranes of relatively high surface area (32×32 mm2) and showing high optical transparency (80%) were successfully fabricated.
Peng, Feng; Sun, Ying; Pickard, Chris J; Needs, Richard J; Wu, Qiang; Ma, Yanming
2017-09-08
Room-temperature superconductivity has been a long-held dream and an area of intensive research. Recent experimental findings of superconductivity at 200 K in highly compressed hydrogen (H) sulfides have demonstrated the potential for achieving room-temperature superconductivity in compressed H-rich materials. We report first-principles structure searches for stable H-rich clathrate structures in rare earth hydrides at high pressures. The peculiarity of these structures lies in the emergence of unusual H cages with stoichiometries H_{24}, H_{29}, and H_{32}, in which H atoms are weakly covalently bonded to one another, with rare earth atoms occupying the centers of the cages. We have found that high-temperature superconductivity is closely associated with H clathrate structures, with large H-derived electronic densities of states at the Fermi level and strong electron-phonon coupling related to the stretching and rocking motions of H atoms within the cages. Strikingly, a yttrium (Y) H_{32} clathrate structure of stoichiometry YH_{10} is predicted to be a potential room-temperature superconductor with an estimated T_{c} of up to 303 K at 400 GPa, as derived by direct solution of the Eliashberg equation.
ORION Project-(SPLASH) Structural Passive Landing Attenuation fo
2011-07-12
ORION Project-(SPLASH) Structural Passive Landing Attenuation for Survivability of Human Crew (BTA) Boiler Plate Test Article Water Impact Test-Pot Phase"0" Test Tested at the Hydro Impact Basin at the Landing and Impact Research Facility (Gantry)
Particle Characteristics and Densification of W6Mo5Cr4V2Co5Nb Overspray Powder
NASA Astrophysics Data System (ADS)
Pi, Ziqiang; Lu, Xin; Yang, Fei; Liu, Bowen; Jia, Chengchang; Qu, Xuanhui; Zheng, Wei; Wu, Lizhi; Shao, Qingli
2018-05-01
W6Mo5Cr4V2Co5Nb (825 K) alloy was prepared by a two-step sintering process from overspray 825 K alloy powder. The overspray powder characteristics and the microstructure and mechanical properties of the as-sintered 825 K alloy were investigated. Results showed that two types of carbides formed a network structure in the overspray powder, which had spherical or quasispherical shape: one was MC carbide that was rich in vanadium (V), and the other was M2C carbide enriched with vanadium (V) and tungsten (W). The sintered 825 K alloy contained M6C and MC carbides, of which M6C was rich in tungsten (W) and molybdenum (Mo), and both of these two carbides were uniformly distributed in the alloy matrix. The alloy had relative density of 98.43%, hardness of HRC 51.8, and superior bending strength of 2042 MPa. These mechanical properties can meet the requirements of most engineering applications.
NASA Astrophysics Data System (ADS)
Avendaño, Carlos G.; Reyes, Arturo
2017-03-01
We theoretically study the dispersion relation for axially propagating electromagnetic waves throughout a one-dimensional helical structure whose pitch and dielectric and magnetic properties are spatial random functions with specific statistical characteristics. In the system of coordinates rotating with the helix, by using a matrix formalism, we write the set of differential equations that governs the expected value of the electromagnetic field amplitudes and we obtain the corresponding dispersion relation. We show that the dispersion relation depends strongly on the noise intensity introduced in the system and the autocorrelation length. When the autocorrelation length increases at fixed fluctuation and when the fluctuation augments at fixed autocorrelation length, the band gap widens and the attenuation coefficient of electromagnetic waves propagating in the random medium gets larger. By virtue of the degeneracy in the imaginary part of the eigenvalues associated with the propagating modes, the random medium acts as a filter for circularly polarized electromagnetic waves, in which only the propagating backward circularly polarized wave can propagate with no attenuation. Our results are valid for any kind of dielectric and magnetic structures which possess a helical-like symmetry such as cholesteric and chiral smectic-C liquid crystals, structurally chiral materials, and stressed cholesteric elastomers.
PDE1C deficiency antagonizes pathological cardiac remodeling and dysfunction
Knight, Walter E.; Chen, Si; Zhang, Yishuai; Oikawa, Masayoshi; Wu, Meiping; Zhou, Qian; Miller, Clint L.; Cai, Yujun; Mickelsen, Deanne M.; Moravec, Christine; Small, Eric M.; Abe, Junichi; Yan, Chen
2016-01-01
Cyclic nucleotide phosphodiesterase 1C (PDE1C) represents a major phosphodiesterase activity in human myocardium, but its function in the heart remains unknown. Using genetic and pharmacological approaches, we studied the expression, regulation, function, and underlying mechanisms of PDE1C in the pathogenesis of cardiac remodeling and dysfunction. PDE1C expression is up-regulated in mouse and human failing hearts and is highly expressed in cardiac myocytes but not in fibroblasts. In adult mouse cardiac myocytes, PDE1C deficiency or inhibition attenuated myocyte death and apoptosis, which was largely dependent on cyclic AMP/PKA and PI3K/AKT signaling. PDE1C deficiency also attenuated cardiac myocyte hypertrophy in a PKA-dependent manner. Conditioned medium taken from PDE1C-deficient cardiac myocytes attenuated TGF-β–stimulated cardiac fibroblast activation through a mechanism involving the crosstalk between cardiac myocytes and fibroblasts. In vivo, cardiac remodeling and dysfunction induced by transverse aortic constriction, including myocardial hypertrophy, apoptosis, cardiac fibrosis, and loss of contractile function, were significantly attenuated in PDE1C-knockout mice relative to wild-type mice. These results indicate that PDE1C activation plays a causative role in pathological cardiac remodeling and dysfunction. Given the continued development of highly specific PDE1 inhibitors and the high expression level of PDE1C in the human heart, our findings could have considerable therapeutic significance. PMID:27791092
Structural investigation of re-deposited layers in JET
NASA Astrophysics Data System (ADS)
Likonen, J.; Vainonen-Ahlgren, E.; Khriachtchev, L.; Coad, J. P.; Rubel, M.; Renvall, T.; Arstila, K.; Hole, D. E.; Contributors to the EFDA-JET Work-programme
2008-07-01
JET Mk-II Gas Box divertor tiles exposed in 1998-2001 have been analysed with various ion beam techniques, secondary ion mass spectrometry (SIMS) and Raman spectroscopy. Inner divertor wall tiles removed in 2001 were covered with a duplex film. The inner layer was very rich in metallic impurities, with Be/C ˜ 1 and H-isotopes only present at low concentrations. The outer layer contained higher concentrations of D than normal for plasma-facing surfaces in JET (D/C ˜ 0.4), and Be/C ˜ 0.14. Raman and SIMS analyses show that the deposited films on inner divertor tiles are hydrogenated amorphous carbon with low sp 3 fractions. The deposits have polymeric structure and low density. Both Raman scattering and SIMS indicate that films on inner divertor wall Tiles 1 and 3, and on floor Tile 4 have some differences in the chemical structure of the deposited films
BLAST LOADING AND RESPONSE OF UNDERGROUND CONCRETE-ARCH PROTECTIVE STRUCTURES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flathau, W.J.; Breckenridge, R.A.; Wiehle, C.K.
1959-06-01
Four reinforced-concrete arch structures, with the top of arch crown 4 ft below ground surface, were exposed at high overpressure ranges from Priscilla Burst in order to obtain data on their resistance to blast, radiation, and missile hazards. The four structures received actual air overpressures of 56, 124, and 199 psi and suffered only minor damage, all remaining structurally serviceable. The entranceway used for the structures sealed out the air pressure. It was not designed to attenuate radiation and thus did not provide adequate radiation protection for personnel. There were no missile and apparently no dust hazards in any ofmore » the structures. Results of the test indicate that an underground reinforced-concrete arch is an excellent structural shape for resisting the effects of a kiloton-range air burst. (C.H.)« less