Science.gov

Sample records for c-s bond formation

  1. Transition metal-catalyzed C-C bond formation via C-S bond cleavage: an overview.

    PubMed

    Modha, Sachin G; Mehta, Vaibhav P; Van der Eycken, Erik V

    2013-06-21

    Transition metal-catalyzed C-C bond formations have been well studied over the last four decades. An improved mechanistic understanding of such reactions has helped chemists to develop further improvements, modifications and even new reactions. In the area of transition metal-catalyzed cross-coupling reactions the C-S bond cleaving reactions have attracted a lot of attention in the last decade as they provide a good alternative to the use of organo-halide reagents in traditional cross-coupling reactions. The availability of a wide range of organo-sulfur species provides the opportunity for developing different transformations for the synthesis of interesting organic compounds. This tutorial review focuses on recent examples of the transition metal-catalyzed C-C bond forming reactions using organo-sulfur species.

  2. Sulfide synthesis through copper-catalyzed C-S bond formation under biomolecule-compatible conditions.

    PubMed

    Zhang, Yonghong; Li, Yiming; Zhang, Xiaomei; Jiang, Xuefeng

    2015-01-18

    We report here an efficient and mild method for constructing C-S bonds. The reactions were carried out with Na2S2O3 as a sulfurating reagent, CuSO4 as a catalyst, and water as solvent without any surfactant. The products were achieved in moderate to excellent yields at room temperature under air. Notably, this reaction is compatible with various biomolecules including amino acids, oligosaccharides, nucleosides, proteins, and cell lysates. PMID:25435202

  3. Copper-Catalyzed Domino Synthesis of 2-Arylthiochromanones through Concomitant C-S Bond Formations Using Xanthate as Sulfur Source.

    PubMed

    Sangeetha, Subramani; Muthupandi, Pandi; Sekar, Govindasamy

    2015-12-18

    An efficient domino process for the synthesis of thioflavanones has been described using a copper catalyst without addition of any external ligand. A variety of thioflavanones have been synthesized from easily accessible 2'-iodochalcones or 2'-bromochalcones in excellent yield through in situ incorporation of sulfur using xanthate as an odorless sulfur source. This domino process proceeds through Cu-catalyzed C(aryl)-S bond formation by the coupling reaction of xanthate with 2'-halochalcones followed by C-S bond cleavage of thioester then S-C bond formation by intramolecular Michael addition. PMID:26642368

  4. Synthesis of 1,2,4-Triazoles via Oxidative Heterocyclization: Selective C-N Bond Over C-S Bond Formation.

    PubMed

    Gogoi, Anupal; Guin, Srimanta; Rajamanickam, Suresh; Rout, Saroj Kumar; Patel, Bhisma K

    2015-09-18

    The higher propensity of C-N over C-S bond forming ability was demonstrated, through formal C-H functionalization during the construction of 4,5-disubstituted 1,2,4-triazole-3-thiones from arylidenearylthiosemicarbazides catalyzed by Cu(II). However, steric factors imparted by the o-disubstituted substrates tend to change the reaction path giving thiodiazole as the major or an exclusive product. Upon prolonging the reaction time, the in situ generated thiones are transformed to 4,5-disubstituted 1,2,4-triazoles via a desulfurization process. Two classes of heterocycles viz. 4,5-disubstituted 1,2,4-triazole-3-thiones and 4,5-disubstituted 1,2,4-triazoles can be synthesized from arylidenearylthiosemicarbazides by simply adjusting the reaction time. Desulfurization of 1,2,4-triazole-3-thiones is assisted by thiophilic Cu to provide 1,2,4-triazoles with concomitant formation of CuS and polynuclear sulfur anions as confirmed from scanning electron microscope and energy dispersive X-ray spectroscopy measurements. A one-pot synthesis of an antimicrobial compound has been successfully achieved following this strategy. PMID:26332253

  5. Microbial cleavage of organic C-S bonds

    DOEpatents

    Kilbane, II, John J.

    1994-01-01

    A microbial process for selective cleavage of organic C--S bonds which may be used for reducing the sulfur content of sulfur-containing organic carbonaceous materials, Microorganisms of Rhodococcus rhodochrous and Bacillus sphaericus have been found which have the ability of selective cleavage of organic C--S bonds. Particularly preferred microorganisms are Rhodococcus rhodochrous strain ATCC 53968 and Bacillus sphaericus strain ATCC 53969 and their derivatives.

  6. Microbial cleavage of organic C-S bonds

    DOEpatents

    Kilbane, J.J. II.

    1994-10-25

    A microbial process is described for selective cleavage of organic C-S bonds which may be used for reducing the sulfur content of sulfur-containing organic carbonaceous materials. Microorganisms of Rhodococcus rhodochrous and Bacillus sphaericus have been found which have the ability of selective cleavage of organic C-S bonds. Particularly preferred microorganisms are Rhodococcus rhodochrous strain ATCC 53968 and Bacillus sphaericus strain ATCC 53969 and their derivatives.

  7. Bond activation with an apparently benign ethynyl dithiocarbamate Ar-C≡C-S-C(S)NR2.

    PubMed

    Ung, Gaël; Frey, Guido D; Schoeller, Wolfgang W; Bertrand, Guy

    2011-10-10

    The hedgehog molecule: A simple ethynyl dithiocarbamate [Ar-C≡C-S-C(S)NR(2)] is able to cleave a broad range of enthalpically strong σ bonds and to activate carbon dioxide and elemental sulfur. Depending on the substrate, the bond activation process involves either the existence of an equilibrium with the nonobservable mesoionic carbene isomer or the cooperation of the nucleophilic carbon-carbon triple bond and the electrophilic CS carbon atom. PMID:23210141

  8. Synthesis of Bioactive 2-(Arylamino)thiazolo[5,4-f]-quinazolin-9-ones via the Hügershoff Reaction or Cu- Catalyzed Intramolecular C-S Bond Formation.

    PubMed

    Hédou, Damien; Dubouilh-Benard, Carole; Loaëc, Nadège; Meijer, Laurent; Fruit, Corinne; Besson, Thierry

    2016-01-01

    A library of thirty eight novel thiazolo[5,4-f]quinazolin-9(8H)-one derivatives (series 8, 10, 14 and 17) was prepared via the Hügershoff reaction and a Cu catalyzed intramolecular C-S bond formation, helped by microwave-assisted technology when required. The efficient multistep synthesis of the key 6-amino-3-cyclopropylquinazolin-4(3H)-one (3) has been reinvestigated and performed on a multigram scale from the starting 5-nitroanthranilic acid. The inhibitory potency of the final products was evaluated against five kinases involved in Alzheimer's disease and showed that some molecules of the 17 series described in this paper are particularly promising for the development of novel multi-target inhibitors of kinases. PMID:27322235

  9. Transition-metal-catalyzed C-S bond coupling reaction.

    PubMed

    Lee, Chin-Fa; Liu, Yi-Chen; Badsara, Satpal Singh

    2014-03-01

    Sulfur-containing molecules such as thioethers are commonly found in chemical biology, organic synthesis, and materials chemistry. While many reliable methods have been developed for preparing these compounds, harsh reaction conditions are usually required in the traditional methods. The transition metals have been applied in this field, and the palladium-catalyzed coupling of thiols with aryl halides and pseudo halides is one of the most important methods in the synthesis of thioethers. Other metals have also been used for the same purpose. Here, we summarize recent efforts in metal-catalyzed C-S bond cross-coupling reactions, focusing especially on the coupling of thiols with aryl- and vinyl halides based on different metals.

  10. C-S bond cleavage by a polyketide synthase domain.

    PubMed

    Ma, Ming; Lohman, Jeremy R; Liu, Tao; Shen, Ben

    2015-08-18

    Leinamycin (LNM) is a sulfur-containing antitumor antibiotic featuring an unusual 1,3-dioxo-1,2-dithiolane moiety that is spiro-fused to a thiazole-containing 18-membered lactam ring. The 1,3-dioxo-1,2-dithiolane moiety is essential for LNM's antitumor activity, by virtue of its ability to generate an episulfonium ion intermediate capable of alkylating DNA. We have previously cloned and sequenced the lnm gene cluster from Streptomyces atroolivaceus S-140. In vivo and in vitro characterizations of the LNM biosynthetic machinery have since established that: (i) the 18-membered macrolactam backbone is synthesized by LnmP, LnmQ, LnmJ, LnmI, and LnmG, (ii) the alkyl branch at C-3 of LNM is installed by LnmK, LnmL, LnmM, and LnmF, and (iii) leinamycin E1 (LNM E1), bearing a thiol moiety at C-3, is the nascent product of the LNM hybrid nonribosomal peptide synthetase (NRPS)-acyltransferase (AT)-less type I polyketide synthase (PKS). Sulfur incorporation at C-3 of LNM E1, however, has not been addressed. Here we report that: (i) the bioinformatics analysis reveals a pyridoxal phosphate (PLP)-dependent domain, we termed cysteine lyase (SH) domain (LnmJ-SH), within PKS module-8 of LnmJ; (ii) the LnmJ-SH domain catalyzes C-S bond cleavage by using l-cysteine and l-cysteine S-modified analogs as substrates through a PLP-dependent β-elimination reaction, establishing l-cysteine as the origin of sulfur at C-3 of LNM; and (iii) the LnmJ-SH domain, sharing no sequence homology with any other enzymes catalyzing C-S bond cleavage, represents a new family of PKS domains that expands the chemistry and enzymology of PKSs and might be exploited to incorporate sulfur into polyketide natural products by PKS engineering.

  11. C-S bond cleavage by a polyketide synthase domain

    PubMed Central

    Ma, Ming; Lohman, Jeremy R.; Liu, Tao; Shen, Ben

    2015-01-01

    Leinamycin (LNM) is a sulfur-containing antitumor antibiotic featuring an unusual 1,3-dioxo-1,2-dithiolane moiety that is spiro-fused to a thiazole-containing 18-membered lactam ring. The 1,3-dioxo-1,2-dithiolane moiety is essential for LNM’s antitumor activity, by virtue of its ability to generate an episulfonium ion intermediate capable of alkylating DNA. We have previously cloned and sequenced the lnm gene cluster from Streptomyces atroolivaceus S-140. In vivo and in vitro characterizations of the LNM biosynthetic machinery have since established that: (i) the 18-membered macrolactam backbone is synthesized by LnmP, LnmQ, LnmJ, LnmI, and LnmG, (ii) the alkyl branch at C-3 of LNM is installed by LnmK, LnmL, LnmM, and LnmF, and (iii) leinamycin E1 (LNM E1), bearing a thiol moiety at C-3, is the nascent product of the LNM hybrid nonribosomal peptide synthetase (NRPS)-acyltransferase (AT)-less type I polyketide synthase (PKS). Sulfur incorporation at C-3 of LNM E1, however, has not been addressed. Here we report that: (i) the bioinformatics analysis reveals a pyridoxal phosphate (PLP)-dependent domain, we termed cysteine lyase (SH) domain (LnmJ-SH), within PKS module-8 of LnmJ; (ii) the LnmJ-SH domain catalyzes C-S bond cleavage by using l-cysteine and l-cysteine S-modified analogs as substrates through a PLP-dependent β-elimination reaction, establishing l-cysteine as the origin of sulfur at C-3 of LNM; and (iii) the LnmJ-SH domain, sharing no sequence homology with any other enzymes catalyzing C-S bond cleavage, represents a new family of PKS domains that expands the chemistry and enzymology of PKSs and might be exploited to incorporate sulfur into polyketide natural products by PKS engineering. PMID:26240335

  12. Photosensitized oxidation of aryl benzyl sulfoxides. Evidence for nucleophilic assistance to the C-s bond cleavage of aryl benzyl sulfoxide radical cations.

    PubMed

    Del Giacco, Tiziana; Lanzalunga, Osvaldo; Lapi, Andrea; Mazzonna, Marco; Mencarelli, Paolo

    2015-02-20

    The radical cations of a series of aryl benzyl sulfoxides (4-X-C6H4CH2SOC6H4Y(+•)) have been generated by photochemical oxidation of the parent sulfoxides sensitized by 3-cyano-N-methylquinolinium perchlorate (3-CN-NMQ(+)ClO4(-)). Steady-state photolysis experiments showed the prevailing formation of benzylic products deriving from the C-S fragmentation in the radical cations, together with sulfur-containing products. Formation of sulfoxide radical cations was unequivocally established by laser flash photolysis experiments showing the absorption bands of 3-CN-NMQ(•) (λmax = 390 nm) and of the radical cations (λmax = 500-620 nm). The decay rate constants of radical cations, determined by LFP experiments, decrease by increasing the electron-donating power of the arylsulfinyl Y substituent and to a smaller extent by increasing the electron-withdrawing power of the benzylic X substituent. A solvent nucleophilic assistance to the C-S bond cleavage has been suggested, supported by the comparison of substituent effects on the same process occurring in aryl tert-butyl sulfoxide radical cations. DFT calculations, performed to determine the bond dissociation free energy in the radical cations, the transition state energies associated with the unimolecular C-S bond cleavage, and the charge and spin delocalized on their structures, were also useful to endorse the nucleophilic assistance to the C-S scission.

  13. Hydrodesulfurization on Transition Metal Catalysts: Elementary Steps of C-S Bond Activation and Consequences of Bifunctional Synergies

    NASA Astrophysics Data System (ADS)

    Yik, Edwin Shyn-Lo

    convergence to a single phase is expected and predictable from thermodynamics at a given temperature and sulfur chemical potential, metastability of two phases can exist. We demonstrate, through extensive characterization and kinetic evidence, such behaviors exist in Re, where structural disparities between its phases lead to kinetic hurdles that prevent interconversions between layered ReSx nanostructures and sulfur-covered Re metal clusters. Such features allowed, for the first time, direct comparisons of reaction rates at identical conditions on two disparate phases of the same transition metal identity. Rigorous assessments of kinetic and selectivity data indicated that more universal mechanistic features persist across all catalysts studied, suggesting that differences in their catalytic activity were the result of different densities of HDS sites, which appeared to correlate with their respective metal-sulfur bond energies. Kinetic responses and product distributions indicated that the consumption of thiophene proceeds by the formation of a partially-hydrogenated surface intermediate, which subsequently produces tetrahydrothiophene (THT) and butene/butane (C4) via primary routes on similar types of sites. These sites are formed from desorption of weakly-bound sulfur adatoms on sulfur-covered metal surfaces, which can occur when the heat of sulfur adsorption is sufficiently low at high sulfur coverage as a result of increased sulfur-sulfur repulsive interactions. Relative stabilities and differences in the molecularity of the respective transition states that form THT and C4 dictate product distributions. THT desulfurization to form C4 occurs via readsorption and subsequent dehydrogenation, evidenced by secondary rates that exhibited negative H2 dependences. These behaviors suggest that C-S bond activation occurs on a partially (un)saturated intermediate, analogous to behaviors observed in C-C bond scission reactions of linear and cycloalkanes on hydrogen-covered metal

  14. Hydrodesulfurization on Transition Metal Catalysts: Elementary Steps of C-S Bond Activation and Consequences of Bifunctional Synergies

    NASA Astrophysics Data System (ADS)

    Yik, Edwin Shyn-Lo

    convergence to a single phase is expected and predictable from thermodynamics at a given temperature and sulfur chemical potential, metastability of two phases can exist. We demonstrate, through extensive characterization and kinetic evidence, such behaviors exist in Re, where structural disparities between its phases lead to kinetic hurdles that prevent interconversions between layered ReSx nanostructures and sulfur-covered Re metal clusters. Such features allowed, for the first time, direct comparisons of reaction rates at identical conditions on two disparate phases of the same transition metal identity. Rigorous assessments of kinetic and selectivity data indicated that more universal mechanistic features persist across all catalysts studied, suggesting that differences in their catalytic activity were the result of different densities of HDS sites, which appeared to correlate with their respective metal-sulfur bond energies. Kinetic responses and product distributions indicated that the consumption of thiophene proceeds by the formation of a partially-hydrogenated surface intermediate, which subsequently produces tetrahydrothiophene (THT) and butene/butane (C4) via primary routes on similar types of sites. These sites are formed from desorption of weakly-bound sulfur adatoms on sulfur-covered metal surfaces, which can occur when the heat of sulfur adsorption is sufficiently low at high sulfur coverage as a result of increased sulfur-sulfur repulsive interactions. Relative stabilities and differences in the molecularity of the respective transition states that form THT and C4 dictate product distributions. THT desulfurization to form C4 occurs via readsorption and subsequent dehydrogenation, evidenced by secondary rates that exhibited negative H2 dependences. These behaviors suggest that C-S bond activation occurs on a partially (un)saturated intermediate, analogous to behaviors observed in C-C bond scission reactions of linear and cycloalkanes on hydrogen-covered metal

  15. Pathways for protein disulphide bond formation.

    PubMed

    Frand, A R; Cuozzo, J W; Kaiser, C A

    2000-05-01

    The folding of many secretory proteins depends upon the formation of disulphide bonds. Recent advances in genetics and cell biology have outlined a core pathway for disulphide bond formation in the endoplasmic reticulum (ER) of eukaryotic cells. In this pathway, oxidizing equivalents flow from the recently identified ER membrane protein Ero1p to secretory proteins via protein disulphide isomerase (PDI). Contrary to prior expectations, oxidation of glutathione in the ER competes with oxidation of protein thiols. Contributions of PDI homologues to the catalysis of oxidative folding will be discussed, as will similarities between eukaryotic and prokaryotic disulphide-bond-forming systems. PMID:10754564

  16. Terminal titanium-ligand multiple bonds. Cleavages of C=O and C=S double bonds with Ti imido complexes.

    PubMed

    Hsu, Shih-Hsien; Chang, Jr-Chiuan; Lai, Chun-Liang; Hu, Ching-Han; Lee, Hon Man; Lee, Gene-Hsiang; Peng, Shie-Ming; Huang, Jui-Hsien

    2004-10-18

    Treatment of (t-)BuN=TiCl(2)Py(3) with 2 equiv lithium ketiminate compound, Li[OCMeCHCMeN(Ar)] (where Ar = 2,6-diisopropylphenyl), in toluene at room temperature gave (t-)BuN=Ti[OCMeCHCMeN(Ar)](2) (1) in high yield. The reaction of 1 with phenyl isocyanate at room-temperature resulted in imido ligand exchange producing PhN=Ti[OCMeCHCMeN(Ar)](2) (2). Compound 1 decomposed at 90 degrees C to form a terminal titanium oxo compound O=Ti[OCMeCHCMeN(Ar)](2) (3) and (t-)BuNHCMeCHCMeNAr (4). Also, the compound 3 could be obtained by reacting 1 with CO(2) under mild condition. Similarly, while 1 reacts with an excess of carbon disulfide, a novel terminal titanium sulfido compound S=Ti[OCMeCHCMeN(Ar)](2) (5) was formed via a C=S bond breaking reaction. A novel titanium isocyanate compound Ti[OCMeCHCMeN(Ar)](2)(NCO)(OEt) (6) was formed on heating 1 with 1 equiv of urethane, H(2)NCOOEt. Compounds 1-6 have been characterized by (1)H and (13)C NMR spectroscopies. The molecular structures of 1, 3, 5, and 6 were determined by single-crystal X-ray diffraction. A theoretical calculation predicted that the cleavage of the C-S double bonds for carbon disulfide with the Ti=N bond of compound 1 was estimated at ca. 21.8 kcal.mol(-1) exothermic.

  17. Native Disulfide Bond Formation in Proteins

    PubMed Central

    Woycechowsky, Kenneth J.; Raines, Ronald T.

    2010-01-01

    Summary Native disulfide bond formation is critical for the proper folding of many proteins. Recent studies using newly identified protein oxidants, folding catalysts, and mutant cells provide insight into the mechanism of oxidative protein folding in vivo. This insight promises new strategies for more efficient protein production. PMID:11006541

  18. A soft matter in construction - Statistical physics approach to formation and mechanics of C-S-H gels in cement

    NASA Astrophysics Data System (ADS)

    Del Gado, E.; Ioannidou, K.; Masoero, E.; Baronnet, A.; Pellenq, R. J.-M.; Ulm, F.-J.; Yip, S.

    2014-10-01

    Calcium-silicate hydrate (C-S-H) is the main binding agent in cement and concrete. It forms at the beginning of cement hydration, it progressively densifies as cement hardens and is ultimately responsible of concrete performances. This hydration product is a cohesive nano-scale gel, whose structure and mechanics are still poorly understood, in spite of its practical importance. Here we review some of the open questions for this fascinating material and a statistical physics approach recently developed, which allows us to investigate the gel formation under the out-of-equilibrium conditions typical of cement hydration and the role of the nano-scale structure in C-S-H mechanics upon hardening. Our approach unveils how some distinctive features of the kinetics of cement hydration can be related to changes in the morphology of the gels and elucidates the role of nano-scale mechanical heterogeneities in the hardened C-S-H.

  19. Oxidant Sensing by Reversible Disulfide Bond Formation*

    PubMed Central

    Cremers, Claudia M.; Jakob, Ursula

    2013-01-01

    Maintenance of the cellular redox balance is crucial for cell survival. An increase in reactive oxygen, nitrogen, or chlorine species can lead to oxidative stress conditions, potentially damaging DNA, lipids, and proteins. Proteins are very sensitive to oxidative modifications, particularly methionine and cysteine residues. The reversibility of some of these oxidative protein modifications makes them ideally suited to take on regulatory roles in protein function. This is especially true for disulfide bond formation, which has the potential to mediate extensive yet fully reversible structural and functional changes, rapidly adjusting the protein's activity to the prevailing oxidant levels. PMID:23861395

  20. Iridium-mediated C-S bond activation and transformation: organoiridium(III) thioether, thiolato, sulfinato and thiyl radical compounds. Synthesis, mechanistic, spectral, electrochemical and theoretical aspects.

    PubMed

    Das, Ujjwal; Ghorui, Tapas; Adhikari, Basab; Roy, Sima; Pramanik, Shuvam; Pramanik, Kausikisankar

    2015-05-14

    An attractive methodology, single-electron transfer (SET) reductive cleavage of the C-S bond mediated by a metal in the presence of the external stimuli PPh3, has been applied to the kinetically inert IrCl3 in order to synthesize the thiolato complex [Ir(III)(L(S))Cl(PPh3)2] 3 from precursor thioether complexes [Ir(III)(L(SR))Cl2(PPh3)] (R = alkyl) 2. The aforesaid cleavage process in association with (arene)C-H activation furnishes a new class of organosulfur compounds of iridium(III). The thiolato chelate 3 displays a reversible oxidative wave at 0.75 V vs. Ag/AgCl signifying its remarkable nucleophilic character. The high electron density on the thiolato-S vis-à-vis superior nucleophilicity can be envisaged through the formation of a number of S-centered derivatives. This observation has been corroborated with the nature of HOMO in 3, which assumes 49% of S(3p). Notably, the facile oxidative nature of 3 makes it an apposite precursor for metal-stabilized thiyl radical species. Indeed, iridium(III)-stabilized 3˙(+) can be generated by chemical/electrochemical means. The axial EPR spectra with g ∼ 2.0 along with theoretical analysis of SOMO (S(3p) 24% + Ph(π) 43% + d(yz) 15%) and spin density (ρ(S) = +0.543, ρ(Ph) = +0.315, ρ(Ir) = +0.151) of one-electron oxidized 3˙(+) validate the iridium-stabilized thiyl radical description. This observation suggests that the CNS coordination mode in thiophenolato complex 3 is redox-active. Complex 3 is very prone to S-centered oxidation under normal aerobic conditions to yield metallosulfoxide [Ir(III)(L(SO2))Cl(PPh3)2] 4. The enhanced nucleophilicity of thiolato-S can also be manifested via the smooth S-C bond making process with alkyl halides (R'X, R' = Me and allyl; X = Br, I) and subsequent formation of thioether complexes of type [Ir(III)(L(SR'))ClX(PPh3)] 5. The organosulfur compounds of iridium(III) exhibit rich spectral properties including luminescence and the origin of these transitions is scrutinized with

  1. Cellular Disulfide Bond Formation in Bioactive Peptides and Proteins

    PubMed Central

    Patil, Nitin A.; Tailhades, Julien; Hughes, Richard Anthony; Separovic, Frances; Wade, John D.; Hossain, Mohammed Akhter

    2015-01-01

    Bioactive peptides play important roles in metabolic regulation and modulation and many are used as therapeutics. These peptides often possess disulfide bonds, which are important for their structure, function and stability. A systematic network of enzymes—a disulfide bond generating enzyme, a disulfide bond donor enzyme and a redox cofactor—that function inside the cell dictates the formation and maintenance of disulfide bonds. The main pathways that catalyze disulfide bond formation in peptides and proteins in prokaryotes and eukaryotes are remarkably similar and share several mechanistic features. This review summarizes the formation of disulfide bonds in peptides and proteins by cellular and recombinant machinery. PMID:25594871

  2. Incorporation of zinc into calcium silicate hydrates, Part I: formation of C-S-H(I) with C/S=2/3 and its isochemical counterpart gyrolite

    SciTech Connect

    Stumm, Andreas . E-mail: andreas.stumm@itc-wgt.fzk.de; Garbev, Krassimir; Beuchle, Guenter; Black, Leon; Stemmermann, Peter; Nueesch, Rolf

    2005-09-01

    We have investigated the incorporation of zinc into both nanocrystalline and crystalline calcium silicate hydrates with starting C/S ratios of 2/3 (0.66). Zinc was added replacing calcium in the starting mixtures [Zn/(Zn+Ca)=0-1/4; 0-10 wt.% Zn], and the resultant phases were characterised using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), differential thermal analysis-thermogravimetry (DTA-TG) and environmental scanning electron microscopy (ESEM). In both groups of samples, increasing zinc content led to gradual structural changes, until eventually a second phase was formed. Zinc was incorporated to similar limits in both sets of samples. The thermal stability of the structures increased to a certain zinc content, beyond which there was structural destabilisation. Zinc incorporation is possible up to {approx}6 wt.%. Our observations strongly indicate similar zinc incorporation mechanisms in both sample series, namely incorporation of zinc into the interlayer of C-S-H(I) and the X-sheet of gyrolite for nanocrystalline and crystalline samples, respectively.

  3. Role of TBATB in nano indium oxide catalyzed C-S bond formation

    PubMed Central

    Gogoi, Prasanta; Hazarika, Sukanya; Barman, Pranjit

    2015-01-01

    Nano sized indium oxide is found to be an efficient catalyst for the conversion of thiols to sulfides using Na2CO3 as base and TBATB as reagent in DMSO at 110 °C. Here in situ generation of bromo intermediate by TBATB takes place through indium surface. A variety of aryl sulfides can be synthesized in excellent yields from less reactive chlorides, boronic acids and thiols. PMID:26415729

  4. Peptide Bond Formation Mechanism Catalyzed by Ribosome

    PubMed Central

    Świderek, Katarzyna; Marti, Sergio; Tuñón, Iñaki; Moliner, Vicent; Bertran, Juan

    2015-01-01

    In this paper we present a study of the peptide bond formation reaction catalyzed by ribosome. Different mechanistic proposals have been explored by means of Free Energy Perturbation methods within hybrid QM/MM potentials, where the chemical system has been described by the M06-2X functional and the environment by means of the AMBER force field. According to our results, the most favourable mechanism in the ribosome would proceed through an eight-membered ring transition state, involving a proton shuttle mechanism through the hydroxyl group of the sugar and a water molecule. This transition state is similar to that described for the reaction in solution (J. Am. Chem. Soc. 2013, 135, 8708–8719) but the reaction mechanisms are noticeable different. Our simulations reproduce the experimentally determined catalytic effect of ribosome that can be explained by the different behaviour of the two environments. While the solvent reorganizes during the chemical process involving an entropic penalty, the ribosome is preorganized in the formation of the Michaelis complex and does not suffer important changes along the reaction, dampening the charge redistribution of the chemical system. PMID:26325003

  5. Protein Nanopatterns by Oxime Bond Formation

    PubMed Central

    Christman, Karen L.; Broyer, Rebecca M.; Schopf, Eric; Kolodziej, Christopher M.; Chen, Yong; Maynard, Heather D.

    2011-01-01

    Patterning proteins at the nanoscale is important for applications in biology and medicine. As feature sizes are reduced, it is critical that immobilization strategies provide site-specific attachment of the biomolecules. In this study, oxime chemistry was exploited to conjugate proteins onto nanometer-sized features. Poly(Boc-aminooxy tetra(ethylene glycol) methacrylate) was synthesized by free radical polymerization. The polymer was patterned onto silicon wafers using an electron beam writer. Trifluoroacetic acid removal of the Boc groups provided the desired aminooxy functionality. In this manner, patterns of concentric squares and contiguous bowtie shapes were fabricated with 150–170 nm wide features. Ubiquitin modified at the N-terminus with an α-ketoamide group and Nε-levulinyl lysine modified bovine serum albumin were subsequently conjugated to the polymer nanopatterns. Protein immobilization was confirmed by fluorescence microscopy. Control studies on protected surfaces and using proteins presaturated with O-methoxyamine indicated that attachment occurred via oxime bond formation. PMID:21192671

  6. Novel carbon–carbon bond formations for biocatalysis

    PubMed Central

    Resch, Verena; Schrittwieser, Joerg H; Siirola, Elina; Kroutil, Wolfgang

    2011-01-01

    Carbon–carbon bond formation is the key transformation in organic synthesis to set up the carbon backbone of organic molecules. However, only a limited number of enzymatic C–C bond forming reactions have been applied in biocatalytic organic synthesis. Recently, further name reactions have been accomplished for the first time employing enzymes on a preparative scale, for instance the Stetter and Pictet–Spengler reaction or oxidative C–C bond formation. Furthermore, novel enzymatic C–C bond forming reactions have been identified like benzylation of aromatics, intermolecular Diels-Alder or reductive coupling of carbon monoxide. PMID:21354781

  7. Preparation of phosphines through C–P bond formation

    PubMed Central

    Wauters, Iris; Debrouwer, Wouter

    2014-01-01

    Summary Phosphines are an important class of ligands in the field of metal-catalysis. This has spurred the development of new routes toward functionalized phosphines. Some of the most important C–P bond formation strategies were reviewed and organized according to the hybridization of carbon in the newly formed C–P bond. PMID:24991257

  8. Resolving the molecular mechanism of cadherin catch bond formation

    SciTech Connect

    Manibog, Kristine; Li, Hui; Rakshit, Sabyasachi; Sivasankar, Sanjeevi

    2014-06-02

    Classical cadherin Ca(2+)-dependent cell-cell adhesion proteins play key roles in embryogenesis and in maintaining tissue integrity. Cadherins mediate robust adhesion by binding in multiple conformations. One of these adhesive states, called an X-dimer, forms catch bonds that strengthen and become longer lived in the presence of mechanical force. Here we use single-molecule force-clamp spectroscopy with an atomic force microscope along with molecular dynamics and steered molecular dynamics simulations to resolve the molecular mechanisms underlying catch bond formation and the role of Ca(2+) ions in this process. Our data suggest that tensile force bends the cadherin extracellular region such that they form long-lived, force-induced hydrogen bonds that lock X-dimers into tighter contact. When Ca(2+) concentration is decreased, fewer de novo hydrogen bonds are formed and catch bond formation is eliminated

  9. Cooperative Hydrogen Bonding in Amyloid Formation.

    SciTech Connect

    Tsemekhman, Kiril L.; Goldschmidt, Lukasz; Eisenberg, Dvaid; Baker, David

    2007-04-01

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Amyloid diseases, including Alzheimer's and prion diseases, are each associated with unbranched protein fibrils. Each fibril is made of a particular protein, yet they share common properties. One such property is nucleation-dependent fibril growth. Monomers of amyloid-forming proteins can remain in dissolved form for long periods, before rapidly assembly into fibrils. The lag before growth has been attributed to slow kinetics of formation of a nucleus, on which other molecules can deposit to form the fibril. We have explored the energetics of fibril formation, based on the known molecular structure of a fibril-forming peptide from the yeast prion, Sup35, using both classical and quantum (density functional theory) methods. We find that the energetics of fibril formation for the first three layers are cooperative using both methods. This cooperativity is consistent with the observation that formation of amyloid fibrils involves slow nucleation and faster growth.

  10. Interface formation and strength of Be/DSCu diffusion bonding

    NASA Astrophysics Data System (ADS)

    Makino, T.; Iwadachi, T.

    1998-10-01

    Beryllium has been proposed to be used as a plasma facing material of the first wall for ITER, and will be bonded by HIP process to Dispersion Strengthened Copper (DSCu). Be/DSCu diffusion bonding tests in the range of temperature from 600°C to 850°C by hot pressing techniques have been conducted to identify the effect of bonding temperature and time on interface formation and joint strength. The bonded Be/DSCu joints were evaluated by microstructural analysis of the interface and shear strength tests at room temperature. The diffusion layer of directly bonded Be/DSCu joints and the joints with Be-Cu interlayer consisted of Be 2Cu( δ) phase on the Be side and Cu + BeCu( γ) phase on the DSCu side. Cu + BeCu( γ) phase generated remarkably fast at 800-850°C. The thickness of the diffusion layer was linear to a square root of bonding time. Shear strength of the joints bonded at 650-750°C are all around 200 MPa. Shear strength is dominated by the formation of the layer of Be 2Cu( δ) phase on the Be side.

  11. Disulfide bond formation in prokaryotes: history, diversity and design.

    PubMed

    Hatahet, Feras; Boyd, Dana; Beckwith, Jon

    2014-08-01

    The formation of structural disulfide bonds is essential for the function and stability of a great number of proteins, particularly those that are secreted. There exists a variety of dedicated cellular catalysts and pathways from archaea to humans that ensure the formation of native disulfide bonds. In this review we describe the initial discoveries of these pathways and report progress in recent years in our understanding of the diversity of these pathways in prokaryotes, including those newly discovered in some archaea. We will also discuss the various successful efforts to achieve laboratory-based evolution and design of synthetic disulfide bond formation machineries in the bacterium Escherichia coli. These latter studies have also led to new more general insights into the redox environment of the cytoplasm and bacterial cell envelope. This article is part of a Special Issue entitled: Thiol-Based Redox Processes.

  12. Polarized and depolarized Raman spectra of liquid carbon disulfide in the pressure range 0-10 kbar. I. Vibration frequencies, C-S bond length, and Fermi resonance

    NASA Astrophysics Data System (ADS)

    Ikawa, S.; Whalley, Edward

    1986-09-01

    The effect of pressure on the polarized and depolarized Raman spectra of liquid carbon disulphide, i.e., the peak frequencies, bandwidths, and relative intensities of both the allowed ν1 and 2ν2 bands and the interaction-induced ν2 and ν3 bands, have been measured at 22 °C up to 10 kbar. This paper discusses the effect of pressure on the frequencies and on the relative isotropic intensity of the ν1 and 2ν2 bands. The frequency of the ν1 band increases linearly with pressure, within the experimental uncertainty, at the rate 0.16±0.01 cm-1 kbar-1, and the frequencies of the ν2, ν3, and 2ν2 bands decrease nonlinearly. The frequency shifts are described by second-order perturbation theory with the molecular anharmonicity and the intermolecular interaction as perturbations. The leading terms of the shifts consist of the same derivative of the interaction potential, multiplied by different anharmonicity constants, and the shifts of the ν1 and 2ν2 bands suggests that the C-S bond length decreases at the rate 2×10-4 Å kbar-1. The relative isotropic intensity of the 2ν2 and ν1 bands increases with pressure at the rate 0.050 kbar-1, whereas the anisotropic 2ν2 intensity relative to the isotropic ν1 intensity is independent of pressure to the experimental precision of ˜0.005. The effect of pressure on the second derivative of the isotropic and anisotropic parts of the polarizability with respect to the bend coordinate was estimated as 1.1×10-43 C m2 V-1 kbar-1 and ˜0, respectively, from these values.

  13. Creating σ-holes through the formation of beryllium bonds.

    PubMed

    Brea, Oriana; Mó, Otilia; Yáñez, Manuel; Alkorta, Ibon; Elguero, José

    2015-09-01

    Through the use of ab initio theoretical models based on MP2/aug-cc-pVDZ-optimized geometries and CCSD(T)/aug-cc-pVTZ and CCSD(T)/aug-c-pVDZ total energies, it has been shown that the significant electron density rearrangements that follow the formation of a beryllium bond may lead to the appearance of a σ-hole in systems that previously do not exhibit this feature, such as CH3 OF, NO2 F, NO3 F, and other fluorine-containing systems. The creation of the σ-hole is another manifestation of the bond activation-reinforcement (BAR) rule. The appearance of a σ-hole on the F atoms of CH3 OF is due to the enhancement of the electronegativity of the O atom that participates in the beryllium bond. This atom recovers part of the charge transferred to Be by polarizing the valence density of the F into the bonding region. An analysis of the electron density shows that indeed this bond becomes reinforced, but the F atom becomes more electron deficient with the appearance of the σ-hole. Importantly, similar effects are also observed even when the atom participating in the beryllium bond is not directly attached to the F atom, as in NO2 F, NO3 F, or NCF. Hence, whereas the isolated CH3 OF, NO2 F, and NO3 F are unable to yield F⋅⋅⋅Base halogen bonds, their complexes with BeX2 derivatives are able to yield such bonds. Significant cooperative effects between the new halogen bond and the beryllium bond reinforce the strength of both noncovalent interactions.

  14. Diacetoxyiodobenzene assisted C-O bond formation via sequential acylation and deacylation process: synthesis of benzoxazole amides and their mechanistic study by DFT.

    PubMed

    Nahakpam, Lokendrajit; Chipem, Francis A S; Chingakham, Brajakishor S; Laitonjam, Warjeet S

    2016-08-10

    An efficient method for the transformation of N-substituted-N'-benzoylthioureas to substituted N-benzoxazol-2-yl-amides using diacetoxyiodobenzene (DIB) is described in this work. The transformation follows the C-O bond formation leading to the benzoxazole derivative, due to oxidative dehydrogenation by DIB, instead of the expected C-S bond formation of the benzothiazole moiety. The C-O bond formation leading to benzoxazole is due to consecutive acylation and deacylation in conjunction with the reduction of two moles of DIB. A plausible mechanism was proposed for the reaction and density functional calculations were also performed to study the reaction mechanism. PMID:27461562

  15. Diacetoxyiodobenzene assisted C-O bond formation via sequential acylation and deacylation process: synthesis of benzoxazole amides and their mechanistic study by DFT.

    PubMed

    Nahakpam, Lokendrajit; Chipem, Francis A S; Chingakham, Brajakishor S; Laitonjam, Warjeet S

    2016-08-10

    An efficient method for the transformation of N-substituted-N'-benzoylthioureas to substituted N-benzoxazol-2-yl-amides using diacetoxyiodobenzene (DIB) is described in this work. The transformation follows the C-O bond formation leading to the benzoxazole derivative, due to oxidative dehydrogenation by DIB, instead of the expected C-S bond formation of the benzothiazole moiety. The C-O bond formation leading to benzoxazole is due to consecutive acylation and deacylation in conjunction with the reduction of two moles of DIB. A plausible mechanism was proposed for the reaction and density functional calculations were also performed to study the reaction mechanism.

  16. Macrocycle Synthesis by Chloride-Templated Amide Bond Formation.

    PubMed

    Martí-Centelles, Vicente; Burguete, M Isabel; Luis, Santiago V

    2016-03-01

    A new family of pseudopeptidic macrocyclic compounds has been prepared involving an anion-templated amide bond formation reaction at the macrocyclization step. Chloride anion was found to be the most efficient template in the macrocyclization process, producing improved macrocyclization yields with regard to the nontemplated reaction. The data suggest a kinetic effect of the chloride template, providing an appropriate folded conformation of the open-chain precursor and reducing the energy barrier for the formation of the macrocyclic product. PMID:26820908

  17. Electrochemical controlling and monitoring of halogen bond formation in solution.

    PubMed

    Groni, Sihem; Maby-Raud, Tanguy; Fave, Claire; Branca, Mathieu; Schöllhorn, Bernd

    2014-12-01

    Cyclic voltammetry has been used for the first time to probe and to control the formation of non-covalent halogen bonding (XB) via redox switching. These results strongly encourage the use of electrochemistry as an economical and precisely controllable tool for the investigation of XB in solution. PMID:25313384

  18. Electrochemical controlling and monitoring of halogen bond formation in solution.

    PubMed

    Groni, Sihem; Maby-Raud, Tanguy; Fave, Claire; Branca, Mathieu; Schöllhorn, Bernd

    2014-12-01

    Cyclic voltammetry has been used for the first time to probe and to control the formation of non-covalent halogen bonding (XB) via redox switching. These results strongly encourage the use of electrochemistry as an economical and precisely controllable tool for the investigation of XB in solution.

  19. Disulfide Bond Formation in Yeast NAD+-Specific Isocitrate Dehydrogenase†

    PubMed Central

    Garcia, Joshua A.; Minard, Karyl I.; Lin, An-Ping; McAlister-Henn, Lee

    2009-01-01

    The tricarboxylic acid cycle NAD+-specific isocitrate dehydrogenase (IDH) of Saccharomyces cerevisiae is an octameric enzyme composed of four heterodimers of regulatory IDH1 and catalytic IDH2 subunits. Recent structural analyses revealed the close proximity of Cys-150 residues from IDH2 in adjacent heterodimers, and features of the structure for the ligand-free enzyme suggested that formation of a disulfide bond between these residues might stabilize an inactive form of the enzyme. We constructed two mutant forms of IDH, one containing a C150S substitution in IDH2 and the other containing C56S/C242S substitutions in IDH2 leaving Cys-150 as the sole cysteine residue. Treatment of the affinity-purified enzymes with diamide resulted in the formation of disulfide bonds and in decreased activities for the wild-type and C56S/C242S enzymes. Both effects were reversible by the addition of dithiothreitol. Diamide had no effect on the C150S mutant enzyme, suggesting that Cys-150 is essential for the formation of a disulfide bond that inhibits IDH activity. Diamide-induced formation of the Cys-150 disulfide bond was also observed in vivo for yeast transformants expressing the wild-type or C56S/C242S enzymes but not for a transformant expressing the C150S enzyme. Finally, natural formation of the Cys-150 disulfide bond with a concomitant decrease in cellular IDH activity was observed during the stationary phase for the parental strain and for transformants expressing wild-type or C56S/C242S enzymes but not for a transformant expressing the C150S enzyme. A reduction in viability for the latter strain suggests that a decrease in IDH activity is important for metabolic changes in stationary phase cells. PMID:19645416

  20. Homolytic S-S bond dissociation of 11 bis(thiocarbonyl)disulfides R-C(=S)-S-S-C(=S)R and prediction of a novel rubber vulcanization accelerator.

    PubMed

    Mak, Adrian Matthew; Steudel, Ralf; Wong, Ming Wah

    2008-06-01

    The structures and energetics of eight substituted bis(thiocarbonyl)disulfides (RCS(2))(2), their associated radicals RCS(2)(*), and their coordination compounds with a lithium cation have been studied at the G3X(MP2) level of theory for R = H, Me, F, Cl, OMe, SMe, NMe(2), and PMe(2). The effects of substituents on the dissociation of (RCS(2))(2) to RCS(2)(*) were analyzed using isodesmic stabilization reactions. Electron-donating groups with an unshared pair of electrons have a pronounced stabilization effect on both (RCS(2))(2) and RCS(2)(*). The S-S bond dissociation enthalpy of tetramethylthiuram disulfide (TMTD, R = NMe(2)) is the lowest in the above series (155 kJ mol(-1)), attributed to the particular stability of the formed Me(2)NCS(2)(*) radical. Both (RCS(2))(2) and the fragmented radicals RCS(2)(*) form stable chelate complexes with a Li(+) cation. The S-S homolytic bond cleavage in (RCS(2))(2) is facilitated by the reaction [Li(RCS(2))(2)](+)+Li(+)-->2 [Li(RCS(2))](*+). Three other substituted bis(thiocarbonyl) disulfides with the unconventional substituents R = OSF(5), Gu(1), and Gu(2) have been explored to find suitable alternative rubber vulcanization accelerators. Bis(thiocarbonyl)disulfide with a guanidine-type substituent, (Gu(1)CS(2))(2), is predicted to be an effective accelerator in sulfur vulcanization of rubber. Compared to TMTD, (Gu(1)CS(2))(2) is calculated to have a lower bond dissociation enthalpy and smaller associated barrier for the S-S homolysis. PMID:18418826

  1. Homolytic S-S bond dissociation of 11 bis(thiocarbonyl)disulfides R-C(=S)-S-S-C(=S)R and prediction of a novel rubber vulcanization accelerator.

    PubMed

    Mak, Adrian Matthew; Steudel, Ralf; Wong, Ming Wah

    2008-06-01

    The structures and energetics of eight substituted bis(thiocarbonyl)disulfides (RCS(2))(2), their associated radicals RCS(2)(*), and their coordination compounds with a lithium cation have been studied at the G3X(MP2) level of theory for R = H, Me, F, Cl, OMe, SMe, NMe(2), and PMe(2). The effects of substituents on the dissociation of (RCS(2))(2) to RCS(2)(*) were analyzed using isodesmic stabilization reactions. Electron-donating groups with an unshared pair of electrons have a pronounced stabilization effect on both (RCS(2))(2) and RCS(2)(*). The S-S bond dissociation enthalpy of tetramethylthiuram disulfide (TMTD, R = NMe(2)) is the lowest in the above series (155 kJ mol(-1)), attributed to the particular stability of the formed Me(2)NCS(2)(*) radical. Both (RCS(2))(2) and the fragmented radicals RCS(2)(*) form stable chelate complexes with a Li(+) cation. The S-S homolytic bond cleavage in (RCS(2))(2) is facilitated by the reaction [Li(RCS(2))(2)](+)+Li(+)-->2 [Li(RCS(2))](*+). Three other substituted bis(thiocarbonyl) disulfides with the unconventional substituents R = OSF(5), Gu(1), and Gu(2) have been explored to find suitable alternative rubber vulcanization accelerators. Bis(thiocarbonyl)disulfide with a guanidine-type substituent, (Gu(1)CS(2))(2), is predicted to be an effective accelerator in sulfur vulcanization of rubber. Compared to TMTD, (Gu(1)CS(2))(2) is calculated to have a lower bond dissociation enthalpy and smaller associated barrier for the S-S homolysis.

  2. Peptide Bond Formation in Water Mediated by Carbon Disulfide.

    PubMed

    Leman, Luke J; Huang, Zheng-Zheng; Ghadiri, M Reza

    2015-09-01

    Demonstrating plausible nonenzymatic polymerization mechanisms for prebiotic monomers represents a fundamental goal in prebiotic chemistry. While a great deal is now known about the potentially prebiotic synthesis of amino acids, our understanding of abiogenic polymerization processes to form polypeptides is less well developed. Here, we show that carbon disulfide (CS2), a component of volcanic emission and sulfide mineral weathering, and a widely used synthetic reagent and solvent, promotes peptide bond formation in modest yields (up to ∼20%) from α-amino acids under mild aqueous conditions. Exposure of a variety of α-amino acids to CS2 initially yields aminoacyl dithiocarbamates, which in turn generate reactive 2-thiono-5-oxazolidone intermediates, the thio analogues of N-carboxyanhydrides. Along with peptides, thiourea and thiohydantoin species are produced. Amino acid stereochemistry was preserved in the formation of peptides. Our findings reveal that CS2 could contribute to peptide bond formation, and possibly other condensation reactions, in abiogenic settings. PMID:26308392

  3. Relevance of thermal effects in the formation of endohedral metallofullerenes: the case of Gd3N@C(s)(39663)-C82 and other related systems.

    PubMed

    Mulet-Gas, Marc; Rodríguez-Fortea, Antonio; Echegoyen, Luis; Poblet, Josep M

    2013-02-18

    Thermal contributions to the free energy have to be taken into account to rationalize the formation of Gd(3)N@C(s)(39663)-C(82), a nitride endohedral metallofullerene that shows a carbon cage with two fused pentagons which is not predicted to have the lowest electronic energy among the isomers of C(82). The lower symmetry and the larger number of pyracylene units of C(s)(39663)-C(82) with respect to the cage in the lowest-energy metallofullerene, C(2v)(39705)-C(82), favor its formation at high temperatures, as seen for other similar cage isomers that encapsulate metal clusters within the C(80) and C(82) families. These cages, which share common motifs with the prototypical I(h)(7)-C(80), are all related by C(2) insertions/extrusions and Stone-Wales transformations.

  4. Bivalent cation binding effect on formation of the peptide bond

    NASA Astrophysics Data System (ADS)

    Remko, Milan; Rode, Bernd Michael

    2000-01-01

    The reactions between formic acid (or glycine) and ammonia, without and with Mg 2+, Ni 2+ and Cu 2+ cations as catalysts, have been studied as model reactions for peptide bond formation using the Becke3LYP functional and 6-311+G(d,p) basis set of DFT theory. Enthalpies and free energies for the stationary points of each reaction have been calculated to determine the thermodynamics of reactions investigated. A substantial decrease in reaction enthalpies and free energies was found for formic acid-ammonia and glycine-ammonia reactions catalysed by Mg 2+, Ni 2+ and Cu 2+ ions compared with those of the uncatalysed amide bond formation. The catalytic effect of the transition metal ions Ni 2+ and Cu 2+ is of similar strength and more pronounced than that of the Mg 2+ cation.

  5. Late-stage formation of carbon-fluorine bonds.

    PubMed

    Campbell, Michael G; Ritter, Tobias

    2014-06-01

    In this account, we review work from our lab on the development of methods for carbon-fluorine bond formation, with an emphasis on late-stage fluorination of functionalized small molecules and synthesis of (18) F-labeled molecules for potential use as tracers in positron emission tomography (PET). We attempt to highlight reactions that we feel are of particular practical relevance, as well as areas of research where there is still significant room for advancement.

  6. Amide and Peptide Bond Formation in Water at Room Temperature.

    PubMed

    Gabriel, Christopher M; Keener, Megan; Gallou, Fabrice; Lipshutz, Bruce H

    2015-08-21

    A general and environmentally responsible method for the formation of amide/peptide bonds in an aqueous micellar medium is described. Use of uronium salt (1-cyano-2-ethoxy-2-oxoethylidenaminooxy)dimethylaminomorpholinocarbenium hexafluorophosphate (COMU) as a coupling reagent, 2,6-lutidine, and TPGS-750-M represents mild conditions associated with these valuable types of couplings. The aqueous reaction medium is recyclable leading to low E Factors. PMID:26251952

  7. Heats of Formation and Bond Energies in Group III Compounds

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Allendorf, Mark D.; Melius, Carl F.; Arnold, James O. (Technical Monitor)

    1999-01-01

    We present heats of formation and bond energies for Group-III compounds obtained from calculations of molecular ground-state I electronic energies. Data for compounds of the form MXn are presented, where M = B, Al, Ga, and In, X = He H, Cl, and CH3, and n = 1-3. Energies for the B, Al, and Ga compounds are obtained from G2 predictions, while those for the In compounds are obtained from CCSD(T)/CBS calculations; these are the most accurate calculations for indium-containing compounds published to date. In most cases, the calculated thermochemistry is in good agreement with published values derived from experiments for those species that have well-established heats of formation. Bond energies obtained from the heats of formation follow the expected trend (Cl much greater than CH3 approx. H). However, the CH3M-(CH3)2 bond energies obtained for trimethylgallium and trimethylindium are considerably stronger (greater than 15 kcal/mol) than currently accepted values.

  8. Hydrophobic interactions and hydrogen bonds in β-sheet formation

    NASA Astrophysics Data System (ADS)

    Narayanan, Chitra; Dias, Cristiano L.

    2013-09-01

    In this study, we investigate interactions of extended conformations of homodimeric peptides made of small (glycine or alanine) and large hydrophobic (valine or leucine) sidechains using all-atom molecular dynamics simulations to decipher driving forces for β-sheet formation. We make use of a periodic boundary condition setup in which individual peptides are infinitely long and stretched. Dimers adopt β-sheet conformations at short interpeptide distances (ξ ˜ 0.5 nm) and at intermediate distances (˜0.8 nm), valine and leucine homodimers assume cross-β-like conformations with side chains interpenetrating each other. These two states are identified as minima in the potential of mean force. While the number of interpeptide hydrogen bonds increases with decreasing interpeptide distance, the total hydrogen bond number in the system does not change significantly, suggesting that formation of β-sheet structures from extended conformations is not driven by hydrogen bonds. This is supported by an increase in electrostatic energy at short interpeptide distances. A remarkable correlation between the volume of the system and the total electrostatic energy is observed, further reinforcing the idea that excluding water in proteins comes with an enthalpic penalty. We also discuss microscopic mechanisms accounting for β-sheet formation based on computed enthalpy and entropy and we show that they are different for peptides with small and large side chains.

  9. Intermetallic compound formation at Cu-Al wire bond interface

    SciTech Connect

    Bae, In-Tae; Young Jung, Dae; Chen, William T.; Du Yong

    2012-12-15

    Intermetallic compound (IMC) formation and evolution at Cu-Al wire bond interface were studied using focused ion beam /scanning electron microscopy, transmission electron microscopy (TEM)/energy dispersive x-ray spectroscopy (EDS), nano beam electron diffraction (NBED) and structure factor (SF) calculation. It was found that discrete IMC patches were formed at the Cu/Al interface in as-packaged state and they grew toward Al pad after high temperature storage (HTS) environment at 150 Degree-Sign C. TEM/EDS and NBED results combined with SF calculation revealed the evidence of metastable {theta} Prime -CuAl{sub 2} IMC phase (tetragonal, space group: I4m2, a = 0.404 nm, c= 0.580 nm) formed at Cu/Al interfaces in both of the as-packaged and the post-HTS samples. Two feasible mechanisms for the formation of the metastable {theta} Prime -CuAl{sub 2} phase are discussed based on (1) non-equilibrium cooling of wire bond that is attributed to highly short bonding process time and (2) the epitaxial relationships between Cu and {theta} Prime -CuAl{sub 2}, which can minimize lattice mismatch for {theta} Prime -CuAl{sub 2} to grow on Cu.

  10. Transition-metal-free C-S bond formation: a facile access to aryl sulfones from sodium sulfinates via arynes.

    PubMed

    Pandya, Virat G; Mhaske, Santosh B

    2014-07-18

    Sulfones have been attractive targets for synthetic organic chemists owing to their immense applications in medicinal, material, and synthetic chemistry. In this context, an efficient transition-metal-free process has been demonstrated, wherein a broad range of alkyl/aryl/heteroaryl sodium sulfinates react with varyingly substituted aryne precursors (o-silyl aryl triflates) under mild reaction conditions to afford structurally diverse sulfones in good to excellent yields.

  11. Recognition of a novel type X═N-Hal···Hal (X = C, S, P; Hal = F, Cl, Br, I) halogen bonding.

    PubMed

    Gushchin, Pavel V; Kuznetsov, Maxim L; Haukka, Matti; Kukushkin, Vadim Yu

    2013-04-01

    The chlorination of the eight-membered platinum(II) chelates [PtCl2{NH═C(NR2)N(Ph)C(═NH)N(Ph)C(NR2)═NH}] (R = Me (1); R2 = (CH2)5 (2)) with uncomplexed imino group with Cl2 gives complexes bearing the ═N-Cl moiety [PtCl4{NH═C(NR2)N(Ph)C(═NCl)N(Ph)C(NR2)═NH}] (R = Me (3); R2 = (CH2)5 (4)). X-ray study for 3 revealed a novel type intermolecular halogen bonding ═N-Cl···Cl(-), formed between the Cl atom of the chlorinated imine and the chloride bound to the platinum(IV) center. The processing relevant structural data retrieved from the Cambridge Structural Database (CSDB) shows that this type of halogen bonding is realized in 18 more molecular species having X═N-Hal moieties (X = C, P, S, V, W; Hal = Cl, Br, I), but this weak ═N-Hal···Hal(-) bonding was totally neglected in the previous works. The presence of the halogen bonding in 3 was confirmed by theoretical calculations at the density functional theory (DFT, M06-2X) level, and its nature was analyzed. PMID:23469756

  12. Ala-His Mediated Peptide Bond Formation Revisited

    NASA Astrophysics Data System (ADS)

    Larkin, Deana C.; Martinis, Susan A.; Roberts, Deborah J.; Fox, George E.

    2001-12-01

    The historical origin of the translation machinery remains unresolved. Although the large 23S ribosomal RNA (rRNA) is almost certainly the catalytic component of the peptidyl transferase center in the modern ribosome, it is likely that greatly simplified systems were initially employed in the late stages of the prebiotic world. In particular, it has been suggested that small RNAs carrying amino acids were important for the genesis of protein synthesis. Consistent with this, a dipeptide, Ala-His, was previously claimed to be a prebiotically feasible catalyst mediating peptide bond formation in the presence of aminoacylated tRNA and cognate mRNA template, in the absence of other ribosomal components (Shimizu, 1996). We herein report a detailed study of putative dipeptide formation by Ala-His and RNAs carrying leucine. Based on the results presented here, it is unlikely that the dipeptide, Ala-His, catalyzes significant levels of Leu-Leu dipeptide formation in solution. A product is produced which can be readily mistaken for a dipeptide in the TLC separation systems employed in earlier work. We offer explanations for the formation of this product as well as another unexpected product. The results presented here are consistent with the notion that the translation machinery was likely based on catalytic RNA from its very inception.

  13. An elusive vinyl radical isolated as an appended unit in a five-coordinate Co(iii)-bis(iminobenzosemiquinone) complex formed via ligand-centered C-S bond cleavage.

    PubMed

    Sarkar, Prasenjit; Tiwari, Archana; Sarmah, Amrit; Bhandary, Subhrajyoti; Roy, Ram Kinkar; Mukherjee, Chandan

    2016-08-23

    Redox-active ligand H4Pra(edt(AP/AP)) experienced C-S bond cleavage during complexation reaction with Co(OAc)2·2H2O in the presence of Et3N in CH3OH in air. Thus, formed complex 1 was composed of two iminobenzosemiquinone radicals in its coordination sphere and an unprecedented stable tethered-vinyl radical. The complex has been characterized by mass, X-ray single crystal, X-band EPR, variable-temperature magnetic moment measurements and DFT based computational study.

  14. Formation of disulfide bonds in insect prophenoloxidase enhances immunity through improving enzyme activity and stability.

    PubMed

    Lu, Anrui; Peng, Qin; Ling, Erjun

    2014-06-01

    Type 3 copper proteins, including insect prophenoloxidase (PPO), contain two copper atoms in the active site pocket and can oxidize phenols. Insect PPO plays an important role in immunity. Insects and other invertebrates show limited recovery from pathogen invasion and wounds if phenoloxidase (PO) activity is low. In most insect PPOs, two disulfide bonds are present near the C-terminus. However, in Pimpla hypochondriaca (a parasitoid wasp), each PPO contains one disulfide bond. We thus questioned whether the formation of two sulfide bonds in insect PPOs improved protein stability and/or increased insect innate immunity over time. Using Drosophila melanogaster PPO1 as a model, one or two disulfide bonds were deleted to evaluate the importance of disulfide bonds in insect immunity. rPPO1 and mutants lacking disulfide bonds could be expressed and showed PO activity. However, the PO activities of mutants lacking one or two disulfide bonds significantly decreased. Deletion of disulfide bonds also reduced PPO thermostability. Furthermore, antibacterial activities against Escherichia coli and Bacillus subtilis significantly decreased when disulfide bonds were deleted. Therefore, the formation of two disulfide bond(s) in insect PPO enhances antibacterial activity by increasing PO activity and stability.

  15. Formation of Silicon-Gold Eutectic Bond Using Localized Heating Method

    NASA Astrophysics Data System (ADS)

    Lin, Liwei; Cheng, Yu-Ting; Najafi, Khalil

    1998-11-01

    A new bonding technique is proposed by using localized heating to supplythe bonding energy.Heating is achieved by applying a dc current through micromachined heaters made of gold which serves as both the heating and bonding material.At the interface of silicon and gold, the formation of eutectic bond takes place in about 5 minutes.Assembly of two substrates in microfabrication processescan be achieved by using this method.In this paper the following important results are obtained:1) Gold diffuses into silicon to form a strong eutectic bond by means of localized heating.2) The bonding strength reaches the fracture toughness of the bulk silicon.3) This bonding technique greatly simplifies device fabrication andassembly processes.

  16. Preventing disulfide bond formation weakens non-covalent forces among lysozyme aggregates.

    PubMed

    Ravi, Vijay Kumar; Goel, Mohit; Kotamarthi, Hema Chandra; Ainavarapu, Sri Rama Koti; Swaminathan, Rajaram

    2014-01-01

    Nonnative disulfide bonds have been observed among protein aggregates in several diseases like amyotrophic lateral sclerosis, cataract and so on. The molecular mechanism by which formation of such bonds promotes protein aggregation is poorly understood. Here in this work we employ previously well characterized aggregation of hen eggwhite lysozyme (HEWL) at alkaline pH to dissect the molecular role of nonnative disulfide bonds on growth of HEWL aggregates. We employed time-resolved fluorescence anisotropy, atomic force microscopy and single-molecule force spectroscopy to quantify the size, morphology and non-covalent interaction forces among the aggregates, respectively. These measurements were performed under conditions when disulfide bond formation was allowed (control) and alternatively when it was prevented by alkylation of free thiols using iodoacetamide. Blocking disulfide bond formation affected growth but not growth kinetics of aggregates which were ∼50% reduced in volume, flatter in vertical dimension and non-fibrillar in comparison to control. Interestingly, single-molecule force spectroscopy data revealed that preventing disulfide bond formation weakened the non-covalent interaction forces among monomers in the aggregate by at least ten fold, thereby stalling their growth and yielding smaller aggregates in comparison to control. We conclude that while constrained protein chain dynamics in correctly disulfide bonded amyloidogenic proteins may protect them from venturing into partial folded conformations that can trigger entry into aggregation pathways, aberrant disulfide bonds in non-amyloidogenic proteins (like HEWL) on the other hand, may strengthen non-covalent intermolecular forces among monomers and promote their aggregation.

  17. Mild Catalytic methods for Alkyl-Alkyl Bond Formation

    SciTech Connect

    Vicic, David A

    2009-08-10

    Overview of Research Goals and Accomplishments for the Period 07/01/06 – 06/30/07: Our overall research goal is to transform the rapidly emerging synthetic chemistry involving alkyl-alkyl cross-couplings into more of a mechanism-based field so that that new, rationally-designed catalysts can be performed under energy efficient conditions. Our specific objectives for the previous year were 1) to obtain a proper electronic description of an active catalyst for alkyl-alkyl cross-coupling reactions and 2) to determine the effect of ligand structure on the rate, scope, selectivity, and functional group compatibility of C(sp3)-C(sp3) cross-coupling catalysis. We have completed both of these initial objectives and established a firm base for further studies. The specific significant achievements of the current grant period include: 1) we have performed magnetic and computational studies on (terpyridine)NiMe, an active catalyst for alkyl-alkyl cross couplings, and have discovered that the unpaired electron resides heavily on the terpyridine ligand and that the proper electronic description of this nickel complex is a Ni(II)-methyl cation bound to a reduced terpyridine ligand; 2) we have for the first time shown that alkyl halide reduction by terpyridyl nickel catalysts is substantially ligand based; 3) we have shown by isotopic labeling studies that the active catalyst (terpyridine)NiMe is not produced via a mechanism that involves the formation of methyl radicals when (TMEDA)NiMe2 is used as the catalyst precursor; 4) we have performed an extensive ligand survey for the alkyl-alkyl cross-coupling reactions and have found that electronic factors only moderately influence reactivity in the terpyridine-based catalysis and that the most dramatic effects arise from steric and solubility factors; 5) we have found that the use of bis(dialkylphosphino)methanes as ligands for nickel does not produce active catalysts for cross-coupling but rather leads to bridging hydride

  18. Molecular and ionic hydrogen bond formation in fluorous solvents.

    PubMed

    O'Neal, Kristi L; Weber, Stephen G

    2009-01-01

    There are only a few studies of noncovalent association in fluorous solvents and even fewer that are quantitative. A full understanding, particularly of stoichiometry and binding strength of noncovalent interactions in fluorous solvents could be very useful in improved molecular-receptor-based extractions, advancements in sensor technologies, crystal engineering, and supramolecular chemistry. This work investigates hydrogen bonding between heterocyclic bases and a perfluoropolyether with a terminal carboxylic acid group (Krytox 157FSH (1)), chiefly in FC-72 (a mixture of perfluorohexanes). In particular, we were interested in whether or not proton transfer occurs, and if so, under what conditions in H-bonded complexes. Continuous variations experiments show that in FC-72 weaker bases (pyrazine, pyrimidine, and quinazoline) form 1:1 complexes with 1, whereas stronger bases (quinoline, pyridine, and isoquinoline) form 1:3 complexes. Ultraviolet and infrared spectral signatures reveal that the 1:1 complexes are molecular (B.HA) whereas the 1:3 complexes are ionic (BH+.A-HAHA). Infrared spectra of 1:3 ionic complexes are discussed in detail. Literature and experimental data on complexes between N-heterocyclic bases and carboxylic acids in a range of solvents are compiled to compare solvent effects on proton transfer. Polar solvents support ionic hydrogen bonds at a 1:1 mol ratio. In nonpolar organic solvents, ionic hydrogen bonds are only observed in complexes with 1:2 (base/acid) stoichiometries. In fluorous solvents, a larger excess of acid, 1:3, is necessary to facilitate proton transfer in hydrogen bonds between carboxylic acids and the bases studied.

  19. A flavoprotein oxidase defines a new endoplasmic reticulum pathway for biosynthetic disulphide bond formation.

    PubMed

    Sevier, C S; Cuozzo, J W; Vala, A; Aslund, F; Kaiser, C A

    2001-10-01

    Ero1 and Pdi1 are essential elements of the pathway for the formation of disulphide bonds within the endoplasmic reticulum (ER). By screening for alternative oxidation pathways in Saccharomyces cerevisiae, we identified ERV2 as a gene that when overexpressed can restore viability and disulphide bond formation to an ero1-1 mutant strain. ERV2 encodes a luminal ER protein of relative molecular mass 22,000. Purified recombinant Erv2p is a flavoenzyme that can catalyse O2-dependent formation of disulphide bonds. Erv2p transfers oxidizing equivalents to Pdi1p by a dithiol-disulphide exchange reaction, indicating that the Erv2p-dependent pathway for disulphide bond formation closely parallels that of the previously identified Ero1p-dependent pathway. PMID:11584268

  20. Carbon–heteroatom bond formation catalysed by organometallic complexes

    PubMed Central

    Hartwig, John F.

    2010-01-01

    At one time the synthetic chemist’s last resort, reactions catalysed by transition metals are now the preferred method for synthesizing many types of organic molecule. A recent success in this type of catalysis is the discovery of reactions that form bonds between carbon and heteroatoms (such as nitrogen, oxygen, sulphur, silicon and boron) via complexes of transition metals with amides, alkoxides, thiolates, silyl groups or boryl groups. The development of these catalytic processes has been supported by the discovery of new elementary reactions that occur at metal–heteroatom bonds and by the identification of factors that control these reactions. Together, these findings have led to new synthetic processes that are in daily use and have formed a foundation for the development of processes that are likely to be central to synthetic chemistry in the future. PMID:18800130

  1. Rhodium-Catalyzed C-C Bond Formation via Heteroatom-Directed C-H Bond Activation

    SciTech Connect

    Colby, Denise; Bergman, Robert; Ellman, Jonathan

    2010-05-13

    seen widespread success involves the use of a proximal heteroatom that serves as a directing group for the selective functionalization of a specific C-H bond. In a survey of examples of heteroatom-directed Rh catalysis, two mechanistically distinct reaction pathways are revealed. In one case, the heteroatom acts as a chelator to bind the Rh catalyst, facilitating reactivity at a proximal site. In this case, the formation of a five-membered metallacycle provides a favorable driving force in inducing reactivity at the desired location. In the other case, the heteroatom initially coordinates the Rh catalyst and then acts to stabilize the formation of a metal-carbon bond at a proximal site. A true test of the utility of a synthetic method is in its application to the synthesis of natural products or complex molecules. Several groups have demonstrated the applicability of C-H bond functionalization reactions towards complex molecule synthesis. Target-oriented synthesis provides a platform to test the effectiveness of a method in unique chemical and steric environments. In this respect, Rh-catalyzed methods for C-H bond functionalization stand out, with several syntheses being described in the literature that utilize C-H bond functionalization in a key step. These syntheses are highlighted following the discussion of the method they employ.

  2. Radical S-adenosylmethionine enzyme catalyzed thioether bond formation in sactipeptide biosynthesis.

    PubMed

    Flühe, Leif; Marahiel, Mohamed A

    2013-08-01

    Sactipeptides represent a new emerging class of ribosomally assembled and posttranslationally modified peptides that show diverse bioactivities. Their common hallmark is an intramolecular thioether bond that crosslink the sulfur atom of a cysteine residue with the α-carbon of an acceptor amino acid. This review summarizes recent achievements concerning the biosynthesis of sactipeptides in general and with special focus on the common enzymatic radical SAM mechanism leading to the thioether linkage formation. In addition this mechanism is compared to the mechanism of thioether bond formation during lanthipeptide biosynthesis and to other radical based thioether bond forming reactions. PMID:23891473

  3. Molecular determinants of cadherin ideal bond formation: Conformation-dependent unbinding on a multidimensional landscape.

    PubMed

    Manibog, Kristine; Sankar, Kannan; Kim, Sun-Ae; Zhang, Yunxiang; Jernigan, Robert L; Sivasankar, Sanjeevi

    2016-09-27

    Classical cadherin cell-cell adhesion proteins are essential for the formation and maintenance of tissue structures; their primary function is to physically couple neighboring cells and withstand mechanical force. Cadherins from opposing cells bind in two distinct trans conformations: strand-swap dimers and X-dimers. As cadherins convert between these conformations, they form ideal bonds (i.e., adhesive interactions that are insensitive to force). However, the biophysical mechanism for ideal bond formation is unknown. Here, we integrate single-molecule force measurements with coarse-grained and atomistic simulations to resolve the mechanistic basis for cadherin ideal bond formation. Using simulations, we predict the energy landscape for cadherin adhesion, the transition pathways for interconversion between X-dimers and strand-swap dimers, and the cadherin structures that form ideal bonds. Based on these predictions, we engineer cadherin mutants that promote or inhibit ideal bond formation and measure their force-dependent kinetics using single-molecule force-clamp measurements with an atomic force microscope. Our data establish that cadherins adopt an intermediate conformation as they shuttle between X-dimers and strand-swap dimers; pulling on this conformation induces a torsional motion perpendicular to the pulling direction that unbinds the proteins and forms force-independent ideal bonds. Torsional motion is blocked when cadherins associate laterally in a cis orientation, suggesting that ideal bonds may play a role in mechanically regulating cadherin clustering on cell surfaces. PMID:27621473

  4. Phase formation at bonded vanadium and stainless steel interfaces

    SciTech Connect

    Summers, T.S.E.

    1992-01-01

    The interface between vanadium bonded to stainless steel was studies to determine whether a brittle phase formed during three joining operations. Inertia friction welds between V and 21-6-9 stainless steel were examined using TEM. In the as-welded condition, a continuous, polygranular intermetallic layer about 0.25 {mu}m thick was present at the interface. This layer grew to about 50 {mu}m thick during heat treatment at 1000{degrees}C for two hours. Analysis of electron diffraction patterns confirmed that this intermetallic was the {omega} phase. The interface between vanadium and type 304, SANDVIK SAF 2205, and 21-6-9 stainless steel bonded by a co-extrusion process had intermetallic particles at the interface in the as-extruded condition. Heat treatment at 1000{degrees}C for two hours caused these particles to grow into continuous layers in all three cases. Based on the appearance, composition and hardness of this interfacial intermetallic, it was also concluded to be {omega} phase. Bonding V to type 430 stainless steel by co-extrusion caused V-rich carbides to form at the interface due to the higher concentration of C in the type 430 than in the other stainless steels investigated. The carbide particles initially present grew into a continuous layer during a two-hour heat treatment at 1000{degrees}C. Co-hipping 21-6-9 stainless steel tubing with V rod resulted in slightly more concentric specimens than the co-extruded ones, but a continuous layer of the {omega} phase formed during the hipping operation. This brittle layer could initiate failure during subsequent forming operations. The vanadium near the stainless steel interface in the co-extruded and co-hipped tubing in some cases was harder than before heat treatment. It was concluded that this hardening was due to thermal straining during cooling following heat treatment and that thermal strains might present a greater problem than seen here when longer tubes are used in actual applications.

  5. Formation of H3+ due to Intramolecular Bond Rearrangement in Doubly Charged Methanol

    NASA Astrophysics Data System (ADS)

    de, Sankar; Rajput, Jyoti; Roy, A.; Ghosh, P. N.; Safvan, C. P.

    2006-11-01

    We report the formation of H3+ by proton coagulation in methanol under the impact of low energy Ar8+ projectiles. Our time-of-flight coincidence measurements with CH3OD establish that the H3+ formation arises from intramolecular bond rearrangement of the methyl group. We have performed ab initio quantum chemical calculations that show the preferred pathway for C-H3 bond cleavage. Fragmentation of organic molecules like methanol under impact of highly charged ions is suggested as an alternative mechanism of H3+ formation in outer space.

  6. Catalytic asymmetric carbon-carbon bond formation via allylic alkylations with organolithium compounds

    NASA Astrophysics Data System (ADS)

    Pérez, Manuel; Fañanás-Mastral, Martín; Bos, Pieter H.; Rudolph, Alena; Harutyunyan, Syuzanna R.; Feringa, Ben L.

    2011-05-01

    Carbon-carbon bond formation is the basis for the biogenesis of nature's essential molecules. Consequently, it lies at the heart of the chemical sciences. Chiral catalysts have been developed for asymmetric C-C bond formation to yield single enantiomers from several organometallic reagents. Remarkably, for extremely reactive organolithium compounds, which are among the most broadly used reagents in chemical synthesis, a general catalytic methodology for enantioselective C-C formation has proven elusive, until now. Here, we report a copper-based chiral catalytic system that allows carbon-carbon bond formation via allylic alkylation with alkyllithium reagents, with extremely high enantioselectivities and able to tolerate several functional groups. We have found that both the solvent used and the structure of the active chiral catalyst are the most critical factors in achieving successful asymmetric catalysis with alkyllithium reagents. The active form of the chiral catalyst has been identified through spectroscopic studies as a diphosphine copper monoalkyl species.

  7. Mechanistic studies of carbonate macrocyclization: Rates of carbonate bond formation

    SciTech Connect

    Aquino, E.; Brittain, W.J.; Brunelle, D.J.

    1993-12-31

    High yields of cyclic oligomeric carbonates can be prepared using an amine-catalyzed reaction of bisphenol A-bischloroformate. The authors have studied the kinetics of this carbonate macrocyclization by the isolated study of key chemical events. Using stopped-flow FT-IR spectroscopy, it was found that the rate of carbonate formation between the intermediate acyl ammonium salt (1) and 4-isopropylphenol (4-IPP) is the same for tributylamine, triethylamine and diethylmethylamine. Previously, it was found that conversion of 1 to urethane was also insensitive to amine structure while the formation of 1 is profoundly dependent on amine structure.

  8. Formation of RNA phosphodiester bond by histidine-containing dipeptides.

    PubMed

    Wieczorek, Rafał; Dörr, Mark; Chotera, Agata; Luisi, Pier Luigi; Monnard, Pierre-Alain

    2013-01-21

    A new scenario for prebiotic formation of nucleic acid oligomers is presented. Peptide catalysis is applied to achieve condensation of activated RNA monomers into short RNA chains. As catalysts, L-dipeptides containing a histidine residue, primarily Ser-His, were used. Reactions were carried out in self-organised environment, a water-ice eutectic phase, with low concentrations of reactants. Incubation periods up to 30 days resulted in the formation of short oligomers of RNA. During the oligomerisation, an active intermediate (dipeptide-mononucleotide) is produced, which is the reactive species. Details of the mechanism and kinetics, which were elucidated with a set of control experiments, further establish that the imidazole side chain of a histidine at the carboxyl end of the dipeptide plays a crucial role in the catalysis. These results suggest that this oligomerisation catalysis occurs by a transamination mechanism. Because peptides are much more likely products of spontaneous condensation than nucleotide chains, their potential as catalysts for the formation of RNA is interesting from the origin-of-life perspective. Finally, the formation of the dipeptide-mononucleotide intermediate and its significance for catalysis might also be viewed as the tell-tale signs of a new example of organocatalysis. PMID:23255284

  9. Relationship between chemical structure and supramolecular effective molarity for formation of intramolecular H-bonds.

    PubMed

    Sun, Hongmei; Hunter, Christopher A; Navarro, Cristina; Turega, Simon

    2013-09-01

    Effective molarity (EM) is a key parameter that determines the efficiency of a range of supramolecular phenomena from the folding of macromolecules to multivalent ligand binding. Coordination complexes formed between zinc porphyrins equipped H-bond donor sites and pyridine ligands equipped with H-bond acceptor sites have allowed systematic quantification of EM values for the formation of intramolecular H-bonds in 240 different systems. The results provide insights into the relationship of EM to supramolecular architecture, H-bond strength, and solvent. Previous studies on ligands equipped with phosphonate diester and ether H-bond acceptors were inconclusive, but the experiments described here on ligands equipped with phosphine oxide, amide, and ester H-bond acceptors resolve these ambiguities. Chemical double-mutant cycles were used to dissect the thermodynamic contributions of individual H-bond interactions to the overall stabilities of the complexes and hence determine the values of EM, which fall in the range 1-1000 mM. Solvent has little effect on EM, and the values measured in toluene and 1,1,2,2-tetrachloroethane are similar. For H-bond acceptors that have similar geometries but different H-bond strengths (amide and ester), the values of EM are very similar. For H-bond acceptors that have different geometries but similar H-bond strengths (amide and phosphonate diester), there is little correlation between the values of EM. These results imply that supramolecular EMs are independent of solvent and intrinsic H-bond strength but depend on supramolecular architecture and geometric complementarity.

  10. Shear band formation in plastic bonded explosive (PBX)

    SciTech Connect

    Dey, T.N.; Johnson, J.N.

    1997-07-01

    Adiabatic shear bands can be a source of ignition and lead to detonation. At low to moderate deformation rates, 10-1000/s , two other mechanisms can also give rise to shear bands. These mechanisms are: 1) softening caused by microcracking and 2) a constitutive response with a non-associated flow rule as is observed in granular material such as soil. Brittle behavior at small strains and the granular nature of HMX suggest that PBX-9501 constitutive behavior may be similar to sand. A constitutive model for the first of these mechanisms is studied in a series of calculations. This viscoelastic constitutive model for PBX-9501 softens via a statistical crack model. A sand model is used to provide a non-associated flow rule and detailed results will be reported elsewhere. Both models generate shear band formation at 1-2% strain at nominal strain rates at and below 1000/s. Shear band formation is suppressed at higher strain rates. Both mechanisms may accelerate the formation of adiabatic shear bands.

  11. Cuprous Oxide Catalyzed Oxidative C-C Bond Cleavage for C-N Bond Formation: Synthesis of Cyclic Imides from Ketones and Amines.

    PubMed

    Wang, Min; Lu, Jianmin; Ma, Jiping; Zhang, Zhe; Wang, Feng

    2015-11-16

    Selective oxidative cleavage of a C-C bond offers a straightforward method to functionalize organic skeletons. Reported herein is the oxidative C-C bond cleavage of ketone for C-N bond formation over a cuprous oxide catalyst with molecular oxygen as the oxidant. A wide range of ketones and amines are converted into cyclic imides with moderate to excellent yields. In-depth studies show that both α-C-H and β-C-H bonds adjacent to the carbonyl groups are indispensable for the C-C bond cleavage. DFT calculations indicate the reaction is initiated with the oxidation of the α-C-H bond. Amines lower the activation energy of the C-C bond cleavage, and thus promote the reaction. New insight into the C-C bond cleavage mechanism is presented. PMID:26494312

  12. C–F Bond Formation for the Synthesis of Aryl Fluorides

    PubMed Central

    Furuya, Takeru; Klein, Johannes E. M. N.

    2010-01-01

    A selection of carbon–fluorine bond-forming reactions is presented with particular focus on transition metal-mediated fluorination. A brief summary of conventional fluorination reactions is followed by a discussion of fluorination reactions mediated by palladium and silver. Investigations into the mechanism as well as the conceptual difficulty associated with transition metal-mediated carbon–fluorine bond formation are presented. PMID:20953341

  13. Modern Transition-Metal-Catalyzed Carbon-Halogen Bond Formation.

    PubMed

    Petrone, David A; Ye, Juntao; Lautens, Mark

    2016-07-27

    The high utility of halogenated organic compounds has prompted the development of a vast number of transformations which install the carbon-halogen motif. Traditional routes to these building blocks have commonly involved multiple steps, harsh reaction conditions, and the use of stoichiometric and/or toxic reagents. In this regard, using transition metals to catalyze the synthesis of organohalides has become a mature field in itself, and applying these technologies has allowed for a decrease in the production of waste, higher levels of regio- and stereoselectivity, and the ability to produce enantioenriched target compounds. Furthermore, transition metals offer the distinct advantage of possessing a diverse spectrum of mechanistic possibilities which translate to the capability to apply new substrate classes and afford novel and difficult-to-access structures. This Review provides comprehensive coverage of modern transition metal-catalyzed syntheses of organohalides via a diverse array of mechanisms. Attention is given to the seminal stoichiometric organometallic studies which led to the corresponding catalytic processes being realized. By breaking this field down into the synthesis of aryl, vinyl, and alkyl halides, it becomes clear which methods have surfaced as most favored for each individual class. In general, a pronounced shift toward the use of C-H bonds as key functional groups, in addition to methods which proceed by catalytic, radical-based mechanisms has occurred. Although always evolving, this field appears to be heading in the direction of using starting materials with a significantly lower degree of prefunctionalization in addition to less expensive and abundant metal catalysts. PMID:27341176

  14. Kinetics and intracellular location of intramolecular disulfide bond formation mediated by the cytoplasmic redox system encoded by vaccinia virus

    SciTech Connect

    Bisht, Himani; Brown, Erica; Moss, Bernard

    2010-03-15

    Poxviruses encode a redox system for intramolecular disulfide bond formation in cytoplasmic domains of viral proteins. Our objectives were to determine the kinetics and intracellular location of disulfide bond formation. The vaccinia virus L1 myristoylated membrane protein, used as an example, has three intramolecular disulfide bonds. Reduced and disulfide-bonded forms of L1 were distinguished by electrophoretic mobility and reactivity with monoclonal and polyclonal antibodies. Because disulfide bonds formed during 5 min pulse labeling with radioactive amino acids, a protocol was devised in which dithiothreitol was present at this step. Disulfide bond formation was detected by 2 min after removal of reducing agent and was nearly complete in 10 min. When the penultimate glycine residue was mutated to prevent myristoylation, L1 was mistargeted to the endoplasmic reticulum and disulfide bond formation failed to occur. These data suggested that viral membrane association was required for oxidation of L1, providing specificity for the process.

  15. How Ligand Properties Affect the Formation and Characteristics of Recoupled Pair Bonds

    NASA Astrophysics Data System (ADS)

    Lindquist, Beth A.; Woon, D. E.; Dunning, T. H.; , Jr.

    2011-06-01

    Our group has developed a theoretical framework for understanding hypervalency called recoupled pair bonding. In a recoupled pair bond, a singly occupied orbital of an incoming ligand is able to decouple a pair of electrons on a central atom and form a bond with one of the electrons. The other electron is then free to bond with a second ligand. However, not every ligand is able to induce recoupling and lead to the formation of hypervalent compounds; SF_4 exists, but SH_4 is not stable, for example. We have investigated a large variety of monovalent ligands (including H, F, Cl, OH, NH_2, CH_3, and other radicals) to discover which ligands are capable of recoupling the 3p^2 electron pair of sulfur and to quantify the strength of these bonds relative to covalent bonds formed with the same ligand. Also of interest is which properties of the various ligands correlate with their ability to recouple a pair of electrons. We have also benchmarked the accuracy of density functional theory in the description of recoupled pair bonds compared to high level MRCI and RCCSD(T) calculations as a possible way to test the recoupling ability of larger ligands such as the phenyl radical (C_6H_5).

  16. Toxin-induced pore formation is hindered by intermolecular hydrogen bonding in sphingomyelin bilayers.

    PubMed

    García-Linares, Sara; Palacios-Ortega, Juan; Yasuda, Tomokazu; Åstrand, Mia; Gavilanes, José G; Martínez-del-Pozo, Álvaro; Slotte, J Peter

    2016-06-01

    Sticholysin I and II (StnI and StnII) are pore-forming toxins that use sphingomyelin (SM) for membrane binding. We examined how hydrogen bonding among membrane SMs affected the StnI- and StnII-induced pore formation process, resulting in bilayer permeabilization. We compared toxin-induced permeabilization in bilayers containing either SM or dihydro-SM (lacking the trans Δ(4) double bond of the long-chain base), since their hydrogen-bonding properties are known to differ greatly. We observed that whereas both StnI and StnII formed pores in unilamellar vesicles containing palmitoyl-SM or oleoyl-SM, the toxins failed to similarly form pores in vesicles prepared from dihydro-PSM or dihydro-OSM. In supported bilayers containing OSM, StnII bound efficiently, as determined by surface plasmon resonance. However, StnII binding to supported bilayers prepared from dihydro-OSM was very low under similar experimental conditions. The association of the positively charged StnII (at pH7.0) with unilamellar vesicles prepared from OSM led to a concentration-dependent increase in vesicle charge, as determined from zeta-potential measurements. With dihydro-OSM vesicles, a similar response was not observed. Benzyl alcohol, which is a small hydrogen-bonding compound with affinity to lipid bilayer interfaces, strongly facilitated StnII-induced pore formation in dihydro-OSM bilayers, suggesting that hydrogen bonding in the interfacial region originally prevented StnII from membrane binding and pore formation. We conclude that interfacial hydrogen bonding was able to affect the membrane association of StnI- and StnII, and hence their pore forming capacity. Our results suggest that other types of protein interactions in bilayers may also be affected by hydrogen-bonding origination from SMs. PMID:26975250

  17. Influence of substituent effects on the formation of P···Cl pnicogen bonds or halogen bonds.

    PubMed

    Del Bene, Janet E; Alkorta, Ibon; Elguero, José

    2014-03-27

    Ab initio MP2/aug'-cc-pVTZ calculations have been carried out in search of equilibrium structures with P···Cl pnicogen bonds or halogen bonds on the potential energy surfaces H2FP:ClY for Y = F, NC, Cl, CN, CCH, CH3, and H. Three different types of halogen-bonded complexes with traditional, chlorine-shared, and ion-pair bonds have been identified. Two different pnicogen-bonded complexes have also been found on these surfaces. The most electronegative substituents F and NC form only halogen-bonded complexes, while the most electropositive substituents CH3 and H form only pnicogen-bonded complexes. The halogen-bonded complexes involving the less electronegative groups Cl and CN are more stable than the corresponding pnicogen-bonded complexes, while the pnicogen-bonded complexes with CCH are more stable than the corresponding halogen-bonded complex. Traditional halogen-bonded complexes are stabilized by charge transfer from the P lone pair to the Cl-A σ* orbital, where A is the atom of Y directly bonded to Cl. Charge transfer from the Cl lone pair to the P-F σ* orbital stabilizes pnicogen-bonded complexes. As a result, the H2FP unit becomes positively charged in halogen-bonded complexes and negatively charged in pnicogen-bonded complexes. Spin-spin coupling constants (1X)J(P-Cl) for complexes with traditional halogen bonds increase with decreasing P-Cl distance, reach a maximum value for complexes with chlorine-shared halogen bonds, and then decrease and change sign when the bond is an ion-pair bond. (1p)J(P-Cl) coupling constants across pnicogen bonds tend to increase with decreasing P-Cl distance.

  18. Tribromobenzene on Cu(111): Temperature-dependent formation of halogen-bonded, organometallic, and covalent nanostructures

    SciTech Connect

    Fan, Qitang; Wang, Tao; Zhu, Junfa; Liu, Liming; Zhao, Jin; Gottfried, J. Michael

    2015-03-14

    The temperature-controlled surface-assisted synthesis of halogen bonded, organometallic, and covalent nanostructures based on 1,3,5-tribromo-benzene (TriBB) was studied with scanning tunneling microscopy and X-ray photoemission spectroscopy in ultrahigh vacuum. Vapor deposition of TriBB onto a Cu(111) surface held at 90 K leads to the formation of large domains of a honeycomb-like organic monolayer structure stabilized by triangular nodes with Br⋯Br intermolecular bonds. Upon annealing the organic monolayer to ∼140 K, a new hexagonal close-packed structure with intact TriBB molecules connected by Cu adatoms is formed. Further warming up the sample to 300 K gives rise to the scission of C–Br bonds and formation of C–Cu–C bonds between phenyl fragments such that stable dendritic organometallic networks are formed. Larger islands of organometallic networks are obtained by maintaining the temperature of Cu(111) at 420 K during deposition of TriBB. Simultaneously, large islands of Br atoms are formed around the organometallic networks. Annealing the more extended organometallic network (prepared at 420 K) to 520 K leads to the formation of a branched covalent organic framework (COF) which comprises structural elements of porous graphene and is surrounded by Br islands. These organometallic networks and COFs appear as small dendritic and branched domains, most likely due to the steric influence exerted by the Br islands.

  19. Oligomerization reactions of deoxyribonucleotides on montmorillonite clay - The effect of mononucleotide structure on phosphodiester bond formation

    NASA Technical Reports Server (NTRS)

    Ferris, James P.; KAMALUDDIN

    1989-01-01

    The formation of oligomers from deoxynucleotides, catalyzed by Na(+)-montmorillonite, was investigated with special attention given to the effect of the monomer structure on the phosphodiester bond formation. It was found that adenine deoxynucleotides bind more strongly to montmorillonite than do the corresponding ribonucleotides and thymidine nucleotides. Tetramers of 2-prime-dpA were detected in the reaction of 2-prime-d-5-prime-AMP with a water-soluble carbodiimide EDAC in the presence of Na(+)-montmorillonite, illustrating the possible role of minerals in the formation of biopolymers on the primitive earth.

  20. Recent Advances in Metal-Catalyzed C-P Bond Formation

    NASA Astrophysics Data System (ADS)

    Glueck, David S.

    This chapter describes recent advances in metal-catalyzed C-P bond formation, which may be classified into two types of reactions. In hydrophosphination and related processes, P-H groups add across unsaturated C-X (X = C, N, O) bonds. Phosphination of electrophiles typically results in substitution at sp2 or sp3 carbon; the P-H group is removed, often by a base. The scope of both nucleophilic and electrophilic partners in these processes is surveyed, and the proposed mechanisms and intermediates in the metal-catalyzed reactions are described.

  1. Formation of C-C Bonds via Iridium-Catalyzed Hydrogenation and Transfer Hydrogenation.

    PubMed

    Bower, John F; Krische, Michael J

    2011-01-01

    The formation of C-C bonds via catalytic hydrogenation and transfer hydrogenation enables carbonyl and imine addition in the absence of stoichiometric organometallic reagents. In this review, iridium-catalyzed C-C bond-forming hydrogenations and transfer hydrogenations are surveyed. These processes encompass selective, atom-economic methods for the vinylation and allylation of carbonyl compounds and imines. Notably, under transfer hydrogenation conditions, alcohol dehydrogenation drives reductive generation of organoiridium nucleophiles, enabling carbonyl addition from the aldehyde or alcohol oxidation level. In the latter case, hydrogen exchange between alcohols and π-unsaturated reactants generates electrophile-nucleophile pairs en route to products of hydro-hydroxyalkylation, representing a direct method for the functionalization of carbinol C-H bonds. PMID:21822399

  2. Formation of C–C Bonds via Iridium-Catalyzed Hydrogenation and Transfer Hydrogenation

    PubMed Central

    Bower, John F.; Krische, Michael J.

    2011-01-01

    The formation of C–C bonds via catalytic hydrogenation and transfer hydrogenation enables carbonyl and imine addition in the absence of stoichiometric organometallic reagents. In this review, iridium-catalyzed C–C bond-forming hydrogenations and transfer hydrogenations are surveyed. These processes encompass selective, atom-economic methods for the vinylation and allylation of carbonyl compounds and imines. Notably, under transfer hydrogenation conditions, alcohol dehydrogenation drives reductive generation of organoiridium nucleophiles, enabling carbonyl addition from the aldehyde or alcohol oxidation level. In the latter case, hydrogen exchange between alcohols and π-unsaturated reactants generates electrophile–nucleophile pairs en route to products of hydro-hydroxyalkylation, representing a direct method for the functionalization of carbinol C–H bonds. PMID:21822399

  3. Enhancement of peptide bond formation by polyribonucleotides on clay surfaces in fluctuating environments

    NASA Technical Reports Server (NTRS)

    White, D. H.; Erickson, J. C.

    1981-01-01

    The selective effects of polyribonucleotides on the formation of glycine peptide bonds in glycine on clay surfaces are investigated as a model for a template mechanism for the effects of polynucleotides on peptide bond formation. Free oligoglycine yields were determined for the cycling reaction of glycine in the presence and absence of clay and polyribonucleotides or polydeoxyribonucleotides. The polyribonucleotides are observed to lead to increases of up to fourfold increases in oligoglycine formed, with greater enhancements for poly-G nucleotides than for poly-A, poly-U and poly-C, indicating a codonic bias. Polydeoxyribonucleotides are found to provide no enhancement in peptide formation rates, and yields were also greatly reduced in the absence of clay. A mechanism for peptide synthesis is proposed which involves the activation of glycine on the clay surface, followed by the formation of esters between glycine and the 2-prime OH groups of the polyribonucleotide and peptide bonds between adjacent amino acyl esters. It is pointed out that if this mechanism is correct, it may provide a basis for a direct template translation process, which would produce a singlet genetic code.

  4. Selectin receptor-ligand bonds: Formation limited by shear rate and dissociation governed by the Bell model.

    PubMed

    Chen, S; Springer, T A

    2001-01-30

    We have studied the principles that govern the formation and dissociation of an adhesive bond between a cell moving in shear flow and a substrate and tested different theories of how force affects bond dissociation. Viscosity relates the kinematics of fluid movement (shear rate, units of time(-1)) to shear stress (units of force/area, the product of shear rate and viscosity). At different medium viscosities, the formation of receptor-ligand bonds between a cell in the flowstream and P-selectin on the vessel wall showed a similar efficiency as a function of shear rate but not of shear stress. Therefore, bond formation was a function of shear rate and hence of the kinematics of receptor and ligand movement. By contrast, the kinetics of bond dissociation was a function of shear stress and hence of force on the bond. The different requirements for bond formation and dissociation allowed dissociation kinetics to be measured at higher forces on the bond by increasing medium viscosity. Data over an extended range of forces on the bond therefore could be collected that enabled five different proposed equations, relating force to bond dissociation, to be compared for fit to experimental data. The relationship proposed by Bell [Bell, G. I. (1978) Science 200, 618-627] fit the data significantly the best and also predicted an off-rate in the absence of force that best matched an independent measurement [Mehta, P., Cummings, R. D. & McEver, R. P. (1998) J. Biol. Chem. 273, 32506-32513].

  5. Practical carbon–carbon bond formation from olefins through nickel-catalyzed reductive olefin hydrocarbonation

    PubMed Central

    Lu, Xi; Xiao, Bin; Zhang, Zhenqi; Gong, Tianjun; Su, Wei; Yi, Jun; Fu, Yao; Liu, Lei

    2016-01-01

    New carbon–carbon bond formation reactions expand our horizon of retrosynthetic analysis for the synthesis of complex organic molecules. Although many methods are now available for the formation of C(sp2)–C(sp3) and C(sp3)–C(sp3) bonds via transition metal-catalyzed cross-coupling of alkyl organometallic reagents, direct use of readily available olefins in a formal fashion of hydrocarbonation to make C(sp2)–C(sp3) and C(sp3)–C(sp3) bonds remains to be developed. Here we report the discovery of a general process for the intermolecular reductive coupling of unactivated olefins with alkyl or aryl electrophiles under the promotion of a simple nickel catalyst system. This new reaction presents a conceptually unique and practical strategy for the construction of C(sp2)–C(sp3) and C(sp3)–C(sp3) bonds without using any organometallic reagent. The reductive olefin hydrocarbonation also exhibits excellent compatibility with varieties of synthetically important functional groups and therefore, provides a straightforward approach for modification of complex organic molecules containing olefin groups. PMID:27033405

  6. Practical carbon-carbon bond formation from olefins through nickel-catalyzed reductive olefin hydrocarbonation.

    PubMed

    Lu, Xi; Xiao, Bin; Zhang, Zhenqi; Gong, Tianjun; Su, Wei; Yi, Jun; Fu, Yao; Liu, Lei

    2016-01-01

    New carbon-carbon bond formation reactions expand our horizon of retrosynthetic analysis for the synthesis of complex organic molecules. Although many methods are now available for the formation of C(sp(2))-C(sp(3)) and C(sp(3))-C(sp(3)) bonds via transition metal-catalyzed cross-coupling of alkyl organometallic reagents, direct use of readily available olefins in a formal fashion of hydrocarbonation to make C(sp(2))-C(sp(3)) and C(sp(3))-C(sp(3)) bonds remains to be developed. Here we report the discovery of a general process for the intermolecular reductive coupling of unactivated olefins with alkyl or aryl electrophiles under the promotion of a simple nickel catalyst system. This new reaction presents a conceptually unique and practical strategy for the construction of C(sp(2))-C(sp(3)) and C(sp(3))-C(sp(3)) bonds without using any organometallic reagent. The reductive olefin hydrocarbonation also exhibits excellent compatibility with varieties of synthetically important functional groups and therefore, provides a straightforward approach for modification of complex organic molecules containing olefin groups. PMID:27033405

  7. Chemical methods and approaches to the regioselective formation of multiple disulfide bonds.

    PubMed

    Shimamoto, Shigeru; Katayama, Hidekazu; Okumura, Masaki; Hidaka, Yuji

    2014-04-01

    Disulfide-bond formation plays an important role in the stabilization of the native conformation of peptides and proteins. In the case of multidisulfide-containing peptides and proteins, numerous folding intermediates are produced, including molecules that contain non-native and native disulfide bonds during in vitro folding. These intermediates can frequently be trapped covalently during folding and subsequently analyzed. The structural characterization of these kinetically trapped disulfide intermediates provides a clue to understanding the oxidative folding pathway. To investigate the folding of disulfide-containing peptides and proteins, in this unit, chemical methods are described for regulating regioselective disulfide formation (1) by using a combination of several types of thiol protecting groups, (2) by incorporating unique SeCys residues into a protein or peptide molecule, and (3) by combining with post-translational modification.

  8. Nickel-catalyzed Csp2-Csp3 bond formation by carbon-fluorine activation.

    PubMed

    Sun, Alex D; Leung, Kaylyn; Restivo, Anita D; LaBerge, Nicole A; Takasaki, Harumi; Love, Jennifer A

    2014-03-10

    We report herein a general catalytic method for Csp(2)-Csp(3) bond formation through C-F activation. The process uses an inexpensive nickel complex with either diorganozinc or alkylzinc halide reagents, including those with β-hydrogen atoms. A variety of fluorine substitution patterns and functional groups can be readily incorporated. Sequential reactions involving different precatalysts and coupling partners permit the synthesis of densely functionalized fluorinated building blocks.

  9. Active site remodeling accompanies thioester bond formation in the SUMO E1

    PubMed Central

    Olsen, Shaun K.; Capili, Allan D.; Lu, Xuequan; Tan, Derek S.; Lima, Christopher D.

    2009-01-01

    E1 enzymes activate ubiquitin (Ub) and ubiquitin-like (Ubl) proteins in two steps by carboxy-terminal adenylation and thioester bond formation to a conserved catalytic cysteine in the E1 Cys domain. The structural basis for these intermediates remains unknown. Here we report crystal structures for human SUMO E1 in complex with SUMO adenylate and tetrahedral intermediate analogs at 2.45 Å and 2.6 Å, respectively. These structures show that side chain contacts to ATP·Mg are released after adenylation to facilitate a 130 degree rotation of the Cys domain during thioester bond formation that is accompanied by remodeling of key structural elements including the helix that contains the E1 catalytic cysteine, the cross-over and re-entry loops, and refolding of two helices that are required for adenylation. These changes displace side chains required for adenylation with side chains required for thioester bond formation. Mutational and biochemical analyses suggest these mechanisms are conserved in other E1s. PMID:20164921

  10. Investigation of enzymatic C-P bond formation using multiple quantum HCP nuclear magnetic resonance spectroscopy.

    PubMed

    Hu, Kaifeng; Werner, Williard J; Allen, Kylie D; Wang, Susan C

    2015-04-01

    The biochemical mechanism for the formation of the C-P-C bond sequence found in l-phosphinothricin, a natural product with antibiotic and herbicidal activity, remains unclear. To obtain further insight into the catalytic mechanism of PhpK, the P-methyltransferase responsible for the formation of the second C-P bond in l-phosphinothricin, we utilized a combination of stable isotopes and two-dimensional nuclear magnetic resonance spectroscopy. Exploiting the newly emerged Bruker QCI probe (Bruker Corp.), we specifically designed and ran a (13) C-(31) P multiple quantum (1) H-(13) C-(31) P (HCP) experiment in (1) H-(31) P two-dimensional mode directly on a PhpK-catalyzed reaction mixture using (13) CH3 -labeled methylcobalamin as the methyl group donor. This method is particularly advantageous because minimal sample purification is needed to maximize product visualization. The observed 3:1:1:3 multiplet specifically and unequivocally illustrates direct bond formation between (13) CH3 and (31) P. Related nuclear magnetic resonance experiments based upon these principles may be designed for the study of enzymatic and/or synthetic chemical reaction mechanisms.

  11. Formation of metalsbnd F bonds during frictional sliding: Influence of water and applied load

    NASA Astrophysics Data System (ADS)

    Shen, J. T.; Pei, Y. T.; De Hosson, J. Th. M.

    2016-04-01

    Effects of water lubrication and applied load on the formation of PTFE transfer films and metalsbnd F bonds during sliding when PTFE filled composites sliding against steel and Al2O3 are investigated. In water-lubricated conditions, XPS analysis reveals that a thin layer of water molecules at the sliding interface inhibits the formation of PTFE transfer films and Alsbnd F bonds on the Al2O3 ball, leading to a detrimental effect on the tribo-performance. Under various normal loads in dry sliding condition, it is found that the smearing of PTFE onto the wear surface of the composite and the transfer of PTFE onto the surface of the steel counterpart are stimulated by a high load. During sliding, the contact pressure is found to be the driving force of the reaction between steel and PTFE. It is concluded that under various loads, the total amount of PTFE transfer films has a larger impact on the friction behavior than the formation of Fesbnd F bonds.

  12. Active site remodelling accompanies thioester bond formation in the SUMO E1

    SciTech Connect

    Olsen, Shaun K.; Capili, Allan D.; Lu, Xuequan; Tan, Derek S.; Lima, Christopher D.

    2010-03-30

    E1 enzymes activate ubiquitin (Ub) and ubiquitin-like (Ubl) proteins in two steps by carboxy-terminal adenylation and thioester bond formation to a conserved catalytic cysteine in the E1 Cys domain. The structural basis for these intermediates remains unknown. Here we report crystal structures for human SUMO E1 in complex with SUMO adenylate and tetrahedral intermediate analogues at 2.45 and 2.6 {angstrom}, respectively. These structures show that side chain contacts to ATP-Mg are released after adenylation to facilitate a 130 degree rotation of the Cys domain during thioester bond formation that is accompanied by remodelling of key structural elements including the helix that contains the E1 catalytic cysteine, the crossover and re-entry loops, and refolding of two helices that are required for adenylation. These changes displace side chains required for adenylation with side chains required for thioester bond formation. Mutational and biochemical analyses indicate these mechanisms are conserved in other E1s.

  13. Functionalized alkynyl-chlorogermanes: hydrometallation, Ge-Cl bond activation, Ge-H bond formation and chlorine-tert-butyl exchange via a transient germyl cation.

    PubMed

    Honacker, Christian; Qu, Zheng-Wang; Tannert, Jens; Layh, Marcus; Hepp, Alexander; Grimme, Stefan; Uhl, Werner

    2016-04-14

    Treatment of alkynyl-arylchlorogermanes ArylnGe(Cl)(C[triple bond, length as m-dash]C-(t)Bu)3-n (n = 1, 2) with HM(t)Bu2 (M = Al, Ga) yielded mixed Al or Ga alkenyl-alkynylchlorogermanes via hydrometallation reactions. Intramolecular interactions between the Lewis-basic Cl atoms and the Lewis-acidic Al or Ga atoms afforded MCGeCl heterocycles. The endocyclic M-Cl distances were significantly lengthened compared to the starting compounds and indicated Ge-Cl bond activation. Dual hydrometallation succeeded only with HGa(t)Bu2. One Ga atom of the product was involved in a Ga-Cl bond, while the second one had an interaction to a C-H bond of a phenyl group. In two cases treatment of chlorogermanes with two equivalents of HAl(t)Bu2 resulted in hydroalumination of one alkynyl group and formation of unprecedented Ge-H functionalized germanes, Aryl-Ge(H)(C[triple bond, length as m-dash]C-(t)Bu)[C(Al(t)Bu2)[double bond, length as m-dash]C(H)-(t)Bu] (Aryl = mesityl, triisopropylphenyl). The Al atoms of these compounds interacted with the α-C atoms of the alkynyl groups. Ph(Cl)Ge(C[triple bond, length as m-dash]C-(t)Bu)[C(Al(t)Bu2}[double bond, length as m-dash]C(H)-(t)Bu] reacted in an unusual Cl/(t)Bu exchange to yield the tert-butylgermane Ph((t)Bu)Ge(C[triple bond, length as m-dash]C-(t)Bu)[C{Al((t)Bu)(Cl)}[double bond, length as m-dash]C(H)-(t)Bu]. Quantum chemical calculations suggested the formation of a germyl cation as a transient intermediate.

  14. Formation of H3^+ in methanol : an intramolecular bond rearrangement study

    NASA Astrophysics Data System (ADS)

    de, Sankar; Rajput, Jyoti; Roy, A.; Safvan, C. P.; Ghosh, P. N.

    2007-06-01

    We report here results of TOF multi-hit coincidence experiment [1] that provide evidence for intramolecular reactions involving proton coagulation in methanol [2] after interaction with 1.2 MeV Ar^8+ projectiles produced from the ECR ion source in the LEIBF laboratory of Inter-University Accelerator Centre, India. Quite remarkably, we have observed the formation of H3^+ due to movement of protons within the multiply charged parent molecular ion through two-body process (CH3OH^2+->H3^+ + COH^+) and such bond formation occurs before the Coulomb repulsion makes the fragment ions to fly apart. Analysis of the fragmentation pattern of CH3OH^2+ has been carried out using ab initio quantum chemical techniques. Structural calculations indicate that the formation of H3^+ is the preferred pathway in the overall fragmentation dynamics of the ground state of this alcohol. The field generated from highly charged ions induces the system to rearrange its structure following a minimum energy pathway and form hydrogen molecular ions. Repeating the experiment with CH3OD confirm our bond rearrangement phenomenon and establish that H3^+ formation occurs only within the methyl group of the alcohol. Ref: [1] S. De et. al. NIMB, 243, 435 (2006) [2] Sankar De et. al. PRL, 97, 213201 (2006)

  15. Understanding bond formation in polar one-step reactions. Topological analyses of the reaction between nitrones and lithium ynolates.

    PubMed

    Roca-López, David; Polo, Victor; Tejero, Tomás; Merino, Pedro

    2015-04-17

    The mechanism of the reaction between nitrones and lithium ynolates has been studied using DFT methods at the M06-2X/cc-pVTZ/PCM=THF level. After the formation of a starting complex an without energy barrier, in which the lithium atom is coordinated to both nitrone and ynolate, the reaction takes place in one single kinetic step through a single transition structure. However, the formation of C-C and C-O bonds takes place sequentially through a typical two-stage, one-step process. A combined study of noncovalent interactions (NCIs) and electron localization function (ELFs) of selected points along the intrinsic reaction coordinate (IRC) of the reaction confirmed that, in the transition structure, only the C-C bond is being formed to some extent, whereas an electrostatic interaction is present between carbon and oxygen atoms previous to the formation of the C-O bond. Indeed, the formation of the second C-O bond only begins when the first C-C bond is completely formed without formation of any intermediate. Once the C-C bond is formed and before the C-O bond formation starts the RMS gradient norm dips, approaching but not reaching 0, giving rise to a hidden intermediate.

  16. Understanding bond formation in polar one-step reactions. Topological analyses of the reaction between nitrones and lithium ynolates.

    PubMed

    Roca-López, David; Polo, Victor; Tejero, Tomás; Merino, Pedro

    2015-04-17

    The mechanism of the reaction between nitrones and lithium ynolates has been studied using DFT methods at the M06-2X/cc-pVTZ/PCM=THF level. After the formation of a starting complex an without energy barrier, in which the lithium atom is coordinated to both nitrone and ynolate, the reaction takes place in one single kinetic step through a single transition structure. However, the formation of C-C and C-O bonds takes place sequentially through a typical two-stage, one-step process. A combined study of noncovalent interactions (NCIs) and electron localization function (ELFs) of selected points along the intrinsic reaction coordinate (IRC) of the reaction confirmed that, in the transition structure, only the C-C bond is being formed to some extent, whereas an electrostatic interaction is present between carbon and oxygen atoms previous to the formation of the C-O bond. Indeed, the formation of the second C-O bond only begins when the first C-C bond is completely formed without formation of any intermediate. Once the C-C bond is formed and before the C-O bond formation starts the RMS gradient norm dips, approaching but not reaching 0, giving rise to a hidden intermediate. PMID:25803829

  17. Building Bridges: Biocatalytic C–C-Bond Formation toward Multifunctional Products

    PubMed Central

    2016-01-01

    Carbon–carbon bond formation is the key reaction for organic synthesis to construct the carbon framework of organic molecules. The review gives a selection of biocatalytic C–C-bond-forming reactions which have been investigated during the last 5 years and which have already been proven to be applicable for organic synthesis. In most cases, the reactions lead to products functionalized at the site of C–C-bond formation (e.g., α-hydroxy ketones, aminoalcohols, diols, 1,4-diketones, etc.) or allow to decorate aromatic and heteroaromatic molecules. Furthermore, examples for cyclization of (non)natural precursors leading to saturated carbocycles are given as well as the stereoselective cyclopropanation of olefins affording cyclopropanes. Although many tools are already available, recent research also makes it clear that nature provides an even broader set of enzymes to perform specific C–C coupling reactions. The possibilities are without limit; however, a big library of variants for different types of reactions is required to have the specific enzyme for a desired specific (stereoselective) reaction at hand. PMID:27398261

  18. Key amino acids of arabidopsis VKOR in the activity of phylloquinone reduction and disulfide bond formation.

    PubMed

    Yang, Xiao-Jian; Cui, Hao-Ran; Yu, Zhi-Bo; Du, Jia-Jia; Xu, Jia-Ning; Wang, Xiao-Yun

    2015-01-01

    Many proteins in chloroplast are regulated through the disulfide bond/thiol transformation to realize their activities. A homologue of VKOR (Vitamin K epoxide reductase) in Arabidopsis chloroplast is found to catalyze the disulfide bond formation in vivo and to mediate the specific phylloquinone reduction in vitro. It is also called LTO1 (Lumen Thiol Oxidoreductase 1). Investigations about functions and essential amino acid residues of AtVKOR have important theoretical significance to clarify the chloroplast redox regulation mechanism. In this study, several amino acids in the VKOR domain of AtVKOR were identified to be involved in binding of phylloquinone. Site-directed mutagenesis was used to study the function of these positions. The results suggested that residues Ser77, Leu87, Phe137 and Leu141 were quite important in the binding and catalyzing the reduction of phylloquinone. These residues were also involved in the electron transferring and disulfide bond formation of substrate proteins by motility assays in vivo, suggesting that the binding of phylloquinone not only affected the delivery of electrons to phylloquinone but also affected the whole electron transfer process. The conserved cysteines in the AtVKOR domain also played critical roles in phylloquinone reduction. When each of the four conserved cysteines was mutated to alanine, the mutants lost reduction activity entirely, suggesting that the four conserved cysteines played crucial roles in the electron transfer process. PMID:25267254

  19. Selectin receptor-ligand bonds: Formation limited by shear rate and dissociation governed by the Bell model

    NASA Astrophysics Data System (ADS)

    Chen, Shuqi; Springer, Timothy A.

    2001-01-01

    We have studied the principles that govern the formation and dissociation of an adhesive bond between a cell moving in shear flow and a substrate and tested different theories of how force affects bond dissociation. Viscosity relates the kinematics of fluid movement (shear rate, units of time1) to shear stress (units of force/area, the product of shear rate and viscosity). At different medium viscosities, the formation of receptor-ligand bonds between a cell in the flowstream and P-selectin on the vessel wall showed a similar efficiency as a function of shear rate but not of shear stress. Therefore, bondformation was a function of shear rate and hence of the kinematics of receptor and ligand movement. By contrast, the kinetics of bond dissociation was a function of shear stress and hence of force on the bond. The different requirements for bond formation and dissociation allowed dissociation kinetics to be measured at higher forces on the bond by increasing medium viscosity. Data over an extended range of forces on the bond therefore could be collected that enabled five different proposed equations, relating force to bond dissociation, to be compared for fit to experimental data. The relationship proposed by Bell [Bell, G. I. (1978) Science 200, 618-627] fit the data significantly the best and also predicted an off-rate in the absence of force that best matched an independent measurement [Mehta, P., Cummings, R. D. & McEver, R. P. (1998) J. Biol. Chem. 273, 32506-32513].

  20. C–C Bond formation catalyzed by natural gelatin and collagen proteins

    PubMed Central

    Kühbeck, Dennis; Bijayi Dhar, Basab; Schön, Eva-Maria; Cativiela, Carlos; Gotor-Fernández, Vicente

    2013-01-01

    Summary The activity of gelatin and collagen proteins towards C–C bond formation via Henry (nitroaldol) reaction between aldehydes and nitroalkanes is demonstrated for the first time. Among other variables, protein source, physical state and chemical modification influence product yield and kinetics, affording the nitroaldol products in both aqueous and organic media under mild conditions. Significantly, the scale-up of the process between 4-nitrobenzaldehyde and nitromethane is successfully achieved at 1 g scale and in good yield. A comparative kinetic study with other biocatalysts shows an increase of the first-order rate constant in the order chitosan < gelatin < bovine serum albumin (BSA) < collagen. The results of this study indicate that simple edible gelatin can promote C–C bond forming reactions under physiological conditions, which may have important implications from a metabolic perspective. PMID:23843902

  1. B-H activation and H-H formation: two consecutive heterolytic processes on an osmium-hydrogensulfide bond.

    PubMed

    Esteruelas, Miguel A; López, Ana M; Mora, Malka; Oñate, Enrique

    2013-09-01

    Heterolytic B-H activation and H-H formation on an Os-SH bond give borylthiolate-dihydrogen derivatives. These species exchange borylthiol by borane to afford σ-borane derivatives or release H2 and undergo a hydride-boryl exchange to yield boryl-hydrogensulfide complexes depending on the boryl group bonded to the sulfur atom.

  2. Hydrophilicity of dentin bonding systems influences in vitro Streptococcus mutans biofilm formation

    PubMed Central

    Brambilla, Eugenio; Ionescu, Andrei; Mazzoni, Annalisa; Cadenaro, Milena; Gagliani, Massimo; Ferraroni, Monica; Tay, Franklin; Pashley, David; Breschi, Lorenzo

    2014-01-01

    Objectives To evaluate in vitro Streptococcus mutans (S. mutans) biofilm formation on the surface of five light-curing experimental dental bonding systems (DBS) with increasing hydrophilicity. The null hypothesis tested was that resin chemical composition and hydrophilicity does not affect S. mutans biofilm formation. Methods Five light-curing versions of experimental resin blends with increasing hydrophilicity were investigated (R1, R2, R3, R4 and R5). R1 and R2 contained ethoxylated BisGMA/TEGDMA or BisGMA/TEGDMA, respectively, and were very hydrophobic, were representative of pit-and-fissure bonding agents. R3 was representative of a typical two-step etch- and-rinse adhesive, while R4 and R5 were very hydrophilic resins analogous to self-etching adhesives. Twenty-eight disks were prepared for each resin blend. After a 24 h-incubation at 37 °C, a multilayer monospecific biofilm of S. mutans was obtained on the surface of each disk. The adherent biomass was determined using the MTT assay and evaluated morphologically with confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Results R2 and R3 surfaces showed the highest biofilm formation while R1 and R4 showed a similar intermediate biofilm formation. R5 was more hydrophilic and acidic and was significantly less colonized than all the other resins. A significant quadratic relationship between biofilm formation and hydrophilicity of the resin blends was found. CLSM and SEM evaluation confirmed MTT assay results. Conclusions The null hypothesis was rejected since S. mutans biofilm formation was influenced by hydrophilicity, surface acidity and chemical composition of the experimental resins. Further studies using a bioreactor are needed to confirm the results and clarify the role of the single factors. PMID:24954666

  3. Cross-dehydrogenative coupling for the intermolecular C–O bond formation

    PubMed Central

    Krylov, Igor B; Vil’, Vera A

    2015-01-01

    Summary The present review summarizes primary publications on the cross-dehydrogenative C–O coupling, with special emphasis on the studies published after 2000. The starting compound, which donates a carbon atom for the formation of a new C–O bond, is called the CH-reagent or the C-reagent, and the compound, an oxygen atom of which is involved in the new bond, is called the OH-reagent or the O-reagent. Alcohols and carboxylic acids are most commonly used as O-reagents; hydroxylamine derivatives, hydroperoxides, and sulfonic acids are employed less often. The cross-dehydrogenative C–O coupling reactions are carried out using different C-reagents, such as compounds containing directing functional groups (amide, heteroaromatic, oxime, and so on) and compounds with activated C–H bonds (aldehydes, alcohols, ketones, ethers, amines, amides, compounds containing the benzyl, allyl, or propargyl moiety). An analysis of the published data showed that the principles at the basis of a particular cross-dehydrogenative C–O coupling reaction are dictated mainly by the nature of the C-reagent. Hence, in the present review the data are classified according to the structures of C-reagents, and, in the second place, according to the type of oxidative systems. Besides the typical cross-dehydrogenative coupling reactions of CH- and OH-reagents, closely related C–H activation processes involving intermolecular C–O bond formation are discussed: acyloxylation reactions with ArI(O2CR)2 reagents and generation of O-reagents in situ from C-reagents (methylarenes, aldehydes, etc.). PMID:25670997

  4. Thermodynamic Strategies for C-O Bond Formation and Cleavage via Tandem Catalysis.

    PubMed

    Lohr, Tracy L; Li, Zhi; Marks, Tobin J

    2016-05-17

    To reduce global reliance on fossil fuels, new renewable sources of energy that can be used with the current infrastructure are required. Biomass represents a major source of renewable carbon based fuel; however, the high oxygen content (∼40%) limits its use as a conventional fuel. To utilize biomass as an energy source, not only with current infrastructure, but for maximum energy return, the oxygen content must be reduced. One method to achieve this is to develop selective catalytic methods to cleave C-O bonds commonly found in biomass (aliphatic and aromatic ethers and esters) for the eventual removal of oxygen in the form of volatile H2O or carboxylic acids. Once selective methods of C-O cleavage are understood and perfected, application to processing real biomass feedstocks such as lignin can be undertaken. This Laboratory previously reported that recyclable "green" lanthanide triflates are excellent catalysts for C-O bond-forming hydroalkoxylation reactions. Based on the virtues of microscopic reversibility, the same lanthanide triflate catalyst should catalyze the reverse C-O cleavage process, retrohydroalkoxylation, to yield an alcohol and an alkene. However, ether C-O bond-forming (retrohydroalkoxylation) to form an alcohol and alkene is endothermic. Guided by quantum chemical analysis, our strategy is to couple endothermic, in tandem, ether C-O bond cleavage with exothermic alkene hydrogenation, thereby leveraging the combined catalytic cycles thermodynamically to form an overall energetically favorable C-O cleavage reaction. This Account reviews recent developments on thermodynamically leveraged tandem catalysis for ether and more recently, ester C-O bond cleavage undertaken at Northwestern University. First, the fundamentals of lanthanide-catalyzed hydroelementation are reviewed, with particular focus on ether C-O bond formation (hydroalkoxylation). Next, the reverse C-O cleavage/retrohydroalkoxylation processes enabled by tandem catalysis are

  5. Thermodynamic Strategies for C-O Bond Formation and Cleavage via Tandem Catalysis.

    PubMed

    Lohr, Tracy L; Li, Zhi; Marks, Tobin J

    2016-05-17

    To reduce global reliance on fossil fuels, new renewable sources of energy that can be used with the current infrastructure are required. Biomass represents a major source of renewable carbon based fuel; however, the high oxygen content (∼40%) limits its use as a conventional fuel. To utilize biomass as an energy source, not only with current infrastructure, but for maximum energy return, the oxygen content must be reduced. One method to achieve this is to develop selective catalytic methods to cleave C-O bonds commonly found in biomass (aliphatic and aromatic ethers and esters) for the eventual removal of oxygen in the form of volatile H2O or carboxylic acids. Once selective methods of C-O cleavage are understood and perfected, application to processing real biomass feedstocks such as lignin can be undertaken. This Laboratory previously reported that recyclable "green" lanthanide triflates are excellent catalysts for C-O bond-forming hydroalkoxylation reactions. Based on the virtues of microscopic reversibility, the same lanthanide triflate catalyst should catalyze the reverse C-O cleavage process, retrohydroalkoxylation, to yield an alcohol and an alkene. However, ether C-O bond-forming (retrohydroalkoxylation) to form an alcohol and alkene is endothermic. Guided by quantum chemical analysis, our strategy is to couple endothermic, in tandem, ether C-O bond cleavage with exothermic alkene hydrogenation, thereby leveraging the combined catalytic cycles thermodynamically to form an overall energetically favorable C-O cleavage reaction. This Account reviews recent developments on thermodynamically leveraged tandem catalysis for ether and more recently, ester C-O bond cleavage undertaken at Northwestern University. First, the fundamentals of lanthanide-catalyzed hydroelementation are reviewed, with particular focus on ether C-O bond formation (hydroalkoxylation). Next, the reverse C-O cleavage/retrohydroalkoxylation processes enabled by tandem catalysis are

  6. Levoglucosan formation from crystalline cellulose: importance of a hydrogen bonding network in the reaction.

    PubMed

    Hosoya, Takashi; Sakaki, Shigeyoshi

    2013-12-01

    Levoglucosan (1,6-anhydro-β-D-glucopyranose) formation by the thermal degradation of native cellulose was investigated by MP4(SDQ)//DFT(B3LYP) and DFT(M06-2X)//DFT(B3LYP) level computations. The computational results of dimer models lead to the conclusion that the degradation occurs by a concerted mechanism similar to the degradation of methyl β-D-glucoside reported in our previous study. One-chain models of glucose hexamer, in which the interchain hydrogen bonds of real cellulose crystals are absent, do not exhibit the correct reaction behavior of levoglucosan formation; for instance, the activation enthalpy (Ea =≈38 kcal mol(-1) ) is considerably underestimated compared to the experimental value (48-60 kcal mol(-1) ). This problem is solved with the use of two-chain models that contain interchain hydrogen bonds. The theoretical study of this model clearly shows that the degradation of the internal glucosyl residue leads to the formation of a levoglucosan precursor at the chain end and levoglucosan is selectively formed from this levoglucosan end. The calculated Ea (56-62 kcal mol(-1) ) agrees well with the experimental value. The computational results of three-chain models indicate that this degradation occurs selectively on the crystalline surface. All these computational results provide a comprehensive understanding of several experimental facts, the mechanisms of which have not yet been elucidated.

  7. Bridging and bonding interactions in higher education: social capital and students’ academic and professional identity formation

    PubMed Central

    Jensen, Dorthe H.; Jetten, Jolanda

    2015-01-01

    It is increasingly recognized that graduates’ achievements depend in important ways on their opportunities to develop an academic and a professional identity during their studies. Previous research has shown that students’ socio-economic status (SES) and social capital prior to entering university affects their ability to obtain these identities in higher education. However, what is less well understood is whether social capital that is built during university studies shapes identity development, and if so, whether the social capital gained during university years impacts on academic and professional identity differently. In a qualitative study, we interviewed 26 Danish and 11 Australian university students about their social interaction experiences, their opportunities to develop bonding capital as well as bridging capital, and their academic and professional identity. Findings show that while bonding social capital with co-students facilitated academic identity formation, such social capital does not lead to professional identity development. We also found that the development of bridging social capital with educators facilitated students’ professional identity formation. However, bonding social capital among students stood in the way of participating in bridging interaction with educators, thereby further hindering professional identity formation. Finally, while students’ parental background did not affect the perceived difficulty of forming professional identity, there was a tendency for students from lower SES backgrounds to be more likely to make internal attributions while those from higher SES backgrounds were more likely to make external attributions for the failure to develop professional identity. Results point to the importance of creating opportunities for social interaction with educators at university because this facilitates the generation of bridging social capital, which, in turn, is essential for students’ professional identity

  8. Bridging and bonding interactions in higher education: social capital and students' academic and professional identity formation.

    PubMed

    Jensen, Dorthe H; Jetten, Jolanda

    2015-01-01

    It is increasingly recognized that graduates' achievements depend in important ways on their opportunities to develop an academic and a professional identity during their studies. Previous research has shown that students' socio-economic status (SES) and social capital prior to entering university affects their ability to obtain these identities in higher education. However, what is less well understood is whether social capital that is built during university studies shapes identity development, and if so, whether the social capital gained during university years impacts on academic and professional identity differently. In a qualitative study, we interviewed 26 Danish and 11 Australian university students about their social interaction experiences, their opportunities to develop bonding capital as well as bridging capital, and their academic and professional identity. Findings show that while bonding social capital with co-students facilitated academic identity formation, such social capital does not lead to professional identity development. We also found that the development of bridging social capital with educators facilitated students' professional identity formation. However, bonding social capital among students stood in the way of participating in bridging interaction with educators, thereby further hindering professional identity formation. Finally, while students' parental background did not affect the perceived difficulty of forming professional identity, there was a tendency for students from lower SES backgrounds to be more likely to make internal attributions while those from higher SES backgrounds were more likely to make external attributions for the failure to develop professional identity. Results point to the importance of creating opportunities for social interaction with educators at university because this facilitates the generation of bridging social capital, which, in turn, is essential for students' professional identity development.

  9. Controlling Disulfide Bond Formation and Crystal Growth from 2-Mercaptobenzoic Acid

    SciTech Connect

    Rowland, Clare E.; Cantos, P. M.; Toby, B. H.; Frisch, M.; Deschamps, J. R.; Cahill, Christopher L.

    2011-03-02

    We report disulfide bond formation from 2-mercaptobenzoic acid (2-MBA) under hydrothermal conditions as a function of pH. Under acidic conditions, 2-MBA remains unchanged. Upon increasing pH, however, we observe 50% oxidation to 2,2'-disulfanediyldibenzoic acid (2,2'-DSBA), which is isolated as a cocrystal of both the thiol and disulfide molecules. At neutral pH, we observe complete oxidation and concurrent crystal growth. The pH sensitivity of this system allows targeting crystals of specific composition from simple building units through a straightforward pH manipulation.

  10. Metalloenzyme-Like Zeolites as Lewis Acid Catalysts for C-C Bond Formation.

    PubMed

    Van de Vyver, Stijn; Román-Leshkov, Yuriy

    2015-10-19

    The use of metalloenzyme-like zeolites as Lewis acid catalysts for C-C bond formation reactions has received increasing attention over the past few years. In particular, the observation of direct aldol condensation reactions enabled by hydrophobic zeolites with isolated framework metal sites has encouraged the development of catalytic approaches for producing chemicals from biomass-derived compounds. The discovery of new Diels-Alder cycloaddition/dehydration routes and experimental and computational studies of Lewis acid catalyzed carbonyl-ene reactions have given a further boost to this rapidly evolving field. PMID:26465652

  11. An erbium-based bifuctional heterogeneous catalyst: a cooperative route towards C-C bond formation.

    PubMed

    Oliverio, Manuela; Costanzo, Paola; Macario, Anastasia; De Luca, Giuseppina; Nardi, Monica; Procopio, Antonio

    2014-07-15

    Heterogeneous bifuctional catalysts are multifunctional synthetic catalysts enabling efficient organic transformations by exploiting two opposite functionalities without mutual destruction. In this paper we report the first Er(III)-based metallorganic heterogeneous catalyst, synthesized by post-calcination MW-assisted grafting and modification of the natural aminoacid L-cysteine. The natural acid-base distance between sites was maintained to assure the cooperation. The applicability of this new bifunctional heterogeneous catalyst to C-C bond formation and the supposed mechanisms of action are discussed as well.

  12. Stable RNA-DNA-RNA polymerase complexes can accompany formation of a single phosphodiester bond.

    PubMed

    Sylvester, J E; Cashel, M

    1980-03-18

    Incubation of RNA polymerase with poly[d(A-T)n] template results in a binary enzyme-DNA complex. Further addition of the dinucleotide UpA and [alpha-32P]UTP results in catalytic formation of the labeled trinucleotide UpApU until substrate exhaustion. In contrast, incubation of binary enzyme-DNA complexes with ApU and [alpha-32P]ATP results in labeled ApUpA formation to an extent that is stoichiometric with the amount of enzyme present despite an excess of substrates. The occurrence of ApUpA in a stable DNA-enzyme-RNA ternary complex is shown by gel exclusion chromatography, Millipore filtration, and the ability of ternary complexes to support subsequent RNA chain elongation. Radioactivity is not bound to Millipore filters when purified, labeled ApUpA is added to enzyme-DNA binary complexes. Hence, phosphodiester bond formation is required for stable ternary complex formation. The absence of the delta subunit of RNA polymerase or the addition of rifampicin to the reaction before ribonucleotide substrates results in catalytic ApUpA formation instead of stable ternary complexes.

  13. Dissecting the role of disulfide bonds on the amyloid formation of insulin

    SciTech Connect

    Li, Yang; Gong, Hao; Sun, Yue; Yan, Juan; Cheng, Biao; Zhang, Xin; Huang, Jing; Yu, Mengying; Guo, Yu; Zheng, Ling; Huang, Kun

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer We dissect how individual disulfide bond affects the amyloidogenicity of insulin. Black-Right-Pointing-Pointer A controlled reduction system for insulin is established in this study. Black-Right-Pointing-Pointer Disulfide breakage is associated with unfolding and increased amyloidogenicity. Black-Right-Pointing-Pointer Breakage of A6-A11 is associated with significantly increased cytotoxicity. Black-Right-Pointing-Pointer Analogs without A6-A11 have a higher potency to form high order toxic oligomers. -- Abstract: Disulfide bonds play a critical role in the stability and folding of proteins. Here, we used insulin as a model system, to investigate the role of its individual disulfide bond during the amyloid formation of insulin. Tris(2-carboxyethyl)phosphine (TCEP) was applied to reduce two of the three disulfide bonds in porcine insulin and the reduced disulfide bonds were then alkylated by iodoacetamide. Three disulfide bond-modified insulin analogs, INS-2 (lack of A6-A11), INS-3 (lack of A7-B7) and INS-6 (lack of both A6-A11 and A7-B7), were obtained. Far-UV circular dichroism (CD) spectroscopy results indicated that the secondary structure of INS-2 was the closest to insulin under neutral conditions, followed by INS-3 and INS-6, whereas in an acidic solution all analogs were essentially unfolded. To test how these modifications affect the amyloidogenicity of insulin, thioflavin-T (ThT) fluorescence and transmission electronic microscopy (TEM) were performed. Our results showed that all analogs were more prone to aggregation than insulin, with the order of aggregation rates being INS-6 > INS-3 > INS-2. Cross-linking of unmodified proteins (PICUP) assay results showed that analogs without A6-A11 (INS-2 and INS-6) have a higher potential for oligomerization than insulin and INS-3, which is accompanied with a higher cytotoxicity as the hemolytic assays of human erythrocytes suggested. The results indicated that breakage of A7

  14. Bimetallic bonding and mixed oxide formation in the Ga-Pd-CeO2 system

    NASA Astrophysics Data System (ADS)

    Skála, Tomáš; Tsud, Nataliya; Prince, Kevin C.; Matolín, Vladimír

    2011-08-01

    The interaction of gallium and palladium with 2 nm CeO2(111) layers grown on Cu(111) was studied by core level photoelectron spectroscopy and resonant valence band spectroscopy. Palladium alone interacted weakly with ceria layers. Gallium deposited on cerium dioxide formed a mixed Ga2O3-Ce2O3 oxide of 1:1 stoichiometry (cerium gallate CeGaO3), with both metals in the M3+ oxidation state. Increasing Ga coverages led to the formation of lower oxidation states, i.e., Ga1+ in Ga2O oxide and metallic Ga0. Palladium deposited onto this complex system interacted with gallium leading to a breakage of Ga-ceria bonds, a decrease of the oxidation state of gallium, and formation of a Ga-Pd intermetallic alloy in which all components (CeO2, CeGaO3, Ga2O, Ga-Pd, and Pd) are in equilibrium.

  15. Optimized Reaction Conditions for Amide Bond Formation in DNA-Encoded Combinatorial Libraries.

    PubMed

    Li, Yizhou; Gabriele, Elena; Samain, Florent; Favalli, Nicholas; Sladojevich, Filippo; Scheuermann, Jörg; Neri, Dario

    2016-08-01

    DNA-encoded combinatorial libraries are increasingly being used as tools for the discovery of small organic binding molecules to proteins of biological or pharmaceutical interest. In the majority of cases, synthetic procedures for the formation of DNA-encoded combinatorial libraries incorporate at least one step of amide bond formation between amino-modified DNA and a carboxylic acid. We investigated reaction conditions and established a methodology by using 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide, 1-hydroxy-7-azabenzotriazole and N,N'-diisopropylethylamine (EDC/HOAt/DIPEA) in combination, which provided conversions greater than 75% for 423/543 (78%) of the carboxylic acids tested. These reaction conditions were efficient with a variety of primary and secondary amines, as well as with various types of amino-modified oligonucleotides. The reaction conditions, which also worked efficiently over a broad range of DNA concentrations and reaction scales, should facilitate the synthesis of novel DNA-encoded combinatorial libraries.

  16. Intermolecular disulfide bond formation promotes immunoglobulin aggregation: investigation by fluorescence correlation spectroscopy.

    PubMed

    Nag, Moupriya; Bera, Kallol; Basak, Soumen

    2015-01-01

    Protein aggregation generally results from association between hydrophobic regions of individual monomers. However, additional mechanisms arising from specific interactions, such as intermolecular disulfide bond formation, may also contribute to the process. The latter is proposed to be the initiating pathway for aggregation of immunoglobulin (IgG), which is essential for triggering its immune response. To test the veracity of this hypothesis, we have employed fluorescence correlation spectroscopy to measure the kinetics of aggregation of IgG in separate experiments either allowing or inhibiting disulfide formation. Fluorescence correlation spectroscopy measurements yielded a diffusion time (τ(D)) of ∼200 µsec for Rhodamine-labeled IgG, corresponding to a hydrodynamic radius (R(H)) of 56 Å for the IgG monomer. The aggregation kinetics of the protein was followed by monitoring the time evolution of τ(D) under conditions in which its cysteine residues were either free or blocked. In both cases, the progress curves confirmed that aggregation proceeded via the nucleation-dependent polymerization pathway. However, for aggregation in the presence of free cysteines, the lag times were shorter, and the aggregate sizes bigger, than their respective counterparts for aggregation in the presence of blocked cysteines. This result clearly demonstrates that formation of intermolecular disulfide bonds represents a preferred pathway in the aggregation process of IgG. Fluorescence spectroscopy showed that aggregates formed in experiments where disulfide formation was prevented denatured at lower concentration of guanidine hydrochloride than those obtained in experiments where the disulfides were free to form, indicating that intermolecular disulfide bridging is a valid pathway for IgG aggregation. PMID:25371040

  17. Acetic Acid Can Catalyze Succinimide Formation from Aspartic Acid Residues by a Concerted Bond Reorganization Mechanism: A Computational Study

    PubMed Central

    Takahashi, Ohgi; Kirikoshi, Ryota; Manabe, Noriyoshi

    2015-01-01

    Succinimide formation from aspartic acid (Asp) residues is a concern in the formulation of protein drugs. Based on density functional theory calculations using Ace-Asp-Nme (Ace = acetyl, Nme = NHMe) as a model compound, we propose the possibility that acetic acid (AA), which is often used in protein drug formulation for mildly acidic buffer solutions, catalyzes the succinimide formation from Asp residues by acting as a proton-transfer mediator. The proposed mechanism comprises two steps: cyclization (intramolecular addition) to form a gem-diol tetrahedral intermediate and dehydration of the intermediate. Both steps are catalyzed by an AA molecule, and the first step was predicted to be rate-determining. The cyclization results from a bond formation between the amide nitrogen on the C-terminal side and the side-chain carboxyl carbon, which is part of an extensive bond reorganization (formation and breaking of single bonds and the interchange of single and double bonds) occurring concertedly in a cyclic structure formed by the amide NH bond, the AA molecule and the side-chain C=O group and involving a double proton transfer. The second step also involves an AA-mediated bond reorganization. Carboxylic acids other than AA are also expected to catalyze the succinimide formation by a similar mechanism. PMID:25588215

  18. In vivo biofilm formation on stainless steel bonded retainers during different oral health-care regimens

    PubMed Central

    Jongsma, Marije A; van der Mei, Henny C; Atema-Smit, Jelly; Busscher, Henk J; Ren, Yijin

    2015-01-01

    Retention wires permanently bonded to the anterior teeth are used after orthodontic treatment to prevent the teeth from relapsing to pre-treatment positions. A disadvantage of bonded retainers is biofilm accumulation on the wires, which produces a higher incidence of gingival recession, increased pocket depth and bleeding on probing. This study compares in vivo biofilm formation on single-strand and multi-strand retention wires with different oral health-care regimens. Two-centimetre wires were placed in brackets that were bonded to the buccal side of the first molars and second premolars in the upper arches of 22 volunteers. Volunteers used a selected toothpaste with or without the additional use of a mouthrinse containing essential oils. Brushing was performed manually. Regimens were maintained for 1 week, after which the wires were removed and the oral biofilm was collected to quantify the number of organisms and their viability, determine the microbial composition and visualize the bacteria by electron microscopy. A 6-week washout period was employed between regimens. Biofilm formation was reduced on single-strand wires compared with multi-strand wires; bacteria were observed to adhere between the strands. The use of antibacterial toothpastes marginally reduced the amount of biofilm on both wire types, but significantly reduced the viability of the biofilm organisms. Additional use of the mouthrinse did not result in significant changes in biofilm amount or viability. However, major shifts in biofilm composition were induced by combining a stannous fluoride- or triclosan-containing toothpaste with the mouthrinse. These shifts can be tentatively attributed to small changes in bacterial cell surface hydrophobicity after the adsorption of the toothpaste components, which stimulate bacterial adhesion to the hydrophobic oil, as illustrated for a Streptococcus mutans strain. PMID:25572920

  19. In vivo biofilm formation on stainless steel bonded retainers during different oral health-care regimens.

    PubMed

    Jongsma, Marije A; van der Mei, Henny C; Atema-Smit, Jelly; Busscher, Henk J; Ren, Yijin

    2015-03-23

    Retention wires permanently bonded to the anterior teeth are used after orthodontic treatment to prevent the teeth from relapsing to pre-treatment positions. A disadvantage of bonded retainers is biofilm accumulation on the wires, which produces a higher incidence of gingival recession, increased pocket depth and bleeding on probing. This study compares in vivo biofilm formation on single-strand and multi-strand retention wires with different oral health-care regimens. Two-centimetre wires were placed in brackets that were bonded to the buccal side of the first molars and second premolars in the upper arches of 22 volunteers. Volunteers used a selected toothpaste with or without the additional use of a mouthrinse containing essential oils. Brushing was performed manually. Regimens were maintained for 1 week, after which the wires were removed and the oral biofilm was collected to quantify the number of organisms and their viability, determine the microbial composition and visualize the bacteria by electron microscopy. A 6-week washout period was employed between regimens. Biofilm formation was reduced on single-strand wires compared with multi-strand wires; bacteria were observed to adhere between the strands. The use of antibacterial toothpastes marginally reduced the amount of biofilm on both wire types, but significantly reduced the viability of the biofilm organisms. Additional use of the mouthrinse did not result in significant changes in biofilm amount or viability. However, major shifts in biofilm composition were induced by combining a stannous fluoride- or triclosan-containing toothpaste with the mouthrinse. These shifts can be tentatively attributed to small changes in bacterial cell surface hydrophobicity after the adsorption of the toothpaste components, which stimulate bacterial adhesion to the hydrophobic oil, as illustrated for a Streptococcus mutans strain.

  20. On the formation of equilibrium gels via a macroscopic bond limitation

    NASA Astrophysics Data System (ADS)

    Lindquist, B. A.; Jadrich, R. B.; Milliron, D. J.; Truskett, T. M.

    2016-08-01

    Restricting the number of attractive physical "bonds" that can form between particles in a fluid suppresses the usual demixing phase transition to very low particle concentrations, allowing for the formation of open, percolated, and homogeneous states, aptly called equilibrium or "empty" gels. Most demonstrations of this concept have directly limited the microscopic particle valence via anisotropic (patchy) attractions; however, an alternative macroscopic valence limitation would be desirable for greater experimental tunability and responsiveness. One possibility, explored in this paper, is to employ primary particles with attractions mediated via a secondary species of linking particles. In such a system, the linker-to-primary particle ratio serves as a macroscopic control parameter for the average microscopic valence. We show that the phase behavior of such a system predicted by Wertheim's first order perturbation theory is consistent with equilibrium gel formation: the primary particle concentrations corresponding to the two-phase demixing transition are significantly suppressed at both low and high linker-to-primary particle ratios. Extensive molecular dynamics simulations validate these theoretical predictions but also reveal the presence of loops of bonded particles, which are neglected in the theory. Such loops cause densification and inhibit percolation, and hence the range of viable empty gel state conditions is somewhat reduced relative to the Wertheim theory predictions.

  1. Ultrafast laser control of ionic-bond formation: ClF in argon solids

    NASA Astrophysics Data System (ADS)

    Bargheer, M.; Pietzner, J.; Dietrich, P.; Schwentner, N.

    2001-12-01

    The formation of the two ionic products of Cl+F- versus Arn+F- is controlled by variation of the time delay between two ultrafast UV pulses. The Arn+F- exciplex is characterized by a fluorescence band at 355 nm and the Cl+F- product by the D' emission at 420 nm. In this Tannor-Kosloff-Rice control scheme, the pump pulse dissociates ClF in a solid argon matrix. During the early dynamics in the matrix cage the F fragments have sufficient kinetic energy to closely approach the Ar atoms. Here a control pulse, which is delayed by typically 3 ps, induces the ionic bond Arn+F-. Energy loss by collisions with the cage leads to recombination and vibrational relaxation in the B state of ClF. A control pulse delayed by 30-100 ps leads to exclusive formation of the ionic bond Cl+F-. A switching contrast better than 1 to 10 can be achieved in both directions. The control scheme makes use of the time scale of vibrational relaxation. By femtosecond pump-probe spectroscopy we show the wave packet oscillations from the recombination dynamics in the cage lasting for 2 ps and determine the subsequent decay of vibrational energy.

  2. On the formation of equilibrium gels via a macroscopic bond limitation.

    PubMed

    Lindquist, B A; Jadrich, R B; Milliron, D J; Truskett, T M

    2016-08-21

    Restricting the number of attractive physical "bonds" that can form between particles in a fluid suppresses the usual demixing phase transition to very low particle concentrations, allowing for the formation of open, percolated, and homogeneous states, aptly called equilibrium or "empty" gels. Most demonstrations of this concept have directly limited the microscopic particle valence via anisotropic (patchy) attractions; however, an alternative macroscopic valence limitation would be desirable for greater experimental tunability and responsiveness. One possibility, explored in this paper, is to employ primary particles with attractions mediated via a secondary species of linking particles. In such a system, the linker-to-primary particle ratio serves as a macroscopic control parameter for the average microscopic valence. We show that the phase behavior of such a system predicted by Wertheim's first order perturbation theory is consistent with equilibrium gel formation: the primary particle concentrations corresponding to the two-phase demixing transition are significantly suppressed at both low and high linker-to-primary particle ratios. Extensive molecular dynamics simulations validate these theoretical predictions but also reveal the presence of loops of bonded particles, which are neglected in the theory. Such loops cause densification and inhibit percolation, and hence the range of viable empty gel state conditions is somewhat reduced relative to the Wertheim theory predictions. PMID:27544125

  3. Control of stability of polypeptide multilayer nanofilms by quantitative control of disulfide bond formation

    NASA Astrophysics Data System (ADS)

    Zhong, Yang; Li, Bingyun; Haynie, Donald T.

    2006-12-01

    The crosslinking of polymers in a polymeric material will alter the mechanical properties of the material. Control over the mechanical properties of polyelectrolyte multilayer films (PEMs) could be useful for applications of the technology in medicine and other areas. Disulfide bonds are 'natural' polypeptide crosslinks found widely in wild-type proteins. Here, we have designed and synthesized three pairs of oppositely charged 32mer polypeptide to have 0, 4, or 8 cysteine (Cys) residues per molecule, and we have characterized physical properties of the peptides in a PEM context. The average linear density of free thiol in the designed peptides was 0, 0.125, or 0.25 per amino acid residue. The peptides were used to make 10-bilayer PEMs by electrostatic layer-by-layer self-assembly (LBL). Cys was included in the peptides to study specific effects of disulfide bond formation on PEM properties. Features of film assembly have been found to depend on the amino acid sequence, as in protein folding. Following polypeptide self-assembly into multilayer films, Cys residues were disulfide-crosslinked under mild oxidizing conditions. The stability of the crosslinked films at acidic pH has been found to depend on the number of Cys residues per peptide for a given crosslinking procedure. Crosslinked and non-crosslinked films have been analysed by ultraviolet spectroscopy (UVS), ellipsometry, and atomic force microscopy (AFM) to characterize film assembly, surface morphology, and disassembly. A selective etching model of the disassembly process at acidic pH is proposed on the basis of the experimental data. In this model, regions of film in which the disulfide bond density is low are etched at a higher rate than regions where the density is high.

  4. Anatomy of bond formation. Bond length dependence of the extent of electron sharing in chemical bonds from the analysis of domain-averaged Fermi holes.

    PubMed

    Ponec, Robert; Cooper, David L

    2007-01-01

    We demonstrate that domain-average Fermi hole (DAFH) analysis, which has previously been used at the Hartree-Fock level, remains useful after the proper introduction of electron correlation. We perform a systematic investigation of the variation of the picture of bonding with increasing bond length in simple diatomic molecules such as N2 and LiH. Alongside values of a shared-electron distribution index (SEDI), this analysis provides further insight into the geometry dependence of the extent of electron sharing in polar and non-polar systems. We also use DAFH analysis, with correlated wave functions, to evaluate the (potential) multicentre bonding in the electron-deficient and electron-rich molecules CH2Li2 and CH2N2, respectively.

  5. Elucidation of an Iterative Process of Carbon-Carbon Bond Formation of Prebiotic Significance

    NASA Astrophysics Data System (ADS)

    Loison, Aurélie; Dubant, Stéphane; Adam, Pierre; Albrecht, Pierre

    2010-12-01

    Laboratory experiments carried out under plausible prebiotic conditions (under conditions that might have occurred at primitive deep-sea hydrothermal vents) in water and involving constituents that occur in the vicinity of submarine hydrothermal vents (e.g., CO, H2S, NiS) have disclosed an iterative Ni-catalyzed pathway of C-C bond formation. This pathway leads from CO to various organic molecules that comprise, notably, thiols, alkylmono- and disulfides, carboxylic acids, and related thioesters containing up to four carbon atoms. Furthermore, similar experiments with organic compounds containing various functionalities, such as thiols, carboxylic acids, thioesters, and alcohols, gave clues to the mechanisms of this novel synthetic process in which reduced metal species, in particular Ni(0), appear to be the key catalysts. Moreover, the formation of aldehydes (and ketones) as labile intermediates via a hydroformylation-related process proved to be at the core of the chain elongation process. Since this process can potentially lead to organic compounds with any chain length, it could have played a significant role in the prebiotic formation of lipidic amphiphilic molecules such as fatty acids, potential precursors of membrane constituents.

  6. Formation of porous surface layers in reaction bonded silicon nitride during processing

    NASA Technical Reports Server (NTRS)

    Shaw, N. J.; Glasgow, T. K.

    1979-01-01

    An effort was undertaken to determine if the formation of the generally observed layer of large porosity adjacent to the as-nitride surfaces of reaction bonded silicon nitrides could be prevented during processing. Isostatically pressed test bars were prepared from wet vibratory milled Si powder. Sintering and nitriding were each done under three different conditions:(1) bars directly exposed to the furnance atmosphere; (2) bars packed in Si powder; (3) bars packed in Si3N4 powder. Packing the bars in either Si of Si3N4 powder during sintering retarded formation of the layer of large porosity. Only packing the bars in Si prevented formation of the layer during nitridation. The strongest bars (316 MPa) were those sintered in Si and nitrided in Si3N4 despite their having a layer of large surface porosity; failure initiated at very large pores and inclusions. The alpha/beta ratio was found to be directly proportional to the oxygen content; a possible explanation for this relationship is discussed.

  7. A Rough Energy Landscape to Describe Surface-Linked Antibody and Antigen Bond Formation

    PubMed Central

    Limozin, Laurent; Bongrand, Pierre; Robert, Philippe

    2016-01-01

    Antibodies and B cell receptors often bind their antigen at cell-cell interface while both molecular species are surface-bound, which impacts bond kinetics and function. Despite the description of complex energy landscapes for dissociation kinetics which may also result in significantly different association kinetics, surface-bound molecule (2D) association kinetics usually remain described by an on-rate due to crossing of a single free energy barrier, and few experimental works have measured association kinetics under conditions implying force and two-dimensional relative ligand-receptor motion. We use a new laminar flow chamber to measure 2D bond formation with systematic variation of the distribution of encounter durations between antigen and antibody, in a range from 0.1 to 10 ms. Under physiologically relevant forces, 2D association is 100-fold slower than 3D association as studied by surface plasmon resonance assays. Supported by brownian dynamics simulations, our results show that a minimal encounter duration is required for 2D association; an energy landscape featuring a rough initial part might be a reasonable way of accounting for this. By systematically varying the temperature of our experiments, we evaluate roughness at 2kBT, in the range of previously proposed rough parts of landscapes models during dissociation. PMID:27731375

  8. Nucleophilicity and P-C Bond Formation Reactions of a Terminal Phosphanido Iridium Complex.

    PubMed

    Serrano, Ángel L; Casado, Miguel A; Ciriano, Miguel A; de Bruin, Bas; López, José A; Tejel, Cristina

    2016-01-19

    The diiridium complex [{Ir(ABPN2)(CO)}2(μ-CO)] (1; [ABPN2](-) = [(allyl)B(Pz)2(CH2PPh2)](-)) reacts with diphenylphosphane affording [Ir(ABPN2)(CO)(H) (PPh2)] (2), the product of the oxidative addition of the P-H bond to the metal. DFT studies revealed a large contribution of the terminal phosphanido lone pair to the HOMO of 2, indicating nucleophilic character of this ligand, which is evidenced by reactions of 2 with typical electrophiles such as H(+), Me(+), and O2. Products from the reaction of 2 with methyl chloroacetate were found to be either [Ir(ABPN2)(CO)(H)(PPh2CH2CO2Me)][PF6] ([6]PF6) or [Ir(ABPN2)(CO)(Cl)(H)] (7) and the free phosphane (PPh2CH2CO2Me), both involving P-C bond formation, depending on the reaction conditions. New complexes having iridacyclophosphapentenone and iridacyclophosphapentanone moieties result from reactions of 2 with dimethyl acetylenedicarboxylate and dimethyl maleate, respectively, as a consequence of a further incorporation of the carbonyl ligand. In this line, the terminal alkyne methyl propiolate gave a mixture of a similar iridacyclophosphapentanone complex and [Ir(ABPN2){CH═C(CO2Me)-CO}{PPh2-CH═CH(CO2Me)}] (10), which bears the functionalized phosphane PPh2-CH═CH(CO2Me) and an iridacyclobutenone fragment. Related model reactions aimed to confirm mechanistic proposals are also studied.

  9. Involvement of SgvP in carbon-sulfur bond formation during Griseoviridin biosynthesis.

    PubMed

    Xie, Yunchang; Li, Qinglian; Song, Yongxiang; Ma, Junying; Ju, Jianhua

    2014-05-26

    Griseoviridin (GV) is an A-type streptogramin antibiotic displaying antimicrobial activity and acting synergistically with viridogrisein (VG). Bioinformatic analyses reveal SgvP as the sole cytochrome P450 enzyme in the GV/VG gene cluster. To explore the role of SgvP in the GV/VG pathway, we inactivated the sgvP gene. The resulting ΔsgvP mutant generated two new products: GV-1 and GV-2, both lacking the CS bridge. In trans complementation of the sgvP gene into the ΔsgvP mutant strain partially restores GV production. Feeding [1-(13) C]-labeled cysteine to the wild-type strain led to enrichment of C-7 in the GV scaffold, thus verifying that the CS bond in GV is formed through direct coupling of the free SH group provided by the side chain of cysteine. The above results highlight the significance of SgvP in CS bond formation in griseoviridin biosynthesis.

  10. Terminal phosphanido rhodium complexes mediating catalytic P-P and P-C bond formation.

    PubMed

    Geer, Ana M; Serrano, Ángel L; de Bruin, Bas; Ciriano, Miguel A; Tejel, Cristina

    2015-01-01

    Complexes with terminal phosphanido (M-PR2) functionalities are believed to be crucial intermediates in new catalytic processes involving the formation of P-P and P-C bonds. We showcase here the isolation and characterization of mononuclear phosphanide rhodium complexes ([RhTp(H)(PR2)L]) that result from the oxidative addition of secondary phosphanes, a reaction that was also explored computationally. These compounds are active catalysts for the dehydrocoupling of PHPh2 to Ph2P-PPh2. The hydrophosphination of dimethyl maleate and the unactivated olefin ethylene is also reported. Reliable evidence for the prominent role of mononuclear phosphanido rhodium species in these reactions is also provided.

  11. Competition between glutathione and protein thiols for disulphide-bond formation.

    PubMed

    Cuozzo, J W; Kaiser, C A

    1999-07-01

    It has long been assumed that the oxidized form of glutathione, the tripeptide glutamate-cysteine-glycine, is a source of oxidizing equivalents needed for the formation of disulphide bonds in proteins within the endoplasmic reticulum (ER), although the in vivo function of glutathione in the ER has never been studied directly. Here we show that the major pathway for oxidation in the yeast ER, defined by the protein Ero1, is responsible for the oxidation of both glutathione and protein thiols. However, mutation and overexpression studies show that glutathione competes with protein thiols for the oxidizing machinery. Thus, contrary to expectation, cellular glutathione contributes net reducing equivalents to the ER; these reducing equivalents can buffer the ER against transient hyperoxidizing conditions. PMID:10559898

  12. Formation of porous surface layers in reaction bonded silicon nitride during processing

    NASA Technical Reports Server (NTRS)

    Shaw, N. J.; Glasgow, T. K.

    1979-01-01

    Microstructural examination of reaction bonded silicon nitride (RBSN) has shown that there is often a region adjacent to the as-nitrided surfaces that is even more porous than the interior of this already quite porous material. Because this layer of large porosity is considered detrimental to both the strength and oxidation resistance of RBSN, a study was undertaken to determine if its formation could be prevented during processing. All test bars studied were made from a single batch of Si powder which was milled for 4 hours in heptane in a vibratory mill using high density alumina cylinders as the grinding media. After air drying the powder, bars were compacted in a single acting die and hydropressed.

  13. Isotopic Studies of O-O Bond Formation During Water Oxidation (SISGR)

    SciTech Connect

    Roth, Justine P.

    2015-03-03

    Isotopic Studies of O-O Bond Formation During Water Oxidation (SISGR) Research during the project period focused primarily on mechanisms of water oxidation by structurally defined transition metal complexes. Competitive oxygen isotope fractionation of water, mediated by oxidized precursors or reduced catalysts together with ceric, Ce(IV), ammonium nitrate in aqueous media, afforded oxygen-18 kinetic isotope effects (O-18 KIEs). Measurement, calculation, and interpretation of O-18 KIEs, described in the accompanying report has important ramifications for the production of electricity and solar hydrogen (as fuel). The catalysis division of BES has acknowledged that understanding mechanisms of transition metal catalyzed water oxidation has major ramifications, potentially leading to transformation of the global economy and natural environment in years to come. Yet, because of program restructuring and decreased availability of funds, it was recommended that the Solar Photochemistry sub-division of BES would be a more appropriate parent program for support of continued research.

  14. Peroxiredoxin Ahp1 Acts as a Receptor for Alkylhydroperoxides to Induce Disulfide Bond Formation in the Cad1 Transcription Factor*

    PubMed Central

    Iwai, Kenta; Naganuma, Akira; Kuge, Shusuke

    2010-01-01

    Reactive oxygen species (ROS) generated during cellular metabolism are toxic to cells. As a result, cells must be able to identify ROS as a stress signal and induce stress response pathways that protect cells from ROS toxicity. Recently, peroxiredoxin (Prx)-induced relays of disulfide bond formation have been identified in budding yeast, namely the disulfide bond formation of Yap1, a crucial transcription factor for oxidative stress response, by a specific Prx Gpx3 and by a major Prx Tsa1. Here, we show that an atypical-type Prx Ahp1 can act as a receptor for alkylhydroperoxides, resulting in activation of the Cad1 transcription factor that is homologous to Yap1. We demonstrate that Ahp1 is required for the formation of intermolecular Cad1 disulfide bond(s) in both an in vitro redox system and in cells treated with alkylhydroperoxide. Furthermore, we found that Cad1-dependent transcriptional activation of the HSP82 gene is dependent on Ahp1. Our results suggest that, although the Gpx3-Yap1 pathway contributes more strongly to resistance than the Ahp1-Cad1 pathway, the Ahp1-induced activation of Cad1 can function as a defense system against stress induced by alkylhydroperoxides, possibly including lipid peroxides. Thus, the Prx family of proteins have an important role in determining peroxide response signals and in transmitting the signals to specific target proteins by inducing disulfide bond formation. PMID:20145245

  15. Peroxiredoxin Ahp1 acts as a receptor for alkylhydroperoxides to induce disulfide bond formation in the Cad1 transcription factor.

    PubMed

    Iwai, Kenta; Naganuma, Akira; Kuge, Shusuke

    2010-04-01

    Reactive oxygen species (ROS) generated during cellular metabolism are toxic to cells. As a result, cells must be able to identify ROS as a stress signal and induce stress response pathways that protect cells from ROS toxicity. Recently, peroxiredoxin (Prx)-induced relays of disulfide bond formation have been identified in budding yeast, namely the disulfide bond formation of Yap1, a crucial transcription factor for oxidative stress response, by a specific Prx Gpx3 and by a major Prx Tsa1. Here, we show that an atypical-type Prx Ahp1 can act as a receptor for alkylhydroperoxides, resulting in activation of the Cad1 transcription factor that is homologous to Yap1. We demonstrate that Ahp1 is required for the formation of intermolecular Cad1 disulfide bond(s) in both an in vitro redox system and in cells treated with alkylhydroperoxide. Furthermore, we found that Cad1-dependent transcriptional activation of the HSP82 gene is dependent on Ahp1. Our results suggest that, although the Gpx3-Yap1 pathway contributes more strongly to resistance than the Ahp1-Cad1 pathway, the Ahp1-induced activation of Cad1 can function as a defense system against stress induced by alkylhydroperoxides, possibly including lipid peroxides. Thus, the Prx family of proteins have an important role in determining peroxide response signals and in transmitting the signals to specific target proteins by inducing disulfide bond formation. PMID:20145245

  16. Evaluation of the Role of Water in the H2 Bond Formation by Ni(II)-based Electrocatalysts

    SciTech Connect

    Ho, Ming-Hsun; Raugei, Simone; Rousseau, Roger J.; Dupuis, Michel; Bullock, R. Morris

    2013-07-17

    We investigate the role of water in the H-H bond formation by a family of nickel molecular catalysts that exhibit high rates for H2 production in acetonitrile solvent. A key feature leading to the high reactivity is the Lewis acidity of the Ni(II) center and pendant amines in the diphosphine ligand that function as Lewis bases, facilitating H-H bond formation or cleavage. Significant increases in the rate of H2 production have been reported in the presence of added water. Our calculations show that molecular water can displace an acetonitrile solvent molecule in the first solvation shell of the metal. One or two water molecules can also participate in shuttling a proton that can combine with a metal hydride to form the H-H bond. However the participation of the water molecules does not lower the barrier to H-H bond formation. Thus these calculations suggest that the rate increase due to water in these electrocatalysts is not associated with the elementary step of H-H bond formation or cleavage, but rather with the proton delivery steps. We attribute the higher barrier in the H-H bond formation in the presence of water to a decrease in direct interaction between the protic and hydridic hydrogen atoms forced by the water molecules. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. Computational resources were provided at W. R. Wiley Environmental Molecular Science Laboratory - Pacific Northwest National Laboratory, the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory, and the Jaguar supercomputer at Oak Ridge National Laboratory.

  17. Carbon-carbon bond cleavage and formation reactions in drug metabolism and the role of metabolic enzymes.

    PubMed

    Bolleddula, Jayaprakasam; Chowdhury, Swapan K

    2015-01-01

    Elimination of xenobiotics from the human body is often facilitated by a transformation to highly water soluble and more ionizable molecules. In general, oxidation-reduction, hydrolysis, and conjugation reactions are common biotransformation reactions that are catalyzed by various metabolic enzymes including cytochrome P450s (CYPs), non-CYPs, and conjugative enzymes. Although carbon-carbon (C-C) bond formation and cleavage reactions are known to exist in plant secondary metabolism, these reactions are relatively rare in mammalian metabolism and are considered exceptions. However, various reactions such as demethylation, dealkylation, dearylation, reduction of alkyl chain, ring expansion, ring contraction, oxidative elimination of a nitrile through C-C bond cleavage, and dimerization, and glucuronidation through C-C bond formation have been reported for drug molecules. Carbon-carbon bond cleavage reactions for drug molecules are primarily catalyzed by CYP enzymes, dimerization is mediated by peroxidases, and C-glucuronidation is catalyzed by UGT1A9. This review provides an overview of C-C bond cleavage and formation reactions in drug metabolism and the metabolic enzymes associated with these reactions.

  18. Bond formation effects on the metal-insulator transition in the half-filled kagome Hubbard model

    NASA Astrophysics Data System (ADS)

    Higa, Ryota; Asano, Kenichi

    2016-06-01

    We study the metal-insulator transition in the half-filled Hubbard model on a Kagome lattice using the variational cluster approximation. The strong coupling limit of the model corresponds to the S =1 /2 Kagome Heisenberg antiferromagnet, which is known to have a singlet ground state, although its detail is still debated. As the results of the cluster methods generally depend much on the choice of the unit cluster, we have chosen the clusters that are compatible with these singlet ground states in the strong coupling case found so far, which basically consist of even number of sites. It is found that the correlated electrons on the Kagome lattice have a strong tendency to form valence-bond structures, which are the resonation of electrons on a single bond or several bonds forming loops. The zero-temperature metal-insulator transition at some interaction strength is possibly driven by the formation of such short range valence bonds and shows a second order character, which is distinctive from the Brinkman-Rice scenario. The electrons on these valence bonds further localizes onto each site as the interaction increases, and the valence bonds of electrons finally turn into magnetic singlet bonds between localized S =1 /2 spins, which are consistent with the ground states of the Kagome antiferromagnet.

  19. Molecular Orbital Study of the Formation of Intramolecular Hydrogen Bonding of a Ligand Molecule in a Protein Aromatic Hydrophobic Pocket.

    PubMed

    Koseki, Jun; Gouda, Hiroaki; Hirono, Shuichi

    2016-01-01

    The natural product argadin is a cyclopentapeptide chitinase inhibitor that binds to chitinase B (ChiB) from the pathogenic bacteria Serratia marcescens. N(ω)-Acetyl-L-arginine and L-aminoadipic acid of argadin form intramolecular ionic hydrogen bonds in the aromatic hydrophobic pocket of ChiB. We performed ab initio molecular orbital and density functional theory calculations to elucidate the role of this intramolecular hydrogen bonding on intermolecular interactions between argadin and ChiB. We found that argadin accrues large stabilization energies from the van der Waals dispersion interactions, such as CH-π, π-π, and π-lone pair interactions, in the aromatic hydrophobic pocket of ChiB, although intramolecular hydrogen bonding within argadin might result in loss of entropy. The intramolecular ionic hydrogen bonding formation canceled local molecular charges and provided good van der Waals interactions with surrounding aromatic residues.

  20. The enthalpy of formation of fullerene fluoride C60F18 and the C-F bond energy

    NASA Astrophysics Data System (ADS)

    Papina, T. S.; Luk'yanova, V. A.; Goryunkov, A. A.; Ioffe, I. N.; Gol'Dt, I. V.; Buyanovskaya, A. G.; Kabaeva, N. M.; Sidorov, L. N.

    2007-10-01

    The enthalpy of combustion of crystalline fullerene fluoride C60F18 was determined in an isoperibolic calorimeter with a rotating platinized bomb, and the enthalpy of formation of the compound was calculated. The enthalpy of sublimation of C60F18 measured earlier was used to calculate the enthalpy of formation of fullerene fluoride in the gas phase and the mean enthalpy of dissociation of C-F bonds in this compound.

  1. MICROWAVE-ASSISTED CHEMISTRY: SYNTHESIS OF AMINES AND HETEROCYCLES VIA CARBON-NITROGEN BOND FORMATION IN AQUEOUS MEDIA

    EPA Science Inventory

    Improved C-N bond formation under MW influence is demonstrated by a) solventless three-component coupling reaction to generate propargyl amines that uses only Cu (I); b) aqueous N-alkylation of amines by alkyl halides that proceeds expeditiously in the presence of NaOH to deliver...

  2. Activation of dinitrogen-derived hafnium nitrides for nucleophilic N-C bond formation with a terminal isocyanate.

    PubMed

    Semproni, Scott P; Chirik, Paul J

    2013-12-01

    Better by Hf: Anion coordination to a bridging hafnocene nitride complex, prepared from CO-induced N2 cleavage, increases the nucleophilicity of the nitrogen atom, thus promoting additional NC bond formation with a typically inert terminal isocyanate ligand. This cascade sequence allows synthesis of otherwise challenging mono-substituted ureas using N2 , CO, and an appropriate electrophile.

  3. The Pediocin PA-1 Accessory Protein Ensures Correct Disulfide Bond Formation in the Antimicrobial Peptide Pediocin PA-1.

    PubMed

    Oppegård, Camilla; Fimland, Gunnar; Anonsen, Jan Haug; Nissen-Meyer, Jon

    2015-05-19

    Peptides, in contrast to proteins, are generally not large enough to form stable and well-defined three-dimensional structures. However, peptides are still able to form correct disulfide bonds. Using pediocin-like bacteriocins, we have examined how this may be achieved. Some pediocin-like bacteriocins, such as pediocin PA-1 and sakacin P[N24C+44C], have four cysteines. There are three possible ways by which the four cysteines may combine to form two disulfide bonds, and the three variants are expected to be produced in approximately equal amounts if their formation is random. Pediocin PA-1 and sakacin P[N24C+44C] with correct disulfide bonds were the main products when they were secreted by the pediocin PA-1 ABC transporter and accessory protein, but when they were secreted by the corresponding secretion machinery for sakacin A, a pediocin-like bacteriocin with one disulfide bond (two cysteines), peptides with all three possible disulfide bonds were produced in approximately equal amounts. All five cysteines in the pediocin PA-1 ABC transporter and the two cysteines (that form a CxxC motif) in the accessory protein were individually replaced with serines to examine their involvement in disulfide bond formation in pediocin PA-1. The Cys86Ser mutation in the accessory protein caused a 2-fold decrease in the amount of pediocin PA-1 with correct disulfide bonds, while the Cys83Ser mutation nearly abolished the production of pediocin PA-1 and resulted in the production of all three disufide bond variants in equal amounts. The Cys19Ser mutation in the ABC transporter completely abolished secretion of pediocin PA-1, suggesting that Cys19 is in the proteolytic active site and involved in cleaving the prebacteriocin. Replacing the other four cysteines in the ABC transporter with serines caused a slight reduction in the overall amount of secreted pediocin PA-1, but the relative amount with the correct disulfide bonds remained large. These results indicate that the pediocin

  4. Descent of low-Bond-number liquid-metal diapirs with trailing conduits during core formation

    NASA Astrophysics Data System (ADS)

    Rains, C.; Weeraratne, D. S.

    2012-12-01

    Formation of the early Earth involved violent impacts and meteorite bombardment which partially or fully melted surface materials, facilitating separation of iron metal from silicates. Geochemical constraints on core formation times indicate that this liquid metal must have been transported to the center of the Earth within 30 Ma. Among the mechanisms that have been proposed, metal-silicate plumes resulting from Rayleigh-Taylor instabilities of a liquid-metal pond at the bottom of a magma ocean provide the fastest rates of delivery to the core. Recent studies have shown that these rapidly descending plumes develop trailing conduits that fill with the overlying melted silicate material. However, while large plumes descend quickly, they do not provide enough time or surface area for metal-silicate equilibration to be achieved throughout the mantle. Instead, small metal drops descending in the wake of larger diapirs or in conduits of their own making may have been crucial in the equilibration process that resulted in the excess siderophile mantle abundance. We investigate the instability and descent of liquid-metal drops through a highly viscous layer using three-component laboratory fluid experiments representing the Earth's proto-mantle (layer 2) covered by a magma ocean (layer 1), and a liquid iron pond (layer 3) initially resting at their interface. Silicate materials are represented by dehydrated (layer 2), or diluted (layer 1) glucose and salt solutions. Liquid gallium represents the iron metal phase. We scale our experiments to the Earth's mantle through the use of Bond numbers to characterize drops and diapirs, and a non-dimensional length scale λ, which we define as the ratio of radius to height, to characterize conduits. Previous laboratory work using liquid gallium has investigated high-Bond-number diapirs (B = 13 - 66) and conduits of λ ~ 0.2, analogous to large plumes in the Earth. Here, we focus on low Bond numbers (B ~ 4), and small λ ~ .05 to

  5. Imbalance of heterologous protein folding and disulfide bond formation rates yields runaway oxidative stress

    PubMed Central

    2012-01-01

    Background The protein secretory pathway must process a wide assortment of native proteins for eukaryotic cells to function. As well, recombinant protein secretion is used extensively to produce many biologics and industrial enzymes. Therefore, secretory pathway dysfunction can be highly detrimental to the cell and can drastically inhibit product titers in biochemical production. Because the secretory pathway is a highly-integrated, multi-organelle system, dysfunction can happen at many levels and dissecting the root cause can be challenging. In this study, we apply a systems biology approach to analyze secretory pathway dysfunctions resulting from heterologous production of a small protein (insulin precursor) or a larger protein (α-amylase). Results HAC1-dependent and independent dysfunctions and cellular responses were apparent across multiple datasets. In particular, processes involving (a) degradation of protein/recycling amino acids, (b) overall transcription/translation repression, and (c) oxidative stress were broadly associated with secretory stress. Conclusions Apparent runaway oxidative stress due to radical production observed here and elsewhere can be explained by a futile cycle of disulfide formation and breaking that consumes reduced glutathione and produces reactive oxygen species. The futile cycle is dominating when protein folding rates are low relative to disulfide bond formation rates. While not strictly conclusive with the present data, this insight does provide a molecular interpretation to an, until now, largely empirical understanding of optimizing heterologous protein secretion. This molecular insight has direct implications on engineering a broad range of recombinant proteins for secretion and provides potential hypotheses for the root causes of several secretory-associated diseases. PMID:22380681

  6. Ions colliding with clusters of fullerenes—Decay pathways and covalent bond formations

    NASA Astrophysics Data System (ADS)

    Seitz, F.; Zettergren, H.; Rousseau, P.; Wang, Y.; Chen, T.; Gatchell, M.; Alexander, J. D.; Stockett, M. H.; Rangama, J.; Chesnel, J. Y.; Capron, M.; Poully, J. C.; Domaracka, A.; Méry, A.; Maclot, S.; Vizcaino, V.; Schmidt, H. T.; Adoui, L.; Alcamí, M.; Tielens, A. G. G. M.; Martín, F.; Huber, B. A.; Cederquist, H.

    2013-07-01

    We report experimental results for the ionization and fragmentation of weakly bound van der Waals clusters of n C60 molecules following collisions with Ar2 +, He2 +, and Xe20 + at laboratory kinetic energies of 13 keV, 22.5 keV, and 300 keV, respectively. Intact singly charged C60 monomers are the dominant reaction products in all three cases and this is accounted for by means of Monte Carlo calculations of energy transfer processes and a simple Arrhenius-type [C_{60}]_n^+ → C_{60}+ + (n-1)C_{60} evaporation model. Excitation energies in the range of only ˜0.7 eV per C60 molecule in a [C_{60}]_{13}^+ cluster are sufficient for complete evaporation and such low energies correspond to ion trajectories far outside the clusters. Still we observe singly and even doubly charged intact cluster ions which stem from even more distant collisions. For penetrating collisions the clusters become multiply charged and some of the individual molecules may be promptly fragmented in direct knock-out processes leading to efficient formations of new covalent systems. For Ar2 + and He2 + collisions, we observe very efficient C_{119}+ and C_{118}+ formation and molecular dynamics simulations suggest that they are covalent dumb-bell systems due to bonding between C_{59}+ or C_{58}+ and C60 during cluster fragmentation. In the Ar2 + case, it is possible to form even smaller C_{120-2m}+ molecules (m = 2-7), while no molecular fusion reactions are observed for the present Xe20 + collisions.

  7. Ions colliding with clusters of fullerenes-Decay pathways and covalent bond formations

    SciTech Connect

    Seitz, F.; Zettergren, H.; Chen, T.; Gatchell, M.; Alexander, J. D.; Stockett, M. H.; Schmidt, H. T.; Cederquist, H.; Rousseau, P.; Chesnel, J. Y.; Capron, M.; Poully, J. C.; Mery, A.; Maclot, S.; Adoui, L.; Wang, Y.; Martin, F.; Rangama, J.; Domaracka, A.; Vizcaino, V. [CIMAP, UMR 6252, CEA and others

    2013-07-21

    We report experimental results for the ionization and fragmentation of weakly bound van der Waals clusters of n C{sub 60} molecules following collisions with Ar{sup 2+}, He{sup 2+}, and Xe{sup 20+} at laboratory kinetic energies of 13 keV, 22.5 keV, and 300 keV, respectively. Intact singly charged C{sub 60} monomers are the dominant reaction products in all three cases and this is accounted for by means of Monte Carlo calculations of energy transfer processes and a simple Arrhenius-type [C{sub 60}]{sub n}{sup +}{yields}C{sub 60}{sup +}+(n-1)C{sub 60} evaporation model. Excitation energies in the range of only {approx}0.7 eV per C{sub 60} molecule in a [C{sub 60}]{sub 13}{sup +} cluster are sufficient for complete evaporation and such low energies correspond to ion trajectories far outside the clusters. Still we observe singly and even doubly charged intact cluster ions which stem from even more distant collisions. For penetrating collisions the clusters become multiply charged and some of the individual molecules may be promptly fragmented in direct knock-out processes leading to efficient formations of new covalent systems. For Ar{sup 2+} and He{sup 2+} collisions, we observe very efficient C{sub 119}{sup +} and C{sub 118}{sup +} formation and molecular dynamics simulations suggest that they are covalent dumb-bell systems due to bonding between C{sub 59}{sup +} or C{sub 58}{sup +} and C{sub 60} during cluster fragmentation. In the Ar{sup 2+} case, it is possible to form even smaller C{sub 120-2m}{sup +} molecules (m= 2-7), while no molecular fusion reactions are observed for the present Xe{sup 20+} collisions.

  8. A conserved cysteine residue is involved in disulfide bond formation between plant plasma membrane aquaporin monomers.

    PubMed

    Bienert, Gerd P; Cavez, Damien; Besserer, Arnaud; Berny, Marie C; Gilis, Dimitri; Rooman, Marianne; Chaumont, François

    2012-07-01

    AQPs (aquaporins) are conserved in all kingdoms of life and facilitate the rapid diffusion of water and/or other small solutes across cell membranes. Among the different plant AQPs, PIPs (plasma membrane intrinsic proteins), which fall into two phylogenetic groups, PIP1 and PIP2, play key roles in plant water transport processes. PIPs form tetramers in which each monomer acts as a functional channel. The intermolecular interactions that stabilize PIP oligomer complexes and are responsible for the resistance of PIP dimers to denaturating conditions are not well characterized. In the present study, we identified a highly conserved cysteine residue in loop A of PIP1 and PIP2 proteins and demonstrated by mutagenesis that it is involved in the formation of a disulfide bond between two monomers. Although this cysteine seems not to be involved in regulation of trafficking to the plasma membrane, activity, substrate selectivity or oxidative gating of ZmPIP1s (Zm is Zea mays), ZmPIP2s and hetero-oligomers, it increases oligomer stability under denaturating conditions. In addition, when PIP1 and PIP2 are co-expressed, the loop A cysteine of ZmPIP1;2, but not that of ZmPIP2;5, is involved in the mercury sensitivity of the channels.

  9. Balancing oxidative protein folding: the influences of reducing pathways on disulfide bond formation.

    PubMed

    Kojer, Kerstin; Riemer, Jan

    2014-08-01

    Oxidative protein folding is confined to few compartments, including the endoplasmic reticulum, the mitochondrial intermembrane space and the bacterial periplasm. Conversely, in compartments in which proteins are translated such as the cytosol, the mitochondrial matrix and the chloroplast stroma proteins are kept reduced by the thioredoxin and glutaredoxin systems that functionally overlap. The highly reducing NADPH pool thereby serves as electron donor that enables glutathione reductase and thioredoxin reductase to keep glutathione pools and thioredoxins in their reduced redox state, respectively. Notably, also compartments containing oxidizing machineries are linked to these reducing pathways. Reducing pathways aid in proofreading of disulfide bond formation by isomerization or they provide reducing equivalents for the reduction of disulfides prior to degradation. In addition, they contribute to the thiol-dependent regulation of protein activities, and they help to counteract oxidative stress. The existence of oxidizing and reducing pathways in the same compartment poses a potential problem as the cell has to avoid futile cycles of oxidation and subsequent reduction reactions. Thus, compartments that contain oxidizing machineries have developed sophisticated ways to spatiotemporally balance and regulate oxidation and reduction. In this review, we discuss oxidizing and reducing pathways in the endoplasmic reticulum, the periplasm and the mitochondrial intermembrane space and highlight the role of glutathione especially in the endoplasmic reticulum and the intermembrane space. This article is part of a Special Issue entitled: Thiol-Based Redox Processes.

  10. Pressure-induced bonding and compound formation in xenon-hydrogen solids

    SciTech Connect

    Somayazulu, Maddury; Dera, Przemyslaw; Goncharov, Alexander F; Gramsch, Stephen A; Liermann, Peter; Yang, Wenge; Liu, Zhenxian; Mao, Ho-kwang; Hemley, Russell J

    2010-11-03

    Closed electron shell systems, such as hydrogen, nitrogen or group 18 elements, can form weakly bound stoichiometric compounds at high pressures. An understanding of the stability of these van der Waals compounds is lacking, as is information on the nature of their interatomic interactions. We describe the formation of a stable compound in the Xe-H{sub 2} binary system, revealed by a suite of X-ray diffraction and optical spectroscopy measurements. At 4.8 GPa, a unique hydrogen-rich structure forms that can be viewed as a tripled solid hydrogen lattice modulated by layers of xenon, consisting of xenon dimers. Varying the applied pressure tunes the Xe-Xe distances in the solid over a broad range from that of an expanded xenon lattice to the distances observed in metallic xenon at megabar pressures. Infrared and Raman spectra indicate a weakening of the intramolecular covalent bond as well as persistence of semiconducting behaviour in the compound to at least 255 GPa.

  11. Jargonial-Obfuscation(J-O) DISambiguation Elimination via Siegel-Baez Cognition Category-Semantics(C-S) in Siegel FUZZYICS=CATEGORYICS (Son of TRIZ)/(F=C) Tabular List-Format Dichotomy Truth-Table Matrix Analytics

    NASA Astrophysics Data System (ADS)

    Siegel, Carl Ludwig; Siegel, Edward Carl-Ludwig

    2011-03-01

    NOT "philosophy" per se but raising serious salient Arnol'd [Huygens and Barrow, Newton and Hooke(96)] questions begged is Rota empiricism Husserl VS. Frege maths-objects Dichotomy controversy: Hill-Haddock[Husserl or Frege?(00)]as manifestly-demonstrated by Hintikka[B.U.]-Critchey[Derrida Deconstruction Ethics(78)] deconstruction; Altshuler TRIZ; Siegel F=C/C-S; Siegel-Baez(UCR) Cognition C-S = "Category-theory ``+'' Cognitive-Semantics[Wierzbica-Langacker-Lakoff-Nunez[Where Maths Comes From(00)]-Fauconnier-Turner[Blending(98)]-Coulson[Semantic-Leaps (00)

  12. Modulating weak intramolecular interactions through the formation of beryllium bonds: complexes between squaric acid and BeH2.

    PubMed

    Montero-Campillo, M Merced; Lamsabhi, Al Mokhtar; Mó, Otilia; Yáñez, Manuel

    2013-07-01

    The electronic structure of the two most stable isomers of squaric acid and their complexes with BeH2 were investigated at the B3LYP/6-311 + G(3df,2p)// B3LYP/6-31 + G(d,p) level of theory. Squaric acid forms rather strong beryllium bonds with BeH2, with binding energies of the order of 60 kJ mol(-1). The preferential sites for BeH2 attachment are the carbonyl oxygen atoms, but the global minima of the potential energy surfaces of both EZ and ZZ isomers are extra-stabilized through the formation of a BeH···HO dihydrogen bond. More importantly, analysis of the electron density of these complexes shows the existence of significant cooperative effects between the beryllium bond and the dihydrogen bond, with both becoming significantly reinforced. The charge transfer involved in the formation of the beryllium bond induces a significant electron density redistribution within the squaric acid subunit, affecting not only the carbonyl group interacting with the BeH2 moiety but significantly increasing the electron delocalization within the four membered ring. Accordingly the intrinsic properties of squaric acid become perturbed, as reflected in its ability to self-associate.

  13. Protonation switching to the least-basic heteroatom of carbamate through cationic hydrogen bonding promotes the formation of isocyanate cations.

    PubMed

    Kurouchi, Hiroaki; Sumita, Akinari; Otani, Yuko; Ohwada, Tomohiko

    2014-07-01

    We found that phenethylcarbamates that bear ortho-salicylate as an ether group (carbamoyl salicylates) dramatically accelerate OC bond dissociation in strong acid to facilitate generation of isocyanate cation (N-protonated isocyanates), which undergo subsequent intramolecular aromatic electrophilic cyclization to give dihydroisoquinolones. To generate isocyanate cations from carbamates in acidic media as electrophiles for aromatic substitution, protonation at the ether oxygen, the least basic heteroatom, is essential to promote CO bond cleavage. However, the carbonyl oxygen of carbamates, the most basic site, is protonated exclusively in strong acids. We found that the protonation site can be shifted to an alternative basic atom by linking methyl salicylate to the ether oxygen of carbamate. The methyl ester oxygen ortho to the phenolic (ether) oxygen of salicylate is as basic as the carbamate carbonyl oxygen, and we found that monoprotonation at the methyl ester oxygen in strong acid resulted in the formation of an intramolecular cationic hydrogen bond (>CO(+) H⋅⋅⋅O<) with the phenolic ether oxygen. This facilitates OC bond dissociation of phenethylcarbamates, thereby promoting isocyanate cation formation. In contrast, superacid-mediated diprotonation at the methyl ester oxygen of the salicylate and the carbonyl oxygen of the carbamate afforded a rather stable dication, which did not readily undergo CO bond dissociation. This is an unprecedented and unknown case in which the monocation has greater reactivity than the dication.

  14. Intermetallic Compound Formation Mechanisms for Cu-Sn Solid-Liquid Interdiffusion Bonding

    NASA Astrophysics Data System (ADS)

    Liu, H.; Wang, K.; Aasmundtveit, K. E.; Hoivik, N.

    2012-09-01

    Cu-Sn solid-liquid interdiffusion (SLID) bonding is an evolving technique for wafer-level packaging which features robust, fine pitch and high temperature tolerance. The mechanisms of Cu-Sn SLID bonding for wafer-level bonding and three-dimensional (3-D) packaging applications have been studied by analyzing the microstructure evolution of Cu-Sn intermetallic compounds (IMCs) at elevated temperature up to 400°C. The bonding time required to achieve a single IMC phase (Cu3Sn) in the final interconnects was estimated according to the parabolic growth law with consideration of defect-induced deviation. The effect of predominantly Cu metal grain size on the Cu-Sn interdiffusion rate is discussed. The temperature versus time profile (ramp rate) is critical to control the morphology of scallops in the IMC. A low temperature ramp rate before reaching the bonding temperature is believed to be favorable in a SLID wafer-level bonding process.

  15. Dentin bonding performance using Weibull statistics and evaluation of acid-base resistant zone formation of recently introduced adhesives.

    PubMed

    Guan, Rui; Takagaki, Tomohiro; Matsui, Naoko; Sato, Takaaki; Burrow, Michael F; Palamara, Joseph; Nikaido, Toru; Tagami, Junji

    2016-07-30

    Dentin bonding durability of recently introduced dental adhesives: Clearfil SE Bond 2 (SE2), Optibond XTR (XTR), and Scotchbond Universal (SBU) was investigated using Weibull analysis as well as analysis of the micromorphological features of the acid-base resistant zone (ABRZ) created for the adhesives. The bonding procedures of SBU were divided into three subgroups: self-etch (SBS), phosphoric acid (PA) etching on moist (SBM) or dry dentin (SBD). All groups were thermocycled for 0, 5,000 and 10,000 cycles followed by microtensile bond strength testing. Acid-base challenge was undertaken before SEM and TEM observations of the adhesive interface. The etch-and-rinse method with SBU (SBM and SBD) created inferior interfaces on the dentin surface which resulted in reduced bond durability. ABRZ formation was detected with the self-etch adhesive systems; SE2, XTR and SBS. In the PA etching protocols of SBM and SBD, a thick hybrid layer but no ABRZ was detected, which might affect dentin bond durability. PMID:27335136

  16. Legionella pneumophila utilizes a Single Player Disulfide-Bond Oxidoreductase System to Manage Disulfide Bond Formation and Isomerization

    PubMed Central

    Kpadeh, Zegbeh Z.; Day, Shandra R.; Mills, Brandy W.; Hoffman, Paul S.

    2015-01-01

    Legionella pneumophila uses a single homodimeric disulfide bond (DSB) oxidoreductase DsbA2 to catalyze extracytoplasmic protein folding and to correct DSB errors through protein-disulfide isomerase (PDI) activity. In Escherichia coli, these functions are separated to avoid futile cycling. In L. pneumophila, DsbA2 is maintained as a mixture of disulfides (S-S) and free thiols (SH), but when expressed in E. coli, only the SH form is observed. We provide evidence to suggest that structural differences in DsbB oxidases (LpDsbB1 and LpDsbB2) and DsbD reductases (LpDsbD1 and LpDsbD2) (compared to E. coli) permit bifunctional activities without creating a futile cycle. LpdsbB1 and LpdsbB2 partially complemented an EcdsbB mutant while neither LpdsbD1 nor LpdsbD2 complemented an EcdsbD mutant unless DsbA2 was also expressed. When the dsb genes of E. coli were replaced with those of L. pneumophila, motility was restored and DsbA2 was present as a mixture of redox forms. A dominant-negative approach to interfere with DsbA2 function in L. pneumophila determined that DSB oxidase activity was necessary for intracellular multiplication and assembly/function of the Dot/Icm Type IVb secretion system. Our studies show that a single-player system may escape the futile cycle trap by limiting transfer of reducing equivalents from LpDsbDs to DsbA2. PMID:25534767

  17. Molecular dynamics simulation of the formation of sp3 hybridized bonds in hydrogenated diamondlike carbon deposition processes.

    PubMed

    Murakami, Yasuo; Horiguchi, Seishi; Hamaguchi, Satoshi

    2010-04-01

    The formation process of sp3 hybridized carbon networks (i.e., diamondlike structures) in hydrogenated diamondlike carbon (DLC) films has been studied with the use of molecular-dynamics simulations. The processes simulated in this study are injections of hydrocarbon (CH3 and CH) beams into amorphous carbon (a-C) substrates. It has been shown that diamondlike sp3 structures are formed predominantly at a subsurface level when the beam energy is relatively high, as in the "subplantation" process for hydrogen-free DLC deposition. However, for hydrogenated DLC deposition, the presence of abundant hydrogen at subsurface levels, together with thermal spikes caused by energetic ion injections, substantially enhances the formation of carbon-to-carbon sp3 bonds. Therefore, the sp3 bond formation process for hydrogenated DLC films essentially differs from that for hydrogen-free DLC films.

  18. Photosynthesis. Electronic structure of the oxygen-evolving complex in photosystem II prior to O-O bond formation.

    PubMed

    Cox, Nicholas; Retegan, Marius; Neese, Frank; Pantazis, Dimitrios A; Boussac, Alain; Lubitz, Wolfgang

    2014-08-15

    The photosynthetic protein complex photosystem II oxidizes water to molecular oxygen at an embedded tetramanganese-calcium cluster. Resolving the geometric and electronic structure of this cluster in its highest metastable catalytic state (designated S3) is a prerequisite for understanding the mechanism of O-O bond formation. Here, multifrequency, multidimensional magnetic resonance spectroscopy reveals that all four manganese ions of the catalyst are structurally and electronically similar immediately before the final oxygen evolution step; they all exhibit a 4+ formal oxidation state and octahedral local geometry. Only one structural model derived from quantum chemical modeling is consistent with all magnetic resonance data; its formation requires the binding of an additional water molecule. O-O bond formation would then proceed by the coupling of two proximal manganese-bound oxygens in the transition state of the cofactor. PMID:25124437

  19. Decarboxylative coupling reactions: a modern strategy for C-C-bond formation.

    PubMed

    Rodríguez, Nuria; Goossen, Lukas J

    2011-10-01

    This critical review examines transition metal-catalyzed decarboxylative couplings that have emerged within recent years as a powerful strategy to form carbon-carbon or carbon-heteroatom bonds starting from carboxylic acids. In these reactions, C-C bonds to carboxylate groups are cleaved, and in their place, new carbon-carbon bonds are formed. Decarboxylative cross-couplings constitute advantageous alternatives to traditional cross-coupling or addition reactions involving preformed organometallic reagents. Decarboxylative reaction variants are also known for Heck reactions, direct arylation processes, and carbon-heteroatom bond forming reactions.

  20. Bridge-bonded formate: active intermediate or spectator species in formic acid oxidation on a Pt film electrode?

    PubMed

    Chen, Y-X; Heinen, M; Jusys, Z; Behm, R J

    2006-12-01

    We present and discuss the results of an in situ IR study on the mechanism and kinetics of formic acid oxidation on a Pt film/Si electrode, performed in an attenuated total reflection (ATR) flow cell configuration under controlled mass transport conditions, which specifically aimed at elucidating the role of the adsorbed bridge-bonded formates in this reaction. Potentiodynamic measurements show a complex interplay between formation and desorption/oxidation of COad and formate species and the total Faradaic current. The notably faster increase of the Faradaic current compared to the coverage of bridge-bonded formate in transient measurements at constant potential, but with different formic acid concentrations, reveals that adsorbed formate decomposition is not rate-limiting in the dominant reaction pathway. If being reactive intermediate at all, the contribution of formate adsorption/decomposition to the reaction current decreases with increasing formic acid concentration, accounting for at most 15% for 0.2 M DCOOH at 0.7 VRHE. The rapid build-up/removal of the formate adlayer and its similarity with acetate or (bi-)sulfate adsorption/desorption indicate that the formate adlayer coverage is dominated by a fast dynamic adsorption-desorption equilibrium with the electrolyte, and that formate desorption is much faster than its decomposition. The results corroborate the proposal of a triple pathway reaction mechanism including an indirect pathway, a formate pathway, and a dominant direct pathway, as presented previously (Chen, Y. X.; et al. Angew. Chem. Int. Ed. 2006, 45, 981), in which adsorbed formates act as a site-blocking spectator in the dominant pathway rather than as an active intermediate.

  1. Quantum chemical studies of a model for peptide bond formation. 3. Role of magnesium cation in formation of amide and water from ammonia and glycine

    NASA Technical Reports Server (NTRS)

    Oie, T.; Loew, G. H.; Burt, S. K.; MacElroy, R. D.

    1984-01-01

    The SN2 reaction between glycine and ammonia molecules with magnesium cation Mg2+ as a catalyst has been studied as a model reaction for Mg(2+)-catalyzed peptide bond formation using the ab initio Hartree-Fock molecular orbital method. As in previous studies of the uncatalyzed and amine-catalyzed reactions between glycine and ammonia, two reaction mechanisms have been examined, i.e., a two-step and a concerted reaction. The stationary points of each reaction including intermediate and transition states have been identified and free energies calculated for all geometry-optimized reaction species to determine the thermodynamics and kinetics of each reaction. Substantial decreases in free energies of activation were found for both reaction mechanisms in the Mg(2+)-catalyzed amide bond formation compared with those in the uncatalyzed and amine-catalyzed amide bond formation. The catalytic effect of the Mg2+ cation is to stabilize both the transition states and intermediate, and it is attributed to the neutralization of the developing negative charge on the electrophile and formation of a conformationally flexible nonplanar five-membered chelate ring structure.

  2. Chemoselective Radical Dehalogenation and C-C Bond Formation on Aryl Halide Substrates Using Organic Photoredox Catalysts.

    PubMed

    Poelma, Saemi O; Burnett, G Leslie; Discekici, Emre H; Mattson, Kaila M; Treat, Nicolas J; Luo, Yingdong; Hudson, Zachary M; Shankel, Shelby L; Clark, Paul G; Kramer, John W; Hawker, Craig J; Read de Alaniz, Javier

    2016-08-19

    Despite the number of methods available for dehalogenation and carbon-carbon bond formation using aryl halides, strategies that provide chemoselectivity for systems bearing multiple carbon-halogen bonds are still needed. Herein, we report the ability to tune the reduction potential of metal-free phenothiazine-based photoredox catalysts and demonstrate the application of these catalysts for chemoselective carbon-halogen bond activation to achieve C-C cross-coupling reactions as well as reductive dehalogenations. This procedure works both for conjugated polyhalides as well as unconjugated substrates. We further illustrate the usefulness of this protocol by intramolecular cyclization of a pyrrole substrate, an advanced building block for a family of natural products known to exhibit biological activity. PMID:27276418

  3. Egg white sulfhydryl oxidase: kinetic mechanism of the catalysis of disulfide bond formation.

    PubMed

    Hoober, K L; Thorpe, C

    1999-03-01

    The flavin-dependent sulfhydryl oxidase from chicken egg white catalyzes the oxidation of sulfhydryl groups to disulfides with reduction of oxygen to hydrogen peroxide. The oxidase contains FAD and a redox-active cystine bridge and accepts a total of 4 electrons per active site. Dithiothreitol (DTT; the best low molecular weight substrate known) reduces the enzyme disulfide bridge with a limiting rate of 502/s at 4 degrees C, pH 7.5, yielding a thiolate-to-flavin charge-transfer complex. Further reduction to EH4 is limited by the slow internal transfer of reducing equivalents from enzyme dithiol to oxidized flavin (3.3/s). In the oxidative half of catalysis, oxygen rapidly converts EH4 to EH2, but Eox appearance is limited by the slow internal redox equilibration. During overall turnover with DTT, the thiolate-to-flavin charge-transfer complex accumulates with an apparent extinction coefficient of 4.9 mM-1 cm-1 at 560 nm. In contrast, glutathione (GSH) is a much slower reductant of the oxidase to the EH2 level and shows a kcat/Km 100-fold smaller than DTT. Full reduction of EH2 by GSH shows a limiting rate of 3.6/s at 4 degrees C comparable to that seen with DTT. Reduced RNase is an excellent substrate of the enzyme, with kcat/Km per thiol some 1000- and 10-fold better than GSH and DTT, respectively. Enzyme-monitored steady-state turnover shows that RNase is a facile reductant of the oxidase to the EH2 state. This work demonstrates the basic similarity in the mechanism of turnover between all of these three substrates. A physiological role for sulfhydryl oxidase in the formation of disulfide bonds in secreted proteins is discussed.

  4. Oxidatively Triggered Carbon-Carbon Bond Formation in Ene-amide Complexes.

    PubMed

    Jacobs, Brian P; Wolczanski, Peter T; Lobkovsky, Emil B

    2016-05-01

    Ene-amides have been explored as ligands and substrates for oxidative coupling. Treatment of CrCl2, Cl2Fe(PMe3)2, and Cl2Copy4 with 2 equiv of {(2,6-(i)Pr2C6H3)(1-(c)Hexenyl)N}Li afforded pseudosquare planar {η(3)-C,C,N-(2,6-(i)Pr2C6H3)(1-(c)Hexenyl)N}2Cr (1-Cr, 78%), trigonal {(2,6-(i)Pr2C6H3)(1-(c)Hexenyl)N}2Fe(PMe3) (2-Fe, 80%), and tetrahedral {(2,6-(i)Pr2C6H3)(1-(c)Hexenyl)N}2Co(py)2 (3-Co, 91%) in very good yields. The addition of CrCl3 to 1-Cr, and FeCl3 to 2-Fe, afforded oxidatively triggered C-C bond formation as rac-2,2'-di(2,6-(i)Pr2C6H3N═)2dicyclohexane (EA2) was produced in modest yields. Various lithium ene-amides were similarly coupled, and the mechanism was assessed via stoichiometric reactions. Some ferrous compounds (e.g., 2-Fe, FeCl2) were shown to catalyze C-arylation of {(2,6-(i)Pr2C6H3)(1-(c)Hexenyl)N}Li with PhBr, but the reaction was variable. Structural characterizations of 1-Cr, 2-Fe, and 3-Co are reported. PMID:27064509

  5. Interaction geometries and energies of hydrogen bonds to C[double bond]O and C[double bond]S acceptors: a comparative study.

    PubMed

    Wood, Peter A; Pidcock, Elna; Allen, Frank H

    2008-08-01

    The occurrence, geometries and energies of hydrogen bonds from N-H and O-H donors to the S acceptors of thiourea derivatives, thioamides and thiones are compared with data for their O analogues - ureas, amides and ketones. Geometrical data derived from the Cambridge Structural Database indicate that hydrogen bonds to the C[double bond]S acceptors are much weaker than those to their C[double bond]O counterparts: van der Waals normalized hydrogen bonds to O are shorter than those to S by approximately 0.25 A. Further, the directionality of the approach of the hydrogen bond with respect to S, defined by the C[double bond]S...H angle, is in the range 102-109 degrees , much lower than the analogous C[double bond]O...H angle which lies in the range 127-140 degrees . Ab initio calculations using intermolecular perturbation theory show good agreement with the experimental results: the differences in hydrogen-bond directionality are closely reproduced, and the interaction energies of hydrogen bonds to S are consistently weaker than those to O, by approximately 12 kJ mol(-1), for each of the three compound classes. There are no CSD examples of hydrogen bonds to aliphatic thiones, (Csp(3))(2)C=S, consistent with the near-equality of the electronegativities of C and S. Thioureas and thioamides have electron-rich N substituents replacing the Csp(3) atoms. Electron delocalization involving C[double bond]S and the N lone pairs then induces a significant >C(delta+)[double bond]S(delta-) dipole, which enables the formation of the medium-strength C[double bond]S...H bonds observed in thioureas and thioamides.

  6. Formation of one or more intrachain disulphide bonds is required for the intracellular processing and transport of CD36.

    PubMed Central

    Gruarin, P; Sitia, R; Alessio, M

    1997-01-01

    In monocytes/macrophages, CD36 is thought to have a role as a scavenger receptor, mediating the phagocytosis of apoptotic cells and the endocytic uptake of oxidized low-density lipoproteins and fatty acids. The proposed topology of CD36 predicts that, of ten cysteine residues, six lie in the extracellular domain, whereas four are equally distributed in the two short terminal tails flanking the N-terminal and C-terminal hydrophobic stretches. Here we investigate the formation of intrachain disulphide bonds, on the basis of the assumption that the cysteine residues present in the luminal domains are generally oxidized, whereas those in the cytosol are reduced. As revealed by gel mobility-shift assays, disulphide bonds are present in the extracellular domain of the CD36 molecule. The formation of these bonds is required for the transport of CD36 from endoplasmic reticulum to Golgi. Furthermore reactive thiol groups are present in the CD36 sequence, which upon lysis form an intrachain extra loop as an artifact. This disulphide bond is not formed in either (1) truncated CD36 lacking the two C-terminal cysteine residues or (2) Triton X-100-insoluble wild-type CD36 molecules, suggesting that, in this fraction, the C-terminal thiol groups are modified. PMID:9371725

  7. An atom in molecules study of infrared intensity enhancements in fundamental donor stretching bands in hydrogen bond formation.

    PubMed

    Terrabuio, Luiz A; Richter, Wagner E; Silva, Arnaldo F; Bruns, Roy E; Haiduke, Roberto L A

    2014-12-01

    Vibrational modes ascribed to the stretching of X-H bonds from donor monomers (HXdonor) in complexes presenting hydrogen bonds (HF···HF, HCl···HCl, HCN···HCN, HNC···HNC, HCN···HF, HF···HCl and H2O···HF) exhibit large (4 to 7 times) infrared intensity increments during complexation according to CCSD/cc-pVQZ-mod calculations. These intensity increases are explained by the charge-charge flux-dipole flux (CCFDF) model based on multipoles from the Quantum Theory of Atoms in Molecules (QTAIM) as resulting from a reinforcing interaction between two contributions to the dipole moment derivatives with respect to the vibrational displacements: charge and charge flux. As such, variations that occur in their intensity cross terms in hydrogen bond formation correlate nicely with the intensity enhancements. These stretching modes of HXdonor bonds can be approximately modeled by sole displacement of the positively charged hydrogens towards the acceptor terminal atom with concomitant electronic charge transfers in the opposite direction that are larger than those occurring for the H atom displacements of their isolated donor molecules. This analysis indicates that the charge-charge flux interaction reinforcement on H-bond complexation is associated with variations of atomic charge fluxes in both parent molecules and small electronic charge transfers between them. The QTAIM/CCFDF model also indicates that atomic dipole flux contributions do not play a significant role in these intensity enhancements.

  8. Competitive formation of 10- and 7-membered hydrogen-bonded rings of proline-containing model peptides

    NASA Astrophysics Data System (ADS)

    Jin, Yusuke; Tonan, Kenji; Ikawa, Shun-ichi

    2002-10-01

    Intramolecularly hydrogen-bonded structures of proline-containing model peptides with a sequence of N- tert-butoxycarbonyl-prolyl-Xaa-NHCH 3 [Xaa=Gly (glycyl), Ala (alanyl), Phe (phenylalanyl), Leu (leucyl), Ile (isoleucyl), and Val (valyl)] were studied by proton nuclear magnetic resonance and infrared spectroscopy. Variation of chemical shifts of amide protons with composition change of DMSO- d6/CDCl 3 mixed solvents were found to be a good measure of intramolecular hydrogen bonding of peptides in CDCl 3 solution. It has been shown that 10- and 7-membered hydrogen-bonded rings, which should have the β- and γ-turn like structures in proteins, respectively, form competitively with each other. It is suggested that the equilibrium between the two hydrogen-bonded rings is determined by steric hindrance due to a side chain of the Xaa residue. Free energies for formation of the 10- and 7-membered hydrogen-bonded rings, Δ G10 and Δ G7, were estimated from the solvent composition-dependent change of the chemical shifts. A good correlation between Δ G10 and the occurrence frequencies of residues Xaa at the ( i+2)th position for the β-turns in proteins has been found.

  9. IBX-mediated synthesis of indazolone via oxidative N-N bond formation and unexpected formation of quinazolin-4-one: in situ generation of formaldehyde from dimethoxyethane.

    PubMed

    Park, Sang Won; Choi, Hoon; Lee, Jung-Hun; Lee, Yeon-Ju; Ku, Jin-Mo; Lee, Sang Yeul; Nam, Tae-Gyu

    2016-03-01

    Synthesis of indazolone derivatives, which exhibit diverse biological and pharmaceutical activities, were achieved by hypervalent λ(5) iodine reagents, such as iodoxybenzoic acid (IBX),-mediated oxidative N-N bond forming cyclization. In this study, the equivalence of IBX was optimized to promote the formation of N-N bond by oxidatively generated acylnitrenium ion. Dimethoxyethane and dichloroethane were discovered as alternative solvents and the reaction could be conducted in more concentrated condition. Some unprecedented substrates successfully afforded the corresponding indazolone in new condition discovered in this study. When the reactions were conducted in DME solvent, substrates with no electron-rich phenyl substituted amides afforded the unanticipated quinazolin-4-ones in moderate yields, which were not formed in DCE solvent. The formation of quinazolin-4-ones was attributed to the in situ generation of formaldehyde from DME. Therefore, the reaction might undergo different pathway in DME when the substrate aryl amides have phenyl rings without electron donating substituents.

  10. High Performance C/S Composite Cathodes with Conventional Carbonate-Based Electrolytes in Li-S Battery

    NASA Astrophysics Data System (ADS)

    Zheng, Shiyou; Han, Pan; Han, Zhuo; Zhang, Huijuan; Tang, Zhihong; Yang, Junhe

    2014-04-01

    High stable C/S composites are fabricated by a novel high-temperature sulfur infusion into micro-mesoporous carbon method following with solvent cleaning treatment. The C/S composite cathodes show high Coulombic efficiency, long cycling stability and good rate capability in the electrolyte of 1.0 M LiPF6 + EC/DEC (1:1 v/v), for instance, the reversible capacity of the treated C/S-50 (50% S) cathode retains around 860 mAh/g even after 500 cycles and the Coulombic efficiency is close to 100%, which demonstrates the best electrochemical performance of carbon-sulfur composite cathodes using the carbonate-based electrolyte reported to date. It is believed that the chemical bond of C-S is responsible for the superior electrochemical properties in Li-S battery, that is, the strong interaction between S and carbon matrix significantly improves the conductivity of S, effectively buffers the structural strain/stress caused by the large volume change during lithiation/delithiation, completely eliminates the formation of high-order polysulfide intermediates, and substantially avoids the shuttle reaction and the side reaction between polysulfide anions and carbonate solvent, and thus enables the C/S cathode to use conventional carbonate-based electrolytes and achieve outstanding electrochemical properties in Li-S battery. The results may substantially contribute to the progress of the Li-S battery technology.

  11. High Performance C/S Composite Cathodes with Conventional Carbonate-Based Electrolytes in Li-S Battery

    PubMed Central

    Zheng, Shiyou; Han, Pan; Han, Zhuo; Zhang, Huijuan; Tang, Zhihong; Yang, Junhe

    2014-01-01

    High stable C/S composites are fabricated by a novel high-temperature sulfur infusion into micro-mesoporous carbon method following with solvent cleaning treatment. The C/S composite cathodes show high Coulombic efficiency, long cycling stability and good rate capability in the electrolyte of 1.0 M LiPF6 + EC/DEC (1:1 v/v), for instance, the reversible capacity of the treated C/S-50 (50% S) cathode retains around 860 mAh/g even after 500 cycles and the Coulombic efficiency is close to 100%, which demonstrates the best electrochemical performance of carbon-sulfur composite cathodes using the carbonate-based electrolyte reported to date. It is believed that the chemical bond of C-S is responsible for the superior electrochemical properties in Li-S battery, that is, the strong interaction between S and carbon matrix significantly improves the conductivity of S, effectively buffers the structural strain/stress caused by the large volume change during lithiation/delithiation, completely eliminates the formation of high-order polysulfide intermediates, and substantially avoids the shuttle reaction and the side reaction between polysulfide anions and carbonate solvent, and thus enables the C/S cathode to use conventional carbonate-based electrolytes and achieve outstanding electrochemical properties in Li-S battery. The results may substantially contribute to the progress of the Li-S battery technology. PMID:24776750

  12. Metal-free synthesis of 2-oxindoles via PhI(OAc)2-mediated oxidative C–C bond formation.

    PubMed

    Lv, Jinglei; Zhang-Negrerie, Daisy; Deng, Jun; Du, Yunfei; Zhao, Kang

    2014-02-01

    The series of 3-monofunctionalized 2-oxindoles 2 were conveniently synthesized from reactions between anilide 1 and phenyliodine(III) diacetate (PIDA) through hypervalent iodine mediated C(sp2)–C(sp2) bond formation followed by a subsequent deacylation reaction. This metal-free method, shown to provide direct access to an important oxindole intermediate, could be applied to the total synthesis of naturally occurring horsfiline.

  13. How Alcohol Chain-Length and Concentration Modulate Hydrogen Bond Formation in a Lipid Bilayer

    PubMed Central

    Dickey, Allison N.; Faller, Roland

    2007-01-01

    Molecular dynamics simulations are used to measure the change in properties of a hydrated dipalmitoylphosphatidylcholine bilayer when solvated with ethanol, propanol, and butanol solutions. There are eight oxygen atoms in dipalmitoylphosphatidylcholine that serve as hydrogen bond acceptors, and two of the oxygen atoms participate in hydrogen bonds that exist for significantly longer time spans than the hydrogen bonds at the other six oxygen atoms for the ethanol and propanol simulations. We conclude that this is caused by the lipid head group conformation, where the two favored hydrogen-bonding sites are partially protected between the head group choline and the sn-2 carbonyl oxygen. We find that the concentration of the alcohol in the ethanol and propanol simulations does not have a significant influence on the locations of the alcohol/lipid hydrogen bonds, whereas the concentration does impact the locations of the butanol/lipid hydrogen bonds. The concentration is important for all three alcohol types when the lipid chain order is examined, where, with the exception of the high-concentration butanol simulation, the alcohol molecules having the longest hydrogen-bonding relaxation times at the favored carbonyl oxygen acceptor sites also have the largest order in the upper chain region. The lipid behavior in the high-concentration butanol simulation differs significantly from that of the other alcohol concentrations in the order parameter, head group rotational relaxation time, and alcohol/lipid hydrogen-bonding location and relaxation time. This appears to be the result of the system being very near to a phase transition, and one occurrence of lipid flip-flop is seen at this concentration. PMID:17218462

  14. Homolytic substitution at phosphorus for C–P bond formation in organic synthesis

    PubMed Central

    2013-01-01

    Summary Organophosphorus compounds are important in organic chemistry. This review article covers emerging, powerful synthetic approaches to organophosphorus compounds by homolytic substitution at phosphorus with a carbon-centered radical. Phosphination reagents include diphosphines, chalcogenophosphines and stannylphosphines, which bear a weak P–heteroatom bond for homolysis. This article deals with two transformations, radical phosphination by addition across unsaturated C–C bonds and substitution of organic halides. PMID:23843922

  15. A quantum chemical topological analysis of the C-C bond formation in organic reactions involving cationic species.

    PubMed

    Domingo, Luis R; Pérez, Patricia

    2014-07-21

    ELF topological analysis of the ionic Diels-Alder (I-DA) reaction between the N,N-dimethyliminium cation and cyclopentadiene (Cp) has been performed in order to characterise the C-C single bond formation. The C-C bond formation begins in the short range of 2.00-1.96 Åvia a C-to-C pseudoradical coupling between the most electrophilic center of the iminium cation and one of the two most nucleophilic centers of Cp. The electron density of the pseudoradical center generated at the most electrophilic carbon of the iminium cation comes mainly from the global charge transfer which takes place along the reaction. Analysis of the global reactivity indices indicates that the very high electrophilic character of the iminium cation is responsible for the negative activation energy found in the gas phase. On the other hand, the analysis of the radical P(k)(o) Parr functions of the iminium cation, and the nucleophilic P(k)(-) Parr functions of Cp makes the characterisation of the most favourable two-center interaction along the formation of the C-C single bond possible. PMID:24901220

  16. A quantum chemical topological analysis of the C-C bond formation in organic reactions involving cationic species.

    PubMed

    Domingo, Luis R; Pérez, Patricia

    2014-07-21

    ELF topological analysis of the ionic Diels-Alder (I-DA) reaction between the N,N-dimethyliminium cation and cyclopentadiene (Cp) has been performed in order to characterise the C-C single bond formation. The C-C bond formation begins in the short range of 2.00-1.96 Åvia a C-to-C pseudoradical coupling between the most electrophilic center of the iminium cation and one of the two most nucleophilic centers of Cp. The electron density of the pseudoradical center generated at the most electrophilic carbon of the iminium cation comes mainly from the global charge transfer which takes place along the reaction. Analysis of the global reactivity indices indicates that the very high electrophilic character of the iminium cation is responsible for the negative activation energy found in the gas phase. On the other hand, the analysis of the radical P(k)(o) Parr functions of the iminium cation, and the nucleophilic P(k)(-) Parr functions of Cp makes the characterisation of the most favourable two-center interaction along the formation of the C-C single bond possible.

  17. Boride Zone Formation in Transient Liquid Phase Bonding of Pairings of Parent Superalloy Materials with Different Compositions and Grain Structures

    NASA Astrophysics Data System (ADS)

    Steuer, S.; Singer, R. F.

    2013-05-01

    Two nickel-base superalloys are joined via transient liquid phase (TLP) bonding with boron as the MPD. Boride formation is observed in the parent materials at some distance from the solid/liquid interface. The boron concentration profile over the joint is measured with glow discharge optical emission spectroscopy (GDOES). Boron concentration peaks are observed corresponding to the boride formation. Boron distribution is discussed on the basis of theoretical predictions in the literature. It is concluded that diffusion of another element is necessary to explain the results with the second element influencing the solubility of boron.

  18. Cooperativity between Al Sites Promotes Hydrogen Transfer and Carbon–Carbon Bond Formation upon Dimethyl Ether Activation on Alumina

    PubMed Central

    2015-01-01

    The methanol-to-olefin (MTO) process allows the conversion of methanol/dimethyl ether into olefins on acidic zeolites via the so-called hydrocarbon pool mechanism. However, the site and mechanism of formation of the first carbon–carbon bond are still a matter of debate. Here, we show that the Lewis acidic Al sites on the 110 facet of γ-Al2O3 can readily activate dimethyl ether to yield CH4, alkenes, and surface formate species according to spectroscopic studies combined with a computational approach. The carbon–carbon forming step as well as the formation of methane and surface formate involves a transient oxonium ion intermediate, generated by a hydrogen transfer between surface methoxy species and coordinated methanol on adjacent Al sites. These results indicate that extra framework Al centers in acidic zeolites, which are associated with alumina, can play a key role in the formation of the first carbon–carbon bond, the initiation step of the industrial MTO process. PMID:27162986

  19. Phosphoric acid-etching promotes bond strength and formation of acid-base resistant zone on enamel.

    PubMed

    Li, N; Nikaido, T; Alireza, S; Takagaki, T; Chen, J-H; Tagami, J

    2013-01-01

    This study examined the effect of phosphoric acid (PA) etching on the bond strength and acid-base resistant zone (ABRZ) formation of a two-step self-etching adhesive (SEA) system to enamel. An etch-and-rinse adhesive (EAR) system Single Bond (SB) and a two-step SEA system Clearfil SE Bond (SE) were used. Human teeth were randomly divided into four groups according to different adhesive treatments: 1) SB; 2) SE; 3) 35% PA etching→SE primer→SE adhesive (PA/SEp+a); (4) 35% PA etching→SE adhesive (PA/SEa). Microshear bond strength to enamel was measured and then statistically analyzed using one-way analysis of variance and the Tukey honestly significant difference test. The failure mode was recorded and analyzed by χ( 2 ) test. The etching pattern of the enamel surface was observed with scanning electron microscope (SEM). The bonded interface was exposed to a demineralizing solution (pH=4.5) for 4.5 hours and then 5% sodium hypochlorite with ultrasonication for 30 minutes. After argon-ion etching, the interfacial ultrastructure was observed using SEM. The microshear bond strength to enamel of the SE group was significantly lower (p<0.05) than that of the three PA-etched groups, although the latter three were not significantly different from one another. The ABRZ was detected in all the groups. In morphological observation, the ABRZ in the three PA-etched groups were obviously thicker compared with the SE group with an irregular wave-shaped edge.

  20. Local modifications of single-wall carbon nanotubes induced by bond formation with encapsulated fullerenes.

    PubMed

    Yumura, Takashi; Kertesz, Miklos; Iijima, Sumio

    2007-02-01

    Defected fullerenes in nanopeapods form bonds with the encapsulating single-walled carbon nanotubes when irradiated by an electron beam leading to changes in the guest (fullerene) and the host (nanotube). Intrinsic reaction coordinate (IRC) analysis based on B3LYP hybrid density functional theory shows that a C1-C59 defect with a single protruding C atom is initially formed from the C60(Ih) cage. The high activation energy for this step (8.37 eV (193.0 kcal/mol)), being assumed to be accessible during irradiation, is lower than that of the Stone-Wales rearrangement on the sp2 network. The binding of the defected fullerene to the nanotube is preferential, orthogonal bonds relative to the tube axis being slightly preferred. Because of the covalent bonds formed between the guest and host, the carbon network on the nanotube is locally perturbed in the vicinity of the binding site. As a result of the new bonds, bisnorcaradiene-like as well as quinonoid-like patterns appear near the binding site. These results are interpreted using orbital interaction and Clar diagram arguments. The changes in the bonding pattern on the nanotube should be significant in further functionalization of carbon nanotubes.

  1. Bond formations by intermolecular and intramolecular trappings of acylketenes and their applications in natural product synthesis†

    PubMed Central

    Reber, Keith P.; Tilley, S. David

    2011-01-01

    The reactive intermediates known as acylketenes exhibit a rich chemistry and have been extensively utilized for many types of inter- and intramolecular bond-forming reactions within the field of organic synthesis. Characteristic reactions of acylketenes include cycloadditions, carbon–carbon bond-forming reactions, and nucleophilic capture with alcohols or amines to give β-keto acid derivatives. In particular, the intramolecular capture of acylketene intermediates with pendant nucleophiles represents a powerful method for forming both medium-sized rings and macrocycles, often in high yield. This tutorial review examines the history, generation, and reactivity of acylketenes with a special focus on their applications in the synthesis of natural products. PMID:19847338

  2. Formation of sp{sup 3}-Bonded Carbon Nanostructures by Femtosecond Laser Excitation of Graphite

    SciTech Connect

    Kanasaki, J.; Inami, E.; Tanimura, K.; Ohnishi, H.; Nasu, K.

    2009-02-27

    A scanning tunneling microscopy study and ab initio total energy calculations have identified the atomic-level structure of novel sp{sup 3}-bonded carbon nanoscale domains formed dynamically from graphite by femtosecond-laser excitation. The structure is characterized by a pseudo sp{sup 3}-bonding configuration that results in inward displacement of surface carbon atoms by 0.5 A in every third row along the [1100] orientation. This structural periodicity is unique and differs from conventional phases of diamond.

  3. Characterization of the Amicetin Biosynthesis Gene Cluster from Streptomyces vinaceusdrappus NRRL 2363 Implicates Two Alternative Strategies for Amide Bond Formation

    PubMed Central

    Zhang, Gaiyun; Zhang, Haibo; Li, Sumei; Xiao, Ji; Zhang, Guangtao; Zhu, Yiguang; Niu, Siwen; Ju, Jianhua

    2012-01-01

    Amicetin, an antibacterial and antiviral agent, belongs to a group of disaccharide nucleoside antibiotics featuring an α-(1→4)-glycoside bond in the disaccharide moiety. In this study, the amicetin biosynthesis gene cluster was cloned from Streptomyces vinaceusdrappus NRRL 2363 and localized on a 37-kb contiguous DNA region. Heterologous expression of the amicetin biosynthesis gene cluster in Streptomyces lividans TK64 resulted in the production of amicetin and its analogues, thereby confirming the identity of the ami gene cluster. In silico sequence analysis revealed that 21 genes were putatively involved in amicetin biosynthesis, including 3 for regulation and transportation, 10 for disaccharide biosynthesis, and 8 for the formation of the amicetin skeleton by the linkage of cytosine, p-aminobenzoic acid (PABA), and the terminal (+)-α-methylserine moieties. The inactivation of the benzoate coenzyme A (benzoate-CoA) ligase gene amiL and the N-acetyltransferase gene amiF led to two mutants that accumulated the same two compounds, cytosamine and 4-acetamido-3-hydroxybenzoic acid. These data indicated that AmiF functioned as an amide synthethase to link cytosine and PABA. The inactivation of amiR, encoding an acyl-CoA-acyl carrier protein transacylase, resulted in the production of plicacetin and norplicacetin, indicating AmiR to be responsible for attachment of the terminal methylserine moiety to form another amide bond. These findings implicated two alternative strategies for amide bond formation in amicetin biosynthesis. PMID:22267658

  4. Characterization of the amicetin biosynthesis gene cluster from Streptomyces vinaceusdrappus NRRL 2363 implicates two alternative strategies for amide bond formation.

    PubMed

    Zhang, Gaiyun; Zhang, Haibo; Li, Sumei; Xiao, Ji; Zhang, Guangtao; Zhu, Yiguang; Niu, Siwen; Ju, Jianhua; Zhang, Changsheng

    2012-04-01

    Amicetin, an antibacterial and antiviral agent, belongs to a group of disaccharide nucleoside antibiotics featuring an α-(1→4)-glycoside bond in the disaccharide moiety. In this study, the amicetin biosynthesis gene cluster was cloned from Streptomyces vinaceusdrappus NRRL 2363 and localized on a 37-kb contiguous DNA region. Heterologous expression of the amicetin biosynthesis gene cluster in Streptomyces lividans TK64 resulted in the production of amicetin and its analogues, thereby confirming the identity of the ami gene cluster. In silico sequence analysis revealed that 21 genes were putatively involved in amicetin biosynthesis, including 3 for regulation and transportation, 10 for disaccharide biosynthesis, and 8 for the formation of the amicetin skeleton by the linkage of cytosine, p-aminobenzoic acid (PABA), and the terminal (+)-α-methylserine moieties. The inactivation of the benzoate coenzyme A (benzoate-CoA) ligase gene amiL and the N-acetyltransferase gene amiF led to two mutants that accumulated the same two compounds, cytosamine and 4-acetamido-3-hydroxybenzoic acid. These data indicated that AmiF functioned as an amide synthethase to link cytosine and PABA. The inactivation of amiR, encoding an acyl-CoA-acyl carrier protein transacylase, resulted in the production of plicacetin and norplicacetin, indicating AmiR to be responsible for attachment of the terminal methylserine moiety to form another amide bond. These findings implicated two alternative strategies for amide bond formation in amicetin biosynthesis.

  5. Ruthenium-Catalyzed Transfer Hydrogenation for C-C Bond Formation: Hydrohydroxyalkylation and Hydroaminoalkylation via Reactant Redox Pairs.

    PubMed

    Perez, Felix; Oda, Susumu; Geary, Laina M; Krische, Michael J

    2016-06-01

    Merging the chemistry of transfer hydrogenation and carbonyl or imine addition, a broad new family of redox-neutral or reductive hydrohydroxyalkylations and hydroaminomethylations have been developed. In these processes, hydrogen redistribution between alcohols and π-unsaturated reactants is accompanied by C-C bond formation, enabling direct conversion of lower alcohols to higher alcohols. Similarly, hydrogen redistribution between amines to π-unsaturated reactants results in direct conversion of lower amines to higher amines. Alternatively, equivalent products of hydrohydroxyalkylation and hydroaminomethylation may be generated through the reaction of carbonyl compounds or imines with π-unsaturated reactants under the conditions of 2-propanol-mediated reductive coupling. Finally, using vicinally dioxygenated reactants, that is, diol, ketols, or diones, successive transfer hydrogenative coupling occurs to generate 2 C-C bonds, resulting in products of formal [4+2] cycloaddition. PMID:27573275

  6. Syntheses of [1,2,4]triazolo[1,5-a]benzazoles enabled by the transition-metal-free oxidative N-N bond formation.

    PubMed

    Shang, Erchang; Zhang, Junzhi; Bai, Jinyi; Wang, Zhan; Li, Xiang; Zhu, Bing; Lei, Xiaoguang

    2016-05-19

    A transition-metal-free oxidative N-N bond formation strategy was developed to generate various structurally interesting [1,2,4]triazolo[1,5-a]benzazoles efficiently. The mechanism of the key oxidative N-N bond formation was investigated by using an intramolecular competition reaction. Notably, the first single crystal structure was also obtained to confirm the structure of 2-aryl[1,2,4]triazolo[1,5-a]benzimidazole. PMID:27161847

  7. Size effects in tin-based lead-free solder joints: Kinetics of bond formation and mechanical characteristics

    NASA Astrophysics Data System (ADS)

    Abdelhadi, Ousama Mohamed Omer

    Continuous miniaturization of microelectronic interconnects demands smaller joints with comparable microstructural and structural sizes. As the size of joints become smaller, the volume of intermetallics (IMCs) becomes comparable with the joint size. As a result, the kinetics of bond formation changes and the types and thicknesses of IMC phases that form within the constrained region of the bond varies. This dissertation focuses on investigating combination effects of process parameters and size on kinetics of bond formation, resulting microstructure and the mechanical properties of joints that are formed under structurally constrained conditions. An experiment is designed where several process parameters such as time of bonding, temperature, and pressure, and bond thickness as structural chracteristic, are varied at multiple levels. The experiment is then implemented on the process. Scanning electron microscope (SEM) is then utilized to determine the bond thickness, IMC phases and their thicknesses, and morphology of the bonds. Electron backscatter diffraction (EBSD) is used to determine the grain size in different regions, including the bulk solder, and different IMC phases. Physics-based analytical models have been developed for growth kinetics of IMC compounds and are verified using the experimental results. Nanoindentation is used to determine the mechanical behavior of IMC phases in joints in different scales. Four-point bending notched multilayer specimen and four-point bending technique were used to determine fracture toughness of the bonds containing IMCs. Analytical modeling of peeling and shear stresses and fracture toughness in tri-layer four-point bend specimen containing intermetallic layer was developed and was verified and validated using finite element simulation and experimental results. The experiment is used in conjunction with the model to calculate and verify the fracture toughness of Cu6Sn5 IMC materials. As expected two different IMC phases

  8. Facile amine formation by intermolecular catalytic amidation of carbon-hydrogen bonds.

    PubMed

    Fructos, Manuel R; Trofimenko, Swiatoslaw; Díaz-Requejo, M Mar; Pérez, Pedro J

    2006-09-13

    A simple copper-based catalytic system has been developed for the carbon-hydrogen amidation reaction. The copper-homoscorpionate complex Tp(Br3)Cu(NCMe) catalyzes the transfer of the nitrene unit NTs (Ts = p-toluenesulfonyl) and its subsequent insertion into the sp(3) C-H bonds of alkyl aromatic and cyclic ethers or the sp(2) C-H bonds of benzene using PhI=NTs as the nitrene source, affording the corresponding trisubstitued NR(1)HTs amines in moderate to high yields. The use of the environmentally friendly chloramine-T has also proven effective, with the advantage that sodium chloride is formed as the only byproduct. A tandem, one-pot consecutive nitrene-carbene insertion system has been developed to yield amino acid derivatives.

  9. Formation of bonds in a dispersed phase with clarification of a suspension by flocculants

    SciTech Connect

    Bimberekov, A.P.

    1986-05-01

    Consumption of polyacrylamide (PAA) flocculant during clarification of a suspension is governed by the size fraction composition of the solid phase and by the content of multivalent cations in the liquid medium. Reaction of PAA flocculants with solid particles and multivalent cations contained in the aqueous medium of a suspension occurs simultaneously and at a commensurate rate. In forming bridge bonds between solid particles during suspension clarification by means of PAA flocculants, individual molecules having a sufficient length in solution for this purpose.

  10. Pair Bond Formation is Impaired by VPAC Receptor Antagonism in the Socially Monogamous Zebra Finch

    PubMed Central

    Kingsbury, Marcy A.; Goodson, James L.

    2014-01-01

    A variety of recent data demonstrate that vasoactive intestinal polypeptide (VIP) and VPAC receptors (which bind VIP, and to a lesser extent, pituitary adenylatecyclase activating peptide) are important for numerous social behaviors in songbirds, including grouping and aggression, although VIP relates to these behaviors in a site-specific manner. In order to determine the global effects of central VPAC receptor activation on social behavior, we here infused a VPAC receptor antagonist or vehicle twice daily into the lateral ventricle of colony-housed male and female zebra finches and quantified a wide range of behaviors. Aggressive behaviors were not altered by ventricular infusions, consistent with known opposing, site-specific relationships of VIP innervation to aggression. Courtship and self-maintenance behaviors were likewise not altered. However, VPAC antagonism produced significant deficits in pair bonding. Antagonist subjects took longer to form a pair bond and were paired for significantly fewer observation sessions relative to control subjects (median 1.5 of 6 observation sessions for antagonist subjects versus 4 for control subjects). Antagonist subjects were also significantly less likely to be paired in the final observation session. Based on the known distribution of VPAC receptors in finches and other vertebrates, we propose that VPAC receptors may mediate pair bonding via a variety of brain areas that are known to be important for the establishment of partner preferences in voles, including the lateral septum, ventral tegmental area, nucleus accumbens and ventral pallidum. PMID:25014003

  11. Formation of the S  =  1 paramagnetic centers in the bond-diluted spin-gap magnet.

    PubMed

    Glazkov, V N; Krasnikova, Yu V; Hüvonen, D; Zheludev, A

    2016-05-25

    Electron spin resonance experiment reveals that non-magnetic bond doping of the spin-gap magnet (C4H12N2)Cu2Cl6 (abbreviated PHCC) results in the formation of S  =  1 paramagnetic centers that dominate low-temperature ESR response. We have followed evolution of this signal with doping impurity content and have found that the concentraion of these centers is quadratic over the impurity content. We also observe coexistence of the ESR responses from these local centers and from delocalized triplet excitations over a certain temperature range. PMID:27119200

  12. Interactions of Isonitriles with Metal-Boron Bonds: Insertions, Coupling, Ring Formation, and Liberation of Monovalent Boron.

    PubMed

    Braunschweig, Holger; Celik, Mehmet Ali; Dewhurst, Rian D; Ferkinghoff, Katharina; Hermann, Alexander; Jimenez-Halla, J Oscar C; Kramer, Thomas; Radacki, Krzysztof; Shang, Rong; Siedler, Eva; Weißenberger, Felix; Werner, Christine

    2016-08-01

    Boryl, borylene, and base-stabilized borylene complexes of manganese and iron undergo a range of different reactions when treated with isonitriles including single, double, and partial isonitrile insertions into metal-boron bonds, ring formation, isonitrile coupling, and the liberation of new monovalent boron species. Two of the resulting cyclic species have also been found to react selectively with anhydrous HCl to form ring-opened products. The diverse isonitrile-promoted reactivity of transition-metal-boron compounds has been explored computationally. PMID:27388206

  13. Concurrent Formation of Carbon–Carbon Bonds and Functionalized Graphene by Oxidative Carbon-Hydrogen Coupling Reaction

    PubMed Central

    Morioku, Kumika; Morimoto, Naoki; Takeuchi, Yasuo; Nishina, Yuta

    2016-01-01

    Oxidative C–H coupling reactions were conducted using graphene oxide (GO) as an oxidant. GO showed high selectivity compared with commonly used oxidants such as (diacetoxyiodo) benzene and 2,3-dichloro-5,6-dicyano-p-benzoquinone. A mechanistic study revealed that radical species contributed to the reaction. After the oxidative coupling reaction, GO was reduced to form a material that shows electron conductivity and high specific capacitance. Therefore, this system could concurrently achieve two important reactions: C–C bond formation via C–H transformation and production of functionalized graphene. PMID:27181191

  14. The Mukaiyama aldol reaction of in situ generated nitrosocarbonyl compounds: selective C-N bond formation and N-O bond cleavage in one-pot for α-amination of ketones.

    PubMed

    Ramakrishna, Isai; Grandhi, Gowri Sankar; Sahoo, Harekrishna; Baidya, Mahiuddin

    2015-09-21

    A practical protocol for the α-amination of ketones (up to 99% yield) has been developed via the Mukaiyama aldol reaction of in situ generated nitrosocarbonyl compounds. The reaction with silyl enol ethers having a disilane (-SiMe2TMS) backbone proceeded not only with perfect N-selectivity but concomitant N-O bond cleavage was also accomplished. Such a cascade of C-N bond formation and N-O bond cleavage in a single step was heretofore unknown in the field of nitrosocarbonyl chemistry. A very high diastereoselectivity (dr = 19 : 1) was accomplished using (-)-menthol derived chiral nitrosocarbonyl compounds. PMID:26245149

  15. Mechanistic studies of a novel C-S lyase in ergothioneine biosynthesis: the involvement of a sulfenic acid intermediate

    PubMed Central

    Song, Heng; Hu, Wen; Naowarojna, Nathchar; Her, Ampon Sae; Wang, Shu; Desai, Rushil; Qin, Li; Chen, Xiaoping; Liu, Pinghua

    2015-01-01

    Ergothioneine is a histidine thio-derivative isolated in 1909. In ergothioneine biosynthesis, the combination of a mononuclear non-heme iron enzyme catalyzed oxidative C-S bond formation reaction and a PLP-mediated C-S lyase (EgtE) reaction results in a net sulfur transfer from cysteine to histidine side-chain. This demonstrates a new sulfur transfer strategy in the biosynthesis of sulfur-containing natural products. Due to difficulties associated with the overexpression of Mycobacterium smegmatis EgtE protein, the proposed EgtE functionality remained to be verified biochemically. In this study, we have successfully overexpressed and purified M. smegmatis EgtE enzyme and evaluated its activities under different in vitro conditions: C-S lyase reaction using either thioether or sulfoxide as a substrate in the presence or absence of reductants. Results from our biochemical characterizations support the assignment of sulfoxide 4 as the native EgtE substrate and the involvement of a sulfenic acid intermediate in the ergothioneine C-S lyase reaction. PMID:26149121

  16. Mechanistic studies of a novel C-S lyase in ergothioneine biosynthesis: the involvement of a sulfenic acid intermediate.

    PubMed

    Song, Heng; Hu, Wen; Naowarojna, Nathchar; Her, Ampon Sae; Wang, Shu; Desai, Rushil; Qin, Li; Chen, Xiaoping; Liu, Pinghua

    2015-01-01

    Ergothioneine is a histidine thio-derivative isolated in 1909. In ergothioneine biosynthesis, the combination of a mononuclear non-heme iron enzyme catalyzed oxidative C-S bond formation reaction and a PLP-mediated C-S lyase (EgtE) reaction results in a net sulfur transfer from cysteine to histidine side-chain. This demonstrates a new sulfur transfer strategy in the biosynthesis of sulfur-containing natural products. Due to difficulties associated with the overexpression of Mycobacterium smegmatis EgtE protein, the proposed EgtE functionality remained to be verified biochemically. In this study, we have successfully overexpressed and purified M. smegmatis EgtE enzyme and evaluated its activities under different in vitro conditions: C-S lyase reaction using either thioether or sulfoxide as a substrate in the presence or absence of reductants. Results from our biochemical characterizations support the assignment of sulfoxide 4 as the native EgtE substrate and the involvement of a sulfenic acid intermediate in the ergothioneine C-S lyase reaction.

  17. Porous solids arising from synergistic and competing modes of assembly: combining coordination chemistry and covalent bond formation.

    PubMed

    Dutta, Ananya; Koh, Kyoungmoo; Wong-Foy, Antek G; Matzger, Adam J

    2015-03-23

    Design and synthesis of porous solids employing both reversible coordination chemistry and reversible covalent bond formation is described. The combination of two different linkage modes in a single material presents a link between two distinct classes of porous materials as exemplified by metal-organic frameworks (MOFs) and covalent organic frameworks (COFs). This strategy, in addition to being a compelling material-discovery method, also offers a platform for developing a fundamental understanding of the factors influencing the competing modes of assembly. We also demonstrate that even temporary formation of reversible connections between components may be leveraged to make new phases thus offering design routes to polymorphic frameworks. Moreover, this approach has the striking potential of providing a rich landscape of structurally complex materials from commercially available or readily accessible feedstocks.

  18. Bile salt-induced intermolecular disulfide bond formation activates Vibrio cholerae virulence.

    PubMed

    Yang, Menghua; Liu, Zhi; Hughes, Chambers; Stern, Andrew M; Wang, Hui; Zhong, Zengtao; Kan, Biao; Fenical, William; Zhu, Jun

    2013-02-01

    To be successful pathogens, bacteria must often restrict the expression of virulence genes to host environments. This requires a physical or chemical marker of the host environment as well as a cognate bacterial system for sensing the presence of a host to appropriately time the activation of virulence. However, there have been remarkably few such signal-sensor pairs identified, and the molecular mechanisms for host-sensing are virtually unknown. By directly applying a reporter strain of Vibrio cholerae, the causative agent of cholera, to a thin layer chromatography (TLC) plate containing mouse intestinal extracts, we found two host signals that activate virulence gene transcription. One of these was revealed to be the bile salt taurocholate. We then show that a set of bile salts cause dimerization of the transmembrane transcription factor TcpP by inducing intermolecular disulfide bonds between cysteine (C)-207 residues in its periplasmic domain. Various genetic and biochemical analyses led us to propose a model in which the other cysteine in the periplasmic domain, C218, forms an inhibitory intramolecular disulfide bond with C207 that must be isomerized to form the active C207-C207 intermolecular bond. We then found bile salt-dependent effects of these cysteine mutations on survival in vivo, correlating to our in vitro model. Our results are a demonstration of a mechanism for direct activation of the V. cholerae virulence cascade by a host signal molecule. They further provide a paradigm for recognition of the host environment in pathogenic bacteria through periplasmic cysteine oxidation.

  19. Formation of C–C bonds via ruthenium-catalyzed transfer hydrogenation*

    PubMed Central

    Moran, Joseph; Krische, Michael J.

    2013-01-01

    Ruthenium-catalyzed transfer hydrogenation of diverse π-unsaturated reactants in the presence of aldehydes provides products of carbonyl addition. Dehydrogenation of primary alcohols in the presence of the same π-unsaturated reactants provides identical products of carbonyl addition. In this way, carbonyl addition is achieved from the alcohol or aldehyde oxidation level in the absence of stoichiometric organometallic reagents or metallic reductants. In this account, the discovery of ruthenium-catalyzed C–C bond-forming transfer hydrogenations and the recent development of diastereo- and enantioselective variants are discussed. PMID:23430602

  20. Formation and densification of SiAlON materials by reaction bonding and silicothermal reduction routes

    NASA Astrophysics Data System (ADS)

    Rouquié, Yann; Jones, Mark I.

    2011-05-01

    Samples of β and O-sialon with different levels of substitution (i.e. z = 1 and 4 for β-sialon and x = 0.05 and 0.2 for O-sialon) have been synthesized by both reaction bonding and silicothermal reduction techniques in a nitrogen atmosphere. The possibility of obtaining dense sialon materials by these lower cost production methods has been investigated using a statistical design methodology. The influence of different parameters (temperature, gas pressure and additive type) on the densification and decomposition has been studied and will be discussed in this presentation.

  1. Formation of C-C bonds via ruthenium-catalyzed transfer hydrogenation().

    PubMed

    Moran, Joseph; Krische, Michael J

    2012-01-01

    Ruthenium-catalyzed transfer hydrogenation of diverse π-unsaturated reactants in the presence of aldehydes provides products of carbonyl addition. Dehydrogenation of primary alcohols in the presence of the same π-unsaturated reactants provides identical products of carbonyl addition. In this way, carbonyl addition is achieved from the alcohol or aldehyde oxidation level in the absence of stoichiometric organometallic reagents or metallic reductants. In this account, the discovery of ruthenium-catalyzed C-C bond-forming transfer hydrogenations and the recent development of diastereo- and enantioselective variants are discussed. PMID:23430602

  2. Access to Pyrazolidin-3,5-diones through Anodic N-N Bond Formation.

    PubMed

    Gieshoff, Tile; Schollmeyer, Dieter; Waldvogel, Siegfried R

    2016-08-01

    Pyrazolidin-3,5-diones are important motifs in heterocyclic chemistry and are of high interest for pharmaceutical applications. In classic organic synthesis, the hydrazinic moiety is installed through condensation using the corresponding hydrazine building blocks. However, most N,N'-diaryl hydrazines are toxic and require upstream preparation owing to their low commercial availability. We present an alternative and sustainable synthetic approach to pyrazolidin-3,5-diones that employs readily accessible dianilides as precursors, which are anodically converted to furnish the N-N bond. The electroconversion is conducted in a simple undivided cell under constant-current conditions. PMID:27392318

  3. An alternative mechanism for the catalysis of peptide bond formation by L/F transferase: substrate binding and orientation.

    PubMed

    Fung, Angela W; Ebhardt, H Alexander; Abeysundara, Heshani; Moore, Jack; Xu, Zhizhong; Fahlman, Richard P

    2011-06-17

    Eubacterial leucyl/phenylalanyl tRNA protein transferase (L/F transferase) catalyzes the transfer of a leucine or a phenylalanine from an aminoacyl-tRNA to the N-terminus of a protein substrate. This N-terminal addition of an amino acid is analogous to that of peptide synthesis by ribosomes. A previously proposed catalytic mechanism for Escherichia coli L/F transferase identified the conserved aspartate 186 (D186) and glutamine 188 (Q188) as key catalytic residues. We have reassessed the role of D186 and Q188 by investigating the enzymatic reactions and kinetics of enzymes possessing mutations to these active-site residues. Additionally three other amino acids proposed to be involved in aminoacyl-tRNA substrate binding are investigated for comparison. By quantitatively measuring product formation using a quantitative matrix-assisted laser desorption/ionization time-of-flight mass spectrometry-based assay, our results clearly demonstrate that, despite significant reduction in enzymatic activity as a result of different point mutations introduced into the active site of L/F transferase, the formation of product is still observed upon extended incubations. Our kinetic data and existing X-ray crystal structures result in a proposal that the critical roles of D186 and Q188, like the other amino acids in the active site, are for substrate binding and orientation and do not directly participate in the chemistry of peptide bond formation. Overall, we propose that L/F transferase does not directly participate in the chemistry of peptide bond formation but catalyzes the reaction by binding and orientating the substrates for reaction in an analogous mechanism that has been described for ribosomes.

  4. Emotional experiences of preservice science teachers in online learning: the formation, disruption and maintenance of social bonds

    NASA Astrophysics Data System (ADS)

    Bellocchi, Alberto; Mills, Kathy A.; Ritchie, Stephen M.

    2015-08-01

    The enactment of learning to become a science teacher in online mode is an emotionally charged experience. We attend to the formation, maintenance and disruption of social bonds experienced by online preservice science teachers as they shared their emotional online learning experiences through blogs, or e-motion diaries, in reaction to videos of face-to-face lessons. A multi-theoretic framework drawing on microsociological perspectives of emotion informed our hermeneutic interpretations of students' first-person accounts reported through an e-motion diary. These accounts were analyzed through our own database of emotion labels constructed from the synthesis of existing literature on emotion across a range of fields of inquiry. Preservice science teachers felt included in the face-to-face group as they watched videos of classroom transactions. The strength of these feelings of social solidarity were dependent on the quality of the video recording. E-motion diaries provided a resource for interactions focused on shared emotional experiences leading to formation of social bonds and the alleviation of feelings of fear, trepidation and anxiety about becoming science teachers. We offer implications to inform practitioners who wish to improve feelings of inclusion amongst their online learners in science education.

  5. Susceptibility towards intramolecular disulphide-bond formation affects conformational stability and folding of human basic fibroblast growth factor.

    PubMed Central

    Estapé, D; van den Heuvel, J; Rinas, U

    1998-01-01

    The conformational stability and the folding properties of the all-beta-type protein human basic fibroblast growth factor (hFGF-2) were studied by means of fluorescence spectroscopy. The results show that the instability of the biological activity of hFGF-2 is also reflected in a low conformational stability of the molecule. The reversibility of the unfolding and refolding process was established under reducing conditions. Determination of the free-energy of unfolding in the presence of reducing agents revealed that the conformational stability of hFGF-2 (DeltaGH2Oapp congruent with21 kJ. mol-1, 25 degreesC) is low compared with other globular proteins under physiological conditions (20-60 kJ.mol-1). However, the conformational stability of hFGF-2 is particularly low under non-reducing conditions. This instability is attributed to intramolecular disulphide-bond formation, rendering the molecule more susceptible to denaturant-induced unfolding. In addition, denaturant-induced unfolding of hFGF-2 renders the protein more susceptible to irreversible oxidative denaturation. Experimental evidence is provided that the irreversibility of the unfolding and refolding process in the absence of reducing agents is linked to the formation of an intramolecular disulphide bond involving cysteines 96 and 101. PMID:9761733

  6. Emotional experiences of preservice science teachers in online learning: the formation, disruption and maintenance of social bonds

    NASA Astrophysics Data System (ADS)

    Bellocchi, Alberto; Mills, Kathy A.; Ritchie, Stephen M.

    2016-09-01

    The enactment of learning to become a science teacher in online mode is an emotionally charged experience. We attend to the formation, maintenance and disruption of social bonds experienced by online preservice science teachers as they shared their emotional online learning experiences through blogs, or e-motion diaries, in reaction to videos of face-to-face lessons. A multi-theoretic framework drawing on microsociological perspectives of emotion informed our hermeneutic interpretations of students' first-person accounts reported through an e-motion diary. These accounts were analyzed through our own database of emotion labels constructed from the synthesis of existing literature on emotion across a range of fields of inquiry. Preservice science teachers felt included in the face-to-face group as they watched videos of classroom transactions. The strength of these feelings of social solidarity were dependent on the quality of the video recording. E-motion diaries provided a resource for interactions focused on shared emotional experiences leading to formation of social bonds and the alleviation of feelings of fear, trepidation and anxiety about becoming science teachers. We offer implications to inform practitioners who wish to improve feelings of inclusion amongst their online learners in science education.

  7. Formation of the First Peptide Bond: The Structure of EF-P Bound to the 70S Ribosome

    SciTech Connect

    Blaha, Gregor; Stanley, Robin E.; Steitz, Thomas A.; Yale

    2009-10-21

    Elongation factor P (EF-P) is an essential protein that stimulates the formation of the first peptide bond in protein synthesis. Here we report the crystal structure of EF-P bound to the Thermus thermophilus 70S ribosome along with the initiator transfer RNA N-formyl-methionyl-tRNAi (fMet-tRNA{sub i}{sup fMet}) and a short piece of messenger RNA (mRNA) at a resolution of 3.5 angstroms. EF-P binds to a site located between the binding site for the peptidyl tRNA (P site) and the exiting tRNA (E site). It spans both ribosomal subunits with its amino-terminal domain positioned adjacent to the aminoacyl acceptor stem and its carboxyl-terminal domain positioned next to the anticodon stem-loop of the P site-bound initiator tRNA. Domain II of EF-P interacts with the ribosomal protein L1, which results in the largest movement of the L1 stalk that has been observed in the absence of ratcheting of the ribosomal subunits. EF-P facilitates the proper positioning of the fMet-tRNA{sub i}{sup fMet} for the formation of the first peptide bond during translation initiation.

  8. Formation of the First Peptid Bond: the Structure of EF-P Bound to the 70S Ribosome

    SciTech Connect

    Blaha, G.; Stanley, R; Steitz, T

    2009-01-01

    Elongation factor P (EF-P) is an essential protein that stimulates the formation of the first peptide bond in protein synthesis. Here we report the crystal structure of EF-P bound to the Thermus thermophilus 70S ribosome along with the initiator transfer RNA N-formyl-methionyl-tRNAi (fMet-tRNAifMet) and a short piece of messenger RNA (mRNA) at a resolution of 3.5 angstroms. EF-P binds to a site located between the binding site for the peptidyl tRNA (P site) and the exiting tRNA (E site). It spans both ribosomal subunits with its amino-terminal domain positioned adjacent to the aminoacyl acceptor stem and its carboxyl-terminal domain positioned next to the anticodon stem-loop of the P site-bound initiator tRNA. Domain II of EF-P interacts with the ribosomal protein L1, which results in the largest movement of the L1 stalk that has been observed in the absence of ratcheting of the ribosomal subunits. EF-P facilitates the proper positioning of the fMet-tRNAifMet for the formation of the first peptide bond during translation initiation.

  9. Reactions of a Dinitrogen Complex of Molybdenum: Formation of a Carbon-Nitrogen Bond.

    ERIC Educational Resources Information Center

    Busby, David C.; And Others

    1981-01-01

    Reports a procedure for the formation of alkyldiazenido complexes of molybdenum in the absence of dioxygen, suitable for inclusion in an advanced inorganic chemistry laboratory. Includes background information and experimental procedures for two complexes. (SK)

  10. A nanosensor for in vivo selenol imaging based on the formation of Au-Se bonds.

    PubMed

    Hu, Bo; Cheng, Ranran; Liu, Xiaojun; Pan, Xiaohong; Kong, Fanpeng; Gao, Wen; Xu, Kehua; Tang, Bo

    2016-06-01

    Selenol is a key metabolite of Na2SeO3 and plays an important role in many physiological and pathological processes. The real-time monitoring of selenol is of scientific interest for understanding the anti-cancer mechanism of Na2SeO3. Based on selenol's ability to specifically break AuS bonds and form more stable AuSe bonds on the surfaces of gold nanoparticles (AuNPs), we developed a novel near-infrared fluorescent nanosensor (Cy5.5-peptide-AuNPs) for detecting selenol. The nanosensor exhibited rapid response to selenol with high selectivity and sensitivity, and it was successfully used to image changes in the selenol level in HepG2 cells during Na2SeO3-induced apoptosis. Moreover, in vivo fluorescence imaging of selenol was obtained from H22 tumor-bearing mice injected with both the nanosensor and sodium selenite. The results showed that the tumor cell apoptosis induced by Na2SeO3 is correlated with high-level of selenol under hypoxic conditions. We believe that this nanosensor could serve as a powerful tool for monitoring selenol and exploring the physiological function of selenol in a variety of physiological and pathological contexts and that the probe-designed strategy will provide a new platform for research on relevant selenium chemistry. PMID:27043769

  11. Oxo-group-14-element bond formation in binuclear uranium(V) Pacman complexes.

    PubMed

    Jones, Guy M; Arnold, Polly L; Love, Jason B

    2013-07-29

    Simple and versatile routes to the functionalization of uranyl-derived U(V)-oxo groups are presented. The oxo-lithiated, binuclear uranium(V)-oxo complexes [{(py)3LiOUO}2(L)] and [{(py)3LiOUO}(OUOSiMe3)(L)] were prepared by the direct combination of the uranyl(VI) silylamide "ate" complex [Li(py)2][(OUO)(N")3] (N" = N(SiMe3)2) with the polypyrrolic macrocycle H4L or the mononuclear uranyl (VI) Pacman complex [UO2(py)(H2L)], respectively. These oxo-metalated complexes display distinct U-O single and multiple bonding patterns and an axial/equatorial arrangement of oxo ligands. Their ready availability allows the direct functionalization of the uranyl oxo group leading to the binuclear uranium(V) oxo-stannylated complexes [{(R3Sn)OUO}2(L)] (R = nBu, Ph), which represent rare examples of mixed uranium/tin complexes. Also, uranium-oxo-group exchange occurred in reactions with [TiCl(OiPr)3] to form U-O-C bonds [{(py)3LiOUO}(OUOiPr)(L)] and [(iPrOUO)2(L)]. Overall, these represent the first family of uranium(V) complexes that are oxo-functionalised by Group 14 elements.

  12. Formation of Me-O-Si covalent bonds at the interface between polysilazane and stainless steel

    NASA Astrophysics Data System (ADS)

    Amouzou, Dodji; Fourdrinier, Lionel; Maseri, Fabrizio; Sporken, Robert

    2014-11-01

    In earlier works, we demonstrated the potential of polysilazane (PSZ) coatings for a use as insulating layers in Cu(In,Ga)Se2 (CIGS) solar cells prepared on steels substrates and showed a good adhesion between PSZ coatings and both AISI316 and AISI430 steels. In the present paper, spectroscopic techniques are used to elucidate the reason of such adhesion. X-ray Photoelectron Spectroscopy (XPS) was used to investigate surfaces for the two steel substrates and showed the presence of metal oxides and metal hydroxides at the top surface. XPS has been also used to probe interfaces between substrates and PSZ, and metallosiloxane (Me-O-Si) covalent bonds have been detected. These results were confirmed by Infra-Red Reflection Absorption Spectroscopy (IRRAS) analyses since vibrations related to Cr-O-Si and Fe-O-Si compounds were detected. Thus, the good adhesion between steel substrates and PSZ coatings was explained by covalent bonding through chemical reactions between PSZ precursors and hydroxide functional groups present on top surface of the two types of steel. Based on these results, an adhesion mechanism between steel substrates and PSZ coatings is proposed.

  13. Introduction to Homogeneous Catalysis: Carbon-Carbon Bond Formation Catalyzed by a Defined Palladium Complex

    NASA Astrophysics Data System (ADS)

    Herrmann, Wolfgang A.; Böhm, Volker P. W.; Reisinger, Claus-Peter

    2000-01-01

    In this laboratory experiment students synthesize a phosphine ligand, P(o-tol)3, and with it the corresponding cyclometallated Pd(II) complex. This complex is an extremely active (pre)catalyst for C-C-bond-forming reactions (e.g. the Heck vinylation or the Grignard cross-coupling reaction). Students test the complex for activation in the catalysis of these two reactions using especially economical bromoaromatic compounds. The catalytic mechanisms of these reactions involve basic reaction types in organometallic chemistry such as ligand exchange, cyclometallation, oxidative addition, transmetallation, olefin insertion, reductive elimination and ß-hydride elimination. This experimental sequence combines synthetic organometallic and synthetic organic chemistry to introduce students to the field of catalysis as it appears in daily scientific research laboratory work.

  14. Silver-catalyzed C-C bond formation between methane and ethyl diazoacetate in supercritical CO₂.

    PubMed

    Caballero, Ana; Despagnet-Ayoub, Emmanuelle; Díaz-Requejo, M Mar; Díaz-Rodríguez, Alba; González-Núñez, María Elena; Mello, Rossella; Muñoz, Bianca K; Ojo, Wilfried-Solo; Asensio, Gregorio; Etienne, Michel; Pérez, Pedro J

    2011-05-13

    Even in the context of hydrocarbons' general resistance to selective functionalization, methane's volatility and strong bonds pose a particular challenge. We report here that silver complexes bearing perfluorinated indazolylborate ligands catalyze the reaction of methane (CH(4)) with ethyl diazoacetate (N(2)CHCO(2)Et) to yield ethyl propionate (CH(3)CH(2)CO(2)Et). The use of supercritical carbon dioxide (scCO(2)) as the solvent is key to the reaction's success. Although the catalyst is only sparingly soluble in CH(4)/CO(2) mixtures, optimized conditions presently result in a 19% yield of ethyl propionate (based on starting quantity of the diazoester) at 40°C over 14 hours.

  15. Catalysis of peptide bond formation by histidyl-histidine in a fluctuating clay environment

    NASA Technical Reports Server (NTRS)

    White, D. H.; Erickson, J. C.

    1980-01-01

    The condensation of glycine to form oligoglycines during wet-dry fluctuations on clay surfaces was enhanced up to threefold or greater by small amounts of histidyl-histidine. In addition, higher relative yields of the longer oligomers were produced. Other specific dipeptides tested gave no enhancement, and imidazole, histidine, and N-acetylhistidine gave only slight enhancements. Histidyl-histidine apparently acts as a true catalyst (in the sense of repeatedly catalyzing the reaction), since up to 52 nmol of additional glycine were incorporated into oligoglycine for each nmol of catalyst added. This is the first known instance of a peptide or similar molecule demonstrating a catalytic turnover number greater than unity in a prebiotic oligomer synthesis reaction, and suggests that histidyl-histidine is a model for a primitive prebiotic proto-enzyme. Catalysis of peptide bond synthesis by a molecule which is itself a peptide implies that related systems may be capable of exhibiting autocatalytic growth.

  16. Formation of hydrogen-bonded chains through inter- and intra-molecular hydrogen bonds by a strong base of guanidine-like character and 2,2'-biphenols

    NASA Astrophysics Data System (ADS)

    Brzezinski, B.; Wojciechowski, G.; Bartl, F.; Zundel, G.

    2000-11-01

    2,2'-Biphenol mixtures with 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene (MTBD) were studied by FTIR spectroscopy. In chloroform, a proton transfer from 2,2'-biphenol to MTBD occurs. In this solution the protonated MTBD molecules are hydrogen-bonded to the 2,2'-biphenol-2,2'-biphenolate chains. In acetonitrile, after the proton transfer, the complexes dissociate and hence protonated MTBD molecules and hydrogen-bonded 2,2'-biphenol-2,2'-biphenolate chains are present. The hydrogen bonds and the hydrogen-bonded chains show large proton polarizability. In the systems intra- as well as inter-molecular hydrogen bonds are formed.

  17. Enthalpy of Formation and O-H Bond Dissociation Enthalpy of Phenol: Inconsistency between Theory and Experiment.

    PubMed

    Dorofeeva, Olga V; Ryzhova, Oxana N

    2016-04-21

    Gas-phase O–H homolytic bond dissociation enthalpy in phenol, DH298°(C6H5O–H), is still disputed, despite a large number of experimental and computational studies. In estimating this value, the experimental enthalpy of formation of phenol, ΔfH298°(C6H5OH, g) = −96.4 ± 0.6 kJ/mol (Cox, J. D. Pure Appl. Chem. 1961, 2, 125−128), is often used assuming high accuracy of the experimental value. In the present work a substantially less negative value of ΔfH298°(C6H5OH, g) = −91.8 ± 2.5 kJ/mol was calculated combining G4 theory with an isodesmic reaction approach. A benchmark quality of this result was achieved by using a large number of reliable reference species in isodesmic reaction calculations. Among these are the most accurate ΔfH298° values currently available from the Active Thermochemical Tables (ATcT) for 36 species (neutral molecules, radicals, and ions), anisole with recently reassessed enthalpy of formation, and 13 substituted phenols. The internal consistency of the calculated ΔfH298°(C6H5OH, g) value with the experimental enthalpies of formation of more than 50 reference species suggests that the reported experimental enthalpy of formation of phenol is in error. Taking into account that the enthalpy of formation of phenol has not been investigated experimentally since 1961, the new measurements would be extremely valuable. Using the accurate enthalpies of formation of C6H5OH and C6H5O• calculated in the present work, we obtained DH298°(C6H5O–H) = 369.6 ± 4.0 kJ/mol. This value is in satisfactory agreement with that determined from the most precise experimental measurement.

  18. Enthalpy of Formation and O-H Bond Dissociation Enthalpy of Phenol: Inconsistency between Theory and Experiment.

    PubMed

    Dorofeeva, Olga V; Ryzhova, Oxana N

    2016-04-21

    Gas-phase O–H homolytic bond dissociation enthalpy in phenol, DH298°(C6H5O–H), is still disputed, despite a large number of experimental and computational studies. In estimating this value, the experimental enthalpy of formation of phenol, ΔfH298°(C6H5OH, g) = −96.4 ± 0.6 kJ/mol (Cox, J. D. Pure Appl. Chem. 1961, 2, 125−128), is often used assuming high accuracy of the experimental value. In the present work a substantially less negative value of ΔfH298°(C6H5OH, g) = −91.8 ± 2.5 kJ/mol was calculated combining G4 theory with an isodesmic reaction approach. A benchmark quality of this result was achieved by using a large number of reliable reference species in isodesmic reaction calculations. Among these are the most accurate ΔfH298° values currently available from the Active Thermochemical Tables (ATcT) for 36 species (neutral molecules, radicals, and ions), anisole with recently reassessed enthalpy of formation, and 13 substituted phenols. The internal consistency of the calculated ΔfH298°(C6H5OH, g) value with the experimental enthalpies of formation of more than 50 reference species suggests that the reported experimental enthalpy of formation of phenol is in error. Taking into account that the enthalpy of formation of phenol has not been investigated experimentally since 1961, the new measurements would be extremely valuable. Using the accurate enthalpies of formation of C6H5OH and C6H5O• calculated in the present work, we obtained DH298°(C6H5O–H) = 369.6 ± 4.0 kJ/mol. This value is in satisfactory agreement with that determined from the most precise experimental measurement. PMID:27043325

  19. Efficient Covalent Bond Formation in Gas-Phase Peptide-Peptide Ion Complexes with the Photoleucine Stapler

    NASA Astrophysics Data System (ADS)

    Shaffer, Christopher J.; Andrikopoulos, Prokopis C.; Řezáč, Jan; Rulíšek, Lubomír; Tureček, František

    2016-04-01

    Noncovalent complexes of hydrophobic peptides GLLLG and GLLLK with photoleucine (L*) tagged peptides G(L* n L m )K (n = 1,3, m = 2,0) were generated as singly charged ions in the gas phase and probed by photodissociation at 355 nm. Carbene intermediates produced by photodissociative loss of N2 from the L* diazirine rings underwent insertion into X-H bonds of the target peptide moiety, forming covalent adducts with yields reaching 30%. Gas-phase sequencing of the covalent adducts revealed preferred bond formation at the C-terminal residue of the target peptide. Site-selective carbene insertion was achieved by placing the L* residue in different positions along the photopeptide chain, and the residues in the target peptide undergoing carbene insertion were identified by gas-phase ion sequencing that was aided by specific 13C labeling. Density functional theory calculations indicated that noncovalent binding to GL*L*L*K resulted in substantial changes of the (GLLLK + H)+ ground state conformation. The peptide moieties in [GL*L*LK + GLLLK + H]+ ion complexes were held together by hydrogen bonds, whereas dispersion interactions of the nonpolar groups were only secondary in ground-state 0 K structures. Born-Oppenheimer molecular dynamics for 100 ps trajectories of several different conformers at the 310 K laboratory temperature showed that noncovalent complexes developed multiple, residue-specific contacts between the diazirine carbons and GLLLK residues. The calculations pointed to the substantial fluidity of the nonpolar side chains in the complexes. Diazirine photochemistry in combination with Born-Oppenheimer molecular dynamics is a promising tool for investigations of peptide-peptide ion interactions in the gas phase.

  20. Strain shielding from mechanically activated covalent bond formation during nanoindentation of graphene delays the onset of failure.

    PubMed

    Kumar, Sandeep; Parks, David M

    2015-03-11

    Mechanical failure of an ideal crystal is dictated either by an elastic instability or a soft-mode instability. Previous interpretations of nanoindentation experiments on suspended graphene sheets,1,2 however, indicate an anomaly: the inferred strain in the graphene sheet directly beneath the diamond indenter at the measured failure load is anomalously large compared to the fracture strains predicted by both soft-mode and acoustic analyses. Through multiscale modeling combining the results of continuum, atomistic, and quantum calculations, and analysis of experiments, we identify a strain-shielding effect initiated by mechanochemical interactions at the graphene-indenter interface as the operative mechanism responsible for this anomaly. Transmission electron micrographs and a molecular model of the diamond indenter's tip suggest that the tip surface contains facets comprising crystallographic {111} and {100} planes. Ab initio and molecular dynamics (MD) simulations confirm that a covalent bond (weld) formation between graphene and the crystallographic {111} and {100} facets on the indenter's surface can be induced by compressive contact stresses of the order achieved in nanoindentation tests. Finite element analysis (FEA) and MD simulations of nanoindentation reveal that the shear stiction provided by the induced covalent bonding restricts relative slip of the graphene sheet at its contact with the indenter, thus initiating a local strain-shielding effect. As a result, subsequent to stress-induced bonding at the graphene-indenter interface, the spatial variation of continuing incremental strain is substantially redistributed, locally shielding the region directly beneath the indenter by limiting the buildup of strain while imparting deformation to the surrounding regions. The extent of strain shielding is governed by the strength of the shear stiction, which depends upon the level of hydrogen saturation at the indenter's surface. We show that at intermediate levels

  1. Proton transfer in hydrogen-bonded network of phenol molecules: intracluster formation of water.

    PubMed

    Lengyel, Jozef; Gorejová, Radka; Herman, Zdeněk; Fárník, Michal

    2013-11-01

    Electron ionization and time-of-flight mass spectrometry was used to investigate the phenol clusters (PhOH)n of different size from single molecule to large clusters: in coexpansion with He, the dimers n = 2 are mostly generated; in Ar, large species of n ≥ 10 also occur. Besides [(PhOH)n](+•) cluster ion series, hydrated phenol cluster ions [(PhOH)n·xH2O](+•) with up to x = 3 water molecules and dehydrated phenol clusters [(PhOH)n-H2O](+•) were observed. The hydrated phenol series exhibits minima and maxima that are interpreted as evidence for proton transfer between the hydrogen bonded cluster ions of cyclic structures. The proton transfer leads to a water generation within the clusters, and subsequent elimination of the diphenyl ether molecule(s) from the cluster yields the hydrated phenol cluster ions. Alternatively, a water molecule release yields a series of dehydrated phenols, among which the diphenyl ether ion [PhOPh](+•) (n = 2) constitutes the maximum.

  2. Oligomerization reactions of deoxyribonucleotides on montmorillonite clay: the effect of mononucleotide structure on phosphodiester bond formation.

    PubMed

    Ferris, J P; Kamaluddin

    1989-01-01

    Adenine deoxynucleotides bind more strongly to Na(+)-montmorillonite than do the corresponding ribonucleotides. Thymidine nucleotides binds less strongly to Na(+)-montmorillonite than do the corresponding adenine deoxynucleotides. Oligomers of 2'-dpA up to the tetramer were detected in the reaction 2'-d-5'-AMP with EDAC (a water-soluble carbodiimide) in the presence of Na(+)-montmorillonite. Reaction of 3'-d-5'-AMP with EDAC on Na(+)-montmorillonite yields 3'-d-2',5'-pApA while the reaction of 2'-d-3'-AMP yields almost exclusively 3',5'-cdAMP. The reaction of 5'-TMP under the same reaction conditions give 3',5'-cpTpT and 3',5'-pTpT while 3'-TMP gives mainly 3',5'-cpT. The yield of dinucleotide products (dpNpN) containing the phosphodiester bond is 1% or less when Na(+)-montmorillonite is omitted from the reaction mixture.

  3. Nonenzymatic, template-directed ligation of oligoribonucleotides is highly regioselective for the formation of 3'-5' phosphodiester bonds

    NASA Technical Reports Server (NTRS)

    Rohatgi, R.; Bartel, D. P.; Szostak, J. W.

    1996-01-01

    We have found that nonenzymatic, template-directed ligation reactions of oligoribonucleotides display high selectivity for the formation of 3'-5' rather than 2'-5' phosphodiester bonds. Formation of the 3'-5'-linked product is favored regardless of the metal ion catalyst or the leaving group, and for several different ligation junction sequences. The degree of selectivity depends on the leaving group: the ratio of 3'-5'- to 2'-5'-linked products was 10-15:1 when the 5'-phosphate was activated as the imidazolide, and 60-80:1 when the 5'-phosphate was activated by the formation of a 5'-triphosphate. Comparison of oligonucleotide ligation reactions with previously characterized single nucleotide primer extension reactions suggests that the strong preference for 3'-5'-linkages in oligonucleotide ligation is primarily due to occurence of ligation within the context of an extended Watston-Crick duplex. The ability of RNA to correctly self-assemble by template-directed ligation is an intrinsic consequence of its chemical structure and need not be imposed by an external catalyst (i.e., an enzyme polymerase); RNA therefore provides a reasonable structural basis for a self-replicating system in a prebiological world.

  4. Characterization of irreversible kinase inhibitors by directly detecting covalent bond formation: a tool for dissecting kinase drug resistance.

    PubMed

    Klüter, Sabine; Simard, Jeffrey R; Rode, Haridas B; Grütter, Christian; Pawar, Vijaykumar; Raaijmakers, Hans C A; Barf, Tjeerd A; Rabiller, Matthias; van Otterlo, Willem A L; Rauh, Daniel

    2010-12-10

    Targeting protein kinases in cancer therapy with irreversible small-molecule inhibitors is moving to the forefront of kinase-inhibitor research and is thought to be an effective means of overcoming mutation-associated drug resistance in epidermal growth factor receptor kinase (EGFR). We generated a detection technique that allows direct measurements of covalent bond formation without relying on kinase activity, thereby allowing the straightforward investigation of the influence of steric clashes on covalent inhibitors in different resistant kinase mutants. The obtained results are discussed together with structural biology and biochemical studies of catalytic activity in both wild-type and gatekeeper mutated kinase variants to draw conclusions about the impact of steric hindrance and increased catalytic activity in drug-resistant kinase variants. PMID:21080395

  5. The HNCO heat of formation and the N{endash}H and C{endash}N bond enthalpies from initial state selected photodissociation

    SciTech Connect

    Brown, S.S.; Berghout, H.L.; Crim, F.F.

    1996-11-01

    We measure upper limits for the bond enthalpies of the N{endash}H and C{endash}N bonds in HNCO by observation of photodissociation appearance thresholds for the NCO ({ital X}{sup 2}{Pi}) and NH ({ital a}{sup 1}{Delta}) fragments from initially selected HNCO vibrational states. The upper limit of the dissociation energy of the H{endash}N bond is {ital D}{sub 0}(H{endash}NCO){le}109.6{plus_minus}0.4 kcal/mol and that of the N{endash}C bond is {ital D}{sub 0} (HN{endash}CO){le}122.1{plus_minus}0.3 kcal/mol. Observation of unrelaxed fragment quantum state distributions at fixed energies supports the bond enthalpy measurement. The two appearance thresholds, together with known heats of formation of NH, NCO, H, and CO, provide two independent methods of calculating the HNCO heat of formation. Both methods give a value of {Delta}H{sub {ital f}{sub 0}}{sup 0} (HNCO){ge}{minus}27.7{plus_minus}1.1 kcal/mol. The consistency of the two methods for calculating {Delta}H{sub {ital f}{sub 0}}{sup 0} (HNCO) suggests that the actual bond enthalpies for the N{endash}H and C{endash}N bonds are close to the upper limits from the measurement. {copyright} {ital 1996 American Institute of Physics.}

  6. Biosynthetic pathway toward carbohydrate-like moieties of alnumycins contains unusual steps for C-C bond formation and cleavage

    PubMed Central

    Oja, Terhi; Klika, Karel D.; Appassamy, Laura; Sinkkonen, Jari; Mäntsälä, Pekka; Niemi, Jarmo; Metsä-Ketelä, Mikko

    2012-01-01

    Carbohydrate moieties are important components of natural products, which are often imperative for the solubility and biological activity of the compounds. The aromatic polyketide alnumycin A contains an extraordinary sugar-like 4′-hydroxy-5′-hydroxymethyl-2′,7′-dioxane moiety attached via a carbon-carbon bond to the aglycone. Here we have extensively investigated the biosynthesis of the dioxane unit through 13C labeling studies, gene inactivation experiments and enzymatic synthesis. We show that AlnA and AlnB, members of the pseudouridine glycosidase and haloacid dehalogenase enzyme families, respectively, catalyze C-ribosylation conceivably through Michael-type addition of d-ribose-5-phosphate and dephosphorylation. The ribose moiety may be attached both in furanose (alnumycin C) and pyranose (alnumycin D) forms. The C1′-C2′ bond of alnumycin C is subsequently cleaved and the ribose unit is rearranged into an unprecedented dioxolane (cis-bicyclo[3.3.0]-2′,4′,6′-trioxaoctan-3′β-ol) structure present in alnumycin B. The reaction is catalyzed by Aln6, which belongs to a previously uncharacterized enzyme family. The conversion was accompanied with consumption of O2 and formation of H2O2, which allowed us to propose that the reaction may proceed via hydroxylation of C1′ followed by retro-aldol cleavage and acetal formation. Interestingly, no cofactors could be detected and the reaction was also conducted in the presence of metal chelating agents. The last step is the conversion of alnumycin B into the final end-product alnumycin A catalyzed by Aln4, an NADPH-dependent aldo-keto reductase. This characterization of the dioxane biosynthetic pathway sets the basis for the utilization of C-C bound ribose, dioxolane and dioxane moieties in the generation of improved biologically active compounds. PMID:22474343

  7. Yttrium (amidate) complexes for catalytic C-N bond formation. Rapid, room temperature amidation of aldehydes.

    PubMed

    Thomson, Jaclyn A; Schafer, Laurel L

    2012-07-14

    Yttrium (amidate) precatalysts are highly active for the mild amidation of aldehydes with amines. Reactions occur at room temperature within 5 min in up to 98% isolated yield. These rare-earth systems are effective for this transformation in the absence of supplementary heat, light, base, or oxidants. The reaction proceeds with functionalized amines and/or aldehydes. A comparison of various amidate precatalysts in combination with reaction monitoring suggests that the targeted amide products formed during the reaction promote the formation of alternative catalytically active amidate species in situ.

  8. Structural insights into catalysis by βC-S lyase from Streptococcus anginosus.

    PubMed

    Kezuka, Yuichiro; Yoshida, Yasuo; Nonaka, Takamasa

    2012-10-01

    Hydrogen sulfide (H(2)S) is a causative agent of oral malodor and may play an important role in the pathogenicity of oral bacteria such as Streptococcus anginosus. In this microorganism, H(2)S production is associated with βC-S lyase (Lcd) encoded by lcd gene, which is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes the α,β-elimination of sulfur-containing amino acids. When Lcd acts on L-cysteine, H(2)S is produced along with pyruvate and ammonia. To understand the H(2)S-producing mechanism of Lcd in detail, we determined the crystal structures of substrate-free Lcd (internal aldimine form) and two reaction intermediate complexes (external aldimine and α-aminoacrylate forms). The formation of intermediates induced little changes in the overall structure of the enzyme and in the active site residues, with the exception of Lys234, a PLP-binding residue. Structural and mutational analyses highlighted the importance of the active site residues Tyr60, Tyr119, and Arg365. In particular, Tyr119 forms a hydrogen bond with the side chain oxygen atom of L-serine, a substrate analog, in the external aldimine form suggesting its role in the recognition of the sulfur atom of the true substrate (L-cysteine). Tyr119 also plays a role in fixing the PLP cofactor at the proper position during catalysis through binding with its side chain. Finally, we partly modified the catalytic mechanism known for cystalysin, a βC-S lyase from Treponema denticola, and proposed an improved mechanism, which seems to be common to the βC-S lyases from oral bacteria.

  9. Fundamental and overtone vibrational spectroscopy, enthalpy of hydrogen bond formation and equilibrium constant determination of the methanol-dimethylamine complex.

    PubMed

    Du, Lin; Mackeprang, Kasper; Kjaergaard, Henrik G

    2013-07-01

    We have measured gas phase vibrational spectra of the bimolecular complex formed between methanol (MeOH) and dimethylamine (DMA) up to about 9800 cm(-1). In addition to the strong fundamental OH-stretching transition we have also detected the weak second overtone NH-stretching transition. The spectra of the complex are obtained by spectral subtraction of the monomer spectra from spectra recorded for the mixture. For comparison, we also measured the fundamental OH-stretching transition in the bimolecular complex between MeOH and trimethylamine (TMA). The enthalpies of hydrogen bond formation (ΔH) for the MeOH-DMA and MeOH-TMA complexes have been determined by measurements of the fundamental OH-stretching transition in the temperature range from 298 to 358 K. The enthalpy of formation is found to be -35.8 ± 3.9 and -38.2 ± 3.3 kJ mol(-1) for MeOH-DMA and MeOH-TMA, respectively, in the 298 to 358 K region. The equilibrium constant (Kp) for the formation of the MeOH-DMA complex has been determined from the measured and calculated transition intensities of the OH-stretching fundamental transition and the NH-stretching second overtone transition. The transition intensities were calculated using an anharmonic oscillator local mode model with dipole moment and potential energy curves calculated using explicitly correlated coupled cluster methods. The equilibrium constant for formation of the MeOH-DMA complex was determined to be 0.2 ± 0.1 atm(-1), corresponding to a ΔG value of about 4.0 kJ mol(-1).

  10. Rotational and hinge dynamics of discoidal high density lipoproteins probed by interchain disulfide bond formation

    PubMed Central

    Li, Ling; Li, Songlin; Jones, Martin K.; Segrest, Jere P.

    2013-01-01

    To develop a detailed double belt model for discoidal HDL, we previously scored inter-helical salt bridges between all possible registries of two stacked antiparallel amphipathic helical rings of apolipoprotein (apo) A-I. The top score was the antiparallel apposition of helix 5 with 5 followed closely by appositions of helix 5 with 4 and helix 5 with 6. The rationale for the current study is that, for each of the optimal scores, a pair of identical residues can be identified in juxtaposition directly on the contact edge between the two antiparallel helical belts of apoA-I. Further, these residues are always in the ‘9th position’ in one of the eighteen 11-mer repeats that make up the lipid-associating domain of apoA-I. To illustrate our terminology, 129j (LL5/5) refers to the juxtaposition of the Ca atoms of G129 (in a ‘9th position’) in the pairwise helix 5 domains. We reasoned that if identical residues in the double belt juxtapositions were mutated to a cysteine and kept under reducing conditions during disc formation, we would have a precise method for determining registration in discoidal HDL by formation of a disulfide-linked apoA-I homodimer. Using this approach, we conclude that 129j (LL5/5) is the major rotamer orientation for double belt HDL and propose that the small ubiquitous gap between the pairwise helix 5 portions of the double belt in larger HDL discoidal particles is significantly dynamic to hinge off the disc edge under certain conditions, e.g., in smaller particles or perhaps following binding of the enzyme LCAT. PMID:22063273

  11. Directing Group in Decarboxylative Cross-Coupling: Copper-Catalyzed Site-Selective C-N Bond Formation from Nonactivated Aliphatic Carboxylic Acids.

    PubMed

    Liu, Zhao-Jing; Lu, Xi; Wang, Guan; Li, Lei; Jiang, Wei-Tao; Wang, Yu-Dong; Xiao, Bin; Fu, Yao

    2016-08-01

    Copper-catalyzed directed decarboxylative amination of nonactivated aliphatic carboxylic acids is described. This intramolecular C-N bond formation reaction provides efficient access to the synthesis of pyrrolidine and piperidine derivatives as well as the modification of complex natural products. Moreover, this reaction presents excellent site-selectivity in the C-N bond formation step through the use of directing group. Our work can be considered as a big step toward controllable radical decarboxylative carbon-heteroatom cross-coupling. PMID:27439145

  12. Late Quaternary Normal Faulting and Hanging Wall Basin Evolution of the Southwestern Rift Margin From Gravity and Geology, B.C.S., MX and Exploring the Influence of Text-Figure Format on Introductory Geology Learning

    NASA Astrophysics Data System (ADS)

    Busch, Melanie M. D.

    2011-12-01

    should, therefore, be formatted to include a number of natural breaks so that learners can pause to inspect the figure without the risk of losing their place in the reading and to provide a chance to process the material in small chunks. Multimedia instructional materials should be designed to support the cognitive processes of the learner.

  13. Mineral catalysis of the formation of the phosphodiester bond in aqueous solution - The possible role of montmorillonite clays

    NASA Technical Reports Server (NTRS)

    Ferris, James P.; Ertem, Gozen; KAMALUDDIN; Agarwal, Vipin; Hua, Lu Lin

    1989-01-01

    The possible role of montmorillonite clays in the spontaneous formation on the primitive earth of the phosphodiester bond in the presence of water was investigated in experiments measuring the binding of various nucleosides and nucleotides with Na(+)-montmorillonite 22A and the reactions of these compounds with a water-soluble carbodiimide. It was found that, at neutral pH, adenine derivatives bind stronger than the corresponding uracil derivatives, consistent with the protonation of the adenine by the acidic clay surface and a cationic binding of the protonated ring to the anionic clay surface. The reaction of the 5-prime-AMP with carbodiimide resulted in the formation of 2-prime,5-prime-pApA (18.9 percent), 3-prime,5-prime-pApA (11 percent), and AppA (4.8 percent). The yields of these oligomers obtained when poly(U) was used in place of the clay were 15.5 percent, 3.7 percent, and 14.9 percent AppA, respectively.

  14. Mass spectrometry study of PRL-3 phosphatase inactivation by disulfide bond formation and cysteine into glycine conversion.

    PubMed

    Orsatti, Laura; Innocenti, Federica; Lo Surdo, Paola; Talamo, Fabio; Barbato, Gaetano

    2009-09-01

    The Phosphatase of Regenerating Liver-3 (PRL-3) is a cysteine-based phosphatase (CBP) that is highly over-expressed in liver metastasis in colorectal cancer and suspected to be involved in the progression from tumor to metastasis. During substrate-specificity studies based on the screening of PRL-3 phosphatase activity on several phosphorylated synthetic peptides, we observed a decrease in activity depending on sample aging and storage conditions. By liquid chromatography combined with selective alkylation and mass spectrometry, we found two main PRL-3 inactivation pathways: a disulfide bond formation between the catalytic C104 and C49, blocking the enzyme in an inactive oxidized form, or the conversion of the catalytic C104 into glycine. We also found that the disulfide formation and the cysteine into glycine conversion are catalyzed by cations present in the sample after protein purification through a nickel column. By adding a cation chelator such as EDTA and de-oxygenating the sample with argon, PRL-3 phosphatase activity was preserved. These findings suggest that PRL-3, like other CBPs, is sensitive to inactivation by catalytic cysteine oxidation and this has implications for future studies of its activity and specificity. PMID:19639556

  15. Formation of C-C bonds by mandelonitrile lyase in organic solvents.

    PubMed

    Wehtje, E; Adlercreutz, P; Mattiasson, B

    1990-06-01

    Mandelonitrile lyase (EC 4.1.2.10) catalyzes the formation of D-mandelonitrile from HCN and benzaldehyde. Mandelonitrile lyase was immobilized by adsorption to support materials, for example, Celite. The enzyme preparations were used in diisopropyl ether for production of D-mandelonitrile. In order to obtain optically pure D-mandelonitrile it was necessary to use reaction conditions which favor the enzymatic reaction and suppress the competing spontaneous reaction, which yields a racemic mixture of D, L-mandelonitrile. The effects of substrate concentrations, water content, and support materials on both the spontaneous and enzymatic reactions were studied. The enzymatic reaction was carried out under conditions where the importance of the spontaneous reaction was negligible and high enantiomeric purity of D-mandelonitrile was achieved (at least 98% enantiomeric excess). The operational stability of the enzyme preparations was studied in batch as well as in continuous systems. It was vital to control the water content in the system to maintain an active preparation. In a packed bed reactor the enzyme preparations were shown to be active and stable. The reactors were run for 50 h with only a small decrease in product yield. PMID:18592607

  16. Streptothricin biosynthesis is catalyzed by enzymes related to nonribosomal peptide bond formation.

    PubMed Central

    Fernández-Moreno, M A; Vallín, C; Malpartida, F

    1997-01-01

    In a search for strains producing biocides with a wide spectrum of activity, a new strain was isolated. This strain was taxonomically characterized as Streptomyces rochei F20, and the chemical structure of the bioactive product extracted from its fermentation broth was determined to be a mixture of streptothricins. From a genomic library of the producer strain prepared in the heterologous host Streptomyces lividans, a 7.2-kb DNA fragment which conferred resistance to the antibiotic was isolated. DNA sequencing of 5.2 kb from the cloned fragment revealed five open reading frames (ORFs) such that ORF1, -2, -3, and -4 were transcribed in the same direction while ORF5 was convergently arranged. The deduced product of ORF1 strongly resembled those of genes involved in peptide formation by a nonribosomal mechanism; the ORF2 product strongly resembled that of mphA and mphB isolated from Escherichia coli, which determines resistance to several macrolides by a macrolide 2'-phosphotransferase activity; the ORF3 product had similarities with several hydrolases; and the ORF5 product strongly resembled streptothricin acetyltransferases from different gram-positive and gram-negative bacteria. ORF5 was shown to be responsible for acetyl coenzyme A-dependent streptothricin acetylation. No similarities in the databases for the ORF4 product were found. Unlike other peptide synthases, that for streptothricin biosynthesis was arranged as a multienzymatic system rather than a multifunctional protein. Insertional inactivation of ORF1 and ORF2 (and to a lesser degree, of ORF3) abolishes antibiotic biosynthesis, suggesting their involvement in the streptothricin biosynthetic pathway. PMID:9371436

  17. Enthalpy of formation of anisole: implications for the controversy on the O-H bond dissociation enthalpy in phenol.

    PubMed

    Simões, Ricardo G; Agapito, Filipe; Diogo, Hermínio P; da Piedade, Manuel E Minas

    2014-11-20

    Significant discrepancies in the literature data for the enthalpy of formation of gaseous anisole, ΔfHmo(PhOCH3, g), have fueled an ongoing controversy regarding the most reliable enthalpy of formation of the phenoxy radical and of the gas phase O-H bond dissociation enthalpy, DHo(PhO-H), in phenol. In the present work ΔfHmo(PhOCH3, g) was reassessed using a combination of calorimetric determinations and high-level (W2-F12) ab initio calculations. Static-bomb combustion calorimetry led to the standard molar enthalpy of formation of liquid anisole at 298.15 K, ΔfHmo(PhOCH3, l) = −(117.1 ± 1.4) kJ·mol(-1). The corresponding enthalpy of vaporization was obtained as, ΔvapHmo(PhOCH3) = 46.41 ± 0.26 kJ·mol(-1), by Calvet-drop microcalorimetry. These results give ΔfHmo(PhOCH3, g) = −(70.7 ± 1.4) kJ·mol(-1), in excellent agreement with ΔfHmo(PhOCH3, g) = −(70.8 ± 3.2) kJ·mol(-1), obtained from the W2-F12 calculations. The ΔfHmo(PhOCH3, g) here recommended leads to ΔfHmo(PhO•, g) = 55.5 ± 2.4 kJ·mol(-)1 and DH°(PhO-H) = 368.1 ± 2.6 kJ·mol(-1).

  18. From Molecules to Surfaces: Radical-Based Mechanisms of Si-S and Si-Se Bond Formation on Silicon.

    PubMed

    Buriak, Jillian M; Sikder, Md Delwar H

    2015-08-01

    The derivatization of silicon surfaces can have profound effects on the underlying electronic properties of the semiconductor. In this work, we investigate the radical surface chemistry of silicon with a range of organochalcogenide reagents (comprising S and Se) on a hydride-terminated silicon surface, to cleanly and efficiently produce surface Si-S and Si-Se bonds, at ambient temperature. Using a diazonium-based radical initiator, which induces formation of surface silicon radicals, a group of organochalcogenides were screened for reactivity at room temperature, including di-n-butyl disulfide, diphenyl disulfide, diphenyl diselenide, di-n-butyl sulfide, diphenyl selenide, diphenyl sulfide, 1-octadecanethiol, t-butyl disulfide, and t-butylthiol, which comprises the disulfide, diselenide, thiol, and thioether functionalities. The surface reactions were monitored by transmission mode Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy, and time-of-flight secondary ionization mass spectrometry. Calculation of Si-Hx consumption, a semiquantitative measure of yield of production of surface-bound Si-E bonds (E = S, Se), was carried out via FTIR spectroscopy. Control experiments, sans the BBD diazonium radical initiator, were all negative for any evident incorporation, as determined by FTIR spectroscopy. The functional groups that did react with surface silicon radicals included the dialkyl/diphenyl disulfides, diphenyl diselenide, and 1-octadecanethiol, but not t-butylthiol, diphenyl sulfide/selenide, and di-n-butyl sulfide. Through a comparison with the rich body of literature regarding molecular radicals, and in particular, silyl radicals, reaction mechanisms were proposed for each. Armed with an understanding of the reaction mechanisms, much of the known chemistry within the extensive body of radical-based reactivity has the potential to be harnessed on silicon and could be extended to a range of technologically relevant semiconductor

  19. Structures, bond energies, heats of formation, and quantitative bonding analysis of main-group metallocenes [E(Cp)2] (E = Be-Ba, Zn, Si-Pb) and [E(Cp)] (E = Li-Cs, B-Tl).

    PubMed

    Rayón, Víctor M; Frenking, Gernot

    2002-10-18

    The geometries, metal-ligand bond dissociation energies, and heats of formation of twenty sandwich and half-sandwich complexes of the main-group elements of Groups 1, 2, 13, and 14, and Zn have been calculated with quantum chemical methods. The geometries of the [E(Cp)] and [E(Cp)2] complexes were optimized using density functional theory at the BP86 level with valence basis sets, which have DZP and TZP quality. Improved energy values have been obtained by using coupled-cluster theory at the CCSD(T) level. The nature of the metal-ligand bonding has been analyzed with an energy-partitioning method. The results give quantitative information about the strength of the covalent and electrostatic interactions between En+ and (Cp-)n (n = 1, 2). The contributions of the orbitals with different symmetry to the covalent bonding are also given.

  20. Controlling the Formation of Ionic-Liquid-based Aqueous Biphasic Systems by Changing the Hydrogen-Bonding Ability of Polyethylene Glycol End Groups.

    PubMed

    Pereira, Jorge F B; Kurnia, Kiki A; Freire, Mara G; Coutinho, João A P; Rogers, Robin D

    2015-07-20

    The formation of aqueous biphasic systems (ABS) when mixing aqueous solutions of polyethylene glycol (PEG) and an ionic liquid (IL) can be controlled by modifying the hydrogen-bond-donating/-accepting ability of the polymer end groups. It is shown that the miscibility/immiscibility in these systems stems from both the solvation of the ether groups in the oxygen chain and the ability of the PEG terminal groups to preferably hydrogen bond with water or the anion of the salt. The removal of even one hydrogen bond in PEG can noticeably affect the phase behavior, especially in the region of the phase diagram in which all the ethylene oxide (EO) units of the polymeric chain are completely solvated. In this region, removing or weakening the hydrogen-bond-donating ability of PEG results in greater immiscibility, and thus, in a higher ability to form ABS, as a result of the much weaker interactions between the IL anion and the PEG end groups.

  1. Identification of Possible Pathways for C-C Bond Formation during Electrochemical Reduction of CO2: New Theoretical Insights from an Improved Electrochemical Model.

    PubMed

    Goodpaster, Jason D; Bell, Alexis T; Head-Gordon, Martin

    2016-04-21

    We have carried out a periodic Kohn-Sham density functional theory investigation of the pathways by which carbon-carbon bonds could be formed during the electrochemical reduction of CO2 on Cu(100) using a model that includes the effects of the electrochemical potential, solvent, and electrolyte. The electrochemical potential was set by relating the applied potential to the Fermi energy and then calculating the number of electrons required by the simulation cell for that specific Fermi energy. The solvent was included as a continuum dielectric, and the electrolyte was described using a linearized Poisson-Boltzmann model. The calculated potential of zero charge for a variety of surfaces agrees with experiment to within a mean average error of 0.09 V, thereby validating the assumptions of the model. Analysis of the mechanism for C-C bond formation revealed that at low-applied potential, C-C bond formation occurs through a CO dimer. However, at high applied potentials, a large activation barrier blocks this pathway; therefore, C-C bond formation occurs through reaction of adsorbed CHO and CO. Rate parameters determined from our calculations were used to simulate the kinetics of ethene formation during the electrochemical reduction of CO over a Cu(100) surface. An excellent match was observed between previously reported measurements of the partial current for ethene formation as a function of applied voltage and the variation in the partial current for C-C bond formation predicted by our microkinetic model. The electrochemical model reported here is simple, fairly easy to implement, and involves only a small increase in computational cost over calculations neglecting the effects of the electrolyte and the applied field. Therefore, it can be used to study the effects of applied potential and electrolyte composition on the energetics of surface reactions for a wide variety of electrochemical reactions.

  2. Formation of an ordered phase by ceramides and diacylglycerols in a fluid phosphatidylcholine bilayer--Correlation with structure and hydrogen bonding capacity.

    PubMed

    Ekman, Peik; Maula, Terhi; Yamaguchi, Shou; Yamamoto, Tetsuya; Nyholm, Thomas K M; Katsumura, Shigeo; Slotte, J Peter

    2015-10-01

    Ceramides and diacylglycerols are lipids with a large hydrophobic part (acyl chains and long-chain base) whereas their polar function (hydroxyl group) is small. They need colipids with large head groups to coexist in bilayer membranes. In this study, we have determined how saturated and unsaturated ceramides and acyl-chain matched diacylglycerols form ordered domains in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayers as a function of bilayer concentration. The formation of ordered domains was determined from lifetime analysis of trans-parinaric acid. Ceramides formed ordered domains with equal average tPA lifetime at lower bilayer concentration when compared to acyl-chain matched diacylglycerols. This was true for both saturated (16:0) and mono-unsaturated (18:1) species. This finding suggested that hydrogen bonding among ceramides contributed to their more efficient ordered phase formation, since diacylglycerols do not form similar hydrogen bonding networks. The role of hydrogen bonding in ordered domain formation was further verified by using palmitoyl ceramide analogs with 2N and 3OH methylated long-chain bases. These analogs do not form hydrogen bonds from the 2NH or the 3OH, respectively. While methylation of the 3OH did not affect ordered phase formation compared to native palmitoyl ceramide, 2NH methylation markedly attenuated ceramide ordered phase formation. We conclude that in addition to acyl chain length, saturation, molecular order, and lack of large head group, also hydrogen bonding involving the 2NH is crucial for efficient formation of ceramide-rich domains in fluid phosphatidylcholine bilayers.

  3. Identification of Possible Pathways for C-C Bond Formation during Electrochemical Reduction of CO2: New Theoretical Insights from an Improved Electrochemical Model.

    PubMed

    Goodpaster, Jason D; Bell, Alexis T; Head-Gordon, Martin

    2016-04-21

    We have carried out a periodic Kohn-Sham density functional theory investigation of the pathways by which carbon-carbon bonds could be formed during the electrochemical reduction of CO2 on Cu(100) using a model that includes the effects of the electrochemical potential, solvent, and electrolyte. The electrochemical potential was set by relating the applied potential to the Fermi energy and then calculating the number of electrons required by the simulation cell for that specific Fermi energy. The solvent was included as a continuum dielectric, and the electrolyte was described using a linearized Poisson-Boltzmann model. The calculated potential of zero charge for a variety of surfaces agrees with experiment to within a mean average error of 0.09 V, thereby validating the assumptions of the model. Analysis of the mechanism for C-C bond formation revealed that at low-applied potential, C-C bond formation occurs through a CO dimer. However, at high applied potentials, a large activation barrier blocks this pathway; therefore, C-C bond formation occurs through reaction of adsorbed CHO and CO. Rate parameters determined from our calculations were used to simulate the kinetics of ethene formation during the electrochemical reduction of CO over a Cu(100) surface. An excellent match was observed between previously reported measurements of the partial current for ethene formation as a function of applied voltage and the variation in the partial current for C-C bond formation predicted by our microkinetic model. The electrochemical model reported here is simple, fairly easy to implement, and involves only a small increase in computational cost over calculations neglecting the effects of the electrolyte and the applied field. Therefore, it can be used to study the effects of applied potential and electrolyte composition on the energetics of surface reactions for a wide variety of electrochemical reactions. PMID:27045040

  4. Metal-free nitro-carbocyclization of activated alkenes: a direct approach to synthesize oxindoles by cascade C-N and C-C bond formation.

    PubMed

    Shen, Tao; Yuan, Yizhi; Jiao, Ning

    2014-01-18

    A novel and direct metal-free nitro-carbocyclization of activated alkenes leading to valuable nitro-containing oxindoles via cascade C-N and C-C bond formation has been developed. The mechanistic study indicates that the initial NO and NO2 radical addition and the following C-H functionalization processes are involved in this transformation.

  5. Transition Metal Free Intermolecular Direct Oxidative C-N Bond Formation to Polysubstituted Pyrimidines Using Molecular Oxygen as the Sole Oxidant.

    PubMed

    Guo, Wei; Li, Chunsheng; Liao, Jianhua; Ji, Fanghua; Liu, Dongqing; Wu, Wanqing; Jiang, Huanfeng

    2016-07-01

    Various polysubstituted pyrimidines are smoothly formed via a base-promoted intermolecular oxidation C-N bond formation of allylic C(sp(3))-H and vinylic C(sp(2))-H of allyllic compounds with amidines using O2 as the sole oxidant. This protocol features protecting group free nitrogen sources, good functional group tolerance, high atom economy, and environmental advantages.

  6. Possible evidence of amide bond formation between sinapinic acid and lysine-containing bacterial proteins by matrix-assisted laser desorption/ionization (MALDI) at 355 nm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We previously reported the apparent formation of matrix adducts of 3,5-dimethoxy-4-hydroxy-cinnamic acid (sinapinic acid or SA) via covalent attachment to disulfide bond-containing proteins (HdeA, HdeB and YbgS) from bacterial cell lysates ionized by matrix-assisted laser desorption/ionization (MALD...

  7. Consecutive condensation, C-N and N-N bond formations: a copper- catalyzed one-pot three-component synthesis of 2H-indazole.

    PubMed

    Kumar, Manian Rajesh; Park, Ahbyeol; Park, Namjin; Lee, Sunwoo

    2011-07-01

    2H-Indazoles are synthesized using copper-catalyzed, one-pot, three-component reactions of 2-bromobenzaldehydes, primary amines, and sodium azide. A copper catalyst plays the key role in the formation of C-N and N-N bonds. This method has a broad substrate scope with a high tolerance for a variety of functional groups. PMID:21644532

  8. Chemically fixed p-n heterojunctions for polymer electronics by means of covalent B-F bond formation

    NASA Astrophysics Data System (ADS)

    Hoven, Corey V.; Wang, Huiping; Elbing, Mark; Garner, Logan; Winkelhaus, Daniel; Bazan, Guillermo C.

    2010-03-01

    Widely used solid-state devices fabricated with inorganic semiconductors, including light-emitting diodes and solar cells, derive much of their function from the p-n junction. Such junctions lead to diode characteristics and are attained when p-doped and n-doped materials come into contact with each other. Achieving bilayer p-n junctions with semiconducting polymers has been hindered by difficulties in the deposition of thin films with independent p-doped and n-doped layers. Here we report on how to achieve permanently fixed organic p-n heterojunctions by using a cationic conjugated polyelectrolyte with fluoride counteranions and an underlayer composed of a neutral conjugated polymer bearing anion-trapping functional groups. Application of a bias leads to charge injection and fluoride migration into the neutral layer, where irreversible covalent bond formation takes place. After the initial charging and doping, one obtains devices with no delay in the turn on of light-emitting electrochemical behaviour and excellent current rectification. Such devices highlight how mobile ions in organic media can open opportunities to realize device structures in ways that do not have analogies in the world of silicon and promise new opportunities for integrating organic materials within technologies now dominated by inorganic semiconductors.

  9. Deciphering the genetic basis of Moraxella catarrhalis complement resistance: a critical role for the disulphide bond formation system.

    PubMed

    de Vries, Stefan P W; Rademakers, Rob J A; van der Gaast-de Jongh, Christa E; Eleveld, Marc J; Hermans, Peter W M; Bootsma, Hester J

    2014-02-01

    The complement system is an important innate defence mechanism, and the ability to resist complement-mediated killing is considered a key virulence trait of the respiratory tract pathogen M. catarrhalis. We studied the molecular basis of complement resistance by transcriptional profiling and Tn-seq, a genome-wide negative-selection screenings technology. Exposure of M. catarrhalis to human serum resulted in increased expression of 84 genes and reduced expression of 134 genes, among which genes encoding ABC transporter systems and surface proteins UspA1 and McaP. By subjecting a ∼ 15 800 transposon mutant library to serum, mutants of 53 genes were negatively selected, including the key complement-resistance factor uspA2H. Validation with directed mutants confirmed Tn-seq phenotypes of uspA2H and 11 newly identified genes, with mutants of MCR_0424, olpA, MCR_1483, and dsbB most severely attenuated. Detailed analysis showed that both components of the disulphide bond formation (DSB) system, DsbB and DsbA, were required for complement-resistance in multiple isolates, and fulfil a critical role in evasion of IgG-dependent classical pathway-mediated killing. Lipooligosaccharide (LOS) structure and membrane stability were severely affected in ΔdsbA strains, suggesting a pivotal role for the DSB system in LOS structure safeguarding and membrane stability maintenance.

  10. On-Surface Synthesis of Two-Dimensional Covalent Organic Structures versus Halogen-Bonded Self-Assembly: Competing Formation of Organic Nanoarchitectures.

    PubMed

    Peyrot, David; Silly, Fabien

    2016-05-24

    The competition between the on-surface synthesis of covalent nanoarchitectures and the self-assembly of star-shaped 1,3,5-Tris(4-iodophenyl)benzene molecules on Au(111) in vacuum is investigated using scanning tunneling microscopy above room temperature. The molecules form covalent polygonal nanoachitectures at the gold surface step edges and at the elbows of the gold reconstruction at low coverage. With coverage increasing two-dimensional halogen-bonded structures appear and grow on the surface terraces. Two different halogen-bonded nanoarchitectures are coexisting on the surface and hybrid covalent-halogen bonded structures are locally observed. At high coverage covalent nanoarchitectures are squeezed at the domain boundary of the halogen-bonded structures. The competitive growth between the covalent and halogen-bonded nanoarchitectures leads to formation of a two-layer film above one monolayer deposition. For this coverage, the covalent nanoarchitectures are propelled on top of the halogen-bonded first layer. These observations open up new opportunities for decoupling covalent nanoarchitectures from catalytically active and metal surfaces in vacuum. PMID:27158901

  11. On-Surface Synthesis of Two-Dimensional Covalent Organic Structures versus Halogen-Bonded Self-Assembly: Competing Formation of Organic Nanoarchitectures.

    PubMed

    Peyrot, David; Silly, Fabien

    2016-05-24

    The competition between the on-surface synthesis of covalent nanoarchitectures and the self-assembly of star-shaped 1,3,5-Tris(4-iodophenyl)benzene molecules on Au(111) in vacuum is investigated using scanning tunneling microscopy above room temperature. The molecules form covalent polygonal nanoachitectures at the gold surface step edges and at the elbows of the gold reconstruction at low coverage. With coverage increasing two-dimensional halogen-bonded structures appear and grow on the surface terraces. Two different halogen-bonded nanoarchitectures are coexisting on the surface and hybrid covalent-halogen bonded structures are locally observed. At high coverage covalent nanoarchitectures are squeezed at the domain boundary of the halogen-bonded structures. The competitive growth between the covalent and halogen-bonded nanoarchitectures leads to formation of a two-layer film above one monolayer deposition. For this coverage, the covalent nanoarchitectures are propelled on top of the halogen-bonded first layer. These observations open up new opportunities for decoupling covalent nanoarchitectures from catalytically active and metal surfaces in vacuum.

  12. Formation of As-As Interlayer Bonding in the collapsed tetragonal phase of NaFe2As2 under pressure

    PubMed Central

    Stavrou, Elissaios; Chen, Xiao-Jia; Oganov, Artem R.; Wang, A. F.; Yan, Y. J.; Luo, X. G.; Chen, X. H.; Goncharov, Alexander F.

    2015-01-01

    NaFe2As2 is investigated experimentally using powder x-ray diffraction and Raman spectroscopy at pressures up to 23 GPa at room temperature and using ab-initio calculations. The results reveal a pressure-induced structural modification at 4 GPa from the starting tetragonal to a collapsed tetragonal phase. We determined the changes in interatomic distances under pressure that allowed us to connect the structural changes and superconductivity. The transition is related to the formation of interlayer As-As bonds at the expense of weakening of Fe-As bonds in agreement with recent theoretical predictions. PMID:26014105

  13. Density functional study of hydrogen bond formation between methanol and organic molecules containing Cl, F, NH2, OH, and COOH functional groups.

    PubMed

    Kolev, Stefan K; St Petkov, Petko; Rangelov, Miroslav A; Vayssilov, Georgi N

    2011-12-01

    Various hydrogen-bonded complexes of methanol with different proton accepting and proton donating molecules containing Cl, F, NH(2), OH, OR, and COOH functional groups have been modeled using DFT with hybrid B3LYP and M05-2X functionals. The latter functional was found to provide more accurate estimates of the structural and thermodynamic parameters of the complexes of halides, amines, and alcohols. The characteristics of these complexes are influenced not only by the principle hydrogen bond of the methanol OH with the proton acceptor heteroatom, but also by additional hydrogen bonds of a C-H moiety with methanol oxygen as a proton acceptor. The contribution of the former hydrogen bond in the total binding enthalpy increases in the order chlorides < fluorides < alcohols < amines, while the contribution of the second type of hydrogen bond increases in the reverse order. A general correlation was found between the binding enthalpy of the complex and the electrostatic potential at the hydrogen center participating in the formation of the hydrogen bond. The calculated binding enthalpies of different complexes were used to clarify which functional groups can potentially form a hydrogen bond to the 2'-OH hydroxyl group in ribose, which is strong enough to block it from participation in the intramolecular catalytic activation of the peptide bond synthesis. Such blocking could result in inhibition of the protein biosynthesis in the living cell if the corresponding group is delivered as a part of a drug molecule in the vicinity of the active site in the ribosome. According to our results, such activity can be accomplished by secondary or tertiary amines, alkoxy groups, deprotonated carboxyl groups, and aliphatic fluorides, but not by the other modeled functional groups. PMID:21992409

  14. Formation of the Si-B bond: insertion reactions of silylenes into B-X(X = F, Cl, Br, O, and N) bonds.

    PubMed

    Geng, Bing; Xu, Chongjuan; Chen, Zhonghe

    2016-06-01

    The insertion reactions of the silylene H2Si with H2BXHn-1 (X = F, Cl, Br, O, N; n = 1, 1, 1, 2, 3) have been studied by DFT and MP2 methods. The calculations show that the insertions occur in a concerted manner, forming H2Si(BH2)(XHn-1). The essences of H2Si insertions with H2BXHn-1 are the transfers of the σ electrons on the Si atom to the positive BH2 group and the electrons of X into the empty p orbital on the Si atom in H2Si. The order of reactivity in vacuum shows the barrier heights increase for the same-family element X from up to down and the same-row element X from right to left in the periodic table. The energies relating to the B-X bond in H2BXHn-1, and the bond energies of Si-X and Si-B in H2Si(BH2)(XHn-1) may determine the preference of insertions of H2Si into B-X bonds for the same-column element X or for the same-row element X. The insertion reactions in vacuum are similar to those in solvents, acetone, ether, and THF. The barriers in vacuum are lower than those in solvents and the larger polarities of solvents make the insertions more difficult to take place. Both in vacuum and in solvents, the silylene insertions are thermodynamically exothermic. Graphical Abstract The insertion process of H2Si and H2BXHn-1(X = F, Cl, Br, O, and N; n = 1, 1 , 1, 2, 3). PMID:27184004

  15. Formation of the Si-B bond: insertion reactions of silylenes into B-X(X = F, Cl, Br, O, and N) bonds.

    PubMed

    Geng, Bing; Xu, Chongjuan; Chen, Zhonghe

    2016-06-01

    The insertion reactions of the silylene H2Si with H2BXHn-1 (X = F, Cl, Br, O, N; n = 1, 1, 1, 2, 3) have been studied by DFT and MP2 methods. The calculations show that the insertions occur in a concerted manner, forming H2Si(BH2)(XHn-1). The essences of H2Si insertions with H2BXHn-1 are the transfers of the σ electrons on the Si atom to the positive BH2 group and the electrons of X into the empty p orbital on the Si atom in H2Si. The order of reactivity in vacuum shows the barrier heights increase for the same-family element X from up to down and the same-row element X from right to left in the periodic table. The energies relating to the B-X bond in H2BXHn-1, and the bond energies of Si-X and Si-B in H2Si(BH2)(XHn-1) may determine the preference of insertions of H2Si into B-X bonds for the same-column element X or for the same-row element X. The insertion reactions in vacuum are similar to those in solvents, acetone, ether, and THF. The barriers in vacuum are lower than those in solvents and the larger polarities of solvents make the insertions more difficult to take place. Both in vacuum and in solvents, the silylene insertions are thermodynamically exothermic. Graphical Abstract The insertion process of H2Si and H2BXHn-1(X = F, Cl, Br, O, and N; n = 1, 1 , 1, 2, 3).

  16. The Kringle-like Domain Facilitates Post-endoplasmic Reticulum Changes to Premelanosome Protein (PMEL) Oligomerization and Disulfide Bond Configuration and Promotes Amyloid Formation.

    PubMed

    Ho, Tina; Watt, Brenda; Spruce, Lynn A; Seeholzer, Steven H; Marks, Michael S

    2016-02-12

    The formation of functional amyloid must be carefully regulated to prevent the accumulation of potentially toxic products. Premelanosome protein (PMEL) forms non-toxic functional amyloid fibrils that assemble into sheets upon which melanins ultimately are deposited within the melanosomes of pigment cells. PMEL is synthesized in the endoplasmic reticulum but forms amyloid only within post-Golgi melanosome precursors; thus, PMEL must traverse the secretory pathway in a non-amyloid form. Here, we identified two pre-amyloid PMEL intermediates that likely regulate the timing of fibril formation. Analyses by non-reducing SDS-PAGE, size exclusion chromatography, and sedimentation velocity revealed two native high Mr disulfide-bonded species that contain Golgi-modified forms of PMEL. These species correspond to disulfide bond-containing dimeric and monomeric PMEL isoforms that contain no other proteins as judged by two-dimensional PAGE of metabolically labeled/immunoprecipitated PMEL and by mass spectrometry of affinity-purified complexes. Metabolic pulse-chase analyses, small molecule inhibitor treatments, and evaluation of site-directed mutants suggest that the PMEL dimer forms around the time of endoplasmic reticulum exit and is resolved by disulfide bond rearrangement into a monomeric form within the late Golgi or a post-Golgi compartment. Mutagenesis of individual cysteine residues within the non-amyloid cysteine-rich Kringle-like domain stabilizes the disulfide-bonded dimer and impairs fibril formation as determined by electron microscopy. Our data show that the Kringle-like domain facilitates the resolution of disulfide-bonded PMEL dimers and promotes PMEL functional amyloid formation, thereby suggesting that PMEL dimers must be resolved to monomers to generate functional amyloid fibrils. PMID:26694611

  17. Ester-Mediated Amide Bond Formation Driven by Wet-Dry Cycles: A Possible Path to Polypeptides on the Prebiotic Earth.

    PubMed

    Forsythe, Jay G; Yu, Sheng-Sheng; Mamajanov, Irena; Grover, Martha A; Krishnamurthy, Ramanarayanan; Fernández, Facundo M; Hud, Nicholas V

    2015-08-17

    Although it is generally accepted that amino acids were present on the prebiotic Earth, the mechanism by which α-amino acids were condensed into polypeptides before the emergence of enzymes remains unsolved. Here, we demonstrate a prebiotically plausible mechanism for peptide (amide) bond formation that is enabled by α-hydroxy acids, which were likely present along with amino acids on the early Earth. Together, α-hydroxy acids and α-amino acids form depsipeptides-oligomers with a combination of ester and amide linkages-in model prebiotic reactions that are driven by wet-cool/dry-hot cycles. Through a combination of ester-amide bond exchange and ester bond hydrolysis, depsipeptides are enriched with amino acids over time. These results support a long-standing hypothesis that peptides might have arisen from ester-based precursors.

  18. Ester-Mediated Amide Bond Formation Driven by Wet-Dry Cycles: A Possible Path to Polypeptides on the Prebiotic Earth.

    PubMed

    Forsythe, Jay G; Yu, Sheng-Sheng; Mamajanov, Irena; Grover, Martha A; Krishnamurthy, Ramanarayanan; Fernández, Facundo M; Hud, Nicholas V

    2015-08-17

    Although it is generally accepted that amino acids were present on the prebiotic Earth, the mechanism by which α-amino acids were condensed into polypeptides before the emergence of enzymes remains unsolved. Here, we demonstrate a prebiotically plausible mechanism for peptide (amide) bond formation that is enabled by α-hydroxy acids, which were likely present along with amino acids on the early Earth. Together, α-hydroxy acids and α-amino acids form depsipeptides-oligomers with a combination of ester and amide linkages-in model prebiotic reactions that are driven by wet-cool/dry-hot cycles. Through a combination of ester-amide bond exchange and ester bond hydrolysis, depsipeptides are enriched with amino acids over time. These results support a long-standing hypothesis that peptides might have arisen from ester-based precursors. PMID:26201989

  19. Peptide bonds affect the formation of haloacetamides, an emerging class of N-DBPs in drinking water: free amino acids versus oligopeptides

    PubMed Central

    Chu, Wenhai; Li, Xin; Gao, Naiyun; Deng, Yang; Yin, Daqiang; Li, Dongmei; Chu, Tengfei

    2015-01-01

    Haloacetamides (HAcAms), an emerging class of nitrogenous disinfection by-products (N-DBPs) of health concern, have been frequently identified in drinking waters. It has long been appreciated that free amino acids (AAs), accounting for a small fraction of the dissolved organic nitrogen (DON) pool, can form dichloroacetamide (DCAcAm) during chlorination. However, the information regarding the impacts of combined AAs, which contribute to the greatest identifiable DON portion in natural waters, is limited. In this study, we compared the formation of HAcAms from free AAs (tyrosine [Tyr] and alanine [Ala]) and combined AAs (Tyr-Ala, Ala-Tyr, Tyr-Tyr-Tyr, Ala-Ala-Ala), and found that HAcAm formation from the chlorination of AAs in combined forms (oligopeptides) significantly exhibited a different pattern with HAcAm formation from free AAs. Due to the presence of peptide bonds in tripeptides, Tyr-Tyr-Tyr and Ala-Ala-Ala produced trichloroacetamide (TCAcAm) in which free AAs was unable to form TCAcAm during chlorination. Moreover, peptide bond in tripeptides formed more tri-HAcAms than di-HAcAms in the presence of bromide. Therefore, the peptide bond may be an important indicator to predict the formation of specific N-DBPs in chlorination. The increased use of algal- and wastewater-impacted water as drinking water sources will increase health concerns over exposure to HAcAms in drinking water. PMID:26394759

  20. Peptide bonds affect the formation of haloacetamides, an emerging class of N-DBPs in drinking water: free amino acids versus oligopeptides.

    PubMed

    Chu, Wenhai; Li, Xin; Gao, Naiyun; Deng, Yang; Yin, Daqiang; Li, Dongmei; Chu, Tengfei

    2015-09-23

    Haloacetamides (HAcAms), an emerging class of nitrogenous disinfection by-products (N-DBPs) of health concern, have been frequently identified in drinking waters. It has long been appreciated that free amino acids (AAs), accounting for a small fraction of the dissolved organic nitrogen (DON) pool, can form dichloroacetamide (DCAcAm) during chlorination. However, the information regarding the impacts of combined AAs, which contribute to the greatest identifiable DON portion in natural waters, is limited. In this study, we compared the formation of HAcAms from free AAs (tyrosine [Tyr] and alanine [Ala]) and combined AAs (Tyr-Ala, Ala-Tyr, Tyr-Tyr-Tyr, Ala-Ala-Ala), and found that HAcAm formation from the chlorination of AAs in combined forms (oligopeptides) significantly exhibited a different pattern with HAcAm formation from free AAs. Due to the presence of peptide bonds in tripeptides, Tyr-Tyr-Tyr and Ala-Ala-Ala produced trichloroacetamide (TCAcAm) in which free AAs was unable to form TCAcAm during chlorination. Moreover, peptide bond in tripeptides formed more tri-HAcAms than di-HAcAms in the presence of bromide. Therefore, the peptide bond may be an important indicator to predict the formation of specific N-DBPs in chlorination. The increased use of algal- and wastewater-impacted water as drinking water sources will increase health concerns over exposure to HAcAms in drinking water.

  1. Peptide bonds affect the formation of haloacetamides, an emerging class of N-DBPs in drinking water: free amino acids versus oligopeptides

    NASA Astrophysics Data System (ADS)

    Chu, Wenhai; Li, Xin; Gao, Naiyun; Deng, Yang; Yin, Daqiang; Li, Dongmei; Chu, Tengfei

    2015-09-01

    Haloacetamides (HAcAms), an emerging class of nitrogenous disinfection by-products (N-DBPs) of health concern, have been frequently identified in drinking waters. It has long been appreciated that free amino acids (AAs), accounting for a small fraction of the dissolved organic nitrogen (DON) pool, can form dichloroacetamide (DCAcAm) during chlorination. However, the information regarding the impacts of combined AAs, which contribute to the greatest identifiable DON portion in natural waters, is limited. In this study, we compared the formation of HAcAms from free AAs (tyrosine [Tyr] and alanine [Ala]) and combined AAs (Tyr-Ala, Ala-Tyr, Tyr-Tyr-Tyr, Ala-Ala-Ala), and found that HAcAm formation from the chlorination of AAs in combined forms (oligopeptides) significantly exhibited a different pattern with HAcAm formation from free AAs. Due to the presence of peptide bonds in tripeptides, Tyr-Tyr-Tyr and Ala-Ala-Ala produced trichloroacetamide (TCAcAm) in which free AAs was unable to form TCAcAm during chlorination. Moreover, peptide bond in tripeptides formed more tri-HAcAms than di-HAcAms in the presence of bromide. Therefore, the peptide bond may be an important indicator to predict the formation of specific N-DBPs in chlorination. The increased use of algal- and wastewater-impacted water as drinking water sources will increase health concerns over exposure to HAcAms in drinking water.

  2. Peptide bonds affect the formation of haloacetamides, an emerging class of N-DBPs in drinking water: free amino acids versus oligopeptides.

    PubMed

    Chu, Wenhai; Li, Xin; Gao, Naiyun; Deng, Yang; Yin, Daqiang; Li, Dongmei; Chu, Tengfei

    2015-01-01

    Haloacetamides (HAcAms), an emerging class of nitrogenous disinfection by-products (N-DBPs) of health concern, have been frequently identified in drinking waters. It has long been appreciated that free amino acids (AAs), accounting for a small fraction of the dissolved organic nitrogen (DON) pool, can form dichloroacetamide (DCAcAm) during chlorination. However, the information regarding the impacts of combined AAs, which contribute to the greatest identifiable DON portion in natural waters, is limited. In this study, we compared the formation of HAcAms from free AAs (tyrosine [Tyr] and alanine [Ala]) and combined AAs (Tyr-Ala, Ala-Tyr, Tyr-Tyr-Tyr, Ala-Ala-Ala), and found that HAcAm formation from the chlorination of AAs in combined forms (oligopeptides) significantly exhibited a different pattern with HAcAm formation from free AAs. Due to the presence of peptide bonds in tripeptides, Tyr-Tyr-Tyr and Ala-Ala-Ala produced trichloroacetamide (TCAcAm) in which free AAs was unable to form TCAcAm during chlorination. Moreover, peptide bond in tripeptides formed more tri-HAcAms than di-HAcAms in the presence of bromide. Therefore, the peptide bond may be an important indicator to predict the formation of specific N-DBPs in chlorination. The increased use of algal- and wastewater-impacted water as drinking water sources will increase health concerns over exposure to HAcAms in drinking water. PMID:26394759

  3. Formation of Solution-derived Hydroxyapatite Coatings on Titanium Alloy in the Presence of Magnetron-sputtered Alumina Bond Coats

    PubMed Central

    Zykova, Anna; Safonov, Vladimir; Yanovska, Anna; Sukhodub, Leonid; Rogovskaya, Renata; Smolik, Jerzy; Yakovin, Stas

    2015-01-01

    Hydroxyapatite Ca10(PO4)6(OH)2 (HAp) and calcium phosphate ceramic materials and coatings are widely used in medicine and dentistry because of their ability to enhance the tissue response to implant surfaces and promote bone ingrowth and osseoconduction processes. The deposition conditions have a great influence on the structure and biofunctionality of calcium phosphate coatings. Corrosion processes and poor adhesion to substrate material reduce the lifetime of implants with calcium phosphate coatings. The research has focused on the development of advanced methods to deposit double-layered ceramic oxide/calcium phosphate coatings by a hybrid technique of magnetron sputtering and thermal methods. The thermal method can promote the crystallization and the formation of HAp coatings on titanium alloy Ti6Al4V substrates at low temperature, based on the principle that the solubility of HAp in aqueous solutions decreases with increasing substrate temperature. By this method, hydroxyapatite directly coated the substrate without precipitation in the initial solution. Using a thermal substrate method, calcium phosphate coatings were prepared at substrate temperatures of 100-105 oC. The coated metallic implant surfaces with ceramic bond coats and calcium phosphate layers combine the excellent mechanical properties of metals with the chemical stability of ceramic materials. The corrosion test results show that the ceramic oxide (alumina) coatings and the double-layered alumina-calcium phosphate coatings improve the corrosion resistance compared with uncoated Ti6Al4V and single-layered Ti6Al4V/calcium phosphate substrates. In addition, the double-layered alumina/hydroxyapatite coatings demonstrate the best biocompatibility during in vitro tests. PMID:25893018

  4. Isotopic studies of trans- and cis-HOCO using rotational spectroscopy: Formation, chemical bonding, and molecular structures.

    PubMed

    McCarthy, Michael C; Martinez, Oscar; McGuire, Brett A; Crabtree, Kyle N; Martin-Drumel, Marie-Aline; Stanton, John F

    2016-03-28

    HOCO is an important intermediate in combustion and atmospheric processes because the OH + CO → H + CO2 reaction represents the final step for the production of CO2 in hydrocarbon oxidation, and theoretical studies predict that this reaction proceeds via various intermediates, the most important being this radical. Isotopic investigations of trans- and cis-HOCO have been undertaken using Fourier transform microwave spectroscopy and millimeter-wave double resonance techniques in combination with a supersonic molecular beam discharge source to better understand the formation, chemical bonding, and molecular structures of this radical pair. We find that trans-HOCO can be produced almost equally well from either OH + CO or H + CO2 in our discharge source, but cis-HOCO appears to be roughly two times more abundant when starting from H + CO2. Using isotopically labelled precursors, the OH + C(18)O reaction predominately yields HOC(18)O for both isomers, but H(18)OCO is observed as well, typically at the level of 10%-20% that of HOC(18)O; the opposite propensity is found for the (18)OH + CO reaction. DO + C(18)O yields similar ratios between DOC(18)O and D(18)OCO as those found for OH + C(18)O, suggesting that some fraction of HOCO (or DOCO) may be formed from the back-reaction H + CO2, which, at the high pressure of our gas expansion, can readily occur. The large (13)C Fermi-contact term (aF) for trans- and cis-HO(13)CO implicates significant unpaired electronic density in a σ-type orbital at the carbon atom, in good agreement with theoretical predictions. By correcting the experimental rotational constants for zero-point vibration motion calculated theoretically using second-order vibrational perturbation theory, precise geometrical structures have been derived for both isomers.

  5. Isotopic studies of trans- and cis-HOCO using rotational spectroscopy: Formation, chemical bonding, and molecular structures

    NASA Astrophysics Data System (ADS)

    McCarthy, Michael C.; Martinez, Oscar; McGuire, Brett A.; Crabtree, Kyle N.; Martin-Drumel, Marie-Aline; Stanton, John F.

    2016-03-01

    HOCO is an important intermediate in combustion and atmospheric processes because the OH + CO → H + CO2 reaction represents the final step for the production of CO2 in hydrocarbon oxidation, and theoretical studies predict that this reaction proceeds via various intermediates, the most important being this radical. Isotopic investigations of trans- and cis-HOCO have been undertaken using Fourier transform microwave spectroscopy and millimeter-wave double resonance techniques in combination with a supersonic molecular beam discharge source to better understand the formation, chemical bonding, and molecular structures of this radical pair. We find that trans-HOCO can be produced almost equally well from either OH + CO or H + CO2 in our discharge source, but cis-HOCO appears to be roughly two times more abundant when starting from H + CO2. Using isotopically labelled precursors, the OH + C18O reaction predominately yields HOC18O for both isomers, but H18OCO is observed as well, typically at the level of 10%-20% that of HOC18O; the opposite propensity is found for the 18OH + CO reaction. DO + C18O yields similar ratios between DOC18O and D18OCO as those found for OH + C18O, suggesting that some fraction of HOCO (or DOCO) may be formed from the back-reaction H + CO2, which, at the high pressure of our gas expansion, can readily occur. The large 13C Fermi-contact term (aF) for trans- and cis-HO13CO implicates significant unpaired electronic density in a σ-type orbital at the carbon atom, in good agreement with theoretical predictions. By correcting the experimental rotational constants for zero-point vibration motion calculated theoretically using second-order vibrational perturbation theory, precise geometrical structures have been derived for both isomers.

  6. Formation of Solution-derived Hydroxyapatite Coatings on Titanium Alloy in the Presence of Magnetron-sputtered Alumina Bond Coats.

    PubMed

    Zykova, Anna; Safonov, Vladimir; Yanovska, Anna; Sukhodub, Leonid; Rogovskaya, Renata; Smolik, Jerzy; Yakovin, Stas

    2015-01-01

    Hydroxyapatite Ca10(PO4)6(OH)2 (HAp) and calcium phosphate ceramic materials and coatings are widely used in medicine and dentistry because of their ability to enhance the tissue response to implant surfaces and promote bone ingrowth and osseoconduction processes. The deposition conditions have a great influence on the structure and biofunctionality of calcium phosphate coatings. Corrosion processes and poor adhesion to substrate material reduce the lifetime of implants with calcium phosphate coatings. The research has focused on the development of advanced methods to deposit double-layered ceramic oxide/calcium phosphate coatings by a hybrid technique of magnetron sputtering and thermal methods. The thermal method can promote the crystallization and the formation of HAp coatings on titanium alloy Ti6Al4V substrates at low temperature, based on the principle that the solubility of HAp in aqueous solutions decreases with increasing substrate temperature. By this method, hydroxyapatite directly coated the substrate without precipitation in the initial solution. Using a thermal substrate method, calcium phosphate coatings were prepared at substrate temperatures of 100-105 (o)C. The coated metallic implant surfaces with ceramic bond coats and calcium phosphate layers combine the excellent mechanical properties of metals with the chemical stability of ceramic materials. The corrosion test results show that the ceramic oxide (alumina) coatings and the double-layered alumina-calcium phosphate coatings improve the corrosion resistance compared with uncoated Ti6Al4V and single-layered Ti6Al4V/calcium phosphate substrates. In addition, the double-layered alumina/hydroxyapatite coatings demonstrate the best biocompatibility during in vitro tests. PMID:25893018

  7. FipB, an Essential Virulence Factor of Francisella tularensis subsp. tularensis, Has Dual Roles in Disulfide Bond Formation

    PubMed Central

    Qin, Aiping; Zhang, Yan; Clark, Melinda E.; Rabideau, Meaghan M.; Millan Barea, Luis R.

    2014-01-01

    FipB, an essential virulence factor of Francisella tularensis, is a lipoprotein with two conserved domains that have similarity to disulfide bond formation A (DsbA) proteins and the amino-terminal dimerization domain of macrophage infectivity potentiator (Mip) proteins, which are proteins with peptidyl-prolyl cis/trans isomerase activity. This combination of conserved domains is unusual, so we further characterized the enzymatic activity and the importance of the Mip domain and lipid modification in virulence. Unlike typical DsbA proteins, which are oxidases, FipB exhibited both oxidase and isomerase activities. FipA, which also shares similarity with Mip proteins, potentiated the isomerase activity of FipB in an in vitro assay and within the bacteria, as measured by increased copper sensitivity. To determine the importance of the Mip domain and lipid modification of FipB, mutants producing FipB proteins that lacked either the Mip domain or the critical cysteine necessary for lipid modification were constructed. Both strains replicated within host cells and retained virulence in mice, though there was some attenuation. FipB formed surface-exposed dimers that were sensitive to dithiothreitol (DTT), dependent on the Mip domain and on at least one cysteine in the active site of the DsbA-like domain. However, these dimers were not essential for virulence, because the Mip deletion mutant, which failed to form dimers, was still able to replicate intracellularly and retained virulence in mice. Thus, the Mip domains of FipB and FipA impart additional isomerase functionality to FipB, but only the DsbA-like domain and oxidase activity are essential for its critical virulence functions. PMID:25092026

  8. Temperature evolution of structure and bonding of formic acid and formate on fully oxidized and highly reduced CeO2(111)

    SciTech Connect

    Gordon, Wesley O; Xu, Ye; Mullins, David R; Overbury, Steven {Steve} H

    2009-01-01

    Adsorption of formate on oxide surfaces plays a role in water-gas shift (WGS) and other reactions related to H2 production and CO2 utilization. CeO2 is of particular interest because its reducibility affects the redox of organic molecules. In this work, the adsorption and thermal evolution of formic acid and formate on highly ordered films of fully oxidized CeO2(111) and highly reduced CeOx(111) surfaces have been studied using reflection absorption infrared spectroscopy (RAIRS) under ultra-high vacuum conditions, and the experimental results are combined with density functional theory (DFT) calculations to probe the identity, symmetry, and bonding of the surface intermediates. Disordered ice, ordered a-polymorph and molecular formic acid bonded through the carbonyl are observed at low temperatures. By 250 K, desorption and deprotonation lead to formate coexisting with hydroxyl on CeO2(111), identified to be a bridging bidentate formate species that is coordinated to Ce cations in nearly C2v symmetry and interacting strongly with neighboring H. Changes in the spectra at higher temperatures are consistent with additional tilting of the formate, resulting in Cs(2) or lower symmetry. This change in bonding is caused primarily by interaction with oxygen vacancies introduced by water desorption at 300 K. On reduced CeOx, multiple low-symmetry formate states exist likewise due to interactions with oxygen vacancies. Isotopic studies demonstrate that the formyl hydrogen does not contribute to H incorporated in hydroxyl on the surface, and that both formate oxygen atoms may exchange with lattice oxygen at 400 K. The combined experimental and theoretical results thus provide important insights on the surface reaction pathways of formic acid on ceria.

  9. Covalent bonds and their crucial effects on pseudogap formation in α-Al(Mn,Re)Si icosahedral quasicrystalline approximant

    NASA Astrophysics Data System (ADS)

    Kirihara, K.; Nagata, T.; Kimura, K.; Kato, K.; Takata, M.; Nishibori, E.; Sakata, M.

    2003-07-01

    X-ray charge densities of Al-based icosahedral quasicrystalline approximant crystals α-AlReSi, α-AlMnSi, and Al12Re were observed by a combination of the maximum entropy method with the Rietveld method. We successfully obtained the clear images of interatomic covalent bonds between Al and transition metals (Mn, Re) and those in the Al (or Si) icosahedron in Mackay icosahedral clusters of both α-AlReSi and α-AlMnSi approximant crystals. The bonding nature of the three kinds of glue atom sites connecting Mackay icosahedral clusters was also clarified. This covalent bonding nature should strongly relate with the enhancement of the electron density-of-states pseudogap near the Fermi level. In addition, the interatomic covalent bonds of α-AlReSi are stronger than those of α-AlMnSi. This fact leads to the low effective carrier density of α-AlReSi in comparison with that of α-AlMnSi. Unlike the covalent bonding nature of an icosahedron in α-AlReSi and α-AlMnSi crystals, the Al icosahedron with an Re center atom exhibits no Al-Al interatomic covalent bonds in the Al12Re crystal. The tendency for metallic-covalent bonding conversion in the Al icosahedron, which is related to the atom site occupancy of the icosahedral cluster center, is also strongly supported.

  10. Femtosecond X-ray solution scattering reveals that bond formation mechanism of a gold trimer complex is independent of excitation wavelength.

    PubMed

    Kim, Kyung Hwan; Kim, Jong Goo; Oang, Key Young; Kim, Tae Wu; Ki, Hosung; Jo, Junbeom; Kim, Jeongho; Sato, Tokushi; Nozawa, Shunsuke; Adachi, Shin-Ichi; Ihee, Hyotcherl

    2016-07-01

    The [Au(CN)2 (-)]3 trimer in water experiences a strong van der Waals interaction between the d(10) gold atoms due to large relativistic effect and can serve as an excellent model system to study the bond formation process in real time. The trimer in the ground state (S0) exists as a bent structure without the covalent bond between the gold atoms, and upon the laser excitation, one electron in the antibonding orbital goes to the bonding orbital, thereby inducing the formation of a covalent bond between gold atoms. This process has been studied by various time-resolved techniques, and most of the interpretation on the structure and dynamics converge except that the structure of the first intermediate (S1) has been debated due to different interpretations between femtosecond optical spectroscopy and femtosecond X-ray solution scattering. Recently, the excitation wavelength of 267 nm employed in our previous scattering experiment was suggested as the culprit for misinterpretation. Here, we revisited this issue by performing femtosecond X-ray solution scattering with 310 nm excitation and compared the results with our previous study employing 267 nm excitation. The data show that a linear S1 structure is formed within 500 fs regardless of excitation wavelength and the structural dynamics observed at both excitation wavelengths are identical to each other within experimental errors. PMID:27191012

  11. Wide Gap TLP Bonding a Single-Crystal Superalloy: Evolution of the L/S Interface Morphology and Formation of the Isolated Grain Boundaries

    NASA Astrophysics Data System (ADS)

    Sheng, N. C.; Liu, J. D.; Jin, T.; Sun, X. F.; Hu, Z. Q.

    2013-04-01

    The microstructural evolution and bonding behavior of transient liquid phase (TLP) bonded joints for single-crystal superalloy samples with a 300- μm-wide gap have been investigated. The results show that at the initial stage, the interface grows with a cellular structure. With the increase of time, the length and numbers of the cellular structures decrease. At the final stage, the interface evolves with a planar manner. The gradient of B ahead of the liquid/solid interface exists and becomes sharper from the initial to the final analyzed from the electron probe microanalysis (EPMA) results. Inevitably, isolated grain forms during the evolution of the interface and the growth rate of isothermal solidification zone (ISZ) changes through the whole bonding process, and these both deviate from the traditional TLP bonding models. The mechanisms of the formation of the isolated grain boundaries and the reasons for the deviation of the solidification rate are discussed. Also, some effective methods to avoid the formation of isolated grain boundaries in the ISZ are proposed.

  12. Effect of interlayer configurations on joint formation in TLP bonding of Ti-6Al-4V to Mg-AZ31

    NASA Astrophysics Data System (ADS)

    Atieh, A. M.; Khan, T. I.

    2014-06-01

    In this research work, the transient liquid phase (TLP) bonding process was utilized to fabricate joints using thin (20μm) nickel and copper foils placed between two bonding surfaces to help facilitate joint formation. Two joint configurations were investigated, first, Ti-6Al-4V/CuNi/Mg-AZ31 and second, Ti-6Al-4V/NiCu/Mg-AZ3L The effect of bonding time on microstructural developments across the joint and the changes in mechanical properties were studied as a function of bonding temperature and pressure. The bonded specimens were examined by metallographic analysis, scanning electron microscopy (SEM), and X-ray diffraction (XRD). In both cases, intermetallic phase of CuMg2 and Mg3AlNi2 was observed inside the joint region. The results show that joint shear strengths for the Ti-6Al-4V/CuNi/Mg-AZ31 setup produce joints with shear strength of 57 MPa compared to 27MPa for joints made using the Ti-6Al-4V/NiCu/Mg-AZ31 layer arrangement.

  13. An approach to benzophosphole oxides through silver- or manganese-mediated dehydrogenative annulation involving C-C and C-P bond formation.

    PubMed

    Unoh, Yuto; Hirano, Koji; Satoh, Tetsuya; Miura, Masahiro

    2013-12-01

    Benzophosphole construction was achieved through the Ag(I) -mediated dehydrogenative annulation of phenylphosphine oxides with internal alkynes in a process involving CC and CP bond formation. A wide range of asymmetrical phenylacetylenes could be employed and the reactions proceeded with perfect regioselectivity. Moreover, the annulation could be conducted even at room temperature when a Mn(III) promoter was used in place of Ag(I) . PMID:24127410

  14. A Macroscopic Reaction: Direct Covalent Bond Formation between Materials Using a Suzuki-Miyaura Cross-Coupling Reaction

    PubMed Central

    Sekine, Tomoko; Kakuta, Takahiro; Nakamura, Takashi; Kobayashi, Yuichiro; Takashima, Yoshinori; Harada, Akira

    2014-01-01

    Cross-coupling reactions are important to form C–C covalent bonds using metal catalysts. Although many different cross-coupling reactions have been developed and applied to synthesize complex molecules or polymers (macromolecules), if cross-coupling reactions are realized in the macroscopic real world, the scope of materials should be dramatically broadened. Here, Suzuki-Miyaura coupling reactions are realized between macroscopic objects. When acrylamide gel modified with an iodophenyl group (I-gel) reacts with a gel possessing a phenylboronic group (PB-gel) using a palladium catalyst, the gels bond to form a single object. This concept can also be adapted for bonding between soft and hard materials. I-gel or PB-gel selectively bonds to the glass substrates whose surfaces are modified with an electrophile or nucleophile, respectively. PMID:25231557

  15. Possible Evidence of Amide Bond Formation Between Sinapinic Acid and Lysine-Containing Bacterial Proteins by Matrix-Assisted Laser Desorption/Ionization (MALDI) at 355 nm

    NASA Astrophysics Data System (ADS)

    Fagerquist, Clifton K.; Sultan, Omar; Carter, Michelle Q.

    2012-12-01

    We previously reported the apparent formation of matrix adducts of 3,5-dimethoxy-4-hydroxy-cinnamic acid (sinapinic acid or SA) via covalent attachment to disulfide bond-containing proteins (HdeA, Hde, and YbgS) from bacterial cell lysates ionized by matrix-assisted laser desorption/ionization (MALDI) time-of-flight-time-of-flight tandem mass spectrometry (TOF-TOF-MS/MS) and post-source decay (PSD). We also reported the absence of adduct formation when using α-cyano-4-hydroxycinnamic acid (CHCA) matrix. Further mass spectrometric analysis of disulfide-intact and disulfide-reduced over-expressed HdeA and HdeB proteins from lysates of gene-inserted E. coli plasmids suggests covalent attachment of SA occurs not at cysteine residues but at lysine residues. In this revised hypothesis, the attachment of SA is preceded by formation of a solid phase ammonium carboxylate salt between SA and accessible lysine residues of the protein during sample preparation under acidic conditions. Laser irradiation at 355 nm of the dried sample spot results in equilibrium retrogradation followed by nucleophilic attack by the amine group of lysine at the carbonyl group of SA and subsequent amide bond formation and loss of water. The absence of CHCA adducts suggests that the electron-withdrawing effect of the α-cyano group of this matrix may inhibit salt formation and/or amide bond formation. This revised hypothesis is supported by dissociative loss of SA (-224 Da) and the amide-bound SA (-206 Da) from SA-adducted HdeA and HdeB ions by MS/MS (PSD). It is proposed that cleavage of the amide-bound SA from the lysine side-chain occurs via rearrangement involving a pentacyclic transition state followed by hydrogen abstraction/migration and loss of 3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-ynal (-206 Da).

  16. Cp*Rh(III)-Catalyzed Cross-Coupling of Alkyltrifluoroborate with α-Diazomalonates for C(sp(3))-C(sp(3)) Bond Formation.

    PubMed

    Lu, Yin-Suo; Yu, Wing-Yiu

    2016-03-18

    A Cp*Rh(III)-catalyzed cross-coupling of alkyltrifluoroborate with α-diazomalonates was developed; the C(sp(3))-C(sp(3)) bond coupled products were formed in up to 97% yields. The reaction tolerates some useful functional groups, including ketone, ester, amide, ether, sulfonyl, and thiophene. Electrospray ionization mass spectrometry (ESI-MS) analysis revealed the formation of a distinct molecular species corresponding to σ-alkylrhodium(III) complexes. The successful diazo coupling reaction may be attributed to coordination of the amide group that promotes stability of the alkylrhodium(III) complex through the formation of a five-membered metallacycle. PMID:26926387

  17. Covalent assembly of mouse immunoglobulin G subclasses in vitro: application of a theoretical model for interchain disulfide bond formation.

    PubMed

    Percy, M E; Baumal, R; Dorrington, K J; Percy, J R

    1976-08-01

    The pathways and kinetics of interchain disulfide bond formation have been determined in vitro for purified myeloma proteins representing the three major subclasses of mouse immunoglobulin G(IgG) using the reoxidation system described previously (Petersen, J.G.L. & Dorrington, K.J. (1974) J. Biol. Chem. 249, 5633-5641). Mixtures of oxidized and reduced glutathione were added to act as a disulfide interchange catalyst. The pathways of covalent assembly observed in vitro were qualitatively and quantitatively similar to those followed by the various subclasses in vivo. HH and HHL were the principle covalent intermediates seen with IgG1 (MOPC 31C) and IgG2a (MOPC 173 and clone 19). With IgG2b( MPC 11C), HL, HH and HHL were all prominant intermediates. The time courses of reoxidation were simulated using a theoretical model based on second-order reaction kinetics (Percy, J.R., Percy, M.E. & Dorrington, K.J. (1974) J. Biol. Chem. 250, 2398-2400). Two distinct phases were apparent in the reoxidation sequence. The first, which lasted for the initial 5-15 min, did not confirm to the theoretical model. The second phase could be accounted for by the model and represented the remainder of the covalent assembly process. The physico-chemical basis for this biphasic phenomenon was explored. Sedimentation velocity studies showed that noncovalent association was incomplete at the beginning of the reoxidation step for all proteins except IgG2b (MOPC 11C). No dissociation was apparent in the reduced and alkylated proteins at pH 5 in the absence of prior exposure to acid conditions. Thus, exposure to acid appears to affect the affinity between the subunits in the native proteins. Transfer of the proteins from pH 5 to pH 8.2 (the pH at which reoxidation proceeds) is accompanied by the generation of an absorption difference spectrum over an 8-10 min period. These data suggest that a pH-dependent conformational relaxation process may influence the early stages of reoxidation. PMID:953849

  18. Identification and cloning of an NADPH-dependent hydroxycinnamoyl-CoA double bond reductase involved in dihydrochalcone formation in Malus×domestica Borkh.

    PubMed

    Ibdah, Mwafaq; Berim, Anna; Martens, Stefan; Valderrama, Andrea Lorena Herrera; Palmieri, Luisa; Lewinsohn, Efraim; Gang, David R

    2014-11-01

    The apple tree (Malus sp.) is an agriculturally and economically important source of food and beverages. Many of the health beneficial properties of apples are due to (poly)phenolic metabolites that they contain, including various dihydrochalcones. Although many of the genes and enzymes involved in polyphenol biosynthesis are known in many plant species, the specific reactions that lead to the biosynthesis of the dihydrochalcone precursor, p-dihydrocoumaroyl-CoA (3), are unknown. To identify genes involved in the synthesis of these metabolites, existing genome databases of the Rosaceae were screened for apple genes with significant sequence similarity to Arabidopsis alkenal double bond reductases. Herein described are the isolation and characterization of a Malus hydroxycinnamoyl-CoA double bond reductase, which catalyzed the NADPH-dependent reduction of p-coumaroyl-CoA and feruloyl-CoA to p-dihydrocoumaroyl-CoA and dihydroferuloyl-CoA, respectively. Its apparent Km values for p-coumaroyl-CoA, feruloyl-CoA and NADPH were 96.6, 92.9 and 101.3μM, respectively. The Malus double bond reductase preferred feruloyl-CoA to p-coumaroyl-CoA as a substrate by a factor of 2.1 when comparing catalytic efficiencies in vitro. Expression analysis of the hydroxycinnamoyl-CoA double bond reductase gene revealed that its transcript levels showed significant variation in tissues of different developmental stages, but was expressed when expected for involvement in dihydrochalcone formation. Thus, the hydroxycinnamoyl-CoA double bond reductase appears to be responsible for the reduction of the α,β-unsaturated double bond of p-coumaroyl-CoA, the first step of dihydrochalcone biosynthesis in apple tissues, and may be involved in the production of these compounds.

  19. Characteristics of hydrogen bond formation between sugar and polymer in freeze-dried mixtures under different rehumidification conditions and its impact on the glass transition temperature.

    PubMed

    Imamura, Koreyoshi; Asano, Yoko; Maruyama, Yoshinobu; Yokoyama, Tohru; Nomura, Mayo; Ogawa, Seiji; Nakanishi, Kazuhiro

    2008-03-01

    The characteristics of hydrogen bond formation between trehalose and polyvinylpyrrolidone (PVP) in amorphous mixtures at different hydration states were quantitatively investigated. Amorphous trehalose-PVP mixtures were prepared by freeze-drying and equilibrated at different relative humidities (RH). Infrared (IR) spectra of the trehalose-PVP mixtures were obtained by Fourier transform IR spectroscopy,(FTIR) and the IR band corresponding to C=O groups of PVP was deconvolved into the component bands responsible for C=O groups that were free and restricted by hydrogen bonds, to estimate the degree of the trehalose-PVP interactions. The FTIR analysis indicated that approximately 80% of the C=O groups of PVP formed hydrogen bonds with trehalose in the presence of more than 3 g of trehalose per gramme of PVP, independent of the RH. IR analysis of the O--H stretching vibration of the sugar demonstrated that the presence of PVP lead to an increase in the free hydroxyl groups of trehalose that did not form hydrogen bonds at RH 0%. On the other hand, the water sorption behavior of the trehalose-PVP mixtures suggested that rehumidification diminished the effect of PVP on increasing the free OH groups. Thus a peculiar relationship may exist between Tg, RH and the composition of the mixture: The presence of PVP increased Tg at RHs 0 and above 23% but decreased Tg at 11%.

  20. Density functional theory calculations on oxidative C-C bond cleavage and N-O bond formation of [Ru(II)(bpy)2(diamine)](2+) via reactive ruthenium imide intermediates.

    PubMed

    Guan, Xiangguo; Law, Siu-Man; Tse, Chun-Wai; Huang, Jie-Sheng; Che, Chi-Ming

    2014-11-10

    DFT calculations are performed on [Ru(II)(bpy)2(tmen)](2+) (M1, tmen = 2,3-dimethyl-2,3-butanediamine) and [Ru(II)(bpy)2(heda)](2+) (M2, head = 2,5-dimethyl-2,5-hexanediamine), and on the oxidation reactions of M1 to give the C-C bond cleavage product [Ru(II)(bpy)2(NH=CMe2)2](2+) (M3) and the N-O bond formation product [Ru(II)(bpy)2(ONCMe2CMe2NO)](2+) (M4). The calculated geometrical parameters and oxidation potentials are in good agreement with the experimental data. As revealed by the DFT calculations, [Ru(II)(bpy)2(tmen)](2+) (M1) can undergo oxidative deprotonation to generate Ru-bis(imide) [Ru(bpy)2(tmen-4 H)](+) (A) or Ru-imide/amide [Ru(bpy)2(tmen-3 H)](2+) (A') intermediates. Both A and A' are prone to C-C bond cleavage, with low reaction barriers (ΔG(≠)) of 6.8 and 2.9 kcal mol(-1) for their doublet spin states (2)A and (2)A', respectively. The calculated reaction barrier for the nucleophilic attack of water molecules on (2)A' is relatively high (14.2 kcal mol(-1)). These calculation results are in agreement with the formation of the Ru(II)-bis(imine) complex M3 from the electrochemical oxidation of M1 in aqueous solution. The oxidation of M1 with Ce(IV) in aqueous solution to afford the Ru(II)-dinitrosoalkane complex M4 is proposed to proceed by attack of the cerium oxidant on the ruthenium imide intermediate. The findings of ESI-MS experiments are consistent with the generation of a ruthenium imide intermediate in the course of the oxidation.

  1. Density functional theory study of oxygen-atom insertion into metal-methyl bonds of iron(II), ruthenium(II), and osmium(II) complexes: study of metal-mediated C-O bond formation.

    PubMed

    Pardue, Daniel B; Mei, Jiajun; Cundari, Thomas R; Gunnoe, T Brent

    2014-03-17

    Metal-mediated C-O bond formation is a key step in hydrocarbon oxygenation catalytic cycles; however, few examples of this reaction have been reported for low-oxidation-state complexes. Oxygen insertion into a metal-carbon bond of Cp*M(CO)(OPy)R (Cp* = η(5)-pentamethylcyclopentadienyl; R = Me, Ph; OPy = pyridine-N-oxide; M = Fe, Ru, Os) was analyzed via density functional theory calculations. Oxygen-atom insertions through a concerted single-step organometallic Baeyer-Villiger pathway and a two-step pathway via a metal-oxo intermediate were studied; calculations predict that the former pathway was lower in energy. The results indicated that functionalization of M-R to M-OR (R = Me, Ph) is plausible using iron(II) complexes. Starting from Cp*Fe(CO)(OPy)Ph, the intermediate Fe-oxo showed oxyl character and, thus, is best considered an Fe(III)O(•-) complex. Oxidation of the π-acid ancillary ligand CO was facile. Substitutions of CO with dimethylamide and NH3 were calculated to lower the activation barrier by ∼1-2 kcal/mol for formation of the Fe(III)O(•-) intermediate, whereas a chloride ligand raised the activation barrier to 26 kcal/mol from 22.9 kcal/mol. PMID:24571202

  2. Origin of the synchronicity in bond formation in polar Diels-Alder reactions: an ELF analysis of the reaction between cyclopentadiene and tetracyanoethylene.

    PubMed

    Domingo, Luis R; Pérez, Patricia; Sáez, Jose A

    2012-05-21

    The origin of the synchronicity in C-C bond formation in polar Diels-Alder (P-DA) reactions involving symmetrically substituted electrophilic ethylenes has been studied by an ELF analysis of the electron reorganization along the P-DA reaction of cyclopentadiene (Cp) with tetracyanoethylene (TCE) at the B3LYP/6-31G* level. The present study makes it possible to establish that the synchronicity in C-C bond formation in P-DA reactions is controlled by the symmetric distribution of the electron-density excess reached in the electrophile through the charge transfer process, which can be anticipated by an analysis of the spin electron-density at the corresponding radical anion. The ELF comparative analysis of bonding along the DA reactions of Cp with ethylene and with TCE asserts that these DA reactions, which have a symmetric electron reorganization, do not have a cyclic electron reorganization as the pericyclic mechanism states. Due to the very limited number of cases of symmetrically substituted ethylenes, we can conclude that the synchronous mechanism is an exception of DA reactions. PMID:22527420

  3. Origin of the synchronicity in bond formation in polar Diels-Alder reactions: an ELF analysis of the reaction between cyclopentadiene and tetracyanoethylene.

    PubMed

    Domingo, Luis R; Pérez, Patricia; Sáez, Jose A

    2012-05-21

    The origin of the synchronicity in C-C bond formation in polar Diels-Alder (P-DA) reactions involving symmetrically substituted electrophilic ethylenes has been studied by an ELF analysis of the electron reorganization along the P-DA reaction of cyclopentadiene (Cp) with tetracyanoethylene (TCE) at the B3LYP/6-31G* level. The present study makes it possible to establish that the synchronicity in C-C bond formation in P-DA reactions is controlled by the symmetric distribution of the electron-density excess reached in the electrophile through the charge transfer process, which can be anticipated by an analysis of the spin electron-density at the corresponding radical anion. The ELF comparative analysis of bonding along the DA reactions of Cp with ethylene and with TCE asserts that these DA reactions, which have a symmetric electron reorganization, do not have a cyclic electron reorganization as the pericyclic mechanism states. Due to the very limited number of cases of symmetrically substituted ethylenes, we can conclude that the synchronous mechanism is an exception of DA reactions.

  4. Un-catalyzed peptide bond formation between two monomers of glycine, alanine, serine, threonine, and aspartic acid in gas phase: a density functional theory study

    NASA Astrophysics Data System (ADS)

    Bhunia, Snehasis; Singh, Ajeet; Ojha, Animesh K.

    2016-05-01

    In the present report, un-catalyzed peptide bond formation between two monomers of glycine (Gly), alanine (Ala), serine (Ser), threonine (Thr), and aspartic acid (Asp) has been investigated in gas phase via two steps reaction mechanism and concerted mechanism at B3LYP/6-31G(d,p) and M062X/6-31G(d,p) level of theories. The peptide bond is formed through a nucleophilic reaction via transition states, TS1 and TS2 in stepwise mechanism. The TS1 reveals formation of a new C-N bond while TS2 illustrate the formation of C=O bond. In case of concerted mechanism, C-N bond is formed by a single four-centre transition state (TS3). The energy barrier is used to explain the involvement of energy at each step of the reaction. The energy barrier (20-48 kcal/mol) is required for the transformation of reactant state R1 to TS1 state and intermediate state I1 to TS2 state. The large value of energy barrier is explained in terms of distortion and interaction energies for stepwise mechanism. The energy barrier of TS3 in concerted mechanism is very close to the energy barrier of the first transition state (TS1) of the stepwise mechanism for the formation of Gly-Gly and Ala-Ala di- peptide. However, in case of Ser-Ser, Thr-Thr and Asp-Asp di-peptide, the energy barrier of TS3 is relatively high than that of the energy barrier of TS1 calculated at B3LYP/6-31G(d,p) and M062X/6-31G(d,p) level of theories. In both the mechanisms, the value of energy barrier calculated at B3LYP/6-31G(d,p) level of theory is greater than that of the value calculated at M062X/6-31G(d,p) level of theory.

  5. N-cyanoimidazole and diimidazole imine: water-soluble condensing agents for the formation of the phosphodiester bond

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Huang, C. H.; Hagan, W. J. Jr

    1989-01-01

    The reaction of BrCN with imidazole results in the formation of N-cyanoimidazole and diimidazole imine. These compounds were shown to be useful condensing agents for the formation of the phosphodiester bound in aqueous solution.

  6. Molecular chirality and chiral capsule-type dimer formation of cyclic triamides via hydrogen-bonding interactions.

    PubMed

    Fujimoto, Noriko; Matsumura, Mio; Azumaya, Isao; Nishiyama, Shizuka; Masu, Hyuma; Kagechika, Hiroyuki; Tanatani, Aya

    2012-05-18

    Chiral properties of bowl-shaped cyclic triamides bearing functional groups with hydrogen-bonding ability were examined. Chiral induction of cyclic triamide 3a was observed by addition of chiral amine in solution, and chiral separation was achieved by simple crystallization to afford chiral capsule-type dimer structure of 4a.

  7. Formation and reshuffling of disulfide bonds in bovine serum albumin demonstrated using tandem mass spectrometry with collision-induced and electron-transfer dissociation.

    PubMed

    Rombouts, Ine; Lagrain, Bert; Scherf, Katharina A; Lambrecht, Marlies A; Koehler, Peter; Delcour, Jan A

    2015-01-01

    Thermolysin hydrolyzates of freshly isolated, extensively stored (6 years, 6 °C, dry) and heated (60 min, 90 °C, in excess water) bovine serum albumin (BSA) samples were analyzed with liquid chromatography (LC) electrospray ionization (ESI) tandem mass spectrometry (MS/MS) using alternating electron-transfer dissociation (ETD) and collision-induced dissociation (CID). The positions of disulfide bonds and free thiol groups in the different samples were compared to those deduced from the crystal structure of native BSA. Results revealed non-enzymatic posttranslational modifications of cysteine during isolation, extensive dry storage, and heating. Heat-induced extractability loss of BSA was linked to the impact of protein unfolding on the involvement of specific cysteine residues in intermolecular and intramolecular thiol-disulfide interchange and thiol oxidation reactions. The here developed approach holds promise for exploring disulfide bond formation and reshuffling in various proteins under conditions relevant for chemical, biochemical, pharmaceutical and food processing. PMID:26193081

  8. Formation and reshuffling of disulfide bonds in bovine serum albumin demonstrated using tandem mass spectrometry with collision-induced and electron-transfer dissociation.

    PubMed

    Rombouts, Ine; Lagrain, Bert; Scherf, Katharina A; Lambrecht, Marlies A; Koehler, Peter; Delcour, Jan A

    2015-07-20

    Thermolysin hydrolyzates of freshly isolated, extensively stored (6 years, 6 °C, dry) and heated (60 min, 90 °C, in excess water) bovine serum albumin (BSA) samples were analyzed with liquid chromatography (LC) electrospray ionization (ESI) tandem mass spectrometry (MS/MS) using alternating electron-transfer dissociation (ETD) and collision-induced dissociation (CID). The positions of disulfide bonds and free thiol groups in the different samples were compared to those deduced from the crystal structure of native BSA. Results revealed non-enzymatic posttranslational modifications of cysteine during isolation, extensive dry storage, and heating. Heat-induced extractability loss of BSA was linked to the impact of protein unfolding on the involvement of specific cysteine residues in intermolecular and intramolecular thiol-disulfide interchange and thiol oxidation reactions. The here developed approach holds promise for exploring disulfide bond formation and reshuffling in various proteins under conditions relevant for chemical, biochemical, pharmaceutical and food processing.

  9. Transmembrane Domain Interactions and Residue Proline 378 Are Essential for Proper Structure, Especially Disulfide Bond Formation, in the Human Vitamin K-Dependent γ-Glutamyl Carboxylase†

    PubMed Central

    Tie, Jian-Ke; Zheng, Mei-Yan; Hsiao, Kuang-Ling N.; Perera, Lalith; Stafford, Darrel W.; Straight, David L.

    2009-01-01

    We used recombinant techniques to create a two-chain form (residues 1–345 and residues 346–758) of the vitamin K-dependent γ-glutamyl carboxylase, a glycoprotein located in the endoplasmic reticulum containing five transmembrane domains. The two-chain carboxylase had carboxylase and epoxidase activities similar to those of one-chain carboxylase. In addition, it had normal affinity for the propeptide of factor IX. We employed this molecule to investigate formation of the one disulfide bond in carboxylase, the transmembrane structure of carboxylase, and the potential interactions among the carboxylase’s transmembrane domains. Our results indicate that the two peptides of the two-chain carboxylase are joined by a disulfide bond. Proline 378 is important for the structure necessary for disulfide formation. Results with the P378L carboxylase indicate that noncovalent bonds maintain the two-chain structure even when the disulfide bond is disrupted. As we had previously proposed, the fifth transmembrane domain of carboxylase is the last and only transmembrane domain in the C-terminal peptide of the two-chain carboxylase. We show that the noncovalent association between the two chains of carboxylase involves an interaction between the fifth transmembrane domain and the second transmembrane domain. Results of a homology model of transmembrane domains 2 and 5 suggest that not only do these two domains associate but that transmembrane domain 2 may interact with another transmembrane domain. This latter interaction may be mediated at least in part by a motif of glycine residues in the second transmembrane domain. PMID:18498174

  10. Supramolecular chemistry of halogens: complementary features of inorganic (M-X) and organic (C-X') halogens applied to M-X...X'-C halogen bond formation.

    PubMed

    Zordan, Fiorenzo; Brammer, Lee; Sherwood, Paul

    2005-04-27

    Electronic differences between inorganic (M-X) and organic (C-X) halogens in conjunction with the anisotropic charge distribution associated with terminal halogens have been exploited in supramolecular synthesis based upon intermolecular M-X...X'-C halogen bonds. The synthesis and crystal structures of a family of compounds trans-[MCl(2)(NC(5)H(4)X-3)(2)] (M = Pd(II), Pt(II); X = F, Cl, Br, I; NC(5)H(4)X-3 = 3-halopyridine) are reported. With the exception of the fluoropyridine compounds, network structures propagated by M-Cl...X-C halogen bonds are adopted and involve all M-Cl and all C-X groups. M-Cl...X-C interactions show Cl...X separations shorter than van der Waals values, shorter distances being observed for heavier halogens (X). Geometries with near linear Cl...X-C angles (155-172 degrees ) and markedly bent M-Cl...X angles (92-137 degrees ) are consistently observed. DFT calculations on the model dimers {trans-[MCl(2)(NH(3))(NC(5)H(4)X-3)]}(2) show association through M-Cl...X-C (X not equal F) interactions with geometries similar to experimental values. DFT calculations of the electrostatic potential distributions for the compounds trans-[PdCl(2)(NC(5)H(4)X-3)(2)] (X = F, Cl, Br, I) demonstrate the effectiveness of the strategy to activate C-X groups toward halogen bond formation by enhancing their electrophilicity, and explain the absence of M-Cl...F-C interactions. The M-Cl...X-C halogen bonds described here can be viewed unambiguously as nucleophile-electrophile interactions that involve an attractive electrostatic contribution. This contrasts with some types of halogen-halogen interactions previously described and suggests that M-Cl...X-C halogen bonds could provide a valuable new synthon for supramolecular chemists.

  11. A novel C-C single bond formation by use of ketones, alkylmagnesium bromide, and low-valent vanadium in the presence of a catalytic amount of molecular oxygen

    SciTech Connect

    Kataoka, Yasutaka; Akiyama, Hiroaki; Makihira, Isamu; Tani, Kazuhide

    1996-09-06

    Reductive coupling of ketones mediated by MeMgBr, vanadium, and O{sub 2} is described. Multiple examples of this reaction are discussed. Both a C-C bond formation product and an alcohol product are formed.

  12. The Radical S-Adenosyl-l-methionine Enzyme QhpD Catalyzes Sequential Formation of Intra-protein Sulfur-to-Methylene Carbon Thioether Bonds*

    PubMed Central

    Nakai, Tadashi; Ito, Hiroto; Kobayashi, Kazuo; Takahashi, Yasuhiro; Hori, Hiroshi; Tsubaki, Motonari; Tanizawa, Katsuyuki; Okajima, Toshihide

    2015-01-01

    The bacterial enzyme designated QhpD belongs to the radical S-adenosyl-l-methionine (SAM) superfamily of enzymes and participates in the post-translational processing of quinohemoprotein amine dehydrogenase. QhpD is essential for the formation of intra-protein thioether bonds within the small subunit (maturated QhpC) of quinohemoprotein amine dehydrogenase. We overproduced QhpD from Paracoccus denitrificans as a stable complex with its substrate QhpC, carrying the 28-residue leader peptide that is essential for the complex formation. Absorption and electron paramagnetic resonance spectra together with the analyses of iron and sulfur contents suggested the presence of multiple (likely three) [4Fe-4S] clusters in the purified and reconstituted QhpD. In the presence of a reducing agent (sodium dithionite), QhpD catalyzed the multiple-turnover reaction of reductive cleavage of SAM into methionine and 5′-deoxyadenosine and also the single-turnover reaction of intra-protein sulfur-to-methylene carbon thioether bond formation in QhpC bound to QhpD, producing a multiknotted structure of the polypeptide chain. Homology modeling and mutagenic analysis revealed several conserved residues indispensable for both in vivo and in vitro activities of QhpD. Our findings uncover another challenging reaction catalyzed by a radical SAM enzyme acting on a ribosomally translated protein substrate. PMID:25778402

  13. Free-Radical Triggered Ordered Domino Reaction: An Approach to C-C Bond Formation via Selective Functionalization of α-Hydroxyl-(sp(3))C-H in Fluorinated Alcohols.

    PubMed

    Xu, Zhengbao; Hang, Zhaojia; Liu, Zhong-Quan

    2016-09-16

    A free-radical mediated highly ordered radical addition/cyclization/(sp(3))C-C(sp(3)) formation domino reaction is developed. Three new C-C bonds are formed one by one in a mixed system. Furthermore, it represents the first example of cascade C-C bond formation via selective functionalization of α-hydroxyl-C(sp(3))-H in fluorinated alcohols.

  14. Formation of an Intramolecular Periplasmic Disulfide Bond in TcpP Protects TcpP and TcpH from Degradation in Vibrio cholerae

    PubMed Central

    Morgan, Sarah J.; French, Emily L.; Thomson, Joshua J.; Seaborn, Craig P.; Shively, Christian A.

    2015-01-01

    ABSTRACT TcpP and ToxR coordinately regulate transcription of toxT, the master regulator of numerous virulence factors in Vibrio cholerae. TcpP and ToxR are membrane-localized transcription factors, each with a periplasmic domain containing two cysteines. In ToxR, these cysteines form an intramolecular disulfide bond and a cysteine-to-serine substitution affects activity. We determined that the two periplasmic cysteines of TcpP also form an intramolecular disulfide bond. Disruption of this intramolecular disulfide bond by mutation of either cysteine resulted in formation of intermolecular disulfide bonds. Furthermore, disruption of the intramolecular disulfide bond in TcpP decreased the stability of TcpP. While the decreased stability of TcpP-C207S resulted in a nearly complete loss of toxT activation and cholera toxin (CT) production, the second cysteine mutant, TcpP-C218S, was partially resistant to proteolytic degradation and maintained ∼50% toxT activation capacity. TcpP-C218S was also TcpH independent, since deletion of tcpH did not affect the stability of TcpP-C218S, whereas wild-type TcpP was degraded in the absence of TcpH. Finally, TcpH was also unstable when intramolecular disulfides could not be formed in TcpP, suggesting that the single periplasmic cysteine in TcpH may assist with disulfide bond formation in TcpP by interacting with the periplasmic cysteines of TcpP. Consistent with this finding, a TcpH-C114S mutant was unable to stabilize TcpP and was itself unstable. Our findings demonstrate a periplasmic disulfide bond in TcpP is critical for TcpP stability and virulence gene expression. IMPORTANCE The Vibrio cholerae transcription factor TcpP, in conjunction with ToxR, regulates transcription of toxT, the master regulator of numerous virulence factors in Vibrio cholerae. TcpP is a membrane-localized transcription factor with a periplasmic domain containing two cysteines. We determined that the two periplasmic cysteines of TcpP form an

  15. The Stereoselective Formation of Bicyclic Enamines with Bridgehead Unsaturation via Tandem C-H Bond Activation/Alkenylation/Electrocyclization

    SciTech Connect

    Ellman, Jonathan A.; Yotphan, Sirilata; Bergman, Robert

    2007-12-10

    Rhodium-catalyzed intermolecular C-H activation of {alpha}, {beta}-unsaturated imines in the presence of alkynes leads to a tandem process in which coupling to the alkyne occurs at the {beta}-C-H bond of the imine, followed by electrocyclization of the resulting azatriene intermediates to give dihydropyridines (eq 1). Consideration of the intramolecular version of this overall transformation (Scheme 1) raises interesting regiochemical issues. For example in a compound such as 1, where the nitrogen and alkyne are connected by a 4-carbon tether, the presumed first-formed hydrido(vinyl)rhodium function can add to the triple bond in a 1,2-fashion, producing complex 2 with a new endocyclic double bond. Alternatively, addition might occur in a 2,1-fashion, leading to product 4 with an exocyclic double bond. We now wish to report that this intramolecular cyclization occurs smoothly at 100 C, and the exocyclic double bond route is exclusively followed. Remarkably, products such as 4 do not resist further cyclization. Even though both the transition state for this process and the resulting product are presumably strained, the overall transformation leads to good yields of unusual bridgehead doubly-bonded enamines such as 5. The unique chemistry of conjugated enamine 5 is consistent with the increased strain of this molecule as well as with inhibited conjugation between the nitrogen lone pair and the adjacent double bond (vida infra). We began our investigation into the C-H activation/cyclization of alkyne-tethered imine 1 by extensive screening of transition metal catalysts for this process. Rhodium-based catalysts were found to be the most efficient (Table 1), leading exclusively to the bridgehead dienamine; none of the catalysts that were employed in the screening led to quinolizidine 3 or to the product of intramolecular Diels-Alder reaction. The optimized reaction conditions employ the electron-rich monophosphine ligand (p-NMe{sub 2})PhPEt{sub 2} in 1:1 ratio relative

  16. When friendship formation goes down the toilet: design features of shared accommodation influence interpersonal bonds and well-being.

    PubMed

    Easterbrook, Matthew J; Vignoles, Vivian L

    2015-03-01

    Despite its omnipresence, the influence of the built environment on human psychology is not well understood. In a five-wave longitudinal study, we investigated whether physical design features within shared student accommodation predicted the frequency of coincidental meetings between new flatmates, and whether these meetings predicted the strength of their interpersonal bonds and psychological well-being. Multilevel latent growth modelling on responses from 462 new university residents supported our hypotheses: Respondents living in flats with design features that encouraged the use of communal areas--a shared common area and an absence of ensuite toilets--reported unintentionally meeting their flatmates more frequently within their flats. This in turn predicted the initial strength of their interpersonal bonds with their flatmates, which in turn positively predicted their well-being. These effects were maintained throughout the 10-week study. Our findings provide an empirical basis for the development of shared housing designed to foster positive relationships and well-being among residents.

  17. Reactivity of damaged pyrimidines: formation of a Schiff base intermediate at the glycosidic bond of saturated dihydrouridine.

    PubMed

    Jian, Yajun; Lin, Gengjie; Chomicz, Lidia; Li, Lei

    2015-03-11

    DNA glycosylases catalyze the first step of the base excision repair (BER) pathway. The chemistry used by these enzymes for deglycosylation has been largely considered as the chemistry of the oxocarbenium ion, e.g., direct rupture of the C1'-N1 bond resulting in an oxocarbenium ion intermediate. Here we present mechanistic studies revealing the 2'-deoxyribose isomerization and subsequent deglycosylation processes in two pyrimidine lesions: 5,6-dihydro-2'-deoxyuridine (dHdU) and 5,6-dihydrothymidine (dHT), formed via ionizing radiation damage to 2'-deoxycytidine and thymidine, respectively, under anoxic conditions. Acid or heat treatment of these two lesions leads to the production of two pairs of C1' epimers containing a pyranose and a furanose, respectively, indicating that both lesions favor the rupture of the C1'-O4' bond, resulting in a Schiff base intermediate at the N-glycosidic bond. Such a Schiff base intermediate was trapped and characterized by either Pd-catalyzed hydrogenation or thiol-mediated addition reaction. In contrast, in undamaged 2'-deoxyuridine and thymidine, reactions at elevated temperatures lead to the release of nucleobases most likely via the traditional oxocarbenium ion pathway. DFT calculations further support the experimental findings, suggesting that the oxocarbenium ion intermediate is responsible for the deglycosylation process if the integrity of the pyrimidine ring is maintained, while the Schiff base intermediate is preferred if the C5═C6 bond is saturated. Currently, the oxocarbenium ion pathway is indicated to be solely responsible for the deglycosylation in BER enzymes, however our results suggest an alternative Schiff base mechanism which may be responsible for the repair of saturated pyrimidine damages.

  18. Hydrogen bonding of the dissociated histidine ligand is not required for formation of a proximal NO adduct in cytochrome c'.

    PubMed

    Ghafoor, Dlzar D; Kekilli, Demet; Abdullah, Gaylany H; Dworkowski, Florian S N; Hassan, Hamid G; Wilson, Michael T; Strange, Richard W; Hough, Michael A

    2015-09-01

    Cytochromes c', that occur in methanotrophic, denitrifying and photosynthetic bacteria, form unusual proximal penta-coordinate NO complexes via a hexa-coordinate distal NO intermediate. Their NO binding properties are similar to those of the eukaryotic NO sensor, soluble guanylate cyclase, for which they provide a valuable structural model. Previous studies suggested that hydrogen bonding between the displaced proximal histidine (His120) ligand (following its dissociation from heme due to trans effects from the distally bound NO) and a conserved aspartate residue (Asp121) could play a key role in allowing proximal NO binding to occur. We have characterized three variants of Alcaligenes xylosoxidans cytochrome c' (AXCP) where Asp121 has been replaced by Ala, Ile and Gln, respectively. In all variants, hydrogen bonding between residue 121 and His120 is abolished yet 5-coordinate proximal NO species are still formed. Our data therefore demonstrate that the His120-Asp121 bond is not essential for proximal NO binding although it likely provides an energy minimum for the displaced His ligand. All variants have altered proximal pocket structure relative to native AXCP.

  19. Copper-Catalyzed Phosphonation-Annulation Approaches to the Synthesis of β-Phosphonotetrahydrofurans Involving C-P and C-O Bonds Formation.

    PubMed

    Gao, Yuzhen; Li, Xueqin; Chen, Weizhu; Tang, Guo; Zhao, Yufen

    2015-11-20

    Substituted tetrahydrofuran derivatives play important roles as biological activities. A versatile method for the synthesis of β-phosphonotetrahydrofurans has been developed based on Cu-catalyzed difunctionalization of alkenes. This transformation would provide a new pathway for the formation of Csp(3)-P and Csp(3)-O bonds in one step. Furthermore, this copper catalyst system can be used in the synthesis of β-phosphonotetrahydropyrans and phosphono-γ-butyrolactones. These reactions were also performed well by using 3 equiv of Mn(OAc)3·2H2O as the oxidant without copper catalyst. PMID:26523923

  20. Calmodulin Methionine Residues are Targets For One-Electron Oxidation by Hydroxyl Radicals: Formation of S therefore N three-electron bonded Radical Complexes

    SciTech Connect

    Nauser, Thomas; Jacoby, Michael E.; Koppenol, Willem H.; Squier, Thomas C.; Schoneich, Christian

    2005-02-01

    The one-electron (1e) oxidation of organic sulfides and methionine (Met) constitutes an important reaction mechanism in vivo.1,2 Evidence for a Cu(II)-catalyzed oxidation of Met35 in the Alzheimer's disease -amyloid peptide was obtained,3 and, based on theoretical studies, Met radical cations were proposed as intermediates.4 In the structure of -amyloid peptide, the formation of Met radical cations appears to be facilitated by a preexisting close sulfur-oxygen (S-O) interaction between the Met35 sulfur and the carbonyl oxygen of the peptide bond C-terminal to Ile31.5 Substitution of Ile31 with Pro31 abolishes this S-O interaction,5 significantly reducing the ability of -amyloid to reduce Cu(II), and converts the neurotoxic wild-type -amyloid into a non-toxic peptide.6 The preexisting S-O bond characterized for wild-type -amyloid suggests that electron transfer from Met35 to Cu(II) is supported through stabilization of the Met radical cation by the electron-rich carbonyl oxygen, generating an SO-bonded7 sulfide radical cation (Scheme 1, reaction 1).5

  1. Two Pairs of Conserved Cysteines Are Required for the Oxidative Activity of Ero1p in Protein Disulfide Bond Formation in the Endoplasmic Reticulum

    PubMed Central

    Frand, Alison R.; Kaiser, Chris A.

    2000-01-01

    In the major pathway for protein disulfide-bond formation in the endoplasmic reticulum (ER), oxidizing equivalents flow from the conserved ER-membrane protein Ero1p to secretory proteins via protein disulfide isomerase (PDI). Herein, a mutational analysis of the yeast ERO1 gene identifies two pairs of conserved cysteines likely to form redox-active disulfide bonds in Ero1p. Cys100, Cys105, Cys352, and Cys355 of Ero1p are important for oxidative protein folding and for cell viability, whereas Cys90, Cys208, and Cys349 are dispensable for these functions. Substitution of Cys100 with alanine impedes the capture of Ero1p-Pdi1p mixed-disulfide complexes from yeast, and also blocks oxidation of Pdi1p in vivo. Cys352 and Cys355 are required to maintain the fully oxidized redox state of Ero1p, and also play an auxiliary role in thiol–disulfide exchange with Pdi1p. These results suggest a model for the function of Ero1p wherein Cys100 and Cys105 form a redox-active disulfide bond that engages directly in thiol–disulfide exchange with ER oxidoreductases. The Cys352–Cys355 disulfide could then serve to reoxidize the Cys100–Cys105 cysteine pair, possibly through an intramolecular thiol–disulfide exchange reaction. PMID:10982384

  2. Two [4Fe-4S] clusters containing radical SAM enzyme SkfB catalyze thioether bond formation during the maturation of the sporulation killing factor.

    PubMed

    Flühe, Leif; Burghaus, Olaf; Wieckowski, Beata M; Giessen, Tobias W; Linne, Uwe; Marahiel, Mohamed A

    2013-01-23

    The sporulation killing factor (SKF) is a 26-residue ribosomally assembled and posttranslationally modified sactipeptide. It is produced by Bacillus subtilis 168 and plays a key role in its sporulation. Like all sactipeptides, SKF contains a thioether bond, which links the cysteine residue Cys4 with the α-carbon of the methionine residue Met12. In this study we demonstrate that this bond is generated by the two [4Fe-4S] clusters containing radical SAM enzyme SkfB, which is encoded in the skf operon. By mutational analysis of both cluster-binding sites, we were able to postulate a mechanism for thioether generation which is in agreement with that of AlbA. Furthermore, we were able to show that thioether bond formation is specific toward hydrophobic amino acids at the acceptor site. Additionally we demonstrate that generation of the thioether linkage is leader-peptide-dependent, suggesting that this reaction is the first step in SKF maturation. PMID:23282011

  3. Bent Bonds and Multiple Bonds.

    ERIC Educational Resources Information Center

    Robinson, Edward A.; Gillespie, Ronald J.

    1980-01-01

    Considers carbon-carbon multiple bonds in terms of Pauling's bent bond model, which allows direct calculation of double and triple bonds from the length of a CC single bond. Lengths of these multiple bonds are estimated from direct measurements on "bent-bond" models constructed of plastic tubing and standard kits. (CS)

  4. The Molybdenum Active Site of Formate Dehydrogenase Is Capable of Catalyzing C-H Bond Cleavage and Oxygen Atom Transfer Reactions.

    PubMed

    Hartmann, Tobias; Schrapers, Peer; Utesch, Tillmann; Nimtz, Manfred; Rippers, Yvonne; Dau, Holger; Mroginski, Maria Andrea; Haumann, Michael; Leimkühler, Silke

    2016-04-26

    Formate dehydrogenases (FDHs) are capable of performing the reversible oxidation of formate and are enzymes of great interest for fuel cell applications and for the production of reduced carbon compounds as energy sources from CO2. Metal-containing FDHs in general contain a highly conserved active site, comprising a molybdenum (or tungsten) center coordinated by two molybdopterin guanine dinucleotide molecules, a sulfido and a (seleno-)cysteine ligand, in addition to a histidine and arginine residue in the second coordination sphere. So far, the role of these amino acids in catalysis has not been studied in detail, because of the lack of suitable expression systems and the lability or oxygen sensitivity of the enzymes. Here, the roles of these active site residues is revealed using the Mo-containing FDH from Rhodobacter capsulatus. Our results show that the cysteine ligand at the Mo ion is displaced by the formate substrate during the reaction, the arginine has a direct role in substrate binding and stabilization, and the histidine elevates the pKa of the active site cysteine. We further found that in addition to reversible formate oxidation, the enzyme is further capable of reducing nitrate to nitrite. We propose a mechanistic scheme that combines both functionalities and provides important insights into the distinct mechanisms of C-H bond cleavage and oxygen atom transfer catalyzed by formate dehydrogenase. PMID:27054466

  5. A Facile Method to Prepare Double-Layer Isoporous Hollow Fiber Membrane by In Situ Hydrogen Bond Formation in the Spinning Line.

    PubMed

    Noor, Nazia; Koll, Joachim; Radjabian, Maryam; Abetz, Clarissa; Abetz, Volker

    2016-03-01

    A double-layer hollow fiber is fabricated where an isoporous surface of polystyrene-block-poly(4-vinylpyridine) is fixed on a support layer by co-extrusion. Due to the sulfonation of the support layer material, delamination of the two layers is suppressed without increasing the number of subsequent processing steps for isoporous composite membrane formation. Electron microscope-energy-dispersive X-ray spectroscopy images unveil the existence of a high sulfur concentration in the interfacial region by which in-process H-bond formation between the layers is evidenced. For the very first time, our study reports a facile method to fabricate a sturdy isoporous double-layer hollow fiber.

  6. Identification of protein disulfide isomerase 1 as a key isomerase for disulfide bond formation in apolipoprotein B100.

    PubMed

    Wang, Shiyu; Park, Shuin; Kodali, Vamsi K; Han, Jaeseok; Yip, Theresa; Chen, Zhouji; Davidson, Nicholas O; Kaufman, Randal J

    2015-02-15

    Apolipoprotein (apo) B is an obligatory component of very low density lipoprotein (VLDL), and its cotranslational and posttranslational modifications are important in VLDL synthesis, secretion, and hepatic lipid homeostasis. ApoB100 contains 25 cysteine residues and eight disulfide bonds. Although these disulfide bonds were suggested to be important in maintaining apoB100 function, neither the specific oxidoreductase involved nor the direct role of these disulfide bonds in apoB100-lipidation is known. Here we used RNA knockdown to evaluate both MTP-dependent and -independent roles of PDI1 in apoB100 synthesis and lipidation in McA-RH7777 cells. Pdi1 knockdown did not elicit any discernible detrimental effect under normal, unstressed conditions. However, it decreased apoB100 synthesis with attenuated MTP activity, delayed apoB100 oxidative folding, and reduced apoB100 lipidation, leading to defective VLDL secretion. The oxidative folding-impaired apoB100 was secreted mainly associated with LDL instead of VLDL particles from PDI1-deficient cells, a phenotype that was fully rescued by overexpression of wild-type but not a catalytically inactive PDI1 that fully restored MTP activity. Further, we demonstrate that PDI1 directly interacts with apoB100 via its redox-active CXXC motifs and assists in the oxidative folding of apoB100. Taken together, these findings reveal an unsuspected, yet key role for PDI1 in oxidative folding of apoB100 and VLDL assembly. PMID:25518935

  7. 3D micro-CT analysis of void formations and push-out bonding strength of resin cements used for fiber post cementation

    PubMed Central

    2016-01-01

    PURPOSE To investigate the void parameters within the resin cements used for fiber post cementation by micro-CT (µCT) and regional push-out bonding strength. MATERIALS AND METHODS Twenty-one, single and round shaped roots were enlarged with a low-speed drill following by endodontic treatment. The roots were divided into three groups (n=7) and fiber posts were cemented with Maxcem Elite, Multilink N and Superbond C&B resin cements. Specimens were scanned using µCT scanner at resolution of 13.7 µm. The number, area, and volume of voids between dentin and post were evaluated. A method of analysis based on the post segmentation was used, and coronal, middle and apical thirds considered separately. After the µCT analysis, roots were embedded in epoxy resin and sectioned into 2 mm thick slices (63 sections in total). Push-out testing was performed with universal testing device at 0.5 mm/min cross-head speed. Data were analyzed with Kruskal–Wallis and Mann–Whitney U tests (α=.05). RESULTS Overall, significant differences between the resin cements and the post level were observed in the void number, area, and volume (P<.05). Super-Bond C&B showed the most void formation (44.86 ± 22.71). Multilink N showed the least void surface (3.51 ± 2.24 mm2) and volume (0.01 ± 0.01 mm3). Regional push-out bond strength of the cements was not different (P>.05). CONCLUSION µCT proved to be a powerful non-destructive 3D analysis tool for visualizing the void parameters. Multilink N had the lowest void parameters. When efficiency of all cements was evaluated, direct relationship between the post region and push-out bonding strength was not observed. PMID:27141253

  8. Formation of C(sp(3) )-C(sp(3) ) Bonds through Nickel-Catalyzed Decarboxylative Olefin Hydroalkylation Reactions.

    PubMed

    Lu, Xi; Xiao, Bin; Liu, Lei; Fu, Yao

    2016-08-01

    Olefins and carboxylic acids are among the most important feedstock compounds. They are commonly found in natural products and drug molecules. We report a new reaction of nickel-catalyzed decarboxylative olefin hydroalkylation, which provides a novel practical strategy for the construction of C(sp(3) )-C(sp(3) ) bonds. This reaction can tolerate a variety of synthetically relevant functional groups and shows good chemo- and regioselectivity. It enables cross-coupling of complex organic molecules containing olefin groups and carboxylic acid groups in a convergent fashion. PMID:27245257

  9. C-Cl bond activation and catalytic hydrodechlorination of hexachlorobenzene by cobalt and nickel complexes with sodium formate as a reducing agent.

    PubMed

    Li, Junye; Li, Xiaoyan; Wang, Lin; Hu, Qingping; Sun, Hongjian

    2014-05-14

    A benzyne cobalt complex, Co(η(2)-C6Cl4)(PMe3)3 (2), was generated from the reaction of hexachlorobenzene with 2 equiv. of Co(PMe3)4 through selective activation of two C-Cl bonds of hexachlorobenzene. Meanwhile, the byproduct CoCl2(PMe3)3 was also confirmed by IR spectra. The cobalt(II) complex, CoCl(C6Cl5)(PMe3)3 (1), as an intermediate in the formation of aryne complex 2, was also isolated by the reaction of hexachlorobenzene with the stoichiometric amount of Co(PMe3)4. Complex 2 could be obtained by the reaction of 1 with Co(PMe3)4. Under similar reaction conditions, the reaction of Ni(PMe3)4 with hexachlorobenzene afforded only a mono-(C-Cl) bond activation nickel(II) complex, NiCl(C6H5)(PMe3)2 (5). The expected benzyne nickel complex was not formed. The structures of complexes 2 and 5 were determined by X-ray single crystal diffraction. Successful selective hydrodechlorinations of hexachlorobenzene were studied and in the presence of Co(PMe3)4 or Ni(PMe3)4 as catalysts and sodium formate as a reducing agent pentachlorobenzene and 1,2,4,5-tetrachlorobenzene were obtained. The catalytic hydrodechlorination mechanism is proposed and discussed.

  10. Large Scale Solid Phase Synthesis of Peptide Drugs: Use of Commercial Anion Exchange Resin as Quenching Agent for Removal of Iodine during Disulphide Bond Formation

    PubMed Central

    Reddy, K. M. Bhaskara; Kumari, Y. Bharathi; Mallikharjunasarma, Dokka; Bulliraju, Kamana; Sreelatha, Vanjivaka; Ananda, Kuppanna

    2012-01-01

    The S-acetamidomethyl (Acm) or trityl (Trt) protecting groups are widely used in the chemical synthesis of peptides that contain one or more disulfide bonds. Treatment of peptides containing S-Acm protecting group with iodine results in simultaneous removal of the sulfhydryl protecting group and disulfide formation. However, the excess iodine needs to be quenched or adsorbed as quickly as possible after completion of the disulfide bond formation in order to minimize side reactions that are often associated with the iodination step. We report here a simple method for simultaneous quenching and removal of iodine and isolation of disulphide bridge peptides. The use of excess inexpensive anion exchange resin to the oxidized peptide from the aqueous acetic acid/methanol solution affords quantitative removal of iodine and other color impurities. This improves the resin life time of expensive chromatography media that is used in preparative HPLC column during the purification of peptide using preparative HPLC. Further, it is very useful for the conversion of TFA salt to acetate in situ. It was successfully applied commercially, to the large scale synthesis of various peptides including Desmopressin, Oxytocin, and Octreotide. This new approach offers significant advantages such as more simple utility, minimal side reactions, large scale synthesis of peptide drugs, and greater cost effectiveness. PMID:23118772

  11. Correlating Extent of Pt–Ni Bond Formation with Low-temperature Hydrogenation of Benzene and 1,3-butadiene over Supported Pt/Ni Bimetallic Catalysts

    SciTech Connect

    Lonergan, W.; Vlachos, D; Chen, J

    2010-01-01

    Low-temperature hydrogenation of benzene and 1,3-butadiene on supported Pt/Ni catalysts have been used as probe reactions to correlate hydrogenation activity with the extent of Pt-Ni bimetallic bond formation. Pt/Ni bimetallic and Pt and Ni monometallic catalysts were supported on {gamma}-Al{sub 2}O{sub 3} using incipient wetness impregnation. Two sets of bimetallic catalysts were synthesized: one set to study the effect of metal atomic ratio and the other to study the effect of impregnation sequence. Fourier transform infrared spectroscopy (FTIR) CO adsorption studies were performed to characterize the surface composition of the bimetallic nanoparticles, and transmission electron microscopy (TEM) was utilized to characterize the particle size distribution. Batch reactor studies with FTIR demonstrated that all bimetallic catalysts outperformed monometallic catalysts for both benzene and 1,3-butadiene hydrogenation. Within the two sets of bimetallic catalysts, it was found that catalysts with a smaller Pt:Ni ratio possessed higher hydrogenation activity and that catalysts synthesized using co-impregnation had greater activity than sequentially impregnated catalysts. Extended X-ray absorption fine structure (EXAFS) measurements were performed in order to verify the extent of Pt-Ni bimetallic bond formation, which was found to correlate with the hydrogenation activity.

  12. Bonding, moment formation, and magnetic interactions in Ca14MnBi11 and Ba14MnBi11

    NASA Astrophysics Data System (ADS)

    Sánchez-Portal, D.; Martin, Richard M.; Kauzlarich, S. M.; Pickett, W. E.

    2002-04-01

    ``14-1-11'' phase compounds, based on magnetic Mn ions and typified by Ca14MnBi11 and Ba14MnBi11, show an unusual magnetic behavior, but the large number (104) of atoms in the primitive cell has precluded any previous full electronic structure study. Using an efficient, local-orbital-based method within the local-spin-density approximation to study the electronic structure, we find a gap between a bonding valence-band complex and an antibonding conduction-band continuum. The bonding bands lack one electron per formula unit of being filled, making them low carrier density p-type metals. The hole resides in the MnBi4 tetrahedral unit, and partially compensates for the high-spin d5 Mn moment, leaving a net spin near 4μB that is consistent with experiment. These manganites are composed of two disjoint but interpenetrating ``jungle gym'' networks of spin-4/2 MnBi9-4 units with ferromagnetic interactions within the same network, and weaker couplings between the networks whose sign and magnitude is sensitive to materials parameters. Ca14MnBi11 is calculated to be ferromagnetic as observed, while for Ba14MnBi11 (which is antiferromagnetic) the ferromagnetic and antiferromagnetic states are calculated to be essentially degenerate. The band structure of the ferromagnetic states is very close to half metallic.

  13. On the Enthalpy of Formation of Hydroxyl Radical and Gas-Phase Bond Dissociation Energies of Water and Hydroxyl

    SciTech Connect

    Ruscic, Branko; Wagner, Albert F.; Harding, Lawerence B.; Asher, Robert L.; Feller, David F. ); Dixon, David A. ); Peterson, Kirk A.; Song, Yang; Qian, Ximei; Ng, C Y.; Liu, Jianbo; Wenwu, Chen

    2001-12-01

    Several photoionization experiments utilizing the positive ion cycle to derive the O-H bond energy converge to a consensus value of AE0(OH+/H2O)= 146117? 24 cm-1 (18.1162? 0.0030 eV). With the most accurate currently available ZEKE value. IE(OH)= 104989? 2 cm-1, corroborated by a number of photoelectron measurements,Error! Bookmark not defined.,Error! Bookmark not defined.,Error! Bookmark not defined.,Error! Bookmark not defined. this leads to D0(H?OH)= 41128? 24 cm-1= 117.59? 0.07 kcal/mol. This corresponds to DHf 0(OH)= 8.85? 0.07 kcal/mol, and implies D0(OH)= 35593? 24 cm-1= 101.76? 0.07 kcal/mol. The most sophisticated theoretical calculations performed so far on the HxO system, CCSD(T)/aug-cc-pVnZ, n=Q, 5, 6, and 7, extrapolated to the CBS limit and including corrections for core-valence effects, scalar relativistic effects, incomplete correlation recovery, and diagonal Born-Oppenheimer corrections reproduce the experimental results to within 0.0 - 0.2 k cal/mol. The new values of the two successive bond dissociation energies of water supersede the previously accepted values,Error! Bookmark not defined.,Error! Bookmark not defined. which were based on spectroscopic determinationsError! Bookmark not defined.,Error! Bookmark not defined. of D0(OH) using a very short Birge-Sponer extrapolation on OH/OD A1S+. An exhaustive analysis of the latter approach, combined with the application of the same procedure on a calculated potential energy curve for the state in question, demonstrates that the Birge-Sponer extrapolation underestimates the bond dissociation energy, in spite of the fact that only the last vibrational level was not observed experimentally. The new values affect a large number of other thermochemical quantities which directly or indirectly rely on or refer to D0(H-OH), D0(OH), or DHf?(OH).

  14. The Shono-type electroorganic oxidation of unfunctionalised amides. Carbon-carbon bond formation via electrogenerated N-acyliminium ions.

    PubMed

    Jones, Alan M; Banks, Craig E

    2014-01-01

    N-acyliminium ions are useful reactive synthetic intermediates in a variety of important carbon-carbon bond forming and cyclisation strategies in organic chemistry. The advent of an electrochemical anodic oxidation of unfunctionalised amides, more commonly known as the Shono oxidation, has provided a complementary route to the C-H activation of low reactivity intermediates. In this article, containing over 100 references, we highlight the development of the Shono-type oxidations from the original direct electrolysis methods, to the use of electroauxiliaries before arriving at indirect electrolysis methodologies. We also highlight new technologies and techniques applied to this area of electrosynthesis. We conclude with the use of this electrosynthetic approach to challenging syntheses of natural products and other complex structures for biological evaluation discussing recent technological developments in electroorganic techniques and future directions. PMID:25670975

  15. Contrast enhancement and polymer identification in the electron microscope by the formation and staining of unsaturated double bonds

    SciTech Connect

    Parker, M.A.; Vesely, D. )

    1993-03-01

    A new technique for the identification of phases contained within a polymer blend is described in this paper. The technique utilizes the beam damage which occurs when polymers are irradiated in an electron microscope. It has been found that during the irradiation process isolated double bonds are formed which can be revealed by staining with osmium tetroxide. The density of staining and its relationship to electron exposure is shown to be a characteristic feature of a particular chemical structure. It allows for polymer phase identification with a high spatial resolution and also for contrast enhancement and preservation. This technique offers a unique way of studying a fine dispersion of phases in polymer blends, even where only low atomic number elements such as C, H, and O are present.

  16. The Shono-type electroorganic oxidation of unfunctionalised amides. Carbon–carbon bond formation via electrogenerated N-acyliminium ions

    PubMed Central

    2014-01-01

    Summary N-acyliminium ions are useful reactive synthetic intermediates in a variety of important carbon–carbon bond forming and cyclisation strategies in organic chemistry. The advent of an electrochemical anodic oxidation of unfunctionalised amides, more commonly known as the Shono oxidation, has provided a complementary route to the C–H activation of low reactivity intermediates. In this article, containing over 100 references, we highlight the development of the Shono-type oxidations from the original direct electrolysis methods, to the use of electroauxiliaries before arriving at indirect electrolysis methodologies. We also highlight new technologies and techniques applied to this area of electrosynthesis. We conclude with the use of this electrosynthetic approach to challenging syntheses of natural products and other complex structures for biological evaluation discussing recent technological developments in electroorganic techniques and future directions. PMID:25670975

  17. A theoretical investigation into the strength of N-NO2 bonds, ring strain and electrostatic potential upon formation of intermolecular H-bonds between HF and the nitro group in nitrogen heterocyclic rings C n H2n N-NO2 (n = 2-5), RDX and HMX.

    PubMed

    Wang, Bao-Guo; Ren, Fu-de; Shi, Wen-Jing

    2015-11-01

    Changes in N-NO2 bond strength, ring strain energy and electrostatic potential upon formation of intermolecular H-bonds between HF and the nitro group in nitrogen heterocyclic rings C n H2n N-NO2 (n = 2-5), RDX and HMX were investigated using DFT-B3LYP and MP2(full) methods with the 6-311++G(2df,2p) and aug-cc-pVTZ basis sets. Analysis of electron density shifts was also carried out. The results indicate that H-bonding energy correlates well with the increment of ring strain energy. Upon complex formation, the strength of the N-NO2 trigger-bond is enhanced, suggesting reduced sensitivity, while judged by the increased ring strain energy, sensitivity is increased. However, some features of the molecular surface electrostatic potential, such as a local maximum above the N-NO2 bond and ring, σ + (2) and electrostatic balance parameter ν, remain essentially unchanged upon complex formation, and only a small change in the impact sensitivity h 50 is suggested. It is not sufficient to determine sensitivity solely on the basis of trigger bond or ring strain; as a global feature of a molecule, the molecular surface electrostatic potential is available to help judge the change of sensitivity in H-bonded complexes. Graphical Abstract The strengthened N-NO2 bond suggests reduced sensitivity, while it is reverse by theincreased ring strain energy upon the complex formation. However, the molecular surfaceelectrostatic potential (V S) shows the little change of h 50. The V S should be taken into accountin the analysis of explosive sensitivity in the H-bonded complex.

  18. Formation of a Three-Electron Sulfur-Sulfur Bond as a Probe for Interaction between Side Chains of Methionine Residues.

    PubMed

    Filipiak, Piotr; Bobrowski, Krzysztof; Hug, Gordon L; Pogocki, Dariusz; Schöneich, Christian; Marciniak, Bronislaw

    2016-09-15

    The mechanism of oxidation processes of l-Met-(Pro)n-l-Met peptides that contain two Met residues located on the N- and C-terminal and separated by a defined number (n = 0-4) of proline residues was investigated in aqueous solutions using pulse radiolysis. The use of such peptides allowed for distance control between the sulfur atoms located in the side chains of the Met residues. The formation of a contact between the side chains of the Met residues was probed by the observation of transients with σ*-type 2c-3e S∴S and S∴O bonds as well as of α-(alkylthio)alkyl radicals (αS). This approach enabled the monitoring, in real time, of the efficiency and kinetics of interactions between methionine side chains. Such knowledge is important, inter alia, for long-distance electron transfer processes because methionine side chains can serve as relay stations and also for many aspects of protein folding when the formation of a contact between two amino acid residues in an unfolded polypeptide chain plays a central role in protein-folding mechanisms. The yields of these transients (measured as G-values) were found to be dependent on the number of Pro residues; however, they were not dependent in a simple way on the average distance ⟨rS-S⟩ between the sulfur atoms in Met residues. A decrease in the yield of the (S∴S)(+) species with an increase in the number of Pro residues in the bridge occurred at the expense of an increase in the yields of the intramolecular three-electron-bonded (S∴O)(+) radical cations and αS radicals. A detailed understanding of these trends in the chemical yields was developed by modeling the underlying chemical kinetics with Langevin dynamical simulations of the various oligoproline peptide chains and combining them with a simple statistical mechanical theory on the end-to-end contact rates for polymer chains. This analysis showed that the formation of a contact between terminal Met residues in the peptides with 0-2 Pro residues was

  19. Theoretical study on the transition-metal oxoboryl complex: M-BO bonding nature, mechanism of the formation reaction, and prediction of a new oxoboryl complex.

    PubMed

    Zeng, Guixiang; Sakaki, Shigeyoshi

    2012-04-16

    The Pt-BO bonding nature and the formation reaction of the experimentally reported platinum(II) oxoboryl complex, simplified to PtBr(BO)(PMe(3))(2), were theoretically investigated with the density functional theory method. The BO(-) ligand was quantitatively demonstrated to have extremely strong σ-donation but very weak d(π)-electron-accepting abilities. Therefore, it exhibits a strong trans influence. The formation reaction occurs through a four-center transition state, in which the B(δ+)-Br(δ-) polarization and the Br → Si and O p(π) → B p(π) charge-transfer interactions play key roles. The Gibbs activation energy (ΔG°(++)) and Gibbs reaction energy (ΔG°) of the formation reaction are 32.2 and -6.1 kcal/mol, respectively. The electron-donating bulky phosphine ligand is found to be favorable for lowering both ΔG°(++) and ΔG°. In addition, the metal effect is examined with the nickel and palladium analogues and MBrCl[BBr(OSiMe(3))](CO)(PR(3))(2) (M = Ir and Rh). By a comparison of the ΔG°(++) and ΔG° values, the M-BO (M = Ni, Pd, Ir, and Rh) bonding nature, and the interaction energy between [MBrCl(CO)(PR(3))(2)](+) and BO(-) with those of the platinum system, MBrCl(BO)(CO)(PR(3))(2) (M = Ir and Rh) is predicted to be a good candidate for a stable oxoboryl complex. PMID:22458310

  20. Highly selective colorimetric sensing of Hg(II) ions in aqueous medium and in the solid state via formation of a novel M-C bond.

    PubMed

    Parthiban, C; Manivannan, R; Elango, Kuppanagounder P

    2015-02-21

    For the first time an easy-to-make receptor 2-chloro-3-(thiazol-2-ylamino)naphthalene-1,4-dione (R1) for highly selective sensing of Hg(ii) ions in aqueous solution and in the solid state through the formation of an Hg-C bond was developed. The Hg(ii) ion sensing properties of R1 were investigated using UV-Vis, fluorescence and (1)H & (13)C NMR spectral studies. The results indicated that the receptor selectively senses Hg(ii) ions via the formation of a 1 : 1 complex of moderate stability (Ka = 3.5 × 10(4) M(-1)). The NMR spectral studies indicated that complexation between R1 and Hg(ii) occurs through the formation of an Hg-C bond (after deprotonation), which was confirmed by a single crystal XRD analysis of the product. When Hg(ii) was added to a solution of R1 in DMF-water (1 : 9 v/v), a dramatic color change from pale brown to blue was observed, while many common cations and anions did not interfere with the recognition process. The detection limit was 0.3 μM, which is much lower than the permissible limit of Hg(ii) in drinking water (0.001 mg L(-1)) as recommended by the WHO. The simple grinding of R1 with Hg(ii) in the solid state also exhibited the same dramatic colour change which is easily detectable visually.

  1. Simple Bond Cleavage

    SciTech Connect

    Gary S. Groenewold

    2005-08-01

    Simple bond cleavage is a class of fragmentation reactions in which a single bond is broken, without formation of new bonds between previously unconnected atoms. Because no bond making is involved, simple bond cleavages are endothermic, and activation energies are generally higher than for rearrangement eliminations. The rate of simple bond cleavage reactions is a strong function of the internal energy of the molecular ion, which reflects a loose transition state that resembles reaction products, and has a high density of accessible states. For this reason, simple bond cleavages tend to dominate fragmentation reactions for highly energized molecular ions. Simple bond cleavages have negligible reverse activation energy, and hence they are used as valuable probes of ion thermochemistry, since the energy dependence of the reactions can be related to the bond energy. In organic mass spectrometry, simple bond cleavages of odd electron ions can be either homolytic or heterolytic, depending on whether the fragmentation is driven by the radical site or the charge site. Simple bond cleavages of even electron ions tend to be heterolytic, producing even electron product ions and neutrals.

  2. Sulphur-radical control on petroleum formation rates

    USGS Publications Warehouse

    Lewan, M.D.

    1998-01-01

    Most petroleum is formed through the partial decomposition of kerogen (an insoluble sedimentary organic material) in response to thermal stress during subsurface burial in a sedimentary basin. Knowing the mechanisms and kinetics of this process allows the determination of the extent and timing of petroleum formation, which, in turn, are critical for evaluating the potential for petroleum occurrences within a sedimentary basin. Kinetic models of petroleum generation are derived mainly from pyrolysis experiments, in which it is usually assumed that formation rates are controlled by the strength of the bonds within the precursor compounds: this agrees with the observation that petroleum formation rates increase with increasing sulphur content of thermally immature kerogen, C-S bonds being weaker than C-C bonds. However, this explanation fails to account for the overall composition of petroleum. Here I argue, on the basis of pyrolysis experiments, that it is the presence of sulphur radicals, rather than the relative weakness of C-S bonds, that controls petroleum formation rates. My findings suggest that the rate of petroleum formation depends critically on the concentration of sulphur radicals generated during the initial stages of thermal maturation. The proposed mechanism appears to provide a realistic explanation for both the overall composition of petroleum and the observed variation in formation rates.

  3. Paleobotany and palynology of the Bristol Hill Coal Member (Bond Formation) and Friendsville Coal Member (Mattoon Formation) of the Illinois Basin (Upper Pennsylvanian)

    USGS Publications Warehouse

    Willard, D.A.; Phillips, T.L.

    1993-01-01

    Late Pennsylvanian coal swamps of the Illinois Basin were dominated by Psarnius tree ferns with a spatially heterogeneous distribution of medullosan pteridosperms (subdominant), calamites, sigillarian lycopsids, and cordaites. Miospore and coal-ball plant assemblages from the Missourian-age Bristol Hill Coal Member (Mattoon Formation) of southeastern Illinois were quantified to analyze vegetational patterns in Late Pennsylvanian peat swamps and to compare vegetational composition of the coals. -from Authors

  4. Peptide bond formation through gas-phase reactions in the interstellar medium: formamide and acetamide as prototypes

    SciTech Connect

    Redondo, Pilar; Barrientos, Carmen; Largo, Antonio

    2014-09-20

    A theoretical study of the reactions of NH{sub 4}{sup +} with formaldehyde and CH{sub 5}{sup +} with formamide is carried out. The viability of these gas-phase ion-molecule reactions as possible sources of formamide and acetamide under the conditions of interstellar medium is evaluated. We report a theoretical estimation of the reaction enthalpies and an analysis of their potential energy surfaces. Formation of protonated formamide from the reaction between ammonium cation and formaldehyde is an exothermic process, but all the channels located on the potential energy surface leading to this product present net activation energies. For the reaction between methanium and formamide, different products are possible from a thermodynamic point of view. An analysis of its potential energy surface showed that formation of protonated acetamide and amino acetaldehyde takes place through barrier-free paths. Therefore, this reaction could be a feasible source of acetamide and amino acetaldehyde in space.

  5. How covalent heme to protein bonds influence the formation and reactivity of redox intermediates of a bacterial peroxidase.

    PubMed

    Auer, Markus; Nicolussi, Andrea; Schütz, Georg; Furtmüller, Paul G; Obinger, Christian

    2014-11-01

    The most striking feature of mammalian peroxidases, including myeloperoxidase and lactoperoxidase (LPO) is the existence of covalent bonds between the prosthetic group and the protein, which has a strong impact on their (electronic) structure and biophysical and chemical properties. Recently, a novel bacterial heme peroxidase with high structural and functional similarities to LPO was described. Being released from Escherichia coli, it contains mainly heme b, which can be autocatalytically modified and covalently bound to the protein by incubation with hydrogen peroxide. In the present study, we investigated the reactivity of these two forms in their ferric, compound I and compound II state in a multi-mixing stopped-flow study. Upon heme modification, the reactions between the ferric proteins with cyanide or H2O2 were accelerated. Moreover, apparent bimolecular rate constants of the reaction of compound I with iodide, thiocyanate, bromide, and tyrosine increased significantly and became similar to LPO. Kinetic data are discussed and compared with known structure-function relationships of the mammalian peroxidases LPO and myeloperoxidase.

  6. Reversible bond formation enables the replication and amplification of a crosslinking salen complex as an orthogonal base pair

    NASA Astrophysics Data System (ADS)

    Kaul, Corinna; Müller, Markus; Wagner, Mirko; Schneider, Sabine; Carell, Thomas

    2011-10-01

    The universal genetic code relies on two hydrogen-bonded Watson-Crick base pairs that can form 64 triplet codons. This places a limit on the number of amino acids that can be encoded, which has motivated efforts to create synthetic base pairs that are orthogonal to the natural ones. An additional base pair would result in another 61 triplet codons. Artificial organic base pairs have been described in enzymatic incorporation studies, and inorganic T-Hg-T and C-Ag-C base pairs have been reported to form in primer extension studies. Here, we demonstrate a metal base pair that is fully orthogonal and can be replicated, and can even be amplified by polymerase chain reaction in the presence of the canonical pairs dA:dT and dG:dC. Crystal structures of a dS-Cu-dS base pair inside a polymerase show that reversible chemistry is possible directly inside the polymerase, which enables the efficient copying of the inorganic crosslink. The results open up the possibility of replicating and amplifying artificial inorganic DNA nanostructures by extending the genetic alphabet.

  7. How Covalent Heme to Protein Bonds Influence the Formation and Reactivity of Redox Intermediates of a Bacterial Peroxidase*

    PubMed Central

    Auer, Markus; Nicolussi, Andrea; Schütz, Georg; Furtmüller, Paul G.; Obinger, Christian

    2014-01-01

    The most striking feature of mammalian peroxidases, including myeloperoxidase and lactoperoxidase (LPO) is the existence of covalent bonds between the prosthetic group and the protein, which has a strong impact on their (electronic) structure and biophysical and chemical properties. Recently, a novel bacterial heme peroxidase with high structural and functional similarities to LPO was described. Being released from Escherichia coli, it contains mainly heme b, which can be autocatalytically modified and covalently bound to the protein by incubation with hydrogen peroxide. In the present study, we investigated the reactivity of these two forms in their ferric, compound I and compound II state in a multi-mixing stopped-flow study. Upon heme modification, the reactions between the ferric proteins with cyanide or H2O2 were accelerated. Moreover, apparent bimolecular rate constants of the reaction of compound I with iodide, thiocyanate, bromide, and tyrosine increased significantly and became similar to LPO. Kinetic data are discussed and compared with known structure-function relationships of the mammalian peroxidases LPO and myeloperoxidase. PMID:25246525

  8. Formation and reshuffling of disulfide bonds in bovine serum albumin demonstrated using tandem mass spectrometry with collision-induced and electron-transfer dissociation

    PubMed Central

    Rombouts, Ine; Lagrain, Bert; Scherf, Katharina A.; Koehler, Peter; Delcour, Jan A.

    2015-01-01

    Thermolysin hydrolyzates of freshly isolated, extensively stored (6 years, 6 °C, dry) and heated (60 min, 90 °C, in excess water) bovine serum albumin (BSA) samples were analyzed with liquid chromatography (LC) electrospray ionization (ESI) tandem mass spectrometry (MS/MS) using alternating electron-transfer dissociation (ETD) and collision-induced dissociation (CID). The positions of disulfide bonds and free thiol groups in the different samples were compared to those deduced from the crystal structure of native BSA. Results revealed non-enzymatic posttranslational modifications of cysteine during isolation, extensive dry storage, and heating. Heat-induced extractability loss of BSA was linked to the impact of protein unfolding on the involvement of specific cysteine residues in intermolecular and intramolecular thiol-disulfide interchange and thiol oxidation reactions. The here developed approach holds promise for exploring disulfide bond formation and reshuffling in various proteins under conditions relevant for chemical, biochemical, pharmaceutical and food processing. PMID:26193081

  9. A Novel Strategy for Biomass Upgrade: Cascade Approach to the Synthesis of Useful Compounds via C-C Bond Formation Using Biomass-Derived Sugars as Carbon Nucleophiles.

    PubMed

    Yamaguchi, Sho; Baba, Toshihide

    2016-01-01

    Due to the depletion of fossil fuels, biomass-derived sugars have attracted increasing attention in recent years as an alternative carbon source. Although significant advances have been reported in the development of catalysts for the conversion of carbohydrates into key chemicals (e.g., degradation approaches based on the dehydration of hydroxyl groups or cleavage of C-C bonds via retro-aldol reactions), only a limited range of products can be obtained through such processes. Thus, the development of a novel and efficient strategy targeted towards the preparation of a range of compounds from biomass-derived sugars is required. We herein describe the highly-selective cascade syntheses of a range of useful compounds using biomass-derived sugars as carbon nucleophiles. We focus on the upgrade of C2 and C3 oxygenates generated from glucose to yield useful compounds via C-C bond formation. The establishment of this novel synthetic methodology to generate valuable chemical products from monosaccharides and their decomposed oxygenated materials renders carbohydrates a potential alternative carbon resource to fossil fuels. PMID:27447603

  10. Oligomerization reactions of deoxyribonucleotides on montmorillonite clay - The effect of mononucleotide structure, phosphate activation and montmorillonite composition on phosphodiester bond formation

    NASA Technical Reports Server (NTRS)

    Ferris, James P.; KAMALUDDIN; Ertem, Gozen

    1990-01-01

    The 2(prime)-d-5(prime)-GMP and 2(prime)-d-5(prime)-AMP bind 2 times more strongly to montmorillonite 22A than do 2(prime)-d-5(prime)-CMP and 5(prime)-TMP. The dinucleotide d(pG)2 forms in 9.2 percent yield and the cyclic dinucleotide c(dpG)2 in 5.4 percent yield in the reaction of 2(prime)-d-5(prime)-GMP with EDAC in the presence of montmorillonite 22A. The yield of dimers which contain the phosphodiester bond decreases as the reaction medium is changed from 0.2 M NaCl to a mixture of 0.2 M NaCl and 0.075 M MgCl2. A low yield of d(pA)2 was observed in the condensation reaction of 5(prime)-ImdpA on montmorillonite 22A. The yield of d(pA)2 obtained when EDAC is used as the condensing agent increases with increasing iron content of the Na(+)-montmorillonite used as catalyst. Evidence is presented which shows that the acidity of the Na(+)-montmorillonite is a necessary but not sufficient factor for the montmorillonite catalysis of phosphodiester bond formation.

  11. Oligomerization reactions of deoxyribonucleotides on montmorillonite clay: the effect of mononucleotide structure, phosphate activation and montmorillonite composition on phosphodiester bond formation.

    PubMed

    Ferris, J P; Kamaluddin; Ertem, G

    1990-01-01

    2'-d-5'-GMP and 2'-d-5'-AMP bind 2 times more strongly to montmorillonite 22A than do 2'-d-5'-CMP and 5'-TMP. The dinucleotide d(pG)2 forms in 9.2% yield and the cyclic dinucleotide c(dpG)2 in 5.4% yield in the reaction of 2'-d-5'-GMP with EDAC in the presence of montmorillonite 22A. The yield of d(pC)2 (2.0%) is significantly lower but comparable to that obtained from 5'-TMP. The yield of dimers which contain the phosphodiester bond decreases as the reaction medium is changed from 0.2 M NaCl to a mixture of 0.2 M NaCl and 0.075 M MgCl2. A low yield of d(pA)2 was observed in the condensation reaction of 5'-ImdpA on montmorillonite 22A. The cyclic nucleotide (3',5'-cdAMP) was obtained in 14% yield from 3'-ImdpA. The yield of d(pA)2 obtained when EDAC is used as the condensing agent increases with increasing iron content of the Na(+)-montmorillonite used as a catalyst. Evidence is presented which shows that the acidity of the Na(+)-montmorillonite is a necessary but not sufficient factor for the montmorillonite catalysis of phosphodiester bond formation.

  12. Formation of intersubunit disulfide bonds and properties of the single histidine and cysteine residues in each subunit relative to the decameric structure of cyanase.

    PubMed

    Anderson, P M; Korte, J J; Holcomb, T A; Cho, Y G; Son, C M; Sung, Y C

    1994-05-27

    Reaction of the single cysteine residue in each subunit of cyanase with certain SH reagents gives an active decameric derivative that dissociates reversibly to an inactive dimer derivative (Anderson, P. M., Johnson, W. V., Korte, J. J., Xiong, X., Sung, Y.-c., and Fuchs, J. A. (1988) J. Biol. Chem. 263, 5674-5680). Reaction of mixed disulfide dimer derivatives of cyanase with dithiothreitol at 0 degree C results in formation of a disulfide bond between the subunits in the dimer. The disulfide dimer was inactive and did not associate to a decamer; the intersubunit disulfide bond could not be formed when the dimers were associated as a decamer. The two SH groups apparently are in close proximity to each other in the dissociated dimer but not when the dimer is associated to a decamer. Substitution of glycine for the cysteine residue or of tyrosine, asparagine, glycine, valine, or leucine for the single histidine residue in each subunit gave mutant enzymes that were active. However, H113N, H113Y, and C83G were unstable at low temperature and/or ionic strength, dissociating reversibly to an inactive dimer. Efficient reassociation required the presence of bicarbonate or cyanate analog. The results are consistent with a proposed single site per subunit model explaining apparent half-site binding of substrates and the requirement of decameric structure for activity.

  13. Formation of C═C bond via knoevenagel reaction between aromatic aldehyde and barbituric acid at liquid/HOPG and vapor/HOPG interfaces.

    PubMed

    Geng, Yanfang; Dai, Hongliang; Chang, Shaoqing; Hu, Fangyun; Zeng, Qingdao; Wang, Chen

    2015-03-01

    Controlling chemical reactions on surface is of great importance to constructing self-assembled covalent nanostructures. Herein, Knoevenagel reaction between aromatic aldehyde compound 2,5-di(5-aldehyde-2-thienyl)-1,4-dioctyloxybenzene (PT2) and barbituric acid (BA) has been successfully performed for the first time at liquid/HOPG interface and vapor/HOPG interface. The resulting surface nanostructures and the formation of C═C bond are recorded through scanning tunneling microscopy (STM), and confirmed by attenuated total reflectance Fourier-transform infrared (ATR/FT-IR) spectrometer and UV-vis absorption. The obtained results reveal that Knoevenagel condensation reaction can efficiently occur at both interfaces. This surface reaction would be an important step toward further reaction to produce innovative conjugated nanomaterial on the surface.

  14. Bioinformatic and Biochemical Characterizations of C–S Bond Formation and Cleavage Enzymes in the Fungus Neurospora crassa Ergothioneine Biosynthetic Pathway

    PubMed Central

    2015-01-01

    Ergothioneine is a histidine thiol derivative. Its mycobacterial biosynthetic pathway has five steps (EgtA-E catalysis) with two novel reactions: a mononuclear nonheme iron enzyme (EgtB) catalyzed oxidative C–S bond formation and a PLP-mediated C–S lyase (EgtE) reaction. Our bioinformatic and biochemical analyses indicate that the fungus Neurospora crassa has a more concise ergothioneine biosynthetic pathway because its nonheme iron enzyme, Egt1, makes use of cysteine instead of γ-Glu-Cys as the substrate. Such a change of substrate preference eliminates the competition between ergothioneine and glutathione biosyntheses. In addition, we have identified the N. crassa C–S lyase (NCU11365) and reconstituted its activity in vitro, which makes the future ergothioneine production through metabolic engineering feasible. PMID:25275953

  15. An Electron-Poor C64 Nanographene by Palladium-Catalyzed Cascade C-C Bond Formation: One-Pot Synthesis and Single-Crystal Structure Analysis.

    PubMed

    Seifert, Sabine; Shoyama, Kazutaka; Schmidt, David; Würthner, Frank

    2016-05-23

    Herein, we report the one-pot synthesis of an electron-poor nanographene containing dicarboximide groups at the corners. We efficiently combined palladium-catalyzed Suzuki-Miyaura cross-coupling and dehydrohalogenation to synthesize an extended two-dimensional π-scaffold of defined size in a single chemical operation starting from N-(2,6-diisopropylphenyl)-4,5-dibromo-1,8-naphthalimide and a tetrasubstituted pyrene boronic acid ester as readily accessible starting materials. The reaction of these precursors under the conditions commonly used for Suzuki-Miyaura cross-coupling afforded a C64 nanographene through the formation of ten C-C bonds in a one-pot process. Single-crystal X-ray analysis unequivocally confirmed the structure of this unique extended aromatic molecule with a planar geometry. The optical and electrochemical properties of this largest ever synthesized planar electron-poor nanographene skeleton were also analyzed.

  16. The PqqD homologous domain of the radical SAM enzyme ThnB is required for thioether bond formation during thurincin H maturation.

    PubMed

    Wieckowski, Beata M; Hegemann, Julian D; Mielcarek, Andreas; Boss, Linda; Burghaus, Olaf; Marahiel, Mohamed A

    2015-07-01

    Thurincin H is a 31-residue, ribosomally synthesized bacteriocin originating from the thn operon of Bacillus thuringiensis SF361. It is the only known sactipeptide carrying four thioether bridges between four cysteines and the α-carbons of a serine, an asparagine and two threonine residues. By analysis of the thn operon and use of in vitro studies we now reveal that ThnB is a radical S-adenosylmethionine (SAM) enzyme containing two [4Fe-4S] clusters. Furthermore, we confirm the involvement of ThnB in the formation of the thioether bonds present within the structure of thurincin H. Finally, we show that the PqqD homologous N-terminal domain of ThnB is essential for maturation of the thurincin H precursor peptide, but not for the SAM cleavage activity of ThnB. PMID:26026269

  17. Cyclopentadienyl nickel(ii) N,C-chelating benzothiazolyl NHC complexes: synthesis, characterization and application in catalytic C-C bond formation reactions.

    PubMed

    Teo, Wei Jie; Wang, Zhe; Xue, Fei; Andy Hor, T S; Zhao, Jin

    2016-04-25

    Cyclopentadienyl (Cp) Ni(ii) complexes [CpNiL][PF6] containing hybrid N,C chelating benzothiazolyl NHC ligands (L1 = 1-(2-benzothiazolyl)-3-methylimidazol-2-ylidene, ; L2 = 1-(2-benzothiazolyl)-3-allylimidazol-2-ylidene, ; L3 = 1-(2-benzothiazolyl)-3-benzylimidazol-2-ylidene, ) have been synthesized and fully characterized. The catalytic activity of in some C-C bond formation reactions has been examined. They are efficient catalysts for the homo-coupling of benzyl bromide in the presence of MeMgCl at r.t. with good functional group tolerance. Complex is active in the catalytic oxidative homo-coupling of Grignard reagents with 1,2-dichloroethane as an oxidant at r.t. PMID:27011227

  18. Tailored synthesis of various nanomaterials by using a graphene-oxide-based gel as a nanoreactor and nanohybrid-catalyzed C-C bond formation.

    PubMed

    Biswas, Abhijit; Banerjee, Arindam

    2014-12-01

    New graphene oxide (GO)-based hydrogels that contain vitamin B2/B12 and vitamin C (ascorbic acid) have been synthesized in water (at neutral pH value). These gel-based soft materials have been used to synthesize various metal nanoparticles, including Au, Ag, and Pd nanoparticles, as well as nanoparticle-containing reduced graphene oxide (RGO)-based nanohybrid systems. This result indicates that GO-based gels can be used as versatile reactors for the synthesis of different nanomaterials and hybrid systems on the nanoscale. Moreover, the RGO-based nanohybrid hydrogel with Pd nanoparticles was used as an efficient catalyst for C-C bond-formation reactions with good yields and showed high recyclability in Suzuki-Miyaura coupling reactions. PMID:25224859

  19. Palladium-catalyzed C–N and C–O bond formation of N-substituted 4-bromo-7-azaindoles with amides, amines, amino acid esters and phenols

    PubMed Central

    Surasani, Rajendra; Rao, A V Dhanunjaya; Chandrasekhar, K B

    2012-01-01

    Summary Simple and efficient procedures for palladium-catalyzed cross-coupling reactions of N-substituted 4-bromo-7-azaindole (1H-pyrrole[2,3-b]pyridine), with amides, amines, amino acid esters and phenols through C–N and C–O bond formation have been developed. The C–N cross-coupling reaction of amides, amines and amino acid esters takes place rapidly by using the combination of Xantphos, Cs2CO3, dioxane and palladium catalyst precursors Pd(OAc)2/Pd2(dba)3. The combination of Pd(OAc)2, Xantphos, K2CO3 and dioxane was found to be crucial for the C–O cross-coupling reaction. This is the first report on coupling of amides, amino acid esters and phenols with N-protected 4-bromo-7-azaindole derivatives. PMID:23209536

  20. Bonded semiconductor substrate

    DOEpatents

    Atwater, Jr.; Harry A. , Zahler; James M.

    2010-07-13

    Ge/Si and other nonsilicon film heterostructures are formed by hydrogen-induced exfoliation of the Ge film which is wafer bonded to a cheaper substrate, such as Si. A thin, single-crystal layer of Ge is transferred to Si substrate. The bond at the interface of the Ge/Si heterostructures is covalent to ensure good thermal contact, mechanical strength, and to enable the formation of an ohmic contact between the Si substrate and Ge layers. To accomplish this type of bond, hydrophobic wafer bonding is used, because as the invention demonstrates the hydrogen-surface-terminating species that facilitate van der Waals bonding evolves at temperatures above 600.degree. C. into covalent bonding in hydrophobically bound Ge/Si layer transferred systems.

  1. Toward Design Principles for Diffusionless Transformations: The Frustrated Formation of Co-Co Bonds in a Low-Temperature Polymorph of GdCoSi2.

    PubMed

    Vinokur, Anastasiya I; Fredrickson, Daniel C

    2016-06-20

    Diffusionless (or displacive) phase transitions allow inorganic materials to show exquisite responsiveness to external stimuli, as is illustrated vividly by the superelasticity, shape memory, and magnetocaloric effects exhibited by martensitic materials. In this Article, we present a new diffusionless transition in the compound GdCoSi2, whose origin in frustrated bonding points toward generalizable design principles for these transformations. We first describe the synthesis of GdCoSi2 and the determination of its structure using single crystal X-ray diffraction. While previous studies based on powder X-ray diffraction assigned this compound to the simple CeNi1-xSi2 structure type (space group Cmcm), our structure solution reveals a superstructure variant (space group Pbcm) in which the Co sublattice is distorted to create zigzag chains of Co atoms. DFT-calibrated Hückel calculations, coupled with a reversed approximation Molecular Orbital (raMO) analysis, trace this superstructure to the use of Co-Co isolobal bonds to complete filled 18 electron configurations on the Co atoms, in accordance with the 18-n rule. The formation of these Co-Co bonds is partially impeded, however, by a small degree of electron transfer from Si-based electronic states to those with Co-Co σ* character. The incomplete success of Co-Co bond creation suggests that these interactions are relatively weak, opening the possibility of them being overcome by thermal energy at elevated temperatures. In fact, high-temperature powder and single crystal X-ray diffraction data, as well as differential scanning calorimetry, indicate that a reversible Pbcm to Cmcm transition occurs at about 380 K. This transition is diffusionless, and the available data point toward it being first-order. We expect that similar cases of frustrated interactions could be staged in other rare earth-transition metal-main group phases, providing a potentially rich source of compounds exhibiting diffusionless transformations

  2. Synthesis of the proteinase inhibitor LEKTI domain 6 by the fragment condensation method and regioselective disulfide bond formation.

    PubMed

    Vasileiou, Zoe; Barlos, Kostas K; Gatos, Dimitrios; Adermann, Knut; Deraison, Celine; Barlos, Kleomenis

    2010-01-01

    Proteinase inhibitors are of high pharmaceutical interest and are drug candidates for a variety of indications. Specific kallikrein inhibitors are important for their antitumor activity and their potential application to the treatment of skin diseases. In this study we describe the synthesis of domain 6 of the kallikrein inhibitor Lympho-Epithilial Kazal-Type Inhibitor (LEKTI) by the fragment condensation method and site-directed cystine bridge formation. To obtain the linear LEKTI precursor, the condensation was best performed in solution, coupling the protected fragment 1-22 to 23-68. This method yielded LEKTI domain 6 of high purity and equipotent to the recombinantly produced peptide. PMID:20069636

  3. Velocity Map Imaging Study of Ion-Radical Chemistry: Charge Transfer and Carbon-Carbon Bond Formation in the Reactions of Allyl Radicals with C(.).

    PubMed

    Pei, Linsen; Farrar, James M

    2016-08-11

    We present an experimental and computational study of the dynamics of collisions of ground state carbon cations with allyl radicals, C3H5, at a collision energy of 2.2 eV. Charge transfer to produce the allyl cation, C3H5(+), is exoergic by 3.08 eV and proceeds via energy resonance such that the electron transfer occurs without a significant change in nuclear velocities. The products have sufficient energy to undergo the dissociation process C3H5(+) → C3H4(+) + H. Approximately 80% of the reaction products are ascribed to charge transfer, with ∼40% of those products decaying via loss of a hydrogen atom. We also observe products arising from the formation of new carbon-carbon bonds. The experimental velocity space flux distributions for the four-carbon products are symmetric about the centroid of the reactants, providing direct evidence that the products are mediated by formation of a C4H5(+) complex living at least a few rotational periods. The primary four-carbon reaction products are formed by elimination of molecular hydrogen from the C4H5(+) complex. More than 75% of the nascent C4H3(+) products decay by C-H bond cleavage to yield a C4H2(+) species. Quantum chemical calculations at the MP2/6-311+g(d,p) level of theory support the formation of a nonplanar cyclic C4H5(+) adduct that is produced when the p-orbital containing the unpaired electron on C(+) overlaps with the unpaired spin density on the terminal carbon atoms in allyl. Product formation then occurs by 1,2-elimination of molecular hydrogen from the cyclic intermediate to form a planar cyclic C4H3(+) product. The large rearrangement in geometry as the C4H3(+) products are formed is consistent with high vibrational excitation in that product and supports the observation that the majority of those products decay to form the C4H2(+) species. PMID:27434380

  4. Hydrogen bond and halogen bond inside the carbon nanotube

    NASA Astrophysics Data System (ADS)

    Wang, Weizhou; Wang, Donglai; Zhang, Yu; Ji, Baoming; Tian, Anmin

    2011-02-01

    The hydrogen bond and halogen bond inside the open-ended single-walled carbon nanotubes have been investigated theoretically employing the newly developed density functional M06 with the suitable basis set and the natural bond orbital analysis. Comparing with the hydrogen or halogen bond in the gas phase, we find that the strength of the hydrogen or halogen bond inside the carbon nanotube will become weaker if there is a larger intramolecular electron-density transfer from the electron-rich region of the hydrogen or halogen atom donor to the antibonding orbital of the X-H or X-Hal bond involved in the formation of the hydrogen or halogen bond and will become stronger if there is a larger intermolecular electron-density transfer from the electron-rich region of the hydrogen or halogen atom acceptor to the antibonding orbital of the X-H or X-Hal bond. According to the analysis of the molecular electrostatic potential of the carbon nanotube, the driving force for the electron-density transfer is found to be the negative electric field formed in the carbon nanotube inner phase. Our results also show that the X-H bond involved in the formation of the hydrogen bond and the X-Hal bond involved in the formation of the halogen bond are all elongated when encapsulating the hydrogen bond and halogen bond within the carbon nanotube, so the carbon nanotube confinement may change the blue-shifting hydrogen bond and the blue-shifting halogen bond into the red-shifting hydrogen bond and the red-shifting halogen bond. The possibility to replace the all electron nanotube-confined calculation by the simple polarizable continuum model is also evaluated.

  5. A DFT study on the NHC catalysed Michael addition of enols to α,β-unsaturated acyl-azoliums. A base catalysed C-C bond-formation step.

    PubMed

    Domingo, Luis R; Sáez, José A; Arnó, Manuel

    2014-02-14

    The NHC catalysed nucleophilic additions of enols to α,β-unsaturated acyl-azolium intermediates have been investigated using DFT methods at the MPWB1K/6-31G** computational level. In the direct and the conjugate additions, formation of a hydrogen bond (HB) with the carboxyl oxygen is not sufficient to favour the C-C bond formation as a consequence of the low nucleophilic character of enols. Interestingly, when enols form a HB with the chloride counterion, the activation energies associated with the conjugate addition decrease as a consequence of the increased nucleophilic character of enols and the increased electrophilic character of the 'acyl-azolium + Cl' ion pair. Analysis of the DFT reactivity indices allows establishing a base catalysed C-C bond-formation step promoted by the chloride counterion. PMID:24343422

  6. A DFT study on the NHC catalysed Michael addition of enols to α,β-unsaturated acyl-azoliums. A base catalysed C-C bond-formation step.

    PubMed

    Domingo, Luis R; Sáez, José A; Arnó, Manuel

    2014-02-14

    The NHC catalysed nucleophilic additions of enols to α,β-unsaturated acyl-azolium intermediates have been investigated using DFT methods at the MPWB1K/6-31G** computational level. In the direct and the conjugate additions, formation of a hydrogen bond (HB) with the carboxyl oxygen is not sufficient to favour the C-C bond formation as a consequence of the low nucleophilic character of enols. Interestingly, when enols form a HB with the chloride counterion, the activation energies associated with the conjugate addition decrease as a consequence of the increased nucleophilic character of enols and the increased electrophilic character of the 'acyl-azolium + Cl' ion pair. Analysis of the DFT reactivity indices allows establishing a base catalysed C-C bond-formation step promoted by the chloride counterion.

  7. Revised Atomistic Models of the Crystal Structure of C-S-H with high C/S Ratio

    NASA Astrophysics Data System (ADS)

    Kovačević, Goran; Nicoleau, Luc; Nonat, André; Veryazov, Valera

    2016-09-01

    The atomic structure of calcium-silicate-hydrate (C1.67-S-Hx) has been studied. Atomistic C-S-H models suggested in our previous study have been revised in order to perform a direct comparison of energetic stability of the different structures. An extensive set of periodic structures of C-S-H with variation of water content was created, and then optimized using molecular dynamics with reactive force field ReaxFF and quantum chemical semiempirical method PM6. All models show organization of water molecules inside the structure of C-S-H. The new geometries of C-S-H, reported in this paper, show lower relative energy with respect to the geometries from the original definition of C-S-H models. Model that corresponds to calcium enriched tobermorite structure has the lowest relative energy and the density closest to the experimental values.

  8. Polymerization of ionized acetylene clusters into covalent bonded ions: evidence for the formation of benzene radical cation.

    PubMed

    Momoh, Paul O; Abrash, Samuel A; Mabrouki, Ridha; El-Shall, M Samy

    2006-09-27

    Since the discovery of acetylene and benzene in protoplanetary nebulae under powerful ultraviolet ionizing radiation, efforts have been made to investigate the polymerization of ionized acetylene. Here we report the efficient formation of benzene ions within gas-phase ionized acetylene clusters (C2H2)n+ with n = 3-60. The results from experiments, which use mass-selected ion mobility techniques, indicate that the (C2H2)3+ ion has unusual stability similar to that of the benzene cation; its primary fragment ions are similar to those reported from the benzene cation, and it has a collision cross section of 47.4 A2 in helium at 300 K, similar to the value of 47.9 A2 reported for the benzene cation. In other words, (C2H2)3+ structurally looks like benzene, it has stability similar to that of benzene, it fragments such as benzene, therefore, it must be benzene! PMID:16984178

  9. Acetaldehyde partial oxidation on the Au(111) model catalyst surface: C-C bond activation and formation of methyl acetate as an oxidative coupling product

    NASA Astrophysics Data System (ADS)

    Karatok, Mustafa; Vovk, Evgeny I.; Shah, Asad A.; Turksoy, Abdurrahman; Ozensoy, Emrah

    2015-11-01

    Partial oxidation of acetaldehyde (CH3CHO) on the oxygen pre-covered Au(111) single crystal model catalyst was investigated via Temperature Programmed Desorption (TPD) and Temperature Programmed Reaction Spectroscopy (TPRS) techniques, where ozone (O3) was utilized as the oxygen delivery agent providing atomic oxygen to the reacting surface. We show that for low exposures of O3 and small surface oxygen coverages, two partial oxidation products namely, methyl acetate (CH3COOCH3) and acetic acid (CH3COOH) can be generated without the formation of significant quantities of carbon dioxide. The formation of methyl acetate as the oxidative coupling reaction product implies that oxygen pre-covered Au(111) single crystal model catalyst surface can activate C-C bonds. In addition to the generation of these products; indications of the polymerization of acetaldehyde on the gold surface were also observed as an additional reaction route competing with the partial and total oxidation pathways. The interplay between the partial oxidation, total oxidation and polymerization pathways reveals the complex catalytic chemistry associated with the interaction between the acetaldehyde and atomic oxygen on catalytic gold surfaces.

  10. [Synthetic studies on natural products with aromatic nitrogen heterocycles based on development of the methods for the formation of aryl carbon-nitrogen bond].

    PubMed

    Okano, Kentaro

    2013-01-01

    Total syntheses of yatakemycin, PDE-II, dictyodendrins, and heptaphylline are described. This article focuses on the formation of aryl carbon-nitrogen bonds by two methods: first by an aromatic amination reaction using a combination of CuI and CsOAc, and then by a benzyne-mediated one-pot cyclization-functionalization sequence. The aryl amination reaction shows a high functional group compatibility and applicability for highly hindered substrates. The utility of this reaction has been fully demonstrated through a total synthesis of yatakemycin, which features the regioselective ring opening of (S)-epichlorohydrin with 2,6-dibromophenyllithium species and the efficient deprotection of benzyl groups of aryl benzyl ether with BCl3 in the presence of pentamethylbenzene. The copper-mediated aryl amination reaction was applied to a one-pot double aryl amination for facile access to the highly substituted pyrroloindole skeleton, which led to a concise total synthesis of PDE-II. A highly efficient total synthesis of dictyodendrins A-E was accomplished by the development of a novel benzyne-mediated one-pot indoline formation/cross-coupling sequence for the construction of a highly substituted key indoline intermediate. Peripheral substituents were introduced onto this intermediate in a modular fashion to complete the total synthesis of dictyodendrins A-E. The utility of the one-pot benzyne-mediated cyclization-functionalization reaction was demonstrated by the total synthesis of carbazole alkaloid, heptaphylline.

  11. Application of copper(I) iodide/diorganoyl dichalcogenides to the synthesis of 4-organochalcogen isoquinolines by regioselective C-N and C-chalcogen bond formation.

    PubMed

    Stein, André L; Bilheri, Filipe N; da Rocha, Juliana T; Back, Davi F; Zeni, Gilson

    2012-08-20

    A copper-catalyzed cyclization of (ortho-alkynyl)benzaldimines with diorganoyl dichalcogenides allowed the synthesis of 4-organochalcogen isoquinolines, whereas the presence of base in the reaction medium inhibited the product formation producing the undesirable isoquinoline without the organochalcogen atom at the 4-position. The cyclization reaction was carried out by using CuI (20 %) as a catalyst with diorganoyl dichalcogenides (1.5 equiv) in the presence of DMF at 100 °C. Furthermore, the reaction did not require an argon atmosphere and was carried out in an open flask. The cyclization reaction tolerated a variety of functional groups both in ortho-alkynylbenzaldimines and diorganoyl dichalcogenides, such as trifluoromethyl, chloro, fluorine, and methoxyl, to give the six-membered heterocyclic ring exclusively through a 6-endo-dig cyclization process. The organochalcogen group present at the 4-position of the isoquinoline ring was further subjected to a selective chalcogen-lithium exchange reaction followed by the addition of aldehydes to afford the desired secondary alcohols in good yields. The obtained isoquinolines also proved to be suitable substrates for the Suzuki and Sonogashira coupling conditions affording the corresponding products through C-C bond formation. PMID:22807116

  12. Enhancing reactivity of carbonyl compounds via hydrogen-bond formation. A DFT study of the hetero-Diels-Alder reaction between butadiene derivative and acetone in chloroform.

    PubMed

    Domingo, Luis R; Andrés, Juan

    2003-10-31

    To examine how hydrogen-bond (HB) formation involving chloroform solvent molecules influences the chemical reactivity of ketones, the hetero-Diels-Alder reaction of N,N-dimethyl-1-amino-3-methoxy-1,3-butadiene and acetone has been studied by using density functional theory (DFT) at the B3LYP/6-31G level. The effects of the chloroform on the activation energies have been modeled by means of discrete-continuum models. In the gas phase, the formation of specific HB between acetone and one and two chloroform molecules decreases the activation barriers from 19.3 to 13.6 and 8.5 kcal/mol, respectively. Inclusion of solvent effects by means of combined discrete and polarizable continuum models yields a change of molecular mechanism from a concerted to a two-step mechanism, and the first nucleophilic step is the rate-limiting step. The corresponding values of activation barriers in chloroform are 18.6 kcal/ mol (no HB), 13.5 kcal/mol (one HB), and 9.6 kcal/mol (two HBs). These theoretical results account for the experimental observation that chloroform accelerates the reaction more markedly than more polar aprotic solvent such as acetonitrile. A DFT analysis of the global electrophilicity power of the reagents provides a sound explanation about the catalytic effects of chloroform.

  13. Silico-ferrite of Calcium and Aluminum (SFCA) Iron Ore Sinter Bonding Phases: New Insights into Their Formation During Heating and Cooling

    NASA Astrophysics Data System (ADS)

    Webster, Nathan A. S.; Pownceby, Mark I.; Madsen, Ian C.; Kimpton, Justin A.

    2012-12-01

    The formation of silico-ferrite of calcium and aluminum (SFCA) and SFCA-I iron ore sinter phases during heating and cooling of synthetic iron ore sinter mixtures in the range 298 K to 1623 K (25 °C to 1350 °C) and at oxygen partial pressure of 5 × 10-3 atm has been characterized using in situ synchrotron X-ray diffraction. SFCA and SFCA-I are the key bonding phases in iron ore sinter, and an improved understanding of their formation mechanisms may lead to improved efficiency of industrial sintering processes. During heating, SFCA-I formation at 1327 K to 1392 K (1054 °C to 1119 °C) (depending on composition) was associated with the reaction of Fe2O3, 2CaO·Fe2O3, and SiO2. SFCA formation (1380 K to 1437 K [1107 °C to 1164 °C]) was associated with the reaction of CaO·Fe2O3, SiO2, and a phase with average composition 49.60, 9.09, 0.14, 7.93, and 32.15 wt pct Fe, Ca, Si, Al, and O, respectively. Increasing Al2O3 concentration in the starting sinter mixture increased the temperature range over which SFCA-I was stable before the formation of SFCA, and it stabilized SFCA to a higher temperature before it melted to form a Fe3O4 + melt phase assemblage (1486 K to 1581 K [1213 °C to 1308 °C]). During cooling, the first phase to crystallize from the melt (1452 K to 1561 K [1179 °C to 1288 °C]) was an Fe-rich phase, similar in composition to SFCA-I, and it had an average composition 58.88, 6.89, 0.82, 3.00, and 31.68 wt pct Fe, Ca, Si, Al, and O, respectively. At lower temperatures (1418 K to 1543 K [1145 °C to 1270 °C]), this phase reacted with melt to form SFCA. Increasing Al2O3 increased the temperature at which crystallization of the Fe-rich phase occurred, increased the temperature at which crystallization of SFCA occurred, and suppressed the formation of Fe2O3 (1358 K to 1418 K [1085 °C to 1145 °C]) to lower temperatures.

  14. Volatile sulphur compounds-forming abilities of lactic acid bacteria: C-S lyase activities.

    PubMed

    Bustos, Irene; Martínez-Bartolomé, Miguel A; Achemchem, Fouad; Peláez, Carmen; Requena, Teresa; Martínez-Cuesta, M Carmen

    2011-08-01

    Volatile sulphur compounds (VSCs) are of prime importance in the overall aroma of cheese and make a significant contribution to their typical flavours. Thus, the control of VSCs formation offers considerable potential for industrial applications. Here, lactic acid bacteria (LAB) from different ecological origins were screened for their abilities to produce VSCs from L-methionine. From the data presented, VSC-forming abilities were shown to be strain-specific and were correlated with the C-S lyase enzymatic activities determined using different approaches. High VSCs formation were detected for those strains that were also shown to possess high thiol-producing abilities (determined either by agar plate or spectrophotometry assays). Moreover, differences in C-S lyase activities were shown to correspond with the enzymatic potential of the strains as determined by in situ gel visualization. Therefore, the assessment of the C-S lyase enzymatic potential, by means of either of these techniques, could be used as a valuable approach for the selection of LAB strains with high VSC-producing abilities thus, representing an effective way to enhance cheese sulphur aroma compounds synthesis. In this regard, this study highlights the flavour forming potential of the Streptococcus thermophilus STY-31, that therefore could be used as a starter culture in cheese manufacture. Furthermore, although C-S lyases are involved in both biosynthetic and catabolic pathways, an association between methionine and cysteine auxotrophy of the selected strains and their VSCs-producing abilities could not be found.

  15. Solid-phase cyclopalladation in S,C,S'-pincer systems: rising alternative for synthesis in solution.

    PubMed

    Aleksanyan, Diana V; Klemenkova, Zinaida S; Vasil'ev, Andrei A; Gorenberg, Arkadii Ya; Nelyubina, Yulia V; Kozlov, Vladimir A

    2015-02-21

    In pursuit of a new and simple approach to complex organometallic systems, the possibility of formation of a palladium-carbon bond in the solid state via direct cyclopalladation has been studied toward several S,C,S'-pincer ligands with thione sulfur donors of different nature. It is found that mixtures of the ligand and PdCl2(NCPh)2 obtained by the manual grinding of reactants in a mortar efficiently undergo solid-phase cyclometalation upon heating in open test tubes without the addition of a solvent to afford the desired pincer-type products in high yields. In the case of the most active bis(thiocarbamoyl) ligand, solid-phase cyclopalladation proceeds even at room temperature. For the challenging bis(thiophosphoryl) derivative, the preformed non-metallated complexes can be successfully used as a starting material to essentially enhance the yield of the desired pincer complex compared to the conventional synthesis in solution. The solid-phase transformation is followed by IR spectroscopy and SEM analysis. The results obtained show that the suggested solid-phase methodology can serve as a powerful alternative to conventional synthesis of pincer complexes in solution.

  16. 2-Benzoylpyridine thiosemicarbazone as a novel reagent for the single pot synthesis of dinuclear Cu(I)-Cu(II) complexes: formation of stable copper(II)-iodide bonds.

    PubMed

    Lobana, Tarlok S; Khanna, Sonia; Butcher, Ray J

    2012-04-28

    2-Benzoylpyridine thiosemicarbazone {R(1)R(2)C(2)=N(2)·N(3)H-C(1)(=S)-N(4)H(2), R(1) = py-N(1), R(2) = Ph; Hbpytsc} with copper(I) iodide in acetonitrile-dichloromethane mixture has formed stable Cu(II)-I bonds in a dark green Cu(II) iodo-bridged dimer, [Cu(2)(II)(μ-I)(2)(η(3)-N(1),N(2),S-bpytsc)(2)] 1. Copper(I) bromide also formed similar Cu(II)-Br bonds in a dark green Cu(II) bromo-bridged dimer, [Cu(2)(II)(μ-Br)(2)(η(3)-N(1),N(2),S-bpytsc)(2)] 3. The formation of dimers 1 and 3 appears to be due to a proton coupled electron transfer (PCET) process wherein copper(I) loses an electron to form copper(II), and this is accompanied by a loss of -N(3)H proton of Hbpytsc ligand resulting in the formation of anionic bpytsc(-). When copper(I) iodide was reacted with triphenylphosphine (PPh(3)) in acetonitrile followed by the addition of 2-benzoylpyridine thiosemicarbazone in dichloromethane (Cu : PPh(3) : Hbpytsc in the molar ratio 1:1:1), both Cu(II) dimer 1 and an orange Cu(I) sulfur-bridged dimer, [Cu(2)(I)I(2)(μ-S-Hbpytsc)(2)(PPh(3))(2)] 2 were formed. Copper(I) bromide with PPh(3) and Hbpytsc also formed Cu(II) dimer 3 and an orange Cu(I) sulfur-bridged dimer, [Cu(2)(I)Br(2)(μ-S-Hbpytsc)(2)(PPh(3))(2)] 4. While complexes 2 and 4 exist as sulfur-bridged Cu(I) dimers, 1 and 3 are halogen-bridged. The central Cu(2)S(2) cores of 2 and 4 as well as Cu(2)X(2) of 1 (X = I) and 3 (X = Br) are parallelograms. One set of Cu(II)-I and Cu(II)-Br bonds are short, while the second set is very long {1, Cu-I, 2.565(1), 3.313(1) Å; 3, Cu-Br, 2.391(1), 3.111(1) Å}. The Cu···Cu separations are long in all four complexes {1, 4.126(1); 2, 3.857(1); 3, 3.227(1); 4, 3.285(1) Å}, more than twice the van der Waals radius of a Cu atom, 2.80 Å. The pyridyl group appears to be necessary for stabilizing the Cu(II)-I bond, as this group can accept π-electrons from the metal. PMID:22395858

  17. Mineral catalysis of the formation of the phosphodiester bond in aqueous solution: The possible role of montmorillonite clays

    NASA Astrophysics Data System (ADS)

    Ferris, James P.; Ertem, Gözen; Kamaluddin; Agarwal, Vipin; Hua, Lu Lin

    The binding of adenosine to Na+-montmorillonite 22A is greater than 5'-AMP, at neutral pH. Adenine derivatives bind more strongly to the clay than the corresponding uracil derivatives. These data are consistent with the protonation of the adenine by the acidic clay surface and a cationic binding of the protonated ring to the anionic clay surface. Other forces must be operative in the binding of uracil derivatives to the clay since the uracil ring system is not basic. The reaction of the 5'-AMP with water soluble carbodiimide in the presence of Na+-montmorillonite results in the formation of 2',5'-pApA (18.9%), 3',5'-pApA (11%), and AppA (4.8%). When poly(U) is used in place of the clay the product yields are 2',5',-pApA (15.5%), 3',5'-pApA (3.7%) and AppA (14.9%). The cyclic nucleotide, c(pA)2 is also formed when poly(U) is used. AppA is the principal reaction product when neither clay nor poly(U) is present in the reaction mixture. When 2'-deoxy-5'-AMP reacts with carbodiimide in the presence of Na+-montmorillonite 22A the products are dpApA (4.8%), dAppApA (4.5%) and dAppA (17.4%). Cyclic 3',5'-dAMP is the main product (14%) of the reaction of 2'-deoxy-3'-AMP.

  18. Mineral catalysis of the formation of the phosphodiester bond in aqueous solution: the possible role of montmorillonite clays.

    PubMed

    Ferris, J P; Ertem, G; Kamaluddin; Agarwal, V; Hua, L L

    1989-01-01

    The binding of adenosine to Na(+)-montmorillonite 22A is greater than 5'-AMP, at neutral pH. Adenine derivatives bind more strongly to the clay than the corresponding uracil derivatives. These data are consistent with the protonation of the adenine by the acidic clay surface and a cationic binding of the protonated ring to the anionic clay surface. Other forces must be operative in the binding of uracil derivatives to the clay since the uracil ring system is not basic. The reaction of the 5'-AMP with water soluble carbodiimide in the presence of Na(+)-montmorillonite results in the formation of 2',5'-pApA (18.9%), 3',5'-pApA (11%), and AppA (4.8%). When poly(U) is used in place of the clay the product yields are 2',5'-pApA (15.5%), 3',5'-pApA (3.7%) and AppA (14.9%). The cyclic nucleotide, c(pA)2 is also formed when poly(U) is used. AppA is the principal reaction product when neither clay nor poly(U) is present in the reaction mixture. When 2'-deoxy-5'-AMP reacts with carbodiimide in the presence of Na(+)-montmorillonite 22A the products are dpApA (4.8%), dAppApA (4.5%) and dAppA (17.4%). Cyclic 3',5'-dAMP is the main product (14%) of the reaction of 2'-deoxy-3'-AMP.

  19. Hydrogen Implantation in Silicates: The role of solar wind in OH bond formation on the lunar surface

    NASA Astrophysics Data System (ADS)

    Schaible, Micah J; Baragiola, Raul

    2014-06-01

    Airless bodies in space such as the Moon, asteroids and interplanetary dust particles are subject to bombardment from energetic electrons and ions, ultraviolet photons, micrometeorites and cosmic rays. These bombarding particles modify optical, chemical and physical characteristics of the ices and minerals that make up these bodies in a process known as space weathering. In particular, solar wind protons implanted in silicate materials can participate in hydroxylation reactions with the oxygen to form OH. This mechanism has been suggested to explain a reported 3-14% absorption signal identified as OH on the surface of lunar soil grains and present in decreasing magnitude from polar to equatorial latitudes. With the goal of determining a precise OH formation rate due to H+ implantation in silicates, a series of experiments were carried out on terrestrial minerals as analogs to lunar and interstellar material.Experiments were carried out under UHV pressures (<10-9 Torr) and irradiation was performed using a mass analyzed ion accelerator. The samples were first outgassed to ~200 °C for 12 hrs then directly transferred to the analysis position without exposure to laboratory air. In-situ transmission FTIR spectroscopy was used to determine the content of OH in thermally grown silicon oxide and San Carlos olivine, before and after irradiated with 1 - 5 keV H+ ions. The increase in Si-OH content due to irradiation was determined by subtracting the unirradiated spectra from the irradiated spectra. The implanted protons induced OH stretch absorptions in the mid-infrared peaked at 3673 cm-1 for SiO2 and 3570 cm-1 for olivine. The initial yield (OH formed per incident ion) was ~90% and the OH absorption band was found to saturate at implantation fluences of ~2x1017 H/cm2. Irradiation also modified the Si-O stretch band at ~1090 cm-1 (9.2 μm) causing an exponential decrease in the peak height with increasing fluence and the appearance of a silanol structure peaking at ~1030

  20. Bond Issues.

    ERIC Educational Resources Information Center

    Pollack, Rachel H.

    2000-01-01

    Notes trends toward increased borrowing by colleges and universities and offers guidelines for institutions that are considering issuing bonds to raise money for capital projects. Discussion covers advantages of using bond financing, how use of bonds impacts on traditional fund raising, other cautions and concerns, and some troubling aspects of…

  1. Sticker Bonding.

    ERIC Educational Resources Information Center

    Frazier, Laura Corbin

    2000-01-01

    Introduces a science activity on the bonding of chemical compounds. Assigns students the role of either a cation or anion and asks them to write the ions they may bond with. Assesses students' understanding of charge, bonding, and other concepts. (YDS)

  2. Heats of formation and bond energies of the H(3-n)BX(n) compounds for (X = F, Cl, Br, I, NH2, OH, and SH).

    PubMed

    Grant, Daniel J; Dixon, David A

    2009-01-29

    Atomization energies at 0 K and heats of formation at 0 and 298 K are predicted for the borane compounds H(3-n)BX(n) for (X = F, Cl, Br, I, NH2, OH, and SH) and various radicals from coupled cluster theory (CCSD(T)) calculations with an effective core potential correlation-consistent basis set for I. In order to achieve near chemical accuracy (+/-1.5 kcal/mol), three corrections were added to the complete basis set binding energies calculated from frozen core coupled cluster theory energies: a correction for core-valence effects, a correction for scalar relativistic effects, and a correction for first-order atomic spin-orbit effects. Vibrational zero point energies were computed at the MP2 level. The calculated heats of formation are in excellent agreement with the available experimental data for the closed shell molecules, but show larger differences with the reported "experimental" values for the BX2 radicals. The heats of formation of the BX2 radicals were also calculated at the G3(MP2) level of theory, and the values were in excellent agreement with the more accurate CCSD(T) values. On the basis of extensive comparisons with experiment for a wide range of compounds, our calculated values for these radicals should be good to +/-1.5 kcal/mol and thus are to be preferred over the experimental values. The accurately calculated heats of formation allow us to predict the B-X and B-H adiabatic bond dissociation energies (BDEs) to within +/-1.5 kcal/mol. The B-F BDEs in the H(3-n)BF(n) compounds and in BF (1Sigma+) are the largest BDEs in comparison to the other substituents that were investigated. The second and third largest B-X BDEs in the H(3-n)BX(n) and BX compounds are predicted for X = OH and NH2, respectively. The substituents have a minimal effect on the B-H BDEs in HBX2 and H2BX compared to the first B-H BDE of borane. The differences in adiabatic and diabatic BDEs, which are related to the reorganization energy in the product, can be estimated from singlet

  3. Calorimetric and computational study of thiacyclohexane 1-oxide and thiacyclohexane 1,1-dioxide (thiane sulfoxide and thiane sulfone). Enthalpies of formation and the energy of the S=O bond.

    PubMed

    Roux, María Victoria; Temprado, Manuel; Jiménez, Pilar; Dávalos, Juan Zenón; Notario, Rafael; Guzmán-Mejía, Ramón; Juaristi, Eusebio

    2003-03-01

    A rotating-bomb combustion calorimeter specifically designed for the study of sulfur-containing compounds [J. Chem. Thermodyn. 1999, 31, 635] has been used for the determination of the enthalpy of formation of thiane sulfone, 4, Delta(f)H(o) m(g) = -394.8 +/- 1.5 kJ x mol(-1). This value stands in stark contrast with the enthalpy of formation reported for thiane itself, Delta(f)H(o) m(g) = -63.5 +/- 1.0 kJ x mol(-1), and gives evidence of the increased electronegativity of the sulfur atom in the sulfonyl group, which leads to significantly stronger C-SO2 bonds. Given the known enthalpy of formation of atomic oxygen in the gas phase, Delta(f)H(o) m(O,g) = +249.18 kJ x mol(-1), and the reported bond dissociation energy for the S=O bond in alkyl sulfones, BDE(S=O) = +470.0 kJ x mol(-1), it was possible to estimate the enthalpy of formation of thiane sulfoxide, 5, a hygroscopic compound not easy to use in experimental calorimetric measurements, Delta(f)H(o) m(5) = -174.0 kJ x mol(-1). The experimental enthalpy of formation of both 4 and 5 were closely reproduced by theoretical calculations at the G2(MP2)+ level, Delta(f)H(o) m(4) = -395.0 kJ x mol(-1) and Delta(f)H(o) m(5) = -178.0 kJ x mol(-1). Finally, calculated G2(MP2)+ values for the bond dissociation energy of the S=O bond in cyclic sulfoxide 5 and sulfone 4 are +363.7 and +466.2 kJ x mol(-1), respectively. PMID:12608789

  4. Calorimetric and computational study of thiacyclohexane 1-oxide and thiacyclohexane 1,1-dioxide (thiane sulfoxide and thiane sulfone). Enthalpies of formation and the energy of the S=O bond.

    PubMed

    Roux, María Victoria; Temprado, Manuel; Jiménez, Pilar; Dávalos, Juan Zenón; Notario, Rafael; Guzmán-Mejía, Ramón; Juaristi, Eusebio

    2003-03-01

    A rotating-bomb combustion calorimeter specifically designed for the study of sulfur-containing compounds [J. Chem. Thermodyn. 1999, 31, 635] has been used for the determination of the enthalpy of formation of thiane sulfone, 4, Delta(f)H(o) m(g) = -394.8 +/- 1.5 kJ x mol(-1). This value stands in stark contrast with the enthalpy of formation reported for thiane itself, Delta(f)H(o) m(g) = -63.5 +/- 1.0 kJ x mol(-1), and gives evidence of the increased electronegativity of the sulfur atom in the sulfonyl group, which leads to significantly stronger C-SO2 bonds. Given the known enthalpy of formation of atomic oxygen in the gas phase, Delta(f)H(o) m(O,g) = +249.18 kJ x mol(-1), and the reported bond dissociation energy for the S=O bond in alkyl sulfones, BDE(S=O) = +470.0 kJ x mol(-1), it was possible to estimate the enthalpy of formation of thiane sulfoxide, 5, a hygroscopic compound not easy to use in experimental calorimetric measurements, Delta(f)H(o) m(5) = -174.0 kJ x mol(-1). The experimental enthalpy of formation of both 4 and 5 were closely reproduced by theoretical calculations at the G2(MP2)+ level, Delta(f)H(o) m(4) = -395.0 kJ x mol(-1) and Delta(f)H(o) m(5) = -178.0 kJ x mol(-1). Finally, calculated G2(MP2)+ values for the bond dissociation energy of the S=O bond in cyclic sulfoxide 5 and sulfone 4 are +363.7 and +466.2 kJ x mol(-1), respectively.

  5. Formation of C-C and C-O bonds and oxygen removal in reactions of alkanediols, alkanols, and alkanals on copper catalysts.

    PubMed

    Sad, María E; Neurock, Matthew; Iglesia, Enrique

    2011-12-21

    This study reports evidence for catalytic deoxygenation of alkanols, alkanals, and alkanediols on dispersed Cu clusters with minimal use of external H(2) and with the concurrent formation of new C-C and C-O bonds. These catalysts selectively remove O-atoms from these oxygenates as CO or CO(2) through decarbonylation or decarboxylation routes, respectively, that use C-atoms present within reactants or as H(2)O using H(2) added or formed in situ from CO/H(2)O mixtures via water-gas shift. Cu catalysts fully convert 1,3-propanediol to equilibrated propanol-propanal intermediates that subsequently form larger oxygenates via aldol-type condensation and esterification routes without detectable involvement of the oxide supports. Propanal-propanol-H(2) equilibration is mediated by their chemisorption and interconversion at surfaces via C-H and O-H activation and propoxide intermediates. The kinetic effects of H(2), propanal, and propanol pressures on turnover rates, taken together with measured selectivities and the established chemical events for base-catalyzed condensation and esterification reactions, indicate that both reactions involve kinetically relevant bimolecular steps in which propoxide species, acting as the base, abstract the α-hydrogen in adsorbed propanal (condensation) or attack the electrophilic C-atom at its carbonyl group (esterification). These weakly held basic alkoxides render Cu surfaces able to mediate C-C and C-O formation reactions typically catalyzed by basic sites inherent in the catalyst, instead of provided by coadsorbed organic moieties. Turnover rates for condensation and esterification reactions decrease with increasing Cu dispersion, because low-coordination corner and edge atoms prevalent on small clusters stabilize adsorbed intermediates and increase the activation barriers for the bimolecular kinetically relevant steps required for both reactions. PMID:22023723

  6. Photoinduced, Copper-Catalyzed Carbon-Carbon Bond Formation with Alkyl Electrophiles: Cyanation of Unactivated Secondary Alkyl Chlorides at Room Temperature.

    PubMed

    Ratani, Tanvi S; Bachman, Shoshana; Fu, Gregory C; Peters, Jonas C

    2015-11-01

    We have recently reported that, in the presence of light and a copper catalyst, nitrogen nucleophiles such as carbazoles and primary amides undergo C-N coupling with alkyl halides under mild conditions. In the present study, we establish that photoinduced, copper-catalyzed alkylation can also be applied to C-C bond formation, specifically, that the cyanation of unactivated secondary alkyl chlorides can be achieved at room temperature to afford nitriles, an important class of target molecules. Thus, in the presence of an inexpensive copper catalyst (CuI; no ligand coadditive) and a readily available light source (UVC compact fluorescent light bulb), a wide array of alkyl halides undergo cyanation in good yield. Our initial mechanistic studies are consistent with the hypothesis that an excited state of [Cu(CN)2](-) may play a role, via single electron transfer, in this process. This investigation provides a rare example of a transition metal-catalyzed cyanation of an alkyl halide, as well as the first illustrations of photoinduced, copper-catalyzed alkylation with either a carbon nucleophile or a secondary alkyl chloride. PMID:26491957

  7. Formation of cationic [RP5Cl](+)-cages via insertion of [RPCl](+)-cations into a P-P bond of the P4 tetrahedron.

    PubMed

    Holthausen, Michael H; Feldmann, Kai-Oliver; Schulz, Stephen; Hepp, Alexander; Weigand, Jan J

    2012-03-19

    Fluorobenzene solutions of RPCl(2) and a Lewis acid such as ECl(3) (E = Al, Ga) in a 1:1 ratio are used as reactive sources of chlorophosphenium cations [RPCl](+), which insert into P-P bonds of dissolved P(4). This general protocol represents a powerful strategy for the synthesis of new cationic chloro-substituted organophosphorus [RP(5)Cl](+)-cages as illustrated by the isolation of several monocations (21a-g(+)) in good to excellent yields. For singular reaction two possible reaction mechanisms are proposed on the basis of quantum chemical calculations. The intriguing NMR spectra and structures of the obtained cationic [RP(5)Cl](+)-cages are discussed. Furthermore, the reactions of dichlorophosphanes and the Lewis acid GaCl(3) in various stoichiometries are investigated to obtain a deeper understanding of the species involved in these reactions. The formation of intermediates such as RPCl(2)·GaCl(3) (14) adducts, dichlorophosphanylchlorophosphonium cations [RPCl(2)-RPCl](+) (16(+)) and [RPCl(2)-RPCl-GaCl(3)](+) (17(+)) in reaction mixtures of RPCl(2) and GaCl(3) in fluorobenzene strongly depends on the basicity of the dichlorophosphane RPCl(2) (R = tBu, Cy, iPr, Et, Me, Ph, C(6)F(5)) and the reaction stoichiometry.

  8. Photoinduced, Copper-Catalyzed Carbon-Carbon Bond Formation with Alkyl Electrophiles: Cyanation of Unactivated Secondary Alkyl Chlorides at Room Temperature.

    PubMed

    Ratani, Tanvi S; Bachman, Shoshana; Fu, Gregory C; Peters, Jonas C

    2015-11-01

    We have recently reported that, in the presence of light and a copper catalyst, nitrogen nucleophiles such as carbazoles and primary amides undergo C-N coupling with alkyl halides under mild conditions. In the present study, we establish that photoinduced, copper-catalyzed alkylation can also be applied to C-C bond formation, specifically, that the cyanation of unactivated secondary alkyl chlorides can be achieved at room temperature to afford nitriles, an important class of target molecules. Thus, in the presence of an inexpensive copper catalyst (CuI; no ligand coadditive) and a readily available light source (UVC compact fluorescent light bulb), a wide array of alkyl halides undergo cyanation in good yield. Our initial mechanistic studies are consistent with the hypothesis that an excited state of [Cu(CN)2](-) may play a role, via single electron transfer, in this process. This investigation provides a rare example of a transition metal-catalyzed cyanation of an alkyl halide, as well as the first illustrations of photoinduced, copper-catalyzed alkylation with either a carbon nucleophile or a secondary alkyl chloride.

  9. Luminescent pincer platinum(II) complexes with emission quantum yields up to almost unity: photophysics, photoreductive C-C bond formation, and materials applications.

    PubMed

    Chow, Pui-Keong; Cheng, Gang; Tong, Glenna So Ming; To, Wai-Pong; Kwong, Wai-Lun; Low, Kam-Hung; Kwok, Chi-Chung; Ma, Chensheng; Che, Chi-Ming

    2015-02-01

    Luminescent pincer-type Pt(II)  complexes supported by C-deprotonated π-extended tridentate RC^N^NR' ligands and pentafluorophenylacetylide ligands show emission quantum yields up to almost unity. Femtosecond time-resolved fluorescence measurements and time-dependent DFT calculations together reveal the dependence of excited-state structural distortions of [Pt(RC^N^NR')(CC-C6 F5 )] on the positional isomers of the tridentate ligand. Pt complexes [Pt(R-C^N^NR')(CC-Ar)] are efficient photocatalysts for visible-light-induced reductive CC bond formation. The [Pt(R-C^N^NR')(CC-C6 F5 )] complexes perform strongly as phosphorescent dopants for green- and red-emitting organic light-emitting diodes (OLEDs) with external quantum efficiency values over 22.1 %. These complexes are also applied in two-photon cellular imaging when incorporated into mesoporous silica nanoparticles (MSNs).

  10. Phylogeny of the Vitamin K 2,3-Epoxide Reductase (VKOR) Family and Evolutionary Relationship to the Disulfide Bond Formation Protein B (DsbB) Family.

    PubMed

    Bevans, Carville G; Krettler, Christoph; Reinhart, Christoph; Watzka, Matthias; Oldenburg, Johannes

    2015-07-29

    In humans and other vertebrate animals, vitamin K 2,3-epoxide reductase (VKOR) family enzymes are the gatekeepers between nutritionally acquired K vitamins and the vitamin K cycle responsible for posttranslational modifications that confer biological activity upon vitamin K-dependent proteins with crucial roles in hemostasis, bone development and homeostasis, hormonal carbohydrate regulation and fertility. We report a phylogenetic analysis of the VKOR family that identifies five major clades. Combined phylogenetic and site-specific conservation analyses point to clade-specific similarities and differences in structure and function. We discovered a single-site determinant uniquely identifying VKOR homologs belonging to human pathogenic, obligate intracellular prokaryotes and protists. Building on previous work by Sevier et al. (Protein Science 14:1630), we analyzed structural data from both VKOR and prokaryotic disulfide bond formation protein B (DsbB) families and hypothesize an ancient evolutionary relationship between the two families where one family arose from the other through a gene duplication/deletion event. This has resulted in circular permutation of primary sequence threading through the four-helical bundle protein folds of both families. This is the first report of circular permutation relating distant a-helical membrane protein sequences and folds. In conclusion, we suggest a chronology for the evolution of the five extant VKOR clades.

  11. The role of formation of continues thermally grown oxide layer on the nanostructured NiCrAlY bond coat during thermal exposure in air

    NASA Astrophysics Data System (ADS)

    Daroonparvar, Mohammadreza; Hussain, Mohammad Sakhawat; Yajid, Muhammad Azizi Mat

    2012-11-01

    In recent years, the life expectancy of thermal barrier coatings is expected to be improved by applying the nanostructured NiCrAlY bond coat. The present paper reviews the main technique used in the synthesis of nano-crystalline NiCrAlY powders using a planetary ball mill and investigates the microstructural evolution of thermally grown oxide (TGO) layer on the conventional and nanostructured atmospheric plasma sprayed (APS) NiCrAlY coatings in thermal barrier coating (TBC) systems during oxidation. Microstructural characterization showed that the growth of Ni(Cr,Al)2O4 (as spinel) and NiO on the surface of Al2O3 layer (as pure TGO) in nano TBC system was much lower compared to that of normal TBC system during thermal exposure at 1150 °C. These two oxides play a detrimental role in causing crack nucleation and growth, reducing the life of the TBC in air. This microstructure optimization of TGO layer is primarily associated with the formation of a continuous, dense, uniform Al2O3 layer (at first 24 h of isothermal oxidation at 1000 °C) over the nanostructured NiCrAlY coating.

  12. An Electron‐Poor C64 Nanographene by Palladium‐Catalyzed Cascade C−C Bond Formation: One‐Pot Synthesis and Single‐Crystal Structure Analysis

    PubMed Central

    Seifert, Sabine; Shoyama, Kazutaka; Schmidt, David

    2016-01-01

    Abstract Herein, we report the one‐pot synthesis of an electron‐poor nanographene containing dicarboximide groups at the corners. We efficiently combined palladium‐catalyzed Suzuki–Miyaura cross‐coupling and dehydrohalogenation to synthesize an extended two‐dimensional π‐scaffold of defined size in a single chemical operation starting from N‐(2,6‐diisopropylphenyl)‐4,5‐dibromo‐1,8‐naphthalimide and a tetrasubstituted pyrene boronic acid ester as readily accessible starting materials. The reaction of these precursors under the conditions commonly used for Suzuki–Miyaura cross‐coupling afforded a C64 nanographene through the formation of ten C−C bonds in a one‐pot process. Single‐crystal X‐ray analysis unequivocally confirmed the structure of this unique extended aromatic molecule with a planar geometry. The optical and electrochemical properties of this largest ever synthesized planar electron‐poor nanographene skeleton were also analyzed. PMID:27058998

  13. Photoinduced, Copper-Catalyzed Carbon–Carbon Bond Formation with Alkyl Electrophiles: Cyanation of Unactivated Secondary Alkyl Chlorides at Room Temperature

    PubMed Central

    Ratani, Tanvi S.; Bachman, Shoshana; Fu, Gregory C.; Peters, Jonas C.

    2015-01-01

    We have recently reported that, in the presence of light and a copper catalyst, nitrogen nucleophiles such as carbazoles and primary amides undergo C–N coupling with alkyl halides under mild conditions. In the present study, we establish that photoinduced, copper-catalyzed alkylation can also be applied to C–C bond formation, specifically, that the cyanation of unactivated secondary alkyl chlorides can be achieved at room temperature to afford nitriles, an important class of target molecules. Thus, in the presence of an inexpensive copper catalyst (CuI; no ligand co-additive) and a readily available light source (UVC compact fluorescent light bulb), a wide array of alkyl halides undergo cyanation in good yield. Our initial mechanistic studies are consistent with the hypothesis that an excited state of [Cu(CN)2]− may play a role, via single electron transfer, in this process. This investigation provides a rare example of a transition metal-catalyzed cyanation of an alkyl halide, as well as the first illustrations of photoinduced, copper-catalyzed alkylation with either a carbon nucleophile or a secondary alkyl chloride. PMID:26491957

  14. New insights into water bonding during early tricalcium silicate hydration with quasielastic neutron scattering

    SciTech Connect

    Gutberlet, T.; Hilbig, H.; Beddoe, R.E.; Lohstroh, W.

    2013-09-15

    New information on the water bonding during the first 36 h of hydration of tricalcium silicate was obtained using the high neutron flux at the sample position of the time-of-flight spectrometer (TOFTOF), FRM II in Garching, Germany, together with {sup 29}Si NMR and X-ray diffraction measurements. A rapid increase in the amount of constrained water was observed at the beginning of the induction period. This is attributed to the formation of an early C-S-H with a large specific surface area (around 800 m{sup 2}/g). During subsequent hydration, the amount of constrained water, as given by the total surface area of the hydration products, is controlled by (a) the formation of new metastable early C-S-H which increases total surface area and (b) polymerisation processes which reduce total surface area. The relative contribution of these processes varies during hydration.

  15. Structural characterization of C-S-H and C-A-S-H samples-Part II: Local environment investigated by spectroscopic analyses

    SciTech Connect

    Renaudin, Guillaume; Russias, Julie; Leroux, Fabrice; Cau-dit-Coumes, Celine; Frizon, Fabien

    2009-12-15

    Spectroscopic studies ({sup 1}H, {sup 23}Na and {sup 27}Al MAS NMR and Raman spectroscopy) have been used to characterize three series of C-S-H samples (0.8C-S-H series, one aluminum inserted C-S-H series (named C-A-S-H series), and one sodium and aluminum inserted C-S-H series (named C-N-A-S-H series). Previous Rietveld analyses have been performed on the two first series and have clearly shown that (1) a unique 'tobermorite M defect' structural model allows to describe the C-S-H structure whatever the Ca/Si ratio and (2) the insertion of aluminum into the C-S-H structure led to the degradation of the crystallinity and to a systematic increase of the basal spacing of about 2 A regardless the Ca/(Si+Al) ratio (at a constant Al/Si ratio of 0.1). Spectroscopic investigations indicate that the main part of the Al atoms is readily incorporated into the interlayer region of the C-S-H structure. Al atoms are mainly inserted as four-fold coordinated aluminates in the dreierketten silicate chain (either in bridging or paired tetrahedra) at low Ca/Si ratio. Four-fold aluminates are progressively replaced by six-fold coordinated aluminates located into the interlayer region of the C-S-H structure and bonded to silicate chains. Investigation of the hydrogen bonding in C-S-H indicates that the main part of the hydrogen bonds is intra-main layer, and thus explains the low stacking cohesion of the C-S-H structure leading to its nanometric crystal size and the OD character of the tobermorite like structures. - Graphical abstract: The insertion of aluminum atoms into the C-S-H structure has been investigated by spectroscopic analyses ({sup 27}Al and {sup 1}H MAS NMR and Raman). The previously determined structural continuity, when increasing the C/S ratio from the C-S-H(I) type to the C-S-H(II) type, has been confirmed even in the presence of aluminum.

  16. Spontaneous formation in the dark, and visible light-induced cleavage, of a Ru-S bond in water: a thermodynamic and kinetic study.

    PubMed

    Bahreman, Azadeh; Limburg, Bart; Siegler, Maxime A; Bouwman, Elisabeth; Bonnet, Sylvestre

    2013-08-19

    In this work the thermal and photochemical reactivity of a series of ruthenium complexes [Ru(terpy)(N-N)(L)](X)2 (terpy = 2,2';6',2″-terpyridine, L = 2-(methylthio)ethanol (Hmte) or water, and X is Cl(-) or PF6(-)) with four different bidentate chelates N-N = bpy (2,2'-bipyridine), biq (2,2'-biquinoline), dcbpy (6,6'-dichloro-2,2'-bipyridine), or dmbpy (6,6'-dimethyl-2,2'-bipyridine), is described. For each chelate N-N the thermodynamic constant of the dark equilibrium between the aqua- and Hmte- complexes, the Hmte photosubstitution quantum yield, and the rate constants of the thermal interconversion between the aqua and Hmte complexes were measured at room temperature. By changing the steric hindrance and electronic properties of the spectator N-N ligand along the series bpy, biq, dcbpy, dmbpy the dark reactivity clearly shifts from a nonlabile equilibrium with N-N = bpy to a very labile thermal equilibrium with N-N = dmbpy. According to variable-temperature rate constant measurements in the dark near pH = 7 the activation enthalpies for the thermal substitution of H2O by Hmte are comparable for all ruthenium complexes, whereas the activation entropies are negative for bpy and biq, and positive for dcbpy and dmbpy complexes. These data are indicative of a change in the substitution mechanism, being interchange associative with nonhindered or poorly hindered chelates (bpy, biq), and interchange dissociative for more bulky ligands (dcbpy, dmbpy). For the most labile dmbpy system, the thermal equilibrium is too fast to allow significant modification of the composition of the mixture using light, and for the nonhindered bpy complex the photosubstitution of Hmte by H2O is possible but thermal binding of Hmte to the aqua complex does not occur at room temperature. By contrast, with N-N = biq or dcbpy the thermodynamic and kinetic parameters describing the formation and breakage of the Ru-S bond lie in a range where the bond forms spontaneously in the dark, but is

  17. Formation of a dinuclear copper(II) complex through the cleavage of CN bond of 1-benzoyl-3-(pyridin-2-yl)-1H-pyrazole

    SciTech Connect

    Shardin, Rosidah; Pui, Law Kung; Yamin, Bohari M.; Kassim, Mohammad B.

    2014-09-03

    A simple mononuclear octahedral copper(II) complex was attempted from the reaction of three moles of 1-benzoyl-3-(pyridin-2-yl)-1H-pyrazole and one mole of copper(II) perchlorate hexahydrate in methanol. However, the product of the reaction was confirmed to be a dinuclear copper(II) complex with μ-(3-(pyridin-2-yl)-pyrazolato) and 3-(pyridin-2-yl)-1H-pyrazole ligands attached to each of the Cu(II) centre atom. The copper(II) ion assisted the cleavage of the C{sub benzoyl}N bond afforded a 3-(pyridin-2-yl)-1H-pyrazole molecule. Deprotonation of the 3-(pyridin-2-yl)-1H-pyrazole gave a 3-(pyridin-2-yl)-pyrazolato, which subsequently reacted with the Cu(II) ion to give the (3-(pyridin-2-yl)-pyrazolato)(3-(pyridin-2-yl)-1H-pyrazole)Cu(II) product moiety. The structure of the dinuclear complex was confirmed by x-ray crystallography. The complex crystallized in a monoclinic crystal system with P2(1)/n space group and cell dimensions of a = 12.2029(8) Å, b = 11.4010(7) Å, c = 14.4052(9) Å and β = 102.414(2)°. The compound was further characterized by mass spectrometry, CHN elemental analysis, infrared and UV-visible spectroscopy and the results concurred with the x-ray structure. The presence of d-d transition at 671 nm (ε = 116 dm{sup 3} mol{sup −1} cm{sup −1}) supports the presence of Cu(II) centres.

  18. Sister M. Madeleva Wolff, C.S.C.

    ERIC Educational Resources Information Center

    Petit, M. Loretta

    2006-01-01

    Sister M. Madeleva Wolff, C.S.C., teacher, essayist, poet, and college administrator, through her creative ability and innovative practices made possible major contributions to Catholic education in her lifetime. Without her strong personality and boundless energy, many of her dreams for an ideal college curriculum would not have come to fruition.…

  19. Formation of hydrogen-bonded chains through inter- and intra-molecular hydrogen bonds by a strong base of guanidine-like character and 5,5'-dibromo-2,2'-biphenols

    NASA Astrophysics Data System (ADS)

    Wojciechowski, G.; Brzezinski, B.

    2002-04-01

    5,5'-dibromo-2,2'-biphenol mixtures with 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene (MTBD) were studied by FTIR as well as 1H NMR spectroscopy. In chloroform, a proton transfer from DBBPh to MTBD occurs and the protonated MTBD molecule is hydrogen-bonded to the chain formed between 5,5'-dibromo-2,2'-biphenol and 5,5'-dibromo-2,2'-biphenolate molecule. In acetonitrile, the complex dissociates and hence protonated MTBD molecules and hydrogen-bonded chains formed between 5,5'-dibromo-2,2'-biphenol and 5,5'-dibromo-2,2'-biphenolate are present. The hydrogen bonds of these chains show large proton polarizability.

  20. S-OO bond dissociation energies and enthalpies of formation of the thiomethyl peroxyl radicals CH{sub 3}S(O){sub n}OO (n=0,1,2)

    SciTech Connect

    Salta, Zoi; Kosmas, Agnie Mylona; Lesar, Antonija

    2014-10-06

    Optimized geometries, S-OO bond dissociation energies and enthalpies of formation for a series of thiomethyl peroxyl radicals are investigated using high level ab initio and density functional theory methods. The results show that the S-OO bond dissociation energy is largest in the methylsulfonyl peroxyl radical, CH{sub 3}S(O){sub 2}OO, which contains two sulfonic type oxygen atoms followed by the methylthiyl peroxyl radical, CH{sub 3}SOO. The methylsulfinyl peroxyl radical, CH{sub 3}S(O)OO, which contains only one sulfonic type oxygen shows the least stability with regard to dissociation to CH{sub 3}S(O)+O{sub 2}. This stabilization trend is nicely reflected in the variations of the S-OO bond distance which is found to be shortest in CH{sub 3}S(O){sub 2}OO and longest in CH{sub 3}S(O)OO.

  1. N-Cα Bond Cleavage of Zinc-Polyhistidine Complexes in Electron Transfer Dissociation Mediated by Zwitterion Formation: Experimental Evidence and Theoretical Analysis of the Utah-Washington Model.

    PubMed

    Asakawa, Daiki; Yamashita, Asuka; Kawai, Shikiho; Takeuchi, Takae; Wada, Yoshinao

    2016-02-11

    Electron capture dissociation (ECD) and electron transfer dissociation (ETD) of gas-phase ions are widely used for peptide/protein sequencing by mass spectrometry. To understand the general mechanism of ECD/ETD of peptides, we focused on the ETD fragmentation of metal-peptide complexes in the absence of remote protons. Since Zn(2+) strongly binds to neutral histidine residues in peptides, Zn(2+)-polyhistidine complexation does not generate any remote protons. However, in the absence of remote protons, electron transfer to the Zn(2+)-polyhistidine complex induced the N-Cα bond cleavage. The formation pathway for the ETD products was investigated by density functional theory calculations. The calculations showed that the charge-reduced zinc-peptide radical, [M + Zn](•+), can exist in the low-energy zwitterionic amide π* states, which underwent homolytic N-Cα bond dissociation. The homolytic cleavage resulted in the donation of an electron from the N-Cα bond to the nitrogen atom, producing an iminoenol c' anion. The counterpart z(•) radical contained a radical site on the α-carbon atom. The iminoenol c' anion then abstracted a proton to presumably form the more stable amide c' fragment. The current experimental and computational joint study strongly suggested that the N-Cα bond cleavage occurred through the aminoketyl radical-anion formation for Zn(2+)-polyhistidine complexes in ETD. PMID:26673038

  2. DDQ-Promoted Benzylic/Allylic sp(3) C-H Activation for the Stereoselective Intramolecular C-N Bond Formation: Applications to the Total Synthesis of (-)-Codonopsinine, (+)-5-epi-Codonopsinine, (+)-Radicamine B, and (-)-Codonopsinol.

    PubMed

    Lingamurthy, Macha; Jagadeesh, Yerri; Ramakrishna, Katakam; Rao, Batchu Venkateswara

    2016-02-19

    This is the first report on an intramolecular C-N bond formation of an amide-tethered benzylic/allylic system using DDQ under neutral conditions which has been successfully applied to the total synthesis of naturally occurring pyrolidine alkaloids. The key steps for the synthesis of corresponding precursors involve Julia-Kociensky olefination/cross-metathesis and dihydroxylation reactions, and this methodology is also extended to the ω-unsaturated N-sulfanilamide to furnish piperidines. PMID:26771920

  3. M3B2 and M5B3 Formation in Diffusion-Affected Zone During Transient Liquid Phase Bonding Single-Crystal Superalloys

    NASA Astrophysics Data System (ADS)

    Sheng, Naicheng; Hu, Xiaobing; Liu, Jide; Jin, Tao; Sun, Xiaofeng; Hu, Zhuangqi

    2015-04-01

    Precipitates in the diffusion-affected zone (DAZ) during transient liquid phase bonding (TLP) single-crystal superalloys were observed and investigated. Small size and dendritic-shaped precipitates were identified to be M3B2 borides and intergrowth of M3B2/M5B3 borides. The orientation relationships among M3B2, M5B3, and matrix were determined using transmission electron microscope (TEM). Composition characteristics of these borides were also analyzed by TEM energy-dispersive spectrometer. Because this precipitating phenomenon deviates from the traditional parabolic transient liquid phase bonding model which assumed a precipitates free DAZ during TLP bonding, some correlations between the deviation of the isothermal solidification kinetics and these newly observed precipitating behaviors were discussed and rationalized when bonding the interlayer containing the high diffusivity melting point depressant elements and substrates of low solubility.

  4. Polynuclear platinum phosphanido/phosphinito complexes: formation of P-O and P-O-P bonds through reductive coupling processes.

    PubMed

    Ara, Irene; Forniés, Juan; Ibáñez, Susana; Mastrorilli, Piero; Todisco, Stefano; Gallo, Vito

    2016-02-01

    A mixture of the asymmetric complexes of formula [(RF)2Pt(μ-Ph2PO)(μ-PPh2)Pt(μ-PPh2)2Pt(solv)(solv')] [(1-(solv)(solv')] (solv, solv' = acetone, H2O, CH3CN) has been prepared by reaction of [(RF)2Pt(II)(μ-PPh2)2Pt(II)(μ-PPh2)2Pt(II)(NCCH3)2] with AgClO4 in CH3CN/acetone. The lability of the Pt-solvent bonds allows the displacement of the coordinated solvent molecules by dppm or Cl(-) and the isolation of the tri- or hexanuclear phosphanido/phosphinito Pt(ii) complexes [(C6F5)2Pt(μ-PPh2)(μ-PPh2O)Pt(μ-PPh2)2Pt(dppm)] (2) or [NBu4]2[(C6F5)2Pt(μ-PPh2)(μ-PPh2O)Pt(μ-PPh2)2Pt(μ-Cl)2Pt(μ-PPh2)2Pt(μ-PPh2)(μ-PPh2O)Pt(C6F5)2] (as a mixture of the two possible isomers 4a and 4b). Complex 2 reacts with AgClO4 to form the tetranuclear derivative [(C6F5)2Pt(μ-PPh2)(μ-PPh2O)Pt(μ-PPh2)2Pt(dppm)Ag(OClO3)] (3), which displays two Pt-Ag donor-acceptor bonds. The mixture of the hexanuclear isomers 4a-4b reacts with Tl(acac) producing the acetylacetonato complex [NBu4][(C6F5)2Pt(μ-PPh2)(μ-PPh2O)Pt(μ-PPh2)2Pt(acac)] (5) which, upon reaction with HCl, yields back the mixture of 4a-4b. The reaction of 4a-4b with PPh3 produces [NBu4][(C6F5)2Pt(μ-PPh2)(μ-PPh2O)Pt(μ-PPh2)2Pt(Cl)(PPh3)] (6) as a mixture of isomers with the chloro ligand located syn (6a) or anti (6b) to the PPh2O(-) group. Either the reaction of 6 with AgClO4 or the treatment of 5 with HPPh3ClO4 results in the formation of the species [(C6F5)2Pt(II)(μ-PPh2)2Pt(I)(μ-PPh2OPPh2)Pt(I)(PPh3)] (7) (44 VEC), which can be explained as the consequence of a PPh2O/PPh2 reductive coupling and a rearrangement of ligands in the molecule generating a Pt(ii),Pt(i),Pt(i) compound. All complexes were characterised in the solid state by XRD (only one of the isomers, in the cases of 4 and 6) and in solution by NMR spectroscopy.

  5. Iron and chromium complexes containing tridentate chelates based on nacnac and imino- and methyl-pyridine components: triggering C-X bond formation.

    PubMed

    Morris, Wesley D; Wolczanski, Peter T; Sutter, Jörg; Meyer, Karsten; Cundari, Thomas R; Lobkovsky, Emil B

    2014-07-21

    Nacnac-based tridentate ligands containing a pyridyl-methyl and a 2,6-dialkyl-phenylamine (i.e., (2,6-R2-C6H3N═C(Me)CH═C(Me)NH(CH2py); R = Et, {Et(nn)PM}H; R = (i)Pr, {(i)Pr(nn)PM}H) were synthesized by condensation routes. Treatment of M{N(TMS)2}THFn (M = Cr, n = 2; M = Fe, Co, n = 1; TMS = trimethylsilane; THF = tetrahydrofuran) with {(i)Pr(nn)PM}H) afforded {(i)Pr(nn)PM}MN(TMS)2 (1-M(iPr); M = Cr, Fe); {Et(nn)PM}MN(TMS)2 (1-M(Et); M = Fe, Co) was similarly obtained. {R(nn)PM}FeBr (R = (i)Pr, Et; 2-Fe(R)) were prepared from FeBr2 and {R(nn)PM}Li, and alkylated to generate {R(nn)PM}Fe(neo)Pe (R = (i)Pr, Et; 3-Fe(R)). Carbonylation of 3-Fe(R) provided {(i)Pr(nn)PM}Fe(CO(neo)Pe)CO (4-Fe(iPr)), and carbonylations of 1-Fe(R) (R = Et, (i)Pr) and 1-Cr(iPr) induced deamination to afford {R(nn)PI}Fe(CO)2 (R = (i)Pr, 5-Fe(iPr); Et, 5-Fe(Et)), where PI is pyridine-imine, and {κ(2)-N,N-pyrim-pyr}Cr(CO)4 (6-Cr(iPr)), in which the aryl-amide side of the nacnac attacked the incipient PI group. Carbon-carbon bonds were formed at the imine carbon of the {R(nn)PI} ligand. Addition of [{(i)Pr(nn)PI}(2-)](K(+)(THF)x)2 to FeCl3 generated {(i)Pr(nn)CHpy}2Fe2Cl2 (7-Fe(iPr)), and TMSN3 induced the deamination of 1-Fe(Et), but with disproportionation to provide {[Et(nn)CHpy]2}Fe (8-Fe(Et)). Ph2CN2 induced C-C bond formation with 1-Fe(iPr) via its thermal degradation to ultimately afford {(i)Pr(nn)CHpy}2(FeN═CPh2)2 (9-Fe(iPr)). The compounds were examined by X-ray crystallography (1-M(iPr), M = Cr, Fe; 1-Co(Et); 2-Fe(iPr); 4-Fe(iPr); 5-Fe(iPr); 6-Cr(iPr); 7-Fe(iPr); 8-Fe(Et); 9-Fe(iPr)), Mössbauer spectroscopy, and NMR spectroscopy. Structural parameters assessing redox noninnocence are discussed, as are structural and mechanistic consequences of the various electronic environments.

  6. Possible interstellar formation of glycine through a concerted mechanism: a computational study on the reaction of CH2[double bond, length as m-dash]NH, CO2 and H2.

    PubMed

    Nhlabatsi, Zanele P; Bhasi, Priya; Sitha, Sanyasi

    2016-07-27

    Glycine being the simplest amino acid and also having significant astrobiological implications, has meant that intensive investigations have been carried out in the past, starting from its detection in the interstellar medium (ISM) to analysis of meteorites and cometary samples and laboratory synthesis, as well as computational studies on the possible reaction paths. In this present work quantum chemical calculations have been performed to investigate the possible interstellar formation of glycine via two different paths; (1) in a two-step process via a dihydroxy carbene intermediate and (2) through a one-step concerted mechanism, starting from reactants like CH2[double bond, length as m-dash]NH, CO, CO2, H2O and H2. For the two reactions representing the carbene route, it was observed that the formation of dihydroxy carbene from either CO + H2O or CO2 + H2 is highly endothermic with large barrier heights, whereas the subsequent step of interaction of this carbene with CH2[double bond, length as m-dash]NH to give glycine is exothermic and the barrier is below the reactants. Based on this observation it is suggested that the formation of glycine via the carbene route is a least favourable or even unfavourable path. On the other hand, the two reactions CH2[double bond, length as m-dash]NH + CO + H2O and CH2[double bond, length as m-dash]NH + CO2 + H2 representing the concerted paths were found to be favourable in leading to the formation of glycine. After an extensive study on the first concerted reaction in our previous work (Phys. Chem. Chem. Phys., 2016, 18, 375-381), in this work a detailed investigation has been carried out for the second concerted reaction, CH2[double bond, length as m-dash]NH + CO2 + H2, which can possibly lead to the interstellar formation of glycine. It was observed that this reaction proceeds through a large barrier and at the same time the transition state shows prominent hydrogen dynamics, indicating a tunnelling possibility for this

  7. Possible interstellar formation of glycine through a concerted mechanism: a computational study on the reaction of CH2[double bond, length as m-dash]NH, CO2 and H2.

    PubMed

    Nhlabatsi, Zanele P; Bhasi, Priya; Sitha, Sanyasi

    2016-07-27

    Glycine being the simplest amino acid and also having significant astrobiological implications, has meant that intensive investigations have been carried out in the past, starting from its detection in the interstellar medium (ISM) to analysis of meteorites and cometary samples and laboratory synthesis, as well as computational studies on the possible reaction paths. In this present work quantum chemical calculations have been performed to investigate the possible interstellar formation of glycine via two different paths; (1) in a two-step process via a dihydroxy carbene intermediate and (2) through a one-step concerted mechanism, starting from reactants like CH2[double bond, length as m-dash]NH, CO, CO2, H2O and H2. For the two reactions representing the carbene route, it was observed that the formation of dihydroxy carbene from either CO + H2O or CO2 + H2 is highly endothermic with large barrier heights, whereas the subsequent step of interaction of this carbene with CH2[double bond, length as m-dash]NH to give glycine is exothermic and the barrier is below the reactants. Based on this observation it is suggested that the formation of glycine via the carbene route is a least favourable or even unfavourable path. On the other hand, the two reactions CH2[double bond, length as m-dash]NH + CO + H2O and CH2[double bond, length as m-dash]NH + CO2 + H2 representing the concerted paths were found to be favourable in leading to the formation of glycine. After an extensive study on the first concerted reaction in our previous work (Phys. Chem. Chem. Phys., 2016, 18, 375-381), in this work a detailed investigation has been carried out for the second concerted reaction, CH2[double bond, length as m-dash]NH + CO2 + H2, which can possibly lead to the interstellar formation of glycine. It was observed that this reaction proceeds through a large barrier and at the same time the transition state shows prominent hydrogen dynamics, indicating a tunnelling possibility for this

  8. Secondary deuterium kinetic isotope effects in irreversible additions of hydride and carbon nucleophiles to aldehydes: A spectrum of transition states from complete bond formation to single electron transfer

    SciTech Connect

    Gajewski, J.J.; Bocian, W.; Harris, N.J.; Olson, L.P.; Gajewski, J.P.

    1999-01-20

    The competitive kinetics of hydride and organometallic additions to benzaldehyde-H and -D were determined at {minus}78 C using LiAlH{sub 4}, LiBEt{sub 3}H, NaBH{sub 4}, LiBH{sub 4}, LiAl(O-tert-butoxy){sub 3}H, NaB(OMe){sub 3}H, NaB-(Ac){sub 3}H (at 20 C) methyl, phenyl, and allyl Grignard, and methyl-, phenyl-, n-butyl-, tert-butyl-, and allyllithium. The additions of hydride were found to have an inverse secondary deuterium kinetic isotope effects in all cases, but the magnitude of the effect varied inversely with the apparent reactivity of the hydride. In the additions of methyl Grignard reagent and of methyllithium and phenyllithium, inverse secondary deuterium isotope effects were observed; little if any isotope effect was observed with phenyl Grignard or n-butyl- and tert-butyllithium. With allyl Grignard and allyllithium, a normal secondary deuterium kinetic isotope effect was observed. The results indicate that rate-determining single-electron transfer occurs with allyl reagents, but direct nucleophilic reaction occurs with all of the other reagents, with the extent of bond formation dependent on the reactivity of the reagent. In the addition of methyllithium to cyclohexanecarboxyaldehyde, a less inverse secondary deuterium kinetic isotope effect was observed than that observed in the addition of methyllithium to benzaldehyde, and allyllithium addition to cyclohexanecarboxaldehyde had a kinetic isotope effect near unity. The data with organometallic additions, which are not incompatible with observations of carbonyl carbon isotope effects, suggest that electrochemically determined redox potentials which indicate endoergonic electron transfer with energies less than ca. 13 kcal/mol allow electron-transfer mechanisms to compete well with direct polar additions to aldehydes, provided that the reagent is highly stabilized, like allyl species. Methyllithium and phenyllithium and methyl and phenyl Grignard reagents are estimated to undergo electron transfer with

  9. DMSO/I2 mediated C-C bond cleavage of α-ketoaldehydes followed by C-O bond formation: a metal-free approach for one-pot esterification.

    PubMed

    Venkateswarlu, Vunnam; Aravinda Kumar, K A; Gupta, Sorav; Singh, Deepika; Vishwakarma, Ram A; Sawant, Sanghapal D

    2015-08-01

    A novel and efficient I2/DMSO mediated metal-free strategy is presented for the direct C-C bond cleavage of aryl-/heteroaryl- or aliphatic α-ketoaldehydes by C2-decarbonylation and C1-carbonyl oxidation to give the corresponding carboxylic acids followed by esterification in one pot, offering excellent yields in both the steps. Here, DMSO acts as the oxygen source/oxidant and this reaction works very well under both conventional heating and microwave irradiation. This is a very simple and convenient protocol.

  10. Formation of 6-, 7- or 8-membered ring intra-side-chain NH rad O hydrogen bond toward Ca-binding oxyanion in poly(allylaminocarboxylate) ligands stabilizes CaCO 3 vaterite crystals

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazuyuki; Doi, Mototsugu; Kobayashi, Atsuko; Taguchi, Takahisa; Onoda, Akira; Okamura, Taka-aki; Yamamoto, Hitoshi; Ueyama, Norikazu

    2004-03-01

    Novel poly(allylaminocarboxylate) ligands, which have a carboxylate and the neighboring amide group in the same side-chain, were synthesized as model ligands for crystalline CaCO3 biominerals. Poly{N-allyl-malonamate}, poly{N-allyl-succinamate} and poly{4-allylcarbamoyl-butyrate} form 6-, 7- or 8-membered ring intra-side-chain NHrad O hydrogen bonds, respectively, between the carboxylate and the neighboring amide NH in the carboxylate anion state, although the formation of each intra-side-chain NHrad O hydrogen bond is independent on the stereoisomers of the polymer main-chain. In the polymer ligand-CaCO3 composites, strong binding of polymer ligands to CaCO3 crystals is caused by stabilizing a Ca-O (carboxylate) bond due to the pKa shift of carboxylic acid by the NHrad O hydrogen bond. Furthermore, the strong Ca binding in CaCO3 composites stabilizes the meta-stable morphology of CaCO3 vaterite crystals.

  11. Social bonding: regulation by neuropeptides

    PubMed Central

    Lieberwirth, Claudia; Wang, Zuoxin

    2014-01-01

    Affiliative social relationships (e.g., among spouses, family members, and friends) play an essential role in human society. These relationships affect psychological, physiological, and behavioral functions. As positive and enduring bonds are critical for the overall well-being of humans, it is not surprising that considerable effort has been made to study the neurobiological mechanisms that underlie social bonding behaviors. The present review details the involvement of the nonapeptides, oxytocin (OT), and arginine vasopressin (AVP), in the regulation of social bonding in mammals including humans. In particular, we will discuss the role of OT and AVP in the formation of social bonds between partners of a mating pair as well as between parents and their offspring. Furthermore, the role of OT and AVP in the formation of interpersonal bonding involving trust is also discussed. PMID:25009457

  12. Cycloaddition of P-C Single Bonds: Stereoselective Formation of Benzo-1,3,6,2-trioxaphosphepine Complexes via a Ditopic van der Waals Complex.

    PubMed

    Malik, Payal; Espinosa Ferao, Arturo; Schnakenburg, Gregor; Streubel, Rainer

    2016-10-01

    While phosphaalkenes and phosphanes are known to participate in [4+n] cycloaddition reactions, P-C single bonds are inert in this respect. Herein, reactions of oxaphosphirane complexes with tetrachloro-ortho-benzoquinone are presented that reveal a stereoselective reaction of the endocyclic P-C bond to afford benzo-1,3,6,2-trioxaphosphepine complexes. High-level DFT calculations provide evidence that the final product is derived from a sequence of three consecutive steps involving a ditopic van der Waals complex.

  13. Site-Selective Tertiary Alkyl-Fluorine Bond Formation from α-Bromoamides Using a Copper/CsF Catalyst System.

    PubMed

    Nishikata, Takashi; Ishida, Syo; Fujimoto, Ryo

    2016-08-16

    A copper-catalyzed site-selective fluorination of α-bromoamides possessing multiple reaction sites, such as primary and secondary alkyl-Br bonds, using inexpensive CsF is reported. Tertiary alkyl-F bonds, which are very difficult to synthesize, can be formed by this fluorination reaction with the aid of an amide group. Control experiments revealed that in situ generated CuF2 is a key fluorinating reagent that reacts with the tertiary alkyl radicals generated by the reaction between an α-bromocarbonyl compound and a copper(I) salt. PMID:27282558

  14. Cycloaddition of P-C Single Bonds: Stereoselective Formation of Benzo-1,3,6,2-trioxaphosphepine Complexes via a Ditopic van der Waals Complex.

    PubMed

    Malik, Payal; Espinosa Ferao, Arturo; Schnakenburg, Gregor; Streubel, Rainer

    2016-10-01

    While phosphaalkenes and phosphanes are known to participate in [4+n] cycloaddition reactions, P-C single bonds are inert in this respect. Herein, reactions of oxaphosphirane complexes with tetrachloro-ortho-benzoquinone are presented that reveal a stereoselective reaction of the endocyclic P-C bond to afford benzo-1,3,6,2-trioxaphosphepine complexes. High-level DFT calculations provide evidence that the final product is derived from a sequence of three consecutive steps involving a ditopic van der Waals complex. PMID:27629542

  15. Distinguishing Bonds.

    PubMed

    Rahm, Martin; Hoffmann, Roald

    2016-03-23

    The energy change per electron in a chemical or physical transformation, ΔE/n, may be expressed as Δχ̅ + Δ(VNN + ω)/n, where Δχ̅ is the average electron binding energy, a generalized electronegativity, ΔVNN is the change in nuclear repulsions, and Δω is the change in multielectron interactions in the process considered. The last term can be obtained by the difference from experimental or theoretical estimates of the first terms. Previously obtained consequences of this energy partitioning are extended here to a different analysis of bonding in a great variety of diatomics, including more or less polar ones. Arguments are presented for associating the average change in electron binding energy with covalence, and the change in multielectron interactions with electron transfer, either to, out, or within a molecule. A new descriptor Q, essentially the scaled difference between the Δχ̅ and Δ(VNN + ω)/n terms, when plotted versus the bond energy, separates nicely a wide variety of bonding types, covalent, covalent but more correlated, polar and increasingly ionic, metallogenic, electrostatic, charge-shift bonds, and dispersion interactions. Also, Q itself shows a set of interesting relations with the correlation energy of a bond.

  16. Hydrogen-bond-driven electrophilic activation for selectivity control: scope and limitations of fluorous alcohol-promoted selective formation of 1,2-disubstituted benzimidazoles and mechanistic insight for rationale of selectivity.

    PubMed

    Chebolu, Rajesh; Kommi, Damodara N; Kumar, Dinesh; Bollineni, Narendra; Chakraborti, Asit K

    2012-11-16

    Hydrogen-bond-driven electrophilic activation for selectivity control during competitive formation of 1,2-disubstituted and 2-substituted benzimidazoles from o-phenylenediamine and aldehydes is reported. The fluorous alcohols trifluoroethanol and hexafluoro-2-propanol efficiently promote the cyclocondensation of o-phenylenediamine with aldehydes to afford selectively the 1,2-disubstituted benzimidazoles at rt in short times. A mechanistic insight is invoked by NMR, mass spectrometry, and chemical studies to rationalize the selectivity. The ability of the fluorous alcohols in promoting the reaction and controlling the selectivity can be envisaged from their better hydrogen bond donor (HBD) abilities compared to that of the other organic solvents as well as of water. Due to the better HBD values, the fluorous alcohols efficiently promote the initial bisimine formation by electrophilic activation of the aldehyde carbonyl. Subsequently the hydrogen-bond-mediated activation of the in situ-formed bisimine triggers the rearrangement via 1,3-hydride shift to form the 1,2-disubstituted benzimidazoles.

  17. Disulfide Bond Formation at the C Termini of Vaccinia Virus A26 and A27 Proteins Does Not Require Viral Redox Enzymes and Suppresses Glycosaminoglycan-Mediated Cell Fusion▿ †

    PubMed Central

    Ching, Yao-Cheng; Chung, Che-Sheng; Huang, Cheng-Yen; Hsia, Yu; Tang, Yin-Liang; Chang, Wen

    2009-01-01

    Vaccinia virus A26 protein is an envelope protein of the intracellular mature virus (IMV) of vaccinia virus. A mutant A26 protein with a truncation of the 74 C-terminal amino acids was expressed in infected cells but failed to be incorporated into IMV (W. L. Chiu, C. L. Lin, M. H. Yang, D. L. Tzou, and W. Chang, J. Virol 81:2149-2157, 2007). Here, we demonstrate that A27 protein formed a protein complex with the full-length form but not with the truncated form of A26 protein in infected cells as well as in IMV. The formation of the A26-A27 protein complex occurred prior to virion assembly and did not require another A27-binding protein, A17 protein, in the infected cells. A26 protein contains six cysteine residues, and in vitro mutagenesis showed that Cys441 and Cys442 mediated intermolecular disulfide bonds with Cys71 and Cys72 of viral A27 protein, whereas Cys43 and Cys342 mediated intramolecular disulfide bonds. A26 and A27 proteins formed disulfide-linked complexes in transfected 293T cells, showing that the intermolecular disulfide bond formation did not depend on viral redox pathways. Finally, using cell fusion from within and fusion from without, we demonstrate that cell surface glycosaminoglycan is important for virus-cell fusion and that A26 protein, by forming complexes with A27 protein, partially suppresses fusion. PMID:19369327

  18. Isopeptide bonds of the major pilin protein BcpA influence pilus structure and bundle formation on the surface of Bacillus cereus

    SciTech Connect

    Hendrickx, Antoni P.A.; Poor, Catherine B.; Jureller, Justin E.; Budzik, Jonathan M.; He, Chuan; Schneewind, Olaf

    2012-09-05

    Bacillus cereus strains elaborate pili on their surface using a mechanism of sortase-mediated cross-linking of major and minor pilus components. Here we used a combination of electron microscopy and atomic force microscopy to visualize these structures. Pili occur as single, double or higher order assemblies of filaments formed from monomers of the major pilin, BcpA, capped by the minor pilin, BcpB. Previous studies demonstrated that within assembled pili, four domains of BcpA -- CNA{sub 1}, CNA{sub 2}, XNA and CNA{sub 3} -- each acquire intramolecular lysine-asparagine isopeptide bonds formed via catalytic glutamic acid or aspartic acid residues. Here we showed that mutants unable to form the intramolecular isopeptide bonds in the CNA2 or CNA3 domains retain the ability to form pilus bundles. A mutant lacking the CNA{sub 1} isopeptide bond assembled deformed pilin subunits that failed to associate as bundles. X-ray crystallography revealed that the BcpA variant Asp{sup 312}Ala, lacking an aspartyl catalyst, did not generate the isopeptide bond within the jelly-roll structure of XNA. The Asp{sup 312}Ala mutant was also unable to form bundles and promoted the assembly of deformed pili. Thus, structural integrity of the CNA{sub 1} and XNA domains are determinants for the association of pili into higher order bundle structures and determine native pilus structure.

  19. Isopeptide bonds of the major pilin protein BcpA influence pilus structure and bundle formation on the surface of Bacillus cereus

    PubMed Central

    Hendrickx, Antoni P. A.; Poor, Catherine B.; Jureller, Justin E.; Budzik, Jonathan M.; He, Chuan; Schneewind, Olaf

    2012-01-01

    Summary Bacillus cereus strains elaborate pili on their surface using a mechanism of sortase-mediated crosslinking of major and minor pilus components. Here we used a combination of electron microscopy and atomic force microscopy to visualize these structures. Pili occur as single, double or higher order assemblies of filaments formed from monomers of the major pilin, BcpA, capped by the minor pilin, BcpB. Previous studies demonstrated that within assembled pili, four domains of BcpA – CNA1, CNA2, XNA, and CNA3 – each acquire intramolecular lysine-asparagine isopeptide bonds formed via catalytic glutamic acid or aspartic acid residues. Here we showed that mutants unable to form the intramolecular isopeptide bonds in the CNA2 or CNA3 domains retain the ability to form pilus bundles. A mutant lacking the CNA1 isopeptide bond assembled deformed pilin subunits that failed to associate as bundles. X-ray crystallography revealed that the BcpA variant Asp312Ala, lacking an aspartyl catalyst, did not generate the isopeptide bond within the jelly-roll structure of XNA. The Asp312Ala mutant was also unable to form bundles and promoted the assembly of deformed pili. Thus, structural integrity of the CNA1 and XNA domains are determinants for the association of pili into higher order bundle structures and determine native pilus structure. PMID:22624947

  20. Tandem carbon-carbon bond insertion and intramolecular aldol reaction of benzyne with aroylacetones: novel formation of 4,4'-disubstituted 1,1'-binaphthols.

    PubMed

    Okuma, Kentaro; Itoyama, Ryoichi; Sou, Ayumi; Nagahora, Noriyoshi; Shioj, Kosei

    2012-11-21

    An efficient route to 4-aryl-2-naphthols from arynes and aroylacetones was developed by carbon-carbon bond insertion followed by an intramolecular aldol reaction and dehydration. Benzyne derived from 2-(trimethylsilyl)phenyl triflate reacted with benzoylacetones in refluxing acetonitrile to give 4-aryl-2-naphthols and 3-aryl-1-naphthols.

  1. Unravelling the secrets of Cs controlled secondary ion formation: Evidence of the dominance of site specific surface chemistry, alloying and ionic bonding

    NASA Astrophysics Data System (ADS)

    Wittmaack, Klaus

    2013-03-01

    implantation can be evaluated as a function of Cs coverage. The summarised results imply that secondary ions are commonly not formed by charge transfer between an escaping atom and the electronic system of the sample but are already emitted as ions. The probability of ion formation appears to be controlled by the local ionic character of the alkali-target atom bonds, i.e., by the difference in electronegativity between the involved elements as well as by the electron affinity and the ionisation potential of the departing atom. This idea is supported by the finding that Si- yields exhibit the same very strong dependence on Cs coverage as Si+ and O- yields on the oxygen fraction in oxygen loaded Si. Most challenging to theoreticians is the finding that the ionisation probability is independent of the emission velocity of sputtered ions. This phenomenon cannot be rationalised along established routes of thinking. Different concepts need to be explored. An old, somewhat exotic idea takes account of the heavy perturbation created for a very short period of time at the site of ion emission (dynamic randomisation). Molecular dynamics simulations are desirable to clarify the issue. Ultimately it may be possible to describe all phenomena of enhanced or suppressed secondary ion formation, produced either by surface loading with alkali atoms or by enforced surface oxidation, on the basis of a single universal model. There is plenty of room for exciting new studies.

  2. Unravelling the secrets of Cs controlled secondary ion formation: Evidence of the dominance of site specific surface chemistry, alloying and ionic bonding

    NASA Astrophysics Data System (ADS)

    Wittmaack, Klaus

    2013-03-01

    implantation can be evaluated as a function of Cs coverage.The summarised results imply that secondary ions are commonly not formed by charge transfer between an escaping atom and the electronic system of the sample but are already emitted as ions. The probability of ion formation appears to be controlled by the local ionic character of the alkali-target atom bonds, i.e., by the difference in electronegativity between the involved elements as well as by the electron affinity and the ionisation potential of the departing atom. This idea is supported by the finding that Si- yields exhibit the same very strong dependence on Cs coverage as Si+ and O- yields on the oxygen fraction in oxygen loaded Si. Most challenging to theoreticians is the finding that the ionisation probability is independent of the emission velocity of sputtered ions. This phenomenon cannot be rationalised along established routes of thinking. Different concepts need to be explored. An old, somewhat exotic idea takes account of the heavy perturbation created for a very short period of time at the site of ion emission (dynamic randomisation). Molecular dynamics simulations are desirable to clarify the issue. Ultimately it may be possible to describe all phenomena of enhanced or suppressed secondary ion formation, produced either by surface loading with alkali atoms or by enforced surface oxidation, on the basis of a single universal model. There is plenty of room for exciting new studies.

  3. Synthesis and reactivity of silyl ruthenium complexes: the importance of trans effects in C-H activation, Si-C bond formation, and dehydrogenative coupling of silanes.

    PubMed

    Dioumaev, Vladimir K; Procopio, Leo J; Carroll, Patrick J; Berry, Donald H

    2003-07-01

    with PMe(3) or PMe(3)-d(9) - is also regioselective (1a-d(9)() is predominantly produced with PMe(3)-d(9) trans to Si), but is very unfavorable. At 70 degrees C, a slower but irreversible SiH elimination also occurs and furnishes (PMe(3))(4)RuH(2). The structure of 4a exhibits a tetrahedral P(3)Si environment around the metal with the three hydrides adjacent to silicon and capping the P(2)Si faces. Although strong Si...HRu interactions are not indicated in the structure or by IR, the HSi distances (2.13-2.23(5) A) suggest some degree of nonclassical SiH bonding in the H(3)SiR(3) fragment. Thermolysis of 1a in C(6)D(6) at 45-55 degrees C leads to an intermolecular CD activation of C(6)D(6). Extensive H/D exchange into the hydride, SiMe(3), and PMe(3) ligands is observed, followed by much slower formation of cis-(PMe(3))(4)Ru(D)(Ph-d(5)). In an even slower intramolecular CH activation process, (PMe(3))(3)Ru(eta(2)-CH(2)PMe(2))H (5) is also produced. The structure of intermediates, mechanisms, and aptitudes for PMe(3) dissociation and addition/elimination of H-H, Si-H, C-Si, and C-H bonds in these systems are discussed with a special emphasis on the trans effect and trans influence of silicon and ramifications for SiC coupling catalysis. PMID:12823028

  4. Barriers to rotation adjacent to double bonds. 3. The C-O barrier in formic acid, methyl formate, acetic acid, and methyl acetate. The origin of ester and amide resonance

    SciTech Connect

    Wiberg, K.B.; Laidig, K.E.

    1987-09-30

    The structures of the rotamers about the C-O bonds of formic acid, methyl formate, acetic acid, and methyl acetate were calculated by using the 6-31G* basis set and complete geometrical relaxation. Large basis sets (6-311+G**) and correction for electron correlation were needed in order to obtain calculated barriers that were in good agreement with the available experimental data. The factors that control the geometry at a carbonyl group are considered, and it is shown that an analysis in terms of bond path angles leads to a direct connection with electronegativity. The nature of the interaction between an amino group and a carbonyl, as in an amide, is examined and shown not to involve charge transfer from the nitrogen to the carbonyl oxygen, but rather it involves charge transfer between carbon and nitrogen. The origin of the rotational barrier in esters and of the difference in energy between the E and Z conformers is discussed.

  5. A Model for the Chemical Bond

    ERIC Educational Resources Information Center

    Magnasco, Valerio

    2004-01-01

    Bond stereochemistry in polyatomic hydrides is explained in terms of the principle of bond energies maximization, which yields X-H straight bonds and suggests the formation of appropriate sp hybrids on the central atom. An introduction to the electron charge distribution in molecules is given, and atomic, overlap, gross and formal charges are…

  6. Bonds Boom.

    ERIC Educational Resources Information Center

    Reynolds, Cathryn

    1989-01-01

    The combined effect of the "Serrano" decision and Proposition 13 left California school districts with aging, overcrowded facilities. Chico schools won a $18.5 million general obligation bond election for facilities construction. With $11 billion needed for new school construction, California will need to tap local sources. A sidebar outlines…

  7. Yankee bonds

    SciTech Connect

    Delaney, P. )

    1993-10-01

    Yankee and Euromarket bonds may soon find their way into the financing of power projects in Latin America. For developers seeking long-term commitments under build, own, operate, and transfer (BOOT) power projects in Latin America, the benefits are substantial.

  8. The thermodynamics and kinetics of phosphoester bond formation, use, and dissociation in biology, with the example of polyphosphate in platelet activation, trasience, and mineralization.

    NASA Astrophysics Data System (ADS)

    Omelon, S. J.

    2014-12-01

    Mitochondria condense orthophosphates (Pi), forming phosphoester bonds for ATP production that is important to life. This represents an exchange of energy from dissociated carbohydrate bonds to phosophoester bonds. These bonds are available to phosphorylate organic compounds or hydrolyze to Pi, driving many biochemical processes. The benthic bacteria T. namibiensis 1 and Beggiatoa 2 condense Pi into phosphate polymers in oxygenated environments. These polyphosphates (polyPs) are stored until the environment becomes anoxic, when these bacteria retrieve the energy from polyP dissociation into Pi3. Dissociated Pi is released outside of the bacteria, where it precipitates as apatite.The Gibbs free energy of polyP phosphoester bond hydrolysis is negative, however, the kinetics are slow4. Diatoms contain a polyP pool that is stable until after death, after which the polyPs hydrolyze and form apatite5. The roles of polyP in eukaryotic organism biochemistry continue to be discovered. PolyPs have a range of biochemical roles, such as bioavailable P-storage, stress adaptation, and blood clotting6. PolyP-containing granules are released from anuclear platelets to activate factor V7 and factor XII in the blood clotting process due to their polyanionic charge8. Platelets have a lifespan of approximately 8 days, after which they undergo apoptosis9. Data will be presented that demonstrate the bioactive, thermodynamically unstable polyP pool within older platelets in vitro can spontaneously hydrolyze and form phosphate minerals. This process is likely avoided by platelet digestion in the spleen and liver, possibly recycling platelet polyPs with their phosphoester bond energy for other biochemical roles. 1 Schulz HN et al. Science (2005) 307: 416-4182 Brüchert V et al. Geochim Cosmochim Acta (2003) 67: 4505-45183 Goldhammer T et al. Nat Geosci (2010) 3: 557-5614 de Jager H-J et al. J Phys Chem A (1988) 102: 2838-28415 Diaz, J et al. Science (2008) 320: 652-6556 Mason KD et al

  9. Rhodium-catalysed C(sp2)–C(sp2) bond formation via C–H/C–F activation

    PubMed Central

    Tian, Panpan; Feng, Chao; Loh, Teck-Peng

    2015-01-01

    Fluoroalkenes represent a class of privileged structural motifs, which found widespread use in medicinal chemistry. However, the synthetic access to fluoroalkenes was much underdeveloped with previous reported methods suffering from either low step economy or harsh reaction conditions. Here we present a RhIII-catalysed tandem C–H/C–F activation for the synthesis of (hetero)arylated monofluoroalkenes. The use of readily available gem-difluoroalkenes as electrophiles provides a highly efficient and operationally simple method for the introduction of α-fluoroalkenyl motifs onto (hetero)arenes under oxidant-free conditions. Furthermore, the employment of alcoholic solvent and the in-situ generated hydrogen fluoride are found to be beneficial in this transformation, indicating the possibility of the involvement of hydrogen bond activation mode with regards to the C–F bond cleavage step. PMID:26081837

  10. Comparison of the kinetics of S-S bond, secondary structure, and active site formation during refolding of reduced denatured hen egg white lysozyme.

    PubMed Central

    Roux, P.; Ruoppolo, M.; Chaffotte, A. F.; Goldberg, M. E.

    1999-01-01

    To investigate the role of some tertiary interactions, the disulfide bonds, in the early stages of refolding of hen lysozyme, we report the kinetics of reoxidation of denatured and reduced lysozyme under the same refolding conditions as those previously used to investigate the kinetics of regain of its circular dichroism (CD), fluorescence, and activity. At different stages of the refolding, the oxidation of the protein was blocked by alkylation of the free cysteines with iodoacetamide and the various oxidation states present in the samples were identified by electrospray-mass spectrometry. Thus, it was possible to monitor the appearance and/or disappearance of the species with 0 to 4 disulfide bonds. Using a simulation program, these kinetics were compared with those of regain of far-UV CD, fluorescence, and enzymatic activity and were discussed in terms of a refined model for the refolding of reduced hen egg white lysozyme. PMID:10631992

  11. Catalytic constructive deoxygenation of lignin-derived phenols: new C-C bond formation processes from imidazole-sulfonates and ether cleavage reactions.

    PubMed

    Leckie, Stuart M; Harkness, Gavin J; Clarke, Matthew L

    2014-10-01

    As part of a programme aimed at exploiting lignin as a chemical feedstock for less oxygenated fine chemicals, several catalytic C-C bond forming reactions utilising guaiacol imidazole sulfonate are demonstrated. These include the cross-coupling of a Grignard, a non-toxic cyanide source, a benzoxazole, and nitromethane. A modified Meyers reaction is used to accomplish a second constructive deoxygenation on a benzoxazole functionalised anisole. PMID:25130565

  12. Model studies of methyl CoM reductase: methane formation via CH3-S bond cleavage of Ni(I) tetraazacyclic complexes having intramolecular methyl sulfide pendants.

    PubMed

    Nishigaki, Jun-ichi; Matsumoto, Tsuyoshi; Tatsumi, Kazuyuki

    2012-05-01

    The Ni(I) tetraazacycles [Ni(dmmtc)](+) and [Ni(mtc)](+), which have methylthioethyl pendants, were synthesized as models of the reduced state of the active site of methyl coenzyme M reductase (MCR), and their structures and redox properties were elucidated (dmmtc, 1,8-dimethyl-4,11-bis{(2-methylthio)ethyl}-1,4,8,11-tetraaza-1,4,8,11-cyclotetradecane; mtc, 1,8-{bis(2-methylthio)ethyl}-1,4,8,11-tetraaza-1,4,8,11-cyclotetradecane). The intramolecular CH(3)-S bond of the thioether pendant of [Ni(I)(dmmtc)](OTf) was cleaved in THF at 75 °C in the presence of the bulky thiol DmpSH, which acts as a proton source, and methane was formed in 31% yield and a Ni(II) thiolate complex was concomitantly obtained (Dmp = 2,6-dimesityphenyl). The CH(3)-S bond cleavage of [Ni(I)(mtc)](+) also proceeded similarly, but under milder conditions probably due to the lower potential of the [Ni(I)(mtc)](+) complex. These results indicate that the robust CH(3)-S bond can be homolytically cleaved by the Ni(I) center when they are properly arranged, which highlights the significance of the F430 Ni environment in the active site of the MCR protein. PMID:22439643

  13. Theoretical investigation of the role of clay edges in prebiotic peptide bond formation. II - Structures and thermodynamics of the activated complex species

    NASA Technical Reports Server (NTRS)

    Collins, Jack R.; Loew, Gilda H.; Luke, Brian T.; White, David H.

    1988-01-01

    Molecular orbital calculations are used to study amino acid activation by anhydride formation in neutral phosphates and in tetrahedral silicate and aluminate sites on clay edges. The results agree with previous ab initio studies of Luke et al. (1984) on the reactant species. Relative heats of formation of the anhydrides indicate the extent of anhydride formation to be the greatest for Al and the least for phosphate, which is the same order as the stability of hydrolysis.

  14. Diffusion bonding

    DOEpatents

    Anderson, Robert C.

    1976-06-22

    1. A method for joining beryllium to beryllium by diffusion bonding, comprising the steps of coating at least one surface portion of at least two beryllium pieces with nickel, positioning a coated surface portion in a contiguous relationship with an other surface portion, subjecting the contiguously disposed surface portions to an environment having an atmosphere at a pressure lower than ambient pressure, applying a force upon the beryllium pieces for causing the contiguous surface portions to abut against each other, heating the contiguous surface portions to a maximum temperature less than the melting temperature of the beryllium, substantially uniformly decreasing the applied force while increasing the temperature after attaining a temperature substantially above room temperature, and maintaining a portion of the applied force at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions.

  15. Accumulation of β-Conglycinin in Soybean Cotyledon through the Formation of Disulfide Bonds between α′- and α-Subunits1[W][OA

    PubMed Central

    Wadahama, Hiroyuki; Iwasaki, Kensuke; Matsusaki, Motonori; Nishizawa, Keito; Ishimoto, Masao; Arisaka, Fumio; Takagi, Kyoko; Urade, Reiko

    2012-01-01

    β-Conglycinin, one of the major soybean (Glycine max) seed storage proteins, is folded and assembled into trimers in the endoplasmic reticulum and accumulated into protein storage vacuoles. Prior experiments have used soybean β-conglycinin extracted using a reducing buffer containing a sulfhydryl reductant such as 2-mercaptoethanol, which reduces both intermolecular and intramolecular disulfide bonds within the proteins. In this study, soybean proteins were extracted from the cotyledons of immature seeds or dry beans under nonreducing conditions to prevent the oxidation of thiol groups and the reduction or exchange of disulfide bonds. We found that approximately half of the α′- and α-subunits of β-conglycinin were disulfide linked, together or with P34, prior to amino-terminal propeptide processing. Sedimentation velocity experiments, size-exclusion chromatography, and two-dimensional polyacrylamide gel electrophoresis (PAGE) analysis, with blue native PAGE followed by sodium dodecyl sulfate-PAGE, indicated that the β-conglycinin complexes containing the disulfide-linked α′/α-subunits were complexes of more than 720 kD. The α′- and α-subunits, when disulfide linked with P34, were mostly present in approximately 480-kD complexes (hexamers) at low ionic strength. Our results suggest that disulfide bonds are formed between α′/α-subunits residing in different β-conglycinin hexamers, but the binding of P34 to α′- and α-subunits reduces the linkage between β-conglycinin hexamers. Finally, a subset of glycinin was shown to exist as noncovalently associated complexes larger than hexamers when β-conglycinin was expressed under nonreducing conditions. PMID:22218927

  16. Water-bridged hydrogen bond formation between 5-hydroxylmethylcytosine (5-hmC) and its 3'-neighbouring bases in A- and B-form DNA duplexes.

    PubMed

    Wang, Rui; Ranganathan, Srivathsan V; Valsangkar, Vibhav A; Magliocco, Stephanie M; Shen, Fusheng; Chen, Alan; Sheng, Jia

    2015-11-25

    5-Hydroxylmethylcytosine (5hmC) has been recognized as the sixth base with important biological functions in many tissues and cell types. We present here the high-resolution crystal structures and molecular simulation studies of both A-form and B-form DNA duplexes containing 5hmC. We observed that 5hmC interacts with its 3'-neighboring bases through water-bridged hydrogen bonds and these interactions may affect the further oxidation of 5hmC.

  17. General and facile method for exo-methlyene synthesis via regioselective C-C double-bond formation using a copper-amine catalyst system.

    PubMed

    Nishikata, Takashi; Nakamura, Kimiaki; Itonaga, Kohei; Ishikawa, Shingo

    2014-11-01

    In this study, for distal-selective β-hydride elimination to produce exomethylene compounds with a newly formed Csp(3)-Csp(3) bond between tertiary alkyl halides and α-alkylated styrenes, a combination of a Cu(I) salt and a pyridine-based amine ligand (TPMA) is found to be a very efficient catalyst system. The yields and regioselectivities were high, and the regioselectivity was found to be dependent on the structure of the alkyl halide, with bulky alkyl halides showing the highest distal selectivities. PMID:25315319

  18. Δ(11,12) double bond formation in tirandamycin biosynthesis is atypically catalyzed by TrdE, a glycoside hydrolase family enzyme.

    PubMed

    Mo, Xuhua; Ma, Junying; Huang, Hongbo; Wang, Bo; Song, Yongxiang; Zhang, Si; Zhang, Changsheng; Ju, Jianhua

    2012-02-15

    The tirandamycins (TAMs) are a small group of Streptomyces-derived natural products that target bacterial RNA polymerase. Within the TAM biosynthetic cluster, trdE encodes a glycoside hydrolase whose role in TAM biosynthesis has been undefined until now. We report that in vivo trdE inactivation leads to accumulation of pre-tirandamycin, the earliest intermediate released from its mixed polyketide/nonribosomal peptide biosynthetic assembly line. In vitro and site-directed mutagenesis studies showed that TrdE, a putative glycoside hydrolase, catalyzes in a highly atypical fashion the installation of the Δ(11,12) double bond during TAM biosynthesis.

  19. Chalcogen bond: a sister noncovalent bond to halogen bond.

    PubMed

    Wang, Weizhou; Ji, Baoming; Zhang, Yu

    2009-07-16

    A sister noncovalent bond to halogen bond, termed chalcogen bond, is defined in this article. By selecting the complexes H(2)CS...Cl(-), F(2)CS...Cl(-), OCS...Cl(-), and SCS...Cl(-) as models, the bond-length change, interaction energy, topological property of the electron charge density and its Laplacian, and the charge transfer of the chalcogen bond have been investigated in detail theoretically. It was found that the similar misshaped electron clouds of the chalcogen atom and the halogen atom result in the similar properties of the chalcogen bond and the halogen bond. Experimental results are in good agreement with the theoretical predictions.

  20. Pi Bond Orders and Bond Lengths

    ERIC Educational Resources Information Center

    Herndon, William C.; Parkanyi, Cyril

    1976-01-01

    Discusses three methods of correlating bond orders and bond lengths in unsaturated hydrocarbons: the Pauling theory, the Huckel molecular orbital technique, and self-consistent-field techniques. (MLH)

  1. Isolation of a Diborane(6) Dication: Formation and Cleavage of an Electron-Precise B(sp(3))-B(sp(3)) Bond.

    PubMed

    Kong, Lingbing; Lu, Wei; Li, Yongxin; Ganguly, Rakesh; Kinjo, Rei

    2016-07-13

    One-electron oxidation of organoboron L2PhB: 1 (L = oxazol-2-ylidene) afforded a dicationic diborane(6) species [L2PhB-BPhL2]·2X (X = OTf, BF4, AlCl4) 3, representing a new strategy to construct a B(sp(3))-B(sp(3)) covalent bond. Each boron atom in 3 is in the formal oxidation state +II, and tetracoordinate with a Ph group and two oxazol-2-ylidenes. The cyclic voltammetry of 3 shows irreversible reduction and oxidation. Indeed, two-electron reduction of 3 with potassium graphite (KC8) afforded 1, making a fully reversible 1 ↔ 3 redox system, whereas two-electron oxidation with AuCl produced a boronium [L2PhBCl]OTf 4. Moreover, the reactions of 3 with isonitrile derivatives RNC: under heating conditions gave a cyano-substituted boronium [L2PhBCN]BF4 5 and a 2-boranyl-indole derivative 6, depending on the substituent R. The proposed reaction mechanism involves a borinylium radical 1(•+) which is generated via a homolytic cleavage of the B-B bond of 3. PMID:27309118

  2. Special catalyst improves c-s compounds conversion

    SciTech Connect

    Pearson, M.J.

    1981-04-01

    Carbon-sulfur compounds normally formed in the Claus furnace can be almost totally decomposed when a promoted catalyst is used rather than a standard unpromoted catalyst. Compound formation and decomposition chemistries are described. The use of a promoted active alumina is shown to yield better results compared with a standard active alumina catalyst.

  3. Formation of a Metal-to-Nitrogen Bond of Normal Length by a Neutral Sufonamide Group within a Tridentate Ligand. A New Approach to Radiopharmaceutical Bioconjugation

    PubMed Central

    Perera, Theshini; Abhayawardhana, Pramuditha; Marzilli, Patricia A.; Fronczek, Frank R.

    2014-01-01

    We demonstrate that a tertiary sulfonamide group, N(SO2R)R′2, can re-hybridize to form a M–N bond of normal length even when the group is in a linear tridentate ligand, such as in the new tridentate N(SO2R)dpa ligands derived from di-(2-picolyl)amine (N(H)dpa). N(SO2R)dpa ligands were used to prepare fac-[Re(CO)3(N(SO2R)dpa)](PF6 or BF4) complexes. Structural characterization of the new complexes established that the tertiary sulfonamide nitrogen atom binds to Re with concomitant sp2-to-sp3 re-hybridization, facilitating facial coordination. The new fac-[Re(CO)3(N(SO2R)dpa)]X structures provide the only examples for any metal with the sulfonamide as part of a noncyclic linear tridentate ligand and with a normal metal-to-nitrogen(tertiary sulfonamide) bond length. Rare previous examples of such normal M–N bonds have been found only in more constrained situations, such as with tripodal tetradentate ligands. Our long-term objectives for the new tridentate N(SO2R)dpa ligands are to develop the fundamental chemistry relevant to the eventual use of the fac-[MI(CO)3]+ core (M = 99mTc, 186/188Re) in imaging and therapy. The sulfonamide group uniquely contributes to two of our goals: expanding ways to conjugate the fac-[MI(CO)3]+ core to biological molecules and also developing new symmetrical tridentate ligands that can coordinate facially to this core. Tests of our conjugation method, conducted by linking the fac-[ReI(CO)3]+ core to a new tetraarylporphyrin (T(N(SO2C6H4)dpa)P) as well as to a dansyl (5-(dimethylamino)naphthalene-1-sulfonyl) group, demonstrate that large molecular fragments can be tethered via a coordinated tertiary sulfonamide linkage to this core. PMID:23421481

  4. Bonded Lubricants

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Another spinoff to the food processing industry involves a dry lubricant developed by General Magnaplate Corp. of Linden, N.J. Used in such spacecraft as Apollo, Skylab and Viking, the lubricant is a coating bonded to metal surfaces providing permanent lubrication and corrosion resistance. The coating lengthens equipment life and permits machinery to be operated at greater speed, thus increasing productivity and reducing costs. Bonded lubricants are used in scores of commercia1 applications. They have proved particularly valuable to food processing firms because, while increasing production efficiency, they also help meet the stringent USDA sanitation codes for food-handling equipment. For example, a cookie manufacturer plagued production interruptions because sticky batter was clogging the cookie molds had the brass molds coated to solve the problem. Similarly, a pasta producer faced USDA action on a sanitation violation because dough was clinging to an automatic ravioli-forming machine; use of the anti-stick coating on the steel forming plates solved the dual problem of sanitation deficiency and production line downtime.

  5. Redox-controlled hydrogen bonding: turning a superbase into a strong hydrogen-bond donor.

    PubMed

    Wild, Ute; Neuhäuser, Christiane; Wiesner, Sven; Kaifer, Elisabeth; Wadepohl, Hubert; Himmel, Hans-Jörg

    2014-05-12

    Herein the synthesis, structures and properties of hydrogen-bonded aggregates involving redox-active guanidine superbases are reported. Reversible hydrogen bonding is switched on by oxidation of the hydrogen-donor unit, and leads to formation of aggregates in which the hydrogen-bond donor unit is sandwiched by two hydrogen-bond acceptor units. Further oxidation (of the acceptor units) leads again to deaggregation. Aggregate formation is associated with a distinct color change, and the electronic situation could be described as a frozen stage on the way to hydrogen transfer. A further increase in the basicity of the hydrogen-bond acceptor leads to deprotonation reactions.

  6. Rapid carbon-carbon bond formation and cleavage revealed by carbon isotope exchange between the carboxyl carbon and inorganic carbon in hydrothermal fluids

    NASA Astrophysics Data System (ADS)

    Glein, C. R.; Cody, G. D.

    2013-12-01

    The carbon isotopic composition of organic compounds in water-rock systems (e.g., hydrothermal vents, sedimentary basins, and carbonaceous meteorites) is generally interpreted in terms of the isotopic composition of the sources of such molecules, and the kinetic isotope effects of metabolic or abiotic reactions that generate or transform such molecules. This hinges on the expectation that the carbon isotopic composition of many organic compounds is conserved under geochemical conditions. This expectation is reasonable in light of the strength of carbon-carbon bonds (ca. 81 kcal/mol); in general, environmental conditions conducive to carbon-carbon bond cleavage typically lead to transformations of organic molecules (decarboxylation is a notable example). Geochemically relevant reactions that involve isotopic exchange between carbon atoms in organic molecules and inorganic forms of carbon with no change in molecular structure appear to be rare. Notwithstanding such rarity, there have been preliminary reports of relatively rapid carbon isotope exchange between the carboxyl group in carboxylic acids and carbon dioxide in hot water [1,2]. We have performed laboratory hydrothermal experiments to gain insights into the mechanism of this surprising reaction, using phenylacetate as a model structure. By mass spectrometry, we confirm that the carboxyl carbon undergoes facile isotopic exchange with 13C-labeled bicarbonate at moderate temperatures (i.e., 230 C). Detailed kinetic analysis reveals that the reaction rate is proportional to the concentrations of both reactants. Further experiments demonstrate that the exchange reaction only occurs if the carbon atom adjacent to the carboxyl carbon is bonded to a hydrogen atom. As an example, no carbon isotope exchange was observed for benzoate in experiments lasting up to one month. The requirement of an alpha C-H bond suggests that enolization (i.e., deprotonation of the H) is a critical step in the mechanism of the exchange

  7. Access to novel fluorovinylidene ligands via exploitation of outer-sphere electrophilic fluorination: new insights into C-F bond formation and activation.

    PubMed

    Milner, Lucy M; Hall, Lewis M; Pridmore, Natalie E; Skeats, Matthew K; Whitwood, Adrian C; Lynam, Jason M; Slattery, John M

    2016-01-28

    Metal vinylidene complexes are widely encountered, or postulated, as intermediates in a range of important metal-mediated transformations of alkynes. However, fluorovinylidene complexes have rarely been described and their reactivity is largely unexplored. By making use of the novel outer-sphere electrophilic fluorination (OSEF) strategy we have developed a rapid, robust and convenient method for the preparation of fluorovinylidene and trifluoromethylvinylidene ruthenium complexes from non-fluorinated alkynes. Spectroscopic investigations (NMR and UV/Vis), coupled with TD-DFT studies, show that fluorine incorporation results in significant changes to the electronic structure of the vinylidene ligand. The reactivity of fluorovinylidene complexes shows many similarities to non-fluorinated analogues, but also some interesting differences, including a propensity to undergo unexpected C-F bond cleavage reactions. Heating fluorovinylidene complex [Ru(η(5)-C5H5)(PPh3)2(C[double bond, length as m-dash]C{F}R)][BF4] led to C-H activation of a PPh3 ligand to form an orthometallated fluorovinylphosphonium ligand. Reaction with pyridine led to nucleophilic attack at the metal-bound carbon atom of the vinylidene to form a vinyl pyridinium species, which undergoes both C-H and C-F activation to give a novel pyridylidene complex. Addition of water, in the presence of chloride, leads to anti-Markovnikov hydration of a fluorovinylidene complex to form an α-fluoroaldehyde, which slowly rearranges to its acyl fluoride isomer. Therefore, fluorovinylidenes ligands may be viewed as synthetic equivalents of 1-fluoroalkynes providing access to reactivity not possible by other routes. PMID:26701305

  8. Access to novel fluorovinylidene ligands via exploitation of outer-sphere electrophilic fluorination: new insights into C-F bond formation and activation.

    PubMed

    Milner, Lucy M; Hall, Lewis M; Pridmore, Natalie E; Skeats, Matthew K; Whitwood, Adrian C; Lynam, Jason M; Slattery, John M

    2016-01-28

    Metal vinylidene complexes are widely encountered, or postulated, as intermediates in a range of important metal-mediated transformations of alkynes. However, fluorovinylidene complexes have rarely been described and their reactivity is largely unexplored. By making use of the novel outer-sphere electrophilic fluorination (OSEF) strategy we have developed a rapid, robust and convenient method for the preparation of fluorovinylidene and trifluoromethylvinylidene ruthenium complexes from non-fluorinated alkynes. Spectroscopic investigations (NMR and UV/Vis), coupled with TD-DFT studies, show that fluorine incorporation results in significant changes to the electronic structure of the vinylidene ligand. The reactivity of fluorovinylidene complexes shows many similarities to non-fluorinated analogues, but also some interesting differences, including a propensity to undergo unexpected C-F bond cleavage reactions. Heating fluorovinylidene complex [Ru(η(5)-C5H5)(PPh3)2(C[double bond, length as m-dash]C{F}R)][BF4] led to C-H activation of a PPh3 ligand to form an orthometallated fluorovinylphosphonium ligand. Reaction with pyridine led to nucleophilic attack at the metal-bound carbon atom of the vinylidene to form a vinyl pyridinium species, which undergoes both C-H and C-F activation to give a novel pyridylidene complex. Addition of water, in the presence of chloride, leads to anti-Markovnikov hydration of a fluorovinylidene complex to form an α-fluoroaldehyde, which slowly rearranges to its acyl fluoride isomer. Therefore, fluorovinylidenes ligands may be viewed as synthetic equivalents of 1-fluoroalkynes providing access to reactivity not possible by other routes.

  9. Surface carbonation of synthetic C-S-H samples: A comparison between fresh and aged C-S-H using X-ray photoelectron spectroscopy

    SciTech Connect

    Black, Leon Garbev, Krassimir; Gee, Ian

    2008-06-15

    This paper presents a continuation of studies into silicate anion structure using X-ray photoelectron spectroscopy (XPS). A series of C-S-H samples have been prepared mechanochemically, and then stored under ambient conditions for six months. Storage led to surface carbonation, the extent of which was dependent upon the calcium/silicon ratio of the fresh sample. Carbonation arose through decalcification of the C-S-H, leading to increased silicate polymerisation. The surfaces of the most calcium-rich phases (C/S = 1.33 and 1.50) underwent complete decalcification to yield silica (possibly containing some silanol groups) and calcium carbonate. Carbonation, and hence changes in silicate anion structure, was minimal for the C-S-H phases with C/S = 0.67 and 0.75.

  10. Oligonucleotides containing an acridine group covalently bonded to the nucleotide flanking the 3'-3' phosphodiester junction for alternate strand triple helix formation.

    PubMed

    Catalanotti, Bruno; Fattorusso, Caterina; Mayol, Luciano; Oliviero, Giorgia; Piccialli, Gennaro; Varra, Michela

    2003-01-01

    Oligonucleotides with a 3'-3' inversion of polarity and containing an acridine group attached to nucleotide base flanking the 3'-3' phosphodiester bon have been synthesized, characterized and used as third strand in alternate triple helix formation. CD melting studies and molecular mechanics calculations have been carried out to investigate these triplex structures.

  11. Evidence for the existence of terminal scandium imidos: mechanistic studies involving imido-scandium bond formation and C-H activation reactions.

    PubMed

    Wicker, Benjamin F; Fan, Hongjun; Hickey, Anne K; Crestani, Marco G; Scott, Jennifer; Pink, Maren; Mindiola, Daniel J

    2012-12-12

    The anilide-methyl complex (PNP)Sc(NH[DIPP])(CH(3)) (1) [PNP(-) = bis(2-diisopropylphosphino-4-tolyl)amide, DIPP = 2,6-diisopropylphenyl] eliminates methane (k(avg) = 5.13 × 10(-4) M(-1) s(-1) at 50 °C) in the presence of pyridine to generate the transient scandium imido (PNP)Sc═N[DIPP](NC(5)H(5)) (A-py), which rapidly activates the C-H bond of pyridine in 1,2-addition fashion to form the stable pyridyl complex (PNP)Sc(NH[DIPP])(η(2)-NC(5)H(4)) (2). Mechanistic studies suggest the C-H activation process to be second order overall: first order in scandium and first order in substrate (pyridine). Pyridine binding precedes elimination of methane, and α-hydrogen abstraction is overall-rate-determining [the kinetic isotope effect (KIE) for 1-d(1) conversion to 2 was 5.37(6) at 35 °C and 4.9(14) at 50 °C] with activation parameters ΔH(‡) = 17.9(9) kcal/mol and ΔS(‡) = -18(3) cal/(mol K), consistent with an associative-type mechanism. No KIE or exchange with the anilide proton was observed when 1-d(3) was treated with pyridine or thermolyzed at 35 or 50 °C. The post-rate-determining step, C-H bond activation of pyridine, revealed a primary KIE of 1.1(2) at 35 °C for the intermolecular C-H activation reaction in pyridine versus pyridine-d(5). Complex 2 equilibrated back to the imide A-py slowly, as the isotopomer (PNP)Sc(ND[DIPP])(η(2)-NC(5)H(4)) (2-d(1)) converted to (PNP)Sc(NH[DIPP])(η(2)-NC(5)H(3)D) over 9 days at 60 °C. Molecular orbital analysis of A-py suggested that this species possesses a fairly linear scandium imido motif (169.7°) with a very short Sc-N distance of 1.84 Å. Substituted pyridines can also be activated, with the rates of C-H activation depending on both the steric and electronic properties of the substrate.

  12. Computational study of the enthalpies of formation, DeltafH degrees, and mean bond enthalpies, mBEs, of H4-nEXn0/- and H3-nEXn+/0 (E=C, B; X=F-I).

    PubMed

    Raabe, Ines; Himmel, Daniel; Krossing, Ingo

    2007-12-20

    To compensate for lacking experimental standard enthalpies of formation DeltafH degrees of haloboranes/-boranates as well as the isoelectronic halocarbenium ions and halomethanes, high-level quantum chemical calculations up to the ccsd(t)/(SDB-)aug-cc-pVQZ level have been performed to establish these values. Very reliable experimental data (e.g., DeltafH degrees of HCl, F, and CH4) or at the G3 level established values (e.g., DeltafH degrees of CF3+=410 kJ mol(-1)) were used as anchor points to obtain accurate absolute DeltafH degrees and mean bond enthalpy (mBE) values. To further minimize systematic errors of the protocol, all derived quantities were assessed in isodesmic reactions at the G3 and ccsd(t) level using the (SDB-)aug-cc-PVTZ basis set. The obtained DeltafH degrees values are in very good agreement to (scarcely available) accurate experimental and computational data. Almost all B-containing compounds have been assessed for the first time. We derived "best" DeltafH degrees values and used them to determine the mean E-X bond enthalpies in H4-nEXn-/0 and H3-nEXn0/+ (with n=1-3, E=B, C, and X=F-I). In each of the series, the DeltafH degrees values increase from fluorine to iodine, and except for the iodine-containing carbenium ions and the bromo- and iodomethanes, the DeltafH degrees values become lower with the more halogen atoms that are present in the particle. The boron containing species always have a lower DeltafH degrees than the isoelectronic carbenium ions and methanes, and the H4-nEXn-/0 are lower in energy than the parent H3-nEXn+/0. This reflects the greater average B-X bond strengths.

  13. tRNA-dependent peptide bond formation by the transferase PacB in biosynthesis of the pacidamycin group of pentapeptidyl nucleoside antibiotics

    PubMed Central

    Zhang, Wenjun; Ntai, Ioanna; Kelleher, Neil L.; Walsh, Christopher T.

    2011-01-01

    Pacidamycins are a family of uridyl tetra/pentapeptide antibiotics with antipseudomonal activities through inhibition of the translocase MraY in bacterial cell wall assembly. The biosynthetic gene cluster for pacidamycins has recently been identified through genome mining of the producer Streptomyces coeruleorubidus, and the highly dissociated nonribosomal peptide assembly line for the uridyl tetrapeptide scaffold of pacidamycin has been characterized. In this work a hypothetical protein PacB, conserved in known uridyl peptide antibiotics gene clusters, has been characterized by both genetic deletion and enzymatic analysis of the purified protein. PacB catalyzes the transfer of the alanyl residue from alanyl-tRNA to the N terminus of the tetrapeptide intermediate yielding a pentapeptide on the thio-templated nonribosomal peptide synthetase (NRPS) assembly line protein PacH. PacB thus represents a new group of tRNA-dependent peptide bond-forming enzymes in secondary metabolite biosynthesis in addition to the recently identified cyclodipeptide synthases. The characterization of PacB completes the assembly line reconstitution of pacidamycin pentapeptide antibiotic scaffolds, bridging the primary and secondary metabolic pathways by hijacking an aminoacyl-tRNA to the antibiotic biosynthetic pathway. PMID:21746899

  14. Direct carbon-carbon bond formation via reductive soft enolization: a syn-selective Mannich addition of α-iodo thioesters.

    PubMed

    Truong, Ngoc; Sauer, Scott J; Seraphin-Hatcher, Cyndie; Coltart, Don M

    2016-08-16

    The β-amino carboxylic acid moiety is a key feature of numerous important biologically active compounds. We describe a syn-selective direct Mannich addition reaction that uses α-iodo thioesters and sulfonyl imines and produces β-amino thioesters. Enolate formation is achieved by reductive soft enolization. The products of the reaction provide straightforward access to biologically important β-lactams through a variety of known reactions. PMID:27492274

  15. Dihydrogen catalysis of the reversible formation and cleavage of C-H and N-H bonds of aminopyridinate ligands bound to (η(5) -C5 Me5 )Ir(III.).

    PubMed

    Zamorano, Ana; Rendón, Nuria; López-Serrano, Joaquín; Valpuesta, José E V; Álvarez, Eleuterio; Carmona, Ernesto

    2015-02-01

    This study focuses on a series of cationic complexes of iridium that contain aminopyridinate (Ap) ligands bound to an (η(5) -C5 Me5 )Ir(III) fragment. The new complexes have the chemical composition [Ir(Ap)(η(5) -C5 Me5 )](+) , exist in the form of two isomers (1(+) and 2(+) ) and were isolated as salts of the BArF (-) anion (BArF =B[3,5-(CF3 )2 C6 H3 ]4 ). Four Ap ligands that differ in the nature of their bulky aryl substituents at the amido nitrogen atom and pyridinic ring were employed. In the presence of H2 , the electrophilicity of the Ir(III) centre of these complexes allows for a reversible prototropic rearrangement that changes the nature and coordination mode of the aminopyridinate ligand between the well-known κ(2) -N,N'-bidentate binding in 1(+) and the unprecedented κ-N,η(3) -pseudo-allyl-coordination mode in isomers 2(+) through activation of a benzylic C-H bond and formal proton transfer to the amido nitrogen atom. Experimental and computational studies evidence that the overall rearrangement, which entails reversible formation and cleavage of H-H, C-H and N-H bonds, is catalysed by dihydrogen under homogeneous conditions. PMID:25504864

  16. Dihydrogen catalysis of the reversible formation and cleavage of C-H and N-H bonds of aminopyridinate ligands bound to (η(5) -C5 Me5 )Ir(III.).

    PubMed

    Zamorano, Ana; Rendón, Nuria; López-Serrano, Joaquín; Valpuesta, José E V; Álvarez, Eleuterio; Carmona, Ernesto

    2015-02-01

    This study focuses on a series of cationic complexes of iridium that contain aminopyridinate (Ap) ligands bound to an (η(5) -C5 Me5 )Ir(III) fragment. The new complexes have the chemical composition [Ir(Ap)(η(5) -C5 Me5 )](+) , exist in the form of two isomers (1(+) and 2(+) ) and were isolated as salts of the BArF (-) anion (BArF =B[3,5-(CF3 )2 C6 H3 ]4 ). Four Ap ligands that differ in the nature of their bulky aryl substituents at the amido nitrogen atom and pyridinic ring were employed. In the presence of H2 , the electrophilicity of the Ir(III) centre of these complexes allows for a reversible prototropic rearrangement that changes the nature and coordination mode of the aminopyridinate ligand between the well-known κ(2) -N,N'-bidentate binding in 1(+) and the unprecedented κ-N,η(3) -pseudo-allyl-coordination mode in isomers 2(+) through activation of a benzylic C-H bond and formal proton transfer to the amido nitrogen atom. Experimental and computational studies evidence that the overall rearrangement, which entails reversible formation and cleavage of H-H, C-H and N-H bonds, is catalysed by dihydrogen under homogeneous conditions.

  17. Hydroperoxides as Hydrogen Bond Donors

    NASA Astrophysics Data System (ADS)

    Møller, Kristian H.; Tram, Camilla M.; Hansen, Anne S.; Kjaergaard, Henrik G.

    2016-06-01

    Hydroperoxides are formed in the atmosphere following autooxidation of a wide variety of volatile organics emitted from both natural and anthropogenic sources. This raises the question of whether they can form hydrogen bonds that facilitate aerosol formation and growth. Using a combination of Fourier transform infrared spectroscopy, FT-IR, and ab initio calculations, we have compared the gas phase hydrogen bonding ability of tert-butylhydroperoxide (tBuOOH) to that of tert-butanol (tBuOH) for a series of bimolecular complexes with different acceptors. The hydrogen bond acceptor atoms studied are nitrogen, oxygen, phosphorus and sulphur. Both in terms of calculated redshifts and binding energies (BE), our results suggest that hydroperoxides are better hydrogen bond donors than the corresponding alcohols. In terms of hydrogen bond acceptor ability, we find that nitrogen is a significantly better acceptor than the other three atoms, which are of similar strength. We observe a similar trend in hydrogen bond acceptor ability with other hydrogen bond donors including methanol and dimethylamine.

  18. Template Catalysis by Metal-Ligand Cooperation. C-C Bond Formation via Conjugate Addition of Non-activated Nitriles under Mild, Base-free Conditions Catalyzed by a Manganese Pincer Complex.

    PubMed

    Nerush, Alexander; Vogt, Matthias; Gellrich, Urs; Leitus, Gregory; Ben-David, Yehoshoa; Milstein, David

    2016-06-01

    The first example of a catalytic Michael addition reaction of non-activated aliphatic nitriles to α,β-unsaturated carbonyl compounds under mild, neutral conditions is reported. A new de-aromatized pyridine-based PNP pincer complex of the Earth-abundant, first-row transition metal manganese serves as the catalyst. The reaction tolerates a variety of nitriles and Michael acceptors with different steric features and acceptor strengths. Mechanistic investigations including temperature-dependent NMR spectroscopy and DFT calculations reveal that the cooperative activation of alkyl nitriles, which leads to the generation of metalated nitrile nucleophile species (α-cyano carbanion analogues), is a key step of the mechanism. The metal center is not directly involved in the catalytic bond formation but rather serves, cooperatively with the ligand, as a template for the substrate activation. This approach of "template catalysis" expands the scope of potential donors for conjugate addition reactions. PMID:27164437

  19. Formation of Self-Templated 2,6-Bis(1,2,3-triazol-4-yl)pyridine [2]Catenanes by Triazolyl Hydrogen Bonding: Selective Anion Hosts for Phosphate.

    PubMed

    Byrne, Joseph P; Blasco, Salvador; Aletti, Anna B; Hessman, Gary; Gunnlaugsson, Thorfinnur

    2016-07-25

    We report the remarkable ability of 2,6-bis(1,2,3-triazol-4-yl)pyridine (btp) compounds 2 with appended olefin amide arms to self-template the formation of interlocked [2]catenane structures 3 in up to 50 % yield when subjected to olefin ring-closing metathesis in CH2 Cl2 . X-ray diffraction crystallography enabled the structural characterization of both the [2]catenane 3 a and the non-interlocked macrocycle 4 a. These [2]catenanes showed selective triazolyl hydrogen-bonding interactions with the tetrahedral phosphate anion when screened against a range of ions; 3 a,b are the first examples of selective [2]catenane hosts for phosphate. PMID:27295556

  20. IMPROVED BONDING METHOD

    DOEpatents

    Padgett, E.V. Jr.; Warf, D.H.

    1964-04-28

    An improved process of bonding aluminum to aluminum without fusion by ultrasonic vibrations plus pressure is described. The surfaces to be bonded are coated with an aqueous solution of alkali metal stearate prior to assembling for bonding. (AEC) O H19504 Present information is reviewed on steady state proliferation, differentiation, and maturation of blood cells in mammals. Data are cited from metabolic tracer studies, autoradiographic studies, cytologic studies, studies of hematopoietic response to radiation injuries, and computer analyses of blood cell production. A 3-step model for erythropoiesis and a model for granulocyte kinetics are presented. New approaches to the study of lymphocytopoiesis described include extracorporeal blood irradiation to deplete lymphocytic tissue without direct injury to the formative tissues as a means to study the stressed system, function control, and rates of proliferation. It is pointed out that present knowledge indicates that lymphocytes comprise a mixed family, with diverse life spans, functions, and migration patterns with apparent aimless recycling from modes to lymph to blood to nodes that has not yet been quantitated. Areas of future research are postulated. (70 references.) (C.H.)

  1. DsbA2 (27 kDa Com1-like protein) of Legionella pneumophila catalyses extracytoplasmic disulphide-bond formation in proteins including the Dot/Icm type IV secretion system.

    PubMed

    Jameson-Lee, Max; Garduño, Rafael A; Hoffman, Paul S

    2011-05-01

    In Gram-negative bacteria, thiol oxidoreductases catalyse the formation of disulphide bonds (DSB) in extracytoplasmic proteins. In this study, we sought to identify DSB-forming proteins required for assembly of macromolecular structures in Legionella pneumophila. Here we describe two DSB-forming proteins, one annotated as dsbA1 and the other annotated as a 27 kDa outer membrane protein similar to Com1 of Coxiella burnetii, which we designate as dsbA2. Both proteins are predicted to be periplasmic, and while dsbA1 mutants were readily isolated and without phenotype, dsbA2 mutants were not obtained. To advance studies of DsbA2, a cis-proline residue at position 198 was replaced with threonine that enables formation of stable disulphide-bond complexes with substrate proteins. Expression of DsbA2 P198T mutant protein from an inducible promoter produced dominant-negative effects on DsbA2 function that resulted in loss of infectivity for amoeba and HeLa cells and loss of Dot/Icm T4SS-mediated contact haemolysis of erythrocytes. Analysis of captured DsbA2 P198T-substrate complexes from L. pneumophila by mass spectrometry identified periplasmic and outer membrane proteins that included components of the Dot/Icm T4SS. More broadly, our studies establish a DSB oxidoreductase function for the Com1 lineage of DsbA2-like proteins which appear to be conserved among those bacteria also expressing T4SS. PMID:21375592

  2. Elementary steps of iron catalysis: exploring the links between iron alkyl and iron olefin complexes for their relevance in C-H activation and C-C bond formation.

    PubMed

    Casitas, Alicia; Krause, Helga; Goddard, Richard; Fürstner, Alois

    2015-01-26

    The alkylation of complexes 2 and 7 with Grignard reagents containing β-hydrogen atoms is a process of considerable relevance for the understanding of C-H activation as well as C-C bond formation mediated by low-valent iron species. Specifically, reaction of 2 with EtMgBr under an ethylene atmosphere affords the bis-ethylene complex 1 which is an active precatalyst for prototype [2+2+2] cycloaddition reactions and a valuable probe for mechanistic studies. This aspect is illustrated by its conversion into the bis-alkyne complex 6 as an unprecedented representation of a cycloaddition catalyst loaded with two substrates molecules. On the other hand, alkylation of 2 with 1 equivalent of cyclohexylmagnesium bromide furnished the unique iron alkyl species 11 with a 14-electron count, which has no less than four β-H atoms but is nevertheless stable at low temperature against β-hydride elimination. In contrast, the exhaustive alkylation of 1 with cyclohexylmagnesium bromide triggers two consecutive C-H activation reactions mediated by a single iron center. The resulting complex has a diene dihydride character in solution (15), whereas its structure in the solid state is more consistent with an η(3) -allyl iron hydride rendition featuring an additional agostic interaction (14). Finally, the preparation of the cyclopentadienyl iron complex 25 illustrates how an iron-mediated C-H activation cascade can be coaxed to induce a stereoselective CC bond formation. The structures of all relevant new iron complexes in the solid state are presented. PMID:25504935

  3. DsbA2 (27-kDa Com1-Like Protein) of Legionella pneumophila Catalyses Extracytoplasmic Disulfide-Bond Formation in Proteins Including the Dot/Icm Type IV Secretion System

    PubMed Central

    Jameson-Lee, Max; Garduno, Rafael A.; Hoffman, Paul S.

    2011-01-01

    Summary In Gram negative bacteria, thiol oxidoreductases catalyze the formation of disulfide bonds (DSB) in extracytoplasmic proteins. In this study, we sought to identify DSB-forming proteins required for assembly of macromolecular structures in Legionella pneumophila. Here we describe two DSB forming proteins, one annotated as dsbA1 and the other annotated as a 27-kDa outer membrane protein similar to Com1 of Coxiella burnetii, which we designate as dsbA2. Both proteins are predicted to be periplasmic, and while dsbA1 mutants were readily isolated and without phenotype, dsbA2 mutants were not obtained. To advance studies of DsbA2, a cis-proline residue at position 198 was replaced with threonine that enables formation of stable disulfide-bond complexes with substrate proteins. Expression of DsbA2 P198T-mutant protein from an inducible promoter produced dominant-negative effects on DsbA2 function that resulted in loss of infectivity for amoeba and HeLa cells and loss of Dot/Icm T4SS-mediated contact hemolysis of erythrocytes. Analysis of captured DsbA2 P198T-substrate complexes from L. pneumophila by mass spectrometry identified periplasmic and outer membrane proteins that included components of the Dot/Icm T4SS. More broadly, our studies establish a DSB oxidoreductase function for the Com1 lineage of DsbA2-like proteins which appear to be conserved among those bacteria also expressing T4SS. PMID:21375592

  4. Expression of hypoallergenic Der f 2 derivatives with altered intramolecular disulphide bonds induces the formation of novel ER-derived protein bodies in transgenic rice seeds.

    PubMed

    Yang, Lijun; Hirose, Sakiko; Suzuki, Kazuya; Hiroi, Takachika; Takaiwa, Fumio

    2012-05-01

    House dust mites (HDM) are the most common source of indoor allergens and are associated with allergic diseases worldwide. To benefit allergic patients, safer and non-invasive mucosal routes of oral administration are considered to be the best alternative to conventional allergen-specific immunotherapy. In this study, transgenic rice was developed expressing derivatives of the major HDM allergen Der f 2 with reduced Der f 2-specific IgE reactivity by disrupting intramolecular disulphide bonds in Der f 2. These derivatives were produced specifically as secretory proteins in the endosperm tissue of seeds under the control of the endosperm-specific glutelin GluB-1 promoter. Notably, modified Der f 2 derivatives aggregated in the endoplasmic reticulum (ER) lumen and were deposited in a unique protein body (PB)-like structure tentatively called the Der f 2 body. Der f 2 bodies were characterized by their intracellular localization and physico-chemical properties, and were distinct from ER-derived PBs (PB-Is) and protein storage vacuoles (PB-IIs). Unlike ER-derived organelles such as PB-Is, Der f 2 bodies were rapidly digested in simulated gastric fluid in a manner similar to that of PB-IIs. Oral administration in mice of transgenic rice seeds containing Der f 2 derivatives encapsulated in Der f 2 bodies suppressed Der f 2-specific IgE and IgG production compared with that in mice fed non-transgenic rice seeds, and the effect was dependent on the type of Der f 2 derivative expressed. These results suggest that engineered hypoallergenic Der f 2 derivatives expressed in the rice seed endosperm could serve as a basis for the development of viable strategies for the oral delivery of vaccines against HDM allergy.

  5. Spectroscopy study of Zn, Cd, Pb and Cr ions immobilization on C-S-H phase.

    PubMed

    Żak, Renata; Deja, Jan

    2015-01-01

    Calcium silicate hydrates (C-S-H) have a large number of structural sites available for cations and anions to bind. The C-S-H phases are materials which have ability to toxic ions immobilization. Immobilization mechanisms for C-S-H include sorption, phase mixing, substitution and precipitation of insoluble compounds. This study presents the C-S-H (prepared with C/S ratios 1.0) phase as absorbent for immobilization of Zn, Cd, Pb and Cr ions. The C-S-H spectra before and after incorporation of heavy metals ions into the C-S-H structure were obtained. The effect of added heavy metals ions on the hydration phenomena was studied by means of X-ray diffractions analysis. FTIR spectra was measured. The microstructure and phase composition of C-S-H indicate that they can play an essential role in the immobilization of heavy metals. The properties of C-S-H in the presence of Zn, Cd, Pb and Cr cations were studied. The leaching ML test was used to evaluate the level of immobilization of heavy metals in C-S-H. The leached solutions are diluted and analyzed using atomic absorption spectrometry (AAS) and the activated solid particles are separated, washed, desiccated and analyzed by Fourier transform infrared (FTIR) spectroscopy. It was found that the degree of Cd, Zn, Pb and Cr cations immobilization was very high (exceeding 99.96%).

  6. Sensor/ROIC Integration using Oxide Bonding

    SciTech Connect

    Ye, Zhenyu; /Fermilab

    2009-02-01

    We explore the Ziptronix Direct Bond Interconnect (DBI) technology [2] for the integration of sensors and readout integrated circuits (ROICs) for high energy physics. The technology utilizes an oxide bond to form a robust mechanical connection between layers which serves to assist with the formation of metallic interlayer connections. We report on testing results of sample sensors bonded to ROICs and thinned to 100 {micro}m.

  7. Formation versus Hydrolysis of the Peptide Bond from a Quantum-mechanical Viewpoint: The Role of Mineral Surfaces and Implications for the Origin of Life

    PubMed Central

    Rimola, Albert; Ugliengo, Piero; Sodupe, Mariona

    2009-01-01

    The condensation (polymerization by water elimination) of molecular building blocks to yield the first active biopolymers (e.g. of amino acids to form peptides) during primitive Earth is an intriguing question that nowadays still remains open since these processes are thermodynamically disfavoured in highly dilute water solutions. In the present contribution, formation and hydrolysis of glycine oligopeptides occurring on a cluster model of sanidine feldspar (001) surface have been simulated by quantum mechanical methods. Results indicate that the catalytic interplay between Lewis and Brønsted sites both present at the sanidine surface, in cooperation with the London forces acting between the biomolecules and the inorganic surface, plays a crucial role to: i) favour the condensation of glycine to yield oligopeptides as reaction products; ii) inhibit the hydrolysis of the newly formed oligopeptides. Both facts suggest that mineral surfaces may have helped in catalyzing, stabilizing and protecting from hydration the oligopeptides formed in the prebiotic era. PMID:19399219

  8. Comprehensive analysis of individual pulp fiber bonds quantifies the mechanisms of fiber bonding in paper

    NASA Astrophysics Data System (ADS)

    Hirn, Ulrich; Schennach, Robert

    2015-05-01

    The process of papermaking requires substantial amounts of energy and wood consumption, which contributes to larger environmental costs. In order to optimize the production of papermaking to suit its many applications in material science and engineering, a quantitative understanding of bonding forces between the individual pulp fibers is of importance. Here we show the first approach to quantify the bonding energies contributed by the individual bonding mechanisms. We calculated the impact of the following mechanisms necessary for paper formation: mechanical interlocking, interdiffusion, capillary bridges, hydrogen bonding, Van der Waals forces, and Coulomb forces on the bonding energy. Experimental results quantify the area in molecular contact necessary for bonding. Atomic force microscopy experiments derive the impact of mechanical interlocking. Capillary bridges also contribute to the bond. A model based on the crystal structure of cellulose leads to values for the chemical bonds. In contrast to general believe which favors hydrogen bonding Van der Waals bonds play the most important role according to our model. Comparison with experimentally derived bond energies support the presented model. This study characterizes bond formation between pulp fibers leading to insight that could be potentially used to optimize the papermaking process, while reducing energy and wood consumption.

  9. Chemical Bonds II

    ERIC Educational Resources Information Center

    Sanderson, R. T.

    1972-01-01

    The continuation of a paper discussing chemical bonding from a bond energy viewpoint, with a number of examples of single and multiple bonds. (Part I appeared in volume 1 number 3, pages 16-23, February 1972.) (AL)

  10. What Determines Bond Costs. Municipal Bonds Series.

    ERIC Educational Resources Information Center

    Young, Douglas; And Others

    Public officials in small towns who participate infrequently in the bond market need information about bond financing. This publication, one in a series of booklets published by the Western Rural Development Center using research gathered between 1967-77, discusses factors influencing the marketability and cost of bond financing for towns and…

  11. Numerical simulations for hot spot formation under shock loading in plastic-bonded explosives with three-dimensional discrete element methe

    NASA Astrophysics Data System (ADS)

    Zhao, Feng; Shang, Hailing; Wang, Wenqiang; Fu, Hua

    2011-06-01

    Three-dimensional discrete element code, the combined discrete/finite element code and three-dimensional calculation model for explosive have been established for the simulation of hot spot formation in granular HMX, HMX based PBX, HMX crystalline with a void inside under shock loading. The simulation results indicate that in the case of PBX explosives hot spots mostly locate near the interface between HMX granules and binder, the temperature rise of HMX granules is lower than the binder, and the surrounding parts of HMX granules have higher temperature rise than the inner parts. In contrast to HMX granular explosive, since the binder can act as a cushion to the explosive, HMX in PBX has much lower temperature rise. Temperature of hot spot generated by void collapse is significantly influenced by the size and shape of the void. Finally, simple chemical reaction process has been simulated using the Arrhenius reactive rate law and the HOM equation of state for solid explosive and gas production.

  12. The effect of dentin pre-treatment and heat-augmented cure on marginal gap formation of a dentin bonding agent.

    PubMed

    Zidan, O; Ross, G; Lee, I K; Gomez-Marin, O; Yeh, S H

    1991-07-01

    This study evaluated the effect of enhancing the cure of a DBA and the effect of dentin surface pre-treatment on marginal gap formation. Dentin cavities were prepared on extracted teeth and were pre-treated either with EDTA or phosphoric acid. Marginal leakage was expressed as percent length of margins with gaps. The mean percent length of margins with gaps for the chemically cured groups ranged from a maximum of 97% to a minimum of 85%. For the chemical/thermal-cured group, the mean percent length of margins with gaps was 95%, 95%, 73%, 35%, and 65%, corresponding to the following: pretreatment, no pre-treatment, EDTA, and phosphoric acid for 60, 15, or five s, respectively. SEM micrographs showed partial removal of one smear layer with EDTA and total removal of the smear layers with phosphoric acid. It is concluded that dentin pre-treatment methods have an effect on the percent length of margins with gaps when the DBA used had its cure supplemented with heat.

  13. Site-specific bonding of copper adatoms to pyridine end groups mediating the formation of two-dimensional coordination networks on metal surfaces

    NASA Astrophysics Data System (ADS)

    Umbach, T. R.; Bernien, M.; Hermanns, C. F.; Sun, L. L.; Mohrmann, H.; Hermann, K. E.; Krüger, A.; Krane, N.; Yang, Z.; Nickel, F.; Chang, Y.-M.; Franke, K. J.; Pascual, J. I.; Kuch, W.

    2014-06-01

    We study the formation of a coordination network consisting of the organic pyridine-based 2,4,6-tris(4-pyridine)-1,3,5-triazine (T4PT) species and Cu atoms on Cu(111) and Ag(111) metal surfaces. Using scanning tunneling microscopy, we find that the organic molecule T4PT forms stable two-dimensional porous networks on the surface of Cu(111) and, by codeposition of Cu atoms, also on the Ag(111) crystal, in which Cu atoms are twofold coordinated by T4PT molecules. X-ray absorption spectroscopy measurements of the metal-organic network Cu-T4PT on Ag(111) accompanied by density-functional theory calculations show that the nitrogen atoms of the pyridine end groups of the T4PT molecules are the active sites in coordinating the Cu adatoms. X-ray magnetic circular dichroism experiments reveal that the Cu atom in such a metal-organic motif is in a low-valent d10 state and has no magnetic moment.

  14. Chemical stabilization and improved thermal resilience of molecular arrangements: possible formation of a surface network of bonds by multiple pulse atomic layer deposition.

    PubMed

    de Pauli, Muriel; Matos, Matheus J S; Siles, Pablo F; Prado, Mariana C; Neves, Bernardo R A; Ferreira, Sukarno O; Mazzoni, Mário S C; Malachias, Angelo

    2014-08-14

    In this work, we make use of an atomic layer deposition (ALD) surface reaction based on trimethyl-aluminum (TMA) and water to modify O-H terminated self-assembled layers of octadecylphosphonic acid (OPA). The structural modifications were investigated by X-ray reflectivity, X-ray diffraction, and atomic force microscopy. We observed a significant improvement in the thermal stability of ALD-modified molecules, with the existence of a supramolecular packing structure up to 500 °C. Following the experimental observations, density functional theory (DFT) calculations indicate the possibility of formation of a covalent network with aluminum atoms connecting OPA molecules at terrace surfaces. Chemical stability is also achieved on top of such a composite surface, inhibiting further ALD oxide deposition. On the other hand, in the terrace edges, where the covalent array is discontinued, the chemical conditions allow for oxide growth. Analysis of the DFT results on band structure and density of states of modified OPA molecules suggests that besides the observed thermal resilience, the dielectric character of OPA layers is preserved. This new ALD-modified OPA composite is potentially suitable for applications such as dielectric layers in organic devices, where better thermal performance is required.

  15. [Adenosine- and ethenoadenosine-5'-trimetaphosphates: the effect of covalent bond formation on the state of the affinity label in the complex with phenylalanyl-tRNA-synthetase].

    PubMed

    Nevinskiĭ, G A; Podust, V N; Khodyreva, S N; Gorshkova, I I; Lavrik, O I

    1984-01-01

    epsilon ATP is a substrate of phenylalanyl-tRNA synthetase and epsilon Ado is a competitive inhibitor of ATP in the reaction of tRNA aminoacylation (Ki = 1.6 mM). The association of phenylalanyl-tRNA synthetase with ATP or Ado results in synergistic binding of phenylalaninol and phenylalanine, respectively. However neither epsilon ATP nor epsilon Ado exhibit synergism. Adenosine- and ethenoadenosine-5'-trimethaphosphates are shown to be similar affinity reagents of phenylalanyl-tRNA synthetase. ATP being covalently bound to the enzyme shows essentially lower synergistic effect in comparison with free ATP. epsilon ATP-label is practically insensitive to the ligands namely ATP, Phe, phenylalaninol and is highly accessible for I- ions. The scheme of behaviour of affinity labels is assumed to be as follows: a) the formation of specific reagent-enzyme complex, b) the covalent attachment of the reagent to the enzyme, c) the covalent binding induced disruption of the specific complex formed before. PMID:6390177

  16. Chemical stabilization and improved thermal resilience of molecular arrangements: possible formation of a surface network of bonds by multiple pulse atomic layer deposition.

    PubMed

    de Pauli, Muriel; Matos, Matheus J S; Siles, Pablo F; Prado, Mariana C; Neves, Bernardo R A; Ferreira, Sukarno O; Mazzoni, Mário S C; Malachias, Angelo

    2014-08-14

    In this work, we make use of an atomic layer deposition (ALD) surface reaction based on trimethyl-aluminum (TMA) and water to modify O-H terminated self-assembled layers of octadecylphosphonic acid (OPA). The structural modifications were investigated by X-ray reflectivity, X-ray diffraction, and atomic force microscopy. We observed a significant improvement in the thermal stability of ALD-modified molecules, with the existence of a supramolecular packing structure up to 500 °C. Following the experimental observations, density functional theory (DFT) calculations indicate the possibility of formation of a covalent network with aluminum atoms connecting OPA molecules at terrace surfaces. Chemical stability is also achieved on top of such a composite surface, inhibiting further ALD oxide deposition. On the other hand, in the terrace edges, where the covalent array is discontinued, the chemical conditions allow for oxide growth. Analysis of the DFT results on band structure and density of states of modified OPA molecules suggests that besides the observed thermal resilience, the dielectric character of OPA layers is preserved. This new ALD-modified OPA composite is potentially suitable for applications such as dielectric layers in organic devices, where better thermal performance is required. PMID:25055162

  17. Energetics of C-F, C-Cl, C-Br, and C-I bonds in 2-haloethanols. enthalpies of formation of XCH(2)CH(2)OH (X = F, Cl, Br, I) compounds and of the 2-hydroxyethyl radical.

    PubMed

    Bernardes, Carlos E S; Minas da Piedade, Manuel E; Amaral, Luísa M P F; Ferreira, Ana I M C L; Ribeiro da Silva, Manuel A V; Diogo, Hermínio P; Costa Cabral, Benedito J

    2007-03-01

    The energetics of the C-F, C-Cl, C-Br, and C-I bonds in 2-haloethanols was investigated by using a combination of experimental and theoretical methods. The standard molar enthalpies of formation of 2-chloro-, 2-bromo-, and 2-iodoethanol, at 298.15 K, were determined as Delta(f)H(degree)m(CH2CH2OH, l) = -315.5 +/- 0.7 kJ.mol-1, Delta(f)H(degree)mBrCH2CH2OH, l) = -275.8 +/- 0.6 kJ.mol-1, Delta(f)H(degree)m(ICH2CH2OH, l) = -207.3 +/- 0.7 kJ.mol-1, by rotating-bomb combustion calorimetry. The corresponding standard molar enthalpies of vaporization, Delta(vap)H(degree)m(ClCH2CH2OH) = 48.32 +/- 0.37 kJ.mol-1, Delta(vap)H(degree)m(BrCH2CH2OH) = 54.08 +/- 0.40 kJ.mol-1, and Delta(vap)H(degree)m(ICH2CH2OH) = 57.03 +/- 0.20 kJ.mol-1 were also obtained by Calvet-drop microcalorimetry. The condensed phase and vaporization enthalpy data lead to Delta(f)H(degree)m(ClCH2CH2OH, g) = -267.2 +/- 0.8 kJ.mol-1, Delta(f)H(degree)m(BrCH2CH2OH, g) = -221.7 +/- 0.7 kJ.mol-1, and Delta(f)H(degree)m(ICH2CH2OH, g) = -150.3 +/- 0.7 kJ.mol-1. These values, together with the enthalpy of selected isodesmic and isogyric gas-phase reactions predicted by density functional theory (B3LYP/cc-pVTZ) and CBS-QB3 calculations were used to derive the enthalpies of formation of gaseous 2-fluoroethanol, Delta(f)H(degree)m(FCH2CH2OH, g) = -423.6 +/- 5.0 kJ.mol-1, and of the 2-hydroxyethyl radical, Delta(f)H(degree)m(CH2CH2OH, g) = -28.7 +/- 8.0 kJ.mol-1. The obtained thermochemical data led to the following carbon-halogen bond dissociation enthalpies: DHo(X-CH2CH2OH) = 474.4 +/- 9.4 kJ.mol-1 (X = F), 359.9 +/- 8.0 kJ.mol-1 (X = Cl), 305.0 +/- 8.0 kJ.mol-1 (X = Br), 228.7 +/- 8.1 kJ.mol-1 (X = I). These values were compared with the corresponding C-X bond dissociation enthalpies in XCH2COOH, XCH3, XC2H5, XCH=CH2, and XC6H5. In view of this comparison the computational methods mentioned above were also used to obtain Delta(f)H(degree)m-594.0 +/- 5.0 kJ.mol-1 from which DHo(F-CH2COOH) = 435.4 +/- 5.4 kJ.mol-1

  18. Quantum theory of atoms in molecules/charge-charge flux-dipole flux models for fundamental vibrational intensity changes on H-bond formation of water and hydrogen fluoride

    SciTech Connect

    Silva, Arnaldo F.; Richter, Wagner E.; Bruns, Roy E.; Terrabuio, Luiz A.; Haiduke, Roberto L. A.

    2014-02-28

    The Quantum Theory of Atoms In Molecules/Charge-Charge Flux-Dipole Flux (QTAIM/CCFDF) model has been used to investigate the electronic structure variations associated with intensity changes on dimerization for the vibrations of the water and hydrogen fluoride dimers as well as in the water-hydrogen fluoride complex. QCISD/cc-pVTZ wave functions applied in the QTAIM/CCFDF model accurately provide the fundamental band intensities of water and its dimer predicting symmetric and antisymmetric stretching intensity increases for the donor unit of 159 and 47 km mol{sup −1} on H-bond formation compared with the experimental values of 141 and 53 km mol{sup −1}. The symmetric stretching of the proton donor water in the dimer has intensity contributions parallel and perpendicular to its C{sub 2v} axis. The largest calculated increase of 107 km mol{sup −1} is perpendicular to this axis and owes to equilibrium atomic charge displacements on vibration. Charge flux decreases occurring parallel and perpendicular to this axis result in 42 and 40 km mol{sup −1} total intensity increases for the symmetric and antisymmetric stretches, respectively. These decreases in charge flux result in intensity enhancements because of the interaction contributions to the intensities between charge flux and the other quantities. Even though dipole flux contributions are much smaller than the charge and charge flux ones in both monomer and dimer water they are important for calculating the total intensity values for their stretching vibrations since the charge-charge flux interaction term cancels the charge and charge flux contributions. The QTAIM/CCFDF hydrogen-bonded stretching intensity strengthening of 321 km mol{sup −1} on HF dimerization and 592 km mol{sup −1} on HF:H{sub 2}O complexation can essentially be explained by charge, charge flux and their interaction cross term. Atomic contributions to the intensities are also calculated. The bridge hydrogen atomic contributions alone

  19. A cooperative hydrogen bonding system with a Csbnd H⋯O hydrogen bond in ofloxacin

    NASA Astrophysics Data System (ADS)

    Gao, Xiuxiang; Liu, Yufeng; Li, Huizhen; Bian, Jiang; Zhao, Ying; Cao, Ye; Mao, Yuezhi; Li, Xin; Xu, Yizhuang; Ozaki, Yukihiro; Wu, Jinguang

    2013-05-01

    We have investigated a cooperative hydrogen bonding system with a Csbnd H⋯O hydrogen bond in ofloxacin by using NMR, UV-Vis spectra together with quantum chemistry calculation. Both pH-dependent NMR experiments and DFT calculation indicate that the intra-molecular Csbnd H⋯O hydrogen bond between an aromatic proton and an oxygen atom from the carboxyl group is formed. Notably, the Csbnd H⋯O hydrogen bond forms a cooperative hydrogen bonding system with a neighboring Osbnd H⋯O hydrogen bond between the carboxyl group and the keto oxygen. The cooperative hydrogen bonding system makes the formation and disruption of the Osbnd H⋯O and Csbnd H⋯O hydrogen bonds in a synergistic manner. Comparison on the pKa value of the carboxylic group in different fluoroquinolones compounds indicates that the Csbnd H⋯O hydrogen bond plays a significant role in stabilizing the Osbnd H⋯O hydrogen bond. In addition, the formation and disruption of the cooperative hydrogen bonding system could regulate the conformation of the carboxyl group, which affects the size of the conjugated system and spectral behavior of π-π transition of ofloxacin.

  20. Mechanistic Examination of Cβ–Cγ Bond Cleavages of Tryptophan Residues during Dissociations of Molecular Peptide Radical Cations

    SciTech Connect

    Song, Tao; Ma, Ching-Yung; Chu, Ivan K.; Siu, Chi-Kit; Laskin, Julia

    2013-02-14

    In this study, we used collision-induced dissociation (CID) to examine the gas-phase fragmentations of [GnW]•+ (n = 2-4) and [GXW]•+ (X = C, S, L, F, Y, Q) species. The Cβ–Cγ bond cleavage of a C-terminal decarboxylated tryptophan residue ([M - CO2]•+) can generate [M - CO2 - 116]+, [M - CO2 - 117]•+, and [1H-indole]•+ (m/z 117) species as possible product ions. Competition between the formation of [M - CO2 - 116]+ and [1H-indole]•+ systems implies the existence of a proton-bound dimer formed between the indole ring and peptide backbone. Formation of such a proton-bound dimer is facile via a protonation of the tryptophan γ-carbon atom as suggested by density functional theory (DFT) calculations. DFT calculations also suggested the initially formed ion 2--the decarboxylated species that is active against Cβ–Cγ bond cleavage -can efficiently isomerize to form a more-stable -radical isomer (ion 9) as supported by Rice-Ramsperger-Kassel-Marcus (RRKM) modeling. The Cβ–Cγ bond cleavage of a tryptophan residue also can occur directly from peptide radical cations containing a basic residue. CID of [WGnR]•+ (n = 1-3) radical cations consistently resulted in predominant formation of [M-116]+ product ions. It appears that the basic arginine residue tightly sequesters the proton and allows the charge-remote Cβ–Cγ bond cleavage to prevail over the charge-directed one. DFT calculations predicted the barrier for the former is 6.2 kcal mol -1 lower than that of the latter. Furthermore, the pathway involving a salt-bridge intermediate also was accessible during such a bond cleavage event.

  1. Using Multiple Bonding Strategies.

    PubMed

    Larson, Thomas D

    2015-01-01

    There are many ways to bond to tooth structure, some micro-mechanical some chemical, some a combination. Different dentin bonding materials have different bonding strengths to differently prepared surfaces, and because of differences in their nature, different areas of tooth structure present peculiar bonding challenges. This paper will review a variety of material types, elucidating their particular bonding strengths and commenting on improved bonding strategies to increase durability, strength, and favorable pulpal response. In this discussion, resin dentin bonding systems, glass ionomers, Gluma, resin cements, and newer combined products will br reviewed. PMID:26485903

  2. Using Multiple Bonding Strategies.

    PubMed

    Larson, Thomas D

    2015-01-01

    There are many ways to bond to tooth structure, some micro-mechanical some chemical, some a combination. Different dentin bonding materials have different bonding strengths to differently prepared surfaces, and because of differences in their nature, different areas of tooth structure present peculiar bonding challenges. This paper will review a variety of material types, elucidating their particular bonding strengths and commenting on improved bonding strategies to increase durability, strength, and favorable pulpal response. In this discussion, resin dentin bonding systems, glass ionomers, Gluma, resin cements, and newer combined products will br reviewed.

  3. A new reaction mode of germanium-silicon bond formation: insertion reactions of H₂GeLiF with SiH₃X (X = F, Cl, Br).

    PubMed

    Yan, Bingfei; Li, Wenzuo; Xiao, Cuiping; Li, Qingzhong; Cheng, Jianbo

    2013-10-01

    A combined density functional and ab initio quantum chemical study of the insertion reactions of the germylenoid H2GeLiF with SiH3X (X = F, Cl, Br) was carried out. The geometries of all the stationary points of the reactions were optimized using the DFT B3LYP method and then the QCISD method was used to calculate the single-point energies. The theoretical calculations indicated that along the potential energy surface, there were one precursor complex (Q), one transition state (TS), and one intermediate (IM) which connected the reactants and the products. The calculated barrier heights relative to the respective precursors are 102.26 (X = F), 95.28 (X = Cl), and 84.42 (X = Br) kJ mol(-1) for the three different insertion reactions, respectively, indicating the insertion reactions should occur easily according to the following order: SiH3-Br > SiH3-Cl > SiH3-F under the same situation. The solvent effects on the insertion reactions were also calculated and it was found that the larger the dielectric constant, the easier the insertion reactions. The elucidations of the mechanism of these insertion reactions provided a new reaction model of germanium-silicon bond formation.

  4. Protocols for the selective cleavage of carbon-sulfur bonds in coal

    SciTech Connect

    Bausch, M.

    1991-01-01

    Removal of the organic sulfur in coal constitutes one of the major challenges facing fossil fuel scientists today. A cost--effective of desulfurizing Illinois coal is non-existent at the present time. Research in our group aims to develop a simple protocol for sulfur removal by gaining understanding of how various additives can enhance the rates of C-S bond cleavage in Illinois coal and coal model compounds, relative to fragmentation of the coal macromolecule via C-C, C-O, and C-N bond cleavage. During this funding period, we plan to carry out examinations of: (a) the effects of various reaction conditions on radical-initiated and Lewis acid-catalyzed C-S bond cleavages; (b) the effects of caustic impregnation and subsequent alcoholic reflux on C-S bond cleavage strategies; (c) the reactions of coal model compounds with electron-deficient substrates; (d) examinations of photooxidative C-S bond cleavage reactions; (e) the effects of moderate (300--400{degrees}C) temperatures and pressures as well as ultrasonic radiation on (a) - (c). Also planned are differential scanning calorimetric (DSC) examinations of selected C-S bond cleavage protocols, including those on Illinois coals that possess varying amounts of organic and inorganic sulfur.

  5. Hydroxide-catalyzed bonding

    NASA Technical Reports Server (NTRS)

    Gwo, Dz-Hung (Inventor)

    2003-01-01

    A method of bonding substrates by hydroxide-catalyzed hydration/dehydration involves applying a bonding material to at least one surface to be bonded, and placing the at least one surface sufficiently close to another surface such that a bonding interface is formed between them. A bonding material of the invention comprises a source of hydroxide ions, and may optionally include a silicate component, a particulate filling material, and a property-modifying component. Bonding methods of the invention reliably and reproducibly provide bonds which are strong and precise, and which may be tailored according to a wide range of possible applications. Possible applications for bonding materials of the invention include: forming composite materials, coating substrates, forming laminate structures, assembly of precision optical components, and preparing objects of defined geometry and composition. Bonding materials and methods of preparing the same are also disclosed.

  6. IMPACT OF PHYSICAL AND CHEMICAL MUD CONTAMINATION ON WELLBORE CEMENT- FORMATION SHEAR BOND STRENGTH Authors: Arome Oyibo1 and Mileva Radonjic1 * 1. Craft and Hawkins Department of Petroleum Engineering, 2131 Patrick F. Taylor Hall, Louisiana State University, Baton Rouge, LA 70803, aoyibo1@tigers.lsu.edu, mileva@lsu.edu

    NASA Astrophysics Data System (ADS)

    Oyibo, A. E.

    2013-12-01

    Wellbore cement has been used to provide well integrity through zonal isolation in oil & gas wells and geothermal wells. Cementing is also used to provide mechanical support for the casing and protect the casing from corrosive fluids. Failure of cement could be caused by several factors ranging from poor cementing, failure to completely displace the drilling fluids to failure on the path of the casing. A failed cement job could result in creation of cracks and micro annulus through which produced fluids could migrate to the surface which could lead to sustained casing pressure, contamination of fresh water aquifer and blow out in some cases. In addition, cement failures could risk the release of chemicals substances from hydraulic fracturing into fresh water aquifer during the injection process. To achieve proper cementing, the drilling fluid should be completely displaced by the cement slurry. However, this is hard to achieve in practice, some mud is usually left on the wellbore which ends up contaminating the cement afterwards. The purpose of this experimental study is to investigate the impact of both physical and chemical mud contaminations on cement-formation bond strength for different types of formations. Physical contamination occurs when drilling fluids (mud) dries on the surface of the formation forming a mud cake. Chemical contamination on the other hand occurs when the drilling fluids which is still in the liquid form interacts chemically with the cement during a cementing job. We investigated the impact of the contamination on the shear bond strength and the changes in the mineralogy of the cement at the cement-formation interface to ascertain the impact of the contamination on the cement-formation bond strength. Berea sandstone and clay rich shale cores were bonded with cement cores with the cement-formation contaminated either physically or chemically. For the physically contaminated composite cores, we have 3 different sample designs: clean

  7. Depositional and diagenetic C-S-Fe signatures in early Paleozoic normal marine shales

    SciTech Connect

    Raiswell, R.; Al-Biatty, H.J. )

    1989-05-01

    The degree of pyritisation (DOP) of Cambrian-Silurian normal marine shales is always less than 0.70, similar to that found previously for sediments of Devonian to Cretaceous ages. This indicates that DOP can be used as a paleoenvironmental indicator of deposition from normal marine (i.e., oxygenated) bottom waters throughout the Phanerozoic record. Although the range in DOP is similar, significant variations in normal marine C/S ratios can occur. Relatively low C/S ratios (<1) result from depositional or diagenetic conditions which give high reactive iron contents (which are positively correlated with increasing organic carbon concentrations), whereas higher C/S ratios (>1.5) result from lower reactive iron contents (which are also independent of organic carbon variations). Reactive iron contents, and hence normal marine C/S ratios, are able to vary at a regional or basinal level.

  8. Depositional and diagenetic C-S-Fe signatures in early Paleozoic normal marine shales

    NASA Astrophysics Data System (ADS)

    Raiswell, R.; Al-Biatty, H. J.

    1989-05-01

    The degree of pyritisation (DOP) of Cambrian-Silurian normal marine shales is always less than 0.70, similar to that found previously for sediments of Devonian to Cretaceous ages. This indicates that DOP can be used as a paleoenvironmental indicator of deposition from normal marine ( i.e., oxygenated) bottom waters throughout the Phanerozoic record. Although the range in DOP is similar, significant variations in normal marine C/S ratios can occur. Relatively low C/S ratios (<1) result from depositional or diagenetic conditions which give high reactive iron contents (which are positively correlated with increasing organic carbon concentrations), whereas higher C/S ratios (> 1.5) result from lower reactive iron contents (which are also independent of organic carbon variations). Reactive iron contents, and hence normal marine C/S ratios, are able to vary at a regional or basinal level.

  9. A first principles analysis of the effect of hydrogen concentration in hydrogenated amorphous silicon on the formation of strained Si-Si bonds and the optical and mobility gaps

    SciTech Connect

    Legesse, Merid; Nolan, Michael Fagas, Giorgos

    2014-05-28

    In this paper, we use a model of hydrogenated amorphous silicon generated from molecular dynamics with density functional theory calculations to examine how the atomic geometry and the optical and mobility gaps are influenced by mild hydrogen oversaturation. The optical and mobility gaps show a volcano curve as the hydrogen content varies from undersaturation to mild oversaturation, with largest gaps obtained at the saturation hydrogen concentration. At the same time, mid-gap states associated with dangling bonds and strained Si-Si bonds disappear at saturation but reappear at mild oversaturation, which is consistent with the evolution of optical gap. The distribution of Si-Si bond distances provides the key to the change in electronic properties. In the undersaturation regime, the new electronic states in the gap arise from the presence of dangling bonds and strained Si-Si bonds, which are longer than the equilibrium Si-Si distance. Increasing hydrogen concentration up to saturation reduces the strained bonds and removes dangling bonds. In the case of mild oversaturation, the mid-gap states arise exclusively from an increase in the density of strained Si-Si bonds. Analysis of our structure shows that the extra hydrogen atoms form a bridge between neighbouring silicon atoms, thus increasing the Si-Si distance and increasing disorder in the sample.

  10. C-H bond activation of the methyl group of the supporting ligand in an osmium(III) complex upon reaction with H2O2: formation of an organometallic osmium(IV) complex.

    PubMed

    Sugimoto, Hideki; Ashikari, Kenji; Itoh, Shinobu

    2013-01-18

    Oxidation of the hydroxoosmium(III) complex resulted in C-H bond activation of the methyl group of the supporting ligand (N,N'-dimethyl-2,11-diaza[3.3](2,6)pyridinophane). The product was an osmium(IV) complex exhibiting a seven-coordinate structure with an additional Os-CH(2) bond.

  11. Chemical bonding in electron-deficient boron oxide clusters: core boronyl groups, dual 3c-4e hypervalent bonds, and rhombic 4c-4e bonds.

    PubMed

    Chen, Qiang; Lu, Haigang; Zhai, Hua-Jin; Li, Si-Dian

    2014-04-28

    We explore the structural and bonding properties of the electron-deficient boron oxide clusters, using a series of B3On(-/0/+) (n = 2-4) clusters as examples. Global-minimum structures of these boron oxide clusters are identified via unbiased Coalescence Kick and Basin Hopping searches, which show a remarkable size and charge-state dependence. An array of new bonding elements are revealed: core boronyl groups, dual 3c-4e hypervalent bonds (ω-bonds), and rhombic 4c-4e bonds (o-bonds). In favorable cases, oxygen can exhaust all its 2s/2p electrons to facilitate the formation of B-O bonds. The current findings should help understand the bonding nature of low-dimensional boron oxide nanomaterials and bulk boron oxides.

  12. Improving the structural consistency of C-S-H solid solution thermodynamic models

    SciTech Connect

    Kulik, Dmitrii A.

    2011-05-15

    Simple aqueous-solid solution models of C-S-H (calcium silicate hydrate) are widely used in studies of cement hydration and waste-cement interactions. Even without a clear structural/mechanistic basis, such thermodynamic models yield a good description of solubility data in [Ca]-C/S space, while only satisfactory in [Si]-C/S, H{sub 2}O-C/S, [Ca]-[Si] spaces and in the 0.1 < C/S < 0.8 range. Here, using a multi-site (sublattice) concept, the ideal solid solution model of C-S-H is revised to make it consistent with the Richardson-Groves structural model of C-S-H and with the modern interpretation of spectroscopic ({sup 29}Si MAS NMR) and solubility data. Consideration of two site substitutions, (1) coupled H{sub 2}OCa{sup 2+} for SiO{sub 2}H{sub 2}{sup 2+} replacement in bridging tetrahedral and adjacent interlayer sites, and (2) substitution of interstitial Ca(OH){sub 2} for a vacancy, leads to a new CSHQ model of (A,B) (C,D)X type composed of two tobermorite-like and two jennite-like end members. Because this ideal sublattice SS model cannot fit solubility data well at 0.8 < C/S < 1.1, a simpler CSH3T model is constructed from a polymeric TobH (CaO){sub 2}(SiO{sub 2}){sub 3}(H{sub 2}O){sub 5}, a dimeric T2C (CaO){sub 3}(SiO{sub 2}){sub 2}(H{sub 2}O){sub 5}, and an ordered pentameric T5C (CaO){sub 2.5}(SiO{sub 2}){sub 2.5}(H{sub 2}O){sub 5} tobermorite-like end members. This solid solution model, limited to the range 0.67 < C/S < 1.5, has a correct built-in dependence of the mean silicate chain length on C/S, yields quite realistic fits to the solubility data, and provides a basis for extensions with foreign cations whose sites in the defect-tobermorite structure of C-S-H are known. To account for C-S-H compositions with C/S > 1.5, CSHQ end members were downscaled to one tetrahedral site and used within the simple mixing model. Despite some loss of structural consistency, the solubility and mean silicate chain length data can be reproduced well with this downscaled

  13. Diffusion bonding aeroengine components

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, G. A.; Broughton, T.

    1988-10-01

    The use of diffusion bonding processes at Rolls-Royce for the manufacture of titanium-alloy aircraft engine components and structures is described. A liquid-phase diffusion bonding process called activated diffusion bonding has been developed for the manufacture of the hollow titanium wide chord fan blade. In addition, solid-state diffusion bonding is being used in the manufacture of hollow vane/blade airfoil constructions mainly in conjunction with superplastic forming and hot forming techniques.

  14. Bond percolation in films

    NASA Astrophysics Data System (ADS)

    Korneta, W.; Pytel, Z.

    1988-04-01

    Bond percolation in films with simple cubic structure is considered. It is assumed that the probability of a bond being present between nearest-neighbor sites depends on the distances to surfaces. Based on the relation between the Potts model and the bond percolation model, and using the mean-field approximation, the phase diagram and profiles of the percolation probability have been obtained.

  15. Rapid adhesive bonding concepts

    NASA Technical Reports Server (NTRS)

    Stein, B. A.; Tyeryar, J. R.; Hodges, W. T.

    1984-01-01

    Adhesive bonding in the aerospace industry typically utilizes autoclaves or presses which have considerable thermal mass. As a consequence, the rates of heatup and cooldown of the bonded parts are limited and the total time and cost of the bonding process is often relatively high. Many of the adhesives themselves do not inherently require long processing times. Bonding could be performed rapidly if the heat was concentrated in the bond lines or at least in the adherends. Rapid adhesive bonding concepts were developed to utilize induction heating techniques to provide heat directly to the bond line and/or adherends without heating the entire structure, supports, and fixtures of a bonding assembly. Bonding times for specimens are cut by a factor of 10 to 100 compared to standard press bonding. The development of rapid adhesive bonding for lap shear specimens (per ASTM D1003 and D3163), for aerospace panel bonding, and for field repair needs of metallic and advanced fiber reinforced polymeric matrix composite structures are reviewed.

  16. Acrylic mechanical bond tests

    SciTech Connect

    Wouters, J.M.; Doe, P.J.

    1991-02-01

    The tensile strength of bonded acrylic is tested as a function of bond joint thickness. 0.125 in. thick bond joints were found to posses the maximum strength while the acceptable range of joints varied from 0.063 in. to almost 0.25 in. Such joints are used in the Sudbury Neutrino Observatory.

  17. Does fluorine participate in halogen bonding?

    PubMed

    Eskandari, Kiamars; Lesani, Mina

    2015-03-16

    When R is sufficiently electron withdrawing, the fluorine in the R-F molecules could interact with electron donors (e.g., ammonia) and form a noncovalent bond (F⋅⋅⋅N). Although these interactions are usually categorized as halogen bonding, our studies show that there are fundamental differences between these interactions and halogen bonds. Although the anisotropic distribution of electronic charge around a halogen is responsible for halogen bond formations, the electronic charge around the fluorine in these molecules is spherical. According to source function analysis, F is the sink of electron density at the F⋅⋅⋅N BCP, whereas other halogens are the source. In contrast to halogen bonds, the F⋅⋅⋅N interactions cannot be regarded as lump-hole interactions; there is no hole in the valence shell charge concentration (VSCC) of fluorine. Although the quadruple moment of Cl and Br is mainly responsible for the existence of σ-holes, it is negligibly small in the fluorine. Here, the atomic dipole moment of F plays a stabilizing role in the formation of F⋅⋅⋅N bonds. Interacting quantum atoms (IQA) analysis indicates that the interaction between halogen and nitrogen in the halogen bonds is attractive, whereas it is repulsive in the F⋅⋅⋅N interactions. Virial-based atomic energies show that the fluorine, in contrast to Cl and Br, stabilize upon complex formation. According to these differences, it seems that the F⋅⋅⋅N interactions should be referred to as "fluorine bond" instead of halogen bond.

  18. Bonding thermoplastic polymers

    DOEpatents

    Wallow, Thomas I.; Hunter, Marion C.; Krafcik, Karen Lee; Morales, Alfredo M.; Simmons, Blake A.; Domeier, Linda A.

    2008-06-24

    We demonstrate a new method for joining patterned thermoplastic parts into layered structures. The method takes advantage of case-II permeant diffusion to generate dimensionally controlled, activated bonding layers at the surfaces being joined. It is capable of producing bonds characterized by cohesive failure while preserving the fidelity of patterned features in the bonding surfaces. This approach is uniquely suited to production of microfluidic multilayer structures, as it allows the bond-forming interface between plastic parts to be precisely manipulated at micrometer length scales. The bond enhancing procedure is easily integrated in standard process flows and requires no specialized equipment.

  19. Crystal structure of the 1,3,6,8-tetra­aza­tri­cyclo[4.3.1.13,8]undecane (TATU)–4-nitro­phenol (1/2) adduct: the role of anomeric effect in the formation of a second hydrogen-bond inter­action

    PubMed Central

    Rivera, Augusto; Osorio, Héctor Jairo; Uribe, Juan Manuel; Ríos-Motta, Jaime; Bolte, Michael

    2015-01-01

    In the title ternary co-crystalline adduct, C7H14N4·2C6H5NO3, mol­ecules are linked by two inter­molecular O—H⋯N hydrogen bonds, forming a tricomponent aggregates in the asymmetric unit. The hydrogen-bond formation to one of the N atoms is enough to induce structural stereoelectronic effects in the normal donor→acceptor direction. In the title adduct, the two independent nitro­phenol mol­ecules are essentially planar, with maximum deviations of 0.0157 (13) and 0.0039 (13) Å. The dihedral angles between the planes of the nitro group and the attached benzene rings are 4.04 (17) and 5.79 (17)°. In the crystal, aggregates are connected by C—H⋯O hydrogen bonds, forming a supra­molecular dimer enclosing an R 6 6(32) ring motif. Additional C—H⋯O inter­molecular hydrogen-bonding inter­actions form a second supra­molecular inversion dimer with an R 2 2(10) motif. These units are linked via C—H⋯O and C—H⋯N hydrogen bonds, forming a three-dimensional network. PMID:26594510

  20. Dynamics of the chemical bond: inter- and intra-molecular hydrogen bond.

    PubMed

    Arunan, Elangannan; Mani, Devendra

    2015-01-01

    In this discussion, we show that a static definition of a 'bond' is not viable by looking at a few examples for both inter- and intra-molecular hydrogen bonding. This follows from our earlier work (Goswami and Arunan, Phys. Chem. Chem. Phys. 2009, 11, 8974) which showed a practical way to differentiate 'hydrogen bonding' from 'van der Waals interaction'. We report results from ab initio and atoms in molecules theoretical calculations for a series of Rg∙∙∙HX complexes (Rg=He/Ne/Ar and X=F/Cl/Br) and ethane-1,2-diol. Results for the Rg∙∙∙HX/DX complexes show that Rg∙∙∙DX could have a 'deuterium bond' even when Rg∙∙∙HX is not 'hydrogen bonded', according to the practical criterion given by Goswami and Arunan. Results for ethane-1,2-diol show that an 'intra-molecular hydrogen bond' can appear during a normal mode vibration which is dominated by the OO stretching, though a 'bond' is not found in the equilibrium structure. This dynamical 'bond' formation may nevertheless be important in ensuring the continuity of electron density across a molecule. In the former case, a vibration 'breaks' an existing bond and in the later case, a vibration leads to 'bond' formation. In both cases, the molecule/complex stays bound irrespective of what happens to this 'hydrogen bond'. Both these cases push the borders on the recent IUPAC recommendation on hydrogen bonding (Arunan et al. Pure. Appl. Chem. 2011, 83 1637) and justify the inclusive nature of the definition.

  1. Fluxless flip chip bonding processes and aerial fluxless bonding technology

    NASA Astrophysics Data System (ADS)

    Kim, Dongwook

    New fluxless flip chip processes of Sn-rich non-eutectic Au-Sn solder bumps were developed using vacuum deposition and electroplating technique. It is believed that this is the first report that non-eutectic Au-Sn flip chip solder bonding is achieved without the use of flux. In order to make 200mum diameter and 10mum thick Au-Sn solder bump 0.03mum of Cr, 10mum of Sn and 0.3mum of Au were vacuum deposited on the Si wafer through the high carbon steal stencil mask. Nearly void-free solder bumps with small grains of AuSn4 intermetallic compound were achieved. The re-melting temperature of solder bumps was measured to be 220°C. In the second part, first, the fluxless bonding process was performed in hydrogen environment with electroplated 4 mm x 4mm Au-Sn multi-layer chips if electroplating technique is compatible with our process. High quality and nearly void free solder joint was successfully achieved with this new process. After proving compatibility of the process, tall electroplated Sn/Au bumps (50 mum) were produced by photolithography method using Su-8 photoresist. The bumps in the chip were flip chip bonded to the borosilicate glass wafer coated with Cr (0.03 mum) and Au (0.05 mum) pads without using any flux. Fluxless and lead-free bonding technology in air ambient based on non eutectic 5 at. % Au-95 at. % Sn and eutectic 57 at. %Sn-43 at. % Bi with Au capping layer have been developed and studied. To understand the fluxless bonding principles in air ambient, phase formation mechanism of Au-Sn intermetallics embedded in Bi matrix has been postulated. The Au-Sn intermetallic-capping layer covers most outer surface of the samples and inhibits formation of oxide layer due to the minimizing exposure of (beta-Sn) phase to the air. In conclusion, new-lead free and fluxless bonding processes for flip chip packages were developed. In this work, Sn-rich Au-Sn flip chip solder bumps using vacuum deposition and electroplating process were successfully produced. It is

  2. Fundamental aspects of recoupled pair bonds. II. Recoupled pair bond dyads in carbon and sulfur difluoride

    NASA Astrophysics Data System (ADS)

    Dunning, Thom H.; Takeshita, Tyler Y.; Xu, Lu T.

    2015-01-01

    Formation of a bond between a second ligand and a molecule with a recoupled pair bond results in a recoupled pair bond dyad. We examine the recoupled pair bond dyads in the a3B1 states of CF2 and SF2, which are formed by the addition of a fluorine atom to the a4Σ- states of CF and SF, both of which possess recoupled pair bonds. The two dyads are very different. In SF2, the second FS-F bond is very strong (De = 106.3 kcal/mol), the bond length is much shorter than that in the SF(a4Σ-) state (1.666 Å versus 1.882 Å), and the three atoms are nearly collinear (θe = 162.7°) with only a small barrier to linearity (0.4 kcal/mol). In CF2, the second FC-F bond is also very strong (De = 149.5 kcal/mol), but the bond is only slightly shorter than that in the CF(a4Σ-) state (1.314 Å versus 1.327 Å), and the molecule is strongly bent (θe = 119.0°) with an 80.5 kcal/mol barrier to linearity. The a3B1 states of CF2 and SF2 illustrate the fundamental differences between recoupled pair bond dyads formed from 2s and 3p lone pairs.

  3. Body of Knowledge (BOK) for Copper Wire Bonds

    NASA Technical Reports Server (NTRS)

    Rutkowski, E.; Sampson, M. J.

    2015-01-01

    Copper wire bonds have replaced gold wire bonds in the majority of commercial semiconductor devices for the latest technology nodes. Although economics has been the driving mechanism to lower semiconductor packaging costs for a savings of about 20% by replacing gold wire bonds with copper, copper also has materials property advantages over gold. When compared to gold, copper has approximately: 25% lower electrical resistivity, 30% higher thermal conductivity, 75% higher tensile strength and 45% higher modulus of elasticity. Copper wire bonds on aluminum bond pads are also more mechanically robust over time and elevated temperature due to the slower intermetallic formation rate - approximately 1/100th that of the gold to aluminum intermetallic formation rate. However, there are significant tradeoffs with copper wire bonding - copper has twice the hardness of gold which results in a narrower bonding manufacturing process window and requires that the semiconductor companies design more mechanically rigid bonding pads to prevent cratering to both the bond pad and underlying chip structure. Furthermore, copper is significantly more prone to corrosion issues. The semiconductor packaging industry has responded to this corrosion concern by creating a palladium coated copper bonding wire, which is more corrosion resistant than pure copper bonding wire. Also, the selection of the device molding compound is critical because use of environmentally friendly green compounds can result in internal CTE (Coefficient of Thermal Expansion) mismatches with the copper wire bonds that can eventually lead to device failures during thermal cycling. Despite the difficult problems associated with the changeover to copper bonding wire, there are billions of copper wire bonded devices delivered annually to customers. It is noteworthy that Texas Instruments announced in October of 2014 that they are shipping microcircuits containing copper wire bonds for safety critical automotive applications

  4. High-level ab initio predictions for the ionization energy, bond dissociation energies, and heats of formation of cobalt carbide (CoC) and its cation (CoC+)

    NASA Astrophysics Data System (ADS)

    Lau, Kai-Chung; Pan, Yi; Lam, Chow-Shing; Huang, Huang; Chang, Yih-Chung; Luo, Zhihong; Shi, Xiaoyu; Ng, C. Y.

    2013-03-01

    The ionization energy (IE) of CoC and the 0 K bond dissociation energies (D0) and the heats of formation at 0 K (ΔH°f0) and 298 K (ΔH°f298) for CoC and CoC+ are predicted by the wavefunction based coupled-cluster theory with single, double, triple and quadruple excitations (CCSDTQ) and complete basis set (CBS) approach. The CCSDTQ/CBS calculations presented here involve the approximation to the CBS limit at the coupled cluster level up to full quadruple excitations along with the zero-point vibrational energy, high-order correlation, core-valence (CV) electronic, spin-orbit coupling, and scalar relativistic effect corrections. The present calculations provide the correct symmetry, 1Σ+, for the ground state of CoC+. The CCSDTQ/CBS IE(CoC) = 7.740 eV is found in good agreement with the experimental IE value of 7.73467 ± 0.00007 eV, determined in a two-color laser photoion and pulsed field ionization-photoelectron study. This work together with the previous experimental and theoretical investigations support the conclusion that the CCSDTQ/CBS method is capable of providing reliable IE predictions for 3d-transition metal carbides, such as FeC, CoC, and NiC. Among the single-reference based coupled-cluster methods and multi-reference configuration interaction (MRCI) approach, the CCSDTQ and MRCI methods give the best predictions to the harmonic frequencies ωe (ωe+) = 956 (992) and 976 (1004) cm-1 and the bond lengths re (re+) = 1.560 (1.528) and 1.550 (1.522) Å, respectively, for CoC (CoC+) in comparison with the experimental values. The CCSDTQ/CBS calculations give the prediction of D0(Co+-C) - D0(Co-C) = 0.175 eV, which is also consistent with the experimental determination of 0.14630 ± 0.00014 eV. The theoretical results show that the CV and valence-valence electronic correlations beyond CCSD(T) wavefunction and the relativistic effect make significant contributions to the calculated thermochemical properties of CoC/CoC+. For the experimental D0 and ΔHof0

  5. Changes in the elastic moduli of C-S-H due to presence of interlaminar cations

    NASA Astrophysics Data System (ADS)

    Mejia, Shirley; Hoyos, Bibian

    2016-03-01

    A set of models of calcium silicate hydrate (C-S-H) with alkali cations in the interlaminar layer, various calcium/silicon ratios, and each with a density of 2.4 g cm-3 is presented. Using molecular simulation techniques, the objective was to study how the Young’s, bulk, and shear modulus, as well as the Poisson’s ratio changed due to the presence of monovalent ions. The effect of density on the elastic moduli was neglected, thus the NVT ensemble was used. Comparing the different simulation cells, it was found that models with sodium and potassium ions in the structure and an alkali/silicon ratio of 0.18 showed negative effects on the elastic moduli of C-S-H. This could be mainly ascribed to the shielding effect of the alkali on the interlaminar interactions that contribute to the cohesion between the layers of C-S-H.

  6. Weak bond screening system

    NASA Astrophysics Data System (ADS)

    Chuang, S. Y.; Chang, F. H.; Bell, J. R.

    Consideration is given to the development of a weak bond screening system which is based on the utilization of a high power ultrasonic (HPU) technique. The instrumentation of the prototype bond strength screening system is described, and the adhesively bonded specimens used in the system developmental effort are detailed. Test results obtained from these specimens are presented in terms of bond strength and level of high power ultrasound irradiation. The following observations were made: (1) for Al/Al specimens, 2.6 sec of HPU irradiation will screen weak bond conditions due to improper preparation of bonding surfaces; (2) for composite/composite specimens, 2.0 sec of HPU irradiation will disrupt weak bonds due to under-cured conditions; (3) for Al honeycomb core with composite skin structure, 3.5 sec of HPU irradiation will disrupt weak bonds due to bad adhesive or oils contamination of bonding surfaces; and (4) for Nomex honeycomb with Al skin structure, 1.3 sec of HPU irradiation will disrupt weak bonds due to bad adhesive.

  7. C-S barrier and vibrational analyses of (halocarbonyl)sulfenyl halides XCO-SX (X = F, Cl, and Br).

    PubMed

    Badawi, Hassan M

    2004-09-01

    The structural stability of (halocarbonyl)sulfenyl halides XCO-SX (X is F, Cl, and Br) was investigated by DFT-B3LYP and ab initio MP2 calculations using 6-311 + G(**) basis set. From the calculations the molecules were found to exist predominantly in the trans conformation (two halogen atoms are trans to each other). Full energy optimizations were carried out for the minima and the transition states (TS) at the two levels, from which the rotational barriers about C-S bond in the three molecules were calculated to be about 12-13 kcal mol(-1). The vibrational frequencies of (fluorocarbonyl)sulfenyl fluoride (FCO-SF), (chlorocarbonyl)-sulfenyl chloride (ClCO-SCl), and (bromocarbonyl)-sulfenyl bromide (BrCO-SBr) were computed at the DFT-B3LYP level and the vibrational assignments for the normal modes of the stable forms of the compounds were made on the basis of normal coordinate calculations and experimental data of the chloride.

  8. Analysis of C-S-H gel and cement paste by small-angle neutron scattering

    SciTech Connect

    Allen, Andrew J. . E-mail: andrew.allen@nist.gov; Thomas, Jeffrey J. . E-mail: jthomas@northwestern.edu

    2007-03-15

    The role of small-angle X-ray and neutron scattering (SAXS and SANS) in the characterization of cement is briefly reviewed. The unique information obtainable from SANS analysis of C-S-H gel in hydrating cement is compared with that obtainable by other neutron methods. Implications for the nature of C-S-H gel, as detected by SANS, are considered in relation to current models. Finally, the application of the SANS method to cement paste is demonstrated by analyzing the effects of calcium chloride acceleration and sucrose retardation on the resulting hydrated microstructure.

  9. BONDING ALUMINUM METALS

    DOEpatents

    Noland, R.A.; Walker, D.E.

    1961-06-13

    A process is given for bonding aluminum to aluminum. Silicon powder is applied to at least one of the two surfaces of the two elements to be bonded, the two elements are assembled and rubbed against each other at room temperature whereby any oxide film is ruptured by the silicon crystals in the interface; thereafter heat and pressure are applied whereby an aluminum-silicon alloy is formed, squeezed out from the interface together with any oxide film, and the elements are bonded.

  10. Chemical bonding technology

    NASA Technical Reports Server (NTRS)

    Plueddemann, E.

    1986-01-01

    Primers employed in bonding together the various material interfaces in a photovoltaic module are being developed. The approach develops interfacial adhesion by generating actual chemical bonds between the various materials bonded together. The current status of the program is described along with the progress toward developing two general purpose primers for ethylene vinyl acetate (EVA), one for glass and metals, and another for plastic films.

  11. Low-temperature titanium-based wafer bonding

    NASA Astrophysics Data System (ADS)

    Yu, Jian

    This thesis presents novel methods of metal-based wafer bonding at back-end-of-the-line (BEOL) compatible conditions (≤450°C). For the first time to our knowledge, 200 mm diameter oxidized Si wafers are bonded with prime Si wafers using 10-300 nm thick Ti as bonding intermediate at 300-450°C. Nearly void-free bonding with strong mechanical integrity has been confirmed. Moreover, microcavity formation has been demonstrated by bonding of patterned wafers. Both Rutherford backscattering spectroscopy (RBS) and Auger electron spectroscopy (AES) show clear evidence of Si and Ti interdiffusion, whereas high-resolution transmission electron microscopy (HRTEM) reveals an approximately 8 nm thick amorphous layer at the bonding interface. Those results indicate that the strong adhesion at the Ti/Si bonding interface is attributed to a solid-state amorphization (SSA) assisted by interdiffusion. A key effort is devoted to fundamental investigation of low-temperature transition metal(TM)/Si-based wafer bonding. With the extensive work on Ti/Si system, additional experiments are performed with six other TM/Si systems, namely Ni/Si, Co/Si, Pd/Si, Hf/Si, Au/Si and Ta/Si. The results indicate there are two principal requirements for TM/Si-based wafer bonding: (1) intimate contact (able to break through kinetic barriers), and (2) adequate chemical bonding. Three kinetic barriers addressed in this thesis are: (1) enclosed microvoids due to surface roughness, (2) gas molecules at the bonding interface, and (3) interfacial oxides. Presence of these barriers can prevent formation of intimate contact, consequently retarding or even blocking interfacial interactions for chemical bonding. The unique properties of Group IVA metals (e.g., Ti and Hf) to reduce native SiO2 on Si surfaces and their exceptionally large solid solubility for O2 and N2, help overcome those issues. Once kinetic barriers are surmounted, the key for strong metal/Si-based wafer bonding is formation of chemical bonds

  12. Complexes between hypohalous acids and phosphine derivatives. Pnicogen bond versus halogen bond versus hydrogen bond

    NASA Astrophysics Data System (ADS)

    Li, Qingzhong; Zhu, Hongjie; Zhuo, Hongying; Yang, Xin; Li, Wenzuo; Cheng, Jianbo

    2014-11-01

    The complexes of HOBr:PH2Y (Y = H, F, Cl, Br, CH3, NH2, OH, and NO2), HOCl:PH2F, and HOI:PH2F have been investigated with ab initio calculations at the MP2/aug-cc-pVTZ level. Four types of structures (1, 2, 3a, and 3b) were observed for these complexes. 1 is stabilized by an O⋯P pnicogen bond, 2 by a P⋯X halogen bond, 3a by a H⋯P hydrogen bond and a P⋯X pnicogen bond, and 3b by H⋯P and H⋯Br hydrogen bonds. Their relative stability is related to the halogen X of HOX and the substituent Y of PH2Y. These structures can compete with interaction energy of -10.22 ∼ -29.40 kJ/mol. The Hsbnd O stretch vibration shows a small red shift in 1, a small irregular shift in 2, but a prominent red shift in 3a and 3b. The Xsbnd O stretch vibration exhibits a smaller red shift in 1, a larger red shift in 2, but an insignificant blue shift in 3a and 3b. The Psbnd Y stretch vibration displays a red shift in 1 but a blue shift in 2, 3a, and 3b. The formation mechanism, stability, and properties of these structures have been analyzed with molecular electrostatic potentials, orbital interactions, and non-covalent interaction index.

  13. Equilibrium CO bond lengths

    NASA Astrophysics Data System (ADS)

    Demaison, Jean; Császár, Attila G.

    2012-09-01

    Based on a sample of 38 molecules, 47 accurate equilibrium CO bond lengths have been collected and analyzed. These ultimate experimental (reEX), semiexperimental (reSE), and Born-Oppenheimer (reBO) equilibrium structures are compared to reBO estimates from two lower-level techniques of electronic structure theory, MP2(FC)/cc-pVQZ and B3LYP/6-311+G(3df,2pd). A linear relationship is found between the best equilibrium bond lengths and their MP2 or B3LYP estimates. These (and similar) linear relationships permit to estimate the CO bond length with an accuracy of 0.002 Å within the full range of 1.10-1.43 Å, corresponding to single, double, and triple CO bonds, for a large number of molecules. The variation of the CO bond length is qualitatively explained using the Atoms in Molecules method. In particular, a nice correlation is found between the CO bond length and the bond critical point density and it appears that the CO bond is at the same time covalent and ionic. Conditions which permit the computation of an accurate ab initio Born-Oppenheimer equilibrium structure are discussed. In particular, the core-core and core-valence correlation is investigated and it is shown to roughly increase with the bond length.

  14. Biotic and abiotic carbon to sulfur bond cleavage

    SciTech Connect

    Frost, J.W.

    1991-01-01

    Cleavage of aliphatic organosulfonate carbon to sulfur (C-S) bonds, a critical link in the global biogeochemical sulfur cycle, has been identified in Escherichia coli K-12. Enormous quantities of inorganic sulfate are continuously converted (Scheme I) into methanesulfonic acid 1 and acylated 3-(6-sulfo-{alpha}-D-quinovopyranosyl)-L-glycerol 2. Biocatalytic desulfurization (Scheme I) of 1 and 2, which share the structural feature of an aliphatic carbon bonded to a sulfonic acid sulfur, completes the cycle, Discovery of this desulfurization in E. coli provides an invaluable paradigm for study of a biotic process which, via the biogeochemical cycle, significantly influences the atmospheric concentration of sulfur-containing molecules.

  15. T47D Cells Expressing Myeloperoxidase Are Able to Process, Traffic and Store the Mature Protein in Lysosomes: Studies in T47D Cells Reveal a Role for Cys319 in MPO Biosynthesis that Precedes Its Known Role in Inter-Molecular Disulfide Bond Formation.

    PubMed

    Laura, Richard P; Dong, David; Reynolds, Wanda F; Maki, Richard A

    2016-01-01

    Among the human heme-peroxidase family, myeloperoxidase (MPO) has a unique disulfide-linked oligomeric structure resulting from multi-step processing of the pro-protein monomer (proMPO) after it exits the endoplasmic reticulum (ER). Related family members undergo some, but not all, of the processing steps involved with formation of mature MPO. Lactoperoxidase has its pro-domain proteolytically removed and is a monomer in its mature form. Eosinophil peroxidase undergoes proteolytic removal of its pro-domain followed by proteolytic separation into heavy and light chains and is a heterodimer. However, only MPO undergoes both these proteolytic modifications and then is further oligomerized into a heterotetramer by a single inter-molecular disulfide bond. The details of how and where the post-ER processing steps of MPO occur are incompletely understood. We report here that T47D breast cancer cells stably transfected with an MPO expression plasmid are able to efficiently replicate all of the processing steps that lead to formation of the mature MPO heterotetramer. MPO also traffics to the lysosome granules of T47D cells where it accumulates, allowing in-depth immunofluorescent microscopy studies of MPO trafficking and storage for the first time. Using this novel cell model we show that formation of MPO's single inter-molecular disulfide bond can occur normally in the absence of the proteolytic events that lead to separation of the MPO heavy and light chains. We further demonstrate that Cys319, which forms MPO's unique inter-molecular disulfide bond, is important for events that precede this step. Mutation of this residue alters the glycosylation and catalytic activity of MPO and blocks its entry into the endocytic pathway where proteolytic processing and disulfide bonding occur. Finally, using the endocytic trafficking of lysosomal hydrolases as a guide, we investigate the role of candidate receptors in the endocytic trafficking of MPO. PMID:26890638

  16. T47D Cells Expressing Myeloperoxidase Are Able to Process, Traffic and Store the Mature Protein in Lysosomes: Studies in T47D Cells Reveal a Role for Cys319 in MPO Biosynthesis that Precedes Its Known Role in Inter-Molecular Disulfide Bond Formation.

    PubMed

    Laura, Richard P; Dong, David; Reynolds, Wanda F; Maki, Richard A

    2016-01-01

    Among the human heme-peroxidase family, myeloperoxidase (MPO) has a unique disulfide-linked oligomeric structure resulting from multi-step processing of the pro-protein monomer (proMPO) after it exits the endoplasmic reticulum (ER). Related family members undergo some, but not all, of the processing steps involved with formation of mature MPO. Lactoperoxidase has its pro-domain proteolytically removed and is a monomer in its mature form. Eosinophil peroxidase undergoes proteolytic removal of its pro-domain followed by proteolytic separation into heavy and light chains and is a heterodimer. However, only MPO undergoes both these proteolytic modifications and then is further oligomerized into a heterotetramer by a single inter-molecular disulfide bond. The details of how and where the post-ER processing steps of MPO occur are incompletely understood. We report here that T47D breast cancer cells stably transfected with an MPO expression plasmid are able to efficiently replicate all of the processing steps that lead to formation of the mature MPO heterotetramer. MPO also traffics to the lysosome granules of T47D cells where it accumulates, allowing in-depth immunofluorescent microscopy studies of MPO trafficking and storage for the first time. Using this novel cell model we show that formation of MPO's single inter-molecular disulfide bond can occur normally in the absence of the proteolytic events that lead to separation of the MPO heavy and light chains. We further demonstrate that Cys319, which forms MPO's unique inter-molecular disulfide bond, is important for events that precede this step. Mutation of this residue alters the glycosylation and catalytic activity of MPO and blocks its entry into the endocytic pathway where proteolytic processing and disulfide bonding occur. Finally, using the endocytic trafficking of lysosomal hydrolases as a guide, we investigate the role of candidate receptors in the endocytic trafficking of MPO.

  17. T47D Cells Expressing Myeloperoxidase Are Able to Process, Traffic and Store the Mature Protein in Lysosomes: Studies in T47D Cells Reveal a Role for Cys319 in MPO Biosynthesis that Precedes Its Known Role in Inter-Molecular Disulfide Bond Formation

    PubMed Central

    Laura, Richard P.; Dong, David; Reynolds, Wanda F.; Maki, Richard A.

    2016-01-01

    Among the human heme-peroxidase family, myeloperoxidase (MPO) has a unique disulfide-linked oligomeric structure resulting from multi-step processing of the pro-protein monomer (proMPO) after it exits the endoplasmic reticulum (ER). Related family members undergo some, but not all, of the processing steps involved with formation of mature MPO. Lactoperoxidase has its pro-domain proteolytically removed and is a monomer in its mature form. Eosinophil peroxidase undergoes proteolytic removal of its pro-domain followed by proteolytic separation into heavy and light chains and is a heterodimer. However, only MPO undergoes both these proteolytic modifications and then is further oligomerized into a heterotetramer by a single inter-molecular disulfide bond. The details of how and where the post-ER processing steps of MPO occur are incompletely understood. We report here that T47D breast cancer cells stably transfected with an MPO expression plasmid are able to efficiently replicate all of the processing steps that lead to formation of the mature MPO heterotetramer. MPO also traffics to the lysosome granules of T47D cells where it accumulates, allowing in-depth immunofluorescent microscopy studies of MPO trafficking and storage for the first time. Using this novel cell model we show that formation of MPO’s single inter-molecular disulfide bond can occur normally in the absence of the proteolytic events that lead to separation of the MPO heavy and light chains. We further demonstrate that Cys319, which forms MPO’s unique inter-molecular disulfide bond, is important for events that precede this step. Mutation of this residue alters the glycosylation and catalytic activity of MPO and blocks its entry into the endocytic pathway where proteolytic processing and disulfide bonding occur. Finally, using the endocytic trafficking of lysosomal hydrolases as a guide, we investigate the role of candidate receptors in the endocytic trafficking of MPO. PMID:26890638

  18. Oral Interpretation of C.S. Lewis'"Narnia Tales": A Refracting of "Pictures."

    ERIC Educational Resources Information Center

    Keefe, Carolyn

    "The Chronicles of Narnia" are a series of seven fairy tales written by C.S. Lewis that have become popular with both children and adults. Lewis points to five aspects of the fairy tale form that made the form suitable for expressing the images he saw. The aspects are: (1) no love interest; (2) no close psychology; (3) severe restraints on…

  19. Mathematics, Art, Research, Collaboration, and Storytelling: The High M.A.R.C.S. Project

    ERIC Educational Resources Information Center

    Reilly, Edel M.; Pagnucci, Gian S.

    2007-01-01

    This article describes a curriculum integration project designed to help students better contextualize their learning: The High M.A.R.C.S. Project linked mathematics, art, research, collaboration, and storytelling. The article explains the project in detail, discusses sample student work from the project, and describes how the project work was…

  20. P.H.Y.S.I.C.S. Can Be Done!

    ERIC Educational Resources Information Center

    Spangler, Lois

    2004-01-01

    P.H.Y.S.I.C.S. (Physics Headstart Yearlong Science Inquiry at Central School) is a series of inquiry investigations and science activities designed to motivate students and teachers and develop a love of physics in our rural agricultural community. The program?s approach infuses physics into the science curriculum while capitalizing on our…